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Designed to help readers analyze and interpret research data using IBM SPSS, this user-friendly book shows readers how to choose the appropriate statistic based on the design; perform intermediate statistics, including multivariate statistics; interpret output; and write about the results. The book reviews research designs and how to assess the accuracy and reliability of data; how to determine whether data meet the assumptions of statistical tests; how to calculate and interpret effect sizes for intermediate statistics, including discriminant analyses and odds ratios for logistic; how to compute and interpret post-hoc power; and an overview of basic statistics for those who need a review. Unique chapters on multilevel linear modeling; multivariate analysis of variance (MANOVA); assessing reliability of data; multiple imputation; mediation, moderation, and canonical correlation; and factor analysis are provided. SPSS syntax with output is included for those who prefer this format.
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Preface

This book is designed to help students learn how to analyze and interpret research data with intermediate statistics. It is intended to be a supplemental text in an intermediate statistics course in the behavioral sciences, social sciences, or education and it can be used in conjunction with any mainstream text. We have found that the book makes IBM SPSS easy to use so that it is not necessary to have a formal, instructional computer lab; you should be able to learn how to use SPSS on your own with this book. Access to the SPSS program and some familiarity with Windows® is all that is required. Although SPSS is quite easy to use, there is such a wide variety of options and statistics that knowing which ones to use and how to interpret the printouts can be difficult. This book is intended to help with these challenges.

SPSS 22 and Earlier Versions

We use SPSS 22 from IBM SPSS in this book; except for enhanced tables and graphics, there are only minor differences from SPSS version 10 to 22. We expect future Windows and Mac versions to be similar. Our students have used earlier editions of this book with all of the recent versions of SPSS; most of the procedures and outputs are the same or very similar. We point out some of the changes at various points in the text.

In addition to various SPSS modules that may be available at your university, there are versions available to students that you can rent for 6 or 12 months online. You can get information about available products for graduate students by visiting http://www-01.ibm.com/software/analytics/spss/products/statistics /gradpack/. IBM SPSS Statistics Standard GradPack enables you to do all the statistics in this book (except for data imputation in chapter 13), those in our IBM SPSS for Introductory Statistics, 5th edition (Morgan, Leech, Gloeckner, & Barrett, 2013), and many others.

Goals of This Book

This book demonstrates how to produce a variety of statistics that are usually included in intermediate statistics courses, plus some (e.g., reliability measures, canonical correlation, and multilevel models) that are unusual in intermediate statistics books. We also show imputation methods to deal with missing data, and we show how one can see if a variable is a mediator or moderator. These methods may be useful in your research. Our goal is to describe the use and interpretation of these statistics as much as possible in nontechnical, jargon-free language.

Helping you learn how to choose the appropriate statistics, interpret the outputs, and develop skills in writing about the meaning of the results are the main goals of this book. Thus, we have included material on:

	How the appropriate choice of a statistic is based in good part on the design of the research and the measurement level of the variables.
 	How to use SPSS to help answer research questions.
 	How to interpret SPSS outputs.
 	How to write about the outputs in the Results section of a paper.


This information will help you develop skills that cover all steps in the research process: design, data collection, data entry, data analysis, interpretation of outputs, and writing results. The modified high school and beyond data set (HSB) used for many of the chapters in this book is similar to one you might have for a thesis, dissertation, or research project. Therefore, we think it can serve as a model for your analysis. The Web site, www.routledge.com/9781848729995 contains the HSB data file and several other data sets that are used in the book and for the extra SPSS problems at the end of chapters. However, you will need to have access to or purchase the SPSS program.

To make the text more readable, we have chosen not to cite many references in the text; however, we have provided a short bibliography, “For Further Reading,” of some of the books and articles that we have found useful. We assume that most students will use this book in conjunction with a class that has a statistics textbook; it will help you to read more about each statistic before doing the assignments.

Our companion book, Morgan et al. (2013), IBM SPSS for Introductory Statistics: Use and Interpretation (5th ed.), also published by Routledge/Taylor & Francis, is on the For Further Reading list at the end of this book. To learn more about that book feel free to visit www.routledge.com/9781848729827. Our introductory book provides an extended discussion of how to interpret and write about introductory statistics, including ones such as t tests, chi-square, and correlation. A brief review of such basic statistics is provided in Appendix B of this book.

Instructional Features

Several user-friendly features of this book include:

	The key SPSS windows that you see when performing the statistical analyses. This has been helpful to “visual learners.”
 	The outputs for almost all analyses that we have done so you can see what you will get, after some editing in SPSS to make the outputs fit better on the pages.
 	Callout boxes on the outputs that point out parts of the output to focus on and indicate what they mean.
 	For each output, boxed interpretation sections will help you understand the output.
 	Specially developed flow charts and tables to help you select an appropriate inferential statistic and help you interpret statistical significance and effect sizes (in Chapter 5). That chapter also provides an extended example of how to identify and write a research problem, several research questions, and a results paragraph for a t test and bivariate regression.
 	For the statistics in Chapters 3−4 and 6−13, an example of how to write about the output and make a table for a thesis, dissertation, or research paper in APA format.
 	Interpretation questions that stimulate you to think about the information in the chapter and outputs.
 	Several extra SPSS problems at the end of each chapter, except Chapters 1 and 5, for you to run with SPSS and discuss.
 	Information (in Appendix A) on how to get started with SPSS and some other useful commands.
 	A brief review (Appendix B) of basic statistics.
 	Appendix C provides examples of how to write research problems and research questions or hypotheses.
 	Answers to the odd-numbered interpretation questions (Appendix D). Answers to the even-numbered questions are available to instructors.
 	Several data sets are available on the book Website www.routledge.com/9781848729995. These realistic data sets provide you with data to be used to solve the chapter problems and the extra SPSS problems at the end of the chapters. Also on the website are three other files: (a) a Quick Reference Guide (QRG) to commonly used SPSS procedures, (b) a document, Making APA Tables and Figures, describing how to make tables in APA format, and (c) a file to use with the syntax for Canonical Correlation in Chapter 7.
 	An Instructor Resource Web site is available to course instructors who request access from the publisher. To request access, please visit the website below. It contains aids for teaching the course, including PowerPoint® slides, the answers to the even–numbered interpretation questions, and extra SPSS problems. Students will benefit from the chapter outlines and study guides. The study guide portion includes a list of key concepts to remember and define after reading each chapter. Researchers who purchase copies for their personal use can access the data files by visiting www.routledge.com/9781848729995.


Overview of the Chapters

Our approach in this book is to present how to use and interpret IBM SPSS in the context of proceeding as if the HSB data were the actual data from your research project. However, before starting the SPSS assignments, we have two introductory chapters. The first chapter is an introduction and review of research design and how it would apply to analyzing the HSB data. In addition, this chapter includes a review of measurement levels and descriptive statistics. Chapter 2 discusses rules for coding data, exploratory data analysis (EDA), and assumptions. Much of what is done in these chapters involves preliminary analyses to get ready to answer the research questions that you might investigate in a report.

Chapters 3 and 4 present methods for assessing the reliability and validity of your data. Chapter 3 covers how to compute Cronbach’s alpha, test–retest, and interobserver reliability, including intraclass correlation coefficients. Chapter 4 presents one method of assessing validity; including exploratory factor analysis and principal components analysis. Again, these statistical methods are often used to prepare your data so it will be ready to use to help answer your research questions.

Chapter 5 provides a brief overview of research designs (between groups and within subjects). This chapter provides flow charts and tables useful for selecting an appropriate statistic. Also included is an overview of how to interpret and write about the results of two basic inferential statistics. This chapter includes not only testing for statistical significance but also discussions of power and effect size measures, including guidelines for interpretation.

Chapters 6–12 are designed to help you answer a number of research questions. Solving the problems in these chapters should give you a good idea of some of the intermediate statistics that can be computed with IBM SPSS Statistics. Hopefully, seeing how the research questions, design and measurement lead naturally to the choice of statistics will become apparent after using this book. In addition, it is our hope that interpreting what you get back from the computer will become clearer after doing these assignments, studying the outputs, answering the interpretation questions, and doing the extra SPSS problems.

Finally, Chapter 13 describes the problem of having missing or incomplete data when computing statistics, and we describe data imputation methods to help with this problem. We apply this to a problem using multilevel regression, and an extra problem shows how to do a more basic analysis after multiple imputation (a paired t-test).

Our Approach to Research Questions, Measurement, and Selection of Statistics

In Chapters 1 and 5, our approach is somewhat nontraditional because we have found that students have a great deal of difficulty with some aspects of research and statistics but not others. Most can learn formulas and “crunch” the numbers quite easily and accurately with a calculator or with a computer. However, many have trouble knowing what statistics to use and how to interpret the results. They do not seem to have a “big picture” or see how research questions, design and measurement influence data analysis. Part of the problem is inconsistent terminology. For these reasons, we have tried to present a semantically consistent and coherent picture of how research design leads to three basic kinds of research questions (difference, associational, and descriptive) which, in turn, lead to three kinds or groups of statistics with the same names. We realize that these and other attempts to develop and utilize a consistent framework are both nontraditional and somewhat of an oversimplification. However, we think the framework and consistency pay off in terms of student understanding and the ability to actually use statistics to answer the research questions. Instructors who are not persuaded that this framework is useful can skip Chapter 1 and the first part of Chapter 5 and still have a book that helps their students use and interpret SPSS.

Major Changes and Additions to This Edition

In addition to updating the text, SPSS windows, and outputs to IBM SPSS 22, we have also attempted to correct any typos in the 4th edition and clarify some passages. In Chapter 2, we added research questions and directions for conducting each statistic to assist the reader in conducting exploratory data analysis. In the chapter on reliability (Chapter 3) we included an “example of how to write about” each problem, and we added a problem on using interclass correlation (ICC). Chapter 5 includes an expanded discussion on effect sizes to include information on confidence intervals of effect sizes. Chapter 6 includes new information on part and partial correlations and how they are interpreted, and we have added forward and backward elimination, which are other useful multiple regression methods. Chapter 7 is new; it includes a discussion of how to know if a variable is a mediator or moderator, and it also includes canonical correlation which in earlier editions was part of the chapter on MANOVA. Chapter 12 was revised extensively. Chapter 13 on how to deal with missing data is new; it provides an extensive description of how to do and interpret multiple imputation. We also expanded the appendix about Getting Started with IBM SPSS (Appendix A) to include several useful procedures that were not discussed in the body of the text. Finally, because many of the SPSS outputs are long and complex, we have split many of our Interpretation sections so that the interpretations come closer to the output table(s) that they discuss.

We have checked the format of the examples of how to write about the outputs to be consistent with APA format in the 6th edition (2010) of the Publication Manual of the American Psychological Association. Although this edition of our SPSS book was written using version 22, this SPSS program is sufficiently similar to prior versions of this software that we feel you should be able to use this book with earlier and later versions as well.

Bullets, Arrows, Bold, and Italics

To help you do the problems with SPSS, we have developed some conventions. We use bullets to indicate actions in SPSS windows that you will take. For example:

	Highlight gender and math achievement.
 	Click on the arrow to move the variables into the right-hand box.
 	Click on Options to get Fig. 2.16.
 	Check Mean, Std Deviation, Minimum, and Maximum.
 	Click on Continue.


Note that the words in italics are variable names and words in bold are words that you will see in the SPSS windows and utilize to produce the desired output. In the text such bolded words are spelled and capitalized as you see them in SPSS. Bold also is used to identify key terms when they are introduced, defined, or important to understanding.

The words you will see in the pull-down menus are given in bold with arrows between them. For example:

	Select Analyze → Descriptive Statistics → Frequencies.


(This means pull down the Analyze menu, then slide your cursor down to Descriptive Statistics, over to Frequencies, and click.)

Occasionally, we have used underlines to emphasize critical points or commands that have sometimes been confusing for students.

We have tried hard to make this book accurate and clear so that it could be used by students and professionals to learn to compute and interpret statistics without the benefit of a class. However, we find that there are always some errors and places that are not totally clear. Thus, we would like for you to help us identify any grammatical or statistical errors and to point out places that need to be clarified. Please send suggestions to nancy.leech@ucdenver.edu.
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Chapter 1
 Introduction

This chapter will review important information about measurement and descriptive statistics and provide an overview of the expanded high school and beyond (HSB) data set, which will be used in this chapter and throughout the book to demonstrate the use and interpretation of the several statistics that are presented. First, we provide a brief review of some key terms, as we will use them in this book.

Research Problems and Variables 

Research Problems

The research process begins with an issue or problem of interest to the researcher. This research problem is a statement that asks about the relationships between two or more variables. Almost all research studies have more than two variables.

Variables

Variables are key elements in research. A variable is defined as a characteristic of the participants or situation for a given study that has several values in that study. A variable must be able to vary or have different values or levels in the study.1 For example, gender is a variable because it has two levels, female or male. Age is a variable that has a large number of values. Type of treatment/intervention (or type of curriculum) is a variable if there is more than one treatment or a treatment and a control group. Number of days to learn something or to recover from an ailment are common measures of the effect of a treatment and, thus, are also variables. Similarly, amount of mathematics knowledge is a variable because it can vary from none to a lot. If a concept has only one value in a particular study, it is not a variable; it is a constant. Thus, ethnic group is not a variable if all participants are European-American. Gender is not a variable if all participants in a study are female.

In quantitative research, variables are defined operationally and are commonly divided into independent variables (active or attribute), dependent variables, and extraneous variables. Each of these topics will be dealt with briefly in the following sections.

Operational definitions of variables. An operational definition describes or defines a variable in terms of the operations or techniques used to make it happen or measure it. When quantitative researchers describe the variables in their study, they specify what they mean by demonstrating how they measured the variable. Demographic variables like age, gender, or ethnic group are usually measured simply by asking the participant to choose the appropriate category from a list, or using school or government records. Types of treatment (or curriculum) are usually operationally defined much more extensively by describing what was done during the treatment or new curriculum. Likewise, abstract concepts like mathematics knowledge, self-concept, or mathematics anxiety need to be defined operationally by spelling out in some detail how they were measured in a particular study. To do this, the investigator may provide sample questions, append the actual instrument, or provide a reference where more information can be found.

Independent Variables

We refer to two types of independent variables: active and attribute. It is important to distinguish between these types when we discuss the results of a study.

Active or manipulated independent variables. An active independent variable is a variable, such as a workshop, new curriculum, or intervention, at least one level of which is given to a group of participants, ideally within a specified period of time during the study. For example, a researcher might investigate a new kind of therapy compared to the traditional treatment. A second example might be to study the effect of a new teaching method, such as cooperative learning, on student performance. In these two examples, the variable of interest was something that was given to the participants. Thus, active independent variables are given to the participants during the study but are not necessarily given or manipulated by the experimenter. The independent variable may be given by a clinic, school, or someone other than the investigator, but from the participants’ point of view the situation was manipulated. Ideally, the treatment is given after the study was planned so that there can be a pretest and so participants can be randomly assigned to receive it or not. If there is no pretest, or no random assignment, internal validity of the study will be in jeopardy. Other researchers have similar but, perhaps, slightly different definitions of active independent variables. Randomized experimental and quasi-experimental studies have an active independent variable. An active independent variable is a necessary but not sufficient condition to make cause-and-effect conclusions; the clearest causal conclusions can be drawn from well-controlled randomized experiments when participants are assigned randomly to one of two or more groups, at least one of which will receive the intervention.

Attribute or measured independent variables. A variable that cannot be or was not manipulated, yet is a major focus of the study presumed by the researchers to be a predictor of or influence on one or more dependent variables, can be called an attribute independent variable. For attribute independent variables, the values of the independent variables are preexisting attributes of the persons or their ongoing environment that are not systematically changed during the study. For example, gender, age, ethnic group, IQ, and self-esteem can be used as attribute independent variables. Studies with only attribute independent variables are called nonexperimental studies.

In keeping with SPSS, but unlike authors of some research methods books, we do not restrict the term independent variable to those variables that are manipulated or active. We define an independent variable more broadly to include any predictors, antecedents, or presumed causes or influences under investigation in the study. Attributes of the participants, as well as active independent variables, fit within this definition. For the social sciences and education, attribute independent variables are especially important. Type of disability or level of disability may be the major focus of a study. Disability certainly qualifies as a variable since it can take on different values even though they are not given during the study. For example, cerebral palsy is different from Down syndrome, which is different from spina bifida, yet all are disabilities. Also, there are different levels of the same disability. Before we begin our study, participants already have defining characteristics or attributes that place them into one of two or more categories. Examples of these could be different disabilities or different levels of self-esteem. Thus, often we are interested in studying variables that are not manipulated during the study, even by other persons, schools, or clinics.

Other labels for the independent variable. SPSS uses a variety of terms in addition to independent variable, for example, factor (Chapters 9, 10, 11, and 12,), and covariate (Chapters 9 and 12). In other cases (Chapters 3 and 4), neither SPSS nor statisticians make a distinction between the independent and dependent variable; they just label them variables. For example, there is no independent variable for a correlation or chi-square. However, even for chi-square, we think it is sometimes educationally useful to think of one variable as the independent variable and the other as the outcome (dependent variable), as is the case in analysis of variance (ANOVA) or multivariate analysis of variance (MANOVA).

Values of the independent variable. SPSS uses the term values to describe the several options or values of a variable. These values are not necessarily ordered, and several other terms — categories, levels, groups, or samples — are sometimes used interchangeably with the term values, especially in statistics books. Suppose that an investigator is performing a study to investigate the effect of a treatment. One group of participants is assigned to the treatment group. A second group does not receive the treatment. The study could be conceptualized as having one independent variable (treatment type), with two values or levels (treatment and no treatment). The independent variable in this example would be classified as an active independent variable. Now, suppose instead that the investigator was primarily interested in comparing two different treatments but decided to include a third no-treatment group as a control group in the study. The study still would be conceptualized as having one active independent variable (treatment type) but with three values or levels (the two treatment conditions and the control condition). As an additional example, consider gender, which is an attribute independent variable with two values, male and female.

Note that in SPSS each variable is given a variable label that assists the researcher in understanding the variable. Moreover, each value or level is assigned a number used by SPSS to compute statistics, and these numbers can be assigned value labels that indicate what the numbers stand for (e.g., 1 = male and 2 = female). It is especially important to use value labels when the variable is nominal (i.e., when the values of the variable are just names and, thus, are not ordered), so that you can know the category to which each of the numbers refers.

Dependent Variables

The dependent variable is assumed to measure or assess the effect of the independent variable. It is thought of as the presumed outcome or criterion. Dependent variables are often test scores, ratings on questionnaires, readings from instruments (e.g., electrocardiogram, galvanic skin response), or measures of physical performance. Dependent variables, like independent variables, must have at least two values; most dependent variables have many values, varying from low to high.

SPSS also uses a number of other terms in addition to dependent variable. Dependent list is used in cases where you can do the same statistic several times, for a list of dependent variables (e.g., in one-way ANOVA). Grouping variable is used in Chapter 8 for discriminant analysis.

Extraneous Variables

These are variables (also called nuisance variables or, in some designs, covariates) that are not of primary interest in a particular study but could influence the dependent variable. Environmental factors (e.g., temperature or distractions), time of day, and characteristics of the experimenter, teacher, or therapist are some possible extraneous variables that need to be controlled. SPSS does not use the term extraneous variable. However, sometimes such variables are controlled using statistics that are available in SPSS.

Research Hypotheses and Research Questions 

Research hypotheses are predictive statements about the relationship between variables. Research questions are similar to hypotheses, except that they do not entail specific predictions and are phrased in question format. For example, one might have the following research question: “Is there a difference in students’ scores on a standardized test if they took two tests in one day versus taking only one test on each of two days?” A research hypothesis regarding the same issue might be: “Students who take only one test per day will score better on standardized tests than will students who take two tests in one day.” We divide research questions into three broad types: difference, associational, and descriptive as shown in the middle of Fig 1.1. The figure also shows the general and specific purposes and the general types of statistics for each of these three types of research question.


[image: Fig. 1.1. Schematic diagram showing how the purpose and type of research question correspond to the general type of statistic used in a study.]
Fig. 1.1. Schematic diagram showing how the purpose and type of research question correspond to the general type of statistic used in a study.



Difference research questions. For these questions, we compare scores (on the dependent variable) of two or a few groups (e.g., males and females). Each group is composed of individuals who have the same value or level of the independent variable and who potentially (and hopefully!) have a different level of the dependent variable than do individuals in the other group(s). This type of question attempts to discover whether or not groups are the same on the dependent variable in the larger population.

Associational research questions are those in which two or more variables are associated or related. This approach usually involves an attempt to see how two or more variables covary or how one or more variables enable one to predict another variable. When two variables covary positively, individuals who have high scores on one variable also tend to have high scores on the other variable; other individuals tend to have relatively low scores on both variables or middling scores on both variables.

Descriptive research questions are not answered with inferential statistics. They merely describe or summarize data without trying to generalize to a larger population of individuals.

Figure 1.1 shows that both difference and associational questions or hypotheses are similar in that they explore the relationships between variables.2 Note that difference and associational questions differ in specific purpose and the kinds of statistics they use to answer the question. Remember that research questions are similar to hypotheses, but they are stated in question format. We think it is advisable to use the question format when one does not have a clear directional prediction and also for the descriptive approach. As implied by Fig. 1.1, it is acceptable to phrase any research question that involves two or more variables as whether there is a relationship between the variables (e.g., “Is there a relationship between gender and math achievement?” or “Is there a relationship between anxiety and GPA?”). However, we think that phrasing the question as a difference or association is desirable because it helps one choose an appropriate statistic and interpret the result. For some examples of how to write research questions, see the section in this chapter, “Research Questions for the Modified HSB study.”

Complex Research Questions

Most research questions posed in this book involve more than two variables at a time. We call such questions and the appropriate statistics complex. Some of these statistics are called multivariate in other texts, but there is not a consistent definition of multivariate in the literature. We provide examples of how to write complex research questions in the chapter pertaining to each complex statistic.

In a factorial ANOVA, there are two (or a few) independent variables and one dependent variable. We will see, in Chapter 9, that when you do one factorial ANOVA there are actually three (or more) research questions. This set of three questions can be considered a complex difference question because the study has two independent variables. Likewise, complex associational questions are used in studies with more than one independent variable considered together.

Table 1.1 expands our overview of research questions to include both basic and complex questions of each of the three types: descriptive, difference, and associational. The table also includes references to other chapters in this book and examples of the types of statistics that we include under each of the six types of questions.

A Sample Research Problem: The Modified High School and Beyond (HSB) Study 

The SPSS file name of the data set used with this book is hsbdataNew.sav; it stands for high school and beyond data. It is based on an actual national sample of data from more than 28,000 high school students collected some years ago. Our data set includes a sample of 75 students drawn randomly from the larger population. The data that we use for this sample include school outcomes such as grades and the number of mathematics courses of different types that the students took in high school. Also, there are several kinds of standardized test data and demographic data such as gender and mother’s and father’s education. To provide an example of questionnaire data, we have included 14 questions about mathematics attitudes. These data were developed for this book and, thus, are not really the math3 attitudes of the 75 students in this sample; however, they are based on real data gathered by one of the authors to study motivation. Also, we made up data for religion, ethnic group, SAT-math and retests for the visualization and mosaic pattern test scores, which are somewhat realistic overall. These inclusions enable us to do some additional statistical analyses.

Table 1.1. Summary of Six Types of Research Questions and Appropriate Statistics





	Type of Research Question - Number of Variables
	Statistics (Example)



	






	1)
	Basic Descriptive Questions - One variable
	Table 1.5, Ch. 1 (e.g., mean, standard deviation, frequency distribution)



	2)
	Complex Descriptive Questions - Two or more variables, but no use of inferential statistics
	Ch. 2, 3, 4 (e.g., mean & SD for a variable after forming groups based on another variable, principal components analysis, measures of reliability)



	3)
	Basic/Single Factor Difference Questions - One independent and one dependent variable. Independent variable usually has a few levels (ordered or not).
	Table 5.1, Appendix B (t test, one-way ANOVA)



	4)
	Complex/Multifactor Difference Question - Three or more variables. Usually two or a few independent variables and one (or more) dependent variables.
	Table 5.3, Ch. 8, 9, 10, 11, 12, (discriminant analysis, factorial ANOVA, MANOVA, HLM)



	5)
	Basic Associational Questions - One independent variable and one dependent variable. Usually at least five ordered levels for both variables. Often they are continuous.
	Table 5.2, Appendix B (bivariate regression, correlation tested for significance)



	6)
	Complex/Multivariate Associational Questions - Two or more independent variables and one (or more) dependent variable. Often five or more ordered levels for all variables but some or all can be dichotomous variables.
	Table 5.4, Ch. 6, 7, 8, 12, 13 (multiple or logistic regression, discriminant analysis, canonical correlation, HLM)






Note: Many studies have more than one dependent variable. It is common to treat each one separately (i.e., to do several t tests, ANOVAs, correlations, or multiple regressions). However, there are complex statistics (e.g., MANOVA and canonical correlation) used to treat several dependent variables together in one analysis.





The Research Problem

Imagine that you are interested in the general problem of what factors seem to influence mathematics achievement at the end of high school. You might have some hunches or hypotheses about such factors based on your experience and your reading of the research and popular literature. Some factors that might influence mathematics achievement are commonly called demographics: for example, gender, ethnic group, and mother’s and father’s education. A probable influence would be the mathematics courses that the student has taken. We might speculate that grades in mathematics and in other subjects could have an impact on math achievement. However, other variables, such as students’ IQs or parents’ encouragement and assistance, could be the actual causes of both high grades and math achievement. Such variables could influence what courses one took and the grades one received and might be correlates of the demographic variables. We might wonder how spatial performance scores, such as mosaic pattern test scores and visualization scores, might enable a more complete understanding of the problem and whether these skills seem to be influenced by the same factors as math achievement.

The HSB Variables

Before we state the research problem and questions in more formal ways, we need to step back and discuss the types of variables and the approaches that might be used to study the above problem. We need to identify the independent/antecedent (presumed causes) variables, the dependent/outcome variable(s), and any extraneous variables.

The primary dependent variable. Given the above research problem, which focuses on mathematics achievement at the end of the senior year, the primary dependent variable is math achievement.

Independent and extraneous variables. The number of math courses taken is best considered to be an input (the SPSS term), antecedent, or independent variable in this study. How would you classify gender and parents’ education in terms of the type of variable? What about grades? Like the number of math courses, these variables would usually be considered independent variables because they occurred before the math achievement test. However, some of these variables, specifically parental education, might be viewed as extraneous variables that need to be “controlled.” Visualization and mosaic pattern test scores probably could be either independent or dependent variables depending upon the specific research question, because they were measured at approximately the same time as math achievement, at the end of the senior year. You will see that in SPSS we have labeled them “Both” under Role. Note that student’s class is a constant and is not a variable in this study because all the participants are high school seniors (i.e., it does not vary).

Types of independent variables. As we discussed previously, independent variables can be active (given to the participant during the study or manipulated by the investigator) or attributes of the participants or their environments. Are there any active independent variables in this study? No! There is no intervention, new curriculum, or similar treatment. All the independent variables, then, are attribute variables because they are attributes or characteristics of these high school students. Because all the independent variables are attributes, the research approach cannot be experimental. This means that we will not be able to draw definite conclusions about cause and effect (i.e., we will find out what is related to math achievement, but we will not know for sure what causes or influences math achievement).

Now we will examine the hsbdataNew.sav file that you will use to study this complex research problem. On the companion website, we have provided a file that contains the data for each of the 75 participants on 48 variables. The variables in the hsbdataNew.sav file have already been labeled (see Fig 1.2) and entered (see Fig 1.3) to enable you to get started on analyses quickly. The Routledge/Taylor and Francis website contains several SPSS data files for you to use, but it does not include the actual SPSS statistics program, which you will have to have access to in order to open the files and to do the assignments.

The SPSS Variable View

Figure 1.2 is a piece of what SPSS calls the variable view in the SPSS Data Editor for the hsbdataNew.sav file. Figure 1.2 shows information about each of the first five variables. When you open this file and click on Variable View at the bottom left corner of the screen, this is what you will see. What is included in the variable view screen is described in more detail in Appendix A, Getting Started with SPSS. Here, focus on the Name, Label, Values, and Missing columns. Name is a short name for each variable (e.g., faed or alg1).4 Label is a longer label for the variable (e.g., father’s education or Algebra 1 in h.s.). The Values column contains the value labels, but you can see the label for only one value at a time (e.g., 0 = male). That is, you cannot see that 1 = female unless you click on the row for that variable under the value column. The Missing column indicates whether there are any special, user-identified missing values. None means that there are no special missing values, just the usual SPSS system missing value, which is a blank.


[image: Fig. 1.2. Part of the hsbdataNew.sav variable view in the SPSS data editor.]
Fig. 1.2. Part of the hsbdataNew.sav variable view in the SPSS data editor.



Variables in the Modified HSB Data Set

The 48 variables shown in Table 1.2 (with the values/levels or range of their values in parentheses) are found in the hsbdataNew.sav file. Note that variables 35–48 were computed or recoded from variables (1– 34).

Table 1.2. HSB Variable Descriptions





	
	Name
	Label (and Values)



	






	Demographic School and Test Variables



	1.
	gender
	gender (0 = male, 1 = female)



	2.
	faed
	father's education (2 = less than h.s. to 10 = PhD/MD)



	3.
	maed
	mother's education (2 = less than h.s. grad to 10 = PhD/MD)



	4.
	alg1
	algebra 1 in h.s. (1 = taken, 0 = not taken)



	5.
	alg2
	algebra 2 in h.s. (1 = taken, 0 = not taken)



	6.
	geo
	geometry in h.s. (1 = taken, 0 = not taken)



	7.
	trig
	trigonometry in h.s. (1 = taken, 0 = not taken)



	8.
	calc
	calculus in h.s. (1 = taken, 0 = not taken)



	9.
	mathgr
	math grades (0 = low, 1 = high)



	10.
	grades
	grades in h.s. (1 = less than a D average to 8 = mostly an A average)



	11.
	mathach
	math achievement score (-8.33 to 25). 5 This is a test something like ACT math.



	12.
	mosaic
	mosaic pattern test score (-4 to 56). This is a test of pattern recognition ability involving the detection of relationships in patterns of tiles. The scoring of this somewhat subjective test is done by raters who observe the student's performance.



	13.
	visual
	visualization score (-4 to 16). This is a 16-item test that assesses visualization in three dimensions (i.e., how a three-dimensional object would look if its spatial position were changed).



	14.
	visual2
	visualization retest - the visualization test score students obtained when they retook the test a month or so later.



	15.
	satm
	scholastic aptitude test - math (200 = lowest, 800 = highest possible)



	16.
	ethnic
	ethnicity in student records (1 = Euro-American, 2 = African-American, 3 = Latino-American, 4 = Asian-American, 98 = other or multiethnic, chose 2 or more, 99 = missing, left blank)



	17.
	religion
	religion (1 = protestant, 2 = catholic, 3 = no religion, 98 = chose one of several other religions, 99 = left blank)



	18.
	ethnic2
	ethnicity reported by student (same as values for ethnic)



	Math Attitude Questions 1-14 (Rated from 1 = very atypical to 4 = very typical)



	19.
	item01
	motivation - "I practice math skills until I can do them well."



	20.
	item02
	pleasure - "I feel happy after solving a hard problem."



	21.
	item03
	competence - "I solve math problems quickly."



	22.
	item04
	(low) motiv - "I give up easily instead of persisting if a math problem is difficult."



	23.
	item05
	(low)comp - "I am a little slow catching on to new topics in math."



	24.
	item06
	(low)pleas - "I do not get much pleasure out of math problems."



	25.
	item07
	motivation - "I prefer to figure out how to solve problems without asking for help."



	26.
	item08
	(low)motiv - "I do not keep at it very long when a math problem is challenging."



	27.
	item09
	competence - "I am very competent at math."



	28.
	item10
	(low)pleas - "I smile only a little (or not at all) when I solve a math problem."



	29.
	item11
	(low)comp - "I have some difficulties doing math as well as other kids my age."



	30.
	item12
	motivation - "I try to complete my math problems even if it takes a long time to finish."



	31.
	item13
	motivation - "I explore all possible solutions of a complex problem before going on to another one."



	32.
	item14
	pleasure - "I really enjoy doing math problems."



	33.
	mosaic2
	mosaic rater 2 is the same pattern test as mosaic but observed and scored by a second judge or rater.



	34.
	mosaic3
	mosaic rater 3 is the same pattern test as mosaic but observed and scored by a third rater or judge.



	Variables Computed From the Above Variables



	35.
	item04r
	item04 reversed (4 now = high motivation)



	36.
	item05r
	item05 reversed (4 now = high competence)



	37.
	item08r
	item08 reversed (4 now = high motivation)



	38.
	item11r
	item11 reversed (4 now = high competence)



	39.
	competence
	competence scale. An average computed as follows: (item03 + item05r + item09 + item11r)/4



	40.
	motivation
	motivation scale (item01 + item04r + item07 + item08r + item12 + item13)/6



	41.
	mathcrs
	math courses taken (0 = none, 5 = all five)



	42.
	faedRevis
	father's educ revised (1 = HS grad or less, 2 = some college, 3 = BS or more)



	43.
	maedRevis
	mother's educ revised (1 = HS grad or less, 2 = some college, 3 = BS or more)



	44.
	item06r
	item06 reversed (4 now = high pleasure)



	45.
	item10r
	item10 reversed (4 now = high pleasure)



	46.
	pleasure
	pleasure scale (item02 + item06r + item 10r + item14)/4



	47.
	parEduc
	parents' education (average of the unrevised mother's and father's educations)



	48.
	CubedComp
	cubed competence (competence scale transformed, 1 = min, 64 = max)







The variables of ethnic and religion were added to the original HSB data set to provide true nominal (unordered) variables with more than two levels or values. In addition, for ethnic and religion, we have made two missing value codes to illustrate this possibility. All other variables use blanks, the SPSS system missing value, for missing data. For ethnicity, 98 indicates multiethnic and other. For religion, all the high school students who were not Protestant or Catholic but who did indicate some religion were coded 98 and considered to be missing because none of the other religions had enough members to make a reasonably sized group. Those who left the ethnicity or religion questions blank were coded as 99, also missing.

The Raw HSB Data and Data Editor

Figure 1.3 is a piece of the hsbdataNew.sav file showing the first 10 student participants for variables 1 through 17 (gender through religion). Notice the short variable names (e.g., faed, alg1) at the top of the hsbdataNew.sav file. Be aware that the participants are listed down the left side of the page (as 1 to 10), and the variables are always listed across the top. You will usually enter data this way. If a variable is measured more than once, such as visual and visual2 (see Fig 1.3), it will be entered as two variables with slightly different names. The one exception to this rule that will be covered in this book is when you want to analyze repeated-measures using Linear Mixed Models. In that case, you enter a separate line for each occasion on which the individual has data (see Chapter 12).


[image: Fig. 1.3. Part of the hsbdataNew data view in the SPSS Data Editor.6]
Fig. 1.3. Part of the hsbdataNew data view in the SPSS Data Editor.6



Note that in Fig. 1.3, most of the values are single digits, but mathach, mosaic, and visual include some decimals and even negative numbers. Notice also that some cells, like father’s education for participant 5, are blank because a datum is missing.7 Perhaps participant 5 did not know her father’s education. Blank is the system missing value that can be used for any missing data in an SPSS data file. We suggest that you leave missing data blank under most circumstances; however, you may run across “user defined” missing data codes like −1, 9, 98, or 99 in other researchers’ data, or you may choose to distinguish more than one type of missing data by using such codes so that you can include one or more types in certain analyses (For example, one might wish to distinguish individuals who indicated a religion other than Catholic or Protestant from those who indicated “no religion” or left the question blank; see religion for subject 8).

Research Questions for the Modified HSB Study 

In this book, we will generate a large number of research questions from the modified HSB data set. In this section, we list some of the possible questions you might ask in order to give you an idea of the range of types of questions that one might have in a typical research project. For review, we start with basic descriptive questions and some questions about assumptions. Also for review, we list some simple difference and associational questions that can be answered with basic (two-variable) inferential statistics such as a t test or correlation. These statistics are not discussed in this book, but how to compute them can be found in Appendix B. For more in-depth discussion of how to use SPSS to compute these statistics, see Morgan, Leech, Gloeckner, and Barrett (2013). Finally, we pose a number of complex questions that can be answered with the statistics discussed in this book.

	Often, we start with basic descriptive questions about the demographics of the sample. Thus, we could answer, with the outputs in Chapter 2, the following basic descriptive questions: “What is the average educational level of the fathers of the students in this sample?” “What percentage of the students is male, and what percentage is female?”
 	In Chapter 2, we also examine whether the variables with five or more ordered levels are distributed normally, an assumption of many statistics. One question is, “Are the frequency distributions of the math achievement scores markedly skewed, that is, different from the normal curve distribution?”
 	How to compute the chi-square statistic and a table cross-tabulating two categorical variables (ones with a few values or categories) is described in Appendix B. The chi-square statistic can answer research questions such as, “Is there a statistically significant relationship between gender and math grades (high or low)?”
 	In Appendix B, we will also describe how to answer basic associational research questions (using Pearson product-moment correlation coefficients) such as, “How strong is the association/relationship between grades in high school and math achievement?” A correlation matrix of all the correlations among several key variables will provide the basis for computing factor analysis in Chapter 4 and multiple regression in Chapter 6. In Chapter 3, correlation is also used to assess reliability.
 	Basic difference questions such as “Do males and females differ statistically significantly on math achievement?” and “Are there statistically significant differences among the three father’s education groups in regard to average scores on math achievement?” can be answered with a t test or one-way ANOVA, as described in Appendix B.
 	Complex difference questions will be answered with factorial ANOVA in Chapter 9, repeated or mixed ANOVA in Chapter 10, MANOVA in Chapter 11, or multilevel linear modeling in Chapter 12. One set of three questions that could be answered using factorial ANOVA is as follows: (1) “Is there a statistically significant difference between students who have fathers with no college, some college, or a BS or more with respect to the student’s math achievement?” (2) “Is there a statistically significant difference between students who had a B or better math grade average and those with less than a B average on a math achievement test?” and (3) “Is there a statistically significant interaction between father’s education and math grades with respect to math achievement?”
 	How well can you predict math achievement from a combination of four variables: motivation scale, grades in high school, parents’ education, and gender? This complex associational question can be answered with multiple regression, as discussed in Chapter 6. If the dependent variable, math achievement, were dichotomous (high vs. low achievement), logistic regression or possibly discriminant analysis, discussed in Chapter 8, would be appropriate to answer this question.
 	Are there statistically significant differences among the three father’s education groups on a linear combination of grades in high school, math achievement, and visualization test? This complex difference question can be answered with a single-factor MANOVA, as discussed in Chapter 11.
 	Are statistically significant differences in students’ math achievement related to the school they attend, and are these differences among schools related to the Mean Socioeconomic Status of the school they attend? This complex, multilevel question is addressed in Chapter 12 using multilevel linear modeling or hierarchical linear modeling (HLM).


More complex questions can be found in Chapters 3–13 under each of the several “problems” in those chapters.

This introduction to the research problem and questions raised by the HSB data set should help make the assignments meaningful, and it should provide a guide and examples for your own research.

Frequency Distributions 

Frequency distributions are critical to understanding our use of measurement terms. We begin this section with a discussion of frequency distributions and two examples. Frequency tables and distributions can be used whether the variable involved has ordered or unordered levels (SPSS calls them values). In this section, we will consider only variables with many ordered values, ranging from low to high.

A frequency distribution is a tally or count of the number of times each score on a single variable occurs. For example, the frequency distribution of final grades in a class of 50 students might be 7 As, 20 Bs, 18 Cs, and 5 Ds. Note that in this frequency distribution most students have Bs or Cs (grades in the middle) and similar smaller numbers have As and Ds (high and low grades). When there are small numbers of scores for the low and high values and most scores are for the middle values, the distribution is said to be approximately normally distributed. We will discuss the normal curve in more detail later in this chapter.

When the variable is continuous or has many ordered levels (or values), the frequency distribution usually is based on ranges of values for the variable. For example, the frequencies (number of students), shown by the bars in Fig 1.4, are for a range of points (in this case, SPSS selected a range of 50, 250–299, 300–349, 350–399, etc.).


[image: Fig. 1.4. A grouped frequency distribution for SAT math scores.]
Fig. 1.4. A grouped frequency distribution for SAT math scores.



Notice that the largest number of students (about 20) has scores in the middle two bars of the range (450– 550). Similar small numbers of students have very low and very high scores. The bars in this histogram form a distribution (pattern or curve) that is quite similar to the normal, bell-shaped curve shown later in Fig. 1.7. Thus, the frequency distribution of the SAT math scores is said to be approximately normal.

Figure 1.5 shows the frequency distribution for the competence scale. Notice that the bars form a pattern very different from the normal curve. This distribution can be said to be not normally distributed. As we will see later in the chapter, the distribution is negatively skewed. That is, the tail of the curve or the extreme scores are on the low end or left side. Note how much this differs from the SAT math score frequency distribution. As you will see in the Measurement section (below), we call the competence scale variable ordinal, because the distribution is not approximately normal. Note that in Chapter 2, we have transformed the competence scale to make it approximately normal.

You can create these figures yourself using the hsbdataNew.sav file. Select:

	 Graphs → Legacy Dialogs → Histogram.
 	Then move scholastic aptitude test – math (or competence scale) into the Variable box.
 	Click OK. The program can superimpose a normal curve on the histogram if you request it, but we have found this curve more confusing than helpful to our students.



[image: Fig. 1.5. A grouped frequency distribution for competence scale.]
Fig. 1.5. A grouped frequency distribution for competence scale.



Levels of Measurement 

Measurement is the assignment of numbers to different characteristics according to rules. The way these numbers are assigned differs across variables, and these differences can affect which statistical tests are appropriate for the data. These differences in the way numbers are assigned can be classified according to the “levels of measurement” that they represent. Depending on the level of measurement of a variable, the data can mean different things. For example, the number 2 might indicate a score of two; it might indicate that the subject was a Catholic; or it might indicate that the subject was ranked second in the class. To help understand these differences, types, or levels of variables, have been identified. It is common and traditional to discuss four levels or scales of measurement: nominal, ordinal, interval, and ratio, which vary from the unordered (nominal) to the highest level (ratio).8 These four traditional terms are not the same as those used in SPSS, and we think that they are not always the most useful for determining what statistics to use.

SPSS uses three terms (nominal, ordinal, and scale) for the levels or types of measurement. How these correspond to the traditional terms is shown in Table 1.3. When you name and label variables in SPSS, you have the opportunity to select one of these three types of measurement (see Fig 1.2). Although what you choose does not affect what SPSS does in most cases, an appropriate choice indicates that you understand your data and may help guide your selection of statistics.

We believe that the terms nominal, dichotomous, ordinal, and approximately normal (or normally distributed) are usually more useful than the traditional or SPSS measurement terms for the selection and interpretation of statistics. In part, this is because statisticians disagree about the usefulness of the traditional levels of measurement in determining the appropriate selection of statistics. Furthermore, our experience is that the traditional terms are frequently misunderstood and applied inappropriately by students. The main problem with the SPSS terms is that the term scale is not commonly used as a measurement level, and it has other meanings (see footnote 8) that make its use here confusing. Hopefully, our terms, as discussed below, are clear and useful.

Table 1.3 compares the three sets of terms and provides a summary description of our definitions of them. Professors differ in the terminology they prefer and on how much importance to place on levels or scales of measurement, so you will see all of these terms, and the others mentioned below, in textbooks and articles.

Nominal Variables

This is the most basic or lowest level of measurement, in which the numerals assigned to each category stand for the name of the category, but they have no implied order or value. For example, in the HSB data, the values for the religion variable are 1= Protestant, 2 = Catholic, 3 = no religion. This does not mean that that two Protestants equal one Catholic or any of the typical mathematical uses of the numerals. The same reasoning applies to many other true nominal variables, such as ethnic group, type of disability, or section number in a class schedule. In each of these cases, the categories are distinct and nonoverlapping but not ordered. Each category or group in the modified HSB variable ethnicity is different from each other, but there is no necessary order to the categories. Thus, the categories could be numbered 1 for Asian American, 2 for Latino American, 3 for African American, and 4 for European American or the reverse or any combination of assigning one number to each category.

Table 1.3. Similar Traditional, SPSS, and Our Measurement Terms





	Traditional Term
	Traditional Definition
	SPSS Term
	Our Term
	Our Definition



	






	Nominal
	Two or more unordered categories
	Nominal
	Nominal
	Three or more unordered categories.



	-----
	-----
	-----
	Dichotomous
	Two categories, either ordered or unordered.



	Ordinal
	Ordered levels, in which the difference in magnitude between levels is not equal
	Ordinal
	Ordinal
	Three or more ordered levels, in which the difference in magnitude between pairs of adjacent levels (e.g., scores such as 1 and 2, or 2 and 3) is unequal, and/or the frequency distribution deviates markedly from the normal distribution.



	Interval & Ratio
	Interval: ordered levels, in which the difference between levels is equal, but there is no true zero.
Ratio: ordered levels; the difference between levels is equal, and there is a true zero.
	Scale
	Approximately Normal
	Many (at least five) ordered levels or scores, with the frequency distribution of the scores being approximately normally distributed.







What this implies is that you must not treat the numbers used for identifying nominal categories as if they were numbers that could be used in a formula, added together, subtracted from one another, or used to compute an average. Average ethnicity makes no sense. However, if you ask SPSS to compute the mean ethnicity, it will do so and give you meaningless information. The important aspect of nominal measurement is to have clearly defined, non-overlapping or mutually exclusive categories that can be coded reliably by observers or by self-report.

Using nominal measurement does dramatically limit the statistics that can be used with your data, but it does not altogether eliminate the possible use of statistics to summarize your data and make inferences.9 Therefore, even when the data are unordered or nominal categories, your research may benefit from the use of appropriate statistics. Later we will discuss the types of statistics, both descriptive and inferential, that are appropriate for nominal data.

Other terms for nominal variables. Unfortunately, the literature is full of different terms that describe similar, but not identical, measurement aspects of variables. Categorical, qualitative, and discrete are terms sometimes used interchangeably with nominal, but we think that nominal is better because it is possible to have ordered, discrete categories (e.g., remedial, average, and accelerated “tracks” of math classes, which we and other researchers would consider an ordinal variable). “Qualitative” is also used to discuss a different approach to doing research, with important differences in philosophy, assumptions, and methods for conducting research.

Dichotomous Variables

Dichotomous variables always have only two levels or categories. In some cases, they may have an implied order (e.g., math grades in high school are coded 0 for less than an A or B average and 1 for mostly A or B). Other dichotomous variables do not have any order to the categories (e.g., male or female). For many purposes, it is best to use the same statistics for dichotomous and nominal variables. However, a statistic such as the mean or average, which would be meaningless for a three or more category nominal variable (e.g., ethnicity), does have meaning when there are only two categories and when coded as dummy variables (0, 1) is especially easily interpretable. For example, in the HSB data, the average gender is .55 (with males = 0 and females = 1). This means that 55% of the participants were females, the higher code. Furthermore, we will see with multiple regression that dichotomous variables, especially when coded as dummy variables, can be used as independent variables along with other variables that are normally distributed.

Other terms for dichotomous variables. In the SPSS Variable View (e.g., see Fig 1.2), we label dichotomous variables nominal, and this is common in textbooks. However, please remember that dichotomous variables are really a special case, and for some purposes they can be treated as if they were normally distributed. Note that dichotomous data have two discrete categories, so these variables are sometimes called discrete variables, categorical variables, or dummy variables.

Ordinal Variables

In ordinal measurement, not only are there mutually exclusive categories as in nominal scales, but also the categories are ordered from low to high, such that ranks could be assigned (e.g., 1st, 2nd, 3rd). Thus, in an ordinal scale one knows which participant is highest or most preferred on a dimension, but the intervals between the various categories are not equal. Often, whether the intervals between categories can be viewed as equal is a matter of judgment. Our definition of ordinal focuses on whether the frequency counts for each category or value are distributed like the bell-shaped, normal curve with more responses in the middle categories and fewer in the lowest and highest categories. If not approximately normal, we would call the variable ordinal. Ordered variables with only three or four categories would also be called ordinal. As indicated in Table 1.3, however, the traditional definition of ordinal focuses on whether the differences between pairs of levels are equal. This can be important, for example if one will be creating summed or averaged scores (as in subscales of a questionnaire that involve aggregating a set of questionnaire items). If differences between levels are meaningfully unequal, then averaging a score of 5 (e.g., indicating the participants’ age is 65+) and a score of 2 (e.g., indicating that the participants’ age is 20–25) may not make sense. Averaging the ranks of the scores may be more meaningful if it is clear that they are ordered but that the differences between adjacent scores differs across levels of the variable. However, sometimes even if the differences between levels is not literally equal (e.g., the difference between a level indicating infancy and a level indicating preschool is not equal in years to the difference between a level of “young adulthood” and “older adulthood”) it may be reasonable to treat the levels as interval level data if the levels comprise the most meaningful distinctions and data are normally distributed.

Other terms for ordinal variables. Some authors use the term ranks interchangeably with ordinal. However, most analyses that are designed for use with ordinal data (i.e., nonparametric tests) rank the data as a part of the procedure, assuming that the data you are entering are not already ranked. Moreover, the process of ranking changes the distribution of data such that the data can be used in many analyses ordinarily requiring normally distributed data. Ordinal data are often categorical (e.g., good, better, best are three ordered categories), so that term is sometimes used to include both nominal and ordinal data, and the categories may be discrete (e.g., number of children in a family is a discrete number, 1, 2. It does not make sense to have a number of children in between 1 and 2).

Approximately Normal (or Scale) Variables

Not only do approximately normally distributed variables have levels or scores that are ordered from low to high, but also, as stated in Table 1.3, the frequencies of the scores are approximately normally distributed. That is, most scores are somewhere in the middle with similar smaller numbers of low and high scores. Thus, a 5-point Likert scale, such as strongly agree to strongly disagree, would be considered normal if the frequency distribution was approximately normal. We think normality, because it is an assumption of many statistics, should be the focus of this highest level of measurement. Many normal variables are continuous (i.e., they have an infinite number of possible values within some range). If not continuous, we suggest that there be at least five ordered values or levels that have an implicit, underlying continuous nature. For example, a 5-point Likert scale has only five response categories but, in theory, a person’s rating could fall anywhere between 1 and 5 (e.g., halfway between 3 and 4).

Other terms for approximately normal variables. Continuous, dimensional, and quantitative are some terms that you will see in the literature for variables that vary from low to high and are assumed to be normally distributed. SPSS uses scale as previously noted. Traditional measurement terminology uses the terms interval and ratio. SPSS does not use these terms, but because they are common in the literature and overlap with the term scale, we will describe them briefly. Interval variables have ordered categories that are equally spaced (i.e., have equal intervals between them). Most physical measurements (e.g., length, weight, temperature) have equal intervals between them. Many physical measurements (length and weight), in fact, have not only equal intervals between the levels or scores but also a true zero, which means in the above examples, zero length or weight. Such variables are called ratio variables. Our Fahrenheit temperature scale and almost all psychological scales do not have a true zero, and, thus, even if they are very well-constructed equal-interval scales, it is not possible to say that zero degrees Fahrenheit involves the absence of something or that one has no intelligence or no extroversion or no attitude of a certain type. The differences between interval scales and ratio scales are not important for us because we can do all of the types of statistics that we have available with interval data. SPSS terminology supports this nondistinction by using the term scale for both interval and ratio data. In fact because it is an assumption of most parametric statistics, it may be more important for statistical purposes that the variables be approximately normally distributed than whether they have equal intervals.

Labeling Levels of Measurement in SPSS

When you label variables in SPSS, the Measure column (see Fig. 1.2) provides only three choices: nominal, ordinal, or scale. How do you decide which to use?

Labeling variables as nominal. If the variable has only two levels (e.g., Yes or No, Pass or Fail), most researchers and we would label it nominal in the SPSS variable view because that is traditional and it is often best to use the same statistics with dichotomous variables that you would with a nominal variable. As mentioned earlier, there are times when dichotomous variables can be treated as if they were ordered; however, as long as you use numbers to code them, SPSS will still allow you to use them in such analyses. If there are three or more categories or values, you need to determine whether the categories are ordered (vary from low to high). If the categories are just different names and not ordered, label the variable as nominal in the SPSS variable view. Especially if there are more than two categories, this distinction between nominal and ordered variables makes a lot of difference in choosing and interpreting appropriate statistics.

Labeling variables as ordinal. If the categories or values of a variable vary from low to high (i.e., are ordered) and there are only three or four such values (e.g., good, better, best, or strongly disagree, disagree, agree, strongly agree), we recommend that you label the variable ordinal. Also, if there are five or more ordered levels or values of a variable and you suspect that the frequency distribution of the variable is substantially nonnormal, label the variable ordinal. That is, if you do not think that the distribution is approximately symmetrical and that most of the participants had scores somewhere in the middle of the distribution, call the variable ordinal. If most of the participants are thought to be either quite high or low or you suspect that the distribution will be some shape other than bell-shaped, label the variable ordinal.

Labeling variables as scale. If the variable has five or more ordered categories or values and you have no reason to suspect that the distribution is nonnormal, label the variable scale in the SPSS variable view measure column. If the variable is essentially continuous (e.g., is measured to one or more decimal places or is the average of several items), it is likely to be at least approximately normally distributed, so call it scale. As you see in Chapter 2, we recommend that you check the skewness of your variables with five or more ordered levels and then adjust what you initially called a variable’s measurement, if necessary. That is, you might want to change it from ordinal to scale, if it turns out to be approximately normal or change from scale to ordinal10if it turns out to be too skewed.

Why We Prefer Our Four Levels of Measurement: A Review

As shown in Table 1.3 and Table 1.4, we distinguish between four levels of measurement: nominal, dichotomous, ordinal, and normal. Even though you cannot label variables as dichotomous or normal in the SPSS variable view, we think that these four levels are conceptually and practically useful. Remember that because dichotomous variables form a special case they can be used and interpreted much like normally distributed variables, which is why we think it is good to distinguish between nominal and dichotomous even though SPSS does not.

Likewise, we think that normally distributed or normal is a better label than the SPSS term scale because the latter could easily be confused with other uses of the term scale (see footnote 8) and because whether the variable is approximately normally distributed is what for us distinguishes it from an ordinal variable. Furthermore, what is important for most of the inferential statistics that you will compute with SPSS is the assumption that the dependent variable must be at least approximately normally distributed.

Table 1.4. Characteristics and Examples of the Four Types of Measurement





	
	Nominal
	Dichotomous
	Ordinal
	Normal



	






	Characteristics
	3+ levels
Not ordered
True categories
Names, labels
	2 levels
Ordered or not
	3+ levels
Ordered levels
Unequal intervals between levels
Not normally distributed
	5+ levels
Ordered levels
Approximately normally distributed
Equal intervals between levels



	Examples
	Ethnicity
Religion
Curriculum type
Hair color
	Gender
Math grades (high vs. low)
	Competence scale
Mother's education
	SAT math
Math achievement
Height







Remember that in SPSS there are only three measurement types or levels, and you are the one who determines if the variable is called nominal, ordinal, or scale (see Fig. 1.2). We called dichotomous variables nominal, and we labeled approximately normal variables as scale in our hsbdataNew.sav file.

Descriptive Statistics 

In Chapter 2, we will obtain descriptive statistics to summarize data and check assumptions; we will also produce plots that visually display distributions of variables. Here we provide a brief review of descriptive statistics and their appropriate use given the level of measurement of the variable.

Measures of Central Tendency

The three measures of the center of a distribution are: mean, median, and mode.

Mean. The arithmetic average or mean takes into account all of the available information. Thus, it is usually the statistic of choice if the data are normally distributed. The mean is computed by adding up all the scores and dividing by the number of scores (M = ∑X/N). For normally distributed data, the raw scores should be used in this calculation; for ordinal scores, it is sometimes useful to calculate a mean of the ranked scores.

Median. The middle score or median is the appropriate measure of central tendency for ordinal level raw data. The median is a better measure of central tendency than the mean when the frequency distribution is skewed. For example, the median income of 100 midlevel workers and one millionaire reflects the central tendency of the group better (and is substantially lower) than the mean income. The average or mean would be inflated in this example by the income of the one millionaire. For normally distributed data, the median is the same (or approximately the same) as the mean.

Mode. The most common category, or mode, can be used with any kind of data but generally provides the least precise information about central tendency. Moreover, if one’s data are continuous, there often are multiple modes, none of which truly represents the “typical” score. In fact if there are multiple modes, SPSS provides only the lowest one. One would use the mode as the measure of central tendency if the variable is nominal or if you want a quick noncalculated measure. The mode is the tallest bar in a bar graph or histogram.

You can compute the Mean, Median, and Mode, plus other descriptive statistics, with SPSS by using the Frequencies command.

To get Fig 1.6, select:

	Analyze → Descriptive Statistics → Frequencies → scholastic aptitude test – math → Statistics → Mean, Median, and Mode → Continue → OK.


Note in Fig. 1.6 that the mean and median are very similar, which is in agreement with our conclusion from Fig. 1.4 that SATM is approximately normally distributed. Note that the mode is 500, as shown in Fig. 1.4 by the tallest bars.


[image: Fig. 1.6. Central tendency measures using the SPSS frequencies command.]
Fig. 1.6. Central tendency measures using the SPSS frequencies command.



Measures of Variability

Variability tells us about the spread or dispersion of the scores. At one extreme, if all of the scores in a distribution are the same, there is no variability. If the scores are all different and widely spaced, the variability will be high. The range (highest minus lowest score) is the crudest measure of variability but does give an indication of the spread in scores if they are ordered.

Standard Deviation. This common measure of variability is most appropriate when one has normally distributed data; however, the standard deviation of ranked ordinal data may be useful in some cases. The standard deviation is based on the deviation of each score (x) from the mean of all the scores (M). Those deviation scores are squared and then summed (∑(x - M)2). This sum is divided by n - 1, and, finally, the square root is taken.

[image: ]

Interquartile range For ordinal data, the interquartile range, the distance between the 25th and 75th percentiles, is a useful measure of variability.

With nominal data, none of the above variability measures (range, standard deviation, or interquartile range) are appropriate. Instead, one might ask how many different categories there are (if categories are not predefined) and what the percentages or frequency counts are in each category to get some idea of variability. Minimum and maximum frequencies in the different categories, especially relative to the total number of individuals and number of categories, also may provide information about variability for nominal data.

Conclusions About Measurement and the Use of Statistics 

Statistics based on means and standard deviations are valid for normally distributed or normal data. Typically, these data are used in the most powerful tests called parametric statistics. However, if the data are ordered but grossly nonnormal (i.e., ordinal), means and standard deviations may not give meaningful answers. Then the median and a nonparametric test would be preferred. Nonparametric tests typically have somewhat less power than parametric tests (they are less able to demonstrate significance even when true effects exist in the population), but the sacrifice in power for nonparametric tests based on ranks usually is relatively minor. If the data are nominal, one would have to use the mode and information about the distribution of individuals in categories to describe the distribution. Usually, there would be a major sacrifice in power if one reduced continuous data to a categorical variable (e.g., by doing a median split) and then analyzed the resulting variable using nonparametric statistics designed for categorical data.

Table 1.5 summarizes much of the above information about the appropriate use of various kinds of descriptive statistics given nominal, dichotomous, ordinal, or normal data.

Table 1.5. Selection of Appropriate Descriptive Statistics and Plots for Levels of Measurement





	Plots
	Nominal
	Dichotomous
	Ordinal
	Normal



	






	Frequency distribution
	Yesa
	Yes
	Yes
	OKb



	Bar chart
	Yes
	Yes
	Yes
	OK



	Histogram
	Noc
	No
	OK
	Yes



	Frequency polygon
	No
	No
	OK
	Yes



	Box and whiskers plot
	No
	No
	Yes
	Yes



	Central Tendency
	
	
	
	



	Mean
	No
	OK
	Of ranks, OK
	Yes



	Median
	No
	OK = Mode
	Yes
	OK



	Mode
	Yes
	Yes
	OK
	OK



	Variability
	
	
	
	



	Range
	No
	Always 1
	Yes
	Yes



	Standard deviation
	No
	No
	Of ranks, OK
	Yes



	Interquartile range
	No
	No
	OK
	OK



	How many categories
	Yes
	Always 2
	OK
	Not if truly continuous



	Shape
	
	
	
	



	Skewness
	No
	No
	Yes
	Yes






aYes means a good choice with this level of measurement.

bOK means OK to use, but not the best choice at this level of measurement.

cNo means not appropriate at this level of measurement.





The Normal Curve 

Figure 1.7 is an example of a normal curve. The frequencies of many of the variables used in the behavioral sciences are distributed approximately as a normal curve. Examples of such variables that approximately fit a normal curve are height, weight, intelligence, and many personality variables. Notice that for each of these examples most people would fall toward the middle of the distribution, with fewer people at the extremes. If the average height of men in the United States is 5’10”, then this height will be in the middle of the curve. The heights of men who are taller than 5’10” will be to the right of the middle on the curve, and those of men who are shorter than 5’10” will be to the left of the middle on the curve, with only a few men being 7 feet or 5 feet tall.

The normal curve can be thought of as derived from a frequency distribution. It is theoretically formed from counting an “infinite” number of occurrences of a variable. Usually when the normal curve is depicted, only the X axis (horizontal) is shown. To determine how a frequency distribution is obtained, you could take a fair coin, flip it 10 times, and record the number of heads on this first set or trial. Then flip it another 10 times, and record the number of heads. If you had nothing better to do, you could do 100 trials. After performing this task, you could plot the number of times that the coin turned up heads out of each trial of 10. What would you expect? Of course, the largest number of trials probably would show 5 heads out of 10. There would be very few, if any trials, where 0, 1, 9, or 10 heads occur. It could happen, but the probability is quite low, which brings us to a probability distribution. If we performed this experiment 100 times, or 1,000 times, or 1,000,000 times, the frequency distribution would “fill in” and look more and more like a normal curve.


[image: Fig. 1.7. Frequency distribution and probability distribution for the normal curve.]
Fig. 1.7. Frequency distribution and probability distribution for the normal curve.



Properties of the Normal Curve

	The normal curve has five properties that are always present.
 	The normal curve is unimodal. It has one “hump,” and this hump is in the middle of the distribution. The most frequent value is in the middle of the curve.
 	The mean, median, and mode are equal.
 	The curve is symmetric. If you fold the normal curve in half, the right side would fit perfectly with the left side; that is, it is not skewed.
 	The range is infinite. This means that the extremes approach but never touch the X axis.
 	The curve is neither too peaked nor too flat, and its tails are neither too short nor too long; it has no kurtosis.


Nonnormally Shaped Distributions

Skewness. If one tail of a frequency distribution is longer than the other and if the mean and median are different, the curve is skewed. Because most common inferential statistics (e.g., t test) assume that the dependent variable is normally distributed, it is important that we know if our variables are highly skewed.

Figure 1.5 showed a frequency distribution that is skewed to the left. This is called a negative skew. A perfectly normal curve has a skewness of zero (0.0). The curve in Fig. 1.5, for the competence scale, has a skewness statistic of −1.63, which indicates that the curve is quite different from a normal curve. We will use a somewhat arbitrary guideline that if the skewness is more than +1.0 or less than −1.0 the distribution is markedly skewed and it would be prudent to either transform the data or use a nonparametric (ordinal type) statistic. However, some parametric statistics, such as the two-tailed t test and ANOVA, are quite robust so even a skewness of more than +/−1 may not change the results much. We will provide more examples and discuss this more in Chapter 2.

Kurtosis. If a frequency distribution is more peaked than the normal curve, it is said to have positive kurtosis and is called leptokurtic. Note in Fig. 1.4 that the SAT-math histogram is peaked (i.e., the bar for 500 would extend above the normal curve line), and thus there is some positive kurtosis. If a frequency distribution is relatively flat with heavy tails, it has negative kurtosis and is called platykurtic. Although SPSS can easily compute a kurtosis value for any variable using an option in the Frequencies command, usually we will not do so because kurtosis does not seem to affect the results of most statistical analyses very much.

Areas Under the Normal Curve

The normal curve is also a probability distribution. Visualize that the area under the normal curve is equal to 1.0. Therefore, portions of this curve could be expressed as fractions of 1.0. For example, if we assume that 5'10" is the average height of men in the United States, then the probability of a man being 5'10" or taller is .5. The probability of a man being over 6'3" or less than 5'5" is considerably smaller. It is important to be able to conceptualize the normal curve as a probability distribution because statistical convention sets acceptable probability levels for rejecting the null hypothesis at .05 or .01. As we shall see, when events or outcomes happen very infrequently, that is, only 5 times in 100 or 1 time in 100 (way out in the left or right tail of the curve), we wonder if they belong to that distribution or perhaps to a different distribution. We will come back to this point later in the book.

All normal curves, regardless of whether they are narrow or spread out, can be divided into areas or units in terms of the standard deviation. Approximately 34% of the area under the normal curve is between the mean and one standard deviation above or below the mean (see Fig. 1.7). If we include both the area to the right and to the left of the mean, 68% of the area under the normal curve is within one standard deviation from the mean. Another approximately 13.5% of the area under the normal curve is accounted for by adding a second standard deviation to the first standard deviation. In other words, two standard deviations to the right of the mean account for an area of approximately 47.5%, and two standard deviations to the left and right of the mean make up an area of approximately 95% of the normal curve. If we were to subtract 95% from 100%, the remaining 5% relates to that ever present probability or p value of .05 needed for statistical significance. Values not falling within two standard deviations of the mean are seen as relatively rare events.

The Standard Normal Curve

All normal curves can be converted into standard normal curves by setting the mean equal to zero and the standard deviation equal to one. Since all normal curves have the same proportion of the curve within one standard deviation, two standard deviations, and so on, of the mean, this conversion allows comparisons among normal curves with different means and standard deviations. The normal distribution in Fig. 1.7  has the standard normal distribution units underneath. These units are referred to as z scores. If you examine the normal curve table in any statistics book, you can find the areas under the curve for one standard deviation (z = 1), two standard deviations (z = 2), and so on. As described in Appendix A, it is easy for SPSS to convert raw scores into standard scores. This is often done when one wants to aggregate or add together several scores that have quite different means and standard deviations.

Interpretation Questions 

	1.1 What is the difference between the independent variable and the dependent variable?
 	1.2 Compare the terms active independent variable and attribute independent variable. What are the similarities and differences?
 	1.3 What kind of independent variable is necessary to infer cause? Can one always infer cause from this type of independent variable? If so, why? If not, when can one clearly infer cause, and when might causal inferences be more questionable?
 	1.4 Compare and contrast associational, difference, and descriptive types of research questions.
 	1.5 Write three research questions and a corresponding hypothesis regarding variables of interest to you but not in the HSB data set (one associational, one difference, and one descriptive question).
 	1.6 Using one or more of the following HSB variables, religion, mosaic score, and visualization score: 	Write an associational question.
 	Write a difference question.
 	Write a descriptive question.


 	1.7 If you have categorical, ordered data (such as low income, middle income, high income), what type of measurement would you have? Why?
 	1.8 (a) What are the differences among nominal, dichotomous, ordinal, and normal variables? (b) In social science research, why is it not important to distinguish between interval amd ratio variables?
 	1.9 What percent of the area under the standard normal curve is between the mean and one standard deviation above the mean?
 	1.10 (a) How do z scores relate to the normal curve? (b) How would you interpret az score of-3.0?



1 To help you, we have identified the SPSS variable names and labels using italics (e.g., gender and ethnic). Sometimes italics are also used to emphasize a word. We have put in bold the terms used in the SPSS windows and outputs (e.g., SPSS Data Editor) and other key terms when they are introduced, defined, or are important to understanding. Underlines are used to emphasize critical points. Bullets precede instructions about SPSS actions (e.g., click, highlight).




2This similarity is in agreement with the statement by statisticians that all common parametric inferential statistics are relational. We use the term associational for the second type of research question rather than relational or correlational to distinguish it from the general purpose of both difference and associational questions/hypotheses, which is to study relationships. Also we wanted to distinguish between correlation, as a specific statistical technique, and the broader type of associational question and that group of statistics.
 3 We have decided to use the short version of mathematics (i.e., math) throughout the book to save space and because it is used in common language.




4 In SPSS 7–11, the variable Name had to be eight characters or less. From SPSS 12 onward, the SPSS name can be longer, but we recommend that you keep it short. SPSS names must start with a letter and must not contain blank spaces or certain special characters (e.g.,!,?, ‘, or *).




5Negative test scores result from a penalty for guessing.




6 If the values for gender are shown as female or male, the value labels rather than the numerals are being displayed. In that case, click on the circled symbol to change the format to show only the numeric values for each variable.
 7 The HSB study used in this book had no missing data so those data were modified slightly to include some missing data, which is typical in behavioral research.




8 Unfortunately, the terms “level” and “scale” are used several ways in research. Levels refer to the categories or values of a variable (e. g., male or female or 1, 2, or 3); level can also refer to the three or four different types of measurement (nominal, ordinal, etc). These several types of measurement have also been called “scales of measurement,” but SPSS uses “scale” specifically for the highest type or level of measurement. Other researchers use scale to describe to describe questionnaire items that are rated from strongly disagree to strongly agree (Likert scale) and for the sum of such items (summated scale). We wish there weren’t so many uses of these terms; the best we can do is try to be clear about our usage.




9 For example, the independent variable(s) in difference inferential statistics such as ANOVA can be nominal.




10 Another alternative would be to transform the variable to normalize the distribution.




Chapter 2
 Data Coding and Exploratory Analysis (EDA)

Before computing any inferential statistics, it is necessary to code the data, enter the data into SPSS, and then conduct exploratory data analysis (EDA) as outlined below. This chapter will help you understand your data, help you to see if there are any errors, and help you to know if your data meet basic assumptions for the inferential statistics that you will compute. Throughout this chapter we include syntax for completing the analyses. How to use the point and click method for these analyses is outlined in SPSS for Introductory Statistics: Use and Interpretation (Morgan, Leech, Gloeckner, & Barrett, 2013).

Rules for Data Coding 

Coding is the process of assigning numbers or symbols to the values or levels of each variable. We want to present some broad suggestions or rules to keep in mind as you proceed. These suggestions are adapted from rules proposed in Newton and Rudestam’s (2012) useful book entitled Your Statistical Consultant. It is important to note that the recommendations we make are those we find to be most useful in most contexts, but some researchers might propose alternatives, especially for “rules” 1, 2, 4, 5, and 7 below.

1. All data should be numeric. Even though it is possible to use letters or words (string variables) as data, it is not desirable to do so. For example, we could code gender as M for male and F for female, but in order to do most statistics with SPSS, you would have to convert the letters or words to numbers. It is easier to do this conversion before entering the data into the computer. We decided to code females as 1 and males as 0. This is called dummy coding. In essence, the 0 means “not female.” Dummy coding is useful if you will want to use the data in some types of analyses and for obtaining descriptive statistics. For example, the mean of data coded this way will tell you the percentage of participants who fall in the category coded as “1,” the higher of the two codes. We could, of course, code males as 1 and females as 0, or we could code one gender as 1 and the other as 2. However, it is crucial that you be consistent in your coding and have a way to remind yourself and others of how you did the coding. In Appendix A, we show how you can provide such a record or codebook, which SPSS calls a dictionary or working file.

2. Each variable for each case or participant must occupy the same column in the SPSS Data Editor. For most SPSS procedures (Linear Mixed Models is an exception), it is important that data from each participant occupy only one line (row), and for all procedures each column must contain data on the same variable for all the participants. The SPSS data editor, into which you will enter data, facilitates this by putting the variable names that you choose at the top of each column, as you saw in Fig. 1.3. If a variable is measured more than once for each participant (e.g., pretest and posttest), it usually needs to be entered on the same row in separate columns with somewhat different names like mathpre and mathpost. An exception to this is for the Linear Mixed Models program when you are doing a repeated-measures model (see Chapter 13).

3. All values (codes) for a variable must be mutually exclusive. That is, only one value or number can be recorded for each variable. Some items may allow participants to check more than one response. In that case, the item should be divided into a separate variable for each possible response choice, with one value of each variable (usually coded “1”) corresponding to yes (checked) and the other (usually “0”) to no (not checked).

Usually, items should be phrased so that persons would logically choose only one of the provided options, and all possible options are provided. A final category labeled “other” may be provided in cases where all possible options cannot be listed, but these “other” responses are usually quite diverse and, thus, are usually not very useful for statistical purposes.

4. Each variable should be coded to obtain maximum information. Do not collapse categories or values when you set up the codes for them. If needed, let the computer do it later. In general, it is desirable to code and enter data in as detailed a form as available. Thus, enter item raw scores, ages, GPAs, etc. for each participant if you know them. It is good to ask participants to provide information that is quite specific.

However, you should be careful not to ask questions that are so specific that the respondent may not know the answer or may not feel comfortable providing it. For example, you will obtain more specific information by asking participants to state their GPA to two decimals than if you asked them to select from a few broad categories (e.g., less than 2.0, 2.0–2.49, 2.50–2.99). However, if students don’t know their exact GPA or don’t want to reveal it precisely, they may leave the question blank, guess, or write in a difficult to interpret answer. These issues might lead you to provide several categories, each with a relatively narrow range of values, for variables such as age, weight, and income. Never collapse such categories before you enter the data into SPSS. For example, if you had age categories for university undergraduates 16–18, 18–20, 21–23, and so on and you realize that there are only a few students in the below 18 group, keep the codes as they are for now. Later you can make a new category of 20 or under by using an SPSS function, Transform → Recode. If you collapse categories before you enter the data, the additional information will no longer be available.

5. For each participant, there must be a code or value for each variable. These codes should be numbers, except when the data are missing. We recommend using blanks when data are missing or unusable, because SPSS is designed to handle blanks as missing values. However, sometimes you may have more than one type of missing data, such as items left blank and those that had an answer that was not appropriate or usable. In this case, you may assign numeric codes such as 98 and 99 to them, but you must tell SPSS that these codes are for missing values, or SPSS will treat them as actual data.

6. Apply coding rules consistently for all participants. This means that if you decide to treat a certain type of response as, say, missing for one person, you must do the same for all other participants.

7. Use high numbers (values or codes) for the “agree,” “good,” or “more” end of a variable that is ordered. If the variable has a negative-sounding label (e.g., aggressiveness) then, higher numbers should refer to more of the trait, which would end up yielding scores in which higher = more aggressive or negative. Sometimes you will see questionnaires that use 1 for “strongly agree” and 5 for “strongly disagree.” This is not wrong as long as it is clear and consistent. However, you are less likely to get confused when interpreting your results if high values have positive meaning, indicate that something was done (e.g., an algebra 1 course was taken), or indicate more of the characteristic.

8. Make a coding form and/or codebook. You need to make some decisions about how to code the data, especially data that are not already in numerical form. When the responses provided by participants are numbers, the variable is said to be “self-coding.” You can just enter the number that was circled or checked on the questionnaire. On the other hand, variables such as gender or ethnicity have no intrinsic values associated with them, so a number has to be assigned to each level or value. See Appendix A.

9. Fix problems with the completed questionnaires. Examine the questionnaires (or other new data source) for incomplete, unclear, or double answers. The researcher needs to use rules to handle these problems and note the decision on the questionnaires or on a master “coding instructions” sheet or file so that the same rules are used for all cases. For each type of incomplete, blank, unclear, or double answer, you need to make a rule for what to do. As much as possible, you should make these rules before data collection, but there may well be some unanticipated issues. It is important that you apply the rules consistently for all similar problems so as not to bias your results.

Missing data create problems in later data analysis, especially for complex statistics. Thus, we want to use as much of the data provided as is reasonable. The important thing here is that you must treat all similar problems the same way. If a participant answered only some of the questions, there will be lots of missing data for that person. We could have a rule such as “if half the items are blank or invalid, we will throw out that whole questionnaire as invalid.” In your research report, you should state how many questionnaires were thrown out and for what reason(s). If a participant circled two responses (e.g., 3 and 4 on a 5-point Likert scale), a reasonable decision would be to enter the average or midpoint, 3.50. Chapter 13 provides statistical methods to impute values for missing data.

10. Clean up completed questionnaires. Once you have made your rules and decided how to handle each problem, you need to make these rules clear to the person entering the data. A common procedure would be to write your decisions on the questionnaires themselves, perhaps in a different color. You also need to have a master file and hard copy of all the rules that you used.

In the process of understanding your data, different types of analyses and plots will be generated depending on what level of measurement you have. Therefore, it is important to identify whether each of your variables is nominal, dichotomous, ordinal, or normal (SPSS uses the term scale; see Chapter 1). Keep in mind that there are times when whether you call a variable ordinal or scale might change based on your EDA. For example, a variable that you considered to be ordinal may be normally distributed and, thus, better labeled as scale. Remember that making the appropriate choice indicates that you understand your data and should help guide your selection of a statistic.

Exploratory Data Analysis (EDA) 

What Is EDA?

After the data are entered into SPSS, the first step to complete (before running any inferential statistics) is EDA, which involves computing various descriptive statistics and graphs. Exploratory Data Analysis is used to examine and get to know your data. Chapter 1 and especially this chapter focus on ways to do exploratory data analysis with SPSS. EDA is important to do for several reasons:

	To see if there are problems in the data such as outliers, nonnormal distributions, problems with coding, missing values, and/or errors inputting the data.
 	To examine the extent to which the assumptions of the statistics that you plan to use are met.


In addition to these two reasons, which are discussed in this chapter, one could also do EDA for other purposes such as:

	3. To get basic information regarding the demographics of subjects to report in the Method section or Results section.
 	4. To examine relationships between variables to determine how to conduct the hypothesis-testing analyses. For example, correlations can be used to see if two or more variables are so highly related that they should be combined (aggregated) for further analyses and/or if only one of them should be included in the central analyses. We created parents’ education by combining father’s and mother’s education, because they are quite highly correlated.


Typically, you would not have research questions for these types of analyses, unless descriptive research questions are an important part of the study. To show what kinds of descriptive research questions one could answer with EDA, we have included research questions for each of the problems below.

How to Do EDA

There are two general methods used for EDA: generating plots of the data and generating numbers from your data. Both are important and can be very helpful methods of investigating the data. Descriptive statistics (including the minimum, maximum, mean, standard deviation, and skewness), frequency distribution tables, boxplots, histograms, and stem and leaf plots are a few procedures used in EDA.

After collecting data and inputting them into SPSS, many students jump immediately to doing inferential statistics (e.g., t tests and ANOVAs). Do not do this! Many times there are errors or problems with the data that need to be located and either fixed, or at least noted, before doing any inferential statistics.

At this point, you are probably asking “Why?” or “I’ll do that boring descriptive stuff later while I am writing the methods section.” Don’t wait! Doing EDA first can prevent many problems down the road.

In the next two sections, we discuss checking for errors and checking assumptions. Some of this discussion reviews basic material, but it is so important that it is worth going over again.

Check for Errors

There are many ways to check for errors; for example:

	As mentioned above, look over the raw data (questionnaires, interviews, or observation forms) to see if there are inconsistencies, double coding, obvious errors, etc. Do this before entering the data into the computer.
 	Check some, or preferably all, of the raw data (e.g., questionnaires) against the data in your SPSS Data Editor file to be sure that errors were not made in the data entry.
 	Compare the minimum and maximum values for each variable in your Descriptives output with the allowable range of values in your codebook.
 	Examine the means and standard deviations to see if they look reasonable given what you know about the variables.
 	Examine the N column to see if any variables have a lot of missing data, which can be a problem when you do statistics with two or more variables. Missing data could also indicate that there was a problem in data entry. If there is missing data for a key variable, see Chapter 13.
 	Look for outliers (i.e., extreme scores) in the data.


Check the Assumptions

As noted above, exploratory data analysis can be used to check the assumptions of a statistic. Several assumptions are common to more than one statistic, so in this chapter we will provide an introduction to how to test for them. First, we will define statistical assumptions and briefly discuss several of the most common.

Statistical Assumptions 

Every statistical test has assumptions. Statistical assumptions are much like the directions for appropriate use of a product found in an owner’s manual. Assumptions explain when it is and isn’t reasonable to perform a specific statistical test. When the t test was developed, for example, the person who developed it needed to make certain assumptions about the distribution of scores, etc., in order to be able to calculate the statistic accurately. If these assumptions are not met, the value that SPSS calculates, which tells the researcher whether the results are statistically significant, will not be completely accurate and may even lead the researcher to draw the wrong conclusion about the results. In each chapter, appropriate statistics and their assumptions are described.

Parametric tests. These include most of the familiar ones (e.g., t test, analysis of variance, Pearson correlation, and almost all of the statistics discussed in Chapters 3–13). They usually have more assumptions than nonparametric tests. Parametric tests were designed for data that have certain characteristics, including approximately normal distributions.

Some parametric statistics have been found to be “robust” to violations of one or more of their assumptions. Robust means that the assumption can be violated without damaging the validity of the statistic. For example, one assumption of ANOVA is that the dependent variable is normally distributed for each group. Statisticians who have studied these statistics have found that even when data are not completely normally distributed (e.g., they are somewhat skewed), they still can be used under many circumstances.

Nonparametric tests. These tests (e.g., chi-square, Mann-Whitney U, Spearman rho) have fewer assumptions and often can be used when the assumptions of a parametric test are violated. For example, they do not require normal distributions of variables or homogeneity of variances. Unfortunately, there are few nonparametric tests similar to the intermediate statistics discussed in this book so we will have little to say about them here. Appendix B provides a review of most of the basic nonparametric (and parametric) inferential statistics.

Common Assumptions

Independence of observations. A critical assumption for many statistics in this book is independence of observations. For example, if you know one subject’s value on a variable (e.g., competence), then this should not help you to guess the value of that variable for any other particular participant. Sometimes, this assumption is violated because one’s procedures for sampling participants create systematic bias. For example, “snowball sampling,” in which participants recommend other participants for the study, is likely to lead to nonindependence of observations because participants are likely to recommend people who are similar to themselves. Obviously, members of the same family, or the same person measured on more than one occasion, do not comprise independent observations. There are particular methods (matched samples or “repeated measures” methods) designed to deal with the nonindependence of family members or the same person measured several times or participants who are matched on some characteristic.

Homogeneity of variances. Both the t test and ANOVA may be affected if the variances (standard deviation squared) of the groups to be compared are substantially different, especially if the number of participants in each group differs markedly. Thus, this is often a critical assumption to meet or correct for. Fortunately, SPSS provides the Levene’s test to check this assumption, and it provides ways to adjust the results if the variances are significantly different.

Normality. As mentioned above, many parametric statistics assume that certain variables are distributed approximately normally. That is, the frequency distribution would look like a symmetrical bell-shaped or normal curve, with most subjects having values in the midrange and with a smaller number of subjects with high and low scores. A distribution that is asymmetrical with more high than low scores (or vice versa) is skewed. Thus, it is important to check the skewness value. Most statistics books do not provide advice about how to decide whether a variable is at least approximately normal. SPSS recommends that you divide the skewness by its standard error. If the result is less than 2.5 (which is approximately the p = .01 level), then skewness is not significantly different from normal. A problem with this method, aside from having to use a calculator, is that the standard error depends on the sample size, so with large samples most variables would be found to be nonnormal. A simpler guideline is that if the skewness is less than plus or minus one (< +/−1.0), the variable is at least approximately normal. There are also several other ways to check for normality. In this chapter we will look at two graphical methods: boxplots and frequency polygons. However, remember that t tests (if two-tailed) and ANOVA are quite robust to violations of normality.

Linearity. Linearity is the assumption that two variables are related in a linear fashion. If variables are linearly related, then when plotted in a scatterplot the data will fall in a straight line or in a cluster that is relatively straight. Sometimes, if the data are not linearly related (i.e., the plot looks curved) the data can be transformed to make the variables linearly related.

Checking for Errors and Assumptions With Ordinal and Scale Variables 

The level of measurement of a variable you are exploring (whether it is nominal, ordinal, dichotomous, or normal/scale) influences the type of exploratory data analysis (EDA) you will want to do. Thus, we have divided this chapter by the measurement levels of the variable because, for some types of variables, certain descriptive statistics will not make sense (e.g., a mean for a nominal variable, or a boxplot for a dichotomous variable). Remember that the researcher has labeled the type of measurement as either nominal, ordinal, or scale when completing the SPSS Data Editor Variable View. Remember also that we decided to label dichotomous variables nominal, and variables that we assumed were normally distributed were labeled scale.

For all of the examples in this chapter, we will be using the hsbdataNew file, which is on the website: www.routledge.com/9781848729995. See Appendix A for instructions if you need help with this or getting started with SPSS. Appendix A also shows how to set your computer to print the SPSS syntax on the output.

	Retrieve hsbdataNew.sav from the website. It is desirable to make a working copy of this file.


Problem 2.1: Descriptive Statistics for Ordinal and Scale Variables 

For the HSB variables that were labeled as ordinal or scale in the SPSS Variable View, it is important to see if the means make sense. Are they close to what you expected? Also, examine the minimum and maximum values of the data, and check the shape of the distribution (i.e., skewness value).

	2.1a. Is the central tendency, variability, range of scores, and the shape of the distribution for each of the ordinal and scale variables reasonable given the codebook? Which of these variables are normally distributed?


One way to check these is with the SPSS Descriptives command. It is important to examine your data to see if the variables are approximately normally distributed, an assumption of most of the parametric inferential statistics that we will use. To understand if a variable is normally distributed, we compute the skewness index, which helps determine how much a variable’s distribution deviates from the distribution of the normal curve. Skewness refers to the lack of symmetry in a frequency distribution. Distributions with a long “tail” to the right have a positive skew and those with a long tail on the left have a negative skew. If a frequency distribution of a variable has a large skewness value (larger than 1 or less than -1), that variable is said to deviate from normality. Some of the statistics that we will use later in the book are robust or quite insensitive to violations of normality. Thus, we will assume that it is okay to use them to answer most of our research questions as long as the variables are not extremely skewed. In the case when variables are extremely skewed, you can transform the variables (see Problem 2.9) to hopefully reduce the skewness and use parametric statistics. If transformations cannot reduce the skewness value, then an appropriate nonparametric statistic should be conducted.

The Descriptives command will make a compact, space-efficient output. You could instead run the Frequencies program because you can get the same statistics with that command. (We will use the Frequencies command later in the chapter for variables with a few levels.) Now we will compute the mean, standard deviation, skewness, minimum, and maximum for all participants or cases on all the variables that were called ordinal or scale under measure in the SPSS Data Editor Variable View. We will not include the nominal variables (ethnicity and religion) or gender, algebra1, algebra2, geometry, trigonometry, calculus, and math grades, which are dichotomous variables.

First, we will compute Descriptives for the ordinal variables. These include father’s education, mother’s education, grades in h.s., and all the “item” variables (item 01 through item 14), math courses taken, mother’s education revised, father’s education revised, and parents’ education. Use these steps:

To get Output 2.1a, select:

	Analyze → Descriptive Statistics → Descriptives…
 	While holding down the control key (i.e., the key marked “Ctrl”), click on all of the variables in the left box that we called ordinal so that they are highlighted. These include father’s education, mother’s education, grades in h.s., item 01 to item 14, math courses taken, mother’s education revised, father’s education revised, and parents’ education.
 	Click on the arrow button pointing right.
 	Be sure that all of the requested variables have moved out of the left window.
 	Click on Options. The Descriptives: Options window will open.
 	Be sure that Mean has a check next to it.
 	Under Dispersion, select Std. Deviation, Minimum, and Maximum so that each has a check.
 	Under Distribution, check Skewness.
 	Click on Continue and then click on OK.


