

Head First C

David Griffiths

Dawn Griffiths

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

To Dennis Ritchie (1941–2011), the father of C.

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com
 , you have the following benefits:

	DRM-free ebooks — use your ebooks across devices without restrictions or limitations

	Multiple formats — use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here
 to access your ebook upgrade.

Please note that upgrade offers are not available from sample content.

Advance Praise for
Head First C

“
Head First C

 could quite possibly turn out to be the best C book of all time. I don’t say that lightly. I could easily see this become the standard C textbook for every college C course. Most books on programming follow a fairly predictable course through keywords, control-flow constructs, syntax, operators, data types, subroutines, etc. These can serve as a useful reference, as well as a fairly academic introduction to the language. This book, on the other hand, takes a totally different approach. It teaches you how to be a real C programmer. I wish I had had this book 15 years ago!”

—

Dave Kitabjian, Director of Software Development, NetCarrier Telecom

“
Head First C

 is an accessible, light-hearted introduction to C programming, in the classic Head First style. Pictures, jokes, exercises, and labs take the reader gently but steadily through the fundamentals of C — including arrays, pointers, structs, and functions — before moving into more advanced topics in Posix and Linux system programming, such as processes and threads.”

—

Vince Milner, software developer

Praise for other
Head First

 books

“Kathy and Bert’s
Head First Java

 transforms the printed page into the closest thing to a GUI you’ve ever seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’ experience.”

—

Warren Keuffel,
Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java

 covers a huge amount of practical matters that other texts leave as the dreaded ‘exercise for the reader...’ It’s clever, wry, hip, and practical — there aren’t a lot of textbooks that can make that claim and live up to it while also teaching you about object serialization and network launch protocols.”

—

Dr. Dan Russell, Director of User Sciences and Experience Research, IBM Almaden Research Center; artificial intelligence instructor, Stanford University

“It’s fast, irreverent, fun, and engaging. Be careful — you might actually learn something!”

—

Ken Arnold, former Senior Engineer at Sun Microsystems; coauthor (with James Gosling, creator of Java),
The Java Programming Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

—

Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practical development strategies — gets my brain going without having to slog through a bunch of tired, stale professor-speak.”

—

Travis Kalanick, founder of Scour and Red Swoosh; member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared, mangled, and carried everywhere.
Head First SQL

 is at the top of my stack. Heck, even the PDF I have for review is tattered and torn.”

—

Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor, and substantial doses of clever make it the sort of book that helps even nonprogrammers think well about problem solving.”

—

Cory Doctorow, coeditor of Boing Boing; author,
Down and Out in the Magic Kingdom

 and
Someone Comes to Town, Someone Leaves Town

“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely trés ‘cool.’ It is fun, but they cover a lot of ground, and they are right to the point. I’m really impressed.”

—

Erich Gamma, IBM Distinguished Engineer and coauthor of
Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

—

Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial-and-error learning process has now been reduced neatly into an engaging paperback.”

—

Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of pragmatism and wit.”

—

Ken Goldstein, Executive Vice President, Disney Online

“I ™
Head First HTML with CSS & XHTML

 — it teaches you everything you need to learn in a ‘fun coated’ format.”

—

Sally Applin, UI designer and artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller...Bueller...Bueller...,’ this book is on the float belting out ‘Shake it up, baby!’”

—

Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

—

Satish Kumar

Other related books from O’Reilly

	C in a Nutshell

	Practical C Programming

	C Pocket Reference

	Algorithms with C

	Secure Programming Cookbook for C and C++

Other books in O’Reilly’s
Head First

 series

	Head First Programming

	Head First Rails

	Head First Java TM

	Head First Object-Oriented Analysis and Design (OOA&D)

	Head First HTML5 Programming

	Head First HTML with CSS and XHTML

	Head First Design Patterns

	Head First Servlets and JSP

	Head First EJB

	Head First PMP

	Head First SQL

	Head First Software Development

	Head First JavaScript

	Head First Ajax

	Head First Statistics

	Head First 2D Geometry

	Head First Algebra

	Head First PHP & MySQL

	Head First Mobile Web

	Head First Web Design

Authors of Head First C

 [image: image with no caption]

David Griffiths

 began programming at age 12, when he saw a documentary on the work of Seymour Papert. At age 15, he wrote an implementation of Papert’s computer language LOGO. After studying pure mathematics at university, he began writing code for computers and magazine articles for humans. He’s worked as an agile coach, a developer, and a garage attendant, but not in that order. He can write code in over 10 languages and prose in just one, and when not writing, coding, or coaching, he spends much of his spare time traveling with his lovely wife — and coauthor — Dawn.

Before writing
Head First C

 , David wrote two other Head First books:
Head First Rails

 and
Head First Programming

 .

You can follow David on Twitter at

http://twitter.com/dogriffiths
 .

 [image: image with no caption]

Dawn Griffiths

 started life as a mathematician at a top UK university, where she was awarded a first-class honors degree in mathematics. She went on to pursue a career in software development and has over 15 years experience working in the IT industry.

Before joining forces with David on
Head First C

 , Dawn wrote two other Head First books (
Head First Statistics

 and
Head First 2D Geometry

) and has also worked on a host of other books in the series.

When Dawn’s not working on Head First books, you’ll find her honing her Tai Chi skills, running, making bobbin lace, or cooking. She also enjoys traveling and spending time with her husband, David.

How to use this Book: Intro

 [image: image with no caption]

In this section, we answer the burning question: “So why DID they put that in a C book?”

Who is this book for?

If you can answer “yes” to all of these:

	Do you already know how to program in another programming language?

	Do you want to master C, create the next big thing in software, make a small fortune, and retire to your own private island?

 Note

OK, maybe that one’s a little far-fetched. But, you gotta start somewhere, right?

	Do you prefer actually doing things and applying the stuff you learn over listening to someone in a lecture rattle on for hours on end?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any of these:

	Are you looking for a quick introduction or reference book to C?

	Would you rather have your toenails pulled out by 15 screaming monkeys than learn something new? Do you believe a C book should cover
everything

 and if it bores the reader to tears in the process, then so much the better?

this book is not
 for you.

 [image: image with no caption]

[Note from Marketing: this book is for anyone with a credit card... we’ll accept a check, too.]

We know what you’re thinking

“How can
this

 be a serious C book?”

“What’s with all the graphics?”

“Can I actually
learn

 it this way?”

We know what your brain is thinking

Your brain craves novelty. It’s always searching, scanning,
waiting

 for something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it
can

 to stop them from interfering with the brain’s
real

 job — recording things that
matter

 . It doesn’t bother saving the boring things; they never make it past the “this is obviously not important” filter.

How does your brain
know

 what’s important? Suppose you’re out for a day hike and a tiger jumps in front of you — what happens inside your head and body?

Neurons fire. Emotions crank up.
Chemicals surge

 .

And that’s how your brain knows...

 [image: image with no caption]

This must be important! Don’t forget it!

But imagine you’re at home or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this
obviously

 unimportant content doesn’t clutter up scarce resources. Resources that are better spent storing the really
big

 things. Like tigers. Like the danger of fire. Like how you should never have posted those party photos on your Facebook page. And there’s no simple way to tell your brain, “Hey brain, thank you very much, but no matter how dull this book is, and how little I’m registering on the emotional Richter scale right now, I really
do

 want you to keep this stuff around.”

 [image: image with no caption]

We think of a “Head First” reader as a learner

So what does it take to
learn

 something? First, you have to
get

 it, then make sure you don’t
forget

 it. It’s not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology,
learning

 takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual.

 Images are far more memorable than words alone, and make learning much more effective (up to 89% improvement in recall and transfer studies). It also makes things more understandable.
Put the words within or near the graphics

 they relate to, rather than on the bottom or on another page, and learners will be up to
twice

 as likely to solve problems related to the content.

Use a conversational and personalized style.

 In recent studies, students performed up to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously. Which would
you

 pay more attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply.

 In other words, unless you actively flex your neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain and multiple senses.

Get — and keep — the reader’s attention.

 We’ve all had the “I really want to learn this, but I can’t stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions.

 We now know that your ability to remember something is largely dependent on its emotional content. You remember what you care about. You remember when you
feel

 something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?”, and the feeling of “I rule!” that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from Engineering
doesn’t

 .

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were
expected

 to learn, but rarely
taught

 to learn.

But we assume that if you’re holding this book, you really want to learn how to program in C. And you probably don’t want to spend a lot of time. If you want to use what you read in this book, you need to
remember

 what you read. And for that, you’ve got to
understand

 it. To get the most from this book, or
any

 book or learning experience, take responsibility for your brain. Your brain on
this

 content.

The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain doing its best to keep the new content from sticking.

 [image: image with no caption]

So just how
DO

 you get your brain to treat programming like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you
are

 able to learn and remember even the dullest of topics if you keep pounding the same thing into your brain. With enough repetition, your brain says, “This doesn’t
feel

 important to him, but he keeps looking at the same thing
over

 and
over

 and
over

 , so I suppose it must be.”

The faster way is to do

anything that increases brain activity,

 especially different
types

 of brain activity. The things on the previous page are a big part of the solution, and they’re all things that have been proven to help your brain work in your favor. For example, studies show that putting words
within

 the pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text) causes your brain to try to makes sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing = more chances for your brain to
get

 that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they’re in a conversation, since they’re expected to follow along and hold up their end. The amazing thing is, your brain doesn’t necessarily
care

 that the “conversation” is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning...

Here’s what WE did

We used pictures
 , because your brain is tuned for visuals, not text. As far as your brain’s concerned, a picture really
is

 worth a thousand words. And when text and pictures work together, we embedded the text
in

 the pictures because your brain works more effectively when the text is
within

 the thing it refers to, as opposed to in a caption or buried in the body text somewhere.

We used redundancy
 , saying the same thing in
different

 ways and with different media types, and
multiple senses

 , to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected
 ways because your brain is tuned for novelty, and we used pictures and ideas with at least
some

 emotional

content

 , because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
feel

 something is more likely to be remembered, even if that feeling is nothing more than a little humor
 , surprise
 , or interest.

We used a personalized, conversational style
 , because your brain is tuned to pay more attention when it believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your brain does this even when you’re
reading

 .

We included more than 80 activities
 , because your brain is tuned to learn and remember more when you do
 things than when you
read

 about things. And we made the exercises challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles
 , because
you

 might prefer step-by-step procedures, while someone else wants to understand the big picture first, and someone else just wants to see an example. But regardless of your own learning preference,
everyone

 benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain
 , because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.

And we included stories
 and exercises that present more than one point of view,
 because your brain is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges
 , with exercises, and by asking questions
 that don’t always have a straight answer, because your brain is tuned to learn and remember when it has to
work

 at something. Think about it — you can’t get your
body

 in shape just by
watching

 people at the gym. But we did our best to make sure that when you’re working hard, it’s on the
right

 things. That you’re not spending one extra dendrite
 processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly terse text.

We used people
 . In stories, examples, pictures, etc., because, well,
you’re

 a person. And your brain pays more attention to
people

 than it does to
things

 .

Here’s what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure out what works for you and what doesn’t. Try new things.

 [image: image with no caption]

Cut this out and stick it on your refrigerator.

	

Slow down. The more you understand, the less you have to memorize.

Don’t just
read

 . Stop and think. When the book asks you a question, don’t just skip to the answer. Imagine that someone really
is

 asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.

	

Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don’t just
look

 at the exercises.
Use a pencil

 . There’s plenty of evidence that physical activity
while

 learning can increase the learning.

	

Read “There Are No Dumb Questions.”

That means all of them. They’re not optional sidebars, they’re part of the core content!
 Don’t skip them.

	

Make this the last thing you read before bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to long-term memory) happens
after

 you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing time, some of what you just learned will be lost.

	

Talk about it. Out loud.

Speaking activates a different part of the brain. If you’re trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were there when you were reading about it.

	

Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.

	

Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it’s time for a break. Once you go past a certain point, you won’t learn faster by trying to shove more in, and you might even hurt the process.

	

Feel something.

Your brain needs to know that this
matters

 . Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is
still

 better than feeling nothing at all.

	

Write a lot of code!

There’s only one way to learn to program in C:
write a lot of code

 . And that’s what you’re going to do throughout this book. Coding is a skill, and the only way to get good at it is to practice. We’re going to give you a lot of practice: every chapter has exercises that pose a problem for you to solve. Don’t just skip over them — a lot of the learning happens when you solve the exercises. We included a solution to each exercise — don’t be afraid to
peek at the solution

 if you get stuck! (It’s easy to get snagged on something small.) But try to solve the problem before you look at the solution. And definitely get it working before you move on to the next part of the book.

Read me

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of learning whatever it is we’re working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you’ve already seen and learned.

We assume you’re new to C, but not to programming.

We assume that you’ve already done some programming. Not a lot, but we’ll assume you’ve already seen things like loops and variables in some other language, like JavaScript. C is actually a pretty advanced language, so if you’ve never done any programming
at all,

 then you might want to read some other book before you start on this one. We’d suggest starting with
Head First Programming

 .

You need to install a C compiler on your computer.

Throughout the book, we’ll be using the
Gnu Compiler Collection

 (gcc
) because it’s free and, well, we think it’s just a pretty darned good compiler. You’ll need to make sure you have gcc
 installed on your machine. The good news is, if you have a
Linux

 computer, then you should already have gcc
 . If you’re using a Mac, you’ll need to install the Xcode/Developer tools. You can either download these from the Apple
App Store

 or by downloading them from Apple. If you’re on a Windows machine, you have a couple options.
Cygwin

 (

http://www.cygwin.com

) gives you a complete simulation of a
UNIX

 environment, including gcc
 . But if you want to create programs that will work on Windows plain-and-simple, then you might want to install the
Minimalist GNU for Windows

 (MingW) from

http://www.mingw.org

 .

All the code in this book is intended to run across
all

 these operating systems, and we’ve tried hard not to write anything that will only work on one type of computer. Occasionally, there will be some differences, but we’ll make sure to point those out to you.

We begin by teaching some basic C concepts, and then we start putting C to work for you right away.

We cover the fundamentals of C in Chapter 1
 . That way, by the time you make it all the way to Chapter 2
 , you are creating programs that actually do something real, useful, and — gulp! — fun. The rest of the book then builds on your C skills, turning you from
C newbie

 to
coding ninja master

 in no time.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some of them are to help with memory, some are for understanding, and some will help you apply what you’ve learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to
really

 get it. And we want you to finish the book remembering what you’ve learned. Most reference books don’t have retention and recall as a goal, but this book is about
learning

 , so you’ll see some of the same concepts come up more than once.

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for the two lines they need to understand. Most examples in this book are shown within the smallest possible context, so that the part you’re trying to learn is clear and simple. Don’t expect all of the examples to be robust, or even complete — they are written specifically for learning, and aren’t always fully functional.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience of the Brain Power activities is for you to decide if and when your answers are right. In some of the Brain Power exercises, you will find hints to point you in the right direction.

The technical review team

 [image: image with no caption]

 [image: image with no caption]

Technical reviewers:

Dave Kitabjian

 has two degrees in electrical and computer engineering and about 20 years of experience consulting, integrating, architecting, and building information system solutions for clients from Fortune 500 firms to high-tech startups. Outside of work, Dave likes to play guitar and piano and spend time with his wife and three kids.

Vince Milner

 has been developing in C (and many other languages) on a wide variety of platforms for over 20 years. When not studying for his master’s degree in mathematics, he can be found being beaten at board games by six-year-olds and failing to move house.

Acknowledgments

Our editor:

Many thanks to
Brian Sawyer

 for asking us to write this book in the first place. Brian believed in us every step of the way, gave us the freedom to try out new ideas, and didn’t panic too much when deadlines loomed.

 [image: image with no caption]

The O’Reilly team:

A big thank you goes to the following people who helped us out along the way:
Karen Shaner

 for her expert image-hunting skills and for generally keeping the wheels oiled;
Laurie Petrycki

 for keeping us well fed and well motivated while in Boston;
Brian Jepson

 for introducing us to the wonderful world of the Arduino; and the
early release team

 for making early versions of the book available for download. Finally, thanks go to
Rachel Monaghan

 and the production team for expertly steering the book through the production process and for working so hard behind the scenes. You guys are awesome.

Family, friends, and colleagues:

We’ve made a lot of friends on our Head First journey. A special thanks goes to
Lou Barr

 ,
Brett McLaughlin

 , and
Sanders Kleinfeld

 for teaching us so much.

David: My thanks to
Andy Parker

 ,
Joe Broughton

 ,
Carl Jacques

 , and
Simon Jones

 and the many other friends who have heard so little from me whilst I was busy scribbling away.

Dawn: Work on this book would have been a lot harder without my amazing support network of family and friends. Special thanks go to
Mum and Dad

 ,
Carl

 ,
Steve

 ,
Gill

 ,
Jacqui

 ,
Joyce

 , and
Paul

 . I’ve truly appreciated all your support and encouragement.

The without-whom list:

Our technical review team did a truly excellent job of keeping us straight and making sure what we covered was spot on. We’re also incredibly grateful to all the people who gave us feedback on early releases of the book. We think the book’s much, much better as a result.

Finally, our thanks to
Kathy Sierra

 and
Bert Bates

 for creating this extraordinary series of books.

Safari® Books Online

 [image: image with no caption]

Safari Books Online (

www.safaribooksonline.com

) is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business. Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.

Chapter 1. Getting Started with C: Diving in

 [image: image with no caption]

Want to get inside the computer’s head?

Need to write
high-performance code

 for a new game? Program an
Arduino

 ? Or use that advanced
third-party library

 in your iPhone app? If so, then C’s here to help. C works at a
much lower level

 than most other languages, so understanding C gives you a much better idea of
what’s really going on

 . C can even help you better understand other languages as well. So dive in and grab your compiler, and you’ll soon get started in no time.

C is a language for small, fast programs

 The C language is designed to create small, fast programs. It’s lower-level than most other languages; that means
it creates code that’s a lot closer to what machines really understand

 .

The way C works

Computers really only understand one language: machine code, a binary stream of 1s and 0s. You convert your C code into machine code with the aid of a
compiler

 .

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

C is used where speed, space, and portability are important. Most operating systems are written in C. Most other computer languages are also written in C. And most game software is written in C.

 Note

There are three C standards that you may stumble across. ANSI C is from the late 1980s and is used for the oldest code. A lot of things were fixed up in the C99 standard from 1999. And some cool new language features were added in the current standard, C11, released in 2011. The differences between the different versions aren’t huge, and we’ll point them out along the way.

Sharpen your pencil

Try to guess what each of these code fragments does.

 [image: image with no caption]

Sharpen your pencil: Solution

Don’t worry if you don’t understand all of this yet
 . Everything is explained in greater detail later in the book.

 [image: image with no caption]

But what does a complete C program look like?

 To create a full program, you need to enter your code into a
C source file

 . C source files can be created by any text editor, and their filenames usually end with
.c

 .

 Note

This is just a convention, but you should follow it.

Let’s have a look at a typical C source file.

 [image: image with no caption]

So let’s look at the main() function in a little more detail.

The main() Function Up Close

 The computer will start running your program from the main()
 function. The name is important: if you don’t have a function called main()
 , your program won’t be able to start.

The main()
 function has a
return type

 of int
 . So what does this mean? Well, when the computer runs your program, it will need to have some way of deciding if the program ran successfully or not. It does this by checking the
return value

 of the main()
 function. If you tell your main()
 function to return 0, this means that the program was successful. If you tell it to return any other value, this means that there was a problem.

 [image: image with no caption]

The function name comes after the return type. That’s followed by the function parameters if there are any. Finally, we have the
function body

 . The function body
must

 be surrounded by
braces

 .

 Geek Bits

The printf()
 function is used to display
formatted output

 . It replaces format characters with the values of variables, like this:

 [image: image with no caption]

You can include as many parameters as you like when you call the printf()
 function, but make sure you have a matching % format character for each one.

 Note

If you want to check the exit status of a program, type:

echo %ErrorLevel%

in Windows, or:

echo $?

in Linux or on the Mac.

Code Magnets

The College Blackjack Team was working on some code on the dorm fridge, but someone mixed up the magnets! Can you reassemble the code from the magnets?

 [image: image with no caption]

Code Magnets Solution

 The College Blackjack Team was working on some code on the dorm fridge, but someone mixed up the magnets! You were to reassemble the code from the magnets.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

What does card_name[0]
 mean?

	

A:

	
It’s the first character that the user typed. So if he types 10, card_name[0]
 would be 1.

	

Q:

	

Do you always write comments using /*
 and */
 ?

	

A:

	
If your compiler supports the C99 standard, then you can begin a comment with //
 . The compiler treats the rest of that line as a comment.

	

Q:

	

How do I know which standard my compiler supports?

	

A:

	
Check the documentation for your compiler. gcc
 supports all three standards: ANSI C, C99, and C11.

But how do you run the program?

 C is a
compiled language

 . That means the computer will not interpret the code directly. Instead, you will need to convert — or
compile

 — the human-readable source code into machine-readable
machine code

 .

To compile the code, you need a program called a
compiler

 . One of the most popular C compilers is the
GNU Compiler Collection

 or

gcc

 . gcc
 is available on a lot of operating systems, and it can compile lots of languages other than C. Best of all, it’s completely free.

Here’s how you can compile and run the program using gcc
 .

 [image: image with no caption]

 Geek Bits

You can compile and run your code on most machines using this trick:

 [image: image with no caption]

This command will run the new program only if it compiles successfully. If there’s a problem with the compile, it will skip running the program and simply display the errors on the screen.

Do this!

You should create the
cards.c

 file and compile it now. We’ll be working on it more and more as the chapter progresses.

Test Drive

 Let’s see if the program compiles and runs. Open up a command prompt or terminal on your machine and try it out.

 [image: image with no caption]

The program works!

Congratulations! You have compiled and run a C program. The gcc
 compiler took the human-readable source code from
cards.c

 and converted it into computer-readable
machine code

 in the cards
 program. If you are using a Mac or Linux machine, the compiler will have created the machine code in a file called cards
 . But on Windows, all programs need to have a
.exe

 extension, so the file will be called cards.exe
 .

There are no Dumb Questions

	

Q:

	

Why do I have to prefix the program with ./
 when I run it on Linux and the Mac?

	

A:

	
On Unix-style operating systems, programs are run only if you specify the directory where they live or if their directory is listed in the PATH environment variable.

 [image: image with no caption]

The C language doesn’t support strings out of the box.

 Note

But there are a number of C extension libraries that
do

 give you strings.

C is more low-level than most other languages, so instead of strings, it normally uses something similar:
an array of single characters

 . If you’ve programmed in other languages, you’ve probably met an array before. An array is just a list of things given a single name. So card_name
 is just a variable name you use to refer to the list of characters entered at the command prompt. You defined card_name
 to be a
two-character array

 , so you can refer to the first and second character as char_name[0]
 and char_name[1]
 . To see how this works, let’s take a deeper dive into the computer’s memory and see how C handles text...

Strings Way Up Close

 Strings are just character arrays. When C sees a string like this:

s = "Shatner"

it reads it like it was just an array of separate characters:

 [image: image with no caption]

Each of the characters in the string is just an element in an array, which is why you can refer to the individual characters in the string by using an index, like s[0]
 and s[1]
 .

 [image: image with no caption]

Don’t fall off the end of the string

But what happens when C wants to read the contents of the string? Say it wants to print it out. Now, in a lot of languages, the computer keeps pretty close track of the size of an array, but C is more low-level than most languages and can’t always work out exactly
how long

 an array is. If C is going to display a string on the screen, it needs to know when it gets to the end of the character array. And it does this by adding a
sentinel character

 .

 [image: image with no caption]

The sentinel character is an additional character at the end of the string that has the value \0
 . Whenever the computer needs to read the contents of the string, it goes through the elements of the character array one at a time, until it reaches \0
 . That means that when the computer sees this:

s = "Shatner"

it actually stores it in memory like this:

 [image: image with no caption]

That’s why in our code we had to define the card_name
 variable like this:

char card_name[3];

The card_name
 string is only ever going to record one or two characters, but because strings end in a
sentinel character

 we have to allow for an extra character in the array.

There are no Dumb Questions

	

Q:

	

Why are the characters numbered from 0? Why not 1?

	

A:

	
The index is an offset: it’s a measure of how far the character is from the first character.

	

Q:

	

Why?

	

A:

	
The computer will store the characters in consecutive bytes of memory. It can use the index to calculate the location of the character. If it knows that c[0]
 is at memory location 1,000,000, then it can quickly calculate that c[96]
 is at 1,000,000 + 96.

	

Q:

	

Why does it need a sentinel character? Doesn’t it know how long the string is?

	

A:

	
Usually, it doesn’t. C is not very good at keeping track of how long arrays are, and a string is just an array.

	

Q:

	

It doesn’t know how long arrays are???

	

A:

	
No. Sometimes the compiler can work out the length of an array by analyzing the code, but usually C relies on you to keep track of your arrays.

	

Q:

	

Does it matter if I use single quotes or double quotes?

	

A:

	
Yes. Single quotes are used for individual characters, but double quotes are always used for strings.

	

Q:

	

So should I define my strings using quotes (″) or as explicit arrays of characters?

	

A:

	
Usually you will define strings using quotes. They are called
string literals,

 and they are easier to type.

	

Q:

	

Are there any differences between string literals and character arrays?

	

A:

	
Only one: string literals are constant.

	

Q:

	

What does that mean?

	

A:

	
It means that you can’t change the individual characters once they are created.

	

Q:

	

What will happen if I try?

	

A:

	
It depends on the compiler, but gcc
 will usually display a bus error.

	

Q:

	

A bus error? What the heck’s a bus error?

	

A:

	
C will store string literals in memory in a different way. A bus error just means that your program can’t update that piece of memory.

 Painless Operations

Not all equals signs are equal.

In C, the equals sign (=
) is used for
assignment

 . But a double equals sign (==
) is used for
testing equality

 .

 [image: image with no caption]

If you want to increase or decrease a variable, then you can save space with the +=
 and -=
 assignments.

 [image: image with no caption]

Finally, if you want to increase or decrease a variable by 1, use ++ and --.

 [image: image with no caption]

Two types of command

 So far, every command you’ve seen has fallen into one of the following two categories.

Do
 something

Most of the commands in C are statements. Simple statements are
actions

 ; they
do

 things and they
tell us

 things. You’ve met statements that define variables, read input from the keyboard, or display data to the screen.

 [image: image with no caption]

Sometimes you group statements together to create
block statements

 . Block statements are groups of commands surrounded by braces.

 [image: image with no caption]

Do something only if
 something is true

Control statements such as if
 check a condition before running the code:

 [image: image with no caption]

if
 statements typically need to do more than one thing when a condition is true, so they are often used with block statements:

 [image: image with no caption]

Do you need braces?

Block statements allow you to treat a
whole set of statements

 as if they were a
single statement

 . In C, the if
 condition works like this:

if (countdown == 0)

do_this_thing();

The if
 condition runs a
single statement

 . So what if you want to run several statements in an if
 ? If you wrap a list of statements in braces, C will treat them as though they were just one statement:

if (x == 2) {

call_whitehouse();

sell_oil();

x = 0;

}

C coders like to keep their code short and snappy, so most will omit braces on if
 conditions and while
 loops. So instead of writing:

if (x == 2) {

puts("Do something");

}

most C programmers write:

if (x == 2)

puts("Do something");

Here’s the code so far

	
/*
 * Program to evaluate face values.
 * Released under the Vegas Public License.
 * (c)2014 The College Blackjack Team.
 */
#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 printf("The card value is: %i\n", val);
 return 0;
}

 [image: image with no caption]

 [image: image with no caption]

Card counting? In C?

 Card counting is a way to increase your chances of winning at blackjack. By keeping a running count as the cards are dealt, a player can work out the best time to place large bets and the best time to place small bets. Even though it’s a powerful technique, it’s really quite simple.

 [image: image with no caption]

How difficult would this be to write in C? You’ve looked at how to make a single test, but the card-counting algorithm needs to check multiple conditions: you need to check that a number is >= 3 as well as checking that it’s <= 6.

You need a set of operations that will allow you to combine conditions together.

There’s more to booleans than equals...

 So far, you’ve looked at if
 statements that check if a single condition is true, but what if you want to check several conditions? Or check if a single condition is
not

 true?

&& checks if two conditions are true

The
and

 operator (&&
) evaluates to true, only if
both

 conditions given to it are true.

 [image: image with no caption]

The
and

 operator is efficient: if the first condition is false, then the computer won’t bother evaluating the second condition. It knows that if the first condition is false, then the whole condition must be false.

II checks if one
 of two conditions is true

The
or

 operator (||
) evaluates to true, if
either

 condition given to it is true.

 [image: image with no caption]

If the first condition is true, the computer won’t bother evaluating the second condition. It knows that if the first condition is true, the
whole condition

 must be true.

! flips the value of a condition

! is the
not

 operator. It reverses the value of a condition.

 [image: image with no caption]

 Geek Bits

In C, boolean values are represented by numbers. To C, the number 0 is the value for false. But what’s the value for true? Anything that is not equal to 0 is treated as true. So there is nothing wrong in writing C code like this:

int people_moshing = 34;
if (people_moshing)
 take_off_glasses();

In fact, C programs often use this as a shorthand way of checking if something is not 0.

Exercise

 You are going to modify the program so that it can be used for card counting. It will need to display one message if the value of the card is from 3 to 6. It will need to display a different message if the card is a 10, Jack, Queen, or King.

int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if _______________________________
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if ______________________________
 puts("Count has gone down");
 return 0;
}

 The Polite Guide to Standards

The ANSI C standard has no value for true and false. C programs treat the value 0 as false, and any other value as true. The C99 standard does allow you to use the words
true

 and
false

 in your programs — but the compiler treats them as the values 1 and 0 anyway.

Exercise Solution

 You were to modify the program so that it can be used for card counting. It needed to display one message if the value of the card is from 3 to 6. It needed to display a different message if the card is a 10, Jack, Queen, or King.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Why not just |
 and &
 ?

	

A:

	
You can use &
 and |
 if you want. The &
 and |
 operators will
always evaluate both conditions

 , but &&
 and ||
 can often skip the second condition.

	

Q:

	

So why do the &
 and |
 operators exist?

	

A:

	
Because they do more than simply evaluate logical conditions. They perform bitwise operations on the individual bits of a number.

	

Q:

	

Huh? What do you mean?

	

A:

	
Well, 6 &
 4 is equal to 4, because if you checked which binary digits are common to 6 (110 in binary) and 4 (100 in binary, you get 4 (100).

Test Drive

Let’s see what happens when you compile and run the program now:

 [image: image with no caption]

The code works. By combining multiple conditions with a boolean operator, you check for a range of values rather than a single value. You now have the basic structure in place for a card counter.

 [image: image with no caption]

The Compiler Exposed

This week’s interview: What Has gcc Ever Done for Us?

	

Head First:

 May I begin by thanking you, gcc
 , for finding time in your very busy schedule to speak to us.

	

gcc:

 That’s not a problem, my friend. A pleasure to help.

	

Head First:

 gcc
 , you can speak many languages, is that true?

	

gcc:

 I am fluent in over six million forms of communication...

	

Head First:

 Really?

	

gcc:

 Just teasing. But I do speak many languages. C, obviously, but also C++ and Objective-C. I can get by in Pascal, Fortran, PL/I, and so forth. Oh, and I have a smattering of Go...

	

Head First:

 And on the hardware side, you can produce machine code for many, many platforms?

	

gcc:

 Virtually any processor. Generally, when a hardware engineer creates a new type of processor, one of the first things she wants to do is get some form of me running on it.

	

Head First:

 How have you achieved such incredible flexibility?

	

gcc:

 My secret, I suppose, is that there are two sides to my personality. I have a frontend, a part of me that understands some type of source code.

	

Head First:

 Written in a language such as C?

	

gcc:

 Exactly. My frontend can convert that language into an intermediate code. All of my language frontends produce the same sort of code.

	

Head First:

 You say there are two sides to your personality?

	

gcc:

 I also have a backend: a system for converting that intermediate code into machine code that is understandable on many platforms. Add to that my knowledge of the particular executable file formats for just about every operating system you’ve ever heard of...

	

Head First:

 And yet, you are often described as a mere translator. Do you think that’s fair? Surely that’s not all you are.

	

gcc:

 Well, of course I do a little more than simple translation. For example, I can often spot errors in code.

	

Head First:

 Such as?

	

gcc:

 Well, I can check obvious things such as misspelled variable names. But I also look for subtler things, such as the redefinition of variables. Or I can warn the programmer if he chooses to name variables after existing functions and so on.

	

Head First:

 So you check code quality as well, then?

	

gcc:

 Oh, yes. And not just quality, but also performance. If I discover a section of code inside a loop that could work equally well outside a loop, I can very quietly move it.

	

Head First:

 You do rather a lot!

	

gcc:

 I like to think I do. But in a quiet way.

	

Head First:

 gcc
 , thank you.

BE the Compiler

 Each of the C files on this page represents a complete source file. Your job is to play compiler and determine whether each of these files will compile, and if not, why not. For extra bonus points, say what you think the output of each compiled file will be when run, and whether you think the code is working as intended.

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");
 return 0;
}

D

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 return 0;
}

BE the Compiler Solution

Each of the C files on this page represents a complete source file. Your job is to play compiler and determine whether each of these files will compile, and if not, why not. For extra bonus points, say what you think the output of each compiled file will be when run, and whether you think the code is working as intended.

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

The code compiles. The program displays “Small card.” But it doesn’t work properly because the else is attached to the wrong if.

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

The code compiles. The program displays nothing and is not really working properly because the else is matched to the wrong if.

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");
 return 0;
}

The code compiles. The program displays “Ace!” and is properly written.

D

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 return 0;
}

The code won’t compile because the braces are not matched.

What’s the code like now?

	

int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if ((val > 2) && (val < 7))
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if (val == 10)
 puts("Count has gone down");
 return 0;
}

 [image: image with no caption]

C programs often need to check the same value several times and then perform very similar pieces of code for each case.

Now, you can just use a sequence of if
 statements, and that will probably be just fine. But C gives you an alternative way of writing this kind of logic.

C can perform logical tests with the switch
 statement.

Pulling the ol’ switcheroo

 Sometimes when you’re writing conditional logic, you need to check the value of the same variable over and over again. To prevent you from having to write lots and lots of if
 statements, the C language gives you another option: the

switch

 statement.

The switch
 statement is kind of like an if
 statement, except it can test for multiple values of a
single variable

 :

 [image: image with no caption]

When the computer hits a switch
 statement, it checks the value it was given, and then looks for a matching case
 . When it finds one, it runs
all

 of the code that follows it until it reaches a break
 statement.
The computer keeps going until it is told to break out of the switch
 statement.

 Watch it!

Missing breaks can make your code buggy.

Most C programs have a

 break

at the end of each

 case

section to make the code easier to understand, even at the cost of some efficiency.

Sharpen your pencil

 Let’s look at that section of your cards
 program again:

int val = 0;
if (card_name[0] == 'K') {
 val = 10;
} else if (card_name[0] == 'Q') {
 val = 10;
} else if (card_name[0] == 'J') {
 val = 10;
} else if (card_name[0] == 'A') {
 val = 11;
} else {
 val = atoi(card_name);
}

Do you think you can rewrite this code using a switch
 statement? Write your answer below:

Sharpen your pencil: Solution

 You were to rewrite the code using a switch
 statement.

 [image: image with no caption]

Bullet Points

	
switch
 statements can replace a sequence of if
 statements.

	
switch
 statements check a single value.

	The computer will start to run the code at the first matching case
 statement.

	It will continue to run until it reaches a break
 or gets to the end of the switch
 statement.

	Check that you’ve included break
 s in the right places; otherwise, your switch
 es will be buggy.

There are no Dumb Questions

	

Q:

	

Why would I use a switch
 statement instead of an if
 ?

	

A:

	
If you are performing multiple checks on the same variable, you might want to use a switch
 statement.

	

Q:

	

What are the advantages of using a switch
 statement?

	

A:

	
There are several. First: clarity. It is clear that an entire block of code is processing a single variable. That’s not so obvious if you just have a sequence of if
 statements. Secondly, you can use fall-through logic to reuse sections of code for different cases.

	

Q:

	

Does the switch
 statement have to check a variable? Can’t it check a value?

	

A:

	
Yes, it can. The switch
 statement will simply check that two values are equal.

	

Q:

	

Can I check strings in a switch
 statement?

	

A:

	
No, you can’t use a switch
 statement to check a string of characters or any kind of array. The switch
 statement will only check a single value.

Sometimes once is not enough...

 You’ve learned a lot about the C language, but there are still some important things to learn. You’ve seen how to write programs for many different situations, but there is one fundamental thing that we haven’t really looked at yet. What if you want your program to do something
again and again and again

 ?

 [image: image with no caption]

Using while loops in C

Loops are a special type of control statement. A control statement decides
if

 a section of code will be run, but a loop statement decides
how many times

 a piece of code will be run.

The most basic kind of loop in C is the while
 loop. A while
 loop runs code
over and over and over

 as long as some condition remains true.

 [image: image with no caption]

 Do you do while?

There’s another form of the while
 loop that checks the loop condition
after

 the loop body is run. That means the loop always executes
at least once

 . It’s called the

do...while
 loop

 :

do {

/* Buy lottery ticket */

} while(have_not_won);

 [image: image with no caption]

Loops often follow the same structure...

 You can use the while
 loop anytime you need to repeat a piece of code, but a lot of the time your loops will have the same kind of structure:

	Do something simple before the loop, like set a counter.

	Have a simple test condition on the loop.

	Do something at the end of a loop, like update a counter.

For example, this is a while
 loop that counts from 1 to 10:

 [image: image with no caption]

Loops like this have code that prepares variables for the loop, some sort of condition that is checked each time the loop runs, and finally some sort of code at the end of the loop that updates a counter or something similar.

...and the for loop makes this easy

Because this pattern is so common, the designers of C created the

for

 loop to make it a little more concise. Here is that same piece of code written with a for
 loop:

 [image: image with no caption]

for
 loops are actually used a
lot

 in C — as much, if not more than, while
 loops. Not only do they make the code slightly shorter, but they’re also easier for other C programmers to read, because all of the code that controls the loop — the stuff that controls the value of the counter
 variable — is now contained in the for
 statement and is taken out of the loop body.

Every for loop needs to have something in the body.

You use break to break out...

 You can create loops that check a condition at the beginning or end of the loop body. But what if you want to escape from the loop from somewhere in the middle? You could always restructure your code, but sometimes it’s just simpler skip out of the loop immediately using the

break

 statement:

 [image: image with no caption]

A break
 statement will break you straight out of the current loop, skipping whatever follows it in the loop body. break
 s can be useful because they’re sometimes the simplest and best way to end a loop. But you might want to avoid using too many, because they can also make the code a little harder to read.

 Watch it!

The break statement is used to break out of loops and also switch statements.

Make sure that you know what you’re

 break

ing out of when you

 break
 .

...and continue to continue

If you want to skip the rest of the loop body and go back to the start of the loop, then the continue
 statement is your friend:

 [image: image with no caption]

 Tales from the Crypt

breaks don’t break if statements.

On January 15, 1990, AT&T’s long-distance telephone system crashed, and 60,000 people lost their phone service. The cause? A developer working on the C code used in the exchanges tried to use a

 break

to break out of an

 if

statement. But

 break

s don’t break out of

 if

s. Instead, the program skipped an entire section of code and introduced a bug that interrupted 70 million phone calls over nine hours.

Writing Functions Up Close

 Before you try out your new loop mojo, let’s go on a detour and take a quick look at functions.

So far, you’ve had to create one function in every program you’ve written, the main()
 function:

 [image: image with no caption]

Pretty much all functions in C follow the same format. For example, this is a program with a custom function that gets called by main()
 :

 [image: image with no caption]

The larger()
 function is slightly different from main()
 because it takes arguments
 or parameters
 . An
argument

 is just a local variable that gets its value from the code that calls the function. The larger()
 function takes two arguments — a
 and b
 — and then it returns the value of whichever one is larger.

 The Polite Guide to Standards

The main()
 function has an int
 return type, so you should include a return
 statement when you get to the end. But if you leave the return
 statement out, the code will still compile — though you may get a warning from the compiler. A
C99

 compiler will insert a return
 statement for you if you forget. Use

-std=c99

 to compile to the C99 standard.

Void Functions Up Close

 Most functions in C have a return value, but sometimes you might want to create a function that has nothing useful to return. It might just
do

 stuff rather than
calculate

 stuff. Normally, functions always have to contain a return
 statement, but not if you give your function the return type

void

 :

 [image: image with no caption]

In C, the keyword void
 means
it doesn’t matter

 . As soon as you tell the C compiler that you don’t care about returning a value from the function, you don’t need to have a return
 statement in your function.

There are no Dumb Questions

	

Q:

	

If I create a void
 function, does that mean it can’t contain a return
 statement?

	

A:

	
You can still include a return
 statement, but the compiler will most likely generate a warning. Also, there’s no point to including a return
 statement in a void
 function.

	

Q:

	

Really? Why not?

	

A:

	
Because if you try to read the value of your void
 function, the compiler will refuse to compile your code.

Chaining Assignments

Almost everything in C has a return value, and not just function calls. In fact, even things like assignments have return values. For example, if you look at this statement:

x = 4;

It assigns the number 4 to a variable. The interesting thing is that the expression “ x = 4
 ”
itself

 has the value that was assigned: 4. So why does that matter? Because it means you can do cool tricks, like chaining assignments together:

 [image: image with no caption]

That line of code will set both x

and

 y
 to the value 4. In fact, you can shorten the code slightly by removing the parentheses:

y = x = 4;

You’ll often see chained assignments in code that needs to set several variables to the same value.

Mixed Messages

 A short C program is listed below. One block of the program is missing. Your challenge is to
match the candidate block of code

 (on the left)
with the output

 that you’d see if the block were inserted. Not all of the lines of output will be used, and some of the lines of output might be used more than once. Draw lines connecting the candidate blocks of code with their matching command-line output.

 [image: image with no caption]

 [image: image with no caption]

Exercise

 Now that you know how to create while
 loops, modify the program to keep a running count of the card game. Display the count after each card and end the program if the player types X. Display an error message if the player types a bad card value like 11 or 24.

 [image: image with no caption]

Mixed Messages Solution

 A short C program is listed below. One block of the program is missing. Your challenge was to
match the candidate block of code

 (on the left)
with the output

 that you’d see if the block were inserted. Not all of the lines of output were used. You were to draw lines connecting the candidate blocks of code with their matching command-line output.

 [image: image with no caption]

 [image: image with no caption]

Exercise Solution

 Now that you know how to create while
 loops, you were to modify the program to keep a running count of the card game. Display the count after each card and end the program if the player types X. Display an error message if the player types a bad card value like 11 or 24.

 [image: image with no caption]

Test Drive

 Now that the card-counting program is finished, it’s time to take it for a spin. What do you think? Will it work?

 [image: image with no caption]

The card counting program works!

You’ve completed your first C program. By using the power of C statements, loops, and conditions, you’ve created a fully functioning card counter.

Great job!

 Note

Disclaimer: Using a computer for card counting is illegal in many states, and those casino guys can get kinda gnarly. So don’t do it, OK?

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Why do I need to compile C? Other languages like JavaScript aren’t compiled, are they?

	

A:

	
C is compiled to make the code fast. Even though there are languages that aren’t compiled, some of those — like JavaScript and Python — often use some sort of hidden compilation to improve their speed.

	

Q:

	

Is C++ just another version of C?

	

A:

	
No. C++ was originally designed as an extension of C, but now it’s a little more than that. C++ and Objective-C were both created to use object orientation with C.

	

Q:

	

What’s object orientation? Will we learn it in this book?

	

A:

	
Object orientation is a technique to deal with complexity. We won’t specifically look at it in this book.

	

Q:

	

C looks a lot like JavaScript, Java, C#, etc.

	

A:

	
C has a very compact syntax and it’s influenced many other languages.

	

Q:

	

What does gcc
 stand for?

	

A:

	
The Gnu Compiler Collection.

	

Q:

	

Why “collection”? Is there more than one?

	

A:

	
The Gnu Compiler Collection can be used to compile many languages, though C is probably still the language with which it’s used most frequently.

	

Q:

	

Can I create a loop that runs forever?

	

A:

	
Yes. If the condition on a loop is the value 1, then the loop will run forever.

	

Q:

	

Is it a good idea to create a loop that runs forever?

	

A:

	
Sometimes. An infinite loop (a loop that runs forever) is often used in programs like network servers that perform one thing repeatedly until they are stopped. But most coders design loops so that they will stop sometime.

Bullet Points

	A while
 loop runs code as long as its condition is true.

	A do-while
 loop is similar, but runs the code at least once.

	The for
 loop is a more compact way of writing certain kinds of loops.

	You can exit a loop at any time with break
 .

	You can skip to the loop condition at any time with continue
 .

	The return
 statement returns a value from a function.

	
void
 functions don’t need return
 statements.

	Most expressions in C have values.

	Assignments have values so you can chain them together (x = y = 0
).

Your C Toolbox

You’ve got Chapter 1
 under your belt, and now you’ve added C basics to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 2. Memory and Pointers: What are you pointing at?

 [image: image with no caption]

If you really want to kick butt with C, you need to understand how C handles memory.

The C language gives you a lot more
control

 over how your program uses the
computer’s memory

 . In this chapter, you’ll strip back the covers and see exactly what happens when you
read and write variables

 . You’ll learn
how arrays work

 , how to avoid some
nasty memory SNAFUs,

 and most of all, you’ll see how
mastering pointers and memory addressing

 is key to becoming a kick-ass C programmer.

C code includes pointers

 Pointers are one of the most fundamental things to understand in the C programming language. So what’s a pointer? A
pointer

 is just the address of a piece of data in memory.

Pointers are used in C for a couple of reasons.

To best understand pointers, go slowly.

	

Instead of passing around a whole copy of the data, you can just pass a pointer.

 [image: image with no caption]

	

You might want two pieces of code to work on the same piece of data rather than a separate copy.

 [image: image with no caption]

Pointers help you do both these things: avoid copies and share data. But if pointers are just addresses, why do some people find them confusing? Because they’re a
form of indirection

 . If you’re not careful, you can quickly get lost chasing pointers through memory. The trick to learning how to use C pointers is to
go slowly

 .

 Relax

Don’t try to rush this chapter.

Pointers are a simple idea, but you need to take your time and understand everything. Take frequent breaks, drink plenty of water, and if you really get stuck, take a nice long bath.

Digging into memory

 To understand what pointers are, you’ll need to dig into the memory of the computer.

Every time you declare a variable, the computer creates space for it somewhere in memory. If you declare a variable
inside

 a function like main()
 , the computer will store it in a section of memory called the
stack

 . If a variable is declared
outside any function

 , it will be stored in the
globals

 section of memory.

 [image: image with no caption]

The computer might allocate, say, memory location 4,100,000 in the stack for the x
 variable. If you assign the number 4 to the variable, the computer will store 4 at location 4,100,000.

If you want to find out the memory address of the variable, you can use the

&

 operator:

 [image: image with no caption]

The address of the variable tells you where to find the variable in memory. That’s why an address is also called a pointer
 , because it points
 to the variable in memory.

A variable declared inside a function is usually stored in the stack.

A variable declared outside a function is stored in globals.

Set sail with pointers

Imagine you’re writing a game in which players have to navigate their way around the...

 [image: image with no caption]

The game will need to keep control of lots of things, like scores and lives and the current location of the players. You won’t want to write the game as one large piece of code; instead, you’ll create lots of smaller functions that will each do something useful in the game:

 [image: image with no caption]

What does any of this have to do with pointers? Let’s begin coding without worrying about pointers at all. You’ll just use variables as you always have. A major part of the game is going to be navigating your ship around the Bermuda Rectangle, so let’s dive deeper into what the code will need to do in one of the navigation functions.

Set sail sou’east, Cap’n

The game will track the location of players using
latitudes

 and
longitudes

 . The latitude is how far north or south the player is, and the longitude is her position east or west. If a player wants to travel southeast, that means her latitude will go
down

 , and her longitude will go
up

 :

 [image: image with no caption]

So you could write a go_south_east()
 function that takes arguments for the latitude and longitude, which it will then increase and decrease:

 [image: image with no caption]

The program starts a ship at location [32, –64], so if it heads southeast, the ship’s new position will be [31, –63]. At least it will be
if the code works

 ...

 Brain Power

Look at the code carefully. Do you think it will work? Why? Why not?

Test Drive

The code should move the ship southeast from [32, –64] to the new location at [31, –63]. But if you compile and run the program, this happens:

 [image: image with no caption]

 [image: image with no caption]

The ship’s location stays
exactly

 the same as before.

C sends arguments as values

The code broke because of the way that C calls functions.

	Initially, the main()
 function has a local variable called longitude
 that had value 32.

 [image: image with no caption]

	When the computer calls the go_south_east()
 function, it
copies the value

 of the longitude
 variable to the lon
 argument. This is just an assignment from the longitude
 variable to the lon
 variable. When you call a function, you don’t send the
variable

 as an argument, just its
value

 .

	When the go_south_east()
 function changes the value of lon
 , the function is just changing its local copy. That means when the computer returns to the main()
 function, the longitude
 variable still has its original value of 32.

 [image: image with no caption]

But if that’s how C calls functions, how can you ever write a function that updates a variable?

It’s easy if you use pointers...

Try passing a pointer to the variable

 Instead of passing the
value

 of the latitude
 and longitude
 variables, what happens if you pass their
addresses

 ? If the longitude
 variable lives in the stack memory at location 4,100,000, what happens if you pass the location number 4,100,000 as a parameter to the go_south_east()
 function?

 [image: image with no caption]

 [image: image with no caption]

If the go_south_east()
 function is told that the latitude
 value lives at location 4,100,000, then it will not only be able to find the current latitude
 value, but it will also be able to change the contents of the original latitude
 variable. All the function needs to do is read and update the contents of memory location 4,100,000.

 [image: image with no caption]

Because the go_south_east()
 function is updating the original latitude
 variable, the computer will be able to print out the updated location when it returns to the main()
 function.

Pointers make it easier to share memory

This is one of the main reasons for using pointers — to let functions
share

 memory. The data created by one function can be modified by another function, so long as it knows where to find it in memory.

Now that you know the theory of using pointers to fix the go_south_east()
 function, it’s time to look at the details of how you do it.

There are no Dumb Questions

	

Q:

	

I printed the location of the variable on my machine and it wasn’t 4,100,000. Did I do something wrong?

	

A:

	
You did nothing wrong. The memory location your program uses for the variables will be different from machine to machine.

	

Q:

	

Why are local variables stored in the stack and globals stored somewhere else?

	

A:

	
Local and global variables are used differently. You will only ever get one copy of a global variable, but if you write a function that calls itself, you might get very many instances of the same local variable.

	

Q:

	

What are the other areas of the memory used for?

	

A:

	
You’ll see what the other areas are for as you go through the rest of the book.

Using memory pointers

 There are
three

 things you need to know in order to use pointers to read and write data.

 [image: image with no caption]

OK, now that you know how to read and write the contents of a memory location, it’s time for you to fix the go_south_east() function.

Compass Magnets

Now you need to fix the go_south_east()
 function so that it uses pointers to update the correct data. Think carefully about what type of data you want to pass to the function, and what operators you’ll need to use to update the location of the ship.

 [image: image with no caption]

Compass Magnets Solution

You needed to fix the go_south_east()
 function so that it uses pointers to update the correct data. You were to think carefully about what type of data you want to pass to the function, and what operators you’ll need to use to update the location of the ship.

 [image: image with no caption]

 [image: image with no caption]

Test Drive

Now if you compile and run the
new

 version of the function, you get this:

 [image: image with no caption]

The code works.

Because the function takes pointer arguments, it’s able to update the original latitude
 and longitude
 variables. That means that you now know how to create functions that not only return values, but can also update any memory locations that are passed to them.

Bullet Points

	Variables are allocated storage in memory.

	Local variables live in the stack.

	Global variables live in the globals section.

	Pointers are just variables that store memory addresses.

	The &
 operator finds the address of a variable.

	The *
 operator can read the contents of a memory address.

	The *
 operator can also set the contents of a memory address.

There are no Dumb Questions

	

Q:

	

Are pointers actual address locations? Or are they some other kind of reference?

	

A:

	
They’re actual numeric addresses in the process’s memory.

	

Q:

	

What does that mean?

	

A:

	
Each process is given a simplified version of memory to make it look like a single long sequence of bytes.

	

Q:

	

And memory’s not like that?

	

A:

	
It’s more complicated in reality. But the details are hidden from the process so that the operating system can move the process around in memory, or unload it and reload it somewhere else.

	

Q:

	

Is memory not just a long list of bytes?

	

A:

	
The computer will probably structure its physical memory in a more complex way. The machine will typically group memory addresses into separate banks of memory chips.

	

Q:

	

Do I need to understand this?

	

A:

	
For most programs, you don’t need to worry about the details of how the machine arranges its memory.

	

Q:

	

Why do I have to print out pointers using the %p
 format string?

	

A:

	
You don’t have to use the %p
 string. On most modern machines, you can use %li
 — although the compiler may give you a warning if you do.

	

Q:

	

Why does the %p
 format display the memory address in hex format?

	

A:

	
It’s the way engineers typically refer to memory addresses.

	

Q:

	

If reading the contents of a memory location is called
dereferencing

 , does that mean that pointers should be called
references

 ?

	

A:

	
Sometimes coders will call pointers
references

 , because they refer to a memory location. However, C++ programmers usually reserve the word
reference

 for a slightly different concept in C++.

	

Q:

	

Oh yeah, C++. Are we going to look at that?

	

A:

	
No, this book looks at C only.

How do you pass a string to a function?

 You know how to pass simple values as arguments to functions, but what if you want to send something more complex to a function, like a string? If you remember from the last chapter, strings in C are actually arrays of characters. That means if you want to pass a string to a function, you can do it like this:

 [image: image with no caption]

 [image: image with no caption]

The msg
 argument is defined like an array, but because you won’t know how long the string will be, the msg
 argument doesn’t include a length. That
seems

 straightforward, but there’s something a little strange going on...

Honey, who shrank the string?

C has an operator called

sizeof

 that can tell you how many bytes of space something takes in memory. You can either call it with a data type or with a piece of data:

 [image: image with no caption]

But a strange thing happens if you look at the length of the string you’ve passed in the function:

 [image: image with no caption]

Instead of displaying the full length of the string, the code returns just 4 or 8 bytes. What’s happened? Why does it think the string we passed in is shorter?

 Brain Power

Why do you think sizeof(msg)
 is shorter than the length of the whole string? What is msg
 ? Why would it return different sizes on different machines?

Array variables are like pointers...

 When you create an array, the array variable can be used as a
pointer

 to the start of the array in memory. When C sees a line of code in a function like this:

 [image: image with no caption]

The computer will set aside space on the stack for each of the characters in the string, plus the \0
 end character. But it will also associate the
address of the first character

 with the quote
 variable. Every time the quote
 variable is used in the code, the computer will substitute it with the address of the first character in the string. In fact, the array variable is
just like a pointer

 :

 [image: image with no caption]

...so our function was passed a pointer

That’s why that weird thing happened in the fortune_cookie()
 code. Even though it looked like you were passing a string to the fortune_cookie()
 function, you were actually just passing a pointer to it:

 [image: image with no caption]

And that’s why the sizeof
 operator returned a weird result. It was just returning the size of a
pointer to a string

 . On 32-bit operating systems, a pointer takes 4 bytes of memory and on 64-bit operating systems, a pointer takes 8 bytes.

What the computer thinks when it runs your code

	

The computer sees the function.

 [image: image with no caption]

	

Then it sees the function contents.

 [image: image with no caption]

	

The computer calls the function.

 [image: image with no caption]

Bullet Points

	

 An array variable can be used as a pointer.

	The array variable points to the first element in the array.

	If you declare an array argument to a function, it will be treated as a pointer.

	The sizeof
 operator returns the space taken by a piece of data.

	You can also call sizeof
 for a data type, such as sizeof(int)
 .

	
sizeof(a pointer)
 returns 4 on 32-bit operating systems and 8 on 64-bit.

There are no Dumb Questions

	

Q:

	

Is sizeof
 a function?

	

A:

	
No, it’s an operator.

	

Q:

	

What’s the difference?

	

A:

	
An operator is compiled to a sequence of instructions by the compiler. But if the code calls a function, it has to jump to a separate piece of code.

	

Q:

	

So is sizeof
 calculated when the program is compiled?

	

A:

	
Yes. The compiler can determine the size of the storage at compile time.

	

Q:

	

Why are pointers different sizes on different machines?

	

A:

	
On 32-bit operating systems, a memory address is stored as a 32-bit number. That’s why it’s called a 32-bit system. 32 bits == 4 bytes. That’s why a 64-bit system uses 8 bytes to store an address.

	

Q:

	

If I create a pointer variable, does the pointer variable live in memory?

	

A:

	
Yes. A pointer variable is just a variable storing a number.

	

Q:

	

So can I find the address of a pointer variable?

	

A:

	
Yes — using the &
 operator.

	

Q:

	

Can I convert a pointer to an ordinary number?

	

A:

	
On most systems, yes. C compilers typically make the long data type the same size as a memory address. So if p
 is a pointer and you want to store it in a long
 variable a
 , you can type a = (long)p
 . We’ll look at this in a later chapter.

	

Q:

	

On
most

 systems? So it’s not guaranteed?

	

A:

	
It’s not guaranteed.

The Mating Game

We have a classic trio of bachelors ready to play
The Mating Game

 today.

Tonight’s lucky lady is going to pick one of these fine contestants. Who will she choose?

 [image: image with no caption]

	
#include <stdio.h>

int main()
{
 int contestants[] = {1, 2, 3};
 int *choice = contestants;
 contestants[0] = 2;
 contestants[1] = contestants[2];
 contestants[2] = *choice;
 printf("I'm going to pick contestant number %i\n", contestants[2]);
 return 0;
}

The Mating Game: Solution

We had a classic trio of bachelors ready to play
The Mating Game

 today.

Tonight’s lucky lady picked one of these fine contestants. Who did she choose?

 [image: image with no caption]

But array variables aren’t quite pointers

 Even though you can use an array variable as a pointer, there are still a few differences. To see the differences, think about this piece of code.

char s[] = "How big is it?";
char *t = s;

	

sizeof(an array)
 is...the size of an array.

You’ve seen that sizeof(a pointer)
 returns the value 4 or 8, because that’s the size of pointers on 32- and 64-bit systems. But if you call sizeof
 on an array variable, C is smart enough to understand that what you want to know is
how big the array is in memory

 .

 [image: image with no caption]

	

The address of the array...is the address of the array.

A pointer variable is just a variable that stores a memory address. But what about an array variable? If you use the &
 operator on an array variable, the result equals the array variable itself.

 [image: image with no caption]

If a coder writes &s
 , that means “What is the address of the s
 array?” The address of the s
 array is just... s
 . But if someone writes &t
 , that means “What is the address of the t
 variable?”

	

An array variable can’t point anywhere else.

When you create a pointer variable, the machine will allocate 4 or 8 bytes of space to store it. But what if you create an array? The computer will allocate space to store the array, but it won’t allocate
any

 memory to store the array variable. The compiler simply plugs in the address of the start of the array.

But because array variables don’t have allocated storage, it means you can’t point them at anything else.

 [image: image with no caption]

 Pointer decay

Because array variables are slightly different from pointer variables, you need to be careful when you assign arrays to pointers. If you assign an array to a pointer variable, then the pointer variable will only contain the
address

 of the array. The pointer doesn’t know anything about the size of the array, so a little information has been lost. That loss of information is called
decay

 .

Every time you pass an array to a function, you’ll decay to a pointer, so it’s unavoidable. But you need to keep track of where arrays decay in your code because it can cause very subtle bugs.

Five-Minute Mystery

The Case of the Lethal List

The mansion had all the things he’d dreamed of: landscaped grounds, chandeliers, its own bathroom. The 94-year-old owner, Amory Mumford III, had been found dead in the garden, apparently of a heart attack. Natural causes? The doc thought it was an overdose of heart medication. Something stank here, and it wasn’t just the dead guy in the gazebo. Walking past the cops in the hall, he approached Mumford’s newly widowed 27-year-old wife, Bubbles.

“I don’t understand. He was always so careful with his medication. Here’s the list of doses.” She showed him the code from the drug dispenser.

int doses[] = {1, 3, 2, 1000};

“The police say I reprogrammed the dispenser. But I’m no good with technology. They say I wrote this code, but I don’t even think it’ll compile. Will it?”

She slipped her manicured fingers into her purse and handed him a copy of the program the police had found lying by the millionaire’s bed. It certainly didn’t look like it would compile...

printf("Issue dose %i", 3[doses]);

What did the expression 3[doses]
 mean? 3 wasn’t an array. Bubbles blew her nose. “I could never write that. And anyway, a dose of 3 is not so bad, is it?”

A dose of size 3 wouldn’t have killed the old guy. But maybe there was more to this code than met the eye...

Why arrays really
 start at 0

 An array variable can be used as a pointer to the first element in an array. That means you can read the first element of the array either by using the brackets notation
or

 using the *
 operator like this:

 [image: image with no caption]

But because an address is just a number, that means you can do
pointer arithmetic

 and actually add
 values to a pointer value and find the next address. So you can either use brackets to read the element with index 2, or you can just add 2 to the address of the first element:

printf("3rd order: %i drinks\n",

drinks[2]

);
printf("3rd order: %i drinks\n",

*(drinks + 2)

);

 [image: image with no caption]

In general, the two expressions drinks[i]
 and *(drinks + i)
 are equivalent. That’s why arrays begin with index 0. The index is just the number that’s added to the pointer to find the location of the element.

Sharpen your pencil

Use the power of pointer arithmetic to mend a broken heart. This function will skip the first six characters of the text message.

 [image: image with no caption]

Sharpen your pencil: Solution

 You were to use the power of pointer arithmetic to mend a broken heart. This function skips the first six characters of the text message.

 [image: image with no caption]

Why pointers have types

If pointers are just addresses, then why do pointer variables have types? Why can’t you just store all pointers in some sort of general pointer variable?

The reason is that pointer arithmetic is
sneaky

 . If you add
1

 to a char
 pointer, the pointer will point to the very next memory address. But that’s just because a char
 occupies
1 byte of memory

 .

What if you have an int
 pointer? int
 s usually take 4 bytes of space, so if you add 1 to an int
 pointer, the compiled code will actually add 4 to the memory address.

 [image: image with no caption]

int nums[] = {1, 2, 3};
printf("nums is at %p\n", nums);
printf("nums + 1 is at %p\n", nums + 1);

If you run this code, the two memory address will be
more

 than one byte apart. So pointer types exist so that
the compiler knows how much to adjust the pointer arithmetic

 .

 [image: image with no caption]

Five-Minute Mystery Solved

The Case of the Lethal List

Last time we left our hero interviewing Bubbles Mumford, whose husband had been given an overdose as a result of suspicious code. Was Bubbles the coding culprit or just a patsy? To find out, read on...

He put the code into his pocket. “It’s been a pleasure, Mrs. Mumford. I don’t think I need to bother you anymore.” He shook her by the hand. “Thank you,” she said, wiping the tears from her baby blue eyes, “You’ve been so kind.”

“Not so fast, sister.” Bubbles barely had time to gasp before he’d slapped the bracelets on her. “I can tell from your hacker manicure that you know more than you say about this crime.” No one gets fingertip calluses like hers without logging plenty of time on the keyboard.

“Bubbles, you know a lot more about C than you let on. Take a look at this code again.”

int doses[] = {1, 3, 2, 1000};
printf("Issue dose %i", 3[doses]);

“I knew something was wrong when I saw the expression 3[doses]
 . You knew you could use an array variable like doses
 as a pointer. The fatal 1,000 dose could be written down like this...” He scribbled down a few coding options on his second-best Kleenex:

doses[3] == *(doses + 3) == *(3 + doses) == 3[doses]

“Your code was a dead giveaway, sister. It issued a dose of 1,000 to the old guy. And now you’re going where you can never corruptly use C syntax again...”

Bullet Points

	
 Array variables can be used as pointers...

	...but array variables are not quite the same.

	
sizeof
 is different for array and pointer variables.

	Array variables can’t point to anything else.

	Passing an array variable to a pointer decays it.

	Arrays start at zero because of pointer arithmetic.

	Pointer variables have types so they can adjust pointer arithmetic.

There are no Dumb Questions

	

Q:

	

Do I really need to understand pointer arithmetic?

	

A:

	
Some coders avoid using pointer arithmetic because it’s easy to get it wrong. But it can be used to process arrays of data efficiently.

	

Q:

	

Can I subtract numbers from pointers?

	

A:

	
Yes. But be careful that you don’t go back before the start of the allocated space in the array.

	

Q:

	

When does C adjust the pointer arithmetic calculations?

	

A:

	
It happens when the compiler is generating the executable. It looks at the type of the variable and then multiplies the pluses and minuses by the size of the underlying variable.

	

Q:

	

Go on...

	

A:

	
If the compiler sees that you are working with an int
 array and you are adding 2, the compiler will multiply that by 4 (the length of an int
) and add 8.

	

Q:

	

Does C use the sizeof
 operator when it is adjusting pointer arithmetic?

	

A:

	
Effectively. The sizeof
 operator is also resolved at compile time, and both sizeof
 and the pointer arithmetic operations will use the same sizes for different data types.

	

Q:

	

Can I multiply pointers?

	

A:

	
No.

Using pointers for data entry

 You already know how to get the user to enter a string from the keyboard. You can do it with the scanf()
 function:

 [image: image with no caption]

How does scanf()
 work? It accepts a char
 pointer, and in this case you’re passing it an array variable. By now, you might have an idea
why

 it takes a pointer. It’s because the scanf()
 function is going to
update

 the contents of the array. Functions that need to update a variable don’t want the value of the variable itself — they want its
address

 .

Entering numbers with scanf()

So how do you enter data into a
numeric field

 ? You do it by passing a
pointer

 to a number variable.

 [image: image with no caption]

Because you pass the address of a number variable into the function, scanf()
 can update the contents of the variable. And to help you out, you can pass a format string that contains the same kind of format codes that you pass to the printf()
 function. You can even use scanf()
 to enter more than one piece of information at a time:

 [image: image with no caption]

 [image: image with no caption]

Be careful with scanf()

 There’s a little...problem with the scanf() f
 unction. So far, all of the code you’ve written has very carefully put a limit on the number of characters that scanf()
 will read into a function:

scanf("%39s", name);

scanf("%2s", card_name);

 [image: image with no caption]

Why is that? After all, scanf()
 uses the same kind of format strings as printf()
 , but when we print a string with printf()
 , you just use %s
 . Well, if you just use %s
 in scanf()
 , there can be a problem if someone gets a little type-happy:

char food[5];
printf("Enter favorite food: ");
scanf("%s", food);
printf("Favorite food: %s\n", food);

 [image: image with no caption]

The program crashes. The reason is because scanf()
 writes data way beyond the end of the space allocated to the food array.

 [image: image with no caption]

scanf() can cause buffer overflows

If you forget to limit the length of the string that you read with scanf()
 , then any user can enter far more data than the program has space to store. The extra data then gets written into memory that has not been properly allocated by the computer. Now, you might get lucky and the data will simply be stored and not cause any problems.

But it’s
very

 likely that buffer overflows will cause bugs. It might be called a
segmentation fault

 or an
abort trap

 , but whatever the error message that appears, the result will be a crash
 .

fgets() is an alternative to scanf()

 There’s another function you can use to enter text data:

fgets()

 . Just like the scanf()
 function, it takes a char
 pointer, but
unlike

 the scanf()
 function, the fgets()
 function must be given a maximum length:

 [image: image with no caption]

That means that you can’t accidentally forget to set a length when you call fgets()
 ; it’s right there in the function signature as a mandatory argument. Also, notice that the fgets()
 buffer size
includes

 the final \0
 character. So you don’t need to subtract 1 from the length as you do with scanf()
 .

OK, what else do you need to know about fgets()?

Using sizeof with fgets()

The code above sets the maximum length using the sizeof
 operator. Be careful with this. Remember: sizeof
 returns the amount of space occupied by a variable. In the code above, food
 is an array variable, so sizeof
 returns the size of the array. If food
 was just a simple pointer variable, the sizeof
 operator would have just returned the size of a pointer.

If you know that you are passing an array variable to fgets()
 function, then using sizeof
 is fine. If you’re just passing a simple pointer, you should just enter the size you want:

 [image: image with no caption]

 Tales from the Crypt

The fgets() function actually comes from an older function called gets().

Even though

 fgets()

is seen as a safer-to-use function than

 scanf()

, the truth is that the older

 gets()

function is far more dangerous than either of them. The reason? The

 gets()

function has

no limits at all

 :

 [image: image with no caption]

gets()

is a function that’s been around for a long time. But all you really need to know is that you

really shouldn’t use it

 .

Title Fight

 Roll up! Roll up! It’s time for the title fight we’ve all been waiting for. In the red corner: nimble light, flexible but oh-so-slightly dangerous. It’s the bad boy of data input: scanf()
 . And in the blue corner, he’s simple, he’s safe, he’s the function you’d want to introduce to your mom: it’s fgets()
 !

	
	
scanf():

	
fgets():

	

Round 1: Limits

	

Do you limit the number of characters that a user can enter?

	

scanf()
 can limit the data entered, so long as you remember to add the size to the format string.

	

fgets()
 has a mandatory limit. Nothing gets past him.

	

Result: fgets() takes this round on points.

	

Round 2: Multiple fields

	

Can you be used to enter more than one field?

	
Yes! scanf()
 will not only allow you to enter more than one field, but it also allows you to enter
structured data

 including the ability to specify what characters appear between fields.

	
Ouch! fgets()
 takes this one on the chin. fgets()
 allows you to enter just one string into a buffer. No other data types. Just strings. Just one buffer.

	

Result: scanf() clearly wins this round.

	

Round 3: Spaces in strings

	

If someone enters a string, can it contain spaces?

	
Oof! scanf()
 gets hit badly by this one. When scanf()
 reads a string with the %s
 , it stops as soon as it hits a space. So if you want to enter more than one word, you either have to call it more than once, or use some fancy regular expression trick.

	
No problem with spaces at all. fgets()
 can read the whole string every time.

	

Result: A fightback! Round to fgets().

	
A good clean fight between these two feisty functions. Clearly, if you need to enter
structured data

 with
several

 fields, you’ll want to use scanf()
 . If you’re entering a
single unstructured string

 , then fgets()
 is probably the way to go.

Anyone for three-card monte?

 In the back room of the Head First Lounge, there’s a game of three-card monte going on. Someone shuffles three cards around, and you have to watch carefully and decide where you think the Queen card went. Of course, being the Head First Lounge, they’re not using real cards; they’re using
code

 . Here’s the program they’re using:

 [image: image with no caption]

The code is designed to shuffle the letters in the three-letter string “JQK.” Remember: in C, a string is just an array of characters. The program switches the characters around and then displays what the string looks like.

The players place their bets on where they think the “Q” letter will be, and then the code is compiled and run.

 [image: image with no caption]

Oops...there’s a memory problem...

It seems there’s a problem with the card shark’s code. When the code is compiled and run on the Lounge’s notebook computer, this happens:

 [image: image with no caption]

What’s more, if the guys try the same code on different machines and operating systems, they get a whole bunch of different errors:

 [image: image with no caption]

What’s wrong with the code?

What’s Your Hunch?

It’s time to use your
intuition

 . Don’t overanalyze. Just
take a guess

 .
Read

 through these possible answers and select
only

 the one you think is correct.

What do
you

 think the problem is?

	
The string can’t be updated.

	

	
We’re swapping characters outside the string.

	

	
The string isn’t in memory.

	

	
Something else.

	

What’s Your Hunch?: Solution

 It was time to use your
intuition

 . You were to read through these possible answers and select
only

 the one you think is correct.

What did
you

 think the problem was?

	
The string can’t be updated.

	
X

	
We’re swapping characters outside the string.

	

	
The string isn’t in memory.

	

	
Something else.

	

String literals can never be updated

A variable that points to a string literal can’t be used to change the contents of the string:

 [image: image with no caption]

But if you create an array from a string literal, then you
can

 modify it:

char cards[] = "JQK";

It all comes down to how C uses memory
 ...

In memory: char *cards=“JQK”

 To understand why this line of code causes a memory error, we need to dig into the memory of the computer and see exactly what the computer will do.

 [image: image with no caption]

	

The computer loads the string literal.

When the computer loads the program into memory, it puts all of the constant values — like the string literal “JQK” — into the constant memory block. This section of memory is
read only

 .

	

The program creates the cards variable on the stack.

The stack is the section of memory that the computer uses for local variables: variables inside functions. The cards variable will live here.

	

The cards variable is set to the address of “JQK.”

The cards variable will contain the address of
the string literal “JQK

 .” String literals are usually stored in read-only memory to prevent anyone from changing them.

	

The computer tries to change the string.

When the program tries to change the contents of the string pointed to by the cards variable, it can’t; the string is read-only.

 [image: image with no caption]

So the problem is that string literals like “JQK” are held in read only memory. They’re constants.

But if that’s the problem, how do you fix it?

If you’re going to change a string, make a copy

 The truth is that if you want to change the contents of a string, you’ll need to work on a copy
 . If you create a copy of the string in an area of memory that’s
not

 read-only, there won’t be a problem if you try to change the letters it contains.

But how do you make a copy? Well, just create the string as a
new array

 .

 [image: image with no caption]

It’s probably not too clear why this changes anything.
All

 strings are arrays. But in the old code, cards
 was just a
pointer

 . In the new code, it’s an array
 . If you declare an array called cards
 and then set it to a string literal, the cards
 array will be a completely new copy. The variable isn’t just
pointing

 at the string literal. It’s a brand-new array that contains a fresh copy
 of the string literal.

To see how this works in practice, you’ll need to look at what happens in memory.

 [image: image with no caption]

 Geek Bits

cards[] or cards*?

If you see a declaration like this, what does it
really

 mean?

char cards[]

Well, it
depends on where you see it

 . If it’s a normal variable declaration, then it means that cards
 is an array, and you have to set it to a value immediately:

 [image: image with no caption]

But

 if cards is being declared as a
function argument

 , it means that cards
 is a
pointer

 :

 [image: image with no caption]

In memory: char cards[]=“JQK”

We’ve already seen what happens with the
broken code

 , but what about our new code? Let’s take a look.

 [image: image with no caption]

	

The computer loads the string literal.

As before, when the computer loads the program into memory, it stores the constant values — like the string “JQK” — into read-only memory.

	

The program creates a new array on the stack.

We’re declaring an array, so the program will create one large enough to store the “JQK” string — four characters’ worth.

	

The program initializes the array.

But as well as allocating the space, the program will also
copy the contents

 of the string literal “JQK” into the stack memory.

So the difference is that the original code used a pointer to point to a read-only string literal. But if you initialize an array with a string literal, you then have a
copy

 of the letters, and you can change them as much as you like.

Test Drive

 See what happens if you construct a
new array

 in the code.

 [image: image with no caption]

The code works!

 Your cards
 variable now points to a string in an unprotected section of memory, so we are free to modify its contents.

 Geek Bits

One way to avoid this problem in the future is to never write code that sets a simple char
 pointer to a string literal value like:

char *s = "Some string";

There’s nothing wrong with setting a pointer to a string literal — the problems only happen when you try to
modify

 a string literal. Instead, if you want to set a pointer to a literal, always make sure you use the const
 keyword:

const char *s = "some string";

That way, if the compiler sees some code that tries to modify the string, it will give you a compile error:

s[0] = 'S';
monte.c:7: error: assignment of read-only location

Five-Minute Mystery

The Case of the Magic Bullet

He was scanning his back catalog of
Guns ‘n’ Ammo

 into Delicious Library when there was a knock at the door and she walked in: 5′ 6”, blonde, with a good laptop bag and cheap shoes. He could tell she was a code jockey. “You’ve gotta help me...you gotta clear his name! Jimmy was innocent, I tells you. Innocent!” He passed her a tissue to wipe the tears from her baby blues and led her to a seat.

It was the old story. She’d met a guy, who knew a guy. Jimmy Blomstein worked tables at the local Starbuzz and spent his weekends cycling and working on his taxidermy collection. He hoped one day to save up enough for an elephant. But he’d fallen in with the wrong crowd. The Masked Raider had met Jimmy in the morning for coffee and they’d both been alive:

char masked_raider[] = "Alive";
char *jimmy = masked_raider;
printf("Masked raider is %s, Jimmy is %s\n", masked_raider,
jimmy);

 [image: image with no caption]

Then, that afternoon, the Masked Raider had gone off to pull a heist, like a hundred heists he’d pulled before. But this time, he hadn’t reckoned on the crowd of G-Men enjoying their weekly three-card monte session in the back room of the Head First Lounge. You get the picture. A rattle of gunfire, a scream, and moments later the villain was lying on the sidewalk, creating a public health hazard:

masked_raider[0] = 'D';
masked_raider[1] = 'E';
masked_raider[2] = 'A';
masked_raider[3] = 'D';
masked_raider[4] = '!';

Problem is, when Toots here goes to check in with her boyfriend at the coffee shop, she’s told he’s served his last orange mocha frappuccino:

printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

 [image: image with no caption]

So what gives? How come a single magic bullet killed Jimmy and the Masked Raider? What do you think happened?

Five-Minute Mystery Solved

The Case of the Magic Bullet

How come a single magic bullet killed Jimmy and the Masked Raider?

Jimmy, the mild-mannered barista, was mysteriously gunned down at the same time as arch-fiend the Masked Raider:

#include <stdio.h>
int main()
{
 char masked_raider[] = "Alive";
 char *jimmy = masked_raider;
 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
 masked_raider[0] = 'D';
 masked_raider[1] = 'E';
 masked_raider[2] = 'A';
 masked_raider[3] = 'D';
 masked_raider[4] = '!';
 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
 return 0;
}

It took the detective a while to get to the bottom of the mystery. While he was waiting, he took a long refreshing sip from a Head First Brain Booster Fruit Beverage
 . He sat back in his seat and looked across the desk at her blue, blue eyes. She was like a rabbit caught in the headlights of an oncoming truck, and he knew that he was at the wheel.

 Note

Note from Marketing: ditch the product placement for the Brain Booster drink; the deal fell through.

“I’m afraid I got some bad news for you. Jimmy and the Masked Raider...were one and the same man!”

“No!”

She took a sharp intake of breath and raised her hand to her mouth. “Sorry, sister. I have to say it how I see it. Just look at the memory usage.” He drew a diagram:

 [image: image with no caption]

“ jimmy
 and masked_raider
 are just aliases for the same memory address. They’re pointing to the same place. When the masked_raider
 stopped the bullet, so did Jimmy. Add to that this invoice from the San Francisco elephant sanctuary and this order for 15 tons of packing material, and it’s an open and shut case.”

Bullet Points

	

 If you see a *
 in a variable declaration, it means the variable will be a pointer.

	String literals are stored in read-only memory.

	If you want to modify a string, you need to make a copy in a new array.

	You can declare a char
 pointer as const char *
 to prevent the code from using it to modify a string.

There are no Dumb Questions

	

Q:

	

Why didn’t the compiler just tell me I couldn’t change the string?

	

A:

	
Because we declared the cards
 as a simple char *
 , the compiler didn’t know that the variable would always be pointing at a string literal.

	

Q:

	

Why are string literals stored in read-only memory?

	

A:

	
Because they are designed to be constant. If you write a function to print “Hello World,” you don’t want some other part of the program modifying the “Hello World” string literal.

	

Q:

	

Do all operating systems enforce the read-only rule?

	

A:

	
The vast majority do. Some versions of gcc
 on Cygwin actually allow you to modify a string literal without complaining. But it is
always

 wrong to do that.

	

Q:

	

What does const
 actually mean? Does it make the string read-only?

	

A:

	
String literals are read-only anyway. The const
 modifier means that the compiler will complain if you try to modify an array with that particular variable.

	

Q:

	

Do the different memory segments always appear in the same order in memory?

	

A:

	
They will always appear in the same order for a given operating system. But different operating systems can vary the order slightly. For example, Windows doesn’t place the code in the lowest memory addresses.

	

Q:

	

I still don’t understand why an array variable isn’t stored in memory. If it exists, surely it lives somewhere?

	

A:

	
When the program is compiled, all the references to array variables are replaced with the addresses of the array. So the truth is that the array variable won’t exist in the final executable. That’s OK because the array variable will never be needed to point anywhere else.

	

Q:

	

If I set a new array to a string literal, will the program really copy the contents each time?

	

A:

	
It’s down to the compiler. The final machine code will either copy the bytes of the string literal to the array, or else the program will simply set the values of each character every time it reaches the declaration.

	

Q:

	

You keep saying “declaration.” What does that mean?

	

A:

	
A
declaration

 is a piece of code that declares that something (a variable, a function) exists. A definition is a piece of code that says what something is. If you declare a variable and set it to a value (e.g., int x = 4;
), then the code is both a declaration and a definition.

	

Q:

	

Why is scanf()
 called scanf()
 ?

	

A:

	

scanf()
 means “scan formatted” because it’s used to scan formatted input.

Memory memorizer

 [image: image with no caption]

Stack

This is the section of memory used for
local variable storage

 . Every time you call a function, all of the function’s local variables get created on the stack. It’s called the
stack

 because it’s like a stack of plates: variables get added to the stack when you enter a function, and get taken off the stack when you leave. Weird thing is, the stack actually works upside down. It starts at the top of memory and
grows downward

 .

Heap

This is a section of memory we haven’t really used yet. The heap is for
dynamic memory:

 pieces of data that get created when the program is running and then hang around a long time. You’ll see later in the book how you’ll use the heap.

Globals

A global variable is a variable that lives outside all of the functions and is visible to all of them. Globals get created when the program first runs, and you can update them freely. But that’s unlike...

Constants

Constants are
also

 created when the program first runs, but they are stored in
read-only

 memory. Constants are things like
string literals

 that you will need when the program is running, but you’ll never want them to change.

Code

Finally, the code segment. A lot of operating systems place the code right down in the lowest memory addresses. The code segment is also read-only. This is the part of the memory where the actual assembled code gets loaded.

 [image: image with no caption]

Your C Toolbox

You’ve got Chapter 2
 under your belt, and now you’ve added pointers and memory to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 2.5. Strings: String theory

 [image: image with no caption]

There’s more to strings than reading them.

You’ve seen how strings in C are actually char

arrays

 but what does C allow you to
do

 with them? That’s where string.h
 comes in.
string.h

 is part of the C Standard Library that’s dedicated to
string manipulation

 . If you want to concatenate
 strings together, copy
 one string to another, or compare
 two strings, the functions in
string.h

 are there to help. In this chapter, you’ll see how to create an
array of strings

 , and then take a close look at how to search within strings
 using the

strstr()

 function.

Desperately seeking Susan
 Frank

 There are so many tracks on the retro jukebox that people can’t find the music they are looking for. To help the customers, the guys in the Head First Lounge want you to write another program.

This is the track list:

 [image: image with no caption]

 [image: image with no caption]

The list is likely to get longer, so there’s just the first few tracks for now. You’ll need to write a C program that will ask the user which track she is looking for, and then get it to search through all of the tracks and display any that match.

 Brain Power

There’ll be lots of strings in this program. How do you think you can record that information in C?

Create an array of arrays

 There are several track names that you need to record. You can record several things at once in an array. But remember:
each string is itself an array

 . That means you need to create an array of arrays, like this:

 [image: image with no caption]

The array of arrays looks something like this in memory:

 [image: image with no caption]

So now that you know how to record the data in C, what do you need to do with it?

Find strings containing the search text

 The guys have helpfully given you a spec.

 Note

Ask the user for the text she’s looking for.

Loop through all of the track names.

If a track name contains the search text, display the track name.

Well, you know how to record the tracks. You also know how to read the value of an individual track name, so it shouldn’t be too difficult to loop through each of them. You even know how to ask the user for a piece of text to search for. But how do you look to see if the track name contains a given piece of text?

Using string.h

The
C Standard Library

 is a bunch of useful code that you get for free when you install a C compiler. The library code does useful stuff like opening files, or doing math, or managing memory. Now, chances are, you won’t want to use the
whole

 of the Standard Library at once, so the library is broken up into several sections, and each one has a
header

 file. The header file lists all of the functions that live in a particular section of the library.

So far, you have only really used the
stdio.h

 header file.
stdio.h

 lets you use the standard
input/output

 functions like printf
 and scanf
 .

But the Standard Library also contains code to
process strings

 . String processing is required by a lot of the programs, and the string code in the Standard Library is tested, stable, and fast.

 [image: image with no caption]

You include the string code into your program using the string.h
 header file. You add it at the top of your program, just like you include
stdio.h

 .

 [image: image with no caption]

What’s my Purpose?

See if you can match up each
string.h

 function with the description of what it does.

	

strchr()

	
Concatenate two strings.

	

strcmp()

	
Find the location of a string inside another string.

	

strstr()

	
Find the location of a character inside a string.

	

strcpy()

	
Find the length of a string.

	

strlen()

	
Compare two strings.

	

strcat()

	
Copy one string to another.

Sharpen your pencil

Which of the functions above should you use for the jukebox program? Write your answer below.

What’s my Purpose? Solution

You were to match up each
string.h

 function with the description of what it does.

 [image: image with no caption]

Sharpen your pencil: Solution

You were to write which of the above functions you should use for the jukebox program.

 [image: image with no caption]

Using the strstr() function

 So how exactly does the strstr()
 function work? Let’s look at an example. Let’s say you’re looking for the string “fun” inside a larger string, “dysfunctional.” You’d call it like this:

 [image: image with no caption]

The strstr()
 function will
search for the second string in the first string

 . If it finds the string, it will return the address of the located string in memory. In the example here, the function would find that the fun
 substring begins at memory location 4,000,003.

But what if the strstr()
 can’t find the substring? What then? In that case, strstr()
 returns the value 0. Can you think why that is? Well, if you remember, C treats zero as
false

 . That means you can use strstr()
 to check for the
existence

 of one string inside another, like this:

char s0[] = "dysfunctional";
char s1[] = "fun";
if (strstr(s0, s1))
 puts("I found the fun in dysfunctional!");

Let’s see how we can use strstr() in the jukebox program.

Pool Puzzle

 The guys in the Lounge had already started to write the code to search through the track list, but — oh no! — some of the paper they were writing the code on has fallen into the pool. Do you think you can select the correct pieces of code to complete the search function? It’s been a while since the pool was cleaned, so be warned: some of the code in the pool might not be needed for this program.

Note: the guys have slipped in a couple of new pieces of code they found in a book somewhere.

 [image: image with no caption]

Note: each thing from the pool can be used only once!

 [image: image with no caption]

BE the Compiler

 The jukebox program needs a main() function that reads input from the user and calls the find_track() function on the opposite page. Your job is to play like you’re the compiler and say which of the following main() functions is the one you need for the jukebox program.

	
int main()
{
 char search_for[80];
 printf("Search for: ");
 fgets(search_for, 80, stdin);
 search_for[strlen(search_for) - 1] = '\0';
 find_track();
 return 0;
}

	
int main()
{
 char search_for[80];
 printf("Search for: ");
 fgets(search_for, 79, stdin);
 search_for[strlen(search_for) - 1] = '\0';
 find_track(search_for);
 return 0;
}

	
int main()
{
 char search_for[80];
 printf("Search for: ");
 scanf("%79s", search_for);
 search_for[strlen(search_for) - 1] = '\0';
 find_track(search_for);
 return 0;
}

	
int main()
{
 char search_for[80];
 printf("Search for: ");
 scanf("%80s", search_for);
 find_track(search_for);
 return 0;
}

Pool Puzzle Solution

The guys in the Lounge had already started to write the code to search through the track list, but — oh no! — some of the paper they were writing the code on has fallen into the pool. You were to select the correct pieces of code to complete the search function.

