

Learn SQLite in 1 Day

By Krishna Rungta

Copyright 2017 - All Rights Reserved – Krishna Rungta

ALL RIGHTS RESERVED.
 No part of this publication may be reproduced or transmitted in any form whatsoever, electronic, or mechanical, including photocopying, recording, or by any informational storage or retrieval system without express written, dated and signed permission from the author.

Table Of Content

Chapter 1: Introduction

Chapter 2: Create Database

	
CREATE Database

	
CREATE Database in a Specific Location

	
Create database and populate it with tables from a file

	
Backup & Database

	
Drop Database

Chapter 3: Create, Alter, Drop Table

	
Create table

	
Drop table

	
Alter table

	
Add columns- Using ALTER TABLE Command

	
Insert value into a table

Chapter 4: Primary & Foreign Key

	
SQLite constraint

	
Primary Key

	
Not null constraint

	
DEFAULT Constraint

	
UNIQUE constraint

	
What is a SQLite Foreign KEY?

Chapter 5: Data Types

	
Storage Classes

	
Affinity Type

	
Examples of storing data types in SQLite

Chapter 6: Select, Where, Limit, Count, Group By, Union

	
Reading data with select

	
WHERE

	
Limiting and Ordering

	
Group BY

	
Query & Subquery

	
Set Operations -UNION,Intersect

	
Conditional results

	
Advanced queries

Chapter 7: Joins

	
Introduction to SQLite JOIN Clause

	
INNER JOIN

	
JOIN … USING

	
NATURAL JOIN

	
LEFT OUTER JOIN

	
CROSS JOIN

Chapter 8: INSERT, UPDATE, DELETE

	
INSERT

	
Update

	
Delete

	
Conflict clause

Chapter 9: Index, Trigger & View

	
View

	
Index

	
Trigger

Chapter 10: SQLite Functions

	
Finding the LENGTH of a string

	
UPPER Function and LOWER Function

	
TRIM Function

	
TYPEOF Function

	
SQLite LAST_INSERT_ROWID

	
SQLite library

	
User-defined functions

[bookmark: Chapter 1: Introduction]Chapter 1: Introduction

What is SQLite?

SQLite is a relational database management system. It was designed originally on August 2000. It is an Open source software.

	SQLite is very lightweight; it is less than 500Kb size. Unlike other database management systems like SQL Server, or Oracle.

	SQLite is not a client-server database management system: it is an in-memory library that you can call it and use it directly, no installation and no configuration required.

	A typical SQLite database will be contained on a single file on the computer disk storage with all the database objects (tables, views, triggers, etc.) included on that file, no dedicated server required.

SQLite Performance - Why and When to use SQLite?

When to use SQLite:

	Whenever you need a lightweight database, if you are developing an embedded software for devices like televisions, mobile phones, cameras, home electronic devices, etc. then SQLite is a good choice.

	If you want to manage complex session information for a website, SQLite can handle low to medium traffic HTTP requests.

	When you need to store an archive of files, SQLite can produce smaller size archives and much amount metadata included than regular ZIP archives.

	If you want to do some processing on some data within an application, you can use SQLite as a temporary dataset. You can load the data into an SQLite in-memory database and do the queries the way you want. You can extract the data in the way you want back to your application.

	
It gives you an easy and efficient way to deal with data rather than do the data processing internally inside in-memory variables. For example, if you are developing a program and you have some records that you want to do some calculations on them. Then you can create an SQLite database and insert the
 records there, and with only one query, you can select the records and do the calculations you want on them directly.

	When you need a database system for learning and training purposes, SQLite is a good fit for that. As we explained, no installation and no configuration are required. Just copy the SQLite libraries in your computer and is ready for creating the database.

Why to use SQLite:

	It is all free – SQLite is an open source, no license required to work with it.

	SQLite is cross-platform database management system; it can be used on a broad range of different platforms like Windows, Mac OS, Linux, and Unix. It can also be used on a lot of embedded operating systems like Symbian, and Windows CE.

	SQLite offers an efficient way for storing data, the length of the columns is variable and is not fixed. So SQLite will allocate only the space a field needs. For example, if you have a varchar(200) column, and you put a 10 characters' length value on it, then SQLite will allocate only 20 characters' space for that value not the whole 200 space.

	A broad range of SQLite APIs – SQLite provides APIs for a broad range of programming language, for example.Net languages (Visual Basic, C#), PHP, Java, Objective C, Python and a lot of other programming language.

	
SQLite is very flexible.

	SQLite variables are dynamic typed, meaning that the type of the variable is not determined until it is assigned a value, and not on the declaration.

	INSERT ON CONFLICT REPLACE statement. With this statement, you can tell SQLite to try to do an insert on a table and if it found rows with the same primary keys, then update them with the values from the inserted values.

	With SQLite, you can work on multiple databases on the same session on the same time. just attach those databases and then you can access all the databases' objects (tables, views, etc..) on the same time.

SQLite limitations and Unsupported Features

The following are the list of unsupported features and limitations in SQLite:

	SQLite doesn't support neither RIGHT OUTER JOIN nor FULL OUTER JOIN. It supports only LEFT OUTER JOIN.

	
Limitations in ALTER table statement: with ALTER TABLE statement in SQLite you can only add a column or rename a table (as we will see in the following tutorials). However, you can't do the following:

	ALTER column.

	DROP a column.

	ADD a constraint.

	VIEWs are read-only – you can't write INSERT, DELETE, or UPDATE statements into the view. However, you can create a trigger on a view and do the INSERT, DELETE, or UPDATE statements into it.

	GRANT and REVOKE commands are not implemented in SQLite. There are only normal file access permissions implemented in SQLite. This is because SQLite reads and writes to the disk files, unlike other Database management systems.

	TRIGGERS – As we will see in the incoming tutorials, SQLite only supports FOR EACH ROW triggers, and it doesn't support FOR EACH STATEMENT triggers.

[bookmark: Chapter 2: Create Database]Chapter 2: Create Database

SQLite databases are very lightweight. Unlike other database systems, there is no configuration, installation required to start working on SQLite database.

What you need is the SQLite library which is less than 500KB size. We will jump start working on SQLite databases and tables directly.

[bookmark: CREATE Database]SQLite CREATE Database

Unlike other database management systems, there is no CREATE DATABASE command in SQLite. In SQLite, here is how you can create a new database:

	
Open the Windows Command Line tool (cmd.exe) from the start, type
 "
 cmd
 "
 and open it.

	
The
 "
 cmd
 "
 will open in the default user folder, on my machine, it is
 "C:\Users\MGA":

[image:]

	
From the Installation and packages tutorial, you should now have created an SQLite folder in the
 "C"
 directory and copied the sqlite3.exe on it.

	After that we should navigate to where the sqlite3.exe is located by the following command:

[image:]

	
Then type the following command

sqlite3
 SchoolDB.db

	
This will create a new database with the name "
 SchoolDB.db"
 in
 the same directory where you have copied your .exe file.

[image:]

	
If you navigate to the directory:
 "c:\sqlite",
 you will find the file
 "
 SchoolDB.db"
 is
 created as the following screen shot:

[image:]

	
You can ensure that the database is created by writing the following command:

.databases

This will give you the list of databases created, and you should see the new database "
 SchoolDB.db"
 listed
 there:

[image:]

[bookmark: CREATE Database in a Specific Location]SQLite CREATE Database in a Specific Location:

If you want to create the database file in a specific location rather than in the same location where the sqlite3.exe is located, you can do this:

	
Navigate manually to the folder where sqlite3.exe is located
 "C:\sqlite".

[image:]

	Double click sqlite3.exe to open the command line.

	
Run the following command:

.open c:/users/mga/desktop/SchoolDB.db

	

This will create a new database with the name
 "
 SchoolDB.db"
 and
 store the database file in the location specified.

Note that, the same command will be used to open the database file if the database file is already created. So if you write the same exact command again you will open the database itself:

.open c:/users/mga/desktop/SchoolDB.db

	

SQLite will check the file name
 "
 SchoolDB.db
 "
 whether it is found in the same location or not. If the file exists, it will open it. Otherwise, a new database will be created with the same file name specified in the specified location.

SQLite create database and populate it with tables from a file

If you have a .SQL file that contains the tables schema and you want to create a new database with the same tables from that file, in the following example, we will explain how to do this.

Example:

In the following example, we will create the sample database. We will use this sample database throughout the SQLite tutorials, with the name
 "
 SQLiteTutorialsDB
 "
 and populate it with the tables. As following:

	Open a text file and paste the following commands on it:

CREATE TABLE [Departments] (

[DepartmentId] INTEGER NOT NULL PRIMARY KEY,

[DepartmentName] NVARCHAR(50) NOT NULL

);

CREATE TABLE [Students] (

[StudentId] INTEGER PRIMARY KEY NOT NULL,

[StudentName] NVARCHAR(50) NOT NULL,

[DepartmentId] INTEGER NULL,

[DateOfBirth] DATE NULL

);

CREATE TABLE [Subjects] (

[SubjectId] INTEGER NOT NULL PRIMARY KEY,

[SubjectName] NVARCHAR(50) NOT NULL

);

CREATE TABLE [Marks] (

[StudentId] INTEGER NOT NULL,

[SubjectId] INTEGER NOT NULL,

[Mark] INTEGER NULL

);

The code above will create four tables as following:

	

"Departments"
 table with the following columns:

	
"
 DepartmentId
 " an integer number indicates the department id, and it is declared as a PRIMARY KEY (explained later in Column Constraints Section).

	
"
 DepartmentName
 " – a string name for the department, and it doesn't allow null values using NOT NULL constraint.

	

"
 Students
 " table with the following columns:

	
"
 StudentId
 " an integer number, and it is declared as a PRIMARY KEY.

	
"
 StudentName
 " – the name of the student and it doesn't allow a null value using NOT NULL constraint.

	
"
 DepartmentId
 " Integer number that refers to the department Id to the department id column in the departments table.

	
"
 DateOfBirth
 " The date of birth of the student.

	

"
 Subjects
 " table with the following columns:

	
"
 SubjectId
 " an integer number and it is declared as a PRIMARY KEY.

	
"
 SubjectName
 " a string value and it doesn't allow null values.

	

"Marks"
 table with the following columns:

	
"
 StudentId
 " integer indicates a student id.

	
"
 SubjectId
 " integer indicates a subject Id.

	
"
 Mark
 " the mark a student gets in a specific subject it is also integer and it does allow null values.

	
Save the file to SQLite as
 "
 SQLiteTutorialsDB.sql
 "
 in the same location where sqlite3.exe is located.

	Open cmd.exe, and navigate to the directory where sqlite3.exe is located.

	
Write the following command:

sqlite3
 SQLiteTutorialsDB.db
 <
 SQLiteTutorialsDB.sql

	
Then, a new database
 "
 SQLiteTutorialsDB
 "
 should be created, and the file
 "
 SQLiteTutorialsDB.db
 "
 will be located in the same directory. As following:

[image:]

	
You can ensure that this table is created by opening the database we just created like this:

.open
 SQLiteTutorialsDB.db

	
Then write the following command:

.tables

	

This command will give you the list of tables in the "
 SQLiteTutorialsDB
 ", and you should see the four tables we had just created:

[image:]

SQLite Backup & Database

To back up a database, you have to open that database first as following:

	
Navigate to "
 C:\sqlite"
 folder, then double-click sqlite3.exe to open it.

	
Open the database using the following command:

.open c:/sqlite/sample/SchoolDB.db

This command will open a database that is located on the following directory
 "c:/sqlite/sample/"

	
If it is in the same directory where sqlite3.exe is located, then you don't need to specify a location, like this:

.open
 SchoolDB.db

	Then to back up a database write the following command:

	

This will back up the whole database into a new file
 "
 SchoolDB.db
 "
 in the same directory:

.backup
 SchoolDB.db

	
If you don't see any errors after executing that command, this means that the backup is created successfully.

[bookmark: Drop Database]SQLite Drop Database

Unlike other Database management systems, there is no DROP DATABASE command in SQLite. If you want to drop a database, all you have to do is to delete the database file.

Notes:

	You can't create two databases in the same location with the same name, the database name is unique in the same directory.

	Database names are case insensitive.

	There are no privileges required to create the databases.

[bookmark: Chapter 3: Create, Alter, Drop Table]Chapter 3: Create, Alter, Drop Table

In this article, we will see how to create tables, modify tables and dropping tables in SQLite. But the first thing is to open the database that we will work on as we have shown you before.

[bookmark: Create table]SQLite Create table

To create a table, you should use the
 "CREATE TABLE"
 command as following:

CREATE TABLE guru99 (

Id
 Int
 ,

Name Varchar

);

Within the two brackets after the table name, you define the tables' columns, each column should have the following properties:

	A name, the column name it should be unique among the table's columns.

	A data type – the column data type,

	Optional column constraints as we will explain in the later sections in this tutorials.

[bookmark: Drop table]Drop table

To drop a table, use the
 "DROP TABLE"
 command followed by the table name as following:

DROP TABLE guru99;

[bookmark: Alter table]Alter table

You can use
 "ALTER TABLE"
 command to rename a table as following:

ALTER TABLE guru99 RENAME TO guru100;

To verify that the table's name is changed, you can use the command
 ".tables"
 to show the list of tables and the table name should be changed now as following:

[image:]

As you can see the table name "
 guru99
 " is changed to "
 guru100
 " after the "
 alter table
 " command.

[bookmark: Add columns- Using ALTER TABLE Command]SQLite add columns- UsingALTER TABLECommand

You can also use the
 "ALTER TABLE"
 command to add columns:

ALTER TABLE guru100 ADD COLUMN Age INT;

This will alter the table
 "guru100"
 and add a new column
 Age
 to it.

	
If you didn't see any output, this means that the statement was successful, and the column was added. No output means that the cursor will be positioned after
 "
 sqlite
 >"
 with no text after it like this

[image:]

	
However, to verify that the column was added, we can use the command
 ".schema guru100"
 this will give you the table definition, and you should see the new column we have just added:

[image:]

[bookmark: Insert value into a table]SQLite Insert value into a table

To insert values into a table, we use the "
 INSERT INTO"
 statement as follow:

INSERT INTO
 Tablename
 (colname1, colname2, ….) VALUES(valu1, value2, ….);

You can omit the columns names after the table name and write it as following:

INSERT INTO
 Tablename
 VALUES(value1, value2, ….);

In such case, where you are omitting the columns names from the tables, the number of inserted values must be the same exact number of the table's columns. Then each value will be inserted in the correspondence column. For example, for the following insert statement:

INSERT INTO guru100 VALUES(1, 'Mike', 25);

The result of this statement will be as following:

	
The value 1 will be inserted in the column "
 id
 ".

	
The value 'Mike' will be inserted in the column "
 Name
 ", and

	
The value 25 will be inserted in the column "
 Age
 ".

[image:]

INSERT ... DEFAULT VALUES statement

You can populate the table with the default values for the columns at once as following:

INSERT INTO
 Tablename
 DEFAULT VALUES;

If a column doesn't allow a null value nor a default value, you will get an error that "
 NOT NULL constraint failed"
 for that column. As following:

[image:]

[bookmark: Chapter 4: Primary]Chapter 4: Primary & Foreign Key

[bookmark: SQLite constraint]SQLite constraint

Column constraints enforce constraints and rules to the values inserted on a column in order to validate the inserted data.

Columns constraints are defined when creating a table, in the column definition.

[bookmark: Primary Key]SQLite Primary Key

– All the values on a primary key column should be unique and not null

The primary key can be applied to only one column or on a combination of columns, in the latter case, the combination of the columns' values should be unique for all the tables' rows.

There are a lot of different ways to define a primary key on a table like:

	
In the column definition itself:

ColumnName
 INTEGER NOT NULL PRIMARY KEY;

	
As a separate definition:

PRIMARY KEY(
 ColumnName
);

	To create a combination of columns as a primary key:

PRIMARY KEY(ColumnName1, ColumnName2);

[bookmark: Not null constraint]Not null constraint

SQLite Not null constraint prevents a column from having a null value:

ColumnName
 INTEGER NOT NULL;

[bookmark: DEFAULT Constraint]DEFAULT Constraint

SQLite Default constraint if you don't insert any value in a column, the default value will be inserted instead.

For Example:

ColumnName
 INTEGER DEFAULT 0;

If you write an insert statement, and you didn't specify any value for that column, the column will have the value 0.

[bookmark: UNIQUE constraint]SQLite UNIQUE constraint

SQLite Unique constraint it will prevent duplicate values among all the values of the column.

For example:

EmployeeId
 INTEGER NOT NULL UNIQUE;

This will enforce the
 "
 EmployeeId
 "
 value to be unique, no duplicated values will be allowed. Note that, this applies on the values of the column
 "
 EmployeeId
 "
 only.

SQLite CHECK constraint

SQLite check constraint a condition to check an inserted value, if the value doesn't match the condition, it won't be inserted.

Quantity INTEGER NOT NULL CHECK(Quantity > 10);

You can't insert a value less than 10 in the
 "Quantity"
 column.

[bookmark: What is a SQLite Foreign KEY?]What is a SQLite Foreign KEY?

The SQLite foreign key is a constraint that verifies the existence of a value present in one table to another table that has a relation with the first table where the foreign key is defined.

While working with multiple tables, when there are two tables that relate to each other with one column in common. And if you want to ensure that the value inserted in one of them must exist in the other table's column, then you should use a "Foreign key Constraint" on the column in common.