Compare your output with Output 2.1a.

Output 2.1a: Descriptives for the Ordinal Variables

DESCRIPTIVES VARIABLES=faed maed grades item01 item02 item03 item04 item05 item06 item07 item08 item09 item10 item11 item12 item13 item14 mathcrs maedRevis faedRevis parEduc

/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS.
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Interpretation of Output 2.1a

This output provides descriptive statistics for all of the variables labeled as ordinal. Notice that the variables are listed down the left column of the outputs and the requested descriptive statistics are listed across the top row. The descriptive statistics included in the output are the number of subjects (N), the Minimum (lowest) and Maximum (highest) scores, the Mean (or average) for each variable, the Std. (the standard deviation), and the Skewness statistic and the Std. Error of the skewness. Note, from the bottom line of the outputs, that the Valid N (listwise) is 69 rather than 75, which is the number of participants in the data file. This is because the listwise N includes only the persons with no missing data on any variable requested in the output. Notice that several variables (e.g., father’s education and item0) each have one or two participants with missing data.

Using your output to check your data for errors. For both the ordinal variables, check to make sure that all Means seem reasonable. That is, you should check your means to see if they are within the ranges you expected (given the information in your codebook and your understanding of the variable). Next, check the output to see that the Minimum and Maximum are within the appropriate (codebook) range for each variable. If the minimum is smaller or the maximum is bigger than you expected (e.g., 1 or 15 for father’s education that has a range of 2—10 for possible values), then you should suspect that there was an error somewhere and you need to check it out. Finally, you should check the N column to see if the Ns are what you were expecting. If it happens that you have more participants missing than you expected, check the original data to see if some were entered incorrectly or inadvertently omitted. If you had calculated the scores you are looking at and you had more missing data than expected, you would also want to check to make sure the calculations were done correctly.

Using the output to check assumptions. The main assumption that we can check from this output is normality. We won’t pay much attention to the skewness for item 01 to item 14 and mother’s and father’s education revised. These ordinal variables have fewer than five levels, and they will not be considered to be scale even though some of them are not very skewed. Usually, if a variable has fewer than five levels, it is best to view it as ordinal; however, it is important to realize that this is our guideline rather than a true requirement. Under some circumstances, such as items 1—14 that have four levels representing reasonably equidistant points along an underlying continuous distribution, you might decide to consider such variables normal or scale if they are normally distributed, even though measured only on a four-point scale. However, we will not use the four-point-scale “items” as individual variables because we will be combining them to create summated variables (the motivation, competence, and pleasure scales) before using inferential statistics.

From Output 2.1a, we can see that, of the variables with five or more levels that we called ordinal, four of them (father’s education, grades in h.s., math courses taken, and parents’ education) are approximately normally distributed; that is, they have five or more levels and have skewness values between −1 and 1. Thus, we can assume that they are more like scale variables, and we can use inferential statistics that have the assumption of normality. To better understand these variables, it may be helpful to change the Measure column in the Variable View so that these four variables will be labeled as scale. Note that mother’s education, with a skewness statistic of 1.12, is more skewed than is desirable but is not grossly skewed. Note that father’s education is not skewed.



Next, we will run Descriptives for the scale variables: math achievement, mosaic, visualization, visualization retest, scholastic aptitude test-math, mosaic2, mosaic3, competence, motivation, and pleasure scales. Note that these variables have the symbol [image: ] next to them.

	2.1b. What is the distribution of values for variables in our data set that we have conceptualized as approximately normal or scale?


To get Output 2.1b, select:

	Analyze → Descriptive Statistics → Descriptives…
 	Click on Reset to move the ordinal variables back to the left. This also deletes what we chose under Options.
 	Highlight math achievement, mosaic, visualization, visualization retest, scholastic aptitude test-math, mosaic2, mosaic3, competence, motivation, and pleasure scale and move them to the Variables box.
 	Click on Options and check the same descriptive statistics as you did in Problem 2.1a.
 	Click on Continue and then Ok.


Compare your output with Output 2.1b.

Output 2.1b: Descriptives for Variables Labeled as Scale

DESCRIPTIVES VARIABLES=mathach mosaic visual visual2 satm mosaic2 mosaic3 competence motivation pleasure

/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS.


[image: ]


Interpretation of Output 2.1b

Note that for competence and motivation two students each have missing data and the valid N is 71. Next, we check the normality assumption that were labeled as scale to be sure that the variables truly are approximately normally distributed. Look at the skewness value in Output 2.1b to see if it is between −1 and 1. From the output we see that most of these variables have skewness values between −1 and 1, but competence at −1.63 is quite skewed. Thus, it may be helpful to change competence from scale to ordinal in the Measure column of the Variable View.

There are several ways to check this assumption in addition to checking the skewness value. If the mean, median, and mode, which can be obtained with the Frequencies command, are approximately equal, then you can assume that the distribution is approximately normally distributed. For example, the mean (490.53), median (490.00), and mode (500) for scholastic aptitude test-math are very similar values, and the skewness value is .128 (see Output 2.1b). Thus, we can assume that SAT-math is approximately normally distributed.



In addition to numerical methods for understanding your data, there are several graphical methods. SPSS can create histograms with or without the normal curve superimposed and also frequency polygons (line graphs) to roughly assess normality. The trouble is that visual inspection of histograms can be deceiving because some approximately normal distributions may not look very much like a normal curve.

Problem 2.2: Boxplots for Ordinal and Scale Variables 

	2.2a. What is the distribution of and are there outliers in math achievement?


Boxplots of One or Several Variables

Boxplots and stem-and-leaf plots can be used to examine some HSB variables. Boxplots are a method of graphically representing ordinal and scale data. They can be made with many different combinations of variables and groups. Using boxplots for one, two, or more variables or groups in the same plot can be useful in helping you understand your data. First, we have produced a boxplot for math achievement.

To get Output 2.2a:

	Select Graphs → Chart Builder. The Chart Builder window should appear. Note: You must have your variables labeled with the appropriate scale of measurement (i.e., nominal, ordinal, or scale) in order to effectively use the Chart Builder.
 	Under the Gallery tab, click on Boxplot. Then, select the boxplot you wish to create. For this example, click on the picture of the single boxplot and drag the picture to the upper box, which is labeled “Chart preview uses example data” (the large white box with the blue words).
 	Under Variables: select math achievement and drag it to the blue dotted box labeled “X-Axis.”
 	Click on OK.


Compare your output with Output 2.2a.

Output 2.2a: Boxplot of Math Achievement Test

* Chart Builder. 
GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=mathach MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE. BEGIN GPL

SOURCE: s=userSource(id("graphdataset")) 
DATA: mathach=col(source(s), name("mathach")) 
DATA: id=col(source(s), name("$CASENUM"), unit.category()) 
COORD: rect(dim(1), transpose()) 
GUIDE: axis(dim(1), label("math achievement test"))

ELEMENT: schema(position(bin.quantile.letter(mathach)), label(id)) END GPL.

GGraph
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Interpretation of Output 2.2a

Output 2.2a includes a boxplot generated from Chart Builder. We did not include the Case Processing Summary table that show the Valid N, Missing cases, and Total cases. The plot in Output 2.2a includes only one boxplot for our requested variable of math achievement. The “box” represents the middle 50% of the cases, and the “whiskers” at the top and bottom of the box indicate the “expected” top and bottom 25%. If there were outliers there would be Os and if there were really extreme scores they would be shown with asterisks, above or below the end of the whiskers. Notice that there are not any Os or asterisks in the boxplot in Output 2.2a.



Next, we will create a boxplot with more than one variable in the same plot. To show another way of creating plots, we will use Legacy plots for this example.

	2.2b. What are the distributions of and are there outliers in motivation and competence? How are the distributions of motivation and competence similar and different?


To get Output 2.2a:

	Select Graphs → Legacy Dialogs → Boxplot … The Boxplot window should appear.
 	Select Simple and Summaries of separate variables.
 	Click on Define. The Define Simple Boxplot: Summaries of Separate Variables window will appear.
 	While holding down the control key (i.e., “Ctrl”) highlight both of the variables that you are interested in (in this case they would be competence and motivation). Click on the arrow to move them into the Boxes Represent box.
 	Click on OK.


Output 2.2b: Boxplots of Competence and Motivation Scales

EXAMINE VARIABLES=competence motivation

/COMPARE VARIABLES 
/PLOT BOXPLOT 
/STATISTICS NONE 
/NOTOTAL 
/MISSING LISTWISE.

Explore
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Interpretation of Output 2.2b

Notice that there are two separate boxplots, one for competence and one for motivation. As indicated by the Os below the lower whiskers, the boxplot for competence shows there are four outliers, and the boxplot for motivation indicates there is one outlier.

Using your output to check your data for errors. If there are Os or asterisks, then you need to check the raw data or score sheet to be sure there was not an error. The numbers next to the Os indicate which participants these scores belong to. This can be helpful when you want to check to see if these are errors or if they are the actual scores of the subject. If the scores were entered correctly, you can also check to see if the participants with outlier scores differ in any known way from other participants (e.g., also different from the others on a demographic variable or measure of intellectual development). Note that, by default, these numbers refer to the line numbers on the left-hand side, not to any participant numbers you might assign to them in your data set.

Using the output to check your data for assumptions. Boxplots can be useful for identifying variables with extreme scores, which can make the distribution skewed (i.e., nonnormal). Also if there are few outliers, if the whiskers are approximately the same length, and if the line in the box is approximately in the middle of the box, then you can assume that the variable is approximately normally distributed. Thus, math achievement (Output 2.2a) was near normal, motivation (2.2b) is approximately normal, but competence (2.2b) is quite skewed and not normal.



Problem 2.3: Boxplots Split by a Dichotomous Variable 

Many times researchers are interested in reporting information on one specific variable for multiple subgroups of the participants (e.g., males and females). Creating separate boxplots as well as separate statistics and stem-and-leaf plots can be useful if you want to see if the distributions of scores are very different for the two groups, which would suggest that the variances are unequal.

	2.3. Is there heterogeneity of variances, and are the shapes of the distribution for both males and females on math achievement approximately normal?


To get Output 2.3:

	Analyze → Descriptive Statistics → Explore.
 	The Explore window will appear.
 	Click on math achievement and move it to the Dependent List.
 	Next, click on gender and move it to the Factor (or independent variable) List.
 	Click on Both under Display. This will produce both a table of descriptive statistics and two kinds of plots: Stem-and-Leaf and Box-and-Whiskers.
 	Click on OK.


Output 2.3: Boxplots Split by Gender With Statistics and Stem-and-Leaf Plots

EXAMINE VARIABLES=mathach BY gender

/PLOT BOXPLOT STEMLEAF 
/COMPARE GROUP 
/STATISTICS DESCRIPTIVES 
/CINTERVAL 95 
/MISSING LISTWISE 
/NOTOTAL.

Explore

Gender
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Interpretation of Output 2.3

The first table under Explore provides descriptive statistics about the number of males and females with Valid and Missing data. Note that we have 34 males and 41 females with valid math achievement test scores.
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Interpretation of Output 2.3 continued

The Descriptives table contains many different statistics for males and females separately, some of which (e.g., 5% trimmed mean) are not discussed in this book. Note that the average math achievement test score is 14.76 for the males and 10.75 for females, but the maximum score for each group is 23.7. You can also examine the skewness values for each gender separately in the table of Descriptives (see the circled skewness values). Note that for both males and females, the skewness values are less than one, which indicates that math achievement is approximately normal for both genders. This is an assumption of the t test and ANOVA, and multivariate versions of this assumption are required for many of the statistics performed in this book.

The Descriptives table also provides the variances for males and females. A key assumption of ANOVA and the t test is that the variances are approximately equal (i.e., the assumption of homogeneity of variances). Note that the variance is 36.38 for males and 44.84 for females. These do not seem grossly different, and if we computed a Levene test on the differences in variances between males and females on this variable, we would find that the difference is not statistically significant. (See Appendix B for examples of the Levene test.) Thus, the assumption of homogeneous variances is not violated. The boxplots and stem-and-leaf plots will help you see this.



gender = male

Stem-and-Leaf Plots

math achievement test Stem-and-Leaf Plot for gender= male

[image: ]

gender = female

Stem-and-Leaf Plots

math achievement test Stem-and-Leaf Plot for gender= female

[image: ]

Stem width: 10.0 
Each leaf: 1 case(s)


Interpretation of Output 2.3 continued

The Stem-and-Leaf Plots, for each gender separately, are the next part of the output. These plots are like a histogram or frequency distribution turned on the side. They give a visual impression of the distribution, and they show each person’s score on the dependent variable (math achievement). The stem is the first digit of the score and the leaf is the second digit. Note that the legend indicates that Stem width equals 10. This means that entries that have 0 for the stem are less than 10, with the leaf indicating the actual number (1–9), those with 1 as the stem range from 10 to 19, etc. Note also that the legend indicates that each leaf equals one case. Each number in the Leaf column represents the last digit of one person’s math achievement score. The numbers in the Frequency column indicate how many participants had scores in the range represented by that stem. Thus, in the male plot, one student had a stem of 0 and a leaf of 3, that is, a score of 3. The frequency of male students with leaves between 5 and 9 is 7, and there were three scores of 5, two of 7, and two of 9. Eleven participants had a stem of 1 and a leaf of 0 to 4; one had a leaf of 0 (a score of 10); two had scores of 11, one had a score of 13, and six had a score of 14.
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Interpretation of Output 2.3 continued

Boxplots are the last part of the output. There are two boxplots (one for males and one for females). By inspecting the plots, we can see that the median score for males is quite a bit higher than that for females, but there is some overlap of the boxes and substantial overlap of the full distributions, with the highest scores being comparable for the two groups but the lowest scores being lower for females. We need to be careful in concluding that males score higher than females, especially based on a small sample of students. In Chapter 10, we will show how an inferential statistic (analysis of covariance) can tell us whether this apparent gender difference is actually due to gender differences in another variable (number of math courses taken).

Using the output to check your data for errors. Checking the boxplots and stem-and-leaf plots can help identify outliers that might be data entry errors. In this case, there are none.

Using the output to check your data for assumptions. As noted in the interpretation of Outputs 2.2a  and 2.2b, you can tell if a variable is grossly nonnormal by looking at the boxplots. The fact that the median is near the center of the box and the whiskers are reasonably symmetrical suggests an approximately normal distribution. The stem-and-leaf plots provide similar information.



Problem 2.4: Using Tables for EDA with Dichotomous Variables 

Descriptives for Dichotomous Variables

We will now use the Descriptives command for each of the dichotomous variables. Once again, we could have done Frequencies, with or without frequency tables, but we chose Descriptives. This time we selected fewer statistics because the standard deviation, variance, and skewness values are not very helpful with dichotomous variables.

	2.4. What proportion of the sample has a value of “1,” the higher value, for gender, algebra 1, algebra 2 geometry, trigonometry, calculus, and math grades?


To produce Output 2.4:

	Select Analyze → Descriptive Statistics → Descriptives.


After selecting Descriptives, you will be ready to compute the N, minimum, maximum, and mean for all participants or cases on all selected variables in order to examine the data.

	Before starting this problem, press Reset to clear the Variable box.
 	While holding down the control key (i.e., “Ctrl”) highlight all of the dichotomous variables in the left box. These variables have only two levels: gender, algebra 1, algebra 2, geometry, trigonometry, calculus, and math grades.
 	Click on the arrow button pointing right.
 	Be sure that all of these variables have moved out of the left window and into the Variable(s) window.
 	Click on Options. The Descriptives: Options window will open.
 	Select Mean, Minimum, and Maximum.
 	Unclick Std. Deviation.
 	Click on Continue.
 	Click on OK.


Compare your output with Output 2.4

Output 2.4: Descriptives for Dichotomous Variables

DESCRIPTIVES VARIABLES=gender alg1 alg2 geo trig calc mathgr 
/STATISTICS= MEAN MIN MAX.

Descriptives

[image: ]


Interpretation of Output 2.4

Output 2.4 includes only one table of Descriptive Statistics. Across the top row are the requested statistics of N, Minimum, Maximum, and Mean. We could have requested other statistics, but they would not be very meaningful for dichotomous variables. Down the left column are the variable labels. The N column indicates that all the variables have complete data. The Valid N (listwise) is 75, which also indicates that all the participants had data for each of our requested variables.

The most helpful column is the Mean column. Although the mean is not meaningful for nominal variables with more than two categories, you can use the mean of dichotomous variables to understand what percentage of participants fall into each of the two groups. For example, the mean of gender is .55, which indicates that 55% of the participants were coded as 1 (female); thus, 45% were coded 0 (male). Because the mean is greater than .50, there are more females than males. If the mean is close to 1 or 0 (e.g., algebra 1 and calculus), then splitting the data on that dichotomous variable might not be useful because there will be many participants in one group and very few participants in the other.

Using your output to check your data for errors. The Minimum column shows that all the dichotomous variables had “0” for a minimum, and the Maximum column indicates that all the variables have “1” for a maximum. This is good because it agrees with the codebook.



Problem 2.5: Using Frequency Tables 

Displaying frequency tables for variables can help you understand how many participants are in each level of a variable and how much missing data of various types you have. For nominal variables, most descriptive statistics are meaningless. Thus, having a frequency table is usually the best way to understand your nominal variables, those with three or more unordered categories or levels.

	2.5. What is the frequency of each value for ethnicity (a nominal variable) and for father’s education (an ordered variable)?


To produce Output 2.5:

	Select Analyze → Descriptive Statistics → Frequencies.
 	Click on Reset if any variables are in the Variable(s) box.
 	Now highlight the nominal variable, ethnicity, in the left box.
 	Click on the arrow button pointing right.
 	Highlight and move over the ordinal variable, father’s education.
 	Be sure the Display frequency tables box is checked.
 	Do not click on Statistics because we do not want to select any this time.
 	Click on OK.


Compare your output to Output 2.5.

Output 2.5 Frequency Tables for a Nominal Variable and an Ordinal Variable

FREQUENCIES VARIABLES=ethnic faed

/ORDER= ANALYSIS.

Frequencies

Statistics





	
	
	ethnicity
	father's education





	N
	Valid
	73
	73



	
	Missing
	2
	2







Frequency Table
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Interpretation of Output 2.5

There is one Frequency table for ethnicity and one for father’s education. The left-hand column shows the Valid categories (or levels or values), Missing values, and Total number of participants. The Frequency column gives the number of participants who had each value. The Percent column is the percent who had each value, including missing values. For example, in the ethnicity table, 54.7% of all participants were Euro-American, 20.0% were African-American, 13.3% were Latino-American, and 9.3% were Asian-American. There also were a total of 2.7% missing: 1.3% were multiethnic, and 1.3% didn’t answer so were left blank. The valid percent shows the percentage of those with nonmissing data at each value; for example, 56.2% of the 73 students with a single valid ethnic group were Euro-Americans. Finally, Cumulative Percent is the percentage of subjects in a category plus the categories listed above it. This last column is not very useful with nominal data such as ethnicity but can be quite informative for frequency distributions with several ordered categories. For example, in the distribution of father’s education, 74% of the fathers had less than a bachelor’s degree (i.e., they had not graduated from college).

Using your output to check your data for errors. Errors can be found by checking to see if the number missing is the number you expected. Also, if you have more than one type of missing data and you assigned different numbers to these (e.g., 98 and 99), you will see the types listed in the first column.

Using the output to check your data for assumptions. Frequency tables are helpful for checking the levels of the variable to see if you have subjects in each one. If one of the levels does not have many subjects in it, it can create problems with using that as an independent variable in difference statistics (seeChapter 6 for an explanation of types of difference statistics).



Problem 2.6: Bar Charts

With nominal data, you should not use a graphic that connects adjacent categories because with nominal data there is no necessary ordering of the categories or levels. Thus, it is better to make a bar graph or chart of the frequency distribution of variables like religion, ethnic group, or other nominal variables; the points that happen to be adjacent in your frequency distribution are not by necessity adjacent.

	2.6. What are the relative numbers of high school students in this sample who report being Protestant, Catholic, and “no religion”?


To produce Output 2.6:

	Select Analyze → Descriptive Statistics → Frequencies… The Frequencies window should open.
 	Click on religion and move it into the Variable(s): box.
 	Click on Charts... This will open the Frequencies: Charts window.
 	Select Bar charts and then Continue.
 	Click off the check mark next to Display frequency tables. We do not need the frequency tables in this analysis.
 	Click on OK.


Compare your output with Output 2.6.

Output 2.6 Frequency Distribution Bar Chart for the Nominal Variable of Religion

FREQUENCIES VARIABLES=religion

/FORMAT=NOTABLE 
/BARCHART FREQ 
/ORDER= ANALYSIS.

Frequencies

Statistics





	N
	Valid
	67



	
	Missing
	8
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Interpretation of Output 2.6

There could be two parts to the output: a small statistics table and the bar chart. The full Frequencies table was not requested. The Statistics table indicates the valid N and the missing N. The bar chart presents a bar for each level of the nominal variable. Keep in mind that the order of the bars is arbitrary. Using your output to check your data for errors. Errors can be seen if the levels are not what you were expecting. For example, if you inadvertently entered the wrong number (a number that does not have a category label), you will see a bar for that number, with the number used as a label for the bar. Also, if there are no participants for a level, there will not be a bar for that level.

Using the output to check your data for assumptions. Bar charts are helpful if you are unsure how many categories of a variable actually occur in your data; you can count the number of bars. You can also see the number of participants in each level. It is best if there are approximately the same number of subjects in each level if one wants to use the variable as an independent variable in procedures like ANOVA and MANOVA.



Problem 2.7: Histograms and Frequency Polygons

Histograms (shown in Chapter 1) look much like bar charts except in histograms there is no space between the bars, indicating that there is a continuous variable theoretically underlying the scores (i.e., scores could theoretically be any point on a continuum from the lowest to highest score). Histograms can be used even if the data as measured are not continuous, if the underlying variable is conceptualized as continuous. For example, the competence scale items were rated on a four-point scale, but one could, theoretically, have any amount of competence.

	2.7a. What is the distribution of competence?


There are several methods that can be used in SPSS to create a histogram. One method is using Legacy Dialogs, as indicated here:

	Select Graphs → Legacy Dialogs → Histogram… The Histogram window should appear.
 	Select competence and move it into the Variable: box.
 	Click on OK.


Compare your output with the histogram for competence in Chapter 1.

Frequency Polygons

Output 2.7b is a frequency polygon; it connects the points between the categories, and is best used with approximately normal data, but it can be used with ordinal data. SPSS uses the term line graph for frequency polygons.

	2.7b. What is the shape of the frequency polygon of the scores for motivation?


To produce Output 2.7b:

	Select Graphs → Chart Builder… The Chart Builder window should appear.
 	Under the Gallery tab, select Line. This will produce two choices of line graphs – one with one line (for one variable) and a graph with multiple lines (for multiple variables).
 	In this example, we want to select the graph with only one variable. Click on the graph and drag it into the box labeled “Chart preview uses example data.”
 	Select motivation scale and move it into the X-Axis? box.
 	Click on OK.


Compare your output with Output 2.7b.

Output 2.7b. Frequency Polygon Showing Approximately Normal Data

* Chart Builder. 
GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=motivation MISSING=LISTWISE REPORTMISSING=NO 
/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset")) 
DATA: motivation=col(source(s), name("motivation")) 
GUIDE: axis(dim(1), label("motivation scale")) 
GUIDE: axis(dim(2), label("Frequency")) 
ELEMENT: line(position(summary.count(bin.rect(motivation))), missing.wings())

END GPL.

GGraph
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Interpretation of Output 2.7b

The frequency polygon presents frequency counts for one variable (listed along the bottom; motivation scale in this example). Each level of the variable is listed along the bottom and the counts are listed along the side. We can see from this frequency polygon that the largest number of participants (12) had a motivation level of 2.8, and only about four people had scores of 2.0.

Using your output to check your data for errors. Errors can be seen with the frequency polygon if there are values you were not expecting or if there are larger or smaller counts than you were expecting.

Using the output to check your data for assumptions. We can see that the data are approximately normally distributed because the highest counts are in the middle, with smaller counts on either end. We would still want to check skewness values as well.



Problem 2.8: Matrix Scatterplots 

To check linearity and get a visual idea about whether there is likely to be a problem with multicollinearity (see Chapter 7), we can do matrix scatterplots.

	2.8. Are there bivariate linear relationships between the following variables: math achievement, math courses taken, pleasure scale, and mosaic pattern test?


To develop scatterplots of each possible pair of math achievement, math courses taken, pleasure scale, and mosaic pattern test, follow these commands:

	Graphs → Legacy Dialogs → Scatter/Dot...
 	Click on Matrix Scatter.
 	Click on Define.
 	Now, move math achievement test, math courses taken, pleasure scale, and mosaic pattern test to the Matrix Variables box.
 	Click on OK. You will get Output 2.8, the matrix scatterplot with circles for the data points.
 	To change the circles to the Xs (as we have below) double-click on the graph. This will open the Chart Editor. Double click again on one of the circles in the Chart Editor. This will open the Properties window.
 	In the Properties window, click on the arrow to the right of Type. Select the X.
 	Click on Apply and then Close.
 	Close the window for the Chart Editor to get back to the Output window.


Compare your output with Output 2.8.

Output 2.8: Matrix Scatterplot

GRAPH

/SCATTERPLOT(MATRIX)=mathach mathcrs pleasure mosaic 
/MISSING=LISTWISE.


[image: ]

Graph


Interpretation of Output 2.8

The matrix scatterplot command creates bivariate scatterplots of each entered variable with each of the others. It is most helpful to create a matrix scatterplot when you need to understand the relationships among several variables. In a scatterplot, each X (or O) represents a data point. There are six different bivariate scatterplots in Output 2.8. Keep in mind that there are duplicate relationships shown (i.e., there are two bivariate scatterplots for each pair of variables); you should look either above or below the diagonal empty boxes.

Using your output to check your data for errors. At times, there might be a data point that is extreme; there might be one that is not at all close to the other data points. If this is the case, it might be an outlier, or it might be an error.

Using the output to check your data for assumptions. The clusters or clouds of Xs can be examined for the assumption of linearity. If a straight line can be drawn so that most of the Xs lie relatively close to it, we can assume that the two variables are related in a linear fashion (e.g., see math achievement and math courses taken indicated with an A in Output 2.8).

If the Xs are not in any order or if they appear to be spread out in a cloud (e.g., see pleasure and math courses taken, indicated with an B in Output 2.8), we can assume that there is little or no relationship between the variables. If a scatterplot shows little relationship between two predictors, this means there is little chance of collinearity involving these variables. If there is little relationship between a predictor and the dependent variable, it means that the predictor is unlikely to contribute much to predicting the dependent variable.

However, when the clusters appear to be creating a curve rather than a straight line, we can assume the variables might be related in a curvilinear fashion. We would not want to use them in computing a statistic that has the assumption of linearity without fixing this problem first by transforming one or both of the variables, as shown below.



Problem 2.9: Transforming Variables 

If the variables do not meet the assumptions, we might consider transformation. Transformations usually increase the difficulty of interpretation of the data and may change the results of the study, so you need to be sure you really need to transform the data and also that you will be able to interpret the transformed variable in your writing.

	2.9. Can the normality of the competence variable be improved by transforming it?


Finding the best transformation for a variable may be assisted by following certain guidelines, but often trial and error is needed to determine if the transformation was successful. The most common transformations, what the transformation can fix, and the SPSS syntax commands are listed below. If you do not know which transformation is best, start where the arrow is on the figure and go up (to X2 for negative skew) or down (to logX for positive skew) one row. Use the Arcsine X transformation to proportion data. After you transform a variable, you need to rerun the assumptions to see if the newly transformed variable meets the assumptions. If not, go up (to X3 for negative skew) or down (to √X for positive skew) and compute that transformation; then recheck assumptions. If there is still a positive skew more than +1, you can try 1/x and so forth. If you receive an error message, this may be due to the data not making sense with some of the transformations, in this case, pick a different transformation to conduct.


[image: Fig. 2.1. Transformation ladder.]
Fig. 2.1. Transformation ladder.



You can do transformations either through the point-and-click method or with syntax. If you want to compute X3, X2, or 1/X2, you have to either type in the expression as written or use syntax because these functions are not available as specific choices in the Compute command.

Not all of these transformations can be computed with the point-and-click method, of those that can use the point-and-click method, follow these commands:

	Transform → Compute Variable. The Compute Variable window will open.
 	Type a name for the new variable in the Target Variable box. (e.g., comptran)
 	Click on Type & Label. The Compute Variable: Type and Label window will open. Label the new variable including the type of transformation you will be using (e.g., SquaredComp).
 	Click on Continue.
 	In the Compute Variable window, select Arithmetic in the Function group box. This will create a sub list of choices in the Functions and Special Variables box.
 	In the Functions and Special Variables box select the type of transformation you wish to use (i.e., Arsin, Log10, Sqrt). If you need help choosing the function, see Fig. 2.1 for assistance.
 	From the list of variables, click on the variable you are interested in transforming.
 	Click on the arrow to move it to the Numeric Expression box. If the transformation is not listed under Functions, then you can just type it into the Numeric Expression box, or you can type it into the syntax listing. For the competence example, type: (competence)**2.
 	Click on OK.


The new variable you computed will appear in the far right column in the Data View window. To see if the transformation was successful, retest the assumptions by requesting Descriptives and skewness.

To use syntax, type the syntax using the guidelines below.


[image: Fig. 2.2 Generalized syntax for transformations]
Fig. 2.2 Generalized syntax for transformations



Remember, from Output 2.1b that competence had a skewness of −1.63 so it was considered too negatively skewed. Thus, we want to transform competence by squaring it. We also requested descriptive statistics.

Output 2.9a: Squared Transformation of Competence

COMPUTE VAR = (competence)**2. 
VARIABLE LABELS VAR 'SquaredComp'. 
EXECUTE. 
DESCRIPTIVES

VARIABLES=VAR 
/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS.
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Interpretation of Output 2.9a

In order to use competence with statistics that require a normally distributed variable, we needed to transform it. Since competence is negatively skewed, we chose to square it to see if it would be less skewed. Output 2.9a shows the syntax for transforming competence by squaring it. After squaring, the skewness = −.911. We might have stopped there; however, −.911 is very close to −1.0. Because we wanted it not to be skewed even this much, so we transformed it by cubing (the original values).



Output 2.9b: Cubic Transformation of Competence

COMPUTE VAR = (competence)**3. 
VARIABLE LABELS VAR 'CubedComp'. 
EXECUTE. 
DESCRIPTIVES

VARIABLES=VAR 
/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS.
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Interpretation of Output 2.9b

After the cubic transformation, the skewness value is −.445, which is still slightly skewed but now falls well within the recommended guidelines of < |1| (greater than −1 and less than +1).



Interpretation Questions

	2.1 Using Outputs 2.1a and 2.1b: (a) What is the mean visualization test score? (b) What is the range for grades in h.s.? (c) What is the minimum score for mosaic pattern test? How does this compare with the values for that variable as indicated in Chapter 1? Why could the minimum be a negative number?
 	2.2 Using Outputs 2.1b: (a) For which of the variables that we called scale is the skewness statistic more than +/−1.00? (b) Why is the answer important? (c) How many participants have some missing data? (Hint: Check Chapter 1 if you don’t remember the sample size.) (d) What percent of students have a valid (nonmissing) motivation or competence score? (e) Can you tell from Output 2.1b how many are missing both motivation and competence scores?
 	2.3 Using Output 2.4: (a) Can you interpret the means? Explain. (b) How many participants are there altogether? (c) How many have complete data (nothing missing)? (d) What percent are male (if male=0)? (e) What percent took algebra 1?
 	2.4 Using Output 2.5: (a) 9.6% of what set of participants are Asian-American? (b) What percent of students have fathers who had a high school education or less? (c) What percent of fathers (with a known education) have a master’s degree or higher?
 	2.5 In Output 2.8: (a) Why are matrix scatterplots useful? What assumption(s) are tested by them?


Extra SPSS Problems 

Using the college student data.sav file, do the following problems. Print your outputs, and circle the key parts of the output that you discuss.

	2.1 For the variables with five or more ordered levels, compute the skewness. Describe the results. Which variables in the data set are approximately normally distributed/scale? Which ones are ordered but not normal, and can the normality of these variables be improved by transforming them?
 	2.2 Do a stem-and-leaf plot for same-sex parent’s height split by gender. Discuss the plots.
 	2.3 Which variables are nominal? Run frequencies for the nominal variables and other variables with fewer than five levels. Comment on the results.
 	2.4 Do boxplots for student height and for hours of study. Compare the two plots.



Chapter 3
 Several Measures of Reliability

This assignment illustrates several of the methods for computing measurement reliability. It is important to assess the reliability of your data prior to conducting inferential statistics. If your reliability tests indicate that your data have low reliability, the results from inferential testing would be suspect. Using existing measures that have already been tested and indicate that the data are reliable can help to increase the chances that your new data will be reliable. Regardless, it is important to assess the level of reliability for your data set, particularly if your sample differs in some way from the standardization sample.

Internal consistency reliability for multiple-item scales. In this assignment, we will compute the most commonly used type of internal consistency reliability, Cronbach’s coefficient alpha. This measure indicates the consistency of a multiple-item scale. Alpha is typically used when you have several Likert-type items that are summed to make a composite score or summated scale. Alpha is based on the mean or average correlation of each item in the scale with every other item. In the social science literature, alpha is widely used, because it provides a measure of reliability that can be obtained during the study from just one testing session or one administration of a questionnaire. In Problems 3.1, 3.2, and 3.3, you will compute alphas for the three math attitude scales (motivation, competence, and pleasure) that items 1 to 14 were designed to assess.

Reliability for one score/measure. In Problem 3.4, you will compute a correlation coefficient to check the reliability of visualization scores. Several types of reliability can be illustrated by this correlation. If the visualization retest was each participant’s score from retaking the test a month or so after they initially took it, then the correlation would be a measure of test–retest reliability. On the other hand, if the visualization retest was a score on an alternate, parallel, or equivalent version of the visualization test, then this would be a measure of equivalent forms reliability.

If the mosaic pattern test scores are observers’ rating of participants’ responses on this behavioral test, then, if two different raters’ scored the test, the correlations among the raters’ scores could be used as indexes of interrater reliability. This latter type of reliability is needed when behaviors or answers to questions involve some degree of subjective judgment (e.g., when there are open-ended questions or ratings based on observations). Sometimes you may have more than two raters or coders. The intraclass correlation coefficients method is designed to deal with interrater reliability in this situation. We will demonstrate it in Problem 3.5 using mosaic, mosaic2, and mosaic3 ratings.

Reliability for nominal variables. In addition to the correlation coefficient, there are several other methods of computing interrater or interobserver reliability. In Problem 3.6, Cohen’s kappa is used to assess interobserver agreement when the data are nominal.

Assumptions for Measures of Reliability

When two or more measures, items, or assessments are viewed as measuring the same underlying variable (construct), reliability can be assessed. Reliability is used to indicate the extent to which scores are consistent with one another (hopefully, in measuring the intended construct/variable) and the extent to which the data are free from measurement error. It is assumed that each item or score is composed of a true score measuring the underlying construct, plus error; there is almost always some error in the measurement. Therefore, one assumption is that the measures or items are related systematically to one another in a linear manner because they are believed to be measures of the same construct. In addition, because true error should not be correlated systematically with anything else, a second assumption is that the errors (residual) for the different measures or assessments are uncorrelated. If errors are correlated, this means that the residual is not simply error; rather, the different measures not only have the proposed underlying variable in common, but they also have something else systematic in common and reliability estimates may be inflated. An example of a situation in which the assumption of uncorrelated errors might be violated would be when all items are parts of a cognitive test that is timed. The performance features that are affected by timing the test, in addition to the cognitive skills involved, might systematically affect responses to the items. The best way to determine whether part of the reliability score is due to these extraneous variables is by doing multiple types of reliability assessments (e.g., equivalent forms and test– retest).

Conditions for Measures of Reliability

A condition that is necessary for measures of reliability is that the scores or categories that are being related to one another need to be comparable. If you use split-half reliability, then both halves of the test need to be equivalent. If you use alpha (which we demonstrate in this chapter), then it is assumed that every item is measuring the same underlying construct. It is assumed that respondents should answer similarly on the parts being compared, with any differences being due to measurement error.

	Retrieve your data file: hsbdataNew.


Problem 3.1: Cronbach's Alpha for the Motivation Scale 

The motivation score is composed of six items that were rated on four-point Likert scales, from very atypical (1) to very typical (4). Do the scores for these items go together (interrelate) well enough to add them together for future use as a composite variable labeled motivation?

	3.1. What is the internal consistency reliability of the math attitude scale that we labeled motivation?


Note that you do not use the computed motivation scale score. Instead, use the individual items to create the scale temporarily. Let’s do reliability analysis for the motivation scale.

	Click on Analyze → Scale → Reliability Analysis. You should get a dialog box like Fig. 3.1.
 	Now move the variables item01, item04 reversed, item07, item08 reversed, item12, and item13 (the motivation questions) to the Items box. Be sure to use item04 reversed and item08 reversed (not item04 and item08) because a high rating on the original (unreversed) items indicates low motivation. The alpha will be based on the correlation among each pair of items, so they all need to be scored so that higher scores index the same thing (e.g., higher levels of motivation).
 	Type Alpha for Motivation Scale in the Scale label box. Be sure the Model is Alpha (refer to Fig. 3.1).



[image: Fig. 3.1. Reliability analysis.]
Fig. 3.1. Reliability analysis.



	Click on Statistics in the Reliability Analysis dialog box and you will see something similar to Fig. 3.2.
 	Check the following items: Item, Scale, and Scale if item deleted (all under Descriptives for), Correlations (under Inter-Item), Means, and Correlations (under Summaries).
 	Click on Continue then OK. Compare your syntax and output to Output 3.1.



[image: Fig. 3.2. Reliability analysis: Statistics.]
Fig. 3.2. Reliability analysis: Statistics.



Output 3.1: Cronbach's Alpha for the Math Attitude Motivation Scale

RELIABILITY

/VARIABLES=item01 item04r item07 item08r item12 item13 
 /SCALE('Alpha for Motivation Scale') ALL 
 /MODEL=ALPHA 
 /STATISTICS=DESCRIPTIVE SCALE CORR 
 /SUMMARY=TOTAL MEANS CORR.

Reliability

Scale: Alpha for Motivation Scale

Case Processing Summary





	
	
	N
	%





	Cases
	Valid
	73
	97.3



	
	Excludeda
	2
	2.7



	
	Total
	75
	100.0






a. Listwise deletion based on all variables in the procedure.
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Interpretation of Output 3.1

The first table shows the number of Valid cases, that is, those with no missing data on the selected variables. The second table lists the Cronbach’s Alpha and an Alpha Based on Standardized Items. In general, you will use the unstandardized alpha unless the items in the scale have quite different means and standard deviations, as, for example, is the case with math achievement (M = 12.6, SD = 6.7), grades (M = 5.7, SD = 1.6), and visualization (M = 5.2, SD = 3.9); if we wanted to make a summated scale using those three items, we would use the standardized alpha. As with other reliability coefficients, alpha should be above .70; however, it is common to see journal articles where one or more scales have somewhat lower alphas (e.g., in the .60–.69 range), especially if there is only a handful of items in the scale. A very high alpha (e.g., greater than .90) probably means that the items are repetitious or that you have more items in the scale than are really necessary for an internally reliable measure of the concept. How to write about this output is found after Problems 3.2 and 3.3.
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Interpretation of Output 3.1 continued

Next is a table of descriptive statistics for each item, produced by checking Item in Fig. 3.2. The fourth table is a matrix showing the inter-item correlations of every item in the scale with every other item. The next table provides Summary Item Statistics for the Item Means and Correlations. These tell you, for example, the average, minimum, and maximum of the item means and of the inter-item correlations.
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Interpretation of Output 3.1 continued

The Item Total Statistics table, which we think is the most important, is produced if you check Scale if item deleted under Descriptives for in the dialog box displayed in Fig. 3.2. This table provides five pieces of information for each item in the scale. The two we find most useful are the Corrected Item-Total Correlation and the Alpha if Item Deleted. The former is the correlation of each specific item with the sum/total of the other items in the scale. If this correlation is moderately high or high, say, .40 or above, the item is probably at least moderately correlated with most of the other items and will make a good component of this summated rating scale. Items with lower item-total correlations do not fit into this scale as well, psychometrically. If the item-total correlation is negative or too low (less than .30), it is wise to examine the item for wording problems and conceptual fit. You may want to modify or delete such items. You can tell from the last column what the alpha would be if you deleted that item. Compare this with the alpha for the scale with all six items included, which was given in the Reliability Statistics table. Deleting a poor item will usually make the alpha go up, but it will usually make only a small difference in the alpha unless the scale has only a few items (e.g., fewer than five) because alpha is based on the number of items as well as their average intercorrelations. Note that we have used items 04 and 08 reversed so that all items would be scored with high motivation as a high number. If we had instead used item 04 or 08, the item-total correlation for them probably would have been negative, indicating a problem.



Problems 3.2 and 3.3: Cronbach's Alpha for the Competence and Pleasure Scales

Again, is it reasonable to add the scores for these items together to form summated measures of the concepts of competence and pleasure?

	3.2. What is the internal consistency reliability of the competence scale?
 	3.3. What is the internal consistency reliability of the pleasure scale?


Let’s repeat the same steps as before to check the reliability of the following scales and then compare your output to 3.2 and 3.3.

	For the competence scale, use item03, item05 reversed, item09, and item11 reversed.
 	Remember to change the Scale Label to “Alpha for Competence Scale.”
 	For the pleasure scale, use item02, item06 reversed, item10 reversed, and item14.
 	Change the Scale Label to “Alpha for Pleasure Scale.”
 	This time unclick the checks for Scale and for Correlations under Inter-Item to make the output shorter.
 	Click OK.


Output 3.2: Cronbach's Alpha for the Math Attitude Competence Scale

RELIABILITY

/VARIABLES=item03 item05r item09 item11r 
 /SCALE('Alpha for Competence Scale') ALL 
 /MODEL=ALPHA 
 /STATISTICS=DESCRIPTIVE SCALE CORR 
 /SUMMARY=TOTAL MEANS CORR.

Reliability

Scale: Alpha for Competence Scale

Case Processing Summary





	
	
	N
	%





	Cases
	Valid
	73
	97.3



	
	Excludeda
	2
	2.7



	
	Total
	75
	100.0






a. Listwise deletion based on all variables in the procedure.
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Item Statistics





	
	Mean
	Std. Deviation
	N





	item03 competence
	2.82
	.903
	73



	item05 reversed
	3.41
	.940
	73



	item09 competence
	3.32
	.762
	73



	itemll reversed
	3.63
	.755
	73
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Interpretation of Output 3.2

Note that the Alpha is .80, an acceptable internal consistency reliability. The Item Statistics table shows that you have 73 students with data on all four items as well as reasonable means and SDs. The Summary Item Statistic table shows that the mean of the four items is 3.30; the mean correlation among the items is .49 and varies from a low of .33 to a high of .74. All the Corrected Item-Total Correlations are above .40, which is good.



Output 3.3: Cronbach's Alpha for the Math Attitude Pleasure Scale

RELIABILITY

/VARIABLES=item02 item06r item10r item14 
 /SCALE('Alpha for Pleasure Scale') ALL 
 /MODEL=ALPHA 
 /STATISTICS=DESCRIPTIVE SCALE CORR 
 /SUMMARY=TOTAL MEANS CORR.

Reliability

Scale: Alpha for Pleasure Scale

Case Processing Summary





	
	
	N
	%





	Cases
	Valid
	75
	100.0



	
	Excludeda
	0
	.0



	
	Total
	75
	100.0






a. Listwise deletion based on all variables in the procedure.
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Item Statistics





	
	Mean
	Std. Deviation
	N





	item02 pleasure
	3.5200
	.90584
	75



	item06 reversed
	2.5733
	.97500
	75



	item10 reversed
	3.5867
	.73693
	75



	item14 pleasure
	2.8400
	.71735
	75
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Interpretation of Output 3.3

The Alpha is .69, which is lower than desirable, partly because there are only four items in the scale. Note that the mean Inter-Item Correlation is .37 and the lowest correlation is only .20. The Corrected Item-Total Correlation for item06 is a little low at .397, but deleting it would not improve the alpha.




Example of How to Write about Problems 3.1, 3.2, and 3.3

Method

To assess whether the data from the six variables that were summed to create the motivation score formed a reliable scale, Cronbach’s alpha was computed. The alpha was .79, which indicates that the items form a scale that has reasonable internal consistency reliability. Similarly, the alpha for the competence scale (.80) indicated good internal consistency, but the .69 alpha for the pleasure scale indicated minimally adequate reliability.



Problem 3.4: Test—Retest Reliability Using Correlation 

	3.4. Is there support for the test–retest reliability of the two visualization test scores?


Let’s do a Pearson r for visualization test and visualization retest scores.

	Click on Analyze → Correlate → Bivariate.
 	Move variables visualization and visualization retest into the variable box.
 	Do not select flag significant correlations because statistical significance is not important for reliability assessment; rather we should focus on the magnitude of the correlations. Reliability coefficients should be positive and greater than .70; statistical significance is not considered because we are not doing inferential statistics but instead are trying to see if our sample’s data provide evidence to support the reliability of the visualization measure.
 	Click on Options.
 	Click on Means and Standard deviations.
 	Click on Continue and then OK. Do your syntax and output look like Output 3.4?


Output 3.4: Pearson r for the Reliability of the Visualization Score

CORRELATIONS

/VARIABLES=visual visual2 
 /PRINT=TWOTAIL SIG 
 /STATISTICS DESCRIPTIVES 
 /MISSING=PAIRWISE.

Correlations

Descriptive Statistics





	
	Mean
	Std. Deviation
	N





	visualization test
	5.2433
	3.91203
	75



	visualization 2
	5.1067
	3.77518
	75
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Interpretation of Output 3.4

The first table provides the descriptive statistics for the two variables, visualization test and visualization retest. The second table indicates that the correlation of the two visualization scores is very high (r = .89) so there is strong support for the test–retest reliability of the visualization score. This correlation is significant, p < .001, but here we are not concerned about the significance because we are not doing inferential statistics; instead we are interested in the size of the relationship between the variables in this sample to see if our data support the reliability of the measure.




Example of How to Write About Problem 3.4

Method

A Pearson’s correlation was computed to assess test–retest reliability of the visualization test scores, r (75) = .89. This indicates that there is good test–retest reliability for these data.



Problem 3.5: Intraclass Correlation Coefficients (ICC) 

ICC performs a reliability analysis for two or usually more judges or observers who have rated the same somewhat subjective behavior. In our example, the mosaic pattern test was given to students; then responses to the test were scored by three different observers, raters, or judges. The scores these judges recorded were called mosaic, mosaic2, and mosaic3, respectively. We want to see if the three judges provide consistent scores in terms of the correlations among their ratings (i.e., do all three judges score the same students highly and other students low). In addition, we will find out if the three judges differ in terms of their mean ratings (i.e., are the judges equally strict or do one or two judges give more generous scores).

	3.5 What is the reliability coefficient for the three mosaic pattern test judges? Are the means of the mosaic scores for the three judges different?


To answer these questions, we will compute ICC.

	Click on Analyze → Scale → Reliability Analysis.
 	Move mosaic, mosaic2, and mosaic3 to the Items box.
 	Type “ICC for Mosaic” in the Scale Label box.
 	Click on Statistics to open the Reliability Analysis: Statistics Window. See Figure 3.2 if needed.
 	Check Item under Descriptives for, F-test under ANOVA, Intraclass Correlation Coefficient, Two-Way Random beside Model, and Consistency beside Type.
 	Click Continue, and then OK. Compare your syntax and output to Output 3.5.


Output 3.5: ICC for Three Mosaic Judges

RELIABILITY

/VARIABLES=mosaic mosaic2 mosaic3 
 /SCALE('ICC for Mosaic') ALL 
 /MODEL=ALPHA 
 /STATISTICS=DESCRIPTIVE ANOVA 
 /ICC=MODEL(RANDOM) TYPE(CONSISTENCY) CIN=95 TESTVAL=0.

Reliability

Scale: ICC for Mosaic

Case Processing Summary





	
	
	N
	%





	Cases
	Valid
	75
	100.0



	
	Excludeda
	0
	.0



	
	Total
	75
	100.0






a. Listwise deletion based on all variables in the procedure.





Reliability Statistics





	Cronbach's Alpha
	N of Items





	.982
	3








Interpretation of Output 3.5

The Case Processing Summary shows that all 75 students have scores from all three judges. The Cronbach’s alpha for these three judges (called items) is .982, which we will see is the same as the average measures Intraclass Correlation Coefficient (ICC) in the last output table below.



Item Statistics





	
	Mean
	Std. Deviation
	N





	mosaic, pattern test
	27.4133
	9.57381
	75



	mosaic pattern test 2
	27.4800
	9.34816
	75



	mosaic pattern test 3
	26.5333
	9.23760
	75
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Interpretation of Output 3.5 continued

The Item Statistics table shows the mean, SD, and N for the three mosaic judges. Note that the mosaic pattern test 3 judge scores the students lower on average (26.53) than the other two judges. In the ANOVA table “Between People” refers to the different participants, not the different judges. Differences between judges are the “between items” differences “within people.” The ANOVA table shows that F(2, 148) =4.47, p = .013, so there is a significant difference among the means of the three judges.

Examination of the means in the Items Statistics table indicates that judge 3 rated mosaic lower than did the other two judges, so a researcher might decide to use only the other two raters’ scores if all judges rated all students. However, if only one judge rated some of the participants, then it would seem reasonable, given the high reliability of the data, to use all judges’ ratings or average the judges’ ratings to get the final data to use in the study.
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Interpretation of Output 3.5 continued

The Intraclass Correlation Coefficient table is the key table in terms of the reliability of the ratings of the three judges. The “Average measures” indicates the reliability of the average scores across judges. This is worth knowing if you plan to average the raters’ scores to get the final rating you use and want to know how reliable the resulting data are. On the other hand, it does not give us an estimate of reliability that takes into account variability across judges. Since the latter is what we are trying to determine here, we will use the “single measures” ICC as the index of interrater reliability. Notice that the F test in this table compares the value of the intraclass correlation with the null hypothesis of no correlation (true value 0). Unsurprisingly, the correlations both differ significantly from zero, since they are over .9. The magnitude of the reliability coefficient (.947) is more important. The F test in the ANOVA table discussed above gives a more important F test to consider.




Example of How to Write About Problem 3.5

The intraclass correlation coefficient indicates that the interrater reliability for the three judges’ ratings of students’ mosaic pattern test scores was .95.



Problem 3.6: Cohen's Kappa With Nominal Data 

When we have two nominal categorical variables with the same values (usually two raters’ observations or scores using the same codes), we can compute Cohen’s kappa to check the reliability or agreement between the measures. Cohen’s kappa is preferable over simple percentage agreement because it corrects for the probability that raters will agree due to chance alone. In the hsbdataNew, the variable ethnicity is the ethnicity of the student as reported in the school records. The variable ethnicity reported by student is the ethnicity of the student as reported by the student. Thus, we can compute Cohen’s kappa to check the agreement between these two nominal ratings.

	3.6. What is the reliability coefficient for the ethnicity codes (based on school records) and ethnicity reported by the student?


To compute the kappa:

	Click on Analyze → Descriptive Statistics → Crosstabs.
 	Move ethnicity to the Rows box and ethnicity reported by students to the Columns box.
 	Click Statistics... This will open the Crosstabs: Statistics dialog box.
 	Click on Kappa.
 	Click on Continue to go back to the Crosstabs dialog window.
 	Then click on Cells... and request the Observed under Counts and Total under Percentages.
 	Click on Continue and then OK. Compare your syntax and output with Output 4.6.


Output 3.6: Cohen's Kappa With Nominal Data

CROSSTABS

/TABLES=ethnic BY ethnic2 
 /FORMAT= AVALUE TABLES 
 /STATISTIC=KAPPA 
 /CELLS= COUNT TOTAL 
 /COUNT ROUND CELL.

Crosstabs
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Interpretation of Output 3.6

The Case Processing Summary table shows that 71 students have data on both variables and 4 students have missing data. The Cross-tabulation table of ethnicity and ethnicity reported by student is next. The cases where the school records and the student agree are on the diagonal and circled. There are 65 (40 + 11 + 8 + 6) students with such agreement or consistency. The Symmetric Measures table shows that kappa = .86, which is very good. Because kappa is a measure of reliability, it usually should be .70 or greater. Because we are not doing inferential statistics (we are not inferring this result is indicative of relationships in a larger population), we are not concerned with the significance value. However, because it corrects for chance, the value of kappa tends to be somewhat lower than some other measures of interobserver reliability, such as percentage agreement.




Example of How to Write About Problem 3.6

Method

Cohen’s kappa was computed to check the reliability of reports of student ethnicity by the student in relation to school records. The resulting kappa of .86 indicates that both school records and students’ reports provide similar information about students’ ethnicity.



Interpretation Questions

	3.1. Using Outputs 3.1, 3.2, and 3.3, make a table indicating the number of items, mean inter-item correlation, and the alpha coefficient for each of the scales. Discuss the relationship between mean inter-item correlation and alpha and how this is affected by the number of items.
 	3.2. For the competence scale, what item has the lowest corrected item-total correlation? What would be the alpha if that item were deleted from the scale?
 	3.3. For the pleasure scale (Output 3.3), what item has the highest item-total correlation? Comment on how alpha would change if that item were deleted.
 	3.4. Using Output 3.4: (a) What is the test–retest reliability of the visualization score? (b) Is it acceptable? (c) As indicated above in the introduction to the chapter, correlations can be used to indicate test–retest reliability, or alternate forms reliability. What information about the measures of visualization would be provided, if what we have called the visualization retest score was instead an equivalent form of the test rather than a retest using the same measure? What would be the procedure for measuring visualization and visualization retest scores?
 	3.5. How is the intraclass correlation coefficient in Problem 3.5 different from test-retest reliability coefficients in Problem 3.4?
 	3.6. Using Output 3.6: What is the interrater reliability of the ethnicity codes? What does this mean?


Extra SPSS Problems 

The extra problems at the end of this and each of the following chapters use data sets provided by us or by SPSS and included on the website for this book, www.routledge.com/9781848729995. The name of the data set is provided in each problem.

	3.1. Using the satisf.sav data file, determine the internal consistency reliability (Cronbach’s coefficient alpha) of a proposed six-item satisfaction scale. Use the price, variety, organization, service, item quality, and overall satisfaction items, which are five-point Likert-type ratings. In other words, do the six satisfaction items interrelate well enough to be used to create a composite score for satisfaction? Explain.
 	3.2. A judge from each of seven different countries (e.g., Russia and the U.S.) rated 300 participants in an international competition on a 10-point scale. In addition, an “armchair enthusiast” rated the participants. What is the interrater reliability of the armchair enthusiast (judge 8) with each of the other seven judges? Use the judges.sav data file. Comment. In addition compute the intraclass correlation coefficient for the eight judges and comment on how it differs from the seven bivariate reliability coefficients.
 	3.3. Two consultants rated 20 sites for a future research project. What is the level of agreement or interrater reliability (using Cohen’s kappa) between the raters? Use the site.sav data. Comment.
 	3.4. A researcher wants to measure how much love married couples have. To measure love, she develops four questions. Using the love.sav data file, determine the internal consistency reliability (Cronbach’s coefficient alpha) of a proposed four-item love scale. Comment.
 	3.5. Access the judges.sav file and conduct a reliability analysis using an Intraclass Correlation Coefficient (ICC) with the data from the judges associated with the seven different countries. (a) What is the reliability of the ratings from the seven judges? (b) If you rerun the analysis and include the “armchair enthusiast” how does that change the computed ICC? (c) Why does including the “armchair enthusiast” change the results; refer to your findings from Extra SPSS problem 3.2?



Chapter 4
 Exploratory Factor Analysis and Principal Components Analysis

Exploratory factor analysis (EFA) and principal components analysis (PCA) both are methods that are used to help investigators represent a large number of relationships among normally distributed or scale variables in a simpler (more parsimonious) way. Both of these approaches determine which, of a fairly large set of items, “hang together” as groups or are answered most similarly by the participants. EFA also can help assess the level of construct (factorial) validity in a dataset regarding a measure purported to measure certain constructs. A related approach, confirmatory factor analysis, in which one tests very specific models of how variables are related to underlying constructs (conceptual variables), requires additional software and is beyond the scope of this book so it will not be discussed.

The primary difference, conceptually, between exploratory factor analysis and principal components analysis is that in EFA one postulates that there is a smaller set of unobserved (latent) variables or constructs underlying the variables actually observed or measured (this is commonly done to assess validity), whereas in PCA one is simply trying to mathematically derive a relatively small number of variables to use to convey as much of the information in the observed/measured variables as possible. In other words, EFA is directed at understanding the relations among variables by understanding the constructs that underlie them, whereas PCA is simply directed toward enabling one to derive fewer variables to provide the same information that one would obtain from the larger set of variables.

There are actually a number of different ways of computing factors for factor analysis; in this chapter, we will use only one of these methods, principal axis factor analysis (PA). We selected this approach because it is highly similar mathematically to PCA. The primary difference, computationally, between PCA and PA is that in the former the analysis typically is performed on an ordinary correlation matrix, complete with the correlations of each item or variable with itself. In contrast, in PA factor analysis, the correlation matrix is modified such that the correlations of each item with itself are replaced with a “communality”—a measure of that item’s relation to all other items (usually a squared multiple correlation). Thus, with PCA the researcher is trying to reproduce all information (variance and covariance) associated with the set of variables, whereas PA factor analysis is directed at understanding only the covariation among variables.

Conditions for Exploratory Factor Analysis and Principal Components Analysis

There are two main conditions necessary for factor analysis and principal components analysis. The first is that there need to be relationships among the variables. Further, the larger the sample size, especially in relation to the number of variables, the more reliable the resulting factors. Sample size is less crucial for factor analysis to the extent that the communalities of items with the other items are high, or at least relatively high and variable. Ordinary principal axis factor analysis should never be done if the number of items/variables is greater than the number of participants.

Assumptions for Exploratory Factor Analysis and Principal Components Analysis

The methods of extracting factors and components that are used in this book do not make strong distributional assumptions; normality is important only to the extent that skewness or outliers affect the observed correlations or if significance tests are performed (which is rare for EFA and PCA). The normality of the distribution can be checked by computing the skewness value of each variable. Maximum likelihood estimation, which we will not cover, does require multivariate normality; the variables need to be normally distributed and the joint distribution of all the variables should be normal. Because both principal axis factor analysis and principal components analysis are based on correlations, independent sampling is required and the variables should be related to each other (in pairs) in a linear fashion. The assumption of linearity can be assessed with matrix scatterplots, as shown in Chapter 2. Finally, each of the variables should be correlated at a moderate level with some of the other variables. Factor analysis and principal components analysis seek to explain or reproduce the correlation matrix, which would not be a sensible thing to do if the correlations all hover around zero. Bartlett’s test of sphericity addresses this assumption. However, if correlations are too high, this may cause problems with obtaining a mathematical solution to the factor analysis.

	Retrieve your data file: hsbdataNew.sav.


Problem 4.1: Factor Analysis on Math Attitude Variables

In Problem 4.1, we perform a principal axis factor analysis on the math attitude variables. Factor analysis is more appropriate than PCA when one has the belief that there are latent variables underlying the variables or items measured. In this example, we have beliefs about the constructs underlying the math attitude questions; we believe that there are three constructs: motivation, competence, and pleasure. Now, we want to see if the items that were written to index each of these constructs actually do “hang together”; that is, we wish to determine empirically whether participants’ responses to the motivation questions are more similar to each other than to their responses to the competence items, and so on. Conducting factor analysis can assist us in validating the data: if the data do fit into the three constructs that we believe exist, then this gives us support for the construct validity of the math attitude measure in this sample. The analysis is considered exploratory factor analysis even though we have some ideas about the structure of the data because our hypotheses regarding the model are not very specific; we do not have specific predictions about the size of the relation of each observed variable to each latent variable, etc. Moreover, we “allow” the factor analysis to find factors that best fit the data, even if this deviates from our original predictions.

	4.1 Are there three constructs (motivation, competence, and pleasure) underlying the math attitude questions?


To answer this question, we will conduct a factor analysis using the principal axis factoring method and specify the number of factors to be three (because our conceptualization is that there are three math attitude scales or factors: motivation, competence, and pleasure).

	Analyze → Dimension Reduction → Factor… to get Fig. 4.1.
 	Next, select the variables item01 through item14. Do not include item04r or any of the other reversed items because we are including the unreversed versions of those same items.



[image: Fig. 4.1. Factor analysis.]
Fig. 4.1. Factor analysis.



	Now click on Descriptives… to produce Fig. 4.2.
 	Then click on the following: Initial solution and Univariate Descriptives (under Statistics), Coefficients, Determinant, and KMO and Bartlett’s test of sphericity (under Correlation Matrix).
 	Click on Continue to return to Fig. 4.1.



[image: Fig. 4.2. Factor analysis: Descriptives.]
Fig. 4.2. Factor analysis: Descriptives.



	Next, click on Extraction… This will give you Fig. 4.3.
 	Select Principal axis factoring from the Method pull-down menu.
 	Unclick Unrotated factor solution (under Display). We will examine this only in Problem 4.2. We also usually would check the Scree plot box. However, again, we will request and interpret the scree plot only in 42.
 	Click on Fixed number of factors under Extract, and type 3 in the box. This setting instructs the computer to extract three math attitude factors.
 	Click on Continue to return to Fig. 4.1.



[image: Fig. 4.3. Extraction method to produce principal axis factoring.]
Fig. 4.3. Extraction method to produce principal axis factoring.



	Now click on Rotation… in Fig. 4.1, which will give you Fig. 4.4.


	Click on Varimax, then make sure Rotated solution is also checked. Varimax rotation creates a solution in which the factors are orthogonal (uncorrelated with one another), which can make results easier to interpret and to replicate with future samples. If you believe that the factors (latent concepts) are correlated, you could choose Direct Oblimin, which will provide an oblique solution allowing the factors to be correlated.
 	Click on Continue.



[image: Fig. 4.4. Factor analysis: Rotation.]
Fig. 4.4. Factor analysis: Rotation.



	Next, click on Options… which will give you Fig. 4.5.
 	Click on Sorted by size.
 	Click on Suppress small coefficients and type .3 (point 3) in the Absolute Value below box (see Fig. 4.5). Suppressing small factor loadings makes the output easier to read.
 	Click on Continue then OK. Compare Output 4.1 with your output and syntax.



[image: Fig. 4.5. Factor analysis: Options.]
Fig. 4.5. Factor analysis: Options.



Output 4.1: Factor Analysis for Math Attitude Questions

FACTOR

/VARIABLES item01 item02 item03 item04 item05 item06 item07 item08 item09 item10 item11 item12 item13 item14

/MISSING LISTWISE

/ANALYSIS item01 item02 item03 item04 item05 item06 item07 item08 item09 item10 item11 item12 item13 item14

/PRINT UNIVARIATE INITIAL CORRELATION DET KMO EXTRACTION ROTATION 
/FORMAT SORT BLANK(.3) 
/CRITERIA FACTORS(3) ITERATE(25) 
/EXTRACTION PAF 
/CRITERIA ITERATE(25) 
/ROTATION VARIMAX 
/METHOD=CORRELATION.

Factor Analysis

Descriptive Statistics





	
	Mean
	Std. Deviation
	Analysis N





	itemOl motivation
	2.99
	.918
	71



	item02 pleasure
	3.58
	.822
	71



	item03 competence
	2.82
	.915
	71



	item04 low motiv
	2.21
	.909
	71



	item05 low comp
	1.61
	.948
	71



	item06 low pleas
	2.44
	.996
	71



	item07 motivation
	2.77
	1.072
	71



	item08 low motiv
	1.96
	.917
	71



	item09 competence
	3.32
	.770
	71



	iteml 0 low pleas
	1.41
	.748
	71



	item11 low comp
	1.38
	.763
	71



	iteml 2 motivation
	2.99
	.837
	71



	iteml 3 motivation
	2.68
	.807
	71



	iteml 4 pleasure
	2.86
	.723
	71








Interpretation of Output 4.1

The factor analysis program generates a variety of tables depending on which options you have chosen. The first table includes Descriptive Statistics for each variable and the Analyses N, which in this case is 71 because several items have one or more participants missing. It is especially important to check the Analysis N when you have a small sample, scattered missing data, or one variable with lots of missing data. In the latter case, it may be wise to run the analysis without that variable.
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Interpretation of Output 4.1 continued

The second table is part of a correlation matrix showing how each of the 14 items is associated with each of the other 13. Note that some of the correlations are high (e.g., + or −.60 or greater) and some are low (i.e., near zero). Relatively high correlations indicate that two items are associated and will probably be grouped together by the factor analysis. Items with low correlations (e.g., ≤.20) usually will not have high loadings on the same factor.

One assumption is that the determinant (located under the correlation matrix) should be more than .0001. Here, it is .001 so this assumption is met. If the determinant is zero, then a factor analytic solution cannot be obtained, because this would require dividing by zero, which would mean that at least one of the items can be understood as a linear combination of some set of the other items.
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Interpretation of Output 4.1 continued

The Kaiser-Meyer-Olkin (KMO) measure should be greater than .70 and is inadequate if less than .50. The KMO test tells us whether or not enough items are predicted by each factor. Here it is .77 so that is good. The Bartlett test should be significant (i.e., a significance value of less than .05); this means that the variables are correlated highly enough to provide a reasonable basis for factor analysis as in this case.

The Communalities table shows the Initial communalities before rotation. See the call out box for more interpretation. Note that all the initial communalities are above .30, which is good.
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Interpretation of Output 4.1 continued

The Total Variance Explained table shows how the variance is divided among the 14 possible factors. Note that four factors have eigenvalues (a measure of explained variance) greater than 1.0, which is a common criterion for a factor to be useful. When the eigenvalue is less than 1.0 the factor explains less information than a single item would have explained. Most researchers would not consider the information gained from such a factor to be sufficient to justify keeping that factor. Thus, if you had not specified otherwise, the computer would have looked for the best four-factor solution by “rotating” four factors. Because we specified that we wanted only three factors rotated, only three will be rotated, as seen on the right side of the table under Rotation Sums of Squared Loadings.

For this and other analyses in this chapter, we will use an orthogonal rotation (varimax). This means that the final factors will be at right angles with each other. As a result, we can assume that the information explained by one factor is independent of the information in the other factors. Note that if we create scales by summing or averaging items with high loadings from each factor, these scales will not necessarily be uncorrelated; it is the best-fit vectors (factors) that are orthogonal.



[image: ]


[image: ]


Interpretation of Output 4.1 continued

Factors are rotated so that they are easier to interpret. Rotation makes it so that, as much as possible, different items are explained or predicted by different underlying factors, and each factor explains more than one item. This is a condition called simple structure. Although this is the goal of rotation, in reality, this is not always achieved. One thing to look for in the Rotated Matrix of factor loadings is the extent to which simple structure is achieved.

The Rotated Factor Matrix table is key for understanding the results of the analysis. Factors are rotated so that they are easier to interpret. Rotation makes it so that, as much as possible, different items are explained or predicted by different underlying factors, and each factor explains more than one item. This is a condition called simple structure. Although this is the goal of rotation, in reality, this is not always achieved. One thing to look for in the Rotated Matrix of factor loadings is the extent to which simple structure is achieved.

Note that the analysis has sorted the 14 math attitude questions (item01 to item14) into three somewhat overlapping groups of items, as shown by the circled items. The items are sorted so that the items that have the highest loading (not considering whether the correlation is positive or negative) from factor 1 (four items in this analysis) are listed first, and they are sorted from the one with the highest factor weight or loading (i.e., item05, with a loading of −.897) to the one with the lowest loading from that first factor (item11). Actually, every item has some loading from every factor, but we requested for loadings less than |.30| to be excluded from the output, so there are blanks where low loadings exist. (|.30| means the absolute value, or value without considering the sign.)

Next, the six items that have their highest loading from factor 2 are listed from highest loading (item12) to lowest (item9). Finally, the four items on which factor 3 loads most highly are listed in order. Loadings resulting from an orthogonal rotation are correlation coefficients between each item and the factor, so they range from −1.0 through 0 to + 1.0. A negative loading just means that the question needs to be interpreted in the opposite direction from the way it is written for that factor (e.g., item05 “I am a little slow catching on to new topics in math” has a negative loading from the competence factor, which indicates that the people scoring higher on this item are lower in competence). Usually, factor loadings lower than |.30| are considered low, which is why we suppressed loadings less than |.30|. On the other hand, loadings of |.40| or greater are typically considered high. This is just a guideline, however, and one could set the criterion for “high” loadings as low as .30 or as high as .50. Setting the criterion lower than .30 or higher than .50 would be very unusual.

The investigator should examine the content of the items that have high loadings from each factor to see if they fit together conceptually and can be named. Items 5, 3, and 11 were intended to reflect a perception of competence at math, so the fact that they all have strong loadings from the same factor provides some support for their being conceptualized as pertaining to the same construct. On the other hand, item01 was intended to measure motivation for doing math, but it is highly related to this same competence factor. In retrospect, one can see why this item could also be interpreted as competence. The item reads, “I practice math skills until I can do them well.” Unless one felt one could do math problems well, this would not be true. Likewise, item02, “I feel happy after solving a hard problem,” although intended to measure pleasure at doing math (and having its strongest loading there), might also reflect competence at doing math, in that, again, one could not endorse this item unless one had solved hard problems, which one could only do if one were good at math. Note that item02 loaded almost as highly (.49) on the competence factor (#1) as on the low pleasure factor (#3) so it loaded highly on two factors. On the other hand, item09, which was originally conceptualized as a competence item, had no really strong loadings.

Every item has a weight or loading from every factor, but in a “clean” factor analysis almost all of the loadings that are not in the circles that we have drawn on the Rotated Factor Matrix will be low (blank or less than |.40|). The fact that both Factors 1 and 3 load highly on item02 and fairly highly on item11, and the fact that Factors 1 and 2 both load highly on item07 is common but undesirable, in that one wants only one factor to predict each item.
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Example of How to Write About Problem 4.1

Results

Principal axis factor analysis with varimax rotation was conducted to assess the underlying structure for the 14 items of the Math Attitude Questionnaire. (The assumption of independent sampling was met. The assumptions of normality, linear relationships between pairs of variables, and the variables’ being correlated at a moderate level were checked.) Three factors were requested, based on the fact that the items were designed to index three constructs: motivation, competence, and pleasure. After rotation, the first factor accounted for 21.5% of the variance, the second factor accounted for 16.6%, and the third factor accounted for 12.7%. Table 4.1 displays the items and factor loadings for the rotated factors, with loadings less than .40 omitted to improve clarity.

Table 4.1 Factor Loadings from Principal Axis Factor Analysis with Varimax Rotation for a Three-Factor Solution for Math Attitude Questions (N =71)





	Item
	Factor Loading
	



	
	

	



	
	1
	2
	3
	Communality



	






	Slow catching on to new topics
	-.90
	
	
	.77



	Solve math problems quickly
	.78
	
	
	.60



	Practice math until do well
	.78
	
	
	.66



	Have difficulties doing math
	-.57
	
	
	.59



	Try to complete math even if takes long
	
	.72
	
	.50



	Explore all possible solutions
	
	.67
	
	.45



	Do not keep at it long if problem challenging
	
	-.62
	
	.53



	Give up easily instead of persisting
	
	-.60
	
	.56



	Prefer to figure out problems without help
	.41
	.59
	
	.61



	Really enjoy working math problems
	
	
	-.80
	.48



	Smile only a little when solving math problem
	
	
	.58
	.37



	Feel happy after solving hard problem
	.49
	
	-.54
	.54



	Do not get much pleasure out of math
	
	
	.52
	.38



	Eigenvalues
	3.02
	2.33
	1.78
	



	% of variance
	21.55
	16.62
	12.75
	






Note. Loadings < .40 are omitted.





The first factor, which seems to index competence, had strong loadings on the first four items. Two of the items indexed low competence and had negative loadings. The second factor, which seemed to index motivation, had high loadings on the next five items in Table 4.1. “I prefer to figure out the problem without help” had its highest loading from the second factor but had a cross-loading over .4 on the competence factor. The third factor, which seemed to index low pleasure from math, loaded highly on the last four items in the table. “I feel happy after solving a hard problem” had its highest loading from the pleasure factor but also had a strong loading from the competence factor.



Problem 4.2: Principal Components Analysis on Achievement Variables

Principal components analysis is most useful if one simply wants to reduce a relatively large number of variables to a smaller number of variables that still capture the same information. In this problem we will look at the initial (unrotated) solution as well as the rotated solution because we might want to use the first, unrotated, principal component to summarize all of the variables if it explains most of the variance rather using multiple, rotated components. This would especially be true if the scree plot suggests a large drop-off after the first component in variance explained (eigenvalues), so we will look at the scree plot too.

	4.2 Run a principal components analysis to see how the five “achievement” variables cluster. These variables are grades in h.s., math achievement, mosaic pattern test, visualization test, and scholastic aptitude test – math.


	Click on Analyze → Dimension Reduction → Factor...
 	First press Reset.
 	Next select the variables grades in h.s., math achievement, mosaic pattern test, visualization test, and scholastic aptitude test – math, similar to what we did in Fig. 4.1.
 	In the Descriptives window (Fig. 4.2), check Univariate descriptives, Initial solution, Coefficients, Determinant, and KMO and Bartlett’s test of sphericity. Click on Continue.
 	In the Extraction window (Fig. 4.3), use the default Method of Principal components. Be sure that unrotated factor solution and Eigenvalues over 1 checked. Also, request a Scree plot (to see if one component would do a good job in summarizing the data or if a different number of components would be preferable to the default based on the criterion of components with eigenvalues over 1).
 	Click on Continue.
 	In the Rotation window (Fig. 4.4), check Varimax. Under Display, check Rotated solution and Loading plot(s).
 	Click on Continue and then OK.


We have requested a principal components analysis for the extraction and some different options for the output to contrast with the earlier one. Compare Output 4.2 with your syntax and output.

Output 4.2: Principal Components Analysis for Achievement Scores

FACTOR

/VARIABLES grades mathach mosaic visual satm 
 /MISSING LISTWISE 
 /ANALYSIS grades mathach mosaic visual satm 
 /PRINT UNIVARIATE INITIAL CORRELATION DET KMO EXTRACTION ROTATION 
 /PLOT EIGEN ROTATION 
 /CRITERIA MINEIGEN(1) ITERATE(25) 
 /EXTRACTION PC 
 /CRITERIA ITERATE(25) 
 /ROTATION VARIMAX 
 /METHOD=CORRELATION.

Factor Analysis

Descriptive Statistics





	
	Mean
	Std. Deviation
	Analysis N





	grades in h.s.
	5.68
	1.570
	75



	math achievement test
	12.5645
	6.67031
	75



	mosaic, pattern test
	27.413
	9.5738
	75



	visualization test
	5.2433
	3.91203
	75



	scholastic aptitude test - math
	490.53
	94.553
	75
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Interpretation of 4.2

As in 41, the Descriptive Statistics table provides the mean and SD for each item. The Analysis N is important because it tells you how many students have scores on all five of these variables; in this case there is no missing data so the N is 75. The Correlation Matrix shows how each of the five items is related to the other four; note that the mosaic scores are very weakly correlated with the other four variables (-.012 to .213).

In terms of assumptions, the Determinant is much larger than zero so that is good. The KMO is .615 so mediocre and may be a problem. The Bartlett test is significant (p < .001), which is good and indicates that the correlations are not near zero.



Communalities





	
	Initial
	Extraction





	grades in h.s.
	1.000
	.493



	math achievement test
	1.000
	.869



	mosaic, pattern test
	1.000
	.949



	visualization test
	1.000
	.330



	scholastic aptitude test - math
	1.000
	.748






Extraction Method: Principal Component Analysis.
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Interpretation of 4.2 continued

The Total Variance Explained table shows that there are two components with initial Eigenvalues more than 1.0, although the Eigenvalue for the second component is barely over 1 at 1.01. The first component explains 47.58% of the total variance, but because this is less than 50%, we probably want to rotate more than one component, as shown on the right hand side of this Total Variance Explained table.

The Scree Plot shows the initial Eigenvalues. Note that both the scree plot and the eigenvalues support the conclusion that these five variables can be reduced to two components. Note that the scree plot flattens out after the second component. However, the second component is very poorly defined, relating only to one variable. Thus, one may decide to use only one summary variable, based on all variables except mosaic, or to redo the PCA after omitting mosaic. It usually is best for components to be defined by at least four variables.

The unrotated Component Matrix should not be interpreted. However, if you want to compute only one variable that provides the most information about this set of variables, a linear combination of the variables with high loadings from the first component of the unrotated matrix would be used.
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Component Transformation Matrix





	Component
	1
	2





	1
	.986
	.168



	2
	-.168
	.986






Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.
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Interpretation of Output 4.2 continued

The Rotated Component Matrix, which contains all the loadings (even those < .3) for each component, is similar to the rotated factor matrix in Output 4.1. The Component Plot in Rotated Space gives one a visual representation of the loadings plotted in a 2-dimensional space. The plot shows how closely related the items are to each other and to the two components. This plot of the component loadings shows that math achievement, SATmath, grades in h.s., and visualization test all load highly and positively on the first component. Mosaic has a loading near zero on the first component, but loads highly on the second.

Also, note that the default setting we used does not sort the variables in the Rotated Component Matrix by magnitude of loadings and does not suppress low loadings. Thus, you have to organize the table yourself; that is, math achievement, scholastic aptitude test, grades in h.s., and visualization, in that order, have high Component 1 loadings, and mosaic is the only variable with a high loading for Component 2.

Researchers usually give names to rotated components in a fashion similar to that used in EFA; however, there is no assumption that this indicates a variable that underlies the measured items. Often, a researcher will aggregate (add or average) the items that define (have high loadings for) each component and use this composite variable in further research. Actually, the same thing is often done with EFA factor loadings; however, the implication of the latter is that this composite variable is an index of the underlying construct.




Example of How to Write About Problem 4.2

Results

Principal components analysis with varimax rotation was conducted to assess how five “achievement” variables clustered. These variables were grades in h.s., math achievement, mosaic pattern test, visualization test, and scholastic aptitude test – math. (The assumption of independent sampling was met. The assumptions of normality, linear relationships between pairs of variables, and the variables being correlated at a moderate level were checked and mosaic pattern test did not meet the assumptions, in that it was correlated at a low level with each of the other variables.) Two components were rotated, based on the eigenvalues over 1 criterion and the scree plot. After rotation, the first component accounted for 47% of the variance, and the second component accounted for 21% of the variance. Table 4.2 displays the items and component loadings for the rotated components, with loadings less than .30 omitted to improve clarity. Results suggest, in keeping with zero-order correlations, that mosaic pattern test scores are not substantially related to the other measures and should not be aggregated with them but that the other measures form a coherent component.

Table 4.2 Component Loadings for the Rotated Components (N = 75)





	Item
	Component Loading
	



	
	

	



	
	1
	2
	Communality



	






	Grades in high school
	.67
	
	.49



	Math achievement
	.91
	
	.87



	Visualization test
	.57
	
	.33



	Scholastic aptitude test - math
	.86
	
	.75



	Mosaic pattern test
	
	.97
	.95



	Eigenvalues
	2.38
	1.01
	



	% of variance
	46.81
	20.97
	






Note. Loadings < .25 are omitted.







Interpretation Questions

	4.1 Using Output 4.1: (a) Are the factors in Output 4.1 close to the conceptual composites (motivation, pleasure, competence) indicated in Chapter 1? (b) How might you name the three factors in Output 4.1? (c) Why did we use factor analysis rather than principal components analysis for this exercise?
 	4.2 Using Output 4.2: (a) Were any of the assumptions that were tested violated? Explain. (b) Describe the main aspects of the correlation matrix, the rotated component matrix, and the plot in Output 4.2.
 	4.3 What does the plot in Output 4.2 tell us about the relation of mosaic to the other variables and to component 1? How does this plot relate to the rotated component matrix?


Extra SPSS Problems 

	4.1 Using the judges.sav data file, do exploratory factor analysis to see if the seven variables (the judges’ countries) can be grouped into two categories: former communistic block countries (Russia, China, and Romania) and non-communist countries (U.S., South Korea, Italy, and France). What, if any, assumptions were violated?
 	4.2 Using the satisf.sav data file, see if the six satisfaction scales can be reduced to a smaller number of variables.
 	4.3 Using the love.sav data file, see if the four love questions can be grouped into one category. What, if any, assumptions were violated?
 	4.4 Using the 1991 U.S. General Social Survey.sav data file, do exploratory factor analysis to see if the health variables (hlth1 to hlth9) and the work variables (work1 to work9) fall into two categories: health and work. Were any assumptions violated?



Chapter 5
 Selecting and Interpreting Inferential Statistics

To understand the information in this chapter, it will be necessary to remember or to review the sections in Chapter 1 about variables and levels of measurement (nominal, dichotomous, ordinal, and approximately normal/scale). It is also necessary to remember the distinction we made between difference and associational research questions and between descriptive and inferential statistics. This chapter focuses on inferential statistics, which as the name implies refers to statistics that make inferences about population values based on the sample data that you have collected and analyzed. What we call difference inferential statistics lead to inferences about the differences (usually mean differences) between groups in the populations from which the samples were drawn. Associational inferential statistics lead to inferences about the association or relationship between variables in the population. Thus, the purpose of inferential statistics is to enable the researcher to make generalizations beyond the specific sample data. Before we describe how to select and interpret inferential statistics, we will introduce design classifications.

General Design Classifications for Difference Questions

Many research questions focus on whether there is a statistically significant difference between two or more groups or conditions. The designs in this section all refer to this type of design.

Labeling difference question designs. Brief descriptive labels identify the design for other researchers and also guide us toward appropriate statistics to use. We do not have design classifications for the descriptive or associational research questions, so this section applies only to difference questions. Designs are usually labeled in terms of (a) the overall type of design (between-groups or within-subjects), (b) the number of independent variables, and (c) the number of levels within each independent variable.

When a group comparison or difference question is asked, the independent variable and design can be classified as between-groups or within-subjects. Understanding this distinction is one essential aspect of determining the proper statistical analysis for this type of question.

Between-groups designs. These are designs where each participant in the research is in one and only one condition or group. For example, there may be three groups (or levels or values) of the independent variable, treatment type. If the investigator wished to have 20 participants in each group, then 60 participants would be needed to carry out the research.

Within-subjects or repeated-measures designs. These designs are conceptually the opposite of between-groups designs. In within-subjects (sometimes called dependent) designs, each participant in the research receives or experiences all of the conditions or levels of the independent variable. These designs also include examples where the participants are matched by the experimenter or in some natural way (e.g., twins, husband and wife, or mother and child). When each participant is assessed more than once, these designs are also referred to as repeated-measures designs. Repeated-measures designs are common in longitudinal research and intervention research. Comparing performance on the same dependent variable assessed before and after intervention (pretest and posttest) is a common example of a repeated-measures design. We might call the independent variable in such a study “time of measurement” or “change over time.” Our HSB data did not really have a within-subjects aspect to the design. However, one of the variables is repeated (visualization with two levels: visualization test and visualization retest). Two are within-subjects (i.e., education, each student has both a mother’s education and father’s education, and mosaic pattern test, with three judges or raters for each student). To demonstrate a within-subjects design and the use of repeated-measured ANOVA, we will use another data set, called Product Data, which is found on the companion website, www.routledge.com/9781848729995. This small data set has within-subjects data, a rating by each participant for each of four different products (e.g., DVDs, but they could be any four stimuli). The same types of analysis could be done if, instead of each participant rating four different products in the same session, the ratings were done for satisfaction with the same product at four times. In that case, the data would be repeated-measures data. In addition, to demonstrate a doubly multivariate design, in which there are repeated assessments of several measures, we will use the data set called mixedMANOVAdata.

Single-factor designs. If the design has only one independent variable (in either a between-groups design or a within-subjects design), then it should be described as a basic or single-factor or one-way design. Factor and way are other names for difference independent variables. Note that the number of factors or “ways” refers to the number of independent variables not the number of levels of an independent variable. For example, a between-groups design with one independent variable that has four levels is a single-factor or one-way between-groups design with four levels. If the design is a within-subjects design with four levels, then it would be described as a single-factor, repeated-measures design with four levels (e.g., the same test being given four times).

Between-groups factorial designs. When there is more than one group difference independent variable, and each level of each variable (factor) is possible in combination with each level of each of the other variable, the design is called factorial. For example, a factorial design could have two independent variables (i.e., factors) gender and ethnicity, allowing for male and female members of each ethnic group. In these cases, the number of levels of each variable (factor) becomes important in the description of the design. If gender had two levels (i.e., males and females) and ethnicity had three levels (e.g., European-American, Hispanic-American, and African-American), then this design is a 2 × 3 between-groups factorial design. In this 2 × 3 notation, then, the number of numbers is the number of factors or ways, and the numbers themselves refer to the number of levels of each of those factors. This design could also be called a two-way or two-factor design because there are two independent variables.

Mixed factorial designs. If the design has a between-groups variable and a within-subjects independent variable, it is called a mixed design. For example, if the independent variables are gender (a between-groups variable) and time of measurement (with pretest and posttest as within-subjects levels); this is a 2 × 2 mixed factorial design with repeated measures on the second factor. The mixed design is common in experimental studies with a pretest and posttest.

Remember, when describing a design, that each independent variable is described using one number, which is the number of levels for that variable. Thus a design description with two numbers (e.g., 3 × 4) has two independent variables or factors, which have three and four levels, respectively. The dependent variable is not part of the design description, so it was not considered in this section.

Selection of Inferential Statistics 

It is time to think about how to decide which of the many possible inferential statistics to use. Because many statistical tests are introduced, don’t be concerned if you don’t know about all of the tests mentioned. You should come back to this chapter later, from time to time, when you have to make a decision about which statistic to use, and by then, the tests will be more familiar.

In Fig 5.1, we present eight steps to guide you in the selection of a proper inferential statistical test for data analysis. Remember that difference questions compare groups and utilize the statistics, which we call difference inferential statistics. These statistics (e.g., t test and analysis of variance) are shown in Tables 5.1 and 5.3.

Associational questions utilize what we call associational inferential statistics. The statistics in this group examine the association or relationship between two or more variables and are shown in Tables 5.2  and 5.4. This distinction between difference and associational statistics is somewhat of a simplification; you will see that there is often more than one possible statistic that can be used.


[image: Fig. 5.1. A decision tree to help select an appropriate inferential statistic from Tables 5.1 to 5.4. (IV= independent variable; DV = dependent variable.)]
Fig. 5.1. A decision tree to help select an appropriate inferential statistic from Tables 5.1 to 5.4. (IV= independent variable; DV = dependent variable.)



