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[bookmark: x1-3000]
Preface to the eBook Edition

Operating Systems: Principles and Practice is a textbook for a first course in
undergraduate operating systems. In use at over 50 colleges and universities
worldwide, this textbook provides:


     
     	A path for students to understand high level concepts all the way down
     to working code.
     

     	Extensive  worked  examples  integrated  throughout  the  text  provide
     students concrete guidance for completing homework assignments.
     

     	A focus on up-to-date industry technologies and practice


   The eBook edition is split into four volumes that together contain exactly the
same material as the (2nd) print edition of Operating Systems: Principles and
Practice, reformatted for various screen sizes. Each volume is self-contained and can
be used as a standalone text, e.g., at schools that teach operating systems topics
across multiple courses.


     
     	Volume  1:  Kernels  and  Processes.  This  volume  contains  Chapters  1-3
     of  the  print  edition.  We  describe  the  essential  steps  needed  to  isolate
     programs  to  prevent  buggy  applications  and  computer  viruses  from
     crashing or taking control of your system.
     

     	Volume   2:   Concurrency.   This   volume   contains   Chapters   4-7   of   the
     print  edition.  We  provide  a  concrete  methodology  for  writing  correct
     concurrent  programs  that  is  in  widespread  use  in  industry,  and  we
     explain the mechanisms for context switching and synchronization from
     fundamental concepts down to assembly code.
     

     	Volume 3: Memory Management. This volume contains Chapters 8-10 of
     the  print  edition.  We  explain  both  the  theory  and  mechanisms  behind
     64-bit address space translation, demand paging, and virtual machines.
     

                                                                  

                                                                  
     	Volume  4:  Persistent  Storage.  This  volume  contains  Chapters  11-14
     of  the  print  edition.  We  explain  the  technologies  underlying  modern
     extent-based, journaling, and versioning file systems.


   A more detailed description of each chapter is given in the preface to the print
edition.
[bookmark: Q1-1-5]
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Preface to the Print Edition
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Why We Wrote This Book

Many of our students tell us that operating systems was the best course they took as
an undergraduate and also the most important for their careers. We are not
alone — many of our colleagues report receiving similar feedback from their
students.

   Part of the excitement is that the core ideas in a modern operating system —
protection, concurrency, virtualization, resource allocation, and reliable storage —
have become widely applied throughout computer science, not just operating
system kernels. Whether you get a job at Facebook, Google, Microsoft, or any other
leading-edge technology company, it is impossible to build resilient, secure, and
flexible computer systems without the ability to apply operating systems concepts in
a variety of settings. In a modern world, nearly everything a user does is distributed,
nearly every computer is multi-core, security threats abound, and many applications
such as web browsers have become mini-operating systems in their own
right.

   It should be no surprise that for many computer science students, an
undergraduate operating systems class has become a de facto requirement: a ticket to
an internship and eventually to a full-time position.

   Unfortunately, many operating systems textbooks are still stuck in the past,
failing to keep pace with rapid technological change. Several widely-used books
were initially written in the mid-1980’s, and they often act as if technology stopped
at that point. Even when new topics are added, they are treated as an afterthought,
without pruning material that has become less important. The result are textbooks
that are very long, very expensive, and yet fail to provide students more than a
superficial understanding of the material.

   Our view is that operating systems have changed dramatically over the past
twenty years, and that justifies a fresh look at both how the material is taught and
what is taught. The pace of innovation in operating systems has, if anything,
increased over the past few years, with the introduction of the iOS and Android
operating systems for smartphones, the shift to multicore computers, and the advent
of cloud computing.

   To prepare students for this new world, we believe students need three things to
succeed at understanding operating systems at a deep level:
                                                                  

                                                                  


     
     	
     Concepts  and  code.  We  believe  it  is  important  to  teach  students  both
     principles and practice, concepts and implementation, rather than either
     alone.  This  textbook  takes  concepts  all  the  way  down  to  the  level  of
     working  code,  e.g.,  how  a  context  switch  works  in  assembly  code.  In
     our experience, this is the only way students will really understand and
     master  the  material.  All  of  the  code  in  this  book  is  available  from  the
     author’s web site, ospp.washington.edu.
     


     	
     Extensive  worked  examples.  In  our  view,  students  need  to  be  able  to
     apply  concepts  in  practice.  To  that  end,  we  have  integrated  a  large
     number of example exercises, along with solutions, throughout the text.
     We  uses  these  exercises  extensively  in  our  own  lectures,  and  we  have
     found them essential to challenging students to go beyond a superficial
     understanding.
     


     	
     Industry  practice.  To  show  students  how  to  apply  operating  systems
     concepts in a variety of settings, we use detailed, concrete examples from
     Facebook, Google, Microsoft, Apple, and other leading-edge technology
     companies throughout the textbook. Because operating systems concepts
     are  important  in  a  wide  range  of  computer  systems,  we  take  these
     examples   not   only   from   traditional   operating   systems   like   Linux,
     Windows,  and  OS X  but  also  from  other  systems  that  need  to  solve
     problems of protection, concurrency, virtualization, resource allocation,
     and reliable storage like databases, web browsers, web servers, mobile
     applications, and search engines.


     


   Taking a fresh perspective on what students need to know to apply operating
systems concepts in practice has led us to innovate in every major topic covered in
an undergraduate-level course:


     
     	
     Kernels and Processes. The safe execution of untrusted code has become
     central to many types of computer systems, from web browsers to virtual
                                                                  

                                                                  
     machines to operating systems. Yet existing textbooks treat protection as
     a side effect of UNIX processes, as if they are synonyms. Instead, we start
     from  first  principles:  what  are  the  minimum  requirements  for  process
     isolation, how can systems implement process isolation efficiently, and
     what do students need to know to implement functions correctly when
     the caller is potentially malicious?
     


     	
     Concurrency. With the advent of multi-core architectures, most students
     today will spend much of their careers writing concurrent code. Existing
     textbooks provide a blizzard of concurrency alternatives, most of which
     were  abandoned  decades  ago  as  impractical.  Instead,  we  focus  on
     providing  students  a  single  methodology  based  on  Mesa  monitors
     that  will  enable  students  to  write  correct  concurrent  programs — a
     methodology that is by far the dominant approach used in industry.
     


     	
     Memory   Management.   Even   as   demand-paging   has   become   less
     important,  virtualization  has  become  even  more  important  to  modern
     computer systems. We provide a deep treatment of address translation
     hardware,  sparse  address  spaces,  TLBs,  and  on-chip  caches.  We  then
     use those concepts as a springboard for describing virtual machines and
     related concepts such as checkpointing and copy-on-write.
     


     	
     Persistent Storage. Reliable storage in the presence of failures is central
     to the design of most computer systems. Existing textbooks survey the
     history of file systems, spending most of their time ad hoc approaches to
     failure recovery and de-fragmentation. Yet no modern file systems still
     use those ad hoc approaches. Instead, our focus is on how file systems
     use extents, journaling, copy-on-write, and RAID to achieve both high
     performance and high reliability.


     


[bookmark: Q1-1-9]
[bookmark: x1-6000]
Intended Audience

Operating Systems: Principles and Practice is a textbook for a first course in
undergraduate operating systems. We believe operating systems should be taken as
early as possible in an undergraduate’s course of study; many students use the
                                                                  

                                                                  
course as a springboard to an internship and a career. To that end, we have designed
the textbook to assume minimal pre-requisites: specifically, students should have
taken a data structures course and one on computer organization. The code
examples are written in a combination of x86 assembly, C, and C++. In particular, we
have designed the book to interface well with the Bryant and O’Halloran textbook.
We review and cover in much more depth the material from the second half of that
book.

   We should note what this textbook is not: it is not intended to teach the API or
internals of any specific operating system, such as Linux, Android, Windows 8, OS
X, or iOS. We use many concrete examples from these systems, but our focus is on
the shared problems these systems face and the technologies these systems use to
solve those problems.
[bookmark: Q1-1-11]
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A Guide to Instructors

One of our goals is enable instructors to choose an appropriate level of depth for
each course topic. Each chapter begins at a conceptual level, with implementation
details and the more advanced material towards the end. The more advanced
material can be omitted without compromising the ability of students to follow later
material. No single-quarter or single-semester course is likely to be able to cover
every topic we have included, but we think it is a good thing for students to come
away from an operating systems course with an appreciation that there is always
more to learn.

   For each topic, we attempt to convey it at three levels:


     
     	
     How to reason about systems. We describe core systems concepts, such as
     protection, concurrency, resource scheduling, virtualization, and storage,
     and we provide practice applying these concepts in various situations. In
     our view, this provides the biggest long-term payoff to students, as they
     are likely to need to apply these concepts in their work throughout their
     career, almost regardless of what project they end up working on.
     


     	
     Power tools. We introduce students to a number of abstractions that they
     can apply in their work in industry immediately after graduation, and
     that we expect will continue to be useful for decades such as sandboxing,
     protected  procedure  calls,  threads,  locks,  condition  variables,  caching,
     checkpointing, and transactions.
     


                                                                  

                                                                  
     	
     Details of specific operating systems. We include numerous examples of
     how different operating systems work in practice. However, this material
     changes rapidly, and there is an order of magnitude more material than
     can be covered in a single semester-length course. The purpose of these
     examples is to illustrate how to use the operating systems principles and
     power tools to solve concrete problems. We do not attempt to provide
     a  comprehensive  description  of  Linux,  OS X,  or  any  other  particular
     operating system.



   The book is divided into five parts: an introduction (Chapter 1), kernels and
processes (Chapters 2-3), concurrency, synchronization, and scheduling (Chapters
4-7), memory management (Chapters 8-10), and persistent storage (Chapters
11-14).


     
     	
     Introduction. The goal of Chapter 1 is to introduce the recurring themes
     found  in  the  later  chapters.  We  define  some  common  terms,  and  we
     provide a bit of the history of the development of operating systems.
     


     	
     The            Kernel            Abstraction.            Chapter            2            covers
     kernel-based  process  protection — the  concept  and  implementation  of
     executing a user program with restricted privileges. Given the increasing
     importance of computer security issues, we believe protected execution
     and safe transfer across privilege levels are worth treating in depth. We
     have broken the description into sections, to allow instructors to choose
     either a quick introduction to the concepts (up through Section 2.3), or
     a full treatment of the kernel implementation details down to the level
     of interrupt handlers. Some instructors start with concurrency, and cover
     kernels and kernel protection afterwards. While our textbook can be used
     that way, we have found that students benefit from a basic understanding
     of  the  role  of  operating  systems  in  executing  user  programs,  before
     introducing concurrency.
     


     	
     The  Programming  Interface.  Chapter  3  is  intended  as  an  impedance
     match  for  students  of  differing  backgrounds.  Depending  on  student
     background,   it   can   be   skipped   or   covered   in   depth.   The   chapter
     covers   the   operating   system   from   a   programmer’s   perspective:
     process  creation  and  management,  device-independent  input/output,
                                                                  

                                                                  
     interprocess  communication,  and  network  sockets.  Our  goal  is  that
     students  should  understand  at  a  detailed  level  what  happens  when  a
     user clicks a link in a web browser, as the request is transferred through
     operating system kernels and user space processes at the client, server,
     and back again. This chapter also covers the organization of the operating
     system  itself:  how  device  drivers  and  the  hardware  abstraction  layer
     work in a modern operating system; the difference between a monolithic
     and a microkernel operating system; and how policy and mechanism are
     separated in modern operating systems.
     


     	
     Concurrency   and   Threads.   Chapter   4   motivates   and   explains   the
     concept of threads. Because of the increasing importance of concurrent
     programming, and its integration with modern programming languages
     like   Java,   many   students   have   been   introduced   to   multi-threaded
     programming  in  an  earlier  class.  This  is  a  bit  dangerous,  as  students
     at  this  stage  are  prone  to  writing  programs  with  race  conditions,
     problems  that  may  or  may  not  be  discovered  with  testing.  Thus,  the
     goal  of  this  chapter  is  to  provide  a  solid  conceptual  framework  for
     understanding the semantics of concurrency, as well as how concurrent
     threads  are  implemented  in  both  the  operating  system  kernel  and  in
     user-level libraries. Instructors needing to go more quickly can omit these
     implementation details.
     


     	
     Synchronization.                                                                                     Chapter
     5  discusses  the  synchronization  of  multi-threaded  programs,  a  central
     part of all operating systems and increasingly important in many other
     contexts. Our approach is to describe one effective method for structuring
     concurrent programs (based on Mesa monitors), rather than to attempt to
     cover several different approaches. In our view, it is more important for
     students to master one methodology. Monitors are a particularly robust
     and  simple  one,  capable  of  implementing  most  concurrent  programs
     efficiently. The implementation of synchronization primitives should be
     included if there is time, so students see that there is no magic.
     


     	
     Multi-Object  Synchronization.  Chapter  6  discusses  advanced  topics  in
     concurrency — specifically,  the  twin  challenges  of  multiprocessor  lock
     contention  and  deadlock.  This  material  is  increasingly  important  for
     students working on multicore systems, but some courses may not have
                                                                  

                                                                  
     time to cover it in detail.
     


     	
     Scheduling. This chapter covers the concepts of resource allocation in the
     specific context of processor scheduling. With the advent of data center
     computing  and  multicore  architectures,  the  principles  and  practice  of
     resource allocation have renewed importance. After a quick tour through
     the  tradeoffs  between  response  time  and  throughput  for  uniprocessor
     scheduling, the chapter covers a set of more advanced topics in affinity
     and multiprocessor scheduling, power-aware and deadline scheduling,
     as well as basic queueing theory and overload management. We conclude
     these topics by walking students through a case study of server-side load
     management.
     


     	
     Address   Translation.   Chapter   8   explains   mechanisms   for   hardware
     and  software  address  translation.  The  first  part  of  the  chapter  covers
     how  hardware  and  operating  systems  cooperate  to  provide  flexible,
     sparse  address  spaces  through  multi-level  segmentation  and  paging.
     We  then  describe  how  to  make  memory  management  efficient  with
     translation  lookaside  buffers  (TLBs)  and  virtually  addressed  caches.
     We  consider  how  to  keep  TLBs  consistent  when  the  operating  system
     makes  changes  to  its  page  tables.  We  conclude  with  a  discussion  of
     modern software-based protection mechanisms such as those found in
     the Microsoft Common Language Runtime and Google’s Native Client.
     


     	
     Caching and Virtual Memory. Caches are central to many different types of
     computer systems. Most students will have seen the concept of a cache
     in an earlier class on machine structures. Thus, our goal is to cover the
     theory and implementation of caches: when they work and when they do
     not, as well as how they are implemented in hardware and software. We
     then show how these ideas are applied in the context of memory-mapped
     files and demand-paged virtual memory.
     


     	
     Advanced Memory Management. Address translation is a powerful tool in
     system design, and we show how it can be used for zero copy I/O, virtual
     machines,  process  checkpointing,  and  recoverable  virtual  memory.  As
     this is more advanced material, it can be skipped by those classes pressed
     for time.
                                                                  

                                                                  
     


     	
     File Systems: Introduction and Overview. Chapter 11 frames the file system
     portion of the book, starting top down with the challenges of providing
     a useful file abstraction to users. We then discuss the UNIX file system
     interface, the major internal elements inside a file system, and how disk
     device drivers are structured.
     


     	
     Storage Devices. Chapter 12 surveys block storage hardware, specifically
     magnetic disks and flash memory. The last two decades have seen rapid
     change  in  storage  technology  affecting  both  application  programmers
     and  operating  systems  designers;  this  chapter  provides  a  snapshot  for
     students, as a building block for the next two chapters. If students have
     previously seen this material, this chapter can be skipped.
     


     	
     Files  and  Directories.  Chapter  13  discusses  file  system  layout  on  disk.
     Rather  than  survey  all  possible  file  layouts — something  that  changes
     rapidly  over  time — we  use  file  systems  as  a  concrete  example  of
     mapping complex data structures onto block storage devices.
     


     	
     Reliable Storage. Chapter 14 explains the concept and implementation of
     reliable storage, using file systems as a concrete example. Starting with
     the  ad  hoc  techniques  used  in  early  file  systems,  the  chapter  explains
     checkpointing  and  write  ahead  logging  as  alternate  implementation
     strategies for building reliable storage, and it discusses how redundancy
     such as checksums and replication are used to improve reliability and
     availability.



   We welcome and encourage suggestions for how to improve the presentation
of the material; please send any comments to the publisher’s website,
suggestions@recursivebooks.com.
[bookmark: Q1-1-13]
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   Memory is the treasury and
guardian of all things. —Marcus Tullius Cicero 

   	
   
	 







   Computers must be able to reliably store data. Individuals store family photos,
music files, and email folders; programmers store design documents and source files;
office workers store spreadsheets, text documents, and presentation slides; and
businesses store inventory, orders, and billing records. In fact, for a computer to
work at all, it needs to be able to store programs to run and the operating system,
itself.

   For all of these cases, users demand a lot from their storage systems:


     
     	
     Reliability.  A  user’s  data  should  be  safely  stored  even  if  a  machine’s
     power  is  turned  off  or  its  operating  system  crashes.  In  fact,  much  of
     this data is so important that users expect and need the data to survive
     even  if  the  devices  used  to  store  it  are  damaged.  For  example,  many
     modern storage systems continue to work even if one of the magnetic
     disks storing the data malfunctions or even if a data center housing some
     of the system’s servers burns down!
     


     	
     Large  capacity  and  low  cost.  Users  and  companies  store  enormous
     amount  of  data,  so  they  want  to  be  able  to  buy  high  capacity  storage
     for  a  low  cost.  For  example,  it  takes  about  350 MB  to  store  an  hour
     of  CD-quality  losslessly  encoded  music,  4 GB  to  store  an  hour-long
     high-definition home video, and about 1 GB to store 300 digital photos.
     As a result of these needs, many individuals own 1 TB or more of storage
     for their personal files. This is an enormous amount: if you printed 1 TB
     of data as text on paper, you would produce a stack about 20 miles high.
     In contrast, for less than $100 you can buy 1 TB of storage that fits in a
     shoebox.
     


     	
     High performance. For programs to use data, they must be able to access
     it, and for programs to use large amounts of data, this access must be fast.
     For  example,  users  want  program  start-up  to  be  nearly  instantaneous,
                                                                  

                                                                  
     a  business  may  need  to  process  hundreds  or  thousands  of  orders  per
     second, or a server may need to stream a large number of video files to
     different users.
     


     	
     Named data. Because users store a large amount of data, because some
     data must last longer than the process that creates it, and because data
     must be shared across programs, storage systems must provide ways to
     easily identify data of interest. For example, if you can name a file (e.g.,
     /home/alice/assignments/hw1.txt) you can find the data you want out of the
     millions of blocks on your disk, you can still find it after you shut down
     your text editor, and you can use your email program to send the data
     produced by the text editor to another user.
     


     	
     Controlled sharing. Users need to be able to share stored data, but this
     sharing needs to be controlled. As one example, you may want to create
     a  design  document  that  everyone  in  your  group  can  read  and  write,
     that people in your department can read but not write, and that people
     outside of your department cannot access at all. As another example, it is
     useful for a system to be able to allow anyone to execute a program while
     only allowing the system administrator to change the program.


     


   Nonvolatile storage and file systems. The contents of a system’s main DRAM
memory can be lost if there is an operating system crash or power failure. In
contrast, non-volatile storage is durable and retains its state across crashes and
power outages; non-volatile storage is also called or persistent storage or stable
storage. Nonvolatile storage can also have much higher capacity and lower
cost than the volatile DRAM that forms the bulk of most system’s “main
memory.”

   However, non-volatile storage technologies have their own limitations. For
example, current non-volatile storage technologies such as magnetic disks and
high-density flash storage do not allow random access to individual words of
storage; instead, access must be done in more coarse-grained units — 512, 2048, or
more bytes at a time.

   Furthermore, these accesses can be much slower than access to DRAM; for
example, reading a sector from a magnetic disk may require activating a
motor to move a disk arm to a desired track on disk and then waiting for the
spinning disk to bring the desired data under the disk head. Because disk
accesses involve motors and physical motion, the time to access a random
                                                                  

                                                                  
sector on a disk can be around 10 milliseconds. In contrast, DRAM latencies
are typically under 100 nanoseconds. This large difference — about five
orders of magnitude in the case of spinning disks — drives the operating
system to organize and use persistent storage devices differently than main
memory.

   File systems are a common operating system abstraction to allow applications
to access non-volatile storage. File systems use a number of techniques to
cope with the physical limitations of non-volatile storage devices and to
provide better abstractions to users. For example, Figure 11.1 summarizes
how physical characteristics motivate several key aspects of file system
design.
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	 Goal            
	 Physical Characteristic   
	 Design Implication                    


	 High
 performance      
	 Large  cost  to  initiate  IO
 access                  
	 Organize    data    placement    with    files,
 directories,  free  space  bitmap,  and  placement
 heuristics so that storage is accessed in large
 sequential units                        


	                 
	                        
	 Caching    to    avoid    accessing    persistent
 storage                               


	                 


	                 

	Named data
	 Storage has large capacity,
 survives   crashes,   and   is
 shared across programs   
	 Support      files      and      directories      with
 meaningful names                     


	                 


	                 


	 Controlled
 sharing          
	 Device stores many users’
 data                   
	 Include access-control metadata with files   


	                 


	                 


	 Reliable storage   
	 Crash   can   occur   during
 update                 
	 Use  transactions  to  make  a  set  of  updates
 atomic                               


	                 
	 Storage devices can fail    
	 Use   redundancy   to   detect   and   correct
 failures                               


	                 
	 Flash   memory   cells   can
 wear out                
	 Move data to different storage locations to
 even the wear                         


	                 





	Figure 11.1:

Characteristics
of
persistent
storage
devices
affect
the
design
of
an
operating
system’s
storage
abstractions.
 



                                                                  

                                                                  
   

     
     	
     Performance.  File  systems  amortize  the  cost  of  initiating  expensive
     operations — such  as  moving  a  disk  arm  or  erasing  a  block  of  solid
     state memory — by grouping where its placement of data so that such
     operations access large, sequential ranges of storage.
     


     	
     Naming. File systems group related data together into directories and files
     and                      provide                      human-readable                      names
     for them (e.g., /home/alice/Pictures/summer-vacation/hiking.jpg.) These names
     for data remain meaningful even after the program that creates the data
     exits, they help users organize large amounts of storage, and they make
     it easy for users to use different programs to create, read, and edit, their
     data.
     


     	
     Controlled sharing. File systems include metadata about who owns which
     files and which other users are allowed to read, write, or execute data
     and program files.
     


     	
     Reliability.  File  systems  use  transactions  to  atomically  update  multiple
     blocks  of  persistent  storage,  similar  to  how  the  operating  system  uses
     critical sections to atomically update different data structures in memory.
     
To further improve reliability, file systems store checksums with data to
     detect corrupted blocks, and they replicate data across multiple storage
     devices to recover from hardware failures.


     


   Impact on application writers. Understanding the reliability and performance
properties of storage hardware and file systems is important even if you
are not designing a file system from scratch. Because of the fundamental
limitations of existing storage devices, the higher-level illusions of reliability and
performance provided by the file system are imperfect. An application programmer
needs to understand these limitations to avoid having inconsistent data
stored on disk or having a program run orders of magnitude slower than
expected.
                                                                  

                                                                  

   For example, suppose you edit a large document with many embedded images
and that your word processor periodically auto-saves the document so that you
would not lose too many edits if the machine crashes. If the application uses
the file system in a straightforward way, several of unexpected things may
happen.


     
     	
     Poor performance. First, although file systems allow existing bytes in a
     file to be overwritten with new values, they do not allow new bytes to be
     inserted into the middle of existing bytes. So, even a small update to the
     file may require rewriting the entire file either from beginning to end or at
     least from the point of the first insertion to the end. For a multi-megabyte
     file, each auto-save may end up taking as much as a second.
     


     	
     Corrupt file. Second, if the application simply overwrites the existing file
     with updated data, an untimely crash can leave the file in an inconsistent
     state, containing a mishmash of the old and new versions. For example, if
     a section is cut from one location and pasted in another, after a crash the
     saved document may end up with copies of the section in both locations,
     one location, or neither location; or it may end up with a region that is a
     mix of the old and new text.
     


     	
     Lost   file.   Third,   if   instead   of   overwriting   the   document   file,   the
     application writes updates to a new file, then deletes the original file, and
     finally moves the new file to the original file’s location, an untimely crash
     can leave the system with no copies of the document at all.


     


   Programs use a range of techniques to deal with these types of issues. For
example, some structure their code to take advantage of the detailed semantics of
specific operating systems. Some operating systems guarantee that when a file is
renamed and a file with the target name already exists, the target name will always
refer to either the old or new file, even after a crash in the middle of the rename
operation. In such a case, an implementation can create a new file with the new
version of the data and use the rename command to atomically replace the old
version with the new one.
                                                                  

                                                                  

   Other programs essentially build a miniature file system over the top of the
underlying one, structuring their data so that the underlying file system can better
meet their performance and reliability requirements.

   For example, a word processor might use a sophisticated document format,
allowing it to, for example, add and remove embedded images and to always update
a document by appending updates to the end of the file.

   As another example, a data analysis program might improve its performance by
organizing its accesses to input files in a way that ensures that each input file is read
only once and that it is read sequentially from its start to its end.

   Or, a browser with a 1 GB on-disk cache might create 100 files, each containing
10 MB of data, and group a given web site’s objects in a sequential region of a
randomly selected file. To do this, the browser would need to keep metadata that
maps each cached web site to a region of a file, it would need to keep track
of what regions of each file are used and which are free, it would need to
decide where to place a new web site’s objects, and it would need to have a
strategy for growing or moving a web site’s objects as additional objects are
fetched.

   Roadmap. To get good performance and acceptable reliability, both application
writers and operating systems designers must understand how storage
devices and file systems work. This chapter and the next three discuss the key
issues:


     
     	
     API  and  abstractions.  The  rest  of  this  chapter  introduces  file  systems
     by describing a typical API and set of abstractions, and it provides an
     overview of the software layers that provide these abstractions.
     


     	
     Storage devices. The characteristics of persistent storage devices strongly
     influence  the  design  of  storage  system  abstractions  and  higher  level
     applications. Chapter 12 therefore explores the physical characteristics
     of common storage devices.
     


     	
     Implementing files and directories. Chapter 13 describes how file systems
     keep  track  of  data  by  describing  several  widely  used  approaches  to
     implementing files and directories.
     


     	
                                                                  

                                                                  
     Reliable storage. Although we would like storage to be perfectly reliable,
     physical  devices  fall  short  of  that  ideal.  Chapter 14  describes  how
     storage systems use transactional updates and redundancy to improve
     reliability.
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[bookmark: x1-110001]11.1 The File System Abstraction

   Today, almost anyone who uses a computer is familiar with the high-level file
system abstraction. File systems provide a way for users to organize their data and to
store it for long periods of time. For example, Bob’s computer might store a
collection of applications such as /Applications/Calculator and /Program Files/Text Edit
and a collection of data files such as /home/Bob/correspondence/letter-to-mom.txt, and
/home/Bob/Classes/OS/hw1.txt.
   More precisely, a file system is an operating system abstraction that provides
persistent, named data. Persistent data is stored until it is explicitly deleted, even if
the computer storing it crashes or loses power. Named data can be accessed via a
human-readable identifier that the file system associates with the file. Having a
name allows a file to be accessed even after the program that created it has exited,
and allows it to be shared by multiple applications.

   There are two key parts to the file system abstraction: files, which define sets of
data, and directories, which define names for files.

   File. A file is a named collection of data in a file system. For example, the
programs /Applications/Calculator or /Program Files/Text Edit are each files, as are the
data /home/Bob/correspondence/letter-to-mom.txt or /home/Bob/Classes/OS/hw1.txt.

   Files provide a higher-level abstraction than the underlying storage device: they
let a single, meaningful name refer to an (almost) arbitrarily-sized amount of data.
For example /home/Bob/Classes/OS/hw1.txt might be stored on disk in blocks
0x0A713F28, 0xB3CA349A, and 0x33A229B8, but it is much more convenient to refer
to the data by its name than by this list of disk addresses.

   A file’s information has two parts, metadata and data. A file’s metadata is
information about the file that is understood and managed by the operating system.
For example, a file’s metadata typically includes the file’s size, its modification time, its
owner, and its security information such as whether it may be read, written, or
executed by the owner or by other users.

   A file’s data can be whatever information a user or application puts in it. From the
point of view of the file system, a file’s data is just an array of untyped bytes.
Applications can use these bytes to store whatever information they want in
whatever format they choose. Some data have a simple structure. For example, an
ASCII text file contains a sequence of bytes that are interpreted as letters in the
English alphabet. Conversely, data structures stored by applications can be
                                                                  

                                                                  
arbitrarily complex. For example, a .doc files can contain text, formatting
information, and embedded objects and images, an ELF (Executable and
Linkable File) files can contain compiled objects and executable code, or a
database file can contain the information and indices managed by a relational
database.

   

	Executing “untyped” files

   Usually, an operating system treats a file’s data as an array of untyped bytes,
leaving it up to applications to interpret a file’s contents. Occasionally, however, the
operating system needs to be able to parse a file’s data.

   For example, Linux supports a number of different executable file types such as
the ELF and a.out binary files and tcsh, csh, and perl scripts. You can run
any of these files from the command line or using the exec() system call.
E.g.,

> a.out

Hello world from hello.c compiled by gcc!

> hello.pl

Hello world from hello.pl, a perl script!

> echo ‘‘Hello world from /bin/echo, a system binary!’’

Hello world from /bin/echo, a system binary!

   To execute a file, the operating system must determine whether it is a binary file
or a script. If it is the former, the operating system must parse the file to determine
where in the target process’s memory to load code and data from the file
and which instruction to start with. If it is the latter, the operating system
must determine which interpreter program it should launch to execute the
script.

   Linux does this by having executable files begin with a magic number that
identifies the file’s format. For example, ELF binary executables begin with the four
bytes 0x7f, 0x45, 0x4c, and 0x46 (the ASCII characters DEL, E, L, and F); once an
executable is known to be an ELF file, the ELF standard defines how the operating
system should parse the rest of the file to extract and load the program’s code and
data. Similarly, script files begin with #! followed by the name of the interpreter that
should be used to run the script (e.g., a script might begin with #! /bin/sh to be
executed using the Bourne shell or #! /usr/bin/perl to be executed using the perl
interpreter.

   Alternative approaches include determining a file’s type by its name
extension — the characters after the last dot (.) in the file’s name (e.g., .exe, .pl, or
.sh) — or including information about a file’s type in its metadata.

   





   

	Multiple data streams

   For traditional files, the file’s data is a single logical sequence of bytes, and each
byte can be identified by its offset from the start of the sequence (e.g., byte 0, byte
999, or byte 12481921 of a file.)
                                                                  

                                                                  

   Some file systems support multiple sequences of bytes per file. For example,
Apple’s MacOS Extended file system supports multiple forks per file — a data fork
for the file’s basic data, a resource fork for storing additional attributes for the file,
and multiple named forks for application-defined data. Similarly, Microsoft’s
NTFS supports alternate data streams that are similar to MacOS’s named
forks.

   In these systems, when you open a file to read or write its data, you specify not
only the file but also the fork or stream you want.

   





   Directory. Whereas a file contains system-defined metadata and arbitrary data,
directories provide names for files. In particular, a file directory is a list of
human-readable names and a mapping from each name to a specific underlying file
or directory. One common metaphor is that a directory is a folder that contains
documents (files) and other folders (directories).
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                                 [image: ]                                 	Figure 11.2:  Example of a hierarchical organization of files using directories.
 


                                                                  

                                                                  
   

   As Figure 11.2 illustrates, because directories can include names of other
directories, they can be organized in a hierarchy so that different sets of associated
files can be grouped in different directories. So, the directory /bin may include binary
applications for your machine while /home/tom (Tom’s “home directory”) might
include Tom’s files. If Tom has many files, Tom’s home directory may include
additional directories to group them (e.g., /home/tom/Music and /home/tom/Work.) Each
of these directories may have subdirectories (e.g.,/home/tom/Work/Class and /home/tom/
Work/Docs) and so on.

   The string that identifies a file or directory (e.g., /home/tom/Work/Class/OS/hw1.txt
or /home/tom) is called a path. Here, the symbol / (pronounced slash) separates
components of the path, and each component represents an entry in a directory. So,
hw1.txt is a file in the directory OS; OS is a directory in the directory Work; and so
on.

   If you think of the directory as a tree, then the root of the tree is a directory called,
naturally enough, the root directory. Path names such as /bin/ls that begin with / define
absolute paths that are interpreted relative to the root directory. So, /home refers to the
directory called home in the root directory.

   Path names such as Work/Class/OS that do not begin with / define relative paths
that are interpreted by the operating system relative to a process’s current working
directory. So, if a process’s current working directory is /home/tom, then the relative
path Work/Class/OS is equivalent to the absolute path /home/tom/Work/Class/OS.

   When you log in, your shell’s current working directory is set to your home
directory. Processes can change their current working directory with the chdir(path)
system call. So, for example, if you log in and then type cd Work/Class/OS, your
current working directory is changed from your home directory to the subdirectory
Work/Class/OS in your home directory.
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                                 [image: ]                                 	Figure 11.3:  Example of a directed acyclic graph directory organization with
multiple hard links to a file.
 


                                                                  

                                                                  
   

   

	. and .. and ~

   You may sometimes see path names in which directories are named ., .., or ~. For
example,

> cd ~/Work/Class/OS

> cd ..

> ./a.out

   ., .., and ~ are special directory names in Unix. . refers to the current directory, ..
refers to the parent directory, ~ refers to the current user’s home directory, and ~name
refers to the home directory of user name.

   So, the first shell command changes the current working directory to be the Work/
Class/OS directory in the user’s home directory (e.g., /home/tom/Work/Class/OS). The
second command changes the current working directory to be the Work/
Class directory in the user’s home directory (e.g., ~/Work/Class or /home/
tom/Work/Class.) The third command executes the program a.out from the
current working directory (e.g., ~/Work/Class/a.out or /home/tom/Work/Class/
a.out.)

   





   If each file or directory is identified by exactly one path, then the directory
hierarchy forms a tree. Occasionally, it is useful to have several different names for
the same file or directory. For example, if you are actively working on a project, you
might find it convenient to have the project appear in both your “todo”
directory and a more permanent location (e.g., /home/tom/todo/hw1.txt and
/home/tom/Work/Class/OS/hw1.txt as illustrated in Figure 11.3.)

   The mapping between a name and the underlying file is called a hard
link. If a system system allows multiple hard links to the same file, then the
directory hierarchy may no longer be a tree. Most file systems that allow
multiple hard links to a file restrict these links to avoid cycles, ensuring that
their directory structures form a directed acyclic graph (DAG.) Avoiding
cycles can simplify management by, for example, ensuring that recursive
traversals of a directory structure terminate or by making it straightforward to
use reference counting to garbage collect a file when the last link to it is
removed.

   In addition to hard links, many systems provide other ways to use multiple
names to refer to the same file. See the sidebar for a comparison of hard links, soft
links, symbolic links, shortcuts, and aliases.

   

	Hard links, soft links, symbolic links, shortcuts, and aliases

   A hard link is a directory mapping from a file name directly to an underlying file.
As we will see in Chapter 13, directories will be implemented by storing mappings
from file names to file numbers that uniquely identify each file. When you first create a
file (e.g., /a/b), the directory entry you create is a hard link the the new file. If you
                                                                  

                                                                  
then use link() to add another hard link to the file (e.g., link(“/a/b”, “/c/d”),) then both
names are equally valid, independent names for the same underlying file. You
could, for example, unlink(“/a/b”), and /c/d would remain a valid name for the
file.

   Many systems also support symbolic links also known as soft links. A symbolic link
is a directory mappings from a file name to another file name. If a file is opened via a
symbolic link, the file system first translates the name in the symbolic link to the
target name and then uses the target name to open the file. So, if you create /a/b ,
create a symbolic link from /c/d/ to /a/b, and then unlink /a/b, the file is no longer
accessible and open(“/c/d”) will fail.

   Although the potential for such dangling links is a disadvantage, symbolic links
have a number of advantages over hard links. First, systems usually allow symbolic
links to directories, not just regular files. Second, a symbolic link can refer to a file
stored in a different file system or volume.

   Some operating systems such as Microsoft Windows also support shortcuts,
which appear similar to symbolic links but which are interpreted by the windowing
system rather than by the file system. From the file system’s point of view, a shortcut
is just a regular file. The windowing system, however, treats shortcut files specially:
when the shortcut file is selected via the windowing system, the windowing system
opens that file, identifies the target file referenced by the shortcut, and acts as if the
target file had been selected.

   A MacOS file alias is similar to a symbolic link but with an added feature: if the
target file is moved to have a new path name, the alias can still be used to reference
the file.

   





   Volume. Each instance of a file system manages files and directories for a
volume. A volume is a collection of physical storage resources that form a logical
storage device.

   A volume is an abstraction that corresponds to a logical disk. In the simplest
case, a volume corresponds to a single physical disk drive. Alternatively, a
single physical disk can be partitioned and store multiple volumes or several
physical disks can be combined so that a single volume spans multiple physical
disks.

   A single computer can make use of multiple file systems stored on multiple
volumes by mounting multiple volumes in a single logical hierarchy. Mounting a
volume on an existing file system creates a mapping from some path in the existing
file system to the root directory of the mounted volume’s file system and
lets the mounted file system control mappings for all extensions of that
path.
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                                 [image: ]                                 	Figure 11.4:  This USB disk holds a volume that is the physical storage for a
file system.
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   For example, suppose a USB drive contains a file system with the directories
/Movies and /Backup as shown in Figure 11.4. If Alice plugs that drive into her laptop,
the laptop’s operating system might mount the USB volume’s file system with the
path /Volumes/usb1/ as shown in Figure 11.5. Then, if Alice calls open(“/Volumes/usb1/
Movies/vacation.mov”), she will open the file /Movies/vacation.mov from the file system
on the USB drive’s volume. If, instead, Bob plugs that drive into his laptop, the
laptop’s operating system might mount the volume’s file system with the path
/media/disk-1, and Bob would access the same file using the path /media/disk-1/Movies/
vacation.mov.
[bookmark: x1-11005r31]
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Creating and deleting files


	 create
 (pathName)
	Create
 a
 new
 file
 with
 the
 specified
 name.                 


	
 link
 (existingName,
 newName)
	Create
 a
 hard
 link — a
 new
 path
 name
 that
 refers
 to
 the
 same
 underlying
 file
 as
 an
 existing
 path
 name.                 


	
 unlink
 (pathName)
	Remove
 the
 specified
 name
 for
 a
 file
 from
 its
 directory;
 if
 that
 was
 the
 only
 name
 for
 the
 underlying
 file,
 then
 remove
 the
 file
 and
 free
 its
 resources.             


	
 mkdir
 (pathName)
	Create
 a
 new
 directory
 with
 the
 specified
 name.                 


	
 rmdir
 (pathName)
	Remove
 the
 directory
 with
 the
 specified
 name.                 


	      
Open and close


	 fileDescriptor
 open
 (pathName)
	Prepare
 to
 access
 to
 the
 specified
 file
 (e.g.,
 check
 access
 permissions
 and
 initialize
 kernel
 data
 structures
 for
 tracking
 per-process
 state
 of
 open
 files).                 


	
 close
 (fileDescriptor)
	Release
 resources
 associated
 with
 the
 specified
 open
 file.                   


	        
File access


	 read
 (fileDescriptor,
 buf,
 len)
	Read
 len
 bytes
 from
 the
 process’s
 current
 position
 in
 the
 open
 file
 fileDescriptor
 and
 copy
 the
 results
 to
 a
 buffer
 buf
 in
 the
 application’s
 memory.              


	
 write
 (fileDescriptor,
 len,
 buf)
	Write
 len
 bytes
 of
 data
 from
 a
 buffer
 buf
 in
 the
 process’s
 memory
 to
 the
 process’s
 current
 position
 in
 the
 open
 file
 fileDescriptor.            


	
 seek
 (fileDescriptor,
 offset)
	Change
 the
 process’s
 current
 position
 in
 the
 open
 file
 fileDescriptor
 to
 the
 specified
 offset.                  


	
 dataPtr
 mmap
 (fileDescriptor,
 off,
 len)
	Set
 up
 a
 mapping
 between
 the
 data
 in
 the
 file
 fileDescriptor
 from
 off
 to
 off
 +
 len
 and
 an
 area
 in
 the
 application’s
 virtual
 memory
 from
 dataPtr
 to
 dataPtr
 +
 len.                   


	
 munmap
 (dataPtr,
 len)
	Remove
 the
 mapping
 between
 the
 application’s
 virtual
 memory
 and
 a
 mapped
 file.                   
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   For concreteness, Figure 11.6 shows a simple file system API for accessing files
and directories.
   Creating and deleting files. Processes create and destroy files with create() and
unlink(). Create() does two things: it creates a new file that has initial metadata but no
other data, and it creates a name for that file in a directory.

   Link() creates a hard link — a new path name for an existing file. After a successful
call to link(), there are multiple path names that refer to the same underlying
file.

   Unlink() removes a name for a file from its directory. If a file has multiple names or
links, unlink() only removes the specified name, leaving the file accessible via other
names. If the specified name is the last (or only) link to a file, then unlink() also deletes
the underlying file and frees its resources.

   Mkdir() and rmdir() create and delete directories.

   EXAMPLE: Linking to files vs. linking to directories.  Systems such as Linux
support a link() system call, but they do not allow new hard links to be created to a
directory. E.g., existingPath must not be a directory. Why does Linux mandate this
restriction?

   ANSWER:  Preventing multiple hard links to a directory prevents cycles,
ensuring that the directory structure is always a directed acyclic graph (DAG).

   Additionally, allowing hard links to a directory would muddle a directory’s
parent directory entry (e.g., “..” as discussed in the sidebar).
                                                                □

   Open and close. To start accessing a file, a process calls open() to get a file
descriptor it can use to refer to the open file. File descriptor is Unix terminology; in
other systems the descriptor may be called a file handle or a file stream.

   Operating systems require processes to explicitly open() files and access them via
file descriptors rather than simply passing the path name to read() and write() calls
for two reasons. First, path parsing and permission checking can be done
just when a file is opened and need not be repeated on each read or write.
Second, when a process opens a file, the operating system creates a data
structure that stores information about the process’s open file such as the file’s
ID, whether the process can write or just read the file, and a pointer to the
process’s current position within the file. The file descriptor can thus be
thought of as a reference to the operating system’s per-open-file data structure
that the operating system will use for managing the process’s access to the
file.

   When an application is done using a file, it calls close(), which releases the open
file record in the operating system.

   File access. While a file is open, an application can access the file’s data in two
ways. First, it can use the traditional procedural interface, making system calls to
read() and write() on an open file. Calls to read() and write() start from the
process’s current file position, and they advance the current file position by the
number of bytes successfully read or written. So, a sequence of read() or write()
                                                                  

                                                                  
calls moves sequentially through a file. To support random access within a
file, the seek() call changes a process’s current position for a specified open
file.

   Rather than using read() and write() to access a file’s data, an application can use
mmap() to establish a mapping between a region of the process’s virtual memory and
some region of the file. Once a file has been mapped, memory loads and stores to
that virtual memory region will read and write the file’s data either by accessing a
shared page from the kernel’s file cache, or by triggering a page fault exception that
causes the kernel to fetch the desired page of data from the file system into memory.
When an application is done with a file, it can call munmap() to remove the
mappings.

   Finally, the fsync() call is important for reliability. When an application updates a
file via a write() or a memory store to a mapped file, the updates are buffered in
memory and written back to stable storage at some future time. Fsync() ensures that
all pending updates for a file are written to persistent storage before the
call returns. Applications use this function for two purposes. First, calling
fsync() ensures that updates are durable and will not be lost if there is a
crash or power failure. Second, calling fsync() between two updates ensures
that the first is written to persistent storage before the second. Note that
calling fsync() is not always necessary; the operating system ensures that all
updates are made durable by periodically flushing all dirty file blocks to stable
storage.

   

	Modern file access APIs

   The API shown in Figure 11.6 is similar to most widely used file access APIs, but
it is somewhat simplified.

   For example, each of the listed calls is similar to a call provided by the POSIX
interface, but the API shown in Figure 11.6 omits some arguments and
options found in POSIX. The POSIX open() call, for example, includes two
additional arguments one to specify various flags such as whether the file should
be opened in read-only or read-write mode and the other to specify the
access control permissions that should be used if the open() call creates a new
file.

   In addition, real-world file access APIs are likely to have a number of additional
calls. For example, the Microsoft Windows file access API includes dozens of calls
including calls to lock and unlock a file, to encrypt and decrypt a file, or to find a file
in a directory whose name matches a specific pattern.
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[bookmark: x1-130003]11.3 Software Layers
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	Figure 11.7:    Layered  abstractions  provide  access  to  I/O  systems  such  as
storage systems.
 