In this case, when you try to insert a value on that column, then the foreign key will ensure that the inserted value exits in the table's column.

Note that Foreign keys constraints are not enabled by default in SQLite, you have to enable them first by the running the following command:

PRAGMA
 foreign_keys
 = ON;

Foreign key constraints were introduced in SQLite starting from version 3.6.19.

Example

Suppose if we have two tables; Students and Departments.

The Students table have a list of students, and the departments table has a list of the departments. Each student belongs to a department; i.e., each student has a
 departmentId
 column.

Now, we will see how does the foreign key constraint can be helpful to ensure that the value of the department id in the students table must exist in the departments table.

[image:]

So, if we created a foreign key constraint on the
 DepartmentId
 on the Students table, each inserted
 departmentId
 have to present in the Departments table.

CREATE TABLE [Departments] (

[
 DepartmentId
] INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

[
 DepartmentName
] NVARCHAR(50) NULL

);

CREATE TABLE [Students] (

[
 StudentId
] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

[
 StudentName
] NVARCHAR(50) NULL,

[
 DepartmentId
] INTEGER NOT NULL,

[
 DateOfBirth
] DATE NULL,

FOREIGN KEY(
 DepartmentId
) REFERENCES Departments(
 DepartmentId
)

);

To check how foreign key constraints can prevent undefined element or value to be inserted in a table that has a relation to another table, we will look into the following example.

In this example, the Departments table has a Foreign key constraint to the Students table, so any
 departmentId
 value inserted in the students table must exist in the departments table. If your tried to insert a
 departmentId
 value that doesn't exist in the departments table, the foreign key constraint would prevent you to do that.

Let's insert two departments
 "IT"
 and
 "Arts"
 into the departments table as following:

INSERT INTO Departments VALUES(1, 'IT');

INSERT INTO Departments VALUES(2, 'Arts');

The two statements should insert two departments into departments table, you can ensure that the two values were inserted by running the query
 "SELECT * FROM Departments"
 after that:

[image:]

Then try to insert a new student with a
 departmentId
 that doesn't exist in the departments table:

INSERT INTO Students(
 StudentName,DepartmentId
) VALUES('John', 5);

The row won't be inserted, and you will get an error saying that:
 FOREIGN KEY constraint failed.

[bookmark: Chapter 5: Data Types]Chapter 5: Data Types

Data types in SQLite are different in compared to other database management system. In SQLite, you can declare data types normally, but you still can store any value in any data type.

SQLite is type less. There are no data types, you can store any type of data you like in any column. This is called dynamic types.

In static types, like in other database management systems, if you declared a column with a data type integer, you can only insert values of data type integer. However, in dynamic types like in SQLite, the type of the column is determined by the value inserted. And then SQLite stores that value depending on its type.

[bookmark: Storage Classes]SQLite Storage Classes

In SQLite there are different storage methods depending on the type of the value, these different storage methods are called storage classes in SQLite.

The following are the storage classes available in SQLite:

	
NULL
 – this storage class are used to store any NULL value.

	
INTEGER
 – any numeric value is stored as signed integer value (It can hold both positive and negative integer values). The INTEGER values in SQLite are stored in either 1, 2, 3, 4, 6, or 8 bytes of storage depending on the value of the number.

	
REAL
 – this storage class is used to store the floating point values, and they are stored in an 8-bytes of storage.

	
TEXT
 – stores text strings. It also supports different encoding like UTF-8, UTF-16 BE, or UTF-26LE.

	
BLOB
 – used to store large files, like images or text files. The value is stored as byte array the same as the input value.

[bookmark: Affinity Type]SQLite Affinity Type

Type affinity is the recommended type of data stored in a column. However, you still can store any type of data as you wish, these types are recommended not required.

These types were introduced in SQLite to maximize the compatibility between SQLite and other database management system.

Any column declared in an SQLite database is assigned a type affinity depending on it declared data type. Here the lift of type affinities in SQLite:

	TEXT.

	NUMERIC.

	INTEGER.

	REAL.

	BLOB.

Here's how SQLite determines the affinity of the column from its declared data type:

	
INTEGER affinity is assigned if the declared type contains the string "
 INT
 ".

	
TEXT affinity is assigned, if the column contains on its data type one of the following strings "
 TEXT
 ", "
 CHAR
 , or "
 CLOB
 ". For example, the type VARCHAR will be assigned the TEXT affinity.

	BLOB affinity is assigned if the column has no type specified or the data type is BLOB.

	
REAL affinity is assigned, if the type contains one of the following strings "
 DOUB
 ", "
 REAL
 , or "
 FLOAT
 ".

	NUMERIC affinity is assigned for any other data type.

There is also a table in the same page showing some examples for the mapping between SQLite data types and their affinities determined by these rules:

[image:]

[bookmark: Examples of storing data types in SQLite]Examples of storing data types in SQLite:

Storing number with SQLite integer:

Any column of data type contains the "INT" word, it will be assigned an INTEGER type affinity. It will be stored in INTEGER storage class.

All the following data types are assigned as an INTEGER type affinity:

	INT, INTEGER, BIGINT.

	INT2, INT4, INT8.

	TINYINT, SMALLINT, MEDIUM INT.

INTEGER type affinity in SQLite can hold any assigned integer number (positive or negative) from 1 byte to maximum 8 bytes.

Storing numbers with SQLite REAL:

REAL numbers are the number with double floating points precision. SQLite stored real numbers as 8 bytes' array. Here is the list of data types in SQLite that you can use to stored REAL numbers:

	REAL.

	DOUBLE.

	DOUBLE PRECISION.

	FLOAT.

Storing large data with SQLite BLOB:

There is only one way to store large files into SQLite database, and it is using the BLOB data type. This data type is used to store large files like images, files (from any type), etc. The file is converted into bytes array and then stored in the same size as the input file.

Storing SQLite Booleans:

SQLite doesn't have a separate BOOLEAN storage class. However, the BOOLEAN values are stored as INTEGERS with values 0 (as false) or 1 (as true).

Storing SQLite dates and times:

You can declare date or date times in SQLite using one of the following data types:

	DATE

	DATETIME

	TIMESTAMP

	TIME

Note that, there is no separate DATE or DATETIME storage class in SQLite. Instead any values declared with one of the previous data types are stored on a storage class depending on the date format of the inserted value as following:

	
TEXT
 – if you inserted the date value in the ISO8601 strings format ("YYYY-MM-DD HH:MM:SS.SSS").

	
REAL
 – if you inserted the date value in the Julian day numbers, the number of days since noon in Greenwich on November 24, 4714 B.C. Then the date value would be stored as REAL.

	
INTEGER
 as Unix Time, the number of seconds since 1970-01-01 00:00:00 UTC.

Summary:

SQLite supports a broad range of data types. But, in the same time, it is very flexible regarding data types. You can put any value type in any data type. SQLite also introduced some new concepts in data types like type affinity and storage classes, unlike other database management systems.

[bookmark: Chapter 6: Select, Where, Limit, Count, Group By, Union]Chapter 6: Select, Where, Limit, Count, Group By, Union

To write SQL queries in an SQLite database, you have to know how the SELECT, FROM, WHERE, GROUP BY, ORDER BY, and LIMIT clauses work and how to use them.

During this tutorial, you will learn how to use these clauses and how to write SQLite clauses.

[bookmark: Reading data with select]Reading data with select

The SELECT clause is the main statement you use to query an SQLite database. In the SELECT clause, you state what to select. But before the select clause, let's see from where we can select data using the FROM clause.

The FROM clause is used to specify from where do you want to select data. In the from clause you can specify one or more table or subquery to select the data from, as we will see later on the tutorials.

Note that, for all the following examples, you have to run the sqlite3.exe and open a connection to the sample database as flowing:

Step 1)
 In this step,

	
Open My Computer and navigate to the following directory "
 C:\sqlite
 " and

	
Then open "
 sqlite3.exe
 ":

[image:]

Step 2)
 Open the database "
 TutorialsSampleDB.db
 " by the following command:

[image:]

Now you are ready to run any type of query on the database.

In the SELECT clause, you can select not only a column name but you have a lot of other options to specify what to select. As following:

SELECT *

This command will select all the columns from all the referenced tables (or subqueries) in the FROM clause. For example:

SELECT *

FROM Students

INNER JOIN Departments ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ;

This will select all the columns from both the tables students, and the departments tables:

[image:]

SELECT tablename.*

This will select all the columns from only the table "
 tablename
 ". For example:

SELECT Students.*

FROM Students

INNER JOIN Departments ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ;

This will select all the columns from the students table only:

[image:]

A literal value

A literal value is a constant value that can be specified in the select statement. You can use literal values normally the same way you use column names in the SELECT clause. These literal values will be displayed for each row from the rows returned by the SQL query.

Here are some examples of different literal values that you can select:

	Numeric Literal – numbers in any format like 1, 2.55, … etc.

	String literals – Any string 'USA', 'this is a sample text', … etc.

	NULL – NULL value.

	
Current_TIME
 – It will give you the current time.

	CURRENT_DATE – this will give you the current date.

This can be handy in some situations where you have to select a constant value for all the returned rows. For example, if you want to select all the students from Students table, with a new column called country which contains the value "USA", you can do this:

SELECT *, 'USA' AS Country FROM Students;

This will give you all the students' columns, plus a new column "Country" like this:

[image:]

Note that, this new column Country is not actually a new column added to the table. It is a virtual column, created in the query for displaying the results and it won't be created on the table.

Names and Alias

The alias is a new name for the column that lets you select the column with a new name. The column aliases are specified using the keyword "AS".

For example, if you want to select the
 StudentName
 column to be returned with "Student Name" instead of "
 StudentName
 " you can give it an alias like this:

SELECT
 StudentName
 AS 'Student Name' FROM Students;

This will give you the students' names with the name "Student Name" instead of "
 StudentName
 " like this:

[image:]

Note that, the column name still "
 StudentName
 "; the column
 StudentName
 is still the same, it doesn't change by the alias.

The alias won't change the column name; it will just change the display name in the SELECT clause.

Also, note that, the keyword "AS" is optional, you can put the alias name without it, something like this:

SELECT
 StudentName
 'Student Name' FROM Students;

And it will give you the exact same output as the previous query:

[image:]

You can also give tables aliases, not just columns. With the same keyword "AS". For example, you can do this:

SELECT s.* FROM Students AS s;

This will give you all the columns in the table Students:

[image:]

This can be very useful if you are joining more than one table; instead of repeating the full table name in the query, you can give each table a short alias name. For example, in the following query:

SELECT
 Students.StudentName
 ,
 Departments.DepartmentName

FROM Students

INNER JOIN Departments ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ;

This query will select each student name from the "Students" table with its department name from the "Departments" table:

[image:]

However, the same query can be written like this:

SELECT
 s.StudentName
 ,
 d.DepartmentName

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

	We gave the Students table an alias "s" and the departments table an alias "d".

	Then instead of using the full table's name, we used their aliases to refer to them.

	
INNER JOIN joins two or more tables together using a condition. In our example, we joined Students table with Departments table with
 DepartmentId
 column. There is also an in-depth explanation for the INNER JOIN in the "SQLite Joins" tutorial.

This will give you the exact output as the previous query:

[image:]

WHERE

Writing SQL queries using SELECT clause alone with the FROM clause as we saw in the previous section, will give you all the rows from the tables. However, if you want to filter the returned data, you have to add a "WHERE" clause.

The WHERE clause is used to filter the result set returned by the SQL query. This how the WHERE clause works:

	In the WHERE clause, you can specify an "expression".

	That expression will be evaluated for each row returned from the table(s) specified in the FROM clause.

	The expression will be evaluated as a Boolean expression, with a result either true, false, or null.

	Then only rows for which the expression was evaluated with a true value will be returned, and those with false, or null results will be ignored and not included in the result set.

	To filter the results set using the WHERE clause, you have to use expressions and operators.

List of operators in SQLite and how to use them

In the following section, we will explain how you can filter using expression and operators.

An expression is one or more literal values or columns combined with each other with an operator.

Note that, you can use expressions in both the SELECT clause and in the WHERE clause.

In the following examples, we will try the expressions and operators in both the select clause and the WHERE clause. In order to show you how they perform.

There are different types of expressions and operators that you can specify as following:

SQLite the concatenation operator "||"

This operator is used to concatenate one or more literal values or columns with each other. It will produce one string results from all the concatenated literal values or columns. For example:

SELECT 'Id with Name: '||
 StudentId
 ||
 StudentName
 AS
 StudentIdWithName

FROM Students;

This will concatenate into a new alias "
 StudentIdWithName
 ":

	
The literal string value "
 Id with Name:
 "

	
with the value of the "
 StudentId
 " column and

	
with the value from "
 StudentName
 " column

[image:]

SQLite CAST operator:

The CAST operator is used to convert a value from a data type to another data type.

For example, if you have a numeric value stored as a string value like this "
 '12.5'
 " and you want to convert it to be a numeric value you can use the CAST operator to do this like this "
 CAST('12.5' AS REAL)
 ". Or if you have a decimal value like 12.5, and you need to get the integer part only, you can cast it to an integer like this "CAST(12.5 AS INTEGER)".

Example

In the following command we will try to convert different values into other data types:

SELECT CAST('12.5' AS REAL)
 ToReal
 , CAST(12.5 AS INTEGER) AS
 ToInteger
 ;

This will give you:

[image:]

The result is as following:

	CAST('12.5' AS REAL) – the value '12.5' is a string value, it will be converted to a REAL value.

	CAST(12.5 AS INTEGER) – the value 12.5 is a decimal value, it will be converted to be an integer value. The decimal part will be truncated, and it becomes 12.

SQLite Arithmetic Operators:

Take two or more numeric literal values or numeric columns and return one numeric value. The arithmetic operators supported in SQLite are:

	

	
Addition "
 +
 " – give the sum of the two operands.

	
Subtraction "
 -
 " – subtracts the two operands and results the difference.

	
Multiplication "
 *
 " – the product of the two operands.

	
Reminder (modulo) "
 %
 " – gives the remainder that results from dividing one operand by the second operand.

	
Division "
 /
 " – returns the quotient results from dividing the left operand by the right operand.

Example:

In the following example, we will try the five arithmetic operators with literal numeric values in the same

select clause:

SELECT 25+6, 25-6, 25*6, 25%6, 25/6;

This will give you:

[image:]

Notice how we used a SELECT statement without a FROM clause here. And this is allowed in SQLite as long as we select literal values.

SQLite Comparison operators

Compare two operands with each other and return a true or false as following:

	

	
"
 <
 " – returns true if the left operand is less than the right operand.

	
"
 <=
 " – returns true if the left operand is less than or equal to the right operand.

	
"
 >
 " – returns true if the left operand is greater than the right operand.

	
"
 >=
 " – returns true if the left operand is greater than or equal to the right operand.

	
"
 =
 " and "
 ==
 " – returns true if the two operands are equal. Note that both operators are the same, and there is no difference between them.

	
"
 !=
 " and "
 <>
 " – returns true if the two operands are not equal. Note that both operators are the same, and there is no difference between them.

Note that, SQLite expresses the true value with 1 and the false value with 0.

Example:

SELECT

10<6 AS '<', 10<=6 AS '<=',

10>6 AS '>', 10>=6 AS '>=',

10=6 AS '=', 10==6 AS '==',

10!=6 AS '!=', 10<>6 AS '<>';

This will give something like this:

[image:]

SQLite Pattern Matching operators

"
 LIKE
 " – is used for pattern matching. Using "
 Like
 ", you can search for values that match a pattern specified using a wildcard.

The operand on the left can be either a string literal value or a string column. The pattern can be specified as following:

	
Contains pattern. For example,
 StudentName
 LIKE '%a%'
 – this will search for the students' names that contain the letter "a" in any position on the
 StudentName
 column.

	
Starts with the pattern. For example, "
 StudentName
 LIKE 'a%'
 " – search for the students' names that start with the letter "a".

	
Ends with the pattern. For example, "
 StudentName
 LIKE '%a'
 " – Search for the students' names that ends with the letter "a".

	
Matching any single character in a string using the underscore letter "_". For example, "
 StudentName
 LIKE 'J___'
 " – Search for students' names that are 4 characters' length. It must start with the "J" letter and can have any other three more characters after the "J" letter.

Pattern matching examples:

	
Get Students names that start with the 'j' letter:

SELECT
 StudentName
 FROM Students WHERE
 StudentName
 LIKE 'j%';

Result:

[image:]

	
Get Students' names end with the 'y' letter:

SELECT
 StudentName
 FROM Students WHERE
 StudentName
 LIKE '%y';

Result:

[image:]

	Get Students' names that contains the 'n' letter:

SELECT
 StudentName
 FROM Students WHERE
 StudentName
 LIKE '%n%';

Result:

[image:]

"GLOB"
 – is equivalent to the LIKE operator, but GLOB is case sensitive, unlike LIKE operator. For example, the following two commands will return different results:

SELECT 'Jack' GLOB 'j%';

SELECT 'Jack' LIKE 'j%';

This will give you:

[image:]

	The first statement returns 0(false) because the GLOB operator is case sensitive, so 'j' is not equal to 'J'. However, the second statement will return 1 (true) because the LIKE operator is case insensitive, so 'j' is equal to 'J'.

Other operators:

SQLite AND

A logical operator that combines one or more expressions. It will return true, only if all the expressions yield a "true" value. However, it will return false only if all the expressions yield a "false" value.