Using Tables 5.1 to 5.4 to Select Inferential Statistics

As with research questions and hypotheses discussed in Chapter 1, we divide inferential statistics into basic and complex. For basic (or bivariate) statistics, there is one independent and one dependent variable, and you will use Table 5.1 or 5.2. These basic statistics are discussed in more detail in our companion book, Morgan, Leech, Gloeckner, and Barrett (2013). For complex statistics, there are three or more variables. We decided to call them complex rather than multivariate, which is more common in the literature, because there is not unanimity about the definition of multivariate, and several complex statistics (e.g., factorial ANOVA) are not usually classified as multivariate. For complex statistics, you will use Tables 5.3 or 5.4. The complex statistics shown in Tables 5.3 and 5.4 are discussed in the remaining chapters in this book, and assignments and outputs are given demonstrating how to compute them using SPSS22. There are many other statistics, but these four tables include most of the inferential statistics that you will encounter in reading research articles. Note that the boxes in the decision tree (Fig. 5.1) are numbered to correspond to the numbers in the text below, which expands some on the decision tree or flowchart.

1. Decide how many variables there are in your research question or hypothesis. If there are only two variables, use Tables 5.1 or 5.2. If there is more than one independent and/or more than one dependent variable (i.e., three or more variables) in this research question, use Tables 5.3 and 5.4.

Basic (Two Variable) Statistics

2. If the independent variable is nominal (i.e., has unordered levels) or has a few (2–4) ordered levels, use Table 5.1. Then, your question is a basic (two variable) difference question to compare groups.


Table 5.2. Selection of an Appropriate Inferential Statistic for Basic, Two Variable, Associational Questions or Hypotheses
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You must then determine: (a) whether there are two or more than two levels (also called categories or groups or samples) of your independent variable, (b) whether the design is between-groups or within-subjects, and (c) whether the measurement level of the dependent variable is (i) normal/scale and parametric assumptions are not markedly violated, or (ii) ordinal, or (iii) nominal or dichotomous. The answers to these questions lead to a specific box in Table 5.1 and statistics such as independent or paired sample t tests, one-way ANOVA, chi-square, and several other nonparametric tests.

3. If both variables are nominal or dichotomous, you could ask either a difference question (use the bottom row of Table 5.1; e.g., chi-square) or an associational question and use the bottom row of Table 5.2 (phi or Cramer’s V). Note, in the second to bottom row of Table 5.2, we have included eta, an associational statistic used with one nominal and one normal or scale variable. We will see partial eta used in Chapter 9 as an effect size measure with ANOVAs. There are many nonparametric associational measures, some of which are in the bottom three rows of Table 5.2.

Table 5.2. Selection of an Appropriate Inferential Statistic for Basic, Two Variable, Associational Questions or Hypotheses





	Level (Scale) of Measurement of Both Variables ↓
	RELATE ↓
	Two Variables or Scores for the Same or Related Subjects



	Variables Are Both Normal/Scale and Assumptions Not Markedly Violated
	SCORES
	PEARSON (r) or BIVARIATE REGRESSION Ch. 5, App. B



	Both Variables at Least Ordinal Data or Distributional Assumptions Markedly Violated
	RANKS
	KENDALL TAU or SPEARMAN (RHO) App. B



	One Variable Is Normal/Scale and One Is Nominal
	
	ETA Ch. 10



	Both Variables Are Nominal or Dichotomous
	COUNTS
	PHI or CRAMER'S V App. B







4. If both variables have many (we suggest five or more) ordered levels, use Table 5.2 (top two rows). Your research question would be a basic two variable (bivariate) associational question. Which row you use depends on both variables. If both are normal/scale, then you would probably select the Pearson product moment correlation or bivariate regression (top row). Regression should be used if one has a clearly directional hypothesis, with an independent and dependent variable. Correlation is chosen if one is simply interested in how the two variables are related. If one or both variables are ordinal or grossly skewed, the second row (Kendall’s tau or Spearman rho) is a better choice.

Complex (3 or More Variable) Questions and Statistics

It is possible to break down a complex research problem or question into a series of basic (bivariate) questions and analyses. However, there are advantages to combining them into one complex analysis; additional information is provided, and a more accurate overall picture of the relationships is obtained.

5. If you have one normally distributed (scale) dependent variable and two (or perhaps three or four) independent variables, each of which is nominal or has a few (2–4) ordered levels, you will use the top row of Table 5.3 and one of three types of factorial ANOVA. These analysis of variance (ANOVA) statistics answer complex difference questions.

6. If you have more than one normally distributed/continuous (scale) dependent variable and are asking a difference question about a linear combination of those dependent variables, then GLM, Multivariate (MANOVA, MANCOVA) is appropriate (see second row, Table 5.3)

7. The last two rows of Table 5.3 involve situations in which there is more than one, categorical independent variable and there is an ordinal or dichotomous dependent variable. Although we do not cover these analyses in this book, we want you to know that it is possible to perform analyses on such data with SPSS, using the programs listed in the boxes. Similarly, note that in Table 5.4 generalized estimating equations, which is not covered in this book but is available in SPSS, can be used to analyze data when there is a normal and/or dichotomous independent variable with at least one random and/or nested variable and a dichotomous dependent variable.

8. The statistics in Table 5.4 are used to answer complex associational questions. If you have two or more independent or predictor variables and one normal (scale) dependent variable, the statistics in the top row of Table 5.4, including multiple regression, are appropriate.

9. For an appropriate complex associational statistic when the dependent variable is dichotomous or nominal, consult the second row of Table 5.4. In general, logistic regression is used if the dependent variable is dichotomous and some or all the independent variables are dichotomous. Discriminant analysis can best be used if the independent variables are all ordered/scale. It also can be used if the dependent variable is nominal with more than two categories (not discussed in this book).

Table 5.3. Selection of the Appropriate Complex (Two or More Independent Variables) Statistic to Answer Difference Questions or Hypotheses





	Dependent Variable(s) ↓
	Two or More Independent Variables



	All Between Groups
	All Within Subjects
	Mixed (Between and Within)





	One Normal/Scale Dependent Variable
	GLM, Factorial ANOVA or ANCOVA Ch. 9M
	GLM With Repeated Measures on All Factors Ch. 10a
	GLM With Repeated Measures on Some Factors Ch. 10a



	More Than One Normal/Scale Dependent Variable
	GLM, Multivariate MANOVA or MANCOVA Ch. 11
	GLM Doubly multivariate MANOVA With Repeated Measures on All Factors Ch.11b
	GLM Doubly multivariate MANOVA With Repeated Measures on Some Factors Ch. 11



	Ordinal Dependent Variable
	Generalized Linear Models
	Generalized Estimating Equations
	Generalized Estimating Equations



	Dichotomous Dependent Variable
	Log Linear; Generalized Linear Models
	Generalized Estimating Equations
	Generalized Estimating Equations






aIn Chapter 10, both a multivariate analysis (MANOVA) and a univariate analysis are performed.

bIn Chapter 11, the doubly multivariate example also has a between-groups factor, so it is actually a mixed design.





10. Use a Canonical Correlation, MANCOVA, or MANOVA (third row of Table 5.4) if you have two or more normal (scale) dependent variables treated simultaneously. MANOVA is a better choice than several ANOVAs if the dependent variables are related statistically and conceptually.

Table 5.4. Selection of the Appropriate Complex Associational Statistic for Predicting a Single Dependent/Outcome Variable From Several Independent Variables





	Dependent or Outcome Variable ↓
	Several Independent or Predictor Variables



	All Normal/Scale
	Some Normal Some or All Dichotomous (2 Categories)
	Some or All Nominal (Categorical With More than 2 Categories)
	Normal and/or Dichotomous, With at Least One Random and/or Nested Variable





	One Normal/Scale (Continuous)
	MULTIPLE REGRESSION Ch. 6
	MULTIPLE REGRESSION Ch. 6 or GLM Ch.9
	GLM Ch. 9
	LINEAR MIXED MODELS Ch. 12



	One Dichotomous (2 categories)
	DISCRIMINANT ANALYSIS Ch. 8
	LOGISTIC REGRESSION Ch. 8
	LOGISTIC REGRESSION Ch. 8
	Generalized Estimating Equations



	More than one Normal/Scale (Continuous)
	CANONICAL CORRELATION Ch. 7
	GLM, Multivariate MANCOVA Ch. 11
	GLM, Multivariate MANOVA Ch. 11







Occasionally you will see a research article in which a dichotomous dependent variable was used with a t test, ANOVA, or Pearson correlation. Because of the special nature of dichotomous variables, this is not necessarily wrong, as would be the use of a nominal (three or more unordered levels) dependent variable with these parametric statistics. However, we think that it is usually a better practice to use the same statistics with dichotomous variables that you would use with nominal variables, except that it is appropriate to use dichotomous independent variables in multiple regression (see Table 5.4).

Other Multivariate (Complex) Statistics

Not shown, in part because they did not fit the format of the tables, are six complex associational statistics for analyzing a number of variables at a time, which you may see in the literature. Cronbach’s alpha, a technique used to assess the internal consistency reliability of multiple item scales, is discussed, along with some other reliability measures, in Chapter 3. In exploratory factor analysis, one postulates that there is a smaller set of latent variables or constructs. Factor analysis and principal components analysis, which is used to reduce a relatively large number of variables to a smaller number of groups of variables, are discussed in Chapter 4. Canonical correlation involves correlation of linear combinations of one set of variables with linear combinations of another set of variables. Thus, it is useful when you have two sets of variables and want to see the patterns of correlations between the two sets. How to compute it with syntax is shown in Chapter 7.

Because it cannot be computed using SPSS (without the extra program called AMOS), structural equation models (SEM) are not discussed in this book. SEM are models that describe relationships among latent (unobserved) variables and manifest (observed) variables.

Multilevel linear models (sometimes called hierarchical linear models, or HLM) enable one to model nested data (data in which certain variables are present only in a subset of one’s data) over time. Both SEM and HLM provide tests of the accuracy of proposed models, and both are very useful for drawing better inferences from large sets of data. However, it is important to realize that, despite the language sometimes used in discussing SEM and HLM, even they do not enable one to determine causal relationships (e.g., see the APA Task Force on Statistical Inference report, Wilkinson et al., 1999, p. 600). How to compute multilevel models using SPSS is described in Chapter 12.

The General Linear Model 

Whether or not there is a relationship between variables can be answered in two ways. For example, if each of two variables provides approximately normally distributed data with five or more levels, then Fig. 5.1 and Table 5.2 indicate that the statistic to use is either the Pearson correlation or bivariate regression, and that would be our recommendation. However, some researchers choose to divide the independent variable into a few categories such as low, medium, and high and then do a one-way ANOVA. In another example, some researchers who start with an independent variable that has only a few (say, two to four) ordered categories may choose to do a correlation instead of a one-way ANOVA. Although these choices are not necessarily wrong, we do not think they are the best practice. In the first example, information is lost by dividing a continuous independent variable into a few categories. In the second example, there would be a restricted range, which tends to decrease the size of the correlation coefficient.

In the above examples, we recommended one of the choices, but the fact that there are two choices raises a bigger and more complex issue. Statisticians point out, and can prove mathematically, that the distinction between difference and associational statistics is an artificial one, in that ANOVA and multiple regression using dummy variables are often mathematically the same. In fact, SPSS calculates ANOVA and MANOVA using this regression approach. (See Figure 5.2.)


[image: Fig. 5.2. A general linear model and the selection of inferential statistics.]
Fig. 5.2. A general linear model and the selection of inferential statistics.



The bottom of Fig. 5.2 shows these parallels and that, although we have made a distinction between difference and associational inferential statistics, they both serve the purpose of exploring (top box) relationships and both are subsumed by the general linear model (middle box). Statisticians state that all common parametric statistics are relational. Thus, the full range of methods used to analyze one continuous dependent variable and one or more independent variables, either continuous or categorical, are mathematically similar. The model on which this is based is called the general linear model (GLM). The idea is that the relationship between the independent and dependent variables can be expressed by an equation with weights for each of the independent/predictor variables plus an error term.

What this means is that if you have a continuous, normally distributed dependent/outcome variable and several levels of an unordered, nominal independent variable, it would be appropriate to analyze them with either multiple regression or a one-way ANOVA. It is multiple regression rather than bivariate regression because there are multiple independent dummy variables comprising the comparisons among levels of the independent variable. You will get the same answer with regard to the significance level if you use either of these approaches using SPSS. Note in Fig. 5.1 and Table 5.3 that SPSS uses the GLM to perform a variety of statistics including factorial ANOVA and MANOVA. Although we recognize that our distinction between difference and associational parametric statistics is a simplification, we think it is useful conceptually in that it better represents how researchers think about their research questions and hypotheses, which form the basis for the analyses. We hope that this introduction to GLM is helpful.

Interpreting the Results of a Statistical Test 

In the following chapters, we present information about how to check assumptions, do analyses, interpret complex statistics, and write results. For each statistic, the program produces a number or calculated value based on the specific data in your study. They are labeled t, F, etc., or just value.

Statistical Significance

The calculated value is compared to a critical value (found in a statistics table or stored in the computer’s memory) that takes into account the degrees of freedom, which are usually based on the number of participants. Figure 5.3 shows how to interpret any inferential test once you know the probability level (p or sig.) from the computer or statistics table. In general, if the calculated value of the statistic (e.g., t, F) is relatively large, the probability or p is small (e.g., .05, .01, .001). If the probability is less than the preset alpha level (usually .05), we can say that the results are statistically significant or that they are statistically significant at the .05 level or that p < .05. We can also reject the null hypothesis of no difference or no relationship. Note that, using SPSS computer printouts, it is quite easy to determine statistical significance because the (truncated) actual significance or probability level (p) is printed so you do not have to look up a critical value in a table. SPSS labels this p value Sig. so all of the common inferential statistics have a common metric, the significance level or Sig. This level is also the probability of a Type I error or the probability of rejecting the null hypothesis when it is actually true. Thus, regardless of what specific statistic you use, if the Sig. or p is small (less than your preset alpha level, which is usually .05) the finding is statistically significant, and you can reject the null hypothesis of no difference or no association.
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Fig. 5.3. Interpreting inferential statistics using the SPSS Sig.



Practical Significance Versus Statistical Significance

Students, and sometimes researchers, misinterpret statistically significant results as being practically or clinically important. But statistical significance is not the same as practical significance or importance. With large samples, you can find statistical significance even when the differences or associations are very small/weak. Thus, in addition to statistical significance, we will examine effect size. It is quite possible, with a large sample, to have a statistically significant result that is weak (i.e., has a small effect size). Remember that the null hypothesis is that there is no difference or no association. A statistically significant result with a small effect size means that we can be very confident that there is some difference or association, but it is probably small and may not be practically important.

Confidence Intervals

An approach that can be used either as an alternative to null hypothesis significance testing (NHST) or to supplement NHST is confidence intervals. These intervals provide more information than NHST alone and may provide more practical information. Suppose one knew that an increase in reading scores of five points would lead to a functional increase in reading performance. Two methods of instruction were compared. The result showed that students who used the new method scored statistically significantly higher than those who used the other method. According to NHST, we would reject the null hypothesis of no difference between methods and conclude that our new method is better. If we apply confidence intervals to this same study, we can determine an interval that contains the population mean difference 95% of the time. If the lower bound of that interval is greater than five points, we can be confident that using this method of instruction would lead to a practical or functional increase in reading levels. If however, the confidence interval ranged from, say, 1 to 11, the result would be statistically significant, but the mean difference in the population could be as little as 1 point or as big as 11 points. Given these results, we could not be confident that there would be a practical increase in reading using the new method.

Effect Size

A statistically significant outcome does not give information about the strength or size of the outcome. Therefore, it is important to know, in addition to information on statistical significance, the size of the effect. Effect size is defined as the strength of the relationship between the independent variable and the dependent variable and/or the magnitude of the difference between levels of the independent variable with respect to the dependent variable. Statisticians have proposed many effect size measures that fall mainly into three types or families: the r family, the d family, and risk potency measures.

The r family of effect size measures. One method of expressing effect sizes is in terms of strength of association. The most well-known variant of this approach is the Pearson correlation coefficient, r. Using Pearson r, effect sizes are always less than |1.0|,1 varying between −1.0 and +1.0 with 0 representing no effect and +1 or −1 the maximum effect. This family of effect sizes also includes many other associational statistics, such as rho (rs), phi (φ), eta (η), and the multiple correlation (R).

The d family of effect size measures. The d family focuses on magnitude of difference rather than strength of association. If one compares two groups, the effect size (d) can be computed by subtracting the mean of the second group from the mean of the first group and dividing by the pooled standard deviation of both groups. The general formula is on the left. If the two groups have equal ns, the pooled SD is the average of the SDs for the two groups. When ns are unequal, the formula on the right is the appropriate one.
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There are many other formulas for d family effect sizes, but they all express effect size in standard deviation units. Thus, a d of .5 means that the groups differ by one half of a pooled standard deviation. Using d, effect sizes usually vary from 0 to + or −1, but d can be more than 1.

Risk potency effect sizes. These measures are based on data with dichotomous independent and dependent variables. There are many such effect size measures, usually expressed as ratios or percentages, including odds ratios, relative risk reduction, and risk difference (RD). The use of these effect size measures is discussed in Chapter 8.

To summarize, the r effect size is most commonly used when the independent and dependent variables are continuous. The d effect size is used when the independent variable is dichotomous and the dependent variable is continuous. Finally, risk potency effect sizes are used when the independent and dependent variables are both dichotomous (binary). However, as implied in Table 5.5, most effect sizes can be converted from one family to another.

Issues about effect size measures. Unfortunately, as just indicated, there are many different effect size measures and little agreement about which to use. Although d is the most commonly discussed effect size measure for differences, it is not available on SPSS outputs. However, d can be calculated by hand with the formulas shown earlier, based on information in the SPSS printout. The correlation coefficient, r, and other measures of the strength of association such as phi (φ), partial eta2 (η2), and R2 are available in SPSS.

There is disagreement among researchers about whether it is best to express effect size as the unsquared or squared r family statistic (e.g., r or r2). It has been common to use the squared versions because they indicate the percentage of variance in the dependent variable that can be predicted from the independent variable(s). However, some statisticians argue that these usually small percentages give you an underestimated impression of the strength or importance of the effect. Thus, we (like Cohen, 1988) often use the unsquared statistics (r, φ, η, and R) as our r family indexes.

Although it has long been recommended that researchers report effect sizes, relatively few researchers did so before 1999 when the APA Task Force on Statistical Inference stated that effect sizes should always be reported for your primary results (Wilkinson & The APA Task Force, 1999). The fifth and the sixth edition (APA, 2010) adopted this recommendation of the Task Force, so we and more and more journal articles discuss the size of the effect as well as whether the result was statistically significant.

Interpreting Effect Sizes

Assuming that you have computed an effect size measure, how should it be interpreted? Table 5.5  provides guidelines for interpreting the size of the “effect” for eight common effect size measures based on Cohen (1988) and Vaske, Gliner, and Morgan (2002).


Table 5.5. Interpretation of the Strength of a Relationship (Effect Sizes)

[image: ]

Note that these guidelines are based on the effect sizes usually found in studies in the behavioral sciences. Thus, they do not have absolute meaning and are relative only to typical findings in these areas. For that reason, we suggest using larger than typical instead of large, typical instead of medium, and smaller than typical instead of small. The guidelines will not apply to all subfields in the behavioral sciences, and they definitely will not apply to fields where the usually expected effects are either larger or smaller. It is advisable to examine the research literature to see if there is information about typical effect sizes on the topic.

Cohen (1988) provided research examples of what he labeled small, medium, and large effects to support the suggested d and r family values. Many researchers would not consider a correlation (r) of .5 to be very strong because only 25% of the variance in the dependent variable is predicted. However, Cohen argued that a d of .8 (and an r of .5, which he showed are mathematically similar) are “grossly perceptible and therefore large differences, as (for example is) the mean difference in height between 13- and 18-year-old girls” (p. 27). Cohen stated that a small effect may be difficult to detect, perhaps because it is in a less well-controlled area of research. Cohen's medium size effect is “visible to the naked eye. That is, in the course of normal experiences, one would become aware of an average difference in IQ between clerical and semi-skilled workers…” (p. 26).

Even effect size is not the same as practical significance. Although effect size measures indicate the strength of the relationship and, thus, are more relevant for practical significance than statistical significance, they are not direct measures of the importance of a finding. As implied above, what constitutes a large or important effect depends on the specific area studied, the context, and the methods used. Furthermore, practical significance always involves a judgment by the researcher and the consumers (e.g., clinicians, clients, teachers, school boards) of research that takes into account such factors as cost and political considerations. A common example is that the effect size of taking daily aspirin and its effect on heart attacks is quite small, but the practical importance is high because preventing heart attacks is a life or death matter, the cost of aspirin is low, and side effects are relatively uncommon. On the other hand, a curriculum change could have a large effect size but be judged to not be practical because of high costs and/or extensive opposition to its implementation.

Confidence intervals of the effect size. Knowing the confidence interval around an effect size can provide information useful to making a decision about practical significance or importance. If the confidence interval is narrow, one would know that the effect size in the population is close to the computed effect size. On the other hand, if the confidence interval is large (as is usually the case with small samples) the population effect size could fall within a wide range, making it difficult to interpret the computed effect size for purposes of estimating practical significance. Similar to the example described earlier, if the lower bound of the confidence interval was more than a minimum effect size agreed to indicate a practically significant effect, one could then be quite confident that the effect was important or practical. Unfortunately, SPSS does not provide confidence intervals for effect size measures, and it is not easy to compute them by hand.

Power

To understand power, first we need to discuss error. There are two types of error, Type I and Type II. Type I error occurs when the researcher rejects the null hypothesis when it is true. Type I error is determined by the significance level (α). For example, if a 5% level of significance is chosen, then the Type I error rate is 5%. Stated another way, α represents the conditional probability of making a Type I error when the null hypothesis is true.

Type II error occurs when the null hypothesis is accepted but the alternative hypothesis is true; there really is a difference or relationship. The conditional probability of making a Type II error under the alternative hypothesis is denoted by β. Figure 5.4 shows the relationships among the different types of error, the truth, and the researcher’s decisions.

Statistical power is the conditional probability of rejecting the null hypothesis (i.e., accepting the alternative hypothesis) when the alternative hypothesis is true. Power can be viewed as how likely it is that the researcher will find a relationship or difference that really exists. It is represented by 1−β. Having low power increases the probability of committing a Type II error. Moreover, having a small sample size, which is the most important controllable source of low power, may also increase the probability of committing a Type I error if the sample is a poor representation of the population.

There are three factors that affect statistical power: (a) the level of significance, (b) effect size, and (c) sample size.
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Fig. 5.4. Flowchart showing the four possible outcomes (two correct and two errors) that could result from a decision to reject or not reject a null hypothesis.



Increasing the level of significance will increase power. For example, instead of using an alpha level of .05, a researcher could use an alpha of .10. However, the problem with this approach is that this will also increase the probability of rejecting the null hypothesis when it is actually true. Changing the alpha level is not common practice since most research journals expect the use of .05 as an a priori value for alpha, and most researchers do not want to allow a probability of .10 for Type I error. Occassionally, in small sample exploratory studies, researchers will use alpha < .10 to increase power. The reverse is also sometimes the case; in large sample studies, the researcher may set alpha at < .01 to decrease power.

The larger the effect size, the easier it will be to attain significance with less power. With high power (usually due to very large sample sizes), even small effect sizes will attain statistical significance. This is one of the problems with too much power; researchers might find a statistically significant result and consider it to be important, when in fact it represents a small difference (i.e., a small effect size) which is not very meaningful. Although the null hypothesis is not more likely to be true (alpha ensures this), the effect is so close to being zero that for practical purposes the null hypothesis should be considered true. That is, when one achieves statistical significance with a small effect size (but large N), the probability that one has falsely rejected the null hypothesis is still .05, but the amount of difference from zero is not large enough to justify the manipulation, intervention, or inference about meaningful group differences.

The factor that can be most readily manipulated by the researcher to increase power is the sample size. The larger the sample size, the greater the likelihood of rejecting the null hypothesis. The concern here is that if the sample size is very large, one should not overinterpret significance alone. One, rather, should pay close attention to effect sizes, confidence intervals, and other information that will help one draw conclusions about the practical importance of an effect of the magnitude that was observed, because even small effect sizes that might not be important will be found statistically significant.

Power of .80 or greater is recommended by Cohen (1988) to detect a medium effect with an alpha level of .05. This recommendation was based on considering the ratio of the probability of committing a Type I error (i.e., 5%) to the probability of committing a Type II error (i.e., 1−.80 = .20). The most common type of power analysis is a priori power analysis. A priori power analysis is done prior to collecting data in order to determine the sample size needed to have adequate (usually ≥ .80) power. This type of power analysis is helpful, as it allows the researcher to select a sample size that is large enough to lead to a rejection of the null hypothesis for a given effect size. In order to determine the needed sample size we would need to estimate three factors: alpha level, power, and effect size. For example, a researcher might assume the following: an alpha level = .05, power = .80, and a medium effect size (d = .50). Then, using either Cohen’s (1988) tables or a computer program, we can determine the needed sample size.

Although a priori power analysis is based on estimated values, post hoc power analysis, which SPSS labels as Observed power, can be used to determine the exact amount of power found in a study. As with a priori power, post hoc power should be ≥ .80. If post hoc power is low and the result is non-statistically significant with a medium to large effect size, then it is possible that a difference does exist within the data, but there was not enough power to detect it. On the other hand, if post hoc power is high and the result is statistically significant with a small effect size, then it is possible that the statistically significant difference is not meaningful; it might be a small difference that is trivially different from the null hypothesis.

Steps in Interpreting Inferential Statistics

In order to properly interpret inferential statistics, we recommend the following steps:

1. Decide whether to reject the null hypothesis. However, that is not enough for a full interpretation. If you find that the outcome is statistically significant, you need to answer at least two more questions. Figure 5.5 summarizes the steps for how to more fully interpret the results of an inferential statistic.

2. What is the direction of the effect? Difference inferential statistics compare groups so it is necessary to state which group performed better. We discuss how to do this in Chapters 9, 10, 11, and 12. For associational inferential statistics (e.g., correlation), the sign is very important, so you must indicate whether the association or relationship is positive or negative. We discuss how to interpret correlations in Chapters 3, 4, 6, and 7, as part of the chapters on reliability, factor analysis, and regression, respectively.

3. What is the size of the effect? You should include effect size, confidence intervals, or both in the description of your results. Unfortunately, SPSS does not always provide effect sizes and confidence intervals, so for some statistics we have to compute or estimate the effect size by hand or use an effect size calculator, several of which are available online.

4. Although not shown in Fig. 5.5, the researcher or the consumer of the research should make a judgment about whether the result has practical or clinical significance or importance. To do so, they need to take into account the effect size, the costs of implementing change and the probability and severity of any side effect or unintended consequences. Previously, we discussed the fact that with high power and a small effect size a statistically significant finding (even one with p < .001) may be trivial and of little practical significance.
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Fig. 5.5. Steps in the interpretation of an inferential statistic.



A Review of How to Select and Interpret Basic Inferential Statistics 

As a review, we now provide an extended example based on the HSB data. We will walk you through the process of identifying the variables, research questions, and approach and then show how we selected appropriate statistics and interpreted the results for two basic research questions.

Problem 5.1

Suppose your research problem was to investigate whether males and females differ in math achievement.

Identification of the variables and their measurement. The research problem specifies two variables: gender and math achievement, so the problem and question will be considered “basic.” The latter appears to be the outcome or dependent variable. Gender is the independent or predictor variable because it is presumed to be an influence on math achievement scores. What is the level of measurement for these variables? Gender is clearly dichotomous (male or female). The math achievement test has many levels, with more scores somewhere in the middle than high or low. It is necessary to confirm that math achievement is at least approximately normally distributed by requesting that SPSS compute the skewness as we did in Chapter 2.

Research question. There are several possible ways the research question could be stated and more than one statistic that could be used with these variables. However, we will focus on one research question and inferential statistic because they answer this research problem and fit our earlier recommendations for good choices. Because the independent variable has only a few levels (in this case two) or categories, we recommend that you phrase this as a difference question such as:

	5.1. Is there a difference between individuals of male and female gender in average math achievement scores?


Type of research question. Note that there are only two variables and the focus is a group difference (the difference between the male group and the female group). Thus, using Fig. 5.1, you should refer to Table 5.1 to find a statistic to help answer this basic difference question.

Selection of an appropriate statistic. After computing the skewness value for math achievement, when you examine Table 5.1 you will see that this first question would be appropriately answered with an independent samples t test because (a) the independent variable has only two values (male and female), (b) the design is between-groups (males and females form two independent groups), and (c) the dependent variable (math achievement) is normal or scale data.

Syntax and results output for research question 1. In Output 5.1, we provide the syntax and output, using the hsbdataNew.sav data set, for an independent samples t test to see if there was a difference between male and female students on math achievement. Appendix B, Review of Basic Statistics, shows the steps used in the point-and-click method, the syntax, key parts of the output, and a brief interpretation for the basic statistics covered in our IBM SPSS for Introductory Statistics book (Morgan et al., 2013). Detailed interpretations of the outputs and an example of how to write about the outputs in a research report are presented in our 2013 Introductory SPSS book. Some of that is reproduced here.

Output 5.1: Independent Samples t Test Comparing Males and Females

T-TEST GROUPS = gender(0 1)

/MISSING = ANALYSIS 
 /VARIABLES = mathach 
 /CRITERIA = CI(.95) .

T-Test
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Interpretation of Output 5.1

You can see from the Group Statistics table that the 34 males had an average math achievement test score of 14.76, while the 41 females had an average score of 10.75.

The Independent Samples Test table has two main parts: Levene’s test, for the assumption of equal variances, and the t test for Equality of Means. A critical assumption of the t test is that the variances (standard deviation squared) of the two groups (males and females) are approximately equal. In this case, those variances are 6.03² and 6.70². Levene’s test provides an F and a Sig. (p), which in this example is not statistically significant because it is .47, much greater than .05. Thus, the variances are not statistically significantly different. This is not the t test; it assesses an assumption! Because Levene’s test is not statistically significant, the assumption is not violated, and, in this case, we use the top (Equal Variances Assumed) line to interpret and report the t test. Note that SPSS could make this output more clear if it had been broken into three tables with a separate table for Levene’s test and with the labels about about equal variances (assumed or not) next to the appropriate t, df, etc.

The appropriate t to use is 2.70 with 73 degrees of freedom (34 + 41−2 = 73) and p = .009. Thus, there is a statistically significant difference between the male and female students; we can reject the null hypothesis of no difference in the population of male and female students. (Note these data were collected 20+ years ago so they may well not apply to current scores on math achievement; moreover, we will learn in another assignment that these gender differences seem to be mediated by the number of math courses males and females took.) The Mean Difference in math achievement between males and females in this sample was 4.01. The 95% Confidence Interval of the Difference, shown in the two right-hand columns, tells us that if we repeated the study 100 times, 95 of the times the true (population) difference would fall within the confidence interval, which for math achievement is between 1.05 points and 6.97 points. Note that if the Upper and Lower bounds have the same sign (either + and + in this case, or − and −), we know that the difference is statistically significant because the null finding of zero difference lies outside of the confidence interval. On the other hand, if zero lies between the upper and lower limits, there could be no difference. The lower limit of the confidence interval on math achievement tells us that the difference between males and females could be as small as 1.05 points out of 25, which is the maximum possible score.

Effect size measures for t tests are not provided in the printout but can be estimated relatively easily using the formula and interpretation of d provided in this chapter. For math achievement, the difference between the means (4.01) would be divided by about 6.4, an estimate of the pooled (weighted average) standard deviation. Thus, d would be approximately .60, which is, according to Cohen (1988), a medium- to large-sized “effect.” The d of .60 is a somewhat larger than typical effect size. This means that the difference is greater than typical of the statistically significant findings in the behavioral sciences. A d of .60 may or may not be a large enough difference to use for recommending programmatic changes (i.e., be practically significant).

We found a statistically significant t with the hsbdata and a sample of 75 participants. However, if we had only 20 participants, it is very likely that the t would not have been statistically significant because the t value is influenced strongly by sample size.

Whether the statistic is statistically significant only means the result is unlikely to be due to chance. In addition you have to state the direction of the result and the effect size and/or the confidence interval. Because males had the higher mean, we can be quite confident that males in the population are at least a little better at math achievement, on average, than females. If the difference was not statistically significant, it is best not to make any comment about which mean was higher because the difference could be due to chance. Likewise, if the difference was not statistically significant, we recommend that you do not discuss or interpret the effect size. However, you should provide the d in a table or provide means and standard deviations so that effect sizes could be computed if a researcher wanted to use this study in a meta-analysis.

Confidence intervals might help you decide if the difference in math achievement scores was large enough to have practical significance. For example, we found (from the lower bound of the confidence interval) that you only could be confident that there was a 1.05 point difference between males and females. Then you could decide whether that is a big enough difference to justify, for example, a programmatic change.



Problem 5.2

A second research problem might be to investigate the relationship between math courses taken and math achievement. Again, the dependent or outcome variable is math achievement. We can think of math courses taken as the predictor or independent variable because it occurred before the math test and is presumed to have an effect on math achievement scores. Both math courses taken and math achievement have more than five ordered levels and are not highly skewed so can be considered approximately normally distributed or scale variables.

Because there are only two variables in this problem and because the independent or predictor variable (math courses taken) has five or more ordered levels, we would suggest that the research question be written as a basic associational question as follows.

	5.2. Is the number of math courses taken predictive of later math achievement?


Type of research question. This second question is a basic associational question because there are only two variables and both have many ordered levels. Thus, use Table 5.2 for this question.

Selection of an appropriate statistic. As you can see from Table 5.2, research question 2 would be answered with bivariate regression because both math courses taken and math achievement are normally distributed data, and we are viewing one variable, math courses taken, as the predictor of the other variable.

Syntax and output for research question 2. Again, Appendix B provides the general point-and-click instructions for computing bivariate, or simple, regression, as in this example. The syntax and output showing the regression of math achievement test score on the number of math courses taken is shown in Output 5.2. 

Output 5.2: Regression of Math Achievement on Math Courses Taken

REGRESSION

/MISSING LISTWISE 
 /STATISTICS COEFF OUTS CI R ANOVA 
 /CRITERIA=PIN(.05) POUT(.10) 
 /NOORIGIN 
 /DEPENDENT mathach 
 /METHOD=ENTER mathcrs.

Regression

Variables Entered/Removedb





	Model
	Variables Entered
	Variables Removed
	Method





	1
	math courses a takena
	
	Enter






a. All requested variables entered.

b. Dependent Variable: math achievement test
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Model Summary
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Interpretation of Output 5.2

The Variables Entered/Removed table indicates what variable or variables have been entered into the equation; in this case only math courses taken. The Model Summary table shows the regeression coefficient (R = .79) and the Adjusted R2 = .626, which is what we usually report. The ANOVA table indicates that (F(1,73) = 124.63, p < .001), which is statistically significant. The ANOVA indicates that math courses taken is a significant predictor of math achievement. When there are several independent predictor variables (multiple regression), a significant E indicates that the combination of predictors significantly predicts the dependent variable.




[image: Coefficientsa]
Coefficientsa




Interpretation of Output 5.2

The Coefficients table contain several important statistics. The unstandardized regression coefficient (B) for predicting math achievement from math courses taken is 3.17; the standardized coefficient (β) is .79; the significance level (Sig.) or p is printed as .000, but you report it as p < .001 because SPSS truncates Sig. values less than .001 to .000, but the probability cannot be zero. The regression coefficient is the slope of the best fit line predicting achievement from math courses taken. Note that the standardized coefficient or β in a bivariate regression such as this is equal to the r or Pearson correlation relating these two variables. The Model Summary table labeled this correlation as R, because if this were a multiple regression the value in the table would be the multiple R, which is represented with a capital letter. However, in the bivariate case, this is simply the Pearson correlation. The significance, or p-value, follows and is stated as < .001.

The regression predicting math achievement from math courses taken is statistically significant because the “Sig” is less than .05. Thus, we can reject the null hypothesis of no association and state that math courses taken is a statistically significant predictor of math achievement. Using the R2 from the Model Summary table, we can say that r2 = .63, indicating that 63% of the variance in math achievement is predicted by math courses taken. In nontechnical language, students who have taken a lot of math courses generally have higher math achievement scores. Because the relation is positive, this means that taking many math courses is generally associated with high achievement, a medium number of courses taken with medium achievement, and low with low. If the regression were statistically significant and negative (e.g., −3.17), a high number of math courses taken would be predictive of low achievement. If the regression were not statistically significant, there would be no statistically significant systematic association between math courses taken and math achievement. In that case, you could not predict anything about math achievement from knowing how many math courses someone had taken. In addition to statistical significance and the sign of the regression coefficient, you should note and comment on the effect size for a full interpretation of the correlation. In this case, the correlation is .79, so the effect size is much larger than typical (see Table 5.5). This is a very strong correlation.

Note that if N were 6 a larger value of the regression coefficient would be required to obtain statistical significance. On the other hand, if N were 500 only a very small regression coefficient would be necessary to achieve statistical significance. In the latter case, you could be quite sure the association was not zero, but the effect size would be small or less than typical.



Complex Research Questions and Statistics

This review of the t test and regression assumes that your research problem considered only two variables at a time. Many research problems involve three or more variables and, thus, require what we call complex research questions and statistics, which are the subject of this book. There are advantages to considering the above three independent variables (gender, math courses taken, and math achievement) together rather than separately, as we did in research questions 1 and 2.

There are at least three statistics that you will compute in this book that can be used to consider gender, math courses taken, and math achievement together. The first is multiple regression, which is discussed in Chapter 6. If you examine Table 5.4, you will see that with two (or more) independent variables that are scale and/or dichotomous and one dependent variable that is approximately normal (scale) data, an appropriate associational statistic would be multiple regression. A research question, which subsumes both questions 1 and 2 above, could be:

Is there a combination of gender and math courses that predicts math achievement?

Selection of an appropriate statistic. As just stated, multiple regression could be used to answer this question. As you can see in Table 5.4, multiple regression is appropriate because we are trying to predict a normally distributed variable (math achievement) from two independent variables. The independent or predictor variables are math courses taken (normal or scale) and gender (a dichotomous or dummy variable).

Based on our discussion of the general linear model (GLM) and Fig. 5.2, a two-way factorial ANOVA is another statistic that could be used to consider both gender and math courses simultaneously. However, to use ANOVA, the several levels of math courses taken would have to be recoded into two or three levels (perhaps high, medium, and low). Because information is lost when you do such a recode, we would not recommend factorial ANOVA for this example.

Another possible statistic to use for this example is analysis of covariance (ANCOVA) using gender as the independent variable and math courses taken as the covariate. We will demonstrate in Chapter 9 how we can control for differences in the number of math courses taken by using math courses as a covariate, and we will see that these results importantly change the conclusions we would have drawn from the t test examining gender differences in math achievement that was described in this chapter.

We will discuss the interpretation of multiple regression results in Chapter 6 and factorial ANOVA and ANCOVA in Chapter 9. You will see that we will obtain more information about the relationships among these three variables by doing these complex statistics than by doing only the t test and regression.

Review of Writing About Your Outputs 

One of the goals of this book is to help you write a research report or thesis/dissertation using the SPSS outputs. In each of the following chapters, we will provide an Interpretation of each output as well as an example of how you might write about and make a table from the results provided by the output. As a review of how to write about a t test and regression, we have provided this section, which could be from a thesis based on the expanded HSB data used in the assignments in this book.

Before demonstrating how you might write about the results of research questions 1 and 2 above, we want to make several important points. Several books that will help you write a research paper and make appropriate tables are listed in For Further Reading at the back of this book. Note especially the APA manual (2010), Nicol and Pexman (2010b), and Morgan, Reichart, and Harrison (2002). The examples below and in the following chapters are only one way to write about SPSS outputs. There are other good ways.

Based on your SPSS outputs, you should include, in your Method section, descriptive statistics about the demographics (e.g., gender, age, ethnicity) of the participants. You should also put evidence related to the reliability and validity of your data in the Method section as well as reporting whether statistical assumptions of the inferential statistics were met or how adjustments were made if assumptions were not met.

The ResultsChapter or section includes a description (but not a discussion) of the findings in words and tables. Your Results section should include the following numbers about each statistically significant finding (in a table or the text):

	The value of the statistic (e.g., t = 2.05 or r = .30)
 	The degrees of freedom (often in parentheses) and for chi-square the N (e.g., df = 2, N = 49)
 	The exact p (Sig. Value in SPSS: e.g., p = .048)
 	The direction of the finding (e.g., by stating which mean is larger or the sign of the correlation, if the statistic is statistically significant)
 	An index of effect size


When not shown in a table, the above information should be provided in the text as shown below. In addition to the numerical information, describe your statistically significant results in words, including the variables related, the direction of the finding, and an interpretive statement about the size/strength of the effect, perhaps based on Cohen (1988) or Table 5.5. Realize that these terms are only rough estimates of the magnitude of the “effect” based on what is typical in the behavioral sciences but not necessarily your topic. If there is literature about the effect size in your area, use that to decide what is typical.

If your paper includes a table, it is usually not necessary or advisable to include all the details about the value of the statistic, degrees of freedom, and p in the text, because they are in the table. If you have a table, you must refer to it by number (e.g., Table 1) in the text and describe the main points, but do not repeat all of it or the table is not necessary. You should not describe, in the text, the direction of the finding or the effect size of statistically non-significant findings, because the results could well be due to chance. The DiscussionChapter or section puts the findings in context in regard to the research literature, theory, and the purposes of the study. You may also attempt to explain why the results turned out the way they did.


Example of How to Write About Outputs 5.1 and 5.2

Results

To investigate whether males and females differ in math achievement, a t test was computed. (The following assumptions were tested and met: (a) groups are approximately the same size, (b) the variances of the two populations are equal, (c) observations were independent, and (d) the dependent variable was approximately normally distributed in both groups.) There was a statistically significant difference between male and female students on math achievement: t (73) = 2.70, p = .009, d = .60. Males (M = 14.75, SD = 6.03) scored higher than females (M = 10.75, SD = 6.69), and the effect size was larger than typical for this topic. The confidence interval for the difference between the means was 1.05 to 6.97, indicating that the difference could be as small as one point, which is probably not a practically important difference, but it could also be as large as seven points.

Simple linear regression was computed to investigate whether the number of math courses taken predicted later math achievement. (Assumptions of linearity and normal distributions were checked and met.) Math courses taken (M = 2.11, SD = 1.67) significantly predicted math achievement (M = 12.56, SD = 6.67), F(1, 73) = 124.63, p < .001, adjusted R2 = .63. According to Cohen (1988) this is a large effect size. The unstandardized regression weights, presented in Table 5.6, indicate that when the number of math courses increases by one unit math achievement increases by 3.17 units.

Table 5.6 Simple Linear Regression Analysis Summary for Math Courses Taken Predicting Math Achievement (N = 74)





	Variable
	B
	SEB
	β





	Math courses taken
	3.17
	.28
	.79***



	Constant
	5.90
	.76
	






Note. R2 = .63; F(1,73) = 124.63, p < .001.

***p μ .001.







We will present examples of how to write about the results of the complex statistics discussed in this book in the appropriate chapters. We present comments about testing the assumptions in parentheses because they are not shown in the output. Note that measures of reliability (e.g., Cronbach alpha, discussed in Chapter 3) and principal components analysis (Chapter 4) are usually discussed in the Method section, unless they are the focus of the research questions for the study. Chapters 6–12 present complex statistics that might be used to answer your complex research questions.

In conclusion, after the above review, you should be ready to study each of the complex statistics in Tables 5.3 and 5.4 and learn more about their computation and interpretation. Hopefully this review has brought you up to speed. It would be wise for you to review this chapter, especially the tables and figures from time to time. If you do, you will have a good grasp of how the various statistics fit together, when to use them, and how to interpret the results. You will need this information to understand the chapters that follow.

Interpretation Questions 

	5.1 Is there only one appropriate statistic to use for each research design? Explain your answer.
 	5.2 When p < .05, what does this signify?
 	5.3 Interpret the following related to effect size: 	d = .25
 	R = .53
 	d = 1.15
 	r = .35
 	r = .13
 	 = .38


 	5.4 The confidence interval of the difference between means was −.30 to 4.0. Explain what this indicates.
 	5.5 What statistic would you use if you had two independent variables, income group (< $10,000, $10,000–$30,000, > $30,000) and ethnic group (Hispanic, Caucasian, African-American), and one normally distributed dependent variable (self-efficacy at work)? Explain.
 	5.6 What statistic would you use if you had one independent variable, geographic location (North, South, East, West), and one dependent variable (satisfaction with living environment, Yes or No)? Explain.
 	5.7 What statistic would you use if you had three normally distributed (scale) independent variables and one dichotomous independent variable (weight of participants, age of participants, height of participants and gender) and one dependent variable (positive self-image), which is normally distributed? Explain.
 	5.8 What statistic would you use if you had one between-groups independent variable, one repeated-measures independent variable, each with two levels, and one normally distributed dependent variable?
 	5.9 What statistic would you use if you had one, repeated-measures, independent variable with two levels and one ordinal dependent variable?
 	5.10 What statistic would you use if you had one, between-groups, independent variable with four levels and three normally distributed dependent variables?
 	5.11 What statistic would you use if you had three normally distributed independent variables, one dichotomous independent variable, and one dichotomous dependent variable?



1 The absolute value of 1 is shown as |1.0|. Absolute value means the numeric value without considering sign. Thus, < |1.0| means that the value is between −1 and +1. See Table 5.5 for examples.




Chapter 6
 Multiple Regression

Multiple regression is one type of complex associational statistical method. Already, we have done assignments using another complex associational method, Cronbach’s alpha, which, like multiple regression, is based on a correlation matrix of all the variables to be considered in a problem. In addition to multiple regression, two other complex associational analyses, logistic regression and discriminant analysis, will be computed in Chapter 8. Like multiple regression, logistic regression and discriminant analysis have the general purpose of predicting a dependent or criterion variable from several independent or predictor variables. As you can tell from examining Table 6.4, these three techniques for predicting one outcome measure from several independent variables vary in the level of measurement and type of independent variables and/or type of outcome variable.

There are several different ways of computing multiple regression that are used under somewhat different circumstances. We will have you use several of these approaches, so that you will be able to see that the method one uses to compute multiple regression influences the information one obtains from the analysis. If the researcher has no prior ideas about which variables will create the best prediction equation and has a reasonably small set of predictors, then simultaneous regression, which SPSS calls Enter, is the best method to use.

It is preferable to use the hierarchical method when one has an idea about the order in which one wants to enter predictors and wants to know how prediction by certain variables improves on prediction by others. Hierarchical regression appropriately corrects for capitalization on chance, whereas stepwise, another method available in SPSS in which variables are entered sequentially, does not.

Both simultaneous regression and hierarchical regression require that you specify exactly which variables serve as predictors, and they provide significance levels based on this number of predictors. Sometimes you have a relatively large set of variables that you think may be good predictors of the dependent variable, but you cannot simultaneously enter a large set of variables without sacrificing the power to find significant results. In such a case, stepwise regression might be used. However, as indicated earlier, stepwise regression capitalizes on chance more than many researchers find acceptable. In essence, stepwise regression computes correlations between all the predictors with the outcome variable, then the computer enters the largest first. Next, the variables are evaluated to assess which one when added to the model will increase R2 the most. This continues until all the variables are considered and the highest R2 has been found. Finally, the computer considers if removal of any predictor will increase R2. Many researchers do not use stepwise, as it has been commonly found to use the wrong degrees of freedom, it capitalizes on sampling error, and R2 is not always optimized. So we will not demonstrate it here. Many researchers suggest that a better approach would be to aggregate correlated predictors, thereby reducing the number of predictors.

Other methods include backward and forward regression. Forward regression adds variables one at a time by assessing which variable has the smallest probability of F (i.e., p value). This continues until all variables are added that have a p value equal to or less than .05. With backward regression, all the variables are added into the model, then are eliminated one by one, with the variable that has the largest probability of F (i.e., p value) removed until all variables have a p value equal to or less than .10.

Many researchers believe that none of these techniques find the “best” model, and instead use an approach where all sub-sets of the variables are analyzed to find the best model. Unfortunately, at this time SPSS does not do this computation. In this chapter we will present how to conduct simultaneous, hierarchical, forward, and backward regression techniques.

Conditions of Multiple Linear Regression

There are a few important conditions for multiple regression. For multiple regression, the dependent or outcome variable should be an interval or scale level variable, which is normally distributed in the population from which it is drawn. The independent variables should be mostly interval- or scale-level variables, but multiple regression can also have dichotomous independent variables, which are called dummy variables. Dummy variables are often nominal categories that have been given numerical codes, usually 1 and 0. The 0 stands for whatever the 1 is not and is thus said to be “dumb” or silent. Thus, when we use gender, for instance, as a dummy variable in multiple regression, we’re really coding it as 1 = female and 0 = not female (i.e., male). This gets complex when there are more than two nominal categories. In that case, we need to convert the multiple category variable to a set of dichotomous variables indicating presence versus absence of the categories. For example, if we were to use the ethnic group variable, we would have to code it into several dichotomous dummy variables such as Euro-American and not Euro-American, African-American and not African-American, and Latino-American and not Latino-American.

A condition that can be extremely problematic as well is multicollinearity, which can lead to misleading and/or inaccurate results. Multicollinearity (or collinearity) occurs when there are high intercorrelations among some set of the predictor variables. In other words, multicollinearity happens when two or more predictors contain much of the same information.

Although a correlation matrix indicating the intercorrelations among all pairs of predictors is helpful in determining whether multicollinearity is likely to be a problem, it will not always indicate that the condition exists. Multicollinearity may occur because several predictors, taken together, are related to some other predictors or set of predictors. For this reason, it is important to test for multicollinearity when doing multiple regression.

Assumptions of Multiple Linear Regression

There are many assumptions to consider, but we will focus on the major ones that are easily tested with SPSS. The assumptions for multiple regression include the following: that the relationship between each of the predictor variables and the dependent variable is linear and that the error, or residual, is normally distributed and uncorrelated with the predictors.

	Retrieve your data file: hsbdataNew.sav.


Problem 6.1: Using the Simultaneous Method to Compute Multiple Regression

To reiterate, the purpose of multiple regression is to predict an interval (or scale) dependent variable from a combination of several interval/scale and/or dichotomous independent/predictor variables. In the following assignment, we will see if math achievement can be predicted better from a combination of several of our other variables, such as the motivation scale, grades in high school, and mother’s and father’s education. In Problems 6.1 and 6.5, we will run the multiple regression using alternate methods provided by SPSS. In Problem 6.1, we will assume that all seven of the predictor variables are important and that we want to see what is the highest possible multiple correlation of these variables with the dependent variable. For this purpose, we will use the method that SPSS calls Enter (often called simultaneous regression), which tells the computer to consider all the variables at the same time. In Problem 6.3, we will use the hierarchical method.

	6.1. How well does the combination of motivation, competence, pleasure, grades in high school, father’s education, mother’s education, and gender predict math achievement?


In this problem, the computer will enter/consider all the variables into the model at the same time. Also, we will ask which of these seven predictors contribute significantly to the multiple correlation/regression.

It is a good idea to check the correlations among the predictor variables prior to running the multiple regression to determine if the predictors are correlated such that multicollinearity is highly likely to be a problem. This is especially important to do when one is using a relatively large set of predictors and/or if, for empirical or conceptual reasons, one believes that some or all of the predictors might be highly correlated. If variables are highly correlated (e.g., correlated at .50 or .60 and above), then one might decide to combine (aggregate) them into a composite variable or eliminate one or more of the highly correlated variables if the variables do not make a meaningful composite variable. For this example, we will check correlations between the variables to see if there might be multicollinearity problems. We typically also would create a scatterplot matrix to check the assumption of linear relationships of each predictor with the dependent variable and a scatterplot between the predictive equation and the residual to check for the assumption that these are uncorrelated. In this problem, we will not do so because we will show you how to do these assumption checks in Problem 6.2.

	Click on Analyze → Correlate → Bivariate... The Bivariate Correlations window will appear.
 	Select the variables motivation scale, competence scale, pleasure scale, grades in h.s., father’s education, mother’s education, and gender and click them over to the Variables box.
 	Click on Options. Under Missing Values click on Exclude cases listwise.
 	Click on Continue and then on OK. A correlation matrix like the one in Output 6.1a will appear.


Output 6.1a: Correlation Matrix

CORRELATIONS

/VARIABLES=motivation competence pleasure grades faed maed gender

/PRINT=TWOTAIL NOSIG 
 /MISSING=LISTWISE.

Correlations

[image: ]


Interpretation of Output 6.1a

The correlation matrix indicates large correlations between motivation and competence and between mother’s education and father’s education. If predictor variables are highly correlated and conceptually related to one another, we would usually aggregate them, not only to reduce the likelihood of multicollinearity but also to reduce the number of predictors, which typically increases power. If predictor variables are highly correlated but conceptually are distinctly different (so aggregation does not seem appropriate), we might decide to eliminate the less important predictor before running the regression. However, if we have reasons for wanting to include both variables as separate predictors, we should run collinearity diagnostics to see if collinearity actually is a problem.



For this problem, we also want to show how the collinearity problems created by these highly correlated predictors affect the Tolerance values and the significance of the beta coefficients, so we will run the regression without altering the variables. To run the regression, follow the steps below:

	Click on the following: Analyze → Regression → Linear... The Linear Regression window (Fig. 6.1) should appear.
 	Select math achievement and click it over to the Dependent box (dependent variable).
 	Next select the variables motivation scale, competence scale, pleasure scale, grades in h.s., father’s education, mother’s education, and gender and click them over to the Independent(s) box (independent variables).
 	Under Method, be sure that Enter is selected.



[image: Fig. 6.1. Linear regression.]
Fig. 6.1. Linear regression.



	Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit, Descriptives, Part and partial correlations, and Collinearity diagnostics (see Fig. 6.2).



[image: Fig. 6.2. Linear regression: Statistics.]
Fig. 6.2. Linear regression: Statistics.



	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 6.1b. 

Output 6.1b: Multiple Linear Regression, Method = Enter

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL ZPP 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT mathach 
/METHOD=ENTER motivatn competnc pleasure grades faed maed gend.

Regression
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Interpretation of Output 6.1b

First, the output provides the usual Descriptive Statistics for all eight variables. Note that N is 69 because six participants are missing a score on one or more variables. Multiple regression uses only the participants who have complete data for all the variables. The next table is a correlation matrix similar to the one in Output 6.1a. Note that the first column shows the correlations of the other variables with math achievement and that motivation, competence, grades in high school, father’s education, mother’s education, and gender are all significantly correlated with math achievement. As we observed before, several of the predictor/independent variables are highly correlated with each other, that is, competence and motivation (.517) and mother’s education and father’s education (.649).

The Model Summary table shows that the multiple correlation coefficient (R), using all the predictors simultaneously, is .65 (R2 = .43), and the adjusted R2 is .36, meaning that 36% of the variance in math achievement can be predicted from gender, competence, etc. combined. Note that the adjusted R2 is lower than the unadjusted R2. This is, in part, related to the number of variables in the equation. The adjustment is also affected by the magnitude of the effect and the sample size. Because so many independent variables were used, especially given difficulties with collinearity, a reduction in the number of variables might help us find an equation that explains more of the variance in the dependent variable. It is helpful to use the concept of parsimony with multiple regression and use the smallest number of predictors needed.
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Interpretation of Output 6.1b continued

The ANOVA table shows that F = 6.47 and is significant. This indicates that the combination of the predictors significantly predict math achievement.

One of the most important tables is the Coefficients table. It provides the standardized beta coefficients, which are interpreted similarly to correlation coefficients or factor weights (see Chapter 4). The t value and the Sig opposite each independent variable indicates whether that variable is significantly contributing to the equation for predicting math achievement from the whole set of predictors. Thus, h.s. grades and gender, in this example, are the only variables that are significantly adding anything to the prediction when the other five variables are also entered. It is important to note that all the variables are being considered together when these values are computed. Therefore, if you delete one of the predictors that is not significant, it can affect the size of the betas and levels of significance for other predictors. This is particularly true if high collinearity exists.

Another important aspect of the Coefficients table are the Correlations: zero order (bivariate), partial and part. The Partial correlation values, when they are squared, give us an indication of the amount of unique variance (variance that is not explained by any of the other variables) in the outcome variable (math achievement) predicted by each independent variable. In the output, we can see that competence explains the least amount of unique variance (.0112 < 1%) and grades in high school explains the most (.4542 = 21%).

Moreover, as the Tolerances in the Coefficients table suggest, and as we will see in Problem 6.2, the standardized beta results are somewhat misleading. Although the two parent education measures were significantly correlated with math achievement, they did not contribute to the multiple regression predicting math achievement. What has happened here is that these two measures were also highly correlated with each other, and multiple regression eliminates all overlap between predictors. Thus, neither father’s education nor mother’s education had much to contribute when the other was also used as a predictor. Note that tolerance for each of these variables is < .64 (1−.36), indicating that too much multicollinearity (overlap between predictors) exists. One way to handle multicollinearity is to combine variables that are highly related if that makes conceptual sense. For example, you could make a new variable called parents’ education, as we will for Problem 6.2. Tolerance is also low for competence, if motivation and pleasure also are entered. We will discuss what to do in this case in Problem 6.2.
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Interpretation of Output 6.1b continued

This table gives you more information about collinearity in the model. Eigenvalues should be close to 1, Variance Proportions should be high for just one variable on each dimension, and Condition Indexes should be under 15. (Usually, 15–30 is usually considered to indicate possible collinearity; over 30 to indicates problematic collinearity). Low eigenvalues and high condition indexes can indicate collinearity difficulties, particularly when more than one variable has a large variance proportion for that dimension. In this example, none of the condition indexes is extremely high, but dimensions 4–8 have low eigenvalues, dimensions 6–8 have somewhat high condition indexes, and both father’s education and mother’s education primarily are explained by the sam e dimension. All of these suggest possible collinearity issues.



Problem 6.2: Simultaneous Regression Correcting Multicollinearity

In Problem 6.2, we will use the combined/average of the two variables, mother’s education and father’s education, and then recompute the multiple regression after omitting competence and pleasure.

We combined father’s education and mother’s education because it makes conceptual sense and because these two variables are quite highly related (r = .65). We know that entering them as two separate variables created problems with multicollinearity because tolerance levels were low for these two variables, and, despite the fact that both variables were significantly and substantially correlated with math achievement, neither contributed significantly to predicting math achievement when taken together.

When it does not make sense to combine the highly correlated variables, one can eliminate one or more of them. Because the conceptual distinction between motivation, competence, and pleasure was important for us and because motivation was more important to us than competence or pleasure, we decided to delete the latter two scales from the analysis. We wanted to see if motivation would contribute to the prediction of math achievement if its contribution was not canceled out by competence and/or pleasure. Motivation and competence are so highly correlated that they create problems with multicollinearity. We eliminate pleasure as well, even though its tolerance is acceptable, because it is virtually uncorrelated with math achievement, the dependent variable, yet it is correlated with motivation and competence and because the Collinearity Diagnostics table indicates that it is contributing to the collinearity difficulties. Given its low correlation with math achievement, it is unlikely to contribute meaningfully to the prediction of math achievement, and its inclusion would serve only to reduce power and potentially reduce the predictive power of motivation. It would be particularly important to eliminate a variable such as pleasure if it were more strongly correlated with another predictor that remains in the equation, as this can lead to particularly misleading results.

	6.2. Rerun Problem 6.1 using the parents’ education variable (pareduc) instead of faed and maed and omitting the competence and pleasure scales.


First, we created a matrix scatterplot (as in Chapter 2) to see if the variables are related to each other in a linear fashion. You can use the syntax in Output 6.2 or use the Analyze → Scatter windows as shown below.

	Click on Graphs → Legacy Dialogs → Scatter/Dot…
 	Select Matrix Scatter and click on Define.
 	Move math achievement, motivation, grades, parents’ education, and gender into the Matrix Variables: box.
 	Click on Options. Check to be sure that Exclude cases listwise is selected.
 	Click on Continue and then OK.


Then run the regression using the following steps:

	Click on the following: Analyze → Regression → Linear... The Linear Regression window (Fig. 6.1) should appear. This window may still have the variables moved over to the Dependent and Independent(s) boxes. If so, click on Reset.
 	Move math achievement into the Dependent box.
 	Next select the variables motivation, grades in h.s., parents’ education, and gender and move them into the Independent(s) box (independent variables).
 	Under Method, be sure that Enter is selected.
 	Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit, Descriptives, and Collinearity diagnostics (see Fig. 6.2).
 	Click on Continue.


Then, we added a plot to the multiple regression to see the relationship of the predictors and the residual. To make this plot follow these steps:

	Click on Plots… (in Fig. 6.1 to get Fig. 6.3).



[image: Fig. 6.3. Linear regression: Plots.]
Fig. 6.3. Linear regression: Plots.



	Move ZRESID to the Y: box.
 	Move ZPRED to the X: box. This enables us to check the assumption that the predictors and residual are uncorrelated.
 	Click on Continue.
 	Click on OK.


To make the residual plot easier to read, we added a reference line at 0. To do this, follow the steps below:

	Double click on the residual plot. The Chart Editor window will open.
 	Click on Options → Y Axis Reference Line. The Properties window will appear.
 	Highlight the number in the box next to Position: and type a 0. We are telling SPSS that we want a reference line positioned at 0 on the Y axis.
 	Click on Apply and then Close.
 	Close the Chart Editor window.


Refer to Output 6.2 for comparison.

Output 6.2: Multiple Linear Regression with Parents' Education, Method = Enter

GRAPH

/SCATTERPLOT(MATRIX)=mathach motivation grades parEduc gender 
/MISSING=LISTWISE.

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL ZPP 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT mathach 
/METHOD=ENTER motivation grades parEduc gender 
/SCATTERPLOT=(*ZRESID, *ZPRED).

Graph


The top row shows four scatterplots (relationships) of the dependent variables with each of the predictors. To meet the assumption of linearity, a straight line, as opposed to a curved line, should fit the points relatively well.
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Interpretation of Output 6.2

The scatterplot matrix shows that the independent variables are generally linearly related to the dependent variable of math achievement, meeting this assumption. One should check the matrix scatterplots to see if there are curvilinear relationships (i.e., the dots form a curve instead of a straight line) between any of the variables. In this example, none of the dot patterns are closer to a curve then a straight line, or to no pattern at all. If the variables had not met this assumption, we could have transformed them, aggregated some, and/or eliminated some independent variables. See Chapter 2 for how to do transformations.



Regression

[image: ]


Note that N = 73, indicating that eliminating competence and pleasure reduced the amount of missing data.
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Interpretation of Output 6.2 continued

The Descriptive Table show that with this new set of variables we now have 73 students included. Note, that 4 more students now have no missing data, which is good. In some samples one or a few variables may have a lot of missing data, which is another reason that you might want to consider excluding them from your multiple regression or other multivariate statistics.

The Correlation table shows that all predictors are significantly related to math achievement. There are only low to moderate relationships among the four predictor variables. This is good because it suggests that collinearity is not high, a condition of multiple regression.
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Interpretation of Output 6.2 continued

The Model Summary table gives the R (.68) and Adjusted R square (.43). Thus, this model predicts 43% of the variance in math achievement. If we want to compare this model to that in Problem 6.1, we use the Adjusted R square to see which model is explaining more of the variance in the dependent variable. Interestingly, this model is predicting more (43% vs. 36%) of the variance in math achievement than the model in Problem 6.1, despite using fewer predictors.

As can be seen from the ANOVA table, the model of motivation, grades in h.s., parents’ education, and gender significantly predicts math achievement, F(4, 68) = 14.44, p < .001.
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Interpretation of Output 6.2 continued

After checking the matrix scatterplot (at the beginning of the output) and the residual scatterplot (at the end of the output) the next important condition of multiple regression to check is the Tolerance and VIF values in the Coefficients table. In this example, we do not need to worry about multicollinearity because the Tolerance values are all close to 1.

In the Sig. column of the table we can see that now all of the predictors are significantly contributing to the equation, and the Betas are higher than in Problem 6.1 so each of the variables has increased the amount of unique variance that it is explaining.



[image: ]


[image: ]

Charts
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Interpretation of Output 6.2b continued

Other conditions and assumptions are demonstrated in the Collinearity Diagnostics table (see the callout box for Output 6.1b). Other assumptions are checked in the residual scatterplot, at the end of the output, which indicates that the errors are approximately normally distributed, the variances of the residuals are constant, and the residual is relatively uncorrelated with the linear combination of predictors.




Example of How to Write About Output 6.2

Results

Multiple regression was conducted to determine the best linear combination of gender, grades in h.s., parents’ education, and motivation for predicting math achievement test scores. (Assumptions of linearity, normally distributed errors, and uncorrelated errors were checked and met.) The means, standard deviations, and intercorrelations can be found in Table 6.1. This combination of variables significantly predicted math achievement, F(4,68) = 14.44, p < .001, with all four variables significantly contributing to the prediction. The adjusted R squared value was .43. This indicates that 43% of the variance in math achievement was explained by the model. According to Cohen (1988), this is a large effect. The beta weights, presented in Table 6.2, suggest that good grades in high school contributes most to predicting math achievement and that being male, having high math motivation, and having parents who are more highly educated also contribute to this prediction.





Table 6.1
Means, Standard Deviations, and Intercorrelations for Math Achievement and Predictor Variables (N = 73)
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Table 6.2
 Simultaneous Multiple Regression Analysis Summary for Motivation, Grades in High School, Parents’ Education, and Gender Predicting Math Achievement (N = 73)





	Variable
	B
	SEB
	β



	






	Motivation scale
	2.15
	.97
	.20*



	Grades in h.s.
	1.99
	.40
	47**



	Parents' education
	.58
	.28
	.20*



	Gender
	-3.63
	1.28
	-27**



	Constant
	-5.44
	3.61
	






Note. R2 = .46; F(4,68) = 14.44, p < .001

*p < .05;

**p < .001.







Problem 6.3: Hierarchical Multiple Linear Regression 

In Problem 6.3, we will use the hierarchical approach, which is used when you want to enter the variables in a series of blocks or groups. This enables the researcher to see if each new group of variables adds anything to the prediction produced by the previous blocks of variables. This approach is an appropriate method to use when the researcher has a priori ideas about how the predictors go together to predict the dependent variable. In our example, we will enter gender first and then see if motivation, grades in h.s., parents’ education, and math courses taken make an additional contribution. This method is intended to control for or eliminate the effects of gender on the prediction.

	6.3 If we control for gender differences in math achievement, do any of the other variables significantly add anything to the prediction over and above what gender contributes?


We will include all of the variables from the previous problem; however, this time we include math courses taken, and we will enter the variables in two separate blocks to see how motivation, grades in high school, parents’ education, and math courses taken improve on prediction from gender alone.

	Click on the following: Analyze → Regression → Linear…
 	Click on Reset.
 	Select math achievement and click it over to the Dependent box (dependent variable).
 	Next, select gender and move it over to the Independent(s) box (independent variables).
 	Select Enter as your Method (see Fig. 6.4).



[image: Fig. 6.4. Linear regression.]
Fig. 6.4. Linear regression.



	Click on Next beside Block 1 of 1. You will notice it changes to Block 2 of 2.
 	Then move motivation scale, grades in h.s., parents’ education, and math courses taken to the Independent(s) box (independent variables).
 	Under Method, select Enter. The window should look like Fig. 6.5.



[image: Fig. 6.5. Hierarchical regression.]
Fig. 6.5. Hierarchical regression.



	Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit and R squared change (See Fig. 6.2.).
 	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 6.3.

Output 6.3: Hierarchical Multiple Linear Regression

REGRESSION

/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA CHANGE 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT mathach 
/METHOD=ENTER gender 
/METHOD=ENTER motivation grades parEduc mathcrs.

Regression
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Interpretation of Output 6.3

We rechecked the assumptions for this problem, because we added the variable math courses taken. All the assumptions were met. The Descriptives and Correlations tables would have been the same (except for the addition of the variable math courses taken) as those in Problem 6.2 if we had checked the Descriptive box in the Statistics window. The other tables in this output are somewhat different than the previous two outputs. This difference is because we entered the variables in two steps. Therefore, this output has two models listed, Model 1 and Model 2. The information in Model 1 is for gender predicting math achievement. The information in Model 2 is gender plus motivation, grades in h.s., parents’ education, and math courses taken predicting math achievement. In the Model Summary table, we have three new and important pieces of information: R2 change, F change, and Sig. F change. The R2 change tells you how much the R2 increases when you add the new predictors entered in the second step (Model 2). The F change, and Sig. F change for Model 2 tell you whether this change is statistically significant; i.e., whether the additional variables significantly improved on the first model that had only gender as a predictor. In this case, the change improved on the prediction by gender alone, explaining about 56% additional variance. The F change is statistically significant, F(4,67) = 27.23, p < .001. This test is based on the unadjusted R2, which does not adjust for the fact that there are more predictors, so it is also useful to compare the adjusted R2 for each model, to see if it increases even after the correction for more predictors. The adjusted R2 also suggests that Model 2 is better than Model 1 given the large increase in the adjusted R2 value from R2 = .08 to R2 = .63. Furthermore, as we will see in the ANOVA table, Model 2 is highly significant. However, this in itself does not show you that the new model significantly improved on the prior model. It is quite possible for the second model to be significant without its improving to a significant degree on the prior model.
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Interpretation of Output 6.3 continued

We can see from the ANOVA table that when gender is entered by itself it is a significant predictor of math achievement, F(1,71) = 7.16, p = .009. However, as you can see from the Coefficients Table below, when the other predictors are entered, gender is no longer a significant predictor of math achievement. This means that boys’ apparent superiority over girls in math achievement could be completely explained by the other predictors. In the final model, only math courses taken significantly predicts math achievement p < .001, and the overall model with the addition of the other predictor variables is significant as well F(5,67) = 25.33, p < .001.



[image: ]

[image: ]


Interpretation of Output 6.3 continued

If one wants to make comparisons among predictors to see how much each is contributing to the prediction of the dependent variable, it is best to look at the Standardized Coefficients (Beta weights), especially when variables are on very different scales, as in this example in which gender, a dichotomous variable, is included. On the other hand, the Unstandardized Coefficients give you a better understanding of how the variables, as measured, are weighted to best predict the outcome, as we will show for Output 6.4 and 6.5. 

Included in the Excluded Variables table are the Partial Correlations. As noted in the previous example, these values, when they are squared, give us an indication of the amount of unique variance (variance that is not explained by any of the other variables) each independent variable is explaining in the outcome variable (math achievement). In the output, we can see that motivation explains the least amount of unique variance (.2712 = 7%) and math courses taken explains the most (.7792 = 61%).




Example of How to Write About Output 6.3

Results

To investigate how well grades in high school, motivation, parents’ education, and math courses taken predict math achievement test scores, after controlling for gender, a hierarchical linear regression was computed. (The assumptions of linearity, normally distributed errors, and uncorrelated errors were checked and met.) Means and standard deviations are presented in Table 6.1. When gender was entered alone, it significantly predicted math achievement, F(1,71) = 7.16, p = .009, adjusted R2 = .08. However, as indicated by the R2, only 8% of the variance in math achievement could be predicted by knowing the student’s gender. When the other variables were added, they significantly improved the prediction, R2 change = .56, F(4,67) = 27.23, p < .001, and gender no longer was a significant predictor. The entire group of variables significantly predicted math achievement, F(5,67) = 25.33, p < .001, adjusted R2 = .63. This is a large effect according to Cohen (1988). The beta weights and significance values, presented in Table 6.3, indicates which variable(s) contributes most to predicting math achievement, when gender, motivation, parents’ education, and grades in high school are entered together as predictors. With this combination of predictors, math course taken has the highest beta (.68), and is the only variable that contributes significantly to predicting math achievement.





Table 6.3
Hierarchical Multiple Regression Analysis Summary Predicting Math Achievement from Motivation, Demographic Variables, and Math Courses Taken, When Controlling for Gender (N = 73).
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Problem 6.4: Forward Multiple Linear Regression 

In Problem 6.4, we will use the forward approach, which is when SPSS adds variables one at a time by assessing which variable has the smallest probability of F (i.e., p value) continuing until all variables are added that have a p value equal to or less than .05. This enables the researcher to produce a model where most, if not all, of the variables are significantly adding to the model. This approach is an appropriate method to use when the researcher has numerous variables of interest and wants to have a model that has most, if not all, significant predictors. Forward is preferable to using stepwise as variables are not taken out of the equation at any time. Remember, in multiple regression we are looking at the combination of all of the predictor variables together: therefore, removing variables to find the best model may not be helpful as there are times that a variable that is not statistically significant can make a better overall model. An example of when forward regression would be beneficial to use is when the regression model is used to decide who will be accepted into a program (e.g., entry into college). In our example, we compute a model with forward regression with gender, motivation, grades in h.s., and parents’ education predicting math achievement?

	6.4 What is the best (i.e., most statistically significant) combination of gender, motivation, grades in h.s., and parents’ education predicting math achievement?


	Click on the following: Analyze → Regression → Linear…
 	Click on Reset.
 	Select math achievement and click it over to the Dependent box (dependent variable).
 	Next, move gender, motivation scale, grades in h.s., and parents’ education, to the Independent(s) box (independent variables).
 	Select Forward as your Method (see Fig. 6.6).



[image: Fig. 6.6. Forward linear regression.]
Fig. 6.6. Forward linear regression.



	Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit, R squared change, and Collinearity Diagnostics (see Fig. 6.2).
 	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 6.4.

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N 
/MISSING PAIRWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT mathach 
/METHOD=FORWARD parEduc grades gender motivation 
/SCATTERPLOT=(*ZRESID,*ZPRED)

Regression
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Here we see that the method used was Forward with variables being added when the F value is less than or equal to .05.
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Interpretation of Output 6.4

We did not include the Descriptives or Correlation tables since we included these in Output 6.2. Also in Output 6.2 we tested the assumptions for these variables and they met the assumptions for multiple regression. Therefore, we did not include the assumptions for this analysis.

When conducting a Forward multiple regression, we are starting with the predictor that has the lowest significance value and then adding variables; therefore we have multiple models in the analysis. We have four models in this analysis. The Model Summary table gives the R and Adjusted R square for each model. Model 4 has the highest R (.68) and Adjusted R square (.43) values. This model is predicting 43% of the variance in math achievement.

The ANOVA table shows that all four models are statistically significant (Sig) with p values of <.001. From the Model Summary table we know that model 4 is predicting more of the variance in math achievement than the other models because the F Change in the Model Summary table is statistically significant, p = .042. And, from the ANOVA table we know this fourth model is statistically significant; therefore, we can conclude that this is the best model and will be the one we will report with F (4,68) = 14.44, p < .001.
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Interpretation of Output 6.4 continued

From the Coefficients table we can see all the variables are [statistically] significantly contributing to each of the models. The constant and the Unstandardized coefficients for a model can be used to predict an individual’s score on math achievement using the formula Y = a + bx + e where Y is the dependent variable, a is the constant [or intercept], b is the slope of one of the unstandardized beta coefficients for that independent variable (x), and e is the error term. Also, we can check for multicollinearity by checking the Tolerance values, which are higher than 1 – R2, so do not have multicollinearity.




Example of How to Write About Output 6.4

Results

Forward multiple regression was conducted to investigate how well grades in high school, motivation, parents’ education, and gender predict math achievement test scores. (The assumptions of linearity, normally distributed errors, and uncorrelated errors were checked and met.) Means and standard deviations and intercorrelations are presented in Table 6.1 (see Problem 6.2). The beta weights and significance values for all models are presented in Table 6.4. After conducting forward regression, the model that included all predictor variables explained the most variance in math achievement, F (4,68) = 14.44, p < .001, adjusted R2 = .43. This indicates that 43% of the variance in math achievement was explained by this model. This is a large effect according to Cohen (1988). The equation for prediction a person’s math achievement score from the model was

Math achievement = -5.44 + 1.99Grades – 3.63Gender + 2.15Motivation + .58ParentEd + e


All variables statistically significantly contribute to the final model. The beta weights for the model are presented in Table 6.4; these suggest that as motivation is increased by one unit, math achievement increases by 2.15, holding everything else constant.





Table 6.4
Forward Multiple Regression Analysis Summary Predicting Math Achievement from Motivation, Grades in High School, Parent�s Education, and Gender (N = 73).
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Problem 6.5: Backward Elimination Multiple Linear Regression 

In Problem 6.5, we will use the backward approach, which is when all the variables are added into the model, then are eliminated one by one, with the variable that has the largest probability of F (i.e., p value) removed until all variables have a p value equal to or less than .10. The backward approach enables the researcher to produce a model with the fewest predicators. This approach is an appropriate method to use when the researcher has numerous variables of interest and wants to have a model that is as parsimonious (i.e., most simple with the fewest predictors) as possible. In our example, we will compute a backward regression to find the most parsimonious model for parents’ education, competence, pleasure, mosaic, math achievement, and scholastic aptitude test.

	6.5 What is the most parsimonious combination of parents’ education, competence, pleasure, mosaic, and math achievement in predicting scholastic aptitude test?


	Click on the following: Analyze → Regression → Linear…
 	Click on Reset.
 	Select scholastic aptitude test-math and click it over to the Dependent box (dependent variable).
 	Next, move parents’ education, cubed competence, pleasure, mosaic, and math achievement to the Independent(s) box (independent variables).
 	Select Backward as your Method (see Fig. 6.7).



[image: Fig. 6.7. Backward linear regression.]
Fig. 6.7. Backward linear regression.



	Click on Statistics, click on Estimates (under Regression Coefficients), and click on Descriptive, Model fit, R squared change, and Collinearity diagnostics. (See Fig. 6.2.)
 	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 6.5.

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT satm 
/METHOD=BACKWARD parEduc CubedComp pleasure mosaic mathach.

Regression
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Interpretation of Output 6.5

First, the output provides the Descriptive Statistics for all six variables. Note that N is 73 because two participants are missing a score on one or more variables.

The next table is a correlation matrix. Note that only math achievement would be statistically significantly correlated with scholastic aptitude test – math with a two-tailed test. This is okay as we are interested in the combination of all the variables and how they relate to the outcome variable.

We checked all the assumptions, but did not include the output here due to space concerns. All assumptions for multiple regression were met.



[image: ]

[image: ]


Interpretation of Output 6.5 continued

The Variables Entered/Removed table indicates that we have 3 models in this analysis. You can see that after entering all the variables in the first model, cubed competence in model 2 was removed, then mosaic in model 3. Our final model includes math achievement, pleasure, and parent’s education.

The Model Summary table shows that the multiple correlation coefficient (R), using all the predictors simultaneously, is .82 (R2 = .67), and the adjusted R2 is .64, meaning that 64% of the variance in scholastic aptitude test - math can be predicted from all the predictor variables combined. For the second model the multiple correlation coefficient (R), using all the predictors except competence, is essentially the same, .82 (R2 = .67), and the adjusted R2 is .65. The third model with mosaic removed has a multiple correlation coefficient (R) of .81 (R2 = .66), and the adjusted R2 is .64. These values are extremely important when using Backward regression as after assessing which model(s) are statistically significant, we need to assess which model explains the most variance in the outcome variable. Model 2 explains the highest variance in scholastic aptitude test - math (adjusted R2 is .65).Yet, because we want the most parsimonious model, model 3 explains approximately the same amount of variance with an adjusted R2 of.64. Therefore, model 3 looks like the best model.

It is common for the “best” model to not be the last model in the analysis. Be sure to closely check the R2 values.
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Interpretation of Output 6.5 continued

The ANOVA table shows that all three models are statistically significant (Sig) with p values of <.001. From the Model Summary table we know that model 3 is the most parsimonious model and is predicting almost the same amount of variance in scholastic aptitude test - math than the other models and from the ANOVA table we know this model is statistically significant, therefore we can conclude that this is the best model and will be the one we will report with F (4,69) = 44.41, p < .001.
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Interpretation of Output 6.5 continued

From the Coefficients table we can see for model 1, only pleasure and math achievement are statistically significantly contributing to the model, and competence has the highest significance value (p = .422). Therefore, competence will be removed from the analysis. In model 2, mosaic has the highest p value (p = .240) so will be removed for model 3. In model 3, the most parsimonious model, only math achievement is statistically significantly contributing to the model, t = 10.70, p < .001.

From this table we can check for multicollinearity with the Tolerance values. For these data, 1 – R2 is .341, so for all three models we do not have a problem with multicollinearity.




Example of How to Write About Output 6.5

Results

Backward multiple regression was conducted to identify the most parsimonious combination of parents’ education, competence, pleasure, mosaic, and math achievement in predicting scholastic aptitude test math. (The assumptions of linearity, normally distributed errors, and uncorrelated errors were checked and met.) Means and standard deviations are presented. The beta weights and significance values for all models are presented in Table 6.5. After conducting backward regression, the model that included parents’ education, pleasure, and math achievement was found to be the most parsimonious, F (3,69) = 44.41, p < .001, adjusted R2 = .64. This indicates that 64% of the variance in scholastic aptitude test – math was explained by this model. This is a large effect according to Cohen (1988). The equation for the model was

Scholastic aptitude test = 296.36 – 5.79ParentEd + 22.16Pleaseure + 11.86MathAch + e


Only math achievement statistically significantly contributes to the final model (t = 10.70, p < .001). The beta weights for the model, presented in Table 6.5, suggest that as math achievement is increased by one unit, scholastic aptitude test increases by 11.86, holding everything else constant.





Table 6.5
Backward Multiple Regression Analysis Summary Predicting Scholastic Aptitude Test - Math from Parents� Education, Competence, Pleasure, Mosaic, and Math Achievement (N = 73).
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Interpretation Questions 

	6.1. In Output 6.1: (a) What information suggests that we might have a problem of collinearity? (b) How does multicollinearity affect results? (c) What is the adjusted R2 and what does it mean?
 	6.2. Using Output 6.2: (a) How does combining (aggregating) mother’s education and father’s education and eliminating competence and pleasure scales change the results from those in Output 6.1? (b) Why did we aggregate mother’s education and father’s education? (c) Why did we eliminate the competence and pleasure scales?
 	6.3. In Output 6.3: (a) Compare the adjusted R2 for Model 1 and Model 2. What does this tell you? (b) Why would one enter gender first? (c) How did entering the additional variables change our interpretation of the significant effect of gender when it alone was entered? (d) Compare the results of Output 6.2 and Output 6.3. How did findings change for grades in high school, parents’ education, and motivation change when you also enter math courses taken?
 	6.4. In Output 6.4: (a) Why was grades in high school the first independent variable entered into the model? (b) What was the second variable entered into the model and what does it tell you about that variable? (c) Motivation scale and parents’ education were entered late into the model (third and fourth respectively) yet significantly contribute to the model but explain little additional variance, what does that tell you?
 	6.5. In Output 6.5: (a) Of the three models, which model was the most parsimonious, why? (b) How did the removal of variables impact the contribution of other variables still in the model? (c) How would you explain the impact of parents education in each model and how does that compare to the correlation between parents education and Scholastic Aptitude Test – Math?


Extra SPSS Problems 

	6.1. Open the World95.sav data file. You will use this data set for Extra SPSS Problems 6.1–6.3. Using People living in cities (urban), People who read (literacy), Infant mortality (babymort), Gross domestic product (gdp_cap), AIDS cases (aids), and daily calorie intake (calories) as independent variables and Average male life expectancy (lifeexpm) as the dependent variable, conduct a linear regression. 	Is the regression significant?
 	What is the Adjusted R Square?
 	Is multicollinearity an issue for this analysis, according to the criteria we have been using? Are tolerances high? What does this imply?
 	Which variables are weighted most highly in the regression equation? Which betas are significant?


 	6.2. Rerun the analysis from Extra SPSS Problem 6.1, but this time omit babymort as a predictor. 	Is the regression significant?
 	What is the Adjusted R Square?
 	Is multicollinearity an issue for this analysis, according to the criteria we have been using? Are tolerances high? How have tolerances and multicollinearity been affected by leaving out babymort?
 	Which variables are weighted most highly in the regression equation? Which betas are significant?


 	6.3. Run a hierarchical regression, using Average female life expectancy (lifeexpf) as the dependent variable, entering Average male life expectancy (lifeexpm) as the first block and then the same predictors from Extra SPSS Problem 6.2 for the second block. Be sure to check R square change under statistics. 	Is the regression significant?
 	What is the Adjusted R Square?
 	Is multicollinearity an issue for this analysis, according to the criteria we have been using? Are tolerances high? How have tolerances and multicollinearity been affected by including lifeexpm as a predictor?
 	Which variables are weighted most highly in the regression equation? Which betas are significant? Do any variables predict lifeexpf after lifeexpm is taken into account? Which variables might you want to eliminate from the equation? Why?


 	6.4. Open the 1991 U.S. General Social Survey.sav data file. Run a hierarchical regression, using Highest year of school completed (educ) as the dependent variable, entering Highest year school completed, father (paeduc) and Highest year school completed, mother (maeduc) as the first block, and then Number of brothers and sisters (sibs), Number of children (childs), and Age of respondent (age) for the second block. Be sure to check R square change under statistics. 	Is the regression significant?
 	What is the Adjusted R Square?
 	Is multicollinearity an issue for this analysis, according to the criteria we have been using? Are tolerances high? How have tolerances and multicollinearity been affected by including sibs, child, and age as a predictors?
 	Which variables are weighted most highly in the regression equation? Which betas are significant? Do any variables predict educ after paeduc and maeduc are taken into account? Are there any variables that you might want to eliminate from the equation? Why?


 	6.5. Rerun the analysis from Problem 6.1 at the beginning of the chapter, but this time select Forward as the method instead of Enter. Make sure to also select R squared change and Descriptives under Statistics. 	Is the regression significant?
 	What is the Adjusted R Square at each model?


 	6.6. Rerun the same analysis and change the method from Forward to Backward 	c. Is the regression significant?
 	d. What is the Adjusted R Square at each model?
 	e. How do your results from the Backward method compare to the Forward method?
 	f. How do the results from these two methods (Forward and Backwards) compare to the results from Problem 6.1 at the beginning of the chapter?





Chapter 7
 Mediation, Moderation, and Canonical Correlation

This chapter introduces some complex associational methods that are not covered in earlier chapters: mediation, moderation, and canonical correlation. These analyses use correlation and regression to assess specific types of relationships. They build on correlation and multiple regression, so it may be helpful to review the concepts of multiple regression before continuing. In previous chapters we did three types of complex associational statistics (multiple regression, principal components analysis, and factor analysis) and in this chapter we will use multiple regression again, to test for statistical mediation and moderation. You can combine mediation and moderation and have moderated mediation or mediated moderation, but these analyses are beyond the scope of this chapter. In addition to doing mediation and moderation, we will conduct a canonical correlation, which is similar to a correlation between two sets of components from a principal components analysis (see Chapter 4). All output in this chapter is produced as text, not the tables that we have been producing in earlier chapters. Even thought the output looks different, all that is missing are the lines.