Note: the guys have slipped in a couple of new pieces of code they found in a book somewhere.

 [image: image with no caption]

 [image: image with no caption]

BE the Compiler Solution

The jukebox program needs a main() function that reads input from the user and calls the find_track() function on the opposite page. Your job was to play like you’re the compiler and say which of the following main() functions is the one you need for the jukebox program.

 [image: image with no caption]

It’s time for a code review

 Let’s bring the code together and review what you’ve got so far:

 [image: image with no caption]

It’s important that you assemble the code in this order. The headers are included at the top so that the compiler will have all the correct functions before it compiles your code. Then you define the tracks

before

 you write the functions. This is called putting the tracks
 array in
global scope

 . A global variable is one that lives outside any particular function. Global variables like tracks
 are available to all of the functions in the program.

Finally, you have the functions: find_track()
 first, followed by main()
 . The find_track()
 function needs to come first,
before

 you call it from main()
 .

Test Drive

 It’s time to fire up the terminal and see if the code works.

 [image: image with no caption]

And the great news is, the program works!

Even though this program is a little longer than any code you’ve written so far, it’s actually doing a lot more. It creates an array of strings and then uses the string library to search through all of them to find the music track that the user was looking for.

 [image: image with no caption]

 Geek Bits

For more information about the functions available in
string.h

 , see

http://tinyurl.com/82acwue

 .

If you are using a Mac or a Linux machine, you can find out more about each of the
string.h

 functions like strstr()
 by typing:

man strstr

There are no Dumb Questions

	

Q:

	

Why is the list of tracks defined as tracks[][80]
 ? Why not tracks[5][80]
 ?

	

A:

	
You
could

 have defined it that way, but the compiler can tell there are five items in the list, so you can skip the [5]
 and just put []
 .

	

Q:

	

But in that case, why couldn’t we just say tracks[][]
 ?

	

A:

	
The track names are all different lengths, so you need to tell the compiler to allocate enough space for even the largest.

	

Q:

	

Does that mean each string in the tracks
 array is 80 characters, then?

	

A:

	
The program will
allocate

 80 characters for each string, even though each of them is much smaller.

	

Q:

	

So the tracks
 array takes 80 × 5 characters = 400 characters’ worth of space in memory?

	

A:

	
Yes.

	

Q:

	

What happens if I forget to include a header file like
string.h

 ?

	

A:

	
For some header files, the compiler will give you a warning and then include them anyway. For other header files, the compiler will simply give a compiler error.

	

Q:

	

Why did we put the tracks
 array definition outside of the functions?

	

A:

	
We put it into global scope. Global variables can be used by all functions in the program.

	

Q:

	

Now that we’ve created two functions, how does the computer know which one to run first?

	

A:

	
The program will always run the main()
 function first.

	

Q:

	

Why do I have to put the find_track()
 function before main()
 ?

	

A:

	
C needs to know what parameters a function takes and what its return type is before it can be called.

	

Q:

	

What would happen if I put the functions in a different order?

	

A:

	
In that case, you’d just get a few warnings.

Bullet Points

	You can create an array of arrays with char strings[...][...]
 .

	The first set of brackets is used to access the outer array.

	The second set of brackets is used to access the details of each of the inner arrays.

	The
string.h

 header file gives you access to a set of string manipulation functions in the C Standard Library.

	You can create several functions in a C program, but the computer will always run main()
 first.

Code Magnets

 The guys are working on a new piece of code for a game. They’ve created a function that will display a string backward on the screen. Unfortunately, some of the fridge magnets have moved out of place. Do you think you can help them to reassemble the code?

 [image: image with no caption]

 [image: image with no caption]

Code Magnets Solution

 The guys are working on a new piece of code for a game. They’ve created a function that will display a string backward on the screen. Unfortunately, some of the fridge magnets have moved out of place. You were to help them to reassemble the code.

 [image: image with no caption]

Array of arrays vs. array of pointers

You’ve seen how to use an array of arrays to store a sequence of strings, but another option is to use an
array of pointers

 . An array of pointers is actually what it sounds like: a list of memory addresses stored in an array. It’s very useful if you want to quickly create a list of string literals:

 [image: image with no caption]

You can access the array of pointers just like you accessed the array of arrays.

C-Cross

 Now that the guys have the

print_reverse()

 function working, they’ve used it to create a crossword. The answers are displayed by the output lines in the code.

 [image: image with no caption]

Across

 [image: image with no caption]

C-Cross Solution

Now that the guys have the

print_reverse()

 function working, they’ve used it to create a crossword. The answers are displayed by the output lines in the code.

 [image: image with no caption]

Across

 [image: image with no caption]

Your C Toolbox

You’ve got Chapter 2.5
 under your belt, and now you’ve added strings to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 3. Creating Small Tools: Do one thing and do it well

 [image: image with no caption]

Every operating system includes small tools.

Small tools written in C perform
specialized small tasks

 , such as reading and writing files, or filtering data. If you want to perform more complex tasks, you can even
link several tools together

 . But how are these small tools built? In this chapter, you’ll look at the building blocks of creating small tools. You’ll learn how to control
command-line options

 , how to manage
streams of information

 , and
redirection

 , getting tooled up in no time.

Small tools can solve big problems

 A
small tool

 is a C program that does
one

 task and
does it well

 . It might display the contents of a file on the screen or list the processes running on the computer. Or it might display the first 10 lines of a file or send it to the printer. Most operating systems come with a whole set of small tools that you can run from the command prompt or the terminal. Sometimes, when you have a
big

 problem to solve, you can break it down into a series of
small

 problems, and then write small tools for each of them.

 Note

Operating systems like Linux are mostly made up of hundreds and hundreds of small tools.

A small tool does one task and does it well.

 [image: image with no caption]

If one small part of your program needs to convert data from one format to another, that’s the perfect kind of task for a small tool.

Pocket Code

 Hey, who hasn’t taken a code printout on a long ride only to find that it soon becomes...unreadable? Sure, we all have. But with a little thought, you should be able to piece together the original version of some code.

This program can read comma-separated data from the command line and then display it in JSON format. See if you can figure out what the missing code is.

 [image: image with no caption]

Pocket Code Solution

Hey, who hasn’t taken a code printout on a long ride only to find that it soon becomes...unreadable? Sure, we all have. But with a little thought, you should have been able to piece together the original version of some code.

This program can read comma-separated data from the command line and then display it in JSON format. You were to figure out what the missing code is.

 [image: image with no caption]

Test Drive

So what happens when you compile and run this code? What will it do?

 [image: image with no caption]

The program lets you enter GPS data at the keyboard and then it displays the JSON-formatted data on the screen. Problem is, the
input

 and the
output

 are all
mixed up together

 . Also, there’s a
lot of data

 . If you are writing a small tool, you don’t want to type in the data; you want to get large amounts of data by reading a
file

 .

Also, how is the JSON data going to be used? Surely it can’t be much use on the
screen

 ?

So is the program running OK? Is it doing the right thing?
Do you need to change the code?

 [image: image with no caption]

Here’s how the program should work

	

Take the GPS from the bike and download the data.

It creates a file called
gpsdata.csv

 with one line of data for every location.

 [image: image with no caption]

	

The geo2json tool needs to read the contents of the gpsdata.csv line by line...

	

...and then write that data in JSON format into a file called output.json.

	

The web page that contains the map application reads the output.json file.

It displays all of the locations on the map.

But you’re not using files...

 The problem is, instead of reading and writing files, your program is currently reading data from the
keyboard

 and writing it to the
display

 .

 [image: image with no caption]

But that isn’t good enough. The user won’t want to type in all of the data if it’s already stored in a file somewhere. And if the data in JSON format is just displayed on the screen, there’s no way the map within the web page will be able to read it.

You need to make the program work with
files

 . But how do you do that? If you want to use
files

 instead of the keyboard and the display, what code will you have to change? Will you have to change any code at all?

 Brain Power

Is there a way of making our program use files without changing code? Without even
recompiling

 it?

 Geek Bits

Tools that read data line by line, process it, and write it out again are called
filters

 . If you have a Unix machine, or you’ve installed Cygwin on Windows, you already have a few filter tools installed.

head

 : This tool displays the first few lines of a file.

tail:

 This filter displays the lines at the end of a file.

sed

 : The
stream editor

 lets you do things like search and replace text.

You’ll see later how to combine filters together to form
filter chains

 .

You can use redirection

 You’re using scanf()
 and printf()
 to read from the keyboard and write to the display. But the truth is, they don’t talk
directly

 to the keyboard and display. Instead, they use the
Standard Input and Standard Output

 . The
Standard Input

 and
Standard Output

 are created by the operating system when the program runs.

 [image: image with no caption]

The operating system controls how data gets into and out of the Standard Input and Output. If you run a program from the command prompt or terminal, the operating system will send all of the keystrokes from the keyboard into the Standard Input. If the operating system reads any data from the Standard Output, by default it will send that data to the display.

The scanf()
 and printf()
 functions don’t know, or care, where the data comes from or goes to. They just read and write Standard Input and the Standard Output.

Now this might sound like it’s kind of complicated. After all, why not just have your program talk directly to the keyboard and screen? Wouldn’t that be simpler?

Well, there’s a very good reason why operating systems communicate with programs using the Standard Input and the Standard Output:

You can redirect the Standard Input and Standard Output so that they read and write data somewhere else, such as to and from files.

You can redirect the Standard Input with <...

 Instead of entering data at the keyboard, you can use the <
 operator to read the data from a file.

 [image: image with no caption]

The <
 operator tells the operating system that the Standard Input of the program should be connected to the
gpsdata.csv

 file instead of the keyboard. So you can send the program data from a file. Now you just need to redirect its
output

 .

 [image: image with no caption]

...and redirect the Standard Output with >

 To redirect the Standard Output to a file, you need to use the >
 operator:

 [image: image with no caption]

Because you’ve redirected the Standard Output, you don’t see any data appearing on the screen at all. But the program has now created a file called
output.json

 .

The
output.json

 file is the one you needed to create for the mapping application. Let’s see if it works.

 [image: image with no caption]

Test Drive

Now it’s time to see if the new data file you’ve created can be used to plot the location data on a map. You’ll take a copy of the web page containing the mapping program and put it into the same folder as the
output.json

 file. Then you need to open the web page in a browser:

 [image: image with no caption]

The map works.

The map inside the web page is able to read the data from the output file.

Do this!

	
Download the web page from

http://oreillyhfc.appspot.com/map.html

 .

 [image: image with no caption]

 [image: image with no caption]

But there’s a problem with some of the data...

Your program seems to be able to read GPS data and format it correctly for the mapping application. But after a few days, a problem creeps in.

 [image: image with no caption]

So what happened here? The problem is that there was some
bad data

 in the GPS data file:

 [image: image with no caption]

But the geo2json
 program doesn’t do any checking of the data it reads; it just reformats the numbers and sends them to the output.

That should be easy to fix. You need to validate the data.

Exercise

You need to add some code to the geo2json
 program that will check for bad latitude and longitude values. You don’t need anything fancy. If a latitude or longitude falls outside the expected numeric, just display an error message and exit the program with an error status of 2:

 [image: image with no caption]

Exercise Solution

You needed to add some code to the geo2json
 program to check for bad latitude and longitude values. If a latitude or longitude falls outside the expected numeric, just display an error message and exit the program with an error status of 2:

 [image: image with no caption]

Test Drive

OK, so you now have the code in place to check that the latitude and longitude are in range. But will it be enough to make our program cope with bad data? Let’s see.

Compile the code and then run the bad data through the program:

 [image: image with no caption]

Hmmm...that’s odd. You added the error-checking code, but when you run the program, nothing
appears

 to be different. But now no points appear on the map at all. What gives?

 Brain Power

Study the code. What do
you

 think happened? Is the code doing what you asked it to? Why weren’t there any error messages? Why did the mapping program think that the entire
output.json

 file was corrupt?

Code DeConstruction

 The mapping program is complaining about the
output.json

 file, so let’s open it up and see what’s inside:

 [image: image with no caption]

Once you open the file, you can see
exactly

 what happened. The program saw that there was a problem with some of the data, and it exited right away. It didn’t process any more data and it
did

 output an error message. Problem is, because you were
redirecting the Standard Output

 into the
output.json

 , that meant you were also redirecting the error message. So the program ended silently, and you never saw what the problem was.

Now, you
could

 have checked the exit status of the program, but you really want to be able to see the error messages.

But how can you still display error messages if you are redirecting the output?

 Geek Bits

If your program finds a problem in the data, it exits with a status of 2. But how can you check that error status after the program has finished? Well, it depends on what operating system you’re using. If you’re running on a Mac, Linux, some other kind of Unix machine, or if you’re using Cygwin on a Windows machine, you can display the error status like this:

 [image: image with no caption]

If you’re using the Command Prompt in Windows, then it’s a little different:

 [image: image with no caption]

Both commands do the same thing: they display the number returned by the program when it finished.

 [image: image with no caption]

Introducing the Standard Error

 The
Standard Output

 is the
default

 way of outputting data from a program. But what if something
exceptional

 happens, like an error? You’ll probably want to deal with things like error messages a little differently from the usual output.

That’s why the
Standard Error

 was invented. The Standard Error is a
second output

 that was created for sending error messages.

Human beings generally have two ears and one mouth, but processes are wired a little differently. Every process has
one ear

 (the Standard Input) and
two mouths

 (the Standard Output and the Standard Error).

Human

 [image: image with no caption]

Process

 [image: image with no caption]

Let’s see how the operating system sets these up.

By default, the Standard Error is sent to the display

 Remember how when a new process is created, the operating system points the Standard Input at the keyboard and the Standard Output at the screen? Well, the operating system creates the Standard Error at the same time and, like the Standard Output, the Standard Error is sent to the display by default.

 [image: image with no caption]

That means that if someone redirects the Standard Input and Standard Output so they use files, the Standard Error will continue to send data to the display.

 [image: image with no caption]

And that’s really cool, because it means that even if the Standard Output is redirected somewhere else, by default,
any messages sent down the Standard Error will still be visible on the screen

 .

So you can fix the problem of our hidden error messages by simply displaying them on the Standard Error.

But how do you do that?

fprintf() prints to a data stream

 You’ve already seen that the printf()
 function sends data to the Standard Output. What you
didn’t

 know is that the printf()
 function is just a version of a more general function called fprintf()
 :

 [image: image with no caption]

The fprintf()
 function allows you to choose where you want to send text to. You can tell fprintf()
 to send text to

stdout

 (the Standard Output) or

stderr

 (the Standard Error).

There are no Dumb Questions

	

Q:

	

There’s a stdout
 and a stderr
 . Is there a stdin
 ?

	

A:

	
Yes, and as you probably guessed, it refers to the Standard Input.

	

Q:

	

Can I print to it?

	

A:

	
No, the Standard Input can’t be printed to.

	

Q:

	

Can I read from it?

	

A:

	
Yes, by using fscanf()
 , which is just like scanf()
 , but you can specify the data stream.

	

Q:

	

So is fscanf(stdin, ...)
 exactly the same as scanf(...)
 ?

	

A:

	
Yes, they’re identical. In fact, behind the scenes, scanf(...)
 just calls fscanf(stdin, ...)
 .

	

Q:

	

Can I redirect the Standard Error?

	

A:

	
Yes; >
 redirects the Standard Output. But 2>
 redirects the Standard Error.

	

Q:

	

So I could write geo2json 2> errors.txt
 ?

	

A:

	
Yes.

Let’s update the code to use fprintf()

 With just a couple of small changes, you can get our error messages printing on the Standard Error.

 [image: image with no caption]

That means that the code should now work in exactly the same way,
except

 the error messages should appear on the Standard Error instead of the Standard Output.

Let’s run the code and see.

Test Drive

If you recompile the program and then run the corrupted GPS data through it again, this happens.

 [image: image with no caption]

That’s excellent. This time, even though you are redirecting the Standard Output into the
output.json

 file, the error message is still visible on the screen.

The Standard Error was created with exactly this in mind: to separate the error messages from the usual output. But remember: stderr
 and stdout
 are both just output streams. And there’s nothing to prevent you from using them for anything.

Let’s try out your newfound Standard Input and Standard Error skills.

Bullet Points

	The printf()
 function sends data to the
Standard Output

 .

	The Standard Output goes to the display by default.

	You can
redirect

 the Standard Output to a file by using

>

 on the command line.

	
scanf()
 reads data from the
Standard Input

 .

	The Standard Input reads data from the keyboard by default.

	You can redirect the Standard Input to read a file by using

<

 on the command line.

	The
Standard Error

 is reserved for outputting error messages.

	You can redirect the Standard Error using

2>

 .

Top Secret

We have reason to believe that the following program has been used in the transmission of secret messages:

 [image: image with no caption]

We have intercepted a file called
secret.txt

 and a scrap of paper with instructions:

 [image: image with no caption]

Your mission is to decode the two secret messages. Write your answers below.

	
Message 1

	
Message 2

Top Secret — solved

We have reason to believe that the following program has been used in the transmission of secret messages:

#include <stdio.h>

int main()
{
 char word[10];
 int i = 0;
 while (scanf("%9s", word) == 1) {
 i = i + 1;
 if (i % 2)
 fprintf(stdout, "%s\n", word);
 else
 fprintf(stderr, "%s\n", word);
 }
 return 0;
}

We have intercepted a file called
secret.txt

 and a scrap of paper with instructions:

 [image: image with no caption]

Your mission was to decode the two secret messages.

 [image: image with no caption]

The Operating System Exposed

This week’s interview: Does the Operating System Matter?

	

Head First:

 Operating System, we’re so pleased you’ve found time for us today.

	

O/S:

 Time sharing: it’s what I’m good at.

	

Head First:

 Now you’ve agreed to appear under conditions of anonymity, is that right?

	

O/S:

 Don’t Ask/Don’t Tell. Just call me O/S.

	

Head First:

 Does it matter what kind of O/S you are?

	

O/S:

 A lot of people get pretty heated over which operating system to use. But for simple C programs, we all behave pretty much the same way.

	

Head First:

 Because of the C Standard Library?

	

O/S:

 Yeah, if you’re writing C, then the basics are the same everywhere. Like I always say, we’re all the same with the lights out. Know what I’m saying?

	

Head First:

 Oh, of course. Now, you are in charge of loading programs into memory?

	

O/S:

 I turn them into processes, that’s right.

	

Head First:

 Important job?

	

O/S:

 I like to think so. You can’t just throw a program into memory and let it struggle, you know? There’s a whole bunch of setup. I need to allocate memory for the programs and connect them to their standard data streams so they can use things like displays and keyboards.

	

Head First:

 Like you just did for the geo2json
 program?

	

O/S:

 That guy’s a real tool.

	

Head First:

 Oh, I’m sorry.

	

O/S:

 No, I mean he’s a real tool: a simple, text-based program.

	

Head First:

 Ah, I see. And do you deal with a lot of tools?

	

O/S:

 Ain’t that life? It depends on the operating system. Unix-style systems use a lot of tools to get the work done. Windows uses them less, but they’re still important.

	

Head First:

 Creating small tools that work together is almost a philosophy, isn’t it?

	

O/S:

 It’s a way of life. Sometimes when you’ve got a big problem to solve, it can be easier to break it down into a set of simpler tasks.

	

Head First:

 Then write a tool for each task?

	

O/S:

 Exactly. Then use the operating system — that’s me — to connect the tools together.

	

Head First:

 Are there any advantages to that approach?

	

O/S:

 The big one is simplicity. If you have a set of small programs, they are easier to test. The other thing is that once you’ve built a tool, you can use it in other projects.

	

Head First:

 Any downsides?

	

O/S:

 Well, tools don’t look that great. They work on the command line usually, so they don’t have a lot of what you might call Eye Appeal.

	

Head First:

 Does that matter?

	

O/S:

 Not as much as you’d think. As long as you have a set of solid tools to do the important work, you can always connect them to a nice interface, whether it’s a desktop application or a website. But, hey, look at the time. Sorry, I’ve got to preempt you.

	

Head First:

 Oh, well, thank you, O/S; it’s been a pleas...
zzzzzz

 ...

Small tools are flexible

 One of the great things about small tools is their flexibility. If you write a program that does one thing really well, chances are you will be able to use it in lots of contexts. If you create a program that can search for text inside a file, say, then chances are you’re going to find that program useful in more than one place.

For example, think about your geo2json
 tool. You created it to help display cycling data, right? But there’s no reason you can’t use it for some other purpose...like investigating...the...

 [image: image with no caption]

To see how flexible our tool is, let’s use it for a completely different problem. Instead of just displaying data on a map, let’s try to use it for something a little more complex. Say you want to read in a whole set of GPS data like before, but instead of just displaying everything, let’s just display the information that falls inside the Bermuda Rectangle.

That means you will display only data that matches these conditions:

((latitude > 26) && (latitude < 34))

((longitude > -76) && (longitude < -64))

So where do you need to begin?

Don’t change the geo2json tool

 Our geo2json
 tool displays all of the data it’s given. So what should we do? Should we
modify

 geo2json
 so that it
exports

 data and also
checks

 the data?

Well, we
could

 , but remember, a small tool:

does one job and does it well

You don’t really want to modify the geo2json
 tool, because you want it to do just one task. If you make the program do something more complex, you’ll cause problems for your users who expect the tool to keep working in exactly the same way.

 [image: image with no caption]

So if you don’t want to change the geo2json tool, what should you do?

Tips for Designing Small Tools

Small tools like geo2json
 all follow these design principles:

	They can read data from the Standard Input.

	They can display data on the Standard Output.

	They deal with
text

 data rather than obscure binary formats.

	They each perform
one simple task

 .

A different task needs a different tool

 If you want to skip over the data that falls outside the Bermuda Rectangle, you should build a separate tool that does just that.

So, you’ll have
two

 tools: a new

bermuda

 tool that filters out data that is outside the Bermuda Rectangle, and then your original geo2json
 tool that will convert the remaining data for the map.

This is how you’ll connect the programs together:

 [image: image with no caption]

By splitting the problem down into two tasks, you will be able to leave your geo2json
 untouched. That will mean that its current users will still be able to use it. The question is:

How will you connect your two tools together?

Connect your input and output with a pipe

 You’ve already seen how to use redirection to connect the
Standard Input

 and the
Standard Output

 of a program file. But now you’ll connect the
Standard Output

 of the

bermuda

 tool to the
Standard Input

 of the

geo2json

 , like this:

The | symbol is a pipe that connects the Standard Output of one process to the Standard Input of another process.

 [image: image with no caption]

That way, whenever the bermuda
 tool sees a piece of data inside the Bermuda Rectangle, it will send the data to its Standard Output. The pipe will send that data from the Standard Output of the bermuda
 tool to Standard Input of the geo2json
 tool.

The operating system will handle the details of exactly how the pipe will do this. All you have to do to get things running is issue a command like this:

 [image: image with no caption]

So now it’s time to build the bermuda
 tool.

The bermuda tool

The bermuda
 tool will work in a very similar way to the geo2json
 tool: it will read through a set of GPS data, line by line, and then send data to the Standard Output.

But there will be two big differences. First, it won’t send
every

 piece of data to the Standard Output, just the lines that are inside the Bermuda Rectangle. The second difference is that the bermuda
 tool will always output data in the same CSV format used to store GPS data.

This is what the pseudocode for the tool looks like:

 [image: image with no caption]

Let’s turn the pseudocode into C.

Pool Puzzle

Your
goal

 is to complete the code for the bermuda
 program. Take code snippets from the pool and place them into the blank lines below. You won’t need to use all the snippets of code in the pool.

#include <stdio.h>

int main()
{
 float latitude;
 float longitude;
 char info[80];
 while (scanf("%f,%f,%79[^\n]",_________, _________, _________) == 3)
 if ((_________ >_________) _________ (_________ <_________))
 if ((_________ >_________) _________ (_________ <_________))
 printf("%f,%f,%s\n",_________, _________, _________);

 return 0;
}

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Pool Puzzle Solution

Your
goal

 was to complete the code for the bermuda
 program by taking code snippets from the pool and placing them into the blank lines below.

 [image: image with no caption]

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Test Drive

Now that you’ve completed the bermuda
 tool, it’s time to use it with the geo2json
 tool and see if you can map any weird occurrences inside the Bermuda Rectangle.

Once you’ve compiled both of the tools, you can fire up a console and then run the two programs together like this:

 [image: image with no caption]

By connecting the two programs together with a pipe, you can treat these two separate programs as if they were a single program, so you can redirect the Standard Input and Standard Output like you did before.

 [image: image with no caption]

Excellent: the program works!

Do this!

	
You can download the
spooky.csv

 file at

http://oreillyhfc.appspot.com/spooky.csv
 .

There are no Dumb Questions

	

Q:

	

Why is it important that small tools use the Standard Input and Standard Output?

	

A:

	
Because it makes it easier to connect tools together with pipes.

	

Q:

	

Why does that matter?

	

A:

	
Small tools usually don’t solve an entire problem on their own, just a small technical problem, like converting data from one format to another. But if you can combine them together, then you can solve large problems.

	

Q:

	

What is a pipe, actually?

	

A:

	
The exact details depend on the operating system. Pipes might be made from sections of memory or temporary files. The important thing is that they accept data in one end, and send the data out of the other in sequence.

	

Q:

	

So if two programs are piped together, does the first program have to finish running before the second program can start?

	

A:

	
No. Both of the programs will run at the same time; as output is produced by the first program, it can be consumed by the second program.

	

Q:

	

Why do small tools use text?

	

A:

	
It’s the most open format. If a small tool uses text, it means that any other programmer can easily read and understand the output just by using a text editor. Binary formats are normally obscure and hard to understand.

	

Q:

	

Can I connect several programs together with pipes?

	

A:

	
Yes, just add more |
 between each program name. A series of connected processes is called a
pipeline

 .

	

Q:

	

If several processes are connected together with pipes and then I use >
 and <
 to redirect the Standard Input and Output, which processes will have their input and output redirected?

	

A:

	
The <
 will send a file’s contents to the first process in the pipeline. The >
 will capture the Standard Output from the last process in the pipeline.

	

Q:

	

Are the parentheses really necessary when I run the bermuda
 program with geo2json
 ?

	

A:

	
Yes. The parentheses will make sure the data file is read by the Standard Input of the bermuda
 program.

Bullet Points

	If you want to perform a different task, consider writing a separate small tool.

	Design tools to work with Standard Input and Standard Output.

	Small tools normally read and write text data.

	You can connect the Standard Output of one process to the Standard Input of another process using a
pipe

 .

But what if you want to output to more than one file?

 We’ve looked at how to read data from one file and write to another file using redirection, but what if the program needs to do something a little more complex, like send data to
more than one file?

Imagine you need to create another tool that will read a set of data from a file, and then split it into other files.

 [image: image with no caption]

So what’s the problem? You can’t write to files, right? Trouble is, with redirection you can write to only
two

 files at most, one from the Standard Output and one from the Standard Error. So what do you do?

Roll your own data streams

 When a program runs, the operating system gives it three file data streams: the Standard Input, the Standard Output, and the Standard Error. But sometimes you need to create other data streams on the fly.

 [image: image with no caption]

The good news is that the operating system doesn’t limit you to the ones you are dealt when the program starts. You can roll your own as the program runs.

Each data stream is represented by a pointer to a file, and you can create a new data stream using the

fopen()

 function:

 [image: image with no caption]

The fopen()
 function takes
two

 parameters: a
filename

 and a
mode

 . The mode can be

w

 to write to a file,

r

 to read from a file, or

a

 to append data to the
end

 of a file.

Once you’ve created a data stream, you can print to it using

fprintf()

 , just like before. But what if you need to read from a file? Well, there’s also an

fscanf()

 function to help you do that too:

The mode is:

“w” = write,

“r” = read, or

“a” = append.

fprintf(out_file, "Don't wear %s with %s", "red", "green");

fscanf(in_file, "%79[^\n]\n", sentence);

Finally, when you’re finished with a data stream, you need to
close it

 . The truth is that all data streams are automatically closed when the program ends, but it’s still a good idea to always close the data stream yourself:

fclose(in_file);

fclose(out_file);

Let’s try this out now.

Sharpen your pencil

 This is the code for a program to read all of the data from a GPS file and then write the data into one of three other files. See if you can fill in the blanks.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char line[80];
 FILE *in = fopen("spooky.csv",_________);
 FILE *file1 = fopen("ufos.csv",_________);
 FILE *file2 = fopen("disappearances.csv",_________);
 FILE *file3 = fopen("others.csv",_________);
 while (________ (in, "%79[^\n]\n", line) == 1) {
 if (strstr(line, "UFO"))
 ________ (file1, "%s\n", line);
 else if (strstr(line, "Disappearance"))
 ________ (file2, "%s\n", line);
 else
 ________ (file3, "%s\n", line);
 }
 _______ (file1);
 _______ (file2);
 _______ (file3);
 fclose(in);
 return 0;
}

There are no Dumb Questions

	

Q:

	

How many data streams can I have?

	

A:

	
It depends on the operating system, but usually a process can have up to 256. The key thing is there’s a limited number of them, so make sure you close them when you’re done using them.

	

Q:

	

Why is FILE
 in uppercase?

	

A:

	
It’s historic. FILE
 used to be defined using a macro. Macros are usually given uppercase names. You’ll hear about macros later on.

Sharpen your pencil: Solution

This is the code for a program to read all of the data from a GPS file and then write the data into one of three other files. You were to fill in the blanks.

 [image: image with no caption]

The program runs, but...

If you compile and run the program with:

 [image: image with no caption]

the program will read the
spooky.csv

 file and split up the data, line by line, into three other files —
ufos.csv

 ,
disappearances.csv

 , and
other.csv

 .

That’s great, but what if a user wanted to split up the data differently? What if he wanted to search for different words or write to different files? Could he do that without needing to recompile the program each time?

There’s more to main()

 The thing is, any program you write will need to give the user the ability to change the way it works. If it’s a GUI program, you will probably need to give it preferences. And if it’s a command-line program, like our categorize
 tool, it will need to give the user the ability to pass it
command-line arguments

 :

 [image: image with no caption]

Like any array in C, you need some way of knowing how long the array is. That’s why the main()
 function has two parameters. The argc
 value is a count of the number of elements in the array.

Command-line arguments really give your program a lot more flexibility, and it’s worth thinking about which things you want your users to
tweak

 at runtime. It will make your program a lot more valuable to them.

OK, let’s see how you can add a little flexibility to the categorize program.

 Watch it!

The first argument contains the name of the program as it was run by the user.

That means that the first
proper

 command-line argument is

 argv[1]
 .

Code Magnets

This is a modified version of the categorize
 program that can read the keywords to search for and the files to use from the command line. See if you can fit the correct magnets into the correct slots.

The program runs using:

 [image: image with no caption]

 [image: image with no caption]

Code Magnets Solution

This is a modified version of the categorize
 program that can read the keywords to search for and the files to use from the command line. You were to fit the correct magnets into the correct slots.

The program runs using:

 [image: image with no caption]

 [image: image with no caption]

Test Drive

OK, let’s try out the new version of the code. You’ll need a test data file called
spooky.csv

 .

 [image: image with no caption]

Now you’ll need to run the categorize
 program with a few command-line arguments saying what text to look for and what filenames to use:

 [image: image with no caption]

When the program runs, the following files are produced:

 [image: image with no caption]

 [image: image with no caption]

 Safety Check

 Although at Head First Labs we never make mistakes (cough), it’s important in real-world programs to check for problems when you open a file for reading or writing. Fortunately, if there’s a problem opening a data stream, the fopen()
 function will return the value 0. That means if you want to check for errors, you should change code like:

FILE *in = fopen("i_dont_exist.txt", "r");

to this:

FILE *in;
if (!(in = fopen("dont_exist.txt", "r"))) {
 fprintf(stderr, "Can't open the file.\n");
 return 1;
}

Overheard at the Head First Pizzeria

 [image: image with no caption]

 Chances are, any program you write is going to need options. If you create a chat program, it’s going to need preferences. If you write a game, the user will want to change the shape of the blood spots. And if you’re writing a command-line tool, you are probably going to need to add
command-line options

 .

Command-line options are the little switches you often see with command-line tools:

 [image: image with no caption]

Let the library do the work for you

 Many programs use command-line options, so there’s a special library function you can use to make dealing with them a little easier. It’s called

getopt()

 , and each time you call it, it returns the next option it finds on the command line.

Let’s see how it works. Imagine you have a program that can take a set of different options:

 [image: image with no caption]

This program needs one option that will take a value (-e
 = engines) and another that is simply
on

 or
off

 (-a
 = awesomeness). You can handle these options by calling getopt()
 in a loop like this:

 [image: image with no caption]

Inside the loop, you have a switch
 statement to handle each of the valid options. The string

ae:

 tells the getopt()
 function that a
 and e
 are valid options. The e
 is followed by a colon to tell getopt()
 that the -e
 needs to be followed by an extra argument. getopt()
 will point to that argument with the

optarg

 variable.

When the loop finishes, you tweak the argv
 and argc
 variables to skip past all of the options and get to the main command-line arguments. That will make your argv
 array look like this:

 [image: image with no caption]

 The Polite Guide to Standards

The
unistd.h

 header is not actually part of the standard C library. Instead, it gives your programs access to some of the POSIX libraries. POSIX was an attempt to create a common set of functions for use across all popular operating systems.

 Watch it!

After processing the arguments, the 0th argument will no longer be the program name.

argv[0]

will instead point to the first command-line argument that follows the options

 .

Pizza Pieces

Looks like someone’s been taking a bite out of the pizza code. See if you can replace the pizza slices and rebuild the order_pizza
 program.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Pizza Pieces Solution

Looks like someone’s been taking a bite out of the pizza code. You were to replace the pizza slices and rebuild the order_pizza
 program.

 [image: image with no caption]

 [image: image with no caption]

Test Drive

Now you can try out the pizza-order program:

 [image: image with no caption]

It works!

Well, you’ve learned a lot in this chapter. You got deep into the Standard Input, Standard Output, and Standard Error. You learned how to talk to files using redirection and your own custom data streams. Finally, you learned how to deal with command-line arguments and options.

A lot of C programmers spend their time creating small tools, and most of the small tools you see in operating systems like Linux are written in C. If you’re careful in how you design them, and if you make sure that you design tools that
do one thing

 and
do that one thing well

 , you’re well on course to becoming a kick-ass C coder.

There are no Dumb Questions

	

Q:

	

Can I combine options like -td now
 instead of -d now -t
 ?

	

A:

	
Yes, you can. The getopt()
 function will handle all of that for you.

	

Q:

	

What about changing the order of the options?

	

A:

	
Because of the way we read the options, it won’t matter if you type in -d now -t
 or -t -d now
 or -td now
 .

	

Q:

	

So if the program sees a value on the command line beginning with “ -
 ”, it will treat it as an option?

	

A:

	
If it reads it before it gets to the main command-line arguments, it will, yes.

	

Q:

	

But what if I want to pass negative numbers as command-line arguments like set_temperature -c -4
 ? Won’t it think that the 4 is an option, not an argument?

	

A:

	
In order to avoid ambiguity, you can split your main arguments from the options using --
 . So you would write set_temperature -c -- -4
 . getopt()
 will stop reading options when it sees the --
 , so the rest of the line will be read as simple arguments.

Bullet Points

	There are two versions of the main()
 function — one with command-line arguments, and one without.

	Command-line arguments are passed to main()
 as an argument count and an array of pointers to the argument strings.

	Command-line options are command-line arguments prefixed with “ -
 ”.

	The getopt()
 function helps you deal with command-line options.

	You define valid options by passing a string to getopt()
 like ae:
 .

	A “ :
 ” (colon) following an option in the string means that the option takes an additional argument.

	
getopt()
 will record the options argument using the optarg
 variable.

	After you have read all of the options, you should skip past them using the optind
 variable.

Your C Toolbox

You’ve got Chapter 3
 under your belt, and now you’ve added small tools to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 4. Using Multiple Source Files: Break it down, build it up

 [image: image with no caption]

If you create a big program, you don’t want a big source file.

Can you imagine how difficult and time-consuming a single source file for an enterprise-level program would be to maintain? In this chapter, you’ll learn how C allows you to break your source code into
small, manageable chunks

 and then rebuild them into
one huge program

 . Along the way, you’ll learn a bit more about
data type subtleties

 and get to meet your new best friend:

make

 .

Guess the Data Type

 C can handle quite a few different types of data: characters and whole numbers, floating-point values for everyday values, and floating-point numbers for really precise scientific calculations. You can see a few of these data types listed on the opposite page. See if you can figure out which data type was used in each example.

Remember

 : each example uses a different data type.

 [image: image with no caption]

 [image: image with no caption]

Guess the Data Type Solution

C can handle quite a few different types of data: characters and whole numbers, floating-point values for everyday values, and floating-point numbers for really precise scientific calculations. You can see a few of these data types listed on the opposite page. You were to figure out which data type was used in each example.

Remember

 : each example uses a different data type.

 [image: image with no caption]

 [image: image with no caption]

Your quick guide to data types

char

Each character is stored in the computer’s memory as a character code. And that’s just a number. So when the computer sees A
 , to the computer it’s the same as seeing the literal number 65
 .

 Note

65 is the ASCII code for A.

int

If you need to store a whole number, you can generally just use an int
 . The exact maximum size of an int
 can vary, but it’s guaranteed to be at least 16 bits. In general, an int
 can store numbers up to a few million.

short

But sometimes you want to save a little memory. Why use an int
 if you just want to store numbers up to few hundreds or thousands? That’s what a short
 is for. A short
 number usually takes up about half the space of an int
 .

long

Yes, but what if you want to store a
really large count

 ? That’s what the long
 data type was invented for. On some machines, the long
 data type takes up
twice

 the memory of an int
 , and it can hold numbers up in the
billions

 . But because most computers can deal with really large int
 s, on a lot of machines, the long
 data type is
exactly the same size

 as an int
 . The maximum size of a long
 is guaranteed to be at least 32 bits.

float

float
 is the basic data type for storing floating-point numbers. For most everyday floating-point numbers — like the amount of fluid in your orange mocha frappuccino — you can use a float
 .

double

Yes, but what if you want to get really
precise

 ? If you want to perform calculations that are accurate to a large number of
decimal places

 , then you might want to use a double
 . A double
 takes up twice the memory of a float
 , and it uses that extra space to store numbers that are
larger and more precise

 .

Don’t put something big into something small

 When you’re passing around values, you need to be careful that the type of the value matches the type of the variable you are going to store it in.

Different data types use different amounts of memory. So you need to be careful that you don’t try to store a value that’s too large for the amount of space allocated to a variable. short
 variables take up less memory than int
 s, and int
 s take up less memory than long
 s.

Now there’s no problem storing a short
 value inside an int
 or a long
 variable. There is plenty of space in memory, and your code will work correctly:

 [image: image with no caption]

 [image: image with no caption]

The problems start to happen if you go the other way around — if, say, you try to store an int
 value into a short
 .

 [image: image with no caption]

Sometimes, the compiler will be able to spot that you’re trying to store a really big value into a small variable, and then give you a warning. But a lot of the time the compiler won’t be smart enough for that, and it will compile the code without complaining. In that case, when you try to run the code, the computer won’t be able to store a number 100,000 into a short
 variable. The computer will fit in as many 1s and 0s as it can, but the number that ends up stored inside the y
 variable will be
very different

 from the one you sent it:

The value of y = -31072

 Geek Bits

So why did putting a large number into a short
 go negative? Numbers are stored in binary. This is what 100,000 looks like in binary:

x <- 0001 1000 0110 1010 0000

But when the computer tried to store that value into a short
 , it only allowed the value a couple of bytes of storage. The program stored just the
righthand side

 of the number:

y <- 1000 0110 1010 0000

Signed

 values in binary beginning with a 1 in highest bit are treated as negative numbers. And this shortened value is equal to this in decimal:

-31072

Use casting to put floats into whole numbers

 What do you think this piece of code will display?

int x = 7;
int y = 2;
float z = x / y;
printf("z = %f\n", z);

 [image: image with no caption]

The answer?
3.0000

 . Why is that? Well, x
 and y
 are both integers, and if you divide integers you always get a rounded-off whole number — in this case,
3

 .

What do you do if you want to perform calculations on whole numbers and you want to get floating-point results? You could store the whole numbers into float
 variables first, but that’s a little wordy. Instead, you can use a
cast

 to convert the numbers on the fly:

int x = 7;
int y = 2;
float z =

(float)

x /

(float)

y;
printf("z = %f\n", z);

The

(float)

 will
cast

 an integer value into a float
 value. The calculation will then work just as if you were using floating-point values the entire time. In fact, if the compiler sees you are adding, subtracting, multiplying, or dividing a floating-point value with a whole number, it will automatically cast the numbers for you. That means you can cut down the number of explicit casts in your code:

 [image: image with no caption]

 Note

You can put some other keywords before data types to change the way that the numbers are interpreted:

unsigned

The number will always be positive. Because it doesn’t need to worry about recording negative numbers, unsigned
 numbers can store larger numbers since there’s now one more bit to work with. So an unsigned int
 stores numbers from 0 to a maximum value that is about twice as large as the maximum number that can be stored inside an int
 . There’s also a signed keyword, but you almost never see it, because all data types are signed by default.

 [image: image with no caption]

long

That’s right, you can prefix a data type with the word long
 and make it longer. So a long int
 is a longer version of an int
 , which means it can store a larger range of numbers. And a long long
 is longer than a long
 . You can also use long
 with floating-point numbers.

 [image: image with no caption]

Exercise

There’s a new program helping the waiters bus tables at the Head First Diner. The code automatically totals a bill and adds sales tax to each item. See if you can figure out what needs to go in each of the blanks.

Note:

 there are several data types that could be used for this program, but which would you use for the kind of figures you’d expect?

 [image: image with no caption]

Exercise Solution

There’s a new program helping the waiters bus tables at the Head First Diner. The code automatically totals a bill and adds sales tax to each item. You were to figure out what needs to go in each of the blanks.

Note:

 there are several data types that could be used for this program, but which would you use for the kind of figures you’d expect?

 [image: image with no caption]

Data Type Sizes Up Close

 Data types are different sizes on different platforms. But how do you find out how big an int
 is, or how many bytes a double
 takes up? Fortunately, the C Standard Library has a couple of headers with the details. This program will tell you about the sizes of int
 s and float
 s:

 [image: image with no caption]

When you compile and run this code, you will see something like this:

 [image: image with no caption]

The values you see on your particular machine will probably be different.

What if you want to know the details for char
 s or double
 s? Or long
 s? No problem. Just replace INT
 and FLT
 with CHAR
 (char
 s), DBL
 (double
 s), SHRT
 (short
 s), or LNG
 (long
 s).

There are no Dumb Questions

	

Q:

	

Why are data types different on different operating systems? Wouldn’t it be less confusing to make them all the same?

	

A:

	
C uses different data types on different operating systems and processors because that allows it to make the most out of the hardware.

	

Q:

	

In what way?

	

A:

	
When C was first created, most machines were 8-bit. Now, most machines are 32- or 64-bit. Because C doesn’t specify the exact size of its data types, it’s been able to adapt over time. And as newer machines are created, C will be able to make the most of them as well.

	

Q:

	

What do 8-bit and 64-bit actually mean?

	

A:

	
Technically, the bit size of a computer can refer to several things, such as the size of its CPU instructions or the amount of data the CPU can read from memory. The bit size is really the favored size of numbers that the computer can deal with.

	

Q:

	

So what does that have to do with the size of int
 s and double
 s?

	

A:

	
If a computer is optimized best to work with 32-bit numbers, it makes sense if the basic data type — the int
 — is set at 32 bits.

	

Q:

	

I understand how whole numbers like int
 s work, but how are float
 s and double
 s stored? How does the computer represent a number with a decimal point?

	

A:

	
It’s complicated. Most computers used a standard published by the IEEE (

http://tinyurl.com/6defkv6

).

	

Q:

	

Do I really need to understand how floating-point numbers work?

	

A:

	
No. The vast majority of developers use float
 s and double
 s without worrying about the details.

Oh no...it’s the out-of-work actors...

Some people were never really cut out to be programmers. It seems that some aspiring actors are filling in their time
between roles

 and making a little extra cash by cutting code, and they’ve decided to spend some time freshening up the code in the bill-totalling program.

By the time they rejiggered the code, the actors were much happier about the way everything looked...but there’s just a tiny problem.

The code doesn’t compile anymore.

 [image: image with no caption]

Let’s see what’s happened to the code

This is what the actors did to the code. You can see they really just did a couple of things.

	
#include <stdio.h>

float total = 0.0;
short count = 0;
/* This is 6%. Which is a lot less than my agent takes...*/
short tax_percent = 6;

int main()
{
 /* Hey - I was up for a movie with Val Kilmer */
 float val;
 printf("Price of item: ");
 while (scanf("%f", &val) == 1) {
 printf("Total so far: %.2f\n", add_with_tax(val));
 printf("Price of item: ");
 }
 printf("\nFinal total: %.2f\n", total);
 printf("Number of items: %hi\n", count);
 return 0;
}

float add_with_tax(float f)
{
 float tax_rate = 1 + tax_percent / 100.0;
 /* And what about the tip? Voice lessons ain't free */
 total = total + (f * tax_rate);
 count = count + 1;
 return total;
}

The code has had some comments added, and they also
changed the order of the functions

 . They made no other changes.

So there really shouldn’t be a problem. The code should be good to go, right? Well, everything was great, right up until the point that they
compiled the code...

Test Drive

 If you open up the console and try to compile the program, this happens:

 [image: image with no caption]

Bummer.

That’s not good. What does error: conflicting types for 'add_with_tax'
 mean? What is a
previous implicit declaration

 ? And why does it think the line that prints out the current total is now an int
 ? Didn’t we design that to be floating point?

The compiler will ignore the changes made to the comments, so that shouldn’t make any difference. That means the problem must be caused by
changing the order of the functions

 . But if the order is the problem, why doesn’t the compiler just return a message saying something like:

 [image: image with no caption]

Seriously, why doesn’t the compiler give us a little help here?

To understand exactly what’s happening here, you need to get inside the head of the compiler for a while and look at things from its point of view. You’ll see that what’s happening is that the compiler is actually trying to be a little
too helpful

 .

Compilers don’t like surprises

 So what happens when the compiler sees this line of code?

printf("Total so far: %.2f\n", add_with_tax(val));

	

The compiler sees a call to a function it doesn’t recognize.

Rather than complain about it, the compiler figures that it will find out more about the function later in the source file. The compiler simply remembers to look out for the function later on in the file. Unfortunately, this is where the problem lies...

 [image: image with no caption]

	

The compiler needs to know what data type the function will return.

Of course, the compiler can’t know what the function will return just yet, so it makes an assumption
 . The compiler assumes it will return an int
 .

 [image: image with no caption]

	

When it reaches the code for the actual function, it returns a “conflicting types for ‘add_with_tax’” error.

This is because the compiler thinks it has two functions with the same name. One function is the real one in the file. The other is the one that the compiler assumed would return an int
 .

 [image: image with no caption]

 Brain Power

The computer makes an assumption that the function returns an int
 , when in reality it returns a float
 . If you were designing the C language, how would you fix the problem?

 [image: image with no caption]

You could just put the functions back in the correct order and define the function before you call it in main().

Changing the order of the functions means that you can avoid the compiler ever making any dangerous assumptions about the return types of unknown functions. But if you force yourself to always define functions in a specific order, there are a couple of consequences.

Fixing function order is a pain

Say you’ve added a cool new function to your code that everyone thinks is fantastic:

int do_whatever(){...}
float do_something_fantastic(int awesome_level) {...}
int do_stuff() {
 do_something_fantastic(11);
}

What happens if you
then

 decide your program will be even
better

 if you add a call to the do_something_fantastic()
 function in the existing do_whatever()
 code? You will have to
move the function

 earlier in the file. Most coders want to spend their time improving what their code can do. It would be better if you didn’t have to shuffle the order of the code just to keep the compiler happy.

In some situations, there is no correct order

OK, so this situation is kind of rare, but occasionally you might write some code that is
mutually recursive

 :

 [image: image with no caption]

If you have two functions that call
each other

 , then
one of them will always be called in the file before it’s defined

 .

For both of those reasons, it’s really useful to be able to define functions in whatever order is easiest at the time. But how?

Split the declaration from the definition

 Remember how the compiler made a note to itself about the function it was expecting to find later in the file? You can avoid the compiler making assumptions by explicitly telling it what functions it should expect
 . When you tell the compiler about a function, it’s called a
function declaration

 :

 [image: image with no caption]

The declaration is just a function
signature

 : a record of what the function will be called, what kind of parameters it will accept, and
what type of data it will return

 .

Once you’ve declared a function, the compiler won’t need to make any assumptions, so it won’t matter if you define the function after you call it.

So if you have a whole bunch of functions in your code and you don’t want to worry about their order in the file, you can put a list of function declarations at the start of your C program code:

float do_something_fantastic();
double awesomeness_2_dot_0();
int stinky_pete();
char make_maguerita(int count);

But even better than that, C allows you to take that whole set of declarations
out of your code

 and put them in a
header file

 . You’ve already used header files to include code from the C Standard Library:

 [image: image with no caption]

Let’s go see how you can create your own header files.

 [image: image with no caption]

Creating your first header file

 To create a header, you just need to do
two things

 :

	

Create a new file with a .h extension.

If you are writing a program called totaller
 , then create a file called
totaller.h

 and write your declarations inside it:

 [image: image with no caption]

You won’t need to include the main()
 function in the header file, because nothing else will need to call it.

	

Include your header file in your main program.

At the top of your program, you should add an extra include
 line:

 [image: image with no caption]

When you write the name of the header file, make sure you surround it with double quotes rather than angle brackets. Why the difference? When the compiler sees an include
 line with angle brackets, it assumes it will find the header file somewhere off in the directories where the library code lives. But
your

 header file is in the same directory as your .c
 file. By wrapping the header filename in quotes, you are telling the compiler to look for a local file.

 Note

Local header files can also include directory names, but you will normally put them in the same directory as the C file.

When the compiler reads the #include
 in the code, it will read the contents of the header file, just as if it had been typed into the code.

Separating the declarations into a separate header file keeps your main code a little shorter, and it has another
big advantag

 e that you’ll find out about in a few pages.

For now, let’s see if the header file fixed the mess.

#include is a preprocessor instruction.

Test Drive

Now when you compile the code, this happens:

 [image: image with no caption]

The compiler reads the function declarations from the header file, which means it doesn’t have to make any guesses about the return type of the function. The order of the functions doesn’t matter.

Just to check that everything is OK, you can run the generated program to see if it works the same as before.

 [image: image with no caption]

BE the Compiler

Look at the program below. Part of the program is missing. Your job is to play like you’re the compiler and say what you would do if each of the candidate code fragments on the right were slotted into the missing space.

 [image: image with no caption]

 [image: image with no caption]

	
float mercury_day_in_earth_days();

int main()
{
 float length_of_day = mercury_day_in_earth_days();
 int hours = hours_in_an_earth_day();
 float day = length_of_day * hours;

	

 [image:]

	
You can compile the code.

	

 [image:]

	
You should display a warning.

	

 [image:]

	
The program will work.

	
int main()
{
 float length_of_day = mercury_day_in_earth_days();
 int hours = hours_in_an_earth_day();
 float day = length_of_day * hours;

	

 [image:]

	
You can compile the code.

	

 [image:]

	
You should display a warning.

	

 [image:]

	
The program will work.

	
float mercury_day_in_earth_days();
int hours_in_an_earth_day();

int main()
{
 int length_of_day = mercury_day_in_earth_days();
 int hours = hours_in_an_earth_day();
 float day = length_of_day * hours;

	

 [image:]

	
You can compile the code.

	

 [image:]

	
You should display a warning.

	

 [image:]

	
The program will work.

BE the Compiler Solution

Look at the program below. Part of the program is missing. Your job was to play like you’re the compiler and say what you would do if each of the candidate code fragments on the right were slotted into the missing space.

 [image: image with no caption]

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

So I don’t need to have declarations for int
 functions?

	

A:

	
Not necessarily, unless you are sharing code. You’ll see more about this soon.

	

Q:

	

I’m confused. You talk about the compiler
preprocessing

 ? Why does the
compiler

 do that?

	

A:

	
Strictly speaking, the compiler just does the compilation step: it converts the C source code into assembly code. But in a looser sense, all of the stages that convert the C source code into the final executable are normally called
compilation

 , and the gcc
 tool allows you to control those stages. The gcc
 tool does preprocessing and compilation.

	

Q:

	

What is the preprocessor?

	

A:

	
Preprocessing is the first stage in converting the raw C source code into a working executable. Preprocessing creates a modified version of the source just before the
proper

 compilation begins. In your code, the preprocessing step read the contents of the header file into the main file.

	

Q:

	

Does the preprocessor create an actual file?

	

A:

	
No, compilers normally just use pipes for sending the stuff through the phases of the compiler to make things more efficient.

	

Q:

	

Why do some headers have quotes and others have angle brackets?

	

A:

	
Strictly speaking, it depends on the way your compiler works. Usually quotes mean to simply look for a file using a relative path. So if you just include the name of a file, without including a directory name, the compiler will look in the current directory. If angle brackets are used, it will search for the file along a path of directories.

	

Q:

	

What directories will the compiler search when it is looking for header files?

	

A:

	
The gcc
 compiler knows where the standard headers are stored. On a Unix-style operating system, the header files are normally in places like
/usr/local/include

 , /
usr/include

 , and a few others.

	

Q:

	

So that’s how it works for standard headers like
stdio.h

 ?

	

A:

	
Yes. You can read through the
stdio.h

 file on a Unix-style machine in
/usr/include/stdio.h

 . If you have the MinGW compiler on Windows, it will probably be in
C:\MinGW\include\stdio.h.

	

Q:

	

Can I create my own libraries?

	

A:

	
Yes; you’ll learn how to do that later in the book.

Bullet Points

	

 If the compiler finds a call to a function it hasn’t heard of, it will assume the function returns an int
 .

	So if you try to call a function before you define it, there can be problems.

	Function declarations tell the compiler what your functions will look like before you define them.

	If function declarations appear at the top of your source code, the compiler won’t get confused about return types.

	Function declarations are often put into header files.

	You can tell the compiler to read the contents of a header file using #include
 .

	The compiler will treat include
 d code the same as code that is typed into the source file.

 This Table’s Reserved...

C is a very small language. Here is the entire set of reserved words (in no useful order).

Every C program you ever see will break into just these words and a few symbols. If you use these for names, the compiler will be very, very upset.

	

auto

	

if

	

break

	

int

	

case

	

long

	

char

	

register

	

continue

	

return

	

default

	

short

	

do

	

sizeof

	

double

	

static

	

else

	

struct

	

entry

	

switch

	

extern

	

typedef

	

float

	

union

	

for

	

unsigned

	

goto

	

while

	

enum

	

void

	

const

	

signed

	

volatile

If you have common features...

 Chances are, when you begin to write several programs in C, you will find that there are some functions and features that you will want to reuse from other programs. For example, look at the specs of the two programs on the right.

XOR encryption is a very simple way of disguising a piece of text by XOR-ing each character with some value. It’s not very secure, but it’s very easy to do. And the same code that can encrypt text can also be used to decrypt it. Here’s the code to encrypt some text:

 [image: image with no caption]

 [image: image with no caption]

...it’s good to share code

Clearly, both of those programs are going to need to use the same encrypt()
 function. So you could just copy the code from one program to the other, right? That’s not so bad if there’s just a small amount of code to copy, but what if there’s a really large amount of code? Or what if the way the encrypt()
 function works needs to change in the future? If there are two copies of the encrypt()
 function, you will have to change it in more than one place.

For your code to scale properly, you really need to find some way to reuse common pieces of code — some way of taking a set of functions and making them available in a bunch of different programs.

How would you do that?

 Brain Power

Imagine you have a set of functions that you want to share between programs. If you had created the C programming language, how would you allow code to be shared?

You can split the code into separate files

If you have a set of code that you want to share among several files, it makes a lot of sense to put that shared code into a separate .c
 file. If the compiler can somehow include the shared code when it’s compiling the program, you can use the same code in multiple applications at once. So if you ever need to change the shared code, you only have to do it in one place.

 [image: image with no caption]

If you want to use a separate
.c

 file for the shared code, that gives us a
problem

 . So far, you have only created programs from single
.c

 source files. So if you had a C program called blitz_hack
 , you would have created it from a single source code file called
blitz_hack.c

 .

But now you want some way to give the compiler a
set of source code files

 and say, “Go make a program from those.” How do you do that? What syntax do you use with the gcc
 compiler? And more importantly, what does it
mean

 for a compiler to create a single executable program from several files? How would it work? How would it stitch them together?

To understand how the C compiler can create a single program from multiple files, let’s take a look at how compilation works...

Compilation behind the scenes

 To understand how a compiler can compile several source files into a single program, you’ll need to pull back the curtain and see how compilation really works.

	

Preprocessing: fix the source.

 [image: image with no caption]

	

Compilation: translate into assembly.

The C programming language probably seems pretty low level, but the truth is it’s
not low level enough

 for the computer to understand. The computer only really understands very low-level
machine code

 instructions, and the first step to generate machine code is to convert the C source code into
assembly language symbols

 like this:
movq -24(%rbp), %rax
movzbl(%rax), %eax
movl %eax, %edx

 [image: image with no caption]

Looks pretty obscure? Assembly language describes the individual instructions the central processor will have to follow when running the program. The C compiler has a whole set of recipes for each of the different parts of the C language. These recipes will tell the compiler how to convert an if
 statement or a function call into a sequence of assembly language instructions. But even assembly isn’t low level enough for the computer. That’s why it needs...

	

Assembly: generate the object code.

The compiler will need to
assemble

 the symbol codes into
machine

 or
object code

 . This is the actual binary code that will be executed by the circuits inside the CPU.

 [image: image with no caption]

 [image: image with no caption]

So are you all done? After all, you’ve taken the original C source code and converted it into the 1s and 0s that the computer’s circuits need. But no, there’s still one more step. If you give the computer several files to compile for a program, the compiler will generate a piece of object code for each source file. But in order for these separate object files to form a single executable program, one more thing has to occur...

	

Linking: put it all together.

Once you have all of the separate pieces of object code, you need to fit them together like jigsaw pieces to form the
executable program

 . The compiler will connect the code in one piece of object code that calls a function in another piece of object code. Linking will also make sure that the program is able to call library code properly. Finally, the program will be written out into the executable program file using a format that is supported by the operating system. The file format is important, because it will allow the operating system to load the program into memory and make it run.

 [image: image with no caption]

So how do you actually tell gcc that we want to make one executable program from several separate source files?

The shared code needs its own header file

 If you are going to share the
encrypt.c

 code between programs, you need some way to tell those programs about the encrypt code. You do that with a header file.

 [image: image with no caption]

Include encrypt.h in your program

You’re not using a header file here to be able to reorder the functions. You’re using it to
tell other programs about the encrypt()
 function

 :

 [image: image with no caption]

Having
encrypt.h

 inside the main program will mean the compiler will know enough about the encrypt()
 function to compile the code. At the linking stage, the compiler will be able to connect the call to encrypt(msg)
 in
message_hider.c

 to the actual encrypt()
 function in
encrypt.c

 .

Finally, to compile everything together you just need to pass the source files to gcc
 :

gcc message_hider.c encrypt.c -o message_hider

 Sharing variables

You’ve seen how to share functions between different files. But what if you want to share variables? Source code files normally contain their own separate variables to prevent a variable in one file affecting a variable in another file with the same name. But if you genuinely want to share variables, you should declare them in your header file and prefix them with the keyword

extern

 :

extern int passcode;

Test Drive

Let’s see what happens when you compile the message_hider
 program:

 [image: image with no caption]

The program works. Now that you have the encrypt()
 function in a separate file, you can use it in any program you like. If you ever change the encrypt()
 function to be something a little more secure, you will need to amend only the
encrypt.c

 file.

Bullet Points

	You can share code by putting it into a separate C file.

	You need to put the function declarations in a separate
.h

 header file.

	Include the header file in every C file that needs to use the shared code.

	List all of the C files needed in the compiler command.

 Go Off Piste

Write your own program using the encrypt()
 function. Remember, you can call the same function to decrypt text.

 [image: image with no caption]

 [image: image with no caption]

It’s not rocket science...or is it?

 Breaking your program out into separate source files not only means that you can
share code

 between different programs, but it also means you can start to create
really large

 programs. Why? Well, because you can start to break your program down into smaller
self-contained

 pieces of code. Rather than being forced to have one
huge

 source file, you can have lots of
simpler

 files that are easier to understand, maintain, and test.

So on the plus side, you can start to create really large programs. The downside? The downside is...you can start to create really large programs. C compilers are really efficient pieces of software. They take your software through some very complex transformations. They can modify your source, link hundreds of files together without blowing your memory, and even optimize the code you wrote, along the way. And even though they do all that, they still manage to run quickly.

But if you create programs that use more than a few files, the time it takes to compile the code starts to become important. Let’s say it takes a minute to compile a large project. That might not sound like a lot of time, but it’s more than long enough to break your train of thought. If you try out a change in a single line of code, you want to see the result of that change as quickly as possible. If you have to wait a full minute to see the result of every change, that will really start to slow you down.

 Brain Power

Think carefully. Even a simple change might mean running a large, slow compile to see the result. Given what you know about the compilation process, how could you speed up the time to recompile the program?

Don’t recompile every file

 If you’ve just made a change to one or two of your source code files, it’s a waste to recompile every source file for your program. Think what happens when you issue a command like this:

 [image: image with no caption]

What will the compiler do? It will run the preprocessor, compiler, and assembler for
each source code file

 . Even the ones that haven’t changed. And if the source code hasn’t changed, the
object code

 that’s generated for that file won’t change either. So if the compiler is generating the object code for every file, every time, what do you need to do?

Save copies of the compiled code

If you tell the compiler to save the object code it generates into a file, it shouldn’t need to recreate it unless the source code changes. If a file
does

 change, you can recreate the object code for that
one file

 and then pass the whole set of object files to the compiler so they can be linked.

 [image: image with no caption]

If you change a single file, you will have to recreate the object code file from it, but you
won’t

 need to create the object code for any other file. Then you can pass all the object code files to the linker and create a new version of the program.

So how do you tell gcc to save the object code in a file? And how do you then get the compiler to link the object files together?

First, compile the source into object files

 You want object code for each of the source files, and you can do that by typing this command:

 [image: image with no caption]

gcc -c will compile the code but won’t link it.

 [image: image with no caption]

The *.c
 will match every C file in the current directory, and the -c
 will tell the compiler that you want to create an object file for each source file, but you don’t want to link them together into a full executable program.

Then, link them together

Now that you have a set of object files, you can link them together with a simple compile command. But instead of giving the compiler the names of the C source files, you tell it the names of the object files:

 [image: image with no caption]

The compiler is smart enough to recognize the files as object files, rather than source files, so it will skip most of the compilation steps and just link them together into an executable program called launch
 .

OK, so now you have a compiled program, just like before. But you also have a set of object files that are ready to be linked together if you need them again. So if you change just one of the files, you’ll only need to recompile that single file and then relink the program:

 [image: image with no caption]

Even though you have to type two commands, you’re saving a
lot

 of time:

 [image: image with no caption]

Long Exercise

Here is some of the code that’s used to control the engine management system on the craft. There’s a timestamp on each file. Which files do you think need to be recreated to make the ems
 executable up to date? Circle the files you think need to be updated.

 [image: image with no caption]

And in the galley, they need to check that their code’s up to date as well. Look at the times against the files. Which of these files need to be updated?

 [image: image with no caption]

Long Exercise Solution

Here is some of the code that’s used to control the engine management system on the craft. There’s a timestamp on each file. You were to circle the files you think need to be recreated to make the ems
 executable up to date.

 [image: image with no caption]

And in the galley, they need to check that their code’s up to date as well. Look at the times against the files. Which of these files need to be updated?

 [image: image with no caption]

It’s hard to keep track of the files

 [image: image with no caption]

It’s true: partial compiles are faster, but you have to think more carefully to make sure you recompile everything you need.

If you are working on just one source file, things will be pretty simple. But if you’ve changed a few files, it’s pretty easy to forget to recompile some of them. That means the newly compiled program won’t pick up all the changes you made. Now, of course, when you come to
ship

 the final program, you can always make sure you can do a full recompile of
every

 file, but you don’t want to do that while you’re still developing the code.

Even though it’s a fairly
mechanical process

 to look for files that need to be compiled, if you do it manually, it will be pretty easy to miss some changes.

Is there something we can use to
automate the process

 ?

 [image: image with no caption]

Automate your builds with the make tool

 You can compile your applications really quickly in gcc
 , as long as you keep track of which files have changed. That’s a tricky thing to do, but it’s also pretty straightforward to automate. Imagine you have a file that is generated from some other file. Let’s say it’s an object file that is compiled from a source file:

 [image: image with no caption]

 [image: image with no caption]

How do you tell if the
thruster.o

 file needs to be recompiled? You just look at the timestamps of the two files. If the
thruster.o

 file is older than the
thruster.c

 file, then the
thruster.o

 file needs to be recreated. Otherwise, it’s up to date.

That’s a pretty simple rule. And if you have a simple rule for something, then don’t think about it —
automate it

 ...

make

 is a tool that can run the compile command for you. The make
 tool will check the timestamps of the source files and the generated files, and then it will only recompile the files if things have gotten out of date.

But before you can do all these things, you need to tell make
 about your source code. It needs to know the details of which files depend on which files. And it also needs to be told exactly how you want to build the code.

What does make need to know?

Every file that make
 compiles is called a
target

 . Strictly speaking, make
 isn’t limited to compiling files. A target is any file that is
generated

 from some other files. So a target might be a zip archive that is generated from the set of files that need to be compressed.

For every target, make
 needs to be told
two things

 :

	

The dependencies.

Which files the target is going to be generated from.

	

The recipe.

The set of instructions it needs to run to generate the file.

Together, the dependencies and the recipe form a
rule

 . A rule tells make
 all it needs to know to create the target file.

 [image: image with no caption]

How make works

 Let’s say you want to compile
thruster.c

 into some object code in
thruster.o

 . What are the dependencies and what’s the recipe?

 [image: image with no caption]

The
thruster.o

 file is called the target
 , because it’s the file you want to generate.
thruster.c

 is a dependency, because it’s a file the compiler will need in order to create
thruster.o

 . And what will the recipe be? That’s the compile command to convert
thruster.c

 into
thruster.o

 .

 [image: image with no caption]

Make sense? If you tell the make
 tool about the dependencies and the recipe, you can leave it to make
 to decide when it needs to recompile
thruster.o

 .

But you can go further than that. Once you build the
thruster.o

 file, you’re going to use it to create the launch
 program. That means the launch
 file can also be set up as a target, because it’s a file you want to generate. The dependency files for launch
 are all of the
.o

 object files. The recipe is this command:

gcc *.o -o launch

Once make
 has been given the details of all of the dependencies and rules, all you have to do is tell it to create the launch
 file. make
 will work out the details.

 [image: image with no caption]

 [image: image with no caption]

But how do you tell make about the dependencies and recipes? Let’s find out.

 Watch it!

The make
 tool may have a different name on Windows.

Because

 make

came from the Unix world, there are different flavors of it available in Windows. MinGW includes a version of

 make

called

 mingw32-make

and Microsoft produce their own version called

 NMAKE
 .

Tell make about your code with a makefile

 All of the details about the targets, dependencies, and recipes need to be stored in a file called either
makefile

 or
Makefile

 . To see how it works, imagine you have a pair of source files that together create the launch
 program:

 [image: image with no caption]

The launch
 program is made by linking the
launch.o

 and
thruster.o

 files. Those files are compiled from their matching C and header files, but the
launch.o

 file
also

 depends on the
thruster.h

 file because it contains code that will need to call a function in the thruster
 code.

This is how you’d describe that build in a makefile:

 [image: image with no caption]

 Watch it!

All of the recipe lines MUST begin with a tab character.

If you just try to indent the recipe lines with spaces, the build won’t work.

Test Drive

Save your make
 rules into a text file called
Makefile

 in the same directory; then, open up a console and type the following:

 [image: image with no caption]

You can see that make
 was able to work out the sequence of commands required to create the launch
 program. But what happens if you make a change to the
thruster.c

 file and then run make
 again?

 [image: image with no caption]

make
 is able to skip creating a new version of
launch.o.

 Instead, it just compiles
thruster.o

 and then relinks the program.

There are no Dumb Questions

	

Q:

	

Is make
 just like ant
 ?

	

A:

	
It’s probably better to say that build tools like ant
 and rake
 are like make
 . make
 was one of the earliest tools used to automatically build programs from source code.

	

Q:

	

This seems like a lot of work just to compile source code. Is it really that useful?

	

A:

	
Yes, make
 is amazingly useful. For small projects, make
 might not appear to save you that much time, but once you have more than a handful of files, compiling and linking code together can become very painful.

	

Q:

	

If I write a makefile for a Windows machine, will it work on a Mac? Or a Linux machine?

	

A:

	
Because makefiles calls commands in the underlying operating system, sometimes makefiles don’t work on different operating systems.

	

Q:

	

Can I use make
 for things other than compiling code?

	

A:

	
Yes. make
 is most commonly used to compile code. But it can also be used as a command-line installer, or a source control tool. In fact, you can use make
 for almost any task that you can perform on the command line.

 Tales from the Crypt

Why indent with tabs?

It’s easy to indent recipes with spaces instead of tabs. So why does

 make

insist on using tabs? This is a quote from

 make

’s creator, Stuart Feldman:

“Why the tab in column 1? ... It worked, it stayed. And then a few weeks later I had a user population of about a dozen, most of them friends, and I didn’t want to screw up my embedded base. The rest, sadly, is history.”

 Geek Bits

make
 takes away a lot of the pain of compiling files. But if you find that even it is not automatic enough, take a look at a tool called

autoconf

 :

http://www.gnu.org/software/autoconf/

autoconf
 is used to generate makefiles. C programmers often create tools to automate the creation of software. An increasing number of them are available on the GNU website.

Make Magnets

 Hey, baby, if you don’t groove to the latest tunes, then you’ll
love

 the program the guys in the Head First Lounge just wrote! oggswing
 is a program that reads an Ogg Vorbis music file and creates a swing version. Sweet! See if you can complete the makefile that compiles oggswing
 and then uses it to convert a
.ogg

 file:

 [image: image with no caption]

 [image: image with no caption]

Make Magnets Solution

Hey, baby, if you don’t groove to the latest tunes, then you’ll
love

 the program the guys in the Head First Lounge just wrote! oggswing
 is a program that reads an Ogg Vorbis music file and creates a swing version. Sweet! You were to complete the makefile that compiles oggswing
 and then uses it to convert a
.ogg

 file:

 [image: image with no caption]

 [image: image with no caption]

 Geek Bits

The make
 tool can do far, far more than we have space to discuss here. To find out more about make
 and what it can do for you, visit the
GNU Make Manual

 at:

http://tinyurl.com/yczmjx

Liftoff!

If you have a very slow build,

make

will really speed things up. Most developers are so used to building their code with

make

that they even use it for small programs.

make

is like having a really careful developer sitting alongside you. If you have a large amount of code,

make

will always take care to build just the code you need at just the time you need it.

And sometimes getting things done in time is important...

 [image: image with no caption]

Bullet Points

	It can take a long time to compile a large number of files.

	You can speed up compilation time by storing object code in
*.o

 files.

	The gcc
 can compile programs from object files as well as source files.

	The make
 tool can be used to automate your builds.

	
make
 knows about the dependencies between files, so it can compile just the files that change.

	
make
 needs to be told about your build with a makefile.

	Be careful formatting your makefile: don’t forget to indent lines with tabs instead of spaces.

Your C Toolbox

You’ve got Chapter 4
 under your belt, and now you’ve added data types and header files to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

C Lab 1: Arduino

This lab gives you a spec that describes a program for you to build, using the knowledge you’ve gained over the last few chapters.

This project is bigger than the ones you’ve seen so far. So read the whole thing before you get started, and give yourself a little time. And don’t worry if you get stuck. There are no new C concepts in here, so you can move on in the book and come back to the lab later.

We’ve filled in a few design details for you, and we’ve made sure you’ve got all the pieces you need to write the code. You can even build the physical device.

It’s up to you to finish the job,

 but we won’t give you the code for the answer.

The spec: make your houseplant talk

 Ever wished your plants could tell you when they need watering? Well, with an Arduino they can! In this lab, you’ll create an Arduino-powered plant monitor, all coded in C.

Here’s what you’re going to build.

 [image: image with no caption]

The physical device

The plant monitor has a moisture sensor that measures how wet your plant’s soil is. If the plant needs watering, an LED lights up until the plant’s been watered, and the string “Feed me!” is repeatedly sent to your computer.

When the plant has been watered, the LED switches off and the string “Thank you, Seymour!” is sent once to your computer.

 [image: image with no caption]

The Arduino

 The brains of the plant monitor is an
Arduino

 . An Arduino is a small micro-controller-based open source platform for electronic prototyping. You can connect it to sensors that pick up information about the world around it, and actuators that respond. All of this is controlled by code you write in C.

The Arduino board has 14 digital IO pins, which can be inputs or outputs. These tend to be used for reading on or off values, or switching actuators on or off.

The board also has six analog input pins, which take voltage readings from a sensor.

The board can take power from your computer’s USB port.

 [image: image with no caption]

The Arduino IDE

You write your C code in an Arduino IDE. The IDE allows you to verify and compile your code, and then upload it to the Arduino itself via your USB port. The IDE also has a built-in serial monitor so that you can see what data the Arduino is sending back (if any).

The Arduino IDE is free, and you can get hold of a copy from

www.arduino.cc/en/Main/Software
 .

 [image: image with no caption]

Build the physical device

 You start by building the physical device. While this bit’s optional, we really recommend that you give it a go. Your plants will thank you for it.

 [image: image with no caption]

Build the moisture sensor

Take a long piece of jumper wire and attach it to the head of one of the galvanized nails. You can either wrap the wire around the nail or solder it in place.

Once you’ve done that, attach another long piece of jumper wire to the second galvanized nail.

The moisture sensor works by checking the conductivity between the two nails. If the conductivity is high, the moisture content must be high. If it’s low, the moisture content must be low.

 [image: image with no caption]

Connect the LED

Look at the LED. You will see that it has one longer (positive) lead and one shorter (negative) lead.

Now take a close look at the Arduino. You will see that along one edge there are slots for 14 digital pins labeled 0–13, and another one next to it labeled GND. Put the long positive lead of the LED into the slot labeled 13, and the shorter negative lead into the slot labeled GND.

This means that the LED can be controlled through digital pin 13.

 [image: image with no caption]

Connect the moisture sensor

 Connect the moisture sensor as shown below:

	Connect a short jumper wire from the GND pin on the Arduino to slot D15 on the breadboard.

	Connect the 10K Ohm resistor from slot C15 on the breadboard to slot C10.

	Connect a short jumper wire from the 0 analog input pin to slot D10 on the breadboard.

	Take one of the galvanized nails, and connect the wire attached to it to slot B10.

	Connect a short jumper wire from the 5V pin on the Arduino to slot C5 on the breadboard.

	Take the other galvanized nail, and connect the wire attached to it to slot B5.

 [image: image with no caption]

That’s the physical Arduino built. Now for the C code...

Here’s what your code should do

 Your Arduino C code should do the following.

Read from the moisture sensor

The moisture sensor is connected to an analog input pin. You will need to read analog values from this pin.

Here at the lab, we’ve found that our plants generally need watering when the value goes below 800, but your plant’s requirements may be different — say, if it’s a cactus.

 [image: image with no caption]

Write to the LED

The LED is connected to a digital pin.

When the plant doesn’t need any more water, write to the digital pin the LED is connected to, and get it to switch off the LED.

When the plant needs watering, write to the digital pin and get it to switch on the LED. For extra credit, get it to flash. Even better, get it to flash when the conditions are borderline.

 [image: image with no caption]

Write to the serial port

When the plant needs watering, repeatedly write the string “Feed me!” to the computer serial port.

When the plant has enough water, write the string “Thank you, Seymour!” to the serial port once.

Assume that the Arduino is plugged in to the computer USB socket.

 [image: image with no caption]

Here’s what your C code should look like

An Arduino C program has a specific structure. Your program must implement the following:

 [image: image with no caption]

The easiest way of writing the Arduino C code is with the Arduino IDE. The IDE allows you to verify and compile your code, and then upload your completed program to the Arduino board, where you’ll be able to see it running.

The Arduino IDE comes with a library of Arduino functions and includes lots of handy code examples. Turn the page to see a list of the functions you’ll find most useful when creating Arduino.

Here are some useful Arduino functions

 You’ll need some of these to write the program.

void pinMode(int pin, int mode)

Tells the Arduino whether the digital pin
 is an input or output. mode
 can be either INPUT
 or OUTPUT
 .

int digitalRead(int pin)

Reads the value from the digital pin. The return value can be either HIGH
 or LOW
 .

void digitalWrite(int pin, int

value

)

Writes a value to a digital pin.

value

 can be either HIGH
 or LOW
 .

int
 analogRead(int pin)

Reads the value from an analog pin. The return value is between 0 and 1023.

void analogWrite(int pin, int

value

)

Writes an analog value to a pin.

value

 is between 0 and 255.

void Serial.begin(long

speed

)

Tells the Arduino to start sending and receiving serial data at

speed

 bits per second. You usually set

speed

 to 9600.

void Serial.println(

val

)

Prints data to the serial port.

val

 can be any data type.

void delay(long

interval

)

Pauses the program for

interval

 milliseconds.

The finished product

 You’ll know your Arduino project is complete when you put the moisture sensor in your plant’s soil, connect the Arduino to your computer, and start getting status updates about your plant.

 [image: image with no caption]

If you have a Mac and want to make your plant really talk, you can download a script from the Head First Labs website that will read out the stream of serial data:

www.headfirstlabs.com/books/hfc

Chapter 5. Structs, Unions, and Bitfields: Roll your own structures

 [image: image with no caption]

Most things in life are more complex than a simple number.

So far, you’ve looked at the basic data types of the C language, but what if you want to go beyond numbers and pieces of text, and
model things in the real world

 ?

struct

 s allow you to model
real-world complexities

 by writing your own structures. In this chapter, you’ll learn how to
combine the basic data types

 into struct
 s, and even
handle life’s uncertainties

 with

union

 s. And if you’re after a simple yes or no, bitfields
 may be just what you need.

Sometimes you need to hand around a lot of data

 You’ve seen that C can handle a lot of different types of data: small numbers and large numbers, floating-point numbers, characters, and text. But quite often, when you are recording data about something in the real world, you’ll find that you need to use more than one piece of data. Take a look at this example. Here you have two functions that
both

 need the same set of data, because they are both dealing with the same real-world
thing

 :

 [image: image with no caption]

 [image: image with no caption]

Now that’s not really so bad, is it? But even though you’re just passing four pieces of data, the code’s starting to look a little messy:

 [image: image with no caption]

 [image: image with no caption]

So how do you get around this problem? What can you do to avoid passing around lots and lots of data if you’re really only using it to describe a single thing?

Cubicle conversation

 [image: image with no caption]

	

Joe:

 Sure, it’s four pieces of data
now

 , but what if we change the system to record another piece of data for the fish?

	

Frank:

 That’s only
one more parameter

 .

	

Jill:

 Yes, it’s just one piece of data, but we’ll have to add that to
every function

 that needs data about a fish.

	

Joe:

 Yeah, for a big system, that might be
hundreds

 of functions. And all because we add
one more piece of data

 .

	

Frank:

 That’s a good point. But how do we get around it?

	

Joe:

 Easy, we just group the data into a
single thing

 . Something like an array.

	

Jill:

 I’m not sure that would work. Arrays normally store a list of data of the
same type

 .

	

Joe:

 Good point.

	

Frank:

 I see. We’re recording strings and int
 s. Yeah, we can’t put those into the same array.

	

Jill:

 I don’t think we can.

	

Joe:

 But come on, there must be some way of doing this in C. Let’s think about what we need.

	

Frank:

 OK, we want something that lets us refer to a whole set of data of different types all at once, as if it were a single piece of data.

	

Jill:

 I don’t think we’ve seen anything like that yet, have we?

What you need is something that will let you record several pieces of data into
one large piece of data

 .

Create your own structured data types with a struct

 If you have a set of data that you need to bundle together into a s
ingle thing

 , then you can use a

struct

 . The word struct
 is short for
structured data type

 . A struct
 will let you take all of those different pieces of data into the code and wrap them up into one large new data type, like this:

struct fish {

const char *name;

const char *species;

int teeth;

int age;

};

 [image: image with no caption]

This will create a new custom data type that is made up of a collection of other pieces of data. In fact, it’s a little bit like an array, except:

	

It’s fixed length.

	

The pieces of data inside the struct are given names.

But once you’ve defined what your new struct
 looks like, how do you create pieces of data that use it? Well, it’s quite similar to creating a new array. You just need to make sure the individual pieces of data are in the order that they are defined in the struct
 :

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Hey, wait a minute. What’s that const char
 thing again?

	

A:

	

const char *
 is used for strings that you don’t want to change. That means it’s often used to record string literals.

	

Q:

	

OK. So does this struct
 store the string?

	

A:

	
In this case, no. The struct
 here just stores a pointer to a string. That means it’s just recording an address, and the string lives somewhere else in memory.

	

Q:

	

But you can store the whole string in there if you want?

	

A:

	
Yes, if you define a char
 array in the struct, like char name[20]
 ;.

Just give them the fish

 Now, instead of having to pass around a whole collection of individual pieces of data to the functions, you can just pass your new custom piece of data:

/* Print out the catalog entry */

void catalog(struct fish f)

{

...

}

/* Print the label for the tank */

void label(struct fish f)

{

...

}

Looks a lot simpler, doesn’t it? Not only does it mean the functions now only need a
single piece of data

 , but the code that calls them is easier to read:

struct fish snappy = {"Snappy", "Piranha", 69, 4};

catalog(snappy);

label(snappy);

So that’s how you can define your custom data type, but how do you
use

 it? How will our functions be able to read the individual pieces of data stored inside the struct
 ?

Wrapping parameters in a struct makes your code more stable.

Why the fish is good for you

 [image: image with no caption]

One of the great things about data passing around inside struct
 s is that you can change the contents of your struct
 without having to change the functions that use it. For example, let’s say you want to add an extra field to fish
 :

struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;

int favorite_music;

};

All the catalog()
 and label()
 functions have been told is they they’re going to be handed a fish
 . They don’t know (and don’t care) that the fish
 now contains more data, so long as it has all the fields they need.

That means that struct
 s don’t just make your code easier to read, they also make it better able to cope with change.

Read a struct’s fields with the “.” operator

 Because a struct
 ’s a little like an array, you might think you can read its fields like an array:

 [image: image with no caption]

But you can’t. Even though a struct
 stores fields like an array, the only way to access them is by name
 . You can do this using the “.” operator. If you’ve used another language, like JavaScript or Ruby, this will look familiar:

 [image: image with no caption]

OK, now that you know a few things about using structs, let’s see if you can go back and update that code...

Pool
 Piranha Puzzle

Your job is to write a new version of the catalog()
 function using the fish struct
 . Take fragments of code from the pool and place them in the blank lines below. You may not use the same fragment more than once, and you won’t need to use all the fragments.

void catalog(struct fish f)
{
 printf("%s is a %s with %i teeth. He is %i\n",
 ___ .____, ____ .____, ____ .____, ____ ._____);
}

int main()
{
 struct fish snappy = {"Snappy", "Piranha", 69, 4};
 catalog(snappy);
 /* We're skipping calling label for now */
 return 0;
}

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Piranha Pool
 Puzzle Solution

Your job was to write a new version of the catalog()
 function using the fish struct
 . You were to take fragments of code from the pool and place them in the blank lines below.

 [image: image with no caption]

 [image: image with no caption]

Test Drive

 You’ve rewritten the catalog()
 function, so it’s pretty easy to rewrite the label()
 function as well. Once you’ve done that, you can compile the program and check that it still works:

 [image: image with no caption]

That’s great. The code works the same as it did before, but now you have really simple lines of code that call the two functions:

catalog(snappy);

label(snappy);

Not only is the code more readable, but if you ever decide to record some extra data in the struct
 , you won’t have to change anything in the functions that use it.

There are no Dumb Questions

	

Q:

	

So is a struct
 just an array?

	

A:

	
No, but
like

 an array, it groups a number of pieces of data together.

	

Q:

	

An array variable is just a pointer to the array. Is a struct
 variable a pointer to a struct
 ?

	

A:

	
No, a struct
 variable is a name for the struct
 itself.

	

Q:

	

I know I don’t have to, but could I use [0]
 , [1]
 ,... to access the fields of a struct
 ?

	

A:

	
No, you can only access fields by name.

	

Q:

	

Are struct
 s like classes in other languages?

	

A:

	
They’re similar, but it’s not so easy to add methods to struct
 s.

Structs In Memory Up Close

 When you define a struct
 , you’re not telling the computer to create anything in memory. You’re just giving it a
template

 for how you want a new type of data to look.

struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;
};

But when you define a new variable, the computer will need to create some space in memory for an
instance

 of the struct
 . That space in memory will need to be big enough to contain all of the fields within the struct
 :

 [image: image with no caption]

So what do you think happens when you assign a struct
 to another variable? Well, the computer will create a
brand-new copy of the struct

 . That means it will need to allocate another piece of memory of the same size, and then copy over each of the fields.

 [image: image with no caption]

Remember: when you’re assigning struct variables, you are telling the computer to
copy

 data.

 Watch it!

The assignment copies the pointers to strings, not the strings themselves.

When you assign one

 struct

to another, the contents of the

 struct

will be copied. But if, as here, that includes
pointers

 , the assignment will just copy the pointer values. That means the

 name

and

 species

fields of

 gnasher

and

 snappy

both point to the same strings.

Can you put one struct inside another?

 Remember that when you define a struct
 , you’re actually creating a
new data type

 . C gives us lots of built-in data types like int
 s and short
 s, but a struct
 lets us combine existing types together so that you can describe
more complex objects

 to the computer.

But if a struct
 creates a data type from existing data types, that means you can also
create struct
 s from other struct
 s

 . To see how this works, let’s look at an example.

 [image: image with no caption]

This code tells the computer one struct
 will contain another struct
 . You can then create variables using the same array-like code as before, but now you can include the data for one struct

inside another

 :

 [image: image with no caption]

Once you’ve combined struct
 s together, you can access the fields using a
chain

 of “.” operators:

printf("Snappy likes to eat %s",

snappy.care.food

);
printf("Snappy likes to exercise for %f hours",

snappy.care.exercise_hours

);

OK, let’s try out your new struct skillz...

 Why nest structs?

Why would you want to do this? So you can cope with
complexity

 . struct
 s give us bigger
building blocks

 of data. By combining struct
 s together, you can create larger and larger data structures. You might have to begin with just int
 s and short
 s, but with struct
 s, you can describe hugely complex things, like
network streams

 or
video images

 .