Example:

The following query will search for students that have
 StudentId
 > 5 and
 StudentName
 begins with the letter N, the returned students must meet the two conditions:

SELECT *

FROM Students

WHERE (
 StudentId
 > 5) AND (
 StudentName
 LIKE 'N%');

[image:]

As an output, in the above screenshot, this will give you only "Nancy". Nancy is the only student that meets both conditions.

SQLite OR

A logical operator that combines one or more expressions, so that if one of the combined operators yields true, then it will return true. However, if all the expressions yield false, it will return false.

Example:

The following query will search for students that have
 StudentId
 > 5 or
 StudentName
 begins with the letter N, the returned students must meet at least one of the conditions:

SELECT *

FROM Students

WHERE (
 StudentId
 > 5) OR (
 StudentName
 LIKE 'N%');

This will give you:

[image:]

As an output, in the above screenshot, this will give you the name of a student with having letter "n" in their name plus the student id having value>5.

As you can see the result is different than the query with AND operator.

SQLite BETWEEN

BETWEEN is used to select those values that are within a range of two values. For example, "
 X BETWEEN Y AND Z
 " will return true (1) if the value X is between the two values Y and Z. Otherwise, it will return false (0). "
 X BETWEEN Y AND Z
 " is equivalent to "
 X >= Y AND X <= Z
 ", X must be greater than or equal to Y and X is less than or equal to Z.

Example:

In the following example query, we will write a query to get students with Id value between 5 and 8:

SELECT *

FROM Students

WHERE
 StudentId
 BETWEEN 5 AND 8;

This will give only the students with ids 5, 6, 7, and 8:

[image:]

SQLite IN

Takes one operand and a list of operands. It will return true if the first operand value equal to one of the operands' value from the list. The IN operator returns true (1) if the list of operands contains the first operand value within its values. Otherwise, it will return false (0).

Like this: "
 col IN(x, y, z)
 ". This is equivalent to "
 (col=x) or (col=y) or (col=z)
 ".

Example:

The following query will select students with ids 2, 4, 6, 8 only:

SELECT *

FROM Students

WHERE
 StudentId
 IN(2, 4, 6, 8);

Like this:

[image:]

The previous query will give the exact result as the following query, because they are equivalent:

SELECT *

FROM Students

WHERE (
 StudentId
 = 2) OR (
 StudentId
 = 4) OR (
 StudentId
 = 6) OR (
 StudentId
 = 8);

Both the queries give the exact output. However, the difference between the two queries is, the first query we used the "IN" operator. In the second query, we used multiple "OR" operators.

The IN operator is equivalent to using multiple OR operators. The "
 WHERE
 StudentId
 IN(2, 4, 6, 8)
 " is equivalent to "
 WHERE (
 StudentId
 = 2) OR (
 StudentId
 = 4) OR (
 StudentId
 = 6) OR (
 StudentId
 = 8);
 "

Like this:

[image:]

SQLite NOT IN

"NOT IN" operand is the opposite of the IN operator. But with the same syntax; it takes one operand and a list of operands. It will return true if the first operand value not equal to one of the operands' value from the list. i.e., it will return true (0) if the list of operands doesn't contain the first operand. Like this: "
 col NOT IN(x, y, z)
 ". This is equivalent to "
 (col<>x) AND (col<>y) AND (col<>z)
 ".

Example:

The following query will select students with ids not equal to one of these Ids 2, 4, 6, 8:

SELECT *

FROM Students

WHERE
 StudentId
 NOT IN(2, 4, 6, 8);

Like this

[image:]

The previous query we give the exact result as the following query, because they are equivalent:

SELECT *

FROM Students

WHERE (
 StudentId
 <> 2) AND (
 StudentId
 <> 4) AND (
 StudentId
 <> 6) AND (
 StudentId
 <> 8);

Like this:

[image:]

In above screenshot,

We used multiple not equal operators "<>" to get a list of students, that are not equal to neither of the following Id's 2, 4, 6, nor 8. This query will return all other students other than these list of Id's.

SQLite EXISTS

The EXISTS operators don't take any operands; it takes only a SELECT clause after it. The EXISTS operator will return true (1) if there are any rows returned from the SELECT clause, and it will return false (0) if there are no rows at all returned from the SELECT clause.

Example:

In the following example, we will select the department's name, if the department id exists in the students table:

SELECT
 DepartmentName

FROM Departments AS d

WHERE EXISTS (SELECT
 DepartmentId
 FROM Students AS s WHERE
 d.DepartmentId
 =
 s.DepartmentId
);

This will give you:

[image:]

Only the three departments "
 IT, Physics, and Arts
 " will be returned. And the department name "
 Math
 " won't be returned because there is no student in that department, so the department Id doesn't exist in the students table. That's why the EXISTS operator ignored the "
 Math
 " department.

SQLite NOT

Reverses the result of the preceding operator that comes after it. For example:

	NOT BETWEEN – It will return true if BETWEEN returns false and vice versa.

	NOT LIKE – It will return true if LIKE returns false and vice versa.

	NOT GLOB – It will return true if GLOB returns false and vice versa.

	NOT EXISTS – It will return true if EXISTS returns false and vice versa.

Example:

In the following example, we will use the NOT operator with the EXISTS operator to get the departments' names that don't exist in the Students table, which is the reverse result of the EXISTS operator. So, the search will be done through
 DepartmentId
 that don't exist in the department table.

SELECT
 DepartmentName

FROM Departments AS d

WHERE NOT EXISTS (SELECT
 DepartmentId

FROM Students AS s

WHERE
 d.DepartmentId
 =
 s.DepartmentId
);

Output
 :

[image:]

Only the department "
 Math
 " will be returned. Because the "
 Math
 " department is the only department, that doesn't exist in the students table.

[bookmark: Limiting and Ordering]Limiting and Ordering

SQLite Order

SQLite Order is to sort your result by one or more expressions. To order the results set, you have to use the ORDER BY clause as following:

	First you have to specify the ORDER BY clause.

	The ORDER BY clause must be specified at the end of the query; only the LIMIT clause can be specified after it.

	Specify the expression to order the data with, this expression can be a column name or an expression.

	After the expression, you can specify an optional sort direction. Either DESC, to order the data descending or ASC to order the data ascending. If you didn't specify any of them, the data would be sorted ascending.

	You can specify more expressions using the "," between each other.

Example

In the following example, we will select all the students ordered by their names but in descending order, then by the department name in ascending order:

SELECT
 s.StudentName
 ,
 d.DepartmentName

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId

ORDER BY
 d.DepartmentName
 ASC ,
 s.StudentName
 DESC;

This will give you:

[image:]

	SQLite will first order all the students by their department name in ascending order

	Then for each department name, all the students under that department name will be displayed in descending order by their names

SQLite Limit:

You can limit the number of rows returned by your SQL query, by using the LIMIT clause. For example, LIMIT 10 will give you only 10 rows and ignore all the other rows.

In the LIMIT clause, you can select a specific number of rows starting from a specific position using the OFFSET clause. For example, "
 LIMIT 4 OFFSET 4
 " will ignore the
 first 4 rows, and returned 4 rows starting from the fifth rows, so you will get rows 5,6,7, and 8.

Note that the OFFSET clause is optional, you can write it like "
 LIMIT 4, 4
 " and it will give you the exact results.

Example
 :

In the following example, we will return only 3 students starting from the student id 5 using the query:

SELECT * FROM Students LIMIT 4,3;

This will give you only three students starting from the row 5. So it will give you the rows with
 StudentId
 5, 6, and 7:

[image:]

Removing duplicates

If your SQL query returns duplicate values, you can use the "
 DISTINCT
 " keyword to remove those duplicates and return on distinct values. You can specify more than one column after the DISTINCT key work.

Example:

The following query will return duplicate "department name values": Here we have duplicate values with names IT, Physics and Arts.

SELECT
 d.DepartmentName

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

This will give you duplicate values for the department name:

[image:]

Notice, how there are duplicate values for the department name. Now, we will use the DISTINCT keyword with the same query to remove those duplicates and get only unique values. Like this:

SELECT DISTINCT
 d.DepartmentName

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

This will give you only three unique values for the department name column:

[image:]

Aggregate

SQLite Aggregates are built-in functions defined in SQLite that will group multiple values of multiple rows into one value.

Here are the aggregates supported by SQLite:

SQLite AVG()

Returned the average for all the x values.

Example:

In the following example we will get the average mark students get from all the exams:

SELECT AVG(Mark) FROM Marks;

This will give you the value "18.375":

[image:]

These results come from the summation of all the mark values divided by their count.

COUNT() - COUNT(X) or COUNT(*)

Returns the total count of the number of times the x value appeared. And here are some options you can use with COUNT:

	COUNT(x): Counts only x values, where x is a column name. It will ignore NULL values.

	COUNT(*): Count all the rows from all the columns.

	COUNT (DISTINCT x): You can specify a DISTINCT keyword before the x which will get the count of the distinct values of x.

Example

In the following example, we will get the total count of Departments with COUNT(
 DepartmentId
), COUNT(*), and COUNT(DISTINCT
 DepartmentId
) and how they are different:

SELECT COUNT(
 DepartmentId
), COUNT(DISTINCT
 DepartmentId
), COUNT(*) FROM Students;

This will give you:

[image:]

As following:

	
COUNT(
 DepartmentId
) will give you the count of all the department id, and it will ignore the null values.

	
COUNT(DISTINCT
 DepartmentId
) give you distinct values of
 DepartmentId
 , which are only 3. Which are the three different values of department name. Notice that there are 8 values of department name in the student name. But only different three values which are Math, IT, and Physics.

	COUNT(*) counts the number of the rows in the students table which are 10 rows for 10 students.

GROUP_CONCAT() - GROUP_CONCAT(X) or GROUP_CONCAT(X,Y)

GROUP_CONCAT aggregate function concatenates multiples values into one value with a comma to separate them. It has the following options:

	GROUP_CONCAT(X): This will concatenate all the value of x into one string, with the comma "," used as a separator between the values. NULL values will be ignored.

	GROUP_CONCAT(X, Y): This will concatenate the values of x into one string, with the value of y used as a separator between each value instead of the default separator ','. NULL values also will be ignored.

	GROUP_CONCAT(DISTINCT X): This will concatenate all the distinct values of x into one string, with the comma "," used as a separator between the values. NULL values will be ignored.

GROUP_CONCAT(
 DepartmentName
) Example

The following query will concatenate all the department name's values from the students and the departments table into one string comma separated. So instead of returning a list of values, one value on each row. It will return only one value on one row, with all the values comma separated:

SELECT GROUP_CONCAT(
 d.DepartmentName
)

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

This will give you:

[image:]

This will give you the list of 8 departments' names values concatenated into one string comma separated.

GROUP_CONCAT(DISTINCT
 DepartmentName
) Example

The following query will concatenate the distinct values of the department name from the students and departments table into one string comma separated:

SELECT GROUP_CONCAT(DISTINCT
 d.DepartmentName
)

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

This will give you:

[image:]

Notice how the result is different than the previous result; only three values returned which are the distinct departments' names, and the duplicate values were removed.

GROUP_CONCAT(
 DepartmentName
 ,'&') Example

The following query will concatenate all the values of the department name column from the students and departments table into one string, but with the character '&' instead of comma as a separator:

SELECT GROUP_CONCAT(
 d.DepartmentName
 , '&')

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

This will give you:

[image:]

Notice how the character "&" is used instead of the default character "," to separate between the values.

SQLite MAX() & MIN()

MAX(X) returns you the highest value from the X values. MAX will return a NULL value if all the values of x are null. Whereas MIN(X) returns you the smallest value from the X values. MIN will return a NULL value if all the values of X are null.

Example

In the following query, we will use the MIN and MAX functions to get the highest mark and the lowest mark from the "
 Marks
 " table:

SELECT MAX(Mark), MIN(Mark) FROM Marks;

This will give you:

[image:]

SQLite SUM(x), Total(x)

Both of them will return the sum of all the x values. But they are different in the following:

	SUM will return null if all the values are null, but Total will return 0.

	TOTAL always returns floating point values. SUM returns an integer value if the all the x values are an integer. However, if the values are not an integer, it will return a floating point value.

Example

In the following query we will use SUM and total to get the sum of all the marks in the "
 Marks
 " tables:

SELECT SUM(Mark), TOTAL(Mark) FROM Marks;

This will give you:

[image:]

As you can see, TOTAL always returns a floating point. But SUM returns an integer value because the values in the "Mark" column might be in integers.

Difference between SUM and TOTAL example:

In the following query we will show the difference between SUM and TOTAL when they get the SUM of NULL values:

SELECT SUM(Mark), TOTAL(Mark) FROM Marks WHERE
 TestId
 = 4;

This will give you:

[image:]

Note that there are no marks for
 TestId
 = 4, so there are null values for that test. SUM returns a null value as a blank, whereas TOTAL returns 0.

[bookmark: Group BY]Group BY

The GROUP BY clause is used to specify one or more columns that will be used to group the rows into groups. The rows with the same values will be gathered (arranged) together into groups.

For any other column that is not included in the group by columns, you can use an aggregate function for it.

Example:

The following query will give you the total number of students present in each department.

SELECT
 d.DepartmentName
 , COUNT(
 s.StudentId
) AS
 StudentsCount

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId

GROUP BY d.
 DepartmentName
 ;

This will give you:

[image:]

The GROUPBY
 DepartmentName
 clause will group all the students into groups one for each department name. For each group of "department", it will count the students on it.

HAVING clause

If you want to filter the groups returned by the GROUP BY clause, then you can specify a "HAVING" clause with an expression after the GROUP BY. The expression will be used to filter these groups.

Example

In the following query, we will select those departments that have only two students on it:

SELECT
 d.DepartmentName
 , COUNT(
 s.StudentId
) AS
 StudentsCount

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId

GROUP BY d.
 DepartmentName

HAVING COUNT(
 s.StudentId
) = 2;

This will give you:

[image:]

The clause HAVING COUNT(
 S.StudentId
) = 2 will filter the groups returned and return only those groups that contain exactly two students on it. In our case, the Arts department has 2 students, so it is displayed in the output.

SQLite Query & Subquery

Inside any query, you can use another query either in a SELECT, INSERT, DELETE, UPDATE, or inside another subquery.

This nested query is called a subquery. We will see now some examples of using subqueries in the SELECT clause. However, in the Modifying Data tutorial, we will see how we can use subqueries with INSERT, DELETE, and UPDATE statement.

Using subquery in the FROM clause example

In the following query we will include a subquery inside the FROM clause:

SELECT

s.StudentName
 ,
 t.Mark

FROM Students AS s

INNER JOIN

(

SELECT
 StudentId
 , Mark

FROM Tests AS t

INNER JOIN Marks AS m ON
 t.TestId
 =
 m.TestId

) ON
 s.StudentId
 =
 t.StudentId
 ;

The query:

SELECT
 StudentId
 , Mark

FROM Tests AS t

INNER JOIN Marks AS m ON
 t.TestId
 =
 m.TestId

The above query is called a subquery here because it is nested inside the FROM clause. Notice that we gave it an alias name "t" so that we can refer to the columns returned from it in the query.

This query will give you:

[image:]

So in our case,

	
s.StudentName
 is selected from the main query that gives the name of students and

	
t.Mark
 is selected from the subquery; that gives marks obtained by each of these students

Using subquery in the WHERE clause example

In the following query we will include a subquery in the WHERE clause:

SELECT
 DepartmentName

FROM Departments AS d

WHERE NOT EXISTS (SELECT
 DepartmentId

FROM Students AS s

WHERE
 d.DepartmentId
 =
 s.DepartmentId
);

The query:

SELECT
 DepartmentId

FROM Students AS s

WHERE
 d.DepartmentId
 =
 s.DepartmentId

The above query is called a subquery here because it is nested in the WHERE clause. The subquery will return the
 DepartmentId
 values that will be used by the operator NOT EXISTS.

This query will give you:

[image:]

In above query, we have selected the department which has no student enrolled into it. Which is "Math" department
 overhere
 .

[bookmark: Set Operations -UNION,Intersect]Set Operations -UNION,Intersect

SQLite supports the following SET operations:

UNION & UNION ALL

It combine one or more result sets (a group of rows) returned from multiple SELECT statements into one result set.

UNION will return distinct values. However UNION ALL will not and will include duplicates.

Note that the column name will be the column name specified in the first SELECT statement.

UNION Example

In the following example, we will get the list of
 DepartmentId
 from the students table and the list of the
 DepartmentId
 from the departments table in the same column:

SELECT
 DepartmentId
 AS
 DepartmentIdUnioned
 FROM Students

UNION

SELECT
 DepartmentId
 FROM Departments;

This will give you:

[image:]

The query returns only 5 rows which are the distinct department id values. Notice the first value which is the null value.

SQLite UNION ALL Example

In the following example, we will get the list of
 DepartmentId
 from the students table and the list of the
 DepartmentId
 from the departments table in the same column:

SELECT
 DepartmentId
 AS
 DepartmentIdUnioned
 FROM Students

UNION ALL

SELECT
 DepartmentId
 FROM Departments;

This will give you:

[image:]

The query will return 14 rows, 10 rows from the students table, and 4 from the departments table. Note that, there are duplicates in the values returned. Also, note that the column name was the one specified in the first SELECT statement.