Mediation 

Mediation occurs when the observed relationship between two variables is due, at least in part, to a third variable. Statistically, mediation occurs when a variable (i.e., the mediating variable) reduces the magnitude of the relationship between two other variables. Mediation can be pictured as:
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Conditions of Mediation

There are a few important conditions for statistical mediation. The mediating variable and the outcome variable should be continuous, a scale level variable (at least interval-level and normally distributed). This can be checked by using Frequencies and checking the skewness of the variable. The predictor variable in mediation in most studies is also a scale level variable, but it can also be dichotomous. If a dichotomous predictor variable is included, it is best to code it with “0” and “1” so that the regression equations are more easily interpreted. Multicollinearity can be a problem, so be sure to check for this.

In the past, some (e.g., Baron & Kenny, 1986) have stated that mediation can only occur if three conditions exist: (1) the predictor variable has a statistically significant correlation with the outcome variable, (2) the predictor variable has a statistically significant correlation with the mediating variable, and (3) the mediator variable has statistically significant correlations with both the predictor variable and the outcome variable. However, although this approach seems logical, mediation may exist even when the statistical association between some of these variables is not significant (Hayes, 2011), so requiring statistical significance may be unduly restrictive.

Assumptions of Mediation

The assumptions for mediation include the same assumptions as multiple regression including: that the relationship between each of the predictor variables and the dependent variable is linear and that the error, or residual, is normally distributed and uncorrelated with the predictors. Additionally, there are the assumptions that the variables have correct causal ordering and there is no reverse causality.

To test if the relationship between each of the predictor variables and the dependent variable is linear, scatterplots should be generated and checked. To test whether the error, or residual, is normally distributed and uncorrelated with the predictors, scatterplots of the errors should be checked. The assumptions of correct causal ordering and no reverse causality should be considered when designing the study and selecting variables for the analysis and, whenever possible, should be based on the empirical and theoretical literature. If using the PROCESS command, the assumptions need to be tested using Analyze → Regression → Linear. PROCESS is a macro that is added to SPSS manually using syntax commands. More about this can be found in Problem 7.1 when we compute a mediation analysis. Also, a matrix scatterplot needs to be created. See Chapter 6 for how to test the assumptions using these commands.

Moderation 

Moderation occurs when the relationship between two variables is different depending on the level of a third variable. For example, the relationship between motivation and math achievement may be greater for students who have high competence than for students who have low competence. Moderation can be pictured as:
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Conditions of Statistical Moderation

There are a few conditions to consider when conducting moderation. The independent and outcome variable should be continuous; the moderating variable can be dichotomous or continuous. Dichotomous predictor variables need to have large samples within each group so that the sample means have narrow confidence intervals. Be sure to check for multicollinearity.

Assumptions of Statistical Moderation

The assumptions for moderation are the same as the assumption listed above for mediation.

Canonical Correlation 

In canonical correlation, you have two sets of two or more interval-level (scale) variables each and you want to see how differences in one set relate to differences in the other set of variables. With canonical correlation, unlike regression, there is no distinction between independent and dependent variables; they are called by SPSS “Set 1” and “Set 2.” One would use canonical correlation when the variables in each set can be grouped together conceptually, but you want to see if there are particular subsets of them that relate to subsets in the other variable set, so you do not want to sum each set to make an overall score. For example, one might wish to relate a set of child behavior variables to a set of parent behavior variables. One might wish to see which subset of parenting variables is associated with which subsets of child behavior variables. Usually, canonical correlation is used as an exploratory technique; it is not commonly used to test specific hypotheses. Like principal components analysis, canonical correlation enables you to see which variables go together; however, it does so in terms of how well the variables from Set 1 relate to those from Set 2. It determines which subset of the “Set 1” variables maximally relate to the “Set 2” variables, then which other subset of the “Set 1” variables relate to another subset of the “Set 2” variables, etc. (Note: For those of you using earlier versions of SPSS, it has been reported that SPSS versions below 10.0 tend to have problems running canonical correlations. If you are using an earlier version and have problems, check the Help menu.)

Conditions of Canonical Correlation

All variables in canonical correlation must be scale. It is recommended to have at least 10 subjects per variable in order to have adequate power.

Assumptions of Canonical Correlation

The assumptions of canonical correlation include: linearity of relationship (between each variable pair as well as between the variables and the linear composites), multivariate normality, and homoscedasticity. Because multivariate normality is difficult to assess, univariate normality can be evaluated. Multicollinearity should be assessed as well. All of the assumptions can be evaluated through a matrix scatterplots that can be generated using the MANOVA command.

Problem 7.1: Computing Statistical Mediation 

The purpose of testing statistical mediation is to understand the effects of a presumed mediating variable on the relationship between a scale or dichotomous predictor variable and a scale outcome variable. If mediation is occurring, the mediating variable will reduce the size of the relationship between the predictor and the outcome variable. Perfect mediation occurs when the mediator reduces the relationship between the independent variable and the outcome variable to zero. In the following assignment, we will see if there is a statistically significant relationship between math achievement and scholastic aptitude test – math, and then we will check to see if motivation mediates, or reduces, this relationship.

	Retrieve your data file: hsbdataNew.sav.


	7.1. Does motivation mediate the relationship between math achievement and scholastic aptitude test – math?


To conduct mediation in SPSS, we need to install a custom dialog box. SPSS includes the ability for users to write their own syntax and install new commands, which can result in new pull-down menu choices. Andrew Hayes wrote the PROCESS file (process.spd), which can be downloaded from http://www.afhayes.com/introduction-to-mediation-moderation-and-conditional-process-analysis.html. By installing the program, we will have the ability to use the point and click method to conduct the mediation (and moderation) analyses.

Follow these steps to install the program:

	Go to http://www.afhayes.com/introduction-to-mediation-moderation-and-conditional-processanalysis.html and scroll down to Download the data files used in the book: hayes2013data.zip and download the file.
 	Close SPSS if you have it open on your computer.
 	Open SPSS as an administrator. To do this in Windows, click on Start → All Programs.
 	Open the folder IBM SPSS Statistics.
 	Right click on IBM SPSS Statistics 20 (or whatever version you have). A menu will appear.
 	From the menu, select Run as administrator. A dialog box will appear asking if you want to let SPSS make changes to your computer.
 	In the dialog box that appears, select Yes.
 	Open SPSS and select Utilities → Custom Dialogs → Install Custom Dialog.
 	Locate the file you downloaded (process.spd) and select Open. This will install PROCESS on your computer.
 	After you complete these steps, you will find the PROCESS program by selecting Analyze → Regression → PROCESS, by Andrew F. Hayes http:www.afhayes.com.


Before we conduct the mediation analysis to answer our research question, we need to check the assumptions that the relationship between each of the predictor variables and the dependent variable are linear and that the error, or residual, is normally distributed and uncorrelated with the predictors. The assumption of linearity between the dependent variable and each of the predictor variables was checked through a matrix scatterplot (see Chapter 2 for how to compute this). All predictor variables were linearly related to the dependent variable. To check whether the error, or residual, is normally distributed and uncorrelated with the predictors we produced scatterplots for each regression (i.e., the IV predicting the DV, the IV and mediator predicting the DV, and the IV predicting the mediator). The assumptions that the variables have correct causal ordering and there is no reverse causality is assumed since all the data were collected at the same time.

When reporting regression results it is necessary to report means, standard deviations, and intercorrelations. If you need help producing these analyses, follow the steps in Chapter 2 and Appendix B.

Next, we need to run the analysis. With PROCESS, all of the regressions will be run at the same time and we will be able to assess if motivation mediates the relationship between math achievement and scholastic aptitude test – math. To do this, be sure you have loaded the PROCESS .spd program, then follow the steps below:

	Click on the following: Analyze → Regression → PROCESS, by Andrew F. Hayes (http://www.afhayes.com). The PROCESS Procedure for SPSS, written by Andrew F. Hayes (www.afhayes.com) window (Fig. 7.1) should appear.
 	Select scholastic aptitude test – math and move it over to the Outcome variable (Y) box.
 	Next select the variable math achievement and move it over to the Independent Variable (X) box.
 	Select motivation and click it over to the M Variable(s) box.
 	Under Model Number, be sure that 4 is selected. This tells SPSS that we are running a mediation analysis.
 	Under Bootstrap Samples, be sure that 1000 is selected.
 	Under Confidence level for confidence intervals select 95%.
 	Under Covariate(s) in model(s) select …both M and Y.



[image: Fig. 7.1. PROCESS Procedure for SPSS, written by Andrew F. Hayes (www.afhayes.com).]
Fig. 7.1. PROCESS Procedure for SPSS, written by Andrew F. Hayes (www.afhayes.com).



	Click on Options, click on Effect size (models 4 and 6), Total effect model (models 4 and 6 only), and Compare indirect effects (models 4 and 6 only). (See Fig. 7.2.)



[image: Fig. 7.2. PROCESS Options.]
Fig. 7.2. PROCESS Options.



	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 7.1.

Output 7.1: Statistical Mediation

/* PROCESS for SPSS v2.10 */. 
/* Written by Andrew F. Hayes */. 
/* www.afhayes.com */.

/* Copyright 2013 */. 
/* Read the documentation */. 
/* available in Appendix A of */. 
/* Hayes (2013) prior to use */. 
/* www.guilford.com/p/hayes3 */. 
/* For proper results, variable */. 
/* names in data file must be distinct */. 
/* in the first eight characters */. 
set printback = off.

Matrix

Run MATRIX procedure:

[image: ]


Interpretation of Output 7.1

The first part of the output reports the variables: the dependent variable (Y) is scholastic aptitude test – math, the independent variable is math achievement, and the mediating variable (M) is motivation. Next we see the overall sample size is 73, therefore two participants did not have data for one or more of the variables.

The next part of the output shows information from the regression with the independent variable (math achievement) predicting the mediating variable (motivation). The Model Summary information shows that the multiple correlation coefficient (R) is .32 and R2 = .10, this indicates that math achievement explains 10% of the variance in motivation. The F, dfs, and p are similar to the information in an ANOVA table. The F = 7.88 and is statistically significant (p = .006). This indicates that math achievement statistically significantly predicts motivation.

For statistical mediation, the most important tables is the Coefficients table, with it being reported here as Model. First are the unstandardized b coefficients. We will use the unstandardized beta coefficients to know if the mediator, motivation, reduces the relationship between the two variables of math achievement and scholastic aptitude test – math. For now, we can interpret this as math achievement statistically significantly predicts motivation, b = .03, t = 2.81, p = .006.
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Interpretation of Output 7.1 continued

In this part of the output, we have the independent variables of math achievement and motivation (our mediating variable) predicting scholastic aptitude test – math. The Model Summary information shows that the multiple correlation coefficient (R) is .78 and R2 = .62, this indicates that the combination of math achievement and motivation explains approximately 62% of the variance in scholastic aptitude test- math. The F = 57.46 and is statistically significant (p < .001).

The Model information shows that math achievement statistically significantly predicts scholastic aptitude test – math with motivation in the model, b = 10.96, t = 9.97, p < .001. Motivation does not statistically significantly predict scholastic aptitude test- math with math achievement in the model, b = 6.76, t = .58, p = .563.
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Interpretation of Output 7.1 continued

Here we have the independent variable of math achievement predicting scholastic aptitude test – math. The Model Summary information shows that the multiple correlation coefficient (R) is .79 and R2 = .62, this indicates that math achievement explains approximately 62% of the variance in scholastic aptitude test- math. The F = 115.66 and is statistically significant (p < .001). The Model information shows that math achievement statistically significantly predicts scholastic aptitude test- math, b = 11.16, t = 10.75, p < .001.

From this, looking at the coeff values, we can see if the mediator, motivation, reduced the relationship between the two variables of math achievement and scholastic aptitude test – math. The unstandardized beta value when only math achievement is in the model is 11.16. When the mediator of motivation is added, the beta is reduced to 10.96. Therefore, we know that motivation had some effect mediating the relationship between math achievement and scholastic aptitude test – math. What we need to determine is if this reduction is statistically significant.
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Interpretation of Output 7.1 continued

The first part of this includes redundant information. First, the Total effect of X on Y gives the b, the standard error, t, and p for math achievement predicting scholastic aptitude test – math, b = 11.16, p < .001. Second, the Direct effect of X on Y gives us the beta, the standard error, t, and p for the combination of math achievement and motivation predicting scholastic aptitude test – math. For these data, the direct effect is b = 10.95, p < .001.

New information in the output includes the Indirect effect of X on Y and is the model with the relationship between math achievement and scholastic aptitude test – math being mediated by motivation. The beta (found under Effect) for this effect is .20, with a bootstrapped standard error (BootSE) of .46, and a 95% confidence interval (BootLLCI and BootULCCI) ranging from -.4171 to 1.5853. Because this range includes zero, motivation did not statistically significantly mediate the relationship between math achievement and scholastic aptitude test- math, b = .20, BCa CI [-.417, 1.585].

The output includes multiple effect size measures. The effect size to report when the indirect effect is statistically significant is the Preacher and Kelley (2011) Kappa-squared. This is preferred to other effect sizes since it is more easily interpreted since it is a ratio (where as the other effect sizes are not but tend to be interpreted as if they are). For these data, the Kappa-squared is .027. Kappa-squared values range from 0 to 1, so they can be interpreted similarly to R. Therefore, the Kappa-squared of .027 is a small effect size. The 95% confidence interval for Kappa-squared can be found under BootLLCI and BootULCCI and ranges from .0003 to .1083. For these data, since the indirect effect was not statistically significant, an effect size should not be reported. If the indirect effect had been statistically significant, Kappa-squared would be reported as κ2 = .027, 95% BCa CI [.001, .108], which represents a small effect size according to Cohen (1988).




How to Write About Output 7.1

Results

Statistical mediation analysis was conducted to determine if motivation mediates the relationship between math achievement and scholastic aptitude test – math. [Assumptions of linearity, normally distributed errors, and uncorrelated errors were checked and met.] The means, standard deviations, and intercorrelations can be found in Table 7.1. Figure 7.1 shows the b’s and p values for the effects. Motivation did not statistically significantly mediate the relationship between math achievement and scholastic aptitude test – math, b = .20, BCa CI [-.417, 1.585].


Table 7.1
Means, Standard Deviations, and Intercorrelations for Motivation, Math Achievement, and Scholastic Aptitude Test � Math (N = 73)
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[image: Figure 7.1. Diagram of the Mediation Model with Regression Coefficients, Indirect Effect, and Bootstrapped CIs.]
Figure 7.1. Diagram of the Mediation Model with Regression Coefficients, Indirect Effect, and Bootstrapped CIs.





Problem 7.2: Moderation

In Problem 7.2, we will conduct a moderation analysis. Recall that the purpose of moderation is to investigate how the interaction between two or more independent variables affects the relationship of these variables to the outcome variable.

When conducting a moderation analysis with interval or ratio (scale) predictors, centering the predictors makes effects easier to interpret if one or more of the predictors does not have a true zero point (as is typical in behavioral science research). Centering consists of subtracting the mean from each score, so that for each variable, the zero point will be the mean of each centered score will be zero). In moderation analysis, each coeffcient is interpreted as the predictive value of that variable, when all other predictors are zero. Because having none of the measured characteristic may not be truly possible (e.g., IQ, introversion, etc.) we need to center the variables. Fortunately, the PROCESS program will do this step for us, but it is important to note that how we interpret the coefficients is slightly different than what we have done in past chapters.

You can run a moderation analysis through the regression commands in SPSS, but in order to do so, you need to first center the predictor variables, create the interaction term through the Compute command, and then do a simple slopes analysis. Since we already have the PROCESS command available, we will use this instead as it centers the predictors, computes the interaction term, and computes the simple slopes analysis for us.

There are two important things to remember when conducting a moderation analysis. First, you must include the predictor and the moderator in the analysis, along with the interaction variable. Second, if the interaction is statistically significant, be cautious about interpreting the main effects [the independent variable(s)] as they are dependent on the interaction. In the following assignment, we will be using a different data set (i.e., Employee data.sav). We will investigate if previous experience moderates the relationship between beginning salary and current salary.

Similarly to mediation, when reporting regression results it is necessary to report means, standard deviations, and intercorrelations. If you need help producing these analyses, follow the steps in Chapter 2 and Appendix B.

	Retrieve the data file: Employee data.sav.


	7.2. Does previous experience (months) moderate the relationship between beginning salary and current salary?


	Click on the following: Analyze → Regression → PROCESS, by Andrew F. Hayes (http://www.afhayes.com). The PROCESS Procedure for SPSS, written by Andrew F. Hayes (www.afhayes.com) window (Fig. 7.3) should appear.
 	Select current salary and move it over to the Outcome variable (Y) box.
 	Next select the variable beginning salary and move it over to the Independent Variable (X) box.
 	Select previous experience (months) and click it over to the M Variable(s) box.
 	Under Model Number, be sure that 1 is selected. This tells SPSS that we are running a moderation analysis.
 	Under Bootstrap Samples, be sure that 1000 is selected.
 	Under Confidence level for confidence intervals select 95%.
 	Under Covariate(s) in model(s) select …both M and Y.



[image: Fig. 7.3. PROCESS Procedure for SPSS, written by Andrew F. Hayes (www.afhayes.com).]
Fig. 7.3. PROCESS Procedure for SPSS, written by Andrew F. Hayes (www.afhayes.com).



	Click on Options, click on Mean center for products, Heteroscedasticity-consistent SEs, OLS/ML confidence intervals, and Generate data for plotting (model 1, 2, and 3 only) (see Fig. 7.4). You can change the number of decimal places in the output here if you wish.



[image: Fig. 7.4. PROCESS Options.]
Fig. 7.4. PROCESS Options.



	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 7.2. 

Output 7.2: Statistical Moderation

/* PROCESS for SPSS v2.10 */. 
/* Written by Andrew F. Hayes */. 
/* www.afhayes.com */. 
/* Copyright 2013 */. 
/* Read the documentation */. 
/* available in Appendix A of */. 
/* Hayes (2013) prior to use */. 
/* www.guilford.com/p/hayes3 */. 
/* For proper results, variable */. 
/* names in data file must be distinct */. 
/* in the first eight characters */. 
set printback = off.

Matrix

Run MATRIX procedure:
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Interpretation of Output 7.2

This output begins with a list of our variables in the model which shows that our outcome variable (Y) is salary, our predictor variable (X) is salbegin, and the moderator is prevexp. The sample size for our analysis is 474.

The next section of the output includes information for the main moderation analysis. The Model Summary table gives the R (.90) and R square (.82). Thus, this model is predicting 82% of the variance in salary. The F, dfs, and p values indicate that the model of previous experience, beginning salary, and the interaction of previous experience and beginning salary significantly predicts current salary, F (3, 470) = 263.46, p < .001.

We can see from the Model table the coefficients (coeff), standard deviations (se), t values, p values, the lower limit 95% confidence interval (LLCI), and the upper limit 95% confidence interval (ULCI). The first place to look on this table is at the p value for the interaction (int_1). We have circled the interaction line in the above output. Here we see that p < .001, which indicates that the interaction of previous experience and beginning salary is statistically significant, which is interpreted in moderation analysis as the moderator (previous experience) is moderating the relationship between beginning salary and current salary.

The coefficient values are presented for all of our variables along with the standard errors. The standard errors have been adjusted for heteroscedasticity. We can see from the t and p values that all of the variables are statistically significantly contributing to the model. Since we have an interaction term, we should be cautious about interpreting the main effects (i.e., previous experience and beginning salary).



Conditional effect of X on Y at values of the moderator(s):

[image: ]

Values for quantitative moderators are the mean and plus/minus one SD from mean.

Values for dichotomous moderators are the two values of the moderator.

NOTE: For at least one moderator in the conditional effects table above, one SD

below the mean was replaced with the minimum because one SD below the mean

is outside of the range of the data.


Interpretation of Output 7.2 continued

This part of the output gives us information about the simple slopes. These assist us in interpreting the moderation effect. Each line of the table gives the results of three regression analyses of the regression of beginning salary predicting current salary. The first row shows when previous experience is -95.86 (see first entry under prevexp and row that follows). The second row, similarly, shows when previous experience is at the mean (zero, as we centered the variables around the mean), and row 3 indicates when previous experience is 104.59.

Thus, we know when previous experience is low, there is a statistically significant positive relationship between beginning salary and current salary, b = 2.43, 95% CI [2.18, 2.67], t = 19.77, p < .001. When previous experience is at the mean, there is a statistically significant positive relationship between beginning salary and current salary, b = 2.03, 95% CI [1.88, 2.18], t = 27.14, p < .001. Finally, when previous experience is high, there is a statistically significant positive relationship between beginning salary and current salary, b = 1.60, 95% CI [1.43, 1.76], t = 18.79, p < .001.



Data for visualizing conditional effect of X of Y:





	salbegin
	prevexp
	yhat





	-7870.6382
	-95.8608
	18209.9783



	.0000
	-95.8608
	37297.8947



	7870.6382
	-95.8608
	56385.8112



	-7870.6382
	.0000
	18608.4118



	.0000
	.0000
	34573.0459



	7870.6382
	.0000
	50537.6800



	-7870.6382
	104.5862
	19043.1117



	.0000
	104.5862
	31600.1748



	7870.6382
	104.5862
	44157.2378







*********************ANALYSIS NOTES AND WARNINGS*********************

Level of confidence for all confidence intervals in output: 95.00

NOTE: The following variables were mean centered prior to analysis: salbegin prevexp

NOTE: All standard errors for continuous outcome models are based on the HC3 estimator

------ END MATRIX

In order to better understand the simple slopes analysis, we will graph the results. To do this, we will use the values under Data for visualizing conditional effect of X of Y:


Interpretation of Output 7.2 continued

In order to better understand the simple slopes analysis, we will graph the results. To do this, we will use the values under Data for visualizing conditional effect of X of Y: in Problem 7.3. Results will be presented after the next problem.



Problem 7.3: Moderation: Graphing the Slopes

In Problem 7.3 we will graph the slopes using the data from the output from Problem 7.2.

	7.3. What do the slopes look like when previous experience (months) is moderating the relationship between beginning salary and current salary?


Follow these steps:

	Open a new and blank SPSS data file by going to File → Data → New.
 	Click on Variable View in the lower left corner.
 	Under Name enter the variable name salbegin and then hit the return button.
 	In the second row under Name enter prevexp.
 	In the third row under Name, enter currentsal.
 	Next, click on Data View in the lower left corner.
 	Get the data from Problem 7.2 listed under Data for visualizing conditional effect of X of Y.


As you can see from the data, in the first column under salbegin there are three distinct values of 7870.6382, .0000, and –7870.6382. These values represent high, medium, and low values for beginning salary. Instead of entering these values, we will enter 1 for low (whenever –7870.6382 is listed), 2 for medium (whenever .0000 is listed), and 3 for high (whenever 7870.6382 is listed).

We will repeat this procedure for the prevexp data. For the values –95.8608 we will enter a 1 for low, .0000 we will enter 2 for medium, and 95.8608 we will enter 3 for high.

	Enter the data as described above for salbegin and prevexp.
 	Click on Label and label these variables with 1 = low, 2 = medium, and 3 = high. See Appendix A if you need help with this step.
 	Next, enter the data as it is shown in the output for yhat, which we have renamed currentsal.
 	Click on Graph → Chart Builder. The Chart Builder window will open.
 	On the bottom left of the window, be sure the Gallery tab is highlighted.
 	Under Choose from: click on Line. Two pictures of line graphs will appear to the right of this box.
 	Click on the picture with three lines and drag it to the large white space where it says Drag a Gallery chart here to use it as your starting point OR Click on the Basic elements tab to build a chart element by element.
 	From the variable list under Variables: click on currentsal and drag it to the large white space with the box Y-Axis?.
 	Click on the variable beginingsal and drag it to the box X-Axis?.
 	Click on the variable prevexp and drag it to the box Set color. Note that the lines in the graph use example data: this is not what our graph will look like!
 	Click on Continue.
 	Click on OK.


Compare your output and syntax to Output 7.3. 

Output 7.3: Graphing the Simple Slopes for a Moderation Analysis

* Chart Builder. 
GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=beginsal MEAN(currentsal)[name="MEAN_currentsal"] prevexp MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset")) 
DATA: beginsal=col(source(s), name("beginsal"), unit.category()) 
DATA: MEAN_currentsal=col(source(s), name("MEAN_currentsal")) 
DATA: prevexp=col(source(s), name("prevexp"), unit.category())

GUIDE: axis(dim(1), label("beginsal")) 
GUIDE: axis(dim(2), label("Mean currentsal")) 
GUIDE: legend(aesthetic(aesthetic.color.interior), label("prevexp")) 
SCALE: cat(dim(1), include("1.00", "2.00", "3.00")) 
SCALE: linear(dim(2), include(0)) 
SCALE: cat(aesthetic(aesthetic.color.interior), include("1.00", "2.00", "3.00"))

ELEMENT: line(position(beginsal*MEAN_currentsal), color.interior(prevexp), missing.wings()) END GPL.

Graph
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Interpretation of Output 7.3

The graph represents how previous experience moderates the relationship between beginning salary and current salary. The graph shows what we found in Problem 7.2: when previous experience is low, there is a statistically significant positive relationship between beginning salary and current salary, when previous experience is at the mean, there is a statistically significant positive relationship between beginning salary and current salary, and when previous experience is high, there is a statistically significant positive relationship between beginning salary and current salary.




Example of How to Write About Output 7.2 and 7.3

Results

Multiple regression was conducted to determine if previous experience (in months) moderates the relationship between beginning salary and current salary. (Assumptions of linearity, normally distributed errors, and uncorrelated errors were checked and met.) A statistically significant interaction was found, F(3, 470) = 263.46, p < .001, R squared = .82. According to Cohen (1988) this is a large effect size. It was found that there is a statistically significant positive relationship between beginning salary and current salary, b = 2.43, 95% CI [2.18, 2.67], t = 19.77, p < .001. When previous experience is at the mean, there is a statistically significant positive relationship between beginning salary and current salary, b = 2.03, 95% CI [1.88, 2.18], t = 27.14, p < .001. Finally, when previous experience is high, there is a statistically significant positive relationship between beginning salary and current salary, b = 1.60, 95% CI [1.43, 1.76], t = 18.79, p < .001.




Table 7.3 Multiple Regression Analysis Summary for Beginning Salary and Current Salary with Moderated by Previous Experience (N = 474)





	Variable
	b
	SEB
	t
	p



	






	Previous Experience (centered)
	-28.43
	3.35
	-8.50
	<.001



	
	[-35.00, -21.85]
	
	
	



	Beginning Salary (centered)
	2.03
	.07
	27.14
	<.001



	
	[1.88, 2.18]
	
	
	



	Beg. Salary x Prev Exp
	-.004
	.001
	-5.48
	<.001



	
	[-.01, -.002]
	
	
	



	Constant
	34573.05
	346.91
	99.66
	<.001



	
	[33891.35, 35254.74]
	
	
	






Note. R2 = .82; F(3, 470) = 263.46, p < .001







Problem 7.4: Canonical Correlation 

In Problem 7.4 we will assess the relationship between multiple scale independent variables and multiple scale dependent variables. This analysis is an extension of multiple regression. Recall with multiple regression there are multiple scale (or dichotomous) independent variables and one scale dependent variable. Yet, researchers are at times interested in more than one dependent variable. Here we will assess the relationship between the items that make up the motivation scale and the items that make up the competence scale.

	Retrieve hsbdataNEW.sav.


	7.4. What is the pattern of relationships between the motivation items and the competence items?


We will need to check the assumptions of linearity, multivariate normality, and homoscedasticity. One way to do this is to graph the canonical variate scores that are generated by the canonical correlation syntax. Because the canonical correlation needs to be computed first, we have done that below, with the matrix scatterplot of the canonical variates afterward. Be sure not to save your data file after running these commands, or you will save the canonical variates.

Canonical correlation must be computed through syntax and requires access to the SPSS file for canonical correlation.

First, go to the website and download the file “Canonical correlation.sps” to your c: drive. If you download it to another location you will need to change the syntax to identify where the file is located. To check assumptions of canonical correlation, use these syntax to generate plots.

DATASET ACTIVATE DataSet1. 
MANOVA item03 item09 
WITH item01 item07 item12 item13 
/DISCRIM ALL 
/PLOT ALL.

The data appear to meet the assumptions of linearity, multivariate normality, and homoscedasticity because there does not appear to be a pattern in the scatterplots, and there are not large differences in how spread out each scatterplot is. Next, use the following syntax to answer the research question.

INCLUDE 'c:\Canonical Correlation.sps'. 
CANCORR SET1=item01 item07 item12 item13 /

SET2=item03 item09 /.

Output 7.4: Canonical Correlation Output

include 'c:\canonical correlation.sps'.

1252 0 * Canonical correlation.sps. This version allows long variable names and uses datasets.Canonical correlation.sps.

1253 0 
1255 0 preserve. 
1257 0 set printback=off. 
1961 0 RESTORE. 
1962 0 
1964 0 * End of INSERT and INCLUDE nesting level 01. 
CANCORR SET1=item01 item07 item12 item13 
/SET2=item03 item09 /.

Matrix

Run MATRIX procedure:

[image: ]


Interpretation of Outputs 7.4

The first two matrices, Correlations for Set-1 and Correlations for Set-2, are ordinary correlation tables. The first matrix is for the variables in Set 1, and the second matrix is for the variables in Set 2. We can see from these tables that most variables in each set are weakly to moderately correlated with each other.

The next matrix is the Correlations Between Set-1 and Set-2, which contains the bivariate correlations between each variable in Set 1 and each variable in Set 2.
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Interpretation of Outputs 7.4 continued

The Canonical Correlations are the correlations between a linear combination of the Set 1 variables and a linear combination of the Set 2 variables (the canonical variates). Note that there are two different correlations, corresponding to two different pairs of linear combinations. By squaring and summing all canonical correlations, you can calculate a measure of R2 indicating how much variance in one set of variables is explained by the other set of variables. Thus, (.6452 = .416) + (.3682 = .135) = .551, so about 55% of the variance is shared.

One important part of the output to check is the Test that remaining correlations are zero. These chisquare goodness-of-fit tests indicate whether all correlations from that point on are statistically significant, even after removing variance accounted for by all prior correlations.
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Redundancy Analysis:
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Interpretation of Outputs 7.4 continued

The Standardized Canonical Coefficients can be interpreted much like regression weights, to show which items are weighted most heavily in the linear combination of variables for each set of variables. These weights are created so as to maximize the correlation between the two sets of variables. For example, the first canonical variate for Set 1 is created by weighting item01 most heavily (−.838), followed by item07 (−.259), item12 (−.047), and item13 (−.011). This canonical variate is then correlated with the canonical variate created by weighting item03 by −.972 and item09 by −.077 (see table of loadings in the output). The set of canonical coefficients in the second column is the set used for the second pair of canonical variates, which are correlated to produce the second canonical correlation. Thus, there are actually two linear combinations for each set of variables. These are derived, much like principal components analysis, by creating the linear combination for each set of variables that maximizes the correlation between the two sets of variables, then doing this again with what remains after the variance associated with the first correlation is removed, and so on. These coefficients are often called pattern coefficients.

Canonical Loadings are the correlations between each item and the linear combinations of variables for that same set (canonical variates). They are often called structure coefficients. These loadings aid in the interpretation of the correlations, much as the loadings in principal components analysis are interpreted to give meaning to the different components.

Cross Loadings for each set indicate the correlation between each item in one variable set and the canonical variate for the other variable set. In the Cross Loadings for Set-2, we can see that both items for Set 2 are negatively correlated with the Set 1 canonical variate for the first canonical correlation.




Example of How to Write About Problem 7.4

Results

Canonical correlation analysis was performed to assess the pattern of relationships between the motivation items and the competence items. (The assumptions of linearity, multivariate normality, and homoscedasticity were checked by evaluating a bivariate scatterplot of the canonical variate scores.) The first canonical correlation was .65 (42% overlapping variance); the second was .37 (14% overlapping variance). With both canonical correlations included, χ2(8) = 46.18, p < .001, and with the first removed, χ2(3) = 9.81, p = .02. The correlations and canonical coefficients are included in Table 10.4. Examination of the loadings suggests that the first canonical correlation seems to involve a relation between practicing math a lot, independently, and becoming efficient (quick) at math; whereas, the second seems to capture a relation between persistence and thoroughness and being very competent at math.

Table 7.4 Correlation and Standardized Canonical Coefficients Between Motivation and Competence Variables





	
	First canonical correlation
	Second canonical correlation



	
	

	




	Item content
	Loading
	Coefficient
	Loading
	Coefficient



	






	Motivation
	
	
	
	



	    Practice til do well
	-.97
	-.84
	-.11
	-.28



	    Figure out math without help
	-.67
	-.26
	.17
	-.09



	    Complete math even if it takes a long time
	-.30
	-.05
	.94
	.91



	    Explore all solutions
	-.29
	-.01
	.64
	.19



	Competence
	
	
	
	



	    Solve math quickly
	-1.00
	-.97
	-.07
	-.42



	    Very competent in math
	-.40
	-.08
	.92
	1.06









Interpretation Questions 

	7.1. In Output 7.1: (a) What does R2 indicate at each of the three model summaries? What does this information tell you? (b) What does the “coeff’ (coefficient) column indicate at each of the three model summaries? (c) How do you know that motivation did not significantly mediate the relationship between math achievement and scholastic aptitude test – math?
 	7.2. In Output 7.2: (a) What does the interaction term tell us about moderation? (b) How do you know that previous experience moderates the relationship between beginning salary and current salary and what does that mean?
 	7.3. In Output 7.3: (a)What does the graph illustrate? (b) How does the graph help inform the findings from output 7.2?
 	7.4. In Output 7.4: (a) What is the difference between canonical coefficients (pattern coefficients) and canonical loadings (structure coefficients)? What information do each of these sets of coefficients tell you? (b) Give an example of a research problem that could be addressed using canonical correlation. (c) What do the canonical correlations tell you? (d) Why is there more than one canonical correlation?


Extra SPSS Problems 

	7.1. Rerun the analysis from Problem 7.1 at the beginning of the chapter, but this time select Competence instead of Motivation for the mediator variable. 	How much variance in competence does math achievement explain? Is that statistically significant?
 	How much variance in scholastic aptitude test – math is explained by a combination of math achievement with competence in the model? Is that statistically significant?
 	Does competence statistically significantly mediate the relationship between math achievement and scholastic aptitude test – math? Explain.


 	7.2. Using the hsbdataNew.sav conduct an analysis with scholastic aptitude test – math as your outcome variable, math achievement as your independent variable, and math courses as your moderator variable. 	Does the model of math achievement, math courses, and the interaction of math achievement and math courses significantly predict scholastic aptitude test – math? Explain.
 	What is the relationship between levels (low, average, and high) of math courses and math achievement and scholastic aptitude test – math?
 	Graph the slopes of the moderation analysis. What does this show?


 	7.3. Open the World95.sav data file, and conduct a canonical correlation, using literacy, fertility, gdp_cap, and calories as Set 1 and birth_rt, lifeexpf, death_rt, and aids_rt as Set 2. Be sure to check your syntax carefully! 	Which of the canonical correlations were statistically significant? How do you know?
 	Which variables in Set 1 were weighted most heavily for Function 1? Which Set 2 variables were weighted most heavily for Function 1? Which Set 1 and Set 2 variables were weighted most for Function 2?
 	Interpret the meaning of Functions 1 and 2, based on the canonical loadings.


 	7.4. Using the New drug.sav data file, conduct a canonical correlation using Respiratory Time1, Respiratory Time2, and Respiratory Time3 as Set 1, and Pulse Time1, Pulse Time2, and Pulse Time3 as Set 2. 	Which of the canonical correlations were statistically significant? How do you know?
 	Which variables in Set 1 were weighted most heavily for Function 1? Which Set 2 variables were weighted most heavily for Function 1? Which Set 1 and Set 2 variables were weighted most for Function 2?
 	Interpret the meaning of Functions 1 and 2, based on the canonical loadings.





Chapter 8
 Logistic Regression and Discriminant Analysis

Logistic regression and discriminant analysis, like multiple regression, are useful when you want to predict an outcome or dependent variable from a set of predictor variables. They are similar to a linear regression in many ways. However, logistic regression and discriminant analysis are more appropriate when the dependent variable is categorical. Logistic regression is useful because it does not rely on some of the assumptions on which multiple regression and discriminant analysis are based. As with other forms of regression, multicollinearity (high correlations among the predictors) can lead to problems for both logistic and discriminant analysis.

Logistic regression is helpful when you want to predict a categorical variable from a set of predictor variables. It is useful when some or all of the independent variables are dichotomous; others can be continuous. Binary logistic regression is similar to linear regression except that it is used when the dependent variable is dichotomous. Multinomial logistic regression is used when the dependent/outcome variable has more than two categories, but it is beyond the scope of this chapter.

Discriminant analysis, on the other hand, is most useful when you have several continuous independent variables and, as in logistic regression, an outcome or dependent variable that is categorical. The dependent variable can have more than two categories. If so, then more than one discriminant function will be generated (number of functions = number of levels of the dependent variable minus 1). For the sake of simplicity, we will limit our discussion to the case of a dichotomous dependent variable. Discriminant analysis is useful when you want to build a predictive model of group membership based on several observed characteristics of each participant. Discriminant analysis creates a linear combination of the predictor variables that provides the best discrimination between the groups.

Conditions of Logistic Regression

Conditions for binary logistic regression include that the dependent or outcome variable needs to be dichotomous and, like most other statistics, that the outcomes are mutually exclusive; that is, a single case can be represented only once and must be in one group or the other. Finally, logistic regression requires large samples to be accurate. Some say there should be a minimum of 20 cases per predictor, with a minimum of 60 total cases. These requirements need to be satisfied prior to doing statistical analysis with SPSS. As with multiple regression, multicollinearity is a potential source of confusing or misleading results and needs to be assessed (see Problem 8.3).

Assumptions of Logistic Regression

Logistic regression, unlike multiple regression and discriminant analysis, has very few assumptions, which is one reason this technique has become popular, especially in health-related fields. There are no distributional assumptions; however, observations must be independent and independent variables must be linearly related to the logit (natural log of the odds ratio) of the dependent variable.

Conditions of Discriminant Analysis

For accurate results, it is important that the sample size of the smallest group (35 in Problem 8.3) exceed the total number of predictor variables in the model (there are four in Problem 8.3, so this assumption is met). Multicollinearity is again an issue with which you need to be concerned. To test for multicollinearity, you can conduct a multiple regression analysis with the variables and request the Collinearity diagnostics (see Problem 8.3).

Assumptions of Discriminant Analysis

The assumptions of discriminant analysis include that the relationships between all pairs of predictors must be linear, multivariate normality must exist within groups, and the population covariance matrices for predictor variables must be equal across groups.

The linearity assumption as well as the assumption of homogeneity of variance-covariance matrices can be tested, as we did for multiple regression in Chapter 6, by examining a matrix scatterplot. If the spreads of the scatterplots are roughly equal, then the assumption of homogeneity of variance-covariance matrices can be assumed. This assumption can also be tested with Box’s M. If the scatterplots are linear or have no pattern then the assumption of linearity can be assumed. SPSS does not currently have a test for multivariate normality. Therefore, the best we can do it to test for univariate normality of the residuals for each of the dependent variables. We will not know for sure if we have multivariate normality, but if we have univariate normality, that is a good sign. Discriminant analysis is fairly robust to these assumptions, although violations of multivariate normality may affect accuracy of estimates of the probability of correct classification. If multivariate nonnormality is suspected, then logistic regression should be used.

In Problems 8.1 and 8.2, we will use logistic regression to predict a dichotomous outcome (whether students will take algebra 2) from continuous and dichotomous predictors. In Problem 8.1, we will enter all four predictors simultaneously into the equation. This is similar to the first multiple regression problem in Chapter 6. In Problem 8.2, we use a hierarchical approach, in which blocks of variables are entered sequentially. In Problem 8.3, we will use discriminant analysis to do the same problem that we did with logistic regression in Problem 8.1 in order to compare the two techniques.

	Get your hsbdataNew data file.


Problem 8.1: Logistic Regression 

	8.1. Is there a combination of gender, parents’ education, mosaic, and visualization test that predicts whether students will take algebra 2?


Let’s try a logistic regression to predict a dichotomous (two category) dependent variable when the independent variables (called covariates in SPSS) are either dichotomous or normal/scale.

First, we should check for multicollinearity. Because tolerance and VIF scores are not available through the logistic regression command, one way to compute these values is through the linear regression command, using algebra 2 as the dependent variable and gender, mosaic, visualization test, and parents’ education as independent variables. If you did this, you would find that the tolerance statistics are all above .87, so there is little multicollinearity. (See Problem 8.3 for how to do this.)

Use these commands to compute the logistic regression:

	Analyze → Regression → Binary Logistic to get to Fig. 8.1.
 	Move algebra 2 in h.s. into the Dependent variable box.
 	Move gender, mosaic, visualization test, and parents’ education into the Covariates box.
 	Make sure Enter is the selected Method. (This enters all the variables in the covariates box into the logistic regression equation simultaneously.)
 	Click on Options to produce Fig. 8.2.



[image: Fig. 8.1. Logistic regression.]
Fig. 8.1. Logistic regression.



	Check CI for exp(B), and be sure 95 is in the box (which will provide confidence intervals for the odds ratio of each predictor’s contribution to the equation).
 	Click on Continue.



[image: Fig. 8.2. Logistic regression: Options.]
Fig. 8.2. Logistic regression: Options.



	Click on OK. Does your output look like Output 8.1?


Output 8.1: Logistic Regression, Method = Enter

LOGISTIC REGRESSION VARIABLES alg2

/METHOD=ENTER gender mosaic visual parEduc 
 /PRINT=CI(95) 
 /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
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Dependent Variable Encoding





	Original Value
	Internal Value





	not taken
	0



	taken
	1








Algebra 2 is the dependent outcome variable and is coded 0 or 1.



Block 0: Beginning Block
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Interpretation of Output 8.1

There are three main parts to this output. First, two tables provide descriptive information (see callout boxes). Next, there are three tables in Block 0 that provide information about the baseline situation, when only the constant is in the equation or model. That is, how well can we predict algebra 2 without using gender, parents’ education, mosaic, or visualization test, if we predicted that all the students would not take algebra 2? The last section of four tables is below Block 1. They show the results when the four predictors are entered simultaneously.

The first table under Block 0, the initial Classification Table, shows the percentage of correct predictions (53%) if all of the students were predicted to be in the larger (algebra 2 not taken) group. The first Variables in the Equation table shows that if you predicted that all students would not take algebra 2, the odds of successful prediction would not be significantly different from 50–50 (i.e., no better than chance).
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Interpretation of Output 8.1 continued

The Variables not in the Equation table shows that three of the four variables (gender, parents’ education, and visualization test) are, individually, significant predictors of whether a student would take algebra 2 or not. Mosaic is not a significant predictor.



Block 1: Method=Enter
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Interpretation of Output 8.1 continued

The SPSS output for Logistic Regression provides several pieces of information that aid in interpreting the results of logistic regression using these four variables (gender, parents’ education, mosaic, and visualization test) as predictors of whether students took algebra 2. The last four tables in Output 8.1 show these. The Omnibus Tests of Model Coefficients table indicates that, when we consider all four predictors together, the Model or equation is significant (χ2 = 24.23, df = 4, N = 75, p < .001).

The Model Summary table includes two different ways of estimating R2 (percent of variance accounted for) as was done in multiple regression. These “pseudo” R2 estimates (.28 and .37) indicate that approximately 28% or 37% of the variance in whether students took algebra 2 can be predicted from the linear combination of the four independent variables. The Cox & Snell R2 (28%) is usually an underestimate.
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Interpretation of Output 8.1

The final Classification Table indicates how well the combination of variables predicts algebra 2. In this problem we have tried to predict, from four other variables, whether or not students would take algebra 2. Note from the classification table that, overall, 77% of the participants were predicted correctly. The independent/covariate variables were better at helping us predict who would not take algebra 2 (83% correct) than at who would take it (71% correct).

Note that in the Variables in the Equation table, only parents’ education and visualization test are significant. Gender is not significant, which is probably due to several factors: 1) the fact that SE (standard error) is quite high relative to B, which makes the Wald statistic lower, 2) the fact that gender is dichotomous, and 3) the fact that in this sample, gender is modestly (.25 and .28) but significantly related to visualization test and parents’ education, so when they are already included, gender does not add enough to be significant (p = .389). Note that Exp(B) gives the odds ratios for each variable. The odds ratio ([EXP (B)] with confidence interval) for parents’ education was 1.46 (95% CI = 1.13−1.89) and for visualization test was 1.21 (CI = 1.04−1.4). These indicate that the odds of taking algebra 2 improve by 1.46 for each unit increase in parents’ education and by about 1.21 for every unit increase in visualization test score. With SPSS, the odds are for the outcome that is coded as “1,” so in this case, it would be for those students who had taken algebra 2. For odds ratios that are less than 1, there is a decrease in the likelihood of taking algebra 2 for every increase in the predictor variable.

Odds ratios and risk ratios are common examples of a third group or family of effect size measures, called risk potency measures. Although odds ratios and risk ratios are common effect size measures when both variables are dichotomous (also called binary), especially in the health-related literature, they are somewhat difficult to interpret clearly. Furthermore, there are no agreed-upon standards for what represents a large ratio because the ratio may approach infinity if the outcome is very rare or very common, even when the association is near random.




Example of How to Write About Problem 8.1

Results

Logistic regression was conducted to assess whether the four predictor variables, gender, parents’ education, mosaic pattern test, and visualization test, significantly predicted whether or not a student took algebra 2. (The assumptions of observations being independent and independent variables being linearly related to the log were checked and met.) When all four predictor variables are considered together, they significantly predict whether or not a student took algebra 2, χ2= 24.23, df = 4, N = 75, p < .001. Table 8.1 presents the odds ratios, which suggest that the odds of taking algebra 2 are increasingly greater as parents’ education and student visualization scores increase.

Table 8.1
Logistic Regression Predicting Who Will Take Algebra 2





	Variable
	B
	SE
	Odds ratio
	p



	






	Gender
	-.50
	.58
	.61
	.389



	Parents' education
	.38
	.13
	1.46
	.004



	Mosaic
	-.03
	.03
	.97
	.345



	Visualization test
	.19
	.08
	1.21
	.011



	Constant
	-1.74
	1.16
	.18
	.134









Problem 8.2: Hierarchical Logistic Regression 

We will rerun Problem 8.1, but this time we will enter the background variables gender and parents’ education first and then, on the second step or block, enter mosaic and visualization test.

	8.2. If we control for gender and parents’ education, will mosaic and/or visualization test add to the prediction of whether students will take algebra 2?


Now use the same dependent variable and covariates except enter gender and parents’ education in Block 1 and then enter mosaic and visualization test in Block 2. Use these commands:

	Select Analyze → Regression → Binary Logistic...
 	Click on Reset.
 	Move algebra 2 in h.s. into the Dependent: variable box.
 	Move gender and parents’ education into the Covariates box (in this problem we actually are treating them as covariates in that we remove variance associated with them first; however, in SPSS all predictors are called Covariates).
 	Make sure Enter is the selected Method.
 	Click on Next to get Block 2 of 2 (see Fig. 8.1 if you need help).
 	Move mosaic and visualization test into the Covariates box.
 	Click on Options.
 	Check CI for exp(B), and be sure 95 is in the box (which will provide confidence intervals for the odds ratio of each predictor’s contribution to the equation).
 	Click on Continue.
 	Click on OK. Does your output look like Output 8.2?


Output 8.2: Logistic Regression

LOGISTIC REGRESSION VARIABLES alg2

/METHOD = ENTER gender parEduc 
 /METHOD = ENTER mosaic visual 
 /PRINT = CI(95) 
 /CRITERIA = PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .

Case Processing Summary





	Unweighted Casesa
	
	N
	Percent





	Selected Cases
	Included in Analysis
	75
	100.0



	
	Missing Cases
	0
	.0



	
	Total
	75
	100.0



	Unselected Cases
	
	0
	.0



	Total
	
	75
	100.0






a. If weight is in effect, see classification table for the total number of cases.
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Block 0: Beginning Block
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Block 1: Method=Enter
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Interpretation of Output 8.2

The first four tables are the same as in Output 8.1. In this case, we have an additional step or block (Block 2). Block 1 shows the Omnibus Chi-Square, Model Summary, Classification Table, and Variables in the Equation when gender and parents’ education were entered as covariates. Note that the Omnibus Test is statistically significant (χ2= 16.11, p < .001). With only gender and parents’ education entered, overall we can predict correctly 71% of the cases. Note from the last table in Block 1, that gender is not significant (p = .100) when it and parents’ education are both in the equation.

The log likelihood value (87.53 for Block 1) shows how well the data fit the model. It is similar to the residual sum of squares in multiple regression. The larger the value, the more poorly the model fits.



Block 2: Method=Enter
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Note that neither gender nor mosaic is significant when all of these variables are entered together.
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Interpretation of Output 8.2 continued

In Block 2, we entered mosaic and visualization test to see if they would add to the predictive power of gender and parents’ education. They do, as indicated by the Step in the Omnibus Tests table (χ2= 8.12, p = .017). Note in the same table that the overall Model ( χ2= 24.23, p < .001) with all four predictors entered is significant. In this example, there is only one step in each block so the four tables in Block 2 all say Step 1. The last three tables, as would be expected, are the same as those from Problem 8.1.

The log likelihood value for Block 1 was 87.53, and for Block 2 it is 79.41. This indicates that the second model is a better fitting model.



Problem 8.3: Discriminant Analysis 

Discriminant analysis is appropriate when you want to predict which group participants will be in (in this example, who took algebra 2). The procedure produces a discriminant function (or for more than two groups, a set of discriminant functions) based on linear combinations of the predictor variables that provide the best overall discrimination among the groups. The grouping or dependent variable can have more than two values, but this will increase the complexity of the output and interpretation. The codes for the grouping variable must be integers. You need to specify their minimum and maximum values, as we will in Fig. 8.3. Cases with values outside these bounds are excluded from the analysis.

Discriminant analysis (DA) is similar to multivariate analysis of variance (MANOVA, discussed in Chapter 11), except that the independent and dependent variables are switched; thus, the conceptual basis for the study is typically different. In DA, one is trying to devise one or more predictive equations to maximally discriminate people in one group from those in another group; in MANOVA, one is trying to determine whether group members differ significantly on a set of several measures. Therefore, the assumptions for DA are similar to those for MANOVA.

	8.3 What combination of gender, parents’ education, mosaic, and visualization test best distinguishes students who take Algebra 2 from those who do not?


This is a similar question to the one that we asked in Problem 8.1, but this time we will use discriminant analysis, so the way of thinking about the problem is a little different.

You can use discriminant analysis instead of logistic regression when you have a categorical outcome or grouping variable if you have all continuous independent variables. It is best not to use dichotomous predictors for discriminant analysis, except when the dependent variable has a nearly 50–50 split as is true in this case.

To check the condition of multicollinearity, follow these commands:

	Select Analyze → Regression → Linear.
 	Highlight algebra 2 in h.s. and move it into the Dependent: box.
 	Hold down the Ctrl key and highlight gender, parents’ education, mosaic, and visualization test and move them into the Independent(s): box.
 	Click on Statistics ... and The Linear Regression: Statistics window will open.
 	Check the box next to Collinearity diagnostics.
 	Click on Continue and OK.


To check the assumption of linearity, we created a matrix scatterplot selecting “matrix scatter,” as shown in Chapter 2, with gender, parents’ education, mosaic, and visualization test as the variables.

Next, to check the assumption of homogeneity of variance-covariance matrices across groups we created scatterplots (below) after splitting the data by the grouping variable (in this case algebra 2 in h.s.). To split the file into groups, follow these steps to use Split File.

	Select Data → Split File.
 	Select Compare groups.
 	Move algebra 2 in h.s. into the Groups Based on: box.
 	Click on OK.


Then do two scatterplots for each level of the grouping variable. 
Don’t forget to turn off the split file command before you run other analyses:

	Select Data → Split File.
 	Select Analyze all cases, do not create groups.
 	Click on OK.


Next, follow these steps to do the Discriminant Analysis:

	Select Analyze → Classify → Discriminant...
 	Move algebra 2 in h.s. into the Grouping Variable box (see Fig. 8.3).



[image: Fig. 8.3. Discriminant analysis.]
Fig. 8.3. Discriminant analysis.



	Click on Define Range and enter 0 for Minimum and 1 for Maximum (see Fig. 8.4).
 	Click on Continue to return to Fig. 8.3.



[image: Fig. 8.4. Discriminant analysis: Define range.]
Fig. 8.4. Discriminant analysis: Define range.



	Now move gender, parents’ education, mosaic, and visualization test into the Independents box.
 	Make sure Enter independents together is selected.
 	Click on Statistics.
 	Select Means, Univariate ANOVAs, and Box’s M (see Fig. 8.5). Click on Continue.



[image: Fig. 8.5. Discriminant analysis: Statistics.]
Fig. 8.5. Discriminant analysis: Statistics.



	Click on Classify to get Fig. 8.6.
 	Check Summary Table under Display.
 	Click on Continue.



[image: Fig. 8.6. Discriminant analysis: Classification.]
Fig. 8.6. Discriminant analysis: Classification.



	Finally, click on OK and compare your output to Output 8.3.


Output 8.3: Discriminant Analysis, Enter Independents Together

REGRESSION

/MISSING LISTWISE 
 /STATISTICS COEFF OUTS R ANOVA COLLIN TOL 
 /CRITERIA=PIN(.05) POUT(.10) 
 /NOORIGIN 
 /DEPENDENT alg2 
 /METHOD=ENTER gender parEduc mosaic visual.

SORT CASES BY alg2. 
SPLIT FILE

LAYERED BY alg2.

GRAPH

/SCATTERPLOT(MATRIX)=gender parEduc mosaic visual 
 /MISSING=LISTWISE.

SPLIT FILE

OFF.

DISCRIMINANT

/GROUPS=alg2(0 1) 
 /VARIABLES=gender parEduc mosaic visual 
 /ANALYSIS ALL 
 /PRIORS EQUAL 
 /STATISTICS=MEAN STDDEV UNIVF BOXM TABLE 
 /CLASSIFY=NONMISSING POOLED.

Regression
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Graph
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Analysis Case Processing Summary





	Unweighted Cases
	N
	Percent





	Valid
	
	75
	100.0



	Excluded
	Missing or out-of-range group codes
	0
	.0



	
	At least one missing discriminating variable
	0
	.0



	
	Both missing or out-of-range group codes and at least one missing discriminating variable
	0
	.0



	
	Total
	0
	.0



	Total
	
	75
	100.0
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Interpretation of Output 8.3

The Group Statistics table provides basic descriptive statistics for each of the independent/predictor variables for each outcome group (did not take algebra 2 and did take it) separately and for the whole sample. The Tests of Equality of Group Means table shows which independent variables are significant predictors by themselves; it shows the variables with which there is a statistically significant difference between those who took algebra 2 and those who did not. As was the case when we used logistic regression, gender, parents’ education, and visualization test are statistically significant.



[image: ]

Box's Test of Equality of Covariance Matrices

Analysis 1

Log Determinants





	algebra 2 in h.s.
	Rank
	Log Determinant





	not taken
	4
	6.904



	taken
	4
	6.258



	Pooled within-groups
	4
	7.101






The ranks and natural logarithms of determinants printed are those of the group covariance matrices.
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Summary of Canonical Discriminant Functions
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This table indicates how heavily each variable is weighted in order to maximize discrimination of groups. In this example, parents’ education and visual are weighted more than gender and mosaic.
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Functions at Group Centroids





	
	Function



	algebra 2 in h.s.
	1





	not taken
	-.595



	taken
	.680






Unstandardized canonical discriminant

functions evaluated at group means






Interpretation of Output 8.3 continued

Similar to factorial ANOVA, discriminant analysis has two types of effect size: one effect size describes the variance for the entire analysis (i.e., partial η2), and the other effect size describes the variances associated with each discriminant function. To compute partial η2 we can use the following formula, partial η2 = 1−Λ1/3. Wilks’ lambda is represented with the “Λ” symbol, and the value of Λ is found in the Wilks’ Lambda table. Thus, for this output, partial η2 = 1−Λ1/3 = 1−.7061/3 = 1−.89 = .11. This is considered a larger than typical effect size. To compute an effect size that describes the variance associated with each discriminant function, we square the Canonical correlation value found in the Eigenvalues table, (.542)2 = .294.

Note, from the Standardized Canonical Discriminant Function Coefficients table, that only parents’ education and visualization test are weighted heavily to maximize the discrimination between groups. Because gender correlates with parents’ education, it has a low function coefficient. But in the Structure Matrix table, gender has a higher (−.45) correlation because it is correlated with the discriminant function that best predicts who took algebra 2 and who did not.



Classification Statistics

Classification Processing Summary





	Processed
	
	75



	Excluded
	Missing or out-of-range
	0



	
	group codes
	



	
	At least one missing
	0



	
	discriminating variable
	



	Used in Output
	
	75







Prior Probabilities for Groups





	
	
	Cases Used in Analysis



	algebra 2 in h.s.
	Prior
	Unweighted
	Weighted





	not taken
	.500
	40
	40.000



	taken
	.500
	35
	35.000



	Total
	1.000
	75
	75.000
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This shows how well the model predicts who will take algebra 2. For example, 80% of those who did not take algebra 2 were correctly predicted.




Interpretation of Output 8.3 continued

The last table is similar to the classification table for logistic regression. It shows how well the combination of four independent variables classifies or predicts who will take algebra 2. Note that overall, 76% of the sample was classified correctly. As with logistic regression, discriminant analysis did better at predicting who did not take algebra 2 (80% correct) than it did at predicting who would take it (71% correct).




Example of How to Write About Problem 8.3

Results

Discriminant analysis was conducted to assess whether the four predictors, gender, parents’ education, mosaic, and visualization test, could distinguish those who took algebra 2 from those who did not. (The assumptions of that the relationships between all pairs of predictors must be linear, multivariate normality must exist within groups, and the population covariance matrices for predictor variables must be equal across groups were checked and all were met except the assumption of homogeneity of variances.) Wilks’ lambda was significant, λ = .71, χ2 = 24.69, p < .001, partial η2 = .11, which indicates that the model including these four variables was able to significantly discriminate the two groups. Table 8.2 presents the standardized function coefficients, which suggest that parents’ education and the visualization test contribute most to distinguishing those who took algebra 2 from those who did not, using these predictors. The classification results show that the model correctly predicts 80% of those who did not take algebra 2 and 71% of those who did take algebra 2. The correlation coefficients in the table indicate the extent to which each variable correlates with the resulting discriminant function. Note that even though gender did not contribute strongly to the discriminant function, it is moderately highly (negatively) correlated with the overall discriminant function.




Table 8.2
Standardized Function Coefficients and Correlation Coefficients





	
	Standardized function coefficients
	Correlations between variables and discriminant function





	




	Parents' education
	.71
	.70



	Visualization test
	.62
	.62



	Gender
	-.21
	-.45



	Mosaic, pattern test
	-.22
	-.12









Interpretation Questions 

	8.1. Using Output 8.1: (a) When all four predictors are included, which variables make significant contributions to predicting who took algebra 2? (b) How accurate is the overall prediction? (c) How well do the variables predict who actually took algebra 2? (d) How about the prediction of who did not take it?
 	8.2. Compare Outputs 8.1 and 8.2. How are they different and why?
 	8.3. In Output 8.3: (a) What do the discriminant function coefficients and the structure coefficients tell us about how the predictor variables combine to predict who took algebra 2? (b) How accurate is the prediction/classification overall and for who would not take algebra 2? (c) How do the results in Output 8.3 compare to those in Output 8.1, in terms of success at classifying and contribution of different variables to the equation?
 	8.4. Comparing Outputs 8.3 and 8.1, what kind of information does the discriminant analysis provide that is not provided by the logistic regression?
 	8.5. In Output 8.2: Why might one want to do a hierarchical logistic regression?
 	8.6. (a) In Output 8.1: How can one tell which variables are contributing more to the classification of participants using logistic regression? (b) In Output 8.3: How can one tell which variables are contributing to the classification of participants using discriminant analysis? What is the difference between the function coefficients and the coefficients in the structure matrix?


Extra SPSS Problems


Access the Wuensch_logistic data set. These data are from a published study by Wuensch and Poteat (1998) in the Journal of Social Behavior and Personality. Context: College students (N = 315) were asked to pretend that they were serving on a university research committee hearing a complaint against animal research being conducted by a member of the university faculty. The DV was whether or not to withdraw the researcher’s authorization to conduct the research (Decision, 0=stop, 1=continue).



	8.1 Run a logistic regression analysis predicting decision from gender alone. 	Is the logistic regression significant?
 	What overall percentage of students was correctly classified as to whether they continue or discontinue the research? How accurately was each decision predicted?


 	8.2. Run a second analysis with gender, idealism, and relativism as predictors (Keep in mind that persons who score high on relativism reject the notion of universal moral principles, preferring personal and situational analysis of behavior. Persons who score high on idealism believe that ethical behavior will always lead only to good consequences, never to bad consequences, and never to a mixture of good and bad consequences). 	How does the results for Block 0 compare with the results in the first analysis? Why?
 	Examine the “Classification Table” in Block 1. Does a model with gender, idealism, and realism predict better than a model with only gender? Why do you say this?
 	Interpret the odds ratios provided for each predictor in “Variables in the Equation.”
 	Examine the B coefficients. Are subjects who are more idealistic likely to decide to stop (0) or continue (1) the research? How about subjects are more realistic (relativism)?


 	8.3 Do a discriminant function analysis using these same variables. 	Is the discriminative function significant?
 	Which predictor(s) contribute significantly to predicting whether individuals would continue the research or stop the research?
 	What overall percentage of students was correctly classified as to whether they would continue the research or not? How accurately were students who would continue the research predicted? How accurately were students who would not continue the research predicted? How do these results differ from those for the logistic regression?
 	Given the results of both of these analyses, what would you conclude about your understanding of these students’ tendency to continue or stop the research? Describe your conclusions in nontechnical terms, making sure to describe the statistical results of the discriminant function analysis.





Chapter 9
 Factorial ANOVA and ANCOVA

In this chapter, we will introduce two complex difference statistics: factorial analysis of variance (ANOVA) and analysis of covariance (ANCOVA). Both factorial ANOVA and ANCOVA tell you whether considering more than one independent variable at a time gives you additional information over and above what you would get if you did the appropriate basic inferential statistics for each independent variable separately. Both of these inferential statistics have two or more independent variables and one scale (normally distributed) dependent variable. Factorial ANOVA is used when there is a small number of categorical independent variables (usually two or three), and each of these variables has a small number of levels or categories (usually two to four).

ANCOVA typically is used to adjust or control for differences between the groups based on another, typically interval-level variable, called the covariate. For example, imagine that we found that boys and girls differ on math achievement. However, this could be due to the fact that boys take more math courses in high school. ANCOVA allows us to adjust the math achievement scores based on the relationship between number of math courses taken and math achievement. We can then determine if boys and girls still have different math achievement scores after making the adjustment. ANCOVA can also be used if one wants to use one or more discrete or nominal variables and one or two continuous variables to predict differences in one dependent variable.

Assumptions of Factorial ANOVA and ANCOVA

The assumptions for factorial ANOVA and ANCOVA include that the observations are independent, the variances of the groups are equal (homogeneity of variances), and the dependent variable is normally distributed for each group. Assessing whether the observations are independent (i.e., each participant’s score is not related systematically to any other participant’s score) is a design issue that should be evaluated prior to entering the data into SPSS. Using random sampling is the best way of ensuring that the observations are independent; however, this is not possible in behavioral research that requires voluntary participation. The most important thing to avoid is having known relationships among participants in the study (e.g., several family members or several participants obtained through “snowball” sampling included as “separate” participants). Second, to test the assumption of homogeneity of variances, SPSS computes Levene’s statistic, which can be requested using the General Linear Model command. Homogeneity of variances is particularly important if sample sizes differ across levels of the independent variable(s). The third assumption is that the dependent variable needs to be normally distributed. Factorial ANOVA is robust against violations of the assumption of the normal distributions of the dependent variable unless skewness is in opposite directions for different groups. To test this assumption you can compare boxplots or compute skewness values through the Explore command for the dependent variable for each group (cell) defined by each combination of the levels of the independent variables.

Additional Assumptions for ANCOVA

For ANCOVA there is a fourth assumption that there is a linear relationship between the covariates and the dependent variable. This can be checked with a scatterplot (or matrix scatterplot if there is more than one covariate). The regression slopes for the covariates (in relation to the dependent variable) need to be the same for each group (this is called homogeneity of regression slopes). This assumption is one of the most important assumptions, and it can be checked with an F test on the interaction of the independent variables with the covariate. If the F test is significant, then this assumption has been violated.

	Retrieve hsbdataB from your data file.


Problem 9.1: Factorial (Two-Way) ANOVA 

We would use a t test or one-way ANOVA to examine differences between two or more groups (comprising the levels of one independent variable or factor) on a continuous dependent variable. These designs, in which there is only one independent variable and it is a discrete or categorical variable, are called single-factor designs. In this problem, we will compare groups formed by combining two independent variables. The appropriate statistic for this type of problem is called a two-factor, two-way, or factorial ANOVA. One can also have factorial ANOVAs in which there are more than two independent variables. If there are three independent variables, one would have a three-factor or threeway ANOVA. It is unusual, but possible, to have more than three factors as well. Factorial ANOVA is used when there are two or more independent variables (each with a few categories or values) and a between-groups design.

	9.1 Are there differences in math achievement for people varying on math grades and/or father’s education revised, and is there a significant interaction between math grades and father’s education on math achievement? (Another way to ask this latter question: Do the “effects” of math grades on math achievement vary depending on level of father’s education revised?)


Follow these commands:

	Analyze → General Linear Model → Univariate.
 	Move math achievement to the Dependent Variable box.
 	Move the first independent variable, math grades, to the Fixed Factor(s) box and then move the second independent variable, father’s educ revised (not father’s education), to the Fixed Factor(s) box (see Fig. 9.1).


Now that we know the variables we will be dealing with, let’s determine our options.


[image: Fig. 9.1. GLM: Univariate.]
Fig. 9.1. GLM: Univariate.



	Click on Plots and move faedRevis to the Horizontal Axis and mathgr to the Separate Lines box in Fig. 9.2. This “profile plot” will help you picture the interaction (or absence of interaction) between your two independent variables. Note, the plots will be easier to interpret if you put father’s educ revised with its three values on the horizontal axis and create separate lines for the variable (math grades) that has two levels.
 	Then press Add. You will see that mathgr and faedRevis have moved to the Plots window as shown at the bottom of Fig. 9.2.
 	Click on Continue to get back Fig. 9.1.



[image: Fig. 9.2. Univariate: Profile plots.]
Fig. 9.2. Univariate: Profile plots.



	Select Options and check Descriptive statistics, Estimates of effect size, Observed power, and Homogeneity tests in Fig. 9.3.



[image: Fig. 9.3. Univariate: Options.]
Fig. 9.3. Univariate: Options.



	Click on Continue. This will take you back to Fig. 9.1.
 	Click on OK. Compare your output with Output 9.1.


Output 9.1: GLM General Factorial (Two-Way) ANOVA

UNIANOVA mathach BY mathgr faedRevis

/METHOD = SSTYPE(3) 
 /INTERCEPT = INCLUDE 
 /PLOT = PROFILE(faedRevis*mathgr) 
 /PRINT = OPOWER ETASQ HOMOGENEITY DESCRIPTIVE 
 /CRITERIA = ALPHA(.05) 
 /DESIGN = mathgr faedRevis mathgr*faedRevis.

Univariate Analysis of Variance

Between-Subjects Factors





	
	
	Value Label
	N





	math grades
	0
	less A-B
	43



	
	1
	most A-B
	30



	father's educ revised
	1.00
	HS grad or less
	38



	
	2.00
	Some College
	16



	
	3.00
	BS or More
	19
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Profile Plots

[image: ]


Interpretation of Output 9.1

The GLM Univariate program allows you to print the means and counts, measures of effect size (partial eta2), and the plot of the interaction, which is helpful in interpreting it. The first table in Output 9.1 shows the two levels of math grades (0 and 1), with 43 participants indicating “less A–B” (low math grades) and 30 reporting “most A–B” (high grades). Father’s education revised had three levels (low, medium, and high education) with 38 participants reporting HS grad or less, 16 indicating some college, and 19 with a BS or more. The second table, Descriptive Statistics, shows the cell and marginal (total) means; both are very important for interpreting the ANOVA table and explaining the results of the test for the interaction.

The second table is Levene’s Test of Equality of Error Variances, which tests the homogeneity of variances. It is important to check whether Levene’s test is significant; if it is significant (p < .05) the variances are different, and thus this assumption is violated. If it is not significant (p > .05), then the assumption is met. Whether this assumption has been met is important to remember when we do post hoc tests.

The ANOVA table, called Tests of Between-Subjects Effects, is the key table. Note that the word “effect” in the title of the table can be misleading because this study was not a randomized experiment. Thus, you should not report that the differences in the dependent variable were caused by the independent variable. Usually you will ignore the information about the corrected model and intercept and skip down to the interaction F (mathgr*faedRevis). It is important to look at the interaction first because it may change the interpretation of the separate “main effects” of each independent variable.

In this case, the interaction is statistically significant, F(2,67) = 3.97, p = .024. This means that the “effect” of math grades on math achievement depends on which father’s education level is being considered. If you find a significant interaction, you should examine the profile plots of cell means to visualize the differential effects. If there is a significant interaction, the lines on the profile plot will not be parallel. In this case, the plot indicates that math achievement is relatively low for both groups of students whose fathers had relatively low education (high school grad or less). However, for students whose fathers have a high education level (BS or more), differences in math grades seem to have a large “effect” on math achievement. This interpretation, based on a visual inspection of the plots, needs to be checked with inferential statistics. When the interaction is statistically significant, you should analyze the “simple effects” (differences between means for one variable at each particular level of the other variable). We will illustrate two methods for statistically analyzing the simple effects in Problem 9.2.

Now examine the main effects of math grades and of father’s education revised. Note that both are statistically significant, but because the interaction is significant this is somewhat misleading. The plots show that the effect of math grades does not seem to hold true for those whose fathers had the least education. Note also the callout boxes about the adjusted R squared and partial eta squared. Eta, the correlation ratio, is used when the independent variable is nominal and the dependent variable (math achievement in this problem) is scale. Eta is an indicator of the proportion of variance that is due to between-groups differences. Partial eta squared is the ratio of the variance associated with a particular between-groups “effect” to the sum of that same number (variance associated with that “effect”) and error variance. So it is a measure of reliable variance in the DV (math achievement in this case) that is associated with a particular between-groups “effect.” Adjusted R2 refers to the multiple correlation coefficient, squared and adjusted for number of independent variables, N, and effect size. Like r2, partial eta squared and R2 indicate how much variance or variability in the dependent variable can be predicted; however, the multiple R2 is used when there are several independent variables, and the r2 is used when there is only one independent variable. In this problem, the partial eta2 values for the three key Fs vary from .106 to .243 (you can take the square root of this to get partial eta, which in this case varies from .325 to .493). Because partial eta and R, like r, are indexes of association, they can be used to interpret the effect size. However, the guidelines according to Cohen (1988) for eta and R are somewhat different (for eta: small = .10, medium = .24, and large = .37; for R: small = .10, medium =.36, and large = .51).

An important point to remember is that statistical significance depends heavily on the sample size so that with 1,000 subjects, a much lower F or r will be significant than if the sample is 10 or even 100. Statistical significance just tells you that you can be quite sure that there is at least a tiny relationship between the independent and dependent variables. Effect size measures, which are more independent of sample size, tell how strong the relationship is and, thus, give you some indication of its importance.

The Observed Power for math grades was .90, and for father’s education revised it was .99. These indicate extremely high power, which means we might find statistically significant results even with small effect sizes. For these two factors this was not a problem because the effect sizes were large (partial etas = .373 and .493). Observed power for the interaction of math grades and father’s education revised was .69. Because it is less than .80, there was relatively low power. But, because the effect size for the interaction was close to large (partial eta = .326), we had enough power to detect this difference.



How to write the results for Problem 9.1 is included after the interpretation box for Problem 9.2.

Problem 9.2: Post Hoc Analyses of a Significant Interaction

We have described, in the interpretation of Output 9.1, how to visually inspect and interpret the Profile Plots when there is a statistically significant interaction. In Problems 9.2b and 9.2c we will illustrate two ways to test the simple effects statistically.

In the interpretation of Output 9.1, we indicated that you should examine the interaction F first. If it is statistically significant, it provides important information and means that the results of the main effects may be misleading. Figure 9.4 is a decision tree that illustrates this point and guides the analysis in this section. It shows two ways to examine the simple effects when you have a significant interaction. You would use either contrasts or post hoc tests, not both.


[image: Fig. 9.4. Steps in analyzing a two-way factorial ANOVA.]
Fig. 9.4. Steps in analyzing a two-way factorial ANOVA.



	9.2. Which simple effects of math grades (at each level of father’s education revised) are statistically significant?


9.2a. Computation of the New Cellcode Variable

To analyze the simple effects, we first need to compute a new variable with each of the original cells as a level. To do this, do the following commands.

	Select Transform → Compute Variable... You will see the Compute Variable window, Fig. 9.5.



[image: Fig. 9.5. Compute variable window.]
Fig. 9.5. Compute variable window.



	Under Target Variable, type cellcode. This is the name of the new variable you will compute.
 	Click on Type and Label. You will see the Compute Variable: Type and Label window (Fig. 9.6).
 	Type six new cell codes in the label box.



[image: Fig. 9.6. Compute variable: Type and label.]
Fig. 9.6. Compute variable: Type and label.



	Click on Continue. You will see the Compute Variable window (Fig. 9.5) again.
 	In the Numeric Expression box, type the number 1. This will be the first value or level for the new variable.
 	Next, click on the If… button in Fig. 9.5 to produce Fig. 9.7.
 	Select Include if case satisfies condition.
 	Type mathgr = 0 & faedRevis = 1 in the window. You are telling SPSS to compute level 1 of the new variable, cellcode, so that it combines the first level of math grades (0) and the first level of father’s education revised (1) (see Fig. 9.7).



[image: Fig. 9.7. Compute variable: If cases.]
Fig. 9.7. Compute variable: If cases.



	Click on Continue to return to Fig. 9.5.
 	Click on OK. If you look at your Data View or Variable View screen, you will see a new variable called cellcode. In the Data View screen, you should also notice that several of the cases now show a value of 1. Those are the cases where the original variables of math grades and father’s education revised met the requirements you just computed.


You will need to repeat this process for the other five levels of this new variable. We will walk you through the process once more.

	Select Transform→ Compute Variable to see the Compute Variable window (see Fig. 9.5).
 	Ensure that cellcode is still in the target variable box.
 	Delete the 1 on the Numeric Expression box.
 	Type 2 in the Numeric Expression box.
 	Click on the If… button.
 	Ensure that Include if case satisfies condition is selected.
 	Type mathgr=1 & faedRevis=1 in the box. You are now telling SPSS to use the other (higher) level of math grades with the first level of father’s education revised.
 	Click on Continue.
 	Click on OK.
 	SPSS will ask you if you want to change the existing variable. Click on OK. This means that you want to add this second level to the cellcode variable. If you look at the Data View screen, you will notice that some of the cases now indicate a value of 2.
 	Complete the above steps for the remaining four levels: Level 3 of cellcode: mathgr = 0 & faedRevis = 2; Level 4: mathgr = 1 & faedRevis = 2; Level 5: mathgr = 0 & faedRevis = 3; and Level 6: mathgr = 1 & faedRevis = 3.


To simplify the output and help you remember what levels you have created, you should add value labels to the cellcode variable as we have done in Output 9.2b. See Appendix A if you don’t know how to do this, and see Output 9.2b for the labels we used.

Output 9.2a

IF (mathgr = 0 & faedRevis = 1 ) cellcode = 1. 
EXECUTE. 
IF (mathgr = 1 & faedRevis = 1 ) cellcode = 2. 
EXECUTE. 
IF (mathgr = 0 & faedRevis = 2 ) cellcode = 3. 
EXECUTE. 
IF (mathgr = 1 & faedRevis = 2 ) cellcode = 4. 
EXECUTE. 
IF (mathgr = 0 & faedRevis = 3) cellcode = 5. 
EXECUTE. 
IF (mathgr = 1 & faedRevis = 3) cellcode = 6. 
EXECUTE.

Next, you will use this new variable, cellcode, to examine the statistical significance of differences among certain of the six cells. This will help us to interpret the simple effects that we discussed above. We will demonstrate two types of follow-up tests (Post Hoc tests and Contrasts), but you should choose the most appropriate, not both. Remember, Post Hoc tests are appropriate when the researcher does not have a clear idea of which levels of the independent variable she/he wishes to compare or wants to compare all pairs of levels. Therefore, with Post Hoc tests all possible combinations will be compared. Contrasts compare a limited number of preselected pairs of means rather than all possible pairs of means. We will use the GLM univariate program to do post hocs in Problem 9.2b, but we could have used the Oneway program as we did in 9.2c.

9.2b. Computation of Post Hoc Tests

	Select Analyze → General Linear Model → Univariate. (This will produce Fig. 9.1.)
 	Click on Reset.
 	Move math achievement to the Dependent (variable) box.
 	Move six new cell codes to the Fixed Factor(s) box.
 	Click on Post Hoc… The Univariate: Post Hoc Multiple Comparisons for Observed Means window (not shown) will appear.
 	Highlight cellcode in the Factors box. Click on the arrow to move it into the Post Hoc Tests for: box.
 	Click on the Games-Howell post hoc test under Equal Variances Not Assumed because the Levene’s test for homogeneity was significant in Output 9.1. (If Levene’s test for homogeneity had not been significant, we could use the Tukey post hoc test here.)
 	Click on Continue to get Fig. 9.1. Select Options to get Fig. 9.3.
 	Check Descriptive statistics, Estimates of effect size, and Observed power. (Don’t check homogeneity tests; we already know that it is significant.)
 	Click on Continue and OK.


Output 9.2b.

UNIANOVA mathach BY cellcode

/METHOD = SSTYPE(3) 
 /INTERCEPT = INCLUDE 
 /POSTHOC = cellcode (GH) 
 /PRINT = DESCRIPTIVE ETASQ OPOWER 
 /CRITERIA = ALPHA(.05) 
 /DESIGN = cellcode.

Univariate Analysis of Variance

Between-Subjects Factors





	
	
	Value Label
	N





	six new
	1.00
	low math and low faed
	23



	cell codes
	2.00
	high math and low faed
	15



	
	3.00
	low math and med faed
	9



	
	4.00
	high math and med faed
	7



	
	5.00
	low math and high faed
	11



	
	6.00
	high math and high faed
	8
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Post Hoc Tests

six new cell codes
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Interpretation of Output 9.2b

The second table is Descriptive Statistics showing the six new cell code means computed in Output 9.2a. The Tests of Between-Subjects Effects table provides an overall or omnibus ANOVA (circled) that indicates there are significant differences among the six cellcode means. However, we are almost always more interested in the comparisons of pairs or other subsets of the means. Post hoc multiple comparisons allow you to test all combinations of pairs of means or at least more combinations of interest than are allowed using contrasts.

The Multiple Comparisons table is very complex. It includes comparisons of all possible combinations of pairs of cellcode means, twice. We have crossed out duplicates to simplify the table some. Even then there are 15 paired comparisons, and some are more meaningful than others. One useful set of comparisons is to test the difference between high and low math grades at each level of father’s education. We have done this in Output 9.2c and Fig. 9.11 with contrasts. Similar comparisons are made in this table. Can you find them?

Another set of meaningful comparisons is identified by the circles in the Multiple Comparisons table and by Fig. 9.10. These post hoc comparisons show that there are no significant differences between any of the three pairs of means for the low math grades line in Fig. 9.10. The p values for comparisons 1, 2, and 3 are .667, .892, and 1.00, respectively. Can you see them in the figure and table?


[image: Fig. 9.10. Interaction plot showing simple effects for father’s education.]
Fig. 9.10. Interaction plot showing simple effects for father’s education.



In regard to students who had high math grades (the top line), there was not a significant difference between the low and medium father’s education groups (comparison 4, p = .103) or between the medium and high father’s education groups (6, p = .057). However, there was a difference for the high math grades students between those with father’s who were HS grads or less (low) and those with a B.S. or more (high); this is comparison 5 and p < .001.




Example of How to Write About Problems 9.1 and 9.2 With Post Hoc Tests

Results

Table 9.1 shows that there was a significant interaction between the effects of math grades and father’s education on math achievement, F(2,67) = 3.97, p = .024, partial eta2 = .11. (The assumptions of independent observations was met, and assumptions of homogeneity of variances and normal distributions of the dependent variable for each group were checked. The assumption of homogeneity of variances was violated; thus, results should be viewed with caution. The assumption of normal distributions of the dependent variable for each group was not violated.) Table 9.2 shows the number of subjects, the mean, and standard deviation of math achievement for each cell. Games-Howell post hoc tests revealed that, of students with low math grades, level of father’s education did not seem to be associated with differences in math achievement. In contrast, for those who had mostly A and Bs in math, high father education was associated with statistically significantly higher math achievement than low father education (p < .001, d = 2.02). This effect size is considered large according to the literature.


Table 9.1
Two-Way Analysis of Variance for Math Achievement as a Function of Math Grades and Father's Education

[image: ]


Table 9.2
Means, Standard Deviations, and n for Math Achievement as a Function of Math Grades and Father's Education

[image: ]



9.2c. Computation of Contrasts

If you have preselected a limited number of comparisons between means, the appropriate follow-up test is Contrasts. Note that the maximum number of contrasts that you can do is limited in an SPSS run to the number of levels of the independent variable minus one, so that the number of contrasts will not exceed the number of degrees of freedom. To do Contrasts follow the steps below.

	Select Analyze→ Compare Means→ One Way ANOVA… You will see the One Way ANOVA window. (See Fig. 9.8.)
 	Move math achievement into the Dependent List: box by clicking on the top arrow button.
 	Move six new cell codes into the Factor: box by clicking on the bottom arrow button.



[image: Fig. 9.8. One-Way ANOVA.]
Fig. 9.8. One-Way ANOVA.



Now, we will compute Contrasts. In this case, we want to compare the math achievement of high versus low math grade students at each of the three levels of father’s education. This is done by telling SPSS specific cell means to contrast. For example, if we want to compare only the first and second means while ignoring the other four means, we would write a contrast statement as follows 1 −1 0 0 0 0. This can be done with the SPSS syntax or using the point and click method as shown below.

	Click on the Contrasts… button to see Fig. 9.9.
 	Enter 1 in the Coefficients: window.
 	Then click on Add, which will move the 1 to the larger window.
 	Next enter −1 and press Add; enter 0, press Add; enter another 0, press Add.
 	Enter a third 0, press Add; enter a fourth 0. Fig 9.9 is how the window should look just before you press Add the final time. This compares the math achievement scores of students with low versus high math grades if their fathers have the lowest level of education.
 	Now press Next so that the Fig. 9.9 says Contrast 2 of 2.
 	Now enter the following coefficients as you did for the first contrast: 0 0 1 −1 0 0. Be sure to press Add after you enter each number. This compares the math achievement scores of students with low versus high grades if their fathers have the middle level of education.
 	Press Next and enter the following Coefficients for Contrast 3 of 3: 0 0 0 0 1 −1. This compares the math achievement scores of students with low versus high grades if their fathers have the highest level of education.



[image: Fig. 9.9. One-Way ANOVA: Contrasts.]
Fig. 9.9. One-Way ANOVA: Contrasts.



Thus, what we have done with the above instructions is simple effects, first comparing students with high and low math grades who have fathers with less than a high school education. Second, we have compared students with high and low math grades who have fathers with some college. Finally, we have compared students with high and low math grades who have fathers with a B.S. or more. Look back at how we computed the cellcode variable (or the syntax and Descriptives in Output 9.2c) to see why this is true. Note that in cases like this it might be easier to type the syntax, which is part of the reason many experienced SPSS users prefer to use syntax. However, you must type the syntax exactly correctly or the program will not run.

	Click on Continue.
 	Click on Options.
 	Click on Descriptive and Homogeneity of variance test.
 	Click on Continue.
 	Click on OK.


Output 9.2c: Contrasts for Comparing New Cell Means

ONEWAY mathach BY cellcode

/CONTRAST= 1 -1 0 0 0 0 
 /CONTRAST= 0 0 1 -1 0 0 
 /CONTRAST= 0 0 0 0 1 -1 
 /STATISTICS DESCRIPTIVES HOMOGENEITY 
 /MISSING ANALYSIS.

Oneway
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Interpretation of Output 9.2c

This output is the result of doing the bottom left-hand step, shown in Fig. 9.4, for interpreting a statistically significant interaction. Using Output 9.2c, we can examine three main simple effects statistically. The first table, Descriptives, provides the means of the six new cell code groups that will be compared, two at a time, as shown in the Contrast Coefficients table. The second table is Levene’s test for the assumption that the variances are equal or homogeneous. In this case, the Levene’s test is significant, so the assumption is violated and the variances cannot be assumed to be equal. The third table is the ANOVA table. Again, the overall F(5,67) = 6.86 is significant (p < .001), which indicates that there are significant differences somewhere. The Contrast Tests table helps us identify which simple effects were statistically significant. We will focus on one set of simple effects in our interpretation, the ones based on t tests that do not assume equal variances. Note that we have circled three Sigs. (the significance level or p). These correspond to the three simple effects shown with arrows in our drawing of the interaction plot (Fig. 9.11). For example, the left-hand arrow (and the first contrast) compares math achievement scores for both high and low math grades of students whose fathers have a relatively low education level.


[image: Fig. 9.11. Interaction plot showing three simple effects.]
Fig. 9.11. Interaction plot showing three simple effects.



The contrasts confirm statistically what we thought from visual inspection of the profile plot in Output 9.1. As you can see in Fig. 9.11 and the circled parts of the Contrast Tests table, there is not a significant difference (p = .742) in math achievement between students with high and low math grades when their father’s education is low. Likewise, the difference between students with high and low math grades when their father’s education is medium (some college), although bigger (3.61 points), is not statistically significant (p = .112). However, when father’s education is high, students with high (mostly As and Bs) math grades do much better (9.47 points) on the achievement test than those with low grades (p = .001). Thus, math achievement depends both on students’ math grades and their father’s education. It would also be possible to examine the simple effects for high and low math grades separately (the two lines) as we did in the interpretation for 9.2b, but it is usually not necessary to do both types of simple effects to understand the interaction.




Example of How to Write About Problems 9.1 and 9.2 With Contrasts

Results

Table 9.3 shows that there was a significant interaction between the effects of math grades and father’s education on math achievement, F(2,67) = 3.97, p = .024, partial eta2 = .11. (The assumption of independent observations was met, and assumptions of homogeneity of variances and normal distributions of the dependent variable for each group were checked. The assumption of homogeneity of variances was violated; thus, results should be viewed with caution. The assumption of normal distributions of the dependent variable for each group was not violated.) Table 9.4 shows the number of subjects, the mean, and standard deviation of math achievement for each cell. Simple effects contrast analyses revealed that, of students with highly educated fathers, those who had mostly A and B grades had higher math achievement than did students who had lower grades, t(13.86) = −3.97, p = .001). Simple effects at the other levels of father education were not significant, indicating that for students whose fathers were less educated, students with higher and lower math grades had similar math achievement scores.