                                                                  

                                                                  
   

   As shown in Figure 11.7, operating systems implement the file system
abstraction through a series of software layers. Broadly speaking, these layers have
two sets of tasks:
     
     	
     API  and  performance.  The  top  levels  of  the  software  stack — user-level
     libraries, kernel-level file systems, and the kernel’s block cache — provide
     a convenient API for accessing named files and also work to minimize
     slow storage accesses via caching, write buffering, and prefetching.
     


     	
     Device access. Lower levels of the software stack provide ways for the
     operating system to access a wide range of I/O devices. Device drivers
     hide the details of specific I/O hardware by providing hardware-specific
     code  for  each  device,  and  placing  that  code  behind  a  simpler,  more
     general interfaces that the rest of the operating system can use such as a
     block device interface. The device drivers execute as normal kernel-level
     code,  using  the  systems’  main  processors  and  memory,  but  they  must
     interact  with  the  I/O  devices.  A  system’s  processors  and  memory
     communicate with its I/O devices using Memory-Mapped I/O, DMA,
     and Interrupts.


     


   In the rest of this section, we first talk about the file system API and performance
layers. We then discuss device access.
[bookmark: x1-13002r1]


11.3.1 [bookmark: x1-140001]API and Performance

   The top levels of the file system software stack — divided between application
libraries and operating system kernel code — provide the file system API and also
provide caching and write buffering to improve performance.
   System calls and libraries. The file system abstraction such as the API shown in
Figure 11.6 can be provided directly by system calls. Alternatively, application
libraries can wrap the system calls to add additional functionality such as
buffering.

   For example, in Linux, applications can access files directly using system calls
(e.g., open(), read(), write(), and close().) Alternatively, applications can use the stdio
library calls (e.g., fopen(), fread(), fwrite(), and fclose()). The advantage of the latter is
                                                                  

                                                                  
that the library includes buffers to aggregate a program’s small reads and writes
into system calls that access larger blocks, which can reduce overheads. For
example, if a program uses the library function fread() to read 1 byte of data, the
fread() implementation may use the read() system call to read a larger block of
data (e.g., 4 KB) into a buffer maintained by the library in the application’s
address space. Then, if the process calls fread() again to read another byte, the
library just returns the byte from the buffer without needing to do a system
call.

   Block cache. Typical storage devices are much slower than a computer’s main
memory. The operating system’s block cache therefore caches recently read blocks,
and it buffers recently written blocks so that they can be written back to the storage
device at a later time.

   In addition to improving performance by caching and write buffering, the block
cache serves as a synchronization point: because all requests for a given block go
through the block cache, the operating system includes information with each
buffer cache entry to, for example, prevent one process from reading a block
while another process writes it or to ensure that a given block is only fetched
from the storage device once, even if it is simultaneously read by many
processes.

   Prefetching. Operating systems use prefetching to improve I/O performance.
For example, if a process reads the first two blocks of a file, the operating system
may prefetch the next ten blocks.

   Such prefetching can have several beneficial effects:


     
     	
     Reduced  latency.  When  predictions  are  accurate,  prefetching  can  help
     the latency of future requests because reads can be serviced from main
     memory rather than from slower storage devices.
     


     	
     Reduced  device  overhead.  Prefetching  can  help  reduce  storage  device
     overheads by replacing a large number of small requests with one large
     one.
     


     	
     Improved parallelism. Some storage devices such as Redundant Arrays of
     Inexpensive Disks (RAIDs) and Flash drives are able to process multiple
     requests  at  once,  in  parallel.  Prefetching  provides  a  way  for  operating
     systems to take advantage of available hardware parallelism.



   Prefetching, however, must be used with care. Too-aggressive prefetching can
                                                                  

                                                                  
cause problems: 

     
     	
     Cache pressure. Each prefetched block is stored in the block cache, and it
     may displace another block from the cache. If the evicted block is needed
     before  the  prefetched  one  is  used,  prefetching  is  likely  to  hurt  overall
     performance.
     


     	
     I/O contention. Prefetch requests consume I/O resources. If other requests
     have  to  wait  behind  prefetch  requests,  prefetching  may  hurt  overall
     performance.
     


     	
     Wasted  effort.  Prefetching  is  speculative.  If  the  prefetched  blocks  end
     up  being  needed,  then  prefetching  can  help  performance;  otherwise,
     prefetching  may  hurt  overall  performance  by  wasting  memory  space,
     I/O device bandwidth, and CPU cycles.


     


[bookmark: x1-14001r40]
11.3.2 [bookmark: x1-150002]Device Drivers: Common Abstractions

   Device drivers translate between the high level abstractions implemented by the
operating system and the hardware-specific details of I/O devices.
   An operating system may have to deal with many different I/O devices. For
example, a laptop on a desk might be connected to two keyboards (one internal and
one external), a trackpad, a mouse, a wired ethernet, a wireless 802.11 network, a
wireless bluetooth network, two disk drives (one internal and one external), a
microphone, a speaker, a camera, a printer, a scanner, and a USB thumb drive. And
that is just a handful of the literally thousands of devices that could be attached to a
computer today. Building an operating system that treats each case separately would
be impossibly complex.

   Layering helps simplify operating systems by providing common ways to access
various classes of devices. For example, for any given operating system, storage
device drivers typically implement a standard block device interface that
allows data to be read or written in fixed-sized blocks (e.g., 512, 2048, or 4096
bytes).

   Such a standard interface lets an operating system easily use a wide range of
similar devices. A file system implemented to run on top of the standard block
device interface can store files on any storage device whose driver implements that
                                                                  

                                                                  
interface, be it a Seagate spinning disk drive, an Intel solid state drive, a
Western Digital RAID, or an Amazon Elastic Block Store volume. These devices
all have different internal organizations and control registers, but if each
manufacturer provides a device driver that exports the standard interface, the rest of
the operating system does not need to be concerned with these per-device
details.

   

	Challenge: device driver reliability

   Because device drivers are hardware-specific, they are often written and updated
by the hardware manufacturer rather than the operating system’s main authors.
Furthermore, because there are large numbers of devices — some operating systems
support tens of thousands of devices — device driver code may represent a large
fraction of an operating system’s code.

   Unfortunately, bugs in device drivers have the potential to affect more than the
device. A device driver usually runs as part of the operating system kernel since
kernel routines depend on it and because it needs to access the hardware of its
device. However, if the device driver is part of the kernel, then a device driver’s bugs
have the potential to affect the overall reliability of a system. For example, in 2003 it
was reported that drivers caused about 85% of failures in the Windows XP operating
system.

   To improve reliability, operating systems are increasingly using protection
techniques similar to those used to isolate user-level programs to isolate device
drivers from the kernel and from each other.

   





[bookmark: x1-15001r41]

11.3.3 [bookmark: x1-160003]Device Access

   How should an operating system’s device drivers communicate with and control
a storage device? At first blush, a storage device seems very different from the
memory and CPU resources we have discussed so far. For example, a disk drive
includes several motors, a sensor for reading data, and an electromagnet for writing
data.
   Memory-mapped I/O. As Figure 11.8 illustrates, I/O devices are typically
connected to an I/O bus that is connected to the system’s memory bus. Each I/O
device has controller with a set of registers that can be written and read to transmit
commands and data to and from the device. For example, a simple keyboard
controller might have one register that can be read to learn the most recent key
pressed and another register than can be written to turn the caps-lock light on or
off.
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                                 [image: ]                                 	Figure 11.8:  I/O devices are attached to the I/O bus, which is attached to the
memory bus.
 


                                                                  

                                                                  
   

   To allow I/O control registers to be read and written, systems implement
memory-mapped I/O. Memory-mapped I/O maps each device’s control registers to a
range of physical addresses on the memory bus. Reads and writes by the CPU to this
physical address range do not go to main memory. Instead, they go to registers on
the I/O devices’s controllers. Thus, the operating system’s keyboard device driver
might learn the value of the last key pressed by reading from physical address, say,
0xC00002000.
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                                 [image: ]                                 	Figure 11.9:  Physical address map for a system with 2 GB of DRAM and 3
memory-mapped I/O devices.
 


                                                                  

                                                                  
   

   The hardware maps different devices to different physical address ranges.
Figure 11.9 shows the physical address map for a hypothetical system with a 32 bit
physical address space capable of addressing 4 GB of physical memory. This system
has 2 GB of DRAM in it, consuming physical addresses 0x00000000 (0) to
0x7FFFFFFF (231 - 1). Controllers for each of its three I/O devices are mapped
to ranges of addresses in the first few kilobytes above 3 GB. For example,
physical addresses from 0xC0001000 to 0xC0001FFF access registers in the disk
controller.

   

	Port mapped I/O

   Today, memory-mapped I/O is the dominant paradigm for accessing I/O
device’s control registers. However an older style, port mapped I/O, is still sometimes
used. Notably, the x86 architecture supports both memory-mapped I/O and port
mapped I/O.

   Port mapped I/O is similar to memory-mapped I/O in that instructions read
from and write to specified addresses to control I/O devices. There are two
differences. First, where memory-mapped I/O uses standard memory-access
instructions (e.g., load and store) to communicate with devices, port mapped I/O
uses distinct I/O instructions. For example, the x86 architecture uses the in and out
instructions for port mapped I/O. Second, whereas memory-mapped I/O uses the
same physical address space as is used for the system’s main memory, the
address space for port mapped I/O is distinct from the main memory address
space.

   For example, in x86 I/O can be done using either memory-mapped or port
mapped I/O, and the low-level assembly code is similar for both cases:
                                                                  

                                                                  
  
   
 
Memory
 mapped
 I/O
 

 MOV register, memAddr // To read
 MOV memAddr, register // To write
 

 Port
 mapped
 I/O
 
 IN register, portAddr  // To read
 OUT portAddr, register // To write
 

   


   Port mapped I/O can be useful in architectures with constrained physical
memory addresses since I/O devices do not need to consume ranges of physical
memory addresses. On the other hand, for systems with sufficiently large physical
address spaces, memory-mapped I/O can be simpler since no new instructions or
address ranges need to be defined and since device drivers can use any standard
memory access instructions to access devices. Also, memory-mapped I/O provides a
more unified model for supporting DMA — direct transfers between I/O devices
and main memory.

   





   DMA. Many I/O devices, including most storage devices, transfer data in bulk.
For example, operating systems don’t read a word or two from disk, they usually do
transfers of at least a few kilobytes at a time. Rather than requiring the CPU
to read or write each word of a large transfer, I/O devices can use direct
memory access. When using direct memory access (DMA), the I/O device copies
a block of data between its own internal memory and the system’s main
memory.

   To set up a DMA transfer, a simple operating system could use memory-mapped
I/O to provide a target physical address, transfer length, and operation code to the
device. Then, the device copies data to or from the target address without requiring
additional processor involvement.

   After setting up a DMA transfer, the operating system must not use the target
                                                                  

                                                                  
physical pages for any other purpose until the DMA transfer is done. The operating
system therefore “pins” the target pages in memory so that they cannot
be reused until they are unpinned. For example, a pinned physical page
cannot be swapped out to disk and then remapped to some other virtual
address.

   

	Advanced DMA

   Although a setting up a device’s DMA can be as simple as providing a target
physical address and length and then saying “go!”, more sophisticated interfaces are
increasingly used.

   For example rather than giving devices direct access to the machine’s
physical address space, some systems include an I/O memory management
unit (IOMMU) that translates device virtual addresses to main memory
physical addresses similar to how a processor’s TLB translates processor virtual
addresses to main memory physical addresses. An IOMMU can provide both
protection (e.g., preventing a buggy IO device from overwriting arbitrary
memory) and simpler abstractions (e.g., allowing devices to use virtual
addresses so that, for example, a long transfer can be made to a range of
consecutive virtual pages rather than a collection of physical pages scattered across
memory.)

   Also, some devices add a level of indirection so that they can interrupt the CPU
less often. For example, rather than using memory mapped I/O to set up each DMA
request, the CPU and I/O device could share two lists in memory: one list of
pending I/O requests and another of completed I/O requests. Then, the CPU could
set up dozens of disk requests and only be interrupted when all of them are
done.

   Sophisticated I/O devices can even be configured to take different actions
depending the data they receive. For example, some high performance network
interfaces parse incoming packets and direct interrupts to different processors based
on the network connection to which a received packet belongs.

   





   Interrupts. The operating system needs to know when I/O devices have
completed handling a request or when new external input arrives. One option is
polling, repeatedly using memory-mapped I/O to read a status register on the
device. Because I/O devices are often much slower than CPUs and because inputs
received by I/O devices may arrive at irregular rates, it us usually better for
I/O devices to use an interrupt to notify the operating system of important
events.
[bookmark: x1-16003r42]


11.3.4 [bookmark: x1-170004]Putting It All Together: A Simple Disk Request

   When a process issues a system call like read() to read data from disk into the
process’s memory, the operating system moves the calling thread to a wait queue.
                                                                  

                                                                  
Then, the operating system uses memory-mapped I/O both to tell the disk to read
the requested data and to set up DMA so that the disk can place that data in the
kernel’s memory. The disk then reads the data and DMAs it into main memory; once
that is done, the disk triggers an interrupt. The operating system’s interrupt handler
then copies the data from the kernel’s buffer into the process’s address space. Finally,
the operating system moves the thread the ready list. When the thread next runs, it
will returns from the system call with the data now present in the specified
buffer.
[bookmark: x1-17001r38]
[bookmark: x1-180004]11.4 Summary and Future Directions

   The file system interface is a stable one, and small variations of interface
described here can be found in many operating systems and for many storage
devices.
   Yet, the file system abstraction is imperfect, and application writers need to
use it carefully to get acceptable performance and reliability. For example,
if an application write()s a file, the update may not be durable when the
write() call returns; application writers often call fsync() to ensure durability of
data.

   Could better file system APIs simplify programming? For example, if file systems
allowed users to update multiple objects atomically, that might simplify many
applications that currently must carefully constrain the order that their updates are
stored using crude techniques such as using fsync as a barrier between one set of
updates and the next.

   Could better file system APIs improve performance? For example, one proposed
interface allows an application to direct the operating system to transfer a range of
bytes from a file to a network connection. Such an interface might, for example,
reduce overheads for a movie server that streams movies across a network to
clients.
[bookmark: Q1-1-47]
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[bookmark: x1-190004]
Exercises



   
	 Discussion Suppose a process successfully opens an existing file that has a
single hard link to it, but while the process is reading that file, another process
unlinks that file. What should happen to subsequent reads by the first process?
Should they succeed? Should they fail? Why?
   


   
	 In Linux, suppose a process successfully opens an existing file that has
a single hard link to it, but while the process is reading that file, another
process unlinks that file? What happens to subsequent reads by the first
process? Do they succeed? Do they fail? (Answer this problem by consulting
                                                                  

                                                                  
documentation or by writing a program to test the behavior of the system in this
case.)


   
	 Write a program that creates a new file, writes 100KB to it, flushes the writes, and
deletes it. Time how long each of these steps takes.
    Hint You may find the POSIX system calls creat(), write(), fflush(), close(),
and gettimeofday() useful. See the manual pages for details on how to use
these.

   


   
	 Consider a text editor that saves a file whenever you click a save button.
Suppose that when you press the button, the editor simply (1) animates the button
“down” event (e.g., by coloring the button grey), (2) uses the write() system call to
write your text to your file, and then (3) animates the button “up” event (e.g., by
coloring the button white). What bad thing could happen if a user edits a file, saves
it, and then turns off her machine by flipping the power switch (rather than shutting
the machine down cleanly)?
   


   
	 Write a program that times how long it takes to issue 100,000 one-byte writes in
each of two ways. First, time how long it takes to use the POSIX system calls creat(),
write(), and close() directly. Then see how long these writes take if the program uses
the stdio library calls (e.g., fopen(), fwrite(), and fclose()) instead. Explain your
results.
   





                                                                  

                                                                  

   




[bookmark: x1-2000012]12. Storage Devices
   Treat disks like tape. —John Ousterhout 

   	
   
	 







   Although today’s persistent storage devices have large capacity and
low cost, they have drastically worse performance than volatile DRAM
memory.

   Not only that, but the characteristics are different and are peculiar to specific
persistent storage devices. For example, although programs can access random
individual words of DRAM with good performance, programs can only access
today’s disk and flash storage devices hundreds or thousands of bytes at a time.
Furthermore, even if an application restricts itself to supported access sizes (e.g.,
2 KB per read or write), if the application access pattern is random, the application
may be slower by a factor of several hundred than if the application accessed the
same amount of data sequentially.

   To cope with the limitations and to maximize the performance of storage devices,
both file system designers and application writers need to understand the physical
characteristics of persistent storage devices.

   Chapter roadmap. This chapter discusses two types of persistent storage:
magnetic disks and flash memory. Both are widely used. Magnetic disks provide
persistent storage for most servers, workstations, and laptops. Flash memory
provides persistent storage for most smart phones, tablets, and cameras and for an
increasing fraction of laptops.
[bookmark: x1-20001r46]


[bookmark: x1-210001]12.1 Magnetic Disk
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                                 [image: ]                                 	Figure 12.1:  A partially-disassembled magnetic disk drive.
 


                                                                  

                                                                  
   

   Magnetic disk is a non-volatile storage technology that is widely used in
laptops, desktops, and servers. Disk drives work by magnetically storing
data on a thin metallic film bonded to a glass, ceramic, or aluminum disk
that rotates rapidly. Figure 12.1 shows a disk drive without its protective
cover, and Figure 12.2 shows a schematic of a disk drive, identifying key
components.
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                                 [image: ]                                 	Figure 12.2:  Key components of a magnetic disk drive.
 


                                                                  

                                                                  
   

   Each drive holds one or more platters, thin round plates that hold the magnetic
material. Each platter has two surfaces, one on each side. When the drive powers
up, the platters are constantly spinning on a spindle powered by a motor.
In 2011, disks commonly spin at 4200–15000 RPM (70–250 revolutions per
second.)

   A disk head is the component that reads and writes data by sensing or
introducing a magnetic field on a surface. There is one head per surface, and as a
surface spins underneath a head, the head reads or writes a sequence of bits along a
circle centered on the disk’s spindle. As a disk platters spins, it creates a layer of
rapidly spinning air, and the disk head floats on that layer, allowing the head to get
extremely close to the platter without contacting it. A head crash occurs when the disk
head breaks through this layer with enough force to damage the magnetic surface
below; head crashes can be caused by excessive shock such as dropping a running
drive.

   To reach the full surface, each disk head attaches to an arm, and all of a disk’s
arms attach to a single arm assembly that includes a motor that can move the arms
across the surfaces of the platters. Note that an assembly has just one motor, and all
of its arms move together.

   Data bits are stored in fixed-size sectors; typically, sectors are 512 bytes. The disk
hardware cannot read or write individual bytes or words; instead, it must
always read or write at least an entire sector. This means that to change one
byte in a sector, the operating system must read the old sector, update the
byte in memory, and rewrite the entire sector to disk. One reason for this
restriction is that the disk encodes each sector with additional error correction
code data, allowing it to fix (or at least detect) imperfectly read or written
data, which, in turn allows higher density storage and higher bandwidth
operation.

   A circle of sectors on a surface is called a track. The disk can read or write all of
the data on a track without having to move the disk arm, so reading or writing a
sequence of sectors on the same track is much faster than reading or writing sectors
on different tracks.

   To maximize sequential access speed, logical sector zero on each track is
staggered from sector zero on the previous track by an amount corresponding to
time it takes the disk to move the head from one track to another or to switch from
the head on one surface to the head on another one. This staggering is called track
skewing.

   To increase storage density and disk capacity, disk manufacturers make tracks
and sectors as thin and small as possible. If there are imperfections in a sector, then
that sector may be unable to reliably store data. Manufacturers therefore include
spare sectors distributed across each surface. The disk firmware or the file system’s
low-level formatting can then use sector sparing to remap sectors to use spare
sectors instead of faulty sectors. Slip sparing helps retain good sequential
access performance by remapping all sectors from the bad sector to the next
                                                                  

                                                                  
spare, advancing each logical sector in that range by one physical sector on
disk.

   Disk drives often include a few MB of buffer memory, memory that the disk’s
controller uses to buffer data being read from or written to the disk, for track
buffering, and for write acceleration.

   Track buffering improves performance by storing sectors that have been
read by the disk head but have not yet been requested by the operating
system. In particular, when a disk head moves to a track, it may have to
wait for the sector it needs to access to rotate under the disk head. While
the disk is waiting, it reads unrequested sectors to its rack buffer so that
if the operating system requests those sectors later, they can be returned
immediately.

   Write acceleration stores data to be written to disk in the disk’s buffer memory and
acknowledges the writes to the operating system before the data is actually written
to the platter; the disk firmware flushes the writes from the track buffer to the platter
at some later time. This technique can significantly increase the apparent speed of
the disk, but it carries risks — if power is lost before buffered data is safely stored,
then data might be lost.

   Server drives implementing the SCSI or Fibre Channel interfaces and increasing
numbers of commodity drives with the Serial ATA (SATA) interface implement a
safer form of write acceleration with tagged command queueing (TCQ) (also called
native command queueing (NCQ) for SATA drives.) TCQ allows an operating
system to issue multiple concurrent requests to the disk and for the disk to
process those requests out of order to optimize scheduling, and it can be
configured to only acknowledge write requests when the blocks are safely on the
platter.
[bookmark: x1-21003r45]


12.1.1 [bookmark: x1-220001]Disk Access and Performance

   Operating systems send commands to a disk to read or write one or more
consecutive sectors. A disk’s sectors are identified with logical block addresses (LBAs)
that specify the surface, track, and sector to be accessed.
   To service a request for a sequence of blocks starting at some sector, the disk
must first seek to the right track, wait for the first desired sector to rotate to
the head, and then transfer the blocks. Therefore, the time for a disk access
is:

   
 

	
 	  disk access time  
	              =  
	              seek time + rotation time + transfer time  








   

                                                                  

                                                                  
     
     	
     Seek. The disk must first seek — move its arm over the desired track. To
     seek,  the  disk  first  activates  a  motor  that  moves  the  arm  assembly  to
     approximately the right place on disk. Then, as arm stops vibrating from
     the motion of the seek, the disk begins reading positioning information
     embedded in the sectors to determine exactly where it is and to make
     fine-grained positioning corrections to settle on the desired track. Once
     the head has settled on the right track, the disk uses signal strength and
     positioning information to make minute corrections in the arm position
     to keep the head over the desired track.
     
A request’s seek time depends on how far the disk arm has to move.
     
A disk’s minimum seek time is the time it takes for the head to move from
     one track to an adjacent one. For short seeks, disks typically just “resettle”
     the head on the new track by updating the target track number in the
     track-following circuitry. Minimum seek times of 0.3–1.5 ms are typical.
     
If a disk is reading the tth track on one surface, its head switch time is the
     time it would take to begin reading the tth track on a different surface.
     Tracks can be less than a micron wide and tracks on different surfaces
     are not perfectly aligned. So, a head switch between the same tracks on
     different surfaces has a cost similar to a minimum seek: the disk begins
     using the sensor on a different head and then resettles the disk on the
     desired track for that surface.
     
A disk’s maximum seek time is the time it takes the head to move from the
     innermost track to the outermost one or vice versa. Maximum seek times
     are typically over 10 ms and can be over 20 ms.
     
A  disk’s  average  seek  time  is  the  average  across  seeks  between  each
     possible pair of tracks on a disk. This value is often approximated as the
     time to seek one third of the way across the disk.
     


	Beware of “average seek time”
     
Although the name average seek time makes it tempting to use this metric when
     estimating the time it will take a disk to complete a particular workload, it is
     often the wrong metric to use. Average seek time — the average across seeks
     between each possible pair of tracks on disk — was defined this way to make it
     a well-defined, standard metric, not because it is representative of common
     workloads.
     
The definition of average seek time essentially assumes no locality in a
     workload, so it is very nearly a worst-case scenario. Many workloads
     access sectors that are likely to be near one another; for example, most
     operating systems attempt to place files sequentially on disk and to place
     different files in a directory on the same track or on tracks near one
                                                                  

                                                                  
     another. For these (common) workloads, the seek times observed may
     be closer to the disk’s minimum seek time than its “average” seek
     time.
     






     

	The demise of the cylinder
     
A cylinder on a disk is a set of tracks on different surfaces with the same track
     index. For example, on a 2-platter drive, the 8th tracks on surfaces 0, 1, 2, and 3
     would form the 8th cylinder of the drive.
     
Some early file systems put related data on different surfaces but in the
     same cylinder. The idea was that data from the different tracks in the
     cylinder could be read without a requiring a seek. Once a cylinder was
     full, the file system would start placing data in one of the adjacent
     cylinders.
     
As disk densities have increased, the importance of the cylinder has declined.
     Today, a disk’s tracks can be less than a micron wide. To follow a track at these
     densities, a controller monitors the signals from a disk’s head to control
     the disk arm assembly’s motor to keep the head centered on a track.
     Furthermore, at these densities, the tracks of a cylinder may not be
     perfectly aligned. As a result, when a disk switches disk heads, the new
     head must center itself over the desired track. So, switching heads
     within a cylinder ends up being similar to a short 1-track seek: the
     controller chooses the new cylinder/track and the disk head settles
     over the target track. Today, accessing different tracks within the same
     cylinder costs about the same as accessing adjoining tracks on the same
     platter.
     






     

     	
     Rotate. Once the disk head has settled on the right track, it must wait for the
     target sector to rotate under it. This waiting time is called the rotational latency.
     Today, most disks rotate at 4200 RPM to 15,000 RPM (15 ms to 4 ms per
     rotation), and for many workloads a reasonable estimate of rotational latency is
     one-half the time for a full rotation — 7.5 ms–2 ms.
     
Once a disk head has settled on a new track, most disks immediately begin
     reading sectors into their buffer memory, regardless of which sectors have been
     requested. This way, if there is a request for one of the sectors that have already
     passed under the disk head, the data can be transferred immediately, rather
     than having to delay the request for nearly a full rotation to reread the
     data.
     


     	
                                                                  

                                                                  
     Transfer. Once the disk head reaches a desired sector, the disk must transfer the
     data from the sector to its buffer memory (for reads) or vice versa (for writes)
     as the sectors rotate underneath the head. Then, for reads, it must transfer the
     data from its buffer memory to the host’s main memory. For writes, the order
     of the transfers is reversed.
     
To amortize seek and rotation time, disk requests are often for multiple
     sequential sectors. The time to transfer one or more sequential sectors from (or
     to) a surface once the disk head begins reading (or writing) the first sector is
     the surface transfer time.
     
On a modern disk, the surface transfer time for a single sector is much smaller
     than the seek time or rotational latency. For example, disk bandwidths often
     exceed 100 MB/s, so the surface transfer time for a 512-byte sector is often
     under 5 microseconds (0.005 ms).
     
Because a disk’s outer tracks have room for more sectors than its inner
     tracks and because a given disk spins at a constant rate, the surface
     transfer bandwidth is often higher for the outer tracks than the inner
     tracks.
     
For a disk read, once sectors have been transferred to the disk’s buffer memory,
     they must be transferred to the host’s memory over some connection such as
     SATA (serial ATA), SAS (serial attached SCSI), Fibre Channel, or USB
     (universal serial bus). For writes, the transfer goes in the other direction. The
     time to transfer data between the host’s memory and the disk’s buffer is the
     host transfer time. Typical bandwidths range from 60 MB/s for USB 2.0 to
     2500 MB/s for Fibre Channel-20GFC.
     
For multi-sector reads, disks pipeline transfers between the surface and disk
     buffer memory and between buffer memory and host memory; so for large
     transfers, the total transfer time will be dominated by whichever of these is the
     bottleneck. Similarly, for writes, disks overlap the host transfer with the seek,
     rotation, and surface transfer; again, the total transfer time will be dominated
     by whichever is the bottleneck.


     


[bookmark: x1-22001r54]
12.1.2 [bookmark: x1-230002]Case Study: Toshiba MK3254GSY

   Figure 12.3 shows some key parameters for a recent 2.5-inch disk drive for
laptop computers.
                                                                  

                                                                  
[bookmark: x1-230013]
   

                                                                  

                                                                  
 	                                           
Size


	  Platters/Heads                              
	  2/4                          


	  Capacity                                          
	  320 GB                    


	                                    
Performance


	  Spindle speed                                
	  7200 RPM               


	  Average seek time read/write    
	  10.5 ms / 12.0 ms  


	  Maximum seek time                     
	  19 ms                       

	 Track-to-track seek time 
 	 1 ms


	  Transfer rate (surface to buffer)  
	  54–128 MB/s          


	  Transfer rate (buffer to host)        
	  375 MB/s                


	  Buffer memory                              
	  16 MB                      


	                                          
Power


	  Typical                                            
	  16.35 W                   


	  Idle                                                  
	  11.68 W                   

	 




	Figure 12.3:  Hardware specifications for a laptop disk (Toshiba MK3254GSY)
manufactured in 2008. 
 



                                                                  

                                                                  
   

   This disk stores 320 GB of data on two platters, so it stores 80 GB per surface. The
platters spin at 7200 revolutions per minute, which is 8.3 ms per revolution; since
each platter’s diameter is about 6.3 cm, the outer edge of each platter is moving at
about 85 km/hour!

   The disk’s data sheet indicates an average seek time for the drive of 10.5 ms for
reads and 12.0 ms for writes. The seek time for reads and writes differs because the
disk starts attempting to read data before the disk arm has completely settled, but it
must wait a bit longer before it is safe to write.

   When transferring long runs of contiguous sectors, the disk’s bandwidth is
54-128 MB/s. The bandwidth is expressed as a range because the disk’s
outer tracks have more sectors than its inner tracks, so when the disk is
accessing data on its outer tracks, sectors sweep past the disk head at a higher
rate.

   Once the data is transferred off the platter, the disk can send it to the
main memory of the computer at up to 375 MB/s via a SATA (Serial ATA)
interface.

   Random vs. sequential performance. Given seek and rotational times measured
in milliseconds, small accesses to random sectors on disk are much slower than
large, sequential accesses.

   EXAMPLE: Random access workload.  For the disk described in Figure 12.3,
consider a workload consisting of 500 read requests, each of a randomly chosen
sector on disk, assuming requests are serviced in FIFO order. How long will
servicing these requests take?

   ANSWER:   Disk access time is seek time + rotation time + transfer time.

   Seek time. Each request requires a seek from a random starting track to a random
ending track, so the disk’s average seek time of 10.5 ms is a good estimate of the cost
of each seek.

   Rotation time. Once the disk head settles on the right track, it must wait for the
desired sector to rotate under it. Since there is no reason to expect the desired sector
to be particularly near or far from the disk head when it settles, a reasonable estimate
for rotation time is 4.15 ms, one half of the time that it takes a 7200 RPM disk to
rotate once.

   Transfer time. The disk’s surface bandwidth is at least 54 MB/s, so transferring 512
bytes takes at most 9.5 μS (0.0095 ms).

   Total time. 10.5 + 4.15 + .0095 = 14.66 ms per request, so  500 requests will take
about 7.33 seconds.
                                                                □

   EXAMPLE: Sequential access workload.  For the disk described in Figure 12.3,
consider a workload consisting of a read request for 500 sequential sectors on the
same track. How long will servicing these requests take?

   ANSWER:   Disk access time is seek time + rotation time + transfer time.

   Seek time. Since we do not know which track we are starting with or which track
we are reading from, we use the average seek time, 10.5 ms, as an estimate for the
                                                                  

                                                                  
seek time.

   Rotation time. Since we don’t know the position of the disk when the request is
issued, a simple and reasonable estimate for the time for the first desired block to
rotate to the disk head is 4.15 ms, one half of the time that it takes a 7200 RPM disk to
rotate once.

   Transfer time. A simple estimate is that 500 sectors can be transferred in 4.8 to
2.0 ms, depending on whether they are on the inner or outer tracks.

   
 

	
 	  500 sectors × 512 bytes/sector   
	                   
	                           


	  × 1 / (54 ×106 bytes/second)    
	              =  
	              4.8 ms  

	 
 	    
 	   


	  500 sectors × 512 bytes/sector   
	                   
	                           


	  × 1 / (128 ×106 bytes/second)  
	              =  
	              2 ms     








   



   (Too) simple answer. These three estimates give us a range from

   
 

	
 	  10.5 + 4.15 + 2     
	              =  
	              16.7 ms  

	 
 	    
 	   

	 10.5 + 4.15 + 4.8 
 	    = 
 	    19.5 ms








   

   More precise answer. However, this simple answer ignores the track buffer. Since
the transfer time is a large fraction of the rotation time (about 1/4 to 1/2 of the time
for a full rotation), we know that the request covers a significant fraction of a track.
This means that there is a good chance that after the seek and settle time, the disk
head will be in the middle of the region to be read. In this case, the disk will
immediately read some of the track into the track buffer; then it will wait for the
first track to rotate around; then it will read the remainder of the desired
data.

   We can estimate that for the outer track, there is a one in four chance that the
initial seek and settle will finish while the head is within the desired range of sectors,
and that when that happens, we read an average of 1∕8th of the desired data before
we arrive at the first desired sector. So, for the outer track, this overlap will save us
1∕4 × 1∕8 = 1∕32 of a rotation for the average transfer. This effect slightly reduces the
average access time: 16.7 ms - (1∕32) × 8.3 ms = 16.4 ms.

   Similarly, for the inner tracks, there is about a one in two chance that the initial
seek will settle in the middle of the desired data, saving on average 1∕2 × 1∕4 = 1∕8.
This reduces the average access time: 19.5 ms - (1∕8) × 8.3 ms = 18.5 ms.

   So, we estimate that  such an access would take between 16.4 ms and
18.5 ms.
                                                                  

                                                                  
                                                                □

   Notice that the sequential workload takes vastly less time than the random
workload (less than 20 milliseconds vs. 5.5 seconds). This orders of magnitude
disparity between sequential and random access performance influences many
aspects of file system design and use.

   Still, even for a 500 sector request, a non-trivial amount of the access time is spent
seeking and rotating rather than transferring.

   EXAMPLE: Effective bandwidth.  For the transfer of 500 sequential sectors
examined in the previous example, what fraction of the disk’s surface bandwidth is
realized?

   ANSWER:  The effective bandwidth ranges from

   
 

	
 	  500 sectors × 512 bytes/sector × (1/18.5 ms)  
	              =  
	              13.8 MB/s  

	 
 	    
 	   


	  500 sectors × 512 bytes/sector × (1/16.4 ms)  
	              =  
	              15.6 MB/s  

	 








   

   This gives us a range of 13.8 MB/s / 54 MB/s  =  26%  to 15.6 MB/s / 128 MB/s  =  12%
of the maximum bandwidth from the inner to the outer tracks.                         □

So, even a fairly large request (500 sectors or 250 KB in this case) can incur significant
overheads from seek and rotational latency.

   EXAMPLE: Efficient access.  For the disk described in Figure 12.3, how large
must a request that begins on a random disk sector be to ensure that the disk gets at
least 80% of its advertised maximum surface transfer bandwidth?

   ANSWER:  When reading a long sequence of logically sequential blocks, the disk
will read an entire track, then do a 1 track seek (or a head switch and resettle, which
amounts to the same thing) and then read the next track. Notice that track buffering
allows the disk to read an entire track in one rotation regardless of which sector the
head is over when it settles on the track and starts successfully reading. So, for the
outer tracks, it reads for one rotation (8.4 ms) and then does a minimum seek
(1 ms).

   Thus, to achieve 80% of peak bandwidth after a random seek (10.5 ms), we need
to read enough rotations worth of data to ensure that we spend 80% of the
total time reading. If x is the number of rotations we will read, then we
have:

   
 

	
 	  0.8 totalTime                            
	              =  
	              x rotationTime  

	 0.8(10.5 ms + (1 + 8.4) x ms) 
 	    
=  
	              8.4 x ms              


	  x                                                
	              =  
	              9.09                     








   

                                                                  

                                                                  
   We therefore need to read at least 9.09 rotations worth of data to reach an
efficiency of 80%. Since each rotation takes 8.4 ms and transfers data at 128 MB/s,
9.09 rotations transfers  9.77 MB of data,  or about  19,089  sectors.
                                                                □
[bookmark: x1-23002r55]


12.1.3 [bookmark: x1-240003]Disk Scheduling

   Because moving the disk arm and waiting for the platter to rotate is so expensive,
performance can be significantly improved by optimizing the order in which
pending requests are serviced. Disk scheduling can be done by the operating system,
by the disk’s firmware, or both.
   FIFO. The simplest thing to do is to process requests in first-in-first-out (FIFO)
order. Unfortunately, a FIFO scheduler can yield poor performance. For example, a
sequence of requests that alternate between the outer and inner tracks of a disk will
result in many long seeks.

   SPTF/SSTF. An initially appealing option is to use a greedy scheduler that, given
the current position of the disk head and platter, always services the pending request
that can be handled in the minimum amount of time. This approach is called shortest
positioning time first (SPTF) (or shortest seek time first (SSTF) if rotational positioning is
not considered.)

   SPTF and SSTF have two significant limitations. First, because moving the disk
arm and waiting for some rotation time affects the cost of serving subsequent
requests, these greedy approaches are not guaranteed to optimize disk performance.
Second, these greedy approaches can cause starvation when, for example, a
continuous stream of requests to inner tracks prevents requests to outer tracks from
ever being serviced.

   EXAMPLE: SPTF is not optimal.  Suppose a disk’s head is just inside the middle
track of a disk so that seeking to the inside track would cost 9.9 ms while seeking to
the outside track would cost 10.1 ms. Assume that for the disk in question,
seeking between the outer and inner track costs 15 ms and that a rotation takes
10 ms.

   Also suppose that the disk has two sets of pending requests. The first set is
1000 requests to read each of the 1000 sectors on the inner track of the disk; the
second set is 2000 requests to read each of the 2000 sectors on the outer track of the
disk.

   Compare the average response time per request for the SPTF schedule (first read
the “nearby” inner track and then read the outer track) and the alternative of reading
the outer track first and then the inner track.

   ANSWER:   The total amount of time taken to complete all requests is slightly
shorter by seeking first to the inside track and then to the outside. However, the
average response time per request is less in the opposite order.

   To service either set of requests, the disk must seek to the appropriate track and
                                                                  

                                                                  
then wait for one full rotation while all of the track’s data sweeps under the arm. For
either set, the average response time for a request in that set will be the
delay until the seek completes plus one half the disk’s rotation time. Notice
that the set handled second must wait until the first one is completely done
before it can start, adding to the response time observed for requests in that
set.

   If we follow SPTF and read the sectors on the inner track first, the response time
of the average request is the weighted average of the response time of the inner
requests and the outer requests:

   
 

	
 	  (1000 (9.9 + 5) + 2000 (9.9 + 10 + 15 + 5)) / 3000  
	              =  
	              31.6 ms  








   

If, instead, we read the outer tracks first, the weighted average is:

   
 

	
 	  (2000 (10.1 + 5) + 1000 (10.1 + 10 + 15 + 5)) / 3000  
	              =  
	              23.3 ms  








   

In this case, seeking to the nearest sector moves the disk head away from the
majority of the requests,  increasing the overall average response time by
8.3 ms.                                                                                                                           □

   Elevator, SCAN, and CSCAN. Elevator-based algorithms like SCAN and
CSCAN have good performance and also ensure fairness in that no request is forced
to wait for an inordinately long time. The basic approach is similar to how an
elevator works: when an elevator is going up, it keeps going up until all pending
requests to go to floors above it have been satisfied; then, when an elevator is going
down, it keeps going down until all pending requests to go to floors below it have
been satisfied.
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   The SCAN scheduler works in the same way. The disk arm first sweeps from the
inner to the outer tracks, servicing all requests that are between the arm’s current
position and the outer edge of the disk. Then, the arm sweeps from the outer to the
inner tracks. Then the process is repeated. Figure 12.4-(left) illustrates the SCAN
algorithm travelling from outer-to-inner tracks to service four pending requests
and then travelling from inner-to-outer tracks to service three additional
requests.

   The CSCAN (circular SCAN) scheduler is a slight variation on SCAN in which
the disk only services requests when the head is traveling in one direction (e.g., from
inner tracks to outer ones). When the last request in the direction of travel is reached,
the disk immediately seeks to where it started (e.g., the most inner track or the most
inner track with a pending request) and services pending requests by moving the
head in the same direction as the original pass (e.g., from inner tracks to outer ones
again.) Figure 12.4-(center) illustrates the CSCAN algorithm travelling from
outer-to-inner tracks to service four pending requests and then skipping to the outer
track and travelling from outer-to-inner tracks to service three additional
requests.

   The advantage of CSCAN over SCAN is that if after a pass in one direction, the
disk head were to just switch directions (as in SCAN), it will encounter a region of
the disk where pending requests are sparse (since this region of the disk was just
serviced). Seeking to the opposite side of the disk (as in CSCAN) moves the disk
head to an area where pending requests are likely to be denser. In addition, CSCAN
is more fair than SCAN in that seeking to the opposite side of the disk allows it to
begin servicing the requests that likely been waiting longer than requests near but
“just behind” the head.

   Rather than pure seek-minimizing SCAN or CSCAN, schedulers also take into
account rotation time and allow small seeks “in the wrong direction” to avoid
extra rotational delays using the rotationally-aware R-SCAN or R-CSCAN
variations. For example, if the disk head is currently over sector 0 of track 0 and
there are pending requests at sector 1000 of track 0, sector 500 of track 1, and
sector 0 of track 10,000, a R-CSCAN scheduler might service the second
request, then the first, and then the third. Figure 12.4-(right) illustrates the
R-CSCAN algorithm handling a request on the outer track, then one a few
tracks in, then another request on the outer track, and a request near the
center on the arm’s first sweep. The arm’s second sweep is the same as for
CSCAN.

   EXAMPLE: Effect of disk scheduling.  For the disk described in Figure 12.3,
consider a workload consisting of 500 read requests, each to a randomly chosen
sector on disk, assuming that the disk head is on the outside track and that requests
are serviced in CSCAN order from outside to inside. How long will servicing these
requests take?

   ANSWER:  Answering a question like this requires making some educated
guesses; different people may come up with different reasonable estimates
                                                                  

                                                                  
here.

   Seek time. We first note that with 500 pending requests spread randomly across
the disk, the average seek from one request to the next will seek 0.2% of the way
across the disk. With four surfaces, most of these seeks will also require a head
switch. We don’t know the exact time for a seek 0.2% of the way across the disk, but
we can estimate it by interpolating between the time for a 1 track seek (1 ms) and the
time for a 33.3% seek (10.5 ms for reads.) (Disk seek time is not actually linear in
distance, but as we will see in a moment, the exact seek time seems unlikely to affect
our answer much.)

   
 

	
 	  estimated .2% seek time  
	              =  
	              (1 + 10.5 × .2/33.3) ms  

	 
 	    = 
 	    1.06 ms








   

   Rotation time. Since we don’t know the position of the disk when the seek finishes
and since sectors are scattered randomly, a simple and reasonable estimate for
the time after the seek finishes for the desired block to rotate to the disk
head is 4.15 ms, one half of the time that it takes a 7200 RPM disk to rotate
once.

   Transfer time. Similar to the example with FIFO servicing of the same requests, the
transfer time for each sector is at most 0.0095 ms.

   Total time. 1.06 + 4.15 + .0095 = 5.22 ms per request, so  500 requests will take
about 2.6 s. Notice that the time for the SCAN scheduled time is less than half the
7.8 s time for FIFO servicing of the same requests.
                                                                □
[bookmark: x1-24002r51]


[bookmark: x1-250002]12.2 Flash Storage

   Over the past decade, flash storage has become a widely used storage medium.
Flash storage is the dominant storage technology for handheld devices from phones
to cameras to thumb drives, and it is used in an increasing fraction of laptop
computers and machine room servers.
   Flash storage is a type of solid state storage: it has no moving parts and stores
data using electrical circuits. Because it has no moving parts, flash storage
can have much better random IO performance than disks, and it can use
less power and be less vulnerable to physical damage. On the other hand,
flash storage remains significantly more expensive per byte of storage than
disks.
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                                 [image: ]                                 	Figure 12.5:  A floating gate transistor.
 


                                                                  

                                                                  
   

   Each flash storage element is a floating gate transistor. As Figure 12.5 illustrates,
an extra gate in such a transistor “floats” — it is not connected to any circuit.
Since the floating gate is entirely surrounded by an insulator, it will hold an
electrical charge for months or years without requiring any power. Even
though the floating gate is not electrically connected to anything, it can
be charged or discharged via electron tunneling by running a sufficiently
high-voltage current near it. The floating gate’s state of charge affects the
transistor’s threshold voltage for activation. Thus, the floating gate’s state can be
detected by applying an intermediate voltage to the transistor’s control gate
that will only be sufficient to activate the transistor if the floating gate is
changed.

   In single-level flash storage, the floating gate stores one bit (charge or not
charged); in multi-level flash storage, the floating gate stores multiple bits by storing
one of several different charge levels.

   NOR flash storage is wired to allow individual words to be written and
read. NOR flash storage is useful for storing device firmware since it can be
executed in place. NAND flash storage is wired to allow reads and writes
of a page at a time, where a page is typically 2 KB to 4 KB. NAND flash is
denser than NOR flash, so NAND is used in the storage systems we will
consider.