Now, let's see how UNION all will give different results if we replace UNION ALL with UNION:

SQLite INTERSECT

Returns the values exists in both the combined results set. Values that exist in one of the combined results set will be ignored.

Example

In the following query, we will select the
 DepartmentId
 values that exist in both the tables Students and Departments in the
 DepartmentId
 column:

SELECT
 DepartmentId
 FROM Students

Intersect

SELECT
 DepartmentId
 FROM Departments;

This will give you:

[image:]

The query returns only three values 1, 2, and 3. Which are the values that exist in both the tables.

However, the values null and 4 were not included because the null value exists in the students table only and not in the departments table. And the value 4 exists in the departments table and not in the students table.

That's why both the values NULL and 4 were ignored and not included in the returned values.

EXCEPT

Suppose if you have two lists of rows, list1 and list2, and you want the rows only from list1 that doesn't exist in list2, you can use "EXCEPT" clause. The EXCEPT clause compares the two lists and returns those rows that exist in list1 and doesn't exist in list2.

Example

In the following query, we will select the
 DepartmentId
 values that exist in the departments table and doesn't exist in the students table:

SELECT
 DepartmentId
 FROM Departments

EXCEPT

SELECT
 DepartmentId
 FROM Students;

This will give you:

[image:]

The query returns only the value 4. Which is the only value that exists in the departments table, and doesn't exist in the students table.

NULL handling

The "
 NULL
 " value is a special value in SQLite. It is used to represent a value that is unknown or missing value. Note that null value is totally different than "
 0
 " or blank "" value. Because 0 and the blank value is a known value, however, the null value is unknown.

NULL values require a special handling in SQLite, we will see now how to handle the NULL values.

Search for NULL values

You can't use the normal equality operator (=) to search the null values. For example, the following query searches for the students that have a null
 DepartmentId
 value:

SELECT * FROM Students WHERE
 DepartmentId
 = NULL;

This query won't give any result:

[image:]

Because the NULL value doesn't equal to any other value included a null value itself, that's why it didn't return any result.

	
However, in order to make the query work, you have to use the
 "IS NULL"
 operator to search for null values as following:

SELECT * FROM Students WHERE
 DepartmentId
 IS NULL;

This will give you:

[image:]

The query will return those students that have a null
 DepartmentId
 value.

	
If you want to get those values that are not null, then you have to use the "
 IS NOT NULL
 " operator like this:

SELECT * FROM Students WHERE
 DepartmentId
 IS NOT NULL;

This will give you:

[image:]

The query will return those students that don't have a NULL
 DepartmentId
 value.

[bookmark: Conditional results]Conditional results

If you have a list of values and you want to select any one of them based on some conditions. For that, the condition for that particular value should be true in order to be selected.

CASE expression will evaluate these list of conditions for all the values. If the condition is true, it will return that value.

For example, if you have a column "Grade" and you want to select a text value based on the grade value as following:

- "Excellent" if grade is higher than 85.

- "Very Good" if grade is between 70 and 85.

- "Good" if grade is between 60 and 70.

Then you can use the CASE expression to do that.

This can be used to define some logic in the SELECT clause so that you can select certain results depending on certain conditions like if statement for example.

The CASE operator can be defined with different syntaxes as following:

	
You can use different conditions:

CASE

WHEN condition1 THEN result1

WHEN condition2 THEN result2

WHEN condition3 THEN result3

…

ELSE
 resultn

END

	Or, you can use only one expression and put different possible values to choose from:

CASE expression

WHEN value1 THEN result1

WHEN value2 THEN result2

WHEN value3 THEN result3

…

ELSE
 restuln

END

Note that the ELSE clause is optional.

Example

In the following example, we will use the
 CASE
 expression with
 NULL
 value in the department Id column in the Students table to display the text 'No Department' as following:

SELECT

StudentName
 ,

CASE

WHEN
 DepartmentId
 IS NULL THEN 'No Department'

ELSE
 DepartmentId

END AS
 DepartmentId

FROM Students;

	
The CASE operator will check the value of the
 DepartmentId
 whether it is null or not.

	
If it is a NULL value, then it will select the literal value 'No Department' instead of the
 DepartmentId
 value.

	
If is not a null value, then it will select the value of the
 DepartmentId
 column.

This will give you the output as shown below:

[image:]

Common table expression

Common table expressions (CTEs) are subqueries that are defined inside the SQL statement with a given name.

It has an advantage over the subqueries because it is defined out of the SQL statement and will make the queries easier to read, maintain, and understand.

A common table expression can be defined by putting the WITH clause in front of a SELECT statements as following:

WITH
 CTEname

AS

(

SELECT statement

)

SELECT, UPDATE, INSERT, or update statement here FROM CTE

The "
 CTEname
 " is any name you can give for the CTE, you can use it to refer to it later. Note that, you can define SELECT, UPDATE, INSERT, or DELETE statement on CTEs

Now, let's see an example for how to use CTE in the SELECT clause.

Example

In the following example, we will define a CTE from a SELECT statement, and then we will use it later on another query:

WITH
 AllDepartments

AS

(

SELECT
 DepartmentId
 ,
 DepartmentName

FROM Departments

)

SELECT

s.StudentId
 ,

s.StudentName
 ,

a.DepartmentName

FROM Students AS s

INNER JOIN
 AllDepartments
 AS a ON
 s.DepartmentId
 =
 a.DepartmentId
 ;

In this query, we defined a CTE and gave it the name "
 AllDepartments
 ". This CTE was defined from a SELECT query:

SELECT
 DepartmentId
 ,
 DepartmentName

FROM Departments

Then after we defined the CTE we used it in the SELECT query which come after it.

Note that, Common table expressions doesn't affect the output of the query. It is a way to define a logical view or subquery in order to reuse them in the same query. Common table expressions are like a variable that you declare, and reuse it as a subquery. Only the SELECT statement affect the output of the query.

This query will give you:

[image:]

[bookmark: Advanced queries]Advanced queries

Advanced queries are those queries that contain complex joins, subqueries, and some aggregates. In the following section we will see an example of an advanced query:

Where we get the,

	Department's names with all the students for each department

	Students name separated with comma and

	Showing the department having at least three students in it

SELECT

d.DepartmentName
 ,

COUNT(
 s.StudentId
)
 StudentsCount
 ,

GROUP_CONCAT(
 StudentName
) AS Students

FROM Departments AS d

INNER JOIN Students AS s ON
 s.DepartmentId
 =
 d.DepartmentId

GROUP BY
 d.DepartmentName

HAVING COUNT(
 s.StudentId
) >= 3;

We added a JOIN clause to get the
 DepartmentName
 from the Departments table. After that we added a GROUP BY clause with two aggregate functions:

	"COUNT" to count the students for each department group.

	GROUP_CONCAT to concatenate students for each group with comma separated in one string.

	After the GROUP BY, we used the HAVING clause to filter the departments and select only those departments that have at least 3 students.

The result will be as following:

[image:]

Summary:

This was an introduction to writing SQLite queries and the basics of querying the database and how you can filter the returned data. You can now, write your own SQLite queries.

[bookmark: Chapter 7: Joins]Chapter 7: Joins

SQLite supports different types of SQL Joins, like INNER JOIN, LEFT OUTER JOIN, and CROSS JOIN. Each type of JOIN is used for the different situation as we will see in this tutorial.

[bookmark: Introduction to SQLite JOIN Clause]Introduction to SQLite JOIN Clause

When you are working on a database with multiple tables, you often need to get data from these multiple tables.

With the JOIN clause, you can link two or more tables or subqueries by joining them. Also, you can define by which column you need to link the tables and by which conditions.

Any JOIN clause must have the following syntax:

[image:]

Each join clause contains:

	A table or a subquery which is the left table; the table or the subquery before the join clause (on the left of it).

	JOIN operator – specify the join type (either INNER JOIN, LEFT OUTER JOIN, or CROSS JOIN).

	JOIN-constraint – after you specified the tables or subqueries to join, you need to specify a join constraint, which will be a condition on which the matching rows that match that condition will be selected depending on the join type.

Note that, for all the following examples, you have to run the sqlite3.exe and open a connection to the sample database as flowing:

Step 1)
 In this step,

	
Open My Computer and navigate to the following directory "
 C:\sqlite
 " and

	
Then open "
 sqlite3.exe
 ":

[image:]

Step 2)
 Open the database "
 TutorialsSampleDB.db
 " by the following command:

[image:]

Now you are ready to run any type of query on the database.

[bookmark: INNER JOIN]SQLite INNER JOIN

The INNER JOIN returns only the rows that match the join condition and eliminate all other rows that don't match the join condition.

[image:]

Example

In the following example, we will join the two tables "
 Students
 " and "
 Departments
 " with
 DepartmentId
 to get the department name for each student, as following:

SELECT

Students.StudentName
 ,

Departments.DepartmentName

FROM Students

INNER JOIN Departments ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ;

Explanation of code:

The INNER JOIN works as following:

	In the Select clause, you can select whatever columns you want to select from the two referenced tables.

	The INNER JOIN clause is written after the first table referenced with "From" clause.

	Then the join condition is specified with ON.

	Aliases can be specified for referenced tables.

	The INNER word is optional, you can just write JOIN.

Output:

[image:]

	
The INNER JOIN produces the records from both - the students and the department's tables that matches the condition which is "
 Students.DepartmentId
 =
 Departments.DepartmentId
 ". The unmatched rows will be ignored and not included in the result.

	
That's why only 8 students from 10 students were returned from this query with IT, math, and physics departments. Whereas the students "Jena" and "George" were not included, because they have a null department Id, which doesn't match the
 departmentId
 column from the departments table. As following:

[image:]

[bookmark: JOIN … USING]SQLite JOIN … USING

The INNER JOIN can be written using the "USING" clause to avoid redundancy, so instead of writing "ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ", you can just write "USING(
 DepartmentID
)".

You can use "JOIN .. USING" whenever the columns you will compare in the join condition are the same name. In such cases, there is no need to repeat them using the on condition and just state the column names and SQLite will detect that.

The Difference between the INNER JOIN and JOIN .. USING:

With "JOIN … USING" you don't write a join condition, you just write the join column which is in common between the two joined table, instead of writing table1 "INNER JOIN table2 ON table1.cola = table2.cola" we write it like "table1 JOIN table2 USING(cola)".

Example

In the following example, we will join the two tables "
 Students
 " and "
 Departments
 " with
 DepartmentId
 to get the department name for each student, as following:

SELECT

Students.StudentName
 ,

Departments.DepartmentName

FROM Students

INNER JOIN Departments USING(
 DepartmentId
);

Explanation

	
Unlike the previous example, we didn't write "
 ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ". We just wrote "
 USING(
 DepartmentId
)
 ".

	
SQLite infers the join condition automatically and compares the
 DepartmentId
 from both the tables - Students and Departments.

	You can use this syntax whenever the two columns you are comparing are with the same name.

Output

	This will give you the same exact result as the previous example:

[image:]

[bookmark: NATURAL JOIN]SQLite NATURAL JOIN

A NATURAL JOIN is similar to a JOIN...USING, the difference is that it automatically tests for equality between the values of every column that exists in both tables.

The difference between INNER JOIN and a NATURAL JOIN:

	
I
 n INNER JOIN, you have to specify a join condition which the inner join uses to join the two tables. Whereas in the natural join, you don't write a join condition. You just write the two tables' names without any condition. Then the natural join will automatically test for equality between the values for every column exists in both tables. Natural join infers the join condition automatically.

	In the NATURAL JOIN, all the columns from both tables with the same name will be matched against each other. For example, if we have two tables with two column names in common (the two columns exists with the same name in the two tables), then the natural join will join the two tables by comparing the values of the both columns and not just from one column.

Example

SELECT

Students.StudentName
 ,

Departments.DepartmentName

FROM Students

Natural JOIN Departments;

Explanation

	We don't need to write a join condition with column names (like we did in INNER JOIN). We didn't even need to write the column name once (like we did in JOIN USING).

	
The natural join will scan both the columns from the two tables. It will detect that the condition should be composed from comparing
 DepartmentId
 from both the two tables Students and Departments.

Output

[image:]

	The Natural JOIN will give you the same exact output as the output we got from the INNER JOIN and the JOIN USING examples. Because in our example the all three queries are equivalent. But in some cases, the output will be different from inner join than in a natural join. For example, if there are more tables with the same names, then the natural join will match all the columns against each other. However, the inner join will match only the columns in the join condition (more details on next section; the difference between the inner join and natural join).

[bookmark: LEFT OUTER JOIN]SQLite LEFT OUTER JOIN

SQL standard defines three types of OUTER JOINs: LEFT, RIGHT, and FULL but SQLite supports only the LEFT OUTER JOIN.

In LEFT OUTER JOIN, all the values of the columns you select from the left table will be included in the result of the query, so regardless of the value matches the join condition or not, it will be included in the result.

So if the left table has 'n' rows, the results of the query will have 'n' rows. However, for the values of the columns coming from the right table, if any value that doesn't match the join condition it will contain a "null" value.

So, you will get a number of rows equivalent to the number of rows in the left join. So that you will get the matching rows from both tables (like the INNER JOIN results), plus the un-matching rows from the left table.

Example

In the following example, we will try the "LEFT JOIN" to join the two tables "Students" and "Departments":

SELECT

Students.StudentName
 ,

Departments.DepartmentName

FROM Students -- this is the left table

LEFT JOIN Departments ON
 Students.DepartmentId
 =
 Departments.DepartmentId
 ;

Explanation

	LEFT JOIN syntax is the same as INNER JOIN; you write the LEFT JOIN between the two tables, and then the join condition comes after the ON clause.

	The first table after the from clause is the left table. Whereas the second table specified after the left join is the right table.

	The OUTER clause is optional; LEFT OUTER JOIN is the same as LEFT JOIN.

Output

[image:]

	
As you can see all the rows from the students table are included which are 10 students in total. Even if the forth and the last student, Jena and George
 departmentIds
 doesn't exist in the Departments table, they are included as well.

	
And in this cases, the
 departmentName
 value for both Jena and George will be "null" because the departments table doesn't have a
 departmentName
 that match their
 departmentId
 value.

Let's give the previous query using the left join a deeper explanation using Van diagrams:

[image:]

The LEFT JOIN will give all the students names from the students table even if the student has a department id that doesn't exist in the departments table. So, the query won't give you only the matching rows as the INNER JOIN, but will give you the extra part which have the
 unmatching
 rows from the left table which is the students table.

Note that any student name that has no matching department will have a "null" value for department name, because there is no matching value for it, and those values are the values in the un-matching rows.

[bookmark: CROSS JOIN]SQLite CROSS JOIN

A CROSS JOIN gives the Cartesian product for the selected columns of the two joined tables, by matching all the values from the first table with all the values from the second table.

So, for every value in the first table, you will get 'n' matches from the second table where n is the number of second table rows.

Unlike INNER JOIN and LEFT OUTER JOIN, with CROSS JOIN, you don't need to specify a join condition, because SQLite doesn't need it for the CROSS JOIN.

The SQLite will result in a logical results set by combining all the values from the first table with all the values from the second table.

For example, if you selected a column from the first table (
 colA
) and another column from the second table (
 colB
). The
 colA
 contains two value (1,2) and the
 colB
 also contains two values (3,4).

Then the result of the CROSS JOIN will be four rows:

	
Two rows by combining the first value from
 colA
 which is 1 with the two values of the
 colB
 (3,4) which will be (1,3), (1,4).

	
Likewise, two rows by combining the second value from
 colA
 which is 2 with the two values of the
 colB
 (3,4) which are (2,3), (2,4).

Example

In the following query we will try CROSS JOIN between the Students and Departments tables:

SELECT

Students.StudentName
 ,

Departments.DepartmentName

FROM Students

CROSS JOIN Departments;

Explanation

	
In the select clause, we just selected two columns "
 studentname
 " from the students table and the "
 departmentName
 " from the departments table.

	For the cross join, we didn't specify any join condition just the two tables combined with CROSS JOIN in the middle of them.

Output:

[image:]

As you can see, the result is 40 rows; 10 values from the students table matched against the 4 departments from the departments table. As following:

	Four values for the four departments from the departments table matched with the first student Michel.

	Four values for the Four departments from the departments table matched with the second student John.

	Four values for the Four departments from the departments table matched with the third student Jack.

.. and so on.

Summary

Using SQLite JOINs, you can link one or more table or subquery together to select columns from both of the tables or subqueries.

[bookmark: Chapter 8: INSERT, UPDATE, DELETE]Chapter 8: INSERT, UPDATE, DELETE

The data modification clauses in SQLite are INSERT, UPDATE, and DELETE statements. It is used for inserting new rows, updating existing values, or deleting rows from the database.

Note that, for all the following examples, you have to run the sqlite3.exe and open a connection to the sample database as flowing:

Step 1)
 In this step,

	
Open My Computer and navigate to the following directory "
 C:\sqlite
 " and

	
Then open "
 sqlite3.exe
 ":

[image:]

Step 2)
 Open the database "
 TutorialsSampleDB.db
 " by the following command:

.open
 TutorialsSampleDB.db

[image:]

Now you are ready to run any type of query on the database.

SQLite INSERT

To insert records in a table, you have to use the 'INSERT' clause. The INSERT clause syntax is as following:

[image:]

	After the INSERT clause, you should state which table you need to insert the values into.

	After the table name you write the list of columns, you want to insert the values into.

	You can ignore the columns name and don't write them.

	If you don't write the columns name, the values will be inserted into all the columns found in the table with the same order, the columns are defined in the table.