Long Exercise

The guys at the Head First Aquarium are starting to record lots of data about each of their fish guests. Here are their struct
 s:

struct exercise {
 const char *description;
 float duration;
};

struct meal {
 const char *ingredients;
 float weight;
};

struct preferences {
 struct meal food;
 struct exercise exercise;
};

struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;
 struct preferences care;
};

This is the data that will be recorded for one of the fish:

Name: Snappy
Species: Piranha
Food ingredients: meat
Food weight: 0.2 lbs
Exercise description: swim in the jacuzzi
Exercise duration 7.5 hours

Question 0:

 How would you write this data in C?

struct fish snappy = ______________________________

Question 1:

 Complete the code of the label()
 function so it produces output like this:

Name:Snappy
Species:Piranha
4 years old, 69 teeth
Feed with 0.20 lbs of meat and allow to swim in the jacuzzi for 7.50 hours

void label(struct fish a)
{
 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",
 a.name, a.species, a.teeth, a.age);
 printf("Feed with %2.2f lbs of %s and allow to %s for %2.2f hours\n",
 _______________________________, _______________________________,
 _______________________________, _______________________________);
}

Long Exercise Solution

The guys at the Head First Aquarium are starting to record lots of data about each of their fish guests. Here are their struct
 s:

struct exercise {
 const char *description;
 float duration;
};

struct meal {
 const char *ingredients;
 float weight;
};

struct preferences {
 struct meal food;
 struct exercise exercise;
};

struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;
 struct preferences care;
};

This is the data that will be recorded for one of the fish:

Name: Snappy
Species: Piranha
Food ingredients: meat
Food weight: 0.2 lbs
Exercise description: swim in the jacuzzi
Exercise duration 7.5 hours

Question 0:

 How would you write this data in C?

 [image: image with no caption]

Question 1:

 Complete the code of the label()
 function so it produces output like this:

 [image: image with no caption]

 [image: image with no caption]

You can give your struct a proper name using typedef.

When you create variables for built-in data types, you can use simple short names like int
 or double
 , but so far, every time you’ve created a variable containing a struct
 you’ve had to include the struct
 keyword.

struct cell_phone {
 int cell_no;
 const char *wallpaper;
 float minutes_of_charge;
};
...
struct cell_phone p = {5557879, "sinatra.png", 1.35};

But C allows you to create an
alias

 for any struct
 that you create. If you add the word

typedef

before

 the struct
 keyword, and a
type name

after

 the closing brace, you can call the new type whatever you like:

 [image: image with no caption]

typedef
 s can shorten your code and make it easier to read. Let’s see what your code will look like if you start to add typedef
 s to it...

 What should I call my new type?

If you use typedef
 to create an alias for a struct
 , you will need to decide what your alias
 will be. The alias is just the name of your type. That means there are
two names

 to think about: the name of the struct
 (struct

cell_phone

) and the name of the type
 (

phone

). Why have two names? You usually don’t need both. The compiler is quite happy for you to skip the struct
 name, like this:

typedef struct {
 int cell_no;
 const char *wallpaper;
 float minutes_of_charge;
}

phone

;
phone p = {5557879, "s.png", 1.35};

This is the alias.

Exercise

It’s time for the scuba diver to make his daily round of the tanks, and he needs a new label on his suit. Trouble is, it looks like some of the code has gone missing. Can you work out what the missing words are?

#include <stdio.h>

 _____________ struct {
 float tank_capacity;
 int tank_psi;
 const char *suit_material;
} ______________;

 _____________ struct scuba {
 const char *name;
 equipment kit;
} diver;

void badge(______________ d)
{
 printf("Name: %s Tank: %2.2f(%i) Suit: %s\n",
 d.name, d.kit.tank_capacity, d.kit.tank_psi, d.kit.suit_material);
}

int main()
{
 ______________ randy = {"Randy", {5.5, 3500, "Neoprene"}};
 badge(randy);
 return 0;
}

Exercise Solution

It’s time for the scuba diver to make his daily round of the tanks, and he needs a new label on his suit. Trouble is, it looks like some of the code has gone missing. Could you work out what the missing words were?

 [image: image with no caption]

Bullet Points

	A struct
 is a data type made from a sequence of other data types.

	
struct
 s are fixed length.

	
struct

fields

 are accessed by name, using the <

struct

 >.<

field name

 > syntax (aka
dot notation

).

	
struct
 fields are stored in memory in the same order they appear in the code.

	You can nest struct
 s.

	
typedef
 creates an
alias

 for a data type.

	If you use typedef
 with a struct
 , then you can skip giving the struct
 a name.

There are no Dumb Questions

	

Q:

	

Do struct
 fields get placed next to each other in memory?

	

A:

	
Sometimes there are small gaps between the fields.

	

Q:

	

Why’s that?

	

A:

	
The computer likes data to fit inside word boundaries. So if a computer uses 32-bit words, it won’t want a short
 , say, to be split over a 32-bit boundary.

	

Q:

	

So it would leave a gap and start the short
 in the next 32-bit word?

	

A:

	
Yes.

	

Q:

	

Does that mean each field takes up a whole word?

	

A:

	
No. The computer leaves gaps only to prevent fields from splitting across word boundaries. If it can fit several fields into a single word, it will.

	

Q:

	

Why does the computer care so much about word boundaries?

	

A:

	
It will read complete words from the memory. If a field was split across more than one word, the CPU would have to read several locations and somehow stitch the value together.

	

Q:

	

And that’d be slow?

	

A:

	
That’d be slow.

	

Q:

	

In languages like Java, if I assign an object to a variable, it doesn’t copy the object, it just copies a reference. Why is it different in C?

	

A:

	
In C,
all

 assignments copy data. If you want to copy a reference to a piece of data, you should assign a pointer.

	

Q:

	

I’m really confused about struct
 names. What’s the struct
 name and what’s the alias?

	

A:

	
The struct
 name is the word that follows the struct
 keyword. If you write struct peter_parker { ... }
 , then the name is peter_parker
 , and when you create variables, you would say struct peter_parker x
 .

	

Q:

	

And the alias?

	

A:

	
Sometimes you don’t want to keep using the struct
 keyword when you declare variables, so typedef
 allows you to create a single word alias. In typedef struct peter_parker { ... } spider_man;
 , spider_man
 is the alias.

	

Q:

	

So what’s an anonymous struct
 ?

	

A:

	
One without a name. So typedef struct { ... } spider_man;
 has an alias of spider_man
 , but no name. Most of the time, if you create an alias, you don’t need a name.

How do you update a struct?

 A struct
 is really just a bundle of variables, grouped together and treated like a single piece of data. You’ve already seen how to create a struct
 object, and how to access its values using dot notation. But how do you
change

 the value of a struct
 that already exists? Well, you can change the fields just like any other variable:

 [image: image with no caption]

That means if you look at this piece of code, you should be able to work out what it does, right?

#include <stdio.h>

typedef struct {
 const char *name;
 const char *species;
 int age;
} turtle;

void happy_birthday(turtle t)
{
 t.age = t.age + 1;
 printf("Happy Birthday %s! You are now %i years old!\n",
 t.name, t.age);
}

int main()
{
 turtle myrtle = {"Myrtle", "Leatherback sea turtle", 99};
 happy_birthday(myrtle);
 printf("%s's age is now %i\n", myrtle.name, myrtle.age);
 return 0;
}

 [image: image with no caption]

But there’s something odd about this code...

Test Drive

This is what happens when you compile and run the code.

 [image: image with no caption]

Something weird has happened.

The code creates a new struct
 and then passes it to a function that was
supposed

 to increase the value of one of the fields by 1. And
that’s exactly what the code did

 ...at least, for a while.

Inside the happy_birthday()
 function, the age
 field was updated, and you know that it worked because the printf()
 function displayed the new increased age
 value. But that’s when the weird thing happened. Even though the age
 was updated by the function, when the code returned to the main()
 function, the age
 seemed to reset itself.

 Brain Power

This code is doing something weird. But you’ve already been given enough information to tell you exactly what
 happened. Can you work out what it is?

The code is cloning the turtle

 Let’s take a closer look at the code that called the happy_birthday()
 function:

 [image: image with no caption]

When you assign a struct, its values get copied to the new struct.

In C, parameters are passed to functions
by value

 . That means that when you call a function, the values you pass into it are
assigned

 to the parameters. So in this code, it’s almost as if you had written something like this:

turtle t = myrtle;

But
remember

 : when you assign struct
 s in C, the values are copied. When you call the function, the parameter t
 will contain a
copy

 of the myrtle struct
 . It’s as if the function has a clone of the original turtle
 . So the code inside the function
does

 update the age of the turtle,
but it’s a different turtle

 .

What happens when the function returns? The t
 parameter disappears, and the rest of the code in main()
 uses the myrtle struct
 . But the value of myrtle
 was never changed by the code. It was always a completely separate piece of data.

So what do you do if you want pass a struct to a function that needs to update it?

 [image: image with no caption]

You need a pointer to the struct

 When you passed a variable to the scanf()
 function, you couldn’t pass the variable itself to scanf()
 ; you had to pass a
pointer

 :

scanf("%f", &length_of_run);

Why did you do that? Because if you tell the scanf()
 function where the variable lives in memory, then the function will be able to update the data stored at that place in memory, which means it can update the variable.

And you can do just the same with struct
 s. If you want a function to update a struct
 variable, you can’t just pass the struct
 as a parameter because that will simply send a
copy

 of the data to the function. Instead, you can pass the address of the struct
 :

 [image: image with no caption]

Sharpen your pencil

See if you can figure out what
expression

 needs to fit into each of the gaps in this new version of the happy_birthday()
 function.

Be careful

 . Don’t forget that t
 is now a
pointer variable

 .

void happy_birthday(turtle *t)
{
 ______ .age =______ .age + 1;
 printf("Happy Birthday %s! You are now %i years old!\n",
 _____ .name,______ .age);
}

Sharpen your pencil: Solution

 You were to figure out what
expression

 needs to fit into each of the gaps in this new version of the happy_birthday()
 function.

 [image: image with no caption]

(*t).age vs. *t.age

So why did you need to make sure that *t
 was wrapped in parentheses? It’s because the two expressions, (*t).age
 and *t.age
 , are very different.

 [image: image with no caption]

So the expression

*t.age

 is really the same as

*(t.age)

 . Think about that expression for a moment. It means “the contents of the memory location given by t.age
 .” But t.age
 isn’t a memory location.

So be careful with your parentheses when using structs — parentheses really matter.

Test Drive

 Let’s check if you got around the bug:

 [image: image with no caption]

That’s great. The function now works.

By passing a pointer to the struct
 , you allowed the function to update the
original data

 rather than taking a local copy.

t->age means (*t).age

 [image: image with no caption]

Yes, there is another struct pointer notation that is more readable.

Because you need to be careful to use parentheses in the right way when you’re dealing with pointers, the inventors of the C language came up with a simpler and easier-to-read piece of syntax. These two expressions mean the same thing:

 [image: image with no caption]

So, t->age
 means, “The age
 field in the struct
 that t
 points to,” That means you can also write the function like this:

void happy_birthday(turtle *a)
{
 a->age = a->age + 1;
 printf("Happy Birthday %s! You are now %i years old!\n",
 a->name, a->age);
}

Safe Cracker

Shhh...it’s late at night in the bank vault. Can you spin the correct combination to crack the safe? Study these pieces of code and then see if you can find the correct combination that will allow you to get to the gold. Be careful! There’s a swag
 type
and

 a swag
 field.

 [image: image with no caption]

 The bank created its safe like this:

	
swag gold = {"GOLD!", 1000000.0};
combination numbers = {&gold, "6502"};
safe s = {numbers, "RAMACON250"};

What combination will get you to the string “GOLD!”? Select one symbol or word from each column to assemble the expression.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Why are values copied to parameter variables?

	

A:

	
The computer will pass values to a function by assigning values to the function’s parameters. And all assignments copy values.

	

Q:

	

Why isn’t *t.age
 just read as (*t).age
 ?

	

A:

	
Because the computer evaluates the dot operator before it evaluates the *.

Safe Cracker Solution

Shhh...it’s late at night in the bank vault. You were to spin the correct combination to crack the safe. You needed to study these pieces of code and then find the correct combination that would allow you to get to the gold.

 [image: image with no caption]

 The bank created its safe like this:

	
swag gold = {"GOLD!", 1000000.0};
combination numbers = {&gold, "6502"};
safe s = {numbers, "RAMACON250"};

What combination will get you to the string “GOLD!”? You were to select one symbol or word from each column to assemble the expression.

 [image: image with no caption]

So you can display the gold in the safe with:

printf(“Contents = %s\n”, s.numbers.swag->description);

Bullet Points

	When you call a function, the values are copied
 to the parameter variables.

	You can create pointers to struct
 s, just like any other type.

	
pointer->field
 is the same as (*pointer).field
 .

	The ->
 notation cuts down on parentheses and makes the code more readable.

Sometimes the same type of thing needs different types of data

 struct
 s enable you to model more complex things from the real world. But there are pieces of data that don’t have a single data type:

 [image: image with no caption]

So if you want to record, say, a
quantity

 of something, and that quantity might be a
count

 , a
weight

 , or a
volume

 , how would you do that? Well, you
could

 create several fields with a struct
 , like this:

typedef struct {
 ...
 short count;
 float weight;
 float volume;
 ...
} fruit;

But there are a few reasons why this is not a good idea:

	

It will take up more space in memory.

	

Someone might set more than one value.

	

There’s nothing called “quantity.”

It would be
really useful

 if you could specify something called quantity
 in a data type and then decide for each particular piece of data whether you are going to record a count, a weight, or a volume against it.

In C, you can do just that by using a union.

A union lets you reuse memory space

 Every time you create an instance of a struct
 , the computer will lay out the fields in memory, one after the other:

 [image: image with no caption]

A

union

 is different. A union
 will use the space for just one of the fields in its definition. So, if you have a union
 called quantity
 , with fields called count
 , weight
 , and volume
 , the computer will give the union
 enough space for its largest field, and then leave it up to you which value you will store in there. Whether you set the count
 , weight
 , or volume
 field, the data will go into the same space in memory:

 [image: image with no caption]

How do you use a union?

 When you declare a union
 variable, there are a few ways of setting its value.

C89 style for the first field

If the union
 is going to store a value for the
first field

 , then you can use C89 notation. To give the union
 a value for its first field, just wrap the value in braces:

 [image: image with no caption]

Designated initializers set other values

A
designated initializer

 sets a union
 field value by
name

 , like this:

 [image: image with no caption]

Set the value with dot notation

The third way of setting a union
 value is by creating the variable on one line, and setting a field value on another line:

quantity q;

q.volume = 3.7;

Remember

 : whichever way you set the union
 ’s value, there will only ever be
one piece of data stored

 . The union
 just gives you a way of creating a variable that supports several different data types
 .

There are no Dumb Questions

	

Q:

	

Why is a union
 always set to the size of the
largest

 field?

	

A:

	
The computer needs to make sure that a union
 is always the same size. The only way it can do that is by making sure it is large enough to contain any of the fields.

	

Q:

	

Why does the C89 notation only set the first field? Why not set it to the first

float

 if I pass it a

float

 value?

	

A:

	
To avoid ambiguity. If you had, say, a float
 and a double
 field, should the computer store {2.1}
 as a float
 or a double
 ? By always storing the value in the first field, you know exactly how the data will be initialized.

 The Polite Guide to Standards

Designated initializers

 allow you to set struct
 and union
 fields by name and are part of the C99 C standard. They are supported by most modern compilers, but be careful if you are using some
variant

 of the C language. For example,
Objective C

 supports designated initializers, but
C++

does not

 .

 [image: image with no caption]

Yes, designated initializers can be used to set the initial values of fields in structs as well.

They can be very useful if you have a struct
 that contains a large number of fields and you initially just want to set a few of them. It’s also a good way of making your code more readable:

 [image: image with no caption]

unions are often used with structs

Once you’ve created a union
 , you’ve created a
new data type

 . That means you can use its values anywhere you would use another data type like an int
 or a struct
 . For example, you can combine them with struct
 s:

typedef struct {

const char *name;

const char *country;

quantity amount;

} fruit_order;

And you can access the values in the struct
 / union
 combination using the dot or ->
 notation you used before:

 [image: image with no caption]

Mixed-Up Mixers

It’s Margarita Night at the Head First Lounge, but after one too many samples, it looks like the guys have mixed up their recipes. See if you can find the matching code fragments for the different margarita mixes.

Here are the basic ingredients:

typedef union {
 float lemon;
 int lime_pieces;
} lemon_lime;

typedef struct {
 float tequila;
 float cointreau;
 lemon_lime citrus;
} margarita;

Here are the different margaritas:

 [image: image with no caption]

And finally, here are the different mixes and the drink recipes they produce. Which of the margaritas need to be added to these pieces of code to generate the correct recipes?

printf("___%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
2.0 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
0.5 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%i pieces
 of lime\n", m.tequila, m.cointreau, m.citrus.lime_pieces);

2.0 measures of tequila
1.0 measures of cointreau
1 pieces of lime

BE the Compiler

One of these pieces of code compiles; the other doesn’t. Your job is to play like you’re the compiler and say which one compiles, and why the other one doesn’t.

margarita m = {2.0, 1.0, {0.5}};

margarita m;
m = {2.0, 1.0, {0.5}};

Mixed-Up Mixers Solution

It’s Margarita Night at the Head First Lounge, but after one too many samples, it looks like the guys have mixed up their recipes. You were to find the matching code fragments for the different margarita mixes.

Here are the basic ingredients:

typedef union {
 float lemon;
 int lime_pieces;
} lemon_lime;

typedef struct {
 float tequila;
 float cointreau;
 lemon_lime citrus;
} margarita;

Here are the different margaritas:

 [image: image with no caption]

And finally, here are the different mixes and the drink recipes they produce. Which of the margaritas need to be added to these pieces of code to generate the correct recipes?

 [image: image with no caption]

BE the Compiler Solution

One of these pieces of code compiles; the other doesn’t. Your job is to play like you’re the compiler and say which one compiles, and why the other one doesn’t.

 [image: image with no caption]

 [image: image with no caption]

That’s a really good point: you can store lots of possible values in a union, but you have
no way of knowing

 what type it was once it’s stored.

The compiler won’t be able to keep track of the fields that are set and read in a union
 , so there’s nothing to stop us setting one field and reading another. Is that a problem? Sometimes it can be a
BIG PROBLEM

 .

 [image: image with no caption]

You need some way, then, of keeping track of the values we’ve stored in a union
 . One trick that some C coders use is to create an

enum

 .

An enum variable stores a symbol

 Sometimes you don’t want to store a number or a piece of text. Instead, you want to store something from a list of
symbols

 . If you want to record a day of the week, you only want to store MONDAY, TUESDAY, WEDNESDAY, etc. You don’t need to store the text, because there are only ever going to be seven different values to choose from.

That’s why enum
 s were invented.

enum
 lets you create a list of symbols, like this:

 [image: image with no caption]

Any variable that is defined with a type of

enum colors

 can then only be set to one of the keywords in the list. So you might define an enum colors
 variable like this:

enum colors favorite = PUCE;

Under the covers, the computer will just assign numbers to each of the symbols in your list, and the enum
 will just store a number. But you don’t need to worry about what the numbers are; your C code can just refer to the symbols. That’ll make your code easier to read, and it will prevent storing values like REB
 or PUSE
 :

 [image: image with no caption]

So that’s how enums work, but how do they help you keep track of unions? Let’s look at an example...

 Watch it!

structs and unions separate items with semicolons (;), but enums use commas.

Code Magnets

 Because you can create new data types with enum
 s, you can store them inside struct
 s and union
 s. In this program, an enum
 is being used to track the kinds of quantities being stored. Do you think you can work out where the missing pieces of code go?

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Code Magnets Solution

Because you can create new data types with enum
 s, you can store them inside struct
 s and union
 s. In this program, an enum
 is being used to track the kinds of quantities being stored. Were you able to work out where the missing pieces of code go?

 [image: image with no caption]

 [image: image with no caption]

When you run the program, you get this:

 [image: image with no caption]

 [image: image with no caption]

	

union:

 ...so I said to the code, “Hey, look. I don’t care if you gave me a float
 or not. You asked for an int
 . You got an int
 .”

	

struct:

 Dude, that was totally uncalled for.

	

union:

 That’s what I said. It’s totally uncalled for.

	

struct:

 Everyone knows you only have one storage location.

	

union:

 Exactly. Everything is one. I’m, like, Zen that way...

	

enum:

 What happened, dude?

	

struct:

 Shut up, enum
 . I mean, the guy was crossing the line.

	

union:

 I mean, if he had just left a record. You know, said, I stored this as an int
 . It just needed an enum
 or something.

	

enum:

 You want me to do what?

	

struct:

 Shut up, enum
 .

	

union:

 I mean, if he’d wanted to store several things at once, he should have called you, am I right?

	

struct:

 Order. That’s what these people don’t grasp.

	

enum:

 Ordering what?

	

struct:

 Separation and sequencing. I keep several things alongside each other. All at the same time, dude.

	

union:

 That’s just my point.

	

struct:

 All. At. The. Same. Time.

	

enum:

 (Pause) So has there been a problem?

	

union:

 Please, enum
 ? I mean these people just need to make a decision. Wanna store several things, use you. But store just one thing with different possible types? Dude’s your man.

	

struct:

 I’m calling him.

	

union:

 Hey, wait...

	

enum:

 Who’s he calling, dude?

	

struct/union:

 Shut up, enum
 .

	

union:

 Look, let’s not cause any more problems here.

	

struct:

 Hello? Could I speak to the Bluetooth service, please?

	

union:

 Hey, let’s just think about this.

	

struct:

 What do you mean, he’ll give me a callback?

	

union:

 I’m just. This doesn’t seem like a good idea.

	

struct:

 No, let me leave you a message, my friend.

	

union:

 Please, just put the phone down.

	

enum:

 Who’s on the phone, dude?

	

struct:

 Be quiet, enum
 . Can’t you see I’m on the phone here? Listen, you just tell him that if he wants to store a float
 and an int
 , he needs to come see me. Or I’m going to come see him. Understand me? Hello? Hello?

	

union:

 Easy, man. Just try to keep calm.

	

struct:

 On hold? They put me on ^*&^ing hold!

	

union:

 They what? Pass me the phone... Oh...that...man. The Eagles! I hate the Eagles...

	

enum:

 So if you pack your fields, is that why you’re so fat?

	

struct:

 You are entering a world of pain, my friend.

Sometimes you want control at the bit level

 Let’s say you need a struct
 that will contain a lot of yes/no values. You
could

 create the struct
 with a series of short
 s or int
 s:

 [image: image with no caption]

 [image: image with no caption]

And that would work. The problem? The short
 fields will take up a lot more space than the
single bit

 that you need for
true/false

 values. It’s wasteful. It would be much better if you could create a struct
 that could hold a sequence of single bits for the values.

That’s why

bitfield
 s

 were created.

 Geek Binary Digits

 [image: image with no caption]

When you’re dealing with binary value, it would be great if you had some way of specifying the 1s and 0s in a literal, like:

int x = 01010100;

Unfortunately, C doesn’t support
binary literals

 , but it
does

 support
hexadecimal literals

 . Every time C sees a number beginning with 0x, it treats the number as
base 16

 :

 [image: image with no caption]

But how do you convert back and forth between hexadecimal and binary? And is it any easier than converting binary and
decimal

 ? The good news is that you can convert hex to binary
one digit at a time

 :

 [image: image with no caption]

Each hexadecimal digit matches a binary digit of length 4. All you need to learn are the binary patterns for the numbers 0–15, and you will soon be able to convert binary to hex and back again in your head within seconds.

Bitfields store a custom number of bits

 A
bitfield

 lets you specify
how many bits

 an individual field will store. For example, you could write your struct
 like this:

 [image: image with no caption]

If you have a sequence of bitfields, the computer can
squash them together

 to save space. So if you have eight single-bit bitfields, the computer can store them in a single byte.

Let’s see how how good you are at using bitfields.

 Watch it!

Bitfields can save space if they are collected together in a struct.

But if the compiler finds a single bitfield on its own, it might still have to pad it out to the size of a word. That’s why bitfields are usually grouped together.

 How many bits do I need?

Bitfields can be used to store a sequence of true/false values, but they’re also useful for other short-range values, like months of the year. If you want to store a month number in a struct
 , you know it will have a value of, say, 0–11. You can store those values in
4 bits

 . Why? Because 4 bits let you store 0–15, but 3 bits only store 0–7.

...

unsigned int month_no:4;

...

Exercise

 Back at the Head First Aquarium, they’re creating a customer satisfaction survey. Let’s see if you can use bitfields to create a matching struct
 .

 [image: image with no caption]

 [image: image with no caption]

Exercise Solution

 Back at the Head First Aquarium, they’re creating a customer satisfaction survey. You were to use bitfields to create a matching struct
 .

 [image: image with no caption]

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Why doesn’t C support binary literals?

	

A:

	
Because they take up a lot of space, and it’s usually more efficient to write hex values.

	

Q:

	

Why do I need 4 bits to store a value up to 10?

	

A:

	
Four bits can store values from 0 to binary 1111, which is 15. But 3 bits can only store values up to binary 111, which is 7.

	

Q:

	

So what if I try to put the value 9 into a 3-bit field?

	

A:

	
The computer will store a value of 1 in it, because 9 is 1001 in binary, so the computer transfers 001.

	

Q:

	

Are bitfields really just used to save space?

	

A:

	
No. They’re important if you need to read low-level binary information.

	

Q:

	

Such as?

	

A:

	
If you’re reading or writing some sort of custom binary file.

Bullet Points

	A union
 allows you to store different data types in the same memory location.

	A designated initializer sets a field value by name.

	Designated initializers are part of the C99 standard. They are not supported in C++.

	If you declare a union
 with a value in {braces}, it will be stored with the type of the first field.

	The compiler will let you store one field in a union
 and read a completely different field. But be careful! This can cause bugs.

	
enum
 s store symbols.

	Bitfields allow you to store a field with a custom number of bits.

	Bitfields should be declared as unsigned int
 .

Your C Toolbox

You’ve got Chapter 5
 under your belt, and now you’ve added structs, unions, and bitfields to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 6. Data Structures and Dynamic Memory: Building bridges

 [image: image with no caption]

Sometimes, a single struct is simply not enough.

To model complex data requirements, you often need to
link struct
 s together

 . In this chapter, you’ll see how to use

struct
 pointers

 to connect custom data types into
large, complex data structures

 . You’ll explore
key principles

 by creating
linked lists

 . You’ll also see how to make your data structures cope with flexible amounts of data by
dynamically allocating memory on the heap

 , and freeing it up when you’re done. And if good housekeeping becomes tricky, you’ll also learn how

valgrind

 can help.

Do you need flexible storage?

 [image: image with no caption]

 You’ve looked at the different kinds of data that you can store in C, and you’ve also seen how you can store multiple pieces of data in an array. But sometimes you need to be a little more flexible.

Imagine you’re running a travel company that arranges flying tours through the islands. Each tour contains a sequence of short flights from one island to the next. For each of those islands, you will need to record a few pieces of information, such as the name of the island and the hours that its airport is open. So how would you record that?

You could create a struct
 to represent a single island:

typedef struct {
 char *name;
 char *opens;
 char *closes;
} island;

Now if a tour passes through a
sequence

 of islands, that means you’ll need to record a list of islands, and you can do that with an array of island
 s:

 [image: image with no caption]

But there’s a problem

 . Arrays are fixed length, which means they’re not very
flexible

 . You can use one if you know
exactly

 how
long

 a tour will be. But what if you need to change the tour? What if you want to add an extra destination to the middle of the tour?

To store a flexible amount of data, you need something more extensible than an array. You need a
linked list

 .

Linked lists are like chains of data

 A
linked list

 is an example of an
abstract data structure

 . It’s called an
abstract

 data structure because a linked list is
general

 : it can be used to store a lot of different kinds of data.

To understand how a linked list works, think back to our tour company. A linked list stores a piece of data, and a link to
another

 piece of data.

Sharpen your pencil

In a linked list, as long as you know where the list starts, you can travel along the list of links, from one piece of data to the next, until you reach the end of the list. Using a pencil, change the list so that the tour includes a trip to Skull Island between Craggy Island and Isla Nublar.

 [image: image with no caption]

Sharpen your pencil: Solution

In a linked list, as long as you know where the list starts, you can travel along the list of links, from one piece of data to the next, until you reach the end of the list. Using a pencil, you were to change the list so that the tour includes a trip to Skull Island between Craggy Island and Isla Nublar.

 [image: image with no caption]

Linked lists allow inserts

With just a few changes, you were able to add an extra step to the tour. That’s another advantage linked lists have over arrays:
inserting data is very quick

 . If you wanted to insert a value into the middle of an
array

 , you would have to shuffle all the pieces of data that follow it along by one:

 [image: image with no caption]

So linked lists allow you to store a
variable amount of data

 , and they make it simple to
add more data

 .

But how do you create a linked list in C?

Create a recursive structure

 Each one of the struct
 s in the list will need to connect to the one next to it. A struct
 that contains a link to another struct
 of the same type is called a
recursive structure

 .

 [image: image with no caption]

Recursive structures contain pointers to other structures of the same type. So if you have a flight schedule for the list of islands that you’re going to visit, you can use a recursive structure for each island
 . Let’s look at how that works in more detail:

 [image: image with no caption]

How do you store a link from one struct
 to the next? With a pointer. That way, the island
 data will contain the
address

 of the next island
 that we’re going to visit. So, whenever our code is at one island
 , it will always be able to hop over to the next island
 .

Let’s write some code and start island hopping.

 Watch it!

Recursive structures need names.

If you use the

 typedef

command, you can normally skip giving the

 struct

a proper name. But in a recursive structure, you need to include a pointer to the same type. C syntax won’t let you use the

 typedef

alias, so you need to give the

 struct

a proper name. That’s why the

 struct

here is called

 struct island
 .

Create islands in C...

Once you have defined an island
 data type, you can create the first set of island
 s like this:

 [image: image with no caption]

 [image: image with no caption]

Did you notice that we originally set the next
 field in each island
 to NULL
 ? In C, NULL
 actually has the value 0, but it’s set aside specially to set
pointers

 to 0.

...and link them together to form a tour

Once you’ve created each island
 , you can then connect them together:

amity.next = &craggy;
craggy.next = &isla_nublar;
isla_nublar.next = &shutter;

You have to be careful to set the next
 field in each island
 to the
address

 of the next island
 . You’ll use struct
 variables for each of the islands.

So now you’ve created a complete island tour in C, but what if you want to insert an excursion to Skull Island between Isla Nublar and Shutter Island?

 [image: image with no caption]

Inserting values into the list

 You can insert island
 s just like you did earlier, by changing the values of the pointers between island
 s:

 [image: image with no caption]

In just two lines of code, you’ve inserted a new value into the list. If you were using an array, you’d write a lot more code to shuffle items along the array.

OK, you’ve seen how to create and use linked lists. Now let’s try out your new skills...

Code Magnets

Oh, no, the code for the display()
 function was on the fridge door, but someone’s mixed up the magnets. Do you think you can reassemble the code?

 [image: image with no caption]

Code Magnets Solution

 Oh, no, the code for the display()
 function was on the fridge door, but someone’s mixed up the magnets. Were you able to reassemble the code?

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Other languages, like Java, have linked lists built in. Does C have any data structures?

	

A:

	
C doesn’t really come with any data structures built in. You have to create them yourself.

	

Q:

	

What if I want to use the 700th item in a really long list? Do I have to start at the first item and then read all the way through?

	

A:

	
Yes, you do.

	

Q:

	

That’s not very good. I thought a linked list was better than an array.

	

A:

	
You shouldn’t think of data structures as being
better

 or
worse

 . They are either
appropriate

 or
inappropriate

 for what you want to use them for.

	

Q:

	

So if I want a data structure that lets me insert things quickly, I need a linked list, but if I want direct access I might use an array?

	

A:

	
Exactly.

	

Q:

	

You’ve shown a struct
 that contains a pointer to another struct
 . Can a struct
 contain a whole recursive struct
 inside itself?

	

A:

	
No.

	

Q:

	

Why not?

	

A:

	
C needs to know the exact amount of space a struct
 will occupy in memory. If it allowed full recursive copies of the same struct
 , then one piece of data would be a different size than another.

Test Drive

Let’s use the display()
 function on the linked list of island
 s and compile the code together into a program called tour
 .

 [image: image with no caption]

Excellent. The code creates a linked list of island
 s, and you can insert items with very little work.

OK, so now that you know the basics of how to work with recursive struct
 s and lists, you can move on to the main program. You need to read the tour data from a file that looks like this:

 [image: image with no caption]

The folks at the airline are still creating the file, so you won’t know how long it is until runtime. Each line in the file is the name of an island. It should be pretty straightforward to turn this file into a linked list. Right?

 The Polite Guide to Standards

The code on this page declares a new variable, skull
 , right in the middle of the code. This is allowed only in C99 and C11. In ANSI C, you need to declare all your local variables at the top of a function.

 [image: image with no caption]

Yes, you need some way to create
dynamic storage

 .

All of the programs you’ve written so far have used static storage. Every time you wanted to store something, you’ve added a variable to the code. Those variables have generally been stored in the stack. Remember: the stack is the area of memory set aside for storing local variables.

So when you created the first four islands, you did it like this:

island amity = {"Amity", "09:00", "17:00", NULL};
island craggy = {"Craggy", "09:00", "17:00", NULL};
island isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};
island shutter = {"Shutter", "09:00", "17:00", NULL};

Each island struct
 needed its own variable. This piece of code will always create exactly four island
 s. If you wanted the code to store more than four island
 s, you would need another local variable. That’s fine if you know how much data you need to store at compile time, but quite often, programs don’t know how much storage they need until runtime. If you’re writing a web browser, for instance, you won’t know how much data you’ll need to store a web page until, well, you read the web page. So C programs need some way to tell the operating system that they need a little extra storage, at the moment that they need it.

Programs need
dynamic

 storage.

 [image: image with no caption]

Use the heap for dynamic storage

 Most of the memory you’ve been using so far has been in the
stack

 . The stack is the area of memory that’s used for local variables. Each piece of data is stored in a variable, and each variable disappears as soon as you leave its function.

The trouble is, it’s harder to get more storage on the stack at runtime, and that’s where the
heap

 comes in. The heap is the place where a program stores data that will need to be available longer term. It won’t automatically get cleared away, so that means it’s the perfect place to store data structures like our linked list. You can think of heap storage as being a bit like reserving a locker in a locker room.

 [image: image with no caption]

First, get your memory with malloc()

Imagine your program suddenly finds it has a large amount of data that it needs to store at runtime. This is a bit like asking for a large storage locker for the data, and in C you do that with a function called

malloc()

 . You tell the malloc()
 function exactly how much memory you need, and it asks the operating system to set that much memory aside in the heap. The malloc()
 function then returns a
pointer

 to the new heap space, a bit like getting a key to the locker. It allows you access to the memory, and it can also be used to keep track of the storage locker that’s been allocated.

 [image: image with no caption]

 [image: image with no caption]

Give the memory back when you’re done

 The good news about heap memory is that you can keep hold of it for a really long time. The bad news is...you can keep hold of it for a really long time.

When you were just using the stack, you didn’t need to worry about returning memory; it all happened automatically. Every time you leave a function, the local storage is freed from the stack.

The heap is different. Once you’ve asked for space on the heap, it will never be available for anything else until you tell the C Standard Library that you’re finished with it. There’s only so much heap memory available, so if your code keeps asking for more and more heap space, your program will quickly start to develop memory leaks.

A memory leak happens when a program asks for more and more memory without releasing the memory it no longer needs. Memory leaks are among the most common bugs in C programs, and they can be really hard to track down.

The heap has only a fixed amount of storage available, so be sure you use it wisely.

Free memory by calling the free() function

The malloc()
 function allocates space and gives you a pointer to it. You’ll need to use this pointer to access the data and then, when you’re finished with the storage, you need to release the memory using the

free()

 function. It’s a bit like handing your locker key back to the attendant so that the locker can be reused.

 [image: image with no caption]

Every time some part of your code requests heap storage with the malloc(
) function, there should be some other part of your code that hands the storage back with the free()
 function. When your program stops running, all of its heap storage will be released automatically, but it’s always good practice to explicitly call free()
 on every piece of dynamic memory you’ve created.

Let’s see how malloc() and free() work.

Ask for memory with malloc()...

 The function that asks for memory is called malloc()
 for
memory allocation

 . malloc()
 takes a single parameter: the number of bytes that you need. Most of the time, you probably don’t know exactly how much memory you need in bytes, so malloc()
 is almost always used with an operator called sizeof
 , like this:

 [image: image with no caption]

sizeof
 tells you how many bytes a particular data type occupies on your system. It might be a struct
 , or it could be some base data type, like int
 or double
 .

The malloc()
 function sets aside a chunk of memory for you, then returns a pointer containing the start address. But what kind of pointer will that be? malloc()
 actually returns a
general-purpose pointer

 , with type

void*

 .

 [image: image with no caption]

...and free up the memory with free()

Once you’ve created the memory on the heap, you can use it for as long as you like. But once you’ve finished, you need to release the memory using the free()
 function.

free()
 needs to be given the address of the memory that malloc()
 created. As long as the library is told where the chunk of memory starts, it will be able to check its records to see how much memory to free up. So if you wanted to free the memory you allocated above, you’d do it like this:

 [image: image with no caption]

OK, now that we know more about dynamic memory, we can start to write some code.

Remember: if you allocated memory with malloc() in one part of your program, you should always release it later with the free() function.

Oh, no! It’s the out-of-work actors...

The aspiring actors are currently between jobs, so they’ve found some free time in their busy schedules to help you out with the coding. They’ve created a utility function to create a new island struct
 with a name that you pass to it. The function looks like this:

 [image: image with no caption]

That’s a pretty cool-looking function. The actors have spotted that most of the island airports have the same opening and closing times, so they’ve set the opens
 and closes
 fields to default values. The function returns a pointer to the newly created struct
 .

 [image: image with no caption]

 Brain Power

Look carefully at the code for the create()
 function. Do you think there might be any problems with it? Once you’ve thought about it good and hard, turn the page to see it in action.

Five-Minute Mystery

The Case of the Vanishing Island

Captain’s Log.

 11:00. Friday. Weather clear. A create()
 function using dynamic allocation has been written, and the coding team says it is ready for air trials.

island* create(char *name)
{
 island *i = malloc(sizeof(island));
 i->name = name;
 i->opens = "09:00";
 i->closes = "17:00";
 i->next = NULL;
 return i;
}

14:15. Weather cloudy. Northwest headwind 15kts near Bermuda. Landing at first stop. Software team on board providing basic code. Name of island entered at the command line.

 [image: image with no caption]

14:45. Take off from landing strip rocky due to earth tremors. Software team still on board. Supplies of Jolt running low.

15:35. Arrival at second island. Weather good. No wind. Entering details into new program.

 [image: image with no caption]

17:50 Back at headquarters tidying up on paperwork. Strange thing. The flight log produced by the test program appears to have a bug. When the details of today’s flight are logged, the trip to the first island has been mysteriously renamed. Asking software team to investigate.

 [image: image with no caption]

What happened to the name of the first island? Is there a bug in the

 create()

function? Does the way it was called give any clues?

Five-Minute Mystery Solved

The Case of the Vanishing Island

What happened to the name of the first island?

Look at the code of the create()
 function again:

island* create(char *name)
{
 island *i = malloc(sizeof(island));
 i->name = name;
 i->opens = "09:00";
 i->closes = "17:00";
 i->next = NULL;
 return i;
}

When the code records the name of the island, it doesn’t take a copy of the whole name
 string; it just records the address where the name
 string lives in memory. Is that important? Where did the name
 string live? We can find out by looking at the code that was calling the function:

char name[80];
 fgets(name, 80, stdin);
 island *p_island0 = create(name);
 fgets(name, 80, stdin);
 island *p_island1 = create(name);

The program asks the user for the name of each island, but
both times

 it uses the name
 local char
 array to store the name. That means that
the two islands share the same name
 string

 . As soon as the local name
 variable gets updated with the name of the second island, the name of the first island changes as well.

String Copying Up Close

 In C, you often need to make copies of strings. You
could

 do that by calling the malloc()
 function to create a little space on the heap and then manually copying each character from the string you are copying to the space on the heap. But guess what? Other developers got there ahead of you. They created a function in the
string.h

 header called

strdup()

 .

Let’s say that you have a pointer to a character array that you want to copy:

 [image: image with no caption]

The

strdup()

 function can reproduce a complete copy of the string somewhere on the heap:

char *copy = strdup(s);

	

The strdup() function works out how long the string is, and then calls the malloc() function to allocate the correct number of characters on the heap.

 [image: image with no caption]

	

It then copies each of the characters to the new space on the heap.

 [image: image with no caption]

That means that strdup()
 always creates space
on the heap

 . It can’t create space on the stack because that’s for
local variables

 , and local variables get cleared away too often.

But because strdup()
 puts new strings on the heap, that means you must
always remember to release their storage with the free()
 function

 .

Let’s fix the code using the strdup() function

 You can fix up the original create()
 function using the strdup()
 function, like this:

island* create(char *name)
{
 island *i = malloc(sizeof(island));
 i->name =

strdup(name)

;
 i->opens = "09:00";
 i->closes = "17:00";
 i->next = NULL;
 return i;
}

You can see that we only need to put the strdup()
 function on the name
 field. Can you figure out why that is?

It’s because we are setting the opens
 and closes
 fields to
string literals

 . Remember way back when you saw where things were stored in memory? String literals are stored in a
read-only

 area of memory set aside for
constant values

 . Because you always set the opens
 and closes
 fields to constant values, you don’t need to take a defensive copy of them, because they’ll never change. But you had to take a defensive copy of the name
 array, because something might come and update it later.

So does it fix the code?

To see if the change to the create()
 function fixed the code, let’s run your original code again:

 [image: image with no caption]

Now that code works. Each time the user enters the name of an island, the create()
 function is storing it in a brand-new string.

OK, now that you have a function to create island data, let’s use it to create a linked list from a file.

There are no Dumb Questions

	

Q:

	

If the island struct
 had a name array rather than a character pointer, would I need to use strdup()
 here?

	

A:

	
No. Each island struct
 would store its own copy, so you wouldn’t need to make your own copy.

	

Q:

	

So why would I want to use char
 pointers rather than char
 arrays in my data structures?

	

A:

	

char
 pointers won’t limit the amount of space you need to set aside for strings. If you use char
 arrays, you will need to decide in advance exactly how long your strings might need to be.

Pool Puzzle

 Catastrophe! The code to create an island tour has fallen into the pool! Your
job

 is to take code snippets from the pool and place them into the blank lines in the code below. Your
goal

 is to reconstruct the program so that it can read a list of names from Standard Input and then connect them together to form a linked list. You may
not

 use the same code snippet more than once, and you won’t need to use all the pieces of code.

island *start = NULL;
island *i = NULL;
island *next = NULL;
char name[80];
for(;_________________ != __________________; i = __________________) {
 next = create(name);
 if (start == NULL)
 start = _________________;
 if (i != NULL)
 i ___________________________________ = next;
}
display(start);

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Pool Puzzle Solution

Catastrophe! The code to create an island tour has fallen into the pool! Your
job

 was to take code snippets from the pool and place them into the blank lines in the code below. Your
goal

 was to reconstruct the program so that it can read a list of names from Standard Input and then connect them together to form a linked list.

 [image: image with no caption]

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Sharpen your pencil

 But wait! You’re not done yet. Don’t forget that if you ever
allocate space

 with the malloc()
 function, you need to
release the space

 with the free()
 function. The program you’ve written so far creates a linked list of islands in heap memory using malloc()
 , but now it’s time to write some code to release that space once you’re done with it.

Here’s a start on a function called release()
 that will release all of the memory used by a linked list, if you pass it a pointer to the first island
 :

void release(island *start)
{
 island *i = start;
 island *next = NULL;
 for (; i != NULL; i = next) {
 next = ____________;
 ____________;
 ____________;
 }
}

Think very carefully. When you release the memory, what will you need to free? Just the island
 , or something more? In what sequence should you free them?

Sharpen your pencil: Solution

But wait! You’re not done yet. Don’t forget that if you ever
allocate space

 with the malloc()
 function, you need to
release the space

 with the free()
 function. The program you’ve written so far creates a linked list of islands in heap memory using malloc()
 , but now it’s time to write some code to release that space once you’re done with it.

Here’s a start on a function called release()
 that will release all of the memory used by a linked list, if you pass it a pointer to the first island
 :

 [image: image with no caption]

When you release the memory, what will you need to free? Just the island
 , or something more? In what sequence should you free them?

Free the memory when you’re done

Now that you have a function to free the linked list, you’ll need to call it when you’ve finished with it. Your program only needs to display the contents of the list, so once you’ve done that, you can release it:

display(start);
release(start);

Once that’s done, you can test the code.

Test Drive

So, if you compile the code and then run the file through it, what happens?

 [image: image with no caption]

It works. Remember: you had no way of knowing how long that file was going to be. In this case, because you are just printing out the file, you
could

 have simply printed it out without storing it all in memory. But because you
do

 have it in memory, you’re free to manipulate it. You could add in extra steps in the tour, or remove them. You could reorder or extend the tour.

Dynamic memory allocation lets you create the memory you need at RUNTIME. And the way you access dynamic heap memory is with malloc()
 and free()

 .

Fireside Chats

 Tonight’s Talk:
Stack and Heap Discuss Their Differences

	
Stack:

	
Heap:

	
Heap? Are you there? I’m home.

	

	
	
Don’t see you too often this time of day. Got a little something going on?

	
Deep regression. Oops...excuse me... Just tidy that up...

	

	
	
What’re you doing?

	
The code just exited a function. Just need to free up the storage from those local variables.

	

	
	
You should take life a little easier. Relax a little...

	
Perhaps you’re right. Mind if I sit?

	

	
	
Beer? Don’t worry about the cap; throw it anywhere.

	
I...think this is yours?

	

	
	
Hey, you found the pizza! That’s great. I’ve been looking for that all week.

	
You really should consider getting somebody in to take care of this place.

	

	
	
Don’t worry about it. That online ordering application left it lying around. It’ll probably be back for it.

	
How do you know? I mean, how do you know it hasn’t just forgotten about it?

	

	
	
He’d have been back in touch. He’d have called free()
 .

	
Hmmm? Are you sure? Wasn’t it written by the same woman who wrote that dreadful Whack-a-bunny game? Memory leaks everywhere. I could barely move for rabbit struct
 s. Droppings everywhere. It was terrible.

	

	
	
Hey, it’s not my responsibility to clear up the memory. Someone asks me for space, I give him space. I’ll leave it there until he tells me to clean it up.

	
That’s irresponsible.

	

	
	
Yeah, maybe. But I’m easy to use. Not like you and your...fussing.

	
Fussing? I don’t fuss! You might want to use a napkin...

	

	
	
<belches>What? I’m just saying you’re difficult to keep track of.

	
I just believe that memory should be properly maintained.

	

	
	
Whatever. I’m a live-and-let-live type. If a program wants to make a mess, it’s not my responsibility.

	
You’re messy.

	

	
	
I’m easygoing.

	
Why don’t you do garbage collection?!

	

	
	
Ah, here we go again...

	
I mean, just a little...tidying up. You don’t do anything!!!

	

	
	
Easy, now.

	
<crying>I’m sorry. I just can’t cope with this level of disorganization.

	

	
	
Hey, you’re overflowing. Take this...

	
<blows nose>Thank you. Wait, what is this?

	

	
	
It’s the high score table from Whack-a-Bunny. Don’t worry; I don’t think the program needs it anymore.

There are no Dumb Questions

	

Q:

	

Why is the heap called the heap?

	

A:

	
Because the computer doesn’t automatically organize it. It’s just a big heap of data.

	

Q:

	

What’s garbage collection?

	

A:

	
Some languages track when you allocate data on a heap and then, when you’re no longer using the data, they free the data from the heap.

	

Q:

	

Why doesn’t C contain garbage collection?

	

A:

	
C is quite an old language; when it was invented, most languages didn’t do automatic garbage collection.

	

Q:

	

I understand why I needed to copy the name
 of the island
 in the example. Why didn’t I need to copy the opens
 and closes
 values?

	

A:

	
The opens
 and closes
 values are set to string literals. String literals can’t be updated, so it doesn’t matter if several data items refer to the same string.

	

Q:

	

Does strdup()
 actually call the malloc()
 function?

	

A:

	
It will depend on how the C Standard Library is implemented, but most of the time, yes.

	

Q:

	

Do I need to free all my data before the program ends?

	

A:

	
You don’t have to; the operating system will clear away all of the memory when the program exits. But it’s good practice to always explicitly free anything you’ve created.

Bullet Points

	Dynamic data structures allow you to store a variable number of data items.

	A linked list is a data structure that allows you to easily insert items.

	Dynamic data structures are normally defined in C with recursive struct
 s.

	A recursive struct
 contains one or more pointers to a similar struct
 .

	The stack is used for local variables and is managed by the computer.

	The heap is used for long-term storage. You allocate space with malloc()
 .

	The sizeof
 operator will tell you how much space a struct
 needs.

	Data will stay on the heap until you release it with free()
 .

What’s my data structure?

 You’ve seen how to create a linked list in C. But linked lists aren’t the only data structures you might need to build. Below are some other example data structures. See if you can match up the data structure with the description of how it can be used.

Data structures

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Descriptions

1. I can be used to store a sequence of items, and I make it easy to insert new items. But you can process me in only one direction.

2. Each item I store can connect to up to two other items. I am useful for storing hierarchical information.

3. I can be used to associate two different types of data. For example, you could use me to associate people’s names to their phone numbers.

4. Each item I store connects to up to two other items. You can process me in two directions.

What’s my data structure?: Solution

 You’ve seen how to create a linked list in C. But linked lists aren’t the only data structures you might need to build. Below are some other example data structures. You were to match up the data structure with the description of how it can be used.

 [image: image with no caption]

 Data structures are useful, but be careful!

You need to be careful when you create these data structures using C. If you don’t keep proper track of the data you are storing, there’s a risk that you’ll leave old dead data on the heap. Over time, this will start to eat away at the memory on your machine, and it might cause your program to crash with memory errors.
That means it’s really important that you learn to track down and fix memory leaks in your code...

Top Secret

Federal Bureau of Investigations United States Department of Justice, Washington, D. C.

From: J. Edgar Hoover, Director

Subject: SUSPECTED LEAK IN GOVERNMENT EXPERT SYSTEM

Our Cambridge, MA, office advised that there is a suspected leak somewhere inside the new Suspicious Persons Identification Expert System (SPIES). Our sources and informants familiar with software matters advise that the supposed leak is the result of shoddy coding by person or persons unknown.

An informant who has furnished reliable information in the past and who claims to be close to the people concerned has advised that the leak is the result of careless management of data in the area of memory known to the hacker fraternity as “The Heap.”

You are hereby given access to the expert system source code and have, by my order, been given access to the full resources of the FBI’s software engineering lab. Consider the evidence and analyze the details of the case carefully. I want this leak found, and I want this leak fixed.

Failure is not an option.

Very truly yours,

 [image: image with no caption]

Exhibit A: the source code

What follows is the source code for the Suspicious Persons Identification Expert System (SPIES). This software can be used to record and identify persons of interest. You are not required to read this code in detail now, but please keep a copy in your records so that you may refer to it during the ongoing investigation.

	
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct node {
 char *question;
 struct node *no;
 struct node *yes;
} node;

int yes_no(char *question)
{
 char answer[3];
 printf("%s? (y/n): ", question);
 fgets(answer, 3, stdin);
 return answer[0] == 'y';
}

node* create(char *question)
{
 node *n = malloc(sizeof(node));
 n->question = strdup(question);
 n->no = NULL;
 n->yes = NULL;
 return n;
}

void release(node *n)
{
 if (n) {
 if (n->no)
 release(n->no);
 if (n->yes)
 release(n->yes);
 if (n->question)
 free(n->question);
 free(n);
 }
}

int main()
{
 char question[80];
 char suspect[20];
 node *start_node = create("Does suspect have a mustache");
 start_node->no = create("Loretta Barnsworth");
 start_node->yes = create("Vinny the Spoon");

 node *current;
 do {
 current = start_node;
 while (1) {
 if (yes_no(current->question))
 {
 if (current->yes) {
 current = current->yes;
 } else {
 printf("SUSPECT IDENTIFIED\n");
 break;
 }
 } else if (current->no) {
 current = current->no;
 } else {

 /* Make the yes-node the new suspect name */
 printf("Who's the suspect? ");
 fgets(suspect, 20, stdin);
 node *yes_node = create(suspect);
 current->yes = yes_node;

 /* Make the no-node a copy of this question */
 node *no_node = create(current->question);
 current->no = no_node;

 /* Then replace this question with the new question */
 printf("Give me a question that is TRUE for %s but not for %s? ", suspect,
 current->question);
 fgets(question, 80, stdin);
 current->question = strdup(question);

 break;
 }
 }
 } while(yes_no("Run again"));
 release(start_node);
 return 0;
}

An overview of the SPIES system

The SPIES program is an expert system that learns how to identify individuals using distinguishing features. The more people you enter into the system, the more the software learns and the smarter it gets.

The program builds a tree of suspects

The program records data using a
binary tree

 . A
binary tree

 allows each piece of data to connect to two other pieces of data like this:

 [image: image with no caption]

This is what the data looks like when the program starts. The first item (or
node

) in the tree stores a question: “Does the suspect have a mustache?” That’s linked to two other nodes: one if the answer’s yes
 , and another if the answer’s no
 . The
yes

 and
no

 nodes store the name of a suspect.

The program will use this tree to ask the user a series of questions to identify a suspect. If the program can’t find the suspect, it will ask the user for the name of the new suspect and some detail that can be used to identify him or her. It will store this information in the tree, which will gradually grow as it learns more things.

 [image: image with no caption]

Let’s see what the program looks like in action.

Test Drive

This is what happens if an agent compiles the SPIES program and then takes it on a test run:

 [image: image with no caption]

The first time through, the program fails to identify the suspect Hayden Fantucci. But once the suspect’s details are entered, the program learns enough to identify Mr. Fantucci on the second run.

Pretty smart. So what’s the problem?

Someone was using the system for a few hours in the lab and noticed that even though the program appeared to be working correctly, it was using almost
twice the amount of memory

 it needed.

That’s why
you

 have been called in. Somewhere deep in the source code, something is allocating memory on the heap and
never freeing it

 . Now, you could just sit and read through all of the code and hope that you see what’s causing the problem. But memory leaks can be awfully difficult to track down.

So maybe you should pay a trip to the software lab...

Software forensics: using valgrind

 It can take an achingly long time to track down bugs in large, complex programs like SPIES. So C hackers have written tools that can help you on your way. One tool used on the
Linux

 operating system is called

valgrind

 .

valgrind
 can monitor the pieces of data that are allocated space on the heap. It works by creating its own
fake version of malloc()

 . When your program wants to allocate some heap memory, valgrind
 will intercept your calls to malloc()
 and free()
 and run its own versions of those functions. The valgrind
 version of malloc()
 will take note of which piece of code is calling it and which piece of memory it allocated. When your program ends, valgrind
 will report back on any data that was left on the heap and tell you where in your code the data was created.

 [image: image with no caption]

Prepare your code: add debug info

You don’t
need

 to do anything to your code before you run it through valgrind
 . You don’t even need to recompile it. But to really get the most out of valgrind
 , you need to make sure your executable contains
debug information

 . Debug information is extra data that gets packed into your executable when it’s compiled — things like the line number in the source file that a particular piece of code was compiled from. If the debug info is present, valgrind
 will be able to give you a lot more details about the source of your memory leak.

To add debug info into your executable, you need to recompile the source with the -g
 switch:

 [image: image with no caption]

Just the facts: interrogate your code

To see how valgrind
 works, let’s fire it up on a Linux box and use it to interrogate the SPIES program a couple times.

 Note

You can find out if valgrind is available on your operating system and how to install it at http://valgrind.org
 .

The first time, use the program to identify one of the built-in suspects: Vinny the Spoon. You’ll start valgrind
 on the command line with the --leak-check=full
 option and then pass it the program you want to run:

 [image: image with no caption]

Use valgrind repeatedly to gather more evidence

When the SPIES program exited, there was nothing left on the heap. But what if you run it a second time and teach the program about a new suspect called Hayden Fantucci?

 [image: image with no caption]

This time, valgrind found a memory leak

It looks like there were 19 bytes of information left on the heap at the end of the program. valgrind
 is telling you the following things:

	

19 bytes of memory were allocated but not freed.

	

Looks like we allocated new pieces of memory 11 times, but freed only 10 of them.

	

Do these lines give us any clues?

	

Why 19 bytes? Is that a clue?

That’s quite a few pieces of information. Let’s take these facts and analyze them.

Look at the evidence

OK, now that you’ve run valgrind
 , you’ve collected quite a few pieces of evidence. It’s time to analyze that evidence and see if you can draw any conclusions.

 [image: image with no caption]

1. Location

You ran the code
two times

 . The first time, there was no problem. The memory leak only happened when you entered a new suspect name. Why is that significant? Because that means the leak can’t be in the code that ran the first time. Looking back at the source code, that means the problem lies in this section of the code:

 [image: image with no caption]

2. Clues from valgrind

When you ran the code through valgrind
 and added a single suspect, the program allocated memory 11 times, but only released memory 10 times. What does that tell you?

valgrind
 told you that there were 19 bytes of data left on the heap when the program ended. If you look at the source code, what piece of data is likely to take up 19 bytes of space?

Finally, what does this output from valgrind
 tell you?

 [image: image with no caption]

The Big Questions

Consider the evidence carefully, then answer these questions.

	How many pieces of data were left on the heap?

	What was the piece of data left on the heap?

	Which line or lines of code caused the leak?

	How do you plug the leak?

The Big Answers

You were to consider the evidence carefully and answer these questions.

	How many pieces of data were left on the heap?

 [image: image with no caption]

	What was the piece of data left on the heap?

 [image: image with no caption]

	Which line or lines of code caused the leak?

 [image: image with no caption]

	How do you plug the leak?

 [image: image with no caption]

The fix on trial

Now that you’ve added the fix to the code, it’s time to run the code through valgrind
 again.

 [image: image with no caption]

The leak is fixed

You ran exactly the same test data through the program, and this time the program cleared everything away from the heap.

How did you do? Did you crack the case? Don’t worry if you didn’t manage to find and fix the leak this time. Memory leaks are some of the hardest bugs to find in C programs. The truth is that many of the C programs available probably have some memory bugs buried deep inside them, but that’s why tools like valgrind
 are important.

	

Spot when leaks happen.

	

Identify the location where they happen.

	

Check to make sure the leak is fixed.

There are no Dumb Questions

	

Q:

	

valgrind
 said the leaked memory was created on line 46, but the leak was fixed on a completely different line. How come?

	

A:

	
The “Loretta...” data was put onto the heap on line 46, but the leak happened when the variable pointing to it (current->question
) was reassigned without freeing it. Leaks don’t happen when data is created; they happen when the program loses all references to the data.

	

Q:

	

Can I get valgrind
 on my Mac/Windows/FreeBSD system?

	

A:

	
Check

http://valgrind.org

 for details on the latest release.

	

Q:

	

How does valgrind
 intercept calls to malloc()
 and free()
 ?

	

A:

	
The malloc()
 and free()
 functions are contained in the C Standard Library. But valgrind
 contains a library with its own versions of malloc()
 and free()
 . When you run a program with valgrind
 , your program will be using valgrind
 ’s functions, rather than the ones in the C Standard Library.

	

Q:

	

Why doesn’t the compiler always include debug information when it compiles code?

	

A:

	
Because debug information will make your executable larger, and it may also make your program slightly slower.

	

Q:

	

Where did the name valgrind
 come from?

	

A:

	
Valgrind is the name of the entrance to Valhalla. valgrind
 (the program) gives you access to the computer’s heap.

Bullet Points

	
valgrind
 checks for memory leaks.

	
valgrind
 works by intercepting the calls to malloc()
 and free()
 .

	When a program stops running, valgrind
 prints details of what’s left on the heap.

	If you compile your code with debug information, valgrind
 can give you more information.

	If you run your program several times, you can narrow the search for the leak.

	
valgrind
 can tell you which lines of code in your source put the data on the heap.

	
valgrind
 can be used to check that you’ve fixed a leak.

Your C Toolbox

You’ve got Chapter 6
 under your belt, and now you’ve added data structures and dynamic memory to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 7. Advanced Functions: Turn your functions up to 11

 [image: image with no caption]

Basic functions are great, but sometimes you need more.

So far, you’ve focused on the basics, but what if you need even more
power

 and
flexibility

 to achieve what you want? In this chapter, you’ll see how to
up your code’s IQ

 by
passing functions as parameters

 . You’ll find out how to
get things sorted with comparator functions

 . And finally, you’ll discover how to make your code
super stretchy

 with
variadic functions

 .

Looking for Mr. Right...

You’ve used a lot of C functions in the book so far, but the truth is that there are still some ways to make your C functions a lot more powerful. If you know how to use them correctly, C functions can make your code
do more things

 but
without

 writing a lot more code.

To see how this works, let’s look at an example. Imagine you have an array of strings that you want to filter down, displaying some strings and not displaying others:

int NUM_ADS = 7;
char *ADS[] = {
 "William: SBM GSOH likes sports, TV, dining",
 "Matt: SWM NS likes art, movies, theater",
 "Luis: SLM ND likes books, theater, art",
 "Mike: DWM DS likes trucks, sports and bieber",
 "Peter: SAM likes chess, working out and art",
 "Josh: SJM likes sports, movies and theater",
 "Jed: DBM likes theater, books and dining"
};

 [image: image with no caption]

Let’s write some code that uses string functions to filter this array down.

Code Magnets

 Complete the find()
 function so it can track down all the sports fans in the list who
don’t

 also share a passion for Bieber.

Beware

 : you might not need all the fragments to complete the function.

 [image: image with no caption]

Code Magnets Solution

You were to complete the find()
 function so it can track down all the sports fans in the list who
don’t

 also share a passion for Bieber.

 [image: image with no caption]

Test Drive

Now, if you take the function and the data, and wrap everything up in a program called find.c
 , you can compile and run it like this:

 [image: image with no caption]

And sure enough, the find()
 function loops through the array and finds the matching strings. Now that you have the basic code, it would be easy to create
clones

 of the function that could perform different kinds of searches.

 [image: image with no caption]

Exactly right. If you clone the function, you’ll have a lot of duplicated code.

C programs often have to perform tasks that are
almost identical

 except for some small detail. At the moment, the find()
 function runs through each element of the array and applies a simple test to each string to look for matches. But the test it makes is
hardwired

 . It will always perform the same test.

Now, you could pass some strings into the function so that it could search for different substrings. The trouble is, that wouldn’t allow find()
 to check for
three

 strings, like “arts,” “theater,” or “dining.” And what if you needed something wildly different?

You need something a little more sophisticated...

Pass code to a function

 What you need is some way of
passing the code for the test to the find()
 function

 . If you had some way of wrapping up a piece of code and handing that code to the function, it would be like passing the find()
 function a
testing machine

 that it could apply to each piece of data.

 [image: image with no caption]

This means the bulk of the find()
 function would stay
exactly the same

 . It would still contain the code to check each element in an array and display the same kind of output. But the test it applies against each element in the array would be done
by the code that you pass to it

 .

You need to tell find() the name of a function

 Imagine you take our original search condition and rewrite it as a function:

int sports_no_bieber(char *s)
{
 return strstr(s, "sports") && !strstr(s, "bieber");
}

 [image: image with no caption]

Now, if you had some way of passing
the name of the function

 to find()
 as a
parameter

 , you’d have a way of
injecting

 the test:

 [image: image with no caption]

If you could find a way of passing a function name to find()
 , there would be no limit to the kinds of tests that you could make in the future. As long as you can write a function that will return
true

 or
false

 to a string, you can reuse the same find()
 function.

find(sports_no_bieber);
find(sports_or_workout);
find(ns_theater);
find(arts_theater_or_dining);

But how do you say that a parameter stores the name of a function? And if you have a function name, how do you use it to call the function?

Every function name is a pointer
 to the function...

 You probably guessed that pointers would come into this somewhere, right? Think about what the
name of a function

really is

 . It’s a way of
referring

 to the piece of code. And that’s just what a pointer is: a way of referring to something in memory
 .

That’s why, in C, function names are also pointer variables. When you create a function called go_to_warp_speed(int speed)
 , you are also creating a pointer variable called go_to_warp_speed
 that contains the address of the function. So, if you give find()
 a parameter that has a
function pointer

 type, you should be able to use the parameter to call the function it points to.

 [image: image with no caption]

 [image: image with no caption]

Let’s look at the C syntax you’ll need to work with function pointers.

...but there’s no function data type

 Usually, it’s pretty easy to declare pointers in C. If you have a data type like int
 , you just need to add an asterisk to the end of the data type name, and you declare a pointer with int *
 . Unfortunately, C doesn’t have a function
 data type, so you can’t declare a function pointer with anything like function *
 .

 [image: image with no caption]

Why doesn’t C have a function data type?

C doesn’t have a function
 data type because there’s not just one
type

 of function. When you create a function, you can vary a lot of things, such as the return type or the list of parameters it takes. That combination of things is what defines the
type

 of the function.

 [image: image with no caption]

So, for function pointers, you’ll need to use slightly more complex notation...

How to create function pointers

 Say you want to create a pointer variable that can store the address of each of the functions on the previous page. You’d have to do it like this:

 [image: image with no caption]

That looks pretty complex, doesn’t it?

Unfortunately, it has to be, because you need to tell C the return type and the parameter types the function will take. But once you’ve declared a function pointer variable, you can use it like any other variable. You can assign values to it, you can add it to arrays, and you can also pass it to functions...

...which brings us back to your find()
 code...

There are no Dumb Questions

	

Q:

	

What does char**
 mean? Is it a typing error?

	

A:

	

char**
 is a pointer normally used to point to an array of strings.

Exercise

 Take a look at those other types of searches that people have asked for. See if you can create a function for each type of search. Remember: the first is already written.

 [image: image with no caption]

Then, see if you can complete the find()
 function:

 [image: image with no caption]

Exercise Solution

You were to take a look at those other types of searches that people have asked for and create a function for each type of search.

 [image: image with no caption]

Then, you were to complete the find()
 function:

 [image: image with no caption]

Test Drive

Let’s take those functions out on the road and see how they perform. You’ll need to create a program to call find()
 with each function in turn:

 [image: image with no caption]

Each call to the find()
 function is performing a very different search. That’s why function pointers are one of the most powerful features in C: they allow you to mix functions together. Function pointers let you build programs with a lot
more power

 and a lot
less code

 .

The Hunter’s Guide to Function Pointers

 When you’re out in the reeds, identifying those function pointers can be pretty tricky. But this simple, easy-to-carry guide will fit in the ammo pocket of any C user.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

If function pointers are just pointers, why don’t you need to prefix them with a *
 when you call the function?

	

A:

	
You can. In the program, instead of writing match(ADS[i])
 , you could have written (*match)(ADS[i])
 .

	

Q:

	

And could I have used &
 to get the address of a method?

	

A:

	
Yes. Instead of find(sports_or_workout)
 , you could have written find(&sports_or_workout)
 .

	

Q:

	

Then why didn’t I?

	

A:

	
Because it makes the code easier to read. If you skip the *
 and &
 , C will still understand what you’re saying.

Get it sorted with the C Standard Library

 Lots of programs need to sort data. And if the data’s something simple like a set of numbers, then sorting is pretty easy. Numbers have their own natural order. But it’s not so easy with other types of data.

Imagine you have a set of people. How would you put them in order? By height? By intelligence? By
hotness

 ?

 [image: image with no caption]

When the people who wrote the C Standard Library wanted to create a sort function, they had a problem:

How could a sort function sort any type of data at all?

Use function pointers to set the order

 You probably guessed the solution: the C Standard Library has a sort function that accepts a pointer to a
comparator function

 , which will be used to decide if one piece of data is
the same as

 ,
less than,

 or
greater than

 another piece of data.

This is what the qsort(
) function looks like:

 [image: image with no caption]

The qsort()
 function compares pairs of values over and over again, and if they are in the wrong order, the computer will switch them.

And that’s what the comparator function is for. It will tell qsort()
 which order a pair of elements should be in. It does this by returning three different values:

 [image: image with no caption]

To see how this works in practice, let’s look at an example.

Sorting ints Up Close

 Let’s say you have an array of integers and you want to sort them in increasing order. What does the comparator function look like?

int scores[] = {543,323,32,554,11,3,112};

If you look at the
signature

 of the comparator function that qsort()
 needs, it takes two
void pointers

 given by

void*

 . Remember void*
 when we used malloc()
 ? A void pointer can store the address of
any kind of data

 , but you always need to
cast

 it to something more specific before you can use it.

The qsort()
 function works by comparing pairs of elements in the array and then placing them in the correct order. It compares the values by calling the comparator function that you give it.

A void pointer void* can store a pointer to anything.

int compare_scores(const void* score_a, const void* score_b)

{

...

}

Values are always passed to the function as pointers, so the first thing you need to do is get the integer values from the pointers:

 [image: image with no caption]

Then you need to return a positive, negative, or zero value, depending on whether a
 is greater than, less than, or equal to b
 . For integers, that’s pretty easy to do — you just subtract one number from the other:

 [image: image with no caption]

 [image: image with no caption]

And this is how you ask qsort()
 to sort the array:

qsort(scores, 7, sizeof(int), compare_scores);

Long Exercise

 Now it’s your turn. Look at these different sort descriptions. See if you can write a comparator function for each one. To get you started, the first one is already completed.

 [image: image with no caption]

 [image: image with no caption]

And finally: if you already had the compare_areas()
 and compare_names()
 functions, how would you write these two comparator functions?

 [image: image with no caption]

Long Exercise Solution

Now it’s your turn. You were to look at these different sort descriptions and write a comparator function for each one.

 [image: image with no caption]

 [image: image with no caption]

 And finally: if you already had the compare_areas()
 and compare_names()
 functions, how did you write these two comparator functions?

 [image: image with no caption]

 Relax

Don’t worry if this exercise caused you a few problems.

It involved pointers, function pointers, and even a little math. If you found it tough, take a break, drink a little water, and then try it again in an hour or two.

Test Drive

Some of the comparator functions were really pretty gnarly, so it’s worth seeing how they run in action. This is the kind of code you need to call the functions.

 [image: image with no caption]

 If you compile and run this code, this is what you get:

 [image: image with no caption]

Do this!

Great, it works.

Now try writing your own example code. The sorting functions can be incredibly useful, but the comparator functions they need can be tricky to write. But the more practice you get, the easier they become.

There are no Dumb Questions

	

Q:

	

I don’t understand the comparator function for the array of strings. What does char**
 mean?

	

A:

	
Each item in a string array is a char
 pointer (char*
). When qsort()
 calls the comparator function, it sends pointers to two elements in the arrays. That means the comparator receives two pointers-to-pointers-to-char. In C notation, each value is a char**
 .

	

Q:

	

OK, but when I call the strcmp()
 function, why does the code say strcmp(*a, *b)
 ? Why not strcmp(a, b)
 ?

	

A:

	

a
 and b
 are of type char**
 . The strcmp()
 function needs values of type char*
 .

	

Q:

	

Does

qsort()

 create a sorted version of an array?

	

A:

	
It doesn’t make a copy, it actually modifies the original array.

	

Q:

	

Why does my head hurt?

	

A:

	
Don’t worry about it. Pointers are really difficult to use sometimes. If you
don’t

 find them a little confusing, it probably means you aren’t thinking hard enough about them.

Automating the Dear John letters

 Imagine you’re writing a mail-merge program to send out different types of messages to different people. One way of creating the data for each response is with a struct
 like this:

 [image: image with no caption]

The enum
 gives you the names for each of the three types of response you’ll be sending out, and that response type can be recorded against each response. Then you’ll be able to use your new response
 data type by calling one of these three functions for each type of response:

void dump(response r)

{
 printf("Dear %s,\n", r.name);
 puts("Unfortunately your last date contacted us to");
 puts("say that they will not be seeing you again");
}

void second_chance(response r)

{
 printf("Dear %s,\n", r.name);
 puts("Good news: your last date has asked us to");
 puts("arrange another meeting. Please call ASAP.");
}

void marriage(response r)

{
 printf("Dear %s,\n", r.name);
 puts("Congratulations! Your last date has contacted");
 puts("us with a proposal of marriage.");
}

So, now that you know what the data looks like, and you have the functions to generate the responses, let’s see how complex the code is to generate a set of responses from an array of data.

Pool Puzzle

Take code fragments from the pool and place them into the blank lines below. Your goal is to piece together the main()
 function so that it can generate a set of letters for the array of response
 data. You may
not

 use the same code fragment more than once.

int main()
{
 response r[] = {
 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},
 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
 };
 int i;
 for (i = 0; i < 4; i++) {
 switch(_____________) {
 case _____________:
 dump(_____________);
 break;
 case______________:
 second_chance(_____________);
 break;
 default:
 marriage(_____________);
 }
 }
 return 0;
}

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Pool Puzzle Solution

Take code fragments from the pool and place them into the blank lines below. Your goal was to piece together the main()
 function so that it can generate a set of letters for the array of response
 data.

 [image: image with no caption]

Note: each thing from the pool can be used only once!

 [image: image with no caption]

Test Drive

When you run the program, sure enough, it generates the correct response for each person:

 [image: image with no caption]

Well, it’s good that it worked, but there is quite a lot of code in there just to call a function for each piece of response
 data. Every time you need call a function that matches a response type, it will look like this:

switch(r.type) {
case DUMP:
 dump(r);
 break;
case SECOND_CHANCE:
 second_chance(r);
 break;
default:
 marriage(r);
}

And what will happen if you add a
fourth

 response type? You’ll have to change every section of your program that looks like this. Soon, you will have a lot of code to maintain, and it might go wrong.

Fortunately, there is a trick that you can use in C, and it involves
arrays

 ...

 [image: image with no caption]

Create an array of function pointers

 The trick is to create an array of function pointers that match the different response types. Before seeing how that works, let’s look at how to create an array of function pointers. If you had an array variable that could store a whole bunch of function names, you could use it like this:

replies[] = {dump, second_chance, marriage};

But that syntax doesn’t quite work in C. You have to tell the compiler exactly what the functions will look like that you’re going to store in the array: what their return types will be and what parameters they’ll accept. That means you have to use this
much more complex

 syntax:

 [image: image with no caption]

But how does an array help?

Look at that array. It contains a set of function names that are in
exactly the same order as the types in the enum

 :

enum response_type {

DUMP, SECOND_CHANCE, MARRIAGE

};

This is
really important

 , because when C creates an enum
 , it gives each of the symbols a number starting at 0. So DUMP == 0
 , SECOND_CHANCE == 1
 , and MARRIAGE == 2
 . And that’s really neat, because it means you can get a pointer to one of your sets of functions using a

response_type

 :

 [image: image with no caption]

Let’s see if you can use the function array to replace your old main() function.

Sharpen your pencil

OK, this exercise is quite a tough one. But take your time with it, and you should be fine. You already have all the information you need to complete the code. In this new version of the main()
 function, the whole switch/case
 statement used before has been removed and needs to be replaced with a
single line of code

 . This line of code will find the correct function name from the replies
 array and then use it to
call the function

 .

void (*replies[])(response) = {dump, second_chance, marriage};

int main()
{
 response r[] = {
 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},
 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
 };
 int i;
 for (i = 0; i < 4; i++) {

 }
 return 0;
}

Sharpen your pencil: Solution

OK, this exercise was quite a tough one. In this new version of the main()
 function, the whole switch/case
 statement used before was removed, and you needed to replace it. This line of code will find the correct function name from the replies
 array and then use it to
call the function

 .

 [image: image with no caption]

Let’s break that down.

 [image: image with no caption]

Test Drive

Now, when you run the new version of the program, you get exactly the same output as before:

 [image: image with no caption]

The difference? Now, instead of an entire switch
 statement, you just have this:

(replies[r[i].type])(r[i]);

If you have to call the response functions at several places in the program, you won’t have to copy a lot of code. And if you decide to add a new type and a new function, you can just add it to the array:

 [image: image with no caption]

Arrays of function pointers can make your code much easier to manage. They are designed to make your code
scalable

 by making it shorter and easier to extend. Even though they are quite difficult to understand at first, function pointer arrays can really crank up your C programming skills.

Bullet Points

	
 Function pointers store the addresses of functions.

	The name of each function is actually a function pointer.

	If you have a function shoot()
 , then shoot
 and &shoot
 are both pointers to that function.

	You declare a new function pointer with return-type(*var-name)(param-types)
 .

	If fp
 is a function pointer, you can call it with fp(params, ...)
 .

	Or, you can use (*fp)(params,...)
 . C will work the same way.

	The C Standard Library has a sorting function called qsort()
 .

	
qsort()
 accepts a pointer to a
comparator function

 that can test for (in)equality.

	The comparator function will be passed
pointers

 to two items in the array being sorted.

	If you have an array of data, you can associate functions with each data item using function pointer arrays.

There are no Dumb Questions

	

Q:

	

Why is the function pointer array syntax so complex?

	

A:

	
Because when you declare a function pointer, you need to say what the return and parameter types are. That’s why there are so many parentheses.

	

Q:

	

This looks a little like the sort of object-oriented code in other languages. Is it?

	

A:

	
It’s similar. Object-oriented languages associate a set of functions (called
methods

) with pieces of data. In the same way, you can use function pointers to associate functions with pieces of data.

	

Q:

	

Hey, so does that mean that C is object oriented? Wow, that’s awesome.

	

A:

	
No. C is not object oriented, but other languages that are built on C, like Objective-C and C++, create a lot of their object-oriented features by using function pointers under the covers.

Make your functions streeeeeetchy

 Sometimes, you want to write C functions that are really
powerful

 , like your find()
 function that could search using function pointers. But other times, you just want to write functions that are
easy to use

 . Take the printf()
 function. The printf()
 function has one really cool feature that you’ve used: it can take a
variable number of arguments

 :

 [image: image with no caption]

So how can YOU do that?

And you’ve got just the problem that needs it. Down in the Head First Lounge, they’re finding it a little difficult to keep track of the drink totals. One of the guys has tried to make life easier by creating an enum
 with the list of cocktails available and a function that returns the prices for each one:

enum drink {
 MUDSLIDE, FUZZY_NAVEL, MONKEY_GLAND, ZOMBIE
};

double price(enum drink d)
{
 switch(d) {
 case MUDSLIDE:
 return 6.79;
 case FUZZY_NAVEL:
 return 5.31;
 case MONKEY_GLAND:
 return 4.82;
 case ZOMBIE:
 return 5.89;
 }
 return 0;
}

And that’s pretty cool, if the Head First Lounge crew just wants the price of a drink. But what they want to do is get the price of a total drinks order:

 [image: image with no caption]

They want a function called total()
 that will accept a count of the drinks and then a list of drink names.

Variadic Functions Up Close

A function that takes a variable number of parameters is called a
variadic function

 . The C Standard Library contains a set of
macros

 that can help you create your own variadic functions. To see how they work, you’ll create a function that can print out series of int
 s:

 Note

You can think of macros as a special type of function that can modify your source code.

 [image: image with no caption]

Here’s the code:

 [image: image with no caption]

 Let’s break it down and take a look at it, step by step.

 [image: image with no caption]

 Geek Bits

Functions vs. macros

A
macro

 is used to rewrite your code before it’s compiled. The macros you’re using here (va_start
 , va_arg
 , and va_end
) might look like functions, but they actually hide secret instructions that tell the
preprocessor

 how to generate lots of extra smart code inside your program, just before compiling it.

There are no Dumb Questions

	

Q:

	

Wait, why are

va_end

 and

va_start

 called macros
 ? Aren’t they just normal functions?

	

A:

	
No, they are designed to look like ordinary functions, but they actually are replaced by the preprocessor with other code.

	

Q:

	

And the preprocessor is?

	

A:

	
The preprocessor runs just before the compilation step. Among other things, the preprocessor includes the headers into the code.

	

Q:

	

Can I have a function with just
 variable arguments, and no fixed arguments at all?

	

A:

	
No. You need to have at least one fixed argument in order to pass its name to va_start
 .

	

Q:

	

What happens if I try to read more arguments from

va_arg

 than have been passed in?

	

A:

	
Random errors will occur.

	

Q:

	

That sounds bad.

	

A:

	
Yep, pretty bad.

	

Q:

	

What if I try to read an

int

 argument as a

double

 , or something?

	

A:

	
Random errors will occur.

Exercise

 OK, now it’s over to you. The guys in the Head First Lounge want to create a function that can return the total cost of a round of drinks, like this:

 [image: image with no caption]

Using the price()
 from a few pages back, complete the code for total()
 :

double total(int args, ...)
{
 double total = 0;

 return total;
}

Exercise Solution

OK, now it’s over to you. The guys in the Head First Lounge want to create a function that can return the total cost of a round of drinks, like this:

 [image: image with no caption]

Using the price()
 from a few pages back, you were to complete the code for total()
 :

 [image: image with no caption]

Test Drive

 If you create a little test code to call the function, you can compile it and see what happens:

 [image: image with no caption]

Your code works!

Now you know how to use variable arguments to make your code simpler and more intuitive to use.

 [image: image with no caption]

Bullet Points

	Functions that accept a variable number of arguments are called
variadic functions

 .

	To create variadic functions, you need to include the
stdarg.h

 header file.

	The variable arguments will be stored in a va_list
 .

	You can control the va_list
 using va_start()
 , va_arg()
 , and va_end()
 .

	You will need at least one
fixed parameter

 .

	Be careful that you don’t try to read more parameters than you’ve been given.

	You will always need to know the data type of every parameter you read.

Your C Toolbox

You’ve got Chapter 7
 under your belt, and now you’ve added advanced functions to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 8. Static and Dynamic Libraries: Hot-swappable code

 [image: image with no caption]

You’ve already seen the power of standard libraries.

Now it’s time to use that power for your
own

 code. In this chapter, you’ll see how to create your
own libraries

 and
reuse the same code across several programs

 . What’s more, you’ll learn how to share code at runtime with
dynamic libraries

 . You’ll learn the secrets of the
coding gurus

 . And by the end of the chapter, you’ll be able to write code that you can scale and manage simply and efficiently.

Code you can take to the bank

 Do you remember the encrypt()
 function you wrote a while back that encrypted the contents of a string? It was in a separate source code file that could be used by several programs:

 [image: image with no caption]

Somebody else has written a function called checksum()
 that can be used to check if the contents of a string have been modified. Encrypting data and checking if data has been modified are both important for
security

 . Separately, the two functions are useful, but together they could form the basis of a
security library

 .

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

The guy at the bank has written a test program to see how the two functions work. He put all of the source into the same directory on his machine and then began to compile it.

He compiled the two security files into object files, and then wrote a test program:

 [image: image with no caption]

And that’s when the problems started. When he compiled the program, something went badly wrong...

 [image: image with no caption]

Using a pencil, highlight which command or code made the compile fail.

Sharpen your pencil: Solution

 The problem is in the test program. All of the source files are stored in the same directory, but the test program includes the
encrypt.h

 and
checksum.h

 headers using
angle brackets

 (< >
).

 [image: image with no caption]

Angle brackets are for standard
 headers

If you use angle brackets in an #include
 statement, the compiler won’t look for the headers in the
current

 directory; instead, it will search for them in the
standard

 header directories.

To get the program to compile with the
local

 header files, you need to switch the angle brackets for simple quotes (" "
):

 [image: image with no caption]

 [image: image with no caption]

 Where are the standard header directories?

 So, if you include headers using angle brackets, where does the compiler go searching for the header files? You’ll need to check the documentation that came with your compiler, but typically on a Unix-style system like the Mac or a Linux machine, the compiler will look for the files under these directories:

 [image: image with no caption]

And if you’re using the MinGW version of the gcc
 compiler, it will normally look here:

C:\MinGW\include

But what if you want to share code?

Sometimes you want to write code that will be available to lots of programs, in different folders, all over your computer. What do you do then?

 [image: image with no caption]

There are two sets of files that you want to share between programs: the .h

header files

 and the .o

object files

 . Let’s look at how you can share each type.

Sharing .h header files

 There are a few ways of sharing header files between different C projects:

	

Store them in a standard directory.

If you copy your header files into one of the standard directories like
/usr/local/include

 , you can include them in your source code using angle brackets.

 [image: image with no caption]

	

Put the full pathname in your include statement.

If you want to store your header files somewhere else, such as /my_header_files
 , you can add the directory name to your include
 statement:

 [image: image with no caption]

	

You can tell the compiler where to find them.

The final option is to tell the compiler where it can find your header files. You can do this with the

-I

 option on gcc
 :

 [image: image with no caption]

The -I
 option tells the gcc
 compiler that there’s another place where it can find header files. It will still search in all the standard places, but first it will check the directory names in the -I
 option.

Share .o object files by using the full pathname

Now you can always put your
.o

 object files into some sort of
shared directory

 . Once you’ve done that, you can then just add the full path to the object files when you’re compiling the program that uses them:

gcc -I/my_header_files test_code.c

/my_object_files/encrypt.o

/my_object_files/checksum.o -o test_code

 Note

Using the full pathname to the object files means you don’t need a separate copy for each C project.

 Note

/my_object_files is like a
central store

 for your object files.

 [image: image with no caption]

If you compile your code with the
full pathname

 to the object files you want to use, then
all

 your C programs can share the same
encrypt.o

 and
checksum.o

 files.

 [image: image with no caption]

Yes, if you create an archive of object files, you can tell the compiler about a whole set of object files all at once.

An
archive

 is just a bunch of object files wrapped up into a single file. By creating a single archive file of all of your security code, you can make it a lot easier to share the code between projects.

Let’s see how to do it...

An archive
 contains .o files

Ever used a
.zip

 or a
.tar

 file? Then you know how easy it is to create a file that contains
other

 files. That’s exactly what a
.a

 archive file is: a file containing other files.

Open up a terminal or a command prompt and change into one of the
library

 directories. These are the directories like
/usr/lib

 or
C:\MinGW\lib

 that contain the library code. In a library directory, you’ll find a whole bunch of
.a

 archives. And there’s a command called nm
 that you can use to look inside them:

 [image: image with no caption]

 [image: image with no caption]

The nm
 command lists the
names

 that are stored inside the archive. The
libl.a

 archive shown here contains two object files:
libmain.o

 and
libyywrap.o

 . What these two object files are used for doesn’t really matter; the point is that you can take a whole set of object files and turn them into a single archive file that you can use with gcc
 .

Before you see how to compile programs using
.a

 , let’s see how to store our
encrypt.o

 and
checksum.o

 files in an archive.

Create an archive with the ar command...

The
archive command

 (

ar

) will store a set of object files in an archive file:

 [image: image with no caption]

Did you notice that all of the
.a

 files have names like lib<something>.a
 ? That’s the standard way of naming archives. The names begin with
lib

 because they are
static libraries

 . You’ll see what this means later on.

...then store the .a in a library directory

Once you have an archive, you can store it in a library directory. Which library directory should you store it in? It’s up to you, but you have a couple of choices:

	

You can put your .a file in a standard directory like /usr/local/lib.

Some coders like to install archives into a standard directory once they are sure it’s working. On Linux, on Mac, and in Cygwin, the
/usr/local/lib

 directory is a good choice because that’s the directory set aside for your own local custom libraries.

	

Put the .a file in some other directory.

If you are still developing your code, or if you don’t feel comfortable installing your code in a system directory, you can always create your own library directory. For example:
/my_lib

 .

 Note

On most machines, you need to be an administrator to put files in /usr/local/lib.

 Watch it!

Make sure you always name your archives
lib<something>.a

 .

If you don’t name them this way, your compiler will have problems tracking them down.