Table 9.3
Two-Way Analysis of Variance for Math Achievement as a Function of Math Grades and Father's Education

[image: ]


Table 9.4
Means, Standard Deviations, and n for Math Achievement as a Function of Math Grades and Father's Education
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Problem 9.3: Analyses of Covariance (ANCOVA) 

ANCOVA is an extension of ANOVA that typically provides a way of statistically controlling for the effects of continuous or scale variables that you are concerned about but that are not the focal point or independent variable(s) in the study. These continuous variables are called covariates (or sometimes, control variables). Covariates usually are variables that may cause you to draw incorrect inferences about the prediction of the dependent variable from the independent variable, if not controlled (then are possible confounds). It is also possible to use ANCOVA when you are interested in examining a combination of a categorical (nominal) variable and a continuous (scale) variable as predictors of the dependent variable. In this latter case, you would not consider the covariate to be an extraneous variable but rather a variable that is of interest in the study. SPSS will allow you to determine the significance of the contribution of the covariate as well as whether the nominal variables (factors) significantly predict the dependent variable, over and above the “effect” of the covariate.

In the HSB data, boys have significantly higher math achievement scores than girls. To see if the males’ higher math achievement scores are due to differences in the number of math courses taken by the male and female students, we will use math courses taken as a covariate and do ANCOVA.

	9.3 Do boys have higher math achievement than girls if we control for differences in the number of math courses taken?


To answer this question, first, we need to assess the assumption of homogeneity of regression slopes:

	Analyze → General Linear Model → Univariate.
 	Next, move math achievement to the Dependent box, gender to the Fixed Factor box, and math courses taken to the Covariates box (see Fig. 9.12).



[image: Fig. 9.12. GLM: Univariate.]
Fig. 9.12. GLM: Univariate.



	Click on Model and then click on the button next to Custom under Specify Model (see Fig. 9.13).



[image: Fig. 9.13. Univariate: Model.]
Fig. 9.13. Univariate: Model.



	Move gender from the Factor & Covariates box to the Model box. Do the same for mathcrs.
 	Next highlight gender again, but hold down the “Shift” key and highlight mathcrs. This will allow you to have both gender and mathcrs highlighted at the same time. Click on the arrow to move both variables together to the Model box. This will make gender*mathcrs.
 	Click on Continue and then OK. Your syntax and output should look like the beginning of Output 9.3.


Next, do the following:

	Analyze → General Linear Model → Univariate.
 	Click on Reset.
 	Next, move math achievement to the Dependent box, gender to the Fixed Factor box, and math courses taken to the Covariates box (see Fig. 9.12).
 	Click on Options to get Fig. 9.14.



[image: Fig. 9.14. GLM: Univariate options.]
Fig. 9.14. GLM: Univariate options.



	Select Descriptive statistics, Estimates of effect size, Observed power, and Homogeneity tests.
 	Move gender into the box labeled Display Means for (see Fig. 9.14).
 	Click on Compare main effects to include output that will show which levels are statistically significantly different from one another.
 	Be sure LSD(none) is in the Confidence interval adjustment pull-down menu.
 	Click on Continue and then OK. Your syntax and output should look like the rest of Output 9.3.


Output 9.3: Analysis of Covariance (ANCOVA)

UNIANOVA mathach BY gender WITH mathcrs

/METHOD = SSTYPE(3) 
 /INTERCEPT = INCLUDE 
 /CRITERIA = ALPHA(.05) 
 /DESIGN = gender mathcrs gender*mathcrs.

Univariate Analysis of Variance

Between-Subjects Factors





	
	
	Value Label
	N





	gender
	0
	male
	34



	
	1
	female
	41
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UNIANOVA

mathach BY gender WITH mathcrs 
 /METHOD = SSTYPE(3) 
 /INTERCEPT = INCLUDE 
 /EMMEANS = TABLES(gender) WITH(mathcrs=MEAN) 
 /PRINT = DESCRIPTIVE ETASQ OPOWER HOMOGENEITY 
 /CRITERIA = ALPHA(.05) 
 /DESIGN = mathcrs gender.

Univariate Analysis of Variance

Between-Subjects Factors





	
	
	Value Label
	N





	gender
	0
	male
	34



	
	1
	female
	41
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Estimated Marginal Means
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Interpretation of Output 9.3

The ANCOVA (Tests of Between-Subject Effects) table is interpreted in much the same way as ANOVA tables in earlier outputs. The covariate (mathcrs) has a highly significant “effect” on math achievement, as should be the case. However, the “effect” of gender is no longer significant, F(1,72) = .36, p = .55. You can see from the Estimated Marginal Means table that the statistically adjusted math achievement means for boys and girls are quite similar once differences in the number of math courses taken were accounted for. This suggests that the fact that males took more math courses may have been the reason for their higher math achievement.

The Observed Power for math courses taken was 1.0, which indicates extremely high power. For gender the observed power was .091. This is very low power. The effect size for gender is also very small (partial eta = .071), so it may be that we have overlooked an important gender difference because of this low power. It is possible that once the strong relation between the number of math courses taken and math achievement was taken into account, there was no longer an important “effect” of gender on math achievement.

We include the Pairwise Comparisons table to show how to produce a post hoc test for the multiple levels of the independent variable. In our example, this table is not helpful since our overall test was not significant. If we had found a significant difference among an independent variable that had three or more levels, the Pairwise Comparison table would show which levels were significantly different from one another. We would also need to calculate an effect size (i.e., Cohen’s d) for each pair that was statistically significantly different. To do so, we need to calculate the standard deviation for the estimated marginal means by using the formula: SD = SE(√n). We would use this standard deviation and the new estimated marginal means to calculate Cohen’s d.

The Univariate Test table can be ignored since it gives us the same information as the Tests of BetweenSubject Effects table.




Example of How to Write About Problems 9.3

Results

An analysis of covariance was used to assess whether boys have higher math achievement than girls after controlling for differences between boys and girls in the number of math courses taken (Table 9.6). (The following assumptions were checked, (a) independence of observations, (b) normal distribution of the dependent variable, (c) homogeneity of variances, (d) linear relationships between the covariates and the dependent variable, and (e) homogeneity of regression slopes. The assumption of homogeneity of variances was violated; however, because cell sizes were similar (34 and 41), this violation did not present an issue. All other assumptions were met.) Results indicate that after controlling for the number of math courses taken, there is not a significant difference between boys and girls in math achievement, F(1, 72) = .36, p = .552, partial eta2 = .01. Table 9.5 presents the means and standard deviations for boys and girls on math achievement before and after controlling for number of math courses taken. As is evident from this table, virtually no difference between boys and girls remains after differences in number of math courses taken are controlled.


Table 9.5
Adjusted and Unadjusted Gender Means and Variability for Math Achievement Using Math Grades as a Covariate
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Table 9.6
Analysis of Covariance for Math Achievement as a Function of Gender, Using Number of Math Courses Taken as a Covariate

[image: ]



Interpretation Questions

	9.1 In Output 9.1: (a) Is the interaction significant? (b) Examine the profile plot of the cell means that illustrates the interaction. Describe it in words. (c) Is the main effect of father’s education significant? Interpret the partial eta squared. (d) Is the “effect” of math grades significant? (e) Why did we put the word effect in quotes? (f) How might focusing on the main effects be misleading?
 	9.2 (a) Interpret, in words, the post hoc multiple comparisons shown in Output 9.2b. (b) Interpret the contrasts shown in Output 9.2c. (c) When would you use post hoc tests instead of contrasts?
 	9.3 In Output 9.3: (a) Is the adjusted main effect of gender significant? (b) What are the adjusted math achievement means (marginal means) for males and females? (c) Is the effect of the covariate (mathcrs) significant? (d) What do (a) and (c) tell us about gender differences in math achievement scores?


Extra SPSS Problems 

	9.1 Using the college student data.sav file, do gender and marital status seem to have an effect on student’s height and do gender and marital status interact? Run the appropriate SPSS analysis and interpret the results.
 	9.2 A county is interested in assessing the costs of its road construction (cost): whether it is more expensive in the South Florida District or in other districts in the county (district) in relation to whether the contractors were found through competitive contracts or fixed contracts (status). Using the Road construction bids.sav data set, conduct factorial ANOVA. 	Are these factors independently significant in the level of cost?
 	Is there a significant interaction effect between the district and the status on the cost?
 	How much total variance in cost can be attributed to these variables?
 	If a post hoc test is necessary, conduct an appropriate test and discuss the results.


 	9.3 Answer the following question using the Mall rentals.sav data file. Do people with higher levels of education (edu) have a shorter time for getting a mall rental (interval) than people with lower levels of education if we control for differences in the number of status?
 	9.4 Open the Employee data.sav file. Do male or female (gender) employees have higher salaries (salbegin) if we control for the number of months they have been employed (jobtime)?



Chapter 10
 Repeated-Measures and Mixed ANOVAs

In this chapter, you will analyze a new data set that includes repeated measure data. These data allow you to compare four products (or these could be four instructional programs), each of which was evaluated by 12 consumers/judges (6 male and 6 female). The analysis requires statistical techniques for within-subjects and mixed designs.

In Problem 10.1, to do the analysis, you will do a repeated-measures ANOVA, using the General Linear Model program (called GLM) in SPSS. In Problem 10.3, you will use the same GLM program to do a mixed ANOVA, one that has a repeated-measures independent variable and a between-groups independent variable. In Problem 10.2, you will use a nonparametric statistic, the Friedman test, which is similar to the repeated-measures ANOVA. SPSS does not have a nonparametric equivalent to the mixed ANOVA.

Chapter 5 provides several tables to help you decide what statistic to use with various types of difference statistics problems. Tables 5.1 and 5.3 include the statistics used in this chapter. Please refer back toChapter 5 to see how these statistics fit into the big picture.

Assumptions of Repeated-Measures ANOVA

The assumptions of repeated-measures ANOVA are similar to those for between-groups ANOVA, and include independence of observations (except for those analyzed using the “within-subjects” or “repeated-measures” factor), normality, and homogeneity of variances. Variances are deviations of each person’s score on a single measure from the mean for that measure, multiplied by themselves (squared). In addition to variances, because the repeated-measures design includes multiple measures (the same measure at more than one time point), it includes covariances. Covariances are the same as variances, except that instead of being calculated by multiplying each deviation score by itself, they involve multiplying each person’s deviation scores on two variables, in this case the same variable at different times (repeated measures), paired across time. Thus, covariances need to meet certain assumptions as well. The homogeneity assumption for repeated-measures designs, known as sphericity, requires equal variances and covariances for each level of the within-subjects variable. Another way of thinking about sphericity is that, if one created new variables for each pair of within-subjects variable levels by subtracting each person’s score for one level of the repeated-measures variable from that same person’s score for the other level of the within subject variable, the variances for all of these new difference scores would be equal. For example, if you have three groups (Group A, Group B, and Group C) sphericity is assessing the following: varianceA-B ≅ varianceA-C ≅ varianceB-C. Unfortunately, it is rare for behavioral science data to meet the sphericity assumption, and violations of this assumption can seriously affect results. However, fortunately, there are good ways of dealing with this problem—either by adjusting the degrees of freedom or by using a multivariate approach to repeated measures. Both of these are discussed later in this chapter. One can test for the sphericity assumption using the Mauchly’s test, the Box test, the Greenhouse-Geisser test, and/or the Huynh-Feldt tests (see below). Even though the repeated-measures ANOVA is fairly robust to violations of normality, the dependent variable should be approximately normally distributed for each level of the independent variable.

Assumptions of the Friedman Test

There are two main assumptions of the Friedman test. First, all of the data must come from populations having the same continuous distribution. This is not as stringent as the assumption of normality, which is the common assumption for ANOVA tests. The assumption of a continuous distribution can be checked by creating histograms. The second assumption is independence of observations (other than the dependency that is dealt with by the within-subjects variable).

Assumptions of Mixed ANOVA

The assumptions for mixed ANOVA are similar to those for repeated-measures ANOVA, except that the assumption of sphericity must hold for levels of the within-subjects variable at each level of between-subjects variables. This can be tested using SPSS with Box’s M through the Multivariate General Linear Model.

The Product Data Set 

	Open the SPSS for Windows program. Open the Product data set. Do not retrieve the hsbdataNew for this assignment.


In this study, each of the 12 participants (or subjects) has evaluated four products that vary in cost (e.g., four brands of DVD players) on 1–7 Likert scales. Product A is the most expensive (i.e., $400), Product B is less expensive (i.e., $300), Product C costs only $200, and Product D is $100. You will find the data presented in the SPSS data editor once you have opened the product data set.

	Click on the Data View tab at the bottom of the screen to get Fig 10.1.



[image: Fig. 10.1. Data view for the product data.]
Fig. 10.1. Data view for the product data.



Figure 10.1 shows the Data View for 12 participants who were asked to rate four products (A_$400,B_$300, C_$200, D_$100) from 1 (very low quality) to 7 (very high quality). The participants were also asked their gender (1 = male, 2 = female). Thus, subjects 1–6 are males, and 7–12 are females.

	Click on the Variable View tab to see the names and labels of the variables as shown in Fig. 10.2.



[image: Fig. 10.2. Variable view.]
Fig. 10.2. Variable view.



We have labeled the measurement of the four products scale because the frequency distribution of each is approximately normal. We label gender and other dichotomous variables as nominal; however, despite this traditional designation for dichotomous variables, dichotomous variables, unlike other types of nominal variables, provide meaningful averages (indicating percentage of participants falling in each category) and can be used in multiple and logistic regression as if they were ordered. Furthermore, many dichotomous variables (but not gender) even have an implied order (e.g., 0 = do not have the characteristic and 1 = have the characteristic; thus, a score of 1 indicates more of the characteristic than does a score of 0).

In repeated-measures (also called within-subjects) analyses, SPSS creates the Within-Subjects Factor or independent variable from two or more existing variables (in this case A_$400, B_$300, C_$200, D_$100). These then become levels of the new independent variable. In this example, we will call the new variable product, and it has four levels (A_$400, etc.), indicating which product was being rated. In order for a set of variables to be converted into a meaningful within-subject factor, the scores on each of the existing variables (which will become levels of the new within-subjects variable) have to be comparable (e.g., ratings on the same seven-point Likert scale) and each participant has to have a score on each of the variables. The within-subject factor could be based on related or matched subjects (e.g., the ratings of a product by mother, father, and child from each family) instead of a single participant having repeated scores. The within-subjects design should be used whenever there are known dependencies in the data, such as when the same questions are systematically asked of multiple family members (e.g., there is a mother, father, and child rating for each family) that would otherwise violate the between-subjects assumption of independent observations. The dependent variable for the data in Fig. 10.1 could be called product ratings and would be the scores/ratings for each of the four products. Thus, the independent variable, product, indicates which product is being rated, and the dependent variable is the rating itself. Note that gender is a between-subjects independent variable that will be used in Problem 10.3.

Problem 10.1: Repeated-Measures ANOVA 

The GLM repeated-measures procedure provides a variety of analysis of variance procedures to use when the same measurement is made several times on each subject or the same measurement is made on several related subjects. The single-factor repeated-measures ANOVA, which we will use for Problem 10.1, is appropriate when you have one independent variable with two or more levels that represent the occasions on which repeated measures were made, the family member who was responding to the questions, or other similar categories involving non-independent assessments of the same outcome variable. If there are only two levels of the independent variable, the sphericity assumption is not a problem because there is only one pair of levels. If between-subjects factors are specified, they divide the sample into groups. There are no between-subjects (also called between-groups) factors in this problem. Finally, you can use a multivariate or univariate approach to testing repeated-measures effects.

	10.1. Are there differences among the average ratings for the four products?


Let’s test whether there are differences among the average ratings of the four products. We are assuming the product ratings are scale/normal data. Follow these commands:

	Analyze → General Linear Model → Repeated Measures (see Fig. 10.3).
 	Delete the factor 1 from the Within-Subject Factor Name box and replace it with the name product, our name for the repeated-measures independent variable that SPSS will generate from the four products.
 	Type 4 in the Number of Levels box since there are four products established in the data file.
 	Click on Add so the screen looks like Fig. 10.3, then click on Define to get Fig. 10.4.



[image: Fig. 10.3. Repeated measures GLM define factor(s).]
Fig. 10.3. Repeated measures GLM define factor(s).




[image: Fig. 10.4. GLM repeated measures.]
Fig. 10.4. GLM repeated measures.



	Now move A_$400, B_$300, C_$200, D_$100 over to the Within-Subjects Variables box.
 	Click on Contrasts. Be sure Polynomial is in the parenthesis after product (see Fig. 10.5). SPSS does not provide post hoc tests for the within-subjects (repeated-measures) effects, so we will use contrasts. If the products are ordered, let’s say, by price, we can use the polynomial contrasts that are interpreted below. If we wanted to use a different type of contrast, we could change the type by clicking on the arrow under Change Contrast.


	Click on Continue to get Fig. 10.4 again.



[image: Fig 10.5. Repeated measures: Contrasts.]
Fig 10.5. Repeated measures: Contrasts.



	Click on Options to get Fig. 10.6.
 	Click on Descriptive statistics, Estimates of effect size, and Observed power.



[image: Fig 10.6. Repeated measures: Options.]
Fig 10.6. Repeated measures: Options.



	Click on Continue, then on OK.


Compare your syntax and output with Output 10.1.

Output 10.1: Repeated-Measures ANOVA Using the General Linear Model Program

GLM A_$400 B_$300 C_$200 D_$100

/WSFACTOR=Product D Polynomial 
/METHOD=SSTYPE(3) 
/PRINT=DESCRIPTIVE ETASQ OPOWER 
/CRITERIA=ALPHA(.05) 
/WSDESIGN=product.

General Linear Model

Within-Subjects Factors





	product
	Dependent Variable





	1
	A_$400



	2
	B_$300



	3
	C_$200



	4
	D_$100







Descriptive Statistics





	
	Mean
	Std. Deviation
	N





	Product A, $400
	4.67
	1.923
	12



	Product B, $300
	3.58
	1.929
	12



	Product C, $200
	3.83
	1.642
	12



	Product D, $100
	3.00
	1.651
	12
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Interpretation of Output 10.1

The first table identifies the four levels of the within-subjects, repeated-measures independent variable, product. The second table gives the M and SD for each product on the 1–7 rating, which is the dependent variable.

The third table presents four similar Multivariate Tests of the within-subjects effect (i.e., whether the four products are all rated equally). Wilks’ lambda is a commonly used multivariate test. Notice that in this case, the Fs, df, and significance are the same for each of the multivariate tests: F(3, 9) = 19.07, p < .001. The significant F means that there is a difference somewhere in how the products are rated. The multivariate tests can be used even if sphericity is violated. However, if epsilons are high, indicating that one is close to achieving sphericity, these multivariate tests may be less powerful in the next table (less likely to indicate statistical significance) than the corrected univariate repeated-measures ANOVA shown below. Also note that the observed power is extremely high (1.0); thus it would be possible to have a statistically significant result with a small effect size, which might not be practically meaningful. However, partial eta is very large (√.864 = .93) so this is not an issue.
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Interpretation of Output 10.1 continued

The fourth table indicates that these data violate the sphericity assumption of the univariate approach to repeated-measures analysis of variance. Thus, we should use either the multivariate approach, the appropriate nonparametric test (Friedman), or correct the univariate approach with the Greenhouse-Geisser or other similar correction, as shown in the next table.
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Interpretation of Output 10.1 continued

You can see in the Tests of Within-Subjects Effects (the Univariate E, ANOVA) that these corrections reduce the degrees of freedom by multiplying them by Epsilon. Using the Greenhouse-Geisser epsilon (because it is less than .75), the dfs become 3 × .544 = 1.63 and 33 × .544 = 17.95. Even with this adjustment, the Within-Subjects Effects (of product) is significant, F(1.63, 17.95) = 23.63, p < .001, as were the multivariate tests. This means that the ratings of the four products are significantly different. However, this overall (product) F does not tell you which pairs of products have significantly different means.
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Interpretation of Output 10.1 continued

SPSS has several tests of within-subjects contrasts. We have chosen to use the polynomial contrast on the assumption that the products are ordered, say, from the most expensive as A_$400 to the least as D_$100. The Tests of Within-Subjects Contrasts table shows whether the four product means are significantly like a straight line (linear effect), a line with one change in direction (quadratic), and a two bend line (cubic). You can see that there is a highly significant linear trend and a significant cubic trend. Below, we plotted the means using a line graph (Graphs → Legacy Dialogs → Line → Click on Simple → Click on Summaries of Separate cases → Define → Move Variables to Line Represents) to show the trends. Overall, there is a linear decline in ratings from Product A (4.67) to Product D (3.00). However, Product B has a somewhat lower mean (3.58) than Product C (3.83) producing the cubic trend.
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Interpretation of Output 10.1 continued

In Output 10.1, we ignore the Tests of Between-Subjects Effects table because we do not have a between – subjects/groups variable in this analysis.

There is controversy over whether or not it is appropriate to report the univariate F even after a significant multivariate F has been found. Traditionally, univariate F’s have been analyzed to understand where the differences are when there is a significant multivariate F. A simulation study found that utilizing univariate ANOVAs kept experiment wise error rate lower than other techniques. The argument against reporting the univariate F is that the univariate F misses the multivariate relationships and has been found in some studies to be incorrect. We recommend reporting the univariate F’s for significant multivariate F’s.




Example of How to Write About Output 10.1

Results

A repeated-measures ANOVA, with Greenhouse-Geisser correction, was conducted to assess whether there were differences between the average ratings of the four products. (The following assumptions were tested: (a) independence of observations, (b) normality, and (c) sphericity. Independence of observations and normality were met. The assumption of sphericity was violated. Thus, the Greenhouse-Geisser correction was used.) Results indicated that participants did rate the four products differently and that these differences were statistically significant, F(1.63, 17.95) = 23.63, p < .001, partial eta2 = .68. The means and standard deviations for the products listed in order from most expensive to least expensive are presented in Table 10.1. Examination of these means suggests that participants rated more expensive products more highly than less expensive products. Polynomial contrasts indicated, in support of this, that there was a statistically significant linear trend, F(1, 11) = 26.53, p <.001, partial eta2 = .71. However, this finding was qualified by the statistically significant cubic trend, F(1, 11) = 20.88, p = .001, partial eta2 = .66, reflecting the higher rating for Product C than Product B.

Table 10.1
Means and Standard Deviations of the Four Product Ratings





	Variable
	M
	SD





	




	Product A($400)
	4.67
	1.92



	Product B ($300)
	3.58
	1.93



	Product C($200)
	3.83
	1.64



	ProductD($100)
	3.00
	1.65









Problem 10.2: The Friedman Nonparametric Test for Several Related Samples

What could you do if the product ratings are ordinal data or the repeated-measures ANOVA assumptions are markedly violated? One answer is to use a nonparametric statistic. As you can tell from Table 5.1, an appropriate nonparametric test for when you have more than two levels of one repeated-measures or related samples (i.e., within-subjects) independent variables is the Friedman test.

	10.2 Are there differences among the mean ranks of the product ratings?


Let’s use A_$400 to D_$100 again with the following commands:

	Analyze → Nonparametric tests →Legacy Dialogs→ K Related Samples… and move product A [A_$400] to product D [D_$100] to the Test Variables box (see Fig. 10.7).
 	Make sure the Friedman test type is checked.
 	Then click on Statistics to get Fig. 10.8.



[image: Fig. 10.7. Tests for several related samples.]
Fig. 10.7. Tests for several related samples.



	Now click on Descriptive.
 	Click on Continue, then OK. Look at your output and compare it to Output 10.2a.



[image: Fig. 10.8. Descriptive statistics for nonparametric tests for several related samples.]
Fig. 10.8. Descriptive statistics for nonparametric tests for several related samples.



Output 10.2a: Nonparametric Tests With Four Related Samples

NPAR TESTS

/FRIEDMAN=A_$400 B_$300 C_$200 D_$100 
/STATISTICS DESCRIPTIVES 
/MISSING LISTWISE.


[image: ]

Friedman Test

[image: ]
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Interpretation of Output 10.2a

The Descriptive Statistics table provides familiar statistics that were useful for interpreting the polynomial contrasts in Output 10.1 but are not themselves used in the Friedman test. Rather, ratings are ranked, and the means of these ranks are used in the Friedman test. The Ranks table shows the mean rank for each of the four products.

There is not an easy method for calculating effect sizes for the Friedman test. Therefore, we recommend focusing on calculating effect sizes for any follow-up tests that you might do. Below, we will show you how to calculate an effect size for the follow-up Wilcoxon test.

The Friedman Test Statistics table shows the results of the null hypothesis that the four related variables come from the same population. For each rater/case, the four variables are ranked from 1 to 4, with 4 being the highest rank. The test statistic is based on these ranks. The Asymp. Sig. (asymptotic significance) means this is not an exact significance level. The p <.001 indicates that there is a statistically significant overall difference among the four mean ranks.



In order to determine which pairs of differences between mean ranks are significant, and thus the likely source of the significant Friedman test, we will perform a nonparametric related-sample test, the Wilcoxon. See Table 5.1 for a more complete view of the different statistical tests used to compare samples.

	Analyze → Nonparametric tests → Legacy Dialogs → 2 Related Samples and make sure that Wilcoxon is checked.
 	Then highlight both Product A, $400 and Product B, $300 and click the arrow to move them over together.
 	Next, repeat for Product B, $300 and Product C, $200 and for Product C, $200 and Product D, $100.
 	Click OK.


Check to make sure that your syntax and output are like those in Output 10.2b.

Output 10.2b: Follow-Up Paired Comparisons for Significant Friedman

NPAR TESTS

/WILCOXON=A_$400 B_$300 C_$200 WITH B_$300 C_$200 D_$100 (PAIRED) 
/MISSING ANALYSIS.

Wilcoxon Signed Ranks Test

Ranks





	
	
	N
	Mean Rank
	Sum of Ranks





	Product B, $300 -
	Negative Ranks
	10a
	5.50
	55.00



	Product A, $400
	Positive Ranks
	0b
	.00
	.00



	
	Ties
	2c
	
	



	
	Total
	12
	
	



	Product C, $200 -
	Negative Ranks
	1d
	3.00
	3.00



	Product B, $300
	Positive Ranks
	4e
	3.00
	12.00



	
	Ties
	7f
	
	



	
	Total
	12
	
	



	Product D, $100 -
	Negative Ranks
	10g
	5.50
	55.00



	Product C, $200
	Positive Ranks
	0h
	.00
	.00



	
	Ties
	2i
	
	



	
	Total
	12
	
	








a. Product B, $300 < Product A, $400

b. Product B, $300 > Product A, $400

c. Product B, $300 = Product A, $400

d. Product C, $200 < Product B, $300

e. Product C, $200 > Product B, $300

f. Product C, $200 = Product B, $300

g. Product D, $100 < Product C, $200

h. Product D, $100 > Product C, $200

i. Product D, $100 = Product C, $200




[image: ]


Interpretation of Output 10.2b

Given that there was a significant overall difference between the mean ranks, we followed up the Friedman with Wilcoxon tests. Since the products are ordered and there are four levels, it makes sense to do three orthogonal contrasts, contrasting adjacent pairs. A larger number of comparisons would prevent the comparisons from being independent of one another. Given that three post hoc comparisons were made, it would be desirable to make a Bonferroni correction on alpha, such that p would need to be .05/3 (.017) to be significant. Notice that the contrasts between products 2 and 1 and between 4 and 3 are significant at this level and that they both indicate that the higher numbered product was given a lower rating than the lower numbered product. On the other hand, the difference between ratings for products 3 and 2 was not significant. This is not surprising when you look at the mean ranks in Output 10.2a and suggests that the slight increase in ratings for Product C compared to Product B may not be important. Remember, however, that the Wilcoxon is not performed on the rating scores themselves but rather on the ranks of the ratings.

To calculate an effect size for this analysis, we can compute an r from the z scores and Ns (Total) that are shown in Output 10.2b using the formula [image: ] For Output 10.2b, r = −.84 (i.e., −2.919/3.46) for the comparison of Product A with Product B. For the comparison of Product C with Product D, r = −.91 (i.e., −3.162/3.46). Both of these are very large effect sizes.




Example of How to Write About Outputs 10.2a and 10.2b

Results

A Friedman test was conducted to assess if there were differences among the mean ranks of the product ratings. (Assumptions of independence of observations and continuous distributions were checked and met.) A statistically significant difference was found, χ2 (3, N = 12) = 26.17, p = .001. This indicates that there were differences among the four mean ranks. Three orthogonal contrasts were performed using Wilcoxon tests with the Bonferroni correction (comparison-wise alpha = .017). The contrasts between Products 1 and 2 (Z = -2.92, p = .004, r = −.84), and between Products 3 and 4 (Z = -3.16, p = .002, r = −.91) were found to be statistically significant; however that between Products 2 and 3 was not statistically significant. In both cases, the statistically significant contrasts indicated that the more expensive product was rated more highly, and the differences were very large according to Cohen (1988).



Problem 10.3: Mixed ANOVA 

You can test null hypotheses about the effects of both between-groups factors and within-subjects factors with a Mixed ANOVA using the General Linear Model procedure. You can investigate interactions between factors as well as the effects of individual factors on a dependent variable.

Repeat Problem 10.1 except add gender to see if there are any gender differences as well as product differences and if there is an interaction between gender and product. Is gender a between-groups/subjects or within-subjects variable? The answer is important in how you compute and interpret the analysis.

	10.3. Are there gender as well as product differences? Is there an interaction between gender and product?


	Click on Analyze → General Linear Model → Repeated Measures to get Fig. 10.3 again.
 	In the Repeated Measures Define Factor(s) window (Fig. 10.3), you should see product (4) in the top big box. If so, click on Define (if not repeat the steps for Problem 10.1).
 	Then move gender to the Between-Subjects Factor(s) box (Fig. 10.4).
 	Click on Contrasts to get Fig. 10.5.
 	Click on product(polynomial) under Factors.
 	Be sure that Repeated is listed under Contrast, then click Change. This will make it say product (Repeated).
 	Click Continue.
 	Click on Options and be sure that Descriptive Statistics, Estimates of effect size, and Observed power are checked.
 	Click Continue.
 	Click on Plots.
 	Move gender to the Separate Lines box and product to the Horizontal Axis box.
 	Click Continue.
 	Click on OK.


Compare your syntax and output with Output 10.3.

Output 10.3: Mixed ANOVA: Product by Gender

GLM A_$400 B_$300 C_$200 D_$100 BY gender

/WSFACTOR=Product D Repeated 
/METHOD=SSTYPE(3) 
/PRINT=DESCRIPTIVE ETASQ OPOWER 
/CRITERIA=ALPHA(.05) 
/WSDESIGN=product 
/DESIGN=gender.

General Linear Model

Within-Subjects Factors





	Measure:MEASURE_1
	
	



	product
	Dependent Variable





	1
	A_$400



	2
	B_$300



	3
	C_$200



	4
	D_$100







Between-Subjects Factors





	
	
	Value Label
	N





	Gender
	1
	Male
	6 



	
	2
	Female
	6







Descriptive Statistics





	
	Gender
	Mean
	Std. Deviation
	N





	Product A, $400
	Male
	5.83
	1.169
	6



	
	Female
	3.50
	1.871
	6



	
	Total
	4.67
	1.923
	12



	Product B, $300
	Male
	4.50
	1.871
	6



	
	Female
	2.67
	1.633
	6



	
	Total
	3.58
	1.929
	12



	Product C, $200
	Male
	4.33
	1.633
	6



	
	Female
	3.33
	1.633
	6



	
	Total
	3.83
	1.642
	12



	Product D, $100
	Male
	3.50
	1.871
	6



	
	Female
	2.50
	1.378
	6



	
	Total
	3.00
	1.651
	12








[image: ]
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The dfs for the univariate test are adjusted using the Greenhouse-Geisser epsilon because of lack of sphericity.



[image: ]
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[image: ]


Note that although the general shape of the curves are similar for males and females, there seems to be a greater difference between males’ and females’ ratings of the less expensive products relative to the more expensive ones.




[image: ]


Interpretation of Output 10.3

Most of these tables are similar in format and interpretation to those in Output 10.1. However, the addition of gender as a between-subjects independent variable makes the last table meaningful and adds an interaction (product * gender) to both the Multivariate Tests table and the univariate (Tests of Within-Subjects Effects) tables. Both multivariate and univariate tables indicate that (as in Output 10.1) there are differences among the four products, with a very large effect size (partial eta). Again, one should interpret the Greenhouse–Geisser univariate test with corrected degrees of freedom given the lack of sphericity. In addition, the interaction of product and gender is significant according to both univariate and multivariate tests. This means that the downward overall trend for all subjects is somewhat different for males and females. The figure shows that males seem to rate the two inexpensive products more highly than do females, whereas the difference between ratings of males and females isn’t as great for the two most expensive products. Recall that the Tests of Within-Subjects Contrasts table shows whether the four product means are significantly like a straight line (linear effect), a line with one change in direction (quadratic), and a two-bend line (cubic). Again, there are significant linear and cubic trends, but now the quadratic trend is also significant. For males, there is a linear decline in ratings from Product A (5.83) to Product D (3.50). For females, Product B has a lower mean (2.67) than Product A (3.50) and Product C (3.33) producing the cubic trend. And then the mean for Product D (2.50) is again lower, which produces the quadratic trend. Moreover, the linear and quadratic trends are significant for the interaction between product and gender.

The last table indicates that the males and female product rating do not statistically significantly differ (p = .13). However, the observed power is very low (.32) so we did not have enough power to detect the gender difference even though the effect size is large, eta = .46 (√.214). Remember that there were only six males and six females in this small sample.

Note that if we had three groups, instead of just males and females, for our between-groups variable and if the ANOVA had been significant, we would have used a between-groups post hoc test for this effect. SPSS provides the same wide variety of post hoc multiple comparisons for the Between-Subjects Effects that were available for one-way ANOVA and factorial ANOVAs, including the Tukey HSD and Games Howell.




Example of How to Write About Output 10.3

Results

A mixed ANOVA was conducted to assess whether there were gender and product differences in product ratings. (The following assumptions were tested: (a) independence of observations, (b) normality, and (c) sphericity. Independence of observations and normality were met. The assumption of sphericity was violated. Thus, the Greenhouse-Geisser epsilon was used to correct degrees of freedom.) Results indicated a statistically significant main effect of product, F(1.64, 16.4) = 41.77, p < . 001, partial eta2 = .807, but not of gender, F(1, 10) = 2.72, p = .13, partial eta2 = .214. However, the product main effect was qualified by a statistically significant interaction between product and gender, F(1.64, 16.40) = 9.44, p = .003, partial eta2 = .486. Table 10.1 provides the means and standard deviations for product ratings by gender, and Figure 10.9 graphically represents the interaction between product and gender. Inspection of the figure suggests that males seem to rate the two inexpensive products more highly than do females; whereas the difference between ratings of males and females is less pronounced for the two most expensive products.

Table 10.1.
Means and Standard Deviations of the Quality Ratings for the Four Products Separately by Gender





	
	Males
	Females



	
	

	




	Product
	M
	SD
	M
	SD





	




	A, $400
	5.83
	1.17
	3.50
	1.87



	B,$300
	4.50
	1.87
	2.67
	1.63



	C, $200
	4.33
	1.63
	3.33
	1.63



	D,$100
	3.50
	1.87
	2.50
	1.65








[image: Figure 10.9. Plot of the interaction of gender and product.]
Figure 10.9. Plot of the interaction of gender and product.





Interpretation Questions

	10.1. In Output 10.2a: Explain the results in nontechnical terms.
 	10.2. In Output 10.2b: (a) Why did we do three Wilcoxon tests after the Friedman test? Why Wilcoxons rather than paired t tests or Mann-Whitney U tests? (b) Explain the results of the Wilcoxon tests in nontechnical terms.
 	10.3. In Output 10.3: (a) Is the assumption of sphericity violated? If it is violated, what can you do? (b) How would you interpret the F for product (within subjects)? (c) Is the interaction between product and gender significant? How would you describe it in nontechnical terms? (d) Is there a significant difference between the genders? Is a post hoc multiple comparison test needed? Explain.
 	10.4. Compare the F and significance for product in Output 10.3 to the same F in Output 10.1. Compare the Fs for the linear, quadratic, and cubic trends for product in Outputs 10.1 and 10.3.  Why are some things different?


Extra SPSS Problems 

	10.1. Using the Anxiety 2.sav data file find out if there are differences between the average score for the trails.
 	10.2. Using the Anxiety 2.sav data file: Are there anxiety as well as trial differences? Is there an interaction between anxiety and trial? Are post hoc tests needed?
 	10.3. Using the New drug.sav data file answer the following research question: Are there significant differences between the average pulse rates?
 	10.4. Using the New drug.sav data file: Are there drug type as well as pulse rate differences? Is there an interaction between drug and pulse?



Chapter 11
 Multivariate Analysis of Variance (MANOVA)

In this chapter, we introduce multivariate analysis of variance (MANOVA), which is a complex statistic similar to ANOVA but with multiple dependent variables analyzed together. The dependent variables should be related conceptually, and they should be correlated with one another at a low to moderate level. If they are too highly correlated, there is a risk of multicollinearity. If they are uncorrelated, there is usually no reason to analyze them together. The General Linear Model program in SPSS provides you with a multivariate F based on the linear combination of dependent variables that maximally distinguishes your groups. This multivariate result is the MANOVA. SPSS also automatically prints out univariate Fs for the separate univariate ANOVAs for each dependent variable. Similar to repeated measures analysis, these ANOVA results are not usually examined unless the multivariate results (the MANOVA) are statistically significant, and some statisticians believe that they should not be interpreted or reported. It is important to realize that one or more ANOVAs can be significant even if the MANOVA is not, or vice versa, so ANOVAs do not necessarily indicate why a significant MANOVA was significant. However, many people want to know whether there is a significant difference among groups in each variable, considered by itself, and the ANOVAs provide this information. The decision not to look at separate ANOVAs unless the overall MANOVA is significant does reduce Type I error relative to just doing the ANOVAs without this requirement. To determine whether it is typical in your field to report the ANOVA results, check published research studies in your discipline.

In this chapter, you will first do a one-way or single-factor MANOVA. This problem has one independent variable (father’s education revised) and three dependent variables (grades, math achievement, and visualization test). One could do three separate one-way ANOVAs; however, doing this analysis would not answer our research question, and we would need to adjust our alpha level so we do not find a significant result by chance. By using MANOVA, you will see how the combination of the three variables distinguishes the groups in one analysis. The second problem is a two-way or two-factor MANOVA. It is two-way because there are two independent variables (math grades and gender) and MANOVA because two test scores are examined simultaneously as dependent variables. Problem 11.3 is a doubly multivariate or mixed MANOVA. It is mixed because there is a between-groups independent variable (intervention group) and a repeated-measures independent variable (time: pretest and posttest). It is MANOVA because these are two (or more) dependent variables. Mixed MANOVAs are one way to analyze intervention (experimental) studies that have more than one dependent variable.

Assumptions of and Conditions for Independent Samples MANOVA

The assumptions of MANOVA include: independent observations (each person’s scores are independent of every other person’s scores), multivariate normality, and homogeneity of variance/covariance matrices across groups (variances for each dependent variable are approximately equal in all groups plus covariances between pairs of dependent variables are approximately equal for all groups). Independence of observations is a design issue. Multivariate normality is difficult to check with SPSS. There are three aspects of multivariate normality to be assessed: (a) normality of each variable, (b) the linear combination of the variables should be normally distributed, and (c) all subsets of the variables have multivariate normality. Normality of each variable can be checked through Explore. Bivariate scatterplots will help to assess the linearity of the relationship between variables, although it will not be assessing the multivariate relationships. MANOVA is robust to violations of multivariate normality and to violations of homogeneity of variance/covariance matrices if groups are of nearly equal size (N of the largest group is no more than about 1.5 times the N of the smallest group). Homogeneity of variance/covariance matrices can be checked with Box’s M test and homogeneity of variance can be assessed with Levene’s statistic. In addition to these assumptions, for all types of MANOVA, another condition that should be examined is the potential for multicollinearity among the dependent variables. Multicollinearity can affect both results and the validity of interpretation of results.

Assumptions of Repeated and Mixed MANOVA

The assumptions of repeated or doubly multivariate (multiple measures obtained on multiple occasions) MANOVA include linearity of relations among the dependent variables and multivariate normality; for mixed MANOVA, an additional assumption is homogeneity of variance-covariance matrices between groups. If the sample sizes in each group are approximately equal, repeated MANOVA is robust to these assumptions. Linearity can be assessed through matrix scatterplots. If sample sizes are not equal, than Box’s M test can be conducted to check the homogeneity assumption, and univariate normality can be assessed using plots to help assess the normality assumption. One should also make sure that sample sizes are sufficiently large. If the number of variables times the number of levels of the within-subjects variable approaches the sample size, then the doubly multivariate analysis should not be conducted. Rather, one should either use multiple MANOVAs with only one or two dependent variable each (if there are only two, three, or four dependent variables), or one should aggregate or drop some dependent variables (if there are more dependent variables).

	Retrieve hsbdataNew.sav. Note: You are to get the hsbdataNew.sav file, not the product.sav file from the last lab assignment.


Problem 11.1: GLM Single-Factor Multivariate Analysis of Variance 

Sometimes you have more than one dependent variable that you want to analyze simultaneously. The GLM multivariate procedure allows you to analyze differences between levels of one or more (usually nominal level) independent variables, with respect to a linear combination of several dependent variables. One can also include normally distributed variables (covariates) as predictors of the linear combination of dependent variables. When you include both nominal variables and normally distributed variables as predictors, the analysis usually is referred to as MANCOVA (multivariate analysis of covariance).

	11.1. Are there differences among the three father’s education groups on a linear combination of grades, math achievement, and visualization test? Also, are there differences between groups on any of these variables separately? Which ones?


Before we answer these questions, we will correlate the dependent variables to see if they are moderately correlated. To do this:

	Select Analyze→ Correlate→Bivariate.
 	Move grades in h.s., math achievement test, and visualization test into the Variables: box.
 	Click on Options and select Exclude cases listwise (so that only participants with all three variables will be included in the correlations, just as they will be in the MANOVA).
 	Click on Continue.
 	Click on OK.


Compare your output with 11.1a.

Output 11.1a: Intercorrelations of the Independent Variables

CORRELATIONS

/VARIABLES=grades mathach visual 
/PRINT=TWOTAIL NOSIG 
/MISSING=LISTWISE.

Correlations

[image: ]


Interpretation of Output 11.1a

Look at the correlation table to see if correlations are too high or too low. One correlation is a bit high: the correlation between grades in h.s. and math achievement test (r = .504). Thus, we will keep an eye on it in the MANOVA that follows. If the correlations were .60 or above, we would consider either making a composite variable (in which the highly correlated variables were summed or averaged) or eliminating one of the variables.



Now, to do the actual MANOVA, follow these steps:

	Select Analyze → General Linear Model → Multivariate.
 	Move grades in h.s., math achievement, and visualization test into the Dependent Variables box.
 	Move father’s education revised into the Fixed Factor(s) box (see Fig. 11.1).



[image: Fig. 11.1. Multivariate.]
Fig. 11.1. Multivariate.



	Click on Options.
 	Check Descriptive statistics, Estimates of effect size, Observed power, Parameter estimates, and Homogeneity tests (see Fig. 11.2). These will enable us to check other assumptions of the test and see which dependent variables contribute most to distinguishing between groups.
 	Click on Continue.



[image: Fig. 11.2 Multivariate options.]
Fig. 11.2 Multivariate options.



	Click on OK.


Compare your output with Output 11.1b.

Output 11.1b: One-Way Multivariate Analysis of Variance

GLMgrades mathach visual BY faedRevis

/METHOD = SSTYPE(3) 
/INTERCEPT = INCLUDE 
/PRINT = DESCRIPTIVE ETASQ OPOWER PARAMETER HOMOGENEITY 
/CRITERIA = ALPHA(.05) 
/DESIGN = faedRevis.

General Linear Model

[image: ]

Descriptive Statistics





	
	father's education revised
	Mean
	Std. Deviation
	N





	grades in h.s.
	HS grad or less
	5.34
	1.475
	38



	
	Some College
	5.56
	1.788
	16



	
	BS or More
	6.53
	1.219
	19



	
	Total
	5.70
	1.552
	73



	math achievement test
	HS grad or less
	10.0877
	5.61297
	38



	
	Some College
	14.3958
	4.66544
	16



	
	BS or More
	16.3509
	7.40918
	19



	
	Total
	12.6621
	6.49659
	73



	visualization test
	HS grad or less
	4.6711
	3.96058
	38



	
	Some College
	6.0156
	4.56022
	16



	
	BS or More
	5.4605
	2.79044
	19



	
	Total
	5.1712
	3.82787
	73
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Interpretation of Output 11.1b

The GLM Multivariate procedure provides an analysis for “effects” on a linear combination of several dependent variables of one or more fixed factor/independent variables and/or covariates. Note that many of the results (e.g., Descriptive Statistics, Test of Between Subjects Effects) refer to the univariate tests.

Box’s test of equality of covariance matrices tests whether the covariances among the three dependent variables are the same for the three father’s education groups. The Box test is strongly affected by violations of normality and may not be accurate. If Ns for the various groups are approximately equal, then the Box test can be ignored and Pillai’s trace used for the Multivariate statistic (below). Our largest group (N = 38) is 2.3 times larger than our smallest group (N = 16), so we should look at the Box test, which is not statistically significant (p = .147). Thus, the assumption of homogeneity of covariances is not violated. If the Box test had been statistically significant, we would have looked at the correlations among variables separately for the three groups and noted the magnitude of the discrepancies. None of the multivariate tests would be robust if Box’s test had been statistically significant and group sizes were very different.
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Interpretation of Output 11.1b continued

MANOVA provides four multivariate tests (in the Multivariate Tests table). These tests examine whether the three father’s education groups differ on a linear combination of the dependent variables: grades in h.s., math achievement, and visualization test. Under most conditions when assumptions are met, Wilks’ lambda provides a good and commonly used multivariate F (in this case F = 3.04, df = 6, 136, p = .008). The “intercept” effect is just needed to fit the line to the data so skip over it. The main part of this multivariate test table to look at is the faedrevis effect. This statistically significant F indicates that there are statistically significant differences among the faedrevis groups on a linear combination of the three dependent variables.
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Interpretation of Output 11.1b continued

Next, we see the Levene’s test table. This tests the assumption of MANOVA and ANOVA that the variances of each variable are equal across groups. If the Levene’s test is statistically significant, as it is in this output for math achievement, this means the assumption has been violated. Results for math achievement should be viewed with caution (or the data could be transformed so as to equalize the variances; see Chapter 2 for how to transform variables).
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Interpretation of Output 11.1b continued

Because the MANOVA was statistically significant, we will now examine the univariate ANOVA results (in the Tests of Between-Subjects Effects table). Note that these tests are identical to the three separate univariate one-way ANOVAs we would have performed if we opted not to do the MANOVA. Because the grades in h.s. and math achievement dependent variables are statistically significant and there are three levels or values of father’s education, we would usually do post hoc multiple comparisons or contrasts to see which pairs of means are different.

Both multivariate and univariate (between subjects) tests provide measures of effect size (partial eta squared). For the multivariate test partial eta was .34 (the square root of .118), which is about a medium effect size. The univariate partial etas are .32, .43, and .14 for grades in h.s., math achievement, and visualization test, respectively. The first one is a medium effect, and the second is a large effect. The eta for visualization indicates a small effect that is not statistically significant (p = .470) (See Table 5.5 for interpretation of the effect size for eta.) Note that the Observed Power for math achievement is very high (.945) and that for grades in h.s. is relatively high (.708). The high power indicates we might find statistically significant results with small effect sizes. For these two factors this was not the case because the effect sizes were large (eta = .43, and .32). Visualization test had very low observed power (.175), which might explain why this variable did not statistically significantly contribute to the model.
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Interpretation of Output 11.1b continued

In MANOVA, a linear combination of the dependent variables is created, and groups are compared on that variable. To create this linear combination for each participant, the computer multiplies the participant’s score on each variable by a weight (B), with the values of the weights being devised to maximize differences between groups. We see these Bs in the next table (Parameter Estimates), so we can see how the dependent variables are weighted in the equation that maximally distinguishes the groups. Note that in the column under Parameter in this table, three variables are listed that seem new. These are the dummy variables that were used to test for differences between groups. The first one [faedrevis = 1.00] indicates differences between students whose fathers have a high school education or less and the other students whose fathers have more education. The second one [faedrevis = 2.00] indicates differences between students whose fathers have some college education and students in the other two groups. A third dummy variable would provide redundant information and, thus, is not considered; there are k−1 independent dummy variables, where k = number of groups.

The next column, headed by B, indicates the weights for the dependent variables for that dummy variable. For example, in order to distinguish students whose fathers have a high school education or less from other students, math achievement is weighted highest in absolute value (−6.263), followed by grades in h.s. (−1.184), and then visualization test (−.789). In all cases, students whose fathers have less education score lower than other students, as indicated by the minus signs. This table can also tell us which variables statistically significantly contributed toward distinguishing which groups, if you look at the sig column for each dummy variable. For example, both grades in high school and math achievement contributed statistically significantly toward discriminating group 1 (high school grad or less) from the other two groups, but no variables statistically significantly contributed to distinguishing group 2 (some college) from the other two groups (although grades in high school discriminates group 2 from the others at almost statistically significant levels). Visualization does not statistically significantly contribute to distinguishing any of the groups.

We can look at the ANOVA (Between-Subjects) and Parameter Estimates table results to determine whether the groups differ on each of these variables, examined alone. This will help us in determining whether multicollinearity affected results because if two or more of the ANOVAs are statistically significant, but the corresponding variables are not weighted much (examine the B scores) in the MANOVA, this probably is because of multicollinearity. The ANOVAs also help us understand which variables, separately, differ across groups.

Note that some statisticians think that it is not appropriate to examine the univariate ANOVAs. Traditionally, univariate Fs have been analyzed to understand where the differences are when there is a statistically significant multivariate F. One argument against reporting the univariate Fs is that it can be confusing to compare the univariate and multivariate results for two reasons. First, the univariate Fs do not take into account the relations among the dependent variables; thus, the variables that are statistically significant in the univariate tests are not always the ones that are weighted most highly in the multivariate test. Second, univariate Fs can be confusing because they will sometimes be statistically significant when the multivariate F is not because the multivariate is adjusted for the number of variables included. Furthermore, if one is using the MANOVA to reduce Type I error by analyzing all dependent variables together, then analyzing the univariate Fs “undoes” this to a large extent, increasing Type I error. One method to compensate for this is to use the Bonferroni correction to adjust the alpha used to determine statistical significance of the univariate Fs. Despite these issues, most researchers elect to examine the univariate results following a statistically significant MANOVA to clarify which variables, taken alone, differ between groups.




Example of How to Write About Output 11.1

Results

A multivariate analysis of variance was conducted to assess if there were differences between the three father’s education groups on a linear combination of grades in h.s., math achievement, and visualization test. (The assumptions of independence of observations and homogeneity of variance/covariance were checked and met. Bivariate scatterplots were checked for multivariate normality.) A statistically significant difference was found, Wilks’ Λ = .777, F(6, 136) = 3.04, p = .008, multivariate η2 = .12. Examination of the coefficients for the linear combinations distinguishing fathers’ education groups indicated that grades in high school and math achievement contributed most to distinguishing the groups. In particular, both grades in high school (β = −1.18, p = .006, multivariate η2 = .10) and math achievement (β = −6.26, p < .001, multivariate η2 = .17) contributed statistically significantly toward discriminating group 1 (high school grad or less) from the other two groups, but no variables statistically significantly contributed to distinguishing group 2 (some college) from the other two groups. Visualization did not contribute statistically significantly to distinguishing any of the groups.

Follow-up univariate ANOVAs indicated that both math achievement and grades in high school, when examined alone, were statistically significantly different for children of fathers with different degrees of education, F(2,70) = 7.88, p = .001 and F(2,70) = 4.09, p = .021, respectively.



Problem 11.2: GLM Two-Factor Multivariate Analysis of Variance

MANOVA is also useful when there is more than one independent variable and several related dependent variables. Let’s answer the following questions:

	11.2. Do students who differ in math grades and gender differ on a linear combination of two dependent variables (math achievement and visualization test)? Do males and females differ in terms of whether those with higher and lower math grades differ on these two variables (is there an interaction between math grades and gender)? What linear combination of the two dependent variables distinguishes these groups?


We already know the correlation between the two dependent variables is moderate (r = .42), so we will omit the correlation matrix. Follow these steps:

	Select Analyze → General Linear Model → Multivariate.
 	Click on Reset.
 	Move math achievement and visualization test into the Dependent Variables box (see Fig. 11.1 if you need help).
 	Move both math grades and gender into the Fixed Factor(s) box.
 	Click on Options.
 	Check Descriptive statistics, Estimates of effect size, Observed power Parameter estimates, and Homogeneity tests (see Fig. 11.2).
 	Click on Continue.
 	Click on OK.


Compare your output with Output 11.2.

Output 11.2: Two-Way Multivariate Analysis of Variance

GLMmathach visual BY mathgr gender

/METHOD = SSTYPE(3) 
/INTERCEPT = INCLUDE 
/PRINT = DESCRIPTIVE ETASQ OPOWER PARAMETER HOMOGENEITY 
/CRITERIA = ALPHA(.05) 
/DESIGN = mathgr gender mathgr*gender.

General Linear Model

Between-Subjects Factors





	
	
	Value Label
	N





	math grades
	0
	less A-B
	44



	
	1
	most A-B
	31



	gender
	0
	male
	34



	
	1
	female
	41
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Interpretation of Output 11.2

Many of the tables are similar to those in Output 11.1. For the Descriptive Statistics, we now see means and standard deviations of the dependent variables for the groups made up of every combination of the two levels of math grades and the two levels of gender. Box’s test again is not statistically significant, indicating that the assumption of homogeneity of covariance matrices is met.

The main difference in 11.2, compared with 11.1b, for both the Multivariate Tests table and the univariate Tests of Between-Subjects Effects table, is the inclusion of two main effects (one for each independent variable) and one interaction (of math grades and gender; shown in the output as math grades * gender). The interpretation of this interaction, if it were statistically significant, would be similar to that in Output 11.1. However, note that although both the multivariate main effects of math grades and gender are statistically significant, the multivariate interaction is not statistically significant. Because the interaction was not statistically significant, we can look at the univariate tests of main effects, but we should not examine the univariate interaction effects.

Levene’s test indicates that there is heterogeneity of variances for visualization test. Again, we could have transformed that variable to equalize the variances. However, if we consider only the main effects of gender and of math grades (since the interaction is not statistically significant), then Ns are approximately equal for the groups (34 and 41 for gender and 31 and 44 for math grades), so this is less of a concern.

The Tests of Between-Subjects Effects table indicates that there are statistically significant main effects of both independent variables on both dependent variables, with medium to large effect sizes. For example, the “effect” of math grades on math achievement is large (eta = .41) and the effect of math grades on visualization test is medium (eta = .27). Refer again to Table 5.5. Note that both of these had relatively high power (.97 and .70, respectively).

The Parameter Estimates table now has three dummy variables: for the difference between students with less A-B and more A-B (MATHGR = 0), for male versus not male (GEND = 0), as well as for the interaction term (MATHGR = 0 GEND = 0). Thus, we can see that math achievement contributes more than visualization test to distinguishing students with better and worse math grades as well as contributing more to distinguishing boys from girls.




Example of How to Write About Output 11.2

Results

To assess whether boys and girls with higher and lower math grades have different math achievement and visualization test scores and whether there was an interaction between gender and math grades, a multivariate analysis of variance was conducted. (The assumptions of independence of observations and homogeneity of variance/covariance were checked and met. Bivariate scatterplots were checked for multivariate normality.) The interaction was not statistically significant, Wilks’ Λ = .995, F(2, 70) = .17, p =.843, multivariate η2 = .005. The main effect for gender was statistically significant, Wilks’ Λ = .800, F(2, 70) = 8.74, p < .001, multivariate η2 = .20. This indicates that the linear composite of math achievement and visualization test differs for males and females. The main effect for math grades is also statistically significant, Wilks’ Λ = .811, F(2, 70) = 8.15, p = .001, multivariate η2 = .19. This indicates that the linear composite differs for different levels of math grades. Follow-up ANOVAs (Table 11.2) indicate that effects of both math grades and gender were statistically significant for both math achievement and visualization. Males scored higher on both outcomes and students with higher math grades were higher on both outcomes (see Table 11.1).


Table 11.1
Means and Standard Deviations for Math Achievement and Visualization Test as a Function of Math Grades and Gender
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Table 11.2
Univariate Effects of Math Grades and Gender on Math Achievement and Visualization Test Scores
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Problem 11.3: Mixed MANOVA 

There might be times when you want to find out if there are differences between groups as well as within subjects; this can be answered with Mixed MANOVA.

We have created a new dataset to use for this problem (MixedMANOVAdata).

	Retrieve MixedMANOVAdata.sav.


Let’s answer the following question:

	11.3. Is there a difference between participants in the intervention group (group 1) and participants in the control group (group 2) in the amount of change that occurs over time in scores on two different outcome measures?


We will not check the assumptions of linearity, multivariate normality, or homogeneity of variance-covariance matrices because MANOVA is robust against these assumptions when the sample sizes are equal. If our sample sizes had not been approximately equal, we would need to check these assumptions.

	Analyze → General Linear Model → Repeated Measures (see Fig. 11.3).
 	Delete the factor 1 from the Within-Subject Factor Name box and replace it with the name time, our name for the repeated-measures independent variable that SPSS will generate.
 	Type 2 in the Number of Levels box.
 	Click on Add.
 	In the Measure Name box, type dv1.
 	Click on Add.
 	In the Measure Name box, type dv2.
 	Click on Add. The window should look like Fig. 11.3.



[image: Fig. 11.3. Repeated measures define factor(s).]
Fig. 11.3. Repeated measures define factor(s).



	Click on Define, which changes the screen to a new menu box (see Fig. 10.4 in Chapter 10 if you need help).
 	Now while holding down the “shift” key, click on outcome 1 pretest, outcome 1 posttest, outcome 2 pretest, and outcome 2 posttest. Click on the arrow to move these over to the Within-Subjects Variables box.
 	Highlight group and then click on the arrow to move it over to the Between-Subjects Factor(s) box.
 	Click on Plots. The Repeated Measures: Profile Plots window will open.
 	Highlight time and then click on the arrow to move it to the Horizontal Axis box.
 	Highlight group and then click on the arrow to move it to the Separate Lines box.
 	Click on Add. This will move the variables down to the Plots box.



[image: Fig. 11.4. Repeated measures: Profile plots.]
Fig. 11.4. Repeated measures: Profile plots.



	Click on Continue.
 	Click on Options (see Fig. 10.6 in Chapter 10 if you need help).
 	Click on Descriptive Statistics, Estimates of effect size, Observed power, and Homogeneity tests.
 	Click on Continue, then on OK.


Compare your syntax and output with Output 11.3.

Output 11.3: Repeated Measures MANOVA Using the General Linear Model

GLMDV11 DV12 DV21 DV22 BY group

/WSFACTOR = time 2 Polynomial 
/MEASURE = dv1 dv2 
/METHOD = SSTYPE(3) 
/PLOT = PROFILE(time*group) 
/PRINT = DESCRIPTIVE ETASQ OPOWER HOMOGENEITY 
/CRITERIA = ALPHA(.05) 
/WSDESIGN = time 
/DESIGN = group.

General Linear Model

Within-Subjects Factors





	Measure
	time
	Dependent Variable





	dv1
	1
	DV11



	
	2
	DV12



	dv2
	1
	DV21



	
	2
	DV22







Between-Subjects Factors





	
	
	Value Label
	N





	group
	1
	intervention
	10



	
	2
	
	



	
	
	comparison
	10







Descriptive Statistics





	
	group
	Mean
	Std. Deviation
	N





	outcome 1 pretest
	intervention
	5.00
	1.826
	10



	
	comparison
	5.10
	1.370
	10



	
	Total
	5.05
	1.572
	20



	outcome 1 posttest
	intervention
	10.00
	1.414
	10



	
	comparison
	5.50
	1.780
	10



	
	Total
	7.75
	2.789
	20



	outcome 2 pretest
	intervention
	20.00
	7.454
	10



	
	comparison
	20.50
	6.852
	10



	
	Total
	20.25
	6.973
	20



	outcome 2 posttest
	intervention
	20.50
	6.852
	10



	
	comparison
	19.00
	8.097
	10



	
	Total
	19.75
	7.340
	20







Box's Test of Equality of Covariance Matrices a





	Box's M
	4.936



	F
	.372



	df1
	10



	df2
	1549.004



	Sig.
	.959






Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a Design: Intercept+group Within Subjects Design: time
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Tests of Within-Subjects Effects
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Profile Plots
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Interpretation of Output 11.3

This example illustrates the utility of the doubly multivariate analysis for testing a pretest-posttest design with intervention and control groups. We see from these results not only that the intervention seemed successful when both outcome measures were taken together but also that the effect was statistically significant only for one of the dependent variables, when each was considered separately. Sphericity was not an issue in this case because there were only two levels of the within-subjects variable. If one creates difference scores by subtracting each person’s score on the dependent variable at one level of the within-subjects variable from the same dependent variable at each other level of the within-subjects variable, then sphericity exists if the variances of the resulting difference scores are all equal. Because there are only two levels of the within-subjects variable, there is only one set of difference scores, so sphericity has to exist, which is desirable. If we had had more than two levels of the within-subjects variable, then we would have needed to be concerned about the sphericity assumption when examining the univariate results. If epsilons did not approach 1.0, then we would have used the Huynh-Feldt or Greenhouse-Geisser test results, which use an estimate of epsilon to correct the degrees of freedom. Levene’s Test for homogeneity of variances was not significant, therefore this assumption was met.




Example of How to Write About Problem 11.3

Results

A doubly multivariate analysis was conducted to assess if there was a difference between participants in the intervention group and participants in the control group in the amount of change in their scores on the two outcome measures. (The sample sizes were equal across the groups; therefore, the assumptions were considered to be met.) Statistically significant multivariate effects were found for the main effects of group, F(2, 17) = 10.50, p = .001 and time F(2, 17) = 39.3, p < .001, as well as for the interaction between group and time, F(2, 17) = 31.20, p < .001. This interaction effect indicates that the difference between the intervention and control group on the linear combination of the two dependent variables is different at pretest than it is at posttest. Table 11.3 presents the means and standard deviations on the two variables. Examination of the means shows why the interaction is statistically significant; the groups do not differ much on either dependent variable at the time of the pretest, but they do differ, particularly on the first dependent variable, at the time of the posttest. Follow-up ANOVAs reveal that the statistically significant change from pretest to posttest was statistically significant only for the first outcome variable, F(1, 18) = 81.00, p < .001, and that the change in the first outcome variable was different for the two groups, F(1, 18) = 58.78, p < .001. Figure 11.4 displays the interaction effect for this variable. Examination of the means in Table 11.3 suggests that the change in the first outcome variable only held for the intervention group.





Table 11.3
Means and Standard Deviations for Two Outcome Variables at Pretest and Posttest
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[image: Figure. 11.4 Interaction plot for outcome variable 1.]
Figure. 11.4 Interaction plot for outcome variable 1.





Interpretation Questions

	11.1 In Output 11.1b: (a) Are the multivariate tests statistically significant? (b) What does this mean? (c) Which individual dependent variables are statistically significant in the univariate ANOVAs? (d) How are the results similar and different from what we would have found if we had done three univariate one-way ANOVAs?
 	11.2 In Output 11.2: (a) Are the multivariate tests statistically significant? What does this mean? (b) If the interaction effect had been statistically significant, what would that mean? (c) For which individual/univariate dependent variables are the genders statistically significantly different? (d) Write sentences summarizing the multivariate results, being sure to include the F values and degrees of freedom as these would be reported in a journal article.
 	11.3 In Output 11.3: (a) What makes this a “doubly multivariate” design? (b) What information is provided by the multivariate tests of significance that is not provided by the univariate tests? (c) State in your own words what the interaction between time and group tells you. (d) What implications does this have for understanding the success of the intervention?


Extra SPSS Problems 

	11.1 A company is interested in how consumers of different age groups like their DVD players. Open the dvdplayer.sav data file, and conduct a MANOVA using agegroup and sex (male or female) as fixed factors and price, ease, support, and func as dependent variables. Request that descriptives, estimates of effect size, parameters, and tests of homogeneity are printed, and specify that you want a polynomial contrast on agegroup. 	How many participants of each gender are in each group? How might this affect results?
 	Using Wilks’ lambda, which results are statistically significant?
 	What are the eta squared values for each effect using Wilks’ lambda? What do these mean?
 	Were homogeneity assumptions met?
 	What do the B values listed under Parameter Estimates (and their significance levels) tell you? What are the parameters?
 	Which polynomial contrasts are statistically significant for each dependent variable? Interpret these results.


 	11.2 Now conduct the same analysis as in Extra SPSS Problems 11.1, but omit sex as an independent variable. 	Why might you choose to omit sex as a factor?
 	Was the effect of agegroup statistically significant (using Wilks’ lambda)? What does this mean?
 	Were the homogeneity assumptions met?
 	Which univariate effects were statistically significant? Interpret this.
 	Which group differences were statistically significant, for which variables?
 	Which polynomial contrasts were statistically significant, for which variables? Describe the results of this MANOVA, making sure to include information about the significance tests.





Chapter 12
 Multilevel Linear Modeling/Hierarchical Linear Modeling

In this chapter, we introduce multilevel linear modeling, which is often called Hierarchical Linear Modeling (HLM). Although these two terms can be used interchangeably in most cases, we will use the term “multilevel linear modeling” or “multilevel modeling” in this chapter, because we are not using the HLM software program.

In many applications in education and the behavioral sciences you need to deal with nested data. By nested, we mean that several observations are not independent of one another. There may be sets of individuals who are found in particular groups or settings (such as schools) so that the individuals in each group/setting are not independent of one another (individuals nested in groups/settings). For example, you may have a quasi-experimental design, in which different interventions or curricula must be assigned to different sets of existing schools or classrooms, even though students are not assigned randomly to those schools or classrooms. In addition to the effects of the manipulation, you may need to determine whether preexisting characteristics of the classrooms or schools impact the outcome. Multilevel linear modeling enables you to appropriately treat students as nested within particular schools or classrooms and to examine the role of school or classroom-level data, such as class size, gender of teacher, average socioeconomic status of school, or type of school (e.g., Core Knowledge, International Baccalaureate, or traditional) as predictors of the student-level outcome variables.

Another common situation is to have many observations on each participant (e.g., in a longitudinal study) and to want to use participant-level data to explain a pattern or growth curve shown in those many observations. It is possible to examine many of these models using the SPSS program Linear Mixed Models.

The term Mixed Models refers to the fact that some variables are viewed as fixed variables, and some are viewed as random. Typically, the variables that one is construing as predictors are considered fixed, meaning that the levels of the variable that you measured are the levels in which you are interested. In contrast, random variables are viewed as providing a random sample of the levels of the variable to which one wants to generalize. In multilevel models, the levels of the nesting variable (e.g., schools or individuals) are viewed as being random. The various schools or individuals are considered to represent a larger population of schools or individuals. As a result, the Level 1 intercepts (means of the different levels of the nesting variable on the outcome variable) are viewed as random as well.

An example of nesting of observations in individuals is found in Problems 12.1 and 12.2. In these problems, we will examine data from a longitudinal study of physical growth, in which data at four different ages are measured on the same individuals. Although this problem could be analyzed using other methods (see Chapter 10), we will explain why you might want to use multilevel modeling. In Problems 12.3 and 12.4, we will analyze a slightly different HSB dataset, in which students nested in particular schools were tested on their math achievement.

In multilevel models, differences between the entities in which observations are nested (e.g., individuals or schools) often are not the focus of the study but are seen as random differences within a population of individuals or schools. Yet one cannot ignore the fact that the data are nested within those individuals or schools. This nesting means that they are not truly independent, violating assumptions of most statistical tests and potentially introducing another important source of differences in the outcome variable. Moreover, in some cases the variability among schools or persons is of interest, in that the researchers believe they can explain this variability using meaningful variables. Whether or not you are interested in the systematic variability between individuals or schools, you might want to explain that variability first before you use predictors to explain the variability in which you are truly interested, much as one covaries out potentially confounding variables in regression or ANCOVA (see Chapters 6 and 9), so that you have taken into account the nesting factor’s effect on the outcome variable and can draw stronger conclusions.

Typically, when one uses this approach, the first step is to examine an unconditional model, in which the lowest (nested) level of data (Level 1) is modeled without any predictors of the differences between entities at that level. In the unconditional model, only the mean score on the outcome variable (the intercept of the model) for each entity, the variance among these intercepts, and the within-entity variability are modeled. The results of this unconditional model analysis inform the researcher about whether to pursue a model with predictors. To the extent that there is significant variance in the unconditional model, it makes sense to think of predictors that may help explain this variance (such as school SES or gender of individuals). The variance among the intercepts for the different entities at Level 1 (variation in the mean score on the outcome variable for, for example, schools or individuals) will be explained by one or more predictors in the conditional model(s), which is tested next. There may be predictors at Level 1, or one might immediately move to a Level 2 model, in which Level 2 predictors (e.g., school level data for the individuals nested in schools) are used to explain Level 1 variance. One compares the models to see whether much variability is explained by Level 1 and/or Level 2 predictors.

In this chapter, we will use multilevel linear modeling to model and explain age-related growth and then to model a students-nested-in-schools design. In each case, you will first do an unconditional Level 1 model, followed by conditional models used to explain the variability at Level 1. You will learn how to aggregate and center variables, which often will be useful in doing multilevel linear modeling. Often, you may wish to aggregate data from the nested level of data so that you have data at the level of the independent entities. For example, in the school data set that will be used, we have data on SES for each student, but we want to have data at the level of the schools, which are independent of each other. In the dataset, SES already has been aggregated by schools, by averaging the data for all of the students nested in each school. We will show you how this was achieved.

Centering involves subtracting each entity’s (e.g., person’s/school’s) score on a variable from its mean for that variable. Typically, one centers the “covariates,” or continuous variable predictor(s), because this makes it easier to interpret the slope of the line predicting the dependent variable in terms of how change in the predictor affects change in the dependent variable. Moreover, centering predictors also is useful if you will want to examine the interaction between continuous predictor variables, because when there is a significant interaction, then the effect of each of those variables alone is thought of as the effect of that variable when the other variable is equal to zero (so the other variable does not need to be considered). Some variables have no real zero point; moreover, it is easier to interpret the zero as the mean, which is accomplished by centering the variables. Because the data sets we will use either have dichotomous predictors (for the repeated-measures design) or have predictors that already have been centered, we will just tell you how to center the variable SES on the mean SES for each school, but you will not actually need to save your results.

Assumptions of Multilevel Linear Modeling

The assumptions of multilevel linear modeling include: (a) independent observations at the level above the nesting, (b) bivariate normality of the intercepts and slopes at Level 1, (c) a linear relation between predictors and outcome variables, and (d) random residuals, with errors distributed normally, with a mean of zero. Normality of the intercepts can be checked by looking at the normality of the distribution of the dependent variable for the different entities at Level 1. Bivariate normality of Level 1 slopes and the linear relation between predictors and the outcome variable(s) can be checked with a scatterplot for a single continuous predictor or matrix scatterplots for more than one predictor. Random residuals can be checked using residual plots, as we did in Chapter 6, using Regression → Linear. You will also need to specify in the models whether you have any assumptions about the covariance matrix; we will elaborate on this in connection with the specific problems.

Retrieve Growth study.sav. Note: You are to use Growth study.sav, not the hsbdataNew file from the last lab assignment.

In this data set from Potthoff and Roy (1964), children’s growth, as indicated by the variable distance (mm from center of pituitary to pteryomaxillary fissure) is measured on four occasions: when each participant is 8, 10, 12, and 14. This measurement is useful to orthodontists who wish to track the growth of the jaw. Notice that the data are arranged so that there are four lines for each participant, corresponding to their measurement at each of the four ages. This structure is necessary for the Linear Mixed Models procedure, but if your data are not in this format, one can convert them using Restructure, as follows: Data → Restructure. Then, follow the directions you will see.

Problem 12.1: Unconditional Level 1 Repeated-Measures Model 

Although one can use GLM to compute analyses of repeated-measures data, as shown in Chapter 10, multilevel models often are more useful for analyzing repeated-measures data for several reasons. First, it is possible to use multilevel models even if there is some incomplete information on some participants or if their data are from different time points (see Chapter 13). Second, one can model differently shaped growth curves more readily in multilevel models. Finally, one can select the best variance-covariance structure for the data and specify only the interactions of interest for the analyses. In a repeated-measures design, the Level 1 model describes the repeated measures data for the participants and Level 2 involves variables that measure systematic differences among the participants, in which the repeated measures are nested, that might help explain the pattern of change in the repeated measures. Typically, the first step in undertaking multilevel linear modeling is to determine whether there is sufficient variability at Level 1 to require explanation by Level 2 variables. The unconditional Level 1 model answers this question:

	12.1 Is there significant variability among participants in the average Distance (in mm from center of pituitary to pteryomaxillary fissure) across ages? Is there a linear relation between the withinsubject variable, Age, and Distance? Is there a quadratic relation between Age and Distance?


Before we do the analysis to answer these questions, we will calculate descriptive statistics and do a boxplot to help us in answering them.

	First, compute descriptive statistics by clicking on Analyze → Descriptive Statistics → Explore.
 	Click on Distance and move it into Dependent List: box (see Fig. 12.1).
 	Click on Age and move it into the Factor List: box.
 	Check to be sure Both is selected under Display.



[image: Fig. 12.1. Explore.]
Fig. 12.1. Explore.



	Click on OK.
 	Compare your output and syntax with Output 12.1a.


Output 12.1a: Descriptive Statistics for Distance as a Function of Age

EXAMINE VARIABLES=distance BY age

/PLOT BOXPLOT STEMLEAF 
/COMPARE GROUPS 
/STATISTICS DESCRIPTIVES 
/CINTERVAL 95 
/MISSING LISTWISE 
/NOTOTAL.

Explore Age in years
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Distance (mm) from center of pituitary to pteryo-maxillary fissure (Stem and leaf plots omitted)

[image: ]


Note that if we connected the medians they would make a nearly straight (linear) line. There are some outliers at 8, 12, and 14 years.




Interpretation of Output 12.1a

First, we examine the output from the Explore program, which provides us with descriptive statistics for the distance variable at each age period. We have omitted the stem-and-leaf plots to conserve space because we can obtain the most pertinent information from the tables and boxplot.

The first table in Output 12.1a shows us that there were 27 children at each age, so there was no attrition over time, and none were missing data on distance at any age. The Descriptives table shows that at age 8, the average distance (mm from the center of the pituitary to the pteryomaxillary fissure) was 22.19 (SD = 2.43); at 10, 12, and 14, the mean distances were 23.17, 24.65, and 26.09, respectively, with corresponding standard deviations of 2.16, 2.82, and 2.77. These numbers, along with the boxplots, suggest that distance increases in a linear manner; however, to see if there is one change in direction/rate of change (and to show you how to do polynomial trends), we will also look at a quadratic trend for age.



Now we will answer our research questions: Is there significant variability among participants in the average Distance (in mm from center of pituitary to pteryomaxillary fissure) across ages? Is there a linear relation between Age and Distance? Is there a quadratic relation between Age and Distance?

	Select Analyze → Mixed Models → Linear.
 	Highlight Subject and move it to the Subjects: box (see Fig. 12.2 for help). Note that Subjects is a way to specify the lowest independent level of data (the level in which the lowest level of data is nested). In this case, it involves the Subject variable, because observations are nested in subjects.
 	Highlight Age (Age in years) and move it into the Repeated: box, specifying the repeated-measures variable. This models within-subject variance, as distinguished from the between-subject variance modeled by the Random statement.
 	Click on the arrow next to Repeated covariance type, and change Diagonal to specify AR(1), as shown in Fig. 12.2. This is an autoregressive covariance structure with homogeneous variances, with a lag of 1 (one age level in this case). The autoregressive structure indicates that each person’s distance measurement at one time is correlated with his or her distance measurement at the previous time period, which is typical of a repeated-measures situation.



[image: Fig. 12.2. Linear mixed models: Specify subjects and repeated.]
Fig. 12.2. Linear mixed models: Specify subjects and repeated.



	Click on Continue. This will open the Linear Mixed Models window (Fig. 12.3).
 	Click on Distance and move it into the Dependent Variable: box.
 	Click on Linear and move it into the Covariate(s): box.
 	Click on Quadratic and move it into the Covariate(s): box. We have created these two variables to look at the linear and quadratic effects of age, referenced to the youngest age. Note that these really get at the effects of age, even though they are separate variables, because they correspond to the different levels of Age in the dataset. Both consist of weights beginning with 0, which causes SPSS to use the initial age level as the reference. The quadratic weights simply involve squaring the linear weights. So, linear weights are 0, 1, 2, 3 and quadratic are 0,1,4,9 (see Growth study.sav, linear and quadradic “variables”. We are not doing a cubic effect, so we will not use the cubic variable).



[image: Fig. 12.3. Linear mixed models.]
Fig. 12.3. Linear mixed models.



	Next, click on Fixed in the upper right-hand corner of Fig. 12.3 to get to Fig. 12.4.
 	Click on the arrow next to Factorial and change Factorial to Main Effects.
 	Click on linear and then on Add; this will move linear into the Model box. Repeat this for quadratic. Leave the defaults for the other options, making sure that Include intercept is checked and Type III sums of squares is in the box for sums of squares (see Fig. 12.4).



[image: Fig. 12.4. Linear mixed models: Fixed effects.]
Fig. 12.4. Linear mixed models: Fixed effects.



	Click on Continue. This will take you back to Fig. 12.3.
 	In the Linear Mixed Models window click on Random to get to Fig. 12.5.
 	Under Random Effects check the box next to Include intercept. This will enable us to look at differences between the individual participants in mean score on the dependent variable.
 	Leave the Covariance Type as Variance Components. In the Variance Component model, mean score across observations (intercept) is assumed to vary across individuals, but the slopes (predicting Distance from linear and quadratic curves in this case) are not expected to differ across individuals. Since all individuals are the same ages, this seems reasonable and keeps the model simpler.
 	We have already included an auto-regressive, repeated measures structure for the Age variable, and have entered fixed effects for the polynomial trend analysis, so we will not add any independent variables to the Random Effects.
 	Under Subject Groupings, move Subject into the Combinations: box (see Fig. 12.5).



[image: Fig. 12.5. Linear mixed models: Random effects.]
Fig. 12.5. Linear mixed models: Random effects.



	Click on Continue. This will take you back to Fig. 12.3.
 	Click on Statistics. Select Parameter estimates, Test for covariance parameters, Covariances of random effects, and Contrast coefficient matrix (see Fig. 12.6).



[image: Fig. 12.6. Linear mixed models: Statistics.]
Fig. 12.6. Linear mixed models: Statistics.



	Click on Continue to go back to Fig. 12.3.
 	Click on OK.
 	Compare your output with Output 12.1b


Output 12.1b Unconditional Model for Age Nested in Subject

[image: ]


Interpretation of Output 12.1b

First, you see the log file, or syntax, indicating what you did. Note that you used REML (Restricted Maximum Likelihood) as your estimation method (the default method in SPSS, so we didn’t need to specify it). REML adjusts for the fixed effects, usually leading to a reduction in standard error. It has been found to be more accurate than Full Maximum Likelihood when there is a small number of entities (in this case, participants).



[image: ]


In the first table of Output 12.1b, Model Dimensions, we can check to make sure that everything is as we intended it and how many parameters are being estimated. We see that the intercept and Linear and Quadratic are fixed effects, age also is a repeated effect with a first-order autoregressive covariance structure, and Subject is a nesting variable. The repeated effects of age involve estimating two parameters: AR(1) rho, an estimate of the covariation between age periods and AR(1) diagonal, which is a measure of average within-age variance. Note that since linear and quadratic were specified as covariates, they only have had one level listed, and dummy variables were not created.

Next, we have information about the goodness of fit of the unconditional model. We can compare this to later models to see how much the goodness of fit is improved when predictors are added. Fit is better if the Information Criteria are smaller. The -2 restricted log likelihood criterion is a basic measure of goodness of fit of the model. The other four criteria are based on this same criterion, but they make adjustments for the complexity of the model.




[image: ]


A measure of the goodness of fit of the model.



Fixed Effects

[image: ]

Covariance Parameters

[image: ]


Interpretation of Output 12.1 continued

In the Fixed Effects table, we see the intercept for the Distance variable (Intercept) and linear and quadratic effects of age. The t test for the intercept is testing whether the average Distance from the pituitary to the pteryomaxillary fissure, across individuals, is statistically significantly different from zero, which it is, t(42.06) = 45.35, p < .001; however, this is not really of interest. The t test for linear and quadratic are more familiar and more useful, testing whether the Distance variable changes statistically significantly in a linear and/or quadratic fashion across the four ages (8, 10, 12, and 14 years). We see that the linear growth curve is significant, t(78.55) = 2.25, p = .027. On the other hand, the quadratic growth curve is not significant, t(78.97) = .84, p =.40. We are omitting the Type III Estimable functions table from the output reproduced here to save space, but these show you how the computer program contrasted the dummy variables.

The Covariance Parameters table shows the variance estimates for the random and within-subjects effects, along with a test of statistical significance. The AR(1) rho estimate is an intraclass correlation coefficient, indicating the extent to which the age periods are correlated. Adjacent age periods (e.g., 8 and 10 or 10 and 12) are correlated an average of rho; those separated by another age group (e.g., 8 and 12) are rho2. In this case, rho is low (.047) and is not statistically significant. This means that rho2 is estimated to be (.047)2 or .0022 for the correlation between age groups that are separated by another group (8 and 12 or 10 and 14), suggesting quite negligible correlations between age groups that are further removed. These results suggest that, at least after taking into account effects of subjects, the contribution of autoregression is negligible. Under normal circumstances, we would modify our model of the random covariance based on this, but we will continue using AR1 in the next model so that we can show you how to compare a conditional model to an unconditional model with everything specified the same except for the new predictor. The AR1 diagonal estimate is the estimate of the variance within age periods, which in this case is high and significant, suggesting that there is significant variability within age that could be predicted by conditional model predictor(s). The final entry in this table (Intercept [subject = subject]) is for the variance component pertaining to variation between participants. It, too, is large and significant, suggesting that there is variability between subjects that could be explained using predictors in a conditional model. The statistical significance tests should be interpreted with caution, however; Wald Z test may be unreliable with small samples, such as those for this study.




Example of How to Write About Output 12.1

Results

The unconditional repeated-measures model revealed that there was significant variability in the distance measure, suggesting that it would be worthwhile to examine a conditional model that could potentially explain some of this variability. (The assumptions of independent observations at the level above the nesting, bivariate normality, linear relationships, and random residuals were checked and met.) The linear trend for age was a statistically significant predictor of changes in the distance measure, t(78.55) = 2.25, p = .027. On the other hand, the quadratic trend for age was not significant, indicating that age was related to the distance from center of pituitary to pteryomaxillary fissure measure in a linear manner. Examination of the means for the four age supported this, indicating that there was a steady, linear increase in the measure from age 8 until age 12 periods (M = 22.19, 23.17, 24.65, and 26.09; SD = 2.43, 2.16, 2.82, and 2.77 for ages 8, 10, 12, and 14, respectively). There also was substantial and statistically significant within-age and between-subject variance (see Table 12.1). In contrast, it appeared unnecessary to model the covariance matrix as a first-order autoregressive matrix; there were small, nonsignificant intraclass correlations among adjacent age levels in the distance variable, rho =.047, Wald Z = .273, p = .785. Thus, scores for each age level were relatively independent of one another once overall differences between individuals were taken into account.

Table 12.1
Unconditional Growth Model for Distance





	
	
	
	95% Confidence Interval



	
	
	
	




	Effect
	Estimate
	SE
	Lower Bound
	Upper Bound





	




	Fixed effects
	
	
	
	



	     Intercept
	22.16***
	.49
	21.17
	23.15



	     Linear effect of age
	97***
	.43
	.11
	1.83


	     Quadratic effect of age
	12***
	.14
	-.16
	.39



	Random effects
	
	
	
	



	  Repeated measures
	
	
	
	



	     Within-age variance
	2.12***
	.41
	1.46
	3.10



	   Between-age covariance (rho)
	.06
	.18
	-.28
	.38



	  Between-subject variance
	3.20**
	1.09
	1.64
	6.25






** p <.01.

*** p <.001.







Problem 12.2: Repeated-Measures with Level 2 Predictor 

Now that we have determined that there is significant variance to explain, we will test another model with a Level 2 predictor, gender. This analysis will enable us to answer the following question:

	12.2. Does knowing a person’s gender help us in understanding his or her growth from age 8 to age 14, as measured by the distance variable?


To answer this question, we will build on the model we just created for Problem 12.1. If you have reset the Linear Mixed Models program from the previous problem, then go back to the instructions for Problem 12.1 and redo those steps now and then do the steps that follow here. If you did not reset it, you will just need to do the following:

	Select Analyze → Mixed Models → Linear.
 	Retain the settings for the first window.
 	Click on Continue. This will open the Linear Mixed Models window (Fig. 12.3).
 	Keep the variables as they were in Fig. 12.3, but also move Gender into the Factors: box.
 	Click on Fixed to get Fig. 12.7.
 	Click to change Main Effects to Factorial in the middle box, then Click on Build nested terms. Click on linear and click on the curved arrow to add it to the build terms box. Click on By to add the multiplication symbol to the box, then click on gender and click on the curved arrow to move it into the box. You should see linear, quadratic, gender, and linear * gender, as in Fig. 12.7. We are looking at the interaction between linear and gender, but not between quadratic and gender because linear but not quadratic significantly predicted the outcome variable in the unconditional model, so now we want to see if an interaction with gender qualifies this effect, but we don’t want too many predictors, given the small sample size.
 	Click on Add to move the interaction into the Model box.



[image: Fig. 12.7. Linear mixed models: Fixed effects.]
Fig. 12.7. Linear mixed models: Fixed effects.



	Click on Continue.
 	Leave the settings for Random and Statistics as they are (or repeat what you did for Problem 12.1).
 	Click on OK.
 	Check to see if your syntax and output are like Output 12.2 below (but with additional outputs for the contrast coefficients, which we are omitting to save space).
 	Unfortunately, we can’t use EM Means to calculate the means for the interaction between linear and gender because linear is a covariate instead of a factor. We can calculate this using Explore after first using Split file to calculate the means and other statistics separately for boys and girls. 	Click on Data→Split File.
 	Click on Organize output by groups.
 	Hit OK.
 	Use Explore, as before, to calculate statistics for the dependent variable distance with factor age.




Output 12.2 Conditional Model With Gender as a Predictor

[image: ]

Mixed Model Analysis

[image: ]


Interpretation of Output 12.2

The syntax and Model Dimension tables, again, enable you to check to make sure that the program did everything as intended. Note that we have now specified 12 parameters, 4 more than we specified in the unconditional model.
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Interpretation of Output 12.2 (continued)

Next, you see the Information Criteria, providing goodness-of-fit data for this new model. If you compare the −2 Restricted Log Likelihood, which is a useful measure of goodness of fit, for this model (432.374) and for the unconditional model (437.43), you can see that the goodness of fit has improved by about 5. Again, smaller numbers indicate better fit. We will do a likelihood ratio shortly to see if this is a significant improvement in the model.