	After the VALUES clause, you should list the values to be inserted.

	Each INSERT clause inserts only one row. If you want to insert multiple rows, you should write multiple INSERT clauses, one for each row.

SQLite Insert Example

In the following example, we will insert 2 rows into the students table, one for each student:

INSERT INTO Students(
 StudentId
 ,
 StudentName
 ,
 DepartmentId
 ,
 DateOfBirth
)

VALUES(11, 'Ahmad', 4, '1997-10-12');

INSERT INTO Students VALUES(12, 'Aly', 4, '1996-10-12');

This should run successfully and there is no output for this:

[image:]

This will insert two students:

	
The first student with
 StudentId
 =11,
 StudentName
 = Ahmad,
 DepartmentId
 = 4, and
 DateOfBirth
 = 1997-10-12.

	
The second student with
 StudentId
 =12,
 StudentName
 = Aly,
 DepartmentId
 = 4, and
 DateOfBirth
 = 1996-10-12'.

In the first statement, we listed the columns names "
 StudentId
 ,
 StudentName
 ,
 DepartmentId
 ,
 DateOfBirth
 ".However, in the second statement, we didn't.

The four values "
 12, 'Aly', 4, '1996-10-12'
 " will be inserted in all the four columns of the Students table in the same order the columns are defined.

Now, let's verify that the two students were inserted into the Students table by running the following query:

SELECT * FROM Students;

Then you should see the two students returned from that query as following:

[image:]

SQLite Update

If you want to change any column value, you have to use the UPDATE clause. The UPDATE clause updates a table by changing a value for a specific column. The following is the syntax of the UPDATE clause:

[image:]

As following:

	After the "update clause", you should write the table name to update.

	You have to write "SET clause" which is used to write the column name to update and the value to be updated.

	You can update more than one column. You can use a comma between each line.

	You can specify a WHERE clause to specify some rows only. Only the rows that the expression evaluates to true are updated. If you didn't specify a WHERE clause, all the rows will be updated.

SQLite Update Example

In the following UPDATE statement, we will update the
 DepartmentId
 for the Student with
 StudentId
 = 6 to be 3:

UPDATE Students

SET
 DepartmentId
 = 3

WHERE
 StudentId
 = 6;

This should run successfully and you shouldn't get any output:

[image:]

In the UPDATE clause, we specified that we want to update the table Students.

	
In the WHERE clause, we filtered all the students to select only the row for
 StudentId
 = 6.

	The SET clause will update the value of the Department Id for the selected students to be 3.

Now, let's verify that the student with ID 6 is updated, by running the following command:

SELECT * FROM Students WHERE
 StudentId
 = 6;

You should now see that the Department Id value is now 3 as following:

[image:]

SQLite Delete

If you want to delete a row or more in SQLite, you have to use the DELETE clause. DELETE clause has the following syntax:

[image:]

	
You have to write a table name after the DELETE FROM clause, from which you want to delete records. (
 Note:
 that the
 DELETE clause
 is used to delete some records from a table or delete all the records and it won't delete the table itself. However, the
 DROP clause
 is used to delete the entire table with all the records on it.)

	If you write the DELETE clause like this "DELETE FROM guru", this will delete all the records from the table "guru".

	You can specify a WHERE condition with an expression if you want to delete some specific rows. Only the rows for which the expression evaluates to true will be delete. For example, "DELETE FROM guru WHERE id > 5" – this will delete only the records that have id larger than 5.

Example

In the following statement, we will delete two students with
 StudentId
 11 and 12:

DELETE FROM Students WHERE
 StudentId
 = 11 OR
 StudentId
 = 12;

The expression "
 StudentId
 = 11 OR
 StudentId
 = 12
 " will be true for only students with Ids 11 and 12. So the DELETE clause will be applied on both and will delete them only.

This command should run successfully and you shouldn't get any output as following:

[image:]

You can verify that the two students were deleted, by selecting all the records from the Students table as following:

SELECT * FROM Students;

You shouldn't see the two students with ids 11 and 12 as following:

[image:]

[bookmark: Conflict clause]SQLite Conflict clause

Suppose you have a column that has one of the following column constraints: UNIQUE, NOT NULL, CHECK, or PRIMARY KEY. And then you tried to insert or update a value on that column with a value that conflicts with this constraint.

For example, if a column has a UNIQUE constraint and you tried to insert a value that already exist (a duplicate value), which conflicts with the UNIQUE constraint. Then the CONFLICT clause let you choose what to do in such cases to resolve this conflict.

Before we continue explaining how CONFLICT clause resolve the conflict. You should understand what is a database transaction.

Database Transaction:

The term database transaction is a list of SQLite operations (insert or update or delete). The database transaction must be executed as one unit, either all of the operations executed successfully or not at all. All the operations will be cancelled if one of them failed to execute.

Example for a database transaction:

The transaction for transferring money from one bank account to another will involve a couple of activities. This transaction operation includes the withdrawal of money from the first account, and depositing it into another account. This transaction must fully completed or fully cancelled and not to fail halfway.

Here is the list of five resolutions you can choose in the CONFLICT clause:

	
ROLLBACK
 – this will roll back the transaction in which the current SQLite statement that has the conflict (it will cancel the whole transaction). For example, if you are trying to update 10 rows, and the fifth row has a value that conflict with a constraint, then no rows will be updated, the 10 rows will stay the same. An error will be thrown.

	
ABORT
 – this will abort (cancel) the current SQLite statement only that has the conflict and the transaction won't be cancelled. For example, if you are trying to update 10 rows, and the fifth row has a value that conflict with a constraint, then only the fifth value won't be updated but the other 9 rows will be updated. An error will be thrown.

	
FAIL –
 aborts the current SQLite statement that has the conflict. However, the transaction won't continue but the previous changes made to rows prior to the row that has the conflict will be committed. For example, if you are trying to
 update 10 rows, and the fifth row has a value that conflict with a constraint, then only the 4 rows will be updated and the other won't. An error will be thrown.

	
IGNORE
 – this will skip the row that contains the constraint violation and continue processing the other following rows of the SQLite statement. For example, if you are trying to update 10 rows, and the fifth row has a value that conflict with a constraint, then only the 4 rows will be updated and the other won't. It won't proceed further to update other rows and stop at the row that has the conflict value. No error will be thrown.

	
REPLACE
 – it depends on the type of the constraint that has the violation:

	When there is a constraint violation for the UNIQUE or PRIMARY KEY constraint. The REPLACE will replace the row that causes the violation with the new inserted or updated row.

	When there is a NOT NULL constraint violation, the REPLACE clause will replace the NULL value with the default value of that column. If the column doesn't have a default value, then SQLite will abort the statement (statement will be cancelled)

	IF the CHECK constraint violation occurs, the clause will be aborted.

Note:
 The above 5 resolutions are options for how do you want to resolve the conflict. It may not be necessary what is applicable to resolve one conflict is applicable to resolve other types of conflicts.

How to declare the CONFLICT clause

You can declare the ON CONFLICT clause when you define a constraint for a column definition within the CREATE TABLE clause. Using the following syntax:

[image:]

You can choose one from the five resolutions to resolve the conflict as explained before.

ON CONFLICT IGNORE Example

Step 1)
 Create a new table subject as following:

CREATE TABLE [Subjects] (

[
 SubjectId
] INTEGER NOT NULL PRIMARY KEY ON CONFLICT IGNORE,

[
 SubjectName
] NVARCHAR NOT NULL

);

Notice that we have defined a PRIMARY KEY constraint on the
 SubjectId
 column. The primary key constraint won't allow two duplicated values to be inserted into the
 SubjectId
 column so that all the values in that column should be unique. Also, notice that we choose a conflict resolution to be "
 IGNORE
 ".

The command should run successfully and you shouldn't get any errors:

[image:]

Step 2)
 Now, let's insert some values into the new table subjects, but with a value that violates the primary key constraint:

INSERT INTO Subjects VALUES(1, 'Algebra');

INSERT INTO Subjects VALUES(2, 'Database Course');

INSERT INTO Subjects VALUES(2, 'Data Structures');

INSERT INTO Subjects VALUES(4, 'Algorithms');

In these INSERT statement, we tried to insert two courses with the same Primary Key Subject id 2, which is a violation for the primary key constraint.

The commands should run fine and you shouldn't get any errors. As following:

[image:]

Step 3)
 Select all the subjects from the table as following:

SELECT * FROM Subjects;

This will give you the list of subjects:

[image:]

Notice that only three subjects were inserted "
 Algebra, Database Course, and Algorithms
 " instead of 4 rows.

The row that has the value that violates the primary key constraint, which is "Data Structures" was ignored and not inserted. However, SQLite continues executing other statement after that row.

Step 4)
 DELETE the table subjects to create it again with a different ON CONFLICT clause for the following example by running the following command:

DROP TABLE Subjects;

The drop command deletes the entire table. The table Subjects now doesn't exist.

ON CONFLICT REPLACE Example

Step 1)
 Create a new table subject as following:

CREATE TABLE [Subjects] (

[
 SubjectId
] INTEGER NOT NULL PRIMARY KEY ON CONFLICT REPLACE,

[
 SubjectName
] NVARCHAR NOT NULL

);

Notice that we defined a PRIMARY KEY constraint on the
 SubjectId
 column. The primary key constraint won't allow two duplicated values to be inserted into the
 SubjectId
 column so that all the values in that column should be unique.

Also, notice that we choose a conflict resolution option to be "
 REPLACE
 ". The command should run successfully and you shouldn't get any errors:

[image:]

Step 2)
 Now, let's insert some values into the new table Subjects, but with a value that violates the primary key constraint:

INSERT INTO Subjects VALUES(1, 'Algebra');

INSERT INTO Subjects VALUES(2, 'Database Course');

INSERT INTO Subjects VALUES(2, 'Data Structures');

INSERT INTO Subjects VALUES(4, 'Algorithms');

In these INSERT statement, we tried to insert two courses with the same Primary Key Subject id 2, which is a violation for the primary key constraint.

The commands should run fine and you shouldn't get any errors. As following:

[image:]

Step 3)
 Select all the subjects from the table as following:

SELECT * FROM Subjects;

This will give you the list of subjects:

[image:]

Notice that only three subjects were inserted "
 Algebra, Data Structures, and Algorithms
 " whereas we tried to inserted 4 rows.

The row that has the value that violates the primary key constraint, which is "
 Data Structures
 " replaced the value "
 Database Course
 " as following:

	The first two insert statements run fine with no problem. Two subjects Algebra, and Database Course will be inserted with ids 1, 2.

	
When SQLite tries to run the third insert statement with
 SubjectId
 2 and
 SubjectName
 "
 Data Structures
 ", it finds out that there is already a subject with
 SubjectId
 = 2. Which is a violation for the primary key constraint defined on the
 SubjectId
 column.

	
SQLite will choose a REPLACE resolution for this conflict. It replaces the value that already exists in the subjects table with the new value from the insert statement. So, the "
 Database Course
 "
 SubjectName
 will be replaced with "
 Data Structures
 "
 SubjectName
 .

Summary:

INSERT, UPDATE, and DELETE clauses are used to modify the data in SQLite database. The CONFLICT clause is a powerful clause to resolve any conflict between the data and the data to modify.

[bookmark: Chapter 9: Index, Trigger]Chapter 9: Index, Trigger & View

In the daily use of SQLite, you will need some administrative tools over your database. You can also use them to make querying the database more efficiently by creating indexes, or more reusable by creating views.

SQLite View

Views are very similar to tables. But Views are logical tables; they are not stored physically like tables. A view is composed of a select statement.

You can define a view for your complex queries, and you can reuse these queries whenever you want by calling the view directly instead of rewriting the queries again.

CREATE VIEW statement

To create a view on a database, you can use the CREATE VIEW statement followed by the view name, and then put the query you want after that.

Example:

In the following example we will create a View with the name "
 AllStudentsView
 " in the sample database "
 TutorialsSampleDB.db
 " as following:

Step 1)
 Open My Computer and navigate to the following directory "
 C:\sqlite
 " and then open "
 sqlite3.exe
 ":

[image:]

Step 2)
 Open the database
 "
 TutorialsSampleDB.db
 " by the following command:

[image:]

Step 3)
 Now we will create the View using the following command:

CREATE VIEW
 AllStudentsView

AS

SELECT

s.StudentId
 ,

s.StudentName
 ,

s.DateOfBirth
 ,

d.DepartmentName

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

There should be no output from the command like this:

[image:]

Step 4)
 To ensure that the view is created, you can select the list of views in the database by running the following command:

SELECT name FROM
 sqlite_master
 WHERE type = 'view';

You should see the view "
 AllStudentsView
 " is returned:

[image:]

Step 5)
 Now our view is created, you can use it like a normal table something like this:

SELECT * FROM
 AllStudentsView
 ;

This command will query the view "
 AllStudents
 " and select all the rows from it as shown in the following screenshot:

[image:]

Temporary Views

Temporary views are temporary for the current database connection used to create it. Then if you close the database connection all the temporary views will be deleted automatically. Temporary views are created using one of the following commands:

	CREATE TEMP VIEW, or

	CREATE TEMPORARY VIEW.

Temporary views are useful if you want to do some operations for that time being and don't need it to be a permanent view. So, you just create a temporary view, then do your processing using that view. Later when you close the connection with the database, it will be deleted automatically.

Example:

In the following example, we will open a database connection, then create a temporary view.

After that, we will close that connection, and we will check whether the temporary view still exists or not.

Step 1)
 Open sqlite3.exe from the directory "
 C:\sqlite
 " as explained before.

Step 2)
 Open a connection to the database "
 TutorialsSampleDB.db
 " by running the following command:

.open
 TutorialsSampleDB.db

Step 3)
 Write the following command that will create a temp view "
 AllStudentsTempView
 " :

CREATE TEMP VIEW
 AllStudentsTempView

AS

SELECT

s.StudentId
 ,

s.StudentName
 ,

s.DateOfBirth
 ,

d.DepartmentName

FROM Students AS s

INNER JOIN Departments AS d ON
 s.DepartmentId
 =
 d.DepartmentId
 ;

[image:]

Step 4)
 Ensure that the temp view "
 AllStudentsTempView
 " is created by running the following command:

SELECT name FROM
 sqlite_temp_master
 WHERE type = 'view';

[image:]

Step 5)
 Close sqlite3.exe and open it again.

Step 6)
 Open a connection to the database "
 TutorialsSampleDB.db
 " by the following command:

.open
 TutorialsSampleDB.db

Step 7)
 Run the following command to get the list of temporary view created on the database:

SELECT name FROM
 sqlite_temp_master
 WHERE type = 'view';

You shouldn't see any output as the temp view we created is deleted when we closed the database connection in the previous step. Otherwise, as long as you keep the connection with the database opened, you would be able to see the temporary view with data.

[image:]

Notes:

	You cannot use the statements INSERT, DELETE, or UPDATE with views, only you can use "select from views" command as shown in step5 in the CREATE View example.

	To delete a VIEW, you can use the "DROP VIEW" statement:

DROP VIEW
 AllStudentsView
 ;

To ensure that the view is deleted, you can run the following command which gives you the list of views in the database:

SELECT name FROM
 sqlite_master
 WHERE type = 'view';

You will find no views returned as the view was deleted, as following:

[image:]

SQLite Index

If you have a book, and you want to search for a keyword on that book. You will search for that keyword in the index of the book. Then you will navigate to the page number for that keyword to read more information about that keyword.

However, if there is no index on that book nor page numbers, you will scan the whole book from the beginning to the end until you find the keyword you are searching for. And this is very difficult especially when you have an index and very slow process to search for a keyword.

Indexes in SQLite (and the same concept valid for other database management systems as well) works in the same way like the indexes found in the back of the books.

When you search for some rows in an SQLite table with search criteria, SQLite will search on all the rows of the table until it finds the rows you are looking for that matches the search criteria. And that process becomes very slow when you have larger tables.

Indexes will speed up search queries for data and will help to perform data retrieving from tables. Indexes are defined on the table columns.

Improving performance with Indexes:

Indexes can improve the performance of searching data on a table. When you create an index on a column, SQLite will create a data structure for that index where each field value has a pointer to the whole row where the value belongs.

Then, if you run a query with a search condition on a column that is part of an index, SQLite will look up for the value on the index first. SQLite won't scan the whole table for it. Then it will read the location where the value points for the table row. SQLite will locate the row on that location and retrieve it.

However, if the column you are searching for, is not a part of an index, SQLite will perform a scan for the column values to find the data that you are looking for. It will be usually a slower process if there is no index.

Imagine a book with no index on it and you need to search for a specific word. You will scan the whole book from the first page to the last page looking for that word. However, if you have an index on that book, you will look for the word on it first. Get the page number where it is located, and then navigate to it. Which will be much faster than scanning the whole book from cover to cover.

SQLite CREATE INDEX

To create an index on a column, you should use the command CREATE INDEX. And you should define it as following:

	You have to specify the name of the index after the CREATE INDEX command.

	After the name of the index, you have to put the keyword "ON", followed by the table name in which the index will be created.

	Then the list of column names that are used for the index.

	You can use one of the following keywords "ASC" or "DESC" after any column name to specify a sort order used to order the index data.

Example:

In the following example, we will create an index
 "
 StudentNameIndex
 " on the students table in the "
 Students
 " database as following:

Step 1)
 Navigate to the folder "
 C:\sqlite
 " as explained before.