Finally, compile your other programs

The whole point of creating a library archive was so you could use it with other programs. If you’ve installed your archive in a standard directory, you can compile your code using the -l
 switch:

 [image: image with no caption]

Can you see now why it’s so important to name your archive
lib<something>.a

 ? The name that follows the -l
 option needs to match
part of the archive name

 . So if your archive is called
libawesome.a

 , you can compile your program with the -lawesome
 switch.

But what if you put your archive somewhere else, like
/my_lib

 ? In that case, you will need to use the -L
 option to say which directories to search:

gcc test_code.c -L/my_lib -lhfsecurity -o test_code

 [image: image with no caption]

 Geek Bits

The contents of the library directories can be
very

 different from one machine to another. Why is that? It’s because different operating systems have different
services

 available. Each of the
.a

 files is a separate library. There’ll be libraries for connecting to the network, or creating GUI applications.

Try running the nm
 command on a few of the
.a

 files. A lot of the names listed in each module will match compiled functions that you can use:

 [image: image with no caption]

The nm
 command will tell you the name of each
.o

 object file and then list the names that are available within the object file. If you see a

T

 next to a name, that means it’s the name of a function within the object file.

Make Magnets

The security guy is having trouble compiling one of the bank programs against the new security library. He has his source code as well as the encrypt
 and checksum
 source code in the same directory. For now, he wants to create the
libhfsecurity.a

 archive in the same directory and then use it to compile his own program. Can you help him fix his makefile?

Note:

 the bank_vault
 program uses these #include
 statements:

#include <encrypt.h>
#include <checksum.h>

This is the makefile:

encrypt.o: encrypt.c

 gcc_________________ encrypt.c -o encrypt.o

checksum.o: checksum.c

 gcc_________________ checksum.c -o checksum.o

libhfsecurity.a: encrypt.o_______________________

 ar -rcs__________________ encrypt.o

bank_vault: bank_vault.c ________________________

 gcc_ _______________ -I________ -L________ __________________ -o bank_vault

 [image: image with no caption]

Make Magnets Solution

The security guy is having trouble compiling one of the bank programs against the new security library. He has his source code, as well as the encrypt
 and checksum
 source code in the same directory. For now, he wants to create the
libhfsecurity.a

 archive in the same directory and then use it to compile his own program. You were to help him fix his makefile.

Note:

 the bank_vault
 program uses these #include
 statements:

 [image: image with no caption]

This is the makefile:

 [image: image with no caption]

Bullet Points

	Headers in angle brackets (< >
) are read from the standard directories.

	Examples of standard header directories are
/usr/include

 and
C:\MinGW\include

 .

	A library archive contains several object files.

	You can create an archive with ar -rcs libarchive.a file0.o file1.o...
 .

	Library archive names should begin
lib.

 and end
.a

 .

	If you need to link to an archive called
libfred.a

 , use -lfred
 .

	The -L
 flag should appear
after

 the source files in the gcc
 command.

There are no Dumb Questions

	

Q:

	

How do I know what the standard library directories are on my machine?

	

A:

	
You need to check the documentation for your compiler. On most Unix-style machines, the library directories include
/usr/lib

 and
/usr/local/lib

 .

	

Q:

	

When I try to put a library archive into my
/usr/lib

 directory, it won’t let me. Why is that?

	

A:

	
Almost certainly security. Many operating systems will prevent you from writing files to the standard directories in case you accidentally break one of the existing libraries.

	

Q:

	

Is the ar
 format the same on all systems?

	

A:

	
No. Different platforms can have slightly different archive formats. And the object code the archive contains will be completely different for different operating systems.

	

Q:

	

If I’ve created a library archive, can I see what’s inside it?

	

A:

	
Yes. ar -t <

filename

 >
 will list the contents of the archive.

	

Q:

	

Are the object files in the archive linked together like an executable?

	

A:

	
No. The object files are stored in the archive as distinct files.

	

Q:

	

Can I put any kind of file in a library archive?

	

A:

	
No. The ar
 command will check the file type before including it.

	

Q:

	

Can I extract a single object file from an archive?

	

A:

	
Yes. To extract the
encrypt.o

 file from
libhfsecurity.a

 , use ar -x libhfsecurity.a encrypt.o
 .

	

Q:

	

Why is it called “static” linking?

	

A:

	
Because it can’t change once it’s been done. When two files are linked together statically, it’s like mixing coffee with milk: you can’t separate them afterward.

	

Q:

	

Should I use the HF security library to secure the data at my bank?

	

A:

	
That’s probably not a good idea.

The Linker Exposed

This week’s interview: What Exactly Do You Do?

	

Head First:

 Linker, thank you so much for making time for us today.

	

Linker:

 It’s a pleasure.

	

Head First:

 I’d like to begin by asking if you ever feel overlooked by developers. Perhaps they don’t understand exactly what it is you do?

	

Linker:

 I’m a very quiet person. A lot of people don’t talk to me directly with the ld
 command.

	

Head First:

 ld
 ?

	

Linker:

 Yes? See, that’s me.

	

Head First:

 That’s a lot of options on my screen.

	

Linker:

 Exactly. I have a lot of options. A lot of ways of joining programs together. That’s why some people just use the gcc
 command.

	

Head First:

 So the compiler can link files together?

	

Linker:

 The compiler works out what needs to be done to join some files together and then calls me. And I do it. Quietly. You’d never know I was there.

	

Head First:

 I do have another question...

	

Linker:

 Yes?

	

Head First:

 I hate to sound foolish, but what exactly is it you do?

	

Linker:

 That’s not a foolish question. I stitch pieces of compiled code together, a bit like a telephone operator.

	

Head First:

 I don’t follow.

	

Linker:

 The old telephone operators would patch calls from one location to another so the two parties could talk. An object file is like that.

	

Head First:

 How so?

	

Linker:

 An object file might need to call a function that’s stored in some other file. I link together the point in one file where the function call is made to the point in another file where the function lives.

	

Head First:

 You must have a lot of patience.

	

Linker:

 I like that kind of thing. I make lace in my spare time.

	

Head First:

 Really?

	

Linker:

 No.

	

Head First:

 Linker, thank you.

The Head First Gym is going global

The guys at the Head First Gym are going to spread their business
worldwide

 . They are opening up outlets on four continents, and each one will contain their trademarked
Blood, Sweat, and Gears™

 gym equipment. So they’re writing software for their ellipticals, treadmills, and exercise bikes. The software will read data from the sensors that are fitted on each device and then display information on a small LCD screen that will tell users what distance they’ve covered and how many calories they’ve burned.

 [image: image with no caption]

That’s the plan, anyway, but the guys need a little help. Let’s look into the code in a little more detail.

Calculating calories

The team is still working on the software, but they’ve got one of the
key modules

 ready. The
hfcal

 library will generate the main data for the LCD display. If the code is told the user’s weight, the virtual distance she’s traveled on the machine, and then a special
coefficient

 , it will generate the basic LCD details on the Standard Output:

 [image: image with no caption]

The team hasn’t yet written the main code for each piece of equipment. When they do, there will be separate programs for the ellipticals, treadmills, and exercise bikes. Until then, they’ve created a
test program

 that will call the
hfcal.c

 code with some example data:

 [image: image with no caption]

Sharpen your pencil

Now that you’ve seen the source code for the test program and the
hfcal

 library, it’s time to build the code.

Let’s see how well you remember the commands.

	Start by creating an object file called
hfcal.o

 . The
hfcal.h

 header is going to be stored in
./includes

 .

	Next, you need to create an object file called
elliptical.o

 from the
elliptical.c

 test program.

	Now, you need to create an archive library from
hfcal.o

 and store it in
./libs

 .

	Finally, create the elliptical
 executable using
elliptical.o

 and the
hfcal

 archive.

Sharpen your pencil: Solution

Now that you’ve seen the source code for the test program and the
hfcal

 library, it’s time to build the code.

Let’s see how well you remembered the commands.

	Start by creating an object file called
hfcal.o

 . The
hfcal.h

 header is going to be stored in
./includes

 :

 [image: image with no caption]

	Next, you need to create an object file called
elliptical.o

 from the
elliptical.c

 test program:

 [image: image with no caption]

	Now, you need to create an archive library from
hfcal.o

 and store it in .
/libs

 :

 [image: image with no caption]

	Finally, create the elliptical
 executable using
elliptical.o

 and the
hfcal

 archive:

 [image: image with no caption]

 [image: image with no caption]

But things are a bit more complex...

Turns out, there’s a problem. The Head First Gyms are expanding
everywhere

 , in different countries that use different languages and different measures. For example, in England, the machines need to report information in
kilograms

 and
kilometers

 :

 [image: image with no caption]

 [image: image with no caption]

The gyms have lots of different types of equipment. If they have 20 different types of machines, and they have gyms in 50 countries, that means there will be 1,000
 different versions of the software. That’s a
lot

 of different versions.

And then there are other problems too:

	If an engineer upgrades the sensors used on a machine, she might need to upgrade the code that talks to them.

	If the displays ever change, the engineers might need to change the code that generates the output.

	Plus many, many other variations.

If you think about it, you get the same kinds of problems when you write any software. Different machines might require different
device driver code

 , or they might need to talk to different
databases

 or different
graphical user interfaces

 . You probably won’t be able to build a version of your code that will work on
every

 machine, so what should you do?

Programs are made out of lots of pieces...

You’ve already seen that you can build programs using different pieces of
object code

 . You’ve created
.o

 files and
.a

 archives, and you’ve linked them together into single executables.

 [image: image with no caption]

...but once they’re linked, you can’t change them

The problem is that if you build programs like this, they are
static

 . Once you’ve created a single executable file from those separate pieces of object code, you really have
no way

 of changing any of the ingredients without rebuilding the whole program.

 [image: image with no caption]

The program is just a large chunk of object code. There’s no way to separate the
display code

 from the
sensor code

 ; it’s all lost in the mix.

 [image: image with no caption]

Dynamic linking happens at runtime

The reason you can’t change the different pieces of object code in an executable file is because, well, they are all contained in a single file. They were
statically linked

 together when the program was compiled.

 [image: image with no caption]

But if your program wasn’t just a single file — if your program was made up of lots of separate files that only joined together when the program was run — you would avoid the problem.

 [image: image with no caption]

The trick, then, is to find a way of storing pieces of object code in separate files and then dynamically linking them together
 only when the program runs.

 [image: image with no caption]

Can you link .a at runtime?

So you need to have separate files containing separate pieces of object code. But you’ve already got separate files containing object code: the
.o

 object files and the
.a

 archive files. Does that mean you just need to tell the computer not to link the
.o

 files until you run the program?

Sadly, it’s not that easy. Simple object files and archives don’t have quite enough information in them to be linked together at runtime. There are other things our
dynamic library files

 will need, like the names of the other files they need to link to.

Dynamic libraries are object files on steroids

So, dynamic libraries are
similar

 to those
.o

 object files you’ve been creating for a while, but they’re not quite the same. Like an archive file, a dynamic library can be built from several
.o

 object files, but unlike an archive, the object files are properly linked together in a dynamic library to form a single piece of object code.

 [image: image with no caption]

So how do you create your own dynamic libraries? Let’s see.

First, create an object file

If you’re going to convert the
hfcal.c

 code into a dynamic library, then you need to begin by compiling it into a
.o

 object file, like this:

 [image: image with no caption]

Did you spot the difference? You’re creating the
hfcal.o

 exactly the same as before
except

 you’re adding an extra flag:

-fPIC

 . This tells gcc
 that you want to create
position-independent code

 . Some operating systems and processors need to build libraries from position-independent code so that they can decide at runtime where they want to load it into memory.

Position-independent code can be moved around in memory.

Now, the truth is that on
most

 systems you don’t need to specify this option. Try it out on your system. If it’s not needed, it won’t do any harm.

 Geek Bits

So, what is
position-independent code

 ?

Position-independent code is code that doesn’t mind where the computer loads it into memory. Imagine you had a dynamic library that expected to find the value of some piece of global data 500 bytes away from where the library is loaded. Bad things would happen if the operating system decided to load the library somewhere else in memory. If the compiler is told to create position-independent code, it will avoid problems like this.

Some operating systems, like Windows, use a technique called
memory mapping

 when loading dynamic libraries, which means all code is effectively position-independent. If you compile your code on Windows, you might find that gcc
 will give you a warning that the -fPIC
 option is not needed. You can either remove the -fPIC
 flag, or ignore the warning. Either way, your code will be fine.

What you call your dynamic library depends on your platform

Dynamic libraries are available on most operating systems, and they all work in pretty much the same way. But what they’re
called

 can vary a lot. On Windows, dynamic libraries are usually called
dynamic link libraries

 and they have the extension .dll
 . On Linux and Unix, they’re
shared object files

 (.so
), and on the Mac, they’re just called
dynamic libraries

 (.dylib
). But even though the files have different extensions, you can create them in very similar ways:

 [image: image with no caption]

The -shared
 option tells gcc
 that you want to convert a
.o

 object file into a dynamic library. When the compiler creates the dynamic library, it will store the name of the library inside the file. So, if you create a library called
libhfcal.so

 on a Linux machine, the
libhfcal.so

 file will remember that its library name is
hfcal

 . Why is that important? It means that if you compile a library with one name, you can’t just rename the file afterward.

If you need to rename a library, recompile it with the new name.

 Watch it!

On some older Mac systems, the -shared flag is not available.

But don’t worry, on those machines, if you just replace it with

 -dynamiclib
 ,
everything will work exactly the same way.

Compiling the elliptical program

Once you’ve created the dynamic library, you can use it just like a static library. So, you can build the elliptical
 program like this:

gcc -I\include -c elliptical.c -o elliptical.o
gcc elliptical.o -L\libs -lhfcal -o elliptical

Even though these are the same commands you would use if
hfcal

 were a static archive, the compile will work differently. Because the library’s dynamic, the compiler won’t include the library code into the executable file. Instead, it will insert some placeholder code that will track down the library and link to it at runtime.

Now, let’s see if the program runs.

 Library names in MinGW and Cygwin

Both MinGW and Cygwin let you use several name formats for dynamic libraries. The
hfcal

 library can have any of these names:

libhfcal.dll.a

libhfcal.dll

hfcal.dll

Test Drive

You’ve created the dynamic library in the
/libs

 directory and built the elliptical test program. Now you need to run it. Because
hfcal

 isn’t in one of the standard library directories, you’ll need to make sure the computer can find the library when you run the program.

On a Mac

On the Mac, you can just run the program. When the program is compiled on the Mac, the full path to the
/libs/libhfcal.dylib

 file is stored inside the executable, so when the program starts, it knows exactly where to find the library.

 [image: image with no caption]

On Linux

That’s not quite what happens on Linux.

On Linux, and most versions of Unix, the compiler just records the filename of the
libhfcal.so

 library,
without

 including the path name. That means if the library is stored outside the standard library directories (like
/usr/lib

), the program won’t have any way of finding the
hfcal

 library. To get around this, Linux checks additional directories that are stored in the LD_LIBRARY_PATH
 variable. If you make sure your library directory is added to the LD_LIBRARY_PATH
 — and if you make sure you
export

 it — then elliptical
 will find
libhfcal.so

 .

 [image: image with no caption]

On Windows

Now let’s take a look at how to run code that’s been compiled using the Cygwin and MinGW versions of the gcc
 compiler. Both compilers create Windows DLL libraries and Windows executables. And just like Linux, Windows executables store the name of the
hfcal

 library
without

 the name of the directory where it’s stored.

But Windows doesn’t use a LD_LIBRARY_PATH
 variable to hunt the library down. Instead, Windows programs look for the library in the current directory, and if they don’t find it there, the programs search for it using the directories stored in the PATH
 variable.

Using Cygwin

If you’ve compiled the program using Cygwin, you can run the program from the
bash shell

 like this:

 [image: image with no caption]

Using MinGW

And if you’ve compiled the program using the MinGW compiler, you can run it from the
command prompt

 like this:

 [image: image with no caption]

Does this seem a little complex? It is, which is why most programs that use dynamic libraries store them in one of the standard directories. That means on Linux and the Mac, they are normally in directories like
/usr/lib

 or
/usr/local/lib

 ; and in Windows, developers normally keep
.DLL

 s stored in the same directory as the executable.

Long Exercise

The guys at the Head First Gym are about to ship a treadmill over to England. The embedded server is running Linux, and it already has the US code installed.

The tech guys installed the library in
/usr/local/lib.

 [image: image with no caption]

And this machine also has the header file for the
hfcal

 library installed in
/usr/local/include

 :

 [image: image with no caption]

The tech guys like to install libraries using these directories because it’s a little more standard. The machine is all configured for use in the US, but things need to change.

The system needs to be updated for use in the gym it is being shipped to in England. That means the treadmill’s display code needs to be switched from miles and pounds to kilometers and kilograms.

 [image: image with no caption]

The software that’s already installed on the machine needs to use this new version of the code. Because the applications connect to this code as a dynamic library, all you need to do is compile it into the
/usr/local/lib

 directory.

Assuming that you are already in the same directory as the
hfcal_UK.c

 file and that you have write permissions on all the directories, what commands would you need to type to compile this new version of the library?

If the treadmill’s main application is called
/opt/apps/treadmill

 , what would you need to type in to run the program?

Long Exercise Solution

The guys at the Head First Gym are about to ship a treadmill over to England. The embedded server is running Linux, and it already has the US code installed.

The tech guys installed the library in
/usr/local/lib.

 [image: image with no caption]

And this machine also has the header file for the
hfcal

 library installed in
/usr/local/include

 :

 [image: image with no caption]

The tech guys like to install libraries using these directories because it’s a little more standard. The machine is all configured for use in the US, but things need to change.

The system needs to be updated for use in the gym it is being shipped to in England. That means the treadmill’s display code needs to be switched from miles and pounds to kilometers and kilograms.

 [image: image with no caption]

The software that’s already installed on the machine needs to use this new version of the code. Because the applications connect to this code as a dynamic library, all you need to do is compile it into the
/usr/local/lib

 directory.

Assuming that you are already in the same directory as the
hfcal_UK.c

 file and that you have write permissions on all the directories, what commands would you need to type to compile this new version of the library?

 [image: image with no caption]

If the treadmill’s main application is called
/opt/apps/treadmill

 , what would you need to type in to run the program?

 [image: image with no caption]

Test Drive

Now that you’ve updated the library on the English treadmill, let’s try it against an
American

 machine. This is one of the unaltered US treadmills using the original version of
libhfcal.so

 library:

 [image: image with no caption]

The treadmill
 application starts when the machine boots up, so after using the machine for a while the display shows this:

 [image: image with no caption]

The treadmill
 program on the US. machine is dynamically linking itself to the version of the
libhfcal.so

 library that was compiled from the US version of the hfcal
 program.

 [image: image with no caption]

But what about the treadmill in England?

The
English

 machine has the same treadmill
 program installed, but on this machine you recompiled the
libhfcal.so

 library from the source code in the
hfcal_UK.c

 file.

 [image: image with no caption]

 [image: image with no caption]

When the runner has been on the treadmill for a similar distance, the display looks like this:

 [image: image with no caption]

It worked.

Even though the treadmill
 program was never recompiled, it was able to pick up the code from the new library
dynamically

 .

Dynamic libraries make it easier to change code at
runtime

 . You can update an application without needing to recompile it. If you have several programs that share the same piece of code, you can update them
all at the same time

 . Now that you know how to create dynamic libraries, you’ve become a much more powerful C developer.

Fireside Chats

Tonight’s talk:
Two renowned proponents of modular software discuss the pros and cons of static and dynamic linking.

	
Static:

	
Dynamic:

	
Well, I think we can both agree that creating code in smaller modules is a good idea.

	

	
	
Absolutely.

	
It makes so much sense, doesn’t it?

	

	
	
Yes.

	
Keeps the code manageable.

	

	
	
Yes.

	
Nice, large programs.

	

	
	
Large?

	
Yes. Nice BIG programs with their dependencies fixed.

	

	
	
That doesn’t sound like a good idea.

	
What do you mean, old friend?

	

	
	
I think programs should be made of lots of small files that link together only when the program is run.

	
Well... <laughs>...that’s a very...but no, seriously.

	

	
	
I’m being serious.

	
What? Lots of separate files? Joined together
willy-nilly

 ?!

	

	
	
I prefer the term
dynamically

 to
willy-nilly

 .

	
But that’s...that’s...a recipe for chaos
 !

	

	
	
It means I can change my mind later.

	
You should get things right in the first place.

	

	
	
But that’s not always possible. All large programs should use dynamic linking.

	

All

 programs?

	

	
	
I think so.

	
What about the Linux kernel, hmmm? That large enough? And I believe that’s...

	

	
	
...statically linked. Yeah, I know. That’s your one.

	
Static linking might not be as
loose

 and
informal

 , but you know what? Static programs are simple to use. Single files. Want to install one? Just copy the executable. No need for DLL hell.

	

	
	
Look, we’ll just have to agree to disagree.

	
I can’t change your mind?

	

	
	
No.

	
So, you’re telling me your mind is statically linked?

	

Bullet Points

	Dynamic libraries are linked to programs at runtime.

	Dynamic libraries are created from one or more object files.

	On some machines, you need to compile them with the -fPIC
 option.

	
-fPIC
 makes the object code position-independent.

	You can skip -fPIC
 on many systems.

	The -shared
 compiler option creates a dynamic library.

	Dynamic libraries have different names on different systems.

	Life is simpler if your dynamic libraries are stored in standard directories.

	Otherwise, you might need to set PATH
 and LD_LIBRARY_PATH
 variables.

There are no Dumb Questions

	

Q:

	

Why are dynamic libraries so different on different operating systems?

	

A:

	
Operating systems like to optimize the way they load dynamic libraries, so they’ve each evolved different requirements for dynamic libraries.

	

Q:

	

I tried to change the name of my library by renaming the file, but the compiler couldn’t find it anymore. Why not?

	

A:

	
When the compiler creates a dynamic library, it stores the name of the library inside the file. If you rename the file, it will then have the wrong name inside the file and will get confused. If you want to change its name, you should recompile the library.

	

Q:

	

Why does Cygwin support so many different naming conventions for dynamic library files?

	

A:

	
Cygwin makes it easy to compile Unix software on a Windows machine. Because Cygwin creates a Unix-style environment, it borrows a lot of Unix conventions. So it prefers to give libraries
.a

 extensions, even if they’re dynamic DLLs.

	

Q:

	

Are Cygwin dynamic libraries real DLLs?

	

A:

	
Yes. But because they depend on the Cygwin system, you’ll need to do a little work before non-Cygwin code can use them.

	

Q:

	

Why does the MinGW compiler support the same dynamic library name format as Cygwin?

	

A:

	
Because the two projects are closely associated and share a lot of code. The big difference is that MinGW programs can run on machines that don’t have Cygwin installed.

	

Q:

	

Why doesn’t Linux just store library pathnames in executables? That way, you wouldn’t need to set LD_LIBRARY_PATH
 .

	

A:

	
It was a design choice. By not storing the pathname, it gives you a lot more control over which version of a library a program can use — which is great when you’re developing new libraries.

	

Q:

	

Why doesn’t Cygwin use LD_LIBRARY_PATH
 to find libraries?

	

A:

	
Because it needs to use Windows DLLs. Windows DLLs are loaded using the PATH
 variable.

	

Q:

	

Which is better? Static or dynamic linking?

	

A:

	
It depends. Static linking means you get a small, fast executable file that is easier to move from machine to machine. Dynamic linking means that you can configure the program at runtime more.

	

Q:

	

If different programs use the same dynamic library, does it get loaded more than once? Or is it shared in memory?

	

A:

	
That depends on the operating system. Some operating systems will load separate copies for each process. Others load shared copies to save memory.

	

Q:

	

Are dynamic libraries the best way of configuring an application?

	

A:

	
Usually, it’s simpler to use configuration files. But if you’re going to connect to some external device, you’d normally need separate dynamic libraries to act as drivers.

Your C Toolbox

You’ve got Chapter 8
 under your belt, and now you’ve added static and dynamic libraries to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

C Lab 2: OpenCV

This lab gives you a spec that describes a program for you to investigate and build, using the knowledge you’ve gained over the last few chapters.

This project is bigger than the ones you’ve seen so far. So read the whole thing before you get started, and give yourself a little time. And don’t worry if you get stuck; there are no new C concepts in here, so you can move on in the book and come back to the lab later.

It’s up to you to finish the job,

 but we won’t give you the code for the answer.

The spec: turn your computer into an intruder detector

 Imagine if your computer could keep an eye on your house while you’re out and tell you who’s been prowling around. Well, using its default webcam and the cleverness of
OpenCV

 , it can!

Here’s what you’re going to create.

The intruder detector

Your computer will constantly survey its surroundings using its webcam. When it detects movement, it will write the current webcam image to a file. And if you store this file on a network drive or use a file synchronization service such as Dropbox, you’ll have instant evidence of any intruders.

 [image: image with no caption]

OpenCV

 OpenCV is an open source computer vision library. It allows you to take input from your computer camera, process it, and analyze real-time image data and make decisions based on what your computer sees. What’s more, you can do all of this using C code.

OpenCV is available on Window, Linux, and Mac platforms.

You can find the OpenCV wiki here:

http://opencv.willowgarage.com/wiki/FullOpenCVWiki

Installing OpenCV

You can install OpenCV on Windows, Linux, or Mac. The install guide is here, and includes links to the latest stable releases:

http://opencv.willowgarage.com/wiki/InstallGuide

Once you’ve installed OpenCV, you should see a folder on your computer labeled
samples

 . It’s worth taking a look at these. There are also links to tutorials on the OpenCV wiki. You’ll need to investigate OpenCV in order to complete this lab.

If you want to get deep into OpenCV, we recommend the book
Learning OpenCV

 by Gary Bradski and Adrian Kaehler (O’Reilly).

 [image: image with no caption]

What your code should do

 Your C code should do the following.

Take input from your computer camera

You need to work with real-time data that comes in from your computer camera, so the first thing you need to do is capture that data. There’s an OpenCV function that will help you with this called

cvCreateCameraCapture(0)

 . It returns a pointer to a CvCapture struct
 . This pointer is your hotline to the webcam device, and you’ll use it to grab images.

Remember to check for errors in case your computer can’t find a camera. If you can’t contact the webcam, you’ll receive a NULL
 pointer from cvCreateCameraCapture(0)
 .

 [image: image with no caption]

Grab an image from the webcam

You can read the latest image from the webcam using the cvQueryFrame()
 function. It takes the CvCapture
 pointer as a parameter. The cvQueryFrame()
 function returns a pointer to the latest image, so your code will probably start with something a little like this:

 [image: image with no caption]

If you decide that there’s a thief in the image, you can save the image to a file with:

 [image: image with no caption]

Detect an intruder

 Now you come to the really clever part of the code. How do you decide if there’s an intruder in the frame?

One way is to check for movement in the image. OpenCV has functions to create a
Farneback optical flow

 . An optical flow compares two images and tells you how much movement there’s been at each pixel.

This part, you’ll need to research yourself

 . You’ll probably want to use the cvCalcOpticalFlowFarneback()
 to compare two consecutive images from the webcam and create the optical flow. From that, you’ll need to write some code that measures the amount of movement between the two frames. If the movement’s above a threshold level, you’ll know that something large is moving in front of the webcam.

 [image: image with no caption]

Make a clean getaway

When you start the program, you don’t want the camera to record you walking away, so you might want to add a delay to give you time to leave the room.

Optional: show the current webcam output

During our tests here at the lab, we found it useful to check on the current images the program is seeing. To do this, we opened a window and displayed the current webcam output.

You can easily create a window in OpenCV with:

cvNamedWindow("Thief", 1);

To display the current image in the window, use this:

cvShowImage("Thief", image);

The finished product

 You’ll know your OpenCV project is complete when your computer is able to automatically take pictures of people trying to sneak up on it.

 [image: image with no caption]

Why stop there? We’re sure you have all kinds of exciting ideas for what you could do with OpenCV. Drop us a line at Head First Labs and let us know how OpenCV is working out for you.

It’s time to become a C ninja...

The final part of the book covers advanced topics
 .

As you’re going to be digging into some of the more advanced functions in C, you’ll need to make sure that you have all of these features available on your computer. If you’re using Linux or Mac, you’ll be fine, but if you’re using Windows, you need to have Cygwin installed.

Once you’re ready, turn the page and enter the gate...

 [image: image with no caption]

Chapter 9. Processes and System Calls: Breaking boundaries

 [image: image with no caption]

It’s time to think outside the box.

You’ve already seen that you can build complex applications by connecting small tools together on the command line. But what if you want to
use other programs

 from inside your own code? In this chapter, you’ll learn how to use
system services

 to create and control processes
 . That will give your programs access to
email

 , the
Web,

 and
any other tool you’ve got installed

 . By the end of the chapter, you’ll have the power to go beyond C.

System calls are your hotline to the OS

 C programs rely on the operating system for pretty much everything. They make
system calls

 if they want to talk to the hardware. System calls are just functions that live
inside

 the operating system’s
kernel

 . Most of the code in the C Standard Library depends on them. Whenever you call printf()
 to display something on the command line, somewhere at the back of things, a system call will be made to the operating system to send the string of text to the screen.

 [image: image with no caption]

Let’s look at an example of a system call. We’ll begin with one called (appropriately)

system()

 .

system()
 takes a single string parameter and executes it as if you had typed it on the command line:

 [image: image with no caption]

The system()
 function is an easy way of running other programs from your code — particularly if you’re creating a quick prototype and you’d sooner call external programs rather than write lots and lots of C code.

Code Magnets

This is a program that writes timestamped text to the end of a logfile. It would have been perfectly possible to write this entire program in C, but the programmer has used a call to system()
 as a quick way of dealing with the file handling.

See if you can complete the code that creates the operating system command string that displays the text comment, followed by the timestamp.

 [image: image with no caption]

Code Magnets Solution

This is a program that writes timestamped text to the end of a logfile. It would have been perfectly possible to write this entire program in C, but the programmer has used a call to system()
 as a quick way of dealing with the file handling.

You were to complete the code that creates the operating system command string that displays the text comment, followed by the timestamp.

 [image: image with no caption]

Test Drive

 Let’s compile the program and then watch it in action:

 [image: image with no caption]

Now, when you look in the same directory as the program, there’s a new file that’s been created called
reports.log

 :

 [image: image with no caption]

The program worked. It read a comment from the command line and called the echo
 command to add the comment to the end of the file.

Even though you could have written the whole program in C, by using system()
 , you simplified the program and got it working with very little work.

There are no Dumb Questions

	

Q:

	

Does the system()
 function get compiled into my program?

	

A:

	
No. The system()
 function — like all system calls — doesn’t live in your program. It lives in the main operating system.

	

Q:

	

So, when I make a system call, I’m making a call to some external piece of code, like a library?

	

A:

	
Kind of. But the details depend on the operating system. On some operating systems, the code for a system call lives inside the kernel of the operating system. On other operating systems, it might simply be stored in some dynamic library.

Then someone busted into the system...

 There’s a downside to the system()
 function. It’s quick and easy to use, but it’s also kinda sloppy. Before getting into the problems with system()
 , let’s see what it takes to break the program.

The code worked by stitching together a string containing a command, like this:

 [image: image with no caption]

 [image: image with no caption]

But what if someone entered a comment like this?

 [image: image with no caption]

By
injecting

 some command-line code into the text, you can make the program run
whatever code you like

 :

 [image: image with no caption]

Is this a big problem? If a user can run guard_log
 , she can just as easily run some other program. But what if your code has been called from a
web server

 ? Or if it’s processing data from a
file

 ?

Security’s not the only problem

 This example injects a piece of code to list the contents of the root directory, but it could have
deleted files

 or
launched a virus

 . But you shouldn’t just worry about security.

	

What if the comments contain apostrophes?

That might break the quotes in the command.

	

What if the PATH variable causes the system() function to call the wrong program?

	

What if the program we’re calling needs to have a specific set of environment variables set up first?

The system()
 function is easy to use, but most of the time, you’re going to need something more structured — some way of calling a
specific

 program, with a set of command-line arguments and maybe even some
environment variables

 .

 Geek Bits

What’s the kernel?

On most machines, system calls are functions that live inside the
kernel

 of the operating system. But what is the kernel? You never actually
see

 the kernel on the screen, but it’s always there, controlling your computer. The kernel is the most important program on your computer, and it’s in charge of
three things:

Processes

No program can run on the system without the kernel loading it into memory. The kernel creates processes and makes sure they get the resources they need. The kernel also watches for processes that become too greedy or crash.

Memory

Your machine has a limited supply of memory, so the kernel has to carefully ration the amount of memory each process can take. The kernel can increase the
virtual memory size

 by quietly loading and unloading sections of memory to disk.

Hardware

The kernel uses
device drivers

 to talk to the equipment that’s plugged into the computer. Your program can use the keyboard and the screen and the graphics processor without knowing too much about them, because the kernel talks to them on your behalf.

System calls are the functions that your program uses to talk to the kernel.

The exec() functions give you more control

 When you call the system()
 function, the operating system has to interpret the command string and decide which programs to run and how to run them. And that’s where the problem is: the operating system needs to
interpret

 the string, and you’ve already seen how easy it is to get that wrong. So, the solution is to remove the
ambiguity

 and tell the operating system precisely which program you want to run. That’s what the

exec()

 functions are for.

exec() functions replace the current process

A process is just a program running in memory. If you type

taskmgr

 on Windows or

ps -ef

 on most other machines, you’ll see the processes running on your system. The operating system tracks each process with a number called the
process identifier

 (
PID

).

The exec()
 functions
replace the current process

 by running some other program. You can say which
command-line arguments

 or
environment variables

 to use, and when the new program starts it will have exactly the same PID as the old one. It’s like a relay race, where your program hands over its process to the new program.

A process is a program running in memory.

 [image: image with no caption]

There are many exec() functions

 Over time, programmers have created several different versions of exec()
 . Each version has a slightly different name and its own set of parameters. Even though there are lots of versions, there are really just two groups of exec()
 functions: the
list

 functions and the
array

 functions.

The exec() functions are in unistd.h.

The list functions: execl(), execlp(), execle()

The list functions accept command-line arguments as a list of parameters, like this:

	

The program.

This might be the full pathname of the program — execl()
 / execle()
 — or just a command name to search for — execlp()
 — but the first parameter tells the exec()
 function what program it will run.

	

The command-line arguments.

You need to list one by one the command-line arguments you want to use. Remember: the first
 command-line argument is always the name of the program. That means the first two parameters passed to a list version of exec()
 should always be the same string
 .

	

NULL.

That’s right. After the last command-line argument, you need a

NULL

 . This tells the function that there are no more arguments.

	

Environment variables (maybe).

If you call an exec()
 function whose name ends with ...e()
 , you can also pass an array of environment variables. This is just an array of strings like "POWER=4", "SPEED=17", "PORT=OPEN", ...
 .

 [image: image with no caption]

 Watch it!

Spaces in command line arguments can confuse MinGW.

If you pass two arguments “I like” and “turtles,” MinGW programs might send

three

arguments: “I,” “like,” and “turtles.”

The array functions: execv(), execvp(), execve()

 If you already have your command-line arguments stored in an array, you might find these two versions easier to use:

 [image: image with no caption]

The only difference between these two functions is that

execvp

 will search for the program using the PATH
 variable.

How to remember the exec() functions

You can figure out which exec()
 function you need by constructing the name. Each exec()
 function can be followed by one or two characters that must be

l

 ,

v

 ,

p

 , or

e

 . The characters tell you which feature you want to use. So, for the execle()
 function:

execle = exec + l + e = LIST of arguments + an ENVIRONMENT

The l
 and v
 characters always come before p
 and e
 , and the p
 and e
 characters are optional.

	
Uses

	
Character

	
List of args

	
l

	
Array/vector of args

	
v

	
Search the path

	
p

	
Environment vars

	
e

 [image: image with no caption]

Passing environment variables

 Every process has a set of
environment variables

 . These are the values you see when you type set
 or env
 on the command line, and they usually tell the process useful information, such as the location of the home directory or where to find the commands. C programs can read environment variables with the

getenv()

 system call. You can see getenv()
 being used in the diner_info
 program on the right.

If you want to run a program using command-line arguments
and

 environment variables, you can do it like this:

 [image: image with no caption]

 [image: image with no caption]

The execle()
 function will set the command-line arguments and environment variables and then replace the current process with diner_info
 .

 [image: image with no caption]

But what if there’s a problem?

If there’s a problem calling the program, the existing process will keep running. That’s useful, because it means that if you can’t start that second process, you’ll be able to recover from the error and give the user more information on what went wrong. And luckily, the C Standard Library provides some built-in code to help you with that.

 Watch it!

If you’re passing an environment on Cygwin, be sure to include a PATH variable.

On Cygwin, the

 PATH

variable is needed when programs are loaded. So, if you’re passing environment variables on Cygwin, be sure to include

 PATH=/usr/bin
 .

Most system calls go wrong in the same way

 Because system calls depend on something
outside

 your program, they might go wrong in some way that you can’t control. To deal with this problem, most system calls go wrong in the same way.

Take the execle()
 call, for example. It’s really easy to see when an exec()
 call goes wrong. If an exec()
 call is successful, the current program stops running. So, if the program runs
anything

 after the call to exec()
 , there must have been a problem:

 [image: image with no caption]

 [image: image with no caption]

But just telling
if

 a system call worked is not enough. You normally want to know
why

 a system call failed. That’s why most system calls follow the
golden rules of failure

 .

 The Golden Rules of Failure

	Tidy up as much as you can.

	Set the errno variable to an error value.

	Return –1.

The

errno

 variable is a global variable that’s defined in
errno.h

 , along with a whole bunch of standard error values, like:

 [image: image with no caption]

Now you
could

 check the value of errno
 against each of these values, or you could look up a standard piece of error text using a function in
string.h

 called

strerror()

 :

 [image: image with no caption]

So, if the system can’t find the program you are running and it sets the errno
 variable to ENOENT
 , the above code will display this message:

No such file or directory

Exercise

 Different machines have different commands to tell you about their network configuration. On Linux and Mac machines, there’s the /sbin/ifconfig
 program, and on Windows there’s a command called ipconfig
 that’s stored somewhere on the
command path

 .

This program tries to run the /sbin/ifconfig
 program and, if that fails, it will try the ipconfig
 command. There’s no need to pass arguments to either command. Think carefully. What type of exec()
 commands will you need?

 [image: image with no caption]

Exercise Solution

Different machines have different commands to tell you about their network configuration. On Linux and Mac machines, there’s the /sbin/ifconfig
 program, and on Windows there’s a command called ipconfig
 that’s stored somewhere on the
command path

 .

This program tries to run the /sbin/ifconfig
 program and, if that fails, it will try the ipconfig
 command. There’s no need to pass arguments to either command. Think carefully. What type of exec()
 commands will you need?

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Isn’t system()
 just easier to use than exec()
 ?

	

A:

	
Yes. But because the operating system needs to interpret the string you pass to system()
 , it can be a bit buggy. Particularly if you create the command string dynamically.

	

Q:

	

Why are there so many exec()
 functions?

	

A:

	
Over time, people wanted to create processes in different ways. The different versions of exec()
 were created for more flexibility.

	

Q:

	

Do I always have to check the return value of a system call? Doesn’t it make the program really long?

	

A:

	
If you make system calls and don’t check for errors, your code will be shorter. But it will probably also have more bugs. It is better to think about errors when you first write code. It will make it much easier to catch bugs later on.

	

Q:

	

If I call an exec()
 function, can I do anything afterward?

	

A:

	
No. If the exec()
 function is successful, it will change the process so that it runs the new program instead of your program. That means the program containing the exec()
 call will stop as soon as it runs the exec()
 function.

Bullet Points

	System calls are functions that live in the operating system.

	When you make a system call, you are calling code outside your program.

	
system()
 is a system call to run a command string.

	
system()
 is easy to use, but it can cause bugs.

	The exec()
 system calls let you run programs with more control.

	There are several versions of the exec()
 system call.

	System calls usually, but not always, return –1 if there’s a problem.

	They will also set the errno
 variable to an error number.

Mixed Messages

 The guys over at Starbuzz have come up with a new order-generation program that they call

coffee

 :

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 char *w = getenv("EXTRA");
 if (!w)
 w = getenv("FOOD");
 if (!w)
 w = argv[argc - 1];
 char *c = getenv("EXTRA");
 if (!c)
 c = argv[argc - 1];
 printf("%s with %s\n", c, w);
 return 0;
}

To try it out, they’ve created this test program. Can you match up these code fragments to the output they produce?

 [image: image with no caption]

 [image: image with no caption]

Mixed Messages Solution

The guys over at Starbuzz have come up with a new order-generation program that they call

coffee

 :

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 char *w = getenv("EXTRA");
 if (!w)
 w = getenv("FOOD");
 if (!w)
 w = argv[argc - 1];
 char *c = getenv("EXTRA");
 if (!c)
 c = argv[argc - 1];
 printf("%s with %s\n", c, w);
 return 0;
}

To try it out, they’ve created this test program. Can you match up these code fragments to the output they produce?

 [image: image with no caption]

 [image: image with no caption]

Read the news with RSS

 RSS feeds are a common way for websites to publish their latest news stories. Each RSS feed is just an XML file containing a summary of stories and links. Of course, it’s possible to write a C program that will read RSS files straight off the Web, but it involves a few programming ideas that you haven’t seen yet. But that’s not a problem if you can find another program that will handle the RSS processing for you.

Do this!

	
Download RSS Gossip from

https://github.com/dogriffiths/rssgossip/zipball/master

 . Also, if you don’t have Python installed, you can get it here:

http://www.python.org/

 .

RSS Gossip

 is a small
Python script

 that can search RSS feeds for stories containing a piece of text. To run the script, you will need Python installed. Once you have Python and
rssgossip.py

 , you can search for stories like this:

 [image: image with no caption]

Exercise

 The editor wants a program on his machine that can search a lot of RSS feeds all at the same time. You could do that if you ran the
rssgossip.py

 several times for different RSS feeds. Fortunately, the
out-of-work actors

 have made a start on the program for you. Trouble is, they’re having problems creating the call to exec()
 the
rssgossip.py

 script. Think carefully about what you need to do to run the script, and then complete the

newshound

 code.

 [image: image with no caption]

And for extra bonus points...

What will the program do when it runs?

Exercise Solution

 The editor wants a program on his machine that can search a lot of RSS feeds all at the same time. You could do that if you ran the
rssgossip.py

 several times for different RSS feeds. Fortunately, the
out-of-work actors

 have made a start on the program for you. Trouble is, they’re having problems creating the call to exec()
 the
rssgossip.py

 script. You were to think carefully about what you need to do to run the script, and then complete the

newshound

 code.

 [image: image with no caption]

But what will the program do when you run it?

Test Drive

When you compile and run the program, it looks like it works:

 [image: image with no caption]

The newshound
 program has the
rssgossip.py

 script using data from the array of RSS feeds.

 [image: image with no caption]

Actually there
is

 a problem.

Although the newshound
 program managed to run the
rssgossip.py

 script, it looks like it didn’t manage to run the script for
all of the feeds

 . In fact, the only news it displayed came from the
first feed on the list

 . That meant the other news stories matching the search terms were missed.

 Brain Power

Look at the code of the newshound
 program again and think about how it works. Why do you think it failed to run the
rssgossip.py

 script for any of the other newsfeeds?

exec() is the end of the line for your program

 The exec()
 functions
replace

 the current function by running a new program. But what happens to the original program? It terminates, and it terminates
immediately

 . That’s why the program only ran the
rssgossip.py

 script for the first newsfeed. After it had called execle()
 the first time, the newshound
 program terminated.

 [image: image with no caption]

 [image: image with no caption]

But if you want to start
another

 process and keep your original process running, how do you do it?

fork() will clone your process

You’re going to get around this problem by using a system call named

fork()

 .

fork()
 makes a complete
copy

 of the current process. The brand-new copy will be running the same program, on the same line number. It will have exactly the same variables that contain exactly the same values. The only difference is that the copy process will have a different process identifier from the original.

The original process is called the
parent process

 , and the newly created copy is called the
child process

 .

But how can cloning the current process fix the problems with exec()
 ? Let’s see.

 [image: image with no caption]

 Watch it!

Unlike Linux and the Mac, Windows doesn’t support fork()
 natively.

To use

 fork()

on a Windows machine, you should first install Cygwin.

Running a child process with fork() + exec()

 The trick is to only call an exec()
 function on a
child process

 . That way, your original parent process will be able to continue running. Let’s look at the process step by step.

1. Make a copy

Begin by making a copy of your current process by calling the fork()
 system call.

The processes need some way of telling which of them is the parent process and which is the child, so the fork()
 function returns 0 to the child process, and it will return a
nonzero

 value to the parent process.

 [image: image with no caption]

2. If you’re the child process, call exec()

At this point, you have two identical processes running, both of them using identical code. But the child process (the one that received a 0 from the fork()
 call) now needs to replace itself by calling exec()
 :

 [image: image with no caption]

Now you have two separate processes: the child process is running the
rssgossip.py

 script, and the original parent process is free to continue doing something else.

Code Magnets

 It’s time to update the newshound
 program. The code needs to run the
rssgossip.py

 script in a separate process for each of the RSS feeds. The code is reduced, so you only have to worry about the main loop. Be careful to check for errors, and don’t get the parent and child processes mixed!

 [image: image with no caption]

 [image: image with no caption]

What the fork()?

 You call fork()
 like this:

pid_t pid = fork();

fork()
 will actually return an integer value that is 0 for the child process and positive for the parent process. The parent process will receive the process identifier of the child process.

But what is

pid_t

 ? Different operating systems use different kinds of integers to store process IDs: some might use short
 s and some might use int
 s. So pid_t
 is always set to the type that the operating system uses.

Code Magnets Solution

It’s time to update the newshound
 program. The code needs to run the
rssgossip.py

 script in a separate process for each of the RSS feeds. The code is reduced, so you only had to worry about the main loop. Be careful to check for errors, and don’t get the parent and child processes mixed!

 [image: image with no caption]

Test Drive

Now, if you compile and run the code, this happens:

 [image: image with no caption]

 [image: image with no caption]

By fork
 -ing a copy of itself and then exec
 -ing the Python script in a separate process, the newshound
 program is able to run a separate process for each of the RSS feeds. And the great thing is that these processes will all run
at the same time

 .

 [image: image with no caption]

That’s a lot faster than reading the newsfeeds one at a time. By learning how to create and run separate processes with fork()
 and exec()
 , not only can you make the most of your existing software, but you can also improve the performance of your code.

There are no Dumb Questions

	

Q:

	

Does system()
 run programs in a separate process?

	

A:

	
Yes. But system()
 gives you less control over exactly how the program runs.

	

Q:

	

Isn’t fork
 -ing processes really inefficient? I mean, it copies an entire process, and then a moment later we replace the child process by doing an exec()
 ?

	

A:

	
Operating systems use lots of tricks to make fork
 -ing processes really quick. For example, the operating system cheats and avoids making an actual copy of the parent process’s data. Instead, the child and parent processes share the same data.

	

Q:

	

But what if one of the processes changes some data in memory? Won’t that screw things up?

	

A:

	
It would, but the operating system will catch that a piece of memory is going to change, and then it will make a separate copy of that piece of memory for the child process.

	

Q:

	

That technique sounds quite cool. Does it have a name?

	

A:

	
Yes; it’s called “copy-on-write.”

	

Q:

	

Is a pid_t
 just an int
 ?

	

A:

	
It depends on the platform. The only thing you know is that it will be some integer type.

	

Q:

	

I stored the result of a fork()
 call in an int
 , and it worked just fine.

	

A:

	
It’s best to always use pid_t
 to store process IDs. If you don’t, you might cause problems with other system calls or if your code is compiled on another machine.

	

Q:

	

Why doesn’t Windows support the fork()
 system call?

	

A:

	
Windows manages processes very differently from other operating systems, and the kinds of tricks fork()
 needs to do in order to work efficiently are very hard to do on Windows. This may be why there isn’t a version of fork()
 built in.

	

Q:

	

But Cygwin lets me do fork()
 s on Windows, right?

	

A:

	
Yes. The gurus who work on Cygwin did a lot of work to make Windows processes look like processes that are used on Unix, Linux, and the Mac. But because they still need to rely on Windows to create the underlying processes, fork()
 on Cygwin can be a little slower than fork()
 on other platforms.

	

Q:

	

So, if I’m just interested in writing code to work on Windows, is there something else I should use instead?

	

A:

	
Yes. There’s a function called CreateProcess()
 that’s like an enhanced version of system()
 . To find out more, go to

http://msdn.microsoft.com

 and search for “CreateProcess.”

	

Q:

	

Won’t the output of the various feeds get mixed up?

	

A:

	
The operating system will make sure that each string is printed completely.

Bullet Points

	System calls are functions that live in the kernel.

	The exec()
 functions give you more control than system()
 .

	The exec()
 functions replace the current process.

	The fork()
 function duplicates the current process.

	System calls usually return –1 if they fail.

	Failed system calls set the errno
 variable to the error number.

Your C Toolbox

You’ve got Chapter 9
 under your belt, and now you’ve added processes and system calls to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 10. Interprocess Communication: It’s good to talk

 [image: image with no caption]

Creating processes is just half the story.

What if you want to
control

 the process once it’s running? What if you want to
send it data

 ? Or
read its output

 ?
Interprocess communication

 lets processes work together to
get the job done

 . We’ll show you how to multiply the
power

 of your code by letting it talk
 to other programs on your system.

Redirecting input and output

 When you run programs from the command line, you can redirect the Standard Output to a file using the >
 operator:

 [image: image with no caption]

The Standard Output is one of the three default
data streams

 . A
data stream

 is exactly what it sounds like: a stream of data that goes into, or comes out of, a process. There are data streams for the Standard Input, Output, and Error, and there are also data streams for other things, like files or network connections. When you redirect the output of a process, you change where the data is sent. So, instead of the Standard Output sending data to the screen, you can make it send the data to a file.

Redirection is really useful on the command line, but is there a way of making a process redirect itself
 ?

A look inside a typical process

 Every process will contain the program it’s running, as well as space for stack and heap data. But it will also need somewhere to record where data streams like the Standard Output are connected. Each data stream is represented by a
file descriptor

 , which, under the surface, is just a number. The process keeps everything straight by storing the file descriptors and their data streams in a
descriptor table

 .

A file descriptor is a number that represents a data stream.

 [image: image with no caption]

The descriptor table has one column for each of the file descriptor numbers. Even though these are called
file

 descriptors, they might not be connected to an actual file on the hard disk. Against every file descriptor, the table records the associated data stream. That data stream might be a connection to the keyboard or screen, a file pointer, or a connection to the network.

The first three slots in the table are always the same. Slot 0 is the Standard Input, slot 1 is the Standard Output, and slot 2 is the Standard Error. The other slots in the table are either empty or connected to data streams that the process has opened. For example, every time your code opens a file for reading or writing, another slot is filled in the descriptor table.

When the process is created, the Standard Input is connected to the keyboard, and the Standard Output and Error are connected to the screen. And they will stay connected that way until something redirects them somewhere else.

File descriptors don’t necessarily refer to files.

Redirection just replaces data streams

 The Standard Input, Output, and Error are always fixed in the same places in the descriptor table. But the data streams they point to can change.

 [image: image with no caption]

That means if you want to redirect the Standard Output, you just need to switch the data stream against descriptor 1 in the table.

All of the functions, like printf()
 , that send data to the Standard Output will first look in the descriptor table to see where descriptor 1 is pointing. They will then write data out to the correct data stream.

Processes can redirect themselves

Every time you’ve used redirection so far, it’s been from the command line using the >
 and <
 operators. But processes can do their
own redirection

 by
rewiring the descriptor table

 .

 Geek Bits

So, that’s why it’s 2> ...

You can redirect the Standard Output and Standard Error on the command line using the > and 2> operators:

./myprog > output.txt 2> errors.log

Now you can see why the Standard Error is redirected with
2

 >. The
2

 refers to the number of the Standard Error in the descriptor table. On most operating systems, you can use
1

 > as an alternative way of redirecting the Standard Output, and on Unix-based systems you can even redirect the Standard Error to the same place as the Standard Output like this:

 [image: image with no caption]

fileno() tells you the descriptor

 Every time you open a file, the operating system registers a new item in the descriptor table. Let’s say you open a file with something like this:

FILE *my_file = fopen("guitar.mp3", "r");

The operating system will open the
guitar.mp3

 file and return a pointer to it, but it will also skim through the descriptor table until it finds an empty slot and register the new file there.

 [image: image with no caption]

But once you’ve got a file pointer, how do you find it in the descriptor table? The answer is by calling the

fileno()

 function.

 [image: image with no caption]

fileno()
 is one of the few system functions that doesn’t return –1 if it fails. As long as you pass fileno()
 the pointer to an open file, it should always return the descriptor number.

dup2() duplicates data streams

Opening a file will fill a slot in the descriptor table, but what if you want to
change

 the data stream already registered against a descriptor? What if you want to change file descriptor 3 to point to a different data stream? You can do it with the

dup2()

 function. dup2()
 duplicates a data stream from one slot to another. So, if you have a file pointer to
guitar.mp3

 plugged in to file descriptor 4, the following code will connect it to file descriptor 3 as well.

 [image: image with no caption]

There’s still just one
guitar.mp3

 file, and there’s still just one data stream connected to it. But the data stream (the FILE*
) is now registered with file descriptors 3 and 4.

Now that you know how to find and change things in the descriptor table, you should be able to redirect the Standard Output of a process to point to a file.

Does your error code worry you?

 Do you find that you’re writing duplicate error-handling code every time you make a system call? Then fear no more! Using our patented method, we’ll show you how to make the most out of your error code without writing the same thing over and over.

 [image: image with no caption]

Look at these two troublesome pieces of code:

 [image: image with no caption]

Is there some way of removing the duplicated code block?
Why, yes, there is!

 By creating a simple fire-and-forget error() function, you’ll make your duplicated code a thing of the past.

What’s that, you say? How do you handle that troublesome return statement? After all, you can’t move
that

 into a function, can you?

There’s no need! The exit() system call is the fastest way to stop your program in its tracks. No more worrying about returning to main(); just call exit(), and your program’s history!

This is how it works. First, remove all of your error code into a separate function called error() and replace that tricky return with a call to exit().

 Note

To ensure you have the exit system call available, you need to include stdlib.h.

 [image: image with no caption]

Now you can replace that troublesome error-checking code with something much simpler:

pid_t pid = fork();
if (pid == -1) {
 error("Can't fork process");
}

if (execle(...) == -1) {
 error("Can't run script");
}

Warning: offer limited to one exit() call per program execution. Do not operate exit() if you have a fear of sudden program termination.

Sharpen your pencil

 This is a program that saves the output of the
rssgossip.py

 script into a file called
stories.txt

 . It’s similar to the newshound
 program, except it searches through a single RSS feed only. Using what you’ve learned about the descriptor table, see if you can find the missing line of code that will redirect the
Standard Output

 of the child process to the
stories.txt

 file.

 [image: image with no caption]

Sharpen your pencil: Solution

This is a program that saves the output of the
rssgossip.py

 script into a file called
stories.txt

 . It’s similar to the newshound
 program, except it searches through a single RSS feed only. Using what you’ve learned about the descriptor table, you were to find the missing line of code that will redirect the
Standard Output

 of the child process to the
stories.txt

 file.

 [image: image with no caption]

Did you get the right answer?

 The program will change the descriptor table in the child script to look like this:

That means that when the
rssgossip.py

 script sends data to the Standard Output, it should appear in the
stories.txt

 file.

	
#

	
Data Stream

	
0

	
The keyboard

	
1

	
File stories.txt

	
2

	
The screen

	
3

	
File stories.txt

Test Drive

This is what happens when the program is compiled and run:

 [image: image with no caption]

What happened?

When the program opened the
stories.txt

 file with fopen()
 , the operating system registered the file f
 in the descriptor table. fileno(f)
 was the descriptor number it used. The dup2()
 function set the Standard Output descriptor (1) to point to the same file.

 [image: image with no caption]

 [image: image with no caption]

 Brain Power

Assuming you’re searching for stories that exist on the feed, why was
stories.txt

 empty after the program finished?

Sometimes you need to wait...

 The newshound2
 program fires off a separate process to run the
rssgossip.py

 script. But once that child process gets created, it’s
independent

 of its parent. You could run the newshound2
 program and still have an empty
stories.txt

 , just because the
rssgossip.py

 isn’t finished yet. That means the operating system has to give you some way of
waiting

 for the child process to complete.

 [image: image with no caption]

The waitpid() function

The

waitpid()

 function won’t return until the child process dies. That means you can add a little code to your program so that it won’t exit until the
rssgossip.py

 script has stopped running:

 [image: image with no caption]

Waitpid() Up Close

 waitpid()
 takes three parameters:

 [image: image with no caption]

	

pid

This is the process ID that the parent process was given when it fork
 ed the child.

	

pid_status

This will store
exit information

 about the process. waitpid()
 will update it, so it needs to be a pointer.

	

options

There are several options you can pass to waitpid()
 , and typing man waitpid
 will give you more info. If you set the options to

0

 , the function waits until the process finishes.

What’s the status?

When the waitpid()
 function has finished waiting, it stores a value in pid_status
 that tells you how the process did. To find the
exit status

 of the child process, you’ll have to pass the pid_status
 value through a macro called

WEXITSTATUS()

 :

 [image: image with no caption]

Why do you need the macro? Because the pid_status
 contains several pieces of information, and only the first 8 bits represent the exit status. The macro tells you the value of just those 8 bits.

Test Drive

 Now, when you run the newshound2
 program, it checks that the
rssgossip.py

 script finishes before newshound2
 itself ends:

 [image: image with no caption]

Adding a waitpid()
 to the program was easy to do and it made the program more reliable. Before, you couldn’t be sure that the subprocess had finished writing, and that meant there was no way you could use the newshound2
 program as a proper tool. You couldn’t use it in scripts and you couldn’t create a GUI frontend for it.

Redirecting input and output, and making processes wait for each other, are all simple forms of
interprocess communication

 . When processes are able to cooperate — by sharing data or by waiting for each other — they become much more powerful.

 [image: image with no caption]

Bullet Points

	
exit()
 is a quick way of ending a program.

	All open files are recorded in the descriptor table.

	You can redirect input and output by changing the descriptor table.

	
fileno()
 will find a descriptor in the table.

	
dup2()
 can be used to change the descriptor table.

	
waitpid()
 will wait for processes to finish.

There are no Dumb Questions

	

Q:

	

Does exit()
 end the program faster than just returning from main()
 ?

	

A:

	
No. But if you call exit()
 , you don’t need to structure your code to get back to the main()
 function. As soon as you call exit()
 , your program is dead.

	

Q:

	

Should I check for –1 when I call exit()
 , in case it doesn’t work?

	

A:

	
No. exit()
 doesn’t return a value, because exit()
 never fails. exit()
 is the only function that is guaranteed never to return a value and never to fail.

	

Q:

	

Is the number I pass to exit()
 the exit status?

	

A:

	
Yes.

	

Q:

	

Are the Standard Input, Output, and Error always in slots 0, 1, and 2 of the descriptor table?

	

A:

	
Yes, they are.

	

Q:

	

So, if I open a new file, it is automatically added to the descriptor table?

	

A:

	
Yes.

	

Q:

	

Is there a rule about which slot it gets?

	

A:

	
New files are always added to the available slot with the lowest number. So, if slot number 4 is the first available one, that’s the one your new file will use.

	

Q:

	

How big is the descriptor table?

	

A:

	
It has slots from 0 to 255.

	

Q:

	

The descriptor table seems kinda complicated. Why is it there?

	

A:

	
Because it allows you to rewire the way a program works. Without the descriptor table, redirection isn’t possible.

	

Q:

	

Is there a way of sending data to the screen without using the Standard Output?

	

A:

	
On some systems. For example, on Unix-based machines, if you open
/dev/tty

 , it will send data directly to the terminal.

	

Q:

	

Can I use waitpid()
 to wait for any process? Or just the processes I started?

	

A:

	
You can use waitpid()
 to wait for any process.

	

Q:

	

Why isn’t the pid_status
 in waitpid(..., &pid_status, ...)
 just an exit status?

	

A:

	
Because the pid_status
 contains other information.

	

Q:

	

Such as?

	

A:

	
For example, WIFSIGNALED (pid_status)
 will be false if a process ended naturally, or true if something killed it off.

	

Q:

	

How can an integer variable like pid_status
 contain several pieces of information?

	

A:

	
It stores different things in different bits. The first 8 bits store the exit status. The other information is stored in the other bits.

	

Q:

	

So, if I can extract the first 8 bits of the pid_status
 value, I don’t have to use WEXITSTATUS()
 ?

	

A:

	
It is always best to use WEXITSTATUS()
 . It’s easier to read and it will work on whatever the native int
 size is on the platform.

	

Q:

	

Why is WEXITSTATUS()
 in uppercase?

	

A:

	
Because it is a macro rather than a function. The compiler replaces macro statements with small pieces of code at runtime.

Stay in touch with your child

 You’ve seen how to run a separate process using exec()
 and fork()
 , and you know how to redirect the output of a child process into a file. But what if you want to listen to a child process directly? Is that possible? Rather than waiting for a child process to send all of its data into a file and then reading the file afterward, is there some way to start a process running and read the data it generates in real time
 ?

Reading story links from rssgossip

As an example, there’s an option on the
rssgossip.py

 script that allows you to display the URLs for any stories that it finds:

 [image: image with no caption]

Now, you
could

 run the script and save its output to a file, but that would be slow. It would be much better if the parent and child process could talk to each other while the child process is still running.

 [image: image with no caption]

Connect your processes with pipes

 You’ve already used something that makes live connections between processes: pipes.

 [image: image with no caption]

Pipes are used on the command line to connect the
output

 of one process with the
input

 of another process. In the example here, you’re running the
rssgossip.py

 script manually and then passing its output through a command called

grep

 . The grep
 command finds all the lines containing

http

 .

Piped commands are parents and children

Whenever you
pipe

 commands together on the command line, you are actually connecting them together as parent and child processes. So, in the above example, the grep
 command is the
parent

 of the
rssgossip.py

 script.

	

The command line creates the parent process.

 [image: image with no caption]

	

The parent process forks the rssgossip.py script in a child process.

 [image: image with no caption]

	

The parent connects the output of the child with the input of the parent using a pipe.

 [image: image with no caption]

	

The parent process execs the grep command.

 [image: image with no caption]

Pipes are used a lot on the command line to allow users to connect processes together. But what if you’re just using C code? How do you connect a pipe to your child process so that you can read its output as soon as it’s generated?

Case study: opening stories in a browser

 Let’s say you want to run the
rssgossip.py

 script and then open the stories it finds in a web browser. Your program will run in the parent process and
rssgossip.py

 will run in the child. You need to create a pipe that connects the output of
rssgossip.py

 to the input of your program.

But how do you create a pipe?

pipe() opens two data streams

Because the child is going to send data to the parent, you need a pipe that’s connected to the Standard Output of the child and the Standard Input of the parent. You’ll create the pipe using the

pipe()

 function. Remember how we said that every time you open a data stream to something like a file, it gets added to the descriptor table? Well, that’s exactly what the pipe()
 functions does: it creates two connected streams and adds them to the table. Whatever is written into one stream can be read from the other.

 [image: image with no caption]

 [image: image with no caption]

When pipe()
 creates the two lines in the descriptor table, it will store their file descriptors in a two-element array:

 [image: image with no caption]

The pipe()
 command creates a pipe and tells you two descriptors: fd[1]
 is the descriptor that
writes

 to the pipe, and fd[0]
 is the descriptor that
reads

 from the pipe. Once you’ve got the descriptors, you’ll need to use them in the parent and child processes.

fd[1] writes to the pipe; fd[0] reads from it.

In the child

In the child process, you need to
close

 the fd[0]
 end of the pipe and then change the child process’s Standard Output to point to the same stream as descriptor fd[1]
 .

 [image: image with no caption]

That means that everything the child sends to the Standard Output will be written to the pipe.

In the parent

In the parent process, you need to close the fd[1
] end of the pipe (because you won’t be writing to it) and then redirect the parent process’s Standard Input to read its data from the same place as descriptor fd[0]
 :

 [image: image with no caption]

Everything that the child writes to the pipe will be read through the Standard Input of the parent process.

Opening a web page in a browser

 Your program will need to open up a web page using the machine’s browser. That’s kind of hard to do, because different operating systems have different ways of talking to programs like web browsers.

Fortunately, the out-of-work actors have hacked together some code that will open web pages on most systems. It looks like they were in a rush to go do something else, so they’ve put together something pretty simple using system()
 :

 [image: image with no caption]

 [image: image with no caption]

Ready-Bake Code

 [image: image with no caption]

The code runs
three separate commands

 to open a URL: that’s one command each for the Mac, Windows, and Linux. Two of the commands will always fail, but as long as the third command works, that’ll be fine.

 Go Off Piste

Think you can write better code than the out-of-work actors? Then why not rewrite the code to use fork()
 and exec()
 for your favorite operating system?

Exercise

It looks like most of the program is already written. All you need to do is complete the code that connects the
parent

 and
child

 processes to a pipe. To save space, the #include
 lines and the error()
 and open_url()
 functions have been removed. Remember, in this program the
child

 is going to talk to the
parent

 , so make sure that pipe’s connected the right way!

 [image: image with no caption]

Exercise Solution

It looks like most of the program is already written. You were to complete the code that connects the
parent

 and
child

 processes to a pipe. To save space, the #include
 lines and the error()
 and open_url()
 functions have been removed.

 [image: image with no caption]

Test Drive

 When you compile and run the code, this happens:

 [image: image with no caption]

That’s great. It worked.

The news_opener
 program ran the
rssgossip.py

 in a separate process and told it to display URLs for each story it found. All of the output of the screen was redirected through a
pipe

 that was connected to the news_opener
 parent process. That meant the news_opener
 process could search for any URLs and then open them in the browser.

Pipes are a great way of connecting processes together. Now, you have the ability to not only
run

 processes and
control

 their environments, but you also have a way of
capturing their output

 . That opens up a huge amount of functionality to you. Your C code can now use and control any program
 that you can use from the command line.

 Go Off Piste

Now that you know how to control
rssgossip.py

 , why not try controlling some of these programs? You can get all of them for Unix-style machines or any Windows machine using Cygwin:

curl/wget

These programs let you talk to web servers. If you call them from C code, you can write programs that can talk to the Web.

mail/mutt

These programs let you send email from the command line. If they’re on your machine, it means your C programs can send mail too.

convert

This command can convert one image format to another image format. Why not create a C program that outputs SVG charts in text format, and then use the convert command to create PNG images from them?

There are no Dumb Questions

	

Q:

	

Is a pipe a file?

	

A:

	
It’s up to the operating system how it creates pipes, but pipes created with the pipe()
 function are not normally files.

	

Q:

	

So pipes
might

 be files?

	

A:

	
It is possible to create pipes based on files, which are normally called
named pipes

 or
FIFO

 (first-in/first-out) files.

	

Q:

	

Why would anyone want a pipe that uses a file?

	

A:

	
Pipes based on files have names. That means they are useful if two processes need to talk to each other and they are not parent and child processes. As long as both processes know the name of the pipe, they can talk with it.

	

Q:

	

Great! So how do I use named pipes?

	

A:

	
Using the mkfifo()
 system call. For more information, see

http://tinyurl.com/cdf6ve5

 .

	

Q:

	

If most pipes are not files, what are they?

	

A:

	
Usually, they are just pieces of memory. Data is written at one point and read at another.

	

Q:

	

What happens if I try to read from a pipe and there’s nothing in there?

	

A:

	
Your program will wait until something is there.

	

Q:

	

How does the parent know when the child is finished?

	

A:

	
When the child process dies, the pipe is closed and the fgets()
 command receives an end-of-file, which means the fgets()
 function returns 0, and the loop ends.

	

Q:

	

Can parents speak to children?

	

A:

	
Absolutely. There is no reason why you can’t connect your pipes the other way around, so that the parent sends data to the child process.

	

Q:

	

Can you have a pipe that works in both directions at once? That way, my parent and child processes could have a two-way conversation.

	

A:

	
No, you can’t do that. Pipes always work in only one direction. But you can create two pipes: one from the parent to the child, and one from the child to the parent.

Bullet Points

	Parent and child processes can communicate using pipes.

	The pipe()
 function creates a pipe and two descriptors.

	The descriptors are for the read and write ends of the pipe.

	You can redirect Standard Input and Output to the pipe.

	The parent and child processes use different ends of the pipe.

The death of a process

 You’ve seen how processes are created, how their environments are configured, and even how processes talk to each other. But what about how processes die? For example, if your program is reading data from the keyboard and the user hits Ctrl-C, the program stops running.

How does that happen? You can tell from the output that the program never got as far as running the second printf()
 , so the Ctrl-C didn’t just stop the fgets()
 command. Instead, the whole program just stopped in its tracks. Did the operating system just unload the program? Did the fgets()
 function call exit()
 ? What happened?

 [image: image with no caption]

The O/S controls your program with signals

The magic all happens in the operating system. When you call the fgets()
 function, the operating system reads the data from the keyboard, and when it sees the user hit Ctrl-C, sends an interrupt signal to the program.

 [image: image with no caption]

A signal is just a short message: a single integer value. When the signal arrives, the process has to stop whatever it’s doing and go deal with the signal. The process looks at a table of
signal mappings

 that link each signal with a function called the
signal handler

 . The default signal handler for the interrupt signal just calls the exit()
 function.

So, why doesn’t the operating system just kill the program? Because the signal table lets you run your own code
 when your process receives a signal.

 [image: image with no caption]

Catching signals and running your own code

 Sometimes you’ll want to run your own code if someone interrupts your program. For example, if your process has files or network connections open, it might want to close things down and tidy up before exiting. But how do you tell the computer to run your code when it sends you a signal? You can do it with

sigaction

 s.

A sigaction is a function wrapper

A sigaction
 is a struct
 that contains a pointer to a function. sigaction
 s are used to tell the operating system which function it should call when a signal is sent to a process. So, if you have a function called diediedie()
 that you want the operating system to call if someone sends an
interrupt

 signal to your process, you’ll need to wrap the diediedie()
 function up as a sigaction
 .

This is how you create a sigaction
 :

 [image: image with no caption]

The function wrapped by a sigaction
 is called the
handler

 , because it will be used to deal with (or
handle

) a signal that’s sent to it. If you want to create a handler, it will need to be written in a certain way.

All handlers take signal arguments

Signals are just integer values, and if you create a custom handler function, it will need to accept an int
 argument, like this:

 [image: image with no caption]

Because the handler is passed the number of the signal, you can
reuse

 the same handler for several signals. Or, you can have a separate handler for each signal. How you choose to program it is up to you.

Handlers are intended to be short, fast pieces of code. They should do
just enough

 to deal with the signal that’s been received.

 Watch it!

Be careful when writing to Standard Output and Error in handler functions.

Even though the example code you’ll use will display text on the Standard Output, be careful about doing that in more complex programs. Signals can arrive because something bad has happened to the program. That might mean that Standard Output isn’t available, so be careful.

sigactions are registered with sigaction()

 Once you’ve create a sigaction
 , you’ll need to tell the operating system about it. You do that with the

sigaction()

 function:

sigaction(signal_no, &new_action, &old_action);

sigaction()
 takes three parameters:

	

The signal number.

The integer value of the signal you want to handle. Usually, you’ll pass one of the standard signal symbols, like SIGINT
 or SIGQUIT
 .

 Note

You’ll find out more about the standard signals in a while.

	

The new action.

This is the
address

 of the new sigaction
 you want to register.

	

The old action.

If you pass a pointer to another sigaction
 , it will be filled with details of the
current

 handler that you’re about to replace. If you don’t care about the existing signal handler, you can set this to NULL
 .

The sigaction()
 function will return –1 if it fails and will also set the errno
 variable. To keep the code short, some of the code you’ll see in this book will skip checking for errors, but you should always
 check for errors in your own code.

 [image: image with no caption]

Ready-Bake Code

This is a function that will make it a little easier to register functions as signal handlers:

 [image: image with no caption]

This function will allow you to set a signal handler by calling catch_signal()
 with a signal number and a function name:

catch_signal(SIGINT, diedieie)

Rewriting the code to use a signal handler

You now have all the code to make your program do something if someone hits the Ctrl-C key:

 [image: image with no caption]

The program will ask for the user’s name and then wait for her to type. But if instead of typing her name, the user just hits the Ctrl-C key, the operating system will automatically send the process an
interrupt signal

 (SIGINT
). That interrupt signal will be handled by the sigaction
 that was registered in the catch_signal()
 function. The sigaction
 contains a pointer to the diediedie()
 function. This will then be called, and the program will display a message and exit()
 .

Test Drive

 When you run the new version of the program and press Ctrl-C, this happens:

 [image: image with no caption]

 [image: image with no caption]

The operating system received the Ctrl-C and sent a SIGINT
 signal to the process, which then ran your
 diediedie()
 function.

What’s my Purpose?

There are a bunch of different signals the operating system can send to your process. Match each signal to its cause.

	

SIGINT

	
The process was interrupted.

	

SIGQUIT

	
The terminal window changed size.

	

SIGFPE

	
The process tried to access illegal memory.

	

SIGTRAP

	
Someone just asked the kernel to kill the process.

	

SIGSEGV

	
The process wrote to a pipe that nothing’s reading.

	

SIGWINCH

	
Floating-point error.

	

SIGTERM

	
Someone asked the process to stop and dump the memory in a core dump file.

	

SIGPIPE

	
The debugger asks where the process is.

What’s my Purpose? Solution

 There are a bunch of different signals the operating system can send to your process. You were to match each signal to its cause.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

If the interrupt handler didn’t call exit()
 , would the program still have ended?

	

A:

	
No.

	

Q:

	

So, I could write a program that completely ignores interrupts?

	

A:

	
You could, but it’s not a good idea. In general, if your program receives an error signal, it’s best to exit with an error, even if you run some of your own code first.

Use kill
 to send signals

 If you’ve written some signal-handling code, how do you test it? Fortunately, on Unix-style systems, there’s a command called

kill

 . It’s called kill
 because it’s normally used to kill off processes, but in fact, kill
 just sends a signal to a process. By default, the command sends a SIGTERM
 signal to the process, but you can use it to send any signal you like.

 Note

Including Cygwin on Windows

To try it out, open
two terminals

 . In one terminal, you can run your program. Then, in the second terminal, you can send signals to your program with the kill
 command:

 [image: image with no caption]

Each of these kill
 commands will send signals to the process and run whatever handler the process has configured. The exception is the

SIGKILL

 signal. The SIGKILL
 signal can’t be caught by code, and it can’t be ignored. That means if you have a bug in your code and it is ignoring every signal, you can
always

 stop the process with kill -KILL
 .

 Note

SIGSTOP can’t be ignored either. It’s used to pause your process.

kill -KILL <pid> will always kill your program.

Send signals with raise()

Sometimes you might want a process to send a signal to itself, which you can do with the raise()
 command.

raise(SIGTERM);

Normally, the raise()
 command is used inside your own custom signal handlers. It means your code can receive a signal for something minor and then choose to raise a more serious signal.

This is called
signal escalation

 .

Sending your code a wake-up call

 The operating system sends signals to a process when something has happened that the process needs to know about. It might be that the user has tried to interrupt the process, or someone has tried to kill it, or even that the process has tried to do something it shouldn’t have, like trying to access a restricted piece of memory.

But signals are not just used when things go wrong. Sometimes a process might actually want to generate its own signals. One example of that is the
alarm signal

 ,

SIGALRM

 . The alarm signal is usually created by the process’s
interval timer

 . The interval timer is like an alarm clock: you set it for some time in the future, and in the meantime your program can go and do something else:

 [image: image with no caption]

 [image: image with no caption]

But even though your program is busy doing other things, the timer is still running in the background. That means that when the 120 seconds are up...

...the timer fires a SIGALRM signal

When a process receives a signal, it
stops doing everything else

 and handles the signal. But what does a process do with an alarm signal by default? It stops the process
 . It’s really unlikely that you would ever want a timer to kill your program for you, so most of the time you will set the handler to do something else:

 [image: image with no caption]

Alarm signals let you
multitask

 . If you need to run a particular job every few seconds, or if you want to limit the amount of time you spend doing a job, then alarm signals are a great way of getting a program to interrupt itself
 .

 Watch it!

Don’t use alarm() and sleep() at the same time.

The

 sleep()

function puts your program to sleep for a few seconds, but it works by using the same interval timer as the

 alarm()

function, so if you try to use the two functions at the same time, they will interfere with each other.

Resetting and Ignoring Signals Up Close

 You’ve seen how to set custom signal handlers, but what if you want to restore the default signal handler? Fortunately, the
signal.h

 header has a special symbol

SIG_DFL

 , which means handle it the default way
 .

catch_signal(SIGTERM, SIG_DFL);

 [image: image with no caption]

Also, there’s another symbol,

SIG_IGN

 , that tells the process to completely
ignore

 a signal.

catch_signal(SIGINT, SIG_IGN);

 [image: image with no caption]

But you should be
very careful

 before you choose to ignore a signal. Signals are an important way of controlling — and stopping — processes. If you ignore them, your program will be harder to stop.

There are no Dumb Questions

	

Q:

	

Can I set an alarm for less than a second?

	

A:

	
Yes, but it’s a little more complicated. You need to use a different function called setitimer()
 . It lets you set the process’s interval timer directly in either seconds or fractions of a second.

	

Q:

	

How do I do that?

	

A:

	
Go to

http://tinyurl.com/3o7hzbm

 for more details.

	

Q:

	

Why is there only one timer for a process?

	

A:

	
The timers have to be managed by the operating system kernel, and if processes had lots of timers, the kernel would go slower and slower. To prevent this from happening, the operating system limits each process to one timer.

	

Q:

	

Timers let me multitask?! Great, so I can use them to do lots of things at once?

	

A:

	
No. Remember, your process will always stop whatever it’s doing when it handles a signal. That means it is still only doing one thing at a time. You’ll see later how you can really make your code do more than one thing at a time.

	

Q:

	

What happens if I set one timer and it had already been set?

	

A:

	
Whenever you call the alarm()
 function, you reset the timer. That means if you set the alarm for 10 seconds, then a moment later you set it for 10 minutes, the alarm won’t fire until 10 minutes are up. The original 10-second timer will be lost.

Long Exercise

 This is the source code for a program that tests the user’s math skills. It asks the user to work the answer to a simple multiplication problem and keeps track of how many answers he got right. The program will keep running forever, unless:

	The user presses Ctrl-C, or

	The user takes more than
five seconds

 to answer the question.

When the program ends, it will display the final score and set the exit status to 0.

 [image: image with no caption]

 [image: image with no caption]

Long Exercise Solution

This is the source code for a program that tests the user’s math skills. It asks the user to work the answer to a simple multiplication problem and keeps track of how many answers he got right. The program will keep running forever, unless:

	The user presses Ctrl-C, or

	The user takes more than
five seconds

 to answer the question.

When the program ends, it will display the final score and set the exit status to 0.

 [image: image with no caption]

 [image: image with no caption]

Test Drive

To see if the program works, you need to run it a couple of times.

Test 1: hit Ctrl-C

The first time, you’ll answer a few questions and then hit Ctrl-C.

Ctrl-C sends the process an interrupt signal (SIGINT
) that makes the program display the final score and then exit()
 .

 [image: image with no caption]

Test 2: wait five seconds

The second time, instead of hitting Ctrl-C, wait for at least five seconds on one of the answers and see what happens.

The alarm signal (SIGALRM
) fires. The program was waiting for the user to enter an answer, but because he took so long, the timer signal was sent; the process immediately switches to the times_up()
 handler function. The handler displays the “TIME’S UP!” message and then escalates the signal to a SIGINT
 that causes the program to display the final score.

 [image: image with no caption]

Signals are a little complex, but incredibly useful. They allow your programs to end gracefully, and the interval timer can help you deal with tasks that are taking too long.

There are no Dumb Questions

	

Q:

	

Are signals always received in the same order they are sent?

	

A:

	
Not if they are sent very close together. The operating system might choose to reorder the signals if it thinks one is more important than the others.

	

Q:

	

Is that always true?

	

A:

	
It depends on the platform. On most versions of Cygwin, for example, the signals will always be sent and received in the same order. But in general, you shouldn’t rely on it.

	

Q:

	

If I send the same signal twice, will it be received twice by the process?

	

A:

	
Again, it depends. On Linux and the Mac, if the same signal is repeated very quickly, the kernel might choose to only send the signal once to the process. On Cygwin, it will always send both signals. But again, you should not assume that just because you sent the same signal twice, it will be received twice.

Bullet Points

	The operating system talks to processes using signals.

	Programs are normally stopped using signals.

	When a process receives a signal, it runs a handler.

	For most error signals, the default handler stops the program.

	Handlers can be replaced with the signal()
 function.

	You can send signals to yourself with raise()
 .

	The interval timer sends SIGALRM
 signals.

	The alarm()
 function sets the interval timer.

	There is one timer per process.

	Don’t use sleep(
) and alarm()
 at the same time.

	
kill
 sends signals to a process.

	
kill -KILL
 will always kill a process.

Your C Toolbox

You’ve got Chapter 10
 under your belt, and now you’ve added interprocess communication to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 11. Sockets and Networking: There’s no place like 127.0.0.1

 [image: image with no caption]

Programs on different machines need to talk to each other.

You’ve learned how to use I/O to communicate with files and how processes on the same machine can communicate with each other. Now you’re going to
reach out to the rest of the world

 , and learn how to write C programs that can talk to other programs
across the network

 and
across the

 world
 . By the end of this chapter, you’ll be able to create
programs that behave as servers

 and
programs that behave as clients

 .

The Internet knock-knock server

 C is used to write most of the low-level networking code on the Internet. Most networked applications need two separate programs: a
server

 and a
client

 .

You’re going to build a server in C that tells jokes over the Internet. You’ll be able to start the server on one machine like this:

 [image: image with no caption]

Other than telling you it’s running, the server won’t display anything else on the screen. However, if you open a second console, you’ll be able to connect to the server using a client program called
telnet

 . Telnet takes two parameters: the
address

 of the server, and the
port

 the server is running on. If you are running telnet on the same machine as the server, you can use

127.0.0.1

 for the address:

 [image: image with no caption]

 Watch it!

You’ll be using telnet quite a lot in this chapter to test our server code.

If you try to use the built-in Windows telnet, you might have problems because of the way it communicates with the network. If you install the Cygwin version of telnet, you should be fine.

Do this!

	
You will need a
telnet

 program in order to connect to the server. Most systems come with telnet already installed. You can check that you have telnet by typing:

	

telnet

	
on the command line.

	
If you
don’t

 have telnet, you can install it in one of these ways:

	

Cygwin:

	
Run the setup.exe
 program for Cygwin and search for
telnet

 .

	

Linux:

	
Search for
telnet

 in your package manager. On many systems, the package manager is called
Synaptic

 .

	

Mac:

	
If you don’t have telnet, you can install it from

www.macports.org

 or

www.finkproject.org

 .

Knock-knock server overview

 The server will be able to talk to several clients at once. The client and the server will have a
structured conversation

 called a
protocol

 . There are different protocols used on the Internet. Some of them are
low-level

 protocols, like the
internet protocol

 (IP), which are used to control how binary 1s and 0s are sent around the Internet. Other protocols are
high-level

 protocols, like the
hypertext transfer protocol

 (HTTP), which controls how web browsers talk to web servers. The joke server is going to use a custom high-level protocol called the
Internet knock-knock protocol

 (IKKP).

A protocol
 is a structured conversation.

 [image: image with no caption]

The client and the server will exchange messages like this:

 [image: image with no caption]

A
protocol

 always has a strict set of rules. As long as the client and the server both follow those rules, everything is fine. But if one of them breaks the rules, the conversation usually stops pretty abruptly.

 [image: image with no caption]

BLAB: how servers talk to the Internet

 When C programs need to talk to the outside world, they use
data streams

 to read and write bytes. You’ve used data streams that are connected to the files or Standard Input and Output. But if you’re going to write a program to talk to the network, you need a new kind of data stream called a socket
 .

 [image: image with no caption]

Before a server can use a socket to talk to a client program, it needs to go through four stages that you can remember with the acronym
BLAB

 :
Bind, Listen, Accept, Begin

 .

Bind to a port.

Listen.

Accept a connection.

Begin talking.

1. Bind to a port

A computer might need to run several server programs at once. It might be sending out web pages, posting email, and running a chat server all at the same time. To prevent the different conversations from getting confused, each server uses a different
port

 . A port is just like a channel on a TV. Different ports are used for different network services, just like different channels are used for different content.

When a server starts up, it needs to tell the operating system which port it’s going to use. This is called binding the port
 . The knock-knock server is going to use port 30000, and to bind it you’ll need two things: the
socket descriptor

 and a
socket name

 . A socket name is just a struct
 that means “Internet port 30000.”

 [image: image with no caption]

 [image: image with no caption]

2. Listen

 If your server becomes popular, you’ll probably get lots of clients connecting to it at once. Would you like the clients to wait in a queue for a connection? The listen()
 system call tells the operating system how long you want the queue to be:

 [image: image with no caption]

Calling listen()
 with a queue length of 10 means that up to 10 clients can try to connect to the server at once. They won’t all be immediately answered, but they’ll be able to wait. The 11th client will be told the server is too busy.

 [image: image with no caption]

3. Accept a connection

Once you’ve bound a port and set up a listen queue, you then just have to...wait. Servers spend most of their lives waiting for clients to contact them. The accept()
 system call waits until a client contacts the server, and then it returns a
second socket descriptor

 that you can use to hold a conversation on.

 [image: image with no caption]

This new
connection descriptor

 (connect_d
) is the one that the server will use to...

Begin talking.

 Brain Barbell

Why do you think the accept()
 system call creates the descriptor for a new socket? Why don’t servers just use the socket they created to listen to the port?

A socket’s not your typical data stream

 So far, data streams have all been the same. Whether you’re connected to files or Standard Input/Output, you’ve been able to use functions like fprintf()
 and fscanf()
 to talk to them. But sockets are a little different. A socket is
two way

 : it can be used for input
and

 output. That means it needs different functions to talk to it.

If you want to output data on a socket, you can’t use fprintf()
 . Instead, you use a function called

send()

 :

 [image: image with no caption]

Remember

 : it’s important to always check the return value of system calls like send()
 . Network errors are really common, and your servers will have to cope with them.

 Geek Bits

What port should I use?

You need to be careful when you choose a port number for a server application. There are lots of different servers available, and you need to make sure you don’t use a port number that’s normally used for some other program. On Cygwin and most Unix-style machines, you’ll find a file called /etc/services
 that lists the ports used by most of the common servers. When you choose a port, make sure there isn’t another application that already uses the same one.

Port numbers can be between 0 and 65535, and you need to decide whether you want to use a low number (< 1024) or a high one. Port numbers that are lower than 1024 are usually only available to the superuser or administrator on most systems. This is because the low port numbers are reserved for well-known services, like web servers and email servers. Operating systems restrict these ports to administrators only, to prevent ordinary users from starting unwanted services.

Most of the time, you’ll probably want to use a port number greater than 1024.

Sharpen your pencil

 This server generates random advice for any client that connects to it, but it’s not quite complete. You need to fill in the missing system calls. Also, this version of the code will send back a single piece of advice and then end. Part of the code needs to be inside a loop. Which part?

 [image: image with no caption]

And for a bonus point, if you add in the missing #include
 statements, the program will work. But what has the programmer missed out?
Hint: look at the system calls.