   Flash storage access and performance. Flash storage is accessed using three
operations.


     
     	
     Erase  erasure  block.  Before  flash  memory  can  be  written,  it  must  be
     erased by setting each cell to a logical “1”. Flash memory can only be
     erased in large units called erasure blocks. Today, erasure blocks are often
     128 KB  to  512 KB.  Erasure  is  a  slow  operation,  usually  taking  several
     milliseconds.
     
Erasing  an  erasure  block  is  what  gives  flash  memory  its  name  for  its
     resemblance to the flash of a camera.
     


     	
     Write  page.  Once  erased,  NAND  flash  memory  can  be  written  on  a
     page-by-page basis, where each page is typically 2048-4096 bytes. Writing
     a page typically takes tens of microseconds.
     


     	
                                                                  

                                                                  
     Read page. NAND flash memory can be read on a page by page basis.
     Reading a page typically takes tens of microseconds.


     


   Notice that to write a page, its entire erasure block must first be erased. This is a
challenge both because erasure is slow and because erasure affects a large number of
pages. Flash drives implement a flash translation layer (FTL) that maps logical flash
pages to different physical pages on the flash device. Then, when a single
logical page is overwritten, the FTL writes the new version to some free,
already-erased physical page and remaps the logical page to that physical
page.

   Write remapping significantly improves flash performance.

   EXAMPLE: Remapping flash writes.  Consider a flash drive with a 4 KB pages,
512 KB erasure blocks, 3 ms flash times, and 50 μs read-page and write-page times.
Suppose writing a page is done with a naive algorithm that reads an entire erasure
block, erases it, and writes the modified erasure block. How long would each page
write take?

   ANSWER:   This naive approach would require:

   
 

	
 	  ((512 KB/erasure block) / 4 KB/page) × (page read time + page write time) + block erase time  


	  = 128 × (50 + 50) μs + 3 ms                                                                                                                         


	  = 15.8 ms per write                                                                                                                                      







   

                                                                □
Suppose remapping is used and that a flash device always has at least one unused
erasure block available for a target workload. How long does an average write take
now?

   ANSWER:  With remapping, the cost of flashing an erasure block is amortized over
512/4 = 128 page writes. This scenario gives a cost of (3 ms∕128) + 50 μs =  73.4 μs per
write.
                                                                □

   In practice, there is likely to be some additional cost per write under the
remapping scheme because in order to flash an erasure block to free it for new
writes, the firmware may need to garbage collect live pages from that erasure block
and copy those live pages to a different erasure block.

   Internally, a flash device may have multiple independent data paths that can be
accessed in parallel. Therefore, to maximize sustained bandwidth when accessing a
flash device, operating systems issue multiple concurrent requests to the
device.
                                                                  

                                                                  

   Durability. Normally, flash memory can retain its state for months or years
without power. However, over time the high current loads from flashing and writing
memory causes the circuits to degrade. Eventually, after a few thousand to a few
million program-erase cycles (depending on the type of flash), a given cell may wear
out and no longer reliably store a bit.

   In addition, reading a flash memory cell a large number of times can cause the
surrounding cells’ charges to be disturbed. A read disturb error can occur if a location
in flash memory is read to many times without the surrounding memory being
written.

   To improve durability in the face of wear from writes and disturbs from reads,
flash devices make use of a number of techniques:


     
     	
     Error correcting codes. Each page has some extra bytes that are used for
     error correcting codes to protect against bit errors in the page.
     


     	
     Bad page and bad erasure block management. If a page or erasure block
     has a manufacturing defect or wears out, firmware on the device marks
     it as bad and stops storing data on it.
     


     	
     Wear leveling. As noted above, rather than overwrite a page in place, the
     flash translation layer remaps the logical page to a new physical page
     that  has  already  been  erased.  This  remapping  ensures  that  a  hot  page
     that is overwritten repeatedly does not prematurely wear out a particular
     physical page on the flash device.
     
Wear  leveling  moves  a  flash  device’s  logical  pages  to  different  physical
     pages to ensure that no physical page gets an inordinate number of writes
     and wears out prematurely. Some wear leveling algorithms also migrate
     unmodified pages to protect against read disturb errors.
     


     	
     Spare pages and erasure blocks. Flash devices can be manufactured with
     spare pages and spare erasure blocks in the device. This spare capacity
     serves two purposes.
     
First,  it  provides  extra  space  for  wear  leveling:  even  if  the  device  is
     logically  “full”  the  wear  leveling  firmware  can  copy  live  pages  out  of
                                                                  

                                                                  
     some  existing  erasure  blocks  into  a  spare  erasure  block,  allowing  it  to
     flash those existing erasure blocks.
     
Second,  it  allows  bad  page  and  bad  erasure  block  management  to
     function without causing the logical size of the device to shrink.


     


   In addition to affecting reliability, wear out affects a flash device’s performance
over time.

   First, as a device wears out, accesses may require additional retries, slowing
them. Second, as spare pages and erasure blocks are consumed by bad ones,
the wear leveling algorithms have less spare space and have to garbage
collect live pages — copying them out of their existing erasure blocks — more
frequently.
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Size


	  Capacity                                             
	  300 GB                                           


	  Page Size                                            
	  4 KB                                               


	                                                
 Performance


	  Bandwidth (Sequential Reads)       
	  270 MB/s                                      


	  Bandwidth (Sequential Writes)       
	  210 MB/s                                      


	  Read/Write Latency                         
	  75 μs                                              


	  Random Reads Per Second             
	  38,500                                            


	  Random Writes Per Second             
	  2,000                                              


	                                                               
	  2,400 with 20% space reserve    


	  Interface                                              
	  SATA 3 Gb/s                                


	                                                  
 Endurance


	  Endurance                                          
	  1.1 PB                                            

	 
 	 1.5 PB with 20% space reserve


	                                                      
 Power


	  Power Consumption Active/Idle  
	  3.7 W / 0.7 W                               

	 





	Figure 12.6:      Key   parameters   for   an   Intel   710   Series   Solid   State   Drive
manufactured in 2011.
 



                                                                  

                                                                  
   

   Example: Intel 710 Series Solid-State Drive. Figure 12.6 shows some key
parameters for an Intel 710 Series solid state drive manufactured in 2011. This drive
uses multi-level NAND flash to get high storage densities. Normally, multi-level
flash is less durable than single-level, but this Intel drive uses sophisticated
wear leveling algorithms and a large amount of spare space to provide high
durability.

   The sequential performance of this drive is very good, with peak sustained read
and write bandwidths of 270 MB/s and 210 MB/s respectively. In comparison, a
high-end Seagate Cheetah 15K.7 drive manufactured in 2010 spins at 15,000
revolutions per minute and provides 122 MB/s to 204 MB/s of sustained
bandwidth.

   Random read performance is excellent. The latency for a single random 4 KB read
is just 75 μs, and when multiple concurrent requests are in flight, the drive can
process 38,500 random reads per second — one every 26 μs. This is orders of
magnitude better than the random read performance of a spinning disk
drive.

   Random write performance is also very good, but not as good as random read
performance. The latency for a single random 4 KB write is 75 μs; the drive reduces
write latency by buffering writes in volatile memory, and it has capacitors that store
enough charge to write all buffered updates to flash storage if a power loss
occurs.

   When multiple concurrent writes are in flight, the drive can process 2,000
random writes per second when it is full; if it is less than 80% full, that number rises
to 2,400. Random write throughput increases when the drive has more free space
because the drive has to garbage collect live pages from erasure blocks less often and
because when the drive eventually does do that garbage collection, the erasure
blocks are less full.

   The drive’s is rated for 1.1 PB (1.1 × 1015 bytes) of endurance (1.5 PB if it is
less than 80% full.) For many workloads, this endurance suffices for years
or decades of use. However, solid state drives may not always be a good
match for high-bandwidth write streaming. In the extreme, an application
constantly streaming writes at 200 MB/s could wear this drive out in 64
days.

   

	Technology affects interfaces — the TRIM command

   Historically, when a file system deleted a file stored on a spinning disk, all it
needed to do was to update the file’s metadata and the file system’s free space
bitmap. It did not need to erase or overwrite the file’s data blocks on disk — once the
metadata was updated, these blocks could never be referenced, so there was no need
to do anything with them.

   When such file systems were used with flash drives, users observed that their
drives got slower over time. As the amount of free space fell, the drives’
flash translation layer was forced to garbage collect erasure blocks more
frequently; additionally, each garbage collection pass became more expensive
                                                                  

                                                                  
because there were more live pages to copy from old erasure blocks to the new
ones.

   Notice that this slowing could occur even if the file system appeared to have a
large amount of free space. For example, if a file system moves a large file from one
range of blocks to another, the storage hardware has no way to know that the
pages in the old range are no longer needed unless the file system can tell it
so.

   The TRIM command was introduced into many popular operating systems
between 2009 and 2011 to allow file systems to inform the underlying storage when
the file system has stopped using a page of storage. The TRIM command makes the
free space known to the file system visible to the underlying storage layer, which can
significantly reduce garbage collection overheads and help flash drives retain good
performance as they age.

   





   EXAMPLE: Random read workload.  For the solid state disk described in
Figure 12.6, consider a workload consisting of 500 read requests, each of a randomly
chosen page. How long will servicing these requests take?

   ANSWER:  The disk can service random read requests at a rate of 38,500 per
second, so 500 requests will take 500/38500 =  13 ms. In contrast, for the spinning
disk example, the same 500 requests would take 7.33 seconds.                          □

   EXAMPLE: Random vs. sequential reads.  How does this drive’s random read
performance compare to its sequential read performance?

   ANSWER:  The effective bandwidth in this case is 500 requests × (4 KB/request)
/ 13 milliseconds = 158 MB/s. The random read bandwidth is thus 158/270 =  59%
of the sequential read bandwidth.                                                                         □

   EXAMPLE: Random write workload.  For the solid state disk described in
Figure 12.6, consider a workload consisting of 500 write requests, each of a randomly
chosen page. How long will servicing these requests take?

   ANSWER:  The disk can service random write requests at a rate of 2000 per
second (assuming the disk is nearly full), so 500 requests will take 500/2000 = 
250 ms.                                                                                                                          □

   EXAMPLE: Random vs. sequential writes.  How does this random write
performance compare to the drive’s sequential write performance?

   ANSWER:  The effective bandwidth in this case is 500 requests × (4 KB/request)
/ 250 ms = 8.2 MB/s. The random write bandwidth is thus 8.2/210 =  3.9% of the
sequential write bandwidth.                                                                                   □
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[bookmark: x1-260003]12.3 Summary and Future Directions

   Today, spinning disk and flash memory dominate storage technologies, and
each has sufficient advantages to beat the other for some workloads and
environments.
                                                                  

                                                                  
   Spinning disk vs. flash storage. Spinning disks are often used when capacity is
the primary goal. For example, spinning disk is often used for storing media files
and home directories. For workloads limited by storage capacity, spinning disks can
often provide much better capacity per dollar than flash storage. For example, in
October 2011, a 2 TB Seagate Barracuda disk targeted at workstations cost
about $80 and a 300 GB Intel 320 Series solid state drive targeted at laptops
cost about $600, giving the spinning disk about a 50:1 advantage in GB per
dollar.

   Both spinning disks and flash storage are viable when sequential bandwidth is
the goal. In October 2011, flash drives typically have modestly higher per-drive
sequential bandwidths than spinning drives, but the spinning drives typically have
better sequential bandwidth per dollar spent than flash drives. For example, the
same Seagate disk has a sustained bandwidth of 120 MB/s (1.5 MB/s per dollar)
while the same Intel SSD has a read/write bandwidth of 270/205 MB/s (about 0.4
MB/s per dollar.)

   Flash storage is often used when good random access performance or low power
consumption is the goal. For example, flash storage is frequently used in database
transaction processing servers, in smart phones, and in laptops. For example, the
Seagate drive described above rotates at 5900 RPM, so it takes about 5 ms for
a half rotation. Even with good scheduling and even if data is confined
to a subset of tracks, it would be hard to get more than 200 random I/Os
per second from this drive (about 2.5 random I/Os per second per dollar.)
Conversely, the Intel SSD can sustain 23,000 random writes and 39,500 random
reads per second (about 38 or 66 random writes or reads per second per
dollar.)

   With respect to power, spinning disks typically consume 10-20W depending on
whether it is just spinning or actively reading and writing data, while a flash drive
might consume 0.5W-1W when idle and 3-5W when being accessed. Flash drives’
power advantage makes them attractive for portable applications such as laptop and
smartphone storage.
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	Figure 12.7:  In 2011, flash storage “keys” such as this one can store as much
as 256 GB in a device that is a few centimeters long, and 1-2 cm wide and tall.
 



                                                                  

                                                                  
   

   Flash memory can also have a significant form factor advantage with respect to
physical size and weight. Although some flash drives are designed as drop-in
replacements for spinning disks and so are similar in size, flash storage can be much
smaller than a typical spinning disk. For example, in 2011, a USB flash storage “key”
such as the one in Figure 12.7 can store as much as 256 GB in a device that is not
much larger than a house key.
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 	                        Metric                        
	  Spinning Disk  
	      Flash      


	                Capacity / Cost                
	        Excellent        
	      Good      


	           Sequential BW / Cost           
	           Good           
	      Good      


	  Random I/O per Second / Cost  
	            Poor            
	      Good      


	            Power Consumption            
	            Fair            
	      Good      


	                   Physical Size                   
	           Good           
	  Excellent  

	 





	Figure 12.8:  Relative advantages and disadvantages of spinning disk and flash
storage.
 



                                                                  

                                                                  
   

   Figure 12.8 summarizes these advantages and disadvantages; of course, many
systems need to do well on multiple metrics, so system designers may need to
compromise on some metrics or use combinations of technologies.

   Technology trends. Over the past decades, the cost of storage capacity has fallen
rapidly for both spinning disks and solid state storage. Compare the 2 TB disk drive
for $80 in 2011 to a 15 MB drive costing $113 in 1984 (or about $246 in 2011 dollars):
the cost per byte has improved by a factor of about 400,000 over 27 years — over 50%
per year for nearly 3 decades.

   

	The first disk drive

   Prior to the invention of magnetic disks, magnetic cylinders, called drums, were
used for on-line storage. These drums spun on their axes and typically had one head
per track. So, there was no seek time to access a block of data; one merely waited for
a block to rotate underneath its head.

   By using spinning disks instead of drums, the magnetic surface area, and hence
the storage capacity, could be increased.

   
                                                                     [image: ]                                                                         The first disk drive, the IBM 350 Disk System (two are shown in the foreground
of this photograph), was introduced in 1956 as part of the IBM RAMAC (“Random
Access Method of Accounting and Control”) 305 computer system. The 350 Disk
system stored about 3.3 MB on 50 platters, rotated its platters at 1200 RPM, had an
average seek time of 600 ms, and weighed about a ton. The RAMAC 305
computer system with its 350 disk system could be leased for $3,200 per
month. Assuming a useful life of 5 years and converting to 2011 dollars, the
cost was approximately $1.3 million for the system — about $400,000 per
megabyte.

   





   Recent rates of improvement for flash storage have been even faster. For example,
in 2001, the Adtron S35PC 14 GB flash drive cost $42,000. Today’s Intel 320 costs 70
times less for 21 times more capacity, an improvement of about 2x per year over the
past decade.

   Similar capacity improvements for spinning disk and flash are expected for at
least the next few years. Beyond that, there is concern that we will be approaching
the physical limits of both magnetic disk and flash storage, so the longer-term future
is less certain. (That said, people have worried that disks were approaching their
limits several times in the past, and we will not be surprised if the magnetic disk
and flash industries continue rapid improvements for quite a few more
years.)

   In contrast to capacity, performance is likely to improve more slowly for both
technologies. For example, a mid-range spinning disk in 1991 might have had a
maximum bandwidth of 1.3 MB/s and an average seek time of 17 ms.
Bandwidths have improved by about a factor of 90 in two decades (about 25%
per year) while seek times and rotational latencies have only improved by
                                                                  

                                                                  
about a factor of two (less than 4% per year.) Bandwidths have improved
more quickly than rotational latency and seek times because bandwidth
benefits from increasing storage densities, not just increasing rotational
rates.

   For SSDs, the story is similar, though recent increases in volumes have helped
speed the pace of improvements. For example, in 2006 a BitMicro E-Disk flash drive
could provide 9,500 to 11,700 random reads per second and 34-44 MB/s sustained
bandwidth. Compared to the Intel 320 SSD from 2011, bandwidths have improved
by about 40% per year and random access throughput has improved by about 25%
per year over the past 5 years.

   New technologies. This is an exciting time for persistent storage. After decades
of undisputed reign as the dominant technology for on-line persistent storage,
spinning magnetic disks are being displaced by flash storage in many application
domains, giving both operating system designers and application writers an
opportunity to reexamine how to best use storage. Looking forward, many
researchers speculate that new technologies may soon be nipping at the heels and
even surpassing flash storage.

   For example, phase change memory (PCM) uses a current to alter the state of
chalcogenide glass between amorphous and crystalline forms, which have
significantly different electrical resistance and can therefore be used to represent data
bits. Although PCM does not yet match the density of flash, researchers speculate
that the technology is fundamentally more scalable and will ultimately be
able to provide higher storage densities at lower costs. Furthermore, PCM
is expected to have much better write performance and endurance than
flash.

   As another example, a memristor is a circuit element whose resistance depends on
the amounts and directions of currents that have flowed through it in the past. A
number of different memristor constructions are being pursued, and some
have quite promising properties. For example, in 2010 Hewlett Packard labs
described a prototype memristor constructed of a thin titanium dioxide film
with 3 nm by 3 nm storage elements that can switch states in 1 ns. These
densities are similar to contemporary flash memory devices and these switching
times are similar to contemporary DRAM chips. The devices also have write
endurance similar to flash, and extremely long (theoretically unlimited)
storage lifetimes. Furthermore, researchers believe that these and others
memristors’ densities will scale well in the future. For example, a design for 3-D
stacking of memristors was published in 2009 in the Proceedings of National
Academy of Sciences by Dmitri Strukov and R. Stanley Williams of HP Labs.
http://www.pnas.org/content/106/48/20155.abstract

   If technologies such as these pan out as hoped, operating system designers will
have opportunities to rethink our abstractions for both volatile and nonvolatile
storage: how should we make use of word-addressable, persistent memory with
densities exceeding current flash storage devices and with memory access
times approaching those of DRAM? What could we do if each core on a 32
                                                                  

                                                                  
core processor chip had access to a few gigabytes of stacked memristor
memory?
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 Size


	  Form factor                                     
	  2.5 inch                              

	 Capacity 
 	 320 GB


	                                         
 Performance


	  Spindle speed                                
	  5400 RPM                          


	  Average seek time                         
	  12.0 ms                               


	  Maximum seek time                     
	  21 ms                                  

	 Track-to-track seek time 
 	 2 ms


	  Transfer rate (surface to buffer)  
	  850 Mbit/s (maximum)  


	  Transfer rate (buffer to host)        
	  3 Gbit/s                             


	  Buffer memory                              
	  8 MB                                   

	 





	Figure 12.9:  Hardware specifications for a 320 GB SATA disk drive.
 



                                                                  

                                                                  
   

   
	  Discussion. Some high-end disks in the 1980s had multiple disk arm assemblies
per disk enclosure in order to allow them to achieve higher performance.
Today, high-performance server disks have a single arm assembly per disk
enclosure. Why do you think disks so seldom have multiple disk arm assemblies
today?
   


   
	 For the disk described in Figure 12.3:
   
 	What is the range of the number of sectors per track on the disk?
   

 	Estimate the number of tracks on the disk.

 	Estimate the distance from the center of one track to the center of the next
track.
   


   




   
	
   A disk may have multiple surfaces, arms, and heads, but when you issue a read
or write, only one head is active at a time. It seems like one could greatly increase
disk bandwidth for large requests by reading or writing with all of the heads at the
same time. Given the physical characteristics of disks, can you figure out why no one
does this?

   


   
	 For the disk described in Figure 12.3, consider a workload consisting
of 500 read requests, each of a randomly chosen sector on disk, assuming
that the disk head is on the outside track and that requests are serviced in
P-CSCAN order from outside to inside. How long will servicing these requests
take?
   Note: Answering this question will require making some estimates.

   


   
	 Suppose I have a disk such as the 320 GB SATA drive described in Figure 12.9
and I have a workload consisting of 10000 reads to sectors randomly scattered across
the disk. How long will these 10000 requests take (total) assuming the disk services
requests in FIFO order?
   


   
	 Suppose I have a disk such as the 320 GB SATA drive described in Figure 12.9
and I have a workload consisting of 10000 reads to 10000 sequential sectors on the
outer-most tracks of the disk. How long will these 10000 requests take (total)
assuming the disk services requests in FIFO order?
   


   
	 Suppose I have a disk such as the 320 GB SATA drive described in Figure 12.9
and I have a workload consisting of 10000 reads to sectors randomly scattered across
the disk. How long will these 10000 requests take (total) assuming the disk services
requests using the SCAN/Elevator algorithm.
   


                                                                  

                                                                  
   
	 Suppose I have a disk such as the 320 GB SATA drive described in Figure 12.9
and I have a workload consisting of 10000 reads to sectors randomly scattered across
a 100 MB file, where the 100 MB file is laid out sequentially on the disk. How long
will these 10000 requests take (total) assuming the disk services requests using the
SCAN/Elevator algorithm?
   


   
	 Write a program that creates a 100 MB file on your local disk and then measures
the time to do each of four things:
   
 	Sequential overwrite. Overwrite the file with 100 MB of new data by writing the
file from beginning to end and then calling fsync() (or the equivalent on your
platform).


   
	Random buffered overwrite. Do the following 50,000 times: choose a
2 KB-aligned offset in the file uniformly at random, seek to that location in the file,
and write 2 KB of data at that position. Then, once all 50,000 writes have been issued,
call fsync() (or the equivalent on your platform).


   
	Random buffered overwrite. Do the following 50,000 times: choose a
2 KB-aligned offset in the file uniformly at random, seek to that location in the file,
write 2 KB of data at that position, and call fsync() (or the equivalent on your
platform) after each individual write.


   
	Random read. Do the following 50,000 times: choose a 2 KB-aligned offset in the
file uniformly at random, seek to that location in the file, and read 2 KB of data at
that position.


   


   Explain your results.

   


   
	 Write a program that creates three files, each of 100 MB, and then measures the
time to do each of three things:
   
 	fopen()/fwrite(). Open the first file using fopen() and issue 256,000 sequential
four-byte writes using fwrite().


   
	open()/write(). Open the second file using open() and issue 256,000 sequential
four-byte writes using write().


   
	mmap()/store. Map the third file into your program’s memory using mmap() and
issue 256,000 sequential four-byte writes by iterating through memory and writing
to each successive word of the mapped file.


   


   Explain your results.

   


                                                                  

                                                                  
                                                                  

                                                                  
[bookmark: x1-2700210]

   

                                                                  

                                                                  
	                                    
 Size


	 Usable capacity                                               
	 2 TB (SLC flash)                                                    


	 Cache Size                                                        
	 64 GB (Battery-backed RAM)                             


	 Page Size                                                          
	 4 KB                                                                        


	                                
 Performance


	 Bandwidth (Sequential Reads from flash)  
	 2048 MB/s                                                             


	 Bandwidth (Sequential Writes to flash)       
	 2048 MB/s                                                             


	 Read Latency (cache hit)                                
	 15 μs                                                                        


	 Read Latency (cache miss)                             
	 200 μs                                                                      


	 Write Latency                                                  
	 15 μs                                                                        


	 Random Reads (sustained from flash)         
	 100,000 per second                                               


	 Random Writes (sustained to flash)             
	 100,000 per second                                               


	 Interface                                                            
	 8 Fibre Channel ports with 4 Gbit/s per port  


	                                   
 Power


	 Power Consumption                                      
	 300 W                                                                      


	                                     





	Figure 12.10:

Key
parameters
for
a
hypothetical
high-end
flash
drive
in
2011.
 



                                                                  

                                                                  
   

   
	 Suppose that you have a 256 GB solid state drive that the operating system and
drive both support the TRIM command. To evaluate the drive, you do an experiment
where you time the system’s write performance for random page-sized when the file
system is empty compared to its performance when the file system holds 255 GB of
data, and you find that write performance is significantly worse in the latter
case.
   What is the likely reason for this worse performance as the disk fills despite its
support for TRIM?

   What can be done to mitigate this slowdown?

   


   
	 Suppose you have a flash drive such as the one described in Figure 12.10 and
you have a workload consisting of 10000 4 KB reads to pages randomly scattered
across the drive. Assuming that you wait for request i to finish before you issue
request i + 1, how long will these 10000 requests take (total)?
   


   
	 Suppose you have a flash drive such as the one described in Figure 12.10 and
you have a workload consisting of 10000 4 KB reads to pages randomly scattered
across the drive. Assuming that you issue requests concurrently, using many
threads, how long will these 10000 requests take (total)?
   


   
	 Suppose you have a flash drive such as the one described in Figure 12.10 and
you have a workload consisting of 10000 4 KB writes to pages randomly scattered
across the drive. Assuming that you wait for request i to finish before you issue
request i + 1, how long will these 10000 requests take (total)?
   


   
	 Suppose you have a flash drive such as the one described in Figure 12.10 and
you have a workload consisting of 10000 4 KB writes to pages randomly scattered
across the drive. Assuming there are a large number of threads to issue writes
concurrently, how long will these 10000 requests take (total)?
   


   
	 Suppose you have a flash drive such as the one described in Figure 12.10 and
you have a workload consisting of 10000 4 KB reads to 10000 sequential pages. How
long will these 10000 request take (total)?
   




                                                                  

                                                                  
                                                                  

                                                                  

   




[bookmark: x1-2800013]13. Files and Directories
   What’s in a name? That which we call a rose
By any other name would smell as sweet. —Juliet
Romeo and Juliet (II, ii, 1-2)
(Shakespeare) 

   	
   
	 







   Recall from Chapter 11 that file systems use directories to provide hierarchically
named files, and that each file contains metadata and a sequence of data bytes.
However, as Chapter 12 discussed, storage devices provide a much lower-level
abstraction — large arrays of data blocks. Thus, to implement a file system, we must
solve a translation problem: How do we go from a file name and offset to a block
number?

   A simple answer is that file systems implement a dictionary that maps keys (file
name and offset) to values (block number on a device). We already have many data
structures for implementing dictionaries, including hash tables, trees, and skip lists,
so perhaps we can just use one of them?

   Unfortunately, the answer is not so simple. File system designers face four major
challenges:


     
     	
     Performance.  File  systems  need  to  provide  good  performance  while
     coping with the limitations of the underlying storage devices. In practice,
     this means that file systems strive to ensure good spatial locality, where
     blocks that are accessed together are stored near one another, ideally in
     sequential storage blocks.
     


     	
     Flexibility. One major purpose of file systems is allowing applications to
     share data, so file systems must be jacks-of-all-trades. They would be less
     useful if we had to use one file system for large sequentially-read files,
     another for small seldom-written files, another for large random-access
     files, another for short-lived files, and so on.
     


     	
     Persistence.  File  systems  must  maintain  and  update  both  user  data
     and  their  internal  data  structures  on  persistent  storage  devices  so  that
                                                                  

                                                                  
     everything survives operating system crashes and power failures.
     


     	
     Reliability.  File  systems  must  be  able  to  store  important  data  for  long
     periods of time, even if machines crash during updates or some of the
     system’s storage hardware malfunctions.



   This chapter discusses how file systems are organized to meet the first three
challenges. Chapter 14 addresses reliability.
[bookmark: x1-28001r62]


[bookmark: x1-290001]13.1 Implementation Overview

   File systems must map file names and offsets to physical storage blocks in a way
that allows efficient access. Although there are many different file systems, most
implementations are based on four key ideas: directories, index structures, free space
maps, and locality heuristics.
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                                 [image: ]                                 	Figure 13.1:  File systems map file names and file offsets to storage blocks in
two steps. First, they use directories to map names to file numbers. Then they
use an index structure such as a persistently stored tree to find the block that
holds the data at any specific offset in that file.
 


                                                                  

                                                                  
   

   Directories and index structures. As Figure 13.1 illustrates, file systems map file
names and file offsets to specific storage blocks in two steps.

   First, they use directories to map human-readable file names to file numbers.
Directories are often just special files that contain lists of file name →file number
mappings.

   Second, once a file name has been translated to a file number, file systems use a
persistently stored index structure to locate the blocks of the file. The index structure
can be any persistent data structure that maps a file number and offset to a storage
block. Often, to efficiently support a wide range of file sizes and access patterns, the
index structure is some form of tree.

   Free space maps. File systems implement free space maps to track which storage
blocks are free and which are in use as files grow and shrink. At a minimum, a file
system’s free space map must allow the file system to find a free block when a file
needs to grow, but because spatial locality is important, most modern file systems
implement free space maps that allow them to find free blocks near a desired
location. For example, many file systems implement free space maps as bitmaps in
persistent storage.

   Locality heuristics. Directories and index structures allow file systems
to locate desired file data and metadata no matter where they are stored,
and free space maps allow them to locate the free space near any location
on the persistent storage device. These mechanisms allow file systems to
employ various policies to decide where a given block of a given file should be
stored.

   These policies are embodied in locality heuristics for grouping data to optimize
performance. For example, some file systems group each directory’s files
together but spread different directories to different parts of the storage
device. Others periodically defragment their storage, rewriting existing files so
that each file is stored in sequential storage blocks and so that the storage
device has long runs of sequential free space so that new files can be written
sequentially. Still others optimize writes over reads and write all data sequentially,
whether a given set of writes contains updates to one file or to many different
ones.

   Implementation details. In this chapter, we first discuss how directories are
implemented. Then, we look at the details of how specific file systems handle the
details of placing and finding data in persistent storage by implementing different
index structures, free space maps, and locality heuristics.
[bookmark: x1-29002r71]


[bookmark: x1-300002]13.2 Directories: Naming Data

   As Figure 13.1 indicates, to access a file, the file system first translates the
file’s name to its number. For example, the file called /home/tom/foo.txt might
                                                                  

                                                                  
internally known as file 66212871. File systems use directories to store their
mappings from human-readable names to internal file numbers, and they
organize these directories hierarchically so that users can group related files and
directories.
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                                 [image: ]                                 	Figure 13.2:  A directory is a file that contains a collection of file name →file
number mappings.
 


                                                                  

                                                                  
   

   Implementing directories in a way that provides hierarchical, name-to-number
mappings turns out to be simple: use files to store directories.  So, if the system needs
to determine a file’s number, it can just open up the appropriate directory file
and scan through the file name/file number pairs until it finds the right
one.

   For example, illustrates Figure 13.2 the contents of a single directory file. To open
file foo.txt, the file system would scan this directory file, find the foo.txt entry, and see
that file foo.txt has file number 66212871.
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                                 [image: ]                                 	Figure 13.3:      Directories   can   be   arranged   hierarchically   by   having   one
directory contain the file name →file number mapping for another directory.
 


                                                                  

                                                                  
   

   Of course, if we use files to store the contents of directories such as /home/tom, we
still have the problem of finding the directory files, themselves. As Figure 13.3
illustrates, the file number for directory /home/tom can be found by looking up the
name tom in the directory /home, and the file number for directory /home can be
found by looking up the name home in the root directory /.

   Recursive algorithms need a base case — we cannot discover the root directories
file number by looking in some other directory. The solution is to agree on the root
directory’s file number ahead of time. For example, the Unix Fast File System (FFS)
and many other Unix and Linux file systems use two as the predefined file number
for the root directory of a file system.

   So, to read file /home/tom/foo.txt in Figure 13.3, we first read the root directory by
reading the file with the well-known root number two. In that file, we search for the
name home and find that directory /home is stored in file 88026158. By reading file
88026158 and searching for the name tom, we learn that directory /home/tom is stored
in file 5268830. Finally, by reading file 5268830 and searching for the name foo.txt, we
learn that /home/tom/foo.txt is file number 66212871.

   Although looking up a file’s number can take several steps, we expect there to be
locality (e.g., when one file in a directory is accessed, other files in the directory are
often likely to be accessed soon), so we expect that caching will reduce the number of
disk accesses needed for most lookups.

   Directory API. If file systems use files to store directory information, can we just
use the standard open/close/read/write API to access them?

   No. Directories use a specialized API because they must control the contents of
these files. For example, file systems must prevent applications from corrupting the
list of name →file number mappings, which could prevent the operating system from
performing lookups or updates. As another example, the file system should enforce
the invariant that each file number in a valid directory entry refers to a file that
actually exists.

   File systems therefore provide special system calls for modifying directory files.
For example, rather than using the standard write system call to add a new file’s
entry to a directory, applications use the create call. By restricting updates, these calls
ensure that directory files can always be parsed by the operating system. These calls
also bind together the creation or removal of a file and the file’s directory entry, so
that directory entries always refer to actual files and that all files have at least one
directory entry.

   In the API described in Chapter 11, the other calls that modify directory files are
mkdir, link, unlink, and rmdir.

   So, for example, for the file system illustrated in Figure 13.3, Tom could rename
foo.txt to hw1.txt in his home directory by running a process that makes the following
two system calls

   
    link(‘‘foo.txt’’, ‘‘hw1.txt’’);
    unlink(‘‘foo.txt’’);

   Processes can simply read directory files with the standard read call.

   EXAMPLE: Reading directories.  It is useful for programs to be able to get a list
of all file names in a directory to, for example, recursively traverse a hierarchy from
some point. However, the file system API described in Chapter 11 does not have call
specifically for reading directories.

   Given just the system call API in that figure, how could a process learn the names
of files in the process’s current working directory?

   ANSWER:    Processes can read the contents of directory files using
the standard file read system call used to read the contents of “normal”
files.

   Although operating systems must restrict writes to directory files to ensure
invariants on directory structure, they need not restrict applications from reading the
contents of directory files (that they have permission to read). For simplicity,
applications would access this function via a standard library that also includes
routines for parsing directory files.                                                                          □

   Although it is not fundamentally necessary to have dedicated system calls for
reading directories, it can be convenient. For example, Linux includes a getdents (“get
directory entries”) system call that reads a specified number of directory entries from
an open file.

   Directory internals. Many early implementations simply stored linear lists of file
name, file number pairs in directory files. For example, in the original version of the
Linux ext2 file system, each directory file stored a linked list of directory entries as
illustrated in Figure 13.4.
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                                 [image: ]                                 	Figure 13.4:  A linked list implementation of a directory. This example shows
a directory file containing five entries: Music, Work, and foo.txt, along with . (the
current directory) and .. (the parent directory).
 


                                                                  

                                                                  
   

   Simple lists work fine when the number of directory entries is small, and that
was the expected case for many early file systems, but systems occasionally
encounter workloads that generate thousands of files in a directory. Once a
directory has a few thousand entries, simple list-based directories become
sluggish.

   To efficiently support directories with many entries, many recent file
systems including Linux XFS, Microsoft NTFS, and Oracle ZFS organize a
directory’s contents as a tree. Similarly, newer versions of ext2 augment the
underlying linked list with an additional hash-based structure to speed
searches.
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   For example, Figure 13.5-(a) illustrates a tree-based directory structure similar to
the one used in Linux XFS, and Figure 13.5-(b) illustrates how these records are
physically arranged in a directory file.

   In this example, directory records mapping file names to file numbers are stored
in a B+tree that is indexed by the hash of each file’s name. To find the file number
for a given file name (e.g., out2), the file system first computes a hash of
the name (e.g., 0x0000c194). It then uses that hash as a key to search for
the directory entry in the tree: starting at the B+tree root at a well-known
offset in the file (BTREE_ROOT_PTR), and proceeding through the B+tree’s
internal nodes to the B+tree’s leaf nodes. At each level, a tree node contains
an array of (hash key, file offset) pairs that each represent a pointer to the
child node containing entries with keys smaller than hash key but larger
than the previous entry’s hash key. The file system searches the node for
the first entry with a hash key value that exceeds the target key, and then it
follows the corresponding file offset pointer to the correct child node. The file
offset pointer in the record at the leaf nodes points to the target directory
entry.

   In the XFS implementation, directory entries are stored in the first part of the
directory file. The B+tree’s root is at a well-known offset within file (e.g.,
BTREE_ROOT_PTR). The fixed-size internal and leaf nodes are stored after the root
node, and the variable-size directory entries are stored at the start of the file. Starting
from the root, each tree node includes pointers to where in the file its children are
stored.

   Hard and soft links. Many file systems allow a given file to have multiple names.
For example, /home/tom/Work/Classes/OS/hw1.txt and /home/tom/todo/hw1.txt may refer
to the same file, as Figure 13.6 illustrates.
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                                 [image: ]                                 	Figure 13.6:  Example of a directed acyclic graph directory organization with
multiple hard links to a file (figure repeated from Chapter 11).
 


                                                                  

                                                                  
   

   Hard links are multiple file directory entries that map different path names to the
same file number. Because a file number can appear in multiple directories, file
systems must ensure that a file is only deleted when the last hard link to it has been
removed.

   To properly implement garbage collection, file systems use reference counts by
storing with each file the number of hard links to it. When a file is created, it has a
reference count of one, and each additional hard link made to the file (e.g.,
link(existingName, newName)) increments its reference count. Conversely, each call to
unlink(name) decrements the file’s reference count, and when the reference count
falls to zero, the underlying file is removed and its resources marked as
free.

   Rather than mapping a file name to a file number, soft links or symbolic links are
directory entries that map one name to another name.
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                                 [image: ]                                 	Figure 13.7:  In this directory, the hard links foo.txt and bar.txt and the soft link
baz.txt all refer to the same file.
 


                                                                  

                                                                  
   

   For example, Figure 13.7 shows a directory that contains three names that all
refer to the same file. The entries foo.txt and bar.txt are hard links to the same
file — number 66212871; baz.txt is a soft link to foo.txt.

   Notice that if we remove entry foo.txt from this directory using the unlink system
call, the file can still be opened using the name bar.txt, but if we try to open it with the
name baz.txt, the attempt will fail.

   EXAMPLE: File metadata.  Most file systems store a file’s metadata (e.g., a file’s
access time, owner ID, permissions, and size) in a file header that can be found with
the file number. One could imagine storing that metadata in a file’s directory entry
instead. Why is this seldom done?

   ANSWER:    In file systems that support hard links, storing file metadata in
directory entries would be problematic. For example, whenever a file’s
attribute like its size changed, all of a file’s directory entries would have to be
located and updated. As another example, if file metadata were stored in
directory entries, it would be hard to maintain a file reference count so that the
file’s resources are freed when and only when the last hard link to the file is
removed.

   The venerable Microsoft FAT file system stores file metadata in directory entries,
but it does not support hard links.                                                                           □
[bookmark: x1-30007r73]


[bookmark: x1-310003]13.3 Files: Finding Data

   Once a file system has translated a file name into a file number using a directory,
the file system must be able to find the blocks that belong to that file. In addition to
this functional requirement, implementations of files typically target five other
goals:
     
     	
     Support sequential data placement to maximize sequential file access
     


     	
     Provide efficient random access to any file block
     


     	
     Limit overheads to be efficient for small files
     


     	
     Be scalable to support large files
                                                                  

                                                                  
     


     	
     Provide  a  place  to  store  per-file  metadata  such  as  the  file’s  reference
     count, owner, access control list, size, and access time



   File system designers have a great deal of flexibility to meet these goals. Recall
from Section 13.1 that


     
     	
     A  file’s  index  structure  provides  a  way  to  locate  each  block  of  the  file.
     Index  structures  are  usually  some  sort  of  tree  for  scalability  and  to
     support locality.
     


     	
     A  file  system’s  free  space  map  provides  a  way  to  allocate  free  blocks
     to  grow  a  file.  When  files  grow,  choosing  which  free  blocks  to  use  is
     important for providing good locality. A file system’s free space map is
     therefore often implemented as a bitmap so that it is easy to find a desired
     number of sequential free blocks near a desired location.
     


     	
     A file system’s locality heuristics define how a file system groups data in
     storage to maximize access performance.
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   Within this framework, the design space for file systems is large. To understand
the trade-offs and to understand the workings of common file systems, we will
examine four case study designs that illustrate important implementation techniques
and that represent approaches that are in wide use today.


     
     	
     FAT. The Microsoft File Allocation Table (FAT) file system traces its roots
     to the late 1970s.
     
Techniques:   The   FAT   file   system   uses   an   extremely   simple   index
     structure — a linked list — so it is a good place to discuss our discussion
     of implementation techniques.
     
Today:  The  FAT  file  system  is  still  widely  used  in  devices  like  flash
     memory sticks and digital cameras where simplicity and interoperability
     are paramount.
     


     	
     FFS. The Unix Fast File System (FFS) was released in the mid 1980s, and it
     retained many of the data structures in Ritchie and Thompson’s original
     Unix file system from the early 1970s.
     
Techniques:  FFS  uses  a  tree-based  multi-level  index  for  its  index  structure
     to improve random access efficiency, and it uses a collection of locality
     heuristics to get good spatial locality for a wide range of workloads.
     
Today: In Linux, the popular ext2 and ext3 file systems are based on the
     FFS design.
     


     	
     NTFS.   The   Microsoft   New   Technology   File   System   (NTFS)   was
     introduced in the early 1990s as a replacement for the FAT file system.
     
Techniques:  Like  FFS,  NTFS  uses  a  tree-based  index  structure,  but  the
     tree  is  more  flexible  than  FFS’s  fixed  tree.  Additionally,  NTFS  optimizes
     its index structure for sequential file layout by indexing variable-sized
     extents rather than individual blocks.
     
Today:  NTFS  remains  the  primary  file  system  for  Microsoft  operating
     systems  such  as  Windows  7.  In  addition,  the  flexible  tree  and  extent
     techniques are representative of several widely used file systems such as
     the Linux ext4, XFS, and Reiser4 file systems, the AIX/Linux Journaled
                                                                  

                                                                  
     File  System  (JFS),  and  the  Apple  Hierarchical  File  Systems  (HFS  and
     HFS+).
     


     	
     COW/ZFS. Copy-on-write (COW) file systems update existing data and
     metadata  blocks  by  writing  new  versions  to  free  disk  blocks.  This
     approach  optimizes  write  performance:  because  any  data  or  metadata
     can  be  written  to  any  free  space  on  disk,  the  file  system  can  group
     otherwise random writes into large, sequential group writes.
     
To   see   how   these   ideas   are   implemented,   we   will   examine   the
     open-source   ZFS,   a   prominent   copy-on-write   file   system   that   was
     introduced in the early 2000’s by Sun Microsystems. ZFS is designed to
     scale to file systems spanning large numbers of disks, to provide strong
     data integrity guarantees, and to optimize write performance.



   Figure 13.8 summarizes key ideas in these systems that we will detail in the
sections that follow.

   

	Sectors vs. pages; blocks vs. clusters; extents vs. runs

   Although storage hardware arranges data in sectors (for magnetic disk) or pages
(for flash), file systems often group together a fixed number of disk sectors or flash
pages into a larger allocation unit called a block. For example, we might
format a file system running on a disk with 512 byte sectors to use 4 KB
blocks. Aggregating multiple sectors into a block can reduce the overheads of
allocating, tracking, and de-allocating blocks, but it may increase space overheads
slightly.

   FAT and NTFS refer to blocks as clusters, but for consistency we will use the term
block in our discussions.

   Finally, some file systems like NTFS, ext4, and btrfs store data in variable-length
arrays of contiguous tracks called extents in most file systems and runs in NTFS. For
consistency, we will use the term extent in our discussions.

   





[bookmark: x1-31002r57]

13.3.1 [bookmark: x1-320001]FAT: Linked List

   The Microsoft File Allocation Table (FAT) file system was first implemented in the
late 1970s and was the main file system for MS-DOS and early versions of
Microsoft Windows. The FAT file system has been enhanced in many ways over
the years. Our discussion will focus on the most recent version, FAT-32,
which supports volumes with up to 228 blocks and files with up to 232 - 1
bytes.
                                                                  

                                                                  
   Index structures. The FAT file system is named for its file allocation table, an array
of 32-bit entries in a reserved area of the volume. Each file in the system corresponds
to a linked list of FAT entries, with each FAT entry containing a pointer to the next
FAT entry of the file (or a special “end of file” value). The FAT has one entry for each
block in the volume, and the file’s blocks are the blocks that correspond to the file’s
FAT entries: if FAT entry i is the jth FAT entry of a file, then storage block i is the jth
data block of the file.
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                                 [image: ]                                 	Figure 13.9:  A FAT file system with one 5-block file and one 2-block file. 
 


                                                                  

                                                                  
   

   Figure 13.9 illustrates a FAT file system with two files. The first begins at block 9
and contains five blocks. The second begins at block 12 and contains two
blocks.

   Directories map file names to file numbers, and in the FAT file system, a file’s
number is the index of the file’s first entry in the FAT. Thus, given a file’s number, we
can find the first FAT entry and block of a file, and given the first FAT entry, we can
find the rest of the file’s FAT entries and blocks.

   Free space tracking. The FAT is also used for free space tracking. If data block i is
free, then FAT[i] contains 0. Thus, the file system can find a free block by scanning
through the FAT to find a zeroed entry.