Fixed Effects

Type III Tests of Fixed Effectsa





	Source
	Numerator df
	Denominator df
	F
	Sig.





	Intercept
	1
	43.580
	2482.193
	.000



	linear
	1
	76.597
	4.822
	.031



	quadratic
	1
	77.796
	.752
	.389



	gender
	1
	36.092
	2.763
	.105



	gender * linear
	1
	35.840
	6.592
	.015






a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure.






[image: ]


Interpretation of Output 12.2 (continued)

The next table provides information about the Fixed Effects. Note that linear still is a statistically significant predictor, F(1, 76.6) = 4.82, p = .031. Now, we see that gender* linear also is a statistically significant predictor, over and above the effect of linear, F(1, 35.84) = 6.59, p = .015. However, the main effect of gender is not a statistically significant predictor, p > .05.

We are omitting the Type III Estimable functions tables from the output reproduced here to save space, but these show you how the computer program contrasted the dummy variables.

The next table provides the parameter estimates for the fixed effects. Notice that two dummy variables were created for the gender × linear age predictor, but only one was needed because the other was redundant with it.



Covariance Parameters

[image: ]

Random Effect Covariance





	
	Intercept | subject





	Intercept | subject
	3.333923






Various Components

a. Dependent Variable: Distance (mm)from center of pituitary to pteryomaxillary fissure






Interpretation of Output 12.2 (continued)

The next table shows that the diagonal estimate (now 1.89, but 2.12 in the Level 1 model) has been reduced, suggesting that gender*linear explained additional variance. However, the betweenparticipants’ variability (Intercept [subject = subject]) has actually increased slightly (from 3.2 to 3.3). Moreover, the Wald statistics for both these effects suggest that there is still significant variance left to explain if we had additional predictors.



Before we show you how to write about this output, let’s calculate a chi-square to determine whether there is a significant improvement in the fit of the model because of the addition of the gender variable.

	Click on Transform → Compute variable.
 	In Function Group: box, select All.
 	In Functions and Special Variables: scroll down and highlight Sig.Chisq. Move it into the Numeric expression box by clicking on the up arrow to the left of the Function group box (see Fig. 12.8).
 	For Target variable, type in chisqgenderlinear.



[image: Fig. 12.8. Compute variable.]
Fig. 12.8. Compute variable.



	Click on Type and Label and label this variable as Likelihood ratio sign for adding gender to linear (see Fig. 12.9).



[image: Fig. 12.9. Compute variable: Type and label.]
Fig. 12.9. Compute variable: Type and label.



	Click on Continue. This will take you back to Fig. 12.8.
 	Notice that in the Numeric expression box, SIG.CHISQ is followed by a parenthesis with a question mark. Highlight the question mark and type enter 10.37, the rounded difference between the −2 restricted log likelihoods for the conditional and the unconditional models (436.59−446.96). Next, type a comma and enter the degrees of freedom, which is the difference in number of parameters (8-6) or 2 (see Fig. 12.8). It should now look like SIG.CHISQ(10.37,2)
 	Click on OK.
 	If you check your Data Editor, you will see a new column on the right side, with the new variable, chiqgenderlineare. The value is .01, which means that the difference in models is significant at p =.01.Thus, adding gender and the interaction between gender and the linear effect improves the fit of the model to a statistically significant degree, as suggested by the fact that the gender x linear effect was statistically significant.


COMPUTE chisqgenderage = SIG.CHISQ(10.37,2). 
VARIABLE LABELS chisqgenderage 'Likelihood ratio sign for adding gender to age’. 
EXECUTE.


Example of How to Write About Output 12.2

(Note that usually one would present the results from Output 12.1 in this results section as well and compare the two models.)

Results

As Tables 12.2 and 12.3 indicate, both the linear effect of age, F(1,76.6) = 4.82, p = .031 and the interaction between this linear trend and gender, F(1,35.8) = 6.59, p =.015 were significant predictors of distance from pituitary to pteryomaxillary fissure, a measure of growth of the jaw, but the effect of gender was not statistically significant (p = .105). As Figure 12.10 shows, size increased steadily from age 8 years to age 14 years for both males and females, but it increased more quickly for males. The model that included gender and the linear and quadratic trends of age indicated a significant interaction between the linear trend and gender; moreover, it explained statistically significantly more variance than did the unconditional model that included only the linear and quadratic trends of age. A likelihood ratio Chi-square indicated that the change in −2 restricted log likelihood of 10.37 (df = 2) was significant, p = .01. Table 12.4 presents the parameter estimates for both fixed and random effects.

Table 12.2
Means and Standard Deviations for Distance as a Function of Age and Gender





	
	
	Distance from pituitary to pteryomaxillary fissure



	
	
	




	Effect
	n
	M
	SD





	




	Girls
	11
	22.65
	2.40



	    8 years
	
	21.18
	2.12



	    10 years
	
	22.23
	1.90



	    12 years
	
	23.09
	2.36



	    14 years
	
	24.09
	2.44



	Boys
	16
	24.97
	2.90



	    8 years
	
	22.88
	2.45



	    10 years
	
	23.81
	2.14



	    12 years
	
	25.72
	2.65



	    14 years
	
	27.47
	2.09



	Total
	27
	24.02
	2.93



	    8 years
	
	22.19
	2.43



	    10 years
	
	23.17
	2.16



	    12 years
	
	24.65
	2.82



	    14 years
	
	24.02
	2.93







[image: Figure 12.10. Interaction between age and gender in mean distance from pituitary to pteryomaxillary fissure.]
Figure 12.10. Interaction between age and gender in mean distance from pituitary to pteryomaxillary fissure.



Table 12.3
Effects of Age and Gender on Distance (mm) from Pituitary to Pteryomaxillary Fissurea





	Source
	Numerator df
	Denominator df
	F
	p





	




	Age linear
	1
	76.60
	4.82
	.031



	Age quadratic
	1
	77.80
	.75
	.389



	Gender
	1
	36.09
	2.76
	.105



	Gender x linear
	1
	35.84
	6.59
	.015






a Dependent variable: Distance (mm) from center of pituitary to pteryomaxillary fissure.





Table 12.4
 Covariance Parameters for Conditional Growth Model, with Gender as a Level 2 Predictor





	Effect
	Estimate
	SE
	95% Confidence Interval



	




	Lower Bound
	Upper Bound





	




	Fixed effects
	
	
	
	



	     Intercept
	22.16
	.44
	22.26
	23.05



	     Linear effect of age
	1.29**
	.43
	.44
	2.14



	     Quadratic effect of age
	.12
	.13
	- .15
	.38



	     Gender × linear age
	-.77***
	.22
	-1.21
	-.34



	Random effects
	
	
	
	



	   Repeated Measures
	
	
	
	



	     Within-age variance
	1.89***
	.34
	1.33
	2.68



	    Between-age covariance (rho)
	-.04
	.17
	-.35
	.28



	   Between-subject variance
	3.33**
	1.08
	1.76
	6.30






* p< .05.

** p< .01.

*** p< .001.







Problem 12.3: Unconditional Individuals-Nested-in-Schools Model

For this problem, you will need to retrieve a new data set, HSB12.sav (not HSBdataNew.sav or any of the other datasets).

This data set was downloaded from http://www.ats.ucla.edu/stat/paperexamples/singer/ with permission of Professor Judith D. Singer, and it was also analyzed in Raudenbush & Bryk (2002) and Singer (1998). It involves much of the same HSB data that we have used in other chapters, except that this version of the dataset includes information about which school students attended, students’ SES, average school SES, information about the type of school, and so on.

This data set includes 7185 students whose data are nested within 160 different schools. Mathach has a mean of 12.75 and SD = 6.88 for the whole sample; however, the mean mathach varies across schools from 4.24 to 19.09, and the SD for mathach ranges from 3.88 to 8.48. The question we ask in this problem is whether there is sufficient variability within and/or between schools that we might want to try to explain that variability.

Let’s answer the following question:

	12.3 Is there significant variability within and/or among schools in the average mathach? 	First, click on Analyze → Mixed Models → Linear.
 	Next, highlight school and move it into the Subjects: box to get Fig. 12.11.





[image: Fig. 12.11. Linear mixed models: Specify subjects (no repeated)..]
Fig. 12.11. Linear mixed models: Specify subjects (no repeated).



	Click on Continue.
 	Highlight mathach and move it into the Dependent Variable: box. Do not put in any factors or covariates for this unconditional model. Your window should look like Fig. 12.12.



[image: Fig. 12.12. Linear mixed models.]
Fig. 12.12. Linear mixed models.



	Click on Fixed to get Fig. 12.13.
 	In Figure 12.13, leave the defaults. Make sure that Include intercept is checked and Sums of Squares is Type III.



[image: Fig. 12.13. Linear mixed models: Fixed effects.]
Fig. 12.13. Linear mixed models: Fixed effects.



	Click on Continue, which will take you back to Fig. 12.12.
 	Click on Random to get Fig. 12.14.
 	Under Covariance Type, click on the arrow next to Variance Components and scroll down to select Unstructured, which places no constraints on the covariance structure. Whereas in the prior problems, we knew that measurements were likely to be more closely related on adjacent times, we really do not know much about the characteristics of this covariance structure, so we will leave it free to vary.
 	Check Include intercept.
 	Under Subject Groupings, highlight school and move it into the Combinations: box. Your window should look like Fig. 12.14.



[image: Fig. 12.14. Linear mixed models: Random effects.]
Fig. 12.14. Linear mixed models: Random effects.



	Click on Continue to get back to Fig. 12.12.
 	Click on Statistics.
 	Check Parameter estimates and Tests for covariance parameters. Your window should look like Fig. 12.15.



[image: Fig. 12.15. Linear mixed models: Statistics.]
Fig. 12.15. Linear mixed models: Statistics.



	Click Continue.
 	Click on OK.


Compare your output and syntax with Output 12.3.

Output 12.3 Unconditional Model of Math Achievement for Students Nested in Schools

MIXED mathach

/CRITERIA=CIN(95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

/FIXED=| SSTYPE(3)

[image: ]

Mixed Model Analysis


Warnings

The covariance structure for random effect with only one level will be changed to Identity.



[image: ]

[image: ]

Fixed Effects





	Source
	Numerator df
	Denominator df
	F
	Sig.





	Intercept
	1
	156.647
	2673.663
	.000






a. Dependent Variable: mathach






[image: ]

Covariance Parameters

[image: ]


Interpretation of Output 12.3

This output is very similar to Output 12.1b, in that it is an unconditional model. This time, there is no repeated-measures variable. Instead, participants are nested in particular schools, which may have their own specific characteristics. The Model dimension table shows that there are 3 parameters. One is the estimate for the fixed intercept effect, which, as before, is not of conceptual interest. The other two are for the random school effect (variability between schools) and residual (variability within schools). The Fixed Effects and Covariance Parameters tables show that all three of these effects are statistically significant (p < .001), showing that the mean is statistically significantly different from zero, and there is significant variability to explain both within schools and between schools. The main purpose of this unconditional model is to see if there is a significant amount of variability in math achievement within schools (the covariance parameter labeled Residual) and variability between schools (the covariance parameter labeled Intercept [subject = Variance school]), and there is. Note that this is the estimate of the variability among the means of the schools.




Example of How to Write About Output 12.3

Results

The unconditional repeated-measures model revealed that there was significant variability in the math achievement measure, suggesting that it would be worthwhile to examine a conditional model that could potentially explain some of this variability. (The assumptions of independent observations at the level above the nesting, and random residuals were checked and met. The assumptions of bivariate normality and linear relationships were not met, thus, results should be viewed with caution.) There was statistically significant variability both between schools, Wald Z = 7.99, p < .001 and within schools, Wald Z = 59.26, p < .001. Table 12.5 presents the estimates of the variance components associated with the fixed and random effects.

Table 12.5
 Unconditional Model for Math Achievement





	Effect
	Estimate
	SE
	95% Confidence Interval



	
	
	
	




	
	
	
	Lower Bound
	Upper Bound





	




	Fixed effects
	
	
	
	



	     Intercept
	12.64***
	.24
	12.15
	13.12



	Random effects
	
	
	
	



	     Between-school variance
	8.61***
	1.08
	6.74
	11.01



	     Within-school variance
	39.15***
	.66
	37.87
	40.46






***p <.001.







Problem 12.4: Conditional Individuals-Nested-in-Schools Model with Level 1 Covariate 

In Problem 12.4, we could have looked at meanses, which is a variable at the school level (Level 2) and is the average socioeconomic class for the students in a particular school. As part of this problem, we will show you how you might have calculated meanses if it were not already available. However, instead of looking at meanses in this problem, we will look at a Level 1 predictor, cses, which is students’ socioeconomic status measured as a deviation from the school’s average SES. Creating such deviation scores is called centering the data, which we will show you how to do prior to actually doing Problem 12.4. We could create a model in which we included both the Level 1 and Level 2 variables, to try to explain both within-school and between-school variability, but we chose not to do so.

Now that we have determined that there is significant variance to explain, we will test another model with a Level 1 predictor, cses. This analysis will enable us to answer the following question:

	12.4 Does knowing a person’s socioeconomic status relative to that of the average student in his/her school (cses) help us in understanding his or her math achievement, even after the effects of differences among schools in math achievement are taken into account?


Before we do the analysis to answer this question, we will calculate a centered Level 1 variable and a Level 2 aggregate (averaged) variable to show you how to do those. Then, we will use the centered variable (which already is a part of the data set) as a Level 1 predictor in the conditional model.

	First, calculate the means for each school for SES: Click on Analyze → Descriptive Statistics → Explore.
 	Highlight school and move it into the Factor List: box.
 	Highlight ses and move it into the Dependent List: box.
 	Under Display, click on Statistics. Your window should look like Fig. 12.16.



[image: Fig. 12.16. Explore.]
Fig. 12.16. Explore.



	Click on OK.


Compare the mean for several schools to the values listed for meanses in your Data Editor. You will see slight rounding differences, but basically the same values for the means. Note that SES is already centered on the grand mean for all participants, so some means are negative and some are positive. Grand mean centering is another method that is commonly used in conjunction with multilevel models, especially when predictors from different levels are included in the same equation. Which mean you use in centering depends on your research question. We are not including the output for the group mean centering we are doing here in order to save space.

Now, we will center SES on each school’s mean. We’ll use meanses rather than creating a new variable based on the output we just generated.

	First, click on Transform → Compute Variable.
 	Type CSES2 in the box for Target Variable.
 	Click on Type and Label.
 	Type in SES centered on school mean demo (see earlier example in Fig. 12.9).
 	Click on Continue.
 	Next, highlight and move ses into the Numeric expression box, and type – (minus sign), then type in meanses. Your window should look like Fig. 12.17.



[image: Fig. 12.17. Compute variable.]
Fig. 12.17. Compute variable.



	Click on OK.


The results will appear as a new column in your data. Compare the results for a few cases to the cses variable that is already included in the data. They should be the same. We will use cses as a predictor in Problem 12.4.

We will build on the model we just created for Problem 12.3. If you have not yet reset the Linear Mixed Models program from the previous problem, you will just need to do the following:

	Select Analyze → Mixed Models → Linear.
 	Retain the settings for the first window. If you reset already, then repeat the settings for Fig. 12.11.
 	Click on Continue. This will open the Linear Mixed Models window (Fig. 12.12).
 	Keep the variables as they were in Fig. 12.12, but also move cses into the Covariate box to get Figure 12.18.



[image: Fig. 12.18. Linear mixed models.]
Fig. 12.18. Linear mixed models.



	Click on Fixed to get Fig. 12.13.
 	Click on [image: ] cses, and Add it as a fixed covariate, as in Fig. 12.19.



[image: Fig. 12.19. Linear mixed models: Fixed effects.]
Fig. 12.19. Linear mixed models: Fixed effects.



	Click on Continue, to take you back to 12.18.
 	Click on Random
 	Click on [image: ] cses, and Add it as a random covariate, as in Fig. 12.20.



[image: Fig. 12.20. Linear mixed models: Random effects.]
Fig. 12.20. Linear mixed models: Random effects.



	Click on Continue to take you back to 12.18.
 	Click on Statistics.
 	Leave the checks for Parameter estimates and Tests for covariance parameters and also check Covariances of random effects.
 	Click on Continue.
 	Click on OK. Compare your output with Output 12.4.


Output 12.4: Conditional Model Predicting mathach From CSES

[image: ]


Interpretation of Output 12.4

The syntax and Model Dimension tables, again, enable you to check to make sure that the program did everything as intended. Note that we have now specified six parameters, three more than we specified in the unconditional model.



Mixed Model Analysis

[image: ]


Interpretation of Output 12.4 (continued)

Next, you see the Information Criteria, providing goodness-of-fit data for this new model. If you compare the −2 restricted log likelihood, which is a useful measure of goodness of fit, for this model (46714.24) and for the unconditional model (47116.80), you can see that the goodness of fit has improved by almost 403. Again, smaller numbers indicate better fit. We will again do a likelihood ratio after we go through Output 12.4, to see if this is a significant improvement in the model.




[image: ]

Fixed Effects
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Interpretation of 12.4 continued

The two previous tables provide information about the Fixed Effects. Note that cses, F(1, 155.22) = 292.4 is statistically significant at p < .001. Moreover, in the Covariance Parameters tables (next), we see that the within schools residual still is statistically significant, Wald Z = 58.65, p < .001, although, as we see by comparing this table with the one in Output 12.3, the variance component estimate has decreased from 39.15 to 36.70. This makes sense, because we are explaining some of this within-school variability by using cses as a predictor.



Covariance Parameters
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Interpretation of Output 12.4 continued

The next entries in this table are less familiar and harder to interpret from the labels that are given, which is why we requested the Random Effect Covariance Structure, by checking Covariances of random effects in the Statistics menu. The line in the Estimates of Covariance Parameters table that is labeled UN (1,1) is the (unstructured) variance associated with differences between schools. As the Random Effect Covariance table indicates, the (1,1) indicates that it is the covariation of this effect with itself, or variance. In contrast to the decline in the within-schools variance component, the between-schools variance component actually increased a negligible amount in the conditional model, from 8.61 in Output 12.3 to 8.68 in Output 12.4. The next line in the Estimates of Covariance Parameters table, which is labeled UN (2,1), is the covariance between differences due to cses and differences between schools, as again made clearer in the Random Effect Covariance table. The final line in the Estimates of Covariance Parameters table that is labeled UN (2,2) is the variance associated with differences within schools that are due to cses.

Note that all of these effects are statistically significant except the covariance between cses and betweenschools variance. Thus, it appears that these two types of variance are relatively independent of one another.



Before we show you how to write about this output, let’s again calculate a chi-square to determine whether there is a significant improvement in the fit of the model because of the addition of the cses variable.

	First, click on Transform → Compute Variable.
 	Click Reset to clear any previous settings or text.
 	In the Function Group: box, highlight All.
 	In the Functions and Special Variables: box, scroll down and highlight Sig.Chisq and move it into the Numeric expression: box by clicking on the up arrow to the left of the Function group: box (see Fig. 12.20).
 	Notice that in the Numeric expression: box SIG.CHISQ is followed by a parenthesis with a question mark. Highlight the question mark and enter 402.56, the rounded difference between the −2 restricted log likelihoods for the conditional and the unconditional models (47116.793−46714.235). Then, type a comma and enter the degrees of freedom, which is the difference in number of parameters (6-3) or 3.
 	For Target variable, type in chisqcses. Your window should look like Fig. 12.21.



[image: Fig. 12.21. Compute variable.]
Fig. 12.21. Compute variable.



	Next, click on Type and Label and label this variable as chi square for change in school model with cses.
 	Click on Continue. This will take you back to Fig. 12.21.
 	Click on OK.



If you check your data, you will see a new column with the new variable. The value is .00, which means that the difference in models is significant at p < .01.



COMPUTE chiqcses=SIG.CHISQ(402.56,3). 
VARIABLE LABELS chiqcses 'chi square for change in school model with cses'. 
EXECUTE.


Example of How to Write About Output 12.4

(Usually one would present the results from Output 12.3 in this results section and compare the two models.)

Results

As Table 12.6 indicates, centered socioeconomic status was a statistically significant predictor of math achievement even after the statistically significant remaining within-school and between-school variances were taken into account. The model that included socioeconomic status as a predictor explained statistically significantly more variance than did the unconditional model that included only the within-schools residual and between-schools variance. A likelihood ratio chi-square indicated that the change in −2 restricted log likelihood of 402.56 (df = 3) was statistically significant, p < .01. Table 12.7 presents the parameter estimates for both fixed and random effects.




Table 12.6
Effect of Centered SES on Math Achievement





	Source
	Numerator df
	Denominator df
	F
	p





	Intercept
	1
	156.75
	2676.27
	.001



	Centered SES
	1
	155.22
	292.40
	.001







Table 12.7
Conditional Model for Math Achievement, with Centered SES as a Level 1 Predictor





	Effect
	Estimate
	SE
	95% Confidence Interval



	
	
	
	




	
	
	
	Lower Bound
	Upper Bound





	




	Fixed effects
	
	
	
	



	   Intercept
	12.65***
	.24
	12.17
	13.13



	   Centered SES
	2.19***
	.13
	1.94
	2.45



	Random effects
	
	
	
	



	   Within-school variance
	36.70***
	.63
	35.49
	37.95



	   Centered SES
	.69* 
	.28
	.31
	1.53



	   Between-school variance
	8.68***
	1.08
	6.80
	11.08






*p < .05.

***p < .001.







Interpretation Questions

	12.1 In Output 12.1b: (a) Why did we decide to use the autoregressive covariance structure (AR1)? (b) What did the AR1 rho suggest about the need to use the autoregressive covariance structure? (c) If the quadratic trend had been significant, what would that have told us? (d) What do the Information Criteria tell you? Why is this important?
 	12.2 In Output 12.2: (a) What does this analysis tell us that 12.1b did not? (b) The linear age × gender interaction effect was significant. What does that mean? (c) What did the chi-square tell us? (d) Why would we use multilevel linear modeling to analyze these data rather than using a mixed design (between-subjects and within-subjects IVs) ANOVA?
 	12.3 In Output 12.3: (a) What do we mean when we say that school is a nesting variable? Why does this matter? (b) What is an unstructured covariance structure, and why did we use it? (c) In the Covariance Parameters table, what does the intercept variance tell you?
 	12.4 In Output 12.4: (a) What is cses a measure of? Why does one center data? (b) What does the Covariance Parameters table tell you? How does it relate to the Random effect covariance structure table? (c) Do the results tell us whether it might be reasonable to include additional (e.g., Level 2) predictors? What provides information about this?


Extra SPSS Problems 

	12.1 Using the HSB12.sav data file, repeat Problem 12.4, but add sector, a dummy variable indicating the type of school (0 = public, 1 = Catholic), as a Level 2 factor (not covariate). Only cses should be included as a random covariate, but both variables, and their interaction, should be included as fixed predictors. 	Do a chi-square to see if this improves the goodness of fit.
 	Does adding the sector variable improve the model significantly?


 	12.2 Repeat Extra SPSS Problem 12.1, but change the Covariance Type to variance components. 	Again, do the goodness of fit chi-square to see if this improves the goodness of fit.
 	Does it do so?
 	Which variance structure is preferable?


 	12.3 Repeat Extra SPSS Problem 12.2, but again change the Covariance Type. This time, try compound symmetry. Which is the best covariance structure to use?
 	12.4. Using the Growth Study.sav data file, repeat Problem 12.2 (the repeated-measures problem), not Extra SPSS Problem 12.2. 	Substitute unstructured for AR1 as the Covariance Type.
 	Does this change the results in comparison with Problem 12.2?
 	If so, how?





Chapter 13
 Missing Data and Multiple Imputation

Multiple imputation is when you create the best possible substitutions for missing values in a dataset. As implied by the name, multiple datasets with replacement values are generated, and then typically these results are pooled to create the final parameters for the analysis.

Missing data are extremely common in behavioral research. In a true experiment that has no longitudinal component, a researcher continues collecting data until the desired number of participants have been obtained in each cell of the design. Even under these carefully controlled conditions, data may be missing because of equipment failure, participant non-compliance with experimental rules, experimenter error, participant decision not to complete one or more procedure, non-return of questionnaire materials, etc. Moreover, field studies, longitudinal studies, intervention studies, and studies with vulnerable or challenging populations may have substantial levels of missing data. Missing data create many difficulties if you want to generalize to a population. To the extent that data are missing for non-random reasons, missing data may lead to misrepresentation of the population. Moreover, the reduced numbers of participants also decreases power—the ability to correctly reject a null hypothesis when it is false.

Traditionally, if data were missing for a particular case, researchers usually would either exclude the entire case from all analyses (by selecting listwise deletion), or they would exclude data from each analysis if at least one variable used in each analysis was missing (by selecting pairwise deletion). If there are very few missing data in a relatively large sample, these approaches may be justified. However, if large amounts of data are missing, and the reasons they are missing are non-random, then such methods of dealing with missing data have been found to bias the results. Similarly, a common early method for imputing missing values, mean substitution (substitution of the mean of all other participants’ scores on that variable) introduced substantial bias. As a result, researchers have devised better methods of dealing with missing data. In general, two methods currently are considered “best practices” for dealing with missing data—multiple imputation and maximum likelihood estimation. This chapter will focus on the first of these two methods, multiple imputation.

Randomness of Missing Data 

Are data missing completely at random (MCAR)? If data are MCAR, then whether or not a value is missing (missingness) is not related systematically to the values of that variable or any other variables (see Little & Rubin, 2002). If such a condition holds, then the only problem created by missing data is reduction of power. However, it is not possible to determine whether missingness on variable y is related to the values of y since the values for y are missing for everyone who has missing data for y! Thus, one can never be assured that missingness is random. Moreover, most behavioral scientists recognize that MCAR is almost never true when large amounts of data are missing. More typically, data are missing because of specific factors.

For example, it can be assumed that longitudinal studies will have fewer participants in later time points than in the first time point, for a variety of reasons. They may be missing because participants moved, and moving is not usually for random reasons. Certain groups are more mobile than others, and people typically move for specific reasons such as job loss, divorce, military transfer, job transfer, or similar. Yet, employment and marital status, being in the military or in a company that requires frequent transfers, and so on are associated with many differences that are relevant to behavioral science.

Participants who did not move may decline further participation in a longitudinal study, and this is also not likely to be random with respect to measures for the study: They may have had a bad experience, another child might have been born so they were too busy, an at-home parent may have begun working and became too busy, or a child participant may have begun having difficulties at school or home, etc.

Similarly, intervention studies are likely to have more participant drop-out in the non-intervention condition if non-intervention is associated with escalating difficulties or in the intervention condition if the intervention is unpleasant or time-consuming or creates difficulties. Yet, those who drop out for such reasons are very important to include in outcomes. If data are not MCAR and one simply eliminates from analyses all participants who have at least one missing datum (listwise deletion, which is the default for many SPSS programs), then results will not accurately represent the population.

Are data missing at random (MAR)? A term that sounds similar to MCAR, but is quite different, is data missing at random (MAR). MAR means that although the data are not missing for completely random reasons, missingness of variable y is not related to values of y; it is only related to other variables in the dataset (or, at least, once you have taken into account the other variables, missingness is unrelated to values of the target variable; see Little & Rubin, 2002). So, in contrast to MCAR, which required that missingness was unrelated to any variables in the dataset, MAR only requires that missingness is unrelated to the variable that is missing the data. Since it is OK for missingness to be related to other variables in the dataset besides the one being imputed, one should be able to impute the missing values of the target variable from other variables in the dataset (as we will demonstrate in this chapter). Then, once one has modeled or imputed the missing data from the other variables in the dataset, the resulting dataset should be only randomly different from the complete dataset. If data are MAR, then it is reasonable to impute them, as we will do in this chapter.

Are data not missing at random (NMAR)? Not missing at random means that the missingness of the variable is systematically related to scores on the very variable that has missing data. If this is the case, the assumptions of multiple imputation are not satisfied. Some would argue that one still should impute the values because listwise or pairwise deletion is likely to bias results to an even greater extent under these circumstances. However, it is important to realize that the assumptions of multiple imputation would not be satisfied, and some bias could be introduced. However, ways of dealing with NMAR missing data are quite complex and not available in SPSS.

If Maximum Likelihood (ML) estimation is selected, certain programs, such as Mixed Models (see Chapter 12) use all data that are available from each participant, implicitly imputing missing dependent variable data as they are creating best fit models and parameters based on all of the available data. However, they usually do not use cases that are missing predictor data, so they still cannot compensate for missing predictors. Moreover, they do not actually create or save imputed values for missing data that then can be used in other analyses.

The SPSS Missing Values Analysis program allows you to do both multiple and single imputation of data. However, in this chapter, we only will show you how to do multiple imputation of data, because this is considered the most accurate way to impute both independent and dependent variables that are nominal, dichotomous, ordinal, or scale data. First, we will examine the patterns of missing values in the data, using descriptive statistics and figures. This will help us decide whether multiple imputation is necessary.

Assumptions for Multiple Imputation of Data

There are two assumptions for Multiple Imputation of Data: (1) data cannot be NMAR and (2) data should have a multivariate normal distribution. Multiple imputation of data is appropriate when missingness of the data on a particular variable, y, is not systematically related to the values of variable y.

The data may be MCAR or MAR, but they should not be NMAR (the values on the very variable with missing data are systematically related to whether or not they are missing).

Although, as mentioned before, it is not possible to directly assess whether missingness of y is related to y (since y is missing for all of the relevant individuals), it may be possible to determine that it is likely that missingness on y is related to values of y. For example, you might be interested in how much participants valued your 6-week intervention, based on a self-report Likert scale. You might collect the data only at the end of the intervention period and only collect data from those who completed all sessions, thinking that participants couldn’t really determine how valuable the intervention was if they didn’t participate in all of the sessions. Although at first glance, the logic behind this approach seems sensible, it seems quite likely that the missing data (from those who declined to participate further sometime after the first session and/or missed some of the sessions) would have been lower values in comparison to those of participants who did participate in all sessions. The fact that they declined to fully participate is likely to be related to their finding the intervention less valuable. Thus, the assumption of multiple imputation that data are not NMAR would be violated.

Nevertheless, you might choose to do multiple imputation anyway and just acknowledge the limitations of the imputation under the circumstances, since the bias in the data would be even greater if you simply used listwise deletion to eliminate all cases with missing data. In the latter case, you clearly would be misrepresenting the level of value participants placed on the intervention. To the extent that missingness could be predicted by other variables, imputation would at least partially compensate for the bias in the data. However, you would need to acknowledge that data almost certainly were NMAR, so results probably do not accurately represent the low end of the measure and should be interpreted with caution. We will show you how to look at the patterns of missing data for the variables you plan to impute, which can help you in deciding whether it is reasonable to assume that data are not NMAR.

Multiple imputation also assumes a multivariate normal distribution. Some sense of this can be obtained by looking at Descriptives for the variables or by plotting the distributions of the variables and doing matrix scatterplots between pairs of the variables (see earlier chapters). Some corrections are possible if this assumption is violated; however, if no correction is made, the standard error (SE) may be too high or too low. These corrections, such as repeatedly drawing subsets of a fixed sample size from the data and bootstrapping the SE from these samples, are beyond the scope of this chapter but should be considered if it is apparent that there are important violations of normality in the data. The accuracy of the imputations can be improved by careful selection of the variables to include in the imputations. You should always include all of the variables that will be used in your analysis, but in addition, you may want to include other variables as predictors that you think may be related to missingness.

First Steps in Multiple Imputation

We will start by assessing the characteristics of the missing data—to see whether it seems reasonable to consider the data missing at random (MAR). There are tests to assess whether or not the missing values are missing completely at random, but this condition is extremely rare in behavioral research unless one uses a planned missing values design (beyond the scope of this chapter), and it is not truly needed for multiple imputation. So, the best thing to do to determine if it is reasonable to consider the missing data MAR is to think logically about the likely reasons for missing data and to conduct analyses to see if the missing values show a clear pattern that can be explained in terms of the dependent variable.

We will use the anorectic3.sav data file which is a modified version of a file that is provided with the SPSS program; it was altered to create missing values. It is a longitudinal dataset with 4 timepoints. At each timepoint, variables that might affect the tendency of participants with eating disorders to lose or gain weight were assessed.

In Problem 13.1, we will examine the data to see if the patterns of missing data are consistent with MAR, and thus whether multiple imputation is advisable. In Problem 13.2, we will conduct the imputation to obtain datasets with missing data “filled in”. Then, in Problem 13.3, we will use this new dataset with the imputed values in it to conduct an analysis.

	Retrieve anorectic3.sav. See Appendix A for help.


Problem 13.1: Patterns of the Missing Data 

In this problem, we will examine the missing data to see if they appear to be MAR and to see if multiple imputation seems advisable.

	13.1. What are the patterns of missing values of weight, binge, mood, and preo? Is multiple imputation advisable for any of these variables? If so, which ones?


	Click on Analyze → Multiple Imputation → Analyze Patterns. You should get a dialog box like Fig. 13.1. Note that Missing Values Analysis is listed on the menu above Multiple Imputation but you click on the latter.
 	Select weight 1 through weight 4 and move them over to analyze across variables. Do the same with binge 1-4, mood 1-4, and preo1-4. Make sure that Summary of missing values, Patterns of missing values, and Variables with the highest frequency of missing values are all checked. Change the Minimum percentage missing from 10 to 1. See Fig. 13.1.



[image: Fig. 13.1. Analyze patterns.]
Fig. 13.1. Analyze patterns.



	Click on “OK”. Your output should look like Output 13.1.


Output 13.1: Analyze Patterns

GET

FILE='X:\Morgan Documents\SPSS 5th Ed. Intermediate\Data Sets\anorectic3.sav'.

DATASET NAME DataSet1 WINDOW=FRONT. 
*Analyze Patterns of Missing Values.

MULTIPLE IMPUTATION weight.1 weight.2 weight.3 weight.4 binge.1 binge.2 binge.3 binge.4 mood.1 mood.2 mood.3 mood.4 preo.1 preo.2 preo.3 preo.4

/IMPUTE METHOD=NONE 
/MISSINGSUMMARIES OVERALL VARIABLES (MAXVARS=25 MINPCTMISSING=1) PATTERNS.

Multiple Imputation

Missing Values

[image: ]


Interpretation of Output 13.1

The first figure shows that 93.75% of the variables and 37.5% of the participants have at least 1 missing value, but not many values are missing. Only 8.67% of the data are missing. Thus, not that many values need to be imputed, but if one did listwise deletion, one might lose as many as 37.5% of the cases, seriously reducing power and potentially leading to erroneous inference. So, imputation does seem advisable.
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Interpretation of Output 13.1 (continued)

The Variable Summary table specifies the number of missing cases, percent missing, and valid N for each variable that is missing at least 1% of the data. We can see that from 1−14 participants (1−17.5% of the sample) are missing data on these variables. Given the sample size, this is sufficient missing data to warrant imputation, as it would decrease power and accuracy of results with these variables, especially with those variables with 10% or more missing.
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Interpretation of Output 13.1 (continued)

The Missing Value Patterns figure is the most important one. It shows 16 different patterns of missing values that exist in the data, in terms of which data are missing. The pattern types are numbered on the left side. So, for example, pattern 2 involves missing only the variable weight 2; pattern 16 involves missing binge 3, weight 3, mood 3, preo 3, weight 4, binge 4, mood 4, and preo 4. So, pattern 16 seems systematic, but not related specifically to one particular variable; rather, it seems to include participants who stopped participating after the second timepoint.
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Interpretation of Output 13.1 (continued)

This bar chart shows that the most common pattern by far is pattern 1 (no missing data). However, pattern 15, in which time 4 data are missing, is second most common. This suggests that we may want to use time of assessment as a predictor variable.




Example of How to Write About Output 13.1

(note that usually results of outputs 13.1 and 13.2 would be included in the same section).

Method

In order to see the patterns of missing data shown in the variables to be used in the study and to better determine whether it was reasonable to consider data missing at random (MAR), missing values analysis was conducted. Results suggested that there were 16 different patterns of missing data. The most common pattern was one with no missing data, but several other patterns were found for particular sets of participants. Seven variables had missing data for at least 10% of the sample, and one pattern, in which time 4 data were all missing, was shown by about 10% of the sample. These results suggested that multiple imputation would be desirable and that time of measurement should be included as a predictor of missingness.



Problem 13.2: Restructuring and Imputing the Data 

Next, we will conduct the actual imputations, but first, we need to restructure the dataset so that we can use the information about time to predict missingness (given what we found before about patterns 15 and 16 in which some participants stopped participating after time 2 or 3.

	Click on Date→Restructure.
 	In the Restructure Data Wizard, select Restructure selected variables into cases (the default). Click on Next to produce Fig. 13.2.
 	Select More than one and type in 4 instead of 2. See Fig. 13.2.



[image: Fig. 13.2. Number of variable groups.]
Fig. 13.2. Number of variable groups.



	Select Use case number and keep the default (id). (See Fig. 13.3.) In this case, you will not actually need the id, as you have another case number (patient number) that you will keep, but we wanted to show you what happens when you do ask for an id number.
 	For target variable, delete trans1 and type in “weight.”
 	Select the weight variables (weight1-weight4) and move them to the box below Target Variable.



[image: Fig. 13.3. Select variables.]
Fig. 13.3. Select variables.



	Use the drop-down menu by the side of target variable to select the next variable, trans2. This time, delete trans2 and type in binge.
 	Select the 4 binge variables and move them over.
 	Repeat these same steps for trans3, typing in “mood” and moving those 4 over. Repeat for trans4 and “preo.”
 	Move patient number to the “Fixed variable” box. Click on Next.
 	Select one index. Click on Next.
 	Select Sequential numbers and change the name from index1 to time. Click on Next.
 	On the next screen, in the System Missing or Blank Values in all Transposed Variables box, leave it as the default (create a case in the new file). Click on Next.
 	You will then be brought to the Finish screen and asked “What would you like to do?” Select Restructure the Data Now option. Then click Finish.
 	You will see a new version of the dataset on your screen, which will be restructured so that each case has 4 lines (one for each assessment time) and there are just 7 variables: id, number, time, weight, binge, mood, and preo. For each case, the first line is the first assessment, the second line is the second assessment, and so on.
 	Click on File→Save as. You will get a box in which the File name is listed as anorectic3.sav. Change that file name to anorectic4 and save it where you saved your other datasets.


Now, you are ready to impute missing values.

	Click on Analyze → Multiple Imputation →Impute Missing Data Values
 	You should get a window box like Fig. 13.4. Select all variables except id and number and move them over to Variables in Model.



[image: Fig. 13.4. Impute missing data values.]
Fig. 13.4. Impute missing data values.



	Click on the drop-down menu next to imputations, and increase the number to 20. (Research shows that 20 imputations should provide good estimates of the missing values.) Click on Create a new dataset and type imputeanorectic4 in the box. You should see a screen like Fig. 13.5.



[image: Fig. 13.5. Impute missing data values.]
Fig. 13.5. Impute missing data values.



	Click on the tab for Method (top left) and click on Custom: Fully conditional specification (since we know that we do not have a monotone distribution of missing values). Under Maximum iterations, increase the number to 20, just in case more iterations are needed to converge on the missing values. Leave the other menu values that are there. They are the defaults.
 	Click on the tab for Constraints. For time, use the drop-down menu to indicate that you want to use it as a predictor only. All others should remain as they are (impute and use as predictor). Click on Exclude variables with large amounts of missing data, and specify that you want no more than 50% missing. From problem 13.1, we know that this will not be needed, but it is a good practice in general.
 	Click on the tab for Output and click on Descriptive statistics. Leave imputation model checked as well. Click on OK. We have omitted some parts of the output, to conserve space, but we will highlight important parts in Output 13.2.


Output 13.2: Impute Data

[image: ]

Multiple Imputation
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Interpretation of Output 13.2

The Imputation tables allow us to check that things were run as specified. The first table shows the Imputation Method is Fully Conditional Specification, there are 20 Imputations; and there is a Maximum of 50% missing values.

The second table shows that weight, binge, mood, and preo are the imputed dependent variables, and time is not imputed.
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Interpretation of Output 13.2 continued

This Imputation Model table indicates that, in conducting the imputation, logistic regression was used to predict Weight from all other variables, binge from all other variables, mood from all other variables, and Preo from all other variables. It also indicates the number of Missing Values and Imputed Values (which is the requested 20 imputations X # of missing values=580). Note that because imputations are generated based on a random procedure, your values in this table will not be exactly like ours. There is a way to “set the random seed” to generate the same imputations again, but it is beyond the scope of this chapter.

The weight table that follows (which we have truncated to save space) indicates the percentage of people with each value of weight for the Original Data, the Imputed Values (here only the first 2 imputations are shown), and the Complete Data after each imputation (shown for 5 imputations).
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How to Write About Problem 13.2

(usually results of this and Output 13.1 would be included in the same section).

Method

Multiple imputation was used to replace missing data. Multiple imputation creates multiple copies of the original data set, with the missing data being replaced in each copy with plausible sets of values. Each imputed data set is then analyzed separately, and parameters for the analyses are averaged across imputations. Multiple imputation, thus, is aimed at creating estimates that are not biased by missing data. Logistic regressions were used to impute missing data, with time and each of the variables other than the one being imputed being used as predictors. Twenty imputations were run in order to better converge on strong approximations of the missing data. Results of the imputation were saved as a dataset to be used in the primary analysis examining the relation of binging, mood, and preoccupation with one’s body to changes in weight over time in eating disordered individuals.



Problem 13.3: Mixed Models Analysis after Imputed Data 

We will now conduct a mixed model analysis on the imputed data. This analysis is appropriate because our data involve repeated measures that are arrayed as multiple lines for each participant. The Mixed Models procedure is one that is set up in SPSS to readily read and use imputation datasets. We have discussed this type of analysis in much greater detail in Chapter 12, so in this chapter, we will not interpret all parts of the analysis. Our main goal in this chapter is to show an analysis that can be run with an imputation dataset and how the output indicates results involving imputation. Please see Chapter 12 for more information about this procedure. Some programs can be run using imputation datasets, and others cannot. Mixed model analysis is one that can be used and which can take into account the within-subjects variable, time.

	First, make sure that your data will be analyzed separately for each imputation dataset by specifying that the data should be split based on imputation number. To do this:
 	Click on Data→Split File. You should see a window similar to Fig. A.10 in Appendix A.
 	Click on Compare groups. Move Imputation number into the Groups based on box.
 	Now click on Analyze→Mixed Models→Linear.
 	In the first window, move Patient number into the Subjects box, Time into the Repeated box, and select AR(1) from the drop-down menu for Repeated Covariance Type.
 	Click on Continue.
 	In the next window, move weight into the Dependent Variable box, time in the Factors box, and binge, mood, and preo into the Covariates box.
 	Click on Statistics, and check Parameter estimates, Tests for covariance parameters, and Contrast coefficient matrix. Click on Continue. Then click on OK in the window that you see next.
 	Your output should look like Output 13.3, except that we have omitted some parts to save space.


Output 13.3: Analysis of Imputed Data with Mixed Models

Mixed Model Analysis
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Interpretation of Output 13.3

The Information criteria table indicates goodness of fit of the model with the data, with smaller numbers indicating better fit. Note that the imputed data, for each of the five imputations shown, have somewhat poorer fits to the data. However, we will see below that the results of the tests predicting weight from the time various predictors are highly significant for the imputed models. Remember that we only have provided results for the first 5 imputations.

In the next table, coefficients are given for the contrasts between levels of time. Dummy variables are created in which each level of time is contrasted with time 4. Thus, [time=1] contrasts the first time point with time 4, [time=2] contrasts time 2 with time 4, and [time=3] contrasts time 3 with time 4. There can only be 3 contrasts because there are only 3 degrees of freedom for 4 levels of the time variable.
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Interpretation of Output 13.3 (continued)

Note that results are significant for the effect of time on Weight for all imputations (only the first 5 are presented here) and time is analyzed in the same way for all imputations.
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Interpretation of Output 13.3 continued

The Estimates of Fixed Effects results are provided for each imputation, as well as original and pooled results. Because an imputation dataset was used, three new columns are produced, indicating (on the Pooled row only) amount of missing data, increase in variance once missing data were imputed, and relative efficiency once data were imputed. The Fraction Missing Info column is an estimate of amount of missing data, based on the relative increase in variance from adding the imputed data. Relative increase in variance is the ratio of between-imputation to within imputation variance of the regression coefficient. Estimating missing data from existing data leads to an underestimate of the true variance, so between imputation variance is used as an estimate of this “lost” variation. Relative efficiency is a comparison of relative increase in variance to an estimate of such variance based on an infinite number of imputations. In this case, it is close to 1 (very high). Note that for the original data and imputation 1, the contrast between time 3 and time 4 was not significant (p = 064 and .162); however, all effects were significant for the pooled data. For each analysis, time 4 is contrasted with each other level of time, first time 1 (see L2 column), then time 2 (L3), and then time 3. There can only be 3 contrasts, because there are only 3 degrees of freedom for 4 levels of the time variable.




[image: ]


Interpretation of Output 13.3 (continued)

The final table shows results for the Covariance Parameters. Again, all imputations are reported, but we only present the first 2 here. Again, information about missing data and increase in variance and efficiency following the imputation are presented. AR1 diagonal indicates the amount of within-time variance, which is significant for all imputations. AR1 rho indicates the covariation between adjacent time periods, which again is sizable and significant. Also, the imputation particularly increases covariation between time periods, which makes sense because times 3 and 4 were no longer missing for a number of people.




Example of How to Write About Output 13.3

Results

Eating disordered participants’ reported weight changes, predicted by level of binging at each of the four assessment times, reported mood at each of the four assessment times, level of reported preoccupation with one’s body at each assessment time, and assessment time were investigated using a Mixed Model analysis of the imputed data. An autoregressive covariance structure was selected, given the likelihood that variables would be more highly correlated at adjacent times than across more distant time points. There was a significant effect of time on weight, F (3, 200.188)= 21.58, p <.001 for original data; Fs for imputations (numerator df 3; denominator df from 226.101−228.488) ranged from 15.08−25.775, p <.001. Moreover, the model predicting weight from binging, mood, and preoccupation about body predicted significant differences between each of the first three measurements of weight and weight at the final assessment (pooled ts (dfs ranged from 220.52−312.73 for different contrasts and imputations) were −6.92, p <.001; −2.95, p=.003; −2.06, p=.041 for differences between time 1 and time 3, between time 2 and time 4, and between time 3 and time 4, respectively. Inspection of the pooled means indicated that weight increased with time from M =1.63 on a 4 point scale at time 1 to 3.02 on the same scale at time 4, which was the desired outcome for this sample of primarily anorectic individuals. There was also substantial and statistically significant within-time and between-time variance (ps <.001). Relative efficiency of the 20 imputations that exceeded .98 for all pooled estimates, suggesting that the 20 imputations provided a strong estimate of population values.



Interpretation Questions

	13.1 For Problem 13.1: (a) Why did we perform Problem 13.1, and what does Output 13.1 tell us? (b) Do the results suggest that multiple imputation is desirable? Why or why not? (c) How many missing value patterns are there? Do they suggest that data are missing in a simple monotonic pattern?
 	13.2 Using Output 13.2: (a) Why didn’t we impute the time variable? (b) How was the distribution of weight scores similar and different for: original data, imputed data for imputation 1, and complete dataset following imputation 4?
 	13.3 In Output 13.3: (a) How do results compare for the different imputations? (b) What is the “fraction missing information” for each pooled fixed effect? What does it tell us? (c) What is the relative increase in variance for each pooled fixed effect? Why do we want to know this? (d) What is the “relative efficiency” for each of the pooled covariance parameters? Is this a high number for relative efficiency?


Extra SPSS Problems 


Using anorectic3.sav, do the following problems. Print your outputs after typing your interpretations on them. Please circle the key parts of the output that you discuss.



	13.1 Do not restructure the dataset; just follow the instructions for Problem 13.2 once the restructuring has been completed (beginning with Click on Analyze → Multiple Imputation →Impute Missing Data Values). However, you will be using only data from Time 1 and Time 4, so that you can use paired t-tests to look at change from Time 1 to Time 4. Impute data for the following variables: weight.1, weight.4, fast.1, fast.4, binge.1, binge.4, mood.1, mood.4, preo.1, and preo.4. As before, you will use the FCS method, with a maximum of 20 iterations and with 20 imputations. Again, you will set the maximum percent missing to 50. Call the outfile imputeanorectic3. (a) How many missing values are there for weight.1, weight.4, fast.1, fast.4, preo.1, and preo.4? (b) What are some differences between the percentage of people with values of 1, 2, and 3 in the original data, imputation 1 (complete data, not just imputed values), and imputation 20 (complete data) for preo.4?
 	13.2 Now do paired t-tests using the dataset imputeanorectic3 that you just created. First, use Split Files to Compare Groups based on Imputation_ (Imputation Number). Next, click on Analyze → Compare Means→ Paired Samples t-test. Create pairs for each variable at time 1 and time 4 (weight.1 and weight.4, fast.1 and fast.4, binge.1 and binge.4, mood.1 and mood.4, and preo.1 and preo.4. Then, run the t-tests. (a) How do correlations between Time 1 and Time 4 differ for original data, data from imputation 1, data from imputation 19, and pooled data for weight.1 and weight.4, fast.1 and fast.4, and preo.1 and preo.4.? (b) Do results differ for the paired t-tests for the original data versus the pooled data? If so, how? (c) Is the relative efficiency reasonable? What does this tell you?




Appendix A
 Getting Started With SPSS and Other Useful Procedures

Don Quick and Madison Myers Colorado State University

This section includes step-by-step instructions for several procedures related to getting started with SPSS as well as other useful procedures. This Appendix includes:





	1.
	Copy the Data Files From the Web Site



	2.
	Open and Start the SPSS Application



	3.
	Set Your Computer to Print the SPSS Syntax (Log)



	4.
	Save and Later Use Syntax to Rerun Statistics



	5.
	Working With Your Output



	6.
	Importing Data and Exporting Results



	7.
	Define the Variables



	8.
	Label the Values or Levels of the Variables



	9.
	Print a Dictionary or Codebook



	10.
	Converting Variables Into Standardized Variables (z Scores)



	11.
	Selecting Cases



	12.
	Splitting Files



	13.
	Merging Files



	14.
	The Compute and Mean Function



	15.
	The Graphs Commands







Two additional resources for students are provided on the Website: (a) a Quick Reference Guide (QRG) to commonly used SPSS procedures and (b) a document, Making Tables and Figures, describing how to make tables in APA format.

Copy the Data Files From the Web Site 

Copy the files from the Website, www.routledge.com/9781848729995. The files are:





	hsbdataNew.sav
	dvdplayer.sav



	college student data.sav
	judges.sav



	product data.sav
	satisfy.sav



	mixedMANOVAdata.sav
	Wuensch_logistic.sav



	Anxiety 2.sav
	site.sav



	general social survey.sav
	World95.sav



	DataFemales.sav
	DataMales.sav



	hsb12.sav
	Growth study.sav



	New drug.sav
	Love.sav



	Cannonical Correlation.sps
	Anoretic3.sav






Note:

You may not see the file extension .sav depending on your computer setup





Download these files to a working folder on your personal flash drive or network drive.

Open and Start the SPSS Application 

Begin at the Start button (bottom left of the Windows Desktop).

	If there is no icon, click Start → All Programs → IBM SPSS Statistics → IBM SPSS Statistics 22 (see Fig. A.1). If IBM SPSS is not listed in the All Programs menu, it will need to be installed on your computer. It is not part of the Microsoft Windows package or the Web site for this book and must be purchased/rented and loaded separately.



[image: Fig. A.1. Start menu and IBM SPSS Statistics 22.]
Fig. A.1. Start menu and IBM SPSS Statistics 22.



After you start the program, you will see the SPSS Statistics startup screen. There is a What’s New channel, a Modules channel and a Tutorials channel (see Fig. A.2). You can explore these at your leisure to learn more about what IBM SPSS can do for you. However, we want to focus on the New and Recent Files channels on that window.


[image: Fig. A.2. IBM SPSS Statistics startup screen.]
Fig. A.2. IBM SPSS Statistics startup screen.



To open a file:

	Double click the SPSS file you wish to use from what’s listed or
 	Double click the Open another file… folder to bring up the Open File dialogue box to search for the file you want to open or
 Note: You can also use the Open File dialogue box to open SPSS syntax or output files if you want to open those types of files.

 	Click the Cancel button, which will bring up a new blank SPSS desktop screen, called the IBM SPSS Statistics Data Editor.


Note: Files can also be opened from this program’s screen by using the File menu item.

You should now see the IBM SPSS Statistics Data Editor screen, there are two tabs at the bottom left side of the screen; the Data View tab and the Variable View tab (see Fig. A.3). Please refer to your SPSS Help menu for further information on how to do this in earlier versions. In Figures A.4 and A.5, the hsbdataNew.sav data set is being used.


[image: Fig. A.3. View tabs.]
Fig. A.3. View tabs.



Although the toolbar at the top of the data editor screen is the same for both the Variable and Data View screens, it is important to notice the subtle differences in desktop features between these two screens found within the data editor (compare Fig. A.4 and Fig. A.5).

	Click on the Variable View tab (see Fig. A.3) in the data editor screen to produce Fig. A.4.


Notice the column headers are those in Fig. A.4 (e.g., Name, Type, Width). One creates (defines and labels) new variables using the Variable View (see Chapter 2).


[image: Fig. A.4. SPSS data editor: Variable view.]
Fig. A.4. SPSS data editor: Variable view.



	Click on the Data View tab in the data editor to produce Fig. A.5.


Notice the column headers change to var or to the names of your variables if you have already entered them (see Fig. A.5). One enters (inputs) data using the Data View.


[image: Fig. A.5. SPSS data editor: Data View.]
Fig. A.5. SPSS data editor: Data View.



Set Your Computer to Print the SPSS Syntax (Log) 

Only needed to set on older versions of SPSS. With the current version of the program, your computer will automatically print the SPSS commands on your output, as shown throughout this book. If you are using an earlier version, you may need to turn this function on. To do so, set your computer using the following:

	Click on Edit → Options.
 	Click on the Viewer tab near the top left of the Options window to get Fig. A.6 (see the circled tab in Fig. A.6).



[image: Fig. A.6. Edit: Options.]
Fig. A.6. Edit: Options.



	Check Display commands in the log near the lower left of the window (see oval).
 	Leave the other defaults as is.
 	Click on OK. Doing this will always print the syntax on your output on this computer. If you use another computer you may have to set it again.


Save and Later Use Syntax to Rerun Statistics 

To save and later use syntax to rerun statistics, you will need to do the following after computing an output:

	Click on File → New → Syntax. Copy and paste the syntax into the syntax editor that you just opened and click File → Save as. This will save as a Syntax File (*.sps) → type file name in dialog box → Save (see Figure A.7.).


To open a saved syntax file, from the menu choose:

	File → Open → Syntax.
 	Select a syntax file → and click Open. Navigate to where you saved the syntax file.
 	Once a syntax file is open, from the menu choose Run → Selection.



[image: Fig. A.7. SPSS Syntax Editor.]
Fig. A.7. SPSS Syntax Editor.



Note: This is a simplified version of how to use the syntax file. The saving and using of the syntax file may be different on your computer depending on whether you have a data file open or not. However, it can be very useful if you need to run the same commands several different times.

Working With Your Output 

Resize/Shrink to Print

In order for larger tables in the output to fit onto a single printed page, you will need to do the following after computing an output:

	From the SPSS Output Viewer, double-click on the table to be resized to enter the editing mode.
 	Right click → Table Properties → and select the Printing tab.
 	Check Rescale Wide Table to Fit Page and/or Rescale Long Table to Fit Page.
 	Click on OK.


Editing Tables, Charts, and Text

When using the SPSS Output Viewer, editing outputs can be done in a variety of ways by either double-clicking on any item within the table or chart, or by choosing Edit from the menu and scrolling down to Options.

	Double-click on any item within a table or chart. This will allow you to edit the text size, font, color, change the look of a table, or pivot the table. After double-clicking, you can do the following:


To edit text size, font, and color:

	If the Formatting Toolbar is not already there, from the menu choose View → Toolbar. This will activate the Formatting Toolbar.


To customize a table, including text, alignment, shading, footnotes, cell formats, borders, and printing options:

	From the menu choose Format → Table Properties.


To change the look of a table:

	From the menu choose Format → TableLooks.
 	The TableLooks dialog box will appear listing a variety of predefined styles.
 	A style can be previewed in the Sample window to the right of the TableLooks dialog box.


To modify the table layouts and data order:

	From the menu choose Pivot.
 	The Pivoting Trays window will appear which provides a way to move data between columns, rows, and layers.


Most of the table editing procedures can also be completed by choosing Edit and then scrolling down to Options in the SPSS Output Viewer menu.

Importing Data and Exporting Results 

SPSS allows you to import data from Microsoft Access or Excel and export results outputs to Microsoft Excel and Word or other file types.

To import from MS Access or Excel:

	From the SPSS Output Viewer menu choose File → Open Database → New Query.
 	The Database Wizard will guide you through the process of importing data.


To export results:

	When the output you wish to export is open, from the SPSS Output Viewer menu choose File → Export…
 	The Database Wizard will guide you through the process of exporting data. Note: You can also export individual elements of the output by right clicking on the element and selecting Export.


Define the Variables 

The following section will help you name and label variables. If you still have the hsbdataNew data file, you can either use that or bring up a new data screen (File → New → Data).

You need to use the Variable View screen.

	Click on the Variable View tab at the bottom left of your screen (see Fig. A.8).



[image: Fig. A.8. Blank variable view screen.]
Fig. A.8. Blank variable view screen.



In this window, you will see 11 columns that will allow you to input the variable name, type, width, decimals, label, values, missing (data), columns (data width), align (data left or right), measurement type, and role.

To label a variable, if a new variable, start by clicking the blank box in the Name column (if modifying existing information you can click the box of the variable and attribute you would like to modify):

Name SPSS 11.5 and earlier versions allow only eight letters for the name. SPSS 12 and later versions allow as many as you wish, however, we recommend keeping the name fairly short in order to make the outputs easier to read. Note: Press Tab to move to the other attributes of the variable.


Type indicates whether the variable levels are numbers or are letters. Usually, you will use numeric.


Width indicates how wide the columns should be based on the number of characters allowed in the column.


Decimals are the number of decimals that will be shown in the data view window.


Label gives a longer name for the variable (optional but desirable if the name is unclear).


Values indicates labels for the levels of the variable (optional but needed for nominal variables).


Missing indicates any special values for missing data. The SPSS system missing uses a blank. If only blanks are used for missing, this column will say “none” for no special missing values. We usually use blanks for missing.


Columns defines the number of spaces for the variable in the data view window.


Align indicates how you want the data aligned in the data view window, usually right justified.


Measure shows the type of variable: nominal, ordinal, or scale (i.e., normally distributed).


Role allows the user to assign the term Target to dependent variables, Input for independent variables, and Both for variables that are used as both independent and dependent variables.


Label the Values or Levels of the Variables 

For variables that are nominal or dichotomous it is important to label the values or levels so that you will know the group referred to by each number. For example, with the variable of gender, the levels are male and female, so you might label males as “1” and females as “2.” To do this, follow these commands:

	Under Values, click in the cell for gender, then click on [image: ] (the small blue box with three dots) to get Fig. A.9.
 	In the Value Labels window, in the Value box type 1, male in the Value Label box, and then click Add. Do the same for 2 = female. The Value Labels window should resemble Fig. A.9 just before you click Add for the second time. Click OK.



[image: Fig. A.9. Value labels window.]
Fig. A.9. Value labels window.



After you define the variables, you are ready to enter data in the Data View (se Fig. A.5 above).

Print a Dictionary or Codebook

Now that you have defined and labeled your variables, you can print a codebook or dictionary of your variables. It is a very useful record of what you have done. The dictionary output will be in two tables: one listing each variable, its label, measurement level, etc.; and the other listing values and value labels. Notice that the information in the codebook is essentially the same as that in the Variable view so you do not really have to have both, but the codebook makes a more complete printed record of your labels and values.

	Select File → Display Data File Information → Working File.
 	The Codebook will be in a table in the Output Viewer.


Converting Variables Into Standardized Variables (z Scores) 

This procedure transforms the data for one variable to a standard score that has a mean of zero and a standard deviation of one. Standardized scores are used when you want to compute a summated scale score made up of variables with quite different means and standard deviations.

They are also used to compare apples and oranges, for example, achievement on a math test and an English test. Next we will make the math achievement scores into z scores.

	Click on Analyze →Descriptive Statistics → Descriptives…
 	Select the variable math achievement test (mathach) (see Fig. A.10).
 	Click the arrow in the middle of the dialog box to move the variable to the Variables box.
 	Check the box Save Standardized Values as Variables.
 	Click OK. An output window will appear with the descriptive statistics. The z score for each subject will be included as a new variable (Zmathach) in the last column of the SPSS Data Editor.



[image: Fig. A.10. Descriptives window for converting to z scores.]
Fig. A.10. Descriptives window for converting to z scores.



Selecting Cases 

The select cases command permits the analysis of a specific subset of the data. Once a subset is selected and used for the analysis, the user can either revert back to the entire data set by clicking on reset or delete the unselected cases to create a new data file of the selected cases. If you want to do the same analysis separately on all subsets of data, then Split File should be used instead of Select Cases (see below). It is advisable to save your work before deleting cases, just in case you change your mind! To select cases:

	Click on Data → Select Cases...
 	Choose the method of selecting cases you prefer (see Fig. A.11): 	If condition is satisfied (a conditional expression is used to select cases),
 	Random sample of cases (cases are selected randomly based on a percent or number of cases),
 	Based on time or case range (case selection is based on a range of case numbers or a range of dates/time), or
 	Use filter variable (a numeric variable can be used as the filter—any cases with a value other than 0 or missing are selected).


 	Unselected cases may be Filtered (remain in the data file but are excluded in the analysis) or Deleted (removed from the working data file and cannot be recovered if the data file is saved after the deletion).
 	For example, if you wanted to select only males in that hsbdataNew file, you would use If condition is satisfied and click on the If… button.
 	Then type gender = 0 and click Continue. Your window should look like Fig. A.11.
 	Click on OK.



[image: Fig. A.11. Select cases.]
Fig. A.11. Select cases.



Splitting Files 

Split Files splits the data file into separate groups for analysis based on the values of one or more grouping variables. Data can be displayed for group comparisons, or data can be displayed separately for each group (see Fig. A.12). This is a very useful tool, but be sure to reset Split File after doing the analyses you want split, or all further analyses will be split in the same way. In this example, we will split the hsbdataNew.sav file into two files, one with the data for the males and one with the data for the females.

	Data → Split File.
 	Select the appropriate radio button for the desired display option (Compare groups or Organize output by groups). Be sure the Sort the file by grouping variables is selected. Select the variable gender.
 	Click the arrow in the middle of the dialog box to move the variable to the Groups Based on: box. The window should look like Figure A.12.
 	Click on OK.



[image: Fig. A.12. Split file.]
Fig. A.12. Split file.



Note: Now you can do statistics separately for males and females.

Merging Files 

Merge files allows the working data file to be combined with a second data file that contains (a) the same variables but different cases or (b) the same cases but different variables.

To Add Cases

An example of merging files with the same variables but different cases might be if you had all the males for the hsbdata set in one file and all the females in another. In order to compare males and females, these two data files need to be merged.

	Open both data files you want to merge. In this example, open DataMales.sav and DataFemales.sav. (They are on the Website for this book, www. routledge.com/9781848729995.)
 	In the DataFemales.sav file, click on Data → Merge Files → Add Cases.
 	The Add Cases to DataFemales.sav [DataSet2] window will open (see Fig. A.13).
 	Highlight DataMales.sav [DataSet1] and then click on Continue.



[image: Fig. A.13. Add cases to DataFemales.sav [DataSet1].]
Fig. A.13. Add cases to DataFemales.sav [DataSet1].



	The Add Cases from DataMales.sav [DataSet1] will open (see Fig. A.14).



[image: Fig. A.14. Add cases from DataMales.sav [DataSet1].]
Fig. A.14. Add cases from DataMales.sav [DataSet1].



	Click on OK. The data from the DataMales.sav file will be added to the DataFemales.sav file.


Using a similar procedure, you can merge two files that have the same, or at least overlapping cases but different variables.

To Add Variables

Before you add variables to a file using this method, you should first make sure that each participant who has data in both data sets is identified by the same ID number in both files. Then, you should use Sort Cases to sort each file (by itself), sequentially in ascending order, saving each file once it is sorted. You should make sure that you open the data file first that has the correct values of any variables that exist in both data sets. SPSS will save only one copy of each variable, and that will be the one that is in the first (working data) file. This example is not with the HSB data set.

	Click on Data → Merge Files → Add Variables.
 	In the Add Variables to… window (similar to Fig. A.13), select the dataset you want to add a variable from and click Continue.
 	In the Add Variables from… window (similar to Fig. A.14), select Match cases on key variables in sorted files to select a key variable. A key variable must be a variable common to both datasets (such as a participant ID) that SPSS will use to match the participants from the two datasets. Choices for a key variable will appear in the Excluded Variables: box.
 	Click on such a variable and move it into the Key Variables: box.
 	Click on OK.


The Compute and Mean Functions 

In order to compute a summated scale score such as the pleasure scale shown in Chapter 1 Table 1.2 (as variable #46), which is the average of four questionnaire items, you could use the Compute Variables function or alternatively the Mean function. The former would compute the average or mean pleasure score for only those participants with no missing data on any of the four items. The Mean function would allow you to compute a mean for participants who were missing data on, say, one or two of the items, based on their scores on the remaining items. The mean function enables the researcher to use more of the existing data, but should be used cautiously because the results can be misleading.

To use the Compute function to get the average pleasure score:

	Click on Transform → Compute Variable… (see Fig. A.15)
 	In the Target Variable box, type pleasureCompute.
 	Click on Type & Label and give it the label pleasure scale.
 	Click on Continue.
 	In the Numeric Expression box type, or select and add (item02+item06r+item10r+item14)/4.
 	Finally, click on OK.



[image: Fig. A.15. Compute variables.]
Fig. A.15. Compute variables.



The above method will not compute an average score for a particular participant if he or she is missing data for any of the questions. This can result in a sizable decrease in subjects who have composite scores if several participants did not answer even one or a few questions. In this circumstance, one might choose to use the MEAN function, because it utilizes all of the available data.

	Click on Transform → Compute Variable… (see Fig. A.16).
 	In the Target Variable box, type pleasureMean.
 	Click on Type & Label. Label the new variable pleasure scale Mean function.
 	Click on Continue.
 	In the Function Group box, highlight Statistical.
 	In the Functions and Special Variables box, highlight Mean.
 	Click the up arrow to move it into the Numeric Expression Box.
 	Type or select and add item02,item06r,item10r,item14 in the brackets. Note the comma, but no spaces, between the variables.



[image: Fig. A.16. Compute variables using the Mean function.]
Fig. A.16. Compute variables using the Mean function.



SPSS allows you to specify the minimum number of variables that must have valid (nonmissing) values by typing .n after MEAN. For example, if you decide that at least three of the pleasure scale items must have data, your command would read MEAN.3{item02, item06r, item10r, item14}.

	Click on OK.


The Graphs Commands

Recent versions of SPSS have a new Graphs commands. If you are working with an older version, you will not have as many choices for creating graphs. Depending on the version of SPSS that you are using, you may see different choices under the Graphs command; for example, you may see Graphboard Template Chooser, Interactive, Legacy, IGraph, Legacy Dialogs, or Chart Builder. The Interactive subset is similar to IGraph included on earlier versions of SPSS.

In SPSS version 22, there are three ways to create graphs with the Graphs command: (a) using the Chart Builder, (b) using the Graphboard Template Chooser, and (c) using the Legacy Dialogs menu. We will present basic information for utilizing these commands.

Chart Builder

If you know the type of graph or chart you wish to create, Chart Builder is a good choice. The Chart Builder command is a flexible method to use if you want to customize your charts. To use the Chart Builder follow these commands:

	First, be sure all your variables are labeled correctly as Nominal, Ordinal, or Scale. You can check this on the Variable View screen under Measure.
 	Click on Graphs → Chart Builder… (see Fig. A.17).
 	There will be a warning about setting the correct measure and then the Chart Builder window will appear.
 	Under the Gallery tab, in the Choose from: box, select the type of chart you wish to create. Then click on the picture of the chart you want and drag it into the Chart Preview box.
 	Highlight a variable and drag it to where you want it to be added to the chart in the Chart Preview box.
 	Repeat this until all variables are in the chart.
 	Click on OK.



[image: Fig. A.17. Chart Builder.]
Fig. A.17. Chart Builder.



Graphboard Template Chooser

The Graphboard Template Chooser is new to SPSS 19. The benefit of using the Graphboard Template Chooser is that one can easily see what types of charts and graphs which are commonly used for each variable in a data set. For example, if a variable is scale (i.e., math achievement test) the choices shown would be histogram, histogram with a normal distribution, and a dot plot. To use the Graphboard Template Chooser follow these commands:

	Click on Graphs → Graphboard Template Chooser… The Graphboard Template Chooser window will appear (see Fig A.18).
 	Select a variable of interest from the list. If you wish to reorder the list to make variables easier to find you can select Natural (this will list your variables in the order they are in the dataset), Name (this will list the variables in alphabetical order), or Type (this lists all nominal variables, then all ordinal variables, and then the scale variables).
 	Once the variable of interest is selected, the types of charts and graphs commonly used with that type of variable will appear in the right side of the window. Click on the chart or graph that you wish to create.
 	Click on the Detailed tab. Here, you can select the color and transparency of the chart or graph to indicate other values. For example, if you have selected math achievement for your variable of interest, then you may want to identify values for males and females in your graph. By clicking on the arrow next to Color: a drop down box of all the variables in the data set will appear. You could then click on gender.
 	Click on the Titles tab. Here you can include a title, subtitle, and/or footnote.
 	Click on the Options tab. Here you can indicate how you want missing values to be included.
 	Click on OK.



[image: Fig. A.18. Graphboard Template Chooser.]
Fig. A.18. Graphboard Template Chooser.



Legacy Dialogs

For users who preferred the commands from earlier versions of SPSS, the Legacy Dialogs are a good choice for creating graphs and charts. The Legacy Dialogs subset includes all the same choices as previous SPSS versions. To use the Legacy Dialogs follow these commands:

	Click on Graphs → Legacy Dialogs.
 	A drop-down box will appear with the following choices of graphs: Bar, 3-D Bar, Line, Area, Pie, High-Low, Box Plot, Error Bar, Population Pyramid, Scatter/Dot, Histogram (see Fig. A.19).
 	Click the one you want to make.
 	Follow the instructions for the graph.



[image: Fig. A.19. Legacy Dialogs.]
Fig. A.19. Legacy Dialogs.



Our intention here is not to give you step-by-step instructions but to introduce you to the graphing possibilities. You can customize the graph to your preferences in any of the three ways we discussed. Use the help tool for more details on how to accomplish this.

1 If the values for gender are shown as female or male, the value labels rather than the numerals are being displayed. In that case, click on the circled symbol to change the format to show only the numeric values for each variable.





Appendix B
 Review of Basic Statistics

John M. Cumming and Andrea E. Weinberg Colorado State University

This Appendix provides the steps, using the SPSS point and click method, to compute most of the basic inferential statistics in Tables 6.1 and 6.2. We also provide the syntax and parts of the output of an example from our SPSS for Introductory Statistics book (Morgan et al., 2013). These steps and examples provide our recommendations for computing the statistic, but in many cases other or additional options could be used. We have circled some key statistics in the outputs to help you identify key parts of the results, but we do not attempt a complete interpretation here. The full output and interpretation, along with detailed instructions and screen shots of the SPSS windows used in the point-and-click method, are provided in Morgan et al.

Order of Basic Statistics Presented

	Chi-Square 	Phi
 	Cramer’s V


 	Odds Ratios (and Risk Ratios)
 	The t Tests and Similar Nonparametric Tests 	One-Sample t Test
 	Independent Samples t Test
 	Mann-Whitney U Test
 	Paired Samples t Test
 	Wilcoxon Signed Ranks Test


 	ANOVA and a Similar Nonparametric Test 	One-Way ANOVA
 	Kruskal-Wallis H Test


 	Correlations 	Pearson
 	Spearman


 	Regression


You can easily run the example statistics presented in this Appendix and produce the whole output by copying the appropriate syntax files, and selecting Run → All from the syntax window menu bar. To run the same statistic with different variables, just type the desired variable names into the syntax in place of the current variable names or use the point-and-click method. The examples use the hsbdataNew.sav file used for problems throughout this book. It is available from www.routledge.com/9781848729995.

Chi-Square

Chi-square allows the user to determine whether there is a statistically significant relationship between two nominal variables. This test compares the observed and expected frequencies or counts in each cell to test whether the expected values differ significantly from the observed/actual values. The chi-square test does not indicate the strength (effect size) of a statistically significant relationship. The optional Phi (for 2 × 2 tables) or Cramer’s V (for longer tables) tests can be used as a measure of effect size.

	Analyze1 → Descriptive Statistics → Crosstabs → select the nominal variable geometry in h.s with a left click and move it to the Row(s) box by clicking the top arrow in the middle of the dialog box → select the gender variable with a left click and move it to the Column(s) box by clicking the arrow in the middle of the dialog box → Statistics → check Chi-square and Phi and Cramer’s V → Continue → Cells → check Observed, Expected, and Column → Continue → OK.


In this example, we have cross-tabulated whether geometry was taken and gender in order to see if males and females differed on whether they took geometry. The cross-tabulation table shows that 70.6% of the males took geometry, but only 29.3% of the females did so. The chi-square tests table shows that χ² = 12.71, and p < .001. Phi (because this is a 2 × 2 table) could be used as an effect size measure. It is −.41, a medium to large size “effect.”

CROSSTABS

/TABLES=geo BY gender 
 /FORMAT= AVALUE TABLES 
 /STATISTIC=CHISQ PHI 
 /CELLS= COUNT EXPECTED COLUMN 
 /COUNT ROUND CELL.

Crosstabs
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Odds Ratios (and Risk Ratios)

Odds ratios can be computed when you have two dichotomous (binary) variables that are crosstabulated. An odds ratio is a ratio of ratios, computed by dividing one risk ratio by the other.

	• Analyze → Descriptive Statistics → Crosstabs → select algebra 2 in h.s. with a left click and move it to the Rows box by clicking the top arrow in the middle of the dialog box. → select the second variable, math grades and move it to the Columns box → Statistics → check Chi-Square and Risk → Continue → Cells → check Observed and Row → Continue → OK.


In this example, math grades (low or high) was cross-tabulated with whether the student took algebra 2.





	

	Math Grades






	Taken Algebra 2

	Low

	High




	No

	A

	B




	Yes

	C

	D








The odds ration can be calculated using the following equation:

[image: ]

SPSS computes the odds ratio from the two risk ratios as follows. Of the 44 students who had not taken algebra 2, 70% had low math grades (less A-B). This is 1.53 times the proportion (45.7%) of the students with low math grades who had taken algebra 2. Thus, 1.53 is the risk ratio for low math grades.

Similarly, the risk ratio for high math grades is .55 (30% / 54.3%). The odds ratio is 2.77 (1.53/.53). We know that the odds ratio (and both risk ratios) is significantly different from 1.0 (no effect) because the lower and upper bounds of the 95% confidence intervals for each ratio are both more (or less) than 1.0.

CROSSTABS

/TABLES=alg2 BY mathgr 
 /FORMAT= AVALUE TABLES 
 /STATISTIC=CHISQ RISK 
 /CELLS= COUNT ROW 
 /COUNT ROUND CELL.

Crosstabs
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(Table Omitted)
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The t Tests and Similar Nonparametric Tests

The t test is a procedure that is used to compare sample means to determine if there is evidence that the means of the corresponding populations differ. Three types of t tests are available (one-sample, independent samples, and paired samples). If the assumptions for the t test are markedly violated (unequal variances and/or non-normally distributed dependent variable), then it is appropriate to compute a nonparametric test rather than a t test. The nonparametric equivalent of an independent samples t is the Mann-Whitney U test, and the nonparametric equivalent of a paired samples t is the Wilcoxon signed ranks test.

	One-Sample t Test allows the mean of a sample to be compared to a hypothesized population mean.


	Analyze → Compare Means → One-Sample T Test → select the dependent variable with a left click and move it to the Test Variable(s) box by clicking the arrow in the middle of the dialog box → type the hypothesized population mean in the Test Value box → OK.


This example compares the average SAT math test score (490.53) for this sample of 75 students with the presumed national mean of 500. The t is .87, which is not significantly different (p = .389) from the national mean.

T-TEST

/TESTVAL = 500 
 /MISSING = ANALYSIS 
 /VARIABLES = satm 
 /CRITERIA = CI(.95) .

T-Test

[image: ]

	Independent Samples t Test is used to compare two independent or unrelated groups (between-groups design) on an approximately normal dependent variable.


	Analyze → Compare Means → Independent Samples T Test → select one or more dependent variables with a left click and move them to the Test Variable(s) box by clicking the top arrow in the middle of the dialog box → select a dichotomous independent variable with a left click and move it to the Grouping Variable box by clicking the bottom arrow in the middle of the dialog box → Define Groups → select Use specified values → type the values of the independent variable that will designate Group 1 and Group 2 → Continue → OK.


See Chapter 6 and Output 6.1 for an example of the syntax, output, and interpretation of an independent samples t test.

	Mann-Whitney U Test is a nonparametric test similar to the independent samples t test, which assesses whether the mean ranks of two groups are equivalent in the population. The M-W test is appropriate if the dependent variable is ordinal or if the assumptions for the independent samples t test are markedly violated.


	Analyze → Nonparametric Tests → Legacy Dialogs → 2 Independent Samples → select dependent variable(s) with a left click and move to the Test Variable List box by clicking the top arrow in the middle of the dialog box → select the independent variable with a left click and move it to the Grouping Variable box by clicking the bottom arrow in the middle of the dialog box then select Define Groups (for the example below, gender is coded as 0 and 1) → check the Mann-Whitney U box in the Test Type box → OK.


In this example, the mean ranks of male and female student on three dependent variables are compared. (High ranks are given for high scores.) Males and females differ significantly on visualization (p = .040) and math achievement (p = .010) but not on grades in h.s. (p = .413). You can see from the ranks table that males had higher mean ranks than females on visualization and math achievement. An effect size can be computed by converting the z to r (r = z / √N). This effect size for math achievement is r = .30, a medium-size effect.

NPAR TESTS

/M-W= visual mathach grades BY gender(0 1) 
 /MISSING ANALYSIS.

NPar Tests Mann-Whitney Test
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	Paired Sample t Test is used when the two scores being compared are paired or matched in some way (they are not independent of one another) or if the two scores are repeated measures.
 	Analyze → Compare Means → Paired-Samples T Test → select the two variables that make up the pair and move them simultaneously to the Paired Variable box by clicking the arrow in the middle of the dialog box → OK.


In this example, we compared the average father’s education with the average mother’s education for the 73 students with education measures for both parents. These means and other descriptive statistics are shown in the first table. The third table provides the paired t (2.40), df = 72, and p = .019. Thus, there is a significant difference between father’s mean education (it is higher) and mother’s. The middle table is not the t test; it shows the correlation between father’s and mother’s education (r = .68), which indicates that, in general, children of highly educated fathers also have highly educated mothers and vice versa. However, the t test shows that these mothers are on average somewhat less educated than the corresponding fathers.

T-TEST PAIRS = faed WITH maed (PAIRED)

/CRITERIA = CI(.9500) 
 /MISSING = ANALYSIS.

T-Test
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Wilcoxon Signed Ranks Test is a nonparametric test that is similar to the paired samples t and tests whether two related samples have equivalent mean ranks in the population. This test should be used for a repeated-measures or within-subjects design when the dependent variable is ordinal or if the assumptions for the paired samples t test are markedly violated.

	Analyze → Nonparametric Tests → Legacy Dialogs → 2 Related Samples → select the two variables that make up the pair with left clicks and move them simultaneously to the Test Pair(s) List box by clicking the arrow in the middle of the dialog box → check the Wilcoxon box in the Test Type box → OK.


In this example, two Wilcoxon tests were computed. The first compares each set or pair of parents in regard to how they ranked on educational level. Notice that there were somewhat more cases (27) where the father had more education than the mother than cases (21) where the mother had more education than the father. This difference is significant (z = 2.09, p = .037). The second Wilcoxon compares visualization test and retest scores for each of the 75 students who had both scores. Note that 24 students had higher visualization test scores than retest scores, and 37 had higher retest scores. This is not significant (z = .373, p < .709). An effect size can be computed by converting the z to r (r = z/√N ). For parents’ education, r = −.24, a small to medium effect.

NPAR TEST

/WILCOXON=faed visual WITH maed visual2 (PAIRED) 
 /MISSING ANALYSIS.

NPar Tests Wilcoxon Signed Ranks Test
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ANOVA and a Similar Nonparametric Test

	One-Way ANOVA, also called single-factor analysis of variance, is used when you have one independent variable with a few, often nominal, levels and one normally distributed dependent variable.


	Analyze → Compare Means → One-Way ANOVA → select one or more dependent variables with a left click and move them into the Dependent List box by clicking the top arrow in the middle of the dialog box. Then select the independent variable and move it into the Factor (independent variable) box by clicking the bottom arrow in the middle of the dialog box → Options → choose Descriptive and Homogeneity of variance test → Continue → OK.


The following example provides the syntax and output for three one-way ANOVAs comparing the three levels of father’s education (HS grad or less, some college, and BS or more) on the average scores for each of three dependent variables: grades in h.s., visualization score, and math achievement. The first output table provides the three means (plus an overall average, called “total”) to be compared and other descriptive statistics.

The middle table provides the Levene test of the important assumption that the variances are approximately equal. Note that the assumption is not violated for grades and visualization but is violated (i.e., significant) for math achievement.

The third table provides the one-way ANOVA Fs and ps (Sig.) for each of the dependent variables. Note that there are some differences among father’s education groups on grades in h.s. (F = 4.09, p = .021) and on math achievement (F = 7.88, p = .001) but not on visualization test score (F = 0.76, p = .47). Post hoc test will tell us which pairs of means were different.

ONEWAY

grades visual mathach BY faedRevis 
 /STATISTICS DESCRIPTIVES HOMOGENEITY 
 /MISSING ANALYSIS.

Oneway
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We know from the ANOVA output that there are significant differences among the three father’s education groups on grades in h.s. and on math achievement, but we do not know which pairs of father’s education groups were different. In order to find out which pairs were different, we do a post hoc multiple comparisons test. Which such test we choose depends on the Levene’s test of homogeneity of variances. Because Levene’s test for grades in h.s. was not significant (p = .220), the assumption of equal or homogenous variances was not violated. So we can use one of the post hoc tests provided by SPSS when “equal variances are assumed.” In this case we chose the Tukey HSD. You can see the output by running the following syntax. The Tukey HSD output shows that the children of fathers with the most education had significantly higher grades than children of fathers who were high school graduates or less.

ONEWAY

grades BY faedRevis 
 /MISSING ANALYSIS 
 /POSTHOC = TUKEY ALPHA(.05).

(Output not included)

Because the Levene test for math achievement was significant (p = .049), the assumption of homogeneity of variances was violated. So we used one of the post hoc tests for “equal variances not assumed.” In this case, we chose the Games-Howell (GH) test. This post hoc test indicated that students whose fathers had some college and also those whose fathers had a BS or more scored higher on math achievement than students whose fathers were high school grads or less.

ONEWAY

mathach BY faedRevis 
 /MISSING ANALYSIS 
 /POSTHOC = GH ALPHA(.05).

(Output not included)

We do not compute post hoc tests for visualization because the ANOVA was not significant, indicating that we cannot be confident that there were any differences among the father’s education groups in the population on visualization test scores.

	Kruskal-Wallis H Test is the nonparametric equivalent of a one-way analysis of variance (ANOVA) and tests whether several independent samples (groups) are from the same population. The K-W test is more appropriate than a one-way ANOVA if the data are ordinal or if the homogeneity of variance assumption is seriously violated and group sizes differ markedly.


	Analyze → Nonparametric Tests → Legacy Dialogs → K Independent Samples → select the dependent variable(s) with a left click and move them to the Test Variable List box by clicking the top arrow in the middle of the dialog box. Then select the independent variable with a left click and move it to the Grouping Variable box by clicking the bottom arrow in the middle of the dialog box → Define Range → type in the Minimum and Maximum values of the independent variable → Continue → check Kruskal-Wallis H in the Test Type box → OK.


This example is similar to the one-way ANOVA example. The test statistics table shows that the three father’s education groups differ significantly on math achievement (p = .001) but not on the competence scale. The ranks table shows that students whose fathers were high school grads or less had low average ranks (28.43) on math achievement. (The highest math score was ranked 73 and the lowest was ranked 1.) The Kruskal-Wallis test does not provide post hoc tests. To find out which pairs of father’s education groups were different, one could compute Mann-Whitney tests.

NPAR TESTS

/K-W=mathach competence BY faedRevis(1 3) 
 /MISSING ANALYSIS.

NPar Tests Kruskal-Wallis Test
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Correlations

Correlations are statistics that are used to assess the association or relationship between two variables. A parametric correlation (Pearson product moment correlation) is computed by using the sums and standard deviations of the two variables, while a nonparametric correlation (Spearman Rho) is calculated by ranking/ordering the pairs of scores.

	Pearson Product Moment Correlation (r), also known as the Pearson correlation coefficient, is a bivariate parametric statistic used when both variables are approximately normally distributed.


	Analyze → Correlate → Bivariate → select two or more normally distributed or scale variables to be correlated with a left click and move them to the Variables box by clicking the arrow in the middle of the dialog box → check the Pearson box → select the two-tailed radio button → check the Flag significant correlations box → Options → check the Means and standard deviations box → select the Exclude cases listwise radio button → Continue → OK.


This matrix provides the correlation of each of the four requested variables with each of the other three (and itself shown as 1). Each correlation is shown twice, above and below the diagonal (the 1s) so we have crossed out duplicates. Thus, there are six different correlations. The asterisks (**) and Sig., or p, values indicate that five of these six coefficients are statistically significant. We have circled the three correlations in the right-hand column, which are the correlations of the other variables with math achievement. For example, grades in h.s. is significantly correlated with math achievement, r (73) = .50, p < .001.

CORRELATIONS

/VARIABLES=visual satm grades mathach 
 /PRINT=TWOTAIL NOSIG 
 /STATISTICS DESCRIPTIVES 
 /MISSING=LISTWISE.
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	Spearman Rho (rs) or Spearman rank order correlation is the nonparametric equivalent of the Pearson correlation coefficient. This statistic would be selected when the data are ordinal or when the assumptions for the Pearson correlation coefficient are markedly violated. Spearman correlations can be used when one or even both the variables are normally distributed.