The programmer has forgotten to ______________________________

Sharpen your pencil: Solution

 This server generates random advice for any client that connects to it, but it’s not quite complete. You needed to fill in the missing system calls. Also, this version of the code will send back a single piece of advice and then end. Part of the code needs to be inside a loop. Which part?

 [image: image with no caption]

And for a bonus point, if you add in the missing #include
 statements, the program will work. But what has the programmer missed out?
Hint: look at the system calls.

 [image: image with no caption]

Test Drive

Let’s compile the advice server and see what happens.

 [image: image with no caption]

Then, while the server is still running, open a second console and connect to the server using telnet a couple of times.

 [image: image with no caption]

That’s great, the server works. Here, you’re using 127.0.0.1 as the IP address, because the client is running on the same machine as the server. But you could have connected to the server from anywhere on the network and we’d have gotten the same response.

 [image: image with no caption]

Sometimes the server doesn’t start properly

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

The server
looks

 like it’s starting correctly the second time, but the client can’t get any response from it. Why is that?

Remember that the code was written
without any error checking

 . Let’s add a little error check into the code and see if we can figure out what’s happening.

Why your mom always told you to check for errors

 If you add an error check on the line that binds the socket to a port:

 [image: image with no caption]

Then you’ll get a little more information from the server if it is stopped and restarted quickly:

 [image: image with no caption]

If the server has responded to a client and then gets stopped and restarted, the call to the bind system call fails. But because the original version of the program never checked for errors, the rest of the server code ran even though it couldn’t use the server port.

Bound ports are sticky

When you bind a socket to a port, the operating system will prevent anything else from rebinding to it for the next 30 seconds or so, and that includes the program that bound the port in the first place. To get around the problem, you just need to set an option on the socket before you bind it:

ALWAYS
 check for errors on system calls.

 [image: image with no caption]

This code makes the socket
reuse the port

 when it’s bound. That means you can stop and restart the server and there will be no errors when you bind the port a second time.

Reading from the client

 You’ve learned how to send data to the client, but what about
reading

 from the client? In the same way that sockets have a special send()
 function to write data, they also have a

recv()

 function to read data.

<bytes read> = recv(<descriptor>, <buffer>, <bytes to read>, 0);

If someone types in a line of text into a client and hits return, the recv()
 function stores the text into a character array like this:

 [image: image with no caption]

There are a few things to remember:

	

The characters are not terminated with a \0 character.

	

When someone types text in telnet, the string always ends \r\n.

	

The recv() will return the number of characters, or –1 if there’s an error, or 0 if the client has closed the connection.

	

You’re not guaranteed to receive all the characters in a single call to recv().

This last point is important. It means you might have to call recv()
 more than once:

 [image: image with no caption]

That means recv()
 can be tricky to use. It’s best to wrap recv()
 in a function that stores a simple \0
 -terminated string in the array it’s given. Something like this:

 [image: image with no caption]

 Go Off Piste

This is one way of simplifying recv()
 , but could
you

 do better? Why not write your own version of read_in()
 and let us know at
headfirstlabs.com

 .

 [image: image with no caption]

Ready-Bake Code

Here are some other functions that are useful when you are writing a server. Do you understand how each of them works?

 [image: image with no caption]

Now that you have a set of server functions, let’s try them out...

Long Exercise

 Now it’s time to write the code for the
Internet knock-knock server

 . You’re going to write a little more code than usual, but you’ll be able to use the ready-bake code from the previous page. Here’s the start of the program.

 [image: image with no caption]

 [image: image with no caption]

Now it’s over to you to write the main function. You’ll need to create a new server socket and store it in listener_d
 . The socket will be bound to port 30000, and the queue depth should be set to 10. Once that’s done, you need to write code that works like this:

 [image: image with no caption]

Try to check error codes and if the user says the wrong thing, just send an error message, close the connection, and then wait for another client.

Good luck!

Long Exercise Solution

Now it’s time to write the code for the
Internet knock-knock server

 . You were to write a little more code than usual, but you’ll be able to use the ready-bake code from the previous page. Here’s the start of the program.

 [image: image with no caption]

 [image: image with no caption]

This is the kind of code you should have written. Is yours similar? It doesn’t matter if the code is
exactly

 the same. The important thing is that your code can tell the joke in the right way, and cope with errors.

 [image: image with no caption]

Test Drive

Now that you’ve written the knock-knock server, it’s time to compile it and fire it up.

 [image: image with no caption]

The server’s waiting for a connection, so open a separate console and connect to it with telnet:

 [image: image with no caption]

The server can tell you a joke, but what happens if you break the protocol and send back an invalid response?

 [image: image with no caption]

The server is able to validate the data you send it and close the connection immediately. Once you’re done running the server, you can switch back to the server window and hit Ctrl-C to close it down neatly. It even sends you a farewell message:

 [image: image with no caption]

That’s great! The server does everything you need it to do.

Or does it?

The server can only talk to one person at a time

 There’s a problem with the current server code. Imagine someone connects to it and he is a little slow with his responses:

 [image: image with no caption]

Then, if someone else tries to get through to the server, she can’t; it’s busy with the first guy:

 [image: image with no caption]

The problem is that the server is still busy talking to the first guy. The main server socket will keep the client waiting until the server calls the accept()
 system call again. But because of the guy already connected, it will be some time before that happens.

 Brain Power

The server can’t respond to the second user, because it is busy dealing with the first. What have you learned that might help you deal with
both

 clients
at once

 ?

You can fork() a process for each client

 When the clients connect to the server, they start to have a conversation on a separate, newly created socket. That means the main server socket is free to go and find another client. So let’s do that.

When a client connects, you can fork()
 a separate child process to deal with the conversation between the server and the client.

 [image: image with no caption]

While the client is talking to the child process, the server’s parent process can go connect to the next client.

 [image: image with no caption]

The parent and child use different sockets

One thing to bear in mind is that the parent server process will only need to use the main listener socket. That’s because the main listener socket is the one that’s used to accept()
 new connections. On the other hand, the child process will only ever need to deal with the secondary socket that gets created by the accept()
 call. That means once the parent has fork
 ed the child, the parent can close the secondary socket and the child can close the main listener socket.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

If I create a new process for each client, what happens if hundreds of clients connect? Will my machine create hundreds of processes?

	

A:

	
Yes. If you think your server will get a lot of clients, you need to control how many processes you create. The child can signal you when it’s finished with a client, and you can use that to maintain a count of current child processes.

Sharpen your pencil

 This is a version of the server code that has been changed to fork
 a separate child process to talk to each client...except it’s not quite finished. See if you can figure out the missing pieces of code.

 [image: image with no caption]

Sharpen your pencil: Solution

This is a version of the server code that has been changed to fork
 a separate child process to talk to each client — except it’s not quite finished. You were to figure out the missing pieces of code.

 [image: image with no caption]

Test Drive

Let’s try the modified version of the server. You can compile and run it in the same way:

 [image: image with no caption]

If you open a separate console and start telnet, you can connect, just like you did before:

 [image: image with no caption]

Everything seems the same, but if you leave the client running with the joke half-told, you should be able to see what’s changed.

If you open a third console, you will see that there are now two processes for the server: one for the parent and one for the child:

 [image: image with no caption]

That means you can connect, even while the first client is still talking to the server:

 [image: image with no caption]

Now that you’ve built an Internet server, let’s go look at what it takes to build a client, by writing something that can read from the Web.

Writing a web client

 What if you want to write your own client program? Is it really
that

 different from a server? To see the similarities and differences, you’re going to write a
web client

 for the hypertext transfer protocol (HTTP).

HTTP is a lot like the Internet knock-knock protocol you coded earlier. All protocols are
structured conversations

 . Every time a web client and server talk, they say the same kind of things. Open telnet and see how to download

http://en.wikipedia.org/wiki/O’Reilly_Media
 .

Do this!

 [image: image with no caption]

When your program connects to the web server, it will need to send at least three things:

 Note

Most web clients actually send a lot more information, but you’ll just send the minimum amount.

	

A GET command

GET /wiki/O'Reilly_Media HTTP/1.1

	

The hostname

Host: en.wikipedia.org

	

A blank line

But before you can send any data at all to the server, you need to make a connection from the client. How do you do that?

Clients are in charge

 Clients and servers communicate using sockets, but the way that each gets hold of a socket is a little different. You’ve already seen that servers
 use the BLAB sequence:

	

Bind a port.

	

Listen.

	

Accept a conversation.

	

Begin talking.

A server spends most of its life waiting for a fresh connection from a client. Until a client connects, a server really can’t do anything. Clients don’t have that problem. A client can connect and start talking to a server whenever it likes. This is the sequence for a client
 :

	

Connect to a remote port.

	

Begin talking.

 [image: image with no caption]

Remote ports and IP addresses

When a server connects to the network, it just has to decide which port it’s going to use. But clients need to know a little more: they need to know the port of the remote server, but they also need to know its
internet protocol (IP) address

 :

 [image: image with no caption]

Internet addresses are kind of hard to remember, which is why most of the time human beings use
domain names

 . A domain name is just an easier-to-remember piece of text like:

www.oreilly.com

Even though human beings prefer domain names, the actual packets of information that flow across the network only use the numeric IP address.

Create a socket for an IP address

 Once your client knows the address and port number of the server, it can create a
client socket

 . Client sockets and server sockets are created the same way:

 [image: image with no caption]

The difference between client and server code is what they do with sockets once they’re created. A server will
bind

 the socket to a
local

 port, but a client will
connect

 the socket to a
remote port

 :

 [image: image with no caption]

 [image: image with no caption]

The above code works only for numeric IP addresses.

To connect a socket to a remote domain name, you’ll need a function called getaddrinfo()
 .

getaddrinfo() gets addresses for domains

 The
domain name system

 is a huge address book. It’s a way of converting a domain name like

www.oreilly.com

 into the kinds of numeric IP addresses that computers need to address the packets of information they send across the network.

 [image: image with no caption]

Create a socket for a domain name

Most of the time, you’ll want your client code to use the DNS system to create sockets. That way, your users won’t have to look up the IP addresses themselves. To use DNS, you need to construct your client sockets in a slightly different way:

 [image: image with no caption]

The getaddrinfo()
 constructs a new data structure on the
heap

 called a
naming resource

 . The naming resource represents a port on a server with a given domain name. Hidden away inside the naming resource is the IP address that the computer will need. Sometimes very large domains can have several IP addresses, but the code here will simply pick one of them. You can then use the naming resource to create a socket.

 [image: image with no caption]

Finally, you can connect to the remote socket. Because the naming resource was created on the heap, you’ll need to tidy it away with a function called

freeaddrinfo()

 :

 [image: image with no caption]

Once you’ve connected a socket to a remote port, you can read and write to it using the same recv()
 and send()
 functions you used for the server. That means you should have enough information now to write a web client...

Code Magnets

 Here is the code for a web client that will download the contents of a page from Wikipedia and display it on the screen. The web page will be passed as an argument to the program. Think carefully about the data you need to send to a web server running HTTP.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Code Magnets Solution

Here is the code for a web client that will download the contents of a page from Wikipedia and display it on the screen. The web page will be passed as an argument to the program. You were to think carefully about the data you need to send to a web server running HTTP.

 [image: image with no caption]

 [image: image with no caption]

Test Drive

 If you compile and run the web client, you make it download a page from Wikipedia like this:

 [image: image with no caption]

It works!

The client took the name of the page from the command line and then connected to Wikipedia to download the page. Because it’s constructing the
path

 to the file, you need to make sure that the you replace any spaces in the page name with underscore (_) characters.

 Go Off Piste

Why not update the code to automatically replace characters like spaces for you? For more details on how to replace characters for web addresses, see:

http://www.w3schools.com/tags/ref_urlencode.asp

There are no Dumb Questions

	

Q:

	

Should I create sockets with IP addresses or domain names?

	

A:

	
Most of the time, you’ll want to use domain names. They’re easier to remember, and occasionally some servers will change their numeric addresses but keep the same domain names.

	

Q:

	

So, do I even need to know how to connect to a numeric address?

	

A:

	
Yes. If the server you are connecting to is not registered in the domain name system, such as machines on your home network, then you will need to know how to connect by IP.

	

Q:

	

Can I use getaddrinfo()
 with a numeric address?

	

A:

	
Yes, you can. But if you
know

 that the address you are using is a numeric IP, the first version of the client socket code is simpler.

Bullet Points

	A protocol is a structured conversation.

	Servers connect to local ports.

	Clients connect to remote ports.

	Clients and servers both use sockets to communicate.

	You write data to a socket with send()
 .

	You read data from a socket with recv()
 .

	HTTP is the protocol used on the Web.

Your C Toolbox

You’ve got Chapter 11
 under your belt, and now you’ve added sockets and networking to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

Chapter 12. Threads: It’s a parallel world

 [image: image with no caption]

Programs often need to do several things at the same time.

POSIX threads can make your code more responsive by
spinning off several pieces of code to run in parallel

 . But be careful! Threads are powerful tools, but you don’t want them crashing into each other. In this chapter, you’ll learn how to put up
traffic signs

 and
lane markers

 that will prevent a code pileup
 . By the end, you will know how to
create POSIX threads

 and how to use
synchronization mechanisms

 to protect the integrity of sensitive data
 .

Tasks are sequential...or not...

 Imagine you are writing something complex like a game in C. The code will need to perform several different tasks:

 [image: image with no caption]

Not only will your code need to do all of these things, but it will need to do them all at the same time
 . That’s going to be true for many different programs. Chat programs will need to read text from the network and send data to the network at the same time. Media players will need to stream video to the display as well as watch for input from the user controls.

How can your code perform several different tasks at once?

...and processes are not always the answer

 You’ve already learned how to make the computer do several things at once: with processes
 . In the last chapter, you built a network server that could deal with several different clients at once. Each time a new user connected, the server created a new process to handle the new session.

Does that mean that whenever you want to do several things at once, you should just create a separate process? Well, not really, and here’s why.

	

Processes take time to create

	
Some machines take a little while to create new processes. Not much time, but some. If the extra task you want to perform takes just a few hundredths of a second, creating a process each time won’t be very efficient.

	

Processes can’t share data easily

	
When you create a child process, it automatically has a complete copy of all the data from the parent process. But it’s a copy of the data. If the child needs to send data back to the parent, then you need something like a pipe to do that for you.

	

Processes are just plain difficult

	
You need to create a chunk of code to generate processes, and that can make your programs long and messy.

You need something that starts a separate task quickly, can share all of your current data, and won’t need a huge amount of code to build.

You need
threads

 .

Simple processes do one thing at a time

 Say you have a task list with a set of things that you need to do:

 [image: image with no caption]

You can’t do all of the tasks at the same time, not by yourself. If someone comes into the shop, you’ll need to stop stocking the shelves. If it looks like rain, you might stop bookkeeping and get on the roof. If you work in a shop alone, you’re like a simple process: you do one thing after another, but always one thing at a time. Sure, you can switch between tasks to keep everything going, but what if there’s a
blocking operation

 ? What if you’re serving someone at the checkout and the phone rings?

All of the programs you’ve written so far have had a
single thread of execution

 . It’s like there’s only been one person working inside the program’s process.

 [image: image with no caption]

Employ extra staff: use threads

 A
multithreaded

 program is like a shop with several people working in it. If one person is running the checkout, another is filling the shelves, and someone else is waxing the surfboards, then everybody can work without interruptions. If one person answers the phone, it won’t stop the other people in the shop.

 [image: image with no caption]

In the same way that several people can work in the same shop, you can have several threads living inside the same process. All of the threads will have access to the same piece of heap memory. They will all be able to read and write to the same files and talk on the same network sockets. If one thread changes a global variable, all of the other threads will see the change immediately.

That means you can give each thread a separate task and they’ll all be performed at the same time.

 [image: image with no caption]

How do you create threads?

 There are a few thread libraries, and you’re going to use one of the most popular: the
POSIX thread library

 , or

pthread

 . You can use the pthread
 library on Cygwin, Linux, and the Mac.

Let’s say you want to run these two functions in separate threads:

 [image: image with no caption]

Did you notice that both functions return a
void pointer

 ? Remember, a void pointer can be used to point to any piece of data in memory, and you’ll need to make sure that your thread functions have a

void*

 return type.

You’re going to run each of these functions inside its own thread.

 [image: image with no caption]

You’ll need to run both of these functions in parallel in separate threads. Let’s see how to do that.

Create threads with pthread_create

 To run these functions, you’ll need a little setup code, like some headers and maybe an error()
 function that you can call if there’s a problem.

 [image: image with no caption]

But then you can start the code for your main function. You’re going to create two threads, and each one needs to have its info stored in a

pthread_t

 data structure. Then you can create and run a thread with

pthread_create()

 .

 [image: image with no caption]

That code will run your two functions in separate threads. But you’ve not quite finished yet. If your program just ran this and then finished, the threads would be killed when the program ended. So you need to wait for your threads to finish:

 [image: image with no caption]

The pthread_join()
 also receives the return value of your thread function and stores it in a void pointer variable. Once both threads have finished, your program can exit smoothly.

Let’s see if it works.

Test Drive

 Because you’re using the pthread
 library, you’ll need to make sure you link it when you compile your program, like this:

 [image: image with no caption]

When you run the code, you’ll see both functions running at the same time:

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

If both functions are running at the same time, why don’t the letters in the messages get mixed up? Each message is on its own line.

	

A:

	
That’s because of the way the Standard Output works. The text from puts()
 will all get output at once.

	

Q:

	

I removed the sleep()
 function, and the output showed all the output from one function and then all the output from the other function. Why is that?

	

A:

	
Most machines will run the code so quickly that without the sleep()
 call, the first function will finish before the second thread starts running.

Beer Magnets

 It’s time for a really BIG party. This code runs 20 threads that count the number of beers down from 2,000,000. See if you can spot the missing code, and if you get the answer right, celebrate by cracking open a couple of cold ones yourself.

 [image: image with no caption]

Beer Magnets Solution

It’s time for a really BIG party. This code runs 20 threads that count the number of beers down from 2,000,000. You were to spot the missing code.

 [image: image with no caption]

Test Drive

Let’s take a closer look at that last program. If you compile and run the code a few times, this happens:

 [image: image with no caption]

The code usually doesn’t reduce the beers variable to zero.

That’s really odd. The beers
 variable begins with a value of 2 million. Then 20 threads each try to reduce the value by 100,000. Shouldn’t that mean that the beers
 variable
always

 goes to zero?

 Brain Power

Look carefully at the code again, and try to imagine what will happen if several threads are running it at the same time. Why is the result unpredictable? Why doesn’t the beers
 variable get set to zero when all the threads have run? Write your answer below.

The code is not thread-safe

 The great thing about threads is that lots of different tasks can run at the same time and have access to the same data. The downside is that all those different threads have access to the same data...

Unlike the first program, the threads in the second program are all reading and changing a shared piece of memory: the beers
 variable. To understand what’s going on, let’s see what happens if two threads try to reduce the value of beers
 using this line of code:

 [image: image with no caption]

	

First of all, both threads will need to read the current value of the beers variable.

 [image: image with no caption]

	

Then, each thread will subtract 1 from the number.

 [image: image with no caption]

	

Finally, each thread stores the value for beers–1 back into the beers variable.

 [image: image with no caption]

Even though both of the threads were trying to reduce the value of beers
 by 1, they didn’t succeed. Instead of reducing the value by 2, they only decreased it by 1. That’s why the beers
 variable didn’t get reduced to zero — the threads kept getting in the way of each other.

And why was the result so unpredictable? Because the threads didn’t always run the line of code at exactly the same time. Sometimes the threads didn’t crash into each other, and sometimes they did.

 Watch it!

Be careful to look out for code that isn’t thread-safe.

How will you know? Usually, if two threads read and write to the same variable, it’s not.

You need to add traffic signals

 [image: image with no caption]

 Multithreaded programs can be powerful, but they can also behave in unpredictable ways, unless you put some controls in place.

Imagine two cars want to pass down the same narrow stretch of road. To prevent an accident, you can add traffic signals. Those traffic signals prevent the cars from getting access to a shared resource (the road) at the same time.

It’s the same thing when you want two or more threads to access a shared data resource: you need to add traffic signals so that no two threads can read the data and write it back at the same time.

 [image: image with no caption]

The traffic signals that prevent threads from crashing into each other are called
mutexes

 , and they are one of the simplest ways of making your code thread-safe.

 Note

Mutexes are sometimes just called locks.

MUT-EX = MUTually EXclusive.

Use a mutex as a traffic signal

 To protect a section of code, you will need to create a mutex lock like this:

pthread_mutex_t a_lock = PTHREAD_MUTEX_INITIALIZER;

The mutex needs to be visible to all of the threads that might crash into each other, so that means you’ll probably want to create it as a
global variable

 .

PTHREAD_MUTEX_INITIALIZER
 is actually a macro. When the compiler sees that, it will insert all of the code your program needs to create the mutex lock properly.

	

Red means stop.

At the beginning of your sensitive code section, you need to place your first traffic signal. The pthread_mutex_lock()
 will let only
one thread

 get past. All the other threads will have to wait when they get to it.

 [image: image with no caption]

	

Green means go.

When the thread gets to the end of the sensitive code, it makes a call to pthread_mutex_unlock()
 . That sets the traffic signal back to green, and another thread is allowed onto the sensitive code:

 [image: image with no caption]

/* ...End of sensitive code */

pthread_mutex_unlock(&a_lock);

Now that you know how to create locks in your code, you have a lot of control over exactly how your threads will work.

Passing Long Values to Thread Functions Up Close

 Thread functions can accept a single void pointer parameter and return a single void pointer value. Quite often, you will want to pass and return integer values to a thread, and one trick is to use

long

 values. long
 s can be stored in void pointers because they are the same size.

 [image: image with no caption]

Long Exercise

 There’s no simple way to decide where to put the locks in your code. Where you put them will change the way the code performs. Here are two versions of the drink_lots()
 function that lock the code in different ways.

Version A

	
pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;
void* drink_lots(void *a)
{
 int i;
 pthread_mutex_lock(&beers_lock);
 for (i = 0; i < 100000; i++) {
 beers = beers - 1;
 }
 pthread_mutex_unlock(&beers_lock);
 printf("beers = %i\n", beers);
 return NULL;
}

Version B

	
pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;
void* drink_lots(void *a)
{
 int i;
 for (i = 0; i < 100000; i++) {
 pthread_mutex_lock(&beers_lock);
 beers = beers - 1;
 pthread_mutex_unlock(&beers_lock);
 }
 printf("beers = %i\n", beers);
 return NULL;
}

Both pieces of code use a mutex to protect the beers
 variable, and each now displays the value of beers
 before they exit, but because they are locking the code in different places, they generate different output on the screen.

Can you figure out which version produced each of these two runs?

 [image: image with no caption]

Long Exercise Solution

There’s no simple way to decide where to put the locks in your code. Where you put them will change the way the code performs. Here are two versions of the drink_lots()
 function that lock the code in different ways.

 [image: image with no caption]

Both pieces of code use a mutex to protect the beers
 variable, and each now displays the value of beers
 before they exit, but because they are locking the code in different places, they generate different output on the screen.

You were to figure out which version produced each of these two runs.

Congratulations! You’ve (almost) reached the end of the book. Now it’s time to crack open one of those 2,000,000 bottles of beer and celebrate!

 You’re now in a great position to decide what
kind

 of C coder you want to be. Do you want to be a
Linux hacker

 using pure C? Or a
maker

 writing embedded C in small devices like the Arduino? Maybe you want to go on to be a
games developer

 in C++? Or a
Mac and iOS programmer

 in Objective-C?

Whatever you choose to do, you’re now part of the community that uses and loves the language that has created more software than any other. The language behind the Internet and almost every operating system. The language that’s used to
write almost all the other languages

 . And the language that can write for almost every processor in existence, from watches and phones to planes and satellites.

New C Hacker, we salute you!

There are no Dumb Questions

	

Q:

	

Does my machine have to have multiple processors to support threads?

	

A:

	
No. Most machines have processors with multiple
cores

 , which means that their CPUs contain miniprocessors that can do several things at once. But even if your code is running on a single core/single processor, you will still be able to run threads.

	

Q:

	

How?

	

A:

	
The operating system will switch rapidly between the threads and make it appear that it is running several things at once.

	

Q:

	

Will threads make my programs faster?

	

A:

	
Not necessarily. While threads can help you use more of the processors and cores on your machine, you need to be careful about the amount of locking your code needs to do. If your threads are locked too often, your code may run as slowly as single-threaded code.

	

Q:

	

How can I design my thread code to be fast?

	

A:

	
Try to reduce the amount of data that threads need to access. If threads don’t access a lot of shared data, they won’t need to lock each other out so often and will be much more efficient.

	

Q:

	

Are threads faster than separate processes?

	

A:

	
They usually are, simply because it takes a little more time to create processes than it does to create extra threads.

	

Q:

	

I’ve heard that mutexes can lead to “deadlocks.” What are they?

	

A:

	
Say you have two threads, and they both want to get mutexes A and B. If the first thread already has A, and the second thread already has B, then the threads will be deadlocked. This is because the first thread can’t get mutex B and the second thread can’t get mutex A. They both come to a standstill.

Your C Toolbox

You’ve got Chapter 12
 under your belt, and now you’ve added threads to your toolbox. For a complete list of tooltips in the book, see Appendix B
 .

 [image: image with no caption]

C Lab 3: Blasteroids

 This lab gives you a spec that describes a program for you to build, using the knowledge you’ve gained over the last few chapters.

This project is bigger than the ones you’ve seen so far. So read the whole thing before you get started, and give yourself a little time. And don’t worry if you get stuck; there are no new C concepts in here, so you can move on in the book and come back to the lab later.

We’ve filled in a few design details for you, and we’ve made sure you’ve got all the pieces you need to write the code.

It’s up to you to finish the job

 , but we won’t give you the code for the answer.

Write the arcade game Blasteroids

 Of course, one of the
real

 reasons people want to learn C is so they can write
games

 . In this lab, you’re going to pay tribute to one of the most popular and long-lived video games of them all.
It’s time to write

 Blasteroids!

 [image: image with no caption]

Your mission: blast the asteroids without getting hit

 Sinister. Hollow. And all strangely similar. The asteroids are the bad guys in this game. They float and rotate slowly across the screen, promising instant death to any passing space traveler who happens to meet them.

 [image: image with no caption]

Welcome to the starship
Vectorize

 ! This is the ship that you will fly around the screen using your keyboard. It’s armed with a cannon that can fire at passing asteroids.

If an asteroid is hit by a blast from the spaceship’s cannon, it immediately splits into two, and the player’s score increases by 100 points. Once an asteroid has been hit a couple of times, it’s removed from the screen.

 [image: image with no caption]

If the ship gets hit by an asteroid, you lose a life. You have three lives, and when you lose the last one, that’s the end of the game.

 [image: image with no caption]

Allegro

 Allegro is an open source game development library that allows you to create, compile, and run game code across different operating systems. It works with Windows, Linux, Mac OS, and even phones.

Allegro is pretty straightforward to use, but just because it’s a simple library doesn’t mean it lacks power. Allegro can deal with sound, graphics, animation, device handling, and even 3D graphics if your machine supports OpenGL.

 Note

OpenGL is an open standard for graphics processors. You describe your 3D objects to OpenGL, and it handles (most) of the math for you.

Installing Allegro

You can get the source for Allegro over at the Allegro SourceForge website:

 [image: image with no caption]

You can download, build, and install the latest code from the source repository. There are instructions on the site that will tell you exactly how to do that for your operating system.

You may need CMake

When you build the code, you will probably also need to install an extra tool called

CMake

 . CMake
 is a build tool that makes it a little easier to build C programs on different operating systems. If you need CMake
 , you will find all you need over at

http://www.cmake.org

 .

 Watch it!

The code we’ve supplied in this lab is for version 5 of Allegro.

If you download and install a newer version, you may need to make a few changes.

What does Allegro do for you?

 The Allegro library deals with several things:

	

GUIs

Allegro will create a simple window to contain your game. This might not seem like a big deal, but different operating systems have
very

 different ways of creating windows and then allowing them to interact with the keyboard and the mouse.

	

Events

Whenever you hit a key, move a mouse, or click on something, your system generates an
event

 . An event is just a piece of data that says what happened. Events are usually put onto queues and then sent to applications. Allegro makes it simple to respond to events so that you can easily, say, write code that will run if a user fires her canyon by hitting the spacebar.

	

Timers

You’ve already looked at timers at the system level. Allegro provides a straightforward way to give your game a
heartbeat

 . All games have some sort of heartbeat that runs so many times a second to make sure the game display is continuously updated. Using a timer, you can create a game that, for example, displays a fresh version of the screen at 60 frames per second (FPS).

	

Graphics buffering

To make your game run smoothly, Allegro uses
double buffering

 . Double buffering is a game-development technique that allows you to draw all of your graphics in an offscreen buffer before displaying it on the screen. Because an entire frame of animation is displayed all at once, your game will run much more smoothly.

	

Graphics and transformations

Allegro comes with a set of built-in graphics
primitives

 that allow you to draw lines, curves, text, solids, and pictures. If you have an OpenGL driver for your graphics card, you can even do 3D. In addition to all of this, Allegro also supports
transformations

 . Transformations allow you to rotate, translate, and scale the graphics on the screen, which makes it easy to create animated spaceships and floating rocks that can move and turn on the screen.

	

Sounds

Allegro has a full sound library that will allow you to build sounds into your game.

Building the game

 You’ll need to decide how you’re going to structure your source code. Most C programmers would probably break down the code into separate source files. That way, not only will you be able to recompile your game quicker, but you’ll also be dealing with smaller chunks of code at a time. That will make the whole process a lot less confusing.

There are many, many ways of splitting up your code, but one way is to have a separate source file for each element that will be displayed in the game:

 [image: image with no caption]

The spaceship

 When you’re controlling lots of objects on a screen, it’s useful to create a struct
 for each one. Use this for the spaceship:

 [image: image with no caption]

What the spaceship looks like

If you set up your code to draw around the
origin

 (discussed later), then you could draw the ship using code like this:

The variable s
 is a pointer to a Spaceship struct
 . Make the ship green.

 [image: image with no caption]

	
al_draw_line(-8, 9, 0, -11, s->color, 3.0f);
al_draw_line(0, -11, 8, 9, s->color, 3.0f);
al_draw_line(-6, 4, -1, 4, s->color, 3.0f);
al_draw_line(6, 4, 1, 4, s->color, 3.0f);

Collisions

If your spaceship collides with a rock, it dies immediately and the player loses a life. For the first five seconds after a new ship is created, it doesn’t check for collisions. The new ship should appear in the center of the screen.

Spaceship behavior

 The spaceship starts the game stationary in the center of the screen. To make it move around the screen, you need to make it respond to keypresses:

 [image: image with no caption]

Make sure the ship doesn’t accelerate too much. You probably don’t want the spaceship to move forward more than a couple hundred pixels per second. The spaceship should never go into reverse.

Reading keypresses

 The C language is used to write code for almost every piece of computer hardware in the world. But the strange thing is, there’s no standard way to read a keypress using C. All of the standard functions, like fgets()
 , read only the keys once the return key has been pressed. But Allegro
does

 allow you to read keypresses. Every event that’s sent to an Allegro game comes in via a
queue

 . That’s just a list of data that describes which keys have been pressed, where the mouse is, and so on. Somewhere, you’ll need a loop that waits for an event to appear on the queue.

 Note

Even functions such as getchar() tend to buffer any characters you type until you hit return.

 [image: image with no caption]

Once you receive an event, you need to decide if it represents a keypress or not. You can do that by reading its type.

 [image: image with no caption]

The blast

 Take that, you son of a space pebble! The spaceship’s cannon can fire blasts across the screen, and it’s your job to make sure they move across the screen. This is the struct
 for a blast:

	
typedef struct {
 float sx;
 float sy;
 float heading;
 float speed;
 int gone;
 ALLEGRO_COLOR color;
} Blast;

Blast appearance

The blast is a dashed line. If the user hits the fire key rapidly, the blasts will overlay each other and the line will look more solid. That way, rapid firing will give the impression of increased firepower.

 [image: image with no caption]

Blast behavior

Unlike the other objects you’ll be animating, blasts that disappear off the screen won’t reappear. That means you’ll need to write code that can easily create and destroy blasts. Blasts are always fired in the direction the ship is heading, and they always travel in a straight line at a constant speed — say, three times the maximum speed of the ship. If a blast collides with an asteroid, the asteroid will divide into two.

The asteroid

 Use this struct
 for each asteroid:

 [image: image with no caption]

Asteroid appearance

This is the code to draw an asteroid around the origin:

	
al_draw_line(-20, 20, -25, 5, a->color, 2.0f);
al_draw_line(-25, 5, -25, -10, a->color, 2.0f);
al_draw_line(-25, -10, -5, -10, a->color, 2.0f);
al_draw_line(-5, -10, -10, -20, a->color, 2.0f);
al_draw_line(-10, -20, 5, -20, a->color, 2.0f);
al_draw_line(5, -20, 20, -10, a->color, 2.0f);
al_draw_line(20, -10, 20, -5, a->color, 2.0f);
al_draw_line(20, -5, 0, 0, a->color, 2.0f);
al_draw_line(0, 0, 20, 10, a->color, 2.0f);
al_draw_line(20, 10, 10, 20, a->color, 2.0f);
al_draw_line(10, 20, 0, 15, a->color, 2.0f);
al_draw_line(0, 15, -20, 20, a->color, 2.0f);

How the asteroid moves

 Asteroids move in a straight line across the screen. Even though they move in a straight line, they continually rotate about their centers. If an asteroid drifts off one side of the screen, it immediately appears on the other.

 [image: image with no caption]

When the asteroid is hit by a blast

If an asteroid is hit by a blast from the spaceship’s cannon, it immediately splits into two. Each of these parts will be half the size of the original asteroid. Once an asteroid has been hit/split a couple of times, it is removed from the screen. The player’s score increases with each hit by 100 points. You will need to decide how you will record the set of asteroids on the screen. Will you create one huge array? Or will you use a linked list?

 [image: image with no caption]

The game status

There are a couple of things you need to display on the screen: the number of lives you have left and the current score. When you’ve run out of lives, you need to display “Game Over!” in big, friendly letters in the middle of the screen.

Use transformations to move things around

 You’ll need to animate things around the screen. The spaceship will need to fly, and the asteroids will need to rotate, drift, and even change size. Rotations, translations, and scaling require quite a lot of math to work out. But Allegro comes with a whole bunch of
transformations

 built in.

When you’re drawing an object, like a spaceship, you should probably just worry about drawing it around the
origin

 . The origin is the top-left corner of the screen and has coordinates (0, 0). The x-coordinates go across the screen, and the y-coordinates go down. You can use transformations to move the origin to where the object needs to be on the screen and then rotate it to point the correct way. Once that’s all done, all you need to do is draw your object at the origin and everything will be in the right place.

For example, this is one way you might draw the spaceship on the screen:

	
void draw_ship(Spaceship* s)
{
 ALLEGRO_TRANSFORM transform;
 al_identity_transform(&transform);
 al_rotate_transform(&transform, DEGREES(s->heading));
 al_translate_transform(&transform, s->sx, s->sy);
 al_use_transform(&transform);
 al_draw_line(-8, 9, 0, -11, s->color, 3.0f);
 al_draw_line(0, -11, 8, 9, s->color, 3.0f);
 al_draw_line(-6, 4, -1, 4, s->color, 3.0f);
 al_draw_line(6, 4, 1, 4, s->color, 3.0f);
}

The finished product

 When you’re done, it’s time to play
Blasteroids

 !

 [image: image with no caption]

There are lots of other things you could do to enhance the game. As an example, why not try to get it working with OpenCV? Let us know how you get on at Head First Labs.

Leaving town...

 [image: image with no caption]

It’s been great having you here in Cville!

We’re sad to see you leave,

 but there’s nothing like taking what you’ve learned and putting it to use. There are still a few more gems for you in the back of the book and an index to read through, and then it’s time to take all these new ideas and put them into practice. We’re dying to hear how things go, so drop us a line
 at the Head First Labs website,
www.headfirstlabs.com

 , and let us know how C is paying off for
YOU

 !

Appendix A. Leftovers: The top ten things (we didn’t cover)

 [image: image with no caption]

Even after all that, there’s still a bit more.

There are just a few more things we think you need to know. We wouldn’t feel right about ignoring them, even though they need only a brief mention, and we really wanted to give you a book you’d be able to lift without extensive training at the local gym. So before you put the book down,
read through these tidbits

 .

#1. Operators

 We’ve used a few operators in this book, like the basic
arithmetic operators

 +
 , -
 , *
 , and /
 , but there are many other operators available in C that can make your life easier.

Increments and decrements

An
increment

 and a
decrement

 increase and decrease a number by 1. That’s a very common operation in C code, particularly if you have a loop that increments a counter. The C language gives you four simple expressions that simplify increments and decrements:

 [image: image with no caption]

Each of these expressions will change the value of i
 . The position of the ++
 and --
 say whether or not to return the original value of i
 or its new value. For example:

 [image: image with no caption]

The ternary operator

What if you want one value if some condition is true, and a different value if it’s false?

if (x == 1)
 return 2;
else
 return 3;

C has a
ternary operator

 that allows you to compress this code right down to the following:

 [image: image with no caption]

Bit twiddling

 C can be used for low-level programming, and it has a set of operators that let you calculate a new series of bits:

	
Operator

	
Description

	

~a

	
The value of a
 with all the bits flipped

	

a&b

	
AND the bits of a
 and b
 together

	

a | b

	
OR the bits of a
 and b
 together

	

a^b

	
XOR the bits of a
 and b
 together

	

<<

	
Shift bits to the left (increase)

	

>>

	
Shift bits to the right (decrease)

The <<
 operator can be used as a quick way of multiplying an integer by 2. But be careful that numbers don’t overflow.

Commas to separate expressions

You’ve seen for
 loops that perform code at the end of each loop:

 [image: image with no caption]

But what if you want to perform more than one operation at the end of a loop? You can use the comma operator:

 [image: image with no caption]

The comma operator exists because there are times when you don’t want to separate expressions with semicolons.

#2. Preprocessor directives

 You use a preprocessor directive every time you compile a program that includes a header file:

 [image: image with no caption]

The preprocessor scans through your C source file and generates a modified version that will be compiled. In the case of the #include
 directive, the preprocessing inserts the contents of the
stdio.h

 file. Directives always appear at the start of a line, and they always begin with the hash (#
) character. The next most common directive after #include
 is #define
 :

#define

 DAYS_OF_THE_WEEK 7

...

printf("There are %i days of the week\n", DAYS_OF_THE_WEEK);

The #define
 directive creates a
macro

 . The preprocessor will scan through the C source and replace the macro name with the macro’s value. Macros aren’t variables because they can never change at runtime. Macros are replaced
before

 the program even compiles. You can even create macros that work a little like functions:

 [image: image with no caption]

The preprocessor will replace ADD_ONE(3)
 with ((3) + 1)
 before the program is compiled.

Conditions

You can also use the preprocessor for
conditional compilation

 . You can make it switch parts of the source code on or off:

 [image: image with no caption]

This code will be compiled differently if there is (or isn’t) a macro called SPANISH
 defined.

#3. The static keyword

 Imagine you want to create a function that works like a counter. You could write it like this:

 [image: image with no caption]

What’s the problem with this code? It uses a global variable called count
 . Any other function can change the value of count
 because it’s in the global scope. If you start to write large programs, you need to be careful that you don’t have too many global variables because they can lead to buggy code. Fortunately, C lets you create a
global

 variable that is available only inside the
local

 scope of a function:

 [image: image with no caption]

The static
 keyword will store the variable inside the global area of memory, but the compiler will throw an error if some other function tries to access the count
 variable.

static can also make things private

You can also use the static
 keyword outside of functions. static
 in this case means “only code in this
.c

 file can use this.” For example:

 [image: image with no caption]

The static
 keyword
controls the scope

 of something. It will prevent your data and functions from being accessed in ways that they weren’t designed to be.

#4. How big stuff is

 You’ve seen that the sizeof
 operator can tell you how much memory a piece of data will occupy. But what if you want to know what
range of values

 it will hold? For example, if you know that an int
 occupies 4 bytes on your machine, what’s the largest positive number you can store in it? Or the largest negative number? You could, theoretically, work that out based on the number of bytes it uses, but that can be tricky.

Instead, you can use the macros defined in the limits.h
 header. Want to know what the largest long
 value you can use is? It’s given by the LONG_MAX
 macro. How about the most negative short
 ? Use SHRT_MIN
 . Here’s an example program that shows the ranges for int
 s and short
 s:

 [image: image with no caption]

The macro names come from the data types: INT
 (int
), SHRT
 (short
), LONG
 (long
), CHAR
 (char
), FLT
 (float
), DBL
 (double
). Then, you either add _MAX
 (most positive) or _MIN
 (most negative). You can optionally add the prefix U
 (unsigned
), S
 (signed
), or L
 (long
) if you are interested in a more specific data type.

#5. Automated testing

 It’s always important to test your code, and life becomes a lot simpler if you
automate

 the tests. Automated tests are now used by virtually all developers, and there are many, many testing frameworks used by C programmers. One that’s popular at Head First Labs is called
AceUnit

 :

http://aceunit.sourceforge.net/

AceUnit is very similar to the
x

 Unit frameworks in other languages (like nUnit and jUnit).

If you’re writing a command-line tool and you have a Unix-style command shell, then another great tool is called

shunit2

 .

http://code.google.com/p/shunit2/

shunit2
 lets you create shell scripts that test scripts and commands.

#6. More on gcc

 You’ve used the
GNU Compiler Collection

 (gcc
) throughout this book, but you’ve only scratched the surface of what this compiler can do for you. gcc
 is like a Swiss Army knife. It has an immense number of features that give you a tremendous amount of control over the code it produces.

 [image: image with no caption]

Optimization

gcc
 can do a huge amount to improve the performance of your code. If it sees that you’re assigning the same value to a variable every time a loop runs, it can move that assignment outside the loop. If you have a small function that is used only in a few places, it can convert that function into a piece of
inline code

 and insert it into the right places in your program.

It can do lots of optimizations, but most of them are switched off by default. Why? Because optimizations take time for the compiler to perform, and while you’re developing code you normally want your compiles to be
fast

 . Once your code is ready for release, you might want to switch on more optimization. There are four levels of optimization:

	
Flag

	
Description

	

-O

	
If you add a -O
 (letter O) flag to your gcc
 command, you will get the first level of optimizations.

	

-O2

	
For even more optimizations and a slower compile, choose -O2
 .

	

-O3

	
For
yet more

 optimizations, choose -O3
 . This will include all of the optimization checks from -O
 and -O2
 , plus a few extras.

	

-Ofast

	
The maximum amount of optimization is done with -Ofast
 . This is also the slowest one to compile. Be careful with -Ofast
 because the code it produces is less likely to conform to the C standards.

Warnings

 Warnings are displayed if the code is technically valid but does something suspicious, like assign a value to a variable of the wrong type. You can increase the number of warning checks with

-Wall

 :

gcc fred.c

-Wall

 -o fred

The -Wall
 option means “All warnings,” but for historic reasons is
doesn’t

 actually display
all

 of the warnings. For that, you should also include

-Wextra

 :

gcc fred.c -Wall

-Wextra

 -o fred

Also, if you want to have
really strict

 compilation, you can make the compile fail if there are any warnings at all with

-Werror

 :

 [image: image with no caption]

-Werror
 is useful if several people are working on the same code because it will help maintain code quality.

For more gcc
 options, see:

http://gcc.gnu.org/onlinedocs/gcc

#7. More on make

 make
 is an incredibly powerful tool for building C applications, but you’ve only had a very simple introduction to it in this book. For more details on the amazing things you can do with make
 , see Robert Mecklenburg’s
Managing Projects with GNU Make

 :

http://shop.oreilly.com/product/9780596006105.do

For now, here are just a few of its features.

Variables

Variables are a great way of shortening your makefiles. For example, if you have a standard set of command-line options you want to pass to gcc
 , you can define them with a variable:

CFLAGS = -Wall -Wextra -v

fred: fred.c
 gcc fred.c

$(CFLAGS)

 -o fred

You define a variable using the equals sign (=
) and then read its value with $(...)
 .

Using %, ^, and @

Most of the time, a lot of your compile commands are going to look pretty similar:

fred: fred.c
gcc fred.c -Wall -o fred

In which case, you might want to use the %
 symbol to write a more general target/recipe:

 [image: image with no caption]

This looks a little weird because of all the symbols. If you want to make a file called
fred

 , this rule tells make
 to look for a file called
fred.c.

 Then, the recipe will run a gcc
 command to create the target fred
 (given by the special symbol $@
) using the given dependency (given by $@
).

Implicit rules

 The make
 tool knows quite a lot about C compilation, and it can use
implicit rules

 to build files without you telling it exactly how. For example, if you have a file called
fred.c

 , you can compile it
without a makefile

 by typing:

 [image: image with no caption]

That’s because make
 comes with a bunch of built-in recipes. For more on make
 , see:

http://www.gnu.org/software/make/

#8. Development tools

 If you’re writing C code, you probably care a lot about performance and stability. And if you’re using the
GNU Compiler Collection

 to compile your code, you’ll probably want to take a look at some of the other
GNU

 tools that are available.

gdb

The
GNU Project Debugger

 (gdb
) lets you study your compiled program while it’s running. This is invaluable if you’re trying to chase down some pesky bug. gdb
 can be used from the command line or using an
integrated development environment

 like
Xcode

 or
Guile

 .

http://sourceware.org/gdb/download/onlinedocs/gdb/index.html

gprof

If your code isn’t as fast as you’d hoped, it might be worth
profiling

 it. The
GNU Profiler

 (gprof
) will tell you which parts of your program are the slowest so that you can tune the code in the most appropriate way. gprof
 lets you compile a modified version of your program that will dump a performance report when it’s finished. Then the gprof
 command-line tool will let you analyze the performance report to track down the slow parts of your code.

http://sourceware.org/binutils/docs-2.22/gprof/index.html

gcov

Another profiling tool is
GNU Coverage

 (gcov
). But while gprof
 is normally used to check the performance of your code, gcov
 is used to check which parts of your code did or didn’t run. This is important if you’re writing automated tests, because you’ll want to be sure that your tests are running all of the code you’re expecting them to.

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

#9. Creating GUIs

 You haven’t created any
graphical user interface

 (GUI) programs in any of the main chapters of this book. In the labs, you used the
Allegro

 and
OpenCV

 libraries to write a couple of programs that were able to display very simple windows. But GUIs are usually written in very different ways on each operating system.

Linux — GTK

Linux has a number of libraries that are used to create GUI applications, and one of the most popular is the
GIMP toolkit

 (GTK+):

http://www.gtk.org/

GTK+ is available on Windows and the Mac, as well as Linux, although it’s mostly used for Linux apps.

Windows

Windows has very advanced GUI libraries built-in. Windows programming is a really specialized area, and you will probably need to spend some time learning the details of the Windows
application programming interfaces

 (APIs) before you can easily build GUI applications. An increasing number of Windows applications are written in languages based on C, such as C# and C++. For an online introduction to Windows programming, see:

http://www.winprog.org/tutorial/

The Mac — Carbon

The Macintosh uses a GUI system called
Aqua

 . You can create GUI programs in C on the Mac using a set of libraries called
Carbon

 . But the more modern way of programming the Mac is using the Cocoa libraries, which are programmed using another C-derived language called
Objective-C

 . Now that you’ve reached the end of this book, you’re in a very good position to learn
Objective-C

 . Here at Head First Labs, we
love

 the books and courses on Mac programming available at the
Big Nerd Ranch

 :

http://www.bignerdranch.com/

#10. Reference material

 Here’s a list of some popular books and websites on C programming.

Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language

 (Prentice Hall; ISBN 978-0-131-10362-7)

This is the book that
defined

 the original C programming language, and almost every C programmer on Earth has a copy.

Samuel P. Harbison and Guy L. Steele Jr.,
C: A Reference Manual

 (Prentice Hall; ISBN 978-0-130-89592-9)

This is an excellent C reference book that you will want by your side as you code.

Peter van der Linden,
Expert C Programming

 (Prentice Hall; ISBN 978-0-131-77429-2)

For more advanced programming, see Peter van der Linden’s excellent book.

Steve Oualline,
Practical C Programming

 (O’Reilly; ISBN 978-1-565-92306-5)

This book outlines the practical details of C development.

Websites

For standards information, see:

http://pubs.opengroup.org/onlinepubs/9699919799/

For additional C coding tutorials, see:

http://www.cprogramming.com/

For general reference information, see:

http://www.cprogrammingreference.com/

For a general C programming tutorial, see:

http://www.crasseux.com/books/ctutorial/

Appendix B. C Topics: Revision roundup

 [image: image with no caption]

Ever wished all those great C facts were in one place?

This is a roundup of all the C topics and principles we’ve covered in the book. Take a look at them, and see if you can remember them all. Each fact has the chapter it came from alongside it, so it’s easy for you to refer back if you need a reminder. You might even want to cut these pages out and tape them to your wall.

Basics

	

 Chapter 1

	
Simple statements are commands.

	

Chapter 1

	
if statements run code if something is true.

	

Chapter 1

	
You can combine conditions together with && and ||.

	

Chapter 1

	
#include includes external code for things like input and output.

	

Chapter 1

	
Block statements are surrounded by { and }.

	

Chapter 1

	
switch statements efficiently check for multiple values of a variable.

	

Chapter 1

	
Every program needs a main function.

	

Chapter 1

	
Your source files should have a name ending in .c.

	

Chapter 1

	
You need to compile your C program before you run it.

	

Chapter 1

	
You can use the && operator on the command line to only run your program if it compiles.

	

Chapter 1

	
count++ means add 1 to count.

	

Chapter 1

	
while repeats code as long as a condition is true.

	

Chapter 1

	
for loops are a more compact way of writing loops.

	

Chapter 1

	
gcc is the most popular C compiler.

	

Chapter 1

	
-o specifies the output file.

	

Chapter 1

	
count-- means subtract 1 from count.

	

Chapter 1

	
do-while loops run code at least once.

Pointers and memory

	

 Chapter 2

	
scanf(“%i”, &x) will allow a user to enter a number x directly.

	

Chapter 2

	
Initialize a new array with a string, and it will copy it.

	

Chapter 2

	
&x returns the address of x.

	

Chapter 2

	
Read the contents of an address a with *a.

	

Chapter 2

	
Local variables are stored on the stack.

	

Chapter 2

	
A char pointer variable x is declared as char *x.

	

Chapter 2

	
&x is called a pointer to x.

	

Chapter 2

	
Array variables can be used as pointers.

	

Chapter 2

	
fgets(buf, size, stdin) is a simpler way to enter text.

Strings

	

 Chapter 2

	
Literal strings are stored in read-only memory.

	

Chapter 2.5

	
An array of strings is an array of arrays.

	

Chapter 2.5

	
strstr(a, b) will return the address of string b in string a.

	

Chapter 2.5

	
strcat() concatenates two strings together.

	

Chapter 2.5

	
strcpy() copies one string to another.

	

Chapter 2.5

	
The string.h header contains useful string functions.

	

Chapter 2.5

	
You create an array of arrays using char strings [...][...].

	

Chapter 2.5

	
strcmp() compares two strings.

	

Chapter 2.5

	
strchr() finds the location of a character inside a string.

	

Chapter 2.5

	
strlen() finds the length of a string.

Data streams

	

 Chapter 3

	
C functions like printf() and scanf() use the Standard Output and Standard Input to communicate.

	

Chapter 3

	
The Standard Input reads from the keyboard by default.

	

Chapter 3

	
The Standard Error is a separate output intended for error messages.

	

Chapter 3

	
You can create custom data streams with fopen(“filename”, mode).

	

Chapter 3

	
The Standard Output goes to the display by default.

	

Chapter 3

	
You can change where the Standard Input, Output, and Error are connected to using redirection.

	

Chapter 3

	
You can print to the Standard Error using fprintf(stderr,...).

	

Chapter 3

	
The mode can be “w” to write, “r” to read, or “a” to append.

	

Chapter 3

	
Command-line arguments are passed to main() as an array of string pointers.

	

Chapter 3

	
The getopt() function makes it easier to read command-line options.

Data types

	

 Chapter 4

	
chars are numbers.

	

Chapter 4

	
Use shorts for small whole numbers.

	

Chapter 4

	
ints are different sizes on different machines.

	

Chapter 4

	
Use doubles for really precise floating points.

	

Chapter 4

	
Use longs for really big whole numbers.

	

Chapter 4

	
Use ints for most whole numbers.

	

Chapter 4

	
Use floats for most floating points.

Multiple files

	

 Chapter 4

	
Split function declarations from definitions.

	

Chapter 4

	
#include <> for library headers.

	

Chapter 4

	
Save object code into files to speed up your builds.

	

Chapter 4

	
Put declarations in a header file.

	

Chapter 4

	
#include “” for local headers.

	

Chapter 4

	
Use make to manage your builds.

Structs

	

 Chapter 5

	
A struct combines data types together.

	

Chapter 5

	
You can intialize structs with {array, like, notation}.

	

Chapter 5

	
typedef lets you create an alias for a data type.

	

Chapter 5

	
You can read struct fields with dot notation.

	

Chapter 5

	
-> notation lets you easily update fields using a struct pointer.

	

Chapter 5

	
Designated initializers let you set struct and union fields by name.

Unions and bitfields

	

 Chapter 5

	
unions can hold different data types in one location.

	

Chapter 5

	
Bitfields give you control over the exact bits stored in a struct.

	

Chapter 5

	
enums let you create a set of symbols.

Data structures

	

 Chapter 6

	
Dynamic data structures use recursive structs.

	

Chapter 6

	
A linked list is a dynamic data structure.

	

Chapter 6

	
A linked list is more extensible than an array.

	

Chapter 6

	
Recursive structs contain one or more links to similar data.

	

Chapter 6

	
Data can be inserted easily into a linked list.

Dynamic memory

	

 Chapter 6

	
The stack is used for local variables.

	

Chapter 6

	
malloc() allocates memory on the heap.

	

Chapter 6

	
strdup() will create a copy of a string on the heap.

	

Chapter 6

	
valgrind can help you track down memory leaks.

	

Chapter 6

	
Unlike the stack, heap memory is not automatically released.

	

Chapter 6

	
free() releases memory on the heap.

	

Chapter 6

	
A memory leak is allocated memory you can no longer access.

Advanced functions

	

 Chapter 7

	
Function pointers let you pass functions around as if they were data.

	

Chapter 7

	
The name of every function is a pointer to the function.

	

Chapter 7

	
Each sort function needs a pointer to a comparator function.

	

Chapter 7

	
Arrays of function pointers can help run different functions for different types of data.

	

Chapter 7

	
Function pointers are the only pointers that don’t need the * and & operators, but you can use them if you want to.

	

Chapter 7

	
qsort() will sort an array.

	

Chapter 7

	
Comparator functions decide how to order two pieces of data.

	

Chapter 7

	
Functions with a variable number of arguments are called “variadic.”

	

Chapter 7

	
stdarg.h lets you create variadic functions.

Static and dynamic libraries

	

 Chapter 8

	
#include <> looks in standard directories such as /usr/include.

	

Chapter 8

	
-l<name> links to a file in standard directories such as /usr/lib.

	

Chapter 8

	
The ar command creates a library archive of object files.

	

Chapter 8

	
Library archives are statically linked.

	

Chapter 8

	
-L<name> adds a directory to the list of standard library directories.

	

Chapter 8

	
-I<name> adds a directory to the list of standard include directories.

	

Chapter 8

	
Library archives have names like libsomething.a.

	

Chapter 8

	
“gcc -shared” converts object files into dynamic libraries.

	

Chapter 8

	
Dynamic libraries are linked at runtime.

	

Chapter 8

	
Dynamic libraries have .so, .dylib, .dll, or .dll.a extensions.

	

Chapter 8

	
Dynamic libraries have different names on different operating systems.

Processes and communication

	

 Chapter 9

	
system() will run a string like a console command.

	

Chapter 9

	
fork() + exec() creates a child process.

	

Chapter 10

	
Processes can communicate using pipes.

	

Chapter 10

	
exit() stops the program immediately.

	

Chapter 9

	
fork() duplicates the current process.

	

Chapter 9

	
execl() = list of args.

execle() = list of args + environment.

execlp() = list of args + search on path.

execv() = array of args.

execve() = array of args + environment.

execvp() = array of args + search on path.

	

Chapter 10

	
pipe() creates a communication pipe.

	

Chapter 10

	
waitpid() waits for a process to finish.

	

Chapter 10

	
fileno() finds the descriptor.

	

Chapter 10

	
Signals are messages from the O/S.

	

Chapter 10

	
A program can send signals to itself with raise().

	

Chapter 10

	
The kill command sends a signal.

	

Chapter 10

	
dup2() duplicates a data stream.

	

Chapter 10

	
sigaction() lets you handle signals.

	

Chapter 10

	
alarm() sends a SIGALRM after a few seconds.

	

Chapter 12

	
Simple processes do one thing at a time.

Sockets and networking

	

 Chapter 11

	
telnet is a simple network client.

	

Chapter 11

	
Servers BLAB:

B = bind()

L = listen()

A = accept()

B = Begin talking.

	

Chapter 11

	
DNS = Domain name system.

	

Chapter 11

	
Create sockets with the socket() function.

	

Chapter 11

	
Use fork() to cope with several clients at once.

	

Chapter 11

	
getaddrinfo() finds addresses by domain.

Threads

	

Chapter 12

	
Threads allow a process to do more than one thing at the same time.

	

Chapter 12

	
POSIX threads (pthread) is a threading library.

	

Chapter 12

	
pthread_join() will wait for a thread to finish.

	

Chapter 12

	
If two threads read and update the same variable, your code will be unpredictable.

	

Chapter 12

	
pthread_mutex_lock() creates a mutex on code.

	

Chapter 12

	
Threads are “lightweight processes.”

	

Chapter 12

	
pthread_create() creates a thread to run a function.

	

Chapter 12

	
Threads share the same global variables.

	

Chapter 12

	
Mutexes are locks that protect shared data.

	

Chapter 12

	
pthread_mutex_unlock() releases the mutex.

Index

A note on the digital index

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols

! (exclamation mark), not operator, There’s more to booleans than equals...

(hash mark), beginning preprocessor directives, #2. Preprocessor directives

$ (dollar sign), $%, $^, and $@ compiler commands for makefiles, #7. More on make

% (percent sign)

%li format string, Using memory pointers

%p format string, Using memory pointers
 , Using memory pointers

& (ampersand)

&& (logical AND) operator, There’s more to booleans than equals...
 , ! flips the value of a condition

bitwise AND operator, ! flips the value of a condition
 , Bit twiddling

reference operator, Digging into memory
 , Using memory pointers

() (parentheses), caution with, when using structs, You need a pointer to the struct

* (asterisk)

accessing array elements, Why arrays really start at 0

in variable declarations, If you’re going to change a string, make a copy

indirection operator, Using memory pointers

+ (plus sign)

++ (increment) operator, The program works!
 , #1. Operators

+= (addition and assignment) operators, The program works!

, (comma)

separating expressions, Bit twiddling

separating values in enums, An enum variable stores a symbol

- (minus sign)

-- (decrement) operator, The program works!
 , #1. Operators

-= (subtraction and assignment) operator, The program works!

negative numbers and command-line arguments, Let the library do the work for you

prefacing command-line options, Let the library do the work for you

-> pointer notation, (*t).age vs. *t.age
 , (*t).age vs. *t.age

. (dot) operator, reading struct fields, Read a struct’s fields with the “.” operator

. dot notation, setting value of unions, How do you use a union?

... (ellipsis), So how can YOU do that?

/ (slash)

/* and */ surrounding comments, But what does a complete C program look like?

// beginning comments, But what does a complete C program look like?

32-bit operating systems, Use casting to put floats into whole numbers

size of pointers, Array variables are like pointers...

64-bit operating systems, Use casting to put floats into whole numbers

size of pointers, Array variables are like pointers...

8-bit operating systems, Use casting to put floats into whole numbers

; (semicolon), separating values in structs and unions, An enum variable stores a symbol

< > (angle brackets)

>> (bitwise shift left) operator, Bit twiddling

in header files, Creating your first header file
 , Code you can take to the bank

redirecting Standard Input with <, You can redirect the Standard Input with <...

redirecting Standard Output with >, ...and redirect the Standard Output with >
 , Redirecting input and output

redirection using > and 2> operators, Redirection just replaces data streams

= (equals sign)

== (equality) operator, The program works!

assignment operator, The program works!

? (question mark), #1. Operators

?: (ternary) operator, #1. Operators

[] (square brackets)

array subindex operator, Why arrays really start at 0

creating arrays and accessing elements, It’s time for a code review

in variable declarations, If you’re going to change a string, make a copy

\0 sentinel character, The program works!

^ (caret), bitwise XOR operator, Bit twiddling

_ (underscore), replacing spaces in web page name, Create a socket for a domain name

{ } (curly braces)

enclosing function body, But what does a complete C program look like?

enclosing statements, Two types of command

| (pipe symbol)

bitwise OR operator, ! flips the value of a condition
 , Bit twiddling

connecting input and output with a pipe, Connect your input and output with a pipe

|| (logical OR) operator, There’s more to booleans than equals...
 , ! flips the value of a condition

~ (tilde), bitwise complement operator, Bit twiddling

‘’ (quotation marks, single) in strings, The program works!

“” (quotation marks, double)

enclosing strings, The program works!

in header files, Creating your first header file
 , Code you can take to the bank

A

accept() function, 2. Listen

AceUnit framework, #5. Automated testing

alarm signal, SIGALRM, Sending your code a wake-up call

alarm() function, Sending your code a wake-up call

calls to, resetting the timer, ...the timer fires a SIGALRM signal

sleep() function and, Sending your code a wake-up call

Allegro library, Allegro

creation of game elements, What does Allegro do for you?

AND operator (&&), There’s more to booleans than equals...
 , ! flips the value of a condition

AND operator (&), ! flips the value of a condition
 , Bit twiddling

animation, using transformations, Use transformations to move things around

ANSI C, C is a language for small, fast programs

Arduino

Arduino board, The Arduino

building the physical device, Build the physical device

C code for, what it does, Here’s what your code should do

finished product, The finished product

plant monitor and moisture sensor, The spec: make your houseplant talk

useful functions, Here are some useful Arduino functions

writing C code in Arduino IDE, The Arduino

args parameter, So how can YOU do that?

arguments, function, ...and continue to continue

fixed argument in variadic functions, So how can YOU do that?
 , So how can YOU do that?

array functions, execv(), execvp(), and execve(), The array functions: execv(), execvp(), execve()

array variables

differences from pointers, But array variables aren’t quite pointers

use as pointers, Array variables are like pointers...

arrays, The program works!

array of arrays versus array of pointers, It’s time for a code review

assigned to pointers, pointer decay and, But array variables aren’t quite pointers

char pointers versus char arrays in data structure, Let’s fix the code using the strdup() function

creating array of arrays, Create an array of arrays
 , It’s time for a code review

fixed length of, Do you need flexible storage?

indexes, The program works!
 , Why arrays really start at 0

length of, The program works!

linked lists versus, Inserting values into the list

of function pointers, Create an array of function pointers

strings as character arrays, The program works!

structs versus, Create your own structured data types with a struct
 , Read a struct’s fields with the “.” operator

using to copy string literals, If you’re going to change a string, make a copy

variables declared as, If you’re going to change a string, make a copy

Assembly language, translation of C code into, Compilation behind the scenes

assignments

= (assignment) operator, The program works!

chaining, ...and continue to continue

compound assignment operators, The program works!

struct assigned to another variable, Read a struct’s fields with the “.” operator

struct to another struct, The code is cloning the turtle

associated arrays or maps, Free the memory when you’re done

asteroids (Blasteroids game), The asteroid

autoconf tool, Tell make about your code with a makefile

automated testing, #5. Automated testing

automating builds with make tool, Automate your builds with the make tool

B

binary literals, not supported in C, Sometimes you want control at the bit level
 , Bitfields store a custom number of bits

binary numbers, Don’t put something big into something small

binary trees, Free the memory when you’re done

binary values, converting between hexadecimal and, Sometimes you want control at the bit level

binding to a port, BLAB: how servers talk to the Internet

bit size of computers, Use casting to put floats into whole numbers

bitfields, Bitfields store a custom number of bits
 , Bitfields store a custom number of bits
 , Unions and bitfields

using to construct customer satisfaction survey (example), Bitfields store a custom number of bits

bits, operators for manipulation of, Bit twiddling

bitwise AND operator (&), ! flips the value of a condition
 , Bit twiddling

bitwise complement operator (~), Bit twiddling

bitwise OR operator (|), ! flips the value of a condition
 , Bit twiddling

bitwise shift left operator (<<), Bit twiddling

bitwise XOR operator (^), Bit twiddling

BLAB: Bind, Listen, Accept, Begin, BLAB: how servers talk to the Internet

Blasteroids game (see game, Blasteroids project)

blasts fired by spaceship (Blasteroids game), The blast

block statements, Two types of command

body of a function, But what does a complete C program look like?

boolean operators, There’s more to booleans than equals...

boolean values, representation in C, There’s more to booleans than equals...

bound port, reuse by socket, Why your mom always told you to check for errors

break statements, Pulling the ol’ switcheroo
 , Pulling the ol’ switcheroo
 , ...and continue to continue

exiting loops, You use break to break out...

not breaking out of if statements, You use break to break out...

buffer overflows caused by scanf() function, Be careful with scanf()

build tools, Tell make about your code with a makefile

CMake, Allegro

bus errors, The program works!

C

C

basics of, Basics

how it works, C is a language for small, fast programs

reference materials for programming, #10. Reference material

similarities to and influence on other languages, ...and continue to continue

C Standard Library, Let’s update the code to use fprintf()

C++, ...and continue to continue

C11 standard, C is a language for small, fast programs

c89 notation for first field of a union, How do you use a union?

C99 standard, C is a language for small, fast programs

cameras

grabbing image from webcam, What your code should do

showing current webcam output, Detect an intruder

taking input from computer camera, What your code should do

Carbon libraries, #9. Creating GUIs

card counting, Card counting? In C?

modifying program to keep running count of card game, ...and continue to continue

program for, writing in C, Card counting? In C?
 , ! flips the value of a condition

testing program, ...and continue to continue

case statements, Pulling the ol’ switcheroo
 , Pulling the ol’ switcheroo

casting floats to whole numbers, Use casting to put floats into whole numbers

chaining assignments, ...and continue to continue

char type, Using Multiple Source Files: Break it down, build it up
 , Using Multiple Source Files: Break it down, build it up

arithmetic with, If you have common features...

char pointers versus char arrays in data structure, Let’s fix the code using the strdup() function

defined, Using Multiple Source Files: Break it down, build it up

char** pointer, How to create function pointers
 , Use function pointers to set the order

checksum() function, Code you can take to the bank

child process, exec() is the end of the line for your program
 , Opening a web page in a browser

clients talking to server, You can fork() a process for each client

listening to directly, Stay in touch with your child

piped commands on command line, Connect your processes with pipes

redirecting Standard Output to file, dup2() duplicates data streams

running with fork() and exec(), Running a child process with fork() + exec()

classes, structs versus, Read a struct’s fields with the “.” operator

CMake, Allegro

Cocoa libraries, #9. Creating GUIs

collisions, The spaceship

comma (,), separating expressions, Bit twiddling

comma-separated data, reading and displaying in JSON format, Small tools can solve big problems

command line, piping commands together on, Connect your processes with pipes

command path, Most system calls go wrong in the same way

command-line arguments

avoiding ambiguity by splitting main arguments from options using --, Let the library do the work for you

execl(), execlp(), and execle() functions, There are many exec() functions

main() function with, There’s more to main()

command-line options, Overheard at the Head First Pizzeria

questions and answers on, Let the library do the work for you

using getopt() function for, Let the library do the work for you

commands, types of, Two types of command

comments, But what does a complete C program look like?

formatting, But what does a complete C program look like?

comparator functions, Use function pointers to set the order

writing for different sort descriptions, Use function pointers to set the order

compilation, C is a language for small, fast programs

automating builds with make tool, Automate your builds with the make tool

behind-the-scenes look at, Compilation behind the scenes

compiling a program using gcc, But how do you run the program?

partial compiles, First, compile the source into object files

precompilation and, Creating your first header file

reason for compiling C, ...and continue to continue

speeding up for programs in multiple source files, It’s not rocket science...or is it?

compiled code, saving copies of, Don’t recompile every file

compilers, But how do you run the program?

(see also gcc)

BE the Compiler exercise, ! flips the value of a condition

C standard supported by, But what does a complete C program look like?

debug information from, The leak is fixed

finding standard header file directories, Angle brackets are for standard headers

interview with gcc, ! flips the value of a condition

conditional compilation, #2. Preprocessor directives

connection, accepting from client, 2. Listen

const char, Sometimes you need to hand around a lot of data
 , Create your own structured data types with a struct

const keyword, If you’re going to change a string, make a copy
 , If you’re going to change a string, make a copy

constants

defined, Memory memorizer

string literals as, String literals can never be updated

continue statements, You use break to break out...
 , ...and continue to continue

control statements, Two types of command

convert command, Opening a web page in a browser

count variable, #3. The static keyword

create() function, using dynamic allocation, Oh, no! It’s the out-of-work actors...
 , Oh, no! It’s the out-of-work actors...

fixing with strdup() function, Let’s fix the code using the strdup() function

CreateProcess() function (Windows systems), 2. If you’re the child process, call exec()

Ctrl-C, stopping programs, The death of a process

curl/wget programs, Opening a web page in a browser

cvCalcOpticalFlowFarneback() function, Detect an intruder

cvCreateCameraCapture() function, What your code should do

cvNamedWindow() function, Detect an intruder

cvQueryFrame() function, What your code should do

cvShowImage() function, Detect an intruder

Cygwin, Opening a web page in a browser

fork() function and, 2. If you’re the child process, call exec()

including PATH variable when passing environment variables on, Passing environment variables

installing before calling fork() on Windows, exec() is the end of the line for your program

telnet program, The Internet knock-knock server

D

data entry

capabilities of scanf() versus fgets(), Using sizeof with fgets()

fgets() as alternative to scanf(), fgets() is an alternative to scanf()

using pointers for, Using pointers for data entry

data streams

creating your own, Roll your own data streams

duplication with dup2() function, fileno() tells you the descriptor

handling in a typical process, A look inside a typical process

opening, checking for problems with, There’s more to main()

printing to, fprintf() prints to a data stream

replacement by redirection, Redirection just replaces data streams

sockets, BLAB: how servers talk to the Internet

summary of important points, Data streams

typical data streams versus sockets, A socket’s not your typical data stream

data structures

questions and answers about, Inserting values into the list

summary of important points, Data structures

types other than linked lists, Free the memory when you’re done

data types, Using Multiple Source Files: Break it down, build it up

bytes in memory occupied by, getting with sizeof, Ask for memory with malloc()...

casting floats to whole numbers, Use casting to put floats into whole numbers

data not having single type, Sometimes the same type of thing needs different types of data

errors caused by conflicting types in example program, Let’s see what’s happened to the code

macros determining size of, #4. How big stuff is

matching type of value to type of variable it’s stored in, Don’t put something big into something small

no function data type in C, ...but there’s no function data type

parameters in variadic functions, So how can YOU do that?

pointer variables, Why arrays really start at 0

prefixing with unsigned or long keywords, Use casting to put floats into whole numbers

process ID, 2. If you’re the child process, call exec()

quick guide to, Using Multiple Source Files: Break it down, build it up

size of, Use casting to put floats into whole numbers

sizes on different operating systems, Use casting to put floats into whole numbers

structs, Create your own structured data types with a struct

summary of, Data types

unions, Set the value with dot notation

values stored in unions, unions are often used with structs

deadlocks, Use a mutex as a traffic signal

debugger, gdb, #8. Development tools

decay, But array variables aren’t quite pointers

decimal point numbers, Using Multiple Source Files: Break it down, build it up

(see also floating-point numbers; float type)

computers’ representation of, Use casting to put floats into whole numbers

declarations

defined, If you’re going to change a string, make a copy

function, splitting from definition, Split the declaration from the definition
 , Multiple files

decrement operator (--), The program works!
 , #1. Operators

#define directive, #2. Preprocessor directives

definitions, function, splitting from declaration, Split the declaration from the definition
 , Multiple files

dependencies, Automate your builds with the make tool

identifying for make tool, How make works

dereferencing, Using memory pointers
 , Using memory pointers

descriptor table

important points about, The waitpid() function

Standard Input, Output, and Error in, Redirection just replaces data streams

design tips for small tools, Don’t change the geo2json tool

designated initializers, How do you use a union?
 , Bitfields store a custom number of bits

setting initial values of struct fields, Set the value with dot notation

/dev/tty program, The waitpid() function

development tools, #8. Development tools

device drivers, Security’s not the only problem

DNS (domain name system), getaddrinfo() gets addresses for domains

do-while loops, Sometimes once is not enough...
 , ...and continue to continue

domain names, Clients are in charge

connecting client socket to remote domain name, Create a socket for an IP address

creation of sockets with IP addresses or domain names, Create a socket for a domain name

double type, Using Multiple Source Files: Break it down, build it up
 , Using Multiple Source Files: Break it down, build it up

defined, Using Multiple Source Files: Break it down, build it up

doubly linked lists, Free the memory when you’re done

dup2() function, fileno() tells you the descriptor

dynamic libraries, Static and Dynamic Libraries: Hot-swappable code
 , Static and dynamic libraries

dynamic memory, Dynamic memory

dynamic storage, Inserting values into the list
 , Free the memory when you’re done

using the heap, Use the heap for dynamic storage

E

echo command, System calls are your hotline to the OS

ellipsis (...), So how can YOU do that?

email, sending from command line, Opening a web page in a browser

encrypt() function, Code you can take to the bank

encryption, XOR, If you have common features...

enums, An enum variable stores a symbol
 , An enum variable stores a symbol

responses in mail merge program (example), Automating the Dear John letters

tracking values stored in structs and unions, An enum variable stores a symbol

environment variables

parameters for execv(), execvp(), and execve() functions, The array functions: execv(), execvp(), execve()

parameters for exel(), execlp(), and execle() functions, There are many exec() functions

reading and passing to functions, Passing environment variables

equality operator (==), The program works!

errno variable, Most system calls go wrong in the same way

error handling, avoiding writing duplicate code for system calls, dup2() duplicates data streams

error messages

converting errno into, Most system calls go wrong in the same way

displaying when Standard Output is redirected, But there’s a problem with some of the data...

Standard Error, Introducing the Standard Error

/etc/services file, A socket’s not your typical data stream

.exe files (Windows), But how do you run the program?

exec() functions, The exec() functions give you more control
 , Your C Toolbox

array functions, execv(), execvp(), and execve(), The array functions: execv(), execvp(), execve()

failures of calls to, Most system calls go wrong in the same way

important points about, Most system calls go wrong in the same way

list functions, execl(), execlp(), and execle(), There are many exec() functions

many versions of, There are many exec() functions

order-generation program, Starbuzz coffee (example), Most system calls go wrong in the same way

program searching many RSS feeds at once (example), Read the news with RSS

program termination after call to, exec() is the end of the line for your program

running /sbin/ifconfig or ipconfig (example), Most system calls go wrong in the same way

running child process with fork() and exec(), Running a child process with fork() + exec()

execle() function, Passing environment variables

failures of, Most system calls go wrong in the same way

program searching many RSS feeds at once (example), Read the news with RSS

executables, C is a language for small, fast programs
 , Compilation behind the scenes

exit status of child process, The waitpid() function

exit() function, dup2() duplicates data streams

called by default signal handler for interrupt signal, The death of a process

important points about, The waitpid() function

extern keyword, The shared code needs its own header file

F

Feldman, Stuart, Tell make about your code with a makefile

fgets() function, Opening a web page in a browser
 , The death of a process

as alternative to scanf(), fgets() is an alternative to scanf()

using for data input, scanf() versus, Using sizeof with fgets()

file descriptors, A look inside a typical process

descriptor tables, The waitpid() function

fileno() function, fileno() tells you the descriptor

files, making program work with, But you’re not using files...

filters, But you’re not using files...

find() function, Looking for Mr. Right...

other types of searches, How to create function pointers

float type, Using Multiple Source Files: Break it down, build it up

casting to whole numbers, Use casting to put floats into whole numbers

defined, Using Multiple Source Files: Break it down, build it up

finding size of, Use casting to put floats into whole numbers

floating-point numbers, Using Multiple Source Files: Break it down, build it up

handling with floats and doubles, Use casting to put floats into whole numbers

fopen() function, Roll your own data streams

problem opening data stream, There’s more to main()

for loops, Loops often follow the same structure...
 , ...and continue to continue

fork() function, exec() is the end of the line for your program
 , Your C Toolbox

creating a process for each client, You can fork() a process for each client

important points about, 2. If you’re the child process, call exec()

running child process with fork() + exec(), Running a child process with fork() + exec()

calling fork(), 2. If you’re the child process, call exec()

format strings, passing to scanf() function, Using pointers for data entry

formatted output, display by printf() function, But what does a complete C program look like?

fprintf() function, fprintf() prints to a data stream

updating example mapping program to use, Let’s update the code to use fprintf()

free() function, Give the memory back when you’re done

call interception by valgrind, The leak is fixed

releasing memory with, Ask for memory with malloc()...

tracking calls to with valgrind, Software forensics: using valgrind

freeaddrinfo() function, getaddrinfo() gets addresses for domains

fscanf() function, fprintf() prints to a data stream

functions, But what does a complete C program look like?
 , Advanced Functions: Turn your functions up to 11

advanced, summary of important points, Advanced functions

Arduino, Here are some useful Arduino functions

find() function, Looking for Mr. Right...

macros versus, So how can YOU do that?

main() function, But what does a complete C program look like?

no function data type in C, ...but there’s no function data type

operators versus, What the computer thinks when it runs your code

order in a program, Compilers don’t like surprises

order of running in a program, It’s time for a code review

passing as parameter to another function, You need to tell find() the name of a function

creating function pointers, How to create function pointers

identifying function pointers, How to create function pointers

passing code to, Pass code to a function

passing pointer to variable as function parameter, Try passing a pointer to the variable

passing strings to, How do you pass a string to a function?

passing struct to function that updates struct, The code is cloning the turtle

sorting data, Get it sorted with the C Standard Library

using function pointers to set sort order, Use function pointers to set the order

splitting declaration from definition, Split the declaration from the definition
 , Multiple files

variables declared inside, Digging into memory

variadic, Make your functions streeeeeetchy

writing example function, So how can YOU do that?

void return type, ...and continue to continue

writing, ...and continue to continue

G

game, Blasteroids project, C Lab 3: Blasteroids

Allegro library, Allegro

asteroids, The asteroid

blasting asteroids without being hit, Your mission: blast the asteroids without getting hit

blasts fired by spaceship, The blast

building the game, Building the game

finished product, The finished product

game status, How the asteroid moves

reading key presses, Reading keypresses

spaceship, The spaceship

spaceship behavior, Spaceship behavior

using transformations, Use transformations to move things around

writing arcade game, Write the arcade game Blasteroids

garbage collection, C and, Free the memory when you’re done

gcc, But how do you run the program?

-I option, Sharing .h header files

finding standard header file directories, Angle brackets are for standard headers

GNU Compiler Collection, ...and continue to continue

interview with, ! flips the value of a condition

optimizations, #6. More on gcc

standards supported, But what does a complete C program look like?

warnings, Warnings

gcov (GNU Coverage), #8. Development tools

gdb (GNU Project Debugger), #8. Development tools

GET command, Writing a web client

getaddrinfo() function, getaddrinfo() gets addresses for domains

getenv() function, Passing environment variables

getopt() function, Let the library do the work for you
 , Let the library do the work for you

gets() function, reasons not to use, fgets() is an alternative to scanf()

global variables, It’s time for a code review

count, #3. The static keyword

errno, Most system calls go wrong in the same way

storage in memory, Try passing a pointer to the variable

globals

defined, Memory memorizer

variables declared outside of functions, Digging into memory

GNU Compiler Collection (see gcc)

GNU Coverage (gcov), #8. Development tools

GNU Profiler (gprof), #8. Development tools

GNU Project Debugger (gdb), #8. Development tools

golden rules of failure, Most system calls go wrong in the same way

gprof (GNU Profiler), #8. Development tools

grep command, Connect your processes with pipes

GTK library, #9. Creating GUIs

GUIs (graphical user interfaces), creating, #9. Creating GUIs

H

hardware, kernel and, Security’s not the only problem

header files

angle brackets in, Code you can take to the bank

creating, Creating your first header file

for shared code, The shared code needs its own header file

forgetting to include, It’s time for a code review

function declarations in, Split the declaration from the definition

quotes and angle brackets in, Creating your first header file

sharing between programs, Angle brackets are for standard headers

heap

allocating and releasing memory, So does it fix the code?

allocating storage for string copy, Oh, no! It’s the out-of-work actors...

defined, Memory memorizer

differences from the stack, Free the memory when you’re done

important points about, Free the memory when you’re done

releasing memory when you’re done, Give the memory back when you’re done

using for dynamic storage, Use the heap for dynamic storage

hex format, memory addresses, Using memory pointers
 , Using memory pointers

hexadecimal literals, Sometimes you want control at the bit level

hexadecimals, converting between binary and, Sometimes you want control at the bit level

.h files (see header files)

hostname, Writing a web client

HTTP (Hypertext Transfer Protocol), Knock-knock server overview
 , Writing a web client

I

I/O (input/output)

connecting input and output with a pipe, Connect your input and output with a pipe

displaying error messages when output is redirected, But there’s a problem with some of the data...

output to more than one file, But what if you want to output to more than one file?

redirecting, Redirecting input and output

redirecting output from display to files, But you’re not using files...

redirecting Standard Input with < operator, You can redirect the Standard Input with <...

redirecting Standard Output with > operator, ...and redirect the Standard Output with >

redirection, You can use redirection

IDE, Arduino, The Arduino

if statements, Two types of command

break statements and, You use break to break out...

checking same value repeatedly, What’s the code like now?

replacing sequence of switch statement, Pulling the ol’ switcheroo

ignoring signals, ...the timer fires a SIGALRM signal

interrupt signal, Rewriting the code to use a signal handler

images

converting image formats, Opening a web page in a browser

grabbing image from webcam, What your code should do

#include directive, Compilation behind the scenes
 , #2. Preprocessor directives

angle brackets in, Code you can take to the bank

header files at different locations, Sharing .h header files

including header file in main program, Creating your first header file

includes section, C programs, But what does a complete C program look like?

increment operator (++), The program works!
 , #1. Operators

indexes, array, The program works!

starting at 0, Why arrays really start at 0

indirection operator (*), Using memory pointers

infinite loops, ...and continue to continue

int type, Using Multiple Source Files: Break it down, build it up

compiler assumption as return type for unknown functions, Compilers don’t like surprises
 , Creating your first header file

defined, Using Multiple Source Files: Break it down, build it up

finding size of, Use casting to put floats into whole numbers

integers, Using Multiple Source Files: Break it down, build it up

interprocess communication, Interprocess Communication: It’s good to talk

avoiding duplicate error-handling code for each system call, dup2() duplicates data streams

catching signals and running your own code, Catching signals and running your own code

connecting processes with pipes, Connect your processes with pipes

death of a process, The death of a process

duplicating data streams with dup2(), fileno() tells you the descriptor

examining a typical process, A look inside a typical process

finding RSS news stories and opening them in a browser, Case study: opening stories in a browser

getting descriptor with fileno(), fileno() tells you the descriptor

listening to child process directly, Stay in touch with your child

processes redirecting themselves, Redirection just replaces data streams

program saving output of rssgossip.py script to file, dup2() duplicates data streams

program testing math skills (example), ...the timer fires a SIGALRM signal

questions and answers about, The waitpid() function

redirecting input and output, Redirecting input and output

redirection replacing data streams, Redirection just replaces data streams

resetting and ignoring signals, ...the timer fires a SIGALRM signal

sending alarm signal to processes, Sending your code a wake-up call

summary of important points, Processes and communication

using kill command to send signals, Use kill to send signals

using raise() to send signals, Use kill to send signals

waitpid() function, Sometimes you need to wait...

interrupt signal, The death of a process

ignoring, Rewriting the code to use a signal handler

intruder detector, The spec: turn your computer into an intruder detector

finished product, The finished product

IP (Internet Protocol), Knock-knock server overview

IP (Internet Protocol) addresses, Clients are in charge

converting domain names to, getaddrinfo() gets addresses for domains

creating socket for an IP address, Create a socket for an IP address

creation of sockets with IP addresses or domain names, Create a socket for a domain name

ipconfig, Most system calls go wrong in the same way

J

JSON, displaying comma-separated data as, Small tools can solve big problems

K

kernel, Security’s not the only problem

keypresses, reading, Reading keypresses

kill command, using to send signals, Use kill to send signals

L

LED

C code writing to, Here’s what your code should do

connecting to Arduino board, Build the physical device

libraries

Allegro game development library, Allegro

GUI (graphical user interface), #9. Creating GUIs

static and dynamic, Static and dynamic libraries

limits.h header, macros defined in, #4. How big stuff is

linked lists, Linked lists are like chains of data

creating, Create a recursive structure

creating and releasing heap memory, So does it fix the code?

inserting values into, Inserting values into the list

linking object code files, Compilation behind the scenes
 , First, compile the source into object files

Linux, Opening a web page in a browser

(see also operating systems)

GTK GUI library, #9. Creating GUIs

list functions, execl(), execlp(), and execle(), There are many exec() functions

listen queue for clients, 2. Listen

listen() function, 2. Listen

local variables, storage in stack, Try passing a pointer to the variable
 , Use the heap for dynamic storage

locks, You need to add traffic signals

creating a mutex lock, Use a mutex as a traffic signal

deciding where to put locks in code (example), Use a mutex as a traffic signal

long keyword, Use casting to put floats into whole numbers

long type, Using Multiple Source Files: Break it down, build it up
 , Using Multiple Source Files: Break it down, build it up

defined, Using Multiple Source Files: Break it down, build it up

passing long values to thread functions, Use a mutex as a traffic signal

LONG_MAX macro, #4. How big stuff is

loops

breaking out of with break statement, You use break to break out...

continue statement in, You use break to break out...

running forever, infinite loops, ...and continue to continue

structure of, Loops often follow the same structure...