   Locality heuristics. Different implementations of FAT may use different
allocation strategies, but FAT implementations’ allocation strategies are usually
simple. For example, some implementations use a next fit algorithm that scans
sequentially through the FAT starting from the last entry that was allocated and that
returns the next free entry found.

   Simple allocation strategies like this may fragment a file, spreading the file’s
blocks across the volume rather than achieving the desired sequential layout. To
improve performance, users can run a defragmentation tool that reads files from their
existing locations and rewrites them to new locations with better spatial locality. The
FAT defragmenter in Windows XP, for example, attempts to copy the blocks of each
file that is spread across multiple extents to a single, sequential extent that holds all
the blocks of a file.

   Discussion The FAT file system is widely used because it is simple and
supported by many operating systems. For example, many flash storage USB keys
and camera storage cards use the FAT file system, allowing them to be read and
written by almost any computer running almost any modern operating
system.

   Variations of the FAT file system are even used by applications for organizing
data within individual files. For example, Microsoft .doc files produced by versions
of Microsoft Word from 1997 to 2007 are actually compound documents with many
internal pieces. The .doc format creates a FAT-like file system within the .doc file to
manage the objects in the .doc file.

   The FAT file system, however, is limited in many ways. For example,


     
     	
     Poor   locality.   FAT   implementations   typically   use   simple   allocation
     strategies such as next fit. These can lead to badly fragmented files.
     


     	
     Poor random access. Random access within a file requires sequentially
                                                                  

                                                                  
     traversing the file’s FAT entries until the desired block is reached.
     


     	
     Limited  file  metadata  and  access  control.  The  metadata  for  each  file
     includes information like the file’s name, size, and creation time, but it
     does not include access control information like the file’s owner or group
     ID, so any user can read or write any file stored in a FAT file system.
     


     	
     No support for hard links. FAT represents each file as a linked list of 32-bit
     entries in the file allocation table. This representation does not include
     room for any other file metadata. Instead, file metadata in stored with
     directory entries with the file’s name. This approach demands that each
     file be accessed via exactly one directory entry, ruling out multiple hard
     links to a file.
     


     	
     Limitations on volume and file size. FAT table entries are 32 bits, but the
     top  four  bits  are  reserved.  Thus,  a  FAT  volume  can  have  at  most  228
     blocks. With 4 KB blocks, the maximum volume size is limited (e.g., 228
     blocks/volume  × 212  bytes/block  =  240  bytes/volume  =  1 TB).  Block
     sizes up to 256 KB are supported, but they risk wasting large amounts of
     disk space due to internal fragmentation.
     
Similarly, file sizes are encoded in 32 bits, so no file can be larger than
     232 - 1 bytes (just under 4 GB).
     


     	
     Lack of support for modern reliability techniques. Although we will not
     discuss  reliability  until  Chapter 14,  we  note  here  that  FAT  does  not
     support the transactional update techniques that modern file systems use
     to avoid corrupting critical data structures if the computer crashes while
     writing to storage.


     


[bookmark: x1-32002r82]
13.3.2 [bookmark: x1-330002]FFS: Fixed Tree

   The Unix Fast File System (FFS) illustrates important ideas for both indexing a
                                                                  

                                                                  
file’s blocks so they can be located quickly and for placing data on disk to get good
locality.
   In particular, FFS’s index structure, called a multi-level index, is a carefully
structured tree that allows FFS to locate any block of a file and that is efficient for
both large and small files.

   Given the flexibility provided by FFS’s multi-level index, FFS employs two
locality heuristics — block group placement and reserve space — that together usually
provide good on-disk layout.

   Index structures. To keep track of the data blocks that belong to each file,
FFS uses a fixed, asymmetric tree called a multi-level index, as illustrated in
Figure 13.10.
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   Each file is a tree with fixed-sized data blocks (e.g., 4 KB) as its leaves. Each file’s
tree is rooted at an inode that contains the file’s metadata (e.g., the file’s owner, access
control permissions, creation time, last modified time, and whether the file is a
directory or not).

   

	FFS access control

   The FFS inode contains information for controlling access to a file. Access control
can be specified for three sets of people:


     
     	
     User (owner). The user that owns the file.
     


     	
     Group. The set of people belonging to a specified Unix group. Each Unix
     group is specified elsewhere as a group name and list of users in that
     group.
     


     	
     Other. All other users.


     


   Access control is specified in terms of three types of activities:


     
     	
     Read. Read the regular file or directory.
     


     	
     Write. Modify the regular file or directory.
     


     	
     Execute. Execute the regular file or traverse the directory to access files
     or subdirectories in it.



                                                                  

                                                                  
   Each file’s inode stores the identities of the file’s user (owner) and group as well
as 9 basic access control bits to specify read/write/execute permission for the file’s
user (owner)/group/other. For example, the command ls -ld / shows the access
control information for the root directory:

   


> ls -ld /

drwxr-xr-x  40 root  wheel  1428 Feb  2 13:39 /



This means that the file is a directory (d), owned by the user root the group wheel. The
root directory can be read, written, and executed (traversed) by the owner (rwx), and
it can be read and executed (traversed) but not written by members of group wheel
(r-x) and all other users (r-x).

   





   

	Setuid and setgid programs

   In addition to the 9 basic access control bits, the FFS inode stores two important
additional bits:


     
     	
     Setuid. When this file is executed by any user (with execute permission) it
     will be executed with the file owner’s (rather than the user’s) permission.
     For  example,  the  lprm  program  allows  a  user  to  remove  a  job  from  a
     printer queue. The print queue is implemented as a directory containing
     files to be printed, and because we do not want users to be able to remove
     other users’ jobs, this directory is owned by and may only be modified
     by the root user. So, the lprm program is owned by the root user with the
     setuid bit set. It can be executed by anyone, but when it runs, it executes
     with root permissions, allowing it to modify the print queue directory.
     E.g.,
     


     
-rwsr-xr-x 1 root root 507674 2010-07-05 12:39 /lusr/bin/lprm*
     

                                                                  

                                                                  
     
Of course, making a program setuid is potentially dangerous. Here, for
     example, we rely on the lprm program to verify that actual user is deleting
     his own print jobs, not someone else’s. A bug in the lprm program
     could let one user remove another’s printer jobs. Worse, if the bug
     allows the attacker to execute malicious code (e.g., via a buffer overflow
     attack), a bug in lprm could give an attacker total control of the machine.
     http://www.linuxjournal.com/article/6701
     


     	
     Setgid. The setguid bit is similar to the setuid bit, execept that the file is
     executed with the file’s group permission. For example, on some machines,
     sendmail executes as a member of group smmsp so that it can access a mail
     queue file accessible to group smmsp. E.g.,
     


     
-r-xr-sr-x 1 root smmsp 2264923 2011-06-23 14:51 /lusr/opt/sendmail-8.14.4/lib/mail/sendmail*
     



     


   





   A file’s inode (root) also contains array of pointers for locating the file’s data
blocks (leaves). Some of these pointers point directly to the tree’s data leaves and
some of them point to internal nodes in the tree. Typically, an inode contains 15
pointers. The first 12 pointers are direct pointers that point directly to the first 12 data
blocks of a file.

   The 13th pointer is an indirect pointer, which points to an internal node of the tree
called an indirect block; an indirect block is a regular block of storage that contains an
array of direct pointers. To read the 13th block of a file, you first read the inode to get
the indirect pointer, then the indirect block to get the direct pointer, then the data
block. With 4 KB blocks and 4-byte block pointers, an indirect block can contain
as many as 1024 direct pointers, which allows for files up to a little over
4 MB.

   The 14th pointer is a double indirect pointer, which points to an internal node of the
tree called a double indirect block; a double indirect block is an array of indirect
pointers, each of which points to an indirect block. With 4 KB blocks and 4-byte
block pointers, a double indirect block can contain as many as 1024 indirect
pointers. Thus, a double indirect pointer can index as many as (1024)2 data
blocks.
                                                                  

                                                                  

   Finally, the 15th pointer is a triple indirect pointer that points to a triple indirect block
that contains an array of double indirect pointers. With 4 KB blocks and 4-byte block
pointers, a triple indirect pointer can index as many as (1024)3 data blocks
containing 4 KB × 10243 = 212 × 230 = 242 bytes (4 TB).

   All of a file system’s inodes are located in an inode array that is stored in a fixed
location on disk. A file’s file number, called an inumber in FFS, is an index into the
inode array: to open a file (e.g., foo.txt), we look in the file’s directory to find its
inumber (e.g., 91854), and then look in the appropriate entry of the inode array (e.g.,
entry 91854) to find its metadata.

   FFS’s multi-level index has four important characteristics:
     

     	[bookmark: x1-33003x1]
     Tree  structure.  Each  file  is  represented  as  a  tree,  which  allows  the  file
     system to efficiently find any block of a file.
     


     	[bookmark: x1-33005x2]
     High  degree.  The  FFS  tree  uses  internal  nodes  with  many  children
     compared to the binary trees often used for in-memory data structures
     (i.e., internal nodes have high degree or fan out). For example, if a file block
     is  4 KB  and  a  blockID  is  4 bytes,  then  each  indirect  block  can  contain
     pointers to 1024 blocks.
     
High degree nodes make sense for on-disk data structures where (1) we
     want  to  minimize  the  number  of  seeks,  (2)  the  cost  of  reading  several
     kilobytes of sequential data is not much higher than the cost of reading
     the first byte, and (3) data must be read and written at least a sector at a
     time.
     
High  degree  nodes  also  improve  efficiency  for  sequential  reads  and
     writes — once an indirect block is read, hundreds of data blocks can be
     read  before  the  next  indirect  block  is  needed.  Runs  between  reads  of
     double indirect blocks are even larger.
     


     	[bookmark: x1-33007x3]
     Fixed   structure.   The   FFS   tree   has   a   fixed   structure.   For   a   given
     configuration of FFS, the first set of d pointers always point to the first
     d blocks of a file; the next pointer is an indirect pointer that points to an
     indirect block; etc.
     
Compared  to  a  dynamic  tree  that  can  add  layers  of  indirection  above
     a  block  as  a  file  grows,  the  main  advantage  of  the  fixed  structure  is
     implementation simplicity.
                                                                  

                                                                  
     


     	[bookmark: x1-33009x4]
     Asymmetric. To efficiently support both large and small files with a fixed
     tree  structure,  FFS’s  tree  structure  is  asymmetric.  Rather  than  putting
     each data block at the same depth, FFS stores successive groups of blocks
     at increasing depth so that small files are stored in a small-depth tree, the
     bulk of medium files are stored in a medium-depth tree, and the bulk
     of large files are stored in a larger-depth tree. For example, Figure 13.11
     shows a small, 4-block file whose inode includes direct pointers to all of
     its blocks. Conversely, for the large file shown in Figure 13.10, most of
     the blocks must be accessed via the triple indirect pointer.
[bookmark: x1-3301011]


     
                                                                     [image: ]                                                                      	Figure 13.11:  A small FFS file whose blocks are all reachable via direct pointers
in the inode.
 


     

     In contrast, if we use a fixed-depth tree and want to support reasonably large
     files, small files would pay high overheads. With triple indirect pointers
     and 4 KB blocks, storing a 4 KB file would consume over 16 KB (the
     4 KB of data, the small inode, and 3 levels of 4 KB indirect blocks),
     and reading the file would require reading five blocks to traverse the
     tree.


     


   The FFS principles are general; many file systems have adopted variations on its
basic approach.

   EXAMPLE: FFS variation.  Suppose BigFS is a variation of FFS that includes in
each inode 12 direct, 1 indirect, 1 double indirect, 1 triple indirect, and 1 quadruple
indirect pointers. Assuming 4 KB blocks and 8-byte pointers, what is the maximum
file size this index structure can support?

   ANSWER:  12 direct pointers can index 12 × 4 KB = 48 KB.

   When used as an internal node, each storage block can contain as many as
4 KB/block / 8 bytes/pointer = 512 pointers/block = 29 pointers/block.

   So, the indirect pointer points to an indirect block with 29 pointers, referencing as
much as 29 blocks × 212 bytes/block = 221 bytes = 2 MB.

   Similarly, the double indirect pointer references as much as 29 × 29 × 212 = 230 bytes
= 1 GB, the triple indirect pointer references as much as 29 × 29 × 29 × 212 = 239 bytes
= 512 GB, and the quadruple indirect pointer references as much as
29 × 29 × 29 × 29 × 212 = 248 bytes = 256 TB.

   So, BigFS can support files a bit larger than 256.5 TB.                                  □
                                                                  

                                                                  

   Sparse files. Tree-based index structures like FFS’s can support sparse files in
which one or more ranges of empty space are surrounded by file data. The ranges of
empty space consume no disk space.

   For example, if we create a new file, write 4 KB at offset 0, seek to offset 230, and
write another 4 KB, as Figure 13.12 illustrates, an FFS system with 4 KB blocks will
only consume 16 KB — two data blocks, a double indirect block, and a single indirect
block.
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                                 [image: ]                                 	Figure 13.12:  A sparse FFS file with two 4 KB bocks, one at offset 0 and one at
offset 230.
 


                                                                  

                                                                  
   

   In this case, if we list the size of the file using the ls command, we see that the file’s
size is 1.1 GB. But, if we check the space consumed by the file, using the du command,
we see that it consumes just 16 KB of storage space.

   


>ls -lgGh sparse.dat

-rwx------ 1 1.1G 2012-01-31 08:45 sparse.dat*

>du -hs sparse.dat

16K sparse.dat



   If we read from a hole, the file system produces a zero-filled buffer. If we write to
a hole, the file system allocates storage blocks for the data and any required indirect
blocks.

   Similar to efficient support for sparse virtual memory address spaces, efficient
support of sparse files is useful for giving applications maximum flexibility in
placing data in a file. For example, a database could store its tables at the start of its
file, its indices at 1 GB into the file, its log at 2 GB, and additional metadata at
4 GB.

   Sparse files have two important limitations. First, not all file systems support
them, so an application that relies on sparse file support may not be portable.
Second, not all utilities correctly handle sparse files, which can lead to unexpected
consequences. For example, if I read a sparse file from beginning to end and
write each byte to a different file, I will observe runs of zero-filled buffers
corresponding to holes and write those zero-filled regions to the new file.
The result is a new non-sparse file whose space consumption matches its
size.

   


>cat sparse.dat > /tmp/notSparse.dat

>ls -lgGh /tmp/notSparse.dat

-rw-r--r-- 1 1.1G 2012-01-31 08:54 /tmp/notSparse.dat

 >

>du -hs /tmp/notSparse.dat

1.1G /tmp/notSparse.dat



   Free space management. FFS’s free space management is simple. FFS allocates a
bitmap with one bit per storage block. The ith bit in the bitmap indicates whether the
ith block is free or in use. The position of FFS’s bitmap is fixed when the file system
                                                                  

                                                                  
is formatted, so it is easy to find the part of the bitmap that identifies free blocks near
any location of interest.

   Locality heuristics. FFS uses two important locality heuristics to get
good performance for many workloads: block group placement and reserved
space.

   Block group placement. FFS places data to optimize for the common case where
a file’s data blocks, a file’s data and metadata, and different files from the same
directory are accessed together.

   Conversely, because everything cannot be near everything, FFS lets different
directories’ files be far from each other.
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                                 [image: ]                                 	Figure 13.13:  FFS divides a disk into block groups, splits free space and inode
metadata across block groups, and puts data blocks for the files in a directory
in the same block group.
 


                                                                  

                                                                  
   

   This placement heuristic has four parts:


     
     	
     Divide disk into block groups. As Figure 13.13 illustrates, FFS divides a
     disk in to sets of nearby tracks called block groups. The seek time between
     any blocks in a block group will be small.
     


     	
     Distribute metadata. Earlier multi-level index file systems put the inode
     array and free space bitmap in a contiguous region of the disk. In such a
     centralized metadata arrangement, the disk head must often make seeks
     between a file’s data and its metadata.
     
In FFS, the inode array and free space bitmap are still conceptually arrays
     of records, and FFS still stores each array entry at a well-known, easily
     calculable  location,  but  the  array  is  now  split  into  pieces  distributed
     across the disk. In particular, each block group holds a portion of these
     metadata structures as Figure 13.13 illustrates.
     
For example, if a disk has 100 block groups, each block group would store
     1% of the file system’s inodes and the 1% portion of the bitmap that tracks
     the status of the data blocks in the block group.
     


     	
     Place file in block group.  FFS puts a directory and its files in the same
     block group: when a new file is created, FFS knows the inumber of the
     new file’s directory, and from that it can determine the range of inumbers
     in the same block group. FFS chooses an inode from that group if one
     is free; otherwise, FFS gives up locality and selects an inumber from a
     different block group.
     
In  contrast  with  regular  files,  when  FFS  creates  a  new  directory,  it
     chooses an inumber from a different block group. Even though we might
     expect a subdirectory to have some locality with its parent, putting all
     subdirectories in the same block group would quickly fill it, thwarting
     our efforts to get locality within a directory.
     
Figure 13.13  illustrates  how  FFS  might  groups  files  from  different
     directories into different block groups.
     


     	
                                                                  

                                                                  
     Place data blocks. Within a block group, FFS uses a first-free heuristic.
     When a new block of a file is written, FFS writes the block to the first free
     block in the file’s block group.
     
Although this heuristic may give up locality in the short term, it does
     so to improve locality in the long term. In the short term, this heuristic
     might  spread  a  sequence  of  writes  into  small  holes  near  the  start  of  a
     block group rather than concentrating them to a sequence of contiguous
     free  blocks  somewhere  else.  This  short  term  sacrifice  brings  long  term
     benefits, however: fragmentation is reduced, the block will tend to have
     a long run of free space at its end, subsequent writes are more likely to be
     sequential.
     
The intuition is that a given block group will usually have a handful of
     holes scattered through blocks near the start of the group and a long run
     of free space at the end of the group. Then, if a new, small file is created,
     its blocks will likely go to a few of the small holes, which is not ideal, but
     which is acceptable for a small file. Conversely, if a large file is created
     and written from beginning to end, it will tend to have the first few blocks
     scattered through the holes in the early part of the block, but then have
     the bulk of its data written sequentially at the end of the block group.
     
If a block group runs out of free blocks, FFS selects another block group
     and allocates blocks there using the same heuristic.
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                                 [image: ]                                 	Figure 13.14:  FFS’s block placement heuristic is to put each new file block in
the first free block in that file’s block group
 


                                                                  

                                                                  
   

   Reserved space. Although the block group heuristic can be effective, it
relies on there being a significant amount of free space on disk. In particular,
when a disk is nearly full, there is little opportunity for the file system to
optimize locality. For example, if a disk has only a few kilobytes of free
sectors, most block groups will be full, and others will have only a few free
blocks; new writes will have to be scattered more or less randomly around the
disk.

   FFS therefore reserves some fraction of the disk’s space (e.g., 10%) and presents a
slightly reduced disk size to applications. If the actual free space on the disk
falls below the reserve fraction, FFS treats the disk as full. For example, if a
user’s application attempts to write a new block in a file when all but the
reserve space is consumed, that write will fail. When all but the reserve space
is full, the super user’s processes will still be able to allocate new blocks,
which is useful for allowing an administrator to log in and clean things
up.

   The reserved space approach works well given disk technology trends. It
sacrifices a small amount of disk capacity, a hardware resource that has been
improving rapidly over recent decades, to reduce seek times, a hardware property
that is improving only slowly.
[bookmark: x1-33014r84]


13.3.3 [bookmark: x1-340003]NTFS: Flexible Tree With Extents

   The Microsoft New Technology File System (NTFS), released in 1993, improved
on Microsoft’s FAT file system with many new features including new index
structures to improve performance, more flexible file metadata, improved security,
and improved reliability.
   We will discuss some of NTFS’s reliability features in Chapter 14. Here, we will
focus on how NTFS stores data and metadata.

   Index structures. Whereas FFS tracks file blocks with a fixed tree, NTFS and
many other recent file systems such as Linux ext4 and btrfs track extents with flexible
trees.


     
     	
     Extents. Rather than tracking individual file blocks, NTFS tracks extents,
     variable-sized regions of files that are each stored in a contiguous region
     on the storage device.
     


     	
     Flexible tree and master file table. Each file in NTFS is represented by a
                                                                  

                                                                  
     variable-depth tree. The extent pointers for a file with a small number
     of extents can be stored in a shallow tree, even if the file, itself, is large.
     Deeper trees are only needed if the file becomes badly fragmented.


     


   The roots of these trees are stored in a master file table that is similar to FFS’s
inode array. NTFS’s master file table (MFT) stores an array of 1 KB MFT records, each
of which stores a sequence of variable-size attribute records. NTFS uses attribute
records to store both data and metadata — both are just considered attributes of a
file.

   Some attributes can be too large to fit in an MFT record (e.g., a data extent) while
some can be small enough to fit (e.g., a file’s last modified time). An attribute can
therefore be resident or non-resident. A resident attribute stores its contents directly in
the MFT record while a non-resident attribute stores extent pointers in its MFT record
and stores its contents in those extents.
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                                 [image: ]                                 	Figure 13.15:  NTFS index structures and data for a basic file with two data
extents. 
 


                                                                  

                                                                  
   

   Figure 13.15 illustrates the index structures for a basic NTFS file. Here, the file’s
MFT record includes a non-resident data attribute, which is a sequence of
extent pointers, each of which specifies the starting block and length in
blocks of an extent of data. Because extents can hold variable numbers of
blocks, even a multi-gigabyte file can be represented by one or a few extent
pointers in an MFT record, assuming file system fragmentation is kept under
control.
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                                 [image: ]                                 	Figure 13.16:  A small file’s data can be resident, meaning that the file’s data is
stored in its MFT record.
 


                                                                  

                                                                  
   

   If a file is small, the data attribute may be used to store the file’s actual contents
right in its MFT record as a resident attribute as Figure 13.16 illustrates.

   An MFT record has a flexible format that can include range of different
attributes. In addition to data attributes, three common metadata attribute types
include:


     
     	
     Standard information. This attribute holds standard information needed
     for  all  files.  Fields  include  the  file’s  creation  time,  modification  time,
     access time, owner ID, and security specifier. Also included is a set of
     flags indicating basic information like whether the file is a read only file,
     a hidden file, or a system file.
     


     	
     File name. This attribute holds the file’s name and the file number of its
     parent directory. Because a file can have multiple names (e.g., if there are
     multiple hard links to the file), it may have multiple file name attributes
     in its MFT record.
     


     	
     Attribute list. Because a file’s metadata may include a variable number
     of variable sized attributes, a file’s metadata may be larger than a single
     MFT record can hold. When this case occurs, NTFS stores the attributes
     in multiple MFT records and includes an attribute list in the first record.
     When present, the attribute list indicates which attributes are stored in
     which MFT records. For example, Figure 13.17 shows MFT records for
     two files, one whose attributes are contained in a single MFT record and
     one of whose attributes spans two MFT records.
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                                 [image: ]                                 	Figure 13.17:  Most NTFS files store their attributes in a single MFT record, but
a file’s attributes can grow to span multiple MFT records. In those cases, the
first MFT record includes an attribute list attribute that indicates where to find
each attribute record.
 


                                                                  

                                                                  
   

   As Figure 13.18 illustrates, a file can go through four stages of growth,
depending on its size and fragmentation. First, a small file may have its contents
included in the MFT record as a resident data attribute. Second, more typically, a
file’s data lies in a small number of extents tracked by a single non-resident data
attribute. Third, occasionally if a file is large and the file system fragmented, a file
can have so many extents that the extent pointers will not fit in a single MFT record.
In this case, as a file can have multiple non-resident data attributes in multiple
MFT records, with the attribute list in the first MFT record indicating which
MFT records track which ranges of extents. Fourth and finally, if a file is
huge or the file system fragmentation is extreme, a file’s attribute list can
be made non-resident, allowing almost arbitrarily large numbers of MFT
records.
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   Metadata files. Rather than doing ad-hoc allocation of special regions of disk for
file system metadata like free space bitmaps, NTFS stores almost all of its
metadata in about a dozen ordinary files with well-known low-numbered file
numbers. For example, file number 5 is the root directory, file number 6 is the
free space bitmap, and file number 8 contains a list of the volume’s bad
blocks.

   File number 9, called $Secure, contains security and access control information.
NTFS has a flexible security model in which a file can be associated with a list of
users and groups, with specific access control settings for each listed principal. In
early versions of NTFS, such an access control list was stored with each file, but these
lists consumed a nontrivial amount of space and many lists had identical contents.
So, current implementations of NTFS store each unique access control list once in the
special $Secure file, indexed by a fixed-length unique key. Each individual file just
stores the appropriate fixed-length key in its MFT record, and NTFS uses a
file’s security key to find the appropriate access control list in the $Secure
file.

   Even the master file table, itself, is stored as a file, file number 0, called $MFT. So,
we need to find the first entry of the MFT in order to read the MFT! To locate the
MFT, the first sector of an NTFS volume includes a pointer to the first entry of the
MFT.

   Storing the MFT in a file avoids the need to statically allocate all MFT
entries as a fixed array in a predetermined location. Instead, NTFS starts
with a small MFT and grows it as new files are created and new entries are
needed.

   Locality heuristics.

   Most implementations of NTFS use a variation of best fit, where the system tries
to place a newly allocated file in the smallest free region that is large enough to hold
it. In NTFS’s variation, rather than trying to keep the allocation bitmap for the entire
disk in memory, the system caches the allocation status for a smaller region of the
disk and searches that region first. If the bitmap cache holds information for areas
where writes recently occurred, then writes that occur together in time will tend to
be clustered together.

   An important NTFS feature for optimizing its best fit placement is the
SetEndOfFile() interface, which allows an application to specify the expected size of a
file at creation time. In contrast, FFS allocates file blocks as they are written, without
knowing how large the file will eventually grow.

   To avoid having the master file table file ($MFT) become fragmented, NTFS
reserves part of the start of the volume (e.g., the first 12.5% of the volume) for MFT
expansion. NTFS does not place file blocks in the MFT reserve area until the
non-reserved area is full, at which point it halves the size of the MFT reserve area
and continues. As the volume continues to fill, NTFS continues to halve the reserve
area until it reaches the point where the remaining reserve area is more than half
                                                                  

                                                                  
full.

   Finally, Microsoft operating systems with NTFS include a defragmentation
utility that takes fragmented files and rewrites them to contiguous regions of
disk.
[bookmark: x1-34005r90]


13.3.4 [bookmark: x1-350004]Copy-On-Write File Systems

   When updating an existing file, copy-on-write (COW) file systems do not
overwrite the existing data or metadata; instead, they write new versions to new
locations.
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   COW file systems do this to optimize writes by transforming random I/O
updates to sequential ones. For example, when appending a block to a file, a
traditional, update-in-place file system might seek to and update its free space
bitmap, the file’s inode in the inode array, the file’s indirect block, and the file’s data
block. In contrast, a COW file system might just find a sequential run of free space
and write the new bitmap, inode, indirect block, and data block there as illustrated in
Figure 13.19.

   Several technology trends are driving widespread adoption of COW file
systems:


     
     	
     Small writes are expensive. Disk performance for large sequential writes
     is much better than for small random writes. This gap is likely to continue
     to  grow  because  bandwidth  generally  improves  faster  than  seek  time
     or rotational latency: increasing storage density can increase bandwidth
     even if the rotational speed does not increase.
     
As  a  result  the  benefits  of  converting  small  random  writes  to  large
     sequential ones is large and getting larger.
     


     	
     Small  writes  are  especially  expensive  on  RAID.  Redundant  arrays  of
     inexpensive disks (RAIDs) are often used to improve storage reliability.
     However, as we will discuss in the next chapter, updating a single block
     stored with parity on a RAID requires four disk I/Os: we must read the
     old data, read the old parity, write the new data, and write the new parity.
     In contrast, RAIDs are efficient when an entire stripe — all of the blocks
     sharing  the  same  parity  block — are  updated  at  once.  In  that  case,  no
     reads are needed, each new data block is written, and the parity update
     is amortized across the data blocks in the stripe.
     
Widespread use of RAIDs magnifies the benefits of converting random
     writes to sequential ones.
     


     	
     Caches filter reads. For many workloads, large DRAM caches can handle
     essentially all file system reads. But our ability to use DRAM to buffer
     writes is limited by the need to durably store data soon after it is written.
     
Thus, the cost of writes often dominates performance, so techniques that
     optimize write performance are appealing.
                                                                  

                                                                  
     


     	
     Widespread adoption of flash storage. Flash storage has two properties
     that  make  the  COW  techniques  important.  First,  in  order  to  write  a
     small (e.g., 4 KB) flash page, one must first clear the large (e.g., 512 KB)
     erasure block on which it resides. Second, each flash storage element can
     handle  a  limited  number  of  write-erase  cycles  before  wearing  out,  so
     wear leveling — spreading writes evenly across all cells — is important for
     maximizing flash endurance.
     
A flash drive’s flash translation layer uses COW techniques to virtualize
     block addresses, allowing it to present a standard interface to read and
     write specific logical pages while internally redirecting writes to pages
     on already-cleared erasure blocks and while moving existing data to new
     physical  pages  so  that  their  current  erasure  blocks  can  be  cleared  for
     future writes.
     
Note that a flash drive’s flash translation layer operates below the file
     system — standard  update  in  place  or  COW  file  systems  are  still  used
     over  that  layer.  But,  flash  translation  layers  are  constructed  using  the
     same basic principles as the COW file systems discussed here.
     


     	
     Growing  capacity  enables  versioning.  Large  storage  capacities  make  it
     attractive for file systems to provide interfaces by which users can access
     old versions of their files.
     
Since  updates  in  COW  systems  do  not  overwrite  old  data  with  new,
     supporting versioning is relatively straightforward, as we discuss below.
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                                 [image: ]                                 	Figure 13.20:  A traditional, update-in-place file system, such as FFS.
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                                 [image: ]                                 	Figure 13.21:  A simple copy-on-write (COW) file system. 
 


                                                                  

                                                                  
   

   Implementation principles. Figures 13.20 and 13.21 illustrate the core idea of
COW file systems by comparing a traditional file system (FFS in this case) with a
COW implementation that uses the same basic index structures.

   In the traditional system (Figure 13.20), a file’s indirect nodes and data blocks
can be located anywhere on disk, and given a file’s inumber, we can find its inode in
a fixed location on disk.

   In the COW version (Figure 13.21), we do not want to overwrite inodes in place,
so we must make them mobile. A simple way to do that is to store them in a
file rather than in a fixed array. Of course, that is not quite the end of the
story — we still need to be able to find the inode file’s inode, called the root
inode.

   The simplest thing to do would be to store the root inode in a fixed location. If we
did that, then we could find any file’s inode by using the root inode to read
from a computed offset in the inode file, and from that we could find its
blocks.

   However, it is useful to make even the root inode copy-on-write. For example, we
do not want to risk losing the root inode if there is a crash while it is being written. A
solution is to include a monotonically increasing version number and a checksum in
the root inode and to keep a small array of slots for the current and recent
root inodes, updating the oldest one when a write occurs. After a crash,
we scan all of the slots to identify the newest root inode that has a correct
checksum.
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                                 [image: ]                                 	Figure 13.22:  In a COW file system, writing a data block causes the system to
allocate new blocks for and to write the data block and all nodes on the path
from that data block to the root inode.
 


                                                                  

                                                                  
   

   In this design, all the file system’s contents are stored in a tree rooted in the
root inode, when we update a block, we write it — and all of the blocks on
the path from it to the root — to new locations. For example, Figure 13.22
shows what happens when one block of a file is updated in our simple COW
system.

   ZFS index structures. To better understand how copy-on-write file systems are
implemented, we will look at the open source ZFS file system.
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   As Figure 13.23 illustrates, the root of a ZFS storage system is called the
uberblock. ZFS keeps an array of 256 uberblocks in a fixed storage location and rotates
successive versions among them. When restarting, ZFS scans the uberblock
array and uses the one with a valid checksum that has the highest sequence
number.

   The current uberblock conceptually includes a pointer to the current root dnode,
which holds the dnode array for a ZFS file system. (We say “conceptually” because
we are simplifying things a bit here. Once you have read this description, see the
sidebar if you want the gory details.)

   The basic metadata object in ZFS is called a dnode, and it plays a role similar to an
inode in FFS or an MFT entry in NTFS: a file is represented by variable-depth
tree whose root is a dnode and whose leaves are its data blocks. A dnode
has space for three block pointers, and it has a field that specifies the tree’s
depth: zero indicates that the dnode stores the file’s data; one means that the
pointers are direct pointers to data blocks; two means that the dnode’s pointers
point to indirect blocks, which point to data blocks; three means that the
dnode’s pointers point to double indirect blocks; and so on, up to six levels of
indirection.

   Data block and indirect block sizes are variable from 512 bytes to 128KB and
specified in a file’s dnode. Note, however, that even a 128 KB indirect node holds
fewer block pointers than you might expect because each block pointer is a 128 byte
structure.

   ZFS’s block pointers are relatively large structures because they include fields to
support advanced features like large storage devices, block compression, placing
copies of the same block on different storage devices, file system snapshots, and
block checksums. Fortunately, we can ignore these details and just treat each block
pointer structure as a (rather large) pointer.
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   Figure 13.24 shows what happens when we update the last block in a 2-level ZFS
file. We allocate a new data block and store the new data in it, but that means that we
need to update the indirect block that points to it. So, we allocate a new indirect
block and store the version with the updated pointer there, but that means we need
to update the indirect pointer that points to it. And so on, up through the file’s
dnode, the indirect blocks that track the dnode array, the root dnode, and the
uberblock.

   

	ZFS uberblock, meta-root dnode, and root dnodes[bookmark: x1-35007r1] 

   For simplicity, the body of the text describes the uberblock as pointing directly to
the file system’s root dnode.

   In reality, there are a few additional levels of indirection to allow multiple file
systems and snapshots to share a ZFS storage pool under a single uberblock.
The uberblock has a pointer to a meta-root dnode (called the Meta Object
Store dnode in ZFS terminology). The meta-root dnode tracks the meta-root
dnode array. The meta-root dnode array is used by what is essentially a little
file system with hierarchical directories that provide mappings from the
names of file systems to “files” that store the metadata for each file system,
including a pointer to the block where the file system’s root dnode is (currently)
stored.

   So, a more complete picture looks like this:


 

[image: ]   


   





   ZFS space map. ZFS’s space maps track free space in a way designed to scale to
extremely large storage systems.

   One concern the ZFS designers had with bitmaps was that the size of a bitmap
grows linearly with storage capacity and can become quite large for large-scale
systems. For example, with 4 KB block size, a file server with 1 PB of disk space
would have 32 GB of bitmaps.

   Large bitmaps affect both a server’s memory requirements and the time needed
to read the bitmaps on startup. Although one might attempt to cache a subset of the
bitmap in memory and only allocate from the currently cached subset, we cannot
control when blocks are freed. For workloads in which frees have poor locality,
caching will be ineffective.

   ZFS’s space maps use three key ideas to scale to large storage systems:


     
     	
     Per block group space maps. ZFS maintains a space map for each block
     group, it restricts allocation of new blocks to a subset of block groups at
     any given time, and it keeps those block groups’ space maps in memory.
                                                                  

                                                                  
     


     	
     Tree of extents. Each block group’s free space is represented as an AVL
     tree of extents. The tree allows ZFS to efficiently find a free extent of a
     desired size, and its search performance does not degrade as the block
     group becomes full.
     


     	
     Log-structured updates. As noted above, caching a portion of a space map
     works  for  allocations  but  it  may  not  help  frees.  Therefore,  rather  than
     directly updating the on-disk spacemap, ZFS simply appends spacemap
     updates to a log. When a block group is activated for allocation, ZFS reads
     in the most recently stored spacemap and then it reads all subsequently
     logged  updates  to  bring  the  space  map  up  to  date.  After  applying
     updates to the in-memory spacemap, ZFS can store the new spacemap to
     limit the length of its update log.


     


   ZFS locality heuristics. We started the discussion of COW file systems by saying
that they are designed to optimize write performance, but the example in
Figure 13.24 make it sound like ZFS does a lot of work just to update a block. ZFS
does two important things to optimize write behavior:


     
     	
     Sequential  writes.  Because  almost  everything  in  ZFS  is  mobile,  almost
     all of these updates can be grouped into a single write to a free range
     of sequential blocks on disk. Only the uberblock needs to go elsewhere.
     Because sequential writes are much faster than random ones, ZFS and
     other  COW  file  systems  can  have  excellent  write  performance  even
     though they write more metadata than update-in-place file systems.
     


     	
     Batched updates. Figure 13.24 shows what happens when we update a
     single block of a single file, but ZFS does not typically write one update at
     a time. Instead, ZFS updates several seconds of updates and writes them
     to disk as a batch. So, updates to a file’s dnode and indirect nodes may
     be amortized over many writes to the file, and updates to the uberblock,
     root dnode, and the dnode array’s indirect blocks may be amortized over
     writes to many files.
                                                                  

                                                                  


     


   When it is time to write a batch of writes, ZFS needs to decide where to write the
new block versions. It proceeds in three steps:


     
     	
     Choose a device. A ZFS storage pool may span multiple devices, so the
     first  step  is  to  choose  which  device  to  use.  To  maximize  throughput
     by  spreading  load  across  devices,  ZFS  uses  a  variation  of  round  robin
     with two tweaks. First, to even out space utilization, ZFS biases selection
     towards devices with large amounts of free space. Second, to maintain
     good  locality  for  future  reads,  ZFS  places  about  512 KB  on  one  device
     before moving on to the next one.
     


     	
     Choose  a  block  group.  ZFS  divides  each  device  into  several  hundred
     groups of sequential blocks. ZFS’s first choice for is to continue to use
     the block group it used most recently. However, if that group is so full or
     fragmented that its largest free region is smaller than 128 KB, ZFS selects
     a new block group.
     
New block group selection is biased towards groups that have more free
     space, that are nearer the outer edge of a disk (to improve bandwidth),
     and that have recently been used to store some data (to limit the range of
     tracks across which the disk head must seek).
     


     	
     Choose  a  block  within  the  group.  To  maximize  opportunities  to  group
     writes together, ZFS uses first fit allocation within a block group until the
     group is nearly full. At that point, it falls back on best fit to maximize
     space utilization.


     


   

	Partitioning, Formatting, and Superblocks

   How does an operating system know where to find FFS’s inode array, NTFS’s
MFT, or ZFS’s uberblock? How does it know how large these structures are? How
does it even know what type of file system is on a disk?
                                                                  

                                                                  

   A disk device’s space can be divided into multiple partitions, each of which
appears a separate (smaller) virtual storage device that can be formatted as a
separate file system. To partition a disk, an operating system writes a special record
(e.g., a master boot record (MBR) or GUID partition table (GPT)) in the first
blocks of the disk. This record includes the disk’s unique ID, size, and the
list of the disk’s partitions. Each partition record stores the partition’s type
(e.g., general file system partition, swap partition, RAID partition, bootable
partition), partition ID, partition name, and the partition’s starting and ending
blocks.

   To improve reliability, operating systems store multiple copies of a disk’s
partition table — often in the first few and last few of a disk’s blocks.

   Once a disk has been partitioned, the operating system can format some or all of
the partitions by initializing the partition’s blocks according to the requirements of
the type of file system being created.

   Formatting a file system includes writing a superblock that identifies the file
system’s type and its key parameters such as its type, block size, and inode array or
MBR location and size. Again, for reliability, a file system typically stores multiple
copies of its superblock at several predefined locations.

   Then, when an operating system boots, it can examine a disk to find its
partitions, and it can examine each partition to identify and configure its file
systems.

   





[bookmark: x1-35008r80]

[bookmark: x1-360004]13.4 Putting It All Together: File and Directory Access

   In Section 13.2 we saw that directories are implemented as files, containing file
name to file number mappings, and in Section 13.3 we saw that files are
implemented using an index structure — typically a tree of some sort — to track the
file’s blocks.
   In this section, we walk through the steps FFS takes to read a file, given
that file’s name. The steps for the other file systems we have discussed are
similar.
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                                 [image: ]                                 	Figure 13.25:  The circled numbers identify the steps required to read /foo/bar/baz
in the FFS file system.
 


                                                                  

                                                                  
   

   Suppose we want to read the file /foo/bar/baz.

   First, we must read the root directory / to determine /foo’s inumber. Since
we already know the root directory’s inumber (it is a pre-agreed number
compiled into the kernel, e.g., 2), we open and read file 2’s inode in step 1
in Figure 13.25. Recall that FFS stores pieces of the inode array at fixed
locations on disk, so given a file’s inumber it is easy to find and read the file’s
inode.

   From the root directory’s inode, we extract the direct and indirect block pointers
to determine which block stores the contents of the root directory (e.g., block 48912
in this example). We can then read that block of data to get the list of name to
inumber mappings in the root directory and discover that directory file /foo has
inumber 231 (step 2).

   Now that we know /foo’s inumber, in step 3 we can read inode 231 to find
where /foo’s data blocks are stored — block 1094 in the example. We can then
read those blocks of data to get the list of name to inumber mappings in the
/foo directory and discover that directory file /foo/bar has inumber 731 (step
4).

   We follow similar steps to read /foo/bar’s inode (step 5) and data block 30991 (step
6) to determine /foo/bar/baz inumber 402.

   Finally, in step 7, we read /foo/bar/baz’s inode (402), and in step 8, we read its data
blocks (89310, 14919, and 23301): “I hear and I forget. I see and I remember. I do and I
understand.”

   This may seem like a lot of steps just to read a file. Most of the time, we expect
much of this information to be cached so that some steps can be avoided. For
example, if the inodes and blocks for / and /foo are cached, then we would skip steps
1 to 4. Also, once file /foo/bar/baz has been opened, the open file data structure in the
operating system will include the file’s inumber so that individual reads
and writes of the file can skip steps 1 to 6 (and step 7 while the inode is
cached).

   EXAMPLE: Reading a file.  What would you get if you read the file /foo/fie in the
FFS file system illustrated in Figure 13.25?

   ANSWER:  First we read the root inode (inode 2) and file (block 48912), then
/foo’s inode (inode 231) and file (block 1094), and then /foo/fie’s inode (inode 402
again) and file (blocks 89310, 14919, and 23301 again) — /foo/bar/baz and /foo/fie are
hard links to the same file.                                                                                        □
[bookmark: x1-36002r102]


[bookmark: x1-370005]13.5 Summary and Future Directions

   We are seeing significant shifts in the technologies and workloads that drive file
system design.
   Practical solid state storage technologies like flash memory change the
                                                                  

                                                                  
constraints around which file systems can be designed. Random access performance
that is good both in relative terms compared to sequential access performance and in
absolute terms provide opportunities to reconsider many aspects of file system
design — directories, file metadata structures, block placement — that have been
shaped by the limitations of magnetic disks. Promising future solid state storage
technologies like phase change memory or memristors may allow even more
dramatic restructuring of file systems to take advantage of their even better
performance and their support for fine-grained writes of a few bytes or
words.

   On the other hand, the limited lifetime and capacity of many solid state
technologies may impose new constraints on file system designs. Perhaps we should
consider hybrid file systems that, for example, store metadata and the content of
small files in solid state storage and the contents of large files on magnetic
disks.

   Even the venerable spinning disk continues to evolve rapidly, with capacity
increases continuing to significantly outpace performance improvements, making it
more and more essential to organize file systems to maximize sequential transfers to
and from disk.

   Workloads are also evolving rapidly, which changes demands on file
systems. In servers, the rising popularity of virtual machines and cloud
computing pressure operating systems designers to provide better ways to
share storage devices with fair and predictable performance despite variable
and mixed workloads. At clients, the increasing popularity of apps and
specialized compute appliances are providing new ways for organizing
storage: rather than having users organize files into directories, apps and
appliances often manage their own storage, providing users with a perhaps
very different way of identifying stored objects. For example, rather than
requiring users to create different directories for different, related sets of
photos into different directories, many photo organizing applications provide
an interface that groups related photos into events that may or may not
reflect where in the file system the events are stored. Perhaps our reliance on
directories for naming and locality will need to be rethought in the coming
years.
[bookmark: Q1-1-105]
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Exercises



   
	 Why do many file systems have separate system calls for removing a regular file
(e.g., unlink) and removing a directory (e.g., rmdir)?
   


   
	 In Figure 13.4, suppose we create a new file z.txt and then unlink work, removing
that entry. Draw a figure similar to Figure 13.4 that shows the new contents of the
                                                                  

                                                                  
directory.
   


   
	 What effect will doubling the block size in the UNIX Fast File System have on the
maximum file size?


   
	 Is there a limit on the maximum size of a file in an extent-based file system? Why
or why not?


   
	 Suppose a variation of FFS includes in each inode 12 direct, 1 indirect, 1 double
indirect, 2 triple indirect, and 1 quadruple indirect pointers. Assuming 6 KB blocks
and 6-byte pointers
   

   
	What is the largest file that can be accessed via direct pointers only?
   


   
	 To within 1%, what is the maximum file size this index structure can
support?
   