Step 2)
 Open sqlite3.exe.

Step 3)
 Open the database "
 TutorialsSampleDB.db
 " by the following command:

.open
 TutorialsSampleDB.db

Step 4)
 Create a new index "
 StudentNameIndex
 " using the following command:

CREATE INDEX
 StudentNameIndex
 ON Students(
 StudentName
);

You should see no output for this:

[image:]

Step 5)
 To ensure that the index was created you can run the following query, which give you the list of indexes created in the table Students:

PRAGMA
 index_list
 (Students);

You should see the index we just created returned:

[image:]

Notes:

	Indexes can be created not only based on columns but expressions too. Something like this:

CREATE INDEX
 OrderTotalIndex
 ON
 OrderItems
 (
 OrderId
 , Quantity*Price);

The "
 OrderTotalIndex
 " will be based on the
 OrderId
 column and also on the multiplication of Quantity column value and the Price column value. So any query for "
 OrderId
 " and "Quantity*Price" will be efficient as the query will use the index.

	If you specified a WHERE clause in the CREATE INDEX statement, the index will be a partial index. In this case, there will be entries in the index for only the rows that match the conditions in the WHERE clause. For example, in the following index:

	

CREATE INDEX
 OrderTotalIndexForLargeQuantities
 ON
 OrderItems
 (
 OrderId
 , Quantity*Price)

WHERE Quantity > 10000;

(In above example, the index will be a partial index as there is a WHERE clause specified. In this case, the index will be applied only to those orders that have quantity value larger than 10000. Note that, this index is called a partial index because of the WHERE clause, not the expression used on it. However, you can use the expressions with normal indexes.)

	You can use CREATE UNIQUE INDEX statement instead of CREATE INDEX to prevent duplicate entries for the columns and thus all the values for the indexed column will be unique.

	To delete an index, use the DROP INDEX command followed by the index name to delete.

SQLite Trigger

Introduction to SQLite Trigger

Triggers are automatic predefined operations executed when a specific action occurs on a database table. A trigger can be defined to be fired whenever one of the following actions occur on a table:

	INSERT into a table.

	DELETE rows from a table.

	UPDATE one of the table columns.

SQLite supports FOR EACH ROW trigger so that, the predefined operations in the trigger will be executed for all the rows involved in the actions occurred on the table (whether it is insert, delete, or update).

SQLite CREATE TRIGGER

To create a new TRIGGER, you can use the CREATE TRIGGER statement as following:

	After the CREATE TRIGGER, you should specify a trigger name.

	
After the trigger name, you have to specify, when exactly the trigger name should be executed. You have three options:

	BEFORE – the trigger will be executed before the INSERT, UPDATE, or the delete statement specified.

	After – the trigger will be executed after the INSERT, UPDATE, or the delete statement specified.

	INSTEAD OF – It will replace the action happened which fired the trigger with the statement specified in the TRIGGER. INSTEAD OF trigger is not applicable with tables, only with views.

	Then, you have to specify the type of action, the trigger will fire when it happens. Either DELETE, INSERT, or UPDATE.

	You can choose an optional column name so that the trigger won't fire unless the action happened on that column.

	Then you have to specify the table name in which the trigger will be created.

	Inside the body of the trigger, you should specify the statement that should be executed for each row when the trigger is fired.

Triggers will be activated (fired) only depending on the type of the statement specified on the create trigger command. For example:

	The BEFORE INSERT trigger will be activated (fired) before any insert statement.

	The AFTER UPDATE trigger will be activated (fired) after any update statement, ... and so on.

Inside the trigger, you can refer to the newly inserted values using the "new" keyword. Also, you can refer to the deleted or updated values using the old keyword. As following:

	Inside INSERT triggers – new keyword can be used.

	Inside UPDATE triggers – new and old keywords can be used.

	Inside DELETE triggers – old keyword can be used.

Example

In the following we will create a trigger that will fire before inserting a new student into the "
 Students
 " table.

It will log the newly inserted student into the table "
 StudentsLog
 " with an automatic time stamp for the current date time when the insert statement happened. As following:

Step 1)
 Navigate to the directory "
 C:\sqlite
 " and run sqlite3.exe.

Step 2)
 Open the database "
 TutorialsSampleDB.db
 " by running the following command:

.open
 TutorialsSampleDB.db

Step 3)
 create the trigger "
 InsertIntoStudentTrigger
 " By running the following command:

CREATE TRIGGER
 InsertIntoStudentTrigger

BEFORE INSERT ON Students

BEGIN

INSERT INTO
 StudentsLog
 VALUES(
 new.StudentId
 ,
 datetime
 (), 'Insert');

END;

The function
 "
 datetime
 ()"
 will give you the current date time stamp when the insert statement happened. So that we can log the insert transaction with automatic time stamps added to each transaction.

The command should run successfully, and you get no output:

[image:]

The trigger "
 InsertIntoStudentTrigger
 " will fire each time you insert a new student in the students table. The "
 new
 " keyword refers to the values that will be inserted. For example, the "
 new.StudentId
 " will be the student id that will be inserted.

Now, we will test how the trigger behaves when we insert a new student.

Step 4)
 Write the following command that will insert a new student in the students table:

INSERT INTO Students VALUES(11, 'guru11', 1, '1999-10-12');

Step 5)
 Write the following command which will select all the rows from the "
 StudentsLog
 " table:

SELECT * FROM
 StudentsLog
 ;

You should see a new row returned for the new student we just inserted:

[image:]

This row was inserted by the trigger before inserting the new student with id 11.

In this example we used the trigger "
 InsertIntoStudentTrigger
 " we created, to log any insert transactions in the table "
 StudentsLog
 " automatically. The same way you can log any update, or delete statements.

Preventing unintended updates with triggers:

Using BEFORE UPDATE triggers on a table, you can prevent the update statements on a column based on an expression.

Example

In the following example, we will prevent any update statement from updating the "
 studentname
 " column in the Students table:

Step 1)
 Navigate to the directory "
 C:\sqlite
 " and run sqlite3.exe.

Step 2)
 Open the database "
 TutorialsSampleDB.db
 " by running the following command:

.open
 TutorialsSampleDB.db

Step 3)
 Create a new trigger "
 preventUpdateStudentName
 " on the table "
 Students
 " by running the following command

CREATE TRIGGER
 preventUpdateStudentName

BEFORE UPDATE OF
 StudentName
 ON Students

FOR EACH ROW

BEGIN

SELECT RAISE(ABORT, 'You cannot update
 studentname
 ');

END;

The "
 RAISE
 " command will raise an error with an error message "
 You cannot update
 studentname
 ", and then it will prevent the update statement from executing.

Now, we will verify that the trigger works well, and it prevents any update for the
 studentname
 column.

Step 4)
 Run the following update command, which will update the student name "
 Jack
 " to be "
 Jack1
 ".

UPDATE Students SET
 StudentName
 = 'Jack1' WHERE
 StudentName
 = 'Jack';

You should get the error message we specified on the trigger, saying that "
 You cannot update
 studentname
 " as following:

[image:]

Step 5)
 Run the following command, which will select the list of student's names from the students table.

SELECT
 StudentName
 FROM Students;

You should see that the student name "Jack" still the same and it doesn't change:

[image:]

Summary:

Views, Indexes, and Triggers are very powerful tools for administrating an SQLite database. You can track the data modification operations when they happen on a table. You can also optimize the database data retrieval operation by creating indexes.

[bookmark: Chapter 10: SQLite Functions]Chapter 10: SQLite Functions

SQLite equipped by default, with a list of built-in functions within the SQLite library. You can also add some other custom functions using the C language to extend the core functions.

Note that, for all the following examples, you have to run the sqlite3.exe and open a connection to the sample database as flowing:

Step 1)
 In this step,

	
Open My Computer and navigate to the following directory "
 C:\sqlite
 " and then

	
open "
 sqlite3.exe
 ":

[image:]

Step 2)
 Open the database "
 TutorialsSampleDB.db
 " by the following command:

[image:]

Now you are ready to run any query and try any queries used in the following sections.

[bookmark: Finding the LENGTH of a string]Finding the LENGTH of a string

To find the length of a string use the LENGTH(X) where X is a string value. If X is a null value, the length function will return a null value.

You can also use the length function with numeric values to get the length of the numeric value.

Example

In the following example, we will try the LENGTH function with values as following:

SELECT LENGTH('A string'), LENGTH(NULL), LENGTH(20), LENGTH(20.5);

This will give you:

[image:]

The result is as following:

	LENGTH('A string') returns 8 which is the length of the string "A string".

	LENGTH(NULL) returns null.

	LENGTH(20) returns 2, because 20 is 2 lengths long.

	LENGTH(20.5) returns 4; The floating point "." is counted as a character, so you will have four characters – the 3 characters which are the length of the numbers. Plus one more character for the floating point ".".

[bookmark: UPPER Function and LOWER Function]Changing case with UPPER Function and LOWER Function

UPPER(X) will return the same x string, but it will represent all the string characters in capital characters.

LOWER(X) will return the same x string, but it will represent all the string characters in small characters.

UPPER and LOWER returns null values if you pass a null value to them.

If you pass numeric values to UPPER or LOWER, both of them will return the exact numeric value.

Example

SELECT UPPER('a string'), LOWER('A STRING'), UPPER(20), LOWER(20), UPPER(NULL), LOWER(NULL);

This will give you:

[image:]

The result is as following:

	
UPPER('a string') returns the string "
 a string
 " in capital letter representation "
 A STRING
 ".

	
LOWER('A STRING') returns the string "
 A STRING
 " in small letter representation "
 a string
 ".

	UPPER(20), LOWER(20) returns the same number, as they don't have any effect on numbers.

	UPPER(NULL), LOWER(NULL) returns null because we passed a null value to them.

SQLite SUBSTR Function

SUBSTR function returns a specific number of string, starting from a specific position. You can pass three operands to the function, like this "
 SUBSTR(X,Y,Z)
 " as following:

	X is the string literal or the string column to parse. You can pass a literal value (static value) or a column name, and in this case, the value will be read from the column's values.

	Y is the starting position to subtract the string starting from it.

	Z is the number of characters to parse starting from the specific position Y. This number is optional you can ignore it, and in this case, SQLite will subtract the string starting from the position Y tell the end of the string.

Example

In the following query, we will use the SUBSTR function to get the 4 characters starting from the second character from the students' names:

SELECT
 StudentName
 , SUBSTR(
 StudentName
 , 2, 4), SUBSTR(
 StudentName
 , 2)

FROM Students;

This will give you:

[image:]

	
SUBSTR(
 StudentName
 , 2, 4)
 substring the string "
 StudentName
 " starting from the second character, and return the next 4 characters.

	
However, in the function
 SUBSTR(
 StudentName
 , 2)
 we didn't specify a number for the characters to be returned, that's why SQLite returned all the remaining characters in the "
 StudentName
 " starting from the second position.

Changing parts of a string with SQLite REPLACE

REPLACE is used to replace each string occurred on another string with a string.

REPLACE(X, Y, Z) – X is the input string literal or column. Y is the string to replace with the string Z. Note that it will replace any occurrence of the string Y with Z, not just one.

Example

In the following query, we will replace all the occurrence of the string "
 xx
 " with the string "
 SQLite
 ":

SELECT REPLACE('xx is very lightweight, xx is easy to learn', 'xx', 'SQLite');

This will give you

[image:]

	
The replace function replaced all the strings "
 xx
 " with the string "
 SQLite
 ".

	
So the output will be
 "SQLite is very lightweight, SQLite is easy to learn".

[bookmark: TRIM Function]Trimming blank spaces with TRIM Function

TRIM remove blank spaces from the beginning or from the end of the string. It won't remove any spaces in the middle of the string, only from the beginning or from the end.

Example:

In the following query, we will use the TRIM function to remove the blank spaces from the beginning and the end of the string.

Note that, the concatenation operator "||" is used to add an extra ";" to the end of the string. To show you that the empty spaces were removed in the black window.

SELECT TRIM(' SQLite is easy to learn ') || ';';

This will give you:

[image:]

	Notice how the blank spaces was removed from the start and from the end of the string, replaced by ' ; ' at the end.

Reading absolute values with ABS Function

The ABS function returns the absolute value of a numeric value. The absolute value is the numeric value without any positive or negative sign. ABS(X) returns a value depending on the value of X as following:

	The absolute value of X if X is a numeric value.

	A NULL value if X is a null value.

	"0.0" value if X is a string.

Example

In the following query, we will try to get the absolute value of a string, a number, and a null value using the ABS function:

SELECT ABS(-2), ABS(+2), ABS('a string'), ABS(null);

This will give you:

[image:]

The results as following:

	ABS(-2), ABS(+2) returns 2, because 2 is absolute value for both "-2" and "+2".

	ABS('a string') returns "0.0" because you passed a string value not a numeric value.

	ABS(null) returns null because you passed a null value for it.

Rounding values with ROUND Function

Decimal numbers are numbers with floating point "." on it, for example, "20.5", "8.65". The part on the left of the floating point is called the integer part, and the part on the right of the floating point is the decimal part.

Integer numbers are those numbers without any floating point on it. For example, "20", "8".

ROUND(X) converts the decimal values or columns X to be integer numbers only. The integer part which is the part on the left of the decimal point will be returned, and all the digits to the right of the decimal point will be removed.

Example:

In the following query we will try the ROUND function with different options:

SELECT ROUND(12.4354354), ROUND(12.4354354, 2), ROUND(NULL), ROUND('a string');

This will give you:

[image:]

The result as following:

	ROUND(12.4354354) – returns the value "12", because you didn't specify the number of digits. So, SQLite removed all the decimal part.

	ROUND(12.4354354, 2) – returns the value "12.44", because you specified only 2 digits to round which are the two digits from the right of the decimal point.

	ROUND(NULL) – returns null because you passed a null value to it.

	ROUND('a string') – returns the value "0.0" because you passed a string value to it.

[bookmark: TYPEOF Function]Finding the data type of an expression with TYPEOF Function

If you want to find out the type of a column or a literal value, you can use the function TYPEOF to do that.

The TYPEOF(X) function, from its name, returns the datatype of the expression X. It returns a string value indicating the data type of X. It returns the value based on the datatypes, whether it is a "NULL" value, real, text, integer, ..., etc.

Example

In the following query we will try the TYPEOF function with different types of literal values:

SELECT TYPEOF(null), TYPEOF(12), TYPEOF(12.5), TYPEOF('a string');

This will give you:

[image:]

The results returned is as following:

	TYPEOF(null) – returns null because you passed a null value to it.

	TYPEOF(12) – return an integer as 12 is an integer number.

	TYPEOF(12.5) – returns REAL as 12.5 is a real number.

	TYPEOF('a string') – returns text as "a string" is a text.

[bookmark: SQLite LAST_INSERT_ROWID]Finding the last inserted record with SQLite LAST_INSERT_ROWID

SQLite assigns an integer key (Id) for all the rows in all the tables. This number is used to uniquely identify these rows.

When you INSERT a new row on a table, SQLite will assign the
 rowid
 a unique value.

If the table has a primary key declared on one column only and that column is of data type INTEGER, then this column value will be used as
 rowid
 .

The LAST_INSERT_ROWID() function returns the ROW_ID of the last inserted row in any table in the database. Note that it doesn't take any operand.

Example

In the following example we will run the function LAST_INSERT_ROWID() as following:

SELECT LAST_INSERT_ROWID();

This will give you:

[image:]

	LAST_INSERT_ROWID() return 0 because, there are no rows inserted into any tables in the current database connection.

Now, let's insert a new student and run the function LAST_INSERT_ROWID() again after the insert statement, like this:

INSERT INTO Students VALUES(11, 'guru', 1, '1998-10-12');

SELECT LAST_INSERT_ROWID();

This will give you:

[image:]

	After we inserted a new student with id 11, the LAST_INSERT_ROWID() will return the last inserted row id which is 11.

[bookmark: SQLite library]Getting the version of your SQLite library

To get the version of your SQLite library, you have to call the SQLITE_VERSION() function.

Example

Let's find out what is the version of the SQLite we are using by running the following command:

SELECT SQLITE_VERSION();

This will give you:

[image:]

SQLITE_VERSION() returns 3.9.2 which is the version of the SQLite we are using.

[bookmark: User-defined functions]Creating user-defined functions and aggregate user-defined functions

For some users, the SQLite core functions are limited. They might need to add custom functions for their custom needs.

SQLite doesn't support creating user-defined functions. Unlike other database management systems, you can't create user defined functions in SQLite directly.

However, you can create a function using programming languages like C#, C, PHP, or C++ and attached that function with the core SQLite functions in the SQLite library itself, using "
 sqlite3_create_function
 " function. Then you can reuse them in your database.

Example:

In the following example we will create a user defined function using C# programming language and add it to SQLite functions:

[
 SQLiteFunction
 (Name = "
 DoubleValue
 ", Arguments = 1,
 FuncType
 =
 FunctionType.Scalar
)]

public class
 DoubleValue
 :
 SQLiteFunction

{

public override object Invoke(object[]
 args
)

{

return
 args
 [0] * 2;

}

}

This code snippet is written in the C# programming language; it creates a C# function using the C# code.

The function name will be "
 DoubleValue
 " it takes one parameter and returns its value multiplied by 2.

Note that C# automatically add this function to SQLite. All that you need is to compile and run this code. Then C# will add that function with the same name to the list of SQLite functions. Then you can use this function in SQLite.