M

Mac computers, Opening a web page in a browser

(see also operating systems)

Carbon library for GUIs, #9. Creating GUIs

script for talking to plants, The finished product

machine code, C is a language for small, fast programs
 , Compilation behind the scenes

macros, Roll your own data streams

creating, #2. Preprocessor directives

functions versus, So how can YOU do that?

mail/mutt programs, Opening a web page in a browser

main() function, But what does a complete C program look like?

ending program with exit() instead of, The waitpid() function

with command-line arguments, There’s more to main()

make tool, Automate your builds with the make tool
 , Read a struct’s fields with the “.” operator

additional features, #7. More on make

automating builds with, Automate your builds with the make tool

converting Ogg Vorbis music file to Swing version, Tell make about your code with a makefile

different name on Windows, How make works

how it works, How make works

implicit rules to build files, Implicit rules

uses other than compiling code, Tell make about your code with a makefile

makefiles, Tell make about your code with a makefile

generation with autoconf tool, Tell make about your code with a makefile

on different operating systems, Tell make about your code with a makefile

malloc() function, Use the heap for dynamic storage

asking for memory with, Ask for memory with malloc()...

call by strdup() function, Free the memory when you’re done

call interception by valgrind, The leak is fixed

tracking calls to with valgrind, Software forensics: using valgrind

memory, Memory and Pointers: What are you pointing at?
 , Dynamic memory

addresses, Try passing a pointer to the variable

allocating heap memory and releasing it, So does it fix the code?

and pointers, Pointers and memory

C toolbox, Your C Toolbox

differences between the stack and the heap, Free the memory when you’re done

freeing by calling free() function, Give the memory back when you’re done
 , Ask for memory with malloc()...

getting with malloc() function, Use the heap for dynamic storage

kernel control over, Security’s not the only problem

order of segments in, If you’re going to change a string, make a copy

overview of computer memory, Digging into memory

questions and answers about, Using memory pointers

requesting with malloc() function, Ask for memory with malloc()...

reuse of space with unions, A union lets you reuse memory space

string literals stored in read-only memory, String literals can never be updated

structs stored in, Read a struct’s fields with the “.” operator

summary of segments, Memory memorizer

memory leaks, Give the memory back when you’re done

avoding when using data structures, Free the memory when you’re done

tracking and fixing using valgrind tool, Software forensics: using valgrind

MinGW, spaces in command-line arguments, There are many exec() functions

mingw32-make, How make works

mkfifo() function, Opening a web page in a browser

moisture sensor

building, Build the physical device

C code reading from, Here’s what your code should do

connecting to Arduino, Connect the moisture sensor

movement, detecting, Detect an intruder

mutexes, You need to add traffic signals

causing deadlocks, Use a mutex as a traffic signal

creating a mutex lock, Use a mutex as a traffic signal

N

named pipes, Opening a web page in a browser

nested structs, Can you put one struct inside another?

network configuration, commands for, Most system calls go wrong in the same way

networking (see sockets and networking)

NMAKE tool, How make works

not operator (!), There’s more to booleans than equals...

NULL value, following last command-line argument in exec() function parameters, There are many exec() functions

O

object code, Compilation behind the scenes

saving copies into files, Don’t recompile every file

object files, sharing between programs, Angle brackets are for standard headers

object orientation, ...and continue to continue

Objective-C, ...and continue to continue
 , #9. Creating GUIs

.o files, Angle brackets are for standard headers

(see also object code)

Ogg Vorbis music file, converting to Swing version, Tell make about your code with a makefile

OpenCV

C code, what it should do, What your code should do

defined, OpenCV

finished product, The finished product

installing, OpenCV

intruder detector, The spec: turn your computer into an intruder detector

operating systems

commands to open a URL, Opening a web page in a browser

controlling programs with signals, The death of a process

different sizes of data types on, Use casting to put floats into whole numbers
 , Use casting to put floats into whole numbers

GUI libraries for, #9. Creating GUIs

interview with, Let’s update the code to use fprintf()

kernel, Security’s not the only problem

listing processes running on system, The exec() functions give you more control

makefiles and, Tell make about your code with a makefile

network configuration commands, Most system calls go wrong in the same way

OpenCV, OpenCV

registering new item in file descriptor table, fileno() tells you the descriptor

Standard Input and Standard Output, You can use redirection

system calls, System calls are your hotline to the OS

telnet program, The Internet knock-knock server

operators, #1. Operators

functions versus, What the computer thinks when it runs your code

precedence of, You need a pointer to the struct
 , (*t).age vs. *t.age

optarg variable, Let the library do the work for you
 , Let the library do the work for you

optimization, #6. More on gcc

optind variable, Let the library do the work for you

OR operator (|), ! flips the value of a condition
 , Bit twiddling

OR operator (||), There’s more to booleans than equals...
 , ! flips the value of a condition

P

parameters, function, But what does a complete C program look like?
 , ...and continue to continue

passing by value, The code is cloning the turtle

parent process, exec() is the end of the line for your program
 , Opening a web page in a browser

piped command on command line, Connect your processes with pipes

server, You can fork() a process for each client

partial compiles, First, compile the source into object files

PATH variable, The array functions: execv(), execvp(), execve()

including when passing environment variables on Cygwin, Passing environment variables

performance, analyzing with gprof, #8. Development tools

PIDs (Process Identifiers), The exec() functions give you more control

pid_status parameter of waitpid() function, The waitpid() function

pid_t in call to fork(), 2. If you’re the child process, call exec()

waitpid() function parameters, The waitpid() function

pipe() function, Opening a web page in a browser

connecting Standard Output of child and Standard Input of parent processes, Case study: opening stories in a browser

pipes

connecting input and output, Connect your input and output with a pipe

connecting output of rssgossip.py to input of program, Case study: opening stories in a browser

connecting processes with, Connect your processes with pipes

important points about, Opening a web page in a browser

pointer arithmetic

and array index starting at 0, Why arrays really start at 0

and data types of pointer variables, Why arrays really start at 0

important points about, Why pointers have types

pointer notation with structs, (*t).age vs. *t.age

pointers, C code includes pointers

address of variable in memory, Digging into memory

and structs assigned to another variable, Read a struct’s fields with the “.” operator

array of arrays versus array of pointers, It’s time for a code review

array variables as, Array variables are like pointers...

C toolbox, Your C Toolbox

char pointers versus char arrays in data structure, Let’s fix the code using the strdup() function

conversion to ordinary number, What the computer thinks when it runs your code

differences of array variables from, But array variables aren’t quite pointers

file, fileno() tells you the descriptor

function, Every function name is a pointer to the function...
 , How to create function pointers
 , Advanced functions

arrays of, Create an array of function pointers

creating, ...but there’s no function data type

summary of important points, But how does an array help?

using to set sort order, Use function pointers to set the order

in recursive structures, Create a recursive structure

making it easier for functions to share memory, Try passing a pointer to the variable

passing pointer to variable as function parameter, Try passing a pointer to the variable

questions and answers about, Using memory pointers

set to string literals, avoiding, If you’re going to change a string, make a copy

sizes on different computers, What the computer thinks when it runs your code

summary of important points, Pointers and memory

to structs, You need a pointer to the struct

types assigned to pointer variables, Why arrays really start at 0

using for data entry, Using pointers for data entry

using to read and write data, Using memory pointers

variables declared as function arguments, If you’re going to change a string, make a copy

void, How do you create threads?

port number for server application, caution in choosing, A socket’s not your typical data stream

port, binding to, BLAB: how servers talk to the Internet

POSIX libraries, Let the library do the work for you

POSIX thread library (pthread), How do you create threads?

linking, Create threads with pthread_create

precompilation, Creating your first header file

preprocessing, Creating your first header file

fixing the source, Compilation behind the scenes

preprocessor directives, #2. Preprocessor directives

printf() function, But what does a complete C program look like?

reading from keyboard and writing to display, You can use redirection

variable number of arguments, Make your functions streeeeeetchy

printing to data stream with fprintf() function, fprintf() prints to a data stream

private scope, #3. The static keyword

Process Identifiers (see PIDs)

processes, Interprocess Communication: It’s good to talk

(see also interprocess communication)

cloning with fork() function, exec() is the end of the line for your program

communication, summary of important points, Processes and communication

control by kernel, Security’s not the only problem

examining a typical process, A look inside a typical process

redirecting themselves, Redirection just replaces data streams

replacement of current process using exec() functions, The exec() functions give you more control

running child process with fork() + exec(), Running a child process with fork() + exec()

server and client, creating processes for clients with fork(), You can fork() a process for each client

simple, doing one thing at a time, Simple processes do one thing at a time

speed of, threads versus, Use a mutex as a traffic signal

using for simultaneous tasks, limitations of, ...and processes are not always the answer

profiling tools, #8. Development tools

programs

compiling and running, But how do you run the program?

complete C program, But what does a complete C program look like?

exercise, matching candidate block of code with possible output, ...and continue to continue
 , ...and continue to continue

protocols, Knock-knock server overview
 , Writing a web client

ps -ef command, The exec() functions give you more control

pthread (POSIX thread) library, How do you create threads?

linking, Create threads with pthread_create

pthread_create() function, Create threads with pthread_create

pthread_join() function, Create threads with pthread_create

PTHREAD_MUTEX_INITIALIZER macro, Use a mutex as a traffic signal

pthread_mutex_lock() function, Use a mutex as a traffic signal

pthread_mutex_unlock() function, Use a mutex as a traffic signal

Python

installing, Read the news with RSS

RSS Gossip script, Read the news with RSS

Q

qsort() function, Use function pointers to set the order

R

raise() command, sending signals with, Use kill to send signals

recursive structures, Free the memory when you’re done
 , Data structures

creating, Create a recursive structure

recv() function, Reading from the client
 , getaddrinfo() gets addresses for domains

redirection, You can use redirection

child process output to file, dup2() duplicates data streams

descriptor table and, The waitpid() function

displaying error messages when output is redirected, But there’s a problem with some of the data...

output from display to files, But you’re not using files...

processes redirecting themselves, Redirection just replaces data streams

programs run from command line, Redirecting input and output

replacement of data streams, Redirection just replaces data streams

several processes connected with pipes, The bermuda tool

Standard Input, using < operator, You can redirect the Standard Input with <...

Standard Output, using > operator, ...and redirect the Standard Output with >

reference operator (&), Digging into memory
 , Using memory pointers

references, pointers versus, Using memory pointers

reserved words in C, Creating your first header file

return statements in functions, ...and continue to continue
 , ...and continue to continue

return type, But what does a complete C program look like?

compiler assumptions for unknown functions, Compilers don’t like surprises

void return type for thread functions, How do you create threads?

return values, assignments, ...and continue to continue

reusing code, If you have common features...

RSS feeds

program saving output of rssgossip.py script to file, dup2() duplicates data streams

program searching many feeds at once (example), Read the news with RSS

running rssgossip.py in separate process for each feed, 2. If you’re the child process, call exec()

reading news with, Read the news with RSS

reading story links from rssgossip.py script, Stay in touch with your child

running rsscossip.py script and opening stories in browser, Case study: opening stories in a browser

RSS Gossip (Python script), Read the news with RSS

running programs, But how do you run the program?

S

/sbin/ifconfig program, Most system calls go wrong in the same way

ifconfig program, Most system calls go wrong in the same way

scanf() function, Using pointers for data entry
 , If you’re going to change a string, make a copy

causing buffer overflows, Be careful with scanf()

fgets() function as alternative to, fgets() is an alternative to scanf()

passing pointer to variable to scanf(), You need a pointer to the struct

using for data input, fgets() versus, Using sizeof with fgets()

screen, redirecting data to, without using Standard Output, The waitpid() function

security, system calls and, Then someone busted into the system...

send() function, A socket’s not your typical data stream
 , getaddrinfo() gets addresses for domains

sentinel character \0, The program works!

serial port, writing to (C code in Arduino), Here’s what your code should do

setitimer() function, ...the timer fires a SIGALRM signal

sharing code, If you have common features...
 , Angle brackets are for standard headers

.h header files, Sharing .h header files

short type, Using Multiple Source Files: Break it down, build it up
 , Using Multiple Source Files: Break it down, build it up

defined, Using Multiple Source Files: Break it down, build it up

SHRT_MIN macro, #4. How big stuff is

shunit2 tool, testing scripts and commands, #5. Automated testing

sigaction structs, Catching signals and running your own code

sigaction() function, sigactions are registered with sigaction()

SIGALRM signal, Sending your code a wake-up call

SIGKILL signal, Use kill to send signals

signals, The death of a process

catching and running your own code, Catching signals and running your own code

ignoring, ...the timer fires a SIGALRM signal

matching to cause (example), Rewriting the code to use a signal handler

order of sending and receiving, ...the timer fires a SIGALRM signal

program testing math skills (example), ...the timer fires a SIGALRM signal

resetting to default handler, ...the timer fires a SIGALRM signal

sending using kill command, Use kill to send signals

sending using raise(), Use kill to send signals

signed values in binary, Don’t put something big into something small

SIGTERM signal, Use kill to send signals

single statement, Two types of command

size limits for data types, macros determining, #4. How big stuff is

sizeof operator, How do you pass a string to a function?
 , What the computer thinks when it runs your code

getting bytes in memory occupied by particular data type, Ask for memory with malloc()...

use on pointers and array variables, But array variables aren’t quite pointers

using with fgets() function, fgets() is an alternative to scanf()

sleep() function, Create threads with pthread_create

alarm() function and, Sending your code a wake-up call

small tools

connecting input and output with a pipe, Connect your input and output with a pipe

converting data from one format to another, Small tools can solve big problems

designing, tips for, Don’t change the geo2json tool

different tasks need different tools, A different task needs a different tool

flexibility of, Small tools are flexible

output to multiple files, But what if you want to output to more than one file?

sockets and networking, Sockets and Networking: There’s no place like 127.0.0.1

C toolbox, Your C Toolbox

client sockets, creating socket for a domain name, getaddrinfo() gets addresses for domains

client sockets, creation and connection to remote port, Create a socket for an IP address

clients obtaining a socket and communicating, Clients are in charge

creation of sockets with IP addresses or domain names, Create a socket for a domain name

fork() a process for each client, You can fork() a process for each client

how servers talk to the Internet, BLAB: how servers talk to the Internet

Internet knock-knock server (example), The Internet knock-knock server

other useful server functions, Reading from the client

reading from the client, Reading from the client

server can only talk to one client at a time, The server can only talk to one person at a time

server code changed to fork child process for each client, The parent and child use different sockets

server generating random advice for clients (example), A socket’s not your typical data stream

sockets not your typical data streams, A socket’s not your typical data stream

summary of important points, Sockets and networking

writing a web client, Writing a web client
 , Create a socket for a domain name

writing code for Internet knock-knock server (example), Reading from the client

sorting, Get it sorted with the C Standard Library

using function pointers to set sort order, Use function pointers to set the order

writing comparator functions for different sorts, Use function pointers to set the order

source files, C is a language for small, fast programs

compiling and running, But how do you run the program?

multiple files for code, Multiple files

spaceship (Blasteroids game), The spaceship

behavior of, Spaceship behavior

stack, Digging into memory

defined, Memory memorizer

differences from the heap, Free the memory when you’re done

storage in, Use the heap for dynamic storage

Standard Error, Introducing the Standard Error
 , Data streams

default output to display, By default, the Standard Error is sent to the display

in descriptor table, Redirection just replaces data streams

redirecting with 2>, fprintf() prints to a data stream
 , Redirection just replaces data streams

standard header directories, Angle brackets are for standard headers

standard header files, Creating your first header file

Standard Input, fprintf() prints to a data stream
 , Data streams

connecting to Standard Output of another process, Connect your input and output with a pipe

in descriptor table, Redirection just replaces data streams

redirecting, You can use redirection

redirecting with < operator, You can redirect the Standard Input with <...

Standard Output, Data streams

connecting to Standard Input of another process, Connect your input and output with a pipe

in descriptor table, Redirection just replaces data streams

redirecting child process output to file, dup2() duplicates data streams

redirecting to file, ...and redirect the Standard Output with >
 , Redirecting input and output

standards, C is a language for small, fast programs

compiler support of, But what does a complete C program look like?

designated initializers, How do you use a union?

POSIX libraries, Let the library do the work for you

return statements in functions, ...and continue to continue

statements, Two types of command

static keyword, #3. The static keyword

static libraries, Static and Dynamic Libraries: Hot-swappable code
 , Static and dynamic libraries

stdarg.h header, So how can YOU do that?

storage, flexible, Do you need flexible storage?

strcmp() function, Use function pointers to set the order
 , Use function pointers to set the order

strdup() function, Oh, no! It’s the out-of-work actors...

calling malloc() function, Free the memory when you’re done

fixing create() function that uses dynamic allocation, Let’s fix the code using the strdup() function

strerror() function, Most system calls go wrong in the same way

string literals, The program works!

char pointer set to, avoiding, If you’re going to change a string, make a copy

important points about, If you’re going to change a string, make a copy

inability to update, Oops...there’s a memory problem...

string.h header file, Find strings containing the search text

more information about functions in, It’s time for a code review

strings, The program works!
 , Strings: String theory

array of arrays versus array of pointers, It’s time for a code review

arrays of, char** pointer to, How to create function pointers

as character arrays, The program works!

BE the Compiler exercise, jukebox program (example), Using the strstr() function

C toolbox, Your C Toolbox

changing, using copy for, If you’re going to change a string, make a copy

code shuffling letters in, Anyone for three-card monte?

copying, Oh, no! It’s the out-of-work actors...

creating array of arrays, Create an array of arrays

crossword puzzle (example), Array of arrays vs. array of pointers

displaying string backward on screen, It’s time for a code review

ending with sentinel character \0, The program works!

passing to functions, How do you pass a string to a function?

searching, Desperately seeking Susan Frank
 , Find strings containing the search text

Pool Puzzle example, Using the strstr() function

review of jukebox program (example), It’s time for a code review

testing jukebox program (example), It’s time for a code review

Standard Library, string.h, Find strings containing the search text

summary of important points, Strings

using strstr() function, Using the strstr() function

strstr() function, Using the strstr() function

structs, Structs, Unions, and Bitfields: Roll your own structures
 , An enum variable stores a symbol
 , Inserting values into the list

arrays versus, Create your own structured data types with a struct
 , Read a struct’s fields with the “.” operator

assignment, The code is cloning the turtle

benefits of using, Just give them the fish

bitfields collected in, Bitfields store a custom number of bits

creating aliases for with typedef, Can you put one struct inside another?

designated initializers setting initial value of fields, Set the value with dot notation

enums tracking values stored in, An enum variable stores a symbol

holding sequence of single bits for yes/no values, Sometimes you want control at the bit level

in memory, Read a struct’s fields with the “.” operator

nesting, Can you put one struct inside another?

pointer notation, (*t).age vs. *t.age

pointers to, You need a pointer to the struct

reading fields with . (dot) operator, Read a struct’s fields with the “.” operator

recursive structures, Create a recursive structure
 , Free the memory when you’re done

summary of important points, Structs

updating, How do you update a struct?

using bitfields in customer satisfaction survey (example), Bitfields store a custom number of bits

using with unions, Set the value with dot notation

values separated with semicolon (;), An enum variable stores a symbol

wrapping parameters in, Just give them the fish

structured data types (see structs)

switch statements, Pulling the ol’ switcheroo

rewriting code to replace sequence of if statements, Pulling the ol’ switcheroo

summary of important points about, Pulling the ol’ switcheroo

symbols, storing in enums, An enum variable stores a symbol

system calls, System calls are your hotline to the OS
 , Your C Toolbox

accept() function, 2. Listen

avoiding writing duplicate code for error handling, dup2() duplicates data streams

checking for errors on, A socket’s not your typical data stream

exec() functions, The exec() functions give you more control

failures of, Most system calls go wrong in the same way

order-generation program, Starbuzz coffee (example), Most system calls go wrong in the same way

program searching many RSS feeds at once (example), Read the news with RSS

fork() function, cloning processes with, exec() is the end of the line for your program

getenv() function, reading environment variables, Passing environment variables

important points about, Most system calls go wrong in the same way

listen() function, 2. Listen

mkfifo() function, Opening a web page in a browser

running child process with fork() and exec(), Running a child process with fork() + exec()

security breaches, Then someone busted into the system...

system() function, System calls are your hotline to the OS
 , 2. If you’re the child process, call exec()
 , Your C Toolbox

exec() function versus, Most system calls go wrong in the same way

opening a web page in a browser, Opening a web page in a browser

T

tab character, beginning recipe lines for makefiles, Tell make about your code with a makefile
 , Tell make about your code with a makefile

target files, Automate your builds with the make tool

describing in makefiles, Tell make about your code with a makefile

taskmgr command (Windows), The exec() functions give you more control

tasks, sequential or parallel, Tasks are sequential...or not...

telnet program, The Internet knock-knock server

ternary operator (?:), #1. Operators

testing, automated, #5. Automated testing

threads, Threads: It’s a parallel world

C toolbox, Your C Toolbox

creating, How do you create threads?

using pthread_create(), Create threads with pthread_create

deciding where to put locks in code (example), Use a mutex as a traffic signal

important points about, Use a mutex as a traffic signal

multithreaded programs, Employ extra staff: use threads

mutexes, You need to add traffic signals

passing long values to thread functions, Use a mutex as a traffic signal

program counting down beers (example), Create threads with pthread_create

single threads of execution, Simple processes do one thing at a time

summary of important points, Advance Praise for Head First C

thread safety in code, The code is not thread-safe

using mutex to control execution, Use a mutex as a traffic signal

timers for processes, ...the timer fires a SIGALRM signal

transformations, Use transformations to move things around

true and false values, ! flips the value of a condition

typedef command

creasting aliases for structs, Can you put one struct inside another?

recursive structures and, Create a recursive structure

U

unions, Sometimes the same type of thing needs different types of data
 , An enum variable stores a symbol
 , Unions and bitfields

enums tracking values stored in, An enum variable stores a symbol

important points about, Bitfields store a custom number of bits

reuse of memory space, A union lets you reuse memory space

setting value of, How do you use a union?

using with structs, Set the value with dot notation

values separated with semicolon (;), An enum variable stores a symbol

values stored in, data types of, unions are often used with structs

unistd.h header, Let the library do the work for you

unsigned keyword, prefixing data types with, Use casting to put floats into whole numbers

URLs, opening on various operating systems in web browser, Opening a web page in a browser

V

valgrind tool, using to find memory leaks, Software forensics: using valgrind

values

copied when assigning structs, The code is cloning the turtle

matching data type to type of variable it’s stored in, Don’t put something big into something small

parameters passed to functions, The code is cloning the turtle

storing short-range values in bitfields, Bitfields store a custom number of bits

variables

matching data type for value stored in, Don’t put something big into something small

sharing among code files, The shared code needs its own header file

storage in memory, Digging into memory

using to shorten makefiles, #7. More on make

variadic functions, Make your functions streeeeeetchy

writing example function, So how can YOU do that?

virtual memory size, Security’s not the only problem

void functions, ...and continue to continue
 , ...and continue to continue

void pointers, Use function pointers to set the order
 , How do you create threads?

W

waitpid() function, Sometimes you need to wait...

important points about, The waitpid() function

parameters, The waitpid() function

warnings, gcc, Warnings

web browsers, opening a web page in, Opening a web page in a browser

websites for C, #10. Reference material

WEXITSTATUS() macro, The waitpid() function

while loops, Sometimes once is not enough...

modifying in card counting program to keep running count, ...and continue to continue
 , ...and continue to continue

structure of, Loops often follow the same structure...

summary of important points, ...and continue to continue

window, creating in OpenCV, Detect an intruder

Windows systems, Opening a web page in a browser

(see also operating systems)

.exe files, But how do you run the program?

CreateProcess() function instead of fork(), 2. If you’re the child process, call exec()

fork() function and, exec() is the end of the line for your program
 , 2. If you’re the child process, call exec()

GUI libraries, #9. Creating GUIs

ipconfig command, Most system calls go wrong in the same way

listing processes running on system, The exec() functions give you more control

make tools, How make works

telnet program, built-in versus Cygwin versions, The Internet knock-knock server

X

XOR encryption, If you have common features...

XOR operator, bitwise XOR (^), Bit twiddling

About the Authors

David Griffiths began programming at age 12, after being inspired by a documentary on the work of Seymour Papert. At age 15 he wrote an implementation of Papert's computer language LOGO. After studying Pure Mathematics at University, he began writing code for computers and magazine articles for humans and he is currently an agile coach with Exoftware in the UK, helping people to create simpler, more valuable software. He spends his free time traveling and time with his lovely wife, Dawn.

Dawn Griffiths started life as a mathematician at a top UK university where she was awarded a First-Class Honours degree in Mathematics. She went on to pursue a career in software development, and has over 15 years experience working in the IT industry. Dawn has written several books, including Head First C, Head First Statistics and Head First 2D Geometry.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here
 .

Head First C

David Griffiths

Dawn Griffiths

Editor

Brian Sawyer

Copyright © 2012 David Griffiths and Dawn Griffiths

Head First C

by David Griffiths and Dawn Griffiths

All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (

http://my.safaribooksonline.com

). For more information, contact our corporate/institutional sales department: (800) 998-9938 or

corporate@oreilly.com

 .

Series Creators:

 Kathy Sierra, Bert Bates

Editor:

 Brian Sawyer

Cover Designer:

 Karen Montgomery

Production Editor:

 Teresa Elsey

Production Services:

 Rachel Monaghan

Indexer:

 Ellen Troutman Zaig

Page Viewers:

 Mum and Dad, Carl

Printing History:

April 2012: First Edition.

 [image: image with no caption]

 [image: image with no caption]

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The
Head First

 series designations,
Head First C

 , and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No kittens were harmed in the making of this book. Really.

 [image:]

 This book uses RepKover™, a durable and flexible lay-flat binding.

978-1-449-39991-7

[M]

O’Reilly Media

1005 Gravenstein Highway North

Sebastopol
 , CA
 95472

2013-06-27T10:08:15-07:00

Head First C

Table of Contents

Dedication

Special Upgrade Offer

Advance Praise for
Head First C

Praise for other
Head First

 books

Authors of Head First C

How to use this Book: Intro

Who is this book for?

Who should probably back away from this book?

We know what you’re thinking

We know what your brain is thinking

Metacognition: thinking about thinking

Here’s what WE did

Here’s what YOU can do to bend your brain into submission

Read me

The technical review team

Acknowledgments

Safari® Books Online

1. Getting Started with C: Diving in

C is a language for small, fast programs

The way C works

But what does a complete C program look like?

But how do you run the program?

The program works!

Two types of command

Do
 something

Do something only if
 something is true

Here’s the code so far

Card counting? In C?

There’s more to booleans than equals...

&& checks if two conditions are true

II checks if one
 of two conditions is true

! flips the value of a condition

What’s the code like now?

Pulling the ol’ switcheroo

Sometimes once is not enough...

Using while loops in C

Loops often follow the same structure...

...and the for loop makes this easy

You use break to break out...

...and continue to continue

Your C Toolbox

2. Memory and Pointers: What are you pointing at?

C code includes pointers

Digging into memory

Set sail with pointers

Set sail sou’east, Cap’n

Try passing a pointer to the variable

Pointers make it easier to share memory

Using memory pointers

How do you pass a string to a function?

Honey, who shrank the string?

Array variables are like pointers...

...so our function was passed a pointer

What the computer thinks when it runs your code

But array variables aren’t quite pointers

Why arrays really
 start at 0

Why pointers have types

Using pointers for data entry

Entering numbers with scanf()

Be careful with scanf()

scanf() can cause buffer overflows

fgets() is an alternative to scanf()

Using sizeof with fgets()

Anyone for three-card monte?

Oops...there’s a memory problem...

String literals can never be updated

If you’re going to change a string, make a copy

Memory memorizer

Your C Toolbox

2.5. Strings: String theory

Desperately seeking Susan
 Frank

Create an array of arrays

Find strings containing the search text

Using string.h

Using the strstr() function

It’s time for a code review

Array of arrays vs. array of pointers

Your C Toolbox

3. Creating Small Tools: Do one thing and do it well

Small tools can solve big problems

Here’s how the program should work

But you’re not using files...

You can use redirection

You can redirect the Standard Input with <...

...and redirect the Standard Output with >

But there’s a problem with some of the data...

Introducing the Standard Error

By default, the Standard Error is sent to the display

fprintf() prints to a data stream

Let’s update the code to use fprintf()

Small tools are flexible

Don’t change the geo2json tool

A different task needs a different tool

Connect your input and output with a pipe

The bermuda tool

But what if you want to output to more than one file?

Roll your own data streams

The program runs, but...

There’s more to main()

Overheard at the Head First Pizzeria

Let the library do the work for you

Your C Toolbox

4. Using Multiple Source Files: Break it down, build it up

Don’t put something big into something small

Use casting to put floats into whole numbers

Oh no...it’s the out-of-work actors...

Let’s see what’s happened to the code

Compilers don’t like surprises

Fixing function order is a pain

In some situations, there is no correct order

Split the declaration from the definition

Creating your first header file

If you have common features...

...it’s good to share code

You can split the code into separate files

Compilation behind the scenes

The shared code needs its own header file

Include encrypt.h in your program

It’s not rocket science...or is it?

Don’t recompile every file

Save copies of the compiled code

First, compile the source into object files

Then, link them together

It’s hard to keep track of the files

Automate your builds with the make tool

What does make need to know?

How make works

Tell make about your code with a makefile

Your C Toolbox

C Lab 1: Arduino

The spec: make your houseplant talk

The physical device

The Arduino

The Arduino IDE

Build the physical device

Build the moisture sensor

Connect the LED

Connect the moisture sensor

Here’s what your code should do

Read from the moisture sensor

Write to the LED

Write to the serial port

Here’s what your C code should look like

Here are some useful Arduino functions

The finished product

5. Structs, Unions, and Bitfields: Roll your own structures

Sometimes you need to hand around a lot of data

Cubicle conversation

Create your own structured data types with a struct

Just give them the fish

Read a struct’s fields with the “.” operator

Can you put one struct inside another?

How do you update a struct?

The code is cloning the turtle

You need a pointer to the struct

(*t).age vs. *t.age

Sometimes the same type of thing needs different types of data

A union lets you reuse memory space

How do you use a union?

C89 style for the first field

Designated initializers set other values

Set the value with dot notation

unions are often used with structs

An enum variable stores a symbol

Sometimes you want control at the bit level

Bitfields store a custom number of bits

Your C Toolbox

6. Data Structures and Dynamic Memory: Building bridges

Do you need flexible storage?

Linked lists are like chains of data

Linked lists allow inserts

Create a recursive structure

Create islands in C...

...and link them together to form a tour

Inserting values into the list

Use the heap for dynamic storage

First, get your memory with malloc()

Give the memory back when you’re done

Free memory by calling the free() function

Ask for memory with malloc()...

...and free up the memory with free()

Oh, no! It’s the out-of-work actors...

Let’s fix the code using the strdup() function

So does it fix the code?

Free the memory when you’re done

Exhibit A: the source code

An overview of the SPIES system

The program builds a tree of suspects

Software forensics: using valgrind

Prepare your code: add debug info

Just the facts: interrogate your code

Use valgrind repeatedly to gather more evidence

This time, valgrind found a memory leak

Look at the evidence

1. Location

2. Clues from valgrind

The fix on trial

The leak is fixed

Your C Toolbox

7. Advanced Functions: Turn your functions up to 11

Looking for Mr. Right...

Pass code to a function

You need to tell find() the name of a function

Every function name is a pointer
 to the function...

...but there’s no function data type

Why doesn’t C have a function data type?

How to create function pointers

Get it sorted with the C Standard Library

Use function pointers to set the order

Automating the Dear John letters

Create an array of function pointers

But how does an array help?

Make your functions streeeeeetchy

So how can YOU do that?

Your C Toolbox

8. Static and Dynamic Libraries: Hot-swappable code

Code you can take to the bank

Angle brackets are for standard
 headers

But what if you want to share code?

Sharing .h header files

Share .o object files by using the full pathname

An archive
 contains .o files

Create an archive with the ar command...

...then store the .a in a library directory

Finally, compile your other programs

The Head First Gym is going global

Calculating calories

But things are a bit more complex...

Programs are made out of lots of pieces...

...but once they’re linked, you can’t change them

Dynamic linking happens at runtime

Can you link .a at runtime?

Dynamic libraries are object files on steroids

First, create an object file

What you call your dynamic library depends on your platform

Compiling the elliptical program

Your C Toolbox

C Lab 2: OpenCV

The spec: turn your computer into an intruder detector

The intruder detector

OpenCV

Installing OpenCV

What your code should do

Take input from your computer camera

Grab an image from the webcam

Detect an intruder

Make a clean getaway

Optional: show the current webcam output

The finished product

It’s time to become a C ninja...

9. Processes and System Calls: Breaking boundaries

System calls are your hotline to the OS

Then someone busted into the system...

Security’s not the only problem

The exec() functions give you more control

exec() functions replace the current process

There are many exec() functions

The list functions: execl(), execlp(), execle()

The array functions: execv(), execvp(), execve()

Passing environment variables

But what if there’s a problem?

Most system calls go wrong in the same way

Read the news with RSS

exec() is the end of the line for your program

fork() will clone your process

Running a child process with fork() + exec()

1. Make a copy

2. If you’re the child process, call exec()

Your C Toolbox

10. Interprocess Communication: It’s good to talk

Redirecting input and output

A look inside a typical process

Redirection just replaces data streams

Processes can redirect themselves

fileno() tells you the descriptor

dup2() duplicates data streams

Sometimes you need to wait...

The waitpid() function

Stay in touch with your child

Reading story links from rssgossip

Connect your processes with pipes

Piped commands are parents and children

Case study: opening stories in a browser

pipe() opens two data streams

In the child

In the parent

Opening a web page in a browser

The death of a process

The O/S controls your program with signals

Catching signals and running your own code

A sigaction is a function wrapper

All handlers take signal arguments

sigactions are registered with sigaction()

Rewriting the code to use a signal handler

Use kill
 to send signals

Send signals with raise()

Sending your code a wake-up call

...the timer fires a SIGALRM signal

Your C Toolbox

11. Sockets and Networking: There’s no place like 127.0.0.1

The Internet knock-knock server

Knock-knock server overview

BLAB: how servers talk to the Internet

1. Bind to a port

2. Listen

3. Accept a connection

A socket’s not your typical data stream

Sometimes the server doesn’t start properly

Why your mom always told you to check for errors

Bound ports are sticky

Reading from the client

The server can only talk to one person at a time

You can fork() a process for each client

The parent and child use different sockets

Writing a web client

Clients are in charge

Remote ports and IP addresses

Create a socket for an IP address

getaddrinfo() gets addresses for domains

Create a socket for a domain name

Your C Toolbox

12. Threads: It’s a parallel world

Tasks are sequential...or not...

...and processes are not always the answer

Simple processes do one thing at a time

Employ extra staff: use threads

How do you create threads?

Create threads with pthread_create

The code is not thread-safe

You need to add traffic signals

Use a mutex as a traffic signal

Your C Toolbox

C Lab 3: Blasteroids

Write the arcade game Blasteroids

Your mission: blast the asteroids without getting hit

Allegro

Installing Allegro

You may need CMake

What does Allegro do for you?

Building the game

The spaceship

What the spaceship looks like

Collisions

Spaceship behavior

Reading keypresses

The blast

Blast appearance

Blast behavior

The asteroid

Asteroid appearance

How the asteroid moves

When the asteroid is hit by a blast

The game status

Use transformations to move things around

The finished product

Leaving town...

It’s been great having you here in Cville!

A. Leftovers: The top ten things (we didn’t cover)

#1. Operators

Increments and decrements

The ternary operator

Bit twiddling

Commas to separate expressions

#2. Preprocessor directives

Conditions

#3. The static keyword

static can also make things private

#4. How big stuff is

#5. Automated testing

#6. More on gcc

Optimization

Warnings

#7. More on make

Variables

Using %, ^, and @

Implicit rules

#8. Development tools

gdb

gprof

gcov

#9. Creating GUIs

Linux — GTK

Windows

The Mac — Carbon

#10. Reference material

Websites

B. C Topics: Revision roundup

Basics

Pointers and memory

Strings

Data streams

Data types

Multiple files

Structs

Unions and bitfields

Data structures

Dynamic memory

Advanced functions

Static and dynamic libraries

Processes and communication

Sockets and networking

Threads

Index

About the Authors

Special Upgrade Offer

Copyright

OEBPS/Image00197.jpg
Standard —3.
Input comes

from a file

Standard Ervor still
g0 to the display.

) =
wu/‘&diundard Output.

goes to a file

OEBPS/Image00440.jpg
> ./test_flight
Atlantis

Titchmarsh Island

Name: Atlantis

open: 09:00-17:00
Name: Titchmarsh Island
open: 09:00-17:00

OEBPS/Image00196.jpg
Standard Evvor
g0es o the disply,

Standard nput comes
rom the keybosrd

§

& F
(@7 S Stardavd Output

— goes to the display.
»

-

R —

OEBPS/Image00441.jpg
fgets(name, 80, stdin)

NULL

OEBPS/Image00199.gif
#include <stdio.h>

int main()

{
float latitude;
float longitude;
char infol80];

int started = 0;
puts ("data=(") ;
while (scanf("%f,%f,879["\n]", &latitude, &longitude, info) {
if (started)
printf(",\n");
else
started = 1
if ((latitude < -90.0) || (latitude > 90.0)) {

fprintf (stders, "Invalid latitude: $£\n", latitude);
return 2; O\ Instead of printf0,

) we wae Fprnt
< -180.0) || (longitude > 180.0)) {
fprintf (stderr, "Invalid longitude: $£\n", longitude);
e ¥ e need o specy stderr 32 the st parsmeton
printf("(latitude: 8¢, longitude: %f, info: '8s')", latitude, longituds, info);

}
puts ("\n]") ;
return 0;

OEBPS/Image00438.jpg
That's 10 characters from
position s to the \O character,
and malloc(10) tells me T've got
space starting on the heap at
location 2,500,000,

OEBPS/Image00198.jpg
I printf ("I like Turtles!");

When you ¢3

pontfO, These wo calls are eqivalent
Lebaally cale

Fpentb0

fprintf (stdout, "I like Turtles!");

This il send data 4o 7

the data stream, stdout i the Standard I\m is the data that will be

Oubput data sbream sent.

OEBPS/Image00439.jpg
2,500,000 is an
M: 2,500,001 is
anO; ..

OEBPS/Image00201.jpg
ftinclude <stdio.h>

int main()
{
char word[10];
int i =07
while (scanf("%9s", word)

i % 2 mears “The L=+ 1y
m»..mgmm\,ff(, D .

ide by 2" printf (stdout, "$s\n", word);
You diide by else

fprintf(stderr, "$s\n", word);
¥
return 0;

OEBPS/Image00200.jpg
3 —
> gce geo2json.c -o geo2json

> ./gec2json-page21 < gpsdata.csv > output.json
Invalid latitude: 423.631805

OEBPS/Image00432.jpg
This is the new funetion

The name of the island is

passed as a char pointer.
N

island* create(char *name)

This will eveate a
new island struet

on the heap. > island *i =

i->name = name;

These lines sek the 05007
Dicldi on bhe-new sbinét, (17o008TS X 095000
i->closes = "17:00";

i->next = NULL;

return i;

N
The £unction veturns the
addvess of the vew shruek.

€ using the mallot) funttion
4o treate space on the heap.

malloc(sizeof (island));

The sizeof operator works out how
many bytes are needed

OEBPS/Image00433.jpg
A

1. ;

OEBPS/Image00193.jpg
Wouldrit it be dreamy if there
were a special output for errors so
that T didn't have o mix my errors
in with Standard Output? But T know
it's just a fantasy.

OEBPS/Image00436.jpg
Uhis will display the details —% g3 5510y (p_island0);
of the list of islands using the

function we created earlier.

Name: Titchmarsh Island
d to Atlantis??%? ~7 ::::n: 09:00-17:00

What hapgene Name: Titchmarsh Island
open: 09:00-17:00

The first island oy
has the same name as
the second islangll

OEBPS/Image00192.gif
C:\> echo %ERRORLEVEL%
2

OEBPS/Image00437.gif
char *s = "MONA LISA";

OEBPS/Image00195.jpg
e is no second €ar

- Ther

\ “
~. & This is the Standard Ervar.

This is the Standavd Output -~ gm

This is the
Standard nput
One car only. 7

OEBPS/Image00434.jpg
Create an arvay to store an island mame. ~3\ 2> name (801 ;

o the name of anisland. —3>fgets (name, 80, stdin);
island *p_island0 = create(name);

Ask the user &

Atlantis

OEBPS/Image00194.jpg
s anokher ear.
This is one ear. — This s a

Single mouth. Maliple uses.

OEBPS/Image00435.jpg
sk the user to enter the name

e .
of the setond idland foerenane, 80, Al

island *p_islandl = create (name); < This eveates the

ond island.
o S > p_island0->next = p_islandl; et
This tonneets the Tir

4o the second island

OEBPS/Image00208.jpg
This is 3 pipe. >
A pipe can be used to connett the e

Standard Output of one process to the
Skandard Input of another process.

P~ feats ko thenpt of agolion

OEBPS/Image00451.jpg
A

OEBPS/Image00207.jpg
L—Youll feed all of our data

& into the bermuda tool.
> ¥ This data includes events inside and

outside the Bermuda Rectangle

The ool vill only pass on data that
falls inide the Bermuda Rectangle

\

So yau will only pass Bermuda
Rettangle data to geo2json.

geoljson

Nt

agojson will vork evaetly >
Ehe same as before

-‘j — You vill produte a map
= containing only Bermuda
— Rettanale data.

OEBPS/Image00210.jpg
dwsp\aﬂ the. Jahlude,
itude, ang. Other daty

long

OEBPS/Image00449.gif
4\

OEBPS/Image00209.jpg
is the
The operating o TR
spstem will vun bermuda | geo2json
both programs at 2

the same fime. S The et of bermds will become the inpuct of aealjson.

OEBPS/Image00450.gif
Associated array or map Pescription

¢ connects key
information
value information

I can be used to store a sequence of items,
and | make it easy to insert new items. But

you can process me in only one direction

Doubly linked list Each item | store can connect to up to
two other items. | am useful for storing
= = hierarchical information.

, A
¥ like a normal linked list, but it
has connections ging both vays
I can be used to associate two different
types of data. For example, you could use
to me to associate people’s names to their
phone numbers.

Linked list

— >

Each item | store connects to up to two
other items. You can process me in two
directions.

Binary tree

OEBPS/Image00211.jpg

OEBPS/Image00443.jpg

OEBPS/Image00444.jpg
void release(island *start)
{
island *i = start;
island *next = NULL;
for (; i != NULL; i = next) {

First, you need 4o ;m\n:xt - next € Set next to point o the next island
the name string that you 4y '
eveated with strdup(). Areel).. < Only after frecing the name
b should you free the island sbruct.
! Nr# Yod freed the island fivst, you might not

have been able 4o veath the name to free it

OEBPS/Image00202.jpg
THE BUY SUBMARINE
SIX WILL EGGS
SURFACE AND AT

SOME NINE MILK PM

o 43,

Run with:

secret_messages secretixt > messagelbd 3> messageade

> vill vediveet the Standavd Output

2> vill vediveet the Standard Exvor.

OEBPS/Image00442.jpg
1sland *start = NULL:

island *i = NULL; At the end of each
loop, set i 4o the next

Ferand TREKE = NULLY pcad a sting from bhe Standard st iland e ereated.
char name[80]; \(
for(; _fgetsiname, 80, stdin) ! NULL ; next) ¢

This st ynest. = create (name w:’ni‘tv g i i e ey more
The first time through, start s set 4o
NULL, so set it to the First island.

if (start

NULL)
start = next

if (i != NULL)
e

= next;

}

display(start); Dort forget:iis a pointer, so
i louse 5 s bk

OEBPS/Image00204.gif
Message 1 Message 2

OEBPS/Image00447.jpg

OEBPS/Image00203.jpg
THE BUY SUBMARINE

Run with:
SIX WILL EGGS

SURFRCEANDYAT secret_messages secretixt > messagelbd 4> messageade

SOME NINE MILK PM

OEBPS/Image00448.jpg

OEBPS/Image00206.jpg

OEBPS/Image00445.jpg
> ./tour < tripl.txt

Name :

Open:

Name:
Open:
Name:

Open:

Name:

Open:

Name:

Open:

Name :

Open:

Name :

Open:

Name :

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name :

Open:

Name :

Open:

Delfino Isle
09:00-17:00
Angel Island
09:00-17:00
Wild Cat Island
09:00-17:00
Neri's Island
09:00-17:00
Great Todday
09:00-17:00
Ramita de la Baya
09:00-17:00
Island of the Blue Dolphins
09:00-17:00
Fantasy Island
09:00-17:00
Farne
09:00-17:00
Isla de Muert
09:00-17:00
Tabor Island
09:00-17:00
Haunted Isle
09:00-17:00
Sheena Island
09:00-17:00

OEBPS/Image00205.jpg
This is longitude —76°

— e Thisis
latitude 26°

This is longitude —64°

OEBPS/Image00446.gif
o7 ¢ ¥

OEBPS/Image00175.jpg
This is the GPS unit

wed bo track the N < /_\ =

lotation of the bike —_— k—\TMcdahFdown\aﬂd:d
—_— into this File
==

b}

gpsdata.csv

\l/
0

&— Reading this file

Weiting this £ile

S~
Your tool ill //
four ool will wi -
dita o this Hle P —k // P

= veads the data from
P |
=

autput jion and displays it
on 3 map inside 2 web page.

output json

OEBPS/Image00418.jpg
This line ereates —3 jsland skull = {"Skull", "09:00", "17:00", NULL};
Skull [sland. isla nublar.next = &skull; <o This comnecks lsla Nublar £o Skl
skull.next = gshutter; &~This connetts Skull to Shutter [sland.

OEBPS/Image00660.jpg
if (WEXITSTATUS (pid_status)) €— |f the exit stabus is not zeve

puts ("Error status non-zero");

OEBPS/Image00174.jpg
We really don't want the output
on the screen. We need it ina file
S0 we can use it with the mapping
application. Here, let me show you

OEBPS/Image00419.jpg
void display(island *start)
[

island *i = start;

"Name: is open: $s-%s\n",

) B)

OEBPS/Image00661.jpg
Fresboiental > ./newshound2 'pajama death'

file now eontains
the stories >

> cat stories.txt

Pajama Death ex-drummer tells all.
New Pajama Death album due next month.
as soon as

newshound2. is vun.

OEBPS/Image00177.jpg
A
The program veceives data
Eheough the Standard Input

> R
The program outputs data
through the Standard Output.

OEBPS/Image00416.jpg
7 IslaNublar T~
BEE S

OEBPS/Image00658.jpg
You need to include

#include <sys/wait.h>
the sys/waith $|. ~ e A
header.

This variable is used 4o store
information about the protess

This new code goes

This is a pointer to an int.
at the end of the

int pid_status;

R,
. fou ¢an add
newshound2. Program. if (waitpid(pid, &pid_status, 0) == -1) { °F+"°"‘ héve
error ("Error |waiting for child process");
}
Th -
return 0; ¢ process D o

newshound?2.c

OEBPS/Image00176.jpg
The data is being vead —>
Leom the keyboard:
J/—

Our tool eonverts the d:
rts lata
into the new format. 8e0gjso;
n

The data is then sent o the 2
disglay, not o a File. E
S

OEBPS/Image00417.jpg

OEBPS/Image00659.gif

OEBPS/Image00179.jpg
=L [i
B~
Geciota .5 v

OEBPS/Image00178.jpg
363400, -71.098465,
.363327,-71.097588, Speed
363255,-71.096710, Speed

This is the File containing the
data from the GPS device

095833, Spee
71.094955, Speed = 14
094078, Speed = 16

.093201, Speed =
42.362892,-71.09:
2.36:
362747,-71.090569, Speed = 23

3, Speed

0,-71.091446, Speed =

42.362675,-71.089691, Speed = 14
42.36
362
.36:
.362385,-71.086182, Speed = 21

This is elling the opevatin

syten bosend et From ou dor hve o e n e
the File into the Standard 6PS data, so you don't sec Tt
Infuct of the program. e up vith the avtput

2,-71.088814, Speed = 19

0,-71.0

6,Speed = 16

2457,-71.087059, Speed = 16

> ./geo2json < gpsdata.csv

data=[

{latitude: 42.363400, longitude: .098465,
{latitude: 42.363327, longitude: 097588,

{latitude: 42.363255, longitude: -71.096710,
Now you iusk sce the——> [FEENEENEN 363182, longitude 095833,
iy {latitude 363110, longitude .094955,
JSON data coming {latitude: 42.363037, longitude: 094078,

from the program

{latitude: 42.362385, longitude: .086182,

1
>

OEBPS/Image00181.jpg
.geozj son
\’f

output.json

OEBPS/Image00420.jpg
void display(island *start)

You don't ¢ You need o keep looging until the At the end of each loop,
need any Y iiandi i = starts turvent island has no next value: skip to the next island.
extra : N

tode at

e g SO0
S =
loop. ;

printf("Name: %s open: %s-¢s\n", [i->name | , [i->opens ' [1->et0ses ');

OEBPS/Image00180.gif
Now you ave vedivecting both
the Standard Input and the
Standard Output.

gpsdata.csv > output.json

The output of the program will
row be written to au::u{ joon.

data=
{latitude: 42.363400, longitude: -71.098465,
{latitude: 42.363327, tude: -71

*speed
*Speed

{latitude: 42.363255, tude: 71 *speed
{latitude: 42.363182, longitude: -71.095833, *speed
There's no ovtpt {latitude: 42.363110, 0. Speed
on e display at all {latitude: 42.363037, 094078, *Speed
s all qone to the {latitude: 42.362965, longitude: -71.09 *speed
outpu.json file. {latitude: 42.362892, tude: -71.092323, 'Speed
{latitude: 081446, *speed
{1atitude: 090569, *speed
(latitude: 08969 Speed
(atitude: 08881 *Speed

{1atitude:
{1atitude:
{latitude:
1

longitude: -71.087936,
087059,
086162,

*speed
Speed
*Speed =

Lon

output.json

OEBPS/Image00421.gif
island amity = {"Amity", "09:00", "17:00", NULL};
raggy"”, "09:00", 00", NULL};
island isla nublar = {"Isla Nublar", "09:00", "17:00", NULL};

island shutter = {"Shutter", "09:00", "17:00", NULL};

island craggy = {"

amity.next = &craggy;
craggy.next = &isla_nublar;

isla_nublar.next = &shutter;

island skull = {"Skull", "09:00", "17:00", NULL};

isla_nublar.next = &skull;

_ . : Amity
skull.next = &shutter; 09 06=17:00
display (samity); Craggy

09:00-17:00
Isla Nublar

09:00-17:00
Skull
09:00-17:00
Shutter

: 09:00-17:00

OEBPS/Image00652.gif
The #includes and the evror() funttion
have been removed to save space.

int main(int argc, char *argv(])
{
char *phrase = argv(l];
char *vars[] = ("RSSiFEED:http://www.cnn.com/rss/celebs.xml", NULL} ;
FILE *f = fopen("stories.txt", "w");
LE (16) { < If we tan't write to stoviestxt, then £ will be zevo
error("Can't open stories.txt"); <— Well report ervors using the ervor()
) function we wrote earlier.
pid_t pid = fork();
if (pid == -1) {
error("Can't fork process");
)

it Gpia) ¢ | What do you think goes hre?
if {
Litaratt Daieder cnanden v
i
if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

phrase, NULL, vars)
error("Can't run script");

-1 {

}
return 0;
==

newshound? c

OEBPS/Image00653.gif
int main(int argec, char *argv[])}
{

char *phrase = argv(ll;

char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};

FILE *f = fopen("stories.txt", "w");< This opens storiestxt for writing

IF (1) (< I£ £ was zevo, we couldn't open the File
error ("Can't open stories.txt");

)

pid_t pid = fork();

if (pid -1) {
error("Can't fork process");
) This code thanges the child
! profess becamse he i is zeve. This poinks destripbor #)
if (!pid) { = {o the storiestxt file
if (, dup2(filenc(£), 1) =) 4

error("Can't redirect Standard Output");
}

if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

phrase, NULL, vars)
error("Can't run script");

-1) 1

}

return 0;

i

newshound?.c

OEBPS/Image00414.jpg
You must give the struct a name.
You'll vecord
these details
for eath
island.

typedef struct island {

\sland. airport char *name;

char *opens;
Name: Aoty 7T N ¥
char *closes;
opens: 9AM. struct island *next;
land;

Closes! sPm { P setan

{
Nextisland: | Craqqy |

For each island, you'll also veeord the next island.

Youlll use
strings for
the name
and openin
e

You store 3
pointer to the
next island in
the sbruct

OEBPS/Image00656.jpg
e Eat_Window Help headAlAboutit
Ne in > ./newshound? 'pajama death'
odats in the A

filez wTF2l2 N

Wheve's The Faets?

OEBPS/Image00415.gif
island
island
island

island

This tode will ereate island
strutks for cath of the islands

v

amity = {"Amity", "09:00", "17:00", NULL};

craggy = {"Craggy", "09:00", "17:00", NULL};

isla nublar = {"Isla Nublar", "09:00", "17:00", NULL};
shutter = {"Shutter", "09:00", "17:00", NULL);

OEBPS/Image00657.jpg
Can you save these
stories to the file?

Might take
awhile...

That's OK,
T can wait.

A W

newshound child process

OEBPS/Image00173.jpg
This is the data you type in.(The input and the output ave mixed up.

>./geo2json

data={

42.363400,-71.098465, Speed = 21 &

(latitude: 42.363400, longitude: -71.098465, 21')42,363327,-71.097588, Speed = 23
{latitude: 42.363327, longitude: -71.097588, 23'142.363255,-71.096710, Speed = 17

{latitude: 42.363255, longitude: -71.096710, 17'142.363182,~71.095833, Speed = 22

{latitude: 42.363182, .095833, 221142.362385,~71.086182, Speed = 21

{latitude: 42.362385, .086182, 211)85

i 7

™ Several more hours’ worth of typing In the end, you need to
press Chel-D just 4o stop
the program.

OEBPS/Image00412.jpg
£ you wanted to insert an extra value
after Cragay Island, you'd have to move
£he other values along one space

Thisis an areay. —>| Amity | Craggy | IslaNublar | Shutter

And betause an avray is fixed
length, you'd lose Shutter [sland.

OEBPS/Image00654.jpg
e Edt_Window HelpReadAlAboutit
e the Prograns: =y > ./newshound? 'pajama death'

n > cat stories.txt The stories are
Thederiagy the;:of\& e G I e i ci e e
of the stories txt ile New Pajama Death album due next month. shonies bt Sl

1€ you've on a Windows mathine,

you'll need o be vunning Cyavin

OEBPS/Image00172.jpg
int main()

float latitude;

float longitude; e e o begin vith “starked” set
char info[80); g 15 0, whith means false.
o -

int started

Did You remember the “¢”s on the number
variables? stanf() needs pointers.

longitude

puts ("data=
while (scanf ("sf,3f,579("\n)", __ fltitude
) You'l display 3 comma only if you've
printe(",\n"); alveady displayed a previous line.

else

if (start

Once the locp has started, you can
started = L ST sk tbarked o | which s broe

printe("(latitude: 81, longitude: 8¢, info: 'ss'}", latitede , longibude ,
5

puts ("\n] ") ;

You don't need £ here because
print0) is using the values, not
return 0; the addvesses of the umbers.

OEBPS/Image00413.jpg
This is a recursive

structure for an island. — Another Island
~but you also need 4o give the
You need o vecord all of the island a link to the next island.

sl debatts: Bov Hhia indanal.

OEBPS/Image00655.jpg
I think there might be a
problem with the program.
See, T just tried the same thing,
but on my machine the file was
empty. So what happened?

OEBPS/Image00186.jpg
Longitus
Longitus

-71.096710, info: 'Speed
-71.005833, info: 'Speed

"The detimal point is in £he wrong place in this number.

OEBPS/Image00429.jpg
#include <stdlib. £ You need to include the stdlibh header tile
stalib.h> £ 7 o the mallocd) and free) functions

malloc (sizeof (island)) ; kTh-s means, “Give me enough space
¥ b above s tslandd dbireek: rail

OEBPS/Image00671.jpg
Whatever is written heve. - ﬁ 'm & -tan be vead From heve.

OEBPS/Image00185.jpg
saascios

£ I dropped the
? 6PS unit onaride
couple of times, and now

the map wor't display.

OEBPS/Image00430.jpg
T'his means, “Create

enough space for an
feland *p = malloc(sizeof (island)) ;& lind, and store the

addvess in variable p.”

OEBPS/Image00188.gif
#include <stdio.h>

int main()
{
float latitudes
float longitude;
char info(801;

int started = 0;

puts("data=(");

while (scanf("$f,%£,%79("\n]", &latitude, &longitude, info)
if (started)

started = 1; These lines check that £h
These if Uabitade < ~90.0) | Oabitade > 9000 { S/ lsbtde snd longitue ave

fne il prink (" Inald lkitade: %6, latude) in e corvect vinge
— 7 .retun2;

from
the
main()
function
with an

These lines display

/ Gmple evvor messaES

ntf("{latitude: 3f, longitude: %f, info: '$s'}", latitude, longitude, info);

puts (M\nl")

return 0;

OEBPS/Image00427.jpg

OEBPS/Image00669.jpg

OEBPS/Image00187.gif
¥include <stdio.h>

main()

float latitude;
float longitude;
char infol80];

int started =

puts ("data

™
while (scanf("&f,%£,879("\n]", &latitude,
if (started)

printf(",\n");
else

started = 1;

info)

slongitude,

£ the latitude is < =90 or > 90, then evror
with stabus 2. 1€ the longitude is < ~180 or
Y > 180, then ervor vith status 2.

printf("(latitude:

3£, longitude: 8f,
}
puts("n]");

return 0;

info:

'$s'}", latitude, longitude, info);

OEBPS/Image00428.jpg
Thanks for the
storage. I'm
done with it now.

OEBPS/Image00670.jpg
T want a program
that opens stories in
my browser as soon
as theyre found.

Standard input
Standard output
Standard error
Read-end of the pipe
Write-end of the pipe

This is £dC03. [S|
This is £dC13. —>|4]

Calling pipe) ereates these two destripors.

OEBPS/Image00190.gif
v This is the outputjson file.

(latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
Invalid latitude: 423.6:

Oh, the ervor message vas also vedivected to the output file.

OEBPS/Image00189.jpg
This line will ecompile.
the progeam

e e Youll save the wkyE&
> gec geo2json.c -o geo2json in the cubpub juon Hie
i e P

Then vun the >

program again

wirth the bad data

‘ ervor message?

This means

Welcome To And where did all 3
Firland." the points 997

[Coge o Ei PR ore: v

OEBPS/Image00431.jpg
free(p) ; This means, "Release the memory you
Lo allotated from heap addvess p.”

OEBPS/Image00191.gif

OEBPS/Image00663.jpg
The URL line
begins ith 3
tab character.

—u tells the seript to intlude story links.

File Eat Vindow Felp

> python rssgossip.py -u 'pajama death'
Pajama Death ex-drummer tells all.

http://www.rock-news.com/exclusive/24.html
New Pajama Death album due next month.

http://www.rolling-stone.com/pdalbum.html

This is the URL
for the story.

OEBPS/Image00422.jpg
There will
be some.
more lines

ol ko Hide

Delfino Isle

Angel Island

Wild Cat Island
Neri's Island
Great Todday

OEBPS/Image00664.jpg
Since I created
You, you never write,
you never phone..

T Child protess

Parent protess

OEBPS/Image00662.jpg
That's great. Now
T'll never miss
another story again.

OEBPS/Image00182.jpg

OEBPS/Image00425.jpg
Heap storage is like saving
valuables in 3 loker-

OEBPS/Image00667.jpg
N

OEBPS/Image00426.jpg
24 bytes of

?‘ﬂa at location
304,853 on the

heap X

— &80

The mallocQ) funttion will give you 3
pointer to Lhe spate in the heap-

\

OEBPS/Image00668.jpg

OEBPS/Image00184.jpg
Great! Now I can
publish my jourreys
on the Webl

OEBPS/Image00423.jpg
Hmmm... So far, we've used a separate variable
for each item in the list. But if we don't know how
long the file is, how do we know how many variables

we need? T wonder if there's some way to generate
new storage when we need it.

OEBPS/Image00665.jpg
The two protesses are gep filters the
comnceted with a pipe. autput of the seri

e Eg Window Help -ReadAllAbout
rssgossippy sends its — . [P e L =
output into the pipe. http://www.rock-news.com/exclusive/24 . html
http: //www.rolling-stone. com/pdalbun. html

OEBPS/Image00183.jpg
-I opeer

=B < Thi s the
SI=] veb paoe that
tontains the map.

map.html

= £ This is the file
LoI=]" 6t e progam
=) created

output.json

OEBPS/Image00424.jpg
Wouldrit it be dreamy if there were a
way to allocate as much space as T needed
with code at runtime? But I know that's
just a fantasy...

OEBPS/Image00666.jpg
\/,
N

2 AN

OEBPS/Image00396.gif
typeder struct {
short low_pass_vcf;

Eath of these fields
will contain | for
short reverb; true or O for fale

short sequential;

short filter coupler;

*** ST There are a lot move fields that follow this.

} synth;
\/ Eath field will use many bits. \

0000000000000001 | 0000000000000001 | 0000000000000001 | . |

OEBPS/Image00638.jpg
Hey! That's
great! Tl send my

photographers down
to the premiere.

OEBPS/Image00397.jpg

OEBPS/Image00639.jpg
This is your

newshound
process.
£ vuns separate —
protesses for eath of X
the three newskeeds *
o
newshound

The child protesses all =>
vun 3t the same time

OEBPS/Image00394.gif
> gcc enumtest.c -o enumtest

This order contains 144 apples

This order contains 17.60 lbs of strawberries
This order contains 10.50 pints of orange juice

OEBPS/Image00636.jpg
for (1 =07 1 < times; 1++) {
char var[255];
sprintf (var, "RSS_FEED=%s", feeds[i]):

char *vars(] = {var, NULL};

Fiest, all fork() 4o clone the process

Pid_t pid = fory)

1€ £ork() veturned -1, there was a problem cloning he protess

fprintf(stderr, "Can't fork process: $s\n", strerror(errno));

return 1;

1€ £ork) veturned a O, the tode is
0). & running in the child protess

This is the same as if (pid

'4
€ you get heve, you've he ehild protess,

50 we should exec() the seript

W jossip.PY"
R ; v, "/usz/bin/python", "./rssg
22: laxecie] /““/m;{:ﬁ:r‘mn, vars) = -1) {

fPrintf(stderr, "Can't run script: ss\nv, strerror (errno)) ;

OEBPS/Image00395.jpg
\\ | o Head First

Ll.o nge

OEBPS/Image00637.gif
File Edit_Wir

> ./newshound 'pajama death'

Pajama Death ex-drummer tells all.

New Pajama Death album due next month.

Photos from the surprise Pajama Death concert.
Official Pajama Death pajamas go on sale.
"When Pajama Death jumped the shark" by HenryW.
Breaking News: Pajama Death attend premiere.

OEBPS/Image00400.jpg
0x54

AL
0101 0100

This is 5.

OEBPS/Image00401.jpg
typedef struct

unsigned int low pass_vef:l;

Eath field should unsigned int filter_ceupler:l;&nm ik Field will
be an unsigned int. | unsigned int reverb:l; only use | bit of storage

signed int sequential:l;

} synth;

By using bitfields, you can make sure
each field takes up only one bit

OEBPS/Image00398.jpg

OEBPS/Image00640.jpg
exetl) = list of args.

execleQ) = list of args + environment.
exetlpO) = list of args + searth on path.
exeev) = arvay of args.

execve) = arvay of args + environment.

exetv0) = areay of avgs + searth on path

SorkO
duplicates
the eurvent
protess.

fork0) +
—

exee()
ereates a
¢hild process.

OEBPS/Image00399.jpg
& This is mot decimal 57
inkow e linkes

OEBPS/Image00641.jpg

OEBPS/Image00392.jpg
#include <stdio.h>

typedef enum {
COUNT, POUNDS, PINTS

} unit_of measure;

typedef union {
short count;
float weight;
float volume;

} quantity;

typedef struct {
const char *name;
const char *country;
quantity amount;
unit_of measure units;
} fruit_order;

void display(fruit_order order)
[
printf("This order contains ");

if(

PINTS)

printf("$2.2f pints of $s\n", order.amount.

order.name) ;

OEBPS/Image00634.jpg
for (1 = U; 1 < times; 1++) |

Put your

»GB"Y:L char var[255];

in this sprintf (var, "RSS_FEED=%s", feeds[i]):
space;

char *vars(] = {var, NULL};

OEBPS/Image00393.gif
eise if ("

printf("$2.2f lbs of $s\n",

!

order.amount.weight, order.name);

else

printf("%i ¥s\n", order.amount ., order.name) ;

int main()
{

fruit_order apples = {"apples", "England”, .amount.count=144,

fruit_order strawberries = {"strawberries", "Spain", .amount 17.6, POUNDS};

fruit_order oj = ("orange juice”, "U.S.A.", .amount.volume=10.5,

display (apples);
display (strawberries);
display (0j) ;

return 0;

OEBPS/Image00635.jpg
strerror (errno)

an't fork process: $s\n’

fprintf (stderr,

fprintf "Can'
p: (stderr, "Can't run script: s\n", strerror (errno)) ;

- thon", "./rssgossiP-PY"/
% " ‘bin/python", /usz/bin/py’
if (execle("/usz/ ‘Ph*;:'sev NOLL, vars) == -1)

OEBPS/Image00632.jpg
& New proeess 1234

The original [mail

OEBPS/Image00633.jpg
The ¢hild process ealls exec().
This is the child process.

) X~ The child protess is

This is the pavent protess. — veplaced by vssgossip-py-

OEBPS/Image00407.jpg
T heard that
Ted left Judy
on the heap.

OEBPS/Image00649.jpg

OEBPS/Image00408.jpg
Cotonut fivways flies
C planes bebween the
Ak

OEBPS/Image00650.jpg
pid t pid = fork();
if (pid == -1) {
fprintf (stderr, "Can't fork process: s\n", strerror(errno));
return 1;
N Duplicated code can be the cause
i of unvavvanted toding stress.

if (execle(...) 1)
fprintf (stders, "Can't run script: §s\n", strerror(errno));
return 1;

OEBPS/Image00405.jpg
Lypedel struct
unsigned int
unsigned int
unsigned int
unsigned int

unsigned int

survey;

I bit ean stove 2.

first_visit:
values: brue/false.

come_again:
fingers_lost
shark_attack

4 bits are needed
to store up 4o 0.
days_a_week:
=3 biks ean store

numbers up to 7.

OEBPS/Image00647.jpg
int descriptor = fileno(my file);
This will veburn the valie '4-

OEBPS/Image00406.jpg
You ean
initialize

struets with
{array,

notation}.

unions ¢an hold
diffevent data

types in one
location.

You tan vead
struet fields
with dot
notation.

Designated
initializers let
You set struet
and union fields
by name.

BitFields give
control
y:er the exact
bits stoved in 3
struet.

OEBPS/Image00648.gif
Data Stream
The keyboard
The screen

Sptid, G The screen
\ Datmbase tonmection File guitar.mp3

File guitar.mp3

OEBPS/Image00411.jpg
fight.
Cransy

You needed to
eveate 3 vew

om

o Skull

You necded to
vemove the flight
from Crasgy fo
|sla Nublar-

You needed +o
treate a new
{light from
Skl 4o [dla
Nublar.

Isla Nublar

OEBPS/Image00409.jpg
island tour[4]:

OEBPS/Image00651.jpg
void error(char *msg)
{
fprintf(stderr, "$s: %s\n", msg, strerror(errno));

xit (1)1 €— exitl]) vill berminate your program vith status | IMMEDIATELY!

OEBPS/Image00410.jpg
You are storing a piece of
data for cach island.

This is a link to the
next piece of data.

OEBPS/Image00642.jpg
python ./rssgossip.py Snooki >

fou tan vedirect output
stories.tre & L I
The Standard
Inpuc; stdin

e
= R

The Standard
The smam{ Ervor: stderr
You tan vediveet Output: stdow
the Standard
Output 4o 3 Lile.

OEBPS/Image00403.jpg
You need to detide
typedef struct { how many bits to use

unsigned int first visit:

unsigned int come_again:

unsigned int fingers_lost

unsigned int shark_attack

unsigned int days_a_week:

! SiseE:

OEBPS/Image00645.jpg
-/myprog 2>&l1

”
G
Standavd Evvor Standard loput”

OEBPS/Image00404.gif
w‘aa F iry

Gl
Aquarium Questionnaire

o

*{nar.“‘\\

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

OEBPS/Image00646.jpg
Hmmm...looks
like slot 4 is free;

T'll record the music
file there.

The keyboard ‘ ——
The screen

The screen

Database connection

OEBPS/Image00643.jpg
Standard Iput—~s[0
Standard Output 5[1
Standard Ewwﬁ 2

The process might also | 3
have other open streams

The screen
The screen
Database connection

OEBPS/Image00402.gif
od F

A% L
V Aquarium Questionnaire

Yugry0®

5

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

OEBPS/Image00644.jpg
Standard Output

a file.

bas been redivected A (= M

o

The keyboard
Freseresn File stories.txt
The screen

Database connection

OEBPS/Image00380.gif
Here, you've using a double

designated identifier. [t

accesses the weight field of
[¥s amourt because that's the name of the struct quantity varizble. _the amount union

fruit_order apples = {"apples", "England”, .amount.weight=4.2};
printf("This order contains $2.2f lbs of $s\n", apples.amount.weight, apples.name);

This will print “This order eontains 420 Ibs of apples”

OEBPS/Image00381.gif
margarita m = {2.0, 1.0, {0.5}};

margarita m = {2.0, 1.0, .citrus.lemon=2};

margarita m = {2.0, 1.0, 0.5};

margarita m = {2.0, 1.0, {.lime_pieces=1}}; '
margarita m = {2.0, 1.0, {1}}; '

margarita m = {2

e re s

OEBPS/Image00374.jpg
This is space for the age as an int.

This is a thar pointer
This is 3 float. 4,

to the name.
[char *name | mt age | floatweight |¢— store the weight.

Dog d = {"Biff", 2, 98.5};

OEBPS/Image00616.jpg
EPERM=1 Operation not permitted
No such file or directory
No such process

Bad haircut

ENOENT=2
ESRCH=3
EMULLET=81

This value is
ot available
on all systems

OEBPS/Image00375.jpg
quantity (might be a float or a short)

A union looks ke a struct, 1§ a float takes 4
i .) s bykes, and 2 hord, akes
£ wses the union keyword, "*’t_\{\ 2, then his spate will be # bykes long
ypedef union {

short count;

/72\ float weight;
Eath of these fields will be £loat volume;
stoved in the same space.

} quantity;

These ave all diffevent types,
bk they've all quantities

Measure juice.

Count oranges.

Weigh grapes.

OEBPS/Image00617.jpg
strevror() converts an evror

puts (strerror (errno)) ; &—
B

OEBPS/Image00372.jpg
tion
l@ l@
1

OEBPS/Image00614.jpg
Guaranteed - ¥
Standard of
Failure

b

OEBPS/Image00373.jpg
An inbeger

Floating point Al of Ehese describe 2 quantity

Floating point

OEBPS/Image00615.jpg
£ exetle)) worked, execle("diner_info", "diner_info", "4", NULL, my_env);

this line of code

) puts("Dude - the diner_info code must be busted");
would never vun. -

OEBPS/Image00378.jpg
Those designated initializers look like
they could be useful for structs as well.
T wonder if I can use them there.

OEBPS/Image00620.gif
#include <string.h>
#include <stdio.h>
#include <errno.h>

Candidate tode goes here
int main(int argc, char *argv(])({ \[

OEBPS/Image00379.jpg
typedef struct {
const char *color;

£ ; This will set the ocars and
et the height fields, but wor

int height; set the color Field:
 bike;

bike b = {.heigh

7, .gears=21}:

OEBPS/Image00621.gif
o Mateh each candidate with
Candidates: one of the possble outpets

if (execle("./coffee", "./coffee", "donuts", NULL, my_env) == -1){

char *my env[] = {"FOOD=coffee", NULL};

fprintf (stderr,"Can't run process 0: $s\n", strerror(errno));
return 1;

}

char *my_env[] = {"FOOD=donuts", NULL};

if (execle("./coffee", "./coffee", "cream", NULL, my_env) == -1){
fprintf (stderr,"Can't run process 0: %s\n", strerror(errno));
return 1;

}

if (execl ("./coffee", "coffee", NULL) == -1){
f£printf (stderr,"Can't run process 0: %s\n", strerror(errno));
return 1;

b

char *my_env[] = {"FOOD=donuts", NULL};
if (execle("./coffee", "coffee", NULL, my_env) == -1){
fprint (stderr,"Can't run process 0: $s\n", strerror(errno));

return 1;

—> Possible output:

coffee with donuts

cream with donuts

donuts with coffee

coffee with coffee

OEBPS/Image00376.jpg
quantity q = {4}; <— This means the quantity
£ o bt

OEBPS/Image00618.gif
#include <stdio.h>

Wit headers il you need?

This will need to vun

int main() &“‘;"L'l;?;‘iﬁ";tl ﬁt';/ Wecnfiy the itontig comnand
(¢ and cheek it it fails.
if (.
if (execlp({
fprintf(stderr, "Cannot run ipconfig: %s", L

return 1;
’ Whi, do you think goes here?

return 0;

OEBPS/Image00377.jpg
-This will set the
union for a floating-
point weight value.

quantity q = {.weight=1.5}; &

OEBPS/Image00619.jpg
#include <stdio.h>

display evvors ith strevvor()

int main() Use exetlO because you have the [F execl) veburns I, it falled, so
. path 4o the program file. we should probably look for ipeonfiy
v

S5 exetl(“/s

if (execlp((

fxﬂf%:;" fprintf (stderr, :)i
ipeon return 1; Checking for the value ! A~

el e the cammand faied The strtrror funchion

command on }

the path.
1

vill display any problems.
return 0;

OEBPS/Image00612.jpg
Each variable in the The last item in the

ment. is mame=value. ."
s . S omenk =l areay must be NULL
set of eniromment char +my_env(] = ("JUICE=peach and apple", NULL);

variables 35 an arvay -

of string pointers

execle ("diner_info", "diner_info", "4", NULL, my_env);

execle passes a list of arquments and an environment. wy_env:ontiing Lhe. envivomment.

OEBPS/Image00613.jpg
> ./my_exec_program
Diners? 4

Juice: peach and apple
2

OEBPS/Image00391.jpg
order.units
order.units

OEBPS/Image00385.jpg
Hey, wait a minute... You're setting all these
different values with all these different types
and you're storing them in the same place in

memory... How do I know if I stored a float in there
once T've stored it? What's to stop me from
reading it as a short o something??? Hello?

OEBPS/Image00627.gif
8o EdR_Viindow Help ReadAlAboutit
> ./newshound 'pajama death
Pajama Death ex-drummer tells all.

New Pajama Death album due next month.

OEBPS/Image00386.jpg
#include <stdio.h>

typedef union {
float weight;
int count;

} cupcake;

By mistake, the
Programmer has st the

int main() weight, not the count.

‘ Ghe set the veight, but

= ; “he's veading the court
cupcake order = {2}; R

printf("Cupcakes quantity: $i\n", order.count): \

return 0;

e g Wk R
> gece badunion.c
Cupcakes quantit:

badunion && ./badunion
1073741824

That's a lot of euptakes.

OEBPS/Image00628.jpg
Worked!? Worked?!? It didn't work! What about
the announcement of the surprise concert? That
was on every other news site! I coulda sent my

photographers down there. As it is, T was beaten
to the story by everyone else in town!

OEBPS/Image00383.gif
1217

margarita m = {2.0, 1.0,

measures Of tequila\ns2.lf measures of cointreau\n$2.1f
measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

pri)

2.0 measures of tequila
1.0 measures of cointreau
of juice

2.0 measures

margarita m = {2.0, 1.0, {0.5}};

printf("%2.1f measures of tequila\n:2.lf measures of cointreau\n%2.1f
measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
0.5 measures of juice

margarita m = {2.0, 1.0, {.lime_pieces=1}};

printf("t2.1f measures of tequila\n$2.lf measures of cointreau\nti pieces
of lime\n", m.tequila, m.cointreau, m.citrus.lime pieces);

2.0 measures of tequila
1.0 measures of cointreau
1 pieces of lime

OEBPS/Image00625.jpg
To save space, this listing doesnt
show the FFintlude lines-

These are RSS feeds the editor wants

int main(int arge, char *argv(]) (you might want. to thoose your own).
n own

{
char *feeds[] = {"http://www.cnn.com/rss/celebs.xml",
"http://www.rollingstone.com/rock.xml",
"http://eonline.com/gossip.xml"};

int times = 3; L— Wl pass the searth terms in 35 an argument:

char *phrase = argv[1l];
S5 15 Loop through each of the feeds.
for (i = 0; i < times; i++) {

char var[255];

This is an sprintf(var, "RSS_FEED=%s", feeds[i]);
Sruvonmentl—-char *vars(] = (var, NULL}; ,On the editor's Mat, Python is stalled here
arva
v 4 . if ("/usz/bin/python”, "/uSr/bin/python”,
ou nee
(‘omxe»{.,—A] . L BRI
fhc fprintf (stderr;\"Can't run script: %s\n", strerror(errno});
unttion .
name TELUIR 17 o need o insert the other
here. } Pavameters to the function heve
}
return 0; .
} =

newshound.c

OEBPS/Image00384.gif
margarita m = {2.0, 1.0, {0.3}};

This one compiles perfectly. [£'s
actually just one of the drinks abovel

margarita m;

m = {2.0, 1.0, {0.5}};

This one doesn L compile because the ompiler will only know
that {2.0, 10, {05 vepresents a sbruct if it's used on the
<ame line that 3 struct is detlaved. When it's on 3 separate
line, the compiler thinks it's an array-

OEBPS/Image00626.gif
Yoe wi

aLiSTofl |77

args and an
ENVIRON-
MENT, so

it's execLE.

int main(int arge, char *argv(l)

{

char *feeds[] = {"http://www.cnn.com/rss/celebs.xml",

"http://www.rollingstone.com/rock.xml",

"http://eonline.com/gossip.xml"};
int times = 3;
char *phrase = argv[1];
int i;
for (i = 0; i < times; i++) (
char var[255];

sprintf(var, "RSS_FEED=%s", feeds[il)
char *vars[] = {var, NULL};

if (("/usz/bln/pythcn"

" /usr /bin/python”,
) = -1) {

fprintf (stderr;\™"Can't run\3crip

return 1; This is the This is the Pass the
} name of the search phrase, envivonment
) Python sevipt. as a Lommﬂhz— as an extva
line avgumen parameter.
return 0;

strerror (errno));

newshound.c

OEBPS/Image00389.jpg
finclude <stdic.h>

typedef enun |
COUNT, POUNDS, PINTS
} unit_of_measure;

typedef union {
short counts
£loat weight;
£loat volune;
} quantity;

typedet struct (
const char *name;
const char *country;
quantity anount;
unit_of_measure units;
} fruit_order;

void display(fruit_order order)
¢

printf("This order contains ");

if o, PINTS)

Printf("32.2f pints of s\n", order.amount.

+ order.name) ;

OEBPS/Image00631.jpg
The fork() system call will - 5 The new protess
elone the current process. — 7> é\ is called the
Y child protess.

The original
process is
¢alled the
pavent process.

OEBPS/Image00390.jpg
else if (-)
Printf("$2.2f 1bs of is\n", order.amount.weight, order.name);

else
Printf("ti $s\n", order.amount. . order.name) ;
b
int main()
t
£ruit_order apples = ("apples”, "England”, .amount.count=144, b

fruit_order strawberries = {"strawberries", "Spain®, .amount. =17.6, POUNDS};
fruit_order oj = ("orange juice”, "U.S.A.", .amount.volume=10.5,
display (apples) ;

display (strauberries);

display(oj);

return 0;

OEBPS/Image00387.jpg
The values ave separated by commas.
Possible eolors
n Your enum, . enum colors {RED, GREEN, PUCE};

L\

You eould have given the type a proper name with typedef.

OEBPS/Image00629.jpg
Onte the newshound program hands over
the protess o the vssgossippy program
newshound quits.

OEBPS/Image00388.jpg
Nope: I'm not
compiling that;

The computer ill spot. that this is i¥s not on my list.

not 2 legal value, so it won't compile

enum colors favorite = PUSE;

OEBPS/Image00630.jpg
The loop will run only onte.

for (i = 0; i < times; i++) {

if (execle("/usr/bin/python”, "/usr/bin/python",
Ovte eietlel) i PN "./rssgossip.py", phrase, NULL, vars)
talled, the whole
progyam quits.

}

OEBPS/Image00623.gif
Candidates: Possible output:

char *my env[] = {"FOOD=coffee", NULL};
if (execle("./coffee", "./coffee", "donuts", NULL, my_env) == -1){

fprintf (stderr,"Can't run process 0: $s\n", strerror(errno)); coffee with donuts
return 1;

}

char *my env[] = {"FOOD=donuts", NULL};

if (execle("./coffee", "./coffee", "cream", NULL, my_env) == -1){
f£printf (stderr,"Can't run process 0: %s\n", strerror(errno)); cream with donuts
return 1;

}

if (execl ("./coffee", "coffee", NULL) == -1){

fprintf (stderr,"Can't run process 0: %s\n", strerror(errno));
donuts with coffee
return 1;

}

char *my_env[] = {"FOOD=donuts", NULL};
if (execle("./coffee", "coffee", NULL, my_env) == -1){

fprintf (stderr,"Can't run process 0: $s\n", strerror(errno)); coffee with coffee
return 1;

OEBPS/Image00382.jpg
margarita m = (2.0, 1.0, .citrus.lemon=2};

margarita m = {2.0, 1.0, 0.5}; ' ’\

None of these
lines was used.

et

margarita m = {2.0, 1.0, {1}}/

OEBPS/Image00624.jpg
You need to ereate

an envivonment

I want all the latest
stories on Pajama Death.

This is vurning in 3
Unik envivonment.

variable containing > T e T S Yy IS PR

the address of an
RSS feed.

This vuns the
vssagssip seript
with a search
sbring

> python rssgossip.py 'pajama death'

Pajama Death launch own range of kitchen appliances.
Lead singer of Pajama Death has new love interest.
"I never ate the bat" says Pajama Death's Hancock.

Ooh, T just had a great idea.
Why not write a program that
can search a lot of RSS feeds
all at once! Can you do that?

This isn't @
veal feed
You should
veplace it
with one you
find online.

OEBPS/Image00622.gif
#include <string.h>
#include <stdio.h>
#include <errno.h>

Candidate code goes heve
int main(int argc, char *argv([]){ {

OEBPS/Image00071.jpg
and of course, Mommy

never lets me stay out
after 6 pm.

Thark heavers my
boyfriend variable isn't
in read-only memory.

OEBPS/Image00069.jpg
By betting big when
the count was high, T
made a fortune!

OEBPS/Image00070.jpg
ikt skatemerts
efficiently thetk

Lor miltiple vales
of 3 vaviable:
Gimple
akements Eny
= Proges,,
gommands: Block e,
statements et 50
are survounded
by{and} \“(mm*,,
traves) omple Y0¥ ©
Hinclude imtludes o\::; i ,:n:
== ey
) " e
Tike ingut and 0:}; yfl e
avkpet iy
————
Vostame it
and || 4o combine
tonditions
tonether.
en e v e mab\
e el our soure f ade 3\
o E shodd a3 les e fen
rame ending o e
ine.

Lount o :

means 384 means. a:,’TP! area

Lo towrts subtract | = o(n:::: t
ny

— from ot loops.

OEBPS/Image00067.gif
#include <stdio.h>
#include <stdlib.h>
int main()
{
char card_name([3];
int count = 0;
do {

puts ("Enter the card name:

scanf ("%$2s", card_name);

int val = 0;

switch(card_name[0]) {

case 'K':

o

case 'J':

val = 10;

break;
'A':

val =

break;

case 'X':

default:

val =

case

case
11;

This is just one way of

ced another ontinue here 7. tontinue;
f:‘t:\.sc You want o keep lootind:
}
i ((val > 2) & (val < 7))
count++;
} else if (val == 10) {

count--;

}

printf ("Current ctlvunt‘
«

return 0;

atoi(card name);

writing this condition. —y i (vl < 1) || val > TO)) {

"

e incide
brealk wosldr' lreak us ok of the loop, betinse we're insi
alegr&;\ﬁmenk. We need 2 Eankinue 4o g0 batk and theth
4 the loop tondition again.

{

%i\n", count);

KYm need 4o cheek if the Fiest chavacter was an X

OEBPS/Image00068.jpg
This vill eompile
and vun the —
program

We now chetk
if it looks
like 3 corveet 7
card value

The count is —y

T G

> goc card_counter.c -o card counter &&
Enter the card name:
4

Current count: 1
Enter the card name:
K

Current count: 0
Enter the card name:
E)

Current count: 1
Enter the card_name:
5

Current count: 2
Enter the card_name:
23

P4 I con't understand that value

Enter the card name:
6

Current count: 3
Enter the card name:
5

Current count: 4
Enter the card name:
5 o
Current count: 5
Enter the card name:
X

Remember: you don't need */
i£ you're on Windows

v

. /card_counter

OEBPS/Image00065.gif
#include <stdio.h>

int main()
{
int x = 0;
int y = 0;
while (x < 5)

printf ("$i%i ",

x=x+1;
}

return 0;

Candidake code goes here
|

OEBPS/Image00066.jpg
y=y+2;
iE (v > 4)

x+1;
if (y < 3)
x=x-1

y=y+2;

Possible output:

22

11

02

02

00

11

00

02

46

34

14

14

1

21

1

14

59

26

36

21

32

23

25

38

a8

32 42

42 53

36 410

36 47

OEBPS/Image00063.jpg
Mateh each
eandidate with
one of the
possible autputs

Candidates:

y=x-y;
y=y+x;
y=y+2;
if (v > &)
y=y-1;
x=x+1;
y=y+x;
if (v < 5)
x=x+1;
if (y < 3)
x=x-1;

Possible output:

22

11

02

02

00

11

00

02

46

34

14

14

20

14

59

26

36

21

32

23

25

38

a8

32

a2

36

36

a2

53

a10

47

OEBPS/Image00064.gif
#include <stdio.h>
#include <stdlib.h>
int main()
{
char card_name[3];
int count = 0;
do {
puts ("Enter the card _name: ");
scanf ("%2s", card_name);
int val = 0;
switch(card name([0]) {
case 'K':
case 'Q':
case 'J':
val = 10;
break;
case 'A':
val = 11;
break;
case 'X': v What will you do here?

defaul
You need to display an ervor if val = atoi(card name);
the val is not in the vange | to —
10. You should also skip the vest
of the loop body and try again '

}
if ((val > 2) && (val < 7)) {
Add | to tount. — count++;
} else if (val == 10) {
Subkract | from tount, ——> count--;
}
printf ("Current count: %i\n", count);
} while
return 0;

o)
IR, o need o stop i she enters

OEBPS/Image00062.jpg
#include <stdio.h>

int main()
(
int x = 0;
int y = 0;
hil 5
while (x < 5) (ot ol

printf ("$i%i ", x, y);
x=x+1;

}
return 0;

OEBPS/Image00255.gif
You need
#include <stdio.h>

z]mall
“"e::‘:,r“& total = 0.05 fyee won't be many items on an
1 . . .05 el be man
botal the ash” . count = 0; < order, o well choose 3 short
. tax_percent = 6;
) | add with taniflost £y A Weve vobursing 8 endll 22k e, 30 1 be 3 float.
A float ill - ¢
'Z:Oﬁ“‘; > float tax rate = 1 + tax_percent / 100 0. ;
is feaction. R X I
total = total + (f * tax_rate); By adding 0, Yo mike the .
count = count + 1; caleulation work as a Float |

turn total; \ebt it as 100, it veuld
return tota o e o e ronber

nt main() Hf‘f’mt”oo’
int mai] weuld reurn the value |
(- Bath pries vl casly £ in a float betause 6/100 —m 0 i

et s integer arithme,

printf ("Price of item: ");
while (scanf("$£", &val) == 1) (

printf("Total so far: $.2f\n", add_with_tax(val));
"

printf("Price of item:
)

printf("\nFinal total: %.2f\n", total);
printf ("Number of items: $hi\n", count);

return 0;

OEBPS/Image00254.gif
#include <stdio.h>

. total = 0.0;

.. count = 0;

tax_percent

. add_with_tax(float f)

_tax_rate = 1 + tax_percent / 100 ...
total = total + (£ * tax rate);

count = count + 1;

return total;

int main()
{

val;

printf ("Price of item

while (scanf("$£", &val)

o
printf("Total so far: $.2f\n", add_with_tax(val));

printt ("Price of item:)i %2f formats s flosting-point
) number £ tuo detimal plates
printf("\nFinal total: :.2f\n", total);
printf ("Number of items: $hiln", count);
return 0;

} ki is used 4o format shorts.