   


   


   
	 On a Unix or Linux system, use the ls -l command to examine various
directories. After the first ten characters that define each file’s access permissions,
there is a field that indicates the number of hard links to the file. For example, here
we have two files, bar with two links and foo with just one.
   


drwxr-sr-x 2 dahlin prof 4096 2012-02-03 08:37 bar/

-rw-r--r-- 1 dahlin prof    0 2012-02-03 08:36 foo



   For directories, what is the smallest number of links you can observe?
Why?

   For directories, even though regular users cannot make hard links to directories,
you may observe some directories with high link counts. Why?

   


   
	 In NTFS, a master file table entry maximizes the number of extent pointers it can
store by storing extent pointers as a sequence of variable-length records: the first four
bits encode the size used to store pointer to the start of the extent and the next
four bits encode the size used to store the extent length. To further reduce
record size, the extent-start pointer is stored as an offset from the previous
extent’s pointer. Thus, if we have a 10 block extent starting at block 0x20000
and then a 5 block extent starting at block 0x20050, then the first (absolute)
starting address (0x200000) will be stored in three bytes while the second
                                                                  

                                                                  
(relative) starting address will be stored in one byte (0x20050 - 0x20000 =
0x50).
   An apparent disadvantage of this approach is that seeking to a random offset in a
file requires sequentially scanning all of the extent pointers. Given your
understanding of NTFS and disk technology trends, explain why this apparent
disadvantage may not be a problem in practice.

   


   
	 When user tries to write a file, the file system needs to detect if that file is a
directory so that it can restrict writes to maintain the directory’s internal
consistency.
   Given a file’s name, how would you design each file system listed below to keep
track of whether each file is a regular file or a directory?

   
 	The FAT file system


   
	FFS


   
	NTFS




   


   
	 Why would it be difficult to add hard links to the FAT file system?
   


   
	 For the FFS file system illustrated in Figure 13.25, what reads and writes of
inodes and blocks would occur to create a new file /foo/sparse and write blocks 1 and
2,000,000 of that file. Assume that inodes have pointers for 11 direct blocks, 1 indirect
block, 1 double-indirect block, and 1 triple indirect block, and assume 4KB blocks
with 4-byte block pointers.
   


   
	 Give a formula for the minimum and maximum number of disk blocks that must
be read in the UNIX Fast File System to fetch the first block of a file, as a
function of the number of “/” characters in the file name (in other words, the
depth of the file in the directory tree). Assume that nothing is in the file
cache.


   
	 A web client and web server are running on the same uniprocessor computer.
They have an open connection and are ready to send/receive web requests.
List a possible sequence of user-mode/kernel-mode boundary crossings
(counting one for each direction, and including interrupts) needed for the
client to issue a simple web request, the server to receive the request and
fetch the data from the file system, and for the server to send the data to the
client.
   Assume that there is a low priority background task running on the processor,
the current directory is cached, but the requested file is not in the server cache or the
file system cache. Also assume that both the request and the requested file data are
                                                                  

                                                                  
small (e.g., they fit inside a single disk block). You may assume any of the file
systems described in this chapter, provided you label which one you are
assuming.





                                                                  

                                                                  






[bookmark: x1-3900014]14. Reliable Storage
   A stitch in time saves nine. —English Proverb 

   	
   
	 







   Highly reliable storage is vitally important across a wide range of applications
from businesses that need to know that that their billing records are safe to families
that have photo albums they would like to last for generations.

   So far, we have treated disk and flash as ideal non-volatile storage: stored data
will remain forever or until it is overwritten. Physical devices cannot achieve such
perfection — they may be defective, they may wear out, or they may be damaged so
they may lose some or all of their data.

   Unfortunately, the limits of physical devices are not merely abstract concerns. For
example, some large organizations have observed annual disk failure rates of 2% to
4%, meaning that an organization with 10,000 disks might expect to see hundreds of
failures per year and that important data stored on a single disk by a naive
storage system might have more than a 30% chance of disappearing within a
decade.

   The central question of this chapter is: How can we make a storage system more
reliable than the physical devices out of which it is built?

   A system is reliable if it performs its intended function. Reliability is related to,
but different from, availability. A system is available if it currently can respond to a
request.

   In the case of storage, a storage system is reliable as long as it continues to
store a given piece of data and as long as its components are capable of
reading or overwriting that data. We define a storage system’s reliability as
the probability that it will continue to be reliable for some specified period
of time. A storage system is available at some moment if a read or write
operation could be completed at that time, and we define a storage system’s
availability as the probability that the system will be available at any given
time.
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                                 [image: ]                                 	Figure 14.1:    The  Voyager  “Golden  Record,”  a  highly  reliable  but  highly
unavailable storage device. Photo Credit: NASA.
 


                                                                  

                                                                  
   

   To see the difference between reliability and availability, consider the highly
reliable but highly unavailable storage device shown in Figure 14.1. In the 1970’s,
the two Voyager spacecraft sent out of our solar system each included a golden
record on which various greetings, diagrams, pictures, natural sounds, and
music were encoded, as stated on each record by President Carter, as “a
present from a small, distant world, a token of our sounds, our science,
our images, our music, our thoughts and our feelings.” To protect against
erosion, the record is encased in an aluminum and uranium cover. This storage
device is highly reliable — it is expected to last for many tens of thousands of
years in interstellar space — but it is not highly available (at least, not to
us).

   To take a more pedestrian example, suppose a storage system required each data
block to be written to a disk on each of 100 different machines physically distributed
across 100 different machine rooms spread across the world. Such a system would be
highly reliable, since it would take a spectacular catastrophe to wipe out all of the
copies of any data that is stored. It would be highly available for reads, since there
are 100 different locations to read from. But it would not be highly available
for writes, since new writes cannot complete if any one of 100 machines is
unavailable.

   Two problems. Broadly speaking, storage systems must deal with two threats to
reliability.


     
     	
     Operation interruption. A crash or power failure in the middle of a series
     of related updates may leave the stored data in an inconsistent state.
     
For example, suppose that a user has asked an operating system to move
     a file from one directory to another:
     
> mv drafts/really-important.doc final/really-important.doc
     
As we discussed in Chapter 13, such a move may entail many low-level
     operations: writing the drafts directory file to remove really-important.doc,
     updating the last-modified time of the drafts directory, growing the final
     directory’s file to include another block of storage to accommodate a new
     directory entry for really-important.doc, writing the new directory entry to the
     directory file, updating the file system’s free space bitmap to note that the
     newly allocated block is now in use, and updating the size and last-modified
     time of the final directory.
                                                                  

                                                                  
     
Suppose that the system’s power fails when the updates to the drafts directory
     are stored in non-volatile storage but when the updates to the final directory are
     not; in that case, the file really-important.doc may be lost. Or, suppose that the
     operating system crashes after updating the drafts and final directories
     but before updating the file system’s free space bitmap; in that case,
     the file system will still regard the new block in the final directory as
     free, and it may allocate that block to be part of some other file. The
     storage device then ends up with a block that belongs to two files, and
     updates intended for one file may corrupt the contents of the other
     file.
     


     	
     Loss of stored data. Failures of non-volatile storage media can cause
     previously stored data to disappear or be corrupted. Such failures can affect
     individual blocks, entire storage devices, or even groups of storage
     devices.
     
For example, a disk sector may be lost if it is scratched by a particle
     contaminating the drive enclosure; a flash memory cell might lose its contents
     when large numbers of reads of nearby cells disturb its charge; a disk
     drive can fail completely because bearing wear causes the platters to
     vibrate too much to be successfully read or written; or a set of drives
     might be lost when a fire in a data center destroys a rack of storage
     servers.


     


   Two solutions. Fortunately, system designers have developed two sets of
powerful solutions to these problems, and the rest of the chapter discusses
them.


     
     	
     Transactions for atomic updates. When a system needs to make several
     related updates to non-volatile storage, it may want to ensure that the
     state  is  modified  atomically:  even  if  a  crash  occurs  the  state  reflects
     either all of the updates or none of them. Transactions are a fundamental
     technique to provide atomic updates of non-volatile storage
     
Transactions are simple to implement and to use, and they often have as
     good or better performance than ad-hoc approaches. The vast majority of
     widely used file systems developed over the past two decades have used
     transactions internally, and many applications implement transactions of
     their own to keep their persistent state consistent.
                                                                  

                                                                  
     


     	
     Redundancy  for  media  failures.  To  cope  with  data  loss  and  corruption,
     storage systems use several forms of redundancy such as checksums to
     detect corrupted storage and replicated storage to recover from lost or
     corrupted sectors or disks.
     
Implementing  sufficient  redundancy  at  acceptably  low  cost  can  be
     complex. For example, a widely used, simple model of RAID (Redundant
     Array  of  Inexpensive  Disks)  paints  an  optimistic  picture  of  reliability
     that can be off by orders of magnitude. Modern storage systems often
     make use of multiple levels of checksums (e.g., both in storage device
     hardware  and  file  system  software),  include  sufficient  redundancy  to
     survive  two  or  more  hardware  failures  (e.g.,  keeping  three  copies  of
     a  file  or  two  parity  disks  with  a  RAID),  and  rely  on  software  that  to
     detect failures soon after they occur and to repair failures quickly (e.g.,
     background processes that regularly attempt to read all stored data and
     algorithms that parallelize recovery when a device fails). Systems that fail
     to properly use these techniques may be significantly less reliable than
     expected.


     


[bookmark: x1-39002r104]
[bookmark: x1-400001]14.1 Transactions: Atomic Updates

   When a system makes several updates to non-volatile storage and a
crash occurs, some of those updates may be stored and survive the crash
and others may not. Because a crash may occur without warning, storage
systems and applications need to be constructed so that no matter when
the crash occurs, the system’s non-volatile storage is left in some sensible
state.
   This problem occurs in many contexts. For example, if a crash occurs while you
are installing an update for a suite of applications, upon recovery you would like to
be able to use either the old version or the new version, not be confronted with a
mishmash of incompatible programs. For example, if you are moving a subdirectory
from one location to another when a crash occurs, when you recover you want to see
the data in one location or the other; if the subdirectory disappears because of an
untimely crash, you will be (justifiably) upset with the operating system designer.
Finally, if a bank is moving $100 from Alice’s account to Bob’s account when a
crash occurs, it wants to be certain that upon recovery either the funds are in
Alice’s account and records show that the transfer is still to be done or that
the funds are in Bob’s account and the records show that the transfer has
occurred.
                                                                  

                                                                  

   This problem is quite similar to the critical section problem in concurrency. In
both cases, we have several updates to make and we want to avoid having anyone
observe the state in an intermediate, inconsistent state. In addition, we have no
control when other threads might try to access the state in the first case or when a
crash might occur in the second — we must develop a structured solution that works
for any possible execution. The solution is similar, too; we want to make the set of
updates atomic. However, because we are dealing with non-volatile storage rather
than main memory, the techniques for achieving atomicity differ in significant
ways.

   Transactions extend the concept of atomic updates from memory to stable
storage, allowing systems to atomically update multiple persistent data
structures.
[bookmark: x1-40001r95]


14.1.1 [bookmark: x1-410001]Ad Hoc Approaches

   Until the mid-1990’s, many file systems used ad hoc approaches to solving the
problem of consistently updating multiple on-disk data structures.
   For example, the Unix fast file system (FFS) would carefully control the order that
its updates were sent to disk so that if a crash occurred in the middle of a group of
updates, a scan of the disk during recovery could identify and repair inconsistent
data structures. When creating a new file, for example, FFS would first update the
free-inode bitmap to indicate that the previously free inode was now in use. After
making sure this update was on disk, it would initialize the new file’s inode, clear all
of the direct, indirect, double-indirect, and other pointers, set the file length to 0,
and set the file’s ownership and access control list. Finally, once the inode
update was safely on disk, the file system would update the directory to
contain an entry for the newly created file, mapping the file’s name to its
inode.

   If a system running FFS crashed, then when it rebooted it would use a program
called fsck (file system check) to scan all of the file system’s metadata (e.g., all inodes,
all directories, and all free space bitmaps) to make sure that all metadata
items were consistent. If, for example, fsck discovered an inode that was
marked as allocated in the free-inode bitmap but that did not appear in any
directory entry, it could infer that the inode was part of a file in the process of
being created (or deleted) when the crash occurred. Since the create had
not finished or the delete had started, fsck could mark the inode as free,
undoing the partially completed create (or completing the partially completed
delete).

   Similar logic was used for other file system operations.

   This approach of careful ordering of operations with scanning and repair of
on-disk data structures was widespread until the 1990’s, when it was largely
abandoned. In particular, this approach has three significant problems:
     

                                                                  

                                                                  
     	[bookmark: x1-41002x1]
     Complex   reasoning.   Similar   to   trying   to   solve   the   multi-threaded
     synchronization problem with just atomic loads and stores, this approach
     requires reasoning carefully about all possible operations and all possible
     failure  scenarios  to  make  sure  that  it  is  always  possible  to  recover  the
     system to a consistent state.
     


     	[bookmark: x1-41004x2]
     Slow updates. To ensure that updates are stored in an order that allowed
     the  system’s  state  to  be  analyzed,  file  systems  are  forced  to  insert
     sync operations or barriers between dependent operations, reducing the
     amount of pipelining or parallelism in the stream of requests to storage
     devices.
     
For  example,  in  the  file  creation  example  above  to  ensure  that  the
     individual updates hit disk in the required order, the system might suffer
     three  full  rotations  of  the  disk  to  update  three  on-disk  data  structures
     even though those data structures may be quite near each other.
     


     	[bookmark: x1-41006x3]
     Extremely slow recovery. When a machine reboots after a crash, it has to
     scan all of its disks for inconsistent metadata structures.
     
In  the  1970’s  and  1980s,  it  was  possible  to  scan  the  data  structures  on
     most servers’ disks in a few seconds or minutes. However, by the 1990’s
     this scanning could take tens of minutes to a few hours for large servers
     with many disks, and technology trends indicated that scan times would
     rapidly grow worse.


     


   Although the first two were significant disadvantages of the approach, it was the
third that finally made depending on careful ordering and fsck untenable for most
file systems. New file systems created since the late 1980’s almost invariably use
other techniques — primarily various forms of transactions that we discuss in the
rest of this section.

   

	fsck lives

   Although few file systems today rely on scanning disks when recovering from a
crash, fsck and other similar programs are often still used as an “emergency fix”
when on-disk data structures are corrupted for other reasons (e.g., due to software
bug or storage device failure).

   





                                                                  

                                                                  
   Application-level approaches. Although modern file systems often use
transactions internally, some standard file system APIs such as the POSIX API
provide only weaker abstractions, forcing applications to take their own measures if
they want to atomically apply a set of updates. Many use application-level
transactions, but some continue to use ad hoc approaches.

   For example, suppose that a user has edited several parts of a text file and then
wants to save the updated document. The edits may have inserted text at various
points in the document, removed text at others, and shifted the remaining text
forwards or backwards — even a small insertion or deletion early in the document
could ripple through the rest of the file.

   If the text editor application were simply to use the updated file in its memory
to overwrite the existing file, an untimely crash could leave the file in an
incomprehensible state. The operating system and disk schedulers may choose any
order to send the updated blocks to non-volatile storage, so after the crash the file
may be an arbitrary mix of old and new blocks, sometimes repeating sections of text,
sometimes omitting them entirely.

   To avoid this problem, the text editor may take advantage of the semantics of the
POSIX rename operation, which renames the file called sourceName to be called
targetName instead. POSIX promises that if a file named targetName already exists,
rename’s shift from having targetName refer to the old file to having it refer to the new
one will be atomic. (This atomicity guarantee may be provided by transactions
within the file system or by ad hoc means.)

   Therefore, to update an existing file design.txt, the text editor first writes the
updates to a new, temporary file such as #design.txt#. Then it renames the temporary
file to atomically replace the previously stored file.
[bookmark: x1-41007r111]


14.1.2 [bookmark: x1-420002]The Transaction Abstraction

   Transactions provide a way to atomically update multiple pieces of persistent
state.
   For example, suppose you are updating a web site and you want to replace the
current collection of documents in /server/live with a new collection of documents you
have created in /development/ready. You don’t want users to see intermediate steps
when some of the documents have been updated and others have not — they
might encounter broken links or encounter new descriptions referencing old
pages or vice versa. Transactional file systems like Windows Vista’s TxF
(Transactional NTFS) provide an API that lets applications apply all of these updates
atomically, allowing the programmer to write something like the pseudo-code in
Figure 14.2.
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 ResultCode publish() {
     transactionID = beginTransaction();
     foreach file f in /development/ready that is not in /server/live {
         error = move f from /development/ready to /server/live;
         if (error) {
             rollbackTransaction(transactionID);
             return ROLLED_BACK;
         }
     }
 
     foreach file f in /server/live that is not in /development/ready {
         error = delete f;
         if (error) {
             rollbackTransaction(transactionID);
             return ROLLED_BACK;
         }
     }
 
     foreach file f in /development/ready that differs from /server/live {
         error = move f from /development/ready to /server/live;
         if (error) {
             rollbackTransaction(transactionID);
             return ROLLED_BACK;
         }
     }
     commitTransaction(transactionID);
     return COMMITTED;
 }


	Figure 14.2:

Pseudo-code
for
using
a
transactional
file
system.
 



                                                                  

                                                                  

   

   Notice that a transaction can finish in one of two ways: it can commit, meaning
all of its updates occur, or it can roll back meaning that none of its updates
occur.

   Here, if the transaction commits, we are guaranteed that all of the updates will be
seen by all subsequent reads, but if it encounters and error and rolls back or crashes
without committing or rolling back, no reads outside of the transaction will see any
of the updates.

   More precisely, a transaction is a way to perform a set of updates while providing
the following ACID properties:


     
     	
     Atomicity.  Updates  are  “all  or  nothing.”  If  the  transaction  commits,  all
     updates in the transaction take effect. If the transaction rolls back, then
     none of the updates in the transaction have any effect.
     
In  the  website  update  example  above,  doing  the  updates  within  a
     transaction guarantees that each of the update is only stored or readable
     if all of the updates are stored and readable.
     


     	
     Consistency. The transaction moves the system from one legal state to
     another. A system’s invariants on its state can be assumed to hold at the
     start of a transaction and must hold when the transaction commits.
     
In  the  example  above,  by  using  a  transaction  we  can  maintain  the
     invariant  that  every  link  from  one  document  to  another  on  the  server
     references a valid file.
     


     	
     Isolation.  Each  transaction  appears  to  execute  on  its  own,  and  is  not
     affected by other in-progress transactions. Even if multiple transactions
     execute  concurrently,  for  each  pair  of  transactions  T and  T′,  it  either
     appears that T executed entirely before T′ or vice versa.
     
By executing the web site update in a transaction, we guarantee that each
     transaction to read from the web site occurs against either the old set of
     web pages or the new set, not some mix of the two.
     
Of course, if each individual read of an object is in its own transaction,
     then a series of reads to assemble a web page and its included elements
     could  see  the  old  web  page  and  a  mix  of  old  and  new  elements.  If
                                                                  

                                                                  
     web protocols were changed to allow a browser to fetch a page and its
     elements in a single transaction, then we could guarantee that the user
     would see either the old page and elements or the new ones.
     


     	
     Durability.  A  committed  transaction’s  changes  to  state  must  survive
     crashes. Once a transaction is committed, the only way to change the state
     it produces is with another transaction.
     
In  our  web  update  example,  the  system  must  not  return  from  the
     commitTransaction()  call  until  all  of  the  transaction’s  updates  have  been
     safely stored in persistent storage.


     


   Transactions vs. Critical Sections. The ACID properties are closely related to
the properties of critical sections. Critical sections provide a way to update
state that is atomic, consistent, and isolated but not durable. Adding the
durability requirement significantly changes how we implement atomic
updates.

   

	Battling terminology

   In operating systems, we use the term consistency in two ways. In the context of
critical sections and transactions, we use “consistency” to refer to the idea of a
system’s invariants being maintained (e.g., “are my data structures consistent?”) In
the context of distributed memory machines and distributed systems, we use
“consistency” to refer to the memory model — the order in which updates can
become visible to reads (e.g., “are my system’s reads at different caches sequentially
consistent?”).

   Where there is potential confusion, we will use the terms transaction consistency or
memory model consistency.

   





[bookmark: x1-42002r112]

14.1.3 [bookmark: x1-430003]Implementing Transactions

   The challenge with implementing transaction is that we want a group of related
writes to be atomic, but for persistent storage hardware like disks and flash, the
atomic operation is a single-sector or single-page write. Therefore, we must devise a
way for a group of related writes to take effect when a single-sector write
occurs.
   If a system simply starts updating data structures in place, then it is vulnerable to
a crash in the middle of a set of updates: the system has neither the complete set of
old items (to roll back) nor a complete set of new items (to commit), so an untimely
                                                                  

                                                                  
crash can force the system to violate atomicity.

   Instead, a transactional system can persistently store all of a transaction’s
intentions, the updates that will be made if the transaction commits, in some separate
location of persistent storage. Only when all intentions are stored and the
transaction commits should the system begin overwriting the target data
structures; if the overwrites are interrupted in the middle, then on recovery the
system can complete the transaction’s updates using the persistently stored
intentions.


[bookmark: x1-440003]Redo Logging

   A common and very general way to implement transactions is redo logging. Redo
logging uses a persistent log for recording intentions and executes a transaction in
four stages:
     
     	[bookmark: x1-44002x1]
     Prepare. Append all planned updates to the log.
     
This step can happen all at once, when the transaction begins to commit,
     or  it  can  happen  over  time,  appending  new  updates  to  the  log  as  the
     transaction executes. What is essential is that all updates are safely stored
     in the log before proceeding to the next step.
     


     	[bookmark: x1-44004x2]
     Commit.   Append   a   commit   record   to   the   log,   indicating   that   the
     transaction has committed.
     
Of course, a transaction may roll back rather than commit. In this case, a
     roll-back record may be placed in the log to indicate that the transaction
     was abandoned. Writing a roll-back record is optional, however, because
     a  transaction  will  only  be  regarded  as  committed  if  a  commit  record
     appears in the log.
     


     	[bookmark: x1-44006x3]
     Write-back.  Once  the  commit  record  is  persistent  in  the  log,  all  of  a
     transaction’s updates may be written to their target locations, replacing
     old values with new ones.
     


     	[bookmark: x1-44008x4]
     Garbage collect. Once a transaction’s write-back completes, its records in
     the log may be garbage collected.


                                                                  

                                                                  
     


   The moment in step 2 when the sector containing the commit record is
successfully stored is the atomic commit: before that moment, the transaction
may safely be rolled back; after that moment, the transaction must take
effect.

   Recovery. If a system crashes in the middle of a transaction, it must execute a
recovery routine before processing new requests. For redo logging, the recovery
routine is simple: scan sequentially through the log, taking the following actions for
each type of record:
     

     	[bookmark: x1-44010x1]
     Update  record  for  a  transaction.  Add  this  record  to  a  list  of  updates
     planned for the specified transaction.
     


     	[bookmark: x1-44012x2]
     Commit record for a transaction. Write-back all of the transaction’s logged
     updates to their target locations.
     


     	[bookmark: x1-44014x3]
     Roll-back record for a transaction. Discard the list of updates planned for
     the specified transaction.



   When the end of the log is reached, the recovery process discards any update
records for transactions that do not have commit records in the log.

   Example. Consider, for example, a transaction that transfers $100 from Tom’s
account to Mike’s account. Initially, as Figure 14.3-(a) shows, data stored on disk
and in the volatile memory cache indicates that Tom’s account has $200 and Mike’s
account has $100.
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   Then, the cached values are updated and the updates are appended
to the non-volatile log (b). At this point, if the system were to crash, the
updates in cache would be lost, the updates for the uncommitted transaction in
the log would be discarded, and the system would return to its original
state.

   Once the updates are safely in the log, the commit record is appended to the log
(c). This commit record should be written atomically based on the properties of the
underlying hardware (e.g., by making sure it fits on a single disk sector and putting
a strong checksum on it). This step is the atomic commit: prior to the successful
storage of the commit record, a crash would cause the transaction to roll back; the
instant the commit record is persistently stored, the transaction has committed and is
guaranteed to be visible to all reads in the future. Even if a crash occurs, the
recovery process will see the committed transaction in the log and apply the
updates.

   Now, the records in persistent storage for Tom and Mike’s accounts can be
updated (d).

   Finally, once Tom and Mike’s accounts are updated, the transaction’s records in
the log may be garbage collected (e).

   Implementation details. A few specific techniques and observations are
important for providing good performance and reliability for transactions with redo
logs.


     
     	
     Logging concurrent transactions. Although the previous example shows
     a single transaction, multiple transactions may be executing at once. In
     these cases, each record in the log must identify the transaction to which
     it belongs.
     


     	
     Asynchronous  write-back.  Step  3  of  a  transaction  (write-back)  can  be
     asynchronous — once   the   updates   and   commit   are   in   the   log,   the
     write-back can be delayed until it is convenient or efficient to perform it.
     
This flexibility yields two advantages. First, it minimizes the latency from
     when a transaction calls commit to when the call returns. As soon as the
     commit is appended to the sequential log, the call can return.  Second,
     the throughput for write-back is higher because the disk scheduler can
     operate on large batches of updates.
     
Two things limit the maximum write-back delay, but both are relatively
                                                                  

                                                                  
     loose constraints. First, larger write-back delays mean that crash recovery
     may take longer because there may be more updates to read and apply
     from the log. Second, the log takes space in persistent storage, which may
     in some cases be constrained.
     


     	
     Repeated write-backs are OK. Some of the updates written back during
     recovery may already have been written back before the crash occurred.
     For example, in Figure 14.4 all of the records from the persistent log-head
     pointer to the volatile one have already been written back, and some of
     the records between the volatile log-head pointer may have been written
     back.
     
It  is  OK  to  reapply  an  update  from  a  redo  log  multiple  times  because
     these updates are (and must be) idempotent — they have the same effect
     whether  executed  once  or  multiple  times.  For  example,  if  a  log  record
     says “write 42 to each byte of sector 74” then it doesn’t matter whether
     that value is written once, twice, or a hundred times to sector 74.
     
Conversely,  redo  log  systems  cannot  permit  non-idempotent  records
     such as “add 42 to each byte in sector 74.”
     


     	
     Restarting recovery is OK. What happens if another crash occurs during
     recovery? When the system restarts, it simply begins recovery again. The
     same sequence of updates to committed transactions will be discovered
     in  the  log,  and  the  same  write-backs  will  be  issued.  Some  of  the
     write-backs may already have finished before the first crash or during
     some previous, but repeating them causes no problems.
     


     	
     Garbage   collection   constraints.   Once   write-back   completes   and   is
     persistently stored for a committed transaction, its space in the log can be
     reclaimed.
     
For concreteness, Figure 14.4 illustrates a transaction log with an area of
     the log that is in use, an area that is no longer needed because it contains
     only records for transactions whose write-backs have completed, and an
     area that is free.
     
In  this  example,  the  system’s  volatile  memory  maintains  pointers  to
     the  head  and  tail  of  the  log;  new  transaction  records  are  appended
     to  the  log’s  tail  and  cached  in  volatile  memory;  a  write-back  process
     asynchronously writes pending write-backs for committed transactions
                                                                  

                                                                  
     to  their  final  locations  in  persistent  storage;  and  a  garbage  collection
     process  periodically  advances  a  persistent  log-head  pointer  so  that
     recovery can skip at least some of the transactions whose write-backs are
     complete.
     


     	
     Ordering  is  essential.  It  is  vital  to  make  sure  that  all  of  a  transaction’s
     updates are on disk in the log before the commit is, that the commit is on
     disk before any of the write-backs are, and that all of the write-backs are
     on disk before a transaction’s log records are garbage collected.
     
In  Linux,  an  application  can  call  sync()  or  fsync()  to  tell  the  operating
     system  to  force  buffered  writes  to  disk.  These  calls  return  only  once
     the  updated  blocks  are  safely  stored.  Within  the  operating  system,  a
     request can be tagged with a BIO_RW_BARRIER tag, which tells the device
     driver and storage hardware to ensure that all preceding writes and no
     subsequent ones are stored before the tagged request is.
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   EXAMPLE: New writes vs. garbage collection.  Suppose we have a circular log
organized like the one in Figure 14.4. We must ensure that new records do not
overwrite records that we may read during recovery, so we must ensure that the
log-tail does not catch the log-head. But there are two log-heads, one in volatile
memory and another in persistent storage. Which log-head represents the barrier
that the log-tail must not cross?

   ANSWER:    The log-tail must not catch the persistent log-head pointer. Even
though the records between the persistent and volatile log-heads have already been
written back, during crash recovery, the recovery process will begin reading the
log from the location indicated by the persistent log-head pointer. As long
as the records are intact, recovering from the persistent log-head pointer
rather than the volatile one may waste some work, but it will not affect
correctness.                                                                                                                  □

   

	Undo logging

   Although transactions are often implemented with redo logging in which
updates and the commit are written to the log and then the updates are
copied to their final locations, transactions can also be implemented with undo
logging.

   To update an object, a transaction first writes the old version of the object to the
log. It then writes the new version to its final storage location. When the transaction
completes, it simply appends commit to the log. Conversely, if the transaction rolls
back, the updates are undone by writing the old object versions to their storage
locations.

   The recovery process takes no action for committed transactions it finds in the
log, but it undoes uncommitted transactions by rewriting the original object versions
stored in the log.

   Undo logging allows writes to objects to be sent to their final storage locations
when they are generated and requires them to be persistently stored before a
transaction is committed. This pattern is similar to update-in-place approaches, so in
some cases it may be easier to add undo logging than redo logging to legacy
systems. On the other hand, for storage systems like disks whose sequential
bandwidth dominates their random I/O performance, undo logging may require
more random I/Os before a transaction is committed (hurting latency) and by
writing each transaction’s updates immediately, it gives up chances to improve
disk-head scheduling by writing large numbers of transaction updates as a
batch.

   Undo/redo logging stores both the old and new versions of an object in the log.
This combination allows updated objects to be written to their final storage locations
whenever convenient, whether before or after the transaction is committed. If the
transaction rolls back, any modified objects can be restored to the proper
state, and if the system crashes, any committed transactions can have their
updates redone and any uncommitted transactions can have their updates
                                                                  

                                                                  
undone.

   





   Isolation and concurrency revisited. Redo logging provides a mechanism for
atomically making multiple updates durable, but if there are concurrent
transactions operating on shared state, we must also ensure isolation — each
transaction must appear to execute alone, without interference from other
transactions.

   A common way to enforce isolation among transactions is two-phase locking,
which divides a transaction into two phases. During the expanding phase, locks
may be acquired but not released. Then, in the contracting phase, locks may
be released but not acquired. In the case of transactions, because we want
isolation and durability, the second phase must wait until after the transaction
commits or rolls back so that no other transaction sees updates that later
disappear.

   As we discussed in Chapter 6, two phase locking ensures a strong form of
isolation called serializability. Serializability across transactions ensures that the result
of any execution of the program is equivalent to an execution in which transactions
are processed one at a time in some sequential order. So, even if multiple
transactions are executed concurrently, they can only produce results that
they could have produced had they been executed one at a time in some
order.

   Although acquiring multiple locks in arbitrary orders normally risks deadlock,
transactions provide a simple solution. If a set of transactions deadlocks, one or more
of the transactions can be forced to roll back, release their locks, and restart at some
later time.

   

	Multiversion concurrency control

   An alternative to enforcing transaction isolation with locks is to enforce it with
multiversion concurrency control. In multiversion concurrency control each write of an
object x creates new version of x, the system keeps multiple versions of x and
directs each read to a specific version of x. By keeping multiple versions of
objects, the system can allow transaction A to read a version of x that has
been overwritten by transaction B even if B needs to be serialized after
A.

   Several multiversion concurrency control algorithms ensure serializability. A
simple one is multiversion timestamp ordering (MVTO). MVTO processes
concurrent transactions, enforces serializability, never blocks a transaction’s reads or
writes, but may cause a transaction to roll back if it detects that a read of a later
transaction (based on the serializable schedule MVTO is enforcing) was executed
before — and therefore did not observe — the write of an earlier transaction (in
serialization order).

   MVTO assigns each transaction T a logical timestamp. Then, when T writes an
object x, MVTO creates a new version of x labeled with T ’s timestamp tT, and when
T reads an object y, MVTO returns the version of y, yv with the highest
timestamp that is at most T ’s timestamp; MVTO also makes note that yv was read
                                                                  

                                                                  
by transaction tT. Finally, when T attempts to commit, MVTO blocks the
commit until all transactions with smaller timestamps have committed or
aborted.

   MVTO rolls back a transaction rather than allowing it to commit in three
situations. First, if MVTO aborts any transaction, it removes the object versions
written by that transaction and rolls back any transactions that read those versions.
Notice that a transaction that reads a version must have a higher timestamp
than the one that wrote it, so no committed transactions need to be rolled
back.

   Second, if a transaction T writes an object that has already been read by a later
transaction T′ that observed the version immediately prior to T ’s write, T MVTO
rolls back T . It does this because if T were to commit, T′’s read must return T ’s
write, but that did not occur.

   Third, if MVTO garbage collects old versions and transaction T reads an object
for which the last write by an earlier transaction has been garbage collected, then
MVTO rolls back T .

   





   

	Relaxing isolation

   In this book we focus on the strong and relatively simple isolation requirement of
serializability: no matter how much concurrency there is, the system must
ensure that the results of any execution of the program is equivalent to an
execution in which transactions are processed one at a time in some sequence.
However, strong isolation requirements sometimes force transactions to
block (e.g., when waiting to acquire locks) or roll back (e.g., when fixing a
deadlock or encountering a “late write” under multiversion concurrency
control).

   Relaxing the isolation requirement can allow effectively higher levels of
concurrency by reducing the number of cases in which transactions must block or
roll back. The cost, of course, is potentially increased complexity in reasoning about
concurrent programs, but several relaxed isolation semantics have proven to be
sufficiently strong to be widely used.

   For example, snapshot isolation requires each transaction’s reads appear to come
from a snapshot of the system’s committed data taken when the transaction starts.
Each transaction is buffered until the transaction commits, at which point the system
checks all of the transaction’s updates for write-write conflicts. A write-write conflict
occurs if transaction T reads an object o from a snapshot at time tstart and tries to
commit at time tcommit but some other transaction T′ commits an update
to o between T ’s read at tstart and T ’s attempted commit at tcommit. If a
write-write conflict is detected for any object being committed by T , T is rolled
back.

   Snapshot isolation is weaker than serializability because each transaction’s reads
logically happen at one time and its writes logically happen at another time. This
split allows, for example, write skew anomalies where one transaction reads object x
and updates object y and a concurrent transaction reads object y and updates object
                                                                  

                                                                  
x. If there is some constraint between x and y, it may now be violated. For example,
if x and y represent the number of hours two managers have assigned you to work
on each of two tasks with a constraint that x + y ≤ 40. Manager 1 could read x = 15
and y = 15, attempt to assign 10 more hours of work on task x, and verify that
x + y = 25 + 15 ≤ 40. In the mean time manager 2 could read x = 15 and
y = 15, attempt to assign 10 more hours of work on task y, verify that that
x + y = 15 + 25 ≤ 40, and successfully commit the update, setting y = 25. Finally,
manager 1 could successfully commit its update, set x = 25, and ruin your
weekend.

   





   Performance of redo logging. It might sound like redo logging will impose a
significant performance penalty compared to simply updating data in place: redo
logging writes each update twice — first to the log and then to its final storage
location.

   Things are not as bad as they initially seem. Redo logging can have excellent
performance — often better than update in place — especially for small writes. Four
factors allow efficient implementations of redo logging:


     
     	
     Log   updates   are   sequential.   Because   log   updates   are   sequential,
     appending  to  the  log  is  fast.  With  spinning  disks,  large  numbers  of
     updates can be written as a sequential stream without seeks or rotational
     delay once the write begins. Many high-performance systems dedicate
     a  separate  disk  for  logging  so  that  log  appends  never  require  seeks.
     For flash storage, sequential updates are often significantly faster than
     random updates, though the advantage is not as pronounced.
     


     	
     Write-back  is  asynchronous.  Because  write-back  can  be  delayed  until
     some  time  after  a  transaction  has  been  committed,  transactions  using
     redo logs can have good response time (because the transaction commit
     only  requires  appending  a  commit  record  to  the  log)  and  can  have
     good throughput (because batched write-backs can be scheduled more
     efficiently  than  individual  or  small  groups  of  writes  that  must  occur
     immediately).
     


     	
     Fewer barriers or synchronous writes are required. Some systems avoid
     using  transactions  by  carefully  ordering  updates  to  data  structures  so
     that they can ensure that if a crash occurs, a recovery process will be able
                                                                  

                                                                  
     to scan, identify, and repair inconsistent data structures. However, these
     techniques often require large number of barrier or synchronous write
     operations, which reduce opportunities to pipeline or efficiently schedule
     updates.
     
In contrast, transactions need a relatively small number of barriers: one
     after the updates are logged and before the commit is logged, another
     after  the  commit  is  logged  but  before  the  transaction  is  reported  as
     successful (and before write-backs begin), and one after a transaction’s
     write-backs complete but before the transaction’s log entries are garbage
     collected.
     


     	
     Group    commit.    Group    commit    can    further    improve    transaction
     performance. Group commit combines a set of transaction commits into
     one log write to amortize the cost of initiating the write (e.g., seek and
     rotational delays). Group commit techniques can also be used to reduce
     the number of barrier or sync operations needed to perform a group of
     transactions.


     


   EXAMPLE: Performance of small-write transactions.  Suppose you have a 1 TB
disk that rotates once every 10 ms, that has a maximum sustained platter transfer
rate of 50 MB/s for inner tracks and 100 MB/s for outer tracks, and that has a 5 ms
average seek time, a 0.5 ms minimum seek time, and a 10 ms maximum seek
time.

   Consider updating 100 randomly selected 512-byte sectors; assume that the
updates must be ordered for safety (e.g., update i must be on disk before update
i + 1 is applied).

   Compare the total time to complete these updates using a simple update in place
approach with the cost when using transactions implemented with a redo
log.

   ANSWER:   Using a simple update in place approach, we need to use FIFO
scheduling to ensure updates hit the disk in order, so the time for each update is
approximately:

   
 

	
 	  time per update  
	              =  
	              average seek time + 0.5 rotation time + transfer time  

	 
 	    = 
 	    5 ms + 5 ms + transfer time








   

                                                                  

                                                                  
Transfer time will be at most 512 / (50 × 106) seconds, which will be negligible
compared to the other terms. Thus, we have  10 ms per request or  1 s for 100
requests for update in place.

   For transactions, we first append the 100 writes to the log. We will conservatively
assume that each update consumes 2 sectors (one for the data and the other for
metadata indicating the transaction number and the target sector on disk). So,
assuming that the disk head is at a random location when the request arrives, our
time to log the requests is:

   
 

	
 	  time to write log  
	              =  
	              average seek time + 0.5 rotation time + transfer time  


	                                  
	              =  
	              5 ms + 5 ms + transfer time                                               


	                                  
	              =  
	              5 ms + 5 ms + (200 × 512) / (100 × 106) s                       


	                                  
	              =  
	              11.0 ms                                                                                 







   

Next, we need to append the commit record to the transaction. If the disk hardware
supports a barrier instruction to enforce ordering of multiple in-progress requests,
the operating system can issue this request along with the 100 writes. Here, we will
be conservative and assume that the system does not issue the commit’s write until
after the 100 writes in the body of the transaction are in the log. Thus, we
will likely have to wait one full revolution of the disk to finish the commit:
10 ms.

   Finally, we need to write the 100 writes to their target locations on disk. Unlike
the case for update in place, ordering does not matter here, so we can schedule them
and write them more efficiently. Estimating this time takes engineering judgment,
and different people are likely to make different estimates. For this example, we will
assume that the disk uses a variant of shortest service time first (SSTF) scheduling in
which the scheduler looks at the four requests on the next nearest tracks and picks
the one with the shortest predicted seek time + rotational latency from the disk
head’s current position. Because the scheduler gets to choose from four requests,
we will estimate that the average rotational latency will be one fourth of
a rotation, 2.5 ms. This may be conservative since it ignores the fact that
request i will always remove from the four requests being considered the one
that would have been rotationally farthest away if it were an option for
request i + 1. Because we initially have 100 requests and because we are
considering the four requests on the nearest tracks, the farthest seek should be
around 4% of the way across the disk, and the average one to a member of
the group being considered should be around 2%. We will estimate that
seeking 2-4% of the way across disk costs twice the minimum seek time:
1 ms.

   Putting these estimates for write-back time together, the write-backs of the 100
sectors should take about:

   
 

                                                                  

                                                                  
	
 	  per-request write-back time  
	              =  
	              seek time + rotational latency  


	                                                      
	              =  
	              1.0 ms + 2.5 ms                            

	 
 	    = 
 	    3.5 ms








   

giving us a total of 350 ms for 100 requests.

   Adding the logging, commit, and write-back times, we have:

   
 

	
 	  total write time  
	              =  
	              log time + commit time + write-back time  


	                                
	              =  
	              11.0 ms + 10 ms + 350 ms                                

	 
 	    = 
 	    371 ms








   

The transactional approach is almost three times faster even though it writes the data
twice and even though it provides the stronger atomic-update semantics.      □

   EXAMPLE:  For the same two approaches, compare the response time latency
from when a call issuing these requests is issued until that call can safely return
because all of the updates are durable.

   ANSWER:  The time for  update in place is the same as above:  1 s. The time for
the  transactional approach is the time for the first two steps: logging the updates
and then logging the commit: 10.24 ms + 10 ms =  20.24 ms.                                □

   Although small writes using redo logging may actually see performance benefits
compared to update in place approaches, large writes may see significant
penalties.

   EXAMPLE: Performance of large-write transactions.  Considering the same disk
and approaches as in the example above, compare the total time to for 100 writes,
but now assume that each of the 100 writes updates a randomly selected 1 MB range
of sequential sectors.

   ANSWER:  For the update in place approach, the time for each update is
approximately average seek time + 0.5 rotation time + transfer time = 5 ms + 5 ms +
transfer time. We will assume that the bandwidth for an average transfer is
75 MB/s — between the 50 MB/s and 100 MB/s inner and out tracks’ transfer rates.
Thus, we estimate the average transfer time to be 100 MB/75 MB/s = 1.333 s, giving a
total time of .005 s + .005 s + 1.333 s = 1.343 s per request and 134.3 s for 100
requests.

   For the transactional approach, our time will be time to log updates + time to commit
+ time to write back.

   For logging the updates, we assume a reasonably efficient encoding of metadata
that makes the size of the metadata for a 100 MB sequential update negligible
compared to the data. Thus, logging the data will take seek time + rotational latency +
transfer time = 5 ms + 5 ms + 100 × 100 MB/100 MB/s = .005 s + .005 s + 100 s ≈
100 s.
                                                                  

                                                                  

   Writing the commit adds another 10 ms as in the above example.

   Finally, as above, doing the write-backs estimated scheduled seek time + estimated
scheduled latency + transfer time = 1.0 ms + 2.5 ms + 100 MB/75 MB/s, giving a total of
1.337 s per request and  133.7 s for 100 requests.

   Adding the data logging, commit, and write-back times together, the 
transactional approach takes about 233 s while the  update in place approach takes
about 134 s. In this case, transactions do impose a significant cost, nearly doubling
the total time to process these updates.                                                                  □

   EXAMPLE:  Now compare the latency from when the call making the 100 writes
is issued until it may safely return.

   ANSWER:  Under the update in place approach, we can only return when
everything is written, while under the transactional approach, we can return once
the commit is complete. Thus, we have comparable times:  134 s for update in place
and  100 s for transactions.                                                                                       □

   One way to reduce transaction overheads for large writes is to add a level of
indirection: write the large data objects to a free area of the disk, but not in the
circular log. Then, the update in the log just needs to be a reference to that data
rather than the data itself. Finally, after the transaction commits, perform the
write-back by updating a pointer in the original data structure to point to the new
data.
[bookmark: x1-44017r114]


14.1.4 [bookmark: x1-450004]Transactions and File Systems

   File systems must maintain internal consistency when updating multiple data
structures. For example, when a file system like FFS creates a new file, it may need to
update the file’s inode, the free inode bitmap, the parent directory, the parent
directory’s inode, and the free space bitmap. If a crash occurs in the middle of such a
group of updates, the file system could be left in an inconsistent state with, say, the
new file’s inode allocated and initialized but without an entry in the parent
directory.
   As discussed in Section 14.1.1, some early file systems used ad-hoc solutions such
as carefully ordering sequences of writes and scanning the disk to detect and repair
inconsistencies when restarting after a crash. However, these approaches suffered
from complexity, slow updates, and — as disk capacity grew — unacceptably slow
crash recovery.

   To address these problems, most modern file systems use transactions.

   Traditional file systems. Transactions are added to traditional, update-in-place
file systems like FFS and NTFS using either journaling or logging .


     
     	
     Journaling.   Journaling   file   systems   apply   updates   to   the   system’s
                                                                  

                                                                  
     metadata via transactions, but they update the contents of users’ files in
     place.
     