The same way using programming languages like C#, C, PHP, or C++, you can also create aggregate user-defined functions. Which are used to extend the aggregate functions in SQLite and use them to create custom aggregate functions.

Summary

SQLite provides a comprehensive set of built-in functions that make working with database's tables and columns easy as we saw. You can use these functions with columns as well as literal values within any expression in your SQL queries.

OEBPS/Image00090.jpg
DELETE FROM

S

OEBPS/Image00089.jpg
sqlite> SELECT = FROM Students WHERE StudentId = 6;
StudentId StudentName DepartmentId DateOfBirth

6 Jena 3 1998-10-12

OEBPS/Image00092.jpg
sqlite> SELECT = FROM Students;

StudentId StudentName DepartmentId DateOfBirth
1998-10-12
1998-10-12
1998-10-12
1998-10-12
1998-10-12
1998-10-12
1998-10-12
1998-10-12
1998-10-12
1998-10-12

OEBPS/Image00091.jpg
sq{j:e; DELETE FROM Students WHERE StudentId = 11 OR StudentId = 12;
salite

OEBPS/Image00094.jpg
sqlite> CREATE TABLE [Subjects] {
D [SubjectId] INTEGER NOT NULL PRIMARY KEY ON CONFLICT IGNORE,
g 5) [SubjectName] NVARCHAR NOT NULL S
sgdl i

salite> —o

OEBPS/Image00093.jpg
ROLLBACK

PRIMARY KEY

OEBPS/Image00095.jpg
sqlite>
salite>
sqlite>
salite>
<alite>

INSERT INTO Subjects
INSERT INTO Subjects
INSERT INTO Subjects
INSERT INTO Subjects

VHLUES(l ngebra i
’Da

Data Structures

OEBPS/Image00010.jpg
sqllte> .tables

guru99

sqlite> ALTER TABLE guru99 RENAME TO gurul®;
sqlite> .tables

urul00
salites

OEBPS/Image00011.jpg
sqlite> ALTER TABLE gurul®®@ ADD COLUMN Age INT;
salite> o

OEBPS/Image00008.jpg
Name

Date modified

|'® SchoolDB.db

77 sqlite3.exe

¥ sQiteTutorialsDB.db

[sQLiteTutorialsDB.sql

Y101/ p
YOV o)

OEBPS/Image00009.jpg
salite> .open SQLiteTutorialsDB.db

sqlite> .tables

Departments Marks Students Subjects
salite

OEBPS/Image00006.gif
salite> .databases

seq name file
0 main C:\sqlite\SchoolDB.db

salite>

OEBPS/Image00086.jpg
sqlite> SELECT = FROM Students;

StudentId StudentName DepartmentId DateOfBirth
1 Hichael 1 1998-10-12
2 John 1 1998-10-12
3 Jack i 1998-10-12
& Sara 2 1998-10-12
5 Sally 2 1998-10-12
9 Jena 1998-10-12
7 Nancy 2 1998-10-12
8 Adam 3 1998-10-12
9 Stevens 3 1998-10-12
10 George 1998-10-12
11 Ahmad 4 1997-10-12
12 Al [1996-10-12
salife>

OEBPS/Image00007.jpg
Share with v

Include in library v

= 4 Name
op L sample
loads 4§ SchoolDB.db
nt Places 7 sqlite3.exe
Drive SQLiteTutorialsDB.db
_| [y SQiteTutorialsDB.sql
| @ testiSdb
¥ ttdb.db

Burn New folder

Date modified

S/\Y/1Y p TYY

/¥ yo +1:50

TASNYIY 5558

OEBPS/Image00088.jpg
sqlite> UPDATE Students
...> SET DepartmentId = 3
...> WHERE StudentId = 6;
sqlite>

OEBPS/Image00087.jpg
UPDATE -_—4

Column1 = 'Valuet'
lumn1 = Valuet'
: Which column o
update by what value.
Column1 = "Valuet' | ,

You can update more than
one column. Put comma
“," between each one.

= You can filter on some rows to
update, instead of updating all

the rows.

OEBPS/Image00014.jpg
sqlite> INSERT INTO gurul®0 DEFAULT YALUES;

Frror: NOT NULL constraint failed: gurul®0.Id
salite>

OEBPS/Image00015.jpg
Students
? Studentld
StudentName
Departmentld
DateOfBirth

——es

Departments
¢ Departmentld
DepartmentName

OEBPS/Image00012.jpg
saqlite> ALTER TABLE gurul®@ ADD COLUMN Age INT;
sqlite> .schema gurul@0
CREATE TABLE “gurul®®” (
Id Int,
Name_Varchar
, Age INT)
sql1te

OEBPS/Image00013.jpg
sqlite> INSERT INTO gurul®@ VALUES(1, "Mike™, 20);
sqlite> SELECT = FROM gurul@0;

1iMike}25
stheg

OEBPS/Image00101.jpg
SQLite version 3.9.2 2015-11-02 18:31:45

Enter ".help” for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.
sq%ile) .open TutorialsSampleDB.db

salite> o———————

OEBPS/Image00100.jpg
~ Incudeinlibrary v Sharewith v

eDrive B

cuments
tures.

Name .

B somple
Hsgitelece

T TutorassampleDB.db
B TutoralssampleDBal

New folder

Create a new, empty folder.

T10/1V/ 1A o RTE
YAO/V/AY o 180
Y16/1¥/1 o TR
Y10/ o 1Y

Type
File folder
Application
Data Base File
SQLTextFile

OEBPS/Image00103.jpg
sqlite> SELECT name FROM sqlite_master WHERE type = 'view’;
AllStudentsView
sal1ite

OEBPS/Image00102.jpg
sqlite> CEEHTE VIEW AllStudentsView

SELECT
s.StudentId,
s.StudentName,
s.DateOfBirth,
d.DepartmentName
FROM Students AS s
INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;

salite

OEBPS/Image00105.jpg
sqlite> CREATE TEMP VIEW AllStudentsTempView

> SELECT

> s.Studentld,

> s.StudentName,
> s.Date0OfBirth,
>

>

>

>

d.DepartmentName
FROM Students AS s
i INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;
salite

OEBPS/Image00104.jpg
ite> SELECT = FROM AllStudentsView;
1chae].|998—m-12 I
ohn{1998-10-12{1T

ack'1998 10-12{1T

ara|1998 10- 12'th51cs
ally}1998-10-12|Physics

ancv|1998 10-12{Physics
dam|{1998-10-12{Arts

teuens 1998-10-12{Arts

OEBPS/Image00085.jpg
St]llie) INSERT INTO Students(StudentId, StudentName, DepartmentId, DateOfBirth)
Ji VALUES(11, 'Ahmad’, &, '1997-10-12");
sq

sqlne> INSERT INTO Students VALUES(12, 'Aly’, &, '1996-10-12");

sqlited m OO

OEBPS/Image00000.jpg
SQLITE

Programming

LEARN IN 1 DAY

KRISHNA RUNGTA

OEBPS/Image00083.jpg
SQLite version 3.9.2 2015-11-02 18:31:45

Enter ".help” for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.
sq%ite) .open TutorialsSampleDB.db

sqlite> o

OEBPS/Image00097.jpg
sqlite> CREATE TABLE [Subjects] (
B [SubjectId] INTEGER NOT NULL PRIMARY KEY ON CONFLICT REPLACE,
o ¢) [SubjectNamel NVARCHAR NOT NULL
wavaX e
salite>

OEBPS/Image00084.jpg
VALUES (Value1, value2, value3, ...)

OEBPS/Image00096.jpg
sqlite> SELECT = FROM Subjects;
SubjectId SubjectName

1 Algebra

gori

OEBPS/Image00081.jpg
sqlite> SELECT
...> Students.StudentName,
..> Departments. DepartmentName
.> FROM Students
.> CROSS JOIN Departments

StudentName DepartmentName

IT Jena IT
Physics Jena Physics
Michael Arts Jena fArts
John i Nancy IT
John Physics Nancy Physics
John Arts Nancy Arts
Joh Hath Nanc: Hath
JacE T Adam 1L
Jack Physics Adam Physics
Jack Arts Adam Arts
Jack Hath Adam M?{h
Sara 1) tevens
Sara Physics Stevens Physics
Sara Arts Stevens Arts
Stevens Math
Sally IT eorge
Sally Physics George Physics
Sally Arts George fArts

Sally Math George Math

OEBPS/Image00099.jpg
sqlite> SELECT = FROM Subjects;
SubjectId SubjectName

Algebra

b Algorithms
sgqlite> o

OEBPS/Image00082.jpg
> Incudeinlibrary v Sharewith v

T py—
= Ui sample

o 57 sqite3.exe.
gl T TutoriclssampleDB.db
& B TutorilsSampleDBsal

New folder
Create a new, empty folder.

Y10/1V/1 o &YE
YAO/V/AT o 180
Y10/1¥/1 o TR
Y10/1¥/1A o 1Y

Type
File folder
Application
Data Base File
SQLTextFile

OEBPS/Image00098.jpg
sqlite>
salite>
sqlite>
salite>
<alite>

INSERT INTO Subjects
INSERT INTO Subjects
INSERT INTO Subjects
INSERT INTO Subjects

VHLUES(l ngebra i
’Da

Data Structures

OEBPS/Image00005.jpg
v Include in library v Share with v Burn New folder

top ~ Neme Date modified
mloads B sample YNTNYp T
ot Hlecss # SchoolDB.db Y0/ 1T Y
e 27 sqlite3.exe Yo18/11/oY yo < 1:50
¥ sQuiteTutorialsDB.db YN\ T

|2 SQLiteTutorialsDB.sql Ye10/\Y/1Y o Y iEA

OEBPS/Image00003.jpg
Microsoft Windows [Version 6.1.76011
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\HGA>cd C:\salite
C:\sqglite>

OEBPS/Image00004.jpg
C:\sqglite>salite3 SchoolDB.db

S[]the version 3.9.7 2015-11-02 18:31:45
Enter ".help” for usage hints.

sqlite>

OEBPS/Image00001.jpg
SOLITE

Programming

LEARN IN 1 DAY

KRISHNA RUNGTA

OEBPS/Image00002.jpg
Administrator: Command Prompt.

Hicrosoft Windows [Version 6.1.76011
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C: \Users\HGA>w

OEBPS/Image00079.jpg
sqllte> SELECT
.> Students.StudentName,
Departments. DepartmentName
FROM Students —- this is the left table
> LEFT JOIN Departments ON Students.DepartmentId = Departments.Departmentl

StudentName DepartmentName

Hichael IT

ohn IT
NS IT
Sara Physics
Sally Physics
Jen.
Nancy Physics
Adam fArts
Stevens fArts

George

OEBPS/Image00080.gif

OEBPS/Image00077.jpg
sqlite> SELECT
...> Students.StudentName,
D> Departments. DepartmentName
.> FROM Students
.> INNER JOIN Departments USING{DepartmentId);
StudentName Depar tmentName

Michael IT

John IT

Jack IT

Sara Physics
Sally Physics
Nancy Physics
Adam Arts

Stevens Arts

OEBPS/Image00078.jpg
sqlite> SELECT
...> Students.StudentName,
..> Departments. DepartmenlName
.> FROM Students
.> Natural JOIN Departments;
StudentName DUepar tmen{Name

Physics
Sally Physics
Nancy Physics
Adam Arts
Stevens Arts

OEBPS/Image00076.jpg
StudentIld StudentName DepartmentId

1 Hichael 1
2 John 1
3 Jack 1,
i Sara 2!
b Sally 2
6 Jena

1 Nancy Z
8 Adam 3
9 Stevens 3
10 George

OEBPS/Image00074.gif

OEBPS/Image00075.jpg
sqlite> SELECT

...> Students.StudentName,

..> Departments. DepartmentName
.> FROM Students

Stl’Jden tName DepartmentName

Sara Physics
Sally Physics
Nancy Physics
Adam Arts
Stevens Arts

.> INNER JOIN Departments ON Students.DepartmentId =

Departments.Department

OEBPS/Image00072.jpg
v Includeinlibrary v Sharewith v Bum

eDrive “ Name
g i sample
s 7 sqite3.exe
cuments
5 § TutorialsSampleDB.db
sic
¥ TutorialsSampleDB.sql
ures

New folder

Create a new, empty folder

TV IA o -YE
YA10/11/oT yo +1:£0
YA/ WA yo T
T/ /1A yo -4TY

Type

File folder
Application
Data Base File
SQL Text File

OEBPS/Image00073.jpg
SQLite version 3.9.2 2015-11-02 18:31:45

Enter ".help” for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.
sq%ite) .open TutorialsSampleDB.db

sqlite> o

OEBPS/Image00070.jpg
sqlite> SELECT
g d.DepartmentName,

COUNT(s.StudentId) StudentsCount,

GROUP_CONCAT(StudentName) AS Students
FROM Departments AS d
INNER JOIN Students AS s ON s.DepartmentId = d.DepartmentId
GROUP BY d.Depar tmentName

.> HAVING COUNT(s.StudentId) >=

DepartmentNa StudentsCount Students

Physics 3 ara,Sally,Nancy

sqlited o

OEBPS/Image00071.jpg
table-or-subquery

join-operator

table-or-subquery

b

join-consiraint

OEBPS/Image00068.jpg
sqlite> SELECT
...> StudentName,
CASE

eos
b < WHEN DepartmentId IS NULL THEN ’No Department’
b ELSE DepartmentId
...> END AS DepartmentId
...> FROM Students;
StudentName DepartmentId

Michael 1

John

Jack 1

Sara 2

Sally 2

Jena No_Department
Nancy

Adam 3

Stevens 3

George No_Depar tment

OEBPS/Image00069.jpg
salite> g%TH AllDepartments

SELECT DepartmentId, DepartmentName
FROM Departments

SELECT
s.StudentId,
s.StudentName,
a.DepartmentName
FROM Students AS s

...> INNER JOIN EllDegartments AS a ON s.DepartmentId = a.DepartmentId;
s.StudentId _s.StudentName a.Depar tmentName

vVVVVvVVVVVVY Y

Sally Physics
Nancy Physics
Adam Arts

1

2

3

é Sara Physics
)

8

9 Stevens Arts

OEBPS/Image00066.jpg
sqlite> SELECT = FROM Students WHERE DepartmentId IS NULL;
StudentId StudentName DepartmentId DateOfBirth
6 Jena 1998-10-12
10 George 1998-10-12

OEBPS/Image00067.jpg
sqlite> SELECT * FROM Students WHERE DepartmentId IS NOT NULL;
StudentId StudentName DepartmentId DateOfBirth

1 Hichael 1 1998-10-12
2 John 1 1998-10-12
3 Jack 1 1998-10-12
b Sara 2 1998-10-12
5 Sally 2 1998-10-12
1 Nancy 2 1998-10-12
8 Adam 3 1998-10-12
9 Stevens 3 1998-10-12
sqlite>

OEBPS/Image00065.jpg
sqlite> SELECT = FROM Students WHERE DepartmentId = NULL;
sqlité®—m

OEBPS/Image00063.jpg
sqlite> SELECT DepartmentId FROM Students
...> Intersect
...> SELECT DepartmentId FROM Departments;
DepartmentId

OEBPS/Image00064.jpg
sqlite> SELECT Departmentld FROM Departments
...> EXCEPT
...> SELECT DepartmentId FROM Students;
DepartmentId

OEBPS/Image00061.jpg
salite> ﬁﬁligﬁT DepartmentId AS DepartmentIdUnioned FROM Students
-

...> SELECT DepartmentId FROM Departments;
DepartmentIdUnioned

OEBPS/Image00062.jpg
sqlite> SELECT DepartmentId AS DepartmentIdUnioned FROM Students
...> UNION ALL
...> SELECT DepartmentId FROM Departments;
DepartmentIdUnioned

s Wwnhe NN

OEBPS/Image00059.jpg
sqlite> SELECT

.. s.StudentName, t.Mark
FROM Students AS s
INNER JOIN

SELECT StudentId, Mark

FROM Tests AS t

INNER JOIN Marks AS m ON t.TestId = m.TestId
) AS t ON s.StudentId = t.StudentId;
s.StudentName ~ t.Mark

A A A A AV Y

Michael 18

ohn 20
Jack 16
Sara 19
Sally 14
Nancy 20
Adam 20

OEBPS/Image00060.jpg
sqlite> SELECT DepartmentName
...> FROM Departments AS d
...> WHERE NOT EXISTS (SELECT DepartmentId

s FROM Students AS s
s, WHERE d.DepartmentId = s.DepartmentId);
Depar tmentName

Math
sqlite>

OEBPS/Image00057.jpg
sqlite> SELECT d.DepartmentName, COUNT(s.StudentId) AS StudentsCount
...> FROM Students AS s
...> INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId
...> GROUP BY d. DepartmentName;

DepartmentName StudentsCount

Arts 2
T 3
Physics 3

OEBPS/Image00058.jpg
saqlite> SELECT d.DepartmentName, COUNT(s.StudentId) AS StudentsCount
...> FROM Students RS s

...> INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId
...> GROUP BY d. DepartmentName

...> HAVING COUNT(s.StudentId) = 2;

DepartmentName StudentsCount

OEBPS/Image00056.jpg
sqlite> SELECT SUM{(Mark), TOTAL(Mark) FROM Marks WHERE TestId
SUM(Mark) TOTAL{(Mark)