OEBPS/Image00060.jpg
The void veturn
bype means the
function won't

reburm anything puts ("I'm really not happy");

void complain()

b N There's vo need for 3 veburn
<batement betause it's a void funttion.

OEBPS/Image00257.gif
i =i o
The value of INT MIN
2n int takes 4 bytes
The value of FLT MAX
The value of FLTMIN
A float takes 4 bytes

is
is
is
is

2147483647
-2147483648

340282346638528859811704183484516925440. 000000
0.00000000000000000000000000000000000001175494350822

OEBPS/Image00061.jpg
So now y s also set to &
The assignment (=~
= Ahas oy = (x = 4);

beaket T

OEBPS/Image00256.gif
#include <stdio.h>
#include <limits.h> &—This contains the valu

#include <float.h> €—This contains the values for floats and doubles.

es for the inkeger ypes like int and char

int main()
{
printf("The value of INT MAX is $i\n", INT MAX);
/gnntfl"'rhe value of INT_MIN is $i\n", INT_MIN);

This s the printf("an int takes %ZUbytes\n", sizeof (int));

highest value

"This is the

lowest value.

T T R S TR J
printf("The value of FLT MIN is $.50£\n", FLT_MIN);

printf("A float takes %zubytes\n", sizeof (float));

sntof veburns he mamber of
bykes 3 data bype octuties

return 0;

OEBPS/Image00058.jpg
This is the name of the function-

?& Focbion <Sint mainl) Nothing betcen hee parentheses. The body of the funetion—
e 0 Mt the pork Ehat docs stuff

The bodyé,—}puts("mo young to die; too beautiful to live");
+the function is return 0; < .

survourded by | When You've done, you veburn 3 value.

brates.

OEBPS/Image00259.gif
> gec totaller.c -o totaller & ./totaller
totaller.c: In function "main":
totaller.c:14: warning: format "%.2f" expects type
"double", but argument 2 has type "int"

totaller.c: At top level:

FoEETeE 0235 erront Sonelicting types for Madluich taur

OEBPS/Image00059.jpg
#include <stdio.h>
Returns an int value
int larger(int a, int b)
(
if (a > b)

return a;

Thvs function takes 4o arguments:
2 and b. Both avguments are ints-

return b;

int main()
{
int greatest = larger (100, 1000);

Calling the function here

printf("$i is the greatest!\n", greatest);
return 0;

OEBPS/Image00258.jpg

OEBPS/Image00056.jpg
while(feeling hungry) {
eat_cake ();
if (feeling_gueasy) {
/* Break out of the while loop */

break;

}

“preak” skips ovt of
drink_coffee();

Ehe loop immediately.

OEBPS/Image00261.jpg
Hey, here's a call to a function T've
never heard of. But Tl keep a note of it
for now and find out more later.

OEBPS/Image00057.jpg
while(feeling hungry) {
if (not_lunch_yet) ({
/* Go back to the loop condition

continue; “Continue” takes you back

) to the start of the loop

eat_cake ();

*/

OEBPS/Image00260.jpg
Dude, the order

of the functions
is busted. Fix it.

2]

OEBPS/Image00253.jpg
long double d; longlenyis CTi
and CIl only
A veally REALLY

brebiis: hunber.

OEBPS/Image00252.jpg
unsigned char c;

T il probibly store
IS 255

numbers from O

OEBPS/Image00054.jpg
3 &—This is the loop startup code-
int counter = 1;
This is the loop —

ate sode thot While (counter < 11)°(This is the loop condition.
e

:Em 3t the end of printf ("$i green bottles, hanging on a wall\n", counter);
loop body to X counters+; (

tt;a::‘) a i COUNerHH; &—Remember: counter++ means “intrease

; the counter variable by one.”

OEBPS/Image00055.jpg
This is the text condition chetked
before he oap vurs c30h £ine. N Tt e Dt
il vun after cach loop

for (counter = 1; counter < 11; counter++) {

int counter;

This initializes the

Joop vaiable printf("%i green bottles, hanging on a walll

counter:

1
X Because here's only one line in the loop body, you could actually have skipped these braces.

OEBPS/Image00052.jpg
This ehecks the condition before vunning the body.

while (<some condition>) { have only one line in the

1%
... /* Do something here */ £ | " C. dor't weed the brates
The body is bebueen —> Y, ¥

}
the braces " When it geks o the nd of bhe bodsy the computer
chetks if the loop condibion s stll tvue. IF it 1 the
body el vancavai

OEBPS/Image00053.jpg
while

OEBPS/Image00051.jpg

OEBPS/Image00266.jpg
e delavation hax o bodY tode.

The declaration tells the conpiler -3 g10at. add_with_tax(); 18 st e wibiva 5 Giemicalon)

what veturn value bo expect

OEBPS/Image00265.jpg
Over to

you, Cecil

float ping{) {
There i no way / float pongl() {
£ veorder these

Lunttions

pong () ;
ping(l;

OEBPS/Image00049.jpg
switch (train) {
case 37:

winnings
break;

case 65:

puts ("Jackpot!") ;

winnings
case 12:

winnings
break;
default:

winnings

winnings + 50;

winnings + 80;

winnings + 20;

.

6 4he brain == 51, 34 50 o the S8 T
1 vinvings and then skip o the end

£ the train == 65, add @0 to the
wimnings AND THEN also add 20 4
the vimnings; then, <kip to the end.

—ep

1§ the brain == 12, just —>
3dd 20 to the vinnings

For any other value of 4rain,

ey set the vimings —,

OEBPS/Image00268.jpg

OEBPS/Image00050.gif
int val
o switth(card_name0D) {

case K’

} else if (card_name[0] == 'Q') {
val = 10;
} else if (card name[0] == '3*) {
val = 10;
} else if (card_name[0] == 'A') {
val = 11;
} else {
val = atoi [card_name) ; dekalt:

atoileard_name);

OEBPS/Image00267.jpg
This line will include the
s contents of the header
Lile called stdioh.

4include <stdio.h>

OEBPS/Image00047.jpg
The computer says the
card was low. The courtt
went upl Raise the bet!
Raise the betl

B "2 Stealthy communication deviee

OEBPS/Image00270.jpg
Wiord #include <stdio.h>
his include b you #include "totaller.h"

other intlude lines

Solilerc

OEBPS/Image00048.jpg
Hrmmm..is there something we can do with
that sequence of if statements? They're all
checking the same value, card_name[0], and most

of them are setting the val variable to 10. T wonder
if there’s a more efficient way of saying that in C.

OEBPS/Image00269.jpg
float add_with_tax(float f);

iy, |

totallerh

OEBPS/Image00045.jpg
There are a

few

ways of it
this condition. Y

int ma.

1

in(})

char card_name(3];
puts("Enter the card name: ");
scanf ("$2s", card_name);

int val = 0;

if (card_name[0] == 'K') {
val = 10;
) else if (card_name[0]

va.

10;
) else if (card name(0]
val = 10;

} else if (card name(0]

val = 11;
) else {
val = atoi (card_name) ;

}
/* Check if the value is 3 to 6 */

/* Otherwise check if the card was 10, J, Q, or K */

Did you spot £hat you TT5g T (el == 10)

st needed 3
Y ciion

single

for this?

puts ("Count has gone down

return 0;

OEBPS/Image00046.jpg
> goc cards.c -o cards & ./cards
Enter the card name:

Q

Count has gone down

> ./cards
We vun it a Enter the card name:

Few times to d °
chetk that the Z3

different value Enter the card name:
vanges vork 3
Count has gone up

> ./cards

>

OEBPS/Image00271.jpg
messages

this time.

OEBPS/Image00262.jpg
Meh. I bet the function
returns an int. Most do.

OEBPS/Image00264.jpg

OEBPS/Image00263.jpg
A function called add_with_tax() that
returns a float??? But inmy notes it says we've
already got one of these returning an int.

OEBPS/Image00043.jpg
if (cupcakes_in fridge || chips_on_table)

. KA
eat_food ()i gh <o be brue

OEBPS/Image00241.jpg
The Standard

')
€ functions like Output goes The ikta:a'
intf0) and seanf0) 4o the displa B e ot
‘: the Standavd by default. ﬂfmﬂ o
t and in
Z::q:;;d Input to ™ The Standard evvor
Communitate: nput veads from
%Zke‘\c’md] You tan print to
s the Skandard
Vou o hage Ert
SEns Fprintf(stdevr,..)
Standard lupyt,
Output, and Eryy
are conneeted 4,
“ing vedirettion

The getopt()
Funttion makes

it casier to
vead command—
line options.

OEBPS/Image00044.jpg
if (!brad on phone)

answer_phone () ;

OEBPS/Image00240.jpg
ompile the
Progeam.

You've not using,

Bl > occ order pizza.c -o order pizza
Pl > /order pizza Anchovies
Gl oorocionts:

ny options the Anchovies
2y optiens K1 oy

Bt eoule of
times you eall 1
Then try out bh

> ./order_pizza Anchovies Pineapple
Ingredients:
Anchovies
Pineapple
&) > -/order pizza -d now Anchovies Pineapple

G TSI o be delivered now.

andrgument of [T

Then the’toption:
Remember: the “t’

Anchovies
Pineapple

BY > ./order _pizza -d now -t Anchovies Pineapple
Thick crust.
To be delivered now.

aption docr't take [[ERETPI

any avauments

Finally, try skippi
the argument e
“d" it eveates an

ervor

Anchovies

Pineapple

Py > . /order pizza -d

Gl orcer pizza: option requires an argument -- d
Unknown option: '(null)'

>

OEBPS/Image00042.jpg
it ((donlos_up oard == 61 ss (hand == 11)) 2 Both of thesc condrion need o b

double down () ; true for this piece of code to vun

OEBPS/Image00040.jpg
The Eddie Rich blackjack correspondence school

ey, how's . going? Youlook Then th doaler leade in your next bet and barda:
e foars guy. And | & Queco—hatisa igh sard. bingl Soon youlll ave more
e st euy Thavsonelessavaliblein BO"Y than my third witel
o e aemioapure (bededk, soyoureduosths ifyoudilaiolonty s
ioonghero,and[manice couNLbY 0N ol today I Y
guy,soI'm golng toleb you ‘Blackjack Correspondence

Inon it. See, I'm an expert Sehool. Learn more about
's a queen > count =1 %
T oand oounting ToCapo " card counting as well a5

i buts capl. What's card oy
g yousay? Well, o Buifialowcard ke as, Howousethe Kely

oo s g carcer! ekl L
Sertouay,cand counting s e
e mproving heodds xvsa: . v to svotd BRI
‘when you play blackjack. In. vs a four > count + 1 whacked by & pit boss.

e D, s
DT eyt ST
Whghecsiite | e e 0

B T i vt
s Ko o Flmiraiy
M gy S S
e o ST I

Digh-vaue cards lefl. S8y card until the count G018 st
Moy s

+ Things to wear with plaid

OEBPS/Image00233.jpg
You vill need to — #include <unistd.h>
include this header.

This means “The a option is
valid; so is the ¢ option”
N
The tode o handle

\whi.le ((ch = getopt(argc, argv, "ae:")) != EOF)

h option goes iteh(ch w

csh pton s b switeh(eh) { KX The *2 means 4hat the ¢
Yokt e s e v option needs an arqument
2rgument for the engine_count = optarg;
‘e” option here. .. = o

} nd shores the number
These final o lnes ol :ﬁfﬂs vead from the comnand
make sure we skip past

argo -= optind; e bo oct past the opbor®

the options we vead: argv += optind;

OEBPS/Image00041.jpg
We've alveady got.
code that docs this

We ean jusk wse 3

varigble for this.
arigble for this ——F—y | Crease How do we chetk that
[

s >= 3 and <= 67
We've got. 4o theck for a few, s that two cheeks?

values here..or do we?

OEBPS/Image00232.jpg
Use four engines.

rocket to -e 4 -a Brasilia Tokyo London

Awesomeness mode enabled.

OEBPS/Image00038.jpg
£ (dealer card == 6) {

double_oVRl) b S BTH of these tomminds wil

BEE 0T & vunif the condibion & brue
The commands are grouped
inside a single block staboment.

OEBPS/Image00235.jpg
#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv(])
t

char *delivery
int thick = 0;

int count = 0;
char ch;

while ((ch = getopt(arge, argv, "d
switch (ch) (

case 'd

break;

case 't

break;
default:
fprintf(stderr, "Unknown option:

return

"8s'\a", optarg);

N

EOF)

OEBPS/Image00039.jpg
Tve had a thought.
Could this check if
acard value is ina
particular range? That
might be handy.

OEBPS/Image00234.jpg
Brasilia Tokyo London

This is argul0). This is avqul]]. This is argul2

OEBPS/Image00036.jpg
{
Theie ol Bos

3 block statement. -
beeause they are deal_second card();

survounded by brates. g cards_in_hand = 2;

deal first card();

OEBPS/Image00237.jpg

OEBPS/Image00037.jpg
is ondition.
if (value_of hand <= 16) & This is the &

Rt ()7 € Run this statement if the condidi
else

stand () ; <— Run this statement if the condition is false.

ion is true.

OEBPS/Image00236.jpg
arge -= optinds;

argv +- optind;

if (thick)
puts ("Thick crust.

if (delivery[0])
Printf("To be delivered is.\n", delivery);

puts(*Ingredients:");

for (count = . 5 count < ; counts+)
puts (argvicountl);

return 0;

OEBPS/Image00034.jpg
teeth++; & |ncrease by |

teeth==; € Decrease by |

OEBPS/Image00239.jpg
REJE Spinay
argv += optind;
if (thick)

puts ("Thick crust.”);

if (delivery([0])

printf("To be delivered %s.\n", delivery);

puts("Ingredients:");

Abber processing the aptions, the
fivst. .:;ga.gnt s avqv[O].

4
0 N
..+ count <

for (count count++]

puts (argv(count]) ;
return 0;

el keep loopi,
we've st {ha: ajr;hw't

OEBPS/Image00035.jpg
split hand() ; ¢— This is a simple statement

OEBPS/Image00238.jpg
ude <stdio.h>

4

ude <uni

int main(int arge, char *argv(])
(
char *delivery = "";

The ' is Lollowed by a colon
because it akes an argument.

>

while ((ch = getopt(arge, argv, "d ..
n) 1

char ch;

switch

L il pank the delvery varible 1o the
a:gu::n{. wppled vith he ‘d optien

Remember: in C, setting somethi
hivlent o scbbmg by a1

fault:

fprintf (stderr, ™

nown option: '$s'\n", optarg);

return

OEBPS/Image00032.jpg
teeth fo
the value
f.

teeth = 4;
teeth = 4;
Test if teeth has

the value &.

OEBPS/Image00033.jpg
Adds 2 to teeth
teeth += 2;

teeth -=

Takes away 2 teeth

OEBPS/Image00251.jpg
Float z = (float)x / y; &— T tonpler ol gbonsbicly
cask y 40 2 flost

OEBPS/Image00029.jpg
S

S @
S & W

OEBPS/Image00244.jpg
These are mmbers
containing detinal

The distance from the 4
launch pad to the star
Proxima Centauri (light
)

poi

&

The numbers of stars SR
in the universe that we Tl ety
won't be visiting The numberof , t 4

minutes to launch

Each letter on the
countdown display

g FLoating Points

That's ight! In C)
thars are actually
tored wing heir
thavacter todes.
That mears they're
ot mambers

OEBPS/Image00030.jpg

OEBPS/Image00243.jpg

OEBPS/Image00027.jpg
Wait, T don't get it. When

we ask the user what the name
of the card is, we're using an
array of characters. An array of
characters?22? Why? Can't we use
a string or something???

OEBPS/Image00246.jpg
+

The distance from the
launch pad to the star
Proxima Centauri (light

Ny
+
i
+ . 2
N
B
o
i
Ho
The numbers of stars . + o4
in the universe that we B
won’t be visiting The numberof , + 4 ° i

Each letter on the
countdown display

Let’s see why..

OEBPS/Image00028.jpg
/m; is how you define an avvay in C.

OEBPS/Image00245.jpg
fuel the
ed (gallons)

OEBPS/Image00025.jpg
£ heve means “and then if it's suecesshul, do Lhis,” f;;:;« Ldf E‘h/{m‘t:

gee zork.c -o zork && ./zork &, 3 Windows mathine.

OEBPS/Image00248.jpg
long

v
int

W.QN N .
g4
(.

! 4 ~—
The contents
of a short wil
ahays £it in an
int or 3 long

The contents of a lorg
may b 4o lavge to it

in 3 short or an int.

OEBPS/Image00026.jpg
This line compiles the code and tan tombine

¢reates the cavds Program.

Remember: you
$he compile and vun steps

T

¥ 3 page
> goc cards.c -o cards foaether (urn badl

This line v the progran. QIR b

£ you're on Windows, don't =" SR S

ype the / °
The card value is: 10
Running the program again —> SN
Enter the card name:

y

The card value is: 11

> ./cards

Enter the card name:
~E L

The user enters the
name from a card

and the program displa

V The card value is: 7
Ehe corvesponding value

OEBPS/Image00247.jpg
SOTE XTI s will sy that y = 15
e

printf ("The value of y = $i\n"

OEBPS/Image00023.jpg
ogram to evaluate face valus

* Released under the Vegas Public L:

014 The College Blac

Jack Team.

_main()

char

d_name [3];
puts("Enter the card name: ");

scanf ("$2

card_name) ;

int val = 0;

if (card_name[0] == 'K')
val = 10;
} else if (card name[0] == 'Q")

} else if (card_name(0]
val = 10;

val = atoi (card_name);
1
printf("The card value is: %i\n", val);

return
0;

}

OEBPS/Image00250.jpg
Tve been
cast a float.

OEBPS/Image00024.jpg
Save the code from the Code Magnets exercise on the [=8 /— C source £iles usually end -¢.

opposite page in a file called cards.c. ==

Compile with gcc cards.c -o cards at a command
prompt or terminal.

Te EaR Window Felp_Complle

> gcc cards.c -o cards = ool
il = ol
Compile tavdst > = =1 — |
o a file called cavds. =
cards.c cards
i i Th
Run by typing cards on Windows, or ./cards on Mac, is will be ¢ards.exe

Linux, and Cygwin. i You've on Windows.

OEBPS/Image00249.jpg
& Tohi is the

int x = 100000; Proper ¢ode to
format 2 short value

short y = x;

print ("The value of y = $hi\n", y);:

OEBPS/Image00031.jpg
Slhjaltnlelr|\]
S PP

O is the ASCI| ehavacter
with value O.

C coders ofter call his
the NULL. tharacter.

OEBPS/Image00242.jpg
Wh's he calling
“short>

OEBPS/Image00219.jpg
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main ()

{

char
FILE

line[80];
*in = fopen ("spooky.csv",

FILE *filel = fopen("ufos.csv", o
FILE *file2 = fopen("disappearances.fav", W);
FILE *file3 = fopen ("others.csv", L. SN)
while (.. fseanf (in, "279("\n1\n", line) == 1) {
if (strstr(line, "UFO"))

...... tf (filel, "%s\n", line);
(strstr(line, "Disappearance"))
. (file2, "8s\n", line);

fclose (in);

return 0;

OEBPS/Image00022.jpg
? da
* Program to evaluate face values.

* Released under the Vegas Public License.

* (c)2014 The College Blac

*/

jack Team.

_main()

char card_name[31;

puts("Enter the card name: ");
Enter wo characters ——,

scanf("%¥2s", card_name);
Hor the tard name.

int val = 0;
if (card_name[0] == 'K') {
val = 10;

} else if (card name[0

) else if (card name[0] ==
val = 10;

0 Ry ————
=

val = atoi'lcard name]; text into a number:
int '
#include ‘B

("The card value is: $i\n", val);

OEBPS/Image00218.jpg
This will eveate a This is the name of the file.
dsta e ke N /Thu is the mode: "v” means “vead.”
read from 3 file. > FILE *in file = fopen("imput.txt", "z");

This is the name

This will ereate 2 s the name of the file

Tl e (e st = sopentbutpat, cxer, w8 e a4 e e
write bo a Bile. tput. £xt", "w") ;

OEBPS/Image00221.gif
This is the first wore ilter for. Al of the mermaid data is means You wand b
e first word 4o Filter cﬁ i‘n e s Fie 2 eans ou want. 4o thetk for Elis.
N £ Everything

-/categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv™ T,

this File.

But how do you read command-line arguments from within the All the Elvis sightings
program? So far, every time you've created amain () function, you've il be stored here
written it without any arguments. But the truth s, there are actually koo

forms of the main () function we can use. This is the second vers

int main(int arge, char *argv(])
i

. Do stuff....
)

The main () fanction can read the command-line arguments as
an array of strings. Actually, of course, because C doesn’t really
have strings builtin, it reads them as an array of character pointers o
strings. Like this

"./categorize” 'mermaid" ‘“mermaid.csv" 'Elvi

T A ~

This is argv[0]. Thisis avgulld. Thisis argul2]. This is argl3). This is argu4]. This is argul5]

elvises.csv" "the rest.csv"

The fivst argument is actually the
name of the program being vun.

OEBPS/Image00460.gif
} else if (current->no) {
current = current->no;

} else {

/* Make the yes-node the new suspect name */
printf ("Who's the suspect? ");

fgets (suspect, 20, stdin);

node *yes_node = create (suspect);

current->yes = yes_node;

/* Make the no-node a copy of this question */

node *no_node = create (current->question);

current->no = no_node;

/* Then replace this question with the new question */

printf("Give me a question that is TRUE for %s but not for %s? ",
suspect, current->question);

fgets (question, 80, stdin);

current->question = strdup(question);

break;

OEBPS/Image00220.jpg
gec categorize.c -o categorize && ./categorize =

PPN By

OEBPS/Image00461.jpg
19 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4026864: malloc (vg_replace malloc.c:236)
by Ox40B3A9F: strdup (strdup.c:43)
by 0x8048587: create (spies.c:22)
by 0x804863D: main (spies.c:46)

e e e

OEBPS/Image00018.gif
int card_count =

Create an integer variable and set it to II.
Thoe I8

L A inteaer i 3 whole mumber.
)

puts("The deck is hot. Increase bet."];

if (card_count

Tis displs & ching on Lhe fomunand promirt or berninil

hL —‘x?;n {E“;kb:;zi ::ima Create an inteaer. vaviable and set it o 10.

puts("I must not write code in class"]}

c=c-

/* Bssume name shorter than 20 chars. */

char ex[20];

ts("Enter boyfriend's name: i
. oy £This means “store everything the
user Aypes into the ex array.

$s.\n\n\tYou're history.\n", ex};
This will insert 4
eharacters here in place of the %s

nf("s1

printf("Dea:

ar suit = 'H';
* B sk stabement checks
1D S izl for crffment e

case 'D

puts ("Diamonds”) ;
b,

puts("Spades

OEBPS/Image00454.jpg
> gcc spies.c -o spies && ./spies

Does suspect have a mustache? (y/nm): n

Loretta Barnsworth? (y/n): n

Who's the suspect? Hayden Fantucci

Give me a question that is TRUE for Hayden Fantucci
but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): y

Does suspect have a mustache? (y/nm): n

Has a facial scar

? (y/n): y
Hayden Fantucci
? (y/m): y

SUSPECT IDENTIFIED
Run again? (y/n): n
&

OEBPS/Image00019.gif
© | ¢ programs normally begin with a comment.
T'he comment describes the purpose of the code in the file, and might
include some license or copyright information. There’s no absolute need
to include a comment here—or anywhere else in the file—but it’s good
practice and what most C programmers will expect to find.

The comment, starts vith /% > /*

, * Program to calculate the number of cards in the shoe.
These *s are optional. They've
SOOI R« mhic code 5o seleased under the Vegas Public License.
* (c)2014, The College Blackjack Team.
The comment. ends vith %/. > v

© Next comes the — §include <stdio.h>
include section.
Cisavery, very small

language and it can do int main()
almost nothing without (

the use of external
libraries. You will need
to tell the compiler what puts ("Enter a number of decks");

external code to use by scanf ("$i", &decks);

including header fles a2 (D & 9 4

int decks;

for the relevant libraries.

The header you will see puts ("That is not a valid number of decks
more than any other return 1;

is stdio.f. The stdio

library contains code D

that allows you (o read printf ("There are %i cards\n", (decks * 52));
and write data from and ot @8

to the terminal

@© The last thing you find in a source file are the functions.
All C code runs inside functions. The most important function you will
find in any C program is called the main () function. The main ()
function is the starting point for all of the code in your program.

OEBPS/Image00455.jpg
o)
ioiod malloc()
|oolole T

et valavind
inteveepts
ealls o the
malloe)
and free0)
Funttions.

valgeind will keep track of data
that is allocated but not Freed.

OEBPS/Image00016.jpg
[n Windows, this will
be called rocks.exe
inskead of votks

Qutput

The compiler creates a new

file called an executabie.

file contains machine codl

astream of 1s and Os that

the computer understands,

And that’s the program you
P

OEBPS/Image00213.jpg

OEBPS/Image00452.jpg
& This is the fivst question

Has a mustache?

Yes, Vinny has 3 mustache. No, Loretta does not. have & mustache
. v

Vinny the Spoon Loretta Barnsworth

OEBPS/Image00017.gif
Destribe what you think th:llzodz does.

(card_count > 10)

puts("The deck is hot. Increase bet.");

int c = 10;
while (c > 0) {
puts ("I must not write code in class");

c=c-1

/* Rssume name shorter than 20 chars. */

char ex[20];

puts ("Enter boyfriend's name: ");
scanf ("$10s", ex);

"Dear $s.\n\n\tYou're history.\n", ex);

char suit = 'H';

switch (suit) {

case 'C':

puts ("Clubs") ;

break;

case 'D':

puts ("Diamonds") ;
break;

case 'H':
puts ("Hearts") ;
break;

default:

puts ("Spades™) ;

OEBPS/Image00212.gif
#include <stdio.h>

int main()
{
float latitude;
float longitude;
char info[80];
while (scanf("%f,%f,%79["\n]"
AE (L > .2)
1E (0 _lon X
printf("%f,%f, $s\n",

&latitude,

return 07

OEBPS/Image00453.gif
Has a mustache?

The program

will store new —3
One gold tooth? & information in the
tree like his.

Cliffy Five Fingers Vinny the Spoon Hayden Fantucei Loretta Barnsworth

T
— = The ;Em +aeets s apyesn ok

the ends of the tree

OEBPS/Image00014.jpg
#include <stdio.h>

int main()

1

puts("C Rocks!™);

return 0;

rocks.c

e

Source

You start off by
creating a source

file. The source file
contains huma
readable C code,

OEBPS/Image00215.jpg
(ETNE
> (./bermuda | ./geo2json) < spooky.csv > output.json

OEBPS/Image00458.jpg
> valgrind --leak-chec] E
==2750== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): n

Loretta Barnsworth? (y/n): n

Who's the suspect? Hayden Fantucci

Give me a question that is TRUE for Hayden Fantucci

but not for Loretta Barnsworth? Has a facial scar ﬁ" allocated new pieces
Run again? (y/n): n 19 bykes was left on the heap. memory I times, but
HEAP SUMMARY : v

only freed 10 of them.
in use at exit: 19 bytes in 1 blocks k= ! g
total heap usage: 11 allocs, 10 frees, 154 bytes allocated
19 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4026864: malloc (vg_replace_malloc.c:236)
by 0x4083A9E: studup (stidup.c:3) s {

by 0x8048587: create (spies.c:22)
by 0x804863D: main (spies.c:46) (j>
LEAK SUMMARY :

definitely lost: 19 bytes in 1 blocks

n
Why 19 bykes? s that a chue?

Do these lines give us any elues?

OEBPS/Image00015.jpg
Compile

You run your source
code through a compiler.
The compiler checks
for errors, and once it’s
happy, it compiles the
source code.

OEBPS/Image00214.jpg
Remember: if you are running on This is the pipe that

indows, you don't need the ./ Comeeks the processes [Tm s the File containing all the events.

When you comect,the

two prograns togethers
you tan break them 32

3 single progeam.

s
_>(./bermuda | ./geo2json) < spooky.csv > output.json

The bermuda tool Fitbers out The gealjson bool will convert
ibers geoLjson tool will conve we'l
the events we vant to ignore. the v 0 JSON Formst wﬁf: ::i file.

OEBPS/Image00459.jpg

OEBPS/Image00012.jpg
nnnnnnnnnn

OEBPS/Image00217.jpg

OEBPS/Image00456.jpg
gcc -g sples.cC -0 spiles

The g sviteh tells the compiler
4o vecord the line mumbers
aqainst the code it compiles.

OEBPS/Image00013.jpg
Don't you just love the
deep blue C? Come on
in—the water's lovelyl

OEBPS/Image00216.jpg
Pr=

S ufos.csv
A
A
5
Fl
£

o =R -
categorize = .
(6 (e & mmmmmn)) | =4

OEBPS/Image00457.jpg
ull ./spies
Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): y

Vinny the Spoon? (y/n): y

SUSPECT IDENTIFIED

Run again? (y/n): n

==1754== All heap blocks were freed -- no leaks are possible

OEBPS/Image00020.jpg
This s the veborn SFE 1 350t e F Because the Function is caled “main

should always be int For the
main() funetion

The body of the
untion is alva
survounded by braces.

7 the program will start here

1€ we had any parameters, they'd be mentioned heve.

int decks;
puts("Enter a number of decks");
scan
if (decks < 1) {

"$i", sdecks);

puts("That is not a valid number of decks"
return 1;
i

printf("There are i cards\n", (decks * 52));

return 0;

OEBPS/Image00021.jpg
The fivst parameter will be inserted heve as 3 steing. — First pavametey

printf("$s says the count is %i", "Ben", 21);

T
The setond pavameter vill be inserted herd as an inteer. Setond paramEte”

OEBPS/Image00230.jpg
Anchovy and pireapple,
thick crust! Make it
snappy: we reed it for

OEBPS/Image00229.jpg
/
Elvis has left the building

OEBPS/Image00471.jpg
voild find()
(
int i;
puts("Search results:

sports” l)
strstr '

ADS[i] ' "bieber" ')) 1

printf("$s\n", ADS[il);

}
puts ("

OEBPS/Image00231.jpg
Display all the processes)
ps ~a0 £ i their eniromerts

tail ~f logfile.out &~ Disply the end of the File, but. vt for new
data to be added to the end of the file.

OEBPS/Image00007.jpg
T wonder how
T can trick my brain
into remermbering
this stuff.

OEBPS/Image00222.jpg
/categorize mermaid mermaid.csv Elvis elvises.csv the rest.csv

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv(])

char Line[80];

if t=)t
fprintf(stderr, "You need to give 5 arguments\n");
return 1;

}

FILE *in = fopen(“spooky.csv",

FILE *filel = fopen(Lo

FILE *file2 = fopen(_ , "w");

FILE *file3 = fopen(e

while (fscanf(in, "$79[*\n]\n", line)

if (strstr(line, »

fprintf(filel, *$s\n", line);

else if (strstr(line,)
fprintf(file2, “¥s\n", line);

else

fprintf(file3, "$s\n", line);

folose (filel);
folose (file2);

fclose (file3);
fclose (in)

return 0;

OEBPS/Image00465.gif
reeleurvent—>question);

turvent=>question =. strdup(question); ..

OEBPS/Image00008.jpg

OEBPS/Image00466.gif
ol Help_val
> valgrind --leak-check=full ./spies
1800== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): n
Loretta Barnsworth? (y/n): n
Who's the suspect? Hayden Fantucci
Give me a question that is TRUE for Hayden Fantucci
but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): n
800== All heap blocks were freed -- no leaks are possible

OEBPS/Image00005.jpg
Your brgi, Ehinks
THS i impon g "

OEBPS/Image00224.jpg
./categorize mermaid mermaid.csv Elvis elvises.csv the rest.csv

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int arge, char *argv(l)

1

char

fprintf(stderr, "You need to give 5 arguments\n

ine[801;

'

i
return 1;
FILE *in = fopen("spooky.csv", "

FILE *filel

FILE *file2 =

o

fopen (

"

open(

open (" 3Z9VISI ' .

"$79[*\n]\n", line)

08y, “

lel, "$s\n", line};

se if (strstr(line,

printf(filez, "$s\n",

else

}

felose(
felose(

fclose(

fprintf(file3, "$s\n", line);

fclose (in);

return 0;

OEBPS/Image00463.gif

OEBPS/Image00006.jpg
Great. Only 600
more dull, dry,
boring pages.

OEBPS/Image00223.jpg

OEBPS/Image00464.gif

OEBPS/Image00003.jpg
T can't believe
they put thatina
€ book.

OEBPS/Image00226.gif
30

29

28
27

27

28.

685163, -68.
304380,-74.
1132971, -71.
.343065,-62.
.868217,-68.
30.
26.
29.
37.
22.

496017,-73

879536, -69
705256, -68

137207, Type=veti
575195, Type=UFO
136475, Type=:
753906, Typ
005371, Type=Goatsucker

333740, Type=Disappearance
224447,-71.
401320,-66.

477051, Type=UFO
027832, Type=Ship

.477539, Type=Elvis
192139, Type=Elvis
166695, -87.

484131, Type=Elvis

T

SpoOky.OSV

OEBPS/Image00469.jpg
T want someone into

sports, but definitely
not into Bieber..

OEBPS/Image00004.jpg

OEBPS/Image00225.jpg

OEBPS/Image00470.jpg
void find()

for (1 =10; 4 # AEel

printf ("ss\n”, ADS[il):

s (7=

OEBPS/Image00228.jpg
28.304380, 74575195, Type-UF0__l§y
26.224447,-71.477051, Type=UFO fie==

aliens.csv

30.685163, -68.137207, Tys
29.132971,-71.136:

27.8682

475, Type=Ship
17,-68.005371, Type=Goatsucker

elvises.csv

OEBPS/Image00467.jpg
Data ¢an
be inserted
easily into &
linked list.
— A linked
list is 3
dyramit

shrutkure:

malloc0)
allotates
memory on the
heap-

strdup) il
treate a topy
of a string on
the heap.

A memory leak
is allotated
memory You an
o longer aceess:

e Valarind ean
help you
track down
memory leaks.

Dynami¢ data
struetures
use vetursive
structs.
— Retursive
strutts contain
one o more
links 4o similar
data

Unlike the
stack, heap
memory is not
automatically
veleased.
— e stack
is used
Hor local
variables.

OEBPS/Image00002.jpg
>
Dawn Griffiths

OEBPS/Image00227.jpg
> categorize UFO aliens.csv Elvis elvises.csv the rest.csv

OEBPS/Image00468.jpg
My go_on_date()
is awesome now
that T've discovered
variadic functions.

OEBPS/Image00011.jpg
Brian Savyer

L

OEBPS/Image00462.jpg

OEBPS/Image00009.jpg
Dave Kitabjian

OEBPS/Image00010.jpg
Vinte Milner

OEBPS/Image00481.jpg
iable called
This will ereate a varial

int (*warp_£n) (int) ; varp_fn that can s‘:vt :hc el
warp_fn = go_to_warp_speed; & addvess of the go_to_vare_

Lunttion
warp_£n(4) ;

This is just like calling g0 b0 warp_speed(4h).

char*+* (*names_fn) (char*,int) ;
names_fn = album names;
(‘ char** results = names_fn("Sacha Distel", 1972);

This will eveate a variable called
rames_fn that can store the addvess
of the album names() funebion.

OEBPS/Image00479.jpg
int *a; — This detlaves an int pointer...

function *£; &— .but this won't detlave a function pointer-

OEBPS/Image00721.jpg
> telnet 127.0.0.1 30000
Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

One word: inappropriate

Connection closed by foreign host.

> telnet 127.0.0.1 30000

Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

You might want to rethink that haircut
Connection closed by foreign host.

>

OEBPS/Image00480.jpg
int go_to_warp_speed(int speed)

(
There are many different types

A of Functions. These functions are
J diffevent types because they have
ype ey
diffevent veburn types and pavameters

char** album names (char *artist, int year)
(

OEBPS/Image00473.jpg
Hey, wait! Clone? Clone the
function???? That's dumb. Each version
would only vary by, like, one line.

OEBPS/Image00715.gif
client_addr will store details about
struct sockaddr_storage client_addr; £ the chent whs jut comnected
unsigned int address_size = sizeof (client_addr) ;
int connect_d = accept(listener d, (struct sockaddr *)&client addr, saddress_size);

if (connect_d == -1)

error("Can't open secondary socket") ;

OEBPS/Image00474.jpg
This testing mathine looks for peatle
Find someone who lie arks, theater, or dining
who \ikes the
arts, theater,
or dininoy

This testin

who lie o 7 36hine looks for peaple —,

Find somecne Ports or vorking out,
who likes,
sports or
wor’ ng out.

OEBPS/Image00716.jpg
This is the message Youve going
4o send over the network

char *msg = "Internet Knock-Knock Protocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ";
-1)

if (send(connect d, msg, strlen(msg), 0)

ervoz ("send”) ;Y tev is used for advanted
his is th The final pavameter i
TR Tl bhemessge b i canbe lef 250

and s length
dostrigbav, o reseny

OEBPS/Image00713.jpg
You'll use a quese vith 3 length of 10

if (listen(listener_d, 10) =1)

error("Can't listen");

OEBPS/Image00472.jpg
ile Edit_Window Felp FindersKeepers

> gcc find.c -o find &&
Search results

William: SBM GSOH likes sports, TV, dining

Josh: SJM likes sports, movies and theater

Vwant anon-
‘ SMoKer who
e | likes the
oS someons
FL\M s theater,
As OF
ﬁ\;\\n@ out Find someone

who likes the

— o4 eater, of

diningy

OEBPS/Image00714.jpg
The fivst 10 clients
will be able o wait.

The II4h and 1245
wil be told the
v boe U

OEBPS/Image00477.jpg
_ -GILOBALS

henever you treate 2 funion)//g/o//c/o///////s/p/e/é“m“ .

o alo et 3 fonction pointer
with the same name:

_Warp /////// '

-CODI

The pointer contains the
address of the function

OEBPS/Image00719.jpg
The programmer has forgotten to _¢heek for 4 You should always thetk if socket, bind, listen
B Lysn aceept, or send vetuen |

OEBPS/Image00478.jpg
1nt go_to_warp_speed(int speed)

{
dilithium_crystals (ENGAGE) ;
warp = speed;
reactor_core(c, 125000 * speed,
clutch (ENGAGE) ;
brake (DISENGAGE) ;

return 0;

go_to_warp_speed (4) ;

When you cal the function, you are
using the function pointer

PI);

OEBPS/Image00720.jpg
S S S LT .
> gcc advice server.c -o advice_server
> ./advice_server

Waiting for connection

OEBPS/Image00475.jpg
T want someone into
sports, but definitely
not into Bieber..

OEBPS/Image00717.gif
The intludes ave removed

\/ 1o save space.

int main(int argc, char *argv(])
l
char *advicel] = {
"Take smaller bites\r\n",
"Go for the tight jeans. No they do NOT make you look fat.\r\n",
"One word: inappropriate\r\n",
"Just for today, be homest. Tell your boss what you *really* think\r\n",
"You might want to rethink that haircut\r\n"
bi
int listener_d

PF_INET, SOCK_STREAM, 0);

struct sockaddr_in name;

name.sin_family = PF_INET;

name.sin_port = (in_port_t)htons (30000);

name.sin_addr.s_addr = htonl (INADDR_ANY) ;

_(listener d, (struct sockaddr *) &name, sizeof (name));

X _(listener_d, 10);
puts ("Waiting for connection”);

struct sockaddr_storage client_addr;
unsigned int address_size = sizeof (client_addr);

int comnect_d = (listener d, (struct sockaddr *)sclient_addr, saddress_size);

char *msg = advice[rand() % 5];

. _(connect_d, msg, strlen(msg), 0);
close (connect_d) ;

return 0;

OEBPS/Image00476.gif
void find(funetion-name mateh)

(N mateh would specify the
int i; name of the function
containing the test

puts ("Search result:

for (i = 0; i < NUM_ADS; i++) {
if (eall-the-mateh—function (ADSTi1)) (
Printf("8s\n", ADS[i]); " Here, you'd need some vay of ealling
} the function whose name was given by
, the mateh pavameter.

OEBPS/Image00718.gif
int main{int argc, char *argv(])
l
char *advice(] = {
"Take smaller bites\r\n",
"Go for the tight jeans. No they do NOT make you look fat.\r\n",
"One word: inappropriate\r\n",
"Just for today, be homest. Tell your boss what you *really* think\r\n",
"You might want to rethink that haircut\r\n"
bi

int listener_d PF_INET, SOCK_STREAM, 0); & Creste a sotket.

struct sockaddr_in name;

name.sin_family = PF_INET;

name.sin_port = (in_port_t)htons (30000) ; Bind the sotket. to port 30000.
name.sin_addr.s_addr = htonl (INADDR_ANY) ; A

d

_(listener d, (struct sockaddr *) &name, sizeof (name));

listen (Listener d, 10); €— Seb bo the listen queve depth tolo.

puts ("Waiting for connection");
while () { €— You need to loop the accept/begin talking section.
struct sockaddr_storage client_addr;
unsigned int address_size = sizeof (client_addr);
_.ateept.

B e

int comnect_d .(listener d, (struct sockaddr *)sclient_addr, saddress_size);

(connect_d, msg, strlen(msg), 0);

close (connect_d) ;

) R Begin talking o 4he client

return 0;

OEBPS/Image00712.gif
#include <arpa/inet.h> — You'l need this header for ereating Internet addresses.

These lines eveate a name for the

L— Fort meaning “Internet. port 30000

struct sockaddr_in name;

name.sin_family = PF_INET;
name.sin_port = (in_port_t)htons (30000) ;
name.sin_addr.s_addr = htonl (INADDR_ANY) ;
int ¢ = bind (listener_d, (struct sockaddr *) &name, sizeof (name));
-1)

error ("Can't bind to socket"):

if (c =

OEBPS/Image00490.jpg
>>@>>@>>@

If the first value is greater than the second
value, it should return a positive number.

If the first value is less than the second
value, it should return a negative number.

I the two values are equal,
it should return zero,

OEBPS/Image00491.jpg
You need 4o east 4 S

piintes 4o am m&;: F::&r int a = *(int*)score_a;
int b = *(int*)score b;

Tis fivst % then gets the int A -

boved at addvess stove_b.

OEBPS/Image00484.jpg
int sports_no_bieber (char *s)

{
Someone who likes /

sports but not Bicber

return strstr(s, "sports") && !strstr(s, "bieber");

int sports_or workout(char *s)

S|
oo iny out.

lwant a non-
Smoker who
likes the
theater,

Find. someone
who likes the
arts, theater,
or dininoy

{

OEBPS/Image00726.gif
From this.
o this

if (bind (listener d, (struct sockaddr *) &name, sizeof (name)) == -1)

error("Can't bind the POXE"): € Tiisi calling the ervor function you wrote a while
back. 1 will isplay the cause of the ervor and exit

OEBPS/Image00485.gif
void find(_ int (kmateh)ehark))
{
int i;
puts ("Search results:");
puts ("- -
for (i = 0; i < NUM_ADS; i++) {
if (match(aDS[i])) {
printf("ss\n", ADS[il);
¥

}
puts ("

OEBPS/Image00727.jpg
e EdiL

s Py Em
> ./advice_server
Waiting for connection
e

The bind fails! > ./advice server

Can't bind the port: Address already in use
>

OEBPS/Image00482.jpg
int sports_no_bieber (char *s)

Someone who likes A

sports but not Bieber

return strstr(s, "sports") && !strstr(s, "bieber");

1

e int sports_or_workout (char *s)
Find. 50O 5

oo hes

\;x:d “SOUL

int ns_theater (char *s)

{

lwant a non-
Smoker who
likes the
theater,

int arts_theater_or_dining(char *s)

{

Find. someone
who likes the
arks, theater,
or dininoy

OEBPS/Image00724.jpg
s Egt Vi Fp TTheSoner
S At Teerer Clnt eonsle
Waiting for connection %

Pl B Vo i T TRaCTa

> telnet 127.0.0.1 30000
5 Trying 127.0.0.1...
The sevver's started. Connected to localhost.

Escape character is '*]'.

AP Y R I S One word: inappropriate
Connection closed by foreign host.
>

OEBPS/Image00483.jpg
£ind() will need 3
evereesssseesssseeeessies) Funthion pointer passing
{ 4o it called mateh

int i;
puts ("Search results:");
puts ("~

void find(

for (i = 0; i < NUM_ADS; i++) {

if (match(ADSI11)) (€= This vill eall the mateh)
printf("$s\n", ADS[il]);

function that was passed in

Vi

OEBPS/Image00725.jpg
but then, if T stop the
server and restart it real
quick, the client can't get
aresponse anymore!

Sevver tonsole

¥

Fle Gt Viidor Fep TrTreSever

Hitting [EETg—
(BN 72i ting for connection
il the o8
WA > . /2cvice_scrver Client console
Waiting for connection v
e Ea Window Help I reCTert
> telnet 127.0.0.1 3000
e Trying 127.0.0.1...
The server's vestar telnet: connect to address 127.0.0.1: Connection refused

telnet: Unable to connect to remote host
>

WTFe2lzlzz

Wheve's The Feedback?222

OEBPS/Image00488.jpg

OEBPS/Image00730.jpg
[\

B

You mwc need to call
o vees'a few tines o
act all the charatters

OEBPS/Image00489.jpg
This is a pointer

arvy.
gsort (void *ax:ay,fha" Y i 6 e

This is the length JRENE Terght This s the size of €ath Remember, a void* pointer

blheasay TYsize t length, L clement in the 3. can point to anything

size_t item size,

int (*compar) (const void ¥, const void *)) ;

This 3 oiner 4o 3 fnchin dhat eompares tuo ibems in the arvay.

OEBPS/Image00731.jpg
This veads all the chavacters

int read in(int socket, char *buf, int lem) & "W hec\W

{

char *s = buf;

int slen = len;

int ¢ = recv(socket, s, slen,

while ((c > 0) && (s[c-1] != "\n')) {
8 += ¢; slen -= ¢;
¢ = recv(socket, s, slen, 0);

)

if (c < 0) In ease theres an evvor
return c; [

else if (c == 0) Nothing vead; send
buf[0] = '\o‘:ébukanmytyxem,,

else i

Sle-11="\0"; &— Replace the "\ g

return len - slen; character vitha NO"

Keep veading until theve ave no more
0 tharatters or you veach ‘\n'.

OEBPS/Image00486.gif
int main()

{

find (sports_no_bieber);
find(sports_or_workout);

find(ns_theater);

find(arts_theater_or_dining); [FEs WedswRep FrdaFesses

> ./£ind

Search results:

William: SBM GSOH likes sports, TV, dining
SIM likes sports, movies and theater

return 0;

This is Find(sports_no_bieber). Search results:
William: SBM GSOH likes sports, TV, dining
This is fin Mike: DWM DS likes trucks, sports and bieber
it Fdlsgorts_or_worket). S A e working out and art
Josl] SJM likes sports, movies and theater

Search results:

This is find(ns_theater). —3y
This i find(arts_theater_or_dining).
William: SBM GSOH likes sports, TV, dining

Matt: SWM NS likes art, movies, theater
SLM ND likes books, theater, art

SJM likes sports, movies and theater
Jed: DBM likes theater, books and dining

OEBPS/Image00728.gif
You need an int vaviable to store the option.
L Sebling it ko | means “Yes, vews the port

int reuse =
if (setsockopt(listener_d, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof (int)) == -1)
error("Can't set the reuse option on the socket");
This makes the socket veuse the port.

OEBPS/Image00487.gif
This s the name of the
\arisble you've detlaving

OEBPS/Image00729.jpg
veev() will veturn the

e alue |4, because there

ave [chavatters sent
Lrom the elient.

OEBPS/Image00722.jpg
Working, you
say? Hmm..I thirk
there might be a
problem

OEBPS/Image00723.jpg
If I start the server,
then run the client
one time, it works...

OEBPS/Image00701.jpg
> ./math_master

What is 0 times
What is 6 times
What is 4 times
What is 2 times

What is 7 times

The user hit Ctrl-C heve. - I

Final ¢ 5
The proaram displayed the £inal store before ending. 7

OEBPS/Image00699.gif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>

#include <string.h>
#include <errno.h>

#include <signal.h>
int score = 0

void end_game (int sig)
{

printf("\nFinal score: $i\n", score);

You need to Y
e it S5 et
to O and stop. }

int catch_signal(int sig, void (*handler) (int))
(

struct sigaction action;

action.sa_handler = handler;

sigemptyset (saction.sa_mask);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

OEBPS/Image00700.jpg
vold times_up(int sig)

{
puts ("\nTIME'S UP!");
raise(SIGINT.

Raising SIGINT will make the progeam
display the final score in end_game().

void error(char *msg)
{

fprintf (stderr, "$s: %s\n", msg, strerror(errno));

exit(1);
)
int main()
(
ignal ()
catch_signal (SIGALRYM, irg R:Lzz:s et
catch_signal (SIGINT,)7 & the handlers.

Thi
Yw'ssx‘ﬁz::;t > srandon (time (0));
Vandom wnbers Wil () (

eath time. int a = random() % 11;

int b = random() % 11;

char txt[4];

Set the alarm to —> alaym(%)

fivein S seonds: * prints("\nWhat is %i times %12 ", a, b);
” fgets (txt, 4, stdin);

s long 35 you int answer = atoi(txt);

40 through
The b om less if (answer == a * b)
than 5 seconds, score++;
the timer will

else

be veset and it

will veser i printf ("\nWrong! Score: $i\n", score);

}

return 0;

OEBPS/Image00693.jpg
Tick, tick, tick,

Jjust a couple of
minutes...

N ¢ Calling alarm(120) sets
)& e s for 120
seconds in the Future

OEBPS/Image00694.jpg
This will eateh the—>> catch _signal (SIGALRM, pour_coffee);

sigal using the
function you created 2T2EM 11200

earlier.

Breriiiiiinnnng!

Ah, sweet,
sweet coffee..

OEBPS/Image00692.jpg
This will make the £imer .
five in 120 seconds TP alam120);

do_important_busy_work () ;
Meanwhile, your code

does something else. do_more_busy_work();

OEBPS/Image00697.gif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>

#include <string.h>
#include <errno.h>

#include <signal.h>

int score = 0;

void end_game (int sig)

{

printf ("\nFinal score: %i\n", score);

What should
happen once
the score s }
displayed?

int catch_signal(int sig, void (*handler) (int))
{

struct sigaction action;

action.sa_handler = handler;

sigemptyset (saction.sa_mask);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

OEBPS/Image00698.jpg
This makes sure

void times_up(int sig)
{
puts ("\nTIME'S UP!");

raise(

Raise what?

void error(char *msg)

{
fprintf (stderr, "%s: %s\n", msg, strerror(errno));:
exit(1);

int main()

¢ What vill the
catch_signal (SIGALRM, F €0 caeh, sipal0
catch_signal (SIGINT,)i & functions do?

Jou seb diffment > STaRCOM (time (0)) 7

vandom numbevs

each time.

while(1) {
int a = random() % 11; €
int b = random() % 11; &
char txt[4]; [Hmmm.. what line is missing? Need to check the spec.

2 and b vill be vandom numbers from O to 10

printf ("
fgets (txt, 4, stdin);

nWhat is %i times %i? a, b);

int answer = atoi (txt);

if (answer == a * b)
score++;
else
printf("\nWrong! Score: %i\n", score);
]

return 0;

OEBPS/Image00695.jpg
OK, soif I receive
TERM signal, T
should just exit()
like before..

OEBPS/Image00696.jpg
Ctrl-C? Talk
+o the hand; Tm
doing nothing.

OEBPS/Image00710.jpg
#include <sys/socket.h> ¢— Youll need this header This is a
etine_d s 3 doerplor ——— protocal rumber
the socket. %
int listener_d = socket(PF_INET, SOCK_STREAM, 0); f‘o“" leave it
-1
error("Can't open socket");

if (listener d

[¥s an [nkernet sotket.

This is the

evvor() funttion
treated in

1‘:; \ast chapter.

OEBPS/Image00711.jpg
Chat: port 5222.
Jokes: port 30000

. i,

OEBPS/Image00704.jpg
Servers-R-Us,
how can T
help you?

A new client, darling?
T always knew your

BLABing would come
in useful one day.

OEBPS/Image00705.jpg
File Edt_Windo
> ./ikkp_server
Waiting For connection

Help_KnockKnock

OEBPS/Image00702.jpg
> ./math_master
What is 5 times 92 45
What is 2 times 82 16
What is 9 times 1? 9
What is 9 times 3?
TIME'S UR!

Final score:

3
Uh, oh..looks like someane s

¢ 3 little slow.

OEBPS/Image00703.jpg
filenol)

finds the
deseriptor.
— 420
e duplicates 3
waitpidO) !
s vy data stream
protess to
Linish.
pivel) Sigrals are
eveates @
commurication Kt“ﬁ
N&/ Pr o igacti 0
otesses ea sigatkion!
e T lets you
using pipes. handle signals.
A program can
send signals
o itself with
The kil vaise().
tommand T— slarm() sends
2 SIGALRM
abter a few

sends a signd-

setonds-

OEBPS/Image00708.jpg
Server: Client:

Knock knock!

Who's there?
Oscar.

Oscar who?

Oscar silly question, you
get asilly answer.

OEBPS/Image00709.jpg
Protocol demands that you
reply with "Who's there? I
shall therefore terminate

this conversation forthwith.

OEBPS/Image00706.jpg
30000 is the rumber of the network port

P Vo o ST
TR LY YR I > toinet 127.0.0.1 30000

T 127000 1iT
the server on the same machine. (RN SO

Escape character is '*]'.
Internet Knock-Knock Protocol Server
The server has vesponded. —3, It uie N
> Who's there?
Oscar
You type in these vesponses. 2 [N
Oscar silly question, you get a silly answer
Connection closed by foreign host.

>

OEBPS/Image00707.jpg
L]
Server

A client and sevver have
a struttured conversation

called a protocol

Telnet client

Telnet client
The sevver will £alk 4o J

several clients at once. Telnet client

OEBPS/Image00679.gif
int main(int arge, char *argv[])

(
char *phrase = argv([1l];
char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};
int £d[2); L This ill eveate the pipe and store its desexiptors in £dC0J and £dC13

(ripelf R S

pid_t pid = fork();

if (pid {
error("Can't fork process");
3 s You've in the thild process here.

if

This vill set the Standard Output o the write end of the pie
ehld vor't vead from the fipe, so well close the vead end

if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",
"-u", phrase, NULL, vars) == -1) {
error("Can't run script");

! | Yorem e et s dom e
}

Aup6dL03, 0); & This will vedivect. the Standard Input 4o the vead end of the pipe
¢lose(£dl12);, € This vill elose the write end of the pipe,
char line(255]; because the parent on't write fo it.

while (fgets(line, 255,__" s{‘d\n {
if (line[0] == '\t')
open_url(Line + 107 Yave veading from the Yo eonld o
) Standard Input, betause < have put £d0]
I that's commezted bo the =t
i pipe =)

news_opener.c

OEBPS/Image00680.jpg
s :
e —
> ./news_opener 'pajama d

The program opens all

the news stories it g3,
find in the browser.

OEBPS/Image00677.jpg
void open_url(char *url)
! Tris will open a veb page on Windows
char launch[255];

sprintf(launch, "cmd /c start %s", url);
system(launch) ;

This will open a web —> sprintf (Launch, "x-www-browser 'ss' &", url);

Page on Linux. system(launch) ;

sprintf(launch, "open '$s'", url);

system(launch) ; Y
This vill open a web page on the Mat.

OEBPS/Image00678.gif
int main(int arge, char *argv[])

You might want o veplace this
! with another RSS newsfeed
char *phrase = argv[l];
char *vars([] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xnl", NULL};
int £d[2]; € This areay will store the destriptors for your pipe.

A Coeste your
" pipe here.

pid_t pid = fork();

if (pid == -1) {
error("Can't fork process");

! HAve you pavent or child? What tode goes in these lines?

if (1pid) { v

if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

"-u", phrase, NULL, vars) == -1) {
error("Can't run script"); N-u’ tells the stript to display

} v you in he parent or the child here? URLs for the stories.
) What do yeu need 4o do o the pire? ~y

char line[255]; \/sth; h::cd;

while (fgets(line, 255, 10 What will You
if (line[0] TNE") € I£ the line starts with a £ab. vead from?

open_url(line + 1);

S then it's a URL.

)
return 0; ‘lime + 1" s the string starting =
, after the tab character. =

news_opener.c

OEBPS/Image00681.jpg
{

#include <stdio.h>

int main()

char name[30];
printf("Enter your name: ");
fgets (name, 30, stdin);
printf("Hello $s\n", name);
return 0;

> ./greetings
Enter your name
>

I£ ou press Ciel-C, the program
shops vunning. But why?

OEBPS/Image00672.jpg
The destriptors will be
stoved in this avvay.
‘ﬁu pass the name int £d[2];
the array to & T e
e e bonion 7 = IpiDELE])t

error("Can't create the pipe");

OEBPS/Image00675.jpg

OEBPS/Image00676.jpg

OEBPS/Image00673.jpg
The child won’t This vill elose the vead end ok the Fipe
read from the pipe. —>close (£4[0]) ; o The ehild then conneets the write
dup2(£d[1], 1); end to the Standard Output.

[# [Datastream 1]

T farey [0 [Slemdardimpt |

the vead end Bmndavdioutout The child

of the " !: rite-end of the pipe fa"t L [:a d
S o b e

but will
write.

This is £dC13, the write end
of the pipe.

OEBPS/Image00674.jpg
The parent comnects
the vead end to the
Standard Output.

o

+dL0] is the vead end of the pipe

—> dup2(£d[0], 0);)
Close (£A[1]) ; < This vill tlose the write end of the pipe

BipEMatMpL Read-end of the pipe

The parent.
Standard output will vead

from the
Fipe..

but won't

write

Read-end of the pipe

OEBPS/Image00690.gif
SIGINT ~————— 7 Ihe process was interrupted.

The terminal window changed size.

SIGQUIT

The process tried to access illegal memory.
SIGFPE

Someone just asked the kernel to kill the
SIGTRAP process.

The process wrote to a pipe that nothing’s
STGSEGY reading
SIGWINCH Floating-point error.
i Someone asked the process to stop and dump

the memory in a core dump file:

SIGPIPE The debugger asks where the proc

OEBPS/Image00691.jpg
e displays your Pl Edi Vi
current protesces. — [R_.
77868 ttys003 0:00.02 bash This is the program we want. o
This sends SIGTERM REPO PR 0:00.01 ./testprog send sigpals 4o 18222 is the
R] > kill 78222
> kill -INT 78222
This sends SIGINT_ 7 (NI Pr o)
1o the program. > kill -KILL 78222

This sends SIGSEGV
o the program.

peotess D

This sends SIGKILL, whih ean’t be ignored.

OEBPS/Image00688.jpg
> ./greetings
Enter your name: “CGoodbye cruel world....
>

OEBPS/Image00689.jpg
Goodbye,
cruel world..

OEBPS/Image00682.jpg
Hey! He hit Ctrl-c.
Run your interrupt
handler.

Someone hits Chrl-C.

signal
The operating 2
system sends an 2 The protess vuns its
interrupt signal default interrupt process

operating system handler and calls exit()

OEBPS/Image00683.jpg
Signal mappings
N

s e
et iyl

E o oot x|

Call exit(
CIGINT has 7
the value 2.

The default handler calls exit0).

OEBPS/Image00686.jpg
The signal number A pointer to the handler funttior

int catch_signal (int sig, void (*handler) (int))
{
struct sigaction action;

action.sa_handler = handler; < Set the action’s handler to
the handler function that
was passed in.

£— Create an action

Use an empty mask _»sigemptyset (saction.sa_mask) ;
action.sa_flags = 0;

return sigaction (sig, &action, NULL);

Return the value of sigaction),

50 You ¢an theek for ervors.

OEBPS/Image00687.gif
#include <stdio.h>
#include <signal.h>€— You need to include the signalh header-
Handlers #include <stdlib.h>
his our new signal handler-
have void v 9 asses
The opevating system P
veturn types:) ;rom diediedie (int sig) {"&: :,‘;al o the handler.
puts ("Goodbye cruel world
exit(1);

’ This s the fundbion bs vegister a handler.

e

int catch_signal(int sig, void (*handler) (int))
{

struct sigaction action;

action.sa_handler = handler;

sigemptyset (saction.sa_mask);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

-A\n");

SIGINT means we are capturing This sets the intervupt handler to
int main() the interrupt signal the handle_intervupt() function

{ N N\

if (catch_signal(SIGINT, handle interrupt) == -1) {
fprintf (stderr, "Can't map the handler");
exit(2);

1

char name[30];

printf ("Enter your name: ");
fgets (name, 30, stdin);
printf("Hello s\n", name);
return 0;

OEBPS/Image00684.jpg
Create a new attion
This is the name of the function

struct sigaction action; You want the computer o call
These are some action.sa_handler = diediedie; at the siqacti
additional Flags o 5 i i The it oy
saction.sa_mask) ; 7
Vou an ek S*OFERIYmat (inctyonsmnn s i called 3 handler

i =0;
then to'zevo. >action.sa_flags The mask is 2 vay of Filteing the

signals that the sigaction will handle,

You'l sually want 4o use an
emphy mask, like heve.

OEBPS/Image00685.jpg
void diediedie (int sig) This is the signal number
: IR the handler has caught.

puts ("Goodbye cruel world....\n");
exit(1);

OEBPS/Image00076.jpg

OEBPS/Image00318.jpg

OEBPS/Image00561.jpg
Hmmmm...maybe T
should have used
cranberries.

OEBPS/Image00075.jpg
s the address of x.

printf("x is stored at_¥p\n", &x);

P‘: ¥ ;m ?‘ %op s used to format addvesses.
ode will prin
x is stored at 0x3ESFAQ Y \
ol probably get
nnioopoonT R SRl =t

hex (base [6) format. on Your machine.

OEBPS/Image00317.jpg
oggswing

TAB]

swing.ogg: | whitennerdy 033
=) .

[TAB] ' 2 .
[oggewing wnitennerdy.ogg swing-°99

OEBPS/Image00078.jpg
90_south_east()

The
latitude
will
decrease.

—_—
The longitude

will intvedse.

OEBPS/Image00320.jpg
havs € Use longs

umbers for veally big
whole numbers.
Use ints for
most whole
numbers.
gyt foretion
detlarabions
feom
dekimbiors o ‘
declarations
inla header f::: -obi,ut
ile. 2
- 4Hinclude Files to speed
flnt!udt > “ for lotal “P Your builds
or libeary headers.
headers.
Wse make £
wanade YO

puilds-

OEBPS/Image00559.jpg
Wer6HT: 53.25 K6
Distance: 15.13 K

Cararies RURNED: 750.412 cAL

But in
England,
measurements
need to be in
kgs and kns.

Vv

OEBPS/Image00077.jpg
=)

xe_one_seavel.

OEBPS/Image00319.jpg

OEBPS/Image00560.jpg
Raisins, flour,

& fmd
2\ 1=
A =

butter, anchovies.

OEBPS/Image00080.jpg
At WTF? The ship (s Earvandow T
(is stillin the > goc southeast.c -o southeast.

same plate. > ./southeast.

B vast! Now at: [32, -64]
Where's The e
Fightin'?

OEBPS/Image00079.jpg
Pass in the latitude
and longitade.
v

void go_south_east(int lat, int lon)
(
lat

#include <stdio.h>

lat - 1; & Detrease the
latitude.

lon = lon + 1;

!rt:[;:z the longibude

int main()
(
int latitude = 32;
int longitude = -64;
go_south_east (latitude, longitude);
printf("Avast! Now at: [$i, $il\n", latitude,

return 0;

Longitude) ;

OEBPS/Image00321.jpg
Feed mel Feed
me now!

OEBPS/Image00081.jpg
Arrl We be
writin' a bad
Amazon review!

becalmed,
caprl

OEBPS/Image00553.jpg
&m hhcale program needs to know where the header ile is.

Did you remember 4o add the ~T flag? ¢ means “just ¢reate the object file; don't link it”

OEBPS/Image00554.jpg
N
Agin, You need to tell the compiler that the headers are in /includes.

OEBPS/Image00312.jpg
A target is a file that is
This i a target £ qging o be aenerated

launch.o: launch.c launch.h thruster.h
gee -c launch.c

Iaiineh.o depends on these
Theve e theee fils.

three RULES' 3 thruster.o: thruster.h thruster.c

gce -c thruster.c €——This is a vetipe for
ereating theuster-o

launch: launch.o thruster.o
Qgcc launch.o thruster.o -o launch

R The vetipes MUST begin vith 3 4ab chavacker.

OEBPS/Image00552.jpg
#ing

display will capture
ude <stdio.h> The LCD display wi

he Standard Output
#include <hfcal.h>
The test user weighs (/5.2
meretnn Fpkadedecs
; " sherdlliptical WeiGHT: 115.20 L8

display_calories(115.2,

11.3, 0.79);

zeturm b7 For this mathine, the e
¥ coetficient is 0.1

Distance: 11.30 MiLes
CALarias RURNED: 1022.39 CAL

This is the fest code. elliptical.c This is what the display

looks like for the test
program

OEBPS/Image00072.jpg
This is a eapy of
he information
oo & v

T've got the
answer you need;
it's right here in
the Encyclopedia
Britannica.

Or you could
Jjust look at
page 241,

o

you need:

This is a ponter
the lotation
the information

OEBPS/Image00314.jpg
make no longer needs

FE =T e

o compile launch.c. > make launch
gcc -c thruster.c

T R S CCc l=unch.o thruster.o —o launch

OEBPS/Image00557.jpg
. > ./elliptical
Now that you've built the elliptical — —) ST TUREEIPTIEIE]
Distance: 11.30 miles
program, you tan vun it on the console: Calories burned: 1028.39 cal

>

OEBPS/Image00313.jpg
You are telling make 4,

ereate the lounch File. > [
gec -c launch.c
gec -c thruster.c

make Fiest needs 4o ereate
3 launth.o with this line / gee launch.o thruster.o -o launch

make then needs to ereate
thruster.o with this line.

Fnally, make links the object iles

fo treate the launch proivam.

OEBPS/Image00558.jpg
In the US, f
measurements
need 4o be in

pounds and y
miles. Q.")

¥

OEBPS/Image00074.jpg
(T Variable y will v n the

int y = 1;

int main()

t

}

int x = 4;

return 0;

Jobals settion
Hemory addess 1,000,000

Value |

/lgamh!: % vill live in the stack.
lemory address 4,100,
Value ”l"{ o0

75T GLOBALS
| | S~y lives in globals.

|

————Lconr

I

OEBPS/Image00316.jpg
oggswing whitennerdy.ogg Swing 099
whitennerdy .99

[SPACES]

gee oggswing.c -o oggswing

OEBPS/Image00555.jpg
The library needs to be named lib...a.
ar —vts ./libs/libhfeala hfealo

7
The archive needs 4o a0 into the /libs directory.

OEBPS/Image00073.jpg
But T prefer
‘this one—it's
got kittens!

You were supposed fo
Sign the birthday card we
left in the lunch room.

OEBPS/Image00315.gif
This converts
whitennerdy.og9
bo suingyoss

oggswing

swing.ogg:

OEBPS/Image00556.jpg
~lhkeal tells the compiler to look for libhfeal.a.

ace. elipkicalo ~L./lbs -Ihfeal - eliptical

A
You've building the program mgV ~L/lbs tells the compiler wheve the libeary is stored.
lliptical.o and the library.

OEBPS/Image00087.jpg
@ Get the address of a variable.
You've already seen that you can find where a variable is stored in
memory using the & operator:

The %p Format will

rint ot £he loation n
hex (base [6) format, ___ PTInte("x Lives at p\n", &x);

int x = 4;

But once you've got the address of a variable, you may want (o store i
somewhere. To do that, you will necdl a pointer variable. A poi
variable is just a variable that stores a memory address. When you

% 4,100,000

=

declare a pointer variable, you need o say what kind of data is stored

at the address it will point to % will find the
This is a pointer variable for . addvess of
an addvess that skoves an int. > 1T Yaddress of x = &x; Ehe variable:
4,100,000

© Read the contents of an address.
When you have a memory address, you will want to read the data
that's stored there. You do that with the * operator This will read the contents at
the memory address given by
int value_stored = *address_of_x;(——\addvzs;zj This will be set
to & the vale originally stored
in the % variable.

The * and & operators arc opposites. The & operator takes a piece
of data and tells you where ics stored. The * operator takes an
address and tells you what's stored there, Because pointers are
sometimes called rferences, the * operator is said 10 dereference

a poinier,

© Change the contents of an address.
If you have a pointer variable and you want © change the data
ou can just use the *

on the left side of

at the address where the variable’s pointing,
operator again. But this time you need (0 us
an assignment;

*address_of x = 99; ﬁ

This vill change the contents of
the original % variable to 99.

OEBPS/Image00329.jpg

OEBPS/Image00086.jpg

OEBPS/Image00328.jpg
~
the other gahanized
nail is attached 4o

this wive.

d
One aalvanize
nail is attathed
4o Lhis wive.

The moisture semsor is comnetted
2o analog input pin O, which means

we ¢an vead analog data from the
sensor via this pin

OEBPS/Image00089.jpg
The arguments will store pointers
<0 they need to be int ¥,

void go_south_east (@ lat, E o
- -m -1, K3t can vead the old value
ST o o scb e mew viue

#include <stdio.h>

int main()
(You need to find the addvess
of the latitude and longitude

int latitude = 32; variables with ¢
int longitude = -64; ‘/\
’

printf ("Avast! Now at: [%i, $i]\n", latitude, longitude);

go_south_east

return 0;

OEBPS/Image00331.jpg
Thank you,
Seymour!

ARDUINO
e

OEBPS/Image00570.jpg
You need to make sure
the variable is exported.

On Linux, you need 4o set

the LD_LIBRARY PATH Pl Eat Virdow Felp Tl
variable so the program aed > export LD LIBRARY PATH=$LD_LIBRARY PATH:/libs

> ./elliptical
can find the library. Weight: 115.20 1bs

Distance: 11.30 miles

cal. burned: 1028.39 cal
There's no need o do this [Nt ca
if the library is somewhere

standard, like Zuse/lib.

Linag.

OEBPS/Image00088.jpg
#include <stdio.h> What kinds of arguments will store
memory addresses for ints?

VAN

void go_south_east (W SO ..
{

int main()

{

int latitude = 32; Remember: you'e going o pass the
int longitude = -64; addresses I“:ﬁnablex

¥y

go_south_east

printf("Avast! Now at: [%i, $i]\n", latitude, longitude);

return 0;

-m slongitude

el e

ey g

OEBPS/Image00330.jpg

OEBPS/Image00571.jpg
"$PATH: /1libs
> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
>

£ Windows using Cyowi

OEBPS/Image00091.jpg
This is Flie Edt Vindow FeloSary7
[ERTYSHANUNNN > gcc southeast.c -o southeast
e 54 > ./southeast

Avast! Now at: [31, -63]

Wind in the
sails, capnl

Arrl Spring

OEBPS/Image00090.jpg

OEBPS/Image00564.jpg
Each of these pieces ok

Ladz s a sc\varah file.
Treadmill
sensor
i Elliptical, d!SPlny
sensor
dﬁl‘lﬂy

OEBPS/Image00565.jpg
You need to join these files together
cach time the progeam vurs.

e

OEBPS/Image00323.jpg
n
Avduino
board >

Analos
inut.
pins O
%

OEBPS/Image00562.jpg
Wouldn't it be dreamy if there
were away to run a program using
switchable pieces of object code?
But T guess that's just a fantasy.

OEBPS/Image00322.jpg
Thh: Plant status is
o om Your computer.

The LED lights up when
the plant necds vatering

Feed me!

Feed me! USB eable

Feed me!

The moisture sensor
deketts whether or n
the plank needs vatering

Solderless
breadboard

OEBPS/Image00563.jpg
Raisin and anchovy eake =N
Very difficult to vemove just the vaisins

OEBPS/Image00083.jpg
Only the local eopy The original variable
aeks changed Keeps its original vaue.

OEBPS/Image00325.jpg
You will need:

We
e used an Avduino Uno. 1 rduino
| so\dexless breadbodrd

OEBPS/Image00568.jpg
MinGW on Windows
C:\libs\hfcal.dll =

/1ibs/libhfcal.dll.a & Cfgvin on Windows
/libs/libhfcal.so &— Linux or Unix
/libs/libhfcal.dylib & Ma

gee -shared hfcal.o -o

OEBPS/Image00082.jpg
This is @ new variable
Conkaining 3 CoPY
the lomgbude value

OEBPS/Image00324.jpg
The IDE lets you upload ¢ode
to the Arduino haard ‘

ARDUINO

and see what data's being mc
== B e

OEBPS/Image00569.jpg
> ./elliptical "
Weight: 115.20 1bs & Mat
Distance: 11.30 miles

Calories burned: 1028.39 cal

>

OEBPS/Image00085.jpg
Instead of Bk

the value of the
=) £ bl as s
o I lotation
update locker
4,100,000

=

N

OEBPS/Image00327.jpg
[| Insert the long LED
Insert the short lead into the sl:)t
LED lead into the > Sor digjtal pin |

slot labeled GND.

WADE
INTTALY

OEBPS/Image00566.jpg
A dynamic library contains extra
information that the operating system vl

S?/l’/ veed bo lnk he lbrary & other things
AL the heart of a dynamic

Is it a bivd? s it

a plane? No, it's a
velocatable objeet.
file with metadata

libravy is a single piece of
object code.

A

The library s built from

one or more .o files.

OEBPS/Image00084.jpg
The latitude %

variable is at
memory lotation
t.100,000.

OEBPS/Image00326.jpg
2y S E—
1\

N

Fix the end of the
vive 4o the head
the nail-

OEBPS/Image00567.jpg
—¢ means “Don't link the tode.”
gce -I/includes -£PIC -c hfcal.c -o hfcal.o

The hfealh header is in /intludes. What does —£PIC mean?

OEBPS/Image00296.jpg
is wil the theuster.o tile
This is the only fjjo— gec -c thruster.c & This will veeveate

that's changed. goe *.0 -o launch ¢—This vill link everyhing fogether.

OEBPS/Image00539.jpg
| Root directory

L-I my_object files
o
]wa

I Jeaor

encrypt.o

oot
ol
—ooten

checksum.o

OEBPS/Image00295.jpg
¥ Inskead of C source iles, list
This is smilar to the X goc #.0 ~0 launch the objett files
compile commands N
you've used before. This will mateh all the object files in the divectory.

OEBPS/Image00540.jpg
Hmmm... That's OK if I just have
one or two object files to share, but

what if T have alot of object files? T
wonder if there's some way of telling
the compiler about a bunch of them...

OEBPS/Image00298.jpg
thruster.c
11:43

thruster.o
11:48

turbo.c
12:15

graticule.c
14:52

servo.c
1347

OEBPS/Image00537.jpg
| Root directory

= #include "/my header_files/encrypt.h"

checksum h

OEBPS/Image00297.jpg
eefore
4 mins 30 secs
lbsecs

Now, you've
compiling only the
piling ony

ehanged file.

Compile time:
Link time:

The link time is
Before, You weve compling cvery fe. T buld is 95% faster. kil b seconds.

OEBPS/Image00538.jpg
gece -I/my header files test code.c ... -o test_code

This ells the eompiler 4o look
in /my_header_files as well

35 +he standavd diveetories.

OEBPS/Image00300.jpg
o —
! o} —_— —
— = — —_—

—_— —_— — —_

= = = =
thruster.c turbo.c graticule.c servo.c

11:43 12:15 14:52 13:47

araticuleo needs o be
vecomiled, because it's
older than the latest

vevsion of its sourte.

4

servoo needs o be
vecompiled, because i¥'s
older than its source.

N

graticule.o
14:25

us e thanged graticuleo
B folve A B

fhe ems exetutable as well

OEBPS/Image00299.jpg
microwave.c
15:42

microwave.o
18:02

—_—
=

Ppopcorn.c
17:05

Ppopcorn.o
17:07

juicer.c
16:41

juicer.o
16:43

OEBPS/Image00541.jpg
libl.a

libmain.o libyywrap.o

OEBPS/Image00301.jpg
Noe of the .o files
needs +o be vetompiled.
They are all newer

{han their source files.

microwave.c
15:42

microwave.o
18:02

popcorn.c
17:05

popcorn.o
17:07

galley
17:09

Juicer.c
16:

J— The galley exetutable needs 4o
be relinked, because it's older
than the microwave.o file.

OEBPS/Image00532.jpg
stdioh is

stored in #include <stdio.h>
one of the

#include "encrypt.h"
standard YR
header #include "checksum.h"
divectories

entrypkh and chetksumh are in
he <ame diveckory as the program.

OEBPS/Image00292.jpg
—

Object
code file
1001
= \ o
C source Object A Executable
file Setiefie You il still need to vun the linker, but
{f Hhis source < . most, of the files wil still be the same
ile changes, =N e y
H 4 =] ‘Compiler — £~ The tompiler will update
ety L)~ fhe objeet tode that’s
one You need C source ject

bkt i codefile stored in 3 file

OEBPS/Image00535.jpg
Yeah, I gotta get security
added to all these different
programs. I don't want a

separate copy of the security
code for each one...

OEBPS/Image00536.jpg
You ean use angle brackets it your header
#include <encrypt.h> & Liles ave in a standard divectory.

OEBPS/Image00294.jpg
@

Sourte files

Object Files
4

< Exetutable

OEBPS/Image00533.jpg
Now the code ompiles corvectly.
[£ entrypts the test string o
something unreadable.

> gcc test _code.c encrypt.o chefksum.o -o test code
> _/test_code %

Encrypted to 'Loz~t?ymvzq{?~q{?zqgkzm'

Checksum is 89561741

Decrypted back to 'Speak friend and enter’

Checksum is 89548156

> A

Calling the enceypt0) funttion a secord

The cheeksum veturns diffevent. fime veburns the original sbring,

values for diffevent strings.

OEBPS/Image00293.jpg
The opevating system will veplace

This will eveate obj
ject. . —
Sgee —e *.e = w yith all the C flenanes

tode for every file.

OEBPS/Image00534.jpg
/ust/local/include & [t il theck /usr/lotal/inchude firsk

/usr/include
fusr/lotal/include i often Yuse/include is ormally
used for header files for used for operating

thivd—party libraries system header files

OEBPS/Image00307.jpg
thruster.c - thruster.o

OEBPS/Image00550.jpg

OEBPS/Image00306.jpg
Hmm..this file's OK.
And this one. And this one.
And..ch, this one’s out of

date. Id better send that
to the compiler.

OEBPS/Image00551.gif
#include <stdio.h>

The hfealh header file just eontains
#include <hfeal.h> & L o e diiay.cdoie) fnchion

void display calories(float weight, float distance, float coeff)
« (o The weight s in pounds
printf ("Weight: $3.2f lbs\n", weight);

printf("Distance: %3.2f miles\n", distance);

&— The distante is in miles.

printf("Calories burned: $4.2f cal\n", coeff * weight * distance);

This tode vl g0 ino 3 MERLE
a file called hleale.

OEBPS/Image00309.jpg
launch.o

launch

thruster.o

launch ¢

launch h

thruster h thruster c

OEBPS/Image00548.jpg
#include <encrypt.h>
The #ineludes are using angle brackets

#
include <checksum.h> € The conpiler will need to be told vhere
the header files ave ith a ~T statement.

OEBPS/Image00308.jpg
This is the vule tor

gcc -c thruster.c €< evesting thruster.
i o

OEBPS/Image00549.jpg
encrypt.o: encrypt.c LW ereates the object file

rom the entrypte source file
gee

...encrypt.c o encrypt.o

i £il
CHECKSHHGE CHECRSH. & This ereates the object file

£rom the chetksume source file.

libhfsecurity.a:

..., Checksum.c -o checksum.o

L You ean't build the libhfsecuritya archive until
we've ereated entrypto and checksumo
encrypt.o |

. 5 — This will ereate the
You need —Ihfsecurity because the
bank_vault: bank vault.c arehive is ¢alled libhseeurity.a
ey, W S N =l
7 7 .

The program’s source You need ~I. because the You need the -L.,
Code needs 4o be listed header Files ave in the *” because the arehive is in
before the library ode. (curvent) divectory the eurvent. direttory.

[y Y ey =)

OEBPS/Image00311.jpg
Ihe launch pr
o3ram is made from — 29
the launch.o and thruster. i.r:s =2 ["B
|

launch
ol or
mpiled from launche and Yol iood ;—thruster.o s compiled from
Ivi“:?»‘.: it ALGO from thrusterh = ot Fr theusterh and thruster.
launch.o thruster.o

launch.c launch h thruster h

OEBPS/Image00310.jpg
So I've got to compile the
launch program? Hrm.

First T'll need to recompile
thruster.o, because it's out
of date; then T just need
to relink launch.

OEBPS/Image00542.jpg
You might. not have a libl-a on your machine, but
Kyw ¢an try the command on any other .a file

called libla. —> EEFCSEETSIEY

P 1ibl.a(libmain.o) :
00000000000003a8 s EH_frame0
U _exit ” .
0000000000000000 T “main &——"T _main’ means libmaino
00000000000003c0 S _main.eh tontains 3 main() funttion.

U “yylex

Py o1 a(Libyywrap.o) :

0000000000000350 s EH_frame0
0000000000000000 T _yywrap
0000000000000368 S _yywrap.eh
>

libmain.o

ibyparapo

OEBPS/Image00543.jpg
The v means the a The s tells ar to create o
file will be updated an index. at the start of Jztﬁ:ﬁ:ﬁm{ wil be
if it alveady exists \ e a bile. v bl
ar -rcs libhfsecurity.a encrypt.o checksum.o
4y
The ¢ means that the aichive TS is the name of
will be eveated without any the .a file 4o treate
Leedbatk.

OEBPS/Image00303.jpg
Wouldrit it be dreamy if there were
atool that could automatically recompile
just the source that's changed? But T
know it's just a fantasy...

OEBPS/Image00546.jpg
T means “Text,” which means this is @ function

0000000000000000 T _yywrap &—The name of the function is yywrap().

OEBPS/Image00302.jpg
T thought the whole point of saving time
was so I didn't have to get distracted.

Now the compile is faster, but T have to
think a lot harder about how to compile
my code. Where's the sense in that?

OEBPS/Image00547.jpg
checksum. —1hfsecurity - :
1ihh£secnzity~i. b“"»"a““"c' I\DJ D i

/usx/lib' /usx/locallinclude| D -xes .

OEBPS/Image00305.jpg
is is make, your
Lt

P

C.

OEBPS/Image00544.jpg
hisecurity tells the compiler £o look

Remember to list your souree an arthive ealled libhfsecuritya

Biles before your | libraries. 5
£ Do you need a =T option?

T [t depends on where you

1§ you've using several archives, put your headers

Jou tan set several -| options

gee test_code.c -lhfsecurity -o test_code

OEBPS/Image00304.jpg
I£ the thruster.c [£ the thruster-o
il i newer, you > thruster.c ——> thruster.o & Bl is mewer, you
don't need to

need to vecompile.
vetompile.

OEBPS/Image00545.jpg
So, T need o look for
libhfsecurity.a starting in
the /my_lib directory.

OEBPS/Image00281.jpg
The first thing the compiler needs to do is fix the source. Tt needs to add in
any extra header files it's been told about using the #include directive.
Tt might also need to expand or skip over some sections of the program.
Once it’s done, the source code will be ready for the actual compilation.

First, T'll just add
some extra ingredients
into the source.

It can do this with
Commands like #def;
nd Hildef. it oo
how £ use Lhem later
in the book.

-

4

Hmmmm..so I need to
compile the source files
into a program? Let's see
what T can cook up...

Q
|-
W dieckive” is
ot s by
Vord dor
“command.”
p

OEBPS/Image00274.gif
Here are the code fragments.
Mark the boxes that

hink ave corvect:
float mercury day_in_earth days(): [you

int hours_in_an_earth_day(): You can compile the code.

int main() You should display a warning.

{

The program will work.

float length of day = mercury day in earth days();

int hours = hours_in_an_earth_day();
float day = length of day * hours;

OEBPS/Image00517.jpg
The variable arguments
will follow here.

The variable avauments vill start

after the args pavameter.

#include <stdarg.h>
This is & novmal, ordinary

argument that vill ahways

be passed. void print_ints(int args, ...)
{

va_start says where the va_list ap;

| u—

int i
This will loop through all i
949:; ,&; a,;::?“;/—)fox (1 =0; i < args; i++) {

args conbains 3 count —] printf("argument: %i\n", va_arg(ap, int));

of how many varizbles }

there are e

© 00 O

(c)

OEBPS/Image00759.jpg
Hello? T dorft want
to know how to connect a
socket o an IP address.
T'm actually human. T

want to connect to a real
domain name.

OEBPS/Image00273.gif
(Candidate tode goes heve:

tinclude <staio.n> -

("A day on Me

rs\n", day);

return 0;

£loat me

y_in_earth days()

return 58.65;

int hours_in_an_earth_day()

return 24;

OEBPS/Image00518.gif
Include the stdarg.h header.
All the code to handle variadic functions is in stdargh, so you
need to make sure you include it

Tell your function there's more to come..
Remember those books where the heroine drags the guy ,
through the bedroom and then the chapter ends “...”> Well, & No, we don't vead
that *...” is called an effpsis, and it ells you that something those books either.
else is going to follow. In C, an ellipsis after the argument of a

tion means there are more arguments (o come.

Create a va_list.
Ava_1ist will be used to store the extra arguments that
are passed (o your function.

Say where the variable arguments start.
Cnceds (o be told the name of the last fixed argument. In the
case of our function, thatll be the args pa

meter

Then read off the variable arguments, one at a time.
Now your arguments are all stored in the va_11st, you can read
them with va_arg. va_axg takes two valucs: the va_list and
the type of the next argument. In your case, all of the arguments
are ints.

Finally..end the list.
After you've finished reading all of the arguments, you need to tell
C that you're finished. You do that with the va_end macro.

Now you can call your function.
Once the function is complete, you can call it

print_ints(3, 79, 101, 32);

This will print out 79, 101, and 32 values.

OEBPS/Image00760.jpg
The DNS is a gigantic addvess book.
%

Domain name Address
en.wikipedia.org |91.198.174.225

C

Some lavag sites have

several [P addresses Computers need [P

addvesses o eveate
network packets.