By   protecting   metadata   updates,   these   systems   ensure   consistency
     of  their  persistent  data  structures  (e.g.,  updates  to  inodes,  bitmaps,
     directories,  and  indirect  blocks).  Journaling  file  systems  first  write
     metadata updates to a redo log, then commit them, and finally write them
     back to their final storage locations.
     
Updates to the contents of regular (non-directory) files are not logged,
     they are applied in place. This avoids writing file updates twice, which
     can  be  expensive  for  large  updates.  On  the  other  hand,  updating
     file  contents  in  place  means  that  journaling  file  systems  provide  few
     guarantees when a program updates a file: if a crash occurs in the middle
     of  the  update,  the  file  may  end  up  in  an  inconsistent  state  with  some
     blocks but not others updated. If a program using a journaling file system
     requires atomic multi-block updates, it needs to provide them itself.
     


     	
     Logging. Logging file systems simply include all updates to disk — both
     metadata and data — in transactions.


     


   Today, journaling file systems are common: Microsoft’s NTFS, Apple’s HFS+, and
Linux’s XFS, JFS, and ReiserFS all use journaling; and Linux’s ext3 and ext4 use
journaling in their default configurations.

   Logging file systems are also widely available, at least for Linux. In particular,
Linux’s ext3 and ext4 file systems can be configured to use either journaling or
logging.

   Copy-on-write file systems. Copy-on-write file systems like the open source ZFS
are designed from the ground up to be transactional. They do not overwrite data in
place; updating the root inode or ZFS uberblock is an atomic action that commits a
set of updates.
                                                                  

                                                                  
[bookmark: x1-450015]


   

                                                                  

                                                                  
                                 [image: ]                                 	Figure 14.5:  In a copy-on-write file system, intermediate states of an update
such as (top) and (center) are not observable; they atomically take effect when
the root inode is updated (bottom).
 


                                                                  

                                                                  
   

   For example, suppose we update just a file’s data block or just its indirect blocks,
its inode, and the indirect blocks for the inode file, leaving the state as shown in
Figure 14.5(a) or (b). If the system were to crash in such an intermediate state,
before the root inode is updated, none of these changes would be included in
the file system’s tree, and they would have no effect. Only when the root
inode is updated as in Figure 14.5(c) do all of these changes take effect at
once.

   The implementations of ZFS and other copy-on-write file systems often add two
performance optimizations.


     
     	
     Batch  updates.  Rather  than  applying  each  update  individually,  ZFS
     buffers several seconds worth of updates before writing them to stable
     storage as a single atomic group.
     
Batching yields two advantages.
     
First, it allows the system to transform many small, random writes into
     a  few  large,  sequential  writes,  which  improves  performance  for  most
     storage devices including individual magnetic disks, RAIDs (Redundant
     Arrays of Inexpensive Disks), and even some flash storage devices.
[bookmark: x1-450026]


     
                                                                     [image: ]                                                                      	Figure 14.6:  With batch updates in a COW file system, updates of inodes and
indirect blocks are amortized across updates of multiple data blocks.
 


     

     Second, not only does batching make writing each block more efficient, it
     actually reduces how many blocks must be written by coalescing multiple
     updates of the same indirect blocks and inodes. For example, Figure 14.6
     illustrates how updates of inodes and indirect blocks are amortized across
     updates of multiple data blocks.
     


     	
     Intent log. ZFS typically accumulates several seconds of writes before
     performing a large batch update, but some applications need immediate
     assurance that their updates are safely stored on non-volatile media. For
     example, when a word processor’s user saves a file, the program might
     call fsync() to tell the file system to make sure the updates are stored
     on disk. Forcing the user to wait several seconds to save a file is not
     acceptable.
                                                                  

                                                                  
     
ZFS’s solution is the ZFS Intent Log (ZIL), which is essentially a redo log. The
     ZIL is a linked list of ZFS blocks that contain updates that have been forced to
     disk but whose batch update may not yet have been stored. The ZIL is
     replayed when the file system is mounted.
     
ZFS includes several optimizations in the ZIL implementation. First, by default
     writes are buffered and committed in their batch update without being written
     to the ZIL; only writes that are explicitly forced to disk are written to the ZIL.
     Second, the ZIL may reside on a separate, dedicated logging device; this allows
     us to use a fast device (e.g., flash) for the ZIL and slower, high-capacity devices
     (e.g., disks) for the main pool; if no separate ZIL device is provided, ZFS uses
     the main block pool for the ZIL. Finally, the contents of small data
     writes are included in the ZIL’s blocks directly, but the contents of
     larger writes are written to separate blocks that are referenced by the
     ZIL; then, the subsequent batch commit can avoid rewriting those
     large blocks by updating metadata to point to the copies already on
     disk.


     


[bookmark: x1-45003r110]
[bookmark: x1-460002]14.2 Error Detection and Correction

   Because data storage hardware is imperfect, storage systems must be designed to
detect and correct errors. Storage systems take a layered approach:
     
     	
     Storage hardware detects many failures with checksums and device-level
     checks, and it corrects small corruptions with error correcting codes
     


     	
     Storage   systems   include   redundancy   using   RAID   architectures   to
     reconstruct data lost by individual devices
     


     	
     Many  recent  file  systems  include  additional  end-to-end  correctness
     checks



   These techniques are essential. Essentially all persistent storage devices include
internal redundancy to achieve high storage densities with acceptable error rates.
This internal redundancy is insufficient on its own. Storage systems for important
data add additional redundancy for error correction, and it is hard to think of a
                                                                  

                                                                  
significant file system developed in the last decade that does not include higher-level
checksums.

   Though essential and widespread, there are significant pitfalls in designing and
using these techniques. In our discussions, we will point out issues that, if not
handled carefully, can drastically reduce reliability.

   The rest of this section examines error detection and correction for persistent
storage, starting with the individual storage devices, then examining how RAID
replication helps tolerate failures by individual storage devices, and finally looking
at the end-to-end error detection in many recent file systems.
[bookmark: x1-46001r118]


14.2.1 [bookmark: x1-470001]Storage Device Failures and Mitigation

   Storage hardware pushes the limits of physics, material sciences, and
manufacturing processes to maximize storage capacity and performance. These
aggressive designs leave little margin for error, so manufacturing defects,
contamination, or wear can cause stored bits to be lost.
   Individual spinning disks and flash storage devices exhibit two types of failure.
First, isolated disk sectors or flash pages can lose existing data or degrade to the
point where they cannot store new data. Second, an entire device can fail,
preventing access to all of its sectors or pages. We discuss each of these
in turn to understand the problems higher-level techniques need to deal
with.


[bookmark: x1-480001]Sector and Page Failures

   Disk sector failures occur when data on one or more individual sectors of a disk
are lost, but the rest of the disk continues to operate correctly. Flash page failures are
the equivalent for flash pages.
   Storage devices use two techniques to mitigate sector or page failures: error
correcting codes and remapping.

   

	What causes sector or page failures?

   For spinning disks, permanent sector failures can be caused by a range of faults
such as pits in the magnetic coating where a contaminant flaked off the
surface, scratches in the coating where a contaminant was dragged across the
surface by the head, or smears of machine oil across some sectors of a disk
surface.

   Transient sector faults occur when a sector’s stored data is corrupted but new
data can still be successfully written to and read from the sector. These can be caused
by factors such as write interference where writes to one track disturb bits
stored on nearby tracks and “high fly writes” where the disk head gets too
far from the surface, producing magnetic fields too weak to be accurately
read.

   For flash storage, permanent page failures can be caused by manufacturing
defects or by wear-out when a page experience a large number of write/erase
                                                                  

                                                                  
cycles.

   Transient flash storage failures can be caused by: (i) write disturb errors where
charging one bit also causes a nearby bit to be charged; (ii) read disturb errors where
repeatedly reading one page changes values stored on a nearby page; (iii)
over-programming errors where too high a voltage is used to write a cell, which may
cause incorrect reads or writes; and (iv) data retention errors where charge may leak
out of or into a flash cell over time, changing its value. Wear-out from repeated
write/erase cycles can make devices more susceptible to data retention
errors.

   





   Mitigation: Error correcting codes. Error correcting codes deal with failures when
some of the bits in a sector or page are corrupted. When the device stores data, it
encodes the data with additional redundancy. Then, if a small number of bits are
corrupted in a sector or page being read, the hardware automatically corrects the
error, and the read successfully completes. If the damage is more extensive, then
with high likelihood the read fails and returns an error code. Being told that the
device has lost data is not a perfect solution, but it is better than having the device
silently return the wrong data.

   Manufacturers balance storage space overheads against error correction
capabilities to achieve acceptable advertised sector or page failure rate, typically
expressed as the expected number of bits that can be read before encountering an
unreadable sector or page. In 2011, advertised disk and flash non-recoverable read
error rates typically range between one sector/page per 1014 to 1016 bits
read. The non-recoverable read error rate is sometimes called the bit error
rate.

   Mitigation: Remapping. Disks and flash are manufactured with some number of
spare sectors or pages so that they can continue to function despite some number of
permanent sector or page failures by remapping failed sectors or pages to good ones.
Before shipping hardware to users, manufacturers scan devices to remap bad sectors
or pages caused by manufacturing defects. Later, if additional permanent failures are
detected, the operating system or device firmware can remap the failed sectors or
pages to good ones.

   Pitfalls. Although devices’ non-recoverable read rate specifications are helpful,
designers must avoid a number of common pitfalls:


     
     	
     Assuming  that  non-recoverable  read  error  rates  are  negligible.  Storage
     devices’  advertised  error  rates  sound  impressive,  but  with  the  large
     capacities  of  today’s  storage,  these  error  rates  are  non-negligible.  For
     example, if you completely read a 2 TB disk with a bit error rate of one
     sector per 1014 bits, there may be more than a 10% chance of encountering
     at least one error.
                                                                  

                                                                  
     


     	
     Assuming  non-recoverable  read  error  rates  are  constant.  Although  a
     device may specify a single number as its unrecoverable read error rate,
     many factors can affect the rate at which such errors manifest. A given
     device’s actual bit error rate may depend on its load (e.g., some faults
     may be caused by device activity), its age (e.g., some faults may become
     more likely as a device ages), or even its specific workload (e.g., faults in
     some sectors or pages may be caused by reads or writes to nearby sectors
     or pages).
     


     	
     Assuming independent failures. Errors may be correlated in time or space:
     finding an error in one sector may make it more likely that you will find
     one in a nearby sector or that you will to find a fault in another sector
     soon.
     


     	
     Assuming  uniform  error  rates.  The  relative  contributions  of  different
     causes  of  non-recoverable  read  errors  can  vary  across  models  and
     different generations or production runs of the same model. For example,
     one model of disk drive might have many of its sector read errors caused
     by contaminants damaging its recording surfaces while another model
     might have most of its errors caused by write interference where writes
     to one track perturb data stored on nearby tracks. The first might see its
     error rate rise over time, while the second might have an error rate that
     increases as its write/read ratio increases.
     
Failure  rates  can  even  vary  across  different  individual  devices.  If  you
     deploy  several  outwardly  identical  disks,  some  may  exhibit  tens  of
     non-recoverable read errors in a year, while others operate flawlessly.


     


   EXAMPLE: Unrecoverable read errors.  Suppose that the nearly-full 500 GB disk
on your laptop has just stopped working. Fortunately, you have a recent, full
backup on a 500 GB USB drive with an unrecoverable read error rate of one
sector per 1014 bits read. Estimate the probability of successfully reading the
entire USB backup disk when restoring your data to a replacement laptop
disk.

   ANSWER:   We need to read 500 GB, so the expected number of failures is
500 GB × 8 × (109 bits/GB) × (10-14 errors/bit) = 0.04. The probability of
                                                                  

                                                                  
encountering at least one failure might be a bit lower than that (since we may
encounter multiple failures as we scan the entire disk), but there appears to
be a chance of at least a few percent that the restoration will not be fully
successful.

   We can approach the problem in a slightly different way by interpreting the
unrecoverable read rate as meaning that each bit has a 10-14 chance of being wrong
and that failures are independent (both somewhat dubious assumptions,
but probably OK for a ballpark estimate). Then each bit has a 1 - 10-14
chance of being correct, and the chance of reading all bits successfully is
PS = (1 - 10-14)8×500×109
                  = 0.9608. Under this calculation, we estimate that there is
slightly less than a 4% chance of encountering a failure during the full-disk read of
the backup disk.

   As noted in the sidebar, these calculations ignore some important factors, so the
results may not be precise. But, even if they are off by as much as an order of
magnitude, then it is still reasonable to conclude that the rate of non-recoverable
read errors is likely to be non-negligible.                                                                □

   Note that the impact of a small number of lost sectors may be modest (e.g., the
backup software succeeds in restoring all but a file or two) or it may be severe (e.g.,
no data is restored). For example, if the sector failure corrupts the root directory, a
significant fraction of the data may be lost.


[bookmark: x1-490001]Device Failures

   A full disk failure occurs when a device stops being able to service reads or
writes to all disk sectors; a full flash drive failure is the equivalent for a flash
device.
   

	What causes whole-device failures?

   Disk failures can be caused by a range of faults such as a disk head being
damaged, a capacitor failure or power surge that damages the electronics, or
mechanical wear-out that makes it difficult for the head to stay centered over a
track.

   Common causes of flash device failures include wear-out, when enough
individual pages fail that the device runs out of spare pages to use for remapping,
and failures of the device’s electronics such as having a capacitor fail.

   





   When a whole device fails, the host computer’s device driver will detect the
failure, and reads and writes to the device will return error codes rather than, for
example, returning incorrect data. This explicit failure notification is important
because it reduces the amount of cross-device redundancy needed to correct
failures.

   Full device failure rates are typically characterized by an annual failure rate, the
fraction of disks expected to fail each year, or its inverse, the mean time to failure
(MTTF). In 2011, specified annual failure rates (or MTTFs) for spinning disks
typically range from 0.5% (1.7 × 106 hours) to 0.9% (1 × 106 hours); specified failure
                                                                  

                                                                  
rates for flash solid state drives are similar.

   Pitfalls. Storage system designers must consider several pitfalls when
considering advertised device failure rates.


     
     	
     Relying on advertised failure rates. Studies across several large collections
     of  spinning  disks  have  found  significantly  variability  in  failure  rates.
     In these studies, many systems experienced failure rates of 2%, 4%, or
     higher, despite advertised failure rates of less than 1%.
     
Some   of   the   discrepancy   may   be   due   to   different   definitions   of
     “failure” by manufacturers and users, some may be due to challenging
     field   conditions,   and   some   may   be   due   to   the   limitations   of   the
     accelerated-aging  and  predictive  techniques  used  by  manufacturers  to
     estimate MTTF.
     


     	
     Assuming   uncorrelated   failures.   Evidence   from   deployed   systems
     suggests  that  when  one  fault  occurs,  other  nearby  devices  are  more
     likely to fail soon. Many factors can cause such correlation. For example,
     manufacturing irregularities can cause a batch of disks to be substandard,
     and  an  organization  that  purchases  disks  in  bulk  may  find  an  entire
     batch of disks failing at the same time. As another example, disks in the
     same machine or rack may be of a similar age, may experience similar
     environmental stress and workloads, and may wear out at a similar time.
     


     	
     Confusing a device’s MTTF with its useful life. If a device has an MTTF
     of one million or more hours, it does not mean that it is expected to last
     for 100 years or more. Disks are designed to be operated for some finite
     lifetime,  perhaps  5  years.  A  disk’s  advertised  annual  failure  rate  (i.e.,
     1/MTTF) applies during the disk’s intended service life. As that lifetime
     is approached, failure rates may rise as the device wears out.
     


     	
     Assuming constant failure rates. A device may have different failure rates
     over its lifetime. Some devices exhibit disk infant mortality, where their
     failure rate may be higher than normal during their first few weeks of use
     as latent manufacturing defects are exposed. Others exhibit disk wear out,
     where their failure rate begins to rise after some years.
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                                                                     [image: ]                                                                      	Figure 14.7:  Bathtub model of device lifetimes.
 


     

     A simple model for understanding infant mortality and wear out is the bathtub
     model illustrated in Figure 14.7.
     


     	
     Ignoring warning signs. Some device failures happen without warning, but
     others are preceded by increasing rates of non-fatal anomalies. Many storage
     devices implement the SMART (Self-Monitoring, Analysis, and Reporting
     Technology) interface, which provides a way for the operating system to
     monitor events that may be useful in predicting failures such as read errors,
     sector remappings, inaccurate seek attempts, or failures to spin up to the target
     speed.
     


     	
     Assuming devices behave identically. Different device models or even different
     generations of the same model may have significantly different failure
     behaviors. One generation might exhibit significantly higher failure
     rates than expected and the next might exhibit significantly lower
     rates.


     


   EXAMPLE: Disk failures in large systems.  Suppose you have a departmental
file server with 100 disks, each with an estimated MTTF of 1.5 × 106 hours. Estimate
the expected time until one of those disks fails. For simplicity, assume that each disk
has a constant failure rate and that disks fail independently.

   ANSWER:  If each disk has a MTTF of 1.5 × 106 hours, then 100 disks fail at a 100
times greater rate, giving us a MTTF of 1.5 × 104 hours. So, although the annual
failure rate of a single disk is (1 failure / 1.5 × 106 hours) × 24 hours/day ×
365 days/year = 0.00585 failures/year, the annual failure rate of the 100 disk system
is 0.585 = 58.5%.
                                                                □

   EXAMPLE: Pitfalls.  Given the pitfalls discussed above, is this calculation above
likely to overestimate or underestimate the failure rate of the system?

   ANSWER:  Of the factors listed above, the pitfall of relying on advertised failure
rates seems most significant, and it could lead us to significantly underestimate the
failure rate of the system.
                                                                  

                                                                  

   This solution does assume constant failure rates. If the disks are very new or very
old, they may suffer higher failure rates than expected, which might cause us to
underestimate the failure rate of the system.

   Because we are only interested in the average rate, the correlation pitfall is
probably not particularly relevant to our analysis.
                                                                □

   

	The exponential distribution

   When — as in the example — device failures occur at a constant rate, the number
of failure events in a fixed time period can be mathematically modeled as a Poisson
process, and the interarrival time between failure events follows an exponential
distribution.

   The exponential distribution is memoryless — since the rate of failure events is
constant across time, then the expected time to the next failure event is the
same — no matter what the current time and no matter how long it has been since
the last failure. Thus, if a device has an annual failure rate of 0.5 and thus a mean
time to failure of 2 years, and we have been operating the device without a failure for
a year, the expected time from the current time to the next failure is still 2
years.

   If random variable T represents the time between failures and has an exponential
distribution with λ representing the average number of failure events per unit of
time, then the probability density function fTt is:

   
 

	
 	  fT(t)  
	              = λe-λt  
	              if t ≥ 0  


	          
	              = 0          
	              if t < 0  








   

The mean time to failure is MTTF = 1 / λ.

   Exponential distributions have a number of convenient mathematical properties.
For example, because the failure rate is constant, the mean time to failure is the
inverse of the failure rate; this is why it is easy to convert between MTTF and annual
failure rates in storage specifications. Also, if the expected number of failures is
given for one duration (e.g., 0.1 failures per year), it can easily be converted to the
expected number for a different duration (e.g., 0.0003 failures per day). Finally, if we
have k independent failure processes with rates of λ1, λ2, . . . , λk, then the
aggregate failure function — the rate at which failures of any of the k kinds
occurs — is

   
 

	
 	  λtot  
	              =  
	              λ1 + λ2 + ... + λk  








   

                                                                  

                                                                  
and the mean time to the next failure of any kind is MTTFtot = 1 / λtot. For
example, if we have 100 disks, each with a MTTFdisk = 1.5 × 106 hours or,
equivalently, each failing at a rate of 0.00585 failures per year, then the overall
100-disk system suffers failures at a rate of 100 × 0.00585 = 0.585 failures per
year or, equivalently, the 100-disk system has MTTF100disks = 1.5 × 104
hours.

    Warning. Because the exponential distribution is so mathematically convenient,
is tempting to use it even when it is not appropriate. Remember that failures in real
systems may be correlated (i.e., they are not independent) and may vary over time
(i.e., they are not constant).

   





[bookmark: x1-49002r122]

14.2.2 [bookmark: x1-500002]RAID: Multi-Disk Redundancy for Error Correction

   Given the limits of physical storage devices, storage systems use additional
techniques to get acceptable end-to-end reliability. In particular, rather than trying to
engineer perfectly reliable (and extremely expensive) storage devices, storage
systems use Redundant Arrays of Inexpensive Disks (RAIDs) so that a partial or
total failure of one device will not cause data to be lost.
[bookmark: x1-510002]Basic RAIDs

   A Redundant Array of Inexpensive Disks (RAID) is a system that spreads data
redundantly across multiple disks in order to tolerate individual disk failures. Note
that the term RAID traditionally refers to redundant disks, and for simplicity, we will
discuss RAID in the context of disks. The principles, however, apply equally well to
other storage devices like flash drives.
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                                 [image: ]                                 	Figure 14.8:  RAID 1 with mirroring.
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   Figures 14.8 and 14.9 illustrate two common RAID architectures: mirroring and
rotating parity.


     
     	
     Mirroring. In RAIDs with mirroring (also called RAID 1), the system writes
     each  block  of  data  to  two  disks  and  can  read  any  block  of  data  from
     either disk as Figure 14.8 illustrates. If one of the disks suffers a sector or
     whole-disk failure, no data is lost because the data can still be read from
     the other disk.
     


     	
     Rotating  parity.  In  RAIDs  with  rotating  parity  (also  called  RAID  5),  the
     system reduces replication overheads by storing several blocks of data
     on several disks and protecting those blocks with one redundant block
     stored on yet another disk as Figure 14.9 illustrates.
     
In particular, this approach uses groups of G disks, and writes each of
     G - 1 blocks  of  data  to  a  different  disk  and  1 block  of  parity  to  the
     remaining disk. Each bit of the parity block is produced by computing
     the exclusive-or of the corresponding bits of the data blocks:
     

 

     	
     	  parity  
	              =  
	              data0 ⊕ data1 ⊕ ... ⊕ dataG-1  



     




     

     If one of the disks suffers a sector or whole-disk failure, lost data blocks can be
     reconstructed using the corresponding data and parity blocks from the other
     disks. Note that because the system already knows which disk has failed,
     parity is sufficient for error correction, not just error detection. For example, if
     the disk containing block data0 fails, the block can be reconstructed by
     computing the exclusive-or of the parity block and the remaining data
     blocks:
     

 

     	
     	  data0  
	              =  
	              parity ⊕ data1 ⊕ ... ⊕ dataG-1  



     




                                                                  

                                                                  
     

     To maximize performance, rotating parity RAIDs carefully organize their data
     layout by rotating parity and striping data to balance parallelism and
     sequential access:


         
         	
         Rotating parity. Because the parity for a given set of blocks must be
         updated each time any of the data blocks are updated, the average
         parity block tends to be accessed more often than the average data
         block. To balance load, rather than having G-1 disks store only data
         blocks and 1 disk store only parity blocks, each disk dedicates 1 /
         Gth of its space to parity and is responsible for storing 1 / Gth of the
         parity blocks and (G - 1) / G of the data blocks.
         


         	
         Striping   data.   To   balance   parallelism   versus   sequential-access
         efficiency, a strip of several sequential blocks is placed on one disk
         before shifting to another disk for the next strip. A set of G - 1 data
         strips and their parity strip is called a stripe.
         
By  striping  data,  requests  larger  than  a  block  but  smaller  than  a
         strip  require  just  one  disk  to  seek  and  then  read  or  write  the  full
         sequential run of data rather than requiring multiple disks to seek
         and  then  read  smaller  sequential  runs.  Conversely,  the  RAID  can
         service more widely spaced requests in parallel.


         


     Combining rotating parity and striping, we have the arrangement shown in
     Figure 14.9.



   EXAMPLE: Updating a RAID with rotating parity.  For the rotating parity RAID
in Figure 14.9, suppose you update data block 21. What disk I/O operations must
occur?

   ANSWER:  The challenge is that we must not only update data block 21, we must
also update the corresponding parity block. Since data block 21 is block 1 of its strip
and the strip is part of stripe 1, we need to update parity block 1 of the parity strip
for stripe 1 (Parity (1,1,1) in the figure).

    It takes 4 I/O operations to update both the data and parity.  First we read the
old data D21 and parity P1,1,1 and “remove” the old data from the parity calculation
Ptmp = P1,1,1 ⊕ D21. Then we can compute the new parity from the new data
                                                                  

                                                                  
P′1,1,1 = Ptmp ⊕D′21.  Finally, we can write the new data D′21 and parity P′1,1,1 to
disks 2 and 1, respectively.
                                                                □

   

	Atomic update of data and parity

   A challenge in implementing RAID is atomically updating both the data and the
parity (or both data blocks in a RAID with mirroring).

   Consider what would happen if the RAID system in Figure 14.9 crashes in the
middle updating block 21, after updating the data block on disk 2 but before
updating the parity block on disk 1. Now, if disk 2 fails, the system will reconstruct
the wrong (old) data for block 21.

   The situation may be even worse if a write to a mirrored RAID is interrupted.
Because reads can be serviced by either disk, reads of the inconsistent block may
sometimes return the new value and sometimes return the old one.

   Solutions. Three solutions and one non-solution are commonly used to solve (or
not) the atomic update problem.


     
     	
     Non-volatile   write   buffer.   Hardware   RAID   systems   often   include   a
     battery-backed write buffer. An update is removed from the write buffer
     only once it is safely on disk. The RAID’s startup procedures ensure that
     any  data  in  the  write  buffer  is  written  to  disk  after  a  crash  or  power
     outage.
     


     	
     Transactional  update.  RAID  systems  can  use  transactions  to  atomically
     update both the data block and the parity block. For example, Oracle’s
     RAID-Z  integrates  RAID  striping  with  the  ZFS  file  system  to  avoid
     overwriting data in place and to atomically update data and parity.
     


     	
     Recovery scan. After a crash, the system can scan all of the blocks in the
     system and update any inconsistent parity blocks. Note that until that
     scan is complete, some parity blocks may be inconsistent, and incorrect
     data may be reconstructed if a disk fails. The Linux md (multiple device)
     software RAID driver uses this approach.
     


     	
     Cross your fingers. Some software and hardware RAID implementations
     do not ensure that the data and parity blocks are in sync after a crash.
     Caveat emptor.



                                                                  

                                                                  
   





   RAIDs with rotating parity have high overheads for small writes. Their
overheads are far smaller for reads and for full-stripe writes.

   

	RAID levels

   An early paper on RAIDs, “A Case for Redundant Arrays of Inexpensive
Disks (RAID)” by David Patterson, Garth Gibson, and Randy Katz
http://dl.acm.org/citation.cfm?id=50214 described a range of possible RAID
organizations and named them RAID 0, RAID 1, RAID 2, RAID 3, RAID 4, and RAID
5. Several of these RAID levels were intended to illustrate key concepts rather than
for real-world deployment.

   Today, three of these variants are in wide use:


     
     	
     RAID 0: JBOD. RAID level 0 spreads data across multiple disks without
     redundancy. Any disk failure results in data loss. For this reason, the term
     RAID is somewhat misleading, and this organization is often referred to
     as JBOD (Just a Bunch Of Disks).
     


     	
     RAID 1: Mirroring. RAID level 1 mirrors identical data to two disks.
     


     	
     RAID 5: Rotating Parity. RAID level 5 stripes data across G disks. G - 1 of
     the disks in a stripe store G-1 different blocks of data and the remaining
     disk stores a parity block. The role of storing the parity block for different
     data blocks is rotated among the disks to balance load.



   Subsequent to the “Case for RAID” paper, new organizations emerged, and
many of them were named in the same spirit. Some of these names have become
standard.


     
     	
     RAID 6: Dual Redundancy. RAID level 6 is similar to RAID level 5, but
     instead of one parity block per group, two redundant blocks are stored.
     These blocks are generated using erasure codes such as Reed-Solomon
     codes that allow reconstruction of all of the original data as long as at
     most two disks fail.
                                                                  

                                                                  
     


     	
     RAID 10 and RAID 50: Nested RAID. RAID 10 and RAID 50 were originally
     called  RAID  1+0  and  RAID  5+0.  They  simply  combine  RAID  0  with
     RAID 1 or RAID 5. For example, a RAID 10 system mirrors pairs of disks
     for redundancy (RAID 1), treats each pair of mirrored disks as a single
     reliable logical disk, and then stripes data non-redundantly across these
     logical disks (RAID 0).



   Many other RAID levels have been proposed. In some cases, these new “levels”
have more to do with marketing than technology. (“Our company’s RAID 99+ is
much better than your company’s puny RAID 14.”) In any event, we regard the
particular nomenclature used to describe exotic RAID organizations as relatively
unimportant; our discussion focuses on mirroring (RAID 1), rotating parity (RAID
5), and dual redundancy (RAID 6). Other organizations can be analyzed using
principles from these approaches.

   





   Recovery. In either RAID arrangement, if a disk suffers a sector failure,
the disk reports an error when there is an attempt to read the sector and, if
necessary, remaps the damaged sector to a spare one. Then, the RAID system
reconstructs the lost sector from the other disk(s) and rewrites it to the original
disk.

   If a disk suffers a whole-disk failure, an operator replaces the failed disk, and the
RAID system reconstructs all of the disk’s data from the other disk(s) and
rewrites the data to the replacement disk. The average time from when a disk
fails until it has been replaced and rewritten is called the mean time to repair
(MTTR).


[bookmark: x1-520002]RAID Reliability

   A RAID with one redundant disk per group (e.g., mirroring or rotating parity
RAIDs) can lose data in three ways: two full disk failures, a full disk failure and one
or more sector failures on other disks, and overlapping sector failures on multiple
disks. The expected time until one of these events occurs is called the mean time to
data loss (MTTDL).
   Two full-disk failures. If two disks fail, the system will be unable to reconstruct
the missing data.

   To get a sense of how serious a problem this might be, suppose that a system has
N disks with one parity block per G blocks, and suppose that disks fail
independently with a mean time to failure of MTTF and a mean time to replace a
failed disk and recover its data of MTTR.

   Then, when the system is operating properly, the expected time until the first
failure is MTTF / N. Assuming MTTR << MTTF , there is essentially a race to
                                                                  

                                                                  
replace the disk and reconstruct its data before a second disk fails. We lose this race
and hit the second failure before the repair is done with probability MTTF /
((G - 1) × MTTR), giving us a mean time to data loss from multiple full-disk
failures of

   
 

	
 	  MTTDLtwo-full-disk  
	              =  
	              MTTF2 / (N × (G - 1) × MTTR)  








   

   EXAMPLE: Mean time to double-disk failure.  Suppose you have 100 disks
organized into groups of 10, with one disk storing a parity block per nine disks
storing data blocks. Assuming that disk failures are independent and the per-disk
mean time to failure is 106 hours and assuming that the mean time to repair a failed
disk is 10 hours, estimate the expected mean time to data loss due to a double-disk
failure.

   ANSWER:  Because failures are assumed to occur independently and at a
constant rate, we can use the equation above:

   
 

	
 	  MTTDLtwo-full-disk  
	              =  
	              MTTF2 / (N × (G - 1) × MTTR)  


	                                
	              =  
	              (106 hours)2 / (102 × 9 × 10 hours)   


	                                           
	              ≈ 
	             108 hours                                                

	 







   

Thus, assuming independent failures at the expected rate and assuming no other
sources of data loss, this organization appears to have raised the mean time to data
loss from about 100 years (for a single disk) to about 10,000 years (for 90 disks worth
of data and 10 disks worth of parity).                                                                     □

   One full-disk failure and a sector failure. If one or more disks suffer sector
failures and another disk suffers a full-disk failure, the RAID system cannot recover
all of its data. Assuming independent failures that arrive at a constant rate, we can
estimate probability of data loss over some interval as the probability of suffering a
disk failure times the probability that we will fail to read all data needed to
reconstruct the lost disk’s data:

   
 

	
 	  PlostDataFromDiskAndSector  
	              =  
	              PDiskFailure × PRecoveryError       


	                                        
	              =  
	              (N / MTTF) × Pfail_recovery_read  

	 








   

   If this gives us the probability of losing data over some period of time or
equivalently the rate of data-loss failures, then inverting this equation gives us the
                                                                  

                                                                  
mean time to data loss (MTTDL). Thus, we can estimate the mean time to data loss
from this failure mode based on the expected time between full disk failures divided
by the odds of failing to read all data needed to reconstruct the lost disk’s
data.

   
 

	
 	  MTTDLdisk+sector  
	              =  
	              (MTTF / N) × (1 / Pfail_recovery_read)  








   

   EXAMPLE: Mean time to failed disk and failed sector.  Assuming that during
recovery, latent sector errors are discovered at a rate of 1 per 1015 bits read and
assuming that the mean time to failure for each of 100 1 TB disks organized into
groups of 10 is 106 hours, what is the expected mean time to data loss due to
full-disk failure combined with a sector failure?

   ANSWER: 

   
 

	
 	  MTTDLdisk+sector  
	              =  
	              (MTTF / N) × (1 / Pfail_recovery_read)  


	                                       
	              =  
	              (106 / 100) × (1 / Pfail_recovery_read)   








   

   To estimate Pfail_recovery_read we will assume that each bit fails independently
and is successfully read with probability (1/(1 - 10-15)). Then the probability of
reading 1 TB from each of 9 disks is:

   


[image:                         numberofbits
Psucceed_recovery_read  =   Psucceed_bit_read
                            - 15 9disks×1012bydteissk ×8bbitytse
                   =   (1 - 10  )
                   ≈   0.93
]


                                                                  

                                                                  
So, there is roughly a 93% chance that recovery will succeed and a 7% chance that
recovery will fail. We then have

   
 

	
 	  MTTDLdisk+sector  
	              =  
	              (106 / 100) × (1 / .07)  


	                                       
	              =  
	              1.4 ×105 hours             








   

Notice that this rate of data loss is much higher than the rate from double disk
failures calculated above. Of course, the relative contributions of each failure mode
will depend on disks’ MTTF, size, and bit error rates as well as the system’s
MTTR.                                                                                                                           □

   Failure of two sectors sharing a redundant sector. In principle, it is also possible
to lose data because the corresponding sectors fail on different disks. However,
with billions of distinct sectors on each disk and small numbers of latent
failures per disk, this failure mode is likely to be a negligible risk for most
systems.

   Overall data loss rate. If we assume independent failures and constant failure
rates, then we can add the failure rates from the two significant failure modes to
estimate the combined failure rate:
  
   
 


 
 [image: FailureRateindep+const =  F ailureRatetwo-full-disk + F ailureRatedisk+sector
                     =   --------1----------+ -------1---------
                         M TT DLtwo-full-disk   M TT DLdisk+sector
                         N(G---1)M-TT-R-  N-×-Pfail_recovery_read-
                     =      M T TF 2    +       M TT F
                           N    M T TR(G - 1)
                     =   M-TT-F(---M-T-TF----+ Pfail_recovery_read)
 ]
 

                                                                  

                                                                  
   


The total failure rate is thus the rate that the first disk fails times the rate that
either a second disk in the group fails before the repair is completed or a
sector error is encountered when the disks are being read to rebuild the lost
disk.

   We label the above FailureRateindep+const to emphasize the strong assumptions
of independent failures and constant failure rates. As noted above, failures are likely
to be correlated in many environments and failure rates of some devices may
increase over time. Both of these factors may result significantly higher failure rates
than expected.

   EXAMPLE: Combined failure rate.  For the system described in the previous
examples (100 disks, rotating parity with a group size of 10, mean time to failure of
106 hours, mean time to repair of 10 hours, and non-recoverable read error rate of
one sector per 1015 bits) assuming that all failures are independent, estimate
the MTTDL when both double-disk and single-disk-and-sector failures are
considered.

   ANSWER:   


[image: F ailureRateindep+const  =  --N----(M-TTR-(G-- 1)-+ Pfail_recovery_read)
                         M T TF     M TT F
                      =  100disks hours(-10hours-+ 0.0694)
                            106        106 hours
                      =  ----1---(-1- + 0.0694)
                         104 hours 104
                      =  ----1---(0.0695)
                         104 hours
                      =  6.95 × 10-6failures
                                    hour
]


   Inverting the failure rate gives the mean time to data loss:

   
 

	
                                                                  

                                                                  
 	  MTTDLconst+indep  
	              =  
	              1 / FailureRateindep+const  


	                              
	              =  
	              1.44 × 105 hours/failure       


	                                       
	              =  
	              16.4 years/failure                   







   

                                                                □
   Two things in the example above are worth special note. First, for these
parameters, the dominant cause of data loss is likely to be a single disk failure
combined with a non-recoverable read error during recovery. Second, for these
parameters and this configuration, the resulting 6% chance of losing data per year
may be unacceptable for many environments. As a result, systems use various
techniques to improve the MTTDL in RAID systems.


[bookmark: x1-530002]Improving RAID Reliability

   What can be done to further improve reliability? Broadly speaking, we can do
three things: (1) increase redundancy, (2) reduce non-recoverable read error rates,
and (3) reduce mean time to repair. All of these approaches, in various combinations,
are used in practice.
   Here are some common approaches:

   Increasing redundancy with more redundant disks. Rather than having a single
redundant block per group (e.g., using two mirrored disks or using one
parity disk for each stripe) systems can use double redundancy (e.g., three
disk replicas or two error correction disks for each stripe). In some cases,
systems may use even more redundancy. For example, the Google File System
(GFS) is designed to provide highly reliable and available storage across
thousands of disks; by default, GFS stores each data block on three different
disks.

   A dual redundancy array ensures that data can be reconstructed despite any
two failures in a stripe by generating two redundant blocks using erasure
codes such as Reed-Solomon codes. This approach is sometimes called RAID
6.

   A system with dual redundancy can be much more reliable than a simple single
redundancy RAID. With dual redundancy, the most likely data loss scenarios are (a)
three full-disk failures or (b) a double-disk failure combined with one or more
non-recoverable read errors.

   If we optimistically assume that failures are independent and occur at a constant
rate, a system with two redundant disks per stripe has a potentially low combined
data loss rate:

   

                                                                  

                                                                  

[image: FailureRatedual+indep+const =   --N----
                             M TT F
                             ×M-T-TR-(G---1)
                                 M  TTF
                             ×(M-T-TR(G---2)+ P              )
                                  M T TF       fail_recovery_read
]


This data loss rate is nearly MTTF / (MTTR × (G - 1)) times better than the
single-parity data loss rate; for disks with MTTFs of over one million hours, MTTRs
of less than 10 hours, and group sizes of ten or fewer disks, double parity improves
the estimated rate by about a factor of 10,000.

   We emphasize, however, that the above equation almost certainly underestimates
the likely data loss rate for real systems, which may suffer correlated failures,
varying failure rates, higher failure rates than advertised, and so on.

   Reducing non-recoverable read errors with scrubbing. A storage device’s
sector-level error rate is typically expressed as a single non-recoverable read rate,
suggesting that the rate is constant. The reality is more complex. Depending on the
device, errors may accumulate over time and heavier workloads may increase the
rate at which errors accumulate.

   An important technique for reducing a disk’s non-recoverable read rate is
scrubbing: periodically reading the entire contents of a disk, detecting sectors with
unrecoverable read errors, reconstructing the lost data from the remaining disks in
the RAID array, and attempting to write and read the reconstructed data to
and from the suspect sector. If writes and reads succeed, then the error was
caused by a transient fault, and the disk continues to use the sector, but
if the sector cannot be successfully accessed, the error is permanent, and
the system remaps that sector to a spare and writes the reconstructed data
there.

   Reducing non-recoverable read error rates with more reliable disks. Different
disk models promise significantly different non-recoverable read error rates. In
particular, in 2011, many disks aimed at laptops and personal computers claim
unrecoverable read error rates of one per 1014 bits read, while disks aimed
at enterprise servers often have lower storage densities but can promise
unrecoverable read error rates of one per 1016 bits read. This two order of magnitude
improvement greatly reduces the probability that a RAID system loses data from a
combination of a full disk failure and a non-recoverable read error during
recovery.

   Reducing mean time to repair with hot spares. Some systems include “hot
spare” disk drives that are idle, but plugged into a server so that if one of the
                                                                  

                                                                  
server’s disks fails, the hot spare can be automatically activated to replace the lost
disk.

   Note that even with hot spares, the mean time to repair a disk is limited by the
time it takes to write the reconstructed data to it, and this time is often measured in
hours. For example, if we have a 1 TB disk and can write at 100 MB/s, the mean time
to repair for the disk will be at least 104 seconds — about 3 hours. In practice, repair
time may be even larger if the bandwidth achieved is less than assumed
here.

   Reducing mean time to repair with declustering. Disks with hundreds of
gigabytes to a few terabytes can take hours to fully write with reconstructed data.
Declustering splits reconstruction of a failed disk across multiple disks. Declustering
thus allows parallel reconstruction, thus speeding up reconstruction and reducing
MTTR.

   For example, the Hadoop File System (HDFS) is a cluster file system that writes
each data block to three out of potentially hundreds or thousands of disks. It chooses
the three disks for each block more or less randomly. If one disk fails, it
re-replicates the lost blocks approximately randomly across the remaining
disks. If we have N disks each with a bandwidth of B, total reconstruction
bandwidth can approach (N / 2) × B; for example, if there are 1000 disks
with 100 MB/s bandwidths, reconstruction bandwidth can theoretically
approach 500 GB/s, allowing re-replication of a 1 TB disk’s data in a few
seconds.

   In practice, re-replication will be slower than this for at least three reasons. First,
resources other than the disk (e.g., the network) may bottleneck recovery. Second,
the system may throttle recovery speed to avoid starving user requests. Third, if a
server crashes and its disks become inaccessible, the system may delay starting
recovery — hoping that the server will soon recover — to avoid imposing extra load
on the system.


[bookmark: x1-540002]Pitfalls

   When constructing a reliable storage system, it is not enough to plug provide
enough redundancy to tolerate a target number of failures. We also need to consider
how failures are likely to occur (e.g., they may be correlated) and what it takes to
correct them (e.g., successfully reading a lot of other data). More specifically, be
aware of the following pitfalls:
     
     	
     Assuming   uncorrelated   failures..   It   is   easy   to   get   gaudy   MTTDL
     numbers  by  adding  a  redundant  device  or  two  and  multiplying  the
     devices’ MTTFs. But the simple equation for MTTDL we derived above
     only  applies  when  failures  are  uncorrelated.  Even  a  1%  chance  of
     correlated  failures  dramatically  changes  the  estimate.  Unfortunately,  it
     is often difficult to estimate correlation rates a priori, so designers must
                                                                  

                                                                  
     sometimes just add a significant safety margin and hope that it is enough.
     


     	
     Ignoring   the   risk   from   latent   errors..   It   is   not   uncommon   to   see
     analyses  of  RAID  reliability  that  considers  full  device  failures  but  not
     non-recoverable read failures. As we have seen above, non-recoverable
     read  errors  can  dramatically  reduce  the  probability  of  successfully
     recovering data after a disk failure.
     


     	
     Not  implementing  scrubbing..  Periodically  scrubbing  disks  to  detect
     and   correct   latent   errors   can   significantly   reduce   the   risk   of   data
     loss.  Although  it  can  be  difficult  to  predict  the  appropriate  scrubbing
     frequency a priori, a system that uses scrubbing can monitor the rate at
     which non-correctable read errors are found and corrected and use the
     measured rate to adjust the scrubbing frequency.
     


     	
     Not having a backup.. The techniques discussed in this section can protect
     a  system  against  many,  but  not  all,  faults.  For  example,  a  widespread
     correlated failure (e.g., a building burning down), an operator error (e.g.,
     “rm -r *”), or a software bug could corrupt or delete data stored across
     any number of redundant devices.
     
A backup system provides storage that is separate from a system’s main
     storage. Ideally, the separation is both physical and logical.
     
Physical  separation  means  that  backup  storage  devices  are  in  different
     locations than the primary storage devices. For example, some systems
     achieve physical separation by copying data to tape and storing the tapes
     in  a  different  building  than  the  main  storage  servers.  Other  systems
     achieve physical separation by storing data to remote disk arrays such as
     those provided by cloud backup and disaster recovery services.
     
Logical  separation  means  that  the  interface  to  the  backup  system  is
     restricted  to  prevent  premature  deletion  of  data.  For  example,  some
     backup systems provide an interface that allows a user to read but not
     write old versions of a file (e.g., the file as it existed one hour, two hours,
     four hours, one day, one week, one month, and one year ago).


     


   

	Modeling real systems
                                                                  

                                                                  

   The equations in the main text for estimating a system’s mean time to data loss
are only applicable if failure rates are constant and if failures are uncorrelated.
Unfortunately, empirical studies often observe correlation among full-disk failures,
among sector-level failures, and between sector-level and full-disk failures, and they
frequently find failure rates that vary significantly with disks’ ages. Unfortunately, if
failure rates vary over time or failures are correlated, the failure arrival distribution
is no longer described by an exponential distribution, and the math quickly gets
difficult.