	Analyze → Correlate → Bivariate → select the variables to be correlated with a left click and move them to the Variables box by clicking the arrow in the middle of the dialog box → check the Spearman box → select the two-tailed radio button → check the Flag significant correlations box → Options → select the Exclude cases listwise radio button → Continue → OK.


In this example, we have correlated mother’s education and math achievement. The Spearman correlation is .32, which is statistically significant. The result would be written as rs (73) = .32, p = .006. The 73 indicates the degrees of freedom, which is N−2. This medium effect size correlation indicates that, in general, students whose mothers rank near the top for amount of education rank near the top in math achievement and vice versa. Because SPSS correlation outputs are in matrix format, all correlations are presented twice. Ignore the duplicate correlations below (or above) the diagonal (1.000), which is the variable correlated with itself.

NONPAR CORR

/VARIABLES=mathach maed 
 /PRINT=SPEARMAN TWOTAIL NOSIG 
 /MISSING=LISTWISE.

Nonparametric Correlations

[image: ]

Regression

Bivariate or simple linear regression is used to predict scores of a normal/scale dependent variable from one normal/scale or dichotomous independent variable.

	Analyze → Regression → Linear → select the dependent variable with a left click and move to the Dependent box by clicking the top arrow in the middle of the dialog box → select the independent variable with a left click and move to the Independent(s) box → use the drop-down arrow to select Enter as the Method → OK.


See Chapter 6 and Output 6.2 for the syntax, outputs, and interpretation of a bivariate or simple regression.

1 This sequence means select the Analyze menu, pull down and select Descriptive Statistics, and then select Crosstabs.





Appendix C
 Writing Research Problems and Questions

Frameworks for Stating Research Problems

A common definition of a research problem is that it is a statement that asks what relationship exists between two or more variables. However, most research problems are more complex than this definition implies. The research problem should be a broad statement that covers several more specific research questions to be investigated, perhaps by using summary terms that stand for several variables. Several ways to state the research problem are provided in this appendix. Underlines indicate that you fill in the appropriate name for the variable or group of variables.

Format

One way that you could phrase the problem is as follows: The research problem is to investigate whether (put independent variable 1 or group of variables here) (and independent variable 2, if any, here) (and independent variable 3, if any) are related to (dependent variable 1, here) (and dependent variable 2, if any) in (population here).

Except in a totally descriptive study, there always must be at least two variables (one is usually called the independent variable and one the dependent variable). However, there can be two or more of each, and there often are. In the statement of the problem, in contrast to the research questions/hypotheses, it is desirable to use broad descriptors for groups of similar variables. For example, in the hsb data demographics might cover four variables: gender, mother’s and father’s education, and ethnicity. Spatial performance might include a mosaic pattern test score and a visualization score. Likewise, grades and mathematics attitudes could each refer to more than one variable. Concepts such as self-esteem or teaching style have several aspects that usually result in more than one variable.

Examples

If your study uses the randomized experimental approach, you could phrase the problem as:

	The research problem is to investigate the effect of a new curriculum on grades, math attitudes, and spatial performance in high school students.


For other studies that compare groups or associate/relate variables, you could phrase the problem as follows:

	2. The problem is to investigate whether gender and grades are related to mathematics attitudes and achievement in high school students.


If you have several independent variables and want to predict some outcome, you could say:

	3. The problem is to investigate the variables that predict or seem to influence mathematics achievement.


This latter format is especially useful when the approach is a complex (several independent variables) associational one that will use multiple regression.

Framework for Stating Research Questions/Hypotheses

Although it is okay to phrase a randomized experimental research problem (in the format of the first example earlier) as a “study of the effect of ...,” we think when a study is not a randomized experiment, it is best to phrase your research questions or hypotheses so that they do not appear to imply cause and effect (i.e., as difference or associational questions/hypotheses and/or as descriptive questions). The former are answered with inferential statistics, and descriptive questions are answered with descriptive statistics. There are several reasonable ways to state research questions. In the following, we show one way to state each type of question, which we have found useful and, hopefully, clear for our students.

Descriptive Questions

Basic descriptive questions. Descriptive questions ask about the central tendency, frequency distribution, percentage in each category, variability, or shape of the distribution of a variable. Some descriptive questions are intended to test assumptions. Some questions simply describe the sample demographics; others describe a dependent variable. A few examples are:

	Is mathematics achievement distributed approximately normally?
 	What percentage of participants is of each gender?
 	What are the mean, mode, and median of the mathematics achievement scores?


Complex descriptive questions. These questions deal with two or more variables at a time, but do not involve inferential statistics. Cross-tabulations of two categorical variables, factor analysis, and measures of reliability (e.g., Cronbach’s alpha) are examples.

Two examples are:

	What is the internal consistency reliability of the pleasure scale items?
 	What are the percentages of males and females in each of the three main religious groups (Protestant, Catholic, not religious)?


Difference Questions/Hypotheses

Basic difference questions. The format is:

Are there statistically significant differences between the (insert number) levels of (put the independent variable name here) (you could name the levels here in parentheses) in regard to the average (put the dependent variable name here) scores? Another acceptable format is shown in example 2.

Two examples are:

	Are there statistically significant differences between the three levels (high, medium, and low) of father’s education in regard to the average mathematics achievement scores of the students?
 	Is there a statistically significant difference between males and females on the visualization score?


Appropriate analyses: One-way ANOVA (see Appendix B). A t test could be used if there were only two levels of the independent variable, as in example 2 (see Appendix B).

Complex difference and interaction questions. When you have two categorical independent variables considered together, you will have three research questions or hypotheses. There are advantages to considering two or three independent variables at a time. See Chapter 9 for how to interpret the interaction question. Sample formats for a set of three questions answered by one 2way ANOVA are as follows:

	Is there a statistically significant difference between (insert the levels of independent variable 1) in regard to the average (put dependent variable 1 here) scores?
 	Is there a statistically significant difference between (insert the levels of independent variable 2) in regard to the average (dependent variable 1) scores?
 	Is there a statistically significant interaction of (independent variable 1) and (independent variable 2) in regard to the (dependent variable 1)?


(Repeat these three questions, for the second dependent variable, if there is more than one.) An example is as follows:

	Is there a statistically significant difference between students who have high versus low math grades in regard to their average mathematics achievement scores?
 	Is there a statistically significant difference between male and female students in regard to their average math achievement scores?
 	Is there a statistically significant interaction between mathematics grades and gender in regard to math achievement?


Note that the first question states the levels or categories of the first independent variable; that is, it states the groups that are to be compared (high vs. low math grade students). The second question does the same for the second independent variable; that is, it states the levels (male and female) to be compared. However, the third (interaction) question asks whether the first variable itself (mathematics grades) interacts with the second variable (gender). No mention is made, in the interaction question, of the values or levels or groups.

An appropriate analysis: Factorial ANOVA (see Chapter 9).

Associational/Relationship Questions/Hypotheses

Basic associational questions. When both variables are ordered and essentially continuous (i.e., have five or more ordered categories), we consider the approach and research question to be associational. There are two main types of basic associational statistics: correlation and regression.

The format for a correlation is as follows:

Is there a statistically significant association between (variable 1) and (variable 2)?

In this case, it is arbitrary which variable is independent or antecedent and which is dependent or outcome unless one occurs before the other in time; see example 3. An example for a single association or relationship is as follows:

	Is there a statistically significant association between grades in high school and mathematics achievement?


If there are more than two variables, which is common, and each pair of variables is associated separately, you can have a series of questions asking whether there is an association between each variable and every other variable. This would produce a correlation matrix.

An example that would produce a correlation matrix is as follows:

	2. Are there statistically significant associations among the three mathematics attitude scale scores?


Note that what is said to be associated in these questions is the variable itself; no mention is made of the levels or values here.

If one variable is clearly the independent, antecedent, or predictor, you would phrase the question as follows and use bivariate regression analyses:

	3. How well can we predict math achievement test scores (the dependent variable) from grades in high school (the independent variable)?


Appropriate analyses: Bivariate regression if there is a clear independent or antecedent variable and you want to make a prediction; correlation if there is no clear independent variable (see Chapter 5and Appendix B).

Complex associational questions. In the associational approach, when two or more independent variables are considered together, rather than separately, as in the previous basic format, you get a new kind of question. The format can be phrased something like:

How well does the combination of (list the several specific independent variables here) predict (put dependent variable here)?

Two examples are as follows:

	How well does the combination of number of mathematics courses taken, gender, and father’s education predict mathematics achievement?
 	How well does a combination of H.S. ACT, GPA, and rank in class predict first year college GPA?


An appropriate analysis: Multiple regression (see Chapter 6).

The first complex question above also could be expanded, into a set of questions, to help you understand more fully. This set first asks about the association of each of the predictors (or independent) variables and the dependent (or outcome) variable and then states the complex or combination question as earlier.

For example:

	Is there a statistically significant association between the number of mathematics courses taken and mathematics achievement test scores?
 	Is there a statistically significant association between gender and mathematics achievement?
 	Is there a statistically significant association between father’s education and mathematics achievement?
 	How well does the combination of the number of mathematics courses taken, gender, and father’s education predict mathematics achievement test scores?


Appropriate analysis: The multiple regression output will provide you with the bivariate, Pearson correlations in a matrix as well as the multiple regression statistics (see, for example, Output 6.1b).





Appendix D
 Answers to Odd Interpretation Questions

	1.1 What is the difference between the independent variable and the dependent variable? Independent variables are predictors, antecedents, or presumed causes or influences being studied. Differences in the independent variable are hypothesized to affect, predict, or explain differences in the dependent or outcome variable. So independent variables are predictor variables, whereas dependent variables are the variables being predicted, or outcome variables.
 	1.3 What kind of independent variable is necessary to infer cause? Can one always infer cause from this type of independent variable? If so, why? If not, when can one clearly infer cause and when might causal inferences be more questionable? A variable must be an active independent variable in order for the possibility to exist of one’s inferring that it caused the observed changes in the dependent variable. However, even if the independent variable is active, one cannot attribute cause to it in many cases. The strongest inferences about causality can be made when one randomly assigns participants to experimentally manipulated conditions and there are no preexisting differences between the groups that could explain the results. Causal inferences are much more questionable when manipulations are given to preexisting groups, especially when there is no pretest of the dependent variable prior to the manipulation, and/or the control group receives no intervention at all, and/or there is no control group.
 	1.5 Write three research questions and a corresponding hypothesis regarding variables of interest to you but not in the HSB data set (one associational, one difference, and one descriptive question). Associational research question: What is the relation between guilt and shame in 10-year-old children? Associational hypothesis: Guilt and shame are moderately to highly related in 10-year-old children. Difference question: Are there differences between Asian-Americans and European-Americans in reported self-esteem? Difference hypothesis: Asian-Americans, on the average, report lower self-esteem than do European-Americans. Descriptive question: What is the incidence of themes of violence in popular songs, folk songs, and children’s songs? Descriptive hypothesis: There will be more violent themes in popular songs than in folk songs or children’s songs.
 	1.7 If you have categorical, ordered data (such as low income, middle income, high income), what type of measurement would you have? Why? Categorical, ordered data would typically be considered ordinal data because one cannot assume equal intervals between levels of the variable, there are few levels of the variable, and data are unlikely to be normally distributed, but there is a meaningful order (from low to high) to the levels of the variable.
 	1.9 What percent of the area under the standard normal curve is between the mean and one standard deviation above the mean? Thirty-four percent of the normal distribution is within one standard deviation above the mean. Sixty-eight percent is within one standard deviation above and below the mean.
 	2.1 Using Output 2.1a and 2.1b: (a) What is the mean visualization test score? 5.24; (b) What is the range for grades in h.s.? 6; (c) What is the minimum score for mosaic pattern test? −4. How does this compare to the values for that variable as indicated in Chapter 1? It is the lowest possible score. Why could the minimum be a negative number? This is the lowest score anyone made; it may be due to a penalty for guessing incorrectly on many questions.
 	2.3 Using Output 2.4: (a) Can you interpret the means? Explain. Yes, the means indicate the percentage of participants who were coded as “1” on the measure; (b) How many participants are there all together? 75; (c) How many have complete data (nothing missing)? 75; (d) What percent are male (if male=0)? 45; (e) What percent took algebra 1? 79
 	2.5 In Output 2.8a: (a) Why are matrix scatterplots useful? What assumptions are tested by them? They help you check the assumption of linearity and check for possible difficulties with multicollinearity.
 	3.1 Using Outputs 3.1, 3.2, and 3.3, make a table indicating the number of items, the mean inter-item correlation, and the alpha coefficient for each of the scales. Discuss the relationship between mean inter-item correlation and alpha, and how this is affected by the number of items.






	Scale
	Number of items
	Alpha
	Mean inter-item correlation





	Motivation
	6
	.791
	.385



	Competence
	4
	.796
	.488



	Pleasure
	4
	.688
	.373






	The alpha is based on the inter-item correlations, but the number of items is important as well. If there are a large number of items, alpha will be higher, and if there are only a few items, then alpha will be lower, even given the same average inter-item correlation. In this table, the fact that both number of items and magnitude of inter-item correlations are important is apparent. Motivation, which has the largest number of items (six), has an alpha of .791, even though the average inter-item correlation is only .385. Even though the average inter-item correlation of competence is much higher (.488), the alpha is quite similar to that for motivation because there are only four items instead of six. Pleasure has the lowest alpha because it has a relatively low average inter-item correlation (.373) and a relatively small number of items (4).
 	3.3 For the pleasure scale (Output 3.3), what item has the highest item-total correlation? Comment on how alpha would change if that item were deleted. Item 14 (.649). The alpha would decline markedly if Item 14 were deleted, because it is the item that is most highly correlated with the other items and there were only four items to begin with.
 	3.5 How is the intraclass correlation coefficient in Problem 3.5 different from test-retest reliability coefficients in Problem 3.4? Intraclass correlation is a correlation between data structured as groups (example: ratings by two or more raters) rather than a correlation between paired data (test retest).Test retest reliability is used to look at whether the scores of a single set of individuals are systematically related to that same set of individuals’ scores on a second occasion. Although a bivariate correlation such as that used for Problem 4.4 could be used to assess reliability between two raters, it could not assess how one rater’s ratings (as a group) relate to those of two or more raters (with each rater’s scores treated as a separate group of scores).
 	4.1 Using Output 4.1: (a) Are the factors in Output 4.1 close to the conceptual composites (motivation, pleasure, competence) indicated in Chapter 1? Yes, they are close to the conceptual composites. The first factor seems to be a competence factor, the second factor a motivation factor, and the third a (low) pleasure factor. However, item01 (I practice math skills until I can do them well) was originally conceptualized as a motivation question, but it had its strongest loading from the first factor (the competence factor), and there was a strong cross-loading for item02 (I feel happy after solving a hard problem) on the competence factor. (b) How might you name the three factors in Output 4.1? Competence, motivation, and (low) mastery pleasure. (c) Why did we use factor analysis, rather than principal components analysis for this exercise? We used factor analysis because we had beliefs about underlying constructs that the items represented, and we wished to determine whether these constructs were the best way of understanding the manifest variables (observed questionnaire items). Factor analysis is suited to determining which latent variables seem to explain the observed variables. In contrast, principal components analysis is designed simply to determine which linear combinations of variables best explain the variance and covariation of the variables so that a relatively large set of variables can be summarized by a smaller set of variables.
 	4.3 What does the plot in Output 4.2 tell us about the relation of mosaic to the other variables and to component 1? Mosaic seems not to be related highly to the other variables nor to component 1. How does this plot relate to the rotated component matrix? The plot illustrates how the items are located in space in relation to the components in the rotated component matrix.
 	5.1 Is there only one appropriate statistic to use for each research design? No. Explain your answer. There may be more than one appropriate statistical analysis to use with each design. Interval (normal/scale) data can always use statistics designed for use with nominal or ordinal data, but you lose some power by doing this. Also see Fig. 5.2 and discussion of the general linear model.
 	5.3 Interpret the following related to effect size:
 	 d = .25 small
  	 r = .35 medium/typical
	 R = .53 large
	 r = .13 small (f)
	 d = 1.15 very large
	 n = .38 large
  

 	5.5 What statistic would you use if you had two independent variables, income group (<$10,000, $10,000 – $30,000, >$30,000) and ethnic group (Hispanic, Caucasian, African-American), and one normally distributed dependent variable (self-efficacy at work)? Explain. Factorial ANOVA, because there are two (or more) between-groups independent variables and one normally distributed dependent variable. According to Table 5.3, column 2, first cell, you should use factorial ANOVA or ANCOVA. In this case, both independent variables are nominal, so use factorial ANOVA.
 	5.7 What statistic would you use if you had three normally distributed (scale) independent variables and one dichotomous independent variable (weight of participants, age of participants, height of participants and gender) and one dependent variable (positive self-image), which is normally distributed? Explain. Use multiple regression, because all predictors are either scale or dichotomous and the dependent variable is normally distributed. This information is in Table 5.4 (third column).
 	5.9 What statistic would you use if you had one, repeated-measures, independent variable with two levels and one ordinal dependent variable? The Wilcoxon would be used because the independent variable is repeated and the dependent is nominal. This is in the fourth column of Table 5.1.
 	5.11 What statistic would you use if you had three normally distributed and one dichotomous independent variable, and one dichotomous dependent variable? Use logistic regression, according to Table 5.4, third column.
 	6.1 In Output 6.1: (a) What information suggests that we might have a problem of collinearity? High intercorrelations among some predictor variables and some low tolerances (< 1−R2); (b) How does multicollinearity affect results? It can make it so that a predictor that has a high bivariate (zero-order) correlation with the dependent variable is found to have little or no relation to the dependent variable when the other predictors are included. This can be misleading, in that it may appear that one of the highly correlated predictors is a strong predictor of the dependent variable and the other is not a predictor of the dependent variable; (c) What is the adjusted R2 and what does it mean? The adjusted R2 indicates the percentage of variance in the dependent variable explained by the independent variables, after taking into account such factors as the number of predictors, the sample size, and the effect size.
 	6.2 In Output 6.3. (a) Compare the adjusted R2 for Model 1 and Model 2. What does this tell you? It is much larger for Model 2 than for Model 1, indicating that grades in high school, motivation, and parent education explain additional variance, over and above that explained by gender; (b) Why would one enter gender first? One might enter gender first because it was known that there were gender differences in math achievement, and one wanted to determine whether the other variables contributed to prediction of math achievement scores, over and above the “effect” of gender.
 	6.5 In Output 6.5: (a) Of the three models, which model was the most parsimonious, why? The third model is the most parsimonious because it contains fewer predictor variables than the first two models while explaining a similar amount of variance in the dependent variable. (b) How did the removal of variables impact the contribution of other variables still in the model? The Beta’s (Standardized Coefficients) for each predictor variable change slightly at each model indicating that their impact on the dependent variable is impacted by other variables in the model. (c) How would you explain the impact of parents’ education in each model and how does that compare to the correlation between parents education and Scholastic Aptitude Test – Math? Parents education does not significantly contribute to the model but is retained in the final model because of a p value less than .10. In each model we get negative coefficients for parents education but when we look at the correlation table we see that parents education and Scholastic Aptitude Test – Math are positively correlated. This is an example of Simpson’s Paradox which indicates that bivariate associations (correlation table) can change direction when multiple variables are grouped together because of partial correlations with the other variables.
 	7.1 In Output 7.1: (a) What does R2 indicate at each of the three model summaries? The R2 for each model indicates the amount of variance in the outcome measure explained by the variables in the model. What does this information tell you? When the outcome was motivation (first model summary) math achievement explained 10% of the variance (in motivation). For the second and third model summary scholastic aptitude test – math was the outcome variable. The percent of variance accounted for with motivation and math achievement in the model was 62% which was the same as only having math achievement in the model (third model). (b) What does the “coeff’ (coefficient) column indicate at each of the three model summaries? The “coeff” column are unstandardized coefficients. What does this information tell you? The unstandardized coefficients in output 7.1 are B’s that we commonly see in regression equations. In the third model (Total Effect Model), for each raw unit increase in math achievement projected scholastic aptitude test – math scores would increase by 11.16 units or points. (c) How do you know that motivation did not significantly mediate the relationship between math achievement and scholastic aptitude test – math? The final part of output 7.1 includes the ‘Indirect effect of X on Y’ which gives us a 95% confidence interval around the effect of the mediator. In example 7.1 the 95% confidence interval around the effect of motivation includes 0.
 	7.3. In Output 7.3: (a)What does the graph illustrate? The graph illustrates the impact of previous experience on the relationship between beginning salary and current salary. (b) How does the graph help inform the findings from output 7.2? The graph supports the findings from output 7.2 by visually demonstrating the interaction between previous experience and beginning salary in terms of current salary.
 	8.1 Using Output 8.1: (a) When all four predictors are included, which variables make significant contributions to predicting who took algebra 2? Parents’ education and visualization; (b) How accurate is the overall prediction? 77.3% of participants are correctly classified, overall; (c) How well do the variables predict who actually took algebra 2? 71.4% (25 out of 35) of those who took algebra 2 were correctly classified by this equation; (d) How about the prediction of who didn’t take it? 82.5% of those who didn’t take algebra 2 were correctly classified.
 	8.3 In Output 8.3: (a) What do the discriminant function coefficients and the structure coefficients tell us about how the predictor variables combine to predict who took algebra 2? The function coefficients tell us how the variables are weighted to create the discriminant function. In this case, parents’ education and visual are weighted most highly. The structure coefficients indicate the correlation between the variable and the discriminant function. As expected, parents’ education and visual are correlated most highly; however, gender (negative) also has a substantial correlation with the discriminant function; (b) How accurate is the prediction/classification overall and for who would not take algebra 2? 76% were correctly classified overall. 80% of those who did not take algebra 2 were correctly classified; whereas 71.4% of those who took algebra 2 were correctly classified; (c) How do the results in Output 8.3 compare with those in Output 8.1, in terms of success at classifying and contribution of different variables to the equation? For those who took algebra 2, the discriminant function and the logistic regression yield the same rate of success; however, the rate of success is slightly lower for the discriminative function than the logistic regression for those who did not take algebra 2 (and, therefore, for the overall successful classification rate).
 	8.5 In Output 8.2: Why might one want to do a hierarchical logistic regression? One might want to do a hierarchical logistic regression if one wished to see how well one predictor successfully distinguishes groups, over and above the effectiveness of other predictors such as gender and other demographics.
 	9.1 In Output 9.1: (a) Is the interaction significant? Yes; (b) Examine the profile plot of the cell means that illustrates the interaction. Describe it in words. The profile plot indicates that the “effect” of math grades on math achievement is different for students whose fathers have relatively little education, as compared to those with more education. Specifically, for students whose fathers have only a high school education (or less), there is virtually no difference in math achievement between those who had high and low math grades, whereas for those whose fathers have a bachelor’s degree or more, those with higher math grades obtain higher math achievement scores, and those with lower math grades obtain relatively lower math achievement scores; (c) Is the main effect of father’s education significant? Yes. Interpret the eta squared. The eta squared of .243 (eta = .496) for father’s education indicates that this is, according to Cohen’s criteria, a large effect. This indicates that the “effect” of the level of fathers’ education is larger than typical for behavioral science research. However, it is important to realize that this main effect is qualified by the interaction between father’s education and math grades; (d) Is the “effect” of math grades significant? The “effect” of math grades also is significant. Eta squared is .139 for this effect (eta = .37), which is also a large effect, again indicating an effect that is larger than typical in behavioral research; (e) Why did we put the word effect in quotes? The word, “effect” is in quotes because this is not a true experiment but rather is a comparative design that relies on attribute independent variables. Thus, one should not impute causality to the independent variable; (f) How might focusing on the main effects be misleading? Focusing on the main effects is misleading because of the significant interaction. In actuality, for students whose fathers have less education, math grades do not seem to “affect” math achievement, whereas students whose fathers are highly educated have higher achievement if they made better math grades. Thus, to say that math grades do or do not “affect” math achievement is only partially true. Similarly, fathers’ education really seems to make a difference only for students with high math grades.
 	9.3 In Output 9.3: (a) Is the adjusted main effect of gender significant? No; (b) What are the adjusted math achievement means (marginal means) for males and females? They are 12.89 for males and 12.29 for females; (c) Is the effect of the covariate (mathcrs) significant? Yes; (d) What do (a) and (c) tell us about gender differences in math achievement scores? Once one takes into account differences between the genders in math courses taken, the differences between genders in math achievement disappear.
 	10.1 In Output 10.2a: Explain the results in nontechnical terms. Output 10.2a indicates that the ratings that participants made of one or more products were higher than the ratings they made of one or more other products. Output 10.2b indicates that most participants rated product 1 more highly than product 2 and product 3 more highly than product 4, but there was no clear difference in ratings of products 2 versus 3.
 	10.3 In Output 10.3: (a) Is the assumption of sphericity violated? Yes. If it is violated, what can you do? One can either correct degrees of freedom using epsilon or one can use a MANOVA (the multivariate approach) to examine the within-subjects variable; (b) How would you interpret the F for product (within subjects)? This is significant, indicating that participants rated different products differently. However, this effect is qualified by a significant interaction between product and gender; (c) Is the interaction between product and gender significant? Yes. How would you describe it in nontechnical terms? Males rated different products differently, in comparison to females. Males rated some products (i.e., 1 and 2) much higher but others (i.e., 3 and 4) are rated only somewhat higher than females; (d) Is there a significant difference between the genders? No, but this could be due to low power related to the fact that there are only six males and six females in the sample. Is a post hoc multiple comparison test needed? Explain. A post hoc test is not needed for gender, both because the effect is not significant and because there are only two groups, so one can tell from the means which group is higher. Because product was significant and had four levels, one could do post hoc tests. In this case, because the products had an order to them, linear, quadratic, and cubic trends were examined rather than paired comparisons among means.
 	11.1 In Output 11.1b: (a) Are the multivariate tests statistically significant? Yes; (b) What does this mean? This means that students whose fathers had different levels of education differed on a linear combination of grades in high school, math achievement, and visualization scores; (c) Which individual dependent variables are significant in the univariate ANOVAs? Both grades in h.s., F(2, 70) = 4.09, p = .021 and math achievement, F(2, 70) = 7.88, p = .001 are significant; (d) How are the results similar and different from what we would have found if we had done three univariate one-way ANOVAs? Included in the Tests of Between-Subjects Effects table of the output are the very same three univariate one-way ANOVAs that we would have done. However, in addition, we have information about how the father’s education groups differ on the three dependent variables, taken together. If the multivariate tests had not been significant, we would not have looked at the univariate tests; thus, some protection for Type I error is provided. Moreover, the multivariate test provides information about how each of the dependent variables, over and above the other dependent variables, distinguishes between the father’s education groups. The parameter estimates table provides information about how much each variable was weighted in distinguishing particular father’s education groups.
 	11.3 In Output 11.3: (a) What makes this a “doubly multivariate” design? This is a doubly multivariate design because it involves more than one dependent variable, each of which is measured more than one time; (b) What information is provided by the multivariate tests of significance that is not provided by the univariate tests? The multivariate tests indicate how the two dependent variables, taken together, distinguish the intervention from the comparison group, the pretest from the posttest, and the interaction between these two variables. It indicates how each outcome variable contributes, over and above the other outcome variable, to our understanding of the effects of the intervention; (c) State in your own words what the interaction between time and group tells you. This significant interaction indicates that the change from pretest to posttest is different for the intervention group than for the comparison group. Examination of the means indicates that this is due to a much greater change from pretest to posttest in Outcome 1 (DV1) for the intervention group than the comparison group; (d) What implications does this have for understanding the success of the intervention? This suggests that the intervention was successful in changing Outcome 1. If the intervention group and the comparison group had changed to the same degree from pretest to posttest on DV1, this would have indicated that some other factor was most likely responsible for the change in Outcome 1 from pretest to posttest. Moreover, if there had been no change from pretest to posttest in either group, then any difference between groups would probably not be due to the intervention. This interaction demonstrates exactly what was predicted: that the intervention affected the intervention group but not the group that did not get the intervention (the comparison group) on DV1.
 	12.1 In Output 12.1b: (a) Why did we decide to use the autoregressive covariance structure (AR1)? We decided to use the autoregressive covariance structure because in a repeatedmeasures design, frequently participants’ scores at one time point are correlated with their scores at the following time points, with adjacent scores being most highly correlated. The autoregressive covariance structure takes this into account; (b) What did the AR1 rho suggest about the need to use the autoregressive covariance structure? The AR1 rho was very low, suggesting that an autoregressive covariance structure was not needed because the correlation between scores at adjacent time points was very low; (c) What do the Information Criteria tell you? Why is this important? The Information Criteria tell us about the goodness of fit of the model to the data. Smaller numbers in the table indicate better fit. The −2 restricted log likelihood is the basic measure of goodness of fit, with the other criteria including adjustments for the complexity of the model. It is important to determine goodness of fit because one is trying to devise a model of appropriate complexity that explains the data. To the extent that additional predictors do not significantly improve the fit, then it is undesirable to include them in the model because it would be more parsimonious to have a simpler model.
 	12.3 In Output 12.3: (a) What do we mean when we say that school is a nesting variable? Why does this matter? When we say that school is a nesting variable, we mean that data for individual students are not independent of data from other individuals within that school. There is reason to believe that students within a particular school share certain characteristics and experiences (including school experiences), such that they are likely to be more similar to other students in their school than to students in other schools. The nesting variable enables us to take this into account in our model. This is important because most statistical tests make the assumption that all individuals are independent of all other individuals; (b) What is an unstructured covariance structure, and why did we use it? An unstructured covariance structure places no constraints on the nature of the covariation among variables. It is useful if one does not have sufficient information to enable one to specify the characteristics of the covariance structure; (c) In the Covariance Parameters table, what does the intercept variance tell you? The intercept variance tells us how much schools vary with respect to the dependent variable, in this case mathach. Since there is significant variability between schools, one might want to use a school-level (Level 2) predictor to explain this variability (although we did not do so in this book so as not to make the problem overly complex).
 	13.1 For Problem 13.1: (a) Why did we perform Problem 13.1, and what does Output 13.1 tell us? We performed Problem 13.1 to look at the patterns of missing data, thereby assessing the possibility of the missing data being systematically related to scores on the variable being imputed (NMAR-not missing at random). Any systematic sources of missing data need to be based on variables that are available in the dataset, but are variables other than the one being imputed (MAR—Missing at Random) Output 13.1 suggests that the most common pattern is not missing data, so there will not be too many missing data to enable imputation. Moreover, another fairly common pattern is clearly MAR (related to time of assessment; Time 4 variables). Therefore, if we use Time of assessment as a predictor in imputing the missing values, we should be able to deal with this systematic source of missing data. None of the patterns involved the same variable missing at all time points; nor did any other pattern of missing values involve at least 10% of the sample, so data are consistent with MAR and not with NMAR. (b) Do the results suggest that multiple imputation is desirable? Why or why not? Yes imputation seems to be warranted because data do not seem to be NMAR, 37.5% of the participants are missing at least one value, but only 8.67% of the data are missing, so not that many values will need to be imputed for each variables. (c) How many missing value patterns are there? There are 15 missing value patterns because row one of the missing value patterns table is no missing values. Do they suggest that data are missing in a simple monotonic pattern? No, there are a number of different non-monotone patterns.
 	13.3 In Output 13.3: (a) How do results compare for the different imputations? They are similar, in that in each case, there is a significant effect of Time and significant differences between Time 1 and Time 4 and between Time 2 and Time 4. However, in at least one imputation (and in the original data) Time 3 is not significantly different from Time 4, but in most imputations and in the pooled data, Time 3 is significantly different from Time 4. The goodness of fit measures differ slightly across imputations and are larger (poorer model fit) than for the original data, but the imputed data are likely to be a better representation of the population. (b) What is the “fraction missing information” for each pooled fixed effect? What does it tell us? The “fraction missing information” is an estimate of missing data (missing variance). (c) What is the relative increase in variance for each pooled fixed effect? Relative increase in variance is the ratio of between imputation and within imputation variance of the regression coefficient. Why do we want to know this? Because it estimates the missing variability due to missing data. (d) What is the “relative efficiency” for each of the pooled covariance parameters? The relative efficiency was greater than .98 for all pooled estimates. Is this a high number for relative efficiency? Yes
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Conditional model, 257, 264-265, 267-270, 276-282 
Confidence interval of the difference, 102 
Confidence intervals, 93, 102 
Confidence intervals of the effect size, 96 
Confirmatory factor analysis, 68
Continuous variables, 12, 17
Contrasts, 194, 197, 201-205 
Corrected Item-Total Correlation, 57, 59-60 
Correlation, 53, 57, 61-62, 120-121, 132, 339-341
Correlation coefficient, 53 
Correlation matrix, 11, 73, 79, 111, 136 
Counts, 46 
Covariance structures, see variance-covariance structures 
Covariate, 188, 205-212 
Cramer’s V, 88, 329-33
Create a new file, 312-314 
Critical value, 92
Cronbach’s alpha, see Reliability
Crosstabs, 329-330
Cross-tabulation, 66 
Cumulative percent, see Percent

d, 94-96 
Data,

Enter, 317-318
Export, 317
Import, 317 
Open, 313-314

Data reduction, see Factor analysis and Principal component analysis
Data transformation, see Transform
Data View, 314-315 
Decision tree to help select appropriate inferential statistics, 86
Define labels, see Variable label
Define variables, see Variables
Dependent list, 3 
Dependent variables, see Variables
Descriptive research questions, see Research questions
Descriptives, 28, 30-34, 39-42, 120-121, 126-127, 132, 136, 260
Descriptive statistics, 19-21, 30-34, 72, 79, 84, 115
Design classification, 84-85 
Determinant, 70, 73, 79 
Dichotomous variables, 14-21, 27, 30, 37-42 
Dictionary, see Codebook

Difference inferential statistics, 84-91

Research questions, 86-87

Difference question, see Research questions/hypotheses
Discrete variable, 15-16 
Discriminant analysis, 89 
Dimensional variable, 17
Discriminant analysis, 3, 12, 89-90, 109, 167-168, 177-186

Assumptions, 168
Conditions, 167-168
Eigenvalues, 184 
Standardized canonical discriminant function coefficients, 184
Structure matrix, 184 
Wilks’ lambda, 184 
Writing about, see Writing results

Discussion, 107 
Dispersion, see Standard deviation and Variances
Display data file information, 319 
Display syntax (command log) in the output, see Syntax
Doubly multivariate, 85 
Dummy coding, 15, 25, 110

Edit output, see Output
Effect size, 88, 93-96, 98-99, 102, 151-152
Eigenvalues, 74-77 
EM Means, 269 
Enter (edit) data, see Data
Enter (simultaneous regression), 109-123
Epsilon, 219 
Equivalent forms reliability, see Reliability
Eta, see Effect size 
Excluded variables, 128 
Exploratory data analysis, 27-49
Exploratory factor analysis, 11-12, 68-77, 90

Assumptions, 68-69
Conditions, 68-69
Rotated factor matrix, 75
Rotated sums of squared loadings, 74 
Writing about, see Writing results

Explore, 258-261, 269, 283
Export data, see Data
Export output to MsWord, see Output
Extraneous variables, see Variables

Factor, see Single factor designs
Factor analysis, see Exploratory factor analysis 
Factorial, see Between-groups factorial designs
Factorial ANOVA, see General linear model 
Fisher’s exact test, 330 
Fixed variables, 256 
Format output, see Output, Edit 
Forward Multiple Linear Regression, 129-132
Frequencies, 31-33, 34, 40, 42-43, 45
Frequency, 40
Frequency distributions, 12-13
Frequency tables, 42-44
Frequency polygon, 21, 45-46
Friedman test, 87, 213, 222-225

Assumptions, 213-214

Asymp. sig., 223 
Ranks, 223
Test statistics, 223 
Writing about, see Writing results

General linear model (GLM), 88, 89, 91-92

Analysis of covariance (ANCOVA), 105-106, 188, 205-211

Assumptions, 188
Estimated marginal means, 210 
Observed power, 210 
Pair-wise comparisons, 210 
Post-hocs, 197-199 
Tests of between –subjects effects, 210
Univariate test, 210 
Writing about, see Writing results

Factorial analysis of variance (ANOVA), 11-12, 63-64,104-105, 116, 121, 127, 132, 138, 188-194

Adjusted R2, 193 
Assumptions, 188
Contrasts, 194, 197, 201-204 
Contrasts coefficients, 204 
Contrasts tests, 204 
GLM univariate, 193-194
Levene’s test of equality of error variances, 193, 204 
Multiple comparisons, 200 
Observed power, 194 
Partial eta squared, 193 
Post-hoc analysis, 194-197
Profile plots, 193 
Tests of between –subjects effects, 193, 199-200 
Writing about, see Writing results

Multivariate, see Multivariate analysis of variance 
Repeated-measures, see Repeated-measures ANOVA and Mixed ANOVA

Generalized estimating equations, 89
Generalized linear models, 89
GLM, see General linear model 
Goodness of fit indices, see Information criteria
Graphs

Bar charts, 21, 44-45
Boxplots, see Box plots 
Chart builder, 325
Histogram, 13, 21, 45-46
Legacy, 327

Greenhouse-Geisser epsilon, see Epsilon 
Grouping variable, 3

Hierarchical linear modeling (HLM), see Multilevel linear modeling
High school and beyond study, 5-12
Hide results within an output table, see Output
Histograms, 45-46 
Homogeneity of variances, 29, see also Levene’s test
HSB, see High school and beyond study

Import data, see Data
Imputation of missing data, 292-311
Independence of observations, 29, see also Assumptions
Independent samples t test, 88, 100-102, 332-333 
Independent variable, see Variables

Inferential statistics, 84–107, see also Chapters 6–11

Associational, 84-86
Difference, 84-88
Selection of, 85-91, 100-103

Information criteria, 265, 271-272, 286 
Insert cases, see Cases 
Intraclass Correlation Coefficient (ICC), 53, 62-64, see also Reliability 
Interaction, 12, 153-165, 188-193, 195-201 
Interactive chart/graph, see Graphs
Inter-item correlations, 57, 60 
Internal consistency reliability, see Reliability 
Interpreting the results of a statistical test, 92-99 
Interpreting inferential statistics, 98-99 
Interquartile range, 20-21 
Interrater reliability, see Reliability
Interval scale of measurement, see Levels of measurement 
Item Means, 57 
Item Total Statistics, 57, 59, 63-64

Kappa, see Reliability
Kendall’s tau-b, 88 
KMO test (Kaiser-Meyer_Olkin), 73, 79
Kruskal-Wallis test, 87, 338-339
Kurtosis, 22-23

Label values, see Values 
Label variables, see Variable label
Leaf, 40 
Levels of measurement, 14-21, 27, 30, 84, 87-90, 100 
Levene’s test, 101, 191-194, 197, 203-208, 239, 245, 238
Line chart, see Graph 
Linear Mixed Models, 25, 90, 256-285, 306-310
Linear regression, see Regression 
Linearity, 30, see also Assumptions
List cases, see Cases
Log, see Syntax
Log linear, 89 
Logistic regression, 12, 89-90, 109, 167-178

Assumptions, 167
Binary logistic regression, 167
Block 0, 170 
Block 1, 176 
Block 2, 177 
Classification table, 170, 172, 176
Conditions, 167 
Exp(B), 172-173 
Hierarchical, 173-176 
Model, 171 
Multinomial logistic regression, 167 
Omnibus chi-square, 176 
Omnibus tests of model coefficients, 171 
Risk potency, 173 
Step 1, 177 
Step in the omnibus table, 177
Variables in the equation, 170-171, 176 
Writing about, see Writing results

Lower bounds, 102

Mann-Whitney U, 87, 332

MANOVA, see Multivariate analysis of variance 
Matrix scatterplot, see Scatterplot
Maximum, 32, 42
McNemar test, 87 
Mean, 19-21, 32, 42 
Mean difference, 102 
Mean function, 323
Measure, 17, 33-34 
Measures of central tendency, 19-21

Of variability, 20-21

Median, 19-21 
Mediation, 144-152

Assumptions, 145
BootSE, 152
BootLLCI, 152 
BootULCCI, 152 
Conditions, 144 
Direct effect of X on Y, 152 
Effect, 152 
Indirect effect of X on Y, 152 
Kappa-squared, 152 
Model, 149-150 
PROCESS installation, 146-147 
Total effect of X on Y, 152 
Unstandardized b coefficients, 149 
Writing about, see Writing results

Merge files, 322-323
Methods, see Writing results 
Minimum, 32, 42
Missing values, 8-9, 35, 38, 43

Missing At Random (MAR), see Randomness 
Missing Completely At Random (MCAR), see Randomness 
Multiple Imputation, see Multiple Imputation 
Not Missing At Random (NMAR), see Randomness 
Patterns, 295-299
 Randomness, 292-293

Mixed ANOVAs, 11-12, 89, 213-214

Assumptions, 214
Multivariate tests, 230 
Tests of within-subjects contrasts, 230 
Tests of within-subjects effects, 230 
Writing about, see Writing results

Mixed factorial designs, 85 
Mixed models, see Linear Mixed Models
Mode, 19-21
Moderation, 145, 153-160

Assumptions, 145
Conditions, 145 
Data for visualizing conditional effect of X of Y, 157 
LLCI, 156 
Model, 156 
R square, 156 
ULCI, 156 
Writing about, see Writing results

Multicollinearity, 110-112, 117-119

Multilevel linear modeling, 11-12, 90-91, 256-290

-2 restricted log likelihood, 265 
AR-1, 264-265, 267 
Assumptions, 257
Covariance of random effects, 288 
Covariance parameters, 267, 287 
Diagonal, 273 
Estimates of covariance parameters, 288
Explore, 261
Fixed effects, 267, 272, 287 
Individuals-nested-in-schools models, 276-282
Information criteria, 265, 271, 286 
Intercept, 267
Linear mixed models, 256, 268, 284 
Mixed models, 256
Model dimensions, 265, 270, 286
Nested model, 276-282 
Nested model with level 1 covariate, 282-290 
Polynomial trends, 261, 263
Random effect covariance structure, 288 
Repeated-measures models, 258-267 
Type III estimable functions, 267, 272 
Writing about, see Writing results

Multinomial logistic regression, 167 
Multiple imputation, 292-299, 301-306

AR1, 310 
Assumptions, 293-294 
Covariance parameters, 310 
Estimates of fixed effects, 309 
Fraction missing info, 309 
Fully conditional specification, 303 
Information criteria, 307 
Maximum likelihood, 293 
Missing At Random (MAR), see Randomness 
Missing Completely At Random (MCAR), see Randomness 
Missing values analysis, 293 
Missing value patterns, 298
Mixed models, 293, 306
Multiple Imputation, see Multiple Imputation 
Not Missing At Random (NMAR), see Randomness 
Patterns, 295-299
Randomness, 292-293
Relative efficiency, 309 
Relative increase, 309 
Restructuring and imputing the data, 300-306 
Variable summary, 297
Writing about, see Writing results, Multiple imputation

Multiple regression, 11-12, 89, 105, 109-131

Adjusted R2, 115, 121, 127, 132, 137-138, 193 
Assumptions, 110
Backward regression, 109, 134-141
Betas, 122 
Block, 124-125 
Collinearity diagnostics, 117, 123 
Conditions, 110 
Condition indexes, 117 
Eiganvalues, 117 
F change, 127, 132 
Forward, 109, 129-134 
Hierarchical, 109, 124-129 
Model summary table, 104, 115, 127 
Part and partial correlations, 112, 114-116 
R2change, 127 
Simultaneous, 109-124 
Standardized coefficients, 128 
Stepwise, 109 
Tolerances, 116, 122 
Unstandardized coefficients, 128, 133 
Variance proportions, 117 
Writing about, see Writing results

Multivariate analysis of covariance, 89-90 
Multivariate analysis of variance (MANOVA), 11-12, 90, 233-255

Assumptions, 233-234 
Box’s test, 245 
Levene’s test, 239, 245 
Mixed multivariate analysis of variance, 246-255 
Multiple analysis of covariance (MANCOVA), 234 
Multivariate tests, 238, 245 
Observed power 239 
Parameter estimates, 240-241, 245 
Partial eta squared, 239 
Single factor, 12, 233-241 
Tests of between-subjects effects, 239, 245 
Two factor, 233, 241-246
Wilks’ lambda, 238 
Writing about, see Writing results

Multivariate statistics, see Complex statistics

Name, 7-8
Nesting, 256-257, 264-267, 277-281 
None, 7-8 
Non-experimental studies, 2
Nonparametric statistics, 21, 29

K independent samples, 87, 338-339, see also Kruskal-Wallis test
K related samples, 87, 222-225, see also Friedman test 
Two independent samples, 87, 332-333, see also Mann-Whitney U
Two related samples, 87, 335-336, see also Wilcoxon test

Normal curve, 11, 21-23 
Normal scale of measurement, see Levels of measurement 
Normality, 30
Normally distributed, see Levels of measurement 
Null hypothesis, 93-98, 104

Observed power, see Post hoc power 
Odds ratios, 173, 330-331

One-way ANOVA, 11, 88, 188-189, 336-338 
Ordinal scale of measurement, see Levels of measurement 
Outliers, 27-28, 34-36 
Output,

Display syntax, 314-315
Edit, 317
Export to MsWord, 317
Resize/rescale, 316

Paired samples t test, 88, 331 
Parallel forms reliability, see Reliability, Equivalent forms 
Parametric tests, 20-21, 29 
Partial correlations, 128 
Pearson correlation, 11, 85, 88, 94, 282–283, see also Correlation
Percent, 43

Cumulative percent, 43 
Valid percent, 43

Phi, 88, 329-330 
Pillai’s trace, 237 
Post hoc analysis, 194-201
Post hoc power, 98, 194, 210, 239 
Power, 21, 96-99 
Practical significance, 93-99 
Principal components analysis, 68-69, 77-82, 90

Assumptions, 68-69
Component matrix, 80
Component plot, 81-82
Rotated component matrix, 81-82
Scree plot, 80
Total variance explained, 80
Writing about, see Writing results

Profile plots, 190-194, 252-254

Qualitative variable, 15-16 
Quantitative variable, 17 
Quasi-experimental designs, 2

Random variables, 256, 261-267, 288-290 
Randomized experimental designs, 2
Ranks, 16, 19-21, 87-88, 222-225, 332, 335-339 
Ratio scale of measurement,, see Levels of measurement 
Regression

Bivariate linear regression, 88, 91, 103-104, 345 
Multiple linear regression, see Multiple regression

Reliability, 11

Alternate forms, see Reliability, equivalent forms 
Assumptions, 53-54
Cohen’s Kappa, 53, 64-66 
Conditions, 54
Cronbach’s alpha, 53-61, 63, 90
Equivalent forms, 53
Intraclass correlation coefficient, 53, 62-64 
Internal consistency, 53-61 
Interrater, 53, 64-66 
Test-retest, 53, 61-62 
Statistics, 58
Writing about, see Writing results

Repeated-measures ANOVA, 11-12, 87, 213-221, see also Mixed ANOVA

Assumptions, 213
Epsilon, 220 
Greenhouse=Geisser, 219 
Tests of within-subject contrasts, 220 
Tests of within-subject effects, 220-221 
Within-subjects factor, 215 
Writing about, see Writing results

Repeated-measures designs, 84-85, 87, 89, 213-221, 258-268
Research problems, 1, 6-7 
Research questions/hypotheses, 3-6, 11-12, 84-91, 100-105

Basic associational, 3-6, 11, 86, 88, 103-106, 344-345 
Basic descriptive, 3-6, 11, 84, 86, 88, 343 
Basic difference, 3-6, 11, 88, 100, 343 
Complex associational, 5-6, 11, 89-90, 345
Complex descriptive, 5-6, 343 
Complex difference, 5-6, 11-12, 88, 344 
Types, 6

Resize/rescale output, see Output 
Restructuring and Imputing Data, 300-306
Results, see Writing results 
Risk potency effect size measures, 94-95 
Risk ratios, see Odds ratios 
Robust, 29 
Rotated component matrix, see Principal components analysis
Rotated factor matrix, see Exploratory factor analysis 
Rotated sums of squared loadings, see Exploratory factor analysis

Save Syntax/log, 316
Scale, 14-21, see also Level of measurement 
Scale if item deletded, 57 
Scatterplots,

Matrix, 47-49, 117-120, 146, 181, 234
Residual, 122-123

Scree plot, 80-81, see also Principal components analysis 
Select cases, 320-321
Selection of inferential statistics, see Inferential statistics
Sig., see Statistical significance 
Significance, see Statistical significance
Single factor designs, 85
Skewness, 11, 13, 19, 21-23, 32, 260
Spearman rho, 88, 340-341 
Split file, 321 
SPSS data editor, 7-8, 314
SPSS program, 313-327

Open and start, 313

Standard deviation, 20-21, 32
Standard error, 32 
Standardized beta coefficients, 116 
Standardized variables, see z scores
Statistics table, 45 
Statistical assumptions, see Assumptions
Statistical power, see Power 
Statistical significance (Sig), 92-94, 96-98, 105, 116, 122 
Stem-and-leaf plot, 34, 37-40 
Structural equation models (SEM), 90-91
Summarize, see Descriptive statistics

Summary item statistics, 57, 59
Summated scale, 53 
Symmetric Measures, 66 
Syntax, 315-316

Canonical correlations, 160-161 
Display in output, 315-316
Print, 315 
Run, 316 
Save, 316

System missing, 8-9

t test, 11, 87-88, 90-91, 101, 331-334 
Tables, 40-44 
Test-retest, see Reliability
Tolerance, 112, 116-117
Total cases, 35, 43 
Total variance explained, see Principal components analysis
Transform data, 26, 49-51 
Two-way ANOVA, see General linear model ANOVA 
Type I and Type II error, 96-98

Unconditional model, 257-265, 267-270, 276-282
Upper bounds, 102

Valid N (listwise), 32, 35, 38, 42 
Valid percent, see Percent
Value, see Calculated value
Values (of a variable), 3, 7-9, 319
Variable label, 3, 7-10, 17-18, 319

View, 7-8, 16, 30, 33-34, 314

Variables, 1–3, 84, 86, 100, see also Compute variable

Define, 1, 318 
Dependent variables, 1, 3, 6, 86-87 
Entered/Removed, 104, 137 
Extraneous variables, 1, 3, 6
Independent variables, 1-3, 6

Active, 2 
Attribute, 2 
Values, 3

Variances, 29, 37–39, see also Assumptions
Variance-covariance structures, 233-234, 258, 270, 273 
Varimax rotation, see Factor analysis 
VIF, 115, 122,

Way, see Single factor designs 
Wilcoxon signed-ranks test, 223-225, 335-336
Wilk’s lambda, 162, 185, 218-219, 238, see also Discriminant analysis, Multivariate analysis of variance 
Within-subjects designs, see Repeated-measures designs
Writing Results, 106-107

Analysis of covariance (ANCOVA), 211
Backward elimination multiple regression, 140-141 
Bivariate regression, 107
Canonical correlation, 164-165 
Discriminant analysis, 185-186 
Factor analysis, 76-77 
Factorial analysis of variance (ANOVA), 200-201, 204-205 
Forward multiple regression, 133-134 
Friedman test, 225 
Hierarchical multiple regression, 129 
Logistic regression, 173

Mediation, 152-153 
Missing data, 299
Mixed multivariate analysis of variance (ANOVA), 253-254 
Moderation, 159-160 
Multilevel linear modeling, 267-268, 274-276, 281-282, 289-290,310 
Multiple imputation, 306 
Principal components analysis, 82
Reliability, 60-62, 64, 66
Repeated-measures analysis of variance (ANOVA), 221 
Simultaneous multiple regression, 123-124 
Single factor multivariate analysis of variance (MANOVA), 241 
t test, 107 
Two factor multivariate analysis of variance (MANOVA), 245-246 
z scores, 319-320




1 Commands used primarily by SPSS are in bold.
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Correlations

This is the correlation
between the first and

second visualization test.

It should be higher than
.70.

75 participants have both
visualization scores.

visualization | visualization 2
test
visualization test Pearson Correlation 1 938
Sig. (2-tailed) 000
N 75 G
visualization 2 Pearson Correlation 938 1
Sig. (2-tailed) 000
N 75 75
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The epsilons, which are estimates of the degree of sphericity in the population, are less than
1.0, indicating that the sphericity assumption is violated. The “lower-bound” indicates the
lowest value that epsilon could be. The highest epsilon possible is always 1.0. Typically,
when epsilons are less than .75, use the Greenhouse-Geisser epsilon, but use Huynh-Feldt

if epsilon > .75.
Mauchly's Test of Sphericity
Measure: MEASURE_1
C Epsilon"Y
Mauchly's Approx. Greenhouse- Huynh- Lower-
Within Subjects Effect w Chi-Square | df Sig Geisser Feldt bound
product 101 22.253 5 .001 544 626 .333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent
variables is proportional to an identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests
are displayed in the Tests of Within-Subjects Effects table.
b.

Design: Intercept
Within Subjects Design: product
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Levene's Test of Equality of Error Variance$

Dependent Variable: math achievement test

F

dft

df2

Si

2.548

5

67

9
@)

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups

2. Design: Intercept+mathgr+faedRevis+mathgr * faedRevis

This indicates that the assumption of
homogeneity of variances has been violated.
Because Levene’s test is significant, we
know that the variances are significantly
different. Luckily, SPSS uses the regression
approach to calculate ANOVA, so this
problem is less important. Nevertheless, this
violation should be considered when
deciding which post hoc test to use.
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Descriptive Statistics

N__| Minimum | Maximum | Mean | std. Deviation Skewness
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Descriptive Statistics

N Minimum_| Maximum Mean
gender 75 0 1 .55
algebra 1 in h.s. 75 0 1 79 [D—— 79% of students
al:ebra 2inhs. 75 0 1 %: took algebra |
geometry in h.s. 75 0 1 .48
trigonometry in h.s. 75 0 1 27
calculus in h.s. 75 0 1 M
math grades 75 0 1 41
Valid N (listwise) 75
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Math courses 1 1783.89 106.14 <001 60
Gender 1 6.00 36 552 01

Error 7 16.81






OEBPS/Images/fig00382.jpg
F and p for
between-groups
differences.

ANOVA
Sum of
Squares df Mean Square F Sig.
grades in h.s. Between Groups 18.143 2 9.071 4.091 021
Within Groups 165.227 70 2218
Total 173.370 72
visualization test Between Groups 22.505 2 11.252 763 470
Within Groups 1032.480 70 14.750
Total 1054.985 72
math achievement test  Between Groups 558.481 2 279.240 7.881 .001
Within Groups 2480.324 70 35.433
Total 3038.804 72
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Model 2 67
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Model 3 66 -.007
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COMPUTE VAR = SORT (oldv4riabl
VARIABLE LABELS VAR 'Label
EXECUTE .

Put the old variable name here.

name)
r New VarTable'

This is where you
should add the new
label for your variable.






OEBPS/Images/fig00303.jpg
‘Dependent Varisbi:

o e —|
o =

Gy

& temale -
& ses
7 7mn —
& size -
ol

& pracad
l;’ dscim

@@-@@






OEBPS/Images/fig00148.jpg
ER——

r—— Coneiatons ofsstmtes
Hosmariemeshow goonessctat ] erabon sty
Casemsaustngotresiuss  WCierem®] 5] %

Displar

@ Heacnsiop O Mststep

ProvabiyorSepwise

oo s | Remost 70 ]

@ incude congtntin e

(Gontoms) (Garce ) i ]

cuasstcasonator [p5_]

waimum eraons: [z






OEBPS/Images/fig00334.jpg
=
e

L] S—

pr——

e

[y )






OEBPS/Images/fig00350.jpg
Note'

o En ven g foshn prave Goes e hoszs gt

"

TR —

=)






OEBPS/Images/fig00059.jpg
Factor Matrix®

a. 3 factors extracted. 12 iterations required.
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Levene's Test of Equality of Error Varianced

F dft df2 Sig.
math achievement test 1.691 3 il 177
visualization test 2.887 3 71 @

Tests the null hypothesis that the error variance of the dependent variable is

equal across groups.

a. Design: Intercept+mathgr+gender+mathgr * gender

Because this is significant, we
know that the assumption of
homogeneity of variances is
violated for visualization.
However, since groups are
nearly equal in size, the test
should not be strongly affected
by this violation.






OEBPS/Images/fig00157.jpg
Dependent Variable Encoding

Original Value

Internal Value

not taken
taken

0
1

Again, algebra 2 is the
dependent variable and
is coded 0 for not taken
and 1 for taken.
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Note that all the predictors are significantly
related to math achievement. Multiply Sig by 2 to
get the two-tailed significance level.

Correlations

None of the relationships among
predictors is greater than .25.

\

math
achievement | motivation | grades parents'
test scale in h.s. education | gender
Pearson Correlation  math achievement teé\ 1.000 316 504 \ 394 -.303
motivation scale 316 1.000 084 .090 -.209
gradesin h.s. 504 084 1.000 250 115
parents' education .394 090 250 1.000 -.227
gender -.303 -.209 115 -.227 1.000
Sig. (1-tailed) math achievement test 003 000 .000 .005
motivation scale .003 . 241 225 038
grades in h.s. .000 241 .016 166
parents' education 000 225 016 027
gender .005 038 166 .027 .
N math achievement test 3 73 73 73 73
motivation scale 73 73 73 73 73
grades in h.s. 73 73 73 73 73
parents' education 73 73 73 73 73
gender 73 73 73 73 73
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Wilks' Lambda

Wilks’” lambda can be used to
compute an overall effect size for
the analysis (partial n° = 1-A'"? =
1-(.706)'* =1-.89=.11).

Wilks'
Test of Function(s) | La Chi-square df Sig.
1 ( 706 24.692 .000

This indicates that the
predictors significantly
discriminate the groups.
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Estimated Marginal Means

Estimated Marginal Means of MEASURE_1

product

Gender
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This table shows four similar multivariate tests
that are actually a form of MANOVA, which is
discussed in the next chapter.

Multivariate Tests®

Hypothesis Partial Eta | Noncent | Observed
Effect Value F df Erordf | Sig. | Squared | Parameter | Power’
product _ Plars Trace 864 | 19065\ 3000 | 9.000 | 000 864 57.194 1.000
Wilks' Lambda 136 | (79.065° 3000 | 9.000 000 864 |) 57.194 1.000
Hotelling's Trace 6355 | 19.065° 3000 | 9.000 | 000 864 57.194 1.000
Roy's Largest Root 6355 | 19.085° 3.000 | 9.000 | 000 864 57.194 1.000

a. Computed using alpha = .05

b. Exact statistic

c.

Design: Intercept
Within Subjects Design: product
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Ranks

(Mean Rank
Product A, $400 367
Product B, $300 225 ||~ | Mean ranks to be compared
with the Friedman test.
Product C, $200 275
Product D, $100 1.33
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Rotated Factor Matrix*

Factor

2

item05 low comp
item03 competence
item01 motivation
item11 low comp
item12 motivation
item13 motivation
item08 low motiv
item04 low motiv
item07 motivation
item09 competence
item14 pleasure
item10 low pleas
item02 pleasure
item06 low pleas

412

.487

The items cluster into these
three groups defined by the
highest loading on each item.

Extraction Method: Principal Axis Factoring

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.
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geometry in h.s. * gender Crosstabulation

| —1

Observed and expected
counts to be compared.

gender
male female Total

geometry  nottaken  Count 10 29 39
inh.s, Expected Count 17.7 21.3 39.0
% within gender 294% | 70.7% 52.0%

taken Count 24 12 36

Expected Count 16.3 19.7 36.0

% within gender | (706%Y (29.3%]) 48.0%

Total Count 34 i 75
Expected Count 34.0 41.0 75.0

% within gender 100.0% 100.0% 100.0%
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Test Statistics®

math
visualization achievement
test test grades in h.s.
Mann-Whitney U 505.000 455.500 621.500
Wilcoxon W 1366.000 1316.500 1216.500 Tests of significance.
z -2.052 -2.575 -818
Asymp. Sig. (2-tailed) .040 010 413

a. Grouping Variable: gender
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Regression Standardized Residual

Because the dots are scattered, it indicates
the data meet the assumptions of the errors
being normally distributed and the
variances of the residuals being constant.

E3

Scatterplot
Dependent Variable: math achievement test
= ° IS
s 00 © © )
oo © @
° o o S @50
° ° 60 c'o"oc, oo ° 0%
6 o © @ -
°° ° oq ®o o0 oo If the dots created a pattern, this
o would indicate the residuals are
o not normally distributed, the
residual is correlated with the
independent variables, and/or the
variances of the residuals are not
constant.
3 2 A i H 2 3

Regression Standardized Predicted Value
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cses is a covariate.

MIXED mathach WITF Gses |

/CRITERIA=CIN (95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) HCONVERGE (0,
ABSOLUTE) LCONVERGE (0, ABSOLUTE) PCONVERGE (0.000001, ABSOLUTE)

/FIXED=cses | SSTYPE(3)

/METHOD=REML

/PRINT; SOLUTION TESTCOV

/RANDOM=INTERCEPT cses | SUBJECT (school) COVTYPE (UN).
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George A. Morgan
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kokkkk koK k Rk k%K kkk TOTAL,

DIRECT, AND INDIRECT EFFECTS

Total effect of X on Y

The b (Effect), SE, 1, and p from the
IV predicting the DV regression are
reported again here.

The b (Effect), SE, 7, and p from the
1V and the mediator predicting the
DV regression are reported again
here.

Effect SE t P

11.1585 1.0375 10.7548 .0000
Direct effect of X on Y

Effect SE t o /

10.9567 1.0988 9.9720 .0000
Indirect effect of X on Y

Effect Boot SE BootLLCI BootULCI

motivati .2017 L4579 -.4171 1.5853

Partially standardized indirect effect of X on Y
Effect Boot SE BootLLCI BootULCI
motivati .0021 .0049 -.0046 .0161

Completely standardized indirect effect of X on Y

Effect Boot SE BootLLCI BootULCI
motivati .0142 .0323 -.0308 L1124
Ratio of indirect to total effect of X on Y

Effect Boot SE BootLLCI BootULCI
motivati .0181 L0419 -.0422 L1448

Ratio of indirect to direct effect of X on Y

Effect Boot SE BootLLCI BootULCI
motivati .0184 .0457 -.0405 .1693
R-squared mediation effect size (R-sg_med)

Effect Boot SE BootLLCI BootULCI
motivati .0819 .0692 -.0028 .2657
Preacher and Kelley (2011)

Effect 00t LLCI BootULCI
motivati .0268 0385 .0003 .1083

This is new information giving
the beta (Effect), SE, #,and p for
the relationship between math
achievement and scholastic
aptitude test —math being
mediated by motivation.

The Kappa-squared effect size is
reported here. Kappa-squared is
the indirect effect divided by the
maximum possible indirect
effect. This is preferred to other
effect sizes since it is more easily
interpreted since it is a ratio
(where as the other effect sizes
are not but tend to be interpreted
as if they are).

Ak kkkkkkk Rk kkk*k k% ANALYSTS NOTES AND WARNINGS ** %%k kkk ko koo ok k ko

Number of bootstrap samples for bias corrected bootstrap confidence intervals:

1000

Level of confidence for all confidence intervals in output:

95.00

NOTE:
was:

Some cases were deleted due to missing data.

The number of such cases
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Tests of Between-Subjects Effects

Dependent Variable: math achievement test

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 2085.6982 3 695.233 40.903 000
Intercept 833.723 1 833.723 49.051 000
gender 8.94E-005 1 8.94E-005 000 .998
mathers 1775.937 1 1775.937 104.486 .000
gender * mathcrs 3.369 1 3.369 198 658
Error 1206.783 7 16.997
Total 15132.393 75
Corrected Total 3292.481 74

a. R Squared = .633 (Adjusted R Squared = 618)

Recall that this
analysis was done to
check the assumption
of homogeneity of
regression slopes, not
to test a hypothesis.
The factor and
covariate do not
interact, so the
assumption of
homogeneity of
regression slopes has
been met.
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Omnibus Tests of Model Coefficients

Note that adding mosaic
and visual to the
equation increases the
prediction significantly.

Chi-square df Sig.
Step 1 Step 8.123 2 017
Block 8.123 2 017
Model 24.231 4 .000
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Descriptive Statistics

Dependent Variable: math achievement test

six new cell codes

low math and low faed
high math and low faed
low math and med faed
high math and med faed
low math and high faed
high math and high faed
Total

(Mean Std. Deviation

9.8261 5.03708 23
10.4889 6.56574 15
12.8149 5.05553 9
16.4284 3.43059 7
12.3636 7.18407 "
21.8335 2.84518 8
12.6621 6.49659 73

All combinations of pairs of
these six cell code means
will be compared (twice) in
the Games-Howell Multiple
Comparisons table.
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If the correlation is moderately high to high (e.g., .40+),
the item will make a good component of a summated

A key table. rating scale. You may want to modify or delete items
with low correlations. Item 1 is a bit low to consider all
items as measuring the same thing. Note that the alpha
increases a little, from .791 to .795, if Item 1 is deleted.

Item-Total Statistics
Scale Corrected Squared Cronbach's
Scale Mean if | Variance if Item-Total Multiple Alpha if Item
Item Deleted | Item Deleted | Correlat; Correlation Deleted—
item01 motivation 14.29 11.402 378 217 798
item04 reversed 14.42 10.303 .596 420 746
item07 motivation 14.49 9.170 676 .506 723
item08 reversed 14.19 10.185 627 454 738
item12 motivation 14.26 11.140 516 420 765
item13 motivation 14.58 11.442 476 .391 774
The average for the 6-item
Scale Statistics summated scale score for
the 73 participants.
Mean Variance | Std. Deviation | N of ltems

C 17256 14.661

3.829

6
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Rotated Component Matrif

Component

 — 2
grades in h.s. 669 -213
math achievement test 911 200 Even after rotation. mosaic is
mosaic, pattern test 057 972 predicted by its own component,
visualization test 573 041 which does not have strong loadings
scholastic aptitude on any of the other variables.
test - math 856 126 Y

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.
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Imputation Number L2 L3 L4

Original data  Fixed Effects  Intercept 0 0 0
[time=1] 1 0 0
[time=2] 0 C
[time=3] 0 1
[time=4] -l (l\ -1

1 Fixed Effects  Intercept 0 0 0
[time=1] 1 0 0
[time=2] 0 1 0
[time=3] 0 0 1
[time=4] -1 -1 -1

The column labeled “L.2”
indicates the contrast
coefficients for the
“time=1" effect (timel-
time 4), “L3” shows
coefficients for the
“time=2" effect (time 2-
time 4), and L4 gives the
coefficients for time 3-time
4. The same contrasts are
made for each imputation.

a. Dependent Variable: weight.1: Body Weight.
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Descriptive Statistics

)

N Minimom | Maximum | _Mean ‘Skewness.
Statistic_| Statistic_| Statistic | Statistic | Statistic | Statitic | Std. Error
SquaredComp 73 T00 | 1600 | 112894 | 373342 B 287

Valid N (istwise)

73
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Dependent Variable: yréh achievement test

Descriptive Statistics

Note that the mean score of males was
four points higher than females on
math before the ANCOVA.

gender. Mean Std. Deviation N

male 14.7550 6.03154 34
female w 6.69612 a4
Total 5 6.67031 75
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Measure: MEASURE_1

Tests of Within-Subjects Effects

Type lll Sum Mean Partial Eta | Noncent | Observed
Source of Squares df Square F Sig Squared | Parameter | Power®
‘product Sphericity Assumed 17229 |( 3 |) 5743 | 23629 | 000 662 70886 1,000
Greenhouse-Geisser 17.220 |(C 1632 | 10556 | 23629 | 000 862 [] 38565 1.000
Huynh-Feldt 17.229 | 1877 978 | 23620 | 000 682 44.356 1.000
Lower-bound 17229 | 1.000 | 17229 | 23629 | .001 682 23629 993
Error(product) _ Sphericity Assumed 8021 33 243
Greenhouse-Geisser 8021 || 17.953 J 447
Huynh-Feldt 8.021 388
Lower-bound 8021 | 11.000 729

a. Computed using alpha = .05
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These are the

Correlations for Set-1 correlations among the
item0l item07 iteml2 iteml3 items within each set.

item0l 1.0000  .4613  .1841 .1856 Remember to look on

item07  .4613 1.0000 .3469  .3562 only one side of the

iteml2  .1841  .3469 1.0000  .5838 diawonal

iteml3  .1856  .3562  .5838 cona’.

Correlations for Set-2 — -
item03 item09 These are bivariate correlations

item03 1.0000  .3268 between each variable in Set 1 and
item09  .3268 1.0000 each variable in Set 2.

Correlations Between Set-1 and Set-2
item03 item09

item01 .6260 .2082
item07 .4238 .2265
iteml2 .1662 .3944

iteml3 .1669 .2894
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Estimated Marginal Means of dv2

) rou

€ 20.4-] — | b

© [~ — intervention
o

= 202 comparison

20 </

This plot is misleading
because of the scale
used. Basically both
lines are flat and there is
not an interaction
between time and

T T group.
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This table tells you what effects are statistically significant. In this case, there are statistically
significant multivariate main effects of group and time, but these are qualified by a group by time
interaction. This indicates that the difference between the intervention and control group on the
linear combination of the two dependent variables is different at pretest than at posttest.
Examination of the means suggests that this is because groups do not differ on either dependent
variable at the time of the pretest, but they do differ, particularly on the first dependent variable, at

the time of the posttest.

Multivariate Tests"

Hypothesis \d Partial Eta | Noncent. | Observed

Effect Value E of ErroNdf | Sig | Squared | Parameter | Power
Between Tniercept  Pilars Trace 955 | 182.194° 2000 | 17.0 000 955 | 364.388 7,000
Subjects Wilks' Lambda 045 | 182.194° 2000 | 17.000\ 000 955 | 364.388 1.000
Hotelling's Trace | 21.435 | 182.194° 2000 | 17.000 |\ .000 955 | 364.388 1.000
Roy's Largest Root | 21435 | 182.194° 2000 | 17.000 | \.000 955 | 364.388 1.000
group Pillars Trace 553 | 10.499° 2000 | 17.000 |[ 001 553 | 20998 970
Wilks' Lambda 447 | 104990 2000 | 17.000 || 001 553 | 20998 970
Hotelling's Trace 1235 | 10.499° 2000 | 17.000 || 001 553 | 20998 970
Roy's LargestRoot | 1235 | 10.499° 2.000 | 17.000 || .00t 553 | 20998 970
Within Subjects _time Pillai's Trace 822 | 30.321° 2.000 | 17.000 || 000 822 | 78642 1.000
Wilks' Lambda 178 | 39.3210 2000 | 17.000 || .000 822 | 78642 1.000
Hotelling's Trace 4626 | 39.321° 2000 | 17.000 || .000 822 | 78642 1.000
Roy's LargestRoot | 4626 | 39.321° 2000 | 17.000 || .000 822 | 78642 1.000
time * group _ Pillars Trace 786 | 312350 2000 | 17.000 || 000 786 | 62470 1.000
Wilks' Lambda 214 | 31238 2000 | 17.000 || .000 786 | 62470 1.000
Hotelling's Trace 3675 | 31238 2000 | 17.000 || .000 786 | 62470 1.000
Roy's Largest Root | 3675 | 31.235° 2000 | 17.000 || 000 786 | 62470 1.000

2. Computed using alpha = .05

b. Exact statistic

c.

Design: Intercept+group
Within Subjects Design: time
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We can square the
Canonical correlation to
compute the effect size for
the discriminant function.

Eigenvalues
Canonical
Function | Eigenvalue | % of Variance | Cumulative % | Correlgtion~/
1 4162 100.0 100.0 ( 542

a. First 1 canonical discriminant functions were used in the
analysis.
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Aarrrssssssrsrsrrrrrtrttss TOTAL EFFECT MODEL **%++tssssssssssssssssssssss

Outcome: satm

Model Summary

R R-sq F df1 df2 13
L7872 L6196 115.6647 1.0000  71.0000 000
Model
coefs se t »
constant  350.4684  14.8139  23.6581 .0000

mathach 11.1585 1.0375  10.7548 ~0000
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Unadjusted Adjusted

N M sD M SE
Males 34 1476 603 1289 7
Females 4 1075 670 1229 66
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We see that the R square values
increase for each model.

Model Summa
Change Stafistcs
i | oot | Romae

Model R R Square Square the Estimate Change F Change | dff df2__ | Sig.F Change
1 504° 254 243 587865 254 | 24118 1 n 000
2 (714 385 368 537248 132 15009 1 0 000
3 652° 425 400 523281 040 4787 1 63 032
4 678 459 GuD st | am 8| mry

a. Predictors: (Constant), grades in h.s.

b. Predictors

(
(Constan), grades in h.s., gender
¢. Predictors: (Constant), grades in h.s., gender, mofivation scale

d. Predictors: (Constanf), grades in h.s., gender, motivation scale, parent's education
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Paired Samples Statistics

Means to be compared.

—_— Std. Error

Mean Std. Deviation Mean
Pair father's education 473 73 2.830 331
1 mother's education 4.14 73 2.263 265
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math achievement test

ANOVA

The overall F is

Sum of g
significant at p <.001.
Squares df | MeanSquare | F Sig ° s
Between Groups | 1029.236 5 205.847 | 6.863 000 NO‘E ‘h"“;]‘}“z ISFE*_“? same
Within Groups 2009.569 67 29.994 as the ce 700 e Fin
Total 3038.804 72 Output 9.2b.
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Variable B SEB V'3
Step | 09 09
Gender -4.08 -30
Constant 14.84
Step2 65 56
Gender -1.04 112 -08
Grades in h.s. 42 el 10
Parents’ 07 24 02
education
Motivation 914 81 09
scale
Math courses 275 a5 68%*
taken
Constant 204 315

*p<.05: +p< 001
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Test of Homogeneity of Variances

Tests the assumption of
equal variances.

Levene

Statistic dft df2 Sig
grades in h.s. 1.546 2 70 220
visualization test 1.926 2 70 153
math achievement test 3.157 2 70 049
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Standardized Canonical

Discriminant Function Coefficients

Function
1
gender -213
parents' education 706 p
mosaic, pattern test -.220

visualization test

D]
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Multivariate®®

Partial Eta | Noncent | Observed

Within Subjects Effect Value F Hypothesis df | Errordf | Sig | Squared | Parameter | Power”
Tme Pilars Trace 822 | 393210 2000 | 17.000 000 822 78642 1000
Wiks' Lambda 178 | 39321 2000 | 17000 000 822 78642 1.000
Hotelling's Trace 4626 | 39.321° 2000 | 17.000 000 822 78642 1.000
Roy's Largest Root 462 | 39321 2000 | 17000 000 822 78642 1.000
fime * group Pillar's Trace 786 | 31235 2000 | 17.000 000 786 62470 1.000
Wiks' Lambda 214 | 31238 2000 | 17000 000 786 62470 1.000
Hotelling's Trace 3675 | 312380 2000 | 17.000 000 786 62470 1.000
Roy's Largest Root 3675 | 31.235° 2000 | 17.000 000 786 62470 1.000

a Computed using alpha = .05
b Exact statistic
c
Design: Intercept+group
Within Subjects Design: time

d. Tests are based on averaged variables.

Note that this table
redundant with the

You can ignore it.

provides information that is

previous multivariate table.
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Box's Test of Equality of Covariance Matrice$

This checks the assumption of
homogeneity of covariances
across groups.

Box's M 18.443

F 1.423

dft 12

df2 10219.040

Sig 147

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

This indicates that there are no
significant differences between the
covariance matrices. Therefore, the
assumption is not violated and Wilks
lambda is an appropriate test to use
(see the Multivariate Tests table).

a. Design: Intercept+faedRevis
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Information Criterid

-2 RESUed LG o7y Goodness of fit for
Likelihood 53
L unconditional model.
Akaike's Information 147120.793
Criterion (AIC)
Hurvich and Tsai's
Criterion (AICC) 47120795
Bozdogan's Criterion
(CAIC) 47136.553
Schwarz's Bayesian
Criterion (BIC) 47134.553

The information criteria are displayed
in smaller-is-better forms

a. Dependent Variable: mathach
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Variables in the Equation

95.0% C.Lfor EXP®)

B SE Wald df | Sig Exp(B) Lover Upper
Slep  gender 858 522 2.707 100 424 152 1178
1 parEduc 374 127 8.638 003 1.454 1.133 1.866
Constant -1.207 681 3.625 057 273

a. Variable(s) entered on step 1: gender, parEduc.

When both gender and parents’ education
are entered, gender is no longer significant.
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Multivariate Tests!

Hypothesis Partial Eta | Noncent. | Observed
Effect Value F df Errordf | Sig. | Squared | Parameter | Power®
Tntercept  PWiars Trace 536 | 3418840 3000 | 68.000 | 000 938 | 1025652 1,000
Wiks' Lambda 062 | 341.884° 3000 | 68.000 [ .000 938 | 1025652 1.000
Hotelling's Trace 15.083 341.884 3.000 68.000 000 938 1025.652 1.000
Roy's Largest Root 15.083 341.884> 3.000 68.000 000 938 1025.652 1.000
TaedRevis | Pillais Trace 229 2.970 6.000 | 138.000 | 009 114 17,823 892
Wiks' Lambda 777 3.040° 6.000 | 136.000 | 008 118 [) 18238 900
Hotelling's Trace 278 3106 B.000 [ 134000 007 T 18.637 907
Roy's Largest Root 245 5.645° 3.000 | 69.000 | .002 197 16.936 934

2. Computed using alpha = .05

b. Exact statistic

C. The statistic is an upper bound on F that yields a lower bound on the significance level
d. Design: Intercept+faedRevis

This is the MANOVA
using the Wilks”
lambda test.
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Type 111 Tests of Fixed Effects”
Imputation Number Source Numerator df Denominator df F Sig.
Original data Intercept 1 92.485 605.091 .000
time 3 200.188 21.580 .000
1 Intercept 1 98.451 714.860 .000
time 3 226.281 20.981 000
2 Intercept 1 97.762 671.496 .000
time 3 227.730 22.083 .000
3 Intercept 1 101.700 777916 .000
time 3 228.488 25.435 .000
4 Intercept 1 98.896 752.721 .000
time 3 227.847 25574 000
5 Intercept 1 98.325 647.521 .000
time 3 228294 20.120 .000
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Descriptive Statistics

Mean | std Deviation | Minimum | Maximum
Product A, $400 12 467 1923 1 7
Product B, $300 2 358 1,920 1 7
Product C, 5200 12 383 1642 1 6
Product D, $100 12 300 1651 1 5
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Descriptive Statistics

Mean Std. Deviation
math achievement test 12.6028 6.75676 73
motivation scale 2.8744 63815 73
grades in h.s. 5.68 1.589 73
parents' education 4.3836 2.30266 73
gender 55 .501 73






OEBPS/Images/fig00286.jpg





OEBPS/Images/fig00074.jpg
: The r Family ©

‘The d Fami
General Interpretation of the v porad o
Strength of a Relationship b (eta)
Much larger than typical 2100 49 2170 |70 49+ |4sp 21
Large or larger than typical |.80] 25|50 s 26 137 .4
Medium or typical [.50] 091300 136 13 24 06
Small or smaller than typical 20| on Lo L4 02 ) 0

“dvalues can vary from 0,010 + or —infinity. but d greater than one is relatively uncommon

 r family values can vary from 0.0 o + or 1.0, but except for relabiliy (i.c., same concept measured twice), 7 i
rarely above .70, In fact, some of these statstics (e.g.. phi) have a restricted range in certain cases: that i, the
maximum phi may be less then 1.0.

© We interpret the numbers i this table as a range of values. For example, a d greater than .90 (or less than —90)
would be described as “much larger than typical.” a d between say .70 and 90 would be called “larger than
typical,” and d between say .60 and .70 would be “typical to larger than typical.” We interpret the other three
colums similarly.

“Note that | | indicates absolute value of the coefficient. The absolute magnitude of the coefficient, rather than its.
sign, is the information that i relevant o effect size. R and eta usually are calculated by taking the square root of a
squared value. so that the sign usually is positve.

“Note that SPSS reports partial eta squared values, rather than eta squared values. For one-way ANOVAS, these are:
identical. since there is only one effect. However, for ANCOVA and factorial ANOVA, partial eta squared values
are calculated as a ratio of variance associated with tha effect alone, divided by the sum of that same variance value
and error variance. Thus, each eflect size has a different denominator and they cannot be directly compared as
indicating the relative proportion of the total variance that the particular effect “explains.” These guidelines can be
used, but should be treated as very general guidelines.
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Multivariate Tests®

Hypothesis Partial Eta | Noncent. | Observed
Effect Value F df Error df Sig. Squared | Parameter Power®
Intercept Pilla's Trace 848 195.012° 2.000 70.000 000 848 390.026 1.000
Wiks' Lambda 152 | 195.012° 2000 | 70.000 | 000 848 | 390025 1.000
Hotelling's Trace 5572 | 195012 2000 | 70000 | 000 848 | 390.025 1.000
Roy's LargestRoot | 5572 | 1950120 2000 | 70000 | 000 848 | 390025 1.000
‘mathgr Pillai's Trace 189 8.155° 2.000 70.000 001 189 16.310 952
Wiks' Lambda (BE 8.155° 2000 | 70000 | 001 189 16.310 952
Hotelling's Trace 733 BT55 OO0 707000 |——00T TBY 16.310 952
Roy's Largest Root 233 8155 2000 | 70000 | 001 189 16.310 952
gender Pilar's Trace 200 8.743° 2000 | 70.000 | 000 200 17.485 %64
Wiks' Lambda (oo 8743 2000 | 70.000 | 000 200 | ) 17.485 %64
Hotelling’s Trace 750 ¥7a3 U0 {70000 | 000 00 17.485 964
Roy's Largest Root 250 8.743° 2.000 70.000 000 200 17.485 964
mathgr * gender _Pillals Trace 005 71 2000 | 70000 | 843 005 342 075
Wiks' Lambda (S 71 2000 | 70000 | 843 05[] 342 075
Hotelling's Trace 00 7T U0 [—7OU00 | E4F 0 342 075
Roy's Largest Root 005 1710 2000 | 70000 | 843 005 342 075
2. Computed using alpha = .05
b Exact statistic The effects of math grades and gender on the
C. Design: Intercept+mathgr+gender+mathgr * gender combination of dependent variable are
significant, but the interaction is not.
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Classification Tablé

Predicted
algebra 2 in h.s. Percentage
Observed not taken taken Correct
Step 0 algebra 2 in hs. not taken 40 0 100.0
taken 35 0 0
Overall Percentage 53.3

a. Constant is included in the model.
b. The cut value is .500
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Note that Mauchly’s test of spherici

ity would be needed only in relation to the

assumptions of the follow-up univariate repeated-measures tests (second table below,
labeled “univariate tests™); sphericity is not required for the multivariate tests. In this
case, it is not needed even for univariate tests because there are only two levels of the
within-subjects variable, so sphericity is not an issue and all epsilons are 1.0. The
follow-up repeated-measures ANOVAs (see univariate effects table) and contrasts test
whether these apparent findings are statistically reliable.

Mauchly's Test of Sphericity’
Epsilon®
Approx. Greenhouse | Huynh- Lower-
Within Subjects Effect Measure | Mauchly's W | Chi-Square df Sig -Geisser Feldt bound
time vl 1.000 000 0 1.000 1.000 1.000
dv2 1.000 000 0 1.000 1.000 1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed
in the Tests of Within-Subjects Effects table.

b.

Design: Intercept+group

Within Subjects Design: time
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Variables Entered/Removed®

P

Model

Variables
Entered

Variables
Removed

Method

gradesinh.s.

gender

motivation
scale

parent's
education

This table shows us
which variables were
added in each model.

Forward
(Criterion
Probability-of-
F-to-enter <=
050)

Forward
(Criterion
Probability-of-
F-to-enter =
050)

Forward
(Criterion
Probability-of-
F-to-enter =
050)

Forward
(Criterion
Probability-of-
F-to-enter == .
050)

a. Dependent Variable: math achievement test
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Low math grades High math grades Total

Father's n M SO n M SD M SD
education

HSgradorless 23 983 504 15 1049 657 1009 561
Some college 9 1281 506 7 1643 343 1440 4.67
BS or more 11236 7I8 8 2183 285 1635 741

Total 43 1110 569 30 1490 7.01 1266 650
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Dependent Variable: math achievement test

The overall cellcode ANOVA is, F(5, 67) = 6.86, p
<.001, eta = .58 so there are differences among the
cells and a large effect size.

Tests of Between-Subjects Effects

Type Ill Sum Partial Eta /Nnnoenl Observed
Source of Squares df Mean Square F Sig. Squared Parameter Power”
Corrected Miodel | 1029.236° 5 205.847 6.863 000 335 34315 957
Intercept 12094.308 1| 12004.308 | 403230 000 858 403230 1.000
cellcode 1029.236 5 205847 | [(6.863 000 339 [] 34315 997
Ermor 2009.569 67 29994
Total 14742.823 73
Corrected Total 3038.804 72

2. Computed using alpha = .05
b. R Squared = 339 (Adjusted R Squared = 289)
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Within school-variance.

Estimate%Covariance Parameters'

Both effects are significant.

95% Confidence Interval

Parameter Estimate /] Std. Error | Wald Z Sig._/| Lower Bound | Upper Bound
Residual ([J39-148322 ] 660645 | 59.258 000 || 37.874662 |  40.464813
Intercept [subject _Variance (] 8:614025 ) 1.078804 7.985 000 6739122 |  11.010548

a. Dependent Variable: mathach.

Between-school variance.
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Summary ltem Statistics

Maximum /

Mean | Minimum | Maximum | Range | Minmum | variance | N of tems
Tiem Means 2874 | 2671 | 3055 384 1144 022 g
Inter-tem Correlations. 385 167 603 43 3604 020 6
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Frequency

Stem &

NhroOO

Leaf

1 ——
1123344

555666778999

00002334444

77779

02233

1 person had a negative
score (stem —0) of —1.
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Descriptive Statistics

Mean Std. Deviation
math achievement test 12.7536 6.66293
motivation scale 2.8913 62676
competence scale 3.3188 62262
pleasure scale 3.1486 60984
grades in h.s. 571 1573
father's education 465 2.764
mother's education 4.07 2.185
gender 54 502

N is 69 because six
participants have
some missing data.
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An estimate of within-age variance.

ARI diagonal is significant, suggesting a
important amount of within-age variance.

Estimates Ol Covariance Parameters® /

Std. Error | Wald Z

95% Confidence Interval
Sig. Lower Bound | Upper Bound

Parameter Estimate
Repeated Measures AR1 diagonal {|_2.108872
AR1 rho 047132

Int t [subject= i
ercept [subjec Variance i

subject]

K 39832 5294 1456382 |  3.063601

172662 273 785 -.283972 368194

1398723 | 3162 2379986 |  8.220705

a. Dependent Variable: Distance (mm) from centgr of pituitary to pteryo-maxillary fissure.

There is little covariation between adjacent
ages, once differences between individuals are
taken into account.

The covariance parameter, Variance of “Intercept”
indicates variability between levels of the subject
variable (in this case, subjects) in means on the
dependent variable. There are significant
differences between individuals in distance.
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Test Statistics®

Product B, $300 | Product C, $200 | Product D, $100
- Product A, - Product B, - Product C,
$400 $300 $200
z -2.919° -1.342° -3.162°
Asymp. Sig. (2-tailed) .004 180 002

a. Based on positive ranks.

b. Based on negative ranks.
c. Wilcoxon Signed Ranks Test

These two contrasts are
statistically significant.