OEBPS/Image00276.gif
#include <stdio.h>

printf("A day on Mercury is %f hours\n", day);

return 0;

float mercury day_in_earth_days ()

{
return 58.65;

int hours_in_an_earth_day/()

{

return 24;

OEBPS/Image00515.jpg
The number of drinks

£ Net so
NAVEL
Easy — price (ZOMBIE) total(3, ZOMBIE, MONKEY GLAND, FUZZY]) iy

A
A list of the drinks in +the order

OEBPS/Image00757.jpg
Sri¥ 508 HGEKGE(PT, INET, SOCK STREAM, 0y A ake i examples won't include the
= evvor cheek heve. Buk in your ode, ahuays chetk

 A—

OEBPS/Image00275.jpg

OEBPS/Image00516.jpg
print_ints(3, 73, 101, 32);

Number of ints o pri 671 The ints that need to be printed

OEBPS/Image00758.jpg
struct sockaddr_in si;

T)\ti{:’me& memset (&si, 0, sizeof(si));
ereate soeket —) e o
sddvess Lo si.sin_family = PF_INET;

208201239]00 | si.sin_addr.s_addr = inet_addr("208.201.239.100") ;
on port, 80 si.sin_port = htons(80);

connect (s, (struct sockaddr *) &si, sizeof(si)); {/1;»1-;:‘:&: e
onm

satket to the

P—— vemote port

Client. —> D b £ Sevier 1208201239100
po=mce

OEBPS/Image00278.jpg
Sile_hider

Read the contents
% afile and create
anencrypted version

using 02 encryption,

— messa(je_\'\\d&')
=
<
= :\z display an
= o3 Nersion o
e;:zg\a\daro OU{Y:\W
using XOR encruptt

OEBPS/Image00521.gif
double total(int args, ...)

Don't worry if

your code doesn't

look exactly like ist. ap;

this. Tnmlym > it

a few vays of va_start(ap, args);

witing it whi
in

double total = 0;

\a_end(ar

return total;

OEBPS/Image00277.gif
float mercury day_in_earth_days():

int hours_in_an_earth_day();

int main()

{
float length_of_day = mercury_day_in_earth_days();
int hours = hours_in_an_earth day();
float day = length of day * hours;

j You can compile the code.

You should display a warning.

U/ The program will work.

float mercury day_in_earth days();

int main()

{
float length of day = mercury day_in_earth days():
int hours = hours_in_an_earth_day();

float day = length of_day * hours;

int main()

{

The Program vort onile because yau'e callng
a noaf\buntﬁcn without detlaring .Z fiest.
float length of day = mercury day_in_earth days();
int hours = hours_in_an_earth_day();

float day = length_of_day * hours;

There vill be varning, beause you haven't
ntloved the Yowrs_in_n_carth_day0)
before calling it The program will still
ek betause it vill auess the function
vebuens an int.

J] Youcan compile the code.

E/ You should display a warning.

U/ The program will work.

You can compile the code.

[J] Youshould display awarning.

The program will work.

float mercury day_in_earth_days();

int hours_in_an_earth day();

int main()

The length_of _day variable should be a float.
(\//

int length of_day = mercury_day_in earth days();

int hours = hours_in_an_earth_day():

float day = length_of_day * hours;

The progeam will eompile withaut
wringg, b 1 ven'E work
bezause hee vill be a vounding
problem

You can compile the code.

You should display a warning.

The program will work.

OEBPS/Image00280.jpg
This is the
shared tode.

Y

Read a file,
rewrite a file.

Read Standard
Tnput, display text.

The eompiler will compile the
shaved code into each program

N Yo e o v 3 vy o7

file_hider of telling the compiler to naesagehides
ereate the program from
multiple sourte files

OEBPS/Image00519.gif
printf ("Price 1s %.2f\n", total(3, MONKEY GLAND, MUDSLIDE, FUZZY NAVEL));

Ly
This will print “Price is 69"

OEBPS/Image00761.gif
This eveates a
name vesourte

for port @0 on

www.oreilly.com —\ getaddrinfo ("www.oreilly.com",

. You'll need to intlude this header
#include <netdb.h> & L0 Lyt function

struct addrinfo *res;
struct addrinfo hints;

memset (shints, 0, sizeof (hints)); yeisddvinfel) expects
hints.ai_family = PF_UNSPEC; the port to be a string
hints.ai_socktype = SOCK_STREAM; £

80", shints, &res);:

OEBPS/Image00279.jpg
void means don't
redurn anything, ~—void encrypt (char *message)

Pass a pinker to an
areay into the Function

Loop threush the)
arvay and vpdate em\s while (*message) { /—TM; means
eharatter with an +nessage = *message g1y 1 XOR each
entrypled version messaget++; d z::rm: with
) number 3.
}
Doing math with 3

charatker? You ean because
s 3 mumevic data bype

OEBPS/Image00520.jpg
printf("Price is %.2f\n", total(3, MONKEY GLAND, MUDSLIDE, FUZZY NAVEL));

s
This will print “Priee is 169"

OEBPS/Image00752.jpg
The ps tommand shows LR
vunning protesses in —
Unix and Cygwin. PID TTY TIME CMD

PR 14324 ttys002 0:00.00 ./ikkp_server The child process

14412 ttys002 0:00.00 ./ikkp server
=

v e TosiCuTons.

The parent protess

OEBPS/Image00513.gif
You tan add
vew bypes and

MARR: AW £— Funckions like this
enum response_type {DUMP, SECOND_CHANCE, TAGE, { surm):

void (*replies[]) (response) = {dump, second chance, marriage, law suit);

OEBPS/Image00755.jpg
I was taught
never o speak
until T'm spoken to.

Sevver —

OEBPS/Image00514.gif
printf("%1 bottles of beer on the wall, %1 bottles of beer\n", 93, 399);
printf("Take one down and pass it around, ");

printf("#i bottles of beer on the wall\n", 98); You tan pass the print£0) as many

avquments as you need o print.

OEBPS/Image00756.jpg
208.201.239.100 <—— Addvesses with four digits are in [P version 4 format. Most
will eventually be veplaced with longer version b addresses.

OEBPS/Image00272.jpg
> ./totaller

Price of item: 1.23
Total so far: 1.30
Price of item: 4.57
Total so far: 6.15
Price of item: 11.92
Total so far: 18.78
Price of item: "D
Final total: 18.78
Number of items: 3

N

Press Cirl-D heve to stop the
broavam from asking for more prices.

OEBPS/Image00753.jpg
R B DR L

> telnet 127.0.0.1 30000

Trying 127.0.0.1.
Connected to localhost.
Escape character is '*]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
>

Another elient console—1

OEBPS/Image00512.gif
> ./dear_johns

Dear Mike,

Unfortunately your last date contacted us to
say that they will not be seeing you again
Dear Luis,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear Matt,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear William,

Congratulations! Your last date has contacted
us with a proposal of marriage.

>

OEBPS/Image00754.jpg
Most web sevvers vun on port 80

This is the mumeric
address of Wikipedia.
You might MV > telnet en.wikipedia.org 80
d:;fn—znt 3;: " 5‘;“’ BB Trying 91.198.174.225

i eSS wmen Connected to wikipedia-lb.esams.wikimedia.org.
You try it Escape character is '~]'.

WPV GET /wiki/O'Reilly Media http/1.1 <— Thisis the path that Lollows
Host: en.wikipedia org +the hostname in the URL.

RS o HTTP/LL, you e 4o s3y
what hostnane you are wsing

in these two lin

HTTP/1.0 200 OK
Server: Apache

And then you need to

£ "http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

The server tirs <html lang=en" dir="ltr" class="client-nojs"

vesponds with some xmlns="http: //www.w3.0rg/1999/xhtml">

extra details about <head>

the web page <title>0'Reilly Media - Wikipedia, the free encyclopedia</title>

I And this s the HTMIL for e weh Page.

it veburn and leave 2 77 [0S
blank line. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

OEBPS/Image00285.jpg
Finally, I need to put
everything together
for the final result

OEBPS/Image00528.jpg
A security library? Hey,
that's just what I'm looking
for! The security at our
bank is, well..kinda sloppy. £ Head of seturity 3t the
Fivst Bank of ttead First

He also cleans poos.

OEBPS/Image00770.jpg
Telnet 1 3

Create
i sotkets with
eient e

Function,

Servers BLAB:
B = bind) Ve fork0

+o tope vith
= lotel) seveval tlients
A= accept0)

at onte.

B= Begin talking

DNS =
Domain name

OEBPS/Image00284.jpg
Time to bake that
assembly into
something edible.

OEBPS/Image00529.gif
#include <stdio.h> h
#include <encrypt.h>
#include <checksum.h>

P EaT Tindon el

> gce -c encrypt.c -o encrypt.o
> gce -c checksum.c -o checksum.o
=

int main ()
{

char s[] "Speak friend and enter";

encrypt (s) ;
printf ("Encrypted to 'ss'\n", s);
printf ("Checksum is $i\n", checksum(s)):

enceypt0) will encrypt your
data. I you call it again,
it will deerypt it

X

encrypt (s) ;

printf ("Decrypted back to '$s'\n", s);
printf("Checksum is $i\n", checksum(s));
return 0;

OEBPS/Image00771.jpg
Johnny told me he
got his heap variables
locked ina mutex.

OEBPS/Image00287.jpg
Youll intlude enerypth so that
#include <stdio.h>

Y proaram has the declaratior
netude tenenpen of the entrypt0) function

int main()
(
char msg[80];
while (fgets(msg, 80, stdin)) {
encrypt (msqg) ;
printf("$s", msg);:
}

message_hider.c

OEBPS/Image00526.jpg
#include "encrypt.h"

void encrypt (char *message)

{

while (*message) {

void encrypt (char *message);

U

*message = *message " 31;

encrypth
message++;

OEBPS/Image00768.jpg
1nt say(int socket, char *s)

(
int result = send(socket, s, strlen(s), 0);
if (result == -1)

fprintf (stderr, "$s: $s\n", "Error talking to the server",
strerror (errno));

return result;

int main(int argc, char *argv(])
{

int d_sock;

Create a string for the path

£ o the pane you vart

.+ argulll);

char buf([255];

sprintf (buf,

say(d_sock, buf);
- rﬂ.-s sends the

host dat
ost: en.wikipedi. org\r\n\r\, ')i ;a blai ?.::CH
char rec[256];

say(d_sock,
int bytesRevd = recv(d_sock, rec, 255, 0);
while (bytesRcvd) {
if (bytesRcvd == -1)
error("Can't read from server");

Add 2 \O o the end of the arvay of
‘ehavackers bo make it 3 proper sbring

rec[bytesRevd] =
printf("$s", rec);
bytesRevd

recv(d_sock, rec, 255, 0);

return 0;

Host: en

OEBPS/Image00286.gif
void encrypt(char *message);

encrypth

You'll include the header

inside encrypt.c. \

{

while
*message
message++;

i

#include "encrypt.h"

void encrypt (char *message)

(*message) {

*message ~ 31;

OEBPS/Image00527.jpg
{

#include "checksum.h"

int checksum(char *message)

This function veturns a number

based on the contents of a string

int checksum(char *message); f=
int ¢ = 0;

while (*message) {

c 4= ¢ ~ (int) (*message) ;

message++;

}

return c; =N
=

checksum.c

checksum.h

OEBPS/Image00769.gif
You'll have o veplace any spaces with undevseore (_) characters

> gec wiki_client.c -o wiki_client

> ./wiki_cTient "O'Reilly Madia" <&

ggg/légfogﬁoan 2012 20:30:15 qun &— 1 bhe begnning youll aet the response HEADERS. These
Sarver: Aache el you tings about.the server and the veb pane

Connection: close

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional .dtd">

<html lang="en" dir="ltr" class="client-nojs" xmlns="http://www.w3.o0rg/1999/xhtml">

<head>

<title>0'Reilly Media - Wikipedia, the free encyclopedia</title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

Then You get. the contents of the web page From Wikipedia.

OEBPS/Image00289.jpg
P)
R

s

takes an age fo recompile! And
T'm working on a schedule.

1
Ee
it
£5
I3
3
i

OEBPS/Image00288.jpg
You need to tompile the code
with both sourte files

When you vun R y
you uz pi i ::i{;:z“"' B > gcc message hider.6 encrypt.c -o message_hider
tee the onerant, > /message_hider

Yrted version I am a secret message

V2~r?~21z|mzk?rzllvxz

Vou can even pass it the —_, (NI R
contents of the encrypth ipv{?2q|mEok7 |w~m52rz11~xz6$
fle to encrypt it 3

The message_hider progeam is using the
eneryptO) funttion from encrypt. 2

OEBPS/Image00291.jpg
Skipping a few filenames heve

gcc reaction control.c pitch motor.c ... engine.c -o launch

OEBPS/Image00530.gif
> gcc test code.c encrypt.o checksum.o -o test code

test_code.c:2:21: error: encrypt.h: No such file or directory
test_code.c:3:22: error: checksum.h: No such file or directory
>

OEBPS/Image00290.jpg
I£ You chanae even ane in in o File,
it can ke the compiler a long fime
o vecompile all the source files

a _~ |lool
(7 Nia
= = ootan
= — |a
= iy
= = = -.
oot
= o
=[o =
relrog faunch;

launch

OEBPS/Image00531.gif
#include <stdio.h>

#include Fencrypt.h>

#include\<checksum.h>

int main()

{
char s[] = "Speak friend and enter";
encrypt (s) ;
printf ("Encrypted to '$s'\n", s);
printf("Checksum is $i\n", checksum(s));
encrypt (s);
printf ("Decrypted back to '$s'\n", s);

printf ("Checksum is %i\n", checksum(s));

return 0;

OEBPS/Image00762.jpg
Now you can eveate the socket
using the naming vesource

v

int s = socket(res->ai_family, res->ai_socktype,
res->ai protocol) ;

OEBPS/Image00763.jpg
ves—>ai_addrlen is the size

of the address in memory:

revoall e 4 This will eomnett 4o

Connect (s, res->ai_addr, res->ai_addrlen); £
sdde of the vemote k ! = V7S e vemote stk

freeaddrinfo (res) ; &—
host and port. When you've tomnetted, You tan delete
the address data with freeaddvinfO0).

OEBPS/Image00524.jpg
Funtkion 79

the oty

Funetion pointers :‘;

let you pass Py " b the ¥

functions around al operatars=

as if they were =

data. e it ou ean
still use them if
You want {o.

qport)
will sort.
an i\'vay.
Eath sort
Luntkion needs
a pointer to
3 tompavator
st Comparator
/ ‘u»ﬂlaons detide
Arvays of function how o order
Pointers can help o pieces of
vun different data.
netions for

diffevent 4,
G

Funttions with 3
\ariable number
of avquments are
called “ariadie”

e stdargh lets
You ereate
variadic

unetions.

OEBPS/Image00766.gif
"GET /wiki/%s http/1.1\r\n"

Host: en.wikipedia.org\r\n\r\n"

‘o ' "\r\a» '

©open_socket ("en.wikipe

oy

OEBPS/Image00525.jpg
The toe bone's statically
linked to the foot bone, and
the foot bone's statically
linked to the ankle bone.

OEBPS/Image00767.gif
tinclude <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
4include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>

void error(char *msg)
(
fprintf(stderr, "ts: $s\n", msg, strerror(errno));
exit(1);

int open_socket (char *host, char *port)
{

struct addrinfo *res;

struct addrinfo hints;

memset (shints, 0, sizeof (hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

if (getaddrinfo(host, port, shints, ares) == -1)

error("Can't resolve the address");
int d_sock = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

if (d_sock == -1)
error("Can't open socket");
int ¢ = connect (d_sock, res->ai_addr, res->ai_addrlen);

freeaddrinfo(res);
if (c -1)
error("Can't connect to socket");

return d_sock;

OEBPS/Image00283.jpg
This is a veally
dirty joke in "T=10010101 00100101 11010101 01011100
macthine tode.

OEBPS/Image00522.gif
This is the test code

main () {
printf("Price is %.2f\n", total(2, MONKEY GLAND, MUDSLIDE));
printf("Price is %.2f\n", total(3, MONKEY GLAND, MUDSLIDE, FUZZY NAVEL));
printf("Price is %.2f\n", total(l, ZOMBIE));

return 0;

T EST Wy e T
> ./price_drinks
Price is 11.61

Price is 16.92
And this is the Price is 5.89

autpt »

OEBPS/Image00764.jpg
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>

wvoid error(char *msg)

(

fprintf(stderr, "is: $s\n", msg, strerror(errno));
exit(1);

int open_socket (char *host, char *port)

(

struct addrinfo *res;

struct addrinfo hints;

memset (shints, 0, sizeof (nints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

if (getaddrinfo(host, port, shints, Gres)

error("Can't resolve the address™);

int d sock = socket (res->ai_family, res->ai_socktype,

res->ai_protocol):

-1)

if (d_sock == -1)
error("Can't open socket");
int c = comnect (d_sock, res->ai_addr, res->ai_addrlen);
freeaddrinfo (res);
-1)
error("Can't connect to socket");
return d_sock;

if (e =

OEBPS/Image00282.jpg
So for this "if*
statement I need
to begin by adding
onto the stack

OEBPS/Image00523.jpg
Yeah, baby! T could
remember these even
after one too many
Monkey Glands...

OEBPS/Image00765.jpg
int say(int socket, char *s)
[
int result = send(socket, s, strlen(s), 0);
if (result == -1)
fprintf(stderr, "$s: is\n", "Error talking to the server",
strerror(errnol);

return result;

int main(int arge, char *argv(])
[
int d_sock;

a_sock = s
char buf (25517

sprintf(buf, s azgvill);
say(d_sock, buf);

say(d_sock,
char recl2561;
int bytesRovd = recv(d_sock, rec, 255, 0)7
while (bytesRova) (
if (byteskova == -1)
error("Can't read from server”):

rec(byteskeval = - B
printf("is", rec);
bytesRevd = recv(d_sock, rec, 255, 0);

return 0;

OEBPS/Image00501.jpg
> ./test drive
These are the scores in order:

Score = 554

Score = 543

Score = 323

Score = 112

Score = 32

Score = 11

Score = 3

These are the names in order:
Brett

Karen

Mark

Molly
>

OEBPS/Image00495.jpg
& Warning: this one is veally tricky.
int compare_names(const void* a, const void* b)

Sort a list.

of names in
alphabetical
order, Case~
sensitive,

{

}
Res string s a pointer 4o a char,
what ill 3 poinker to it be?

Heve's a hint:
steemp(“Abe”, “Def”) < O

OEBPS/Image00737.jpg
This will
store the

main listener —2>int listener d;

socket for
the server.

void handle_shutdown(int sig)
{

£ (L dl ’R 1§ someone hits Ctrl-C when the sevver
45 (istenes) is voming, this function villClose the

close(listener_d); sotket before the program ends.

fprintf(stderr, "Bye!\n");

exit (0);

OEBPS/Image00496.jpg
int compare areas_desc(const void* a, void* b)

{

sort the
re,c{ang\es

in area order,
largest Sirst. }

Sort a list 0§ int compare names_desc(const void* a, const void* b)
names in reverse {

alphabetical

order. Case-

sensitive,

OEBPS/Image00738.gif
int main(int arge, char ¥arqul])
{

if (cateh_signal(SIGINT, handle_shutdown) == -I)
ervor(“Can't st the intervupt handler”); < This will call handle_shutdown0) if Ctel-C is hit.
liskener_d = open_listener_sotket();
bind_to_port(listener_d, 30000); < Create a socket on port 30000
if Uisten(listener_d, 10) == 1) €— Set the listen—queue length to 10
evvor(‘Can't listen”);
struct sotkaddr_storage elient_addv;
unsigned int addvess_size = sizeof(elient_addv);
pobs"Witing o conmctbion”;
i‘:l'e ';Tf?'*l Lisken Jor 3 conpattion
int conneet_d = accept(listener_d, (struet sockaddr %)éclient_addv, faddvess_size);
if (eommeet_d == -I)
ervor(*Can't open setondary sotket”); Send data o the clent
if (sayleonneet_d,
“Internet Knotk—Knotk Prototal Server\r\nVersion |.ON\nKnotk! Knotk/Ne\n>) 1= -1 {
vead_in(connect_d, buf, sizeof(buf)); <—— Read data from the client.
if (sbeneaseemp(“Who's there?”, buf, 12))
say(eonnect_d, “You should say Who's theve?'!"); <— Checking the user’s ansvers
else {
if (sayleonneet_d, “Osear\e\n>) I= D) {
vead_in(conneet_d, buf, sizeof(buf));
if (steneaseemp(“Ostar who?”, buf, 10))
say(eonnett_d, “You should say ‘Ostar who?\e\n");
else

sayleonneet_d, “Ostar silly question, you get 3 silly answer\e\n);

}

eloselcomnect,_d); &— Close the secondary socket we used for the conversation

veturn 0;
}

OEBPS/Image00493.jpg
The comparator
function returned the
value -21. That means 11
needs to be before 32

OEBPS/Image00735.jpg
et connection Srom client

o

say, “Unock! knock!

Check that they say, ‘who's there?

Check that they say, “Oscar who?

Sau, “oscar silly queshon,
you get asily answer”

OEBPS/Image00494.jpg
Sort integer int compare scores(const void* score a, const void* score b)
scores, ith {

the smallesy int a = *(int*)score_a;

Sirst, int b = *(int*)score_b;

return a - b;

int compare_scores_desc(const void* score_a, const void* score_ b)
sort inteoer (
scores, with
{\'ve\argesi
Sirst.

typedef struct { &~ Thisis the
int width; vettangle Lype.

int height;

} rectangle;

int compare_areas(const void* a, const void* b)

{

OEBPS/Image00736.jpg
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

— The ready-bake functions Srom the previous page 90 heve

OEBPS/Image00499.jpg
int compare_areas_desc(const void* a, const void* b)
(
veturn compare_aveas(h, a);

sort the
r%{ang\es

in area order,
\arges{ Sirst. }

Or you eauld have used —tompare_aveas(a, b)

Sort a list o int compare_names_desc(const void* a, const void* b)
names in reverse {

alphabetical vetuen comp:

order. Case-

sensitive, ’

Or you could have used
—tompare_names(a, b)

OEBPS/Image00741.jpg
> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.

Escape character is '*]'.

Internet Knock-Knock Protocol Server

Version 1.0

Knock! Knock!

> Come in

You should say 'Who's there?'!Connection closed by foreign host.
>

OEBPS/Image00500.jpg
#include <stdio.h>

#include <string.h>
#include <stdlib.h>

The comparator
functions go here. —>

int main()
{
int scores[] = {543,323,32,554,11,3,112};

This s the line e i
that sorks the ——> gsort (scores, 7, sizeof(int), compare_scores_desc);

stores puts ("These are the scores in order:™); '\

qsort() changes

the order of the
%1\n", scores[il); clements in the arvay.

for (i = 0; i < 7; i++) (

This will print out T printf("score
bhe arvay once ;

it's been sorted.
char *names[] = {"Karen", "Mark", "Brett", "Molly"};

This sorts —% qoort (names, 4, sizeof (char*), compare_names);

the names.

~ puts ("These are the names in order:");
Resiérbersian for (i = 0; i < 4; i++) (
arvay of names printf("#s\n", names([i]); <~ This prints the sorted names out
i st an arvay ;

thar pointers,
50 the size of
eath item is
sizeof(har k).

return 0;

OEBPS/Image00497.jpg
int compare_scores(const void* score a, const void* score b)
(

int a = %(int*)score a; This is the one done before
int b = *(int*)score_b;

return a - b;

int compare_scores_desc(const void* score_a, const void* score b)
sor{\niegex (

scores, with ink
e \arges\ g
Sirst.

KlintF)seore_a;

INC 1 you subbract the mubers bhe obher way
around, you'll veverse the order of the final sort.

typedef struct { &~ Thisis the

cortire int width; vettangle Lype.
ecAang)es int height;

@ared o0 |) rectangle;

O aesk St

int compare_areas(const void* a, const void* b)

(
First, convert L anale ¥
e e

the corveck dype.
Then,elelate (0 20222
the aveas. Dint avea b = (rh->width ¥ rb->heigh

Then, wse the —5 veturn area_a — area_b;
subtraction trick. X

ra—>width ¥ ra->heigh

OEBPS/Image00739.jpg
> gcc ikkp_server.c -o ikkp server
SISl > - /ikkp _server
Waiting for connection

OEBPS/Image00498.jpg
int compare_names(const void* a, const void* b)

el A sbring is 8 poinker £o 3 thar, s Ehe pointers
in 5 pointer o 2 char,
of names in ! e S A st ey
k Pointers bo pon
alphabotics char g2 = (harkig s yoiee e
order. Case~
sensitive,

) INC e v 4o ws the * cperator
to find the actual strings
Here's a hint:

stremp(“Abe”, “Def”) < O

OEBPS/Image00740.jpg
je Edit_Window Help TmTheClient

> telnet 127.0.0.1 30000

Trying 127.0.0.1
Connected to localhost.
Escape character is 'A]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?

Oscar

> Oscar who?

Oscar silly question, you get a silly answer
Connection closed by foreign host.

OEBPS/Image00733.jpg
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

— The ready-bake functions Srom the previous page 90 heve

OEBPS/Image00492.jpg
return a - b; &= [k a> b, this is positive. [f 3 < b, this is
negative. £ a and b ave equal, this is zevo

OEBPS/Image00734.jpg
This will
store the

main listener —2>int listener d;

socket for
the server.

void handle_shutdown(int sig)
{

£ (L dl ’R 1§ someone hits Ctrl-C when the sevver
45 (istenes) is voming, this function villClose the

close(listener_d); sotket before the program ends.

fprintf(stderr, "Bye!\n");

exit (0);

OEBPS/Image00732.jpg
o You've used this ervor function
a LOT in this book

pay the ervor- Don't cll tis Sunchion if you
want, the proayam & keep vunring

void error(char *msg)

{ 4

fprintf (stderr, "%s: %s\n", msg, strerror(errno));

X1t (1) ;<. then stop the program

}

int open_listener_socket ()

{

int s = socket (PF_INET, SOCK_STREAM, 0);
if (s -1)
error ("Can't open socket");

Create an Inkernet sbreaming socket.

Yes, veuse the sotket (o you can return 27

vestart the server without problems).

void bind_to_port (int socket, int port)
{
struct sockaddr_in name;
name.sin_family = PF_INET;
name.sin_port = (in_port_t)htons (port);
name.sin_addr.s_addr = htonl (INADDR_ANY) ;
int reuse = 1;
if (setsockopt (socket, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof (int))
error("Can't set the reuse option on the socket");
int ¢ = bind (socket, (struct sockaddr *) &name, sizeof (name)); —Grdbport.
if (¢ = -1)
error("Can't bind to socket");

int say(int socket, char *s)&— Send a string 4o a client:
! Don't call eveor() if theve’s a problem.

int result = send(socket, s, strlen(s), 0); You von't want. to stop the sevver if
if (result == -1) (f there's st 3 problem with one client.
fprintf(stderr, "3s: %s\n", "Error talking to the client”, strerror(errno));

return result;

OEBPS/Image00506.gif
./send dear_johns

Dear Mike,

Unfortunately your last date contacted us to
say that they will not be seeing you again
Dear Luis,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear Matt,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear William,

Congratulations! Your last date has contacted
us with a proposal of marriage.

>

OEBPS/Image00748.gif
while (1) {
int connect_d = accept (listener d, (struct sockaddr *)sclient_addr,

saddress_size);

-1)
error ("Can't open secondary socket");

if (connect d

if (

close(

if (say(connect_d,
"Internet Knock-Knock Erotocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ")
=-1) {

read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Who's there?", buf, 12))
say (connect_d, "You should say 'Who's there?'!");
else {

if (say(connect_d, "Oscar\r\n> ") -1

read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Oscar who?", buf, 10))
say (connect_d, "You should say 'Oscar who?'!\r\n");
else

say (connect_d, "Oscar silly question, you get a silly answer\r\n");

.. & What should the child do when the conversation is done?

OEBPS/Image00507.jpg
They told me
coder forgot a set of
break statements, and
that meant I ended up
with this guy.

OEBPS/Image00749.gif
while (1) {
int connect_d = accept (listener d, (struct sockaddr *)sclient_addr,

saddress_size);

if (connect d

1)
error ("Can't open secondary socket");

This ereates the child process, and you know that if
KT e fokD) eall veburns O, you st be in he chld

if ()
close(& In the child, you need to tlose < The child will use only the connect_d
if (say(connect d, the main liskener sotket sotket to talk to the client
"Internet Knock-Knock Erotocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ")
1= -1) {

read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Who's there?", buf, 12))
say(connect_d, "You should say 'Who's there?'!");
else (
if (say(comnect d, "Oscar\r\n> ") 1=

1) {
read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Oscar who?", buf, 10))
say (connect_d, "You should say 'Oscar who?'!\r\n");

else
say(comnect_d, "Oscar silly question, you get a silly answer\r\n");

Onte the conversation's over, the ehild
¢an close the sotket to the client.

1

close(

exit{0).. — Onte the child protess has finished talking, it should exit
) That will prevent it from falling into the main server loop

close(tomett d);

OEBPS/Image00504.jpg
int main()
{
response r[] = {
{"Mike", DUMP}, {"Luis", SECOND_CHANCE},
{"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
bi

int i;
for (i = 0; i< 4; i+r) { & Loopiny throush the array
switcn(__ rliltype) { = Testing the type field cach time
case
ump)i
Call the method for oect)

cath matching be case SECOND, CHANCE :

second_chance (
break;

default:
marriage (.

}
¥

return 0;

OEBPS/Image00746.jpg

OEBPS/Image00505.jpg
rlil.name

rlil.name

dump rlil.name i hanee

OEBPS/Image00747.jpg
After forking the Onte the child gets
child, the pavent ;7> close (connect_d) ; trested, th tan

tlose this socket. close(listener d); tlose this sotket.

OEBPS/Image00510.gif
void (*replies[]) (response) = {dump, second chance, marriage};

int main()
{
response r(] = {
{"Mike", DUMP}, {"Luis", SECOND_CHANCE},
{"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
bi
int i;
for (i =0; i< 4; i++) (
Crepheslelilbpe oty
[— You wanted, you eould have added a ¥

return 0; after the opening parenthesis, but it would
, work the same way.

OEBPS/Image00511.jpg
This whole thing is 3 funttion
like “dump” or “marviage.

(e e

This is your arvay of This i e Youve callng the
oo ramer | O By I o and pasig
for MARRIAGE. the respose data v

OEBPS/Image00508.jpg
The variable will be Aind it's not just a function pointer;
Eah funchs called “veplies” it's a whole array of them.
ion in

¥
the array vill be ~) void (*replies[]) (response) = {dump, second_chance, marriage};

3 void Funetion, /\ 7\ T I\ I\ F\(@Ju{ one pavameter,

with type “vesponse.”

Return type Pointer variable :)(: Param types

T a2
Detlaring a function Now you've done naming the variable, and it's £ime +o
pointer (avray) say what pavameters each function will 4ake.

OEBPS/Image00750.jpg
L3 — W TS
> gcc ikkp_server.c -o ikkp_server
Cevver tonsole —7 B3 ./ikkp_server

Waiting for connection

OEBPS/Image00509.jpg
& [¥'s equal to the name
oF ot second, ehinc
funttion

This is your “replies”—¥ replies[SECOND_CHANCE] == second_chance
avray of funttions.

SECOND CHANCE has the value |

OEBPS/Image00751.jpg
L T —
> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
ST PRR | Escape character is '°]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?
Oscar
>

OEBPS/Image00502.jpg
These are the three types of messages
that vill be sent 4o people

enum response_type (DUMP, SECOND_CHANCE, MARRIAGE};
typedef struct {
char *name;

enum response_type type; < Youll record o vesponse type vith
} response; each piece of vesponse data.

OEBPS/Image00744.jpg
File Edit_VWndow Help _I'mAnotherCient

> telnet knockknockster.com 30000 oh I carlt gt
Trying knockknockster.com. , great! I can't ge

Connected to localhost through to the server and T
Escape character is '~ can't even Ctrl-C my way out
of telnet. What gives?

OEBPS/Image00503.jpg
liltype

DUME rlil.name

il
m s SECOND_CHANCE
il rlil.name

dump. rlil.name
second_chance

OEBPS/Image00745.jpg
Hey, great to see you! T'll
just hand you over to someone
who can deal with you.

Child —> 60

protess

Fﬁ:n‘c protess Client

OEBPS/Image00742.jpg
> gce ikkp_server.c -o ikkp_server
> /ikkp_server

Waiting for connection

ACBye!

>

Cerver tonsole —F

OEBPS/Image00743.jpg
Fie Edt_Viindow Help TmTheClent

Th > telnet knockknockster.com 30000
€ server is vunning Trying knockknockster.com. ..
Connected to localhost.

on 3 mathine out on

the Internet

Escape character is '~]'.

Internet Knock-Knock Protocol Server

Version 1.0

Knock! Knock! " |

ookl Bnock) Oh, wait] Oscarl Oh, T know

Zeons this one... Oh, it's so funny... It's..

= Oscar..Oscar who? Hey,that's like.
no, wait..dor't tell me...

OEBPS/Image00156.gif
is Version isn't using the
&l length of the arvay.
The ¢oder has subtracted

int main() . . one from the length, like
. int main () You would with seanf0).

{
char search_for([80]; char search for(80];
printf ("Search for: "); printf ("Search for: ");
fgets (search_for, 80, stdin); fgets (search_for, 79, stdin);

search_for[strlen(search_for) - 1] = search_for[strlen(search_for)
\0'; - 1= o N
find_track()i S find_track(is being find_track (search_for);
return 0; called without passing return 0;
, Ehe searth term. '
}
This version is using
fot main() Thisis the corvect seankl) and would ;l;\w
X A to enter
(main() funetion. int main() Jz::rf:{:ﬂ 1:2;) the avvay.

char search_for([80]; {

printf ("Search for: "); char search_for[80];

fgets (search_for, 80, stdin); printf ("Search for: "

search_for [strlen(search_for)
- 1] = "\o';
find_track (search_for) ;

scanf ("%80s", search_for);
find_track (search_for) ;

return 0;
return 0;

OEBPS/Image00155.jpg

OEBPS/Image00158.jpg
B Sos Toxt Scarch C O ToXt ceatch o jtontcearonw
Search for: town

Track 1: 'Newark, Newark - a wonderful town'
>

OEBPS/Image00157.gif
You still need stdioh for the
peintf0 and seanfQ) funetions.

#include <stdio.h>
#include <string.h>

[‘{ou vill also need the stringh
header, so you ¢an searth
viith the steste() funetion.

You'll set the dracks array_—> char tracks([][80] = {

outside of the main() and
Fivd_track) fonttions; that
vy, the {racks wil] be uesble
everyuhere in the program.

This is your new find_track()
function. You'll need to detlave it
heve before you eall it £eom main().

"I left my heart in Harvard Med School",
"Newark, Newark - a wonderful town",
"Dancing with a Dork",
"From here to maternity",
"The girl from Iwo Jima",

bi

void find_track{char searsh for[]}

{ i+ means “intrease

int i; K the value of i by l”

for (i = 0; i < 5; i++) {

This eode will disyla\/ all ——> if (strstr(tracks[i], search_for))

the matehing tracks

printf("Track %i: '%s'\n", i, tracks[i]);

}
}

And this is Your mainQ) function,
" y Nint main ()

which is the starting point of
the program.

{ You've asking for the

char search for[801; ;= L\ "text heve
printf ("Search for: ");

scanf ("$79s", search for);
search_for[strlen(search for) - 1] = '\0';
find_track(search_for); Now you call your new
return 0; =——find_trackO function and
} display the matehing tracks

OEBPS/Image00160.jpg
void print reverse(char *s)

size_t s just an inte { This works out the length of 3
e tis er wsed [il
for storing the sizes ZF things—> size_t len = strlen(s); string o stelen(*ABC") == 3.
char *t = + 1;
while (. {
printf("%c", *t)
t= ;

puts("");

OEBPS/Image00159.jpg
Hey, hey, hey! That tode’s 3

votkin’ suetess. The cats in the

bar are grooin’ on down t03

whale heap of Sinatra goodress!
N

v

% £

OEBPS/Image00161.jpg
8]

S
&
8

g @ Hg

OEBPS/Image00152.jpg
Hey, look: you've ereating a separate funttion
. Presumably, when you aek around to writing
d" just means his function Kl Ehe main) Funckion, i will cal this
won't veturn a value. -\

void find_track(char search_for[])
(

Thi is bhe “or loop” int 17

This is wheve you're chetking to see if the
W Took 3t i i more —=£OF (1= 05 1 < 55 i44)

ceanth term is contained in the track rame
dekail n a while, but for e

IF the drack vame matches o
bl ST , " o sareh ol dilay i heve
et st il vun s ieee ER a R M
Fuchetre iy, g Vhe cther il

be printing ouf, necd to be

be a string,
o valuer hone. an integer.

OEBPS/Image00154.gif
void find track(char search forl])
{
int i;

for

. tracksli]

)i

OEBPS/Image00153.jpg
“Sinatra”

tracks(i]

search_for way tracksi]

OEBPS/Image00167.jpg
int main()
{

ch

*juices(] = {

“dragonfrui

"waterberry", “sharonfruit", "uglifruit",

“rumberry", “kiwifrui

"mulberry”,

auberry",

"blueberry", "blackberry

arfruit"

Down

puts (juices(6]);) puts (juices(2]):
a ; juices[1]) = juices(3):
juices[2] = juices[B];

10007

puts (juices
print_reverse (juices[1]);

return 0;

juices[8] = a;

puts (juices(8])7
print_reverse (juices((18 + 7) / 5117

OEBPS/Image00166.jpg
=]~ =] [+]

MMEEEEEM)
EEEEEMMEM
n E 9
EMEHHMH 7]
E HEH P Ll L]
T

=[] [= [«]~ =]~]

OEBPS/Image00169.jpg
It's all about picking
‘the right tool for the
right job.

OEBPS/Image00168.jpg
An arva

oF strings
an arvay of
Miy:v

T — 33 of areaps

strstr(s, b) steehe() finds
vill veturn the the lotation
Ay of a chavatter
string b in string inside 3 string:
a

reat0
o sk

OEBPS/Image00171.jpg
¥include <stdig.h>

main()

float latitude;

float longitude;

The seanf0)
char info[B0]; Lchion vobartd
int started = ; What will these vales b o

We've using seanf0) to enter be? Remember: seanf() values it was able
ST [e Aham one piece of 438 ahuays uses poinkers. ;,ma

while [scanf("$f,f,%79("\n]",

. ; 3
if (started) N This s st 3 way of xayi3 “Give me every
printf(",\n"); character up to the end of the line.”
else .
staztdio £ Be carchl how you sek “started

printf("(latitude
)

puts("\n]"); What values need to be displayed?

return 0;

£, longitude: 3f, info: '¥s'}",

OEBPS/Image00170.jpg
Someone’s written me a
map web application, and T'd
love to publish my route data
with it. Trouble is, the format
of the data coming from my
6PS is wrong.

This is the data from the eyclist's
GPS. Ws 3 comma-separated format

This is 2 latitude. This is 3 longitude
14 ¥

42.363400,-71.098465, Speed = 21
42.363327,-71.097588, Speed = 23
42.363255,-71.096710, Speed

This is the data format the
map needs. [£s in JavaSeript
Object: Notation, or JSON.

data=[
{latitude: 42.363400, longitude: -71.098465, inf

TMMJ'SB{ (latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
f::‘i’::ay“‘ {latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
a little

different.

OEBPS/Image00163.jpg
char *names_for_dog[] = {"Bowser", "Bonza", "Snodgrass"};
N
This is an aveay that There ill be ene pointer pointing
soves pointers. at eath string literal

OEBPS/Image00162.jpg
void print_reverse(char *s)
(
size_t len = strlen(s);

- B [ED
while (B >

printf("sc",

)
puts (") ;

Calelating addreses like this i
called “pointer avithmetic”

OEBPS/Image00165.gif
int main()

{

char *juices(] = {

“dragonfruit", "waterberry", “sharonfruit", "uglifruit",

Kiwifruit®, " strawberry”,

"blueberry", “blackberr arfroit"
}
char *a; Down
puts (Juices(6]); puts (Juices[2])
a = juices(2]; juices(1] = juices(3];
juices(2] = juices(8]; puts (juices[10]);

a 3 print_reverse (juices(1]);

puts (Juices(8]); return 0;
print_reverse (juices[(18 + 7) / 51);

OEBPS/Image00164.gif

OEBPS/Image00141.jpg
seanflCR, £ \

wll llow 3
wser o enter fx veburns
ammbecx ins the addvess
divettly -~ of *.
bris called

a pointer

to %
A char pointer
vaviable % is Lotal
declaved as vaviables ave
char ¥ skoved on
| e stk

Arvay
Variables ¢,
wed 35
Pointers.

Faets(bud, size,
stdin) is @
simpler way to
enter text.

OEBPS/Image00134.jpg
Highest addvess

N e R A
BT N L e &

\of —

- = ~ _GLOBALS

Jlle K\O%//‘}‘/'/WS
: L-¢oDE

‘har carés []="JQ£("; I

s I I —
cards[2] = cards[l@)
I

(/I‘ |

Lowest addvess

OEBPS/Image00133.jpg
void stack _deck(char cards[])}
: T

. tards is a thar pointer
}

void stack_deck(char *cards)
{

1

These 4wo funttions ave equivalent.

OEBPS/Image00136.gif
Masked raider is Alive, Jimmy is Alive

OEBPS/Image00135.jpg
#include <stdio.h>

> geo - /monte
int main())

char cards[] = "Ji
char a_card = cards[2];
cards (2] = cards(1

cards([1] = cards
cards

Yes! The Queen
was the first
card. T knewit...

cards (0]

cards
rd;

puts (card
return

07

OEBPS/Image00138.gif
masked_raider—_

Simmy —

OEBPS/Image00137.jpg
Masked raider is DEAD!, Jimmy is DEAD

OEBPS/Image00140.jpg

OEBPS/Image00139.jpg

OEBPS/Image00132.jpg
int my_ function(}
(

tards is > char cards[] = "JOK";

an arvay.

} There's no arvay size given, so ou have

Lo sek it ko somekhing immediatel

OEBPS/Image00145.jpg
This first set of brackets is

for th The second set of bratkets is
e 3rvay of all strings wsed for each indvidual sbring. &\, know that brack
char names will never get. longer
et i Coackaly 501 = 1 Hhan 19 charackers, so sek
,{WJ:‘;O“M'{ need "I left my heart in Harvard Med School™, the value to @0.
2 number between these "Newark, Newark - a wonderful town",
brackets.

"Dancing with a Dork",
Each string s an =7 "FXom here to maternity"
areay, so bhis s an
areay of avrays

"The girl from Iwo Jima",
}:

OEBPS/Image00144.jpg

OEBPS/Image00147.jpg
Comare two strings =\
tneachatberstmg

W,

igke a copy of a string

oo O\ sochora sring
X N ISblee astring info
ittle pieces

i

There are plenty of other
for you to play with

OEBPS/Image00146.gif
Eath song Litle will be allocated

60 chavacters
————— Chavacters vithin a string

1 MO ORI EEE] EER

iNewark,] [e] [w][a][] [x - a] [][w][o] [a][a] -

Teacks [D][2] (=] [e] (1] [=][e] (d[w] [E] [[2] (][] (] [2] [e] [x] [x] fo] fo] fo] fo

‘:mmpﬂ\;i‘rom n][e][x][e] [o][[m][a][t][c][x][=] [[t][z] [l

] (=] e e (] = (] 2 2 e o]) [] [7] [1][m][=] o]
tra/.ka’]LHT

That means that you'll be able 1o find an individual track name
like this:
$ifth string. &—Remember: arvays beain st
This has this value. This is the 'fs begin at zevo.
s N €
tracks[d] ~——> "The girl from Ivo Jima"
But you can also read the individual characters of each of the

i you want to:

kel [6] —— xt Thas bhe seveth havicher in bhe Siith
string,

OEBPS/Image00149.jpg
strehi) -Concatenate two strings.

Find the location of a string inside

w0 another string

strstr() i \1::\”1.:» location of a character inside
strepy - Find the length of a string

strlen() CGompare two strings

streat(). Copy one string to another.

OEBPS/Image00148.jpg
finclude <stdio.h> |k Yeull use both stdioh and
#include <string.h> shringh in your ukebox progeam

OEBPS/Image00151.gif
strstr("dysfunctional™

(

‘estr() will £ind the
string “fun’” starting
here at location
4,000,005

OEBPS/Image00150.jpg

OEBPS/Image00143.jpg
Teatks from the new album ‘Little Known Sinatra”

%: TrACK list:

S e oy heart in Harvard med. school
3= Mewsrk, Newarts - awondecSul town
& ™® dacinguwith adork

From here 1o maternity

S

= The girl Srom wo Jima

>

o» 1

S

S The oy say that theve will be lots more

S teatks in the Future, but they'll never be
P more than 19 charackers ong

OEBPS/Image00142.jpg
stremp() says T thought it
we're identical. called you short
and said your butt
was bigger.

OEBPS/Image00120.gif
This is the —\ char food[5];
samefvoﬁvam

as before. printf ("Enter favorite food: ");

fgets (food, s:.zeof(food) , stdin) ;

Fiest, it takes a /\ Next, N stdin just means the
pointer 4o 8 buffer “iheltet?::(S mitety. 9t e comng Yol fod

Lrom the keyboard: <— move about
stdin later.

OEBPS/Image00119.jpg
Thisis the The food arvay ends
food arvay. after Five characters.

11 v felle][-1t][al]ln

Everything beyond P i

Jebker v is outside om Lhis tode is
in illegal space.

the avvay.

OEBPS/Image00361.jpg
void happy_birthday(turtle t)
{

This is the turtle that ve are
Passing o the function

happy_birthday (myrtle);

Y The myrtle struct il be

copied to this parameter.

OEBPS/Image00121.jpg
W foodussasmple oivemmarer savorsse sooas
Fointer, you'd gve an ;

explicit length, vather — £gets (food, 5, stdin);
st

OEBPS/Image00112.jpg
(N SIS Remember, these ted
vinted
5 > ./print_nums addresses are P
(rums + 1) s & bytes nums is at Ox7££f66ccedac £ in hex format.
avay From nums. nums + 1 is at Ox7£££66ccedb0

OEBPS/Image00354.gif
Name :Snappy
Species:Piranha

4 years old, 69 teeth

Feed with 0.20 1bs of meat and allow to swim in the jacuzzi for 7.50 hours

void label (struct fish a)
(
printf ("Name:$s\nSpecies:¢s\n¢i years old, %i teeth\n",
a.name, a.species, a.teeth, a.age);
printf("Feed with $2.2f lbs of %s and allow to s for %$2.2f hours\n",
i3h)
atave.exertise.destription L atareexercise duration)i

OEBPS/Image00353.gif
struct fish snappy

OEBPS/Image00114.jpg
int age;

%i means the user will printf ("Enter your age: ");
enter an int value. scanf ("$i", Sage) ; £&— Use the ¢ operator to get the address of the int

OEBPS/Image00356.jpg
typedet

means You
ave qaing > E¥Pedef struct cell phone (

to give int cell no;

the stuet const char *wallpaper;

type a new

Ry float minutes_of_charge;

} phone; €— phone will beome an alias for
“struck cell_phone”

phone p = {5557879, "sinatra.png", 1.35);

Now, when the comler sees “phone;” it il
Lreat it like “struct cell_phone.”

OEBPS/Image00113.jpg
You're going 4o store 3 ~5> char name[40];

name in thi
's drray. printf ("Enter your name: ");

acant ("4398", name) ; £ stank will vead p to 39 havacters
blus the string berminator \O.

OEBPS/Image00355.jpg
Hmmm.all these struct commands seem kind
of wordy. T have to use the struct keyword when I define
astruct, and then I have to use it again when I define a

variable. T wonder if there’s some way of simplifying this.

OEBPS/Image00116.gif
char first name[20];
This veads a char last_name[20];
fiest. name, then

a spate, then the

printf ("Enter first and last name
~ scanf("$19s $19s", first name, last_name);
setond name ! !

printf ("First: s Last:is\n", first name, last name);

- Ed vas The first and last names are
Enter f£irst and last name: Sanders Kleinfeld stored in separate arvays.

First: Sanders Last: Kleinfeld
>

OEBPS/Image00358.jpg
This ey
veates 3 sttt S £50n snappy = ("Snappy", "piranha®, 69, 4};

This sets the value printf("Hello $s\n", snappy.name) ;< This veads the value of the name field
the teeth field snappy. teeth = 687 <— Ouh! Looks like Snappy bit something havd.

OEBPS/Image00115.jpg
& Enter an integer.

4 Enter up 4o 29 eharackers (+ \0),

Eb Enber a loating-point number

OEBPS/Image00357.jpg
finclude <stdio.h>

Aypedef.

float tank_capacity;

..struct {

int tank psi;
const char *suit_material;

b _equipment;

typedef.

const char *name;

..struct scuba {

equipment kit; The ¢oder detided 4o give the struct the name

Ve é_// stuba® heve. But you'l jusk use he diver type rame

void badge (_diver. d)
{
printf("Name: s Tank: $2.2f(%i) Suit: ¥s\n",

d.name, d.kit.tank capacity, d.kit.tank psi, d.kit.suit _material);

int main ()
(

diver. randy = {"Randy", (5.5, 3500, "Neoprene"}};

badge (randy) ;

return 0;

OEBPS/Image00118.gif
> ./food

Enter favorite food: liver-tangerine-raccoon-toffee
Favorite food: liver-tangerine-raccoon-toffee
Segmentation fault: 11

>

OEBPS/Image00360.jpg
L3
> gec turtle.c -o turtle && ./turtle

Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 99

>

WTFeeee

Wicked
Turtle
Feet

OEBPS/Image00117.jpg
SECURTTY ALERT!
SECURTTY ALERT!
SECURTTY ALERTI!

OEBPS/Image00359.jpg

OEBPS/Image00352.jpg
This is the struct data
for the care field.

Y
struct fish snappy = {"Snappy", "Piranha", 69, 4, ("Meat", 7.5});

R
This is the va{; This s the value For
eavelocd. cave.crertise_hours

OEBPS/Image00131.jpg
This string is in read-—only memory,

J

Q

K

0

m——

J

Q

K

0

so make a eopy of the string in 3
wetkion of memory that tan be amended.

OEBPS/Image00130.jpg
cards is not just
dhinr cavdall = QR 1 s & pinters e
is now an areay.

OEBPS/Image00123.jpg
#include <stdio.h>

int main()

(
char *cards = "JQK";
char a_card = cards(2];
cards(2] = cards(1];
cards(1] = cards(0);

cards[0] = cards(2];

cards[2] = cards[l

cards(1] = a_card;

puts (cards) ; Find the Queen
return 0;

OEBPS/Image00365.jpg
Iam the age
of the turtle
pointed to by t.

€ 4is 2 pointer to 2
Lurkle struct, then this
is w age of the turtle

(t).age £

I am the contents of
the memory location
given by t.age.

[

*t.age
78

16 5 2 pointer 4o a
durtle struct, then this

expression is wrong,

OEBPS/Image00122.jpg
Neoooooolllll

Seriou:
eviossly, char dangerous[10];

mf ¢ —X\ gets (dangerous) ;

OEBPS/Image00364.jpg
voild happy birthday(turtle *t)

You need bo put a ¥ before the varidble rame,
{

betuse you vant the value it points b2

LK) age = (¥4)
printf ("Happy Birthday %s! You are now %i years old!\n",
LKD) name, | (K) .age);

The parentheses ave veally important.
] LSS i e ol

.age + 1;

OEBPS/Image00125.jpg
> gcc monte.c -o monte && ./monte
bus error

OEBPS/Image00367.jpg
T can see how the new code works. But the
stuff about parentheses and * notation doesn't
make the code all that readable. T wonder if
there's something that would help with that.

OEBPS/Image00124.jpg

OEBPS/Image00366.gif
File Edit L
> gec happy birthday_turtle works.c -o happy birthday_turtle works
Happy Birthday Myrtle! You are now 100 years old!

Myrtle's age is now 100

>

OEBPS/Image00127.jpg
JOK"; £—— This vaviable tan't modify this string.

Sha Yeards

OEBPS/Image00369.jpg
#include <stdio.h>

pedef struct {
const char *description;
float value;

swag;

T T

typedef struct {

swag *swag;

const char *sequence;
} combination;

typedef struct {
combination numbers;
const char *make;

safe;

OEBPS/Image00126.jpg
Darn . T knew that
card shark couldr't be

OEBPS/Image00368.jpg

OEBPS/Image00129.jpg
T car't update
that, buddy. It's in
the constant memory

block, 5o it's read-only.

OEBPS/Image00371.jpg
#include <stdio.h>

typedef struct {
const char *description;
float value;

} swag;

typedef struct {

swag *swag;
const char *sequence;
} combination;

typedef struct {
combination numbers;
const char *make;

} safe;

OEBPS/Image00128.jpg
Highest address

j WMWMWMMMWM

[T T—fj“r‘l‘ 5= 2 (

S’l‘A(l(

CONST A' 1S

/////

]
T T
| char *card5=nJQK" H

I-coDE:

Read-onl

i I [—
cards[2] = cards[1];

e

Lowest address

OEBPS/Image00370.jpg
o description
I => I value

OEBPS/Image00363.jpg
N ing to
id happy birthday(turtle *t) .. can “Someone is going 1
;m i 1 e me a panker o 3 sbruet

Remember: an addvess i a painter

This means You will pass the address of
the myrtle varible to the funttion

happy birthday (smyrtle) ;

OEBPS/Image00362.jpg

OEBPS/Image00098.jpg
e i aebually 3 pointer viridble
void fortune cookie (char msg(])
{

printf ("Message reads: $s\n", msg);

msg points Lo the message.

printf("msg occupies %i bytes\n", sizeof (msg));

) r
sneoblmsg) is st the
it o s vl

OEBPS/Image00340.jpg
Name: Snappy
Species: Piranha
Teeth: 69

Age: 4 years

OEBPS/Image00097.jpg
You tan use “quote” as
a poinker variable, even
Ehough i's an arvay.

printf("The quote string is stored at: $p\n", quote);

s e T e T
I£ you write a test program — ENUTTISTNET ALY
to display the addvess, you The quote string is stored at: Ox7f£f£69d4bdd7

will see something like his >

OEBPS/Image00339.jpg
I dor't really see the
problem. It's only four
pieces of data,

OEBPS/Image00100.jpg
printf("Mes:

printf("msg

T can print the message because T know
it starts at location msg. sizeof(msg).

That's a pointer variable, so the answer is
8 bytes because that's how much memory
it takes for me fo store a pointer.

OEBPS/Image00099.jpg
1

Hmmm..looks like they infend o pass
an array to this function. That means
the function will receive the value of the
array variable, which will be an address,
so msg will be a pointer 1o a char.

OEBPS/Image00341.jpg
This is the spegies, This is the number of teeth.

struet Fish” is
the data £ype ? Struct fish snappy = ("Snappy", "Piramha", 69, a5 T Snappy's age

“snappy” is the variable name This is the nate.

OEBPS/Image00101.jpg
=

So quote’s an array and T've got to pass
the quote variable to fortune_cookie()

Tl set the msq argument fo the address
where the quote array starts in memory.

OEBPS/Image00332.gif
void setup()
(

/*This is called when the program starts. It
basically sets up the board. Put any initialization
code here.*/

}
void loop ()
{

/*This is where your main code goes. This function
loops over and over, and allows you to respond to
input from your sensors. It only stops running when
the board is switched off*/

}

You tan add
extra funttions
and declavations
if you like, but
without these
+two functions
the code won't
wark

OEBPS/Image00092.gif
vold fortune cookie (char msgll)

(The function vill be passed a thar avvay.

printf("Message reads: $s\n", msg);

char quote[] = "Cookies make you fat";
fortune cookie (quote) ;

OEBPS/Image00334.jpg
struct tea quil
("tealeaves”, "milk",

OEBPS/Image00333.jpg
This end gets plugged
into the computer.

y

Our fully assembled Avduino

OEBPS/Image00094.jpg
On most. machines, this — gizeof (int) This will veturn 9, which is 8
will veturn the value 4.~ g3 za0f ("Turtlestm) E— thavacters plus the \O end ehavacter.

OEBPS/Image00336.jpg
“eonst thar K" just means You've

i skring literals.
/* Print out the catalog entry */ ‘/5""6*"?‘“)

/vcld catalog(const char *name, const char *species, int teeth, int age)
{
Both . Wag g . & "

printf("$s is a %s with %i teeth. He is %i\n",

of these

Binetions name, species, teeth, age);
take the i

same set of

parametevs. /* Print the label for the tank */
void label (const char *name, const char *species, int teeth, int age)
{
printf ("Name:$s\nSpecies:is\n¥i years old, %i teeth\n",
name, species, teeth, age):

OEBPS/Image00093.jpg

OEBPS/Image00335.jpg
Qaa F; ﬁd},

7, a0

OEBPS/Image00096.gif
The quote variable will
vepresent the address
of the first charatter
in-the string,

e

char quote[]

= "Cookies make you fat";

k

[N

e

3

\0

OEBPS/Image00338.jpg
{

N
o0

OEBPS/Image00095.gif
void fortune cookie(char msg([])

{
printf ("Message reads: $s\n", msg);
printf("msg occupies %i bytes\n", sizeof(msg));

T T T T
6222 fnd on = > ./fortune_cookie

nd on QRN Vessage reads: Cookies make you fat
mathines, this msg occupies 8 bytes
might even say 4/ B3
What gives?

OEBPS/Image00337.jpg
int main()

You e " noon "
Passing the > C3talog("Snappy”, "Piranha", 69, 4);

same Jouwr “label ("Snappy", "Piranha", 69, 4);

ieces of return 0; X
Zataxtw‘.«. 3 There's only one fish, but you've
passing four pictes of data

OEBPS/Image00109.jpg
vold skip(char *msg) heve to
What expression do You need heve
‘ 12 prink from the seventh chavatter?
puts(i

! The funttion needs o print. this
message from the ¢’ chavacker on

char *msg_from_amy = "Don't call me";

skip(msg from_amy)

OEBPS/Image00351.jpg
things our Fish likes.
struct preferences (& 1hee ¢ Y

const char *food;
float exercise_hours;
Y

struct fish {
const char *name;
const char *species;
int teeth;
int age; /7
This is @ new £ild Y ¢ -uot preferences care; €—This is talled nestind
Vi

This is a struet inside a struet.

LS
Our new field is called “care,” but it will contain
fields defined by the “preferences” struct.

OEBPS/Image00108.jpg
This is at
loeation “drinks.”

This is 3t
“deinks + 2

4

2

3

Ths is at “dvinks + 1"

OEBPS/Image00350.gif
struct fish snappy = {"Snappy", "Piranha", 63, 4};
struct fish gnasher = snappy;

KAM this is gnasher.

This i snapP

*species | 69 | 4

*name

*name |‘spec1es | 69 | 4

grasher and snappy both = ” N . .
point £o the same strings. ‘Snappy’ ‘Piranha’

OEBPS/Image00111.jpg
)

Pointer variables have diffevent
ypes for cach type of data.

OEBPS/Image00110.jpg
void skip(char *msg) |f you add b to the msg pointer,
s you vill print from eharacter 1

puts(magtb

char *msg_from_amy = "Don't call me";

skip (msg_from_amy) ;

Dl

The code vill display this.

ot el L m|le |\

msg points here

msg + b points o the lebber ¢

OEBPS/Image00343.jpg
truct Y 1lranha™,

peint Y01) 5 S~ [F snappy was 3 pointer to an arvay, you
would acess the First field like this

Vescashoai
ervo i€ you
MBS :ohc: In function 'main':

\Stmf RGN £ich c:12: error: subscripted value is neither array nor pointer
ke i's an >

OEBPS/Image00342.jpg
Hey, I'm
gooooood!

OEBPS/Image00103.jpg
Contestant |
\ Tim goig 1o pick
Contestant 2. contestant number

[

#include <stdio.h>

“choice” is now the addvess of the

T gl “contestants” areay.
int contestants(] = {1, 2, 3}; contestants(2]
int *choice = contestants; == ¥thoice
contestants(0] = 2; == tontestantsL0]
contestants[1] = contestant
contestants(2] = *choi
)

printf("I'm going to pick contestant number $i\n", contestants

return 0;

OEBPS/Image00345.jpg
species

OEBPS/Image00102.jpg
Sond it |
Lo ota Look at the

code below,
and write your

answer heve.

Contestant 3 T'm going 1o pick
contestant number

o~

Contestant 2.
N

OEBPS/Image00344.jpg
snappy . name

Be) 5 ~This i the mame stixibte in sappy

> gee fish.c -o fish This will veturn the
> ./fish
'Name = Snappy
>

string “Snappy.”

OEBPS/Image00105.jpg
==

OEBPS/Image00347.jpg

OEBPS/Image00104.jpg
This is the s —>.

et s

5.

This veturns 1%

H

o ||w

w ND siq{zeof(s)

*

& Thisis the + pointer

sizeof is & or 8.

This veturns 4 or 8. > S12601(t)

OEBPS/Image00346.gif
volid catalog(struct fish 1)
{
printf("%s is a %s with %i teeth. He is %i\n",

int main()
{
struct fish snappy = {"Snappy", "Piranha", 69, 4};
catalog (snappy) ;
/* We're skipping calling label for now */
return 0;

OEBPS/Image00107.jpg
These lines
of tode ave printf(
exsivlent,

%1 drinks\n", drinks[0])

printf i drinks\n", *drinks)

drinks[0] == Kdrinks

OEBPS/Image00349.jpg
struct fish snappy = {"Snappy”, "Piranha”, 63, 4};

This is also 3 pointer 4o 3 string
This i3 poker ~g A
1o a string,

o o [0 1]
= KRS of teeth and age

Shorage for the number

“Snappy” L

OEBPS/Image00106.jpg
This will give a compile evvor. —>

OEBPS/Image00348.jpg
ey, look, someone’s

Bl > nake pool puzzle && ./pool_puzzle

gee pool_puzzle.c -o pool puzzle
TR AR Snapoy i5 a Piranha with 89 teeth. He is 4
by the catalog®) funttion. z Name : Snappy

using make

Species:Piranha
These lines are printed 7 | [RSRSUCT R,
>

by the label) funckion

OEBPS/Image00000.jpg

OEBPS/Image00001.jpg
David Grikkiths

OEBPS/Image00600.jpg
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

char* now ()
{
time_t t;
time (&t);
return asctime(localtime (&t));

/* Master Control Program utility.
Records guard patrol check-ins. */
int main()

{ [t needs to stove There is voom The data will tome
char comment([80]; the text in the for only 80 Srom the Standavd

comment arvay. tharaf v Inpuk: the keyboard
spintf il print—S. £— The formatked string ill be

¥
the chavacters to i ~:stored in the emd avvay.

- R S
=7 the comment 4o a kile.

This is the tommand
vt =)
contents of return 0; The comment. vill The Limestamp appears second

This vuns the —3 system (cmd) 7
the emd sring. ik

char cmd[120];

Using faets for
wnsbruehured A
fest.

)i

OEBPS/Image00601.jpg
This will compile
the progeam o T WS
> gce guard log.c -o ard_lo
This vurs the > 1G ?/gug,d 159 - e

This is @ tomment.

program. Checked in Crom - a compound interest program./&
> ./guard_log
Rurning it a Blue Leader reports breach in jet walls.

seeond time S Another comment

OEBPS/Image00594.jpg
BBBBBB

OEBPS/Image00836.jpg

OEBPS/Image00595.jpg
ny

OEBPS/Image00592.jpg
The image you vead

The name of the image file From the wbtan Uil vy vt
vant 3
cvSaveImage ("somefile.jpg", image, 0); frorcal image,set

I~ this flag 4 0.

OEBPS/Image00834.jpg
Mum and Dad —>

OEBPS/Image00593.jpg
Maybe if T move
reeeaaadlly slooooowly,
it won't spot me.

OEBPS/Image00835.jpg

OEBPS/Image00598.jpg
system("dir D:"); 4— This ill print out the contents of the D: drive.

system ("gadit") i &—Tijs il launch an editor on Linux.

system("say 'End of line'") ;& This will vead to you on the Mac.

OEBPS/Image00599.jpg
#1include <stdio.h>
#include <stdlib.h>
#include <time.h>
ez mont) & T b
{
time_t t;
time (&t);
return asctime(localtime (&t));

/* Master Control Program utility.
Records guard patrol check-ins. */
int main()

{

char comment [80];
char cmd[120];

system(cnd) ;
return 0;

}
"echo '$s $s' >> reports.log" au' otdin omi

OEBPS/Image00596.jpg
Tharks, Ted, Since you taught
me how o make system calls,
T haven't looked back, Ted?
Ted, are you there?

OEBPS/Image00839.jpg

OEBPS/Image00597.jpg
T want to display this on
the commard line, then play
‘this music track, then send this
message fo the network

Certainly. T shall
perform those tasks

immediately.

OEBPS/Image00832.jpg
Eat_Window Help_MakeMyDay
e will usually > make fred

be another cc fred.c -o fred
rame for gz¢ X

This compile eommard v35 This is an implict rle
ereated by make, vithout

us 4elling it how

OEBPS/Image00833.jpg
NPTy 0
hijklimnopgratuvmsy

OEBPS/Image00611.jpg
#include <stdio.h>

#include <stdlib.h>

int main(int arge,

{

char *argv(l)

printf("Diners: %s\n",
printf ("Juice:

argv([1]);
$s\n", getenv("JUICE"));

} return 0; actened) in stdlibh lets you

vead envivonment variables.

LNy

diner info.c

OEBPS/Image00605.gif
\NAVEEd ////,/

echo '** ' && 1s / && echo " ' <t1mestamp>' ' >> reports. log'

7931, vy v~

OEBPS/Image00606.jpg
[ECINENONN > . /guard log
R LR Y ' 55 1s / && echo '
run any Command

she like: Applications System dev private
i T te Erciepese Users etc sbin W This is a
ey Library Volumes home tmp listing of

Network bin mach_kernel usr thevast
Space Paranoids Source cores net var
>

divettory

OEBPS/Image00603.gif
echo ' <comment>' ' <t1mestamp>' v reports.log.

OEBPS/Image00604.jpg
ALERT! ALERT! Main
system security has
been breached!

OEBPS/Image00609.jpg
exetlV = an arva -
VECTOR J:Jm:hﬂ execv ("/home/£1lynn/clu", my_)avrgs);
The avguments need 4o be stored

in the my_args shring arvay

exetVP = an aveay/
VECTOR of arguments—> execvp ("clu®, my_args) ;

+ searth on the PATH.

OEBPS/Image00610.jpg
All exee) funeions
begin with exet.
N

Take a list of arg:mtnﬁ

Searth
for the

Toke a veskor/aveay [roop
of arquments e
Y

Use an avvay
environment

strings.
V

OEBPS/Image00607.jpg
OK, T'm handing over to
you now, sendmail. This is
the data you need. Don't
let me down.

OEBPS/Image00608.jpg
exeel = a LIST of arguments. These are the arguments.
B

execl ("/home/£lynn/clu", /*/home/Elynn/clu”,

"paranoids", "contract", NULL)

The second =

poometsy S SR = at’;'SPTA;f’ arguments These are the arauments You should
should be N on the A end the list
the e execlp("clu, /Mclu", "paranoids", "contract", Nurm) <— “th ML
the first.

These are the arguments
. s A
execle ("/home/£lynn/clu", /" /home/£lynn/clu", “parancids", "contract", NULL, env s

~
exetLE = a LIST of arguments env_vars is an avray of strings
+ ENVIRONMENT var-ablgs

containing emvivonment, variables

OEBPS/Image00837.jpg
A Brain-Friendly Guide

Head First

Learn how make can

change your life
= §
L€)
*> See how variadic
functions helped
Sue be more

flexible

iy ¢
Discover the secrets
of the C coding gurus

Avoid

embarrassing

pointer
mistakes

Build a retro
classic arcade
game

Fool around A
in the C &

Standard
Library | f\,

Dayvid Griffiths &
Dawn Griffiths

O'REILLY®

OEBPS/Image00602.jpg
Checked in Crom - a compound interest program.

<—Th\s is the
Thu Oct 29 11:25:53 2015 veportslog file
These are the £he progeam
timestanps. Blue Leader reports breach in jet walls. = exeated
Thu Oct 29 11:26:06 2015 =

OEBPS/Image00580.gif
You don't need to set the LD_LIBRARY_PATH
)| £ variable because the library is in a standard direttory

Pt/ apps/ b

Did You spot that the library and headers had been installed in standard
divettories? That meant you didn’t have 4o use a ~T flag when you were
compiling the code, and You didn't have to set the LD_LIBRARY_PATH
variable when You were vunning the code.

OEBPS/Image00581.jpg

OEBPS/Image00578.gif
#include <stdio.h>
#include <hfcal.h>

void display calories(float weight, float distance, float coeff)
{
printf("Weight: $3.2f kg\n", weight / 2.2046);
printf("Distance: %3.2f km\n", distance * 1.609344);

printf("Calories burned: %4.2f cal\n", coeff * weight * distance);

OEBPS/Image00820.jpg
for (i = 05 i < 105 i++)<c—This increment ill happen at the end ok eath loop.

OEBPS/Image00579.jpg
You don't need to set a -1
ou e bo comple the — gee g FPIC heal UKt o biealo £ opbion becasc the header Fi
source tode to an cbject file. “ein a skandard divectory

Then o need o convert the 2,366 ~shaved bhtaho o fuse/local/lb/ehfealso
objett file to a shared object.

OEBPS/Image00821.jpg
i< 107 i++, j++]€—fnt\remehtli>\dJ

OEBPS/Image00572.jpg
PATH%
C:\code> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
C:\code>

\1libs

€~ Windows wsing MinGW

OEBPS/Image00814.jpg

OEBPS/Image00573.jpg
Vg

This is the /use/lotal/lib folder

There are lots of other
iles in heve as well

- lusrflocalllib

-
i
-0

common-lisp
python2.7
python4.2
site_ruby
libfluxcap.a

libfluxcap.la

This is wheve the hfca

Wbhfcal 80 & 1 o s mstalled

libmrfusion.so

OEBPS/Image00815.jpg

OEBPS/Image00812.jpg

OEBPS/Image00813.jpg

OEBPS/Image00576.jpg
Vg

This is the /use/lotal/lib folder

There are lots of other
iles in heve as well

- lusrflocalllib

-
i
-0

common-lisp
python2.7
python4.2
site_ruby
libfluxcap.a

libfluxcap.la

This is wheve the hfca

Wbhfcal 80 & 1 o s mstalled

libmrfusion.so

OEBPS/Image00818.jpg

OEBPS/Image00577.jpg
- lusrlocallinclude
—- python2.7
—- pythond.2

_Q fluxcap.h

_@ hfcal.h ¢— This is the hfcal header File

—@ mrfusion.h

|| bwanalyze.h

This is the /use/lotal/intlude folder.

There are lots of other
files in heve too.

OEBPS/Image00819.jpg
roturn (x == 1) 2 2 ¢ 45 Finally, the vlue if the condtion s ke

Fist, the condition Next comes the value i€ the ¢
o5

OEBPS/Image00574.jpg
- lusrlocallinclude
—- python2.7
—- pythond.2

_Q fluxcap.h

_@ hfcal.h ¢— This is the hfcal header File

—@ mrfusion.h

|| bwanalyze.h

This is the /use/lotal/intlude folder.

There are lots of other
files in heve too.

OEBPS/Image00816.jpg
Oh my, look at all
the tasty treats we
have left.

OEBPS/Image00575.gif
¢ This is the code for the UK gym.

#include <stdio.h>

#include <hfcal.h>

void display calories(float weight, float distance, float coeff)

{ This eode displ
ode displays the
printf("Weight: $3.2f kg\n", weight / 2.2046); é?mfomatm in kf; and kgs

printf("Distance: %3.2f km\n", distance * 1.609344);

printf("Calories burned: %4.2f call\n", coeff * weight * distance);

This file is in the /home/ebrown divettory.

OEBPS/Image00817.jpg
Inevease i by I, the,
vebi B e

[ntrease i by |, then
veburn the old value — ;

Detrease i by I, th
e Bl
Deevease i b‘ 1, then
veburn the old value —)
B

OEBPS/Image00591.jpg
CvCapture® webcam = cvCreateCameraCapture (U);
1f (lwebcam) <—This means “Couldn't £ind the webeam.”
/% Exit with an error */
while (1) { <~ Loop forever.
Read an im3%e —, 151 Inage* image = cvQueryFrame (webcam) ;
om the webtam
if (image) {

& I you vead an image, you'l need to protess it heve.
+

OEBPS/Image00589.jpg
i
e found the book —. |
i

Learning OpenCV'
inspivational.

Gompuer Viston ity
58 Openic’ Liomary

OEBPS/Image00831.jpg
¥ you've ereating <File>, 3
then ook For <Flene. | B %o

[the dependency 9CC_§” “Hall -0 $8 €18 is name of the barget
e Chhe & file).—

OEBPS/Image00590.jpg

OEBPS/Image00583.jpg

OEBPS/Image00825.jpg
int count = 0; g— Use this to count the calls
int counter ()
{

return ++count; < Intrement the count each fime

OEBPS/Image00584.jpg
This is an English —\
treadmill

OEBPS/Image00826.jpg
The static keyword means
int counter () i ariable wil keep i vabe
rielagad bebueen cals £ conter)
variable but
on!; b:aa:ex:du"\Q static int count = 0;

mside this function return ++count;

OEBPS/Image00823.jpg
% is a parameter to the matvo.

L
#define ADD_ONE(x) ((x) + 1)< Be careful to use paventheses with matvos

printf("The answer is %i\n", ADD ONE(3)); <€—This is will output “The answer is 4

OEBPS/Image00582.jpg
WeiGHT: 117.10 188
Distance: 9.40 MiLes

Cararies BURNED: 750.42 CAL

OEBPS/Image00824.jpg
L1 the SPANISH matvo exists

#ifdef SPANISH
char *greeting = "Hola";

[intlude this code

#else
char *greeting = "Hello"; <— If not, intlude this code
$andif

OEBPS/Image00587.jpg
standard
vethories S
. Juselnthude

The ar

tommand

treates a

library avchive

of object files.
9ee —shared
converts
object Files
into dynamic
libraries.

Dynamit

Tovavies have

or By
P
extensiors-

~L<names adgs

a divee:
to the list of
spndard lilwayy
ename> links directories.
toa file in
standard
divettories such
as /use/lib.

_T<name> adds
—_—

a diveetory

1o the list of

standard include
diveetories

Library

arthives have

names like

libsomethinga.

T oy
D\Z:am'm ,,,_y,;.vcs\ ‘;ﬂ
libraries ave aticd
l’.»kj: at \inked-
vuntime.

Dymamic
libraries have
different names
on different

operating systems.

OEBPS/Image00829.jpg

OEBPS/Image00588.jpg
‘e Intruder

) Aha, an intruder
Webeam making off with the

L coffee supplies! T must
o\ recond his

® .

(2] j
I Operg ‘

ﬁ/@\@ T

ik writes what it sees to
When the computer i image file
spots movement an imasy
through its webeam.

OEBPS/Image00830.jpg
e B . b i ’
e Pradon “Meswer <5 Prad ¢ This means “treat wavnings 3s ecvors:

OEBPS/Image00585.jpg
This is exaetly —A
the same
treadmill program.

This version is linked
the UK version of the
hcal brary. =\

OEBPS/Image00827.jpg
You ¢an use this variable only
static int days = 365; € [y b curvent souce fie

Yoi En Gl i< st ot Gidats ASSSURETIRE %
uncion only _:

from inside this
Soiite T i

OEBPS/Image00586.jpg
The weight
is displayed
s |
The distance

is displayed]

‘WeiGHT: 53.25 K6
> Distance: 15.13 KM
CALaries BURNGD: 750.42 CAL <

The calories are still

e displayed in calories

OEBPS/Image00828.gif
#include <stdio.h>

#include <limits.h>

int main()
{
printf("On this machine an int takes up %lu bytes\n", sizeof(int));
printf("And ints can store values from %i to $i\n", INT_MIN, INT_MAX);
\n", SHRT_MIN, SHRT MAX);

printf("aAnd shorts can store values from %i to

return 0;

s EG Tdon o ForEy
On this machine an int takes up 4 bytes
And ints can store values from -2147483648 to 2147483647
And shorts can store values from -32768 to 32767

OEBPS/Image00822.jpg
binclude <stdio.n>C— Thisis a preprocessor divective

OEBPS/Image00800.jpg
e%@éb@

OEBPS/Image00801.jpg

OEBPS/Image00798.jpg
Threads allow

a protess to do
more than one
thing at the
same time. Threads ar¢
e vt
POSIX threads protesses
(pthread) is
a threading
library.
pthread_eveste) Threads
treates a thread shave the
4o vun a funetion. same global
4 30 variables.
€a
YX\"“‘* — H tue threads

vead and updat,
he same variable,

Your tode will be

unpredietable,

3 thvead ¥
Linish-

vwd_nuh*.“’d‘()
treates a mubex on tode:

Mubexes ave
lotks that Phread_mubex_unlotk()
r:ﬁm shaved veleases the midex.
data.

—

OEBPS/Image00799.jpg
\ur; ";w‘ have left. Yo
en you get hit b,a” T
hen You run out of

i, Fiving at a
while avoiding getting hit

Pow
shoot astevoids by
fiving bullets

ou shoot

OEBPS/Image00792.jpg

OEBPS/Image00793.jpg
Orly one thvesd at 2 time ill gt past his

pthraad mutex_Lock (6a_took) s &

e Waatden i o Zupoog gy

OEBPS/Image00796.jpg
JontLoseTheThread

> ./beer

2000000 bottles of beer

beers 1900000
beers = 1800000
beers 1700000
beers 1600000
beers = 1500000
beers = 1400000
beers 1300000
beers = 1200000
beers 1100000
beers = 1000000
beers = 900000
beers 800000
beers = 700000
beers = 600000
beers 500000
beers = 400000
beers 300000
beers = 200000
beers = 100000
beers = 0

>

beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers
beers

>

2000000 bottles of beer on the wall

There are now 0 bottles of beer on the wall

=0
There are now 0 bottles of beer on the wall

Mateh the code to
the ovtut.

EtVindow Hep - DontLoseThet
> ./beer fixed strategy 2
2000000
2000000
beers =
beers =

bottles of beer on the wall
bottles of beer
63082
123
104
102
96
75

67

66
65

62
58
56
51

41
36
30
28
15
14

OEBPS/Image00797.jpg
Version A

pth

ad_mutex_t b READ_M

mutex_t beers Lo

void drink lots(void

5 < 100000; i+4)

pthread_mutex_l

pthread mutex |
)

printe (“beecs = 4i\n", beers)s

o

00 bottles of beer on the wall
2000000 bottles of beer

beozs
beers
beers
Beers
beers
boors
beers
beers
beers
beers
boers
boers
beers
beers
beers
beers
beers
beers
beers
beers
There

1500000

tles of beer on the wall

> . /boor_fixed strategy 2
2000000 Bottles of bear on tha wall
2000000 bottles of beer

beers
beers
beers

= 63082

51
a
36

15
1
0

are now 0 bottles of beer on

Matkeh the cede o
e outpt

OEBPS/Image00794.jpg

OEBPS/Image00795.jpg
void* do_stuff (void* param)s— A thread function can attept a single
{ void pointer pacameter
long thread no = (long)param;&—— Convert it back to a long,
printf("Thread number $ld\n", thread_no);

return (void*) (thread no + 1);ec— Cast it batk to a void pointer
} when it's returned.

int main()

{

pthread_t threads[20];

o 4o 3 void pointer
pthread_create (sthreads[t], NULL, do_stuff, (void*)t);

}

void* result;

Tt <37) |

for (t =

t <3 th) |
long before using it
pthread_join(threads[t], &result);

printf("Thread $ld returned $ld\n", t, (long)result);
}

return 0;

long t; Convert the long £ value

Convert the veturn value o 3

e Edi Vindovr Help DontLoseTheThread
~E - /param_test
Thread number 0
fht Z:h:::e:‘“‘““ i Thread 0 returned 1
Thread number 1
Thread number 2
Eath thread veturns its Threadl]l returned 2
e I Thread 2 returned 3
>

OEBPS/Image00811.jpg
Where it i on the seveen <] 2 T-02%

Which way it’s headed —1>> float
Curvent votation ——> £loat
float
Speed of votation per frame — > float
Sealing fattor to change its size —1 float

struct {

sx;

syi

heading;
twist;

speed;
rot_velocity;

scale;

Has it been destroyed? —-> int gone;

ALLEGRO_COLOR color;

} Asteroid;

OEBPS/Image00809.gif
if (event.type ALLEGRO_EVENT_KEY_DOWN) {
switch (event.keyboard. keycode) {

case ALLEGRO_KEY_LEFT: <&~ Turn the ship left.

break;

case ALLEGRO_KEY RIGHT: &— T, vight.

break;

case ALLEGRO_KEY_ SPACE: < Firel

break;

OEBPS/Image00810.jpg

OEBPS/Image00803.jpg
e/'nu Web gets updated move o“iz:' than
http:/ / alleg.. books, so this URL. might be di ent.
tp:/ / alleg.sourceforge.net/ Cheek on your favorite search engine.

OEBPS/Image00804.jpg
==Y L e containing all of the sourte code to track

and display the latest.position of an astercid
o
==
asteroid.c
= £ The spateship will be able o Five its camon at
= passing astercids, so you will need code 4o draw
= and move a tannon blast across the sereen
blast.c
= The hevo of your game, the plucky little spaceship-
T 0 5 Uk it e askercids, you vill probably need
== 45 manage only one of these 3t 2 time
spaceship.c
T £ 1 shaays good o have a separate source file 4o
e deal with the eore of the game. The code in heve
==,

will need to listen for keypresses, vun a timer, and
also tell all of the other spateships, votks, and

blasts 4o draw themselves on the screen
blasteroids.c

OEBPS/Image00802.jpg

OEBPS/Image00807.jpg
The up and down
arrows ateclevate —>
and decelevate the

spaceship. \

The left arvow
Lurns the spacesh®
countertlotkise

I —

DOWN

Fvel

\

SPACE

—_—

The vight. arvoy

furns the gpzpoey
clotkyisg, TeHP

RIGHT —>

OEBPS/Image00808.gif
ALLEGRO_EVENT QUEUE *queue;
like Ehis-
queue = al_create_event_gueue () ; You treate an event queue

ALLEGRO_EVENT event;

al_wait_for event (queue, &event);

This waits for an event from the queue

OEBPS/Image00805.jpg
typedef struct {
£loat sx77) Wheve ik ison
o
EeEE: sy7) Batre

The direction it's pointing ~T>float heading;

float speed;
int gone; &—Is it dead?

ALLEGRO_COLOR color;

} Spaceship;

OEBPS/Image00806.jpg

OEBPS/Image00778.jpg
void# does_not (void *a)

{

ez

Thre,
ad 5
\ void* does_too(void *a)

1))

{

Main program

OEBPS/Image00779.jpg
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h> £ M5 is the header for the phhvead library.

These ave the headers for the main part of the code

void error(char *msg)

{

fprintf(stderr, "%s: $s\n", msg, strerror(errno));
exit(1);

OEBPS/Image00776.jpg
¢ 1F one thread has 4o vait for

something, the other threads
You tan vun each bask %@W
mide a searate bread. —

can keep vumming.

Al of the threads ean
vun imside 3 sigle protess

OEBPS/Image00777.gif
[_““\ﬂmd funttions
need
void* does not [void *a) to bave s void* does_too(void *a)

vaid# veturn type
{ {

int i = 0; int i = 0;

for (i=0; i< 5; it4) for (i =0; i< 5; it4) {

sleep(1); sleep(1);

puts ("Does not!"); puts ("Does too!
) i
return NULL; Nothing useful return NULL;

just use NULL.

OEBPS/Image00780.jpg
This veeords all the information about the thread

pthread_t t0; ok
P‘i;‘ Eomsa does_not is the name of the function the thread will vun
- L
&Z *——if (pthread create(&t0, NULL, does not, NULL) == -1} < — Alays cheek
thread error("Can't create thread t0"); for evvors
if (pthread create(s&tl, NULL, does_too, NULL) == -1)

error("Can't create m]
£l is the addvess of the

data structure that will store
the Bwead inbo:

OEBPS/Image00781.jpg
e The void pointer veturned from each function vill be stored heve.

void* result;
if (pthread join(t0, &result)
error("Can't join thread t0");
if (pthread join(tl, &result)
error("Can't join thread t1");:

=
S The pthresd_join0) function
1 waits for a thread 4o Finish

OEBPS/Image00774.jpg
Well, I car't do
everything all at once.
Who do you thirk I am?

OEBPS/Image00775.jpg
S\f\op—n—gurfg

People, more than
one thing an be
done at onte.

OEBPS/Image00772.jpg
It will need to

caleulate the Jatest
It will need to update Tocations of the
the graphics on the objeets that are

moving in the game.

P~ It might need
It will need to read to communicate

contro] information | with the disk
P [EEEEEREEN() oot
controller or

loybourd. . "

OEBPS/Image00773.jpg
Shop-n-gyrg
Run the cash register,
Stock the shop.
Rewax the surfboards,
ANswer {he Phones,

Fix the roof,
Keep the books,

Alternatively,
%JM g0 surfing,

OEBPS/Image00789.jpg
Theead
I <
Thread | -y Both threads are aetting
beers s the same value. Can you
) =% [see where this i going?

OEBPS/Image00790.jpg
— Thread 2
ers o

OEBPS/Image00787.jpg
= £ Imagine two threads are running this
beers = beers - 1;&— | .00 , 1 i Lhe same time.

OEBPS/Image00788.jpg
Thread | 5
B 4— Thread 2
beers | beers 1
=l JE
B

OEBPS/Image00791.jpg

OEBPS/Image00782.jpg
This will link the
pthread library.

i £ Viiow Felp DoroseTheTiiead
> gcc argument.c -lpthread -o argument

This is your program

OEBPS/Image00785.jpg
int beers = 20000007
void* drink_lots(void *a)
(

int i;

for i < 100000; i++) {

beers = beers - 1;
)
return NULL;
b
int main ()
{
pthread_t threads[20];
int t;
printf("%i bottles of beer on the wall\n%i bottles of beer\n", beers, beers);

for (t = 0; t < 20; t++) (To save spate, we've skipped testing

for evvors—but don’t you do that!
Pthread create i(&threads[¢) ' , NULL, drink_lots ' NULL) ; ?2
}

void* result;
for (t = 0; t < 207 t++) {

) . (threads[t], &result);
}

printf ("There are now %i bottles of beer on the wall\n", beers);

return 0;

e

OEBPS/Image00786.jpg
> ./beer
2000000 bottles of beer on the wall
. 2000000 bottles of beer
NP AMABNAGEREE oz are now 0 bottles of beer on the wall
the beers variable to 0. > ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
Y There are now 883988 bottles of beer on the wall
> ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
LSBT There are now 945170 bottles of beer on the wall
>

Hey, vait

Where's The Froth?

OEBPS/Image00783.jpg
on tLose The Threac

When You vun the code, the
messages might come out in

diffevent order than this

OEBPS/Image00784.jpg
int beers = 2000000; & Peyin with Z willion beers
void* drink_lots(void *a)
{ A~ Eath thread will vun this function.
int i;
for (i = 0; i < 100000; i++) {
beers = beers — 17 Q—The function will veduce the
} beers variable by 100,000
return NULL;
)
int main()
«
pthread_t threads[20];
int t;

printf("$i bottles of beer on the wall\n%i bottles of beer\n", beers, beers);

for (t = 0; t < 20; t++) { &— Youll eveate 20 threads To save spate, this example skips
that vun the function testing for evvors, but don't you do
that!

.o NULL, ..o NULL);

}
void* result;
for (t = 0; t < 207 t++) {

This code waits for all the
. (threads[t], uesum:%“:Y:gmaamﬁ.mh

1
printf ("There are now %i bottles of beer on the wall\n", beers);
return 0;

}

T
&threads(¢)