   One solution is to use randomized simulation to estimate the probability of data
loss over some duration of interest. For example, we might want to estimate the
probability of losing data over 10 years for a 1000-disk system organized in groups
of 10 disks with rotating parity.

   To do this, our simulation would track which disks are functioning normally,
which have latent sector errors, and which have suffered full disk failures. The
transitions between states could be based on measurement studies or field data on
key factors: (a) the rate that disks suffer full disk failures (possibly dependent
on the disks’ ages, the number of recent full disk failures, or the number
of individual sector failures a disk has had); (b) the rate at which sector
failures arise (possibly dependent on the age of the disk, workload of the
disk, and recent frequency of sector failures); (c) the repair time when a disk
fails; and (d) the expected time for scrubbing to detect and repair a sector
error.

   To estimate the probability of data loss, we would repeatedly simulate the system
for a decade and count the number of times the system enters a state in which data is
lost (i.e., a group has two full disk failures or has both a full disk failure and a sector
failure on another disk).
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14.2.3 [bookmark: x1-550003]Software Integrity Checks

   Although storage devices include sector- or page-level checksums to detect data
corruption, many recent file systems have included additional, higher-level,
checksums and other integrity checks on their data.
   These checks can catch a range of errors that hardware-level checksums can miss.
For example, they can detect wild writes or lost writes where a bug in the operating
system software, device driver software, or device firmware misdirects a write to the
wrong block or page or fails to complete an intended write. They can also detect rare
ECC false negatives when the hardware-level error correcting codes fail to detect a
multi-bit corruption.

   When a software integrity check fails on a block read or during latent-error
scrubbing, the system reconstructs the lost or corrupted block using the redundant
storage in the RAID.

   Two examples of software integrity checks used today are block integrity metadata
                                                                  

                                                                  
and file system fingerprints.

   Block integrity metadata. Some file systems, like Network Appliance’s WAFL
file system, include block integrity metadata that allows the software to validate the
results of each block it reads.
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                                 [image: ]                                 	Figure 14.10:  To improve reliability Network Appliance’s WAFL file system
stores a 64 byte data integrity segment (DIS) with each 4 KB data block.
 


                                                                  

                                                                  
   

   As Figure 14.10 illustrates, WAFL stores a 64 byte data integrity segment (DIS)
with each 4 KB data block. The DIS contains a checksum of the data block, the
identity of the data block (e.g., the ID of the file to which it belongs and the block’s
offset in that file), and a checksum of the DIS, itself.

   Then, when a block is read, the system performs three checks. First, it checks the
DIS’s checksum. Second, it verifies that the data in the block corresponds to the
checksum in the block’s data integrity segment. Third, it verifies that the identity in
the block’s DIS corresponds to the file block it was intending to read. If all of these
checks pass, the file system can be confident it is returning the correct data; if not, the
file system can reconstruct the necessary data from redundant disks in the
RAID.

   File system fingerprints. Some file systems, like Oracle’s ZFS, include file system
fingerprints that provide a checksum across the entire file system in a way that
allows efficient checks and updates when individual blocks are read and
written.
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                                 [image: ]                                                                  [image: ]                                 	Figure 14.11:  ZFS stores all data in a Merkle tree so that each node of the tree
includes both a pointer to and a checksum of each of its children (Chk and Ptr
in the figure). On an update, all nodes from the updated block (I’) to the root
(u’) are changed to reflect the new pointer and checksum values.
 


                                                                  

                                                                  
   

   As illustrated in Figure 14.11, all of ZFS’s data structures are arranged in a tree of
blocks with a root node called the uberblock. At each internal node of the tree, each
reference to a child node includes both a pointer to and a checksum of the child.
Thus, the reference to any subtree includes a checksum that covers all of that
subtree’s contents, and the uberblock holds a checksum that covers the entire file
system.

   When ZFS reads data (i.e., leaves of the tree) or metadata (i.e., internal nodes of
the tree), it follows the pointers down the tree to find the right block to read,
computing a checksum of each internal or leaf block and comparing it to the
checksum stored with the block reference. Similarly, as Figure 14.11 illustrates, when
ZFS writes a block, it updates the references from the updated block to the uberblock
so that each includes both the new checksum and (since ZFS never updates data
structures in place) new block pointer.

   

	Layers upon layers upon layers In this chapter we focus on error detection and
correction at three levels: the individual storage devices (e.g., disks and flash),
storage architectures (e.g., RAID), and file systems.

   Today, storage systems with important data often include not just these layers,
but additional ones. Enterprise and cloud storage systems distribute data across
several geographically distributed sites and may include high-level checksums on
that geographically replicated data. Within a site, they may replicate data across
multiple servers using what is effectively a distributed file system. At each server,
the distributed file system may store data using a local file system that includes
file-system-level checksums on the locally stored data. And, invariably, the local
server will use storage devices that detect and sometimes correct low-level
errors.

   Although we do not discuss cross-machine and geographic replication
in any detail, the principles described in this chapter also apply to these
systems.

   





[bookmark: x1-55003r121]

[bookmark: x1-560003]14.3 Summary and Future Directions

   Although individual storage devices include internal error correcting codes,
additional redundancy for error detection and correction is often needed to
provide acceptably reliable storage. In fact, today, it is seldom acceptable to
store valuable data on a single device without some form of RAID-style
redundancy. By the same token, many if not most file systems designed
over the past decade have included software error checking to catch data
corruption and loss occurrences that are not detectable by device-level hardware
checks.
   Increasingly now and in the future, systems go beyond just replicating data
                                                                  

                                                                  
across multiple disks on a single server to distributed replication across multiple
servers. Sometimes these replicas are configured to protect data even if significant
physical disasters occur.

   For example, Amazon’s Simple Storage Service (S3) allows customers to pay a
monthly fee to store data on servers run by Amazon. Amazon states that the system
is “designed to provide 99.999999999% durability of objects over a given year." To
provide such high reliability, S3 stores data at multiple data centers, quickly
detects and repairs lost redundancy, and validates checksums of stored
data.
[bookmark: Q1-1-137]
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Exercises


 	 Suppose that a text editor application uses the rename technique for safely saving
updates by saving the updated file to a new filed (e.g., #doc.txt# and then calling
rename(“#doc.txt#”, “doc.txt”) to change the name of the updated file from #doc.txt# to
doc.txt. POSIX rename promises that the update to doc.txt will be atomic — even if a
crash occurs, doc.txt will refer to either the old file or the new one. However, POSIX
does not guarantee that the entire rename operation will be atomic. In particular,
POSIX allows implementations in which there is a window in which a crash
could result in a state where both doc.txt and #doc.txt# refer to the same, new
document.
   
 	How should a text-editing application react if, on startup, it sees both doc.txt and
doc.txt and (i) both refer the same file or (ii) each refers to a file with different
contents?
   


   
	Why might POSIX permit this corner case (where we may end up with two
names that refer to the same file) to exist?
   


   
	Explain how an FFS-based file system without transactions could use the “ad
hoc” approach discussed in Section 14.1.1 to ensure that (i) doc.txt always refers to
either the old or new file, (ii) the new file is never lost – it is always available as at
least one of doc.txt or #doc.txt#, and (iii) there is some window where the new file may
be accessed as both doc.txt and #doc.txt#.
   


   
	Section 14.1.1 discusses three reasons that few modern file systems use the
“ad-hoc” approach. However, many text editors still do something like this. Why
have the three issues had less effect on applications like text editors than on file
systems?
   


   




   
	 Above, we defined two-phase locking for basic mutual exclusion locks. Extend
                                                                  

                                                                  
the definition of two-phase locking for systems that use readers-writers
locks.
   


   
	 Suppose that x and y represent the number of hours two managers have
assigned you to work on each of two tasks with a constraint that x + y ≤ 40. Earlier,
we showed that snapshot isolation could allow one transaction to update x and
another concurrent transaction to update y in a way that would violate the constraint
x + y ≤ 40. Is such an anomaly possible under serializability? Why or why
not?
   


   
	 Suppose you have transactional storage system tStore that allows you to read
and write fixed-sized 2048-byte blocks of data within transactions, and you run the
code in Figure 14.12.
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 ...
 byte b1[2048];  byte b2[2048];
 byte b3[2048];  byte b4[2048];
 
 TransID t1 = tStore.beginTransaction();
 TransID t2 = tStore.beginTransaction();
 TransID t3 = tStore.beginTransaction();
 TransID t4 = tStore.beginTransaction();
 
 // Interface is
 //     writeBlock(TransID tid, int blockNum, byte buffer[]);
 tStore.writeBlock(t1, 1, ALL_ONES);
 tStore.writeBlock(t1, 2, ALL_TWOS);
 tStore.writeBlock(t2, 3, ALL_THREES);
 tStore.writeBlock(t1, 3, ALL_FOURS);
 tStore.writeBlock(t1, 2, ALL_FIVES);
 tStore.writeBlock(t3, 2, ALL_SIXES);
 tStore.writeBlock(t4, 4, ALL_SEVENS);
 tStore.readBlock(t2, 1,  b1);
 tStore.commit(t3);
 tStore.readBlock(t2, 3,  b2);
 tStore.commit(t2);
 tStore.readBlock(t1, 3,  b3);
 tStore.readBlock(t4, 3,  b4);
 tStore.commit(t1);
 
 // At this point, the system crashes

	Figure 14.12:  Sample code for a transactional storage system.
 



                                                                  

                                                                  

   

   The system crashes at the point indicated above.

   

   
	Assume that ALL_ONES, ALL_TWOS, etc. are each arrays of 2048 bytes with the
indicated value. Assume that when the program is started, all blocks in the tStore
have the value ALL_ZEROS.
   Just before the system crashes, what is the value of b1 and what is the value of
b2?

   


   
	In the program above, just before the system crashes, what is the value of b3 and
what is the value of b4?
   


   
	Suppose that after the program above runs and crashes at the indicated point.
After the system restarts and completes recovery and all write-backs, what are the
values stored in each of blocks 1, 2, 3, 4, and 5 of the tStore?
   




   


   
	 Go to an on-line site that sells hard disk drives, and find the largest capacity disk
you can buy for less than $200. Now, track down the spec sheet for the disk and,
given the disk’s specified bit error rate (or unrecoverable read rate), estimate the
probability of encountering an error if you read every sector on the disk
once.
   


   
	 Suppose we define a RAID’s access cost as the number disk accesses divided by
the number of data blocks read or written. For each of following configurations and
workloads, what is the access cost?
   

   
	 Workload: a series of random 1-block writes
Configuration: mirroring
   


   
	 Workload: a series of random 1-block writes 
Configuration: distributed parity
   


   
	 Workload: a series of random 1-block reads
Configuration: mirroring
   


   
	 Workload: a series of random 1-block reads
Configuration: distributed parity
   


   
	 Workload: a series of random 1-block reads
Configuration: distributed parity with group size G and one failed disk
   


                                                                  

                                                                  
   
	 Workload: a long sequential write 
Configuration: mirroring
   


   
	 Workload: a long sequential write 
Configuration: distributed parity with a group size of G
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	 Suppose that an engineer who has not taken this class tries to create a disk array
with dual-redundancy but instead of using an appropriate error correcting code such
as Reed-Solomon, the engineer simply stores a copy of each parity block on two
disks, as in Figure 14.13.
   Give an example of how a two-disk failure can cause a stripe to lose
data in such a system. Explain why data cannot be reconstructed in that
case.

   


   
	 Some RAID systems improve reliability with intra-disk redundancy to protect
against non-recoverable read failures. For example, each individual disk on such a
system might reserve one 4KB parity block in every 32 KB extent and then
store 28KB (7 4KB blocks) of data and 4 KB (1 4KB block) of parity in each
extent.
   In this arrangement, each data block is protected by two parity blocks: one
interdisk parity block on a different disk and one intradisk parity block on the same
disk.

   This approach may reduce a disk’s effective non-recoverable read error
rate because if one block in an extent is lost, it can be recovered from the
remaining sectors and parity on the disk. Of course, if multiple blocks in
the same extent are lost, the system must rely on redundancy from other
disks.

   
 	Assuming that a disk’s non-recoverable read errors are independent and occur at
a rate of one lost 512 byte sector per 1015 bits read, what is the effective
non-recoverable read error rate if the operating system stores one parity block per
seven data blocks on the disk?
    Hint: You may find the bc or dc arbitrary-precision calculators useful. These
programs are standard in many Unix, Linux, and OSX distributions. See the man
pages for instructions.

   


   
	Why is the above likely to significantly overstate the impact of intra-disk
redundancy?
   


   


   


   
	 Many RAID implementations allow on-line repair in which the system
continues to operate after a disk failure, while a new empty disk is inserted to
replace the failed disk, and while regenerating and copying data to the new
disk.
   Sketch a design for a 2-disk, mirrored RAID that allows the system to remain
on-line during reconstruction, while still ensuring that when the data copying is
done, the new disk is properly reconstructed (i.e., it is an exact copy of other
disk.)
                                                                  

                                                                  

   In particular, specify (1) what is done by a recovery thread, (2) what is done on a
read during recovery, and (3) what is done on a write during recovery. Also explain
why your system will operate correctly even if a crash occurs in the middle of
reconstruction.

   


   
	
   Suppose you are willing to sacrifice no more than 1% of a disk’s bandwidth to
scrubbing. What is maximum frequency at which you could scrub a 1 TB disk with
100 MB/s bandwidth?

   


   
	 Suppose a 3 TB disk in a mirrored RAID system crashes. Assuming the disks
used in the system can sustain 100MB/s sequential bandwidth, what is the
minimum mean time to repair that can be achieved? Why might a system be
configured to perform recovery slower than this?
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 Size


	 Platters/Heads                                                     
	 2/4                                                       


	 Capacity                                                                
	 320 GB                                                 


	                             
 Performance


	 Spindle speed                                                       
	 7200 RPM                                           


	 Average seek time read/write                           
	 10.5 ms/ 12.0 ms                                


	 Maximum seek time                                            
	 19 ms                                                   

	Track-to-track seek time 
	1 ms


	 Transfer rate (surface to buffer)                         
	 54–128 MB/s                                      


	 Transfer rate (buffer to host)                              
	 375 MB/s                                            


	 Buffer memory                                                     
	 16 MB                                                  


	                              
 Reliability


	 Nonrecoverable read errors per sectors read  
	 1 sector per 1014                              


	 MTBF                                                                     
	 600,000 hours                                     


	 Product life                                                           
	 5 years or 20,000 power-on hours  


	                                
 Power


	 Typical                                                                   
	 16.35 W                                               


	 Idle                                                                         
	 11.68 W                                               





	Figure 14.14:

Disk
specification
 



                                                                  

                                                                  
   

   
	 Suppose I have a disk such as the one described in Figure 14.14 and a
workload consisting of a continuous stream of updates to random blocks of the
disk.
   Assume that the disk scheduler uses the SCAN/Elevator algorithm.

   
 	What is the throughput in number of requests per second if the application
issues one request at a time and waits until the block is safely stored on disk before
issuing the next request?
   


   
	What is the throughput in number of requests per second if the application
buffers 100 MB of writes, issues those 100 MB worth of writes to disk as a batch,
and waits until those writes are safely on disk before issuing the next 100 MB batch
of requests?
   


   Suppose that we must ensure that – even in the event of a crash – the ith
update can be observed by a read after crash recovery only if all updates
that preceded the ith update can be read after the crash. That is, we have
a FIFO property for updates – the i+1’st update cannot “finish” until the
ith update finishes. (1) Design an approach to get good performance for
this workload. (2) Explain why your design ensures FIFO even if crashes
occur. (3) Estimate your approach’s throughput in number of requests per
second. (For comparison with the previous part of the problem, your solution
should not require significantly more than 100MB of main-memory buffer
space.)

   
	Design an approach to get good performance for this workload. (Be sure to
explain how writes, reads, and crash recovery work.)
   


   
	Explain why your design ensures FIFO even if crashes occur.
   


   
	Estimate your approach’s throughput in number of requests per second.
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[bookmark: x1-590003]Glossary

     	
[bookmark: glo:absolute path]absolute path 
	A file path name interpreted relative to the root directory.
     
	
[bookmark: glo:abstract virtual machine]abstract virtual machine 
	The interface provided by an operating system to its
     applications, including the system call interface, the memory abstraction,
     exceptions, and signals.
     
	
[bookmark: glo:ACID properties]ACID properties 
	A mnemonic for the properties of a transaction: atomicity,
     consistency, isolation, and durability.
     
	
[bookmark: glo:acquire-all/release-all]acquire-all/release-all 
	A  design  pattern  to  provide  atomicity  of  a  request
     consisting  of  multiple  operations.  A  thread  acquires  all  of  the  locks  it
     might need before starting to process a request; it releases the locks once
     the request is done.
     
	
[bookmark: glo:address translation]address translation 
	The  conversion  from  the  memory  address  the  program
     thinks it is referencing to the physical location of the memory.
     
	
[bookmark: glo:affinity scheduling]affinity scheduling 
	A   scheduling   policy   where   tasks   are   preferentially
     scheduled onto the same processor they had previously been assigned,
     to improve cache reuse.
     
	
[bookmark: glo:annual disk failure rate]annual disk failure rate 
	The fraction of disks expected to failure each year.
     
	
[bookmark: glo:API]API 
	See: application programming interface.
     
	
[bookmark: glo:application programming interface]application programming interface 
	The system call interface provided by an
     operating system to applications.
     
	
[bookmark: glo:arm]arm 
	An attachment allowing the motion of the disk head across a disk surface.
     
	
[bookmark: glo:arm assembly]arm assembly 
	A  motor  plus  the  set  of  disk  arms  needed  to  position  a  disk
     head to read or write each surface of the disk.
     
	
[bookmark: glo:arrival rate]arrival rate 
	The rate at which tasks arrive for service.
                                                                  

                                                                  
     
	
[bookmark: glo:asynchronous I/O]asynchronous I/O 
	A design pattern for system calls to allow a single-threaded
     process  to  make  multiple  concurrent  I/O  requests.  When  the  process
     issues an I/O request, the system call returns immediately. The process
     later on receives a notification when the I/O completes.
     
	
[bookmark: glo:asynchronous procedure call]asynchronous procedure call 
	A  procedure  call  where  the  caller  starts  the
     function, continues execution concurrently with the called function, and
     later waits for the function to complete.
     
	
[bookmark: glo:atomic commit]atomic commit 
	The  moment  when  a  transaction  commits  to  apply  all  of  its
     updates.
     
	
[bookmark: glo:atomic memory]atomic memory 
	The value stored in memory is the last value stored by one of
     the processors, not a mixture of the updates of different processors.
     
	
[bookmark: glo:atomic operations]atomic operations 
	Indivisible  operations  that  cannot  be  interleaved  with  or
     split by other operations.
     
	
[bookmark: glo:atomic read-modify-write instruction]atomic read-modify-write instruction 
	A   processor-specific   instruction   that
     lets  one  thread  temporarily  have  exclusive  and  atomic  access  to  a
     memory location while the instruction executes. Typically, the instruction
     (atomically)  reads  a  memory  location,  does  some  simple  arithmetic
     operation to the value, and stores the result.
     
	
[bookmark: glo:attribute record]attribute record 
	In NTFS, a variable-size data structure containing either file
     data or file metadata.
     
	
[bookmark: glo:availability]availability 
	The percentage of time that a system is usable.
     
	
[bookmark: glo:average seek time]average seek time 
	The average time across seeks between each possible pair
     of tracks on a disk.
     
	
[bookmark: glo:AVM]AVM 
	See: abstract virtual machine.
     
	
[bookmark: glo:backup]backup 
	A logically or physically separate copy of a system’s main storage.
                                                                  

                                                                  
     
	
[bookmark: glo:base and bound memory protection]base and bound memory protection 
	An early system for memory protection
     where each process is limited to a specific range of physical memory.
     
	
[bookmark: glo:batch operating system]batch operating system 
	An early type of operating system that efficiently ran
     a queue of tasks. While one program was running, another was being
     loaded into memory.
     
	
[bookmark: glo:bathtub model]bathtub model 
	A  model  of  disk  device  failure  combining  device  infant
     mortality and wear out.
     
	
[bookmark: glo:Belady's anomaly]Belady’s anomaly 
	For  some  cache  replacement  policies  and  some  reference
     patterns, adding space to a cache can hurt the cache hit rate.
     
	
[bookmark: glo:best fit]best fit 
	A storage allocation policy that attempts to place a newly allocated file
     in the smallest free region that is large enough to hold it.
     
	
[bookmark: glo:BIOS]BIOS 
	The  initial  code  run  when  an  Intel  x86  computer  boots;  acronym  for
     Basic Input/Output System. See also: Boot ROM.
     
	
[bookmark: glo:bit error rate]bit error rate 
	The non-recoverable read error rate.
     
	
[bookmark: glo:bitmap]bitmap 
	A data structure for block allocation where each block is represented
     by one bit.
     
	
[bookmark: glo:block device]block device 
	An  I/O  device  that  allows  data  to  be  read  or  written  in
     fixed-sized blocks.
     
	
[bookmark: glo:block group]block group 
	A set of nearby disk tracks.
     
	
[bookmark: glo:block integrity metadata]block integrity metadata 
	Additional  data  stored  with  a  block  to  allow  the
     software to validate that the block has not been corrupted.
     
	
[bookmark: glo:blocking bounded queue]blocking bounded queue 
	A bounded queue where a thread trying to remove
     an item from an empty queue will wait until an item is available, and a
     thread trying to put an item into a full queue will wait until there is room.
                                                                  

                                                                  
     
	
[bookmark: glo:Bohrbugs]Bohrbugs 
	Bugs  that  are  deterministic  and  reproducible,  given  the  same
     program input. See also: Heisenbugs.
     
	
[bookmark: glo:Boot ROM]Boot ROM 
	Special  read-only  memory  containing  the  initial  instructions  for
     booting a computer.
     
	
[bookmark: glo:bootloader]bootloader 
	Program stored at a fixed position on disk (or flash RAM) to load
     the operating system into memory and start it executing.
     
	
[bookmark: glo:bounded queue]bounded queue 
	A queue with a fixed size limit on the number of items stored
     in the queue.
     
	
[bookmark: glo:bounded resources]bounded resources 
	A  necessary  condition  for  deadlock:  there  are  a  finite
     number of resources that threads can simultaneously use.
     
	
[bookmark: glo:buffer overflow attack]buffer overflow attack 
	An attack that exploits a bug where input can overflow
     the buffer allocated to hold it, overwriting other important program data
     structures  with  data  provided  by  the  attacker.  One  common  variation
     overflows a buffer allocated on the stack (e.g., a local, automatic variable)
     and replaces the function’s return address with a return address specified
     by  the  attacker,  possibly  to  code  “pushed”  onto  the  stack  with  the
     overflowing input.
     
	
[bookmark: glo:bulk synchronous]bulk synchronous 
	A  type  of  parallel  application  where  work  is  split  into
     independent tasks and where each task completes before the results of
     any of the tasks can be used.
     
	
[bookmark: glo:bulk synchronous parallel programming]bulk synchronous parallel programming 
	See: data parallel programming.
     
	
[bookmark: glo:bursty distribution]bursty distribution 
	A probability distribution that is less evenly distributed
     around the mean value than an exponential distribution. See: exponential
     distribution. Compare: heavy-tailed distribution.
     
	
[bookmark: glo:busy-waiting]busy-waiting 
	A thread spins in a loop waiting for a concurrent event to occur,
     consuming CPU cycles while it is waiting.
     
	
[bookmark: glo:cache]cache 
	A copy of data that can be accessed more quickly than the original.
                                                                  

                                                                  
     
	
[bookmark: glo:cache hit]cache hit 
	The cache contains the requested item.
     
	
[bookmark: glo:cache miss]cache miss 
	The cache does not contain the requested item.
     
	
[bookmark: glo:checkpoint]checkpoint 
	A consistent snapshot of the entire state of a process, including the
     contents of memory and processor registers.
     
	
[bookmark: glo:child process]child process 
	A process created by another process. See also: parent process.
     
	
[bookmark: glo:Circular SCAN]Circular SCAN 
	See: CSCAN.
     
	
[bookmark: glo:circular waiting]circular waiting 
	A necessary condition for deadlock to occur: there is a set of
     threads such that each thread is waiting for a resource held by another.
     
	
[bookmark: glo:client-server communication]client-server communication 
	Two-way  communication  between  processes,
     where the client sends a request to the server to do some task, and when
     the operation is complete, the server replies back to the client.
     
	
[bookmark: glo:clock algorithm]clock algorithm 
	A method for identifying a not recently used page to evict.
     The algorithm sweeps through each page frame: if the page use bit is set,
     it is cleared; if the use bit is not set, the page is reclaimed.
     
	
[bookmark: glo:cloud computing]cloud computing 
	A model of computing where large-scale applications run
     on shared computing and storage infrastructure in data centers instead
     of on the user’s own computer.
     
	
[bookmark: glo:commit]commit 
	The outcome of a transaction where all of its updates occur.
     
	
[bookmark: glo:compare-and-swap]compare-and-swap 
	An  atomic  read-modify-write  instruction  that  first  tests
     the value of a memory location, and if the value has not been changed,
     sets it to a new value.
     
	
[bookmark: glo:compute-bound task]compute-bound task 
	A task that primarily uses the processor and does little
     I/O.
                                                                  

                                                                  
     
	
[bookmark: glo:computer virus]computer virus 
	A  computer  program  that  modifies  an  operating  system
     or   application   to   copy   itself   from   computer   to   computer   without
     the  computer  owner’s  permission  or  knowledge.  Once  installed  on  a
     computer, a virus often provides the attacker control over the system’s
     resources or data.
     
	
[bookmark: glo:concurrency]concurrency 
	Multiple activities that can happen at the same time.
     
	
[bookmark: glo:condition variable]condition variable 
	A   synchronization   variable   that   enables   a   thread   to
     efficiently wait for a change to shared state protected by a lock.
     
	
[bookmark: glo:continuation]continuation 
	A data structure used in event-driven programming that keeps
     track of a task’s current state and its next step.
     
	
[bookmark: glo:cooperating threads]cooperating threads 
	Threads that read and write shared state.
     
	
[bookmark: glo:cooperative caching]cooperative caching 
	Using the memory of nearby nodes over a network as a
     cache to avoid the latency of going to disk.
     
	
[bookmark: glo:cooperative multi-threading]cooperative multi-threading 
	Each  thread  runs  without  interruption  until  it
     explicitly relinquishes control of the processor, e.g., by exiting or calling
     thread_yield.
     
	
[bookmark: glo:copy-on-write]copy-on-write 
	A method of sharing physical memory between two logically
     distinct copies (e.g., in different processes). Each shared page is marked
     as read-only so that the operating system kernel is invoked and can make
     a copy of the page if either process tries to write it. The process can then
     modify the copy and resume normal execution.
     
	
[bookmark: glo:copy-on-write file system]copy-on-write file system 
	A file system where an update to the file system is
     made by writing new versions of modified data and metadata blocks to
     free disk blocks. The new blocks can point to unchanged blocks in the
     previous version of the file system. See also: COW file system.
     
	
[bookmark: glo:core map]core map 
	A data structure used by the memory management system to keep
     track  of  the  state  of  physical  page  frames,  such  as  which  processes
     reference the page frame.
                                                                  

                                                                  
     
	
[bookmark: glo:COW file system]COW file system 
	See: copy-on-write file system.
     
	
[bookmark: glo:critical path]critical path 
	The  minimum  sequence  of  steps  for  a  parallel  application  to
     compute its result, even with infinite resources.
     
	
[bookmark: glo:critical section]critical section 
	A sequence of code that operates on shared state.
     
	
[bookmark: glo:cross-site scripting]cross-site scripting 
	An   attack   against   a   client   computer   that   works   by
     compromising  a  server  visited  by  the  client.  The  compromised  server
     then provides scripting code to the client that accesses and downloads
     the client’s sensitive data.
     
	
[bookmark: glo:cryptographic signature]cryptographic signature 
	A specially designed function of a data block and a
     private cryptographic key that allows someone with the corresponding
     public key to verify that an authorized entity produced the data block. It
     is computationally intractable for an attacker without the private key to
     create a different data block with a valid signature.
     
	
[bookmark: glo:CSCAN]CSCAN 
	A variation of the SCAN disk scheduling policy in which the disk
     only services requests when the head is traveling in one direction. See
     also: Circular SCAN.
     
	
[bookmark: glo:current working directory]current working directory 
	The  current  directory  of  the  process,  used  for
     interpreting relative path names.
     
	
[bookmark: glo:data breakpoint]data breakpoint 
	A  request  to  stop  the  execution  of  a  program  when  it
     references or modifies a particular memory location.
     
	
[bookmark: glo:data parallel programming]data parallel programming 
	A programming model where the computation is
     performed in parallel across all items in a data set.
     
	
[bookmark: glo:deadlock]deadlock 
	A cycle of waiting among a set of threads, where each thread waits
     for some other thread in the cycle to take some action.
     
	
[bookmark: glo:deadlocked state]deadlocked state 
	The system has at least one deadlock.
                                                                  

                                                                  
     
	
[bookmark: glo:declustering]declustering 
	A technique for reducing the recovery time after a disk failure in
     a RAID system by spreading redundant disk blocks across many disks.
     
	
[bookmark: glo:defense in depth]defense in depth 
	Improving security through multiple layers of protection.
     
	
[bookmark: glo:defragment]defragment 
	Coalesce  scattered  disk  blocks  to  improve  spatial  locality,  by
     reading data from its present storage location and rewriting it to a new,
     more compact, location.
     
	
[bookmark: glo:demand paging]demand paging 
	Using address translation hardware to run a process without
     all  of  its  memory  physically  present.  When  the  process  references  a
     missing page, the hardware traps to the kernel, which brings the page
     into memory from disk.
     
	
[bookmark: glo:deterministic debugging]deterministic debugging 
	The ability to re-execute a concurrent process with
     the same schedule and sequence of internal and external events.
     
	
[bookmark: glo:device driver]device driver 
	Operating system code to initialize and manage a particular I/O
     device.
     
	
[bookmark: glo:direct mapped cache]direct mapped cache 
	Only one entry in the cache can hold a specific memory
     location, so on a lookup, the system must check the address against only
     that entry to determine if there is a cache hit.
     
	
[bookmark: glo:direct memory access]direct memory access 
	Hardware I/O devices transfer data directly into/out
     of main memory at a location specified by the operating system. See also:
     DMA.
     
	
[bookmark: glo:dirty bit]dirty bit 
	A status bit in a page table entry recording whether the contents of
     the page have been modified relative to what is stored on disk.
     
	
[bookmark: glo:disk buffer memory]disk buffer memory 
	Memory in the disk controller to buffer data being read
     or written to the disk.
     
	
[bookmark: glo:disk infant mortality]disk infant mortality 
	The device failure rate is higher than normal during the
     first few weeks of use.
                                                                  

                                                                  
     
	
[bookmark: glo:disk wear out]disk wear out 
	The  device  failure  rate  rises  after  the  device  has  been  in
     operation for several years.
     
	
[bookmark: glo:DMA]DMA 
	See: direct memory access.
     
	
[bookmark: glo:dnode]dnode 
	In  ZFS,  a  file  is  represented  by  variable-depth  tree  whose  root  is  a
     dnode and whose leaves are its data blocks.
     
	
[bookmark: glo:double indirect block]double indirect block 
	A storage block containing pointers to indirect blocks.
     
	
[bookmark: glo:double-checked locking]double-checked locking 
	A pitfall in concurrent code where a data structure is
     lazily initialized by first, checking without a lock if it has been set, and if
     not, acquiring a lock and checking again, before calling the initialization
     function. With instruction re-ordering, double-checked locking can fail
     unexpectedly.
     
	
[bookmark: glo:dual redundancy array]dual redundancy array 
	A RAID storage algorithm using two redundant disk
     blocks per array to tolerate two disk failures. See also: RAID 6.
     
	
[bookmark: glo:dual-mode operation]dual-mode operation 
	Hardware  processor  that  has  (at  least)  two  privilege
     levels:   one   for   executing   the   kernel   with   complete   access   to   the
     capabilities  of  the  hardware  and  a  second  for  executing  user  code
     with restricted rights. See also: kernel-mode operation. See also: user-mode
     operation.
     
	
[bookmark: glo:dynamically loadable device driver]dynamically loadable device driver 
	Software  to  manage  a  specific  device,
     interface, or chipset, added to the operating system kernel after the kernel
     starts running.
     
	
[bookmark: glo:earliest deadline first]earliest deadline first 
	A scheduling policy that performs the task that needs
     to be completed first, but only if it can be finished in time.
     
	
[bookmark: glo:EDF]EDF 
	See: earliest deadline first.
     
	
[bookmark: glo:efficiency]efficiency 
	The lack of overhead in implementing an abstraction.
                                                                  

                                                                  
     
	
[bookmark: glo:erasure block]erasure block 
	The unit of erasure in a flash memory device. Before any portion
     of an erasure block can be over-written, every cell in the entire erasure
     block must be set to a logical “1.”
     
	
[bookmark: glo:error correcting code]error correcting code 
	A  technique  for  storing  data  redundantly  to  allow  for
     the original data to be recovered even though some bits in a disk sector
     or flash memory page are corrupted.
     
	
[bookmark: glo:event-driven programming]event-driven programming 
	A coding design pattern where a thread spins in
     a loop; each iteration gets and processes the next I/O event.
     
	
[bookmark: glo:exception]exception 
	See: processor exception.
     
	
[bookmark: glo:executable image]executable image 
	File  containing  a  sequence  of  machine  instructions  and
     initial data values for a program.
     
	
[bookmark: glo:execution stack]execution stack 
	Space  to  store  the  state  of  local  variables  during  procedure
     calls.
     
	
[bookmark: glo:exponential distribution]exponential distribution 
	A  convenient  probability  distribution  for  use  in
     queueing theory because it has the property of being memoryless. For a
     continuous random variable with a mean of 1∕λ, the probability density
     function is f(x) = λ times e raised to the -λx.
     
	
[bookmark: glo:extent]extent 
	A variable-sized region of a file that is stored in a contiguous region on
     the storage device.
     
	
[bookmark: glo:external fragmentation]external fragmentation 
	In  a  system  that  allocates  memory  in  contiguous
     regions, the unusable memory between valid contiguous allocations. A
     new  request  for  memory  may  find  no  single  free  region  that  is  both
     contiguous and large enough, even though there is enough free memory
     in aggregate.
     
	
[bookmark: glo:fairness]fairness 
	Partitioning of shared resources between users or applications either
     equally or balanced according to some desired priorities.
     
	
[bookmark: glo:false sharing]false sharing 
	Extra inter-processor communication required because a single
                                                                  

                                                                  
     cache  entry  contains  portions  of  two  different  data  structures  with
     different sharing patterns.
     
	
[bookmark: glo:fate sharing]fate sharing 
	When  a  crash  in  one  module  implies  a  crash  in  another.  For
     example,  a  library  shares  fate  with  the  application  it  is  linked  with;  if
     either crashes, the process exits.
     
	
[bookmark: glo:fault isolation]fault isolation 
	An   error   in   one   application   should   not   disrupt   other
     applications, or even the operating system itself.
     
	
[bookmark: glo:file]file 
	A named collection of data in a file system.
     
	
[bookmark: glo:file allocation table]file allocation table 
	An  array  of  entries  in  the  FAT  file  system  stored  in  a
     reserved area of the volume, where each entry corresponds to one file
     data block, and points to the next block in the file.
     
	
[bookmark: glo:file data]file data 
	Contents of a file.
     
	
[bookmark: glo:file descriptor]file descriptor 
	A handle to an open file, device, or channel. See also: file handle.
     See also: file stream.
     
	
[bookmark: glo:file directory]file directory 
	A list of human-readable names plus a mapping from each name
     to a specific file or sub-directory.
     
	
[bookmark: glo:file handle]file handle 
	See: file descriptor.
     
	
[bookmark: glo:file index structure]file index structure 
	A  persistently  stored  data  structure  used  to  locate  the
     blocks of the file.
     
	
[bookmark: glo:file metadata]file metadata 
	Information  about  a  file  that  is  managed  by  the  operating
     system, but not including the file contents.
     
	
[bookmark: glo:file stream]file stream 
	See: file descriptor.
     
	
[bookmark: glo:file system]file system 
	An operating system abstraction that provides persistent, named
     data.
                                                                  

                                                                  
     
	
[bookmark: glo:file system fingerprint]file system fingerprint 
	A checksum across the entire file system.
     
	
[bookmark: glo:fill-on-demand]fill-on-demand 
	A  method  for  starting  a  process  before  all  of  its  memory  is
     brought in from disk. If the first access to the missing memory triggers a
     trap to the kernel, the kernel can fill the memory and then resume.
     
	
[bookmark: glo:fine-grained locking]fine-grained locking 
	A   way   to   increase   concurrency   by   partitioning   an
     object’s state into different subsets each protected by a different lock.
     
	
[bookmark: glo:finished list]finished list 
	The set of threads that are complete but not yet de-allocated, e.g.,
     because a join may read the return value from the thread control block.
     
	
[bookmark: glo:first-in-first-out]first-in-first-out 
	A scheduling policy that performs each task in the order in
     which it arrives.
     
	
[bookmark: glo:flash page failure]flash page failure 
	A  flash  memory  device  failure  where  the  data  stored  on
     one or more individual pages of flash are lost, but the rest of the flash
     continues to operate correctly.
     
	
[bookmark: glo:flash translation layer]flash translation layer 
	A  layer  that  maps  logical  flash  pages  to  different
     physical pages on the flash device. See also: FTL.
     
	
[bookmark: glo:flash wear out]flash wear out 
	After  some  number  of  program-erase  cycles,  a  given  flash
     storage cell may no longer be able to reliably store information.
     
	
[bookmark: glo:fork-join parallelism]fork-join parallelism 
	A type of parallel programming where threads can be
     created (forked) to do work in parallel with a parent thread; a parent may
     asynchronously wait for a child thread to finish (join).
     
	
[bookmark: glo:free space map]free space map 
	A file system data structure used to track which storage blocks
     are free and which are in use.
     
	
[bookmark: glo:FTL]FTL 
	See: flash translation layer.
     
	
[bookmark: glo:full disk failure]full disk failure 
	When a disk device stops being able to service reads or writes
     to all sectors.
                                                                  

                                                                  
     
	
[bookmark: glo:full flash drive failure]full flash drive failure 
	When a flash device stops being able to service reads
     or writes to all memory pages.
     
	
[bookmark: glo:fully associative cache]fully associative cache 
	Any entry in the cache can hold any memory location,
     so  on  a  lookup,  the  system  must  check  the  address  against  all  of  the
     entries in the cache to determine if there is a cache hit.
     
	
[bookmark: glo:gang scheduling]gang scheduling 
	A scheduling policy for multiprocessors that performs all of
     the runnable tasks for a particular process at the same time.
     
	
[bookmark: glo:Global Descriptor Table]Global Descriptor Table 
	The x86 terminology for a segment table for shared
     segments. A Local Descriptor Table is used for segments that are private
     to the process.
     
	
[bookmark: glo:grace period]grace period 
	For  a  shared  object  protected  by  a  read-copy-update  lock,  the
     time from when a new version of a shared object is published until the
     last reader of the old version is guaranteed to be finished.
     
	
[bookmark: glo:green threads]green threads 
	A  thread  system  implemented  entirely  at  user-level  without
     any  reliance  on  operating  system  kernel  services,  other  than  those
     designed for single-threaded processes.
     
	
[bookmark: glo:group commit]group commit 
	A technique that batches multiple transaction commits into a
     single disk operation.
     
	
[bookmark: glo:guest operating system]guest operating system 
	An operating system running in a virtual machine.
     
	
[bookmark: glo:hard link]hard link 
	The mapping between a file name and the underlying file, typically
     when there are multiple path names for the same underlying file.
     
	
[bookmark: glo:hardware abstraction layer]hardware abstraction layer 
	A module in the operating system that hides the
     specifics  of  different  hardware  implementations.  Above  this  layer,  the
     operating system is portable.
     
	
[bookmark: glo:hardware timer]hardware timer 
	A hardware device that can cause a processor interrupt after
     some delay, either in time or in instructions executed.
                                                                  

                                                                  
     
	
[bookmark: glo:head]head 
	The component that writes the data to or reads the data from a spinning
     disk surface.
     
	
[bookmark: glo:head crash]head crash 
	An  error  where  the  disk  head  physically  scrapes  the  magnetic
     surface of a spinning disk surface.
     
	
[bookmark: glo:head switch time]head switch time 
	The  time  it  takes  to  re-position  the  disk  arm  over  the
     corresponding  track  on  a  different  surface,  before  a  read  or  write  can
     begin.
     
	
[bookmark: glo:heap]heap 
	Space to store dynamically allocated data structures.
     
	
[bookmark: glo:heavy-tailed distribution]heavy-tailed distribution 
	A   probability   distribution   such   that   events   far
     from  the  mean  value  (in  aggregate)  occur  with  significant  probability.
     When used for the distribution of time between events, the remaining
     time  to  the  next  event  is  positively  related  to  the  time  already  spent
     waiting — you expect to wait longer the longer you have already waited.
     
	
[bookmark: glo:Heisenbugs]Heisenbugs 
	Bugs in concurrent programs that disappear or change behavior
     when you try to examine them. See also: Bohrbugs.
     
	
[bookmark: glo:hint]hint 
	A result of some computation whose results may no longer be valid, but
     where using an invalid hint will trigger an exception.
     
	
[bookmark: glo:home directory]home directory 
	The sub-directory containing a user’s files.
     
	
[bookmark: glo:host operating system]host operating system 
	An operating system that provides the abstraction of a
     virtual machine, to run another operating system as an application.
     
	
[bookmark: glo:host transfer time]host transfer time 
	The time to transfer data between the host’s memory and
     the disk’s buffer.
     
	
[bookmark: glo:hyperthreading]hyperthreading 
	See: simultaneous multi-threading.
     
	
[bookmark: glo:I/O-bound task]I/O-bound task 
	A task that primarily does I/O, and does little processing.
                                                                  

                                                                  
     
	
[bookmark: glo:idempotent]idempotent 
	An operation that has the same effect whether executed once or
     many times.
     
	
[bookmark: glo:incremental checkpoint]incremental checkpoint 
	A  consistent  snapshot  of  the  portion  of  process
     memory that has been modified since the previous checkpoint.
     
	
[bookmark: glo:independent threads]independent threads 
	Threads that operate on completely separate subsets of
     process memory.
     
	
[bookmark: glo:indirect block]indirect block 
	A storage block containing pointers to file data blocks.
     
	
[bookmark: glo:inode]inode 
	In  the  Unix  Fast  File  System  (FFS)  and  related  file  systems,  an  inode
     stores a file’s metadata, including an array of pointers that can be used
     to find all of the file’s blocks. The term inode is sometimes used more
     generally to refer to any file system’s per-file metadata data structure.
     
	
[bookmark: glo:inode array]inode array 
	The  fixed  location  on  disk  containing  all  of  the  file  system’s
     inodes. See also: inumber.
     
	
[bookmark: glo:intentions]intentions 
	The set of writes that a transaction will perform if the transaction
     commits.
     
	
[bookmark: glo:internal fragmentation]internal fragmentation 
	With   paged   allocation   of   memory,   the   unusable
     memory  at  the  end  of  a  page  because  a  process  can  only  be  allocated
     memory in page-sized chunks.
     
	
[bookmark: glo:interrupt]interrupt 
	An asynchronous signal to the processor that some external event
     has occurred that may require its attention.
     
	
[bookmark: glo:interrupt disable]interrupt disable 
	A privileged hardware instruction to temporarily defer any
     hardware interrupts, to allow the kernel to complete a critical task.
     
	
[bookmark: glo:interrupt enable]interrupt enable 
	A   privileged   hardware   instruction   to   resume   hardware
     interrupts, after a non-interruptible task is completed.
     
	
[bookmark: glo:interrupt handler]interrupt handler 
	A kernel procedure invoked when an interrupt occurs.
                                                                  

                                                                  
     
	
[bookmark: glo:interrupt stack]interrupt stack 
	A  region  of  memory  for  holding  the  stack  of  the  kernel’s
     interrupt handler. When an interrupt, processor exception, or system call
     trap causes a context switch into the kernel, the hardware changes the
     stack pointer to point to the base of the kernel’s interrupt stack.
     
	
[bookmark: glo:interrupt vector table]interrupt vector table 
	A  table  of  pointers  in  the  operating  system  kernel,
     indexed  by  the  type  of  interrupt,  with  each  entry  pointing  to  the  first
     instruction of a handler procedure for that interrupt.
     
	
[bookmark: glo:inumber]inumber 
	The index into the inode array for a particular file.
     
	
[bookmark: glo:inverted page table]inverted page table 
	A  hash  table  used  for  translation  between  virtual  page
     numbers and physical page frames.
     
	
[bookmark: glo:kernel thread]kernel thread 
	A  thread  that  is  implemented  inside  the  operating  system
     kernel.
     
	
[bookmark: glo:kernel-mode operation]kernel-mode operation 
	The processor executes in an unrestricted mode that
     gives  the  operating  system  full  control  over  the  hardware.  Compare:
     user-mode operation.
     