OEBPS/Image00054.jpg
sqlite> SELECT MAK(Mark), MIN(Mark) FROM Marks;
MAK(Mark) ~ MIN(Mark)

OEBPS/Image00126.jpg
sqlite> INSERT INTO Students VALUES(11, 'guru’, 1, '1998-10-12");
sqlite> SELECT LAST_INSERT_ROWID()
LAST_INSERT_ROWID()

OEBPS/Image00055.jpg
sqlite> SELECT SUM(Mark), TOTAL(Mark) FROM Marks;
SUM(Mark) TOTAL(Mark)

OEBPS/Image00052.jpg
sqllte) SELECT GROUP_CONCAT(DISTINCT d.DepartmentName)
ROM Students AS s
> INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;
GROUP_CONCAT (DISTINCT d.Depar tmentName)

IT Physics,fArts
BB EDS

OEBPS/Image00128.jpg
SOLITE

Programming

LEARN IN 1 DAY

KRISHNA RUNGTA

OEBPS/Image00053.jpg
sqlite) SELECT GROUP_CONCAT(d.DepartmentName, '&’)
> FROM Students RS s
) INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;
GROUP_CONCAT (d.Depar tmentName, '&')

IT&IT&IT&Physics&Physics&Physics&Arts&Arts
sqlites

OEBPS/Image00127.jpg
sqlite> SELECT SULITE VERSION() ;
SQLITE_VERSION()

OEBPS/Image00050.jpg
g(gl(ljte) SELECT COUNT(DepartmentId), COUNT(DISTINCT DepartmentId), COUNT(x) FROM
udents;
CUUNT(DepartmentId) COUNT(DISTINCT DepartmentId) COUNT(=)

OEBPS/Image00051.jpg
sqllte) SELECT GROUP_CONCAT(d.DepartmentName)
> FROM Students RS s
) INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;
GROUP_CONCHT (d.DepartmentName)

OEBPS/Image00048.jpg
Sqllte> SELECT DISTINCT d.DepartmentName
> FROM Students AS s
> INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;
Depar tmen tName

IT
Physics
Arts

OEBPS/Image00049.jpg
sqlite> SELECT AVYG(Mark) FROM Marks;
AVG (Mark)

OEBPS/Image00046.jpg
sqlite> SELECT = FROM Students LIMIT 4,3;

StudentId

StudentName DepartmentId DateOfBirth

Sally 2 1998-10-12
Jena 1998-10-12
Nancy 2 1998-10-12

OEBPS/Image00047.jpg
sqlite> SELECT d.DepartmentName

...> FROM Students RS s

...> INNER JOIN Departments AS d ON s.DepartmentId = d.Departmentld;
Depar tmentName

OEBPS/Image00043.jpg
sqlite> SELECT DepartmentName

...> FROM Departments AS d

...> WHERE EXISTS (SELECT DepartmentId FROM Students AS s WHERE d.Departmentl
d = s.DepartmentId);
DepartmentName

OEBPS/Image00044.jpg
sqlite> SELECT DepartmentName
...> FROM Departments AS d
...> WHERE NOT EXISTS (SELECT DepartmentId

s FROM Students AS s
s, WHERE d.DepartmentId = s.DepartmentId);
Depar tmentName

Math
sqlite>

OEBPS/Image00041.jpg
sqlite) SELECT =

.> FROM Students

.> WHERE StudentId NOT IN(2, &, 6, 8);
StudentId StudentName Deparlmentld Date0fBirth

Hichael 1 1998-10-12
Jack 1 1998-10-12
Sally 2 1998-10-12
Nancy P 1998-10-12
Stevens 3 1998-10-12
George 1998-10-12
gurull i 1999-10-12

OEBPS/Image00042.jpg
sqlite> SELECT =

...> FROM Students

...> WHERE (StudentId <> 2) AND (StudentId <> &) AND (StudentId <> 6) AND (St
udentId <> 8);
StudentId StudentName DepartmentId DateOfBirth

Michael ! 1998-10-12
Jack 1. 1998-10-12
Sally 2 1998-10-12
Nancy p 1998-10-12
Stevens 3 1998-10-12
George 1998-10-12
gurull 1 1999-16-12

OEBPS/Image00039.jpg
sqlite) SELECT =
.> FROM Students
.> WHERE StudentId IN(2, 4, 6, 8);

StudentTd

StudentName ~DepartmentId DateOfBirth
John 1 1998-10-12
Sara 2 1998-10-12
Jena 1998-10-12
Adam 3 1998-10-12

OEBPS/Image00040.jpg
sqlite> SELECT =
...> FROM Students
Id“%)WHERE (StudentId = 2) OR (StudentId = 4) OR (StudentId = 6) OR (Studen
tId'='8);
StudentId StudentName DepartmentId DateOfBirth

John i 1998-10-12
Sara 2 1998-10-12

Jena 1998-10-12
Adam 3 1998-10-12

OEBPS/Image00037.jpg
salite> SELECT »

> FROM Students
WHER d d > 5) OR (StudentName LIKE 'N%’);
StudentId tudentName DepartmentId DateOfBirth

6 Jena 1998-10-12

7 Nancy 2 1998-10-12
8 Adam 3 1998-10-12
9 Stevens 3 1998-10-12
10 George 1998-10-12
11 gurull il 1999-16-12

OEBPS/Image00038.jpg
sqlite> SELECT =
...> FROM Students
...> WHERE StudentId BETWEEN 5 AND 8;
StudentId StudentName DepartmentId DateOfBirth

S Sally 2 1998-10-12
6 Jena 1998-10-12
7 Nancy 2 1998-10-12
8 Adam 3 1998-10-12

sqlite> o

OEBPS/Image00045.jpg
sqhte) SELECT s.StudentName, d.DepartmentName
> FROM Students AS s
> INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId
_.> ORDER BY d.DepartmentName ASC , s.StudentName DESC;
StudentName DepartmentName

Stevens Arts
Adam_____ Arts
Michael IT
John IT
Jack IT

ara ysics
Sally Physics

Nancy Physics

OEBPS/Image00112.jpg
sqlite> SELECT = FROM StudentslLog;
1112015-12-24 06:38:07|Insert
sal1te>

OEBPS/Image00036.jpg
sqlite> SELECT =
...> FROM Students
...> WHERE {StudentId > 5) AND (StudentName LIKE 'N%'):
StudentId StudentName DepartmentId DateOfBirth
7 Nancy 2 1998-10-12
salite>

OEBPS/Image00111.jpg
sqlite> CREATE TRIGGER InsertIntoStudentTrigger
G T, BEFORE INSERT ON Students
s

i EN%NSERT INTO StudentsLog VALUES(new.StudentId, datetime(), 'Insert’);
o
—_—

salite> o

OEBPS/Image00114.jpg
sqlite> SELECT studentname from students;
Michael
John

Jack

ara
Sally
Jena
Nancy
Adam
Stevens
George
gurull
sqlite> o

OEBPS/Image00113.jpg
sqlite> UPDATE Students SET StudentName = 'Jackl’ WHERE StudentName = "Jack’;

Error: You cannot update studentname
sqlite> Al S e nane

OEBPS/Image00115.jpg
> Incudeinlibrary v Sharewith v

T py—
= Ui sample

o 57 sqite3.exe.
gl T TutoriclssampleDB.db
& B TutorilsSampleDBsal

New folder
Create a new, empty folder.

Y10/1V/1 o &YE
YAO/V/AT o 180
Y10/1¥/1 o TR
Y10/1¥/1A o 1Y

Type
File folder
Application
Data Base File
SQLTextFile

OEBPS/Image00032.jpg
sqlite> SELECT StudentName FROM Students WHERE StudentName LIKE 'j%’;
StudentName

OEBPS/Image00033.jpg
sqlite> SELECT StudentName FROM Students WHERE StudentName LIKE "%y’ ;
StudentName

OEBPS/Image00030.jpg
31
salite> o

OEBPS/Image00106.jpg
sqlite> SELECT name FROM sglite_temp_master WHERE type = 'view’;

AllStudentsTempView
salite>

OEBPS/Image00031.jpg
sqhte> SELECT
> 10<6 AS <’ 10¢<=6 AS ‘<=,

1056 AS '>'. 10>=6 AS =

10=6 AS '='.

10t=6 AS 't=’

>

OEBPS/Image00028.jpg
sqlite> SELECT 'Id with Name: '{| StudentId || StudentName AS StudentIdWithName
...> FROM Students;
StudentIdtithName
Id with Name: 1Michael
Id with Name: 2John
Id with Name: 3Jack
Id with Name: 4Sara
Id with Name: 5Sally
Id with Name: 6Jena
Id with Name: 7Nancy
Id with Name: 8Adam
Id with Name: 9Stevens
Id with Name: 10George
Id with Name: 1lgurull

OEBPS/Image00108.jpg
sqlite> DROP VIEW AllStudentsView;
sq{ite) SELECT name FROM salite_master WHERE type = 'view’;
sqlited

OEBPS/Image00029.jpg
sqlite> SELECT CAST('12.5" AS REAL) ToReal, CAST(12.5 AS INTEGER) AS Tolnteger;
ToReal ToInteger

OEBPS/Image00107.jpg
sqlite> SELECT name FROM sglite_temp_master WHERE type = 'view’;
salite>

OEBPS/Image00026.jpg
sqlite> SELECT Students.StudentName, Departments.DepartmentName
...> FROM Students
...> INNER JOIN Departments ON Students.DepartmentId = Departments.Department

Id;
StudentName DepartmentName

Hichael IT

John IT

Jack IT

Sara Physics
Sally Physics
Nancy Physics
Adam Arts
Stevens fArts

gurull LT

OEBPS/Image00110.jpg
sqlite> PRAGMA inde

%_1
0}StudentNameIndex|0}c
salite> m

i t{Students);
Ci

s

OEBPS/Image00027.jpg
sqlite> SELECT s.StudentName, d.DepartmentName

...> FROM Students AS s

...> INNER JOIN Departments AS d ON s.DepartmentId = d.DepartmentId;
StudentName DepartmentName

Michael IT

ohn IT
Jack IT
Sara Physics
Sally Physics
Nancy Physics
Adam LS
Stevens Arts

gurull T

OEBPS/Image00109.jpg
sqlite> CREATE INDEX StudentNameIndex ON Students(StudentName);
sqlite>

OEBPS/Image00034.jpg
sqlite> SELECT StudentName FROM Students WHERE StudentName LIKE '%n%’;
StudentName

OEBPS/Image00035.jpg
sqlite> SELECT 'Jack’ GLOB 'j%’;
*Jack’ GLOB

0
sqlite> SELECT ’Jack' LIKE 'j%’;
"Jack’ LIKE

1
salite>

OEBPS/Image00123.jpg
sc_ilif(?> SELECT ROUND(12.4354354), ROUND(12.4354354, 2), ROUND(NULL), ROUND('a st
SUCIH
ROUND(12.4354354) ROUND(12.4356354, 2) ROUND(NULL) ROUND('a string’)

OEBPS/Image00122.jpg
sqlite> SELECT ABS(~2), ABS(+2), ABS('a string’), ABS(null):
ABS(-2) ABS(+2) ABS('a string’) ABS(null)

OEBPS/Image00125.jpg
sqlite> SELECT LAST_INSERT_ROWID() ;
LAST_INSERT_ROWID()

OEBPS/Image00124.jpg
sqlite> SELECT TYPEOF(null), TYPEOF(12), TYPEOF(12.5), TYPEOF('a string’);
TYPEOF (null) TYPEOF(12) TYPEOF(12.5) TYPEOF('a string’)

OEBPS/Image00021.jpg
sqlite> SELECT Students.x
...> FROM Students
...> INNER JOIN Departments ON Students.DepartmentId = Departments.Department

Id;
StudentId StudentName DepartmentId DateOfBirth

1 Hichael 1 1998-10-12
2 John 1 1998-10-12
3 Jack 1 1998-10-12
b Sara 2 1998-10-12
5 Sally 2 1998-10-12
7 Nancy 2 1998-10-12
8 Adam 3 1998-10-12
9 Stevens 3 1998-10-12
11 gurull 1 1999-10-12

OEBPS/Image00022.jpg
sqlite> SELECT =, 'USA’ AS Country FROM Students;
StudentId StudentName DepartmentId DateOfBirth Country

1 Hichael ! 1998-10-12 USA
2 John 1. 1998-10-12 USA
3 Jack 1 1998-10-12 USA
b Sara 2 1998-10-12 USA
S Sally 2 1998-10-12 USA
6 Jena 1998-10-12 USA
7 Nancy P 1998-10-12 USA
8 Adam 3 1998-10-12 USA
9 Stevens 3 1998-10-12 USA
10 George 1998-10-12 USA
11 gurull ik 1999-10-12 USA

OEBPS/Image00019.jpg
SQLite version 3.9.2 2015-11-02 18:31:45

Enter ".help” for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.
sq%ile) .open TutorialsSampleDB.db

salite> o———————

OEBPS/Image00117.jpg
sqlite> SELECT LENGTH('A string’), LENGTH(NULL), LENGTH(20) LENGTH(20.5);
LENGTH('A string’) LENGTH(NULL) LENGTH(20) LENGTH{(20.5)

OEBPS/Image00020.jpg
sqlite> SELECT =
...> FROM Students
...> INNER JOIN Departments ON Students.DepartmentId = Departments.Department

N
StudentId StudentName DepartmentId DateOfBirth DepartmentId DepartmentName

1 Hichael 1 1998-10-12 1 IT

2 John 1l 1998-10-12 1 IT

3 NETS 1 1998-10-12 1 IT

b Sara 2 1998-10-12 2 ST
5 Sally 2 1998-10-12 2 Physics
7 Nancy 2 1998-10-12 2 Physics
8 Adam 3 1998-10-12 3 Arts

9 Stevens 3 1998-10-12 3 Arts

11 gurull 1 1999-10-12 1 IT

OEBPS/Image00116.jpg
SQLite version 3.9.2 2015-11-02 18:31:45

Enter ".help” for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.
sq%ile) .open TutorialsSampleDB.db

salite> o———————

OEBPS/Image00017.jpg
Example Typenames From The
CREATE TABLE Statement
or CAST Expression

Resulting Affinity

Rule Used To Determine Affinity

INT
INTEGER
TINYINT
SMALLINT
MEDIUMINT
BIGINT
UNSIGNED BIG INT
INT2
INTS

INTEGER

CHARACTER(20)
VARCHAR(255)
VARYING CHARACTER(255)
NCHAR(S5)

NATIVE CHARACTER(70)
NVARCHAR(100)
TEXT
cLos

BLOB
no datatype specified

BLOB

REAL
DOUBLE
DOUBLE PRECISION
FLOAT

REAL

NUMERIC
DECIMAL(10,5)
BOOLEAN
DATE
DATETIME

NUMERIC

OEBPS/Image00119.jpg
sqlite> gghﬁc; StudentName, SUBSTR{StudentName, 2, 4), SUBSTR{StudentName,
S,

StudentName

tudents;
SUBSTR(StudentName, 2, &)

SUBSTR(StudentName, 2)

2)

OEBPS/Image00018.jpg
v Includeinlibrary v Sharewith v Bum

eDrive “ Name
g i sample
s 7 sqite3.exe
cuments
5 § TutorialsSampleDB.db
sic
¥ TutorialsSampleDB.sql
ures

New folder

Create a new, empty folder

TV IA o -YE
YA10/11/oT yo +1:£0
YA/ WA yo T
T/ /1A yo -4TY

Type

File folder
Application
Data Base File
SQL Text File

OEBPS/Image00118.jpg
sqlite> SELECT UPPER('a string’), LOWER('A STRING'), UPPER(20), LOWER(20), UPPER
(NULL), LOWER(NULL);
El)’PER('a string” LOWER('A STRING’ UPPER(20) LOWER(20) UPPER(NULL) LOWER(NUL

A STRING a string 20 20

OEBPS/Image00121.jpg
sqllte) SELECT TRIM(® SQLite is easy to learn TR
TRIM(’ ___ SQLite is easy to learn Y

SQLite is easy to learn;
sqlites o

OEBPS/Image00016.jpg
sqlite> INSERT INTO Departments VYALUES(1, 'IT’);
sqlite> INSERT INTO Departments VALUES(2, 'Arts’);
sqlite> SELECT = FROM Departments;

1T
2iArts

sqllleS -

OEBPS/Image00120.jpg
sqllte) SELECT REPLACE('xx is very lightweight, xx is easy to learn’, 'xx’, "SQL

REPLHCE(®x is very lightweight, xx is easy to learn’, 'xx’, ’'SQLite’)
SQLite is very lightweight, SQLite is easy to learn
salite> o -

OEBPS/Image00025.jpg
sqlite> SELECT s.» FROM Students AS s
StudentId StudentName ~Departmentld DateOfBirth

1 Michael 1 1998-10-12
2 John 1 1998-10-12
3 Jack ih 1998-10-12
& Sara 2 1998-10-12
5 Sally 2 1998-10-12
6 Jena 1998-10-12
7 Nancy 2 1998-10-12
8 Adan 3 1998-10-12
9 Stevens 3 1998-10-12
10 George 1998-10-12
11 gurull 1 1999-10-12

OEBPS/Image00023.jpg
sqlite> SELECT StudentName AS 'Student Name’ FROM Students;
Student Name

OEBPS/Image00024.jpg
sqlite> SELECT StudentName 'Student Name' FROM Students;
Student Name