OEBPS/Images/fig00364.jpg





OEBPS/Images/fig00097.jpg
Collinearity Diagnosticé

Variance Proportions

Condition motivation | gradesin | parents

Model _Dimension | Eigenvalue Index (Constant) scale h.s. education gender

1 1 4337 1.000 00 00 00 01 01
2 457 3.082 00 00 00 07 68
3 135 5.665 02 07 02 85 17
4 052 9.120 01 20 87 06 06
5 .019 15.251 .97 73 A1 .01 08

a. Dependent Variable: math achievement test






OEBPS/Images/fig00178.jpg
This indicates that the assumption of homogeneity of
the covariance matrices has not been met, according
to this test. However, this test is strongly influenced
by nonnormality and may not be accurate. We
checked this assumption with matrix scatterplots for
each group, and these suggested the assumption was
not badly violated. We could use logistic regression
instead of discriminant analysis if we are concerned
about the degree to which we met this assumption.

Test Results
Box's M 36.324
F Approx. 3.416
dft 10
df2 24432.818
s | “Coo)

Tests null hypothesis of equal population covariance matrices.
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Information Criterid

2 Resticted Log
Likelihood [

46714.235

Akaike's Information
Criterion (AIC)
Hurvich and Tsai's
Criterion (AICC)
Bozdogan's Criterion
(CAIC)

Schwarz's Bayesian
Criterion (BIC)

46722.235

46722.241

46753.753

46749.753

The goodness of fit has improved
with the conditional model
(46714.24 rather than 47116.79)

The information criteria are displayed

in smaller-is-better forms.

a. Dependent Variable: mathach.
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b=.03,p

Math Achievement

Motivation b=676,p=.563
V \

Direct effect, b = 10.95, p <.001.

Scholastic Aptitude
Test — Math

Indirect effect, b =20, BCa CI [-.417, 1.585]
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The linear effect is statistically significant,
but the quadratic effect is not.

Estimates of Fixed Effects® /
Parameter I 95% Confidence Interval
Estimate [ Std. Error df t Sig. Lower Bound Upper Bound
Intercept 22.160222 488661 42.062 45.349 .000 21.174107 23.146337
linear 971889 432638 78.554 2.246 .027 110668 1.833110
quadratic 115741 137928 78.973 839 -.158799 390281

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure.





OEBPS/Images/fig00313.jpg





OEBPS/Images/fig00062.jpg
Correlation Matrix

math scholastic
achievement mosaic, visualization aptitude
gradesin hs. test pattern test test test - math
Correlation  grades in h.s. 1.000 504 -012 127 371
math achievement test 504 1.000 213 423 .788
mosaic, pattern test -012 213 1.000 .030 110
visualization test 127 423 .030 1.000 .356
scholastic aptitude
test - math 371 788 /0/ .356 1.000

3. Determinant = .210
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Unstructured covariance
type places no constraints.
on the covariance matrix
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‘When you first open
SPSS you might have
the Variable View or
the Data View showing,
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High Math grades
20 (Mostly 4 and B)
Math N
Achievement
Low Math grades
10 T (Less than Bs)

Arrows show simple effects
that we tested. This graph was
| | | | not produced by SPSS but is
! ! . ! similar to the profile plot in
Low Med. High Output 0.1.
Fa Educ Fa Educ Fa Educ
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Independent variable

Dependent variable

Moderator variable
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Excluded Variables®

Partial Collinearity Statistics
Model Beta In t Sig. Correlation Tolerance
1 motivation scale 264° 2.358 021 271 956
grades in h.s. .546% 5.784 .000 569 987
parents' education 3437 3.132 003 351 949
math courses taken .782° 10.392 .000 779 902

a. Predictors in the Model: (Constant), gender

b. Dependent Variable: math achievement test
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Only 1 variable

(625% of the § 111 of the data points
Variables) has no Overall Summary of Missing Values | (5.67%)are missing
missing data

Variables Values

50 cases (62.5% of the sample) have complete data
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Std. Error

gender Mean Std. Deviation Mean
math achievement test male 34 14.7550 6.03154 1.03440
female 41 10.7479 6.69612 1.04576
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Note that 33/40 (83%) of those who didn’t take a/gebra 2 were predicted
correctly with this model, but 71% of those who did were predicted correctly.

Classification Tablé'

Predicted
algebra2in h.s. Percentage
Observed not taken taken Correct____
Step 1 algebra2inh.s. not taken 33 7 82.5
taken 10 25 71.4
Overall Percentage 773

. The cut value is .500
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ANOVA®

Sumn of
Model Sauares ar Mean Square F sig
1 Regression 833.420 ) 833.420 24116 000°
Residual 2453.656 7 34.559
Total 3287.076 72
B Regression 1266.626 B 633.313 21942 000°
Residual 2020450 70 28.864
Total 3287.076 72
3 Regression 1387700 3 465.900 17015 0007
Residual 1889.376 69 27.382
Total 3287.076 72
T Regression 1500723 T 377.431 14,440 000"
Residual 1777.353 68 26138
Total 3287.076 72
a. Dependent Variable: math achievernent test
b. Predictors: (Constant, grades in h.s The footnotes tell us
c. Predictors: (Constant), grades inh.s, gender | what variables are
d. Predictors: (Constant), grades in h.s., gender, motivation scale included in each
e. Predictors: (Constant), grades in h.s., gender, motivation scale, parent's education

model.
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Paired Samples Correlations

N

Correlation

Sig

Pair
1

father's education &
mother's education

73

000
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Plot forstdents withhigh math grades
Estimated Marginal Means of math achi }’@“

s Note tha for students whose
math grades
21004 e | fthers have a BS or more,there
T lessA® | s big diffrence in marh
those with

1800 achievement betwey
high and low math grades.
However, there s ltle difference
for students whose fathers are
12004 high school grads or less.

Estimated Marginal
Means.
$

~

5004

Plot for students with low math grades.

HS gadorless Some College  BS or More
father's educ revised
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Model Dimensior?

Number Covariance Number of Subject
of Levels Structure Parameters | Variables
Fixed Effects Intercept 1 1
Random Effects  Intercept 1 | Identity 1 [|school
Residual 1 J
Total 2

Two random
effects: variability
between schools
(intercept) and
within schools
(residual).

a. Dependent Variable: mathach.

Three parameters
are specified in
this model.
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Model Summan/1

Change Statistics
Adjusted R Std. Errorof R Square
Model R R Square Square the Estimate Change F Change dft df2 Sig. F Change
1 819 569 644 5717 669 27.076 5 67 000
2 818 566 646 57.025 -003 853 1 67 422
3 812° 559 644 57.194 -007 1.408 1 i 240

4 Predictors: (Constant), math achievement test, pleasure scale, mosaic, pattem test, Cubed Competence, parents education
b. Predictors: (Constant), math achievement test, pleasure scale, mosaic, pattem test, parent's education

. Predictors: (Constant), math achievernenttest, pleasure scale, parent's education

. Dependent Variable: scholastic aptitude test- math
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Classification Tablé'

Predicted
algebra2in h.s. Percentage
Observed not taken taken Correct
Step 1 algebra 2 in h.s. not taken 32 8 80.0\
taken 14 21 60.0
Overall Percentage 70.7

. The cut value is .500

We can predict who will not take algebra 2 (80%)
better than we can predict who will (60%).
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Estimates of Covariance Parameters”

Parameter 95% Confidence Interval

Estimate | Std Emor [Waldz| Sig | Lower Bound | Upper Bound
Repeated AR1diagonal | 1891491| 336741 5617 000 133433 2681267
Measures AR1 tho -037365| 167334 -223 23|  -350321 283096
Intercept Variance 3333923 1.083152| 3.078 02| 1763842 6302325
[subject

subject]

. Dependent Variabl: Distance (mm) fiom center o pitutary to peryo-maxilay fissure.
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Correlations *

High correlations among predictors
indicate it is likely that there will be a
problem with multicollinearity.

\

motivation | competence pleasure grades fathers mother's
scale scale scale inhs education |\ education | _gender
TRoTvalon Scale Fearson Conreation T 17 7T 020 045 175 78
Sig. (2-tailed) kmm’ 021 872 692 347 143
‘competence scale Pearson Correlation 517" 1 413 216 031 \ 234 -037
Sig (2+tailed) 000 000 75 799 053 760
pleasure scale Pearson Correlation 217" 413" 1 -081 020 \ 108 084
Sig (2+tailed) 021 000 509 869 378 492
‘grades in h.s. Pearson Correlation 020 216 -081 1 S5~ \ 246" 162
Sig. (2-tailed) 872 75 509 008 \os2 182
Tathers education Pearson Correlation 049 031 020 315" 1 Ceae™) 266"
Sig.(2-ailed) 692 799 859 008 000 027
Tothers education Pearson Correlation 15 284 108 206 549 1 223
Sig. (2-tailed) 347 053 378 042 000 065
gender Pearson Correlation 78 037 084 762 266 2 1
Sig (2-tailed) 143 760 492 182 027 085

‘Correlation is significant at the 0,01 level (2-tailed),
Correlation is significant at the 0.05 level (2-ailed).

a. Listwise N=69
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Because this is significant, we know that the assumption of homogeneity of variances
is violated for math achievement. We could choose to transform this variable to enable
it to meet the assumption. Given that the Box test is not significant and this is the only
Levene test that is (barely) significant, we are opting to conduct the analysis anyway
but to use corrected follow-up tests.

Levene's Test of Equality of Error Variance$

F df1 df2 Sig.
grades in h.s. 1.546 2 70 .220
math achievement test 3.157 2 70
visualization test 1.926 2 70 153

Tests the null hypothesis that the error variance of the dependent variable is
equal across groups.

a. Design: Intercept+faedRevis
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1. How many variables are there in your
research question or hypothesis?

Two

v

|

Three or more

2. Use Table 5.1 if the IV
is nominal or has two to
four levels. Then
determine:

(a) No. of levels of IV

(b) Design — between or
within

(¢) Measurement of DV

3 Use Table 5.2
(or 5.1) bottom
rows if both
variables are
nominal.

[ I

One DV considered
at a time.

I

Is the DV

4. Use Table 5.2

(top rows) if both
variables have five or
more ordered levels.

Yes

L

normal/scale?

How many dependent
variables are there?

Two or more
moderately related DVs
considered together.

5. Use Table 5.3
top row if the
1Vs are nominal
or have a few
ordered levels.

6. Use Table 5.4

top row if IVs
(predictors) are
normal/scale or
dichotomous.

7. Use Table 5.4
(or 5.3) bottom row
if DV is nominal or
dichotomous.

8. Use the general
linear model to do
MANOVA. See
Chapter 10.
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Model Summary

-2 Log Cox & Snell | Nagelkerke
Step likelihood R Square R Square
T 79.407 (276)) (369)]

These are similar to R and givea
rough estimate of the variance
that can be predicted from the
combination of the four variables.
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Dependent Variable: math achievement test

Multiple Comparisons —{

Each pair of cell means is compared
twice in this table. We have crossed
out the duplicates. It may be helpful
for you to do the same on your
output. The simple effects (circled)
are discussed in the 9.2b
Interpretation and Fig. 9.10.

Games-Howell
Mean
Difference 95% Confidence Interval
(1) six new cell codes (J) six new cell codes (I-J) Std. Error Sig. Lower Bound | Upper Bound
[ low math and low faed high math and low faed -.6628 1.99426 999 -6.8183 5.4928
—~a [Tow math and med faed @n, 1.98569 66 -9.4625 3.4849
\LWQWWW'@J % 1.66866 q -12.0371 -1.1676
2 240729 | (B2 D -10.3670 52919
high math and high faed -12.0074* 1.45431 000 -16.5343 -7.4805
[ high math and low faed low math and low faed £628 1.09426 999 -5.4928 6.8183
low math and med faed -2.3260 2.39035 921 -9.8239 51718
low math and high faed -1.8748 2.75060 982 -10.4995 6.7500
[(high math and high faed ) | (711.3446%) 1.97125 | (000 ] -17.5256 -5.1637
low math and med faed Tow math and Tow faed e e -3.4849 9.4625
high math and low faed 23260 239035 Q21 -5.1718 9.8239
high math and med faed -36135 212629 554 -10.6007 3.3736
low math and high faed 6513 2.74440 1.000 -8.2882 9.1907
high math and high faed -9.0186* | 1.96258 005 -15.5383 -2.4989
high math and med faed| low math and low faed 660231 166866 013 1.1676 12.0371
high math and low faed 5.9396. 213429 103 -7842 126633
low math and med faed 3.6135 212629 554 -3.3736 10.6007
4.0648 252451 605 -4.1231 12.2527
[(igh math and high faed ) | (54057 164108 057 -10.9371 1270
low math and high faed Tow math and Tow faed 25375 240729 ~ -5.2919 10.3670
high math and low faed e 2.76060- 982 -6.7500 10.4995
low math and med faed e - L -9.1907 8.2882
high math and med faed -4.0648 252451 605 -12.2527 4.1231
high math and high faed -9.4699* | 2.38826 014 -17.3147 -1.6250
high math and high faed  low math and low faed 12 0074* | 145431 000 7.4805 16.5343
high math and low faed 11 3446*| 107125 000 5.1637 17.5256
low math and med faed L L05 2.4989 15.5383
high math and med faed 54051 18410 05 -1270 10.9371
low math and high faed 94699 { 2 38826 014 1.6250 17.3147

Based on observed mean:
*. The mean difference

s.
is significant at the .05 level.
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Ranks

Mean ranks to be
compared.

father's educ revised Mean Rank

math achievement test  HS grad or less 38 28.43
Some college 16 43.78
BS or more 19 48.42
Total 73

competence scale HS grad or less 37 36.04
Some college 16 3578
BS or more 18 36.11
Total 71
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weight

In the original
data, 39% had
weight values of
15 11.7% had
values of 2, etc.

In imputation 2,
43.3% of the
imputed values
of weight were 1;
3.3% of imputed
values were 2,
etc.

Data Imputation Category Percent
Original Data 1 13 39.0
2 34 117
3 47 16.2
4 96 33.1
Imputed Values 1 1 9 30.0
2 5 16.7
3 7 233
4 9 30.0
2 1 13 433
2 1 33
3 2 6.7
4 14 46.7
Complete Data After Imputation 1 1 122 38.1
2 39 122
3 54 16.9
4 105 32.8
2 1 126 394
2 35 10.9
3 49 153
4 110 344
3 1 119 372
2 37 11.6
3 54 16.9
4 110 344
4 1 116 36.3
2 43 134
3 56 17.5
4 105 328
5 1 130 40.6
2 35 10.9
3 55 17.2
4 100 313

For the
complete data
following
imputation 5,
40.6% of
participants had
weight scores of
1:10.9% had
scores of 2, etc.
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Levene's Test
for Equality of

Variances t-test for Equalit of Means
95% Confidence
Interval of the
Sig. Mean | Std. Error Difference
) F | sig || t | dof |(ailed)|Difference |Difference | Lower | Upper
Tt Equal varances
T vement tesi| oo var s | aoe(2697 | 72| 009 | 400704 | 148540 | 104648 | 696750
Equal variances 2724 | 7247 || 008 | 400704 | 147002 |1.07515 | 6.93894

not assumed

This assumption is not violated
so use the equal variances
assumed line for the 7 test.

£(73)=2.70, p = .009
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Inter-item Correlation Matrix

item01 item04 | tem07 | item08 | itemi2 item13,
motivation | reversed | motivation | reversed | motivation | motivation
TemoT motvation 7,000 250 464 2% 179 67
item04 reversed 250 1.000 551 576 382 316
item07 motivation 464 551 1.000 587 344 360
tem08 reversed 208 576 587 1.000 389 311
item12 motivation 179 382 344 389 1,000 603
item13 motivation 167 316 360 311 603 1.000
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Test Statistics

mother's visualization
education - retest -
father's visualization
education test
z -2.085Y 3730
Asymp. Sig. (2-tailed .037 709

Test of significance.

a. Wilcoxen Signed Ranks Test

b. Based on negative ranks.
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DATASET ACTIVATE DataSet!.

*Impute Missing Data Values. /

DATASET DECLARE imputeanorecticd.

The dataset to be created is imputeanorectic 4.

MULTIPLE IMPUTATION time weight binge mood preo

/IMPUTE METHOD@AAXITER @ [PUTATIONS=20 SCALEMODEL~=LINEAR INTERACTIONS=NONE
SINGULAR=1E-012 MAXPCTMISSINY

/CONSTRAINTS time( ROLE=IND)
/MISSINGSUMMARIES NONE
/IMPUTATIONSUMMARIES MODELS DESCRIPTIVES
JOUTFILE IMPUTATIONS=imputeanorectic4 . —/

The imputations will be saved to the
file, “imputeanorectic4™.

Fully conditional specification (FCS) was used
to compute the imputation. Twenty imputations
were computed. Maximum of 50% missing for
a variable to be imputed.
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Univariate Tests

Dependent Variable:math achievement test

sumof Mean PartialEta | Noncent | Observed

Squares | of | sware | F | sig | Squared | Parameter | Power
Contrast | 6001 1 6001| 3s7| s2 o0 357 091
Eror i210152] 72| 16808

The F tests the effect of gender. This test is based on the linearly independent painwise comparisons among
the estimated marginal means.

a Computed using alpha = .05
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Dichotomous variables have two columns
(or rows) of data points. Ifthe data points
bunch up near the top of the left column
and the bottom of the right, the correlation
will be negative (and vice versa). Linearity
would be violated if the data points bunch
at the center of one column and at the ends
of the other column.

math
achievement
test

grades in hs.

parents’
education

gender

P T T [
e HHE l ¢
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Parameter Estimates

95% Confidence

Interval
Lower | Upper | Partial Eta | Noncent. | Observed
Dependent Variable ___Parameter B Std. Error t sig Bound | Bound | Squared | Parameter | Power’
math achievement test_Intercept 73,048 1289 | 10.121 000 [ 10477 | 15618 591 10.121 1,000
{mathgr=0] 4714 1846 | 2554 013 8395 | -1.034 084 2554 712
[mathgr=1] o
(igender=01 6219 2270 | 2740 | 008 1693 [ 10745 096 2740 m
Tgender=1] o
(imathgr=0) * [gende 1677 28% | 580 563 7440 | 4085 005 580 088
T 9
{::::Fu] oo s Note that the weights for math achievement are
r=1] * [gende 0
[mathgr=1] * [gende: o larger than those for visualization test.
Visualization test intercept 5202 E 62 1,000
[matngr=0] 1927 1153 | 1672 099 4226 371 038 1672 378
[mathg=1] ® . . .
(igender=0y 2923 1418 | 2062 043 0% [ 5749 056 2,062 529
[gender=1] o . . . .
((mathgr=0] ~ [gender=0] -479 1.805 -.265 792 -4.078 3.120 001 265 058
{mathgr=0] - [gender o
[mathgr=1] * [gender 0
[mathgr=1] * [gender=1] 0°

2 Computed using alpha = .05

(B his parameter is set to zero because itis redundant._]
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Structure Matrix

Function
I
parents’ education 695
visualization test 620
gender -.445
mosaic, pattern test -.124

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions

These are the correlations of each independent
variable with the standardized discriminant
function. They show that parents” education,
visualization, and gender all have notable
correlations with the function, but mosaic
does not. Gender is negatively related,
indicating male status is related to the
function

Variables ordered by absolute size of correlation within function.
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Descriptive Statistics

N__ [ Mimmum | Maxmum | Wean | SiaDeviation Skewness

Stalisic | Statisic | Stafstic | Staisic | Staisic | Stafstic | S1d.Eior
Tather's sducation 7 2 10 73 2630 684 281
mothers education % 2 10 an 220 | 1424 an
gradesinhs. % 2 8 568 1670 | -332 an
tem01 motwation i 1 4 296 928 [ -763 218
tam02 pleasure % 1 4 382 906 [ 1910 an
tem03 competence. 4 1 4 282 897 | 579 279
tem4 low motv i 1 4 218 922 = 273
tem0S low comp. % 1 4 161 ot | 1set an
temO6 low pleas. % 1 4 243 975 | -058 an
tem07 motivation % 1 4 276 1051 | 433 an
tem08 low motiv % 1 4 195 914 653 an
tem03 competence 14 1 4 EES 760 [ 1204 279
Htem10 low pleas. % 1 4 141 737 | 1869 a7
ter11 low comp. % 1 4 136 747 | 2497 a1
tsm12 motwation % 1 4 200 822 [ -600 e
tem?3 motwvation % 1 4 267 794 [ 320 an
tam14 pleasure % 1 4 288 77| a2 an
main courses taken % [ s 21 1673 325 an
mothers educ revised % 100 300 | 14667 68445 | 1162 an
father's sduc revised n 1.00 300 | 17307 85028 533 281
parents education % 200 1000 | 43933 231665 923 a7
Valid N (lstwise) 59
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Because Levene’s test was

significant we will use this. Contrast Tests Note, only the third contrast is significant.
Value of Sig
Contrast | Contrast | Std. Error t df (2-tailed)
math achievement test | Assume equal 1 -.6628 1.81759 -.365 67 Eatl
\Va”a”ces 2 -3.6135 2.75997 -1.309 67 195
3 -9.4699 254478 -3.721 67 000
Does not assume 1 -.6628 1.99426 -332 24512 742
equal variances 2 -3.6135 212629 -1.699 13.819 12
3 -9.4699 2.38826 -3.965 13.858 .001

Difference between
contrasted means.

The Contrast Tests table shows the significance level
of the three simple main effects shown in Fig. 9.11.
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Factor Transformation Matrix . .
We will ignore this; it was used to
Factor 1 2 3 convert the initial factor matrix into
1 747 552 -.370 the rotated factor matrix.
2 -.162 692 704
3 645 -.466 606

Extraction Method: Principal Axis Factoring
Rotation Method: Varimax with Kaiser Normalization.
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Infomation Criteria®

-2 Restricted Log Likelihood
Akaike's Information Criterion
(AIC)

Hurvich and Tsai's Criterion
(AICC)

Bozdogan's Criterion (CAIC)
Schwarz's Bayesian Criterion
(BIC)

446.960
452.960

453.197

463.922
460.922

The information criteria are displayed ir| smallel etter forms. ———

Lower numbers = better

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure.
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Model Summary

The model in Block 1 can be
compared to Block 2 by
comparing the -2 Log likelihood

-2 Log Cox el | Nagelkerke~]
Step likelihood R Bquare R Square
1 87.530 193 258

These are estimates of how much
knowing a student’s gender and
parents’ education helps you
predict whether or not the student
will take algebra 2.
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Start
Here

‘When to use Transformation SPSS Syntax
To reduce negative skew 2™ | X* VAR=(X)**3
| X VAR=(X)**2
| Nontransformed variable X
" [log X_= Lgl0 in SPSS VAR=LG10(X)
2 [X = Sqrtin SPSS VAR=SQRT(X)
To reduce positive skew 11 /v Arin in SPSS VAR=1/(X)
3
4 X VAR=1/(X)**2

To stretch both tails of the
distribution (proportion data)

Arcsine X

VAR=ARSIN(X)

Note: Variable to be transformed = X
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10

—&— Intervention

—— Comparison
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time

Posttest
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Variable Summary®®

Missing

N | Percent | ValidN Preoccupation with food &
preo.4: Preoccupation weight is missing the most
with food and weight 14 17:5% —/66 data—14 participants are
mood.4: Mental state a— missing data (17%), and valid N
(mood) 13 16.3% 67 is reduced to 66.
binge.4: Binge eating 13 16.3% 67
weight.4: Body Weight 13 16.3% 67
preo.3: Preoccupation
with food and weight 8 10.0% 2
mood.3: Mental state
(mood) 8 10.0% 72
weight 2: Body Weight 8 10.0% 72 Note that the variables with
weight.3: Body Weight 7 8.8% 73 the most missing data are from

h e i
re.2: Preoccupation the 4" time period. Only
Svnh food and wslght 6 7.5% 74 Bingel has no missing data so
it is not on the output.

mood.2: Mental state 6 75% 74
(mood) *
binge.3: Binge eating 6 7.5% 74
binge.2: Binge eating 5 6.3% 75
weight.1: Body Weight 2 25% 78
preo.1: Preoccupation
with food and weight 1 1.3% ]
mood.1: Mental state
(mood) 1 1.3% 79

a. Maximum number of variables shown: 25

b. Minimum percentage of missing values for variable to be
included: 1.0%
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Reliability Statistics

Cronbach's
Alpha Based
on
Cronbach's | Standardized /
Alpha Items of Items

This Cronbach’s alpha
coefficient is usually the
one to report.

791

N _— 790

6
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Model Dimension”

Numberof | Covariance Number of Subject
Levels. Structure Parameters Variables
Intercept 1 1
Fixed Effects
cses 1 1
Random Effects  Intercept + cses® 2| Unstructured 3school
Residual 1
Total 4 6

. Dapendent Varialo mathach

b Asofversion 115, the syt s fo the RANDOM subcommand have changed. Yourcommand yntax may yied resuls tat e rom

hose produced by prio versons. you are usig versin 11 synta, please consul he curtent sytax eerence guidefo more ifomaton.
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Nontechnical Question

Statistical Answer

1. Can we be confident that the result is
not due to chance?

If p is < .05, then reject the null
hypothesis.

. 1
Yes No |—>

v

Stop, but *

2. What is the direction of the “effect™?

—

Difference Question”
Note which group has the higher mean

Associational Question

Note whether coefficient (e.g., r) is + or —

and

3. How large is the effect?

Difference Question®
Use d family

(see Table 5.5)
Associational Question®
Use r family

(see Table 5.5)

*If you have a small sample (N), it is possible to have a nonsignificant result (it may be due to chance)
and yet a large effect size. If so, an attempt to replicate the study with a larger sample may be justified.

" If there are three or more means or a significant interaction, a post hoc test (e.g., Tukey) will be

necessary for complete interpretation.

© Interpretation of effect size is based on Cohen (1988) and Table 5.5. A “large” effect is one that Cohen
stated is “grossly perceptible.” It is larger than typically found but does not necessarily explain a large
amount of variance. You might use confidence intervals in addition to or instead of effect sizes.
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Variable and source d MS F 2 Partial n*
Math grades 1 32578 10.86 002 4
Father's education 2 323.01 1077 <001 24
Grades*father’s educ 2 118.95 397 024 1
Error 67 20.99
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Coefficients®

Standardized
Unstandardized Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) 429 2573 167 868
gradesinh.s 214 436 504 4911 000 1.000 1.000
2 (Constant) 2112 2391 883 380
gradesinhs. 2320 401 546 5784 000 987 1.013
gender -4.927 1.272 -.365 -3.874 000 987 1.013
3 (Constant) -3.935 3614 -1.089 280
gradesinhs. 2225 393 523 5.659 000 976 1.026
gender -4.314 1.270 -.320 -3.386 001 939 1.065
motivation scale 2175 994 205 2188 032 945 1.059
4 (Constant) -5.444 3.605 -1.510 136
gradesinhs. 1.991 400 468 4972 000 897 1.11§
gender -3.631 1.284 -.269 -2.828 006 877 1141
motivation scale 2148 972 203 2211 030 944 1.059
parent's education 580 280 198 2.070 042 871 1.148

a. Dependent Variable: math achievement test

Here we checked for multicollinearity. Recall that the Tolerance
values should be higher than 1 — R’. For these variables (1—.459
=.541). All Tolerance values are larger than .541, therefore we do
not have a problem with multicollinearity.
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Parents’ education and visualization, but not gender, are significant predictors when all
four variables are considered together, even though gender was a significant predictor
when used alone. This suggests that even though tolerances were acceptable, there was
sufficient correlation between some set of predictors and gender to keep gender from
making a significant contribution once the other predictors were included. Mosaic fails to
predict algebra2 whether used alone or with the other predictors.

Variables in the Equation

95.0% C..for EXP(B)
B SE Wald df Sig Exp(B) Lower Upper
Sep  GENDER ~a97 577 742 1 389 609 197 1884
1 MOSAIC -030 031 892 1 345 971 913 1032
VISUAL 190 075 6.428 1 011 1209 1.044 1.400
PAREDUC 380 131 8.418 1 004 1.462 1131 1889
Constant -1.736 1.159 2.243 1 187 t

2. Variable(s) entered on step 1: GENDER, MOSAIC, VISUAL, PAREDUC.
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Item-Total Stati

ics

Scale Corrected | Squared | Cronbachs,
Scale Mean if | Varianceif | ltem-Total | Mulple | Alphaifltem
ltem Deleted_| item Deleted | Correlation | Correlation | _Deleted

Tem03 competence 036 3844 680 560 06

itemO5 reversed or7 3570 735 622 675

item09 competence 986 5002 405 181 832

item11 reversed 955 4473 633 417 736
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Information Criteria®

Original data

-2 Restricted Log Likelihood
Akaike's Information Criterion (AIC)
Hurvich and Tsai's Criterion (AICC)
Bozdogan's Criterion (CAIC)

Schwarz's Bavesian Criterion (BIC)

These Information
Criteria are measures of
goodness of fit of the
prediction model to the
original data, where
smaller is better.

The numbers along
the left side indicate
which imputation you
are looking at. We
only have shown 4 of
the imputations in
this table, to conserve
space.

_]) -2 Restricted Log Likelihood 978.569
Akaike's Information Criterion (AIC) 982.569
Hurvich and Tsai's Criterion (AICC) 982.607
Bozdogan's Criterion (CAIC) 992.080
Schwarz's Bayesian Criterion (BIC) 990.080
3) -2 Restricted Log Likelihood 971.329
Akaike's Information Criterion (AIC) 975.329
Hurvich and Tsai's Criterion (AICC) 975.367
Bozdogan's Criterion (CAIC) 984.840
Schwarz's Bayesian Criterion (BIC) 982.840
_3) -2 Restricted Log Likelihood 972,915
Akaike's Information Criterion (AIC) 976.915
Hurvich and Tsai's Criterion (AICC) 976.953
Bozdogan's Criterion (CAIC) 986.426
Schwarz's Bayesian Criterion (BIC) 984.426
-2 Restricted Log Likelihood 953.724
Akaike's Information Criterion (AIC) 957.724
Hurvich and Tsai's Criterion (AICC) 957.762
Bozdogan's Criterion (CAIC) 967.236
Schwarz's Bayesian Criterion (BIC) 965.236

Notice that for each
imputation the
goodness of fit
criteria indicate that
the model does not fit
quite as well as the
original.

The information criteria are displayed in smaller-is-better form.

a. Dependent Variable: weight.1: Body Weight.
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20
Math

Achievement

Fa Educ

High math grades
(Mostly 4 and B)

Low math grades
(Less than Bs)

Arrows show simple main
effects separately for low
and high math grades using
post hoc tests.
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Number of cases that fit in each
of the footnoted categories.

Ranks
|| Mean Rank| Sum of Ranks|
mother's education  Negative Ranks 272 29.20 788.50
- father's education  positive Ranks 210 18.45 387.50
Ties 25¢
Total 73
visualization retest ~ Negative Ranks 244 34.02 1871.00
- visualization test  Positive Ranks 37¢ 38.86 544.00
Ties 141
Total 75

a. mother's education < father's education
b. mother's education > father's education
¢. mother's education = father's education
d. visualization retest < visualization test
e. visualization retest > visualization test
f. visualization retest = visualization test
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Test Statistics™”

math
achievement | competence
test scale
Chi-Square 13.384 003
df 2 2
Asymp. Sig 001 999

Indicates significance of
overall difference among
groups.

a. Kruskal Wallis Test
b. Grouping Variable: father's educ revised
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Case Processing Summary

Unweighted Cases 2 N Percent
Selected Cases Included in Analysis 75 100.0 No participants
Missing Cases g;_ﬂ\H have missin;
g data.
Total 000 |
Unselected Cases 0 0
Total 75 100.0

a. If weight is in effect, see classification table for the total
number of cases.
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Item Statistics

Mean Std. Deviation
item01 motivation 296 934 73
item04 reversed 282 918 73
item07 motivation 275 1.064 73
item08 reversed 3.05 911 73
item12 motivation 299 825 73
item13 motivation 267 800 73

Descriptive statistics
for each item.
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Note that now gender is no longer a significant
predictor of math achievement; the only
significant predictor is math courses taken.

Coefficients® <
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 14.838 1.129 13.144 \ 000
gender -4.080 1.525 -.303 -2.675 009
2 (Constant) 2.042 3.151 648 \ 519
gender -1.042 1.117 -.077 -933 < 35; D
motivation scale 914 .808 086 1.131 262
grades in h.s. 418 412 .098 1.014 314
parents' education .066 241 .023 276 784
math courses taken 2.749 448 .681 6.141

a. Dependent Variable: math achievement test
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These are the three univariate
analyses of variance.

Tests of Between-Subjects Effects

Type Ill Sum Mean artial Eta | Noncent. Observed
Source Dependent Variable of Squares | df Square F Sig_| [Squared | Parameter | Power”
Corrected Model  grades in h.s. 18.143° 2 9.071 4.091 021 105 8.182 708
math achievement test 558.481° 2 279.240 7.881 001 184 15.762 945
visualization test 22.505° 2 11.252 763 470 021 1.526 175
Intercept grades in h.s. 2148.057 1 2148.057 968.672 000 933 968.672 1.000
math achievement test 11788.512 1 11788.512 332,697 000 826 332,697 1.000
visualization test 1843.316 1 1843.316 124,973 000 641 124973 1.000
faedRevis grades in h.s. 18.143 2 9.071 4.091 021 105 8.182 708
math achievement test 558.481 2 279.240 7.881 001 184 15.762 945
visualization test 22505 2 11.252 763 470 021 1.526 175
Error grades in h.s. 155.227 70 2218
math achievement test 2480.324 70 35433
visualization test 1032.480 70 14.750
Total grades in h.s. 2544.000 73
math achievement test 14742.823 73
visualization test 3007.125 73
Corrected Total ~ grades in h.s. 173.370 72
math achievement test 3038.804 72
visualization test 1054.985 72

a Computed using alpha = .05
b. R Squared = 105 (Adjusted R Squared = 079)
©. R Squared = 184 (Adjusted R Squared = .160)
d. R Squared = 021 (Adjusted R Square 007)
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As a measure of reliabilit
should be high (usually >.70).

kappa

Symmetric Measures

Asymp.
Value Std. Erro” | Approx I Approx. Sig.
Measure of Agreement l Kappa 858 ] 054 11.163 000
N of Valid Cases 71

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis
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prevexp
-95.8608

.0000
104.5862

Effect
2.4252
2.0284
1.5954

se
L1227
.0747
.0849

t
19.7710
27.1448
18.7863

P
.0000
.0000
.0000

LLCI
2.1842
1.8815
1.4286

ULCI
2.6662
2.1752
1.7623
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Classification Results'

Predicted Group

Membership
algebra 2 in h.s. not taken taken Total
Original ~ Count  not taken 32 8 40
taken 10 25 35
% not taken @ 200 100.0
taken 26 | (718 1000

E@Of original grouped cases correctly classified
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Correlation atrix”
emo1 Term02 Temo3 Wem04low | Mem05Tow | Memos low Temo7 Temo
motivation plsasure competence motiv comp pleas motivation m
Correlation _ temo1 motvation 7,000 I 626 305 745 165 451
itemo2 pleasurs 484 1.000 389 -166 -547 -312 381
itemo03 competence 626 389 1.000 -348 743 -208 423
itemo04 low motiv -305 -166 348 1.000 363 323 -596
itemo5 low comp -745 -547 743 363 1.000 260 -538
itemO6 low pleas -165 -a312 -209 323 260 1.000 -268
item07 motivation 461 361 423 -596 -538 -268 1.000
itemo8 low motiv -340 176 248 576 278 192 -606
item0g competence 209 219 328 -120 -351 131 228
item10 low pleas o7 -389 027 102 130 217 -169
item11 low comp -a81 -401 513 398 605 418 -331
item12 motivation 188 116 165 -391 -187 044 347
item?3 motivation 187 028 170 -334 -169 001 361
item14 pleasure 040 475 068 -.063 -166 -.469 180
a Determinant =001

Should be greater than .0001. If very close
to zero, collinearity is too high. If zero, no
solution is nossible.

Indicates how each question is
associated (correlated) with each
of the other questions. Only part of
the matrix is included so font
would not be too small to read.
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Casewise Diagnostics'

The interpretation of these tables is

math
achievement

Case Number | Std. Residual test
63 -3.174 1.00

2. Dependent Variable: math achievement test

Residuals Statistics

beyond the scope of this book.

Minimum_| Maximum Mean Std. Deviation N
Predicted Value 1.5029 22.2180 12.6028 457912 73
Residual -16.2254 10.3169 0000 4.96845 73
Std. Predicted Value -2.424 2.100 .000 1.000 73
Std. Residual -3.174 2.018 .000 972 73

a. Dependent Variable: math achievement test
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Tests of Equality of Group Means

Wilks' J
Lambda F df1 df2 Sig.
gender 924 6.000 1 73 .01
parents' education 833 14.683 1 73 000
mosaic, pattern test 994 470 1 73 495 I’
visualization test .862 11.672 1 73 .001

Gender, parents’
education, and
visualization are
each significant
predictors by
themselves.
Mosaic is not.
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Variable M SD 2 3
1. Motivation scale 287 64 a1 290
2. Math Achievement 1256 667 - 79%+
3. scholastic aptitude test —math ~ 490.53 94.55 -

*p<.05;*4p < 0.
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school is the nesting vai
/METHOD=REML

OLUTION TEST!
NTERCEPT | [SUBJECT (school)] COVTYPE|

V)

Unstructured covariance type.
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Tests of Between-Subjects Effects

Type Ill Sum Mean Partial Eta | Noncent | Observed
Source Dependent Variable of Squares. df Square F Sig. Squared | Parameter | Power®
Corrected Model _math achievement test 8144810 3| 271494 | 7778 | 000 247 | 23337 985
visualization test 165.986° 3 55.329 4.084 010 147 12.193 824
Tntercept math achievement test | 11971.773 1| 11971773 | 343017 | 000 829 | 343017 1,000
visualization test 2082.167 1 2082.167 | 152.956- e e 152.956 1.000
mathgr math achievement test 515463 1| 515463 |[ 14769 | 000 72 14769 966
visualization test 78.485 1 78.485 5.766 019 075 5.766 659
gender math achievement test 483.929 1 483.929 13.866 000 163 13.866 957
visualization test 120.350 1| 120350 || 8841 | 004 11 8841 835
mathgr * gender  math achievement test 11.756 1 11.756 337 563 005 337 088
visualization test 958 1 958 o070 | 792 001 070 058
Error math achievement test 2478.000 ul 34.901
visualization test 96510 | 71 13613
Total math achievement test 15132.393 75
visualization test 3194.438 75
Corrected Tolal _ math achievement test | 3292481 | 74
visualization test 1132.497 74

. Computed using alpha = 05
247 (Adjusted R Squared = 216)
. R Squared = 147 (Adjusted R Squared = .111)

b. R Square:
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Group Statistics

Vali N istwise)
algebra2inhs Mean _| std Deviation [ Unweighted | weighte
ol taken Gender 5750 aTa a0 40000
parents’ education 35125 168891 40| 40000
mosaic,pattem test | 28.1250 1203188 40| 40000
visualizaton test 38038 342122 40| 40000
Taken gender 4000 49705 35 35000
parents’ education 5.4000 254028 35| 35000
mosaic,pattem test | 26,6000 567088 35| 35000
visualization test 67857 391037 35| 35000
Total gender a7 soT7 75 75000
parents’ education 43933 231665 75| 75000
mosaic,pattem test |  27.4133 957381 75| 75000
visualization test 52433 391203 75| 75000
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ANOVA®

Sum of
Model Squares df Mean Square F Sig.__|
1 Regression 1285.701 7 183.672 6.465 Qﬂ)i —
Residual 1733.137 61 28.412
Total 3018.838 68

a. Predictors: (Constant), gender, competence scale, father's education, pleasure

scale, grades in h.s., motivation scale, mother's education " —
b. Dependent Variable: math achievement test [ndfcates “.mt .the combination of these
. variables significantly (p <.001)
predicts the dependent variable.
Coefficients®
Standardized
Unstandardized Coeflicients Caoeflicients Correlations. ollinearity Statistic
Model B 5t Eror Gela t sig. [ Zeroorer | Pamal | Pan | Tolerance | VI
1 (Constant) -6.875 4.850 -1.418 161
motivation scale 1614 1237 152 | 1305 197 256 165 127 695 | 1439
competence scale 122 1388 011 088 930 (= o) oo | (&[] 17ee
pleasure scale 812 1215 083 50 456 08! 096 073 761 1314
gradesinh.s. 1.901 A78 [ 449 3975 000 ] [ A70 656] 386 738 1.354
father's education 301 332 125 907 388 416 115 088 2018
mother's education 327 407 107 803 425 387 102 078 528 1883
gender 3543 i [ e [ ame | oir)| a2 | -aw | -2 7o [ 125

a Dependent Variable: math achievementtest

Tolerance and VIF give the same information (Tolerance = 1/VIF), therefore you should report
one or the other. They tell us if there is multicollinearity. If the Tolerance value is low (< 1-R’),
then there is probably a problem with multicollinearity. In this case, since adjusted R’ is .36, and
1=R’is .64, then tolerances are low for competence and mother’s and father’s education
indicating we have a problem with multicollinearity.
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algebra 2 in h.s. * math grades Crosstabulation

math grades.
lessAB | mostAB | Total

geba nottaken Court 26 2 0
2inhs. %witinalgeba2inhs |  70.0% | 300% | 100.0%
Taken  Count 76 9 35
%witinalgeba2inhs | 457% |  54.3% | 100.0%

Total Count a4 31 75
%witinalgebra2inhs | 587% | 41.3% | 100.0%
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KMO and Bartlett's Test

— I Testsofassumptions.

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Bartlett's Test of Approx. Chi-Square
Sphericity df
Sig

433.486
91

)

This is greater than .70 indicating
sufficient items for each factor.

This is significant (less than .05),
indicating that the correlation matrix
is significantly different from an
identity matrix, in which correlations
between variables are all zero.
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Levene's Test of Equality of Error Varianced

F dft df2 Sig The Levene’s test for all of
outcome 1 pretest 1.031 1 18 K our outcome variables are
outcome 1 posttest .288 1 18 .598 not significant; thus the
outcome 2 pretest .058 1 18 813 assumption is met.
outcome 2 posttest .844 1 18 .370

Tests the null hypothesis that the error variance of the dependent
variable is equal across groups.
a.
Design: Intercept+group
Within Subjects Design: time
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Standardized Canonical Coefficients for Set-2

1 2
item03  -.972 -.418
item09  -.077 1.055
Raw Canonical Coefficients for Set-2

1 2
item03  -1.070 -.459
item09  -.100 1.378
Canonical Loadings for Set-]

1 2 f
item01 -.968 -.113
item07 -.665 169
iteml2 -.297 .943
iteml3  -.286 .641
Cross Loadings for Set-1

1 2
item01  -.625 -.042
item07  -.429 062
iteml2 -.192 347
iteml3 -.184 .236
Canonical Loadings for Set-2

1 2
item03  -.997 -.073
item09  -.395 919
Cross Loadings for Set-2

1 2
item03  -.644 -.027
item09  -.255 .338

These indicate how much each item in Set 2 is
weighted to create each of the two canonical
variates for Set 2. So, item03 makes the primary
contribution to CV 1 from Set 2, and item09
contributes most to CV 2 from Set 2, but item 03
also contributes negatively to CV 2.

These indicate the correlation between each item in Set 1
and each of two canonical variates for Set 1. Even though
item01 was most heavily weighted for CV 1, item07 is also
substantially correlated with CV 1. Similarly, although
mainly item12 contributed to CV 2, item13 also showed a
substantial correlation with CV 2.

These indicate the correlation between each item in Set 2
and each of the two canonical variates for Set 2.
Interestingly, although both item03 and item09
contributed to the Set 2 side of CV 2, only item09 was
substantially correlated with CV 2.
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Percent Sum (Pct of Cases)

000

40004

000

Patte 15 occurs in about 10% of the sample. The
prior figure shows that pattern 15 involves missing
all 4 of the Time 4 variables (weight 4, binge 4.
mood 4. and preo 4).

Missing Value Pattern

The 10 most frequently occurring pattems are shown i the chart
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Measure: MEASURE_1
Transformed Variable: Average

Tests of Between-Subjects Effects

Ignore this. There were no
between-groups/subjects
variables in this problem.

Type Ill Sum Mean Partial Eta Noncent. Observed
Source of Squares df Square. F Sig. Squared Parameter Power®
Intercept 682.521 1 682.521 56.352 .000 .837 56.352 1.000
Error 133.229 11 12.112

a. Computed using alpha = .05
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ANOVA®

Sum of
Model Squares df Mean Square F Si
1 Regression 1509.723 4 377.431 14.440 0002
Residual 1777.353 68 26.138 L/
Total 3287.076 72

Our model
significantly
predicts math
achievement.

a. Predictors: (Constant), gender, grades in h.s., motivation scale, parents' education
b. Dependent Variable: math achievement test
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The multivariate test for product and
the interaction are significant.

Multivariate Tests"

Hypothesis Partial Eta | Noncent. | Observed

Effect Value F df Erordf | Sig | Squared | Parameter | Power
product Pilar's Trace 897 | _23.152° 3000 | 8000 | 000 897 69.455 1,000
Wiks' Lambda 103 |((23152° 3000 | 8000 | 000 897 |] 69455 1.000
Hotelling's Trace 8682 | 23152° 3000 | 8000 | 000 57 69.455 1.000
Roy's Largest Root | 8682 | 23.152° 3000 | 8000 | .000 897 69.455 1.000
product * gender _ Pillai's Trace 763 | _8.606° 3000 | 8.000 | 007 763 25818 925
Wilks' Lambda 237 | [ 8606° 3000 | 8.000 | 007 763 |) 25818 925
Hotelling's Trace 3227 | TBB0E” TO00 [ 8000 |00 763 25818 925
Roy's Largest Root | 3227 |  8.606° 3000 | 8000 | .007 763 25.818 925

a. Computed using alpha = .05
b. Exact statistic
c

Design: Intercept+gender
Within Subjects Design: product
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gender

Dependent Variable: math achievement test

95% Confidence Interval

gender Mean Std. Error | Lower Bound | Upper Bound
male 12.8932 726 11.446 14.340
female 12.2922 .658 10.981 13.603

a. Covariat¢s appearing in the model are evaluated at the
following|values: math courses taken = 2.11.

Note that the means of males and females are similar to one another after
differences in math courses taken were controlled.
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Source Dependent variable E P 0
Math grades 1477 001 a1
577 019 27

Gender Math achievement 13.87 001 40
Visualization test 8.84 004 33

Math grades  gender  Math achievement 34 563 07
wlization test 07 792 03

Error

Math achievement
Visualization test
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Note that 46% of the variance is explained
by the first component.

/ Total Vai

nce Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Component | _Total _| % of Variance Cumulaqu% Total_| % of Variance | Cumulative % | Total _| % of Variance | Cumulative %
T 2379 @ A7.57¢ 2.379 47579 47579 2340 46,805 46.805
2 1010 20198 67777 1010 20.198 67.777 1049 20,972 67.777
3 872 17.437 85214
4 560 11197 96.411
5 179 3589 100.000

Extraction Method: Principal Component Analysis.
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Sum of
Model Squares df Mean Square F %
1 Regression 2076.327 1 2076.327 124.632 0002
Residual | 1216.154 7 16.660 |
Total 3292.481 74

a. Predictors: (Constant), math courses taken
b. Dependent Variable: math achievement test
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Variables in the Equation

95.0% C.Lfor EXP®)
B SE Wald df Exp(B) Lover Upper
Sjp gender 497 577 742 1 609 197 1884
1 parEduc 380 131 8.418 1 1.462 1.131 1.889
mosaic -030 031 892 1 o7 913 1.032
visual 190 075 6.428 1 1.209 1.044 1.400
Constant -1.736 1.159 2.243 1 176

a. Variable(s) entered on step 1: mosaic, visual
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Omnibus Tests of Model Coefficients

Gender and parents’ education are entered in
Block 1, the first step.

Chi-square df Sig.
Step1  Step 16.109 2 .000
Block 16.109 2 .000
Model 16.109 2 000

The combination of gender
and parents’ education
significantly predicts who
will take algebra 2.
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Correlations®

The three circled correlations
should be low to moderate.

math
achievement visualization
grades in h.s. test test
grades in h.s. Pearson Correlation 1 504* 127
Sig. (2-tailed) (vooo 279
math achievement test Pearson Correlation 504* 1 423"
Sig. (2-tailed) 000 .000
visualization test Pearson Correlation 127 423" 1
Sig. (2-tailed) 279 000

**. Correlation is significant at the 0.01 level (2-tailed).

a. Listwise N=75
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Case Processing Summary

Cases
Vaio Mssing i

gondor | N | pecent | N | Porcent Percant

T SeeTeTeS e T 1000% T o S 1000%

fomale 4] 1000 o % 4] 000
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Correlations of other variables
with math achievement.

Correlations'
visualization | Scholastic grades in math
test aptitude hs. achievement
test - math test
visualization test Pearson Correlation 1 356" 127 423"
Sig. (2-tailed) 002 279 .000
scholastic aptitude Pearson Correlation —356- 1 371" 788"
test - math -tai
Sig. (2-tailed) 001 000
grades in h.s. Pearson Correlation 27| e 1 504"
Sig. (2-tailed) 29| -804 .000
math achievement test Pearson Correlation 423 788 ~504~ T
Sig. (2-tailed) -060—| —806—| -0060-

**. Correlation is significant at the 0.01 level (2-tailed)
a. Listwise N=75
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Reliability Statistics

Cronbach's
Alpha Based
on
Cronbach's Standardized
Alpha Items N of Items
( 688 704 2
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Test of statistical significance of
difference between the means.

Paired Samples Test

Paired Differences

95% Confidence
Interval of the
Std. Error Difference
Mean _Std. Deviation| Mean Lower Upper (( df [Sig. (2-tailed)
Pair  father's education|
1 mothers educatio]  58% 2.101 246 099 | 1.079 019
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Coefficients®

Unstandardized Standardized
Coefficients Coefiicients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) 314473 40783 m 000
parent's education -6.041 3326 -142 -1.816 074 813 1.230
Cubed Competence -351 434 -.063 -808 422 817 1.225
pleasure scale 26518 11.977 167 2214 030 .868 1152
mosaic, pattern test -.846 76 -.086 -1.182 24 942 1.061
math achievement test 12.366 1.164 871 10622 .0oo <235 1.360
2 (Constant) 313.906 40673 7718 000
parent's education -6.088 3317 -143 -1.836 071 813 1.230
pleasure scale 23170 11.209 146 2067 043 .986 1.014
maosaic, pattern test -.847 714 -.086 -1.187 240 942 1.061
math achievement test 12161 1133 856 1073 000 772 1.295
2} (Constant) 296.356 38.000 7.799 000
parent's education -5.790 Nz -136 -1.746 085 818 1.223
pleasure scale 22181 11.200 140 1877 052 .992 1.008
math achievement test 11.863 1.108 835 10,703 000 812 1232

a. Dependent Variable: scholastic aptitude test- math
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Model Dimension®

Number of Covariance Number of Subject Number of
Levels Structure Parameters Variables Subjects
Fixed Effects Intercept 1 1
linear 1 1
quadratic 1 1
Random Effects  Intercept® 1| Variance 1| subject
Components
Repeated Effects age 4 | First-Order 2 | subject 27
Autoregressive
Total 8 6,

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fiss\re.

b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed.

ur command syntax may

yield results that differ from those produced by prior versions. If you are using version 11\syntax, please consult the

current syntax reference guide for more information.

A total of six parameters are estimated
for the unconditional model.
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ANOVA®

Sum of
Model Squares df Mean Square F Sig.
1 Regression 301.026 1 301.026 7.158 0og®
Residual 2986.050 71 42.057
Total 3287.076 72
2 Regression 2149.773 5 428.955 25329 .000°®
Residual 1137.303 67 16.975
Total 3287.076 72

a. Dependent Variable: math achievement test
b. Predictors: (Constant), gender

c. Predictors: (Constant), gender, grades in h.s., motivation scale, parent's education, math

courses taken
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Pairs of means
to be compared.

Descriptives

math achievement test /
95% Confidence Interval for
Mean

N Mean__{ Std. Deviation | Std. Error | Lower Bound | Upper Bound | Minimum | Maximum
00 23 |[ 98207 503708 | 105030 76479 20043 233 210
2.00 15 |(_10.4880 6.56574 | 169527 68529 14.1249 1.00 227
3.00 9 fy| 505553 | 168518 8.9289 16.7009 5.00 18.7
400 7 | 164284 343059 | 129664 132657 19.6012 143 237
5.00 11 748407 | 2.16608 75373 17.1900 1.00 237
6.00 8 || 218335 ] 284518 | 1.00592 19.4549 242121 157 237
Total | 73| 126621 649659 | 76037 11.1463 14.1779 1.00 237
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Excluded Variables®

Collinearity Statistics

Partial Minimum
Model Betaln t Sig. Correlation Tolerance VIF Tolerance
1 gender -365° -3.874 000 -.420 987 1.013 987
motivation scale 276" 2.808 .006 318 993 1.007 993
parent's education 286° 2832 .006 321 .938 1.067 938
2 motivation scale 205° 2188 032 255 845 1.058 939
parent's education 201° 2.044 045 239 871 1.148 871
3 parent's education 1987 2.070 042 243 871 1.148 871

a. Dependent Variable: math achievement test
b. Predictors in the Model: (Constant), grades in h.s

c. Predictors in the Model: (Constant), grades in h.s., gender

d. Predictors in the Model: (Constant), grades in h.s., gender, motivation scale
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ethnicity * ethnicity reported by student Crosstabulation

ethnicity reported by student

Euro-Amer_| African-Amer | Latino-Amer | Asian-Amer Total

ethnicity Euro-Amer Count 0 1 0 0 41
% of Total 56.3% 4% 0% 0% 57.7%

African-Amer  Count 1 Q)\ {17 0 14

% of Total 2.8% 15.5% 1.4% 0% 19.7%

Latino-Amer  Count 0 1 | 0 9

% of Total 0% 1.4% 11.3% 0% 12.7%

Asian-Amer  Count 0 0 7

% of Total 0% 14% 0% 85% [ | 9.9%

Total Count 42 14 9 6 7
% of Total 59.2% 19.7% 12.7% 8.5% 100.0%

This is one of six disagreements. They are in squares off the
diagonal. Note that, in contrast to correlation matrices, one
should look at elements above and below the diagonal, as they

both involve disagreements.

Agreements between school
records and students’ answers are
shown in circles on the diagonal.
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Estimates of Fixed Effecté

95% Confidence Interval
Parameter | Estimate | Std. Error df t Sig Lower Bound_| Upper Bound
Tntercept  [12.649339 | 244513 | 156751 |  51.733 000 | 12.166373 |  13.132305

([cses ) 2193192 | 128259 | 155218 17.100 000 1.939834 2446550

@ Dependent Variable: mathach.

Since cses is a covariate (continuous variable),
no dummy variables are created.
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& PROCESS Options.

7] Mean center for products
7] Heteroscedasticity-consistent SEs

[£] OLSML confidence intervals.

7] Generate data for plotting (model 1, 2, and 3 only)
¥ Effectsize (models 4 and 6)

7] Sobeltest (model 4 only)

¥ Total effect model (models 4 and 6 only)
[¥[Compare indiredt effects (models 4 and 6 oniy}

Decimal places in output

n
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[ Summary Statistics

[ Descriptive statistics
[C] case Processing Summary

-Model Statistics
)
¥ Tests for covariance parameters |
[0 correlations of parameter estimates.

meter estimates.

[T covariances of parameter estimates|
[ covariances of random effects.

[F] covariances of residuals.

[C] Contrast coefficient matrix

Confidence interval: %
(comrue] _cance ) (_rep J
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Only the constant
is in the equation.

1

Variables not in the Equation

Gender, visual, and parents’ education are each
separately significantly related to algebra 2.

Score df Sig
Step  Variables GENDER 5.696 1 01
0 MOSAIC 480 1 C«ee/
VISUAL 10.339 1 |
PAREDUC 12.559 1 000
Overall Statistics 22.031 4 000
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Parameter Estimates.

95% Confidence
Interval
Lower | Upper | PartialEta | Noncent | Observed
Dependent Variable ___Parameter B Std. Error t Sig Bound | Bound | Squared | Parameter | Power®
grades in h.s. Intercept 6.526 342 19.103 000 5.845 7.208 839 19.103 1.000
{faedRevis=1.00] -1.184 418 -2.830 006 -2.019 -.350 103 2830 797
[faedRevis=2.00] [ = 5 [ 1907 | 061 | 1072 044 049 1907 469
[faedRevis=3.00] o - -
ath achievement left Infercept 16.351 P 11973 | 000 | 13627 | 10075 672 | 11973 | 1000
[faedRevis=1.00] 6.263 673 -3.745 000 -9.599 2927 167 3.745 958
[faedRevis=2.00] [ 20 | -8 | 336 | 5983 | 2073 013 968 159
IfaedRevis=3.00] o . .
Visualization test Intercept 561 1 [\g198 | o000 | 3703 | 7218 354 6198 | 1000
[faedRevis=1.00] -789 jgg %32 467 -2.942 1.363 008 732 11
[faedRevis=2.00] 1303 | a2 671 | 2044 | 3154 003 426 070
ffaedRevis=3.00] | CoPh—

3. Computed using alph:

B T paramper i set to zero because it i redundant

Each of the variables in brackets under Parameter comprises a dummy variable devised to
distinguish one group from the others. For example, the circled weights (B) were devised to
maximize differences between the first group (students whose fathers had high school
education or less) and al/ other groups (those whose fathers had more education). Note that

there are actually just two dummy variables, as a third would provide redundant information.
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Transformed Variable: Average

Tests of Between-Subjects Effects

Type Ill Sum Mean Partial Eta | Noncent. | Observed
Source  Measure | of Squares df Square F Sig. Squared | Parameter Power”
Intercept  dv1 1638.400 il 1638.400 | 382.010 000 955 382.010 1.000
dv2 16000.000 1 | 16000.000 | 164.807 000 902 164.807 1.000
group dv1 48.400 ] 48.400 11.285 003 385 11.285 .888
dv2 2.500 il 2.500 026 874 001 026 .053
Error dvi1 77.200 18 4.289
dv2 1747.500 18 97.083

a. Computed using alpha = .05

This table indicates that if one averages across the
within-subjects variable (time), then the groups differ
only on dependent variable 1. This table is misleading
because we know that there is no difference at the time
of the pretest. In this case, it really does not provide

much useful information.
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Risk Estimate

95% Confidence
Interval N
Value Lower Upper | —| Odds ratio.

Odds Ratio for algebra 2
in h.s. (not taken / taken) @ 073 7.154
far cohort math grades | 1010 | 2317
Zless A8 \> Risk ratios
For cohort math grades | — .
=most A-B @/3'1‘5' 970
N of Valid Cases 75
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Case Processing Summary

Cases
Valig Missing Total
N Percent N Percent N Percent
ey ~ ety "
reported by student n 94.7% 4 53% 75 | 100.0%
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Coefficients®

Unstandardized Standardized
Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) -5.444 3.605 -1.510 136
motivation scale 2.148 972 .203 2211 030 .944 1.059
grades in h.s. 1.991 400 .468 4972 000 897 1.115
parents' education 580 280 198 2.070 042 871 1.148
gender -3.631 1.284 269 -2.828 006 877 1.141

a. Dependent Variable: math achievement test

Here are the values to check for multicollinearity.
Note that all tolerances are well over .57 (1-R").
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Type lll Tests of Fixed Effectd

Denominator

Source Numerator df df F Sig.
Intercept 1 156.751 | 2676.274 000 The effect of cses is
cses 1 155.218 292.401 000

]_

2. Dependent Variable: mathach

significant.
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Communalities

InitiaN
item01 motivation 660
item02 pleasure 542
item03 competence 598 These initial communalities represent the relation
item04 low motiv 562 between the variable and all other variables (i.e.,
item05 low comp 772 the squared multiple correlation between the item
item06 low pleas 382 and all other items) before rotation. If many or most
item07 motivation 607 communalities are low (< .30), a small sample size
item08 low motiv 533 is more likely to distort results.
item09 competence 412
item10 low pleas 372
item11 low comp 591
item12 motivation 499
item13 motivation 452
item14 pleasure 479

Extraction Method: Principal Axis Factoring.
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Unstandardized Standardized
Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 5.895 761 7.747 000 4.378 7.411
math courses taken 3.166 284 794 11.164 000 2.601 3.731

a. Dependent Variable: math achievement test
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Pairwise Comparisons.
Dependent Variable:math achievement test

95% Confidence Interval for

Mean Difference”

[0 gender () gender | oitterence ¢-y) | st Error | sig® | LowerBound | upper Bound
male female 02| 1007 552 -1.405 2609
fomale __male _602] 1007 552 2609 1.405

Based on estimated marginal means
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Is the interaction
statistically significant?

No &

—

Examine the two main effects one
at a time.

Yes

v

Examine the interaction first, then the
main effects with caution).

L*

Compute a new variable with each of
the original cells of the interaction as a

v

Preselected pairs of means,
rather than all possible pairs of
means are of interest.

L*

level.

Comparisons of all possible pairs of
means are of interest.

L‘

Run a one-way ANOVA and follow-up
contrasts that compare the means that are
relevant for the simple effects.

Run a one-way ANOVA and follow-up post
hoc tests that compare all of the pairs of
means.
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Both the linear effect and its interaction with
gender are significant, but gender is not,

Estimates of Fixed Effects”
9’5% Confidence Interval

Parameter Estimate | Std. Error df t Sig. Lofver Bound [ Upper Bound
Intercept 22726599 | 554001 | 40.703 | 41.023 000 | [21.607524 23.845675
linear 1223637 | 428392 | 75.508 2.856 006 370331 2076943
quadratic 115741 | 133477 | 77.796 867 389 -150002 381484
[gender=F] -1.398542 | 841423 | 36.092 | -1.662 105 -3.104875 307791
[gender=M] o® 0

[gender=F] *linear | -612365 | .238501 | 35.840 | -2.568 015 -1.096142 -128587
[gender=M] * linear [ 0

a. Dependen

b. This parametel

riable: Distance (mm) from center of pituitary to pteryo-maxillary fissure.

S

setto zero because itis redundant.

These two variables represent the gender x linear age interaction, but only one is needed because the
other provides redundant information.
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KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Bartlett's Test of Approx. Chi-Square
Sphericity df
Sig.

615

111.440

.000

This is acceptable but mediocre
because KMO is >.5, it
indicated there may not be
enough items for one of the
components.
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Variables not in the Equation

Both gender and parents® education are
significant predictors when entered separately.

Score df Sig_—_
Step  Variables GENDER 5.696 1 .017\
0 PAREDUC 12.559 1 000

Overall Statistics

14.944 2
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Low math grades High math grades Total
Father's n MoosD o M D M D
education

HSgradorless 23 983 504 15 1049 657 1009 561
Some college 9 1281 506 7 1643 343 1440 467
BS or more 11236 78 8 2183 285 1635 741
Total 43 1110 569 30 1490 701 1266 650
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The df shows the degrees of freedom
for each model. Note how they

The Sig. indicates that all three
models are statistically

decrease with each subseauent model. ANOVA® sienificant.
Sum of

Model Squares m Mean Square F Sig.

1 Regression 442494 549 5 88498.910 27.076 000°
Residual 218993122 B7 3268.554
Total 661487 671 72

s Regression 440360.015 4 110090.004 33.854 000°®
Residual 221127 656 68 3251.877
Total 661487671 72

3 Regression 435781.894 | 145260631 44.407 o007
Residual 225705.777 69 3271.098
Total 661487 671 72

a. Dependent Variable: scholastic aptitude test- math

b. Predictors: (Constant), math achieverment test, pleasure scale, mosaic, pattern test,
Cubed Competence, parent's education

c. Predictars: (Constant), math achievement test, pleasure scale, mosaic, pattern test,

parent's education

d. Predictors: {Constant), math achievement test, pleasure scale, parent's education
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Information Criteria™

-2 Restricted Log
Likelihood

Akaike's Information
Criterion (AIC)
Hurvich and Tsai's
Criterion (AICC)
Bozdogan's Criterion
(CAIC)

Schwarz's Bayesian
Criterion (BIC)

438.374

438616

449278

446.278

We will do a ? to see if the fit of this
model is significantly better than that of
the unconditional model.

All information criteria indicate improved fit
of the conditional model (lower numbers than
in our output for Problem 12.1).

The information criteria are displayed

in smaller-is-better form.

a. Dependent Variable: Distance
(mm) from center of pituitary to

pteryo-maxillary fissure.
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Statistics

scholastic aptitude test - math

N Valid 75

Missing 0
Mean 490.53
Median 490.00
Mode 500
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Odds ratio=  A/B
C/D
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Association between math achievement test
and mother’s education.

Correlations

math
achievement moker's
test education

Spearman’s tho  math achievement test  Correlation Coefficient 1.000 315%
Sig. (2-tailed) . 006

N 75 75

mother's education Correlation Coefficient -3457% 1.000

Sig. (2-tailed) -006— :

N —F5— 75

**. Correlation is significant at the 0.01 level (2-tailed).
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Variable B SEB s R AR
Model |
Grades in hs, 214 44 50+ 25
Constant 43 257
Model 2
Grades in his. 232 40 55+ 39 3
Gender 493 127 37+
Constant 211 237
Model 3 42 04
Grades in hs. 223 39 5200
Gender 431 127 320
Motivation scale 218 99 210
Constant 394 361
Model 4 43 03
Grades in hus, 199 40 A7+
Gender 363 128 27+
Motivation scale 215 97 20
Parents’ 58 28 20
education
Constant 544 3.61

*p < .05 **p< 001.
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Math achievement

Group n M SD
Low math grades
Males 2 12.88 573 572 453
Females 20 833 533 328 274
High math grades
Males 10 1927 417 813 404
Females 21 13.05 7.17 520 20
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Variable and source df MS F P Partial n’
Math grades 1 32578 1086 002 14
Father's educ: 2 323.00 10.77 <001 2
Grades*father’s educ 2 118.95 397 024 K
Error 67 29.99
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Descriptives

Age i " St9_ Error
Tstance (mm) from center g Wiean 22185 468
of pituitary to 95% Confidence Interval Lower Bound 21222
pteryo-maxillary issure for Mean o
Upper Boun s
5% Trimmed Mean 22220
The four means Median 22000
(boxed) steadily Variance 5925
increase with age, Std. Deviation 24343
suggesting a Minimum 165
N 7
linear trend. s b
Range 110
Interquartie Range
Stkewness Ca s
Kurtosis 833 872
0 Wiean 73167 4152
95% Confidence Interval Lower Bound pxi
for Mean  Bound
Upper Boun 2e020
5% Trimmed Mean 2122
All four skewness Median 23,000
values (circled) are Variance 4654
lower than 1.0. Std. Deviation 21573
. inimum 1
suggesting normal o e
RN taximum
distributions. Range 90
Interquartie Range 30
Skewness £ 448
Kurtosis 872
2 Wean 24648 5422
95% Confidence Interval Lower Bound 554
for Mean v Boun
Upper Bound 25763
5% Trimmed Mean 24560
Median 24000
Variance 7939
Std. Deviation 28176
Minimum 190
Maximum 310
Range 120
Interquartie Range 30
Skewness 448
Kurtosis G 872
2 Wean 25003 5324
95% Confidence Interval Lower Bound 24998
N for Mean Upper Bound
Means and medians for 27.187
each age are very 5% Trimmed Mean 26.137
similar, also suggesting Median 26,000
distributions are normal. Variance 7.655
Std. Deviation 27667
Minimum 105
Maximum 315
Range 120
Interquarte Range 30
Skewness -163 a8
Kurtosis &< 872
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Measure: MEASURE_1

Mauchly's Test of Spherit

Epsilon®
Approx. Greenhouse Huynh- Lower-
Within Subjects Effect | Mauchly's W [ Chi-Square df Sig. -Geisser___ Feldt bound
product 176 15.138 5 .010 ( 547 .705 .333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent
variables is proportional to an identity matrix.
2. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests

are displayed in the Tests of Within-Subjects Effects table.

b.

Design: Intercept+gender

Within Subjects Design: product
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Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step 1 Step 24.231 4 .000
Block 24.231 4 000
Model 24.231 4 .000 p——

The overall model is
significant when all four
independent variables are
entered.
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Adjusted

Std. Error of

Model B——| R Square | R Square | the Estimate
1 794 631 (626) 408162
a. Predictdrs: (Constant), math coursextaken

Note that with only one independent variable,
R (.79) is the same as the Pearson correlation.
The adjusted R is the key measure.
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Summary ltem Statistics

Maximum /

Mean | Minimum | Maximum | Range | Minimum | Variance | Nof tems
Tem Wieans. 310 | 2673 3887 1073 394 262 O
Inter-tem Correlations 373 203 504 301 2488 012 4
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Imputation Specifications

Imputation Method <
Number of Imputations

Model for Scale Variables

Interactions Included in Models

Maximum Percentage of Missing Values

Maximum Number of Parameters in Imputation Model

Lincar Regression

(none)

50.0%

®

100
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Model Summary

Change Statistics

Adjusted R | Std. Error of R Square Sig. F

Model | R | RSquare | Square | theEstimate | Change | FChange | dft | df2 | Change

1 303° 092 079 6.48514 092 7.158

2 809" 654 6284 4.12003 562 27.228

a. Predictors: (Constant), gender
b. Predictors: (Constant), gender, grades in h.s., motivation scale, parents' education, math courses taken
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Variable M D 1 2 3 4
Math Achievement 12,60 6.76 320 50 390 300
Predictor variable
1. Motivation scale 287 64 - .08 09 -21¢
2. Grades in hs. 5.68 159 - 25¢ a$2
3. Parents’ education  4.38 230 - -23*
4. Gender 55 50 -

*p <05 %% p<.01
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Sample mean is compared

with test value.

One-Sample Statistics

Significance of the
Std. Error "

N Mean || Std. Deviation | Mean d'ffe"]e"“ belweden
scholastic aptitude sample mean an
test - math I 490.53 94.553 10 9% population mean (500).

One-Sample Test
| Test value = 500 |
—T 959% Confidence
Interval of the
lean Difference

t df Sig. (2-tailed) || Difference Lower Upper
Scholastic aptitude
test - math -.867 74 389 -9.467 -31.22 12.29
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Intraclass Correlation Coefficient

Intraclass | _95% Confidence Interval F Test with True Value 0
Correlation” | Lower Bound | Upper Bound | Value | _df1 o sig
Single Measures ur 923 964 54479 7 148 000
Average
982 o73 88| 54479 7 148 000
Measures

Two-way random effects model where both people effects and measures effects are random.
a. The estimator is the same, whether the interaction effect is present or not.

b. Type C intraciass correlation coefficients using a consistency definition. The between-measure variance is

excluded from the denominator variance.
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Measure: MEASURE _1

Tests of Within-Subjects Contrasts '

Significance of linear,
quadratic, and cubic trends.

Type Ill Sum Mean / Partial Eta | Noncent. | Observed
Source. product of Squares df Square F ig) | Squared | Parameter | Power®
product Uinear 13538 T| 13538 | 26532 || 000 707 26,532 997
Quadratic 187 1 187 3.667 082 250 3.667 416
Cubic 3.504 1 3.504 20.883 001 655 20.883 985
Error(product) _Linear 5613 K 510
Quadratic 563 1 051
Cubic 1.846 11 168

a. Computed using alpha = .05
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Variables in the Equation

B se waig o sg | Eom)

Tep0_ Constant BE 251 35 7 E) 875
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Reliability Statistics

Cronbach's
Alpha Based
on
Cronbach's | Standardized
Alpha Items N of Items
C 7% 752 2
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Means to be compared.

Descriptives

95% Confidence Interval for

std Std. Mean

Mean \ | Deviation | Error | Lower Bound |Upper Bound | Minimum | Maximum

grades mhs. HS grad or less 534 T475 239 4.86 583 3 B
Some College 556 1.788 447 461 6.52 2 8

BS or More 6.53 1219 280 594 711 4 8

Total 570 1.552 182 534 6.06 2 8

Visualization test _HS grad or less 3.96058 | 64249 3.3602 5.9729 25 1438
Some College 456022 | 1.14005 35857 8.4456 -25 148

BS or More 279044 | 64017 4.1156 6.8055 -25 975

Total 51712 | 3.82787 | 44802 4.2781 6.0643 -25 148

math achievement HS grad or less 100877 || 561297 | 91054 82428 11.9326 1.00 227
test Some College 14.3958 || 4.66544 | 1.16636 11.9098 16.8819 5.00 23.7
BS or More 16.3509 | ) 7.40918 |1.69978 12.7798 19.9221 1.00 237

Total 126621 | 6.49659 | .76037 11.1463 14.1779 1.00 23.7
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Box's Test of Equality of Covariance Matriced

Box's M
F

dft

df2

Sig

12.437
1.300

9
12723.877
231

Because p = .231 and is not less than
.05, we know that, this assumption of
homogeneity of covariances across
groups is not violated.

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

a. Design: Intercept+mathgr+gender+mathgr * gender
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Levene's Test of Equality of Error Variances

Dependent Variable: math achievement test

F

dft

df2

[sig

5.572

]

73

\

.021

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups

a. Design: Intercept+mathcrs+gender

This is significant (p < .05); therefore, it
indicates that the assumption of
homogeneity of variances has been
violated. However, because cell sizes are
similar (34 and 41), this is not a big
problem, especially given the way SPSS
calculates the ANCOVA.
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Variables Entered/Removed®

Variables Variables
Model Entered Removed Method We started with Enter since
1 math Enter all variables were in the
achievement model at the first step.
test, pleasure
scale,
mosaic,
pattern test,
Cubed
Competence,
gzﬁr;tﬁsnnh This is where we can see
5 Cubed Backward what type. ofana!ysls was
Competence (criterion U S SSeEwas
o Backward.
Probability of
F-to-remove
==.100)
£ maosaic, Backward
pattern test {criterion:
Probability of
F-to-remave
==.100)
a. Dependent Variable: scholastic aptitude test-
math

b. All requested variables entered.
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Measure: MEASURE_1

Tests of Between-Subjects Effects

The test of whether males and
females rate the products
differently is not significant.

Transformed Variable: Average

Type Ill Sum artial Eta | Noncent. | Observed
Source | of Squares dt Mean Square F Sig Squared | Parameter | Power®
Tntercept 682521 1 682521 65.183 000 867 65.183 7,000
gender 28.521 1 28.521 2724 130 214 2724 321
Error 104.708 10 10471

a. Computed using alpha = .05
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Test of Homogeneity of Variances

math achievement test

Levene
Statistic

df1

df2

Sig.

2.548

67

036

As in Output 9.1, the assumption
of equal variances is violated, so
we will select contrast tests that
do not assume equal variances.
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This table has the same parts are the
HHHHHHH*W previous table. In the above table, we Kokkkk Ak kK
Outcome: satm circled the parts to help you identify them.

Model Summary

R R-sq F df1 df2 I3
.7883 .6215 57.4612 2.0000 70.0000 .0000
Model
coeff se t P
constant 333.5887 32.6522 10.2164 .0000
motivati 6.7568 11.6336 .5808 .5632

mathach 10.9567 1.0988 9.9720 .0000
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Univariate Tests

Type Il Sum Mean Partial Eta Noncent. Ohserveaﬂ
Source Measure of Squares of Square F Sig | Squared | Parameter | Power
Time a1 Sphericiy Assumed 72.900 T 72900 | 81000 | 000 818 | 81000 7,000
Greenhouse-Geisser 72.900 1.000 72.900 81.000 000 818 81.000 1.000
Huynh-Feldt 72900 | 1000 | 72900 | 81000 | 000 818 | 81000 1.000
Lower-bound 72900 | 1000 | 72900 | 81000 | 000 818 | 81000 1.000
dv2 Sphericity Assumed 2,500 1 2500 | 240 630 | o013 240 075
Greenhouse-Geisser 2500 | 1000 2500 70 | 630 013 240 075
Huynh-Feldt 2500 | 1000 2500 240 | 630 013 240 075
Lower-bound 2.500 1.000 2.500 240 630 013 240 075
Time * group _avi Sphericity Assumed 52.900 T 52900 | (58778 | 000 | J 766 | 58778 1,000
Greenhouse-Geisser 52.900 1.000 52.900 58.778 000 766 58.778 1.000
Huynh-Feldt 52.900 1.000 52.900 58.778 000 766 58.778 1.000
Lower-bound 52900 | 1000 | 52900 | 58778 | 000 766 | 58778 1.000
dv2 Sphericity Assumed 10.000 1 10.000 | (960 340 - os1 960 153
Greenhouse-Geisser 10.000 1.000 10.000 960 340 051 960 153
Huynh-Feldt 10000 | 1000 [ 10000 90 | 340 051 960 153
Lower-bound 10.000 1.000 10.000 960 340 051 960 153
Error(time) _ dv1 ‘Sphericity Assumed 16.200 18 900
Greenhouse-Geisser 16200 | 18.000 900
Huynh-Feldt 16.200 18.000 900
Lower-bound 16.200 18.000 900
@z Sphericity Assumed 187.500 8| 10417
Greenhouse-Geisser 187.500 18.000 10417
Huynh-Feldt 187.500 18.000 10.417
Lower-bound 187.500 | 18.000 | 10.417

. Computed using alpha = .05

This table displays follow-up repeated-measures ANOVAs for
each dependent variable, which show that the main effect of time
(change from pretest to posttest) is statistically significant only
for dependent variable 1 and that the interaction between group
and time is statistically significant only for dependent variable 1.
This indicates that the change over time is associated with the
intervention, but only for dependent variable 1.
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Eigenvalues refer to the variance

accounted for, in terms of the number
of “items” worth” of variance each
explains. So, Factor 1 explains almost

as much variance as in five items.

\

Total Variance Explained

Percent of covariation among
items accounted for by each
factor before and after rotation.

Initial Eigenvalye§_

Rotation Sums of $quared Loadings

Factor |\ Total % g¥Varian: Cumulative % Total % of Varfe Cumulative %
1 34.916 34.916 3.017 21.549 21.549
2 14.284 49.200 2327 16.621 38171
3 1 60.719 1.784 12.746

4 8.097 68.816

5 6.459 75.275

6 5113 80.388

7 4125 84.513

8 3.293 87.806

9 2.857 90.664

10 2710 93.374

11 2126 95.500

12 1.846 97.346

13 217 1.551 98.897

14 154 1.103 100.000

Extraction Method: Principal Axis Factoring.

]

Half of the variance is accounted for by
the first three factors.
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Variables Entered/Removed

Variables Variables This indicates
Model Entered Removed Method we used
1 gender, simultaneous
gradesin h.s., regression in
motivation Enter this problem.
scale, pargnls‘
education

a. All requested variables entered.
b. Dependent Variable: math achievement test
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Notice that there are four
outliers for competence, with
o outliers being the same
number, and one for motivation
in these boxplots.

complence
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Canonical Correlations

1
2

.645
.368

You can square these values obtain measures of
proportion of variance explained. Thus, Function 1
accounts for 42% of the variance shared between Set 1
& Set 2 (.645).

Test that remaining correlations are zero:

1
2

Wilk's
.505
.865

Chi-S8Q
46.175
9.808

DF
8.000
3.000

Sig.
000
.020

I/

These tests refer to the prior table of canonical
correlations (where line 1 =.645 and line 2 =
.368). There are two canonical correlations
because two functions were derived to describe
the patterns of relations between the two sets of
variables. The Wilks’ lambda and corresponding
chi-square tests indicate that the canonical
correlation on that line (.645) plus all later
correlations are statistically significantly
different from zero. Thus, the first line tests
whether both correlations, together, are
significantly different from zero. The second line
tests whether the second correlation (.368) is
statistically significant, even after removing the
variance explained by the previous correlation.
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Random Effect Covariance Structure (G)

Variability among schools (1,1) in level of mathach

(variance of intercept/school).

Intercept |
chaal ] cses | school - -
Tntercept | school | 8.681643 | J[ 050747 | Variance of cses (2,2).
cses | school 050747 593997
Unstructured Covariance between schools and cses (1,2 or 2,1).

a. Dependent Variable: mathach.
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Between-Subjects Factors

Value Label
father's education 1 HS grad or 38
revised less
2 Some
College 6
3 BS or More 19

The homogeneity of variance assumption is
most important if one has unequal cell sizes.
Unfortunately, here the largest cell (38) is more
than 1 '; times the smallest. However,
fortunately, Box’s test (below) indicates that
this assumption is not violated.
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estimated.

Now there are five fixed
effects parameters being

\

Model Dimension®

\ Number | Covariance Number of Subject Number of
of Levels Structure Parameters Variables Subjects

Fixed Effects | Intercept 1 1

linear 1 1

quadratic 1 1

gender 2 1

gender * linear 2 1
Random Effects Intercept® 1| Variance 1| subject

Components

Repeated age 4 | First-Order 2 | subject 27
Effects Autoregressive
Total 12 ;L

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fisgure.

b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed.

our command syntax

may yield results that differ from those produced by prior versions. If you are using versioR 11 syntax, please

consult the current syntax reference guide for more information.

Now, there are eight
parameters instead of six
because we added gender
and gender *linear as
predictors.
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ethnicity

Cumulative
Frequency | Percent | Valid Percent | Percent
Valid Euro-Amer 41 54.7 56.2 56.2
African-Amer 15 %U’D/ QZL‘J‘f 76.7
Latino-Amer 10 133 137 90.4
Asian-Amer 7 93 96 100.0
Total 73 97.3 100.0
Missing ~ multiethnic 1 13
blank 1 13
Total 2 27
Total 75 100.0
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Estimates of Fixed Effects”

95% Confidence

Interval Fraction | Relative

Imputation Lower Upper | Missing | Increase | Relative
Parameter | _Estimate | Std. Error [ df t__|sig | Bound Bound | Info__| Variance | Efficiency
Intercept 3007394 | 145894 | 221536 | 20.614 | 000 | 2719876 | 3294912
[time=1] 1354251 | 184059 | 276996 [ -7.358 | 000 | -1.716583 [ -991919
[time=2] -553881| 173052 | 256516 | -3.201 -894664 | -213098
[time=3] 269388 | 144679 | 201.895| -1 862( 064)] -554664 015889
[time=4] 0 0

1 Intercept 2900000 [ 133654 | 245748 | 21.698 [ 000 | 2636747 | 3.163253
[time=1] 1275000 [ 181325 | 310.967 | -7.032 | .000| -1631779 [ -918221
[time=2] -350000 [ 170614 | 306272 -2.051 | .041| -685725| -014275
[time=3] -200000 [ 142656 -1402| 162 -481133 081133
[time=4] [ 0

2 Intercept 3025000 [ 134336 | 235309 | 22.518 [ 000 | 2760345 | 3289655
[time=1] -1.400000 | 179883 | 312.391 [ -7.783 | .000 | -1.753936 | -1.046064
[time=2] 625000 [ 167743 | 304.402| -3.726 | .000 | -955083 | -294917
[time=3] 287500 [ 138378 | 224.913| -2.078 [ 039 | -560183 [ -014817
[time=4] 0° 0

@ Intercept 3025000 [ 161967 18677 000 | 2705354 | 3344646 336 489 983
[time=1] 1391875 [ 201163 6919 .000 | -1.787232 [ -996518 21 262 990
[time=2] -570000 [ 193436 2947 003 | 950602 -.189398 251 327 988

[time=3] -345625 | 167963 2058 | 041 -676836 [ -.014414 316 447 984

o

a. Dependent Variable: weight.1: Body Weight

b.  This parameter is set to zero because it is redundant,
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Scree Plot

The Scree plot

25 shows that after the
first two
components,

204 differences between

the eigenvalues
decline (the curve
flattens), and they
are less than 1.0.
This again supports a
two-component
solution.

Eigenvalue

00+

T T T T T
1 2 3 4 5

Component Number
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Descriptive Statistics

N Minimum | Maximum | Mean S ‘Skewness
Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std_Error
CubeaComp 73 T00 | 6400 | 396027 | 17.16401 445 261
Valid N lstwise) 73
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Estimates of Fixed Effects

95% Confidence Interval

Parameter | Estmate | std Error | ot t Sig.__ Lower Bound | Upper Bound

Tntorcept 12636074 | 244304 | 156647 | 51707 000 | 12154242 | 1319708

@ Dependent Variable: mathach.
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Frequency The leaf is the last digit of each person’s math

achievement score.

] 4————————| This line indicates that 11 persons had

stems of 1 and leaves of 0 through 4 (i.e.,
scores between10 and 14). See the
10.0 interpretation box for more explanation.

S
Each leaf
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MtemTotal Statistics.

Scale Corrected | Squared | Cronbach's
Scale Meanif | Varianceif | tem-Total | Multiple | Aphaifitem
tem Deleted_| item Deleted | Correlation | Correlation | _Deleted

Tem0Z pleasure 5.0000 3405 485 278 615

item0 reversed 99467 3457 397 217 685

item10 reversed 89333 4090 407 211 662

item14 pleasure 96800 3572 649 422 528
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Correlations with math

This is a repeat of the correlation
matrix we did earlier, indicating high
correlations among some predictors.

achievement. —_
Correlations
math /
achievement || motivation | competence | plgdsure | grades || fathers | mothers
test scale scale scale | inhs || education | education | gender
Pearson _ math achievement test 1,000 256 260 085 470 416 387 | -212
Correlation  motivation scale 256 1.000 gﬁ 217 020 049 15 [ -178
competence scale 260) 517 413 216 031 234 | -037
pleasure scale 085, 217 413 [ 1000 [ -081 020 108 084
gradesinhs. 470 020 216 -081 | 1.000 315 246 162
father's education 416 049 031 020 315 1.000 649 | -266
mother's education 387] 115 234 108 246 1000 | -223
gender -27: -178 -037 084 162 -223 | 1.000
Sig math achievement test 017 015 243 000 001 012
(1-tailed) motivation scale 017, 000 o1 436 173 072
competence scale 015, 000 000 037 026 380
pleasure scale 243) o1 000 254 189 246
grades in hs. 000) 436 037 254 021 091
father's education 000) 346 400 435 004 000 014
mother's education 001 173 026 189 021 000 032
gender —ot? 380 246 091 014 032
N math achievement test 69 69 69 69 69 69
motivation scale 69 69 69 69 69 69
competence scale 69 69 69 69 69 69
pleasure scale 69 69 69 69 69 69
gradesin hs. 69 69 69 69 69 69
father's education 69 69 69 69 69 69
mother's education 69 69 69 69 69 69
gender 69 69 69 69 69 69

Variables Entered/Removed

Variables

Removed Method

Model | Variables Entered
7

gender,

competence
scale, father's
education,
pleasure scale,
gradesinhs.,
motivation scale,
mothers
education

—

Significance level of correlations
with math achievement.

3. All requested variables entered

b. Dependent Variable: math achievement test

Multiple correlation

simultaneously.

All the predictor variables are
entered at the same time; i