	
[bookmark: glo:LBA]LBA 
	See: logical block address.
     
	
[bookmark: glo:least frequently used]least frequently used 
	A cache replacement policy that evicts whichever block
     has been used the least often, over some period of time. See also: LFU.
     
	
[bookmark: glo:least recently used]least recently used 
	A  cache  replacement  policy  that  evicts  whichever  block
     has not been used for the longest period of time. See also: LRU.
     
	
[bookmark: glo:LFU]LFU 
	See: least frequently used.
     
	
[bookmark: glo:Little's Law]Little’s Law 
	In a stable system where the arrival rate matches the departure
     rate, the number of tasks in the system equals the system’s throughput
     multiplied by the average time a task spends in the system: N = XR.
     
	
[bookmark: glo:liveness property]liveness property 
	A  constraint  on  program  behavior  such  that  it  always
     produces a result. Compare: safety property.
                                                                  

                                                                  
     
	
[bookmark: glo:locality heuristic]locality heuristic 
	A  file  system  block  allocation  policy  that  places  files  in
     nearby disk sectors if they are likely to be read or written at the same
     time.
     
	
[bookmark: glo:lock]lock 
	A type of synchronization variable used for enforcing atomic, mutually
     exclusive access to shared data.
     
	
[bookmark: glo:lock ordering]lock ordering 
	A widely used approach to prevent deadlock, where locks are
     acquired in a pre-determined order.
     
	
[bookmark: glo:lock-free data structures]lock-free data structures 
	Concurrent data structure that guarantees progress
     for  some  thread:  some  method  will  finish  in  a  finite  number  of  steps,
     regardless of the state of other threads executing in the data structure.
     
	
[bookmark: glo:log]log 
	An ordered sequence of steps saved to persistent storage.
     
	
[bookmark: glo:logical block address]logical block address 
	A unique identifier for each disk sector or flash memory
     block,  typically  numbered  from  1  to  the  size  of  the  disk/flash  device.
     The disk interface converts this identifier to the physical location of the
     sector/block. See also: LBA.
     
	
[bookmark: glo:logical separation]logical separation 
	A backup storage policy where the backup is stored at the
     same location as the primary storage, but with restricted access, e.g., to
     prevent updates.
     
	
[bookmark: glo:LRU]LRU 
	See: least recently used.
     
	
[bookmark: glo:master file table]master file table 
	In NTFS, an array of records storing metadata about each file.
     See also: MFT.
     
	
[bookmark: glo:maximum seek time]maximum seek time 
	The   time   it   takes   to   move   the   disk   arm   from   the
     innermost track to the outermost one or vice versa.
     
	
[bookmark: glo:max-min fairness]max-min fairness 
	A scheduling objective to maximize the minimum resource
     allocation given to each task.
                                                                  

                                                                  
     
	
[bookmark: glo:MCS lock]MCS lock 
	An  efficient  spinlock  implementation  where  each  waiting  thread
     spins on a separate memory location.
     
	
[bookmark: glo:mean time to data loss]mean time to data loss 
	The  expected  time  until  a  RAID  system  suffers  an
     unrecoverable error. See also: MTTDL.
     
	
[bookmark: glo:mean time to failure]mean time to failure 
	The average time that a system runs without failing. See
     also: MTTF.
     
	
[bookmark: glo:mean time to repair]mean time to repair 
	The average time that it takes to repair a system once it
     has failed. See also: MTTR.
     
	
[bookmark: glo:memory address alias]memory address alias 
	Two or more virtual addresses that refer to the same
     physical memory location.
     
	
[bookmark: glo:memory barrier]memory barrier 
	An instruction that prevents the compiler and hardware from
     reordering memory accesses across the barrier — no accesses before the
     barrier are moved after the barrier and no accesses after the barrier are
     moved before the barrier.
     
	
[bookmark: glo:memory protection]memory protection 
	Hardware   or   software-enforced   limits   so   that   each
     application process can read and write only its own memory and not the
     memory of the operating system or any other process.
     
	
[bookmark: glo:memoryless property]memoryless property 
	For  a  probability  distribution  for  the  time  between
     events,  the  remaining  time  to  the  next  event  does  not  depend  on  the
     amount of time already spent waiting. See also: exponential distribution.
     
	
[bookmark: glo:memory-mapped file]memory-mapped file 
	A file whose contents appear to be a memory segment
     in a process’s virtual address space.
     
	
[bookmark: glo:memory-mapped I/O]memory-mapped I/O 
	Each  I/O  device’s  control  registers  are  mapped  to  a
     range of physical addresses on the memory bus.
     
	
[bookmark: glo:memristor]memristor 
	A  type  of  solid-state  persistent  storage  using  a  circuit  element
     whose resistance depends on the amounts and directions of currents that
     have flowed through it in the past.
                                                                  

                                                                  
     
	
[bookmark: glo:MFQ]MFQ 
	See: multi-level feedback queue.
     
	
[bookmark: glo:MFT]MFT 
	See: master file table.
     
	
[bookmark: glo:microkernel]microkernel 
	An operating system design where the kernel itself is kept small,
     and instead most of the functionality of a traditional operating system
     kernel is put into a set of user-level processes, or servers, accessed from
     user applications via interprocess communication.
     
	
[bookmark: glo:MIN cache replacement]MIN cache replacement 
	See: optimal cache replacement.
     
	
[bookmark: glo:minimum seek time]minimum seek time 
	The time to move the disk arm to the next adjacent track.
     
	
[bookmark: glo:MIPS]MIPS 
	An early measure of processor performance: millions of instructions per
     second.
     
	
[bookmark: glo:mirroring]mirroring 
	A system for redundantly storing data on disk where each block of
     data is stored on two disks and can be read from either. See also: RAID 1.
     
	
[bookmark: glo:model]model 
	A simplification that tries to capture the most important aspects of a
     more complex system’s behavior.
     
	
[bookmark: glo:monolithic kernel]monolithic kernel 
	An operating system design where most of the operating
     system functionality is linked together inside the kernel.
     
	
[bookmark: glo:Moore's Law]Moore’s Law 
	Transistor  density  increases  exponentially  over  time.  Similar
     exponential  improvements  have  occurred  in  many  other  component
     technologies; in the popular press, these often go by the same term.
     
	
[bookmark: glo:mount]mount 
	A mapping of a path in the existing file system to the root directory of
     another file system volume.
     
	
[bookmark: glo:MTTDL]MTTDL 
	See: mean time to data loss.
     
	
[bookmark: glo:MTTF]MTTF 
	See: mean time to failure.
                                                                  

                                                                  
     
	
[bookmark: glo:MTTR]MTTR 
	See: mean time to repair.
     
	
[bookmark: glo:multi-level feedback queue]multi-level feedback queue 
	A  scheduling  algorithm  with  multiple  priority
     levels  managed  using  round  robin  queues,  where  a  task  is  moved
     between priority levels based on how much processing time it has used.
     See also: MFQ.
     
	
[bookmark: glo:multi-level index]multi-level index 
	A tree data structure to keep track of the disk location of
     each data block in a file.
     
	
[bookmark: glo:multi-level paged segmentation]multi-level paged segmentation 
	A
     virtual memory mechanism where physical memory is allocated in page
     frames, virtual addresses are segmented, and each segment is translated
     to physical addresses through multiple levels of page tables.
     
	
[bookmark: glo:multi-level paging]multi-level paging 
	A virtual memory mechanism where physical memory is
     allocated in page frames, and virtual addresses are translated to physical
     addresses through multiple levels of page tables.
     
	
[bookmark: glo:multiple independent requests]multiple independent requests 
	A necessary condition for deadlock to occur:
     a thread first acquires one resource and then tries to acquire another.
     
	
[bookmark: glo:multiprocessor scheduling policy]multiprocessor scheduling policy 
	A    policy    to    determine    how    many
     processors to assign each process.
     
	
[bookmark: glo:multiprogramming]multiprogramming 
	See: multitasking.
     
	
[bookmark: glo:multitasking]multitasking 
	The ability of an operating system to run multiple applications
     at the same time, also called multiprogramming.
     
	
[bookmark: glo:multi-threaded process]multi-threaded process 
	A process with multiple threads.
     
	
[bookmark: glo:multi-threaded program]multi-threaded program 
	A   generalization   of   a   single-threaded   program.
     Instead of only one logical sequence of steps, the program has multiple
     sequences, or threads, executing at the same time.
                                                                  

                                                                  
     
	
[bookmark: glo:mutual exclusion]mutual exclusion 
	When one thread uses a lock to prevent concurrent access
     to a shared data structure.
     
	
[bookmark: glo:mutually recursive locking]mutually recursive locking 
	A  deadlock  condition  where  two  shared  objects
     call into each other while still holding their locks. Deadlock occurs if one
     thread holds the lock on the first object and calls into the second, while
     the other thread holds the lock on the second object and calls into the
     first.
     
	
[bookmark: glo:named data]named data 
	Data that can be accessed by a human-readable identifier, such as
     a file name.
     
	
[bookmark: glo:native command queueing]native command queueing 
	See: tagged command queueing.
     
	
[bookmark: glo:NCQ]NCQ 
	See: native command queueing.
     
	
[bookmark: glo:nested waiting]nested waiting 
	A  deadlock  condition  where  one  shared  object  calls  into
     another shared object while holding the first object’s lock, and then waits
     on a condition variable. Deadlock results if the thread that can signal the
     condition variable needs the first lock to make progress.
     
	
[bookmark: glo:network effect]network effect 
	The  increase  in  value  of  a  product  or  service  based  on  the
     number of other people who have adopted that technology and not just
     its intrinsic capabilities.
     
	
[bookmark: glo:no preemption]no preemption 
	A  necessary  condition  for  deadlock  to  occur:  once  a  thread
     acquires a resource, its ownership cannot be revoked until the thread acts
     to release it.
     
	
[bookmark: glo:non-blocking data structure]non-blocking data structure 
	Concurrent  data  structure  where  a  thread  is
     never required to wait for another thread to complete its operation.
     
	
[bookmark: glo:non-recoverable read error]non-recoverable read error 
	When  sufficient  bit  errors  occur  within  a  disk
     sector  or  flash  memory  page,  such  that  the  original  data  cannot  be
     recovered even after error correction.
     
	
[bookmark: glo:non-resident attribute]non-resident attribute 
	In   NTFS,   an   attribute   record   whose   contents   are
                                                                  

                                                                  
     addressed indirectly, through extent pointers in the master file table that
     point to the contents in those extents.
     
	
[bookmark: glo:non-volatile storage]non-volatile storage 
	Unlike  DRAM,  memory  that  is  durable  and  retains  its
     state across crashes and power outages. See also: persistent storage. See
     also: stable storage.
     
	
[bookmark: glo:not recently used]not recently used 
	A cache replacement policy that evicts some block that has
     not been referenced recently, rather than the least recently used block.
     
	
[bookmark: glo:oblivious scheduling]oblivious scheduling 
	A   scheduling   policy   where   the   operating   system
     assigns  threads  to  processors  without  knowledge  of  the  intent  of  the
     parallel application.
     
	
[bookmark: glo:open system]open system 
	A  system  whose  source  code  is  available  to  the  public  for
     modification and reuse, or a system whose interfaces are defined by a
     public standards process.
     
	
[bookmark: glo:operating system]operating system 
	A layer of software that manages a computer’s resources for
     its users and their applications.
     
	
[bookmark: glo:operating system kernel]operating system kernel 
	The kernel is the lowest level of software running on
     the system, with full access to all of the capabilities of the hardware.
     
	
[bookmark: glo:optimal cache replacement]optimal cache replacement 
	Replace  whichever  block  is  used  farthest  in  the
     future.
     
	
[bookmark: glo:overhead]overhead 
	The  added  resource  cost  of  implementing  an  abstraction  versus
     using the underlying hardware resources directly.
     
	
[bookmark: glo:ownership design pattern]ownership design pattern 
	A  technique  for  managing  concurrent  access  to
     shared objects in which at most one thread owns an object at any time,
     and therefore the thread can access the shared data without a lock.
     
	
[bookmark: glo:page coloring]page coloring 
	The assignment of physical page frames to virtual addresses by
     partitioning frames based on which portions of the cache they will use.
                                                                  

                                                                  
     
	
[bookmark: glo:page fault]page fault 
	A  hardware  trap  to  the  operating  system  kernel  when  a  process
     references a virtual address with an invalid page table entry.
     
	
[bookmark: glo:page frame]page frame 
	An aligned, fixed-size chunk of physical memory that can hold a
     virtual page.
     
	
[bookmark: glo:paged memory]paged memory 
	A hardware address translation mechanism where memory is
     allocated in aligned, fixed-sized chunks, called pages. Any virtual page
     can be assigned to any physical page frame.
     
	
[bookmark: glo:paged segmentation]paged segmentation 
	A   hardware   mechanism   where   physical   memory   is
     allocated in page frames, but virtual addresses are segmented.
     
	
[bookmark: glo:pair of stubs]pair of stubs 
	A pair of short procedures that mediate between two execution
     contexts.
     
	
[bookmark: glo:paravirtualization]paravirtualization 
	A   virtual   machine   abstraction   that   allows   the   guest
     operating  system  to  make  system  calls  into  the  host  operating  system
     to perform hardware-specific operations, such as changing a page table
     entry.
     
	
[bookmark: glo:parent process]parent process 
	A process that creates another process. See also: child process.
     
	
[bookmark: glo:path]path 
	The string that identifies a file or directory.
     
	
[bookmark: glo:PCB]PCB 
	See: process control block.
     
	
[bookmark: glo:PCM]PCM 
	See: phase change memory.
     
	
[bookmark: glo:performance predictability]performance predictability 
	Whether   a   system’s   response   time   or   other
     performance metric is consistent over time.
     
	
[bookmark: glo:persistent data]persistent data 
	Data  that  is  stored  until  it  is  explicitly  deleted,  even  if  the
     computer storing it crashes or loses power.
     
	
[bookmark: glo:persistent storage]persistent storage 
	See: non-volatile storage.
                                                                  

                                                                  
     
	
[bookmark: glo:phase change behavior]phase change behavior 
	Abrupt changes in a program’s working set, causing
     bursty cache miss rates: periods of low cache misses interspersed with
     periods of high cache misses.
     
	
[bookmark: glo:phase change memory]phase change memory 
	A type of non-volatile memory that uses the phase of
     a material to represent a data bit. See also: PCM.
     
	
[bookmark: glo:physical address]physical address 
	An address in physical memory.
     
	
[bookmark: glo:physical separation]physical separation 
	A backup storage policy where the backup is stored at a
     different location than the primary storage.
     
	
[bookmark: glo:physically addressed cache]physically addressed cache 
	A processor cache that is accessed using physical
     memory addresses.
     
	
[bookmark: glo:pin]pin 
	To  bind  a  virtual  resource  to  a  physical  resource,  such  as  a  thread  to  a
     processor or a virtual page to a physical page.
     
	
[bookmark: glo:platter]platter 
	A single thin round plate that stores information in a magnetic disk,
     often on both surfaces.
     
	
[bookmark: glo:policy-mechanism separation]policy-mechanism separation 
	A                            system                            design
     principle where the implementation of an abstraction is independent of
     the resource allocation policy of how the abstraction is used.
     
	
[bookmark: glo:polling]polling 
	An alternative to hardware interrupts, where the processor waits for
     an asynchronous event to occur, by looping, or busy-waiting, until the
     event occurs.
     
	
[bookmark: glo:portability]portability 
	The   ability   of   software   to   work   across   multiple   hardware
     platforms.
     
	
[bookmark: glo:precise interrupts]precise interrupts 
	All instructions that occur before the interrupt or exception,
     according  to  the  program  execution,  are  completed  by  the  hardware
     before the interrupt handler is invoked.
                                                                  

                                                                  
     
	
[bookmark: glo:preemption]preemption 
	When a scheduler takes the processor away from one task and
     gives it to another.
     
	
[bookmark: glo:preemptive multi-threading]preemptive multi-threading 
	The operating system scheduler may switch out
     a running thread, e.g., on a timer interrupt, without any explicit action
     by the thread to relinquish control at that point.
     
	
[bookmark: glo:prefetch]prefetch 
	To bring data into a cache before it is needed.
     
	
[bookmark: glo:principle of least privilege]principle of least privilege 
	System  security  and  reliability  are  enhanced  if
     each part of the system has exactly the privileges it needs to do its job
     and no more.
     
	
[bookmark: glo:priority donation]priority donation 
	A  solution  to  priority  inversion:  when  a  thread  waits  for
     a  lock  held  by  a  lower  priority  thread,  the  lock  holder  is  temporarily
     increased to the waiter’s priority until the lock is released.
     
	
[bookmark: glo:priority inversion]priority inversion 
	A  scheduling  anomaly  that  occurs  when  a  high  priority
     task  waits  indefinitely  for  a  resource  (such  as  a  lock)  held  by  a  low
     priority  task,  because  the  low  priority  task  is  waiting  in  turn  for  a
     resource (such as the processor) held by a medium priority task.
     
	
[bookmark: glo:privacy]privacy 
	Data stored on a computer is only accessible to authorized users.
     
	
[bookmark: glo:privileged instruction]privileged instruction 
	Instruction  available  in  kernel  mode  but  not  in  user
     mode.
     
	
[bookmark: glo:process]process 
	The execution of an application program with restricted rights — the
     abstraction for protection provided by the operating system kernel.
     
	
[bookmark: glo:process control block]process control block 
	A  data  structure  that  stores  all  the  information  the
     operating system needs about a particular process: e.g., where it is stored
     in memory, where its executable image is on disk, which user asked it to
     start executing, and what privileges the process has. See also: PCB.
     
	
[bookmark: glo:process migration]process migration 
	The ability to take a running program on one system, stop
     its execution, and resume it on a different machine.
                                                                  

                                                                  
     
	
[bookmark: glo:processor exception]processor exception 
	A hardware event caused by user program behavior that
     causes a transfer of control to a kernel handler. For example, attempting
     to divide by zero causes a processor exception in many architectures.
     
	
[bookmark: glo:processor scheduling policy]processor scheduling policy 
	When  there  are  more  runnable  threads  than
     processors, the policy that determines which threads to run first.
     
	
[bookmark: glo:processor status register]processor status register 
	A hardware register containing flags that control the
     operation of the processor, including the privilege level.
     
	
[bookmark: glo:producer-consumer communication]producer-consumer communication 
	Interprocess  communication  where  the
     output of one process is the input of another.
     
	
[bookmark: glo:proprietary system]proprietary system 
	A system that is under the control of a single company;
     it  can  be  changed  at  any  time  by  its  provider  to  meet  the  needs  of  its
     customers.
     
	
[bookmark: glo:protection]protection 
	The isolation of potentially misbehaving applications and users so
     that they do not corrupt other applications or the operating system itself.
     
	
[bookmark: glo:publish]publish 
	For  a  read-copy-update  lock,  a  single,  atomic  memory  write  that
     updates  a  shared  object  protected  by  the  lock.  The  write  allows  new
     reader threads to observe the new version of the object.
     
	
[bookmark: glo:queueing delay]queueing delay 
	The time a task waits in line without receiving service.
     
	
[bookmark: glo:quiescent]quiescent 
	For a read-copy-update lock, no reader thread that was active at the
     time of the last modification is still active.
     
	
[bookmark: glo:race condition]race condition 
	When the behavior of a program relies on the interleaving of
     operations of different threads.
     
	
[bookmark: glo:RAID]RAID 
	A  Redundant  Array  of  Inexpensive  Disks  (RAID)  is  a  system  that
     spreads  data  redundantly  across  multiple  disks  in  order  to  tolerate
     individual disk failures.
     
	
[bookmark: glo:RAID 1]RAID 1 
	See: mirroring.
                                                                  

                                                                  
     
	
[bookmark: glo:RAID 5]RAID 5 
	See: rotating parity.
     
	
[bookmark: glo:RAID 6]RAID 6 
	See: dual redundancy array.
     
	
[bookmark: glo:RAID strip]RAID strip 
	A set of several sequential blocks placed on one disk by a RAID
     block placement algorithm.
     
	
[bookmark: glo:RAID stripe]RAID stripe 
	A set of RAID strips and their parity strip.
     
	
[bookmark: glo:R-CSCAN]R-CSCAN 
	A variation of the CSCAN disk scheduling policy in which the disk
     takes into account rotation time.
     
	
[bookmark: glo:RCU]RCU 
	See: read-copy-update.
     
	
[bookmark: glo:read disturb error]read disturb error 
	Reading a flash memory cell a large number of times can
     cause the data in surrounding cells to become corrupted.
     
	
[bookmark: glo:read-copy-update]read-copy-update 
	A   synchronization   abstraction   that   allows   concurrent
     access to a data structure by multiple readers and a single writer at a time.
     See also: RCU.
     
	
[bookmark: glo:readers/writers lock]readers/writers lock 
	A lock which allows multiple “reader” threads to access
     shared data concurrently provided they never modify the shared data,
     but still provides mutual exclusion whenever a “writer” thread is reading
     or modifying the shared data.
     
	
[bookmark: glo:ready list]ready list 
	The  set  of  threads  that  are  ready  to  be  run  but  which  are  not
     currently running.
     
	
[bookmark: glo:real-time constraint]real-time constraint 
	The computation must be completed by a deadline if it is
     to have value.
     
	
[bookmark: glo:recoverable virtual memory]recoverable virtual memory 
	The abstraction of persistent memory, so that the
     contents of a memory segment can be restored after a failure.
                                                                  

                                                                  
     
	
[bookmark: glo:redo logging]redo logging 
	A way of implementing a transaction by recording in a log the
     set of writes to be executed when the transaction commits.
     
	
[bookmark: glo:relative path]relative path 
	A  file  path  name  interpreted  as  beginning  with  the  process’s
     current working directory.
     
	
[bookmark: glo:reliability]reliability 
	A property of a system that does exactly what it is designed to do.
     
	
[bookmark: glo:request parallelism]request parallelism 
	Parallel  execution  on  a  server  that  arises  from  multiple
     concurrent requests.
     
	
[bookmark: glo:resident attribute]resident attribute 
	In  NTFS,  an  attribute  record  whose  contents  are  stored
     directly in the master file table.
     
	
[bookmark: glo:response time]response time 
	The time for a task to complete, from when it starts until it is
     done.
     
	
[bookmark: glo:restart]restart 
	The resumption of a process from a checkpoint, e.g., after a failure or
     for debugging.
     
	
[bookmark: glo:roll back]roll back 
	The outcome of a transaction where none of its updates occur.
     
	
[bookmark: glo:root directory]root directory 
	The top-level directory in a file system.
     
	
[bookmark: glo:root inode]root inode 
	In  a  copy-on-write  file  system,  the  inode  table’s  inode:  the  disk
     block containing the metadata needed to find the inode table.
     
	
[bookmark: glo:rotating parity]rotating parity 
	A  system  for  redundantly  storing  data  on  disk  where  the
     system writes several blocks of data across several disks, protecting those
     blocks  with  one  redundant  block  stored  on  yet  another  disk.  See  also:
     RAID 5.
     
	
[bookmark: glo:rotational latency]rotational latency 
	Once the disk head has settled on the right track, it must
     wait for the target sector to rotate under it.
                                                                  

                                                                  
     
	
[bookmark: glo:round robin]round robin 
	A scheduling policy that takes turns running each ready task for
     a limited period before switching to the next task.
     
	
[bookmark: glo:R-SCAN]R-SCAN 
	A variation of the SCAN disk scheduling policy in which the disk
     takes into account rotation time.
     
	
[bookmark: glo:safe state]safe state 
	In  the  context  of  deadlock,  a  state  of  an  execution  such  that
     regardless of the sequence of future resource requests, there is at least
     one safe sequence of decisions as to when to satisfy requests such that all
     pending and future requests are met.
     
	
[bookmark: glo:safety property]safety property 
	A constraint on program behavior such that it never computes
     the wrong result. Compare: liveness property.
     
	
[bookmark: glo:sample bias]sample bias 
	A measurement error that occurs when some members of a group
     are less likely to be included than others, and where those members differ
     in the property being measured.
     
	
[bookmark: glo:sandbox]sandbox 
	A context for executing untrusted code, where protection for the rest
     of the system is provided in software.
     
	
[bookmark: glo:SCAN]SCAN 
	A disk scheduling policy where the disk arm repeatedly sweeps from
     the  inner  to  the  outer  tracks  and  back  again,  servicing  each  pending
     request whenever the disk head passes that track.
     
	
[bookmark: glo:scheduler activations]scheduler activations 
	A            multiprocessor            scheduling            policy
     where each application is informed of how many processors it has been
     assigned and whenever the assignment changes.
     
	
[bookmark: glo:scrubbing]scrubbing 
	A   technique   for   reducing   non-recoverable   RAID   errors   by
     periodically scanning for corrupted disk blocks and reconstructing them
     from the parity block.
     
	
[bookmark: glo:secondary bottleneck]secondary bottleneck 
	A resource with relatively low contention, due to a large
     amount of queueing at the primary bottleneck. If the primary bottleneck
     is improved, the secondary bottleneck will have much higher queueing
     delay.
                                                                  

                                                                  
     
	
[bookmark: glo:sector]sector 
	The  minimum  amount  of  a  disk  that  can  be  independently  read  or
     written.
     
	
[bookmark: glo:sector failure]sector failure 
	A  magnetic  disk  error  where  data  on  one  or  more  individual
     sectors  of  a  disk  are  lost,  but  the  rest  of  the  disk  continues  to  operate
     correctly.
     
	
[bookmark: glo:sector sparing]sector sparing 
	Transparently hiding a faulty disk sector by remapping it to a
     nearby spare sector.
     
	
[bookmark: glo:security]security 
	A  computer’s  operation  cannot  be  compromised  by  a  malicious
     attacker.
     
	
[bookmark: glo:security enforcement]security enforcement 
	The  mechanism  the  operating  system  uses  to  ensure
     that only permitted actions are allowed.
     
	
[bookmark: glo:security policy]security policy 
	What  operations  are  permitted — who  is  allowed  to  access
     what data, and who can perform what operations.
     
	
[bookmark: glo:seek]seek 
	The movement of the disk arm to re-position it over a specific track to
     prepare for a read or write.
     
	
[bookmark: glo:segmentation]segmentation 
	A virtual memory mechanism where addresses are translated
     by  table  lookup,  where  each  entry  in  the  table  is  to  a  variable-size
     memory region.
     
	
[bookmark: glo:segmentation fault]segmentation fault 
	An   error   caused   when   a   process   attempts   to   access
     memory outside of one of its valid memory regions.
     
	
[bookmark: glo:segment-local address]segment-local address 
	An  address  that  is  relative  to  the  current  memory
     segment.
     
	
[bookmark: glo:self-paging]self-paging 
	A  resource  allocation  policy  for  allocating  page  frames  among
     processes;  each  page  replacement  is  taken  from  a  page  frame  already
     assigned to the process causing the page fault.
                                                                  

                                                                  
     
	
[bookmark: glo:semaphore]semaphore 
	A   type   of   synchronization   variable   with   only   two   atomic
     operations,  P()  and  V().  P  waits  for  the  value  of  the  semaphore  to  be
     positive, and then atomically decrements it. V atomically increments the
     value, and if any threads are waiting in P, triggers the completion of the
     P operation.
     
	
[bookmark: glo:serializability]serializability 
	The  result  of  any  program  execution  is  equivalent  to  an
     execution  in  which  requests  are  processed  one  at  a  time  in  some
     sequential order.
     
	
[bookmark: glo:service time]service time 
	The time it takes to complete a task at a resource, assuming no
     waiting.
     
	
[bookmark: glo:set associative cache]set associative cache 
	The   cache   is   partitioned   into   sets   of   entries.   Each
     memory location can only be stored in its assigned set, by it can be stored
     in any cache entry in that set. On a lookup, the system needs to check the
     address against all the entries in its set to determine if there is a cache hit.
     
	
[bookmark: glo:settle]settle 
	The fine-grained re-positioning of a disk head after moving to a new
     track before the disk head is ready to read or write a sector of the new
     track.
     
	
[bookmark: glo:shadow page table]shadow page table 
	A page table for a process inside a virtual machine, formed
     by  constructing  the  composition  of  the  page  table  maintained  by  the
     guest  operating  system  and  the  page  table  maintained  by  the  host
     operating system.
     
	
[bookmark: glo:shared object]shared object 
	An object (a data structure and its associated code) that can be
     accessed safely by multiple concurrent threads.
     
	
[bookmark: glo:shell]shell 
	A job control system implemented as a user-level process. When a user
     types a command to the shell, it creates a process to run the command.
     
	
[bookmark: glo:shortest job first]shortest job first 
	A  scheduling  policy  that  performs  the  task  with  the  least
     remaining time left to finish.
     
	
[bookmark: glo:shortest positioning time first]shortest positioning time first 
	
                                                                  

                                                                  
     A disk scheduling policy that services whichever pending request can be
     handled in the minimum amount of time. See also: SPTF.
     
	
[bookmark: glo:shortest seek time first]shortest seek time first 
	A  disk  scheduling  policy  that  services  whichever
     pending request is on the nearest track. Equivalent to shortest positioning
     time first if rotational positioning is not considered. See also: SSTF.
     
	
[bookmark: glo:SIMD (single instruction multiple data) programming]SIMD (single instruction multiple data) programming 
	See     data     parallel
     programming
     
	
[bookmark: glo:simultaneous multi-threading]simultaneous multi-threading 
	A  hardware  technique  where  each  processor
     simulates two (or more) virtual processors, alternating between them on
     a cycle-by-cycle basis. See also: hyperthreading.
     
	
[bookmark: glo:single-threaded program]single-threaded program 
	A  program  written  in  a  traditional  way,  with  one
     logical  sequence  of  steps  as  each  instruction  follows  the  previous  one.
     Compare: multi-threaded program.
     
	
[bookmark: glo:slip sparing]slip sparing 
	When  remapping  a  faulty  disk  sector,  remapping  the  entire
     sequence of disk sectors between the faulty sector and the spare sector by
     one slot to preserve sequential access performance.
     
	
[bookmark: glo:soft link]soft link 
	A directory entry that maps one file or directory name to another. See
     also: symbolic link.
     
	
[bookmark: glo:software transactional memory (STM)]software transactional memory (STM) 
	A      system      for      general-purpose
     transactions for in-memory data structures.
     
	
[bookmark: glo:software-loaded TLB]software-loaded TLB 
	A   hardware   TLB   whose   entries   are   installed   by
     software, rather than hardware, on a TLB miss.
     
	
[bookmark: glo:solid state storage]solid state storage 
	A persistent storage device with no moving parts; it stores
     data using electrical circuits.
     
	
[bookmark: glo:space sharing]space sharing 
	A   multiprocessor   allocation   policy   that   assigns   different
     processors to different tasks.
                                                                  

                                                                  
     
	
[bookmark: glo:spatial locality]spatial locality 
	Programs tend to reference instructions and data near those
     that have been recently accessed.
     
	
[bookmark: glo:spindle]spindle 
	The axle of rotation of the spinning disk platters making up a disk.
     
	
[bookmark: glo:spinlock]spinlock 
	A lock where a thread waiting for a BUSY lock “spins” in a tight loop
     until some other thread makes it FREE.
     
	
[bookmark: glo:SPTF]SPTF 
	See: shortest positioning time first.
     
	
[bookmark: glo:SSTF]SSTF 
	See: shortest seek time first.
     
	
[bookmark: glo:stable property]stable property 
	A property of a program, such that once the property becomes
     true in some execution of the program, it will stay true for the remainder
     of the execution.
     
	
[bookmark: glo:stable storage]stable storage 
	See: non-volatile storage.
     
	
[bookmark: glo:stable system]stable system 
	A   queueing   system   where   the   arrival   rate   matches   the
     departure rate.
     
	
[bookmark: glo:stack frame]stack frame 
	A   data   structure   stored   on   the   stack   with   storage   for   one
     invocation of a procedure: the local variables used by the procedure, the
     parameters  the  procedure  was  called  with,  and  the  return  address  to
     jump to when the procedure completes.
     
	
[bookmark: glo:staged architecture]staged architecture 
	A  staged  architecture  divides  a  system  into  multiple
     subsystems or stages, where each stage includes some state private to the
     stage and a set of one or more worker threads that operate on that state.
     
	
[bookmark: glo:starvation]starvation 
	The lack of progress for one task, due to resources given to higher
     priority tasks.
     
	
[bookmark: glo:state variable]state variable 
	Member variable of a shared object.
     
	
[bookmark: glo:STM]STM 
	See: software transactional memory (STM).
                                                                  

                                                                  
     
	
[bookmark: glo:structured synchronization]structured synchronization 
	A  design  pattern  for  writing  correct  concurrent
     programs, where concurrent code uses a set of standard synchronization
     primitives  to  control  access  to  shared  state,  and  where  all  routines  to
     access the same shared state are localized to the same logical module.
     
	
[bookmark: glo:superpage]superpage 
	A   set   of   contiguous   pages   in   physical   memory   that   map   a
     contiguous region of virtual memory, where the pages are aligned so that
     they share the same high-order (superpage) address.
     
	
[bookmark: glo:surface]surface 
	One side of a disk platter.
     
	
[bookmark: glo:surface transfer time]surface transfer time 
	The time to transfer one or more sequential sectors from
     (or to) a surface once the disk head begins reading (or writing) the first
     sector.
     
	
[bookmark: glo:swapping]swapping 
	Evicting an entire process from physical memory.
     
	
[bookmark: glo:symbolic link]symbolic link 
	See: soft link.
     
	
[bookmark: glo:synchronization barrier]synchronization barrier 
	A
     synchronization primitive where n threads operating in parallel check in
     to the barrier when their work is completed. No thread returns from the
     barrier until all n check in.
     
	
[bookmark: glo:synchronization variable]synchronization variable 
	A data structure used for coordinating concurrent
     access to shared state.
     
	
[bookmark: glo:system availability]system availability 
	The  probability  that  a  system  will  be  available  at  any
     given time.
     
	
[bookmark: glo:system call]system call 
	A procedure provided by the kernel that can be called from user
     level.
     
	
[bookmark: glo:system reliability]system reliability 
	The probability that a system will continue to be reliable for
     some specified period of time.
                                                                  

                                                                  
     
	
[bookmark: glo:tagged command queueing]tagged command queueing 
	A disk interface that allows the operating system
     to issue multiple concurrent requests to the disk. Requests are processed
     and acknowledged out of order. See also: native command queueing. See
     also: NCQ.
     
	
[bookmark: glo:tagged TLB]tagged TLB 
	A translation lookaside buffer whose entries contain a process ID;
     only entries for the currently running process are used during translation.
     This  allows  TLB  entries  for  a  process  to  remain  in  the  TLB  when  the
     process is switched out.
     
	
[bookmark: glo:task]task 
	A user request.
     
	
[bookmark: glo:TCB]TCB 
	See: thread control block.
     
	
[bookmark: glo:TCQ]TCQ 
	See: tagged command queueing.
     
	
[bookmark: glo:temporal locality]temporal locality 
	Programs tend to reference the same instructions and data
     that they had recently accessed.
     
	
[bookmark: glo:test and test-and-set]test and test-and-set 
	An  implementation  of  a  spinlock  where  the  waiting
     processor waits until the lock is FREE before attempting to acquire it.
     
	
[bookmark: glo:thrashing]thrashing 
	When a cache is too small to hold its working set. In this case, most
     references are cache misses, yet those misses evict data that will be used
     in the near future.
     
	
[bookmark: glo:thread]thread 
	A single execution sequence that represents a separately schedulable
     task.
     
	
[bookmark: glo:thread context switch]thread context switch 
	Suspend execution of a currently running thread and
     resume execution of some other thread.
     
	
[bookmark: glo:thread control block]thread control block 
	The  operating  system  data  structure  containing  the
     current state of a thread. See also: TCB.
     
	
[bookmark: glo:thread scheduler]thread scheduler 
	Software  that  maps  threads  to  processors  by  switching
     between running threads and threads that are ready but not running.
                                                                  

                                                                  
     
	
[bookmark: glo:thread-safe bounded queue]thread-safe bounded queue 
	A   bounded   queue   that   is   safe   to   call   from
     multiple concurrent threads.
     
	
[bookmark: glo:throughput]throughput 
	The rate at which a group of tasks are completed.
     
	
[bookmark: glo:time of check vs. time of use attack]time of check vs. time of use attack 
	A security vulnerability arising when an
     application can modify the user memory holding a system call parameter
     (such as a file name), after the kernel checks the validity of the parameter,
     but  before  the  parameter  is  used  in  the  actual  implementation  of  the
     routine. Often abbreviated TOCTOU.
     
	
[bookmark: glo:time quantum]time quantum 
	The  length  of  time  that  a  task  is  scheduled  before  being
     preempted.
     
	
[bookmark: glo:timer interrupt]timer interrupt 
	A  hardware  processor  interrupt  that  signifies  a  period  of
     elapsed real time.
     
	
[bookmark: glo:time-sharing operating system]time-sharing operating system 
	An  operating  system  designed  to  support
     interactive use of the computer.
     
	
[bookmark: glo:TLB]TLB 
	See: translation lookaside buffer.
     
	
[bookmark: glo:TLB flush]TLB flush 
	An  operation  to  remove  invalid  entries  from  a  TLB,  e.g.,  after  a
     process context switch.
     
	
[bookmark: glo:TLB hit]TLB hit 
	A TLB lookup that succeeds at finding a valid address translation.
     
	
[bookmark: glo:TLB miss]TLB miss 
	A TLB lookup that fails because the TLB does not contain a valid
     translation for that virtual address.
     
	
[bookmark: glo:TLB shootdown]TLB shootdown 
	A  request  to  another  processor  to  remove  a  newly  invalid
     TLB entry.
     
	
[bookmark: glo:TOCTOU]TOCTOU 
	See: time of check vs. time of use attack.
     
	
[bookmark: glo:track]track 
	A circle of sectors on a disk surface.
                                                                  

                                                                  
     
	
[bookmark: glo:track buffer]track buffer 
	Memory in the disk controller to buffer the contents of the current
     track  even  though  those  sectors  have  not  yet  been  requested  by  the
     operating system.
     
	
[bookmark: glo:track skewing]track skewing 
	A  staggered  alignment  of  disk  sectors  to  allow  sequential
     reading of sectors on adjacent tracks.
     
	
[bookmark: glo:transaction]transaction 
	A group of operations that are applied persistently, atomically as
     a group or not at all, and independently of other transactions.
     
	
[bookmark: glo:translation lookaside buffer]translation lookaside buffer 
	A small hardware table containing the results of
     recent address translations. See also: TLB.
     
	
[bookmark: glo:trap]trap 
	A   synchronous   transfer   of   control   from   a   user-level   process   to   a
     kernel-mode  handler.  Traps  can  be  caused  by  processor  exceptions,
     memory protection errors, or system calls.
     
	
[bookmark: glo:triple indirect block]triple indirect block 
	A  storage  block  containing  pointers  to  double  indirect
     blocks.
     
	
[bookmark: glo:two-phase locking]two-phase locking 
	A strategy for acquiring locks needed by a multi-operation
     request, where no lock can be released before all required locks have been
     acquired.
     
	
[bookmark: glo:uberblock]uberblock 
	In ZFS, the root of the ZFS storage system.
     
	
[bookmark: glo:UNIX exec]UNIX exec 
	A system call on UNIX that causes the current process to bring a
     new executable image into memory and start it running.
     
	
[bookmark: glo:UNIX fork]UNIX fork 
	A system call on UNIX that creates a new process as a complete
     copy of the parent process.
     
	
[bookmark: glo:UNIX pipe]UNIX pipe 
	A  two-way  byte  stream  communication  channel  between  UNIX
     processes.
     
	
[bookmark: glo:UNIX signal]UNIX signal 
	An asynchronous notification to a running process.
                                                                  

                                                                  
     
	
[bookmark: glo:UNIX stdin]UNIX stdin 
	A file descriptor set up automatically for a new process to use as
     its input.
     
	
[bookmark: glo:UNIX stdout]UNIX stdout 
	A file descriptor set up automatically for a new process to use as
     its output.
     
	
[bookmark: glo:UNIX wait]UNIX wait 
	A system call that pauses until a child process finishes.
     
	
[bookmark: glo:unsafe state]unsafe state 
	In the context of deadlock, a state of an execution such that there
     is at least one sequence of future resource requests that leads to deadlock
     no matter what processing order is tried.
     
	
[bookmark: glo:upcall]upcall 
	An event, interrupt, or exception delivered by the kernel to a user-level
     process.
     
	
[bookmark: glo:use bit]use bit 
	A status bit in a page table entry recording whether the page has been
     recently referenced.
     
	
[bookmark: glo:user-level memory management]user-level memory management 
	The kernel assigns each process a set of page
     frames, but how the process uses its assigned memory is left up to the
     application.
     
	
[bookmark: glo:user-level page handler]user-level page handler 
	An application-specific upcall routine invoked by the
     kernel on a page fault.
     
	
[bookmark: glo:user-level thread]user-level thread 
	A  type  of  application  thread  where  the  thread  is  created,
     runs, and finishes without calls into the operating system kernel.
     
	
[bookmark: glo:user-mode operation]user-mode operation 
	The processor operates in a restricted mode that limits
     the capabilities of the executing process. Compare: kernel-mode operation.
     
	
[bookmark: glo:utilization]utilization 
	The fraction of time a resource is busy.
     
	
[bookmark: glo:virtual address]virtual address 
	An address that must be translated to produce an address in
     physical memory.
                                                                  

                                                                  
     
	
[bookmark: glo:virtual machine]virtual machine 
	An execution context provided by an operating system that
     mimics  a  physical  machine,  e.g.,  to  run  an  operating  system  as  an
     application on top of another operating system.
     
	
[bookmark: glo:virtual machine honeypot]virtual machine honeypot 
	A virtual machine constructed for the purpose of
     executing suspect code in a safe environment.
     
	
[bookmark: glo:virtual machine monitor]virtual machine monitor 
	See: host operating system.
     
	
[bookmark: glo:virtual memory]virtual memory 
	The illusion of a nearly infinite amount of physical memory,
     provided by demand paging of virtual addresses.
     
	
[bookmark: glo:virtualization]virtualization 
	Provide  an  application  with  the  illusion  of  resources  that  are
     not physically present.
     
	
[bookmark: glo:virtually addressed cache]virtually addressed cache 
	A processor cache which is accessed using virtual,
     rather than physical, memory addresses.
     
	
[bookmark: glo:volume]volume 
	A  collection  of  physical  storage  blocks  that  form  a  logical  storage
     device (e.g., a logical disk).
     
	
[bookmark: glo:wait while holding]wait while holding 
	A  necessary  condition  for  deadlock  to  occur:  a  thread
     holds one resource while waiting for another.
     
	
[bookmark: glo:wait-free data structures]wait-free data structures 
	Concurrent data structure that guarantees progress
     for  every  thread:  every  method  finishes  in  a  finite  number  of  steps,
     regardless of the state of other threads executing in the data structure.
     
	
[bookmark: glo:waiting list]waiting list 
	The set of threads that are waiting for a synchronization event or
     timer expiration to occur before becoming eligible to be run.
     
	
[bookmark: glo:wear leveling]wear leveling 
	A flash memory management policy that moves logical pages
     around the device to ensure that each physical page is written/erased
     approximately the same number of times.
     
	
[bookmark: glo:web proxy cache]web proxy cache 
	A  cache  of  frequently  accessed  web  pages  to  speed  web
     access and reduce network traffic.
                                                                  

                                                                  
     
	
[bookmark: glo:work-conserving scheduling policy]work-conserving scheduling policy 
	A policy that never leaves the processor
     idle if there is work to do.
     
	
[bookmark: glo:working set]working set 
	The set of memory locations that a program has referenced in the
     recent past.
     
	
[bookmark: glo:workload]workload 
	A set of tasks for some system to perform, along with when each
     task arrives and how long each task takes to complete.
     
	
[bookmark: glo:wound wait]wound wait 
	An  approach  to  deadlock  recovery  that  ensures  progress  by
     aborting the most recent transaction in any deadlock.
     
	
[bookmark: glo:write acceleration]write acceleration 
	Data  to  be  stored  on  disk  is  first  written  to  the  disk’s
     buffer memory. The write is then acknowledged and completed in the
     background.
     
	
[bookmark: glo:write-back cache]write-back cache 
	A cache where updates can be stored in the cache and only
     sent to memory when the cache runs out of space.
     
	
[bookmark: glo:write-through cache]write-through cache 
	A cache where updates are sent immediately to memory.
     
	
[bookmark: glo:zero-copy I/O]zero-copy I/O 
	A   technique   for   transferring   data   across   the   kernel-user
     boundary  without  a  memory-to-memory  copy,  e.g.,  by  manipulating
     page table entries.
     
	
[bookmark: glo:zero-on-reference]zero-on-reference 
	A method for clearing memory only if the memory is used,
     rather than in advance. If the first access to memory triggers a trap to the
     kernel, the kernel can zero the memory and then resume.
     
	
[bookmark: glo:Zipf distribution]Zipf distribution 
	The relative frequency of an event is inversely proportional
     to its position in a rank order of popularity.
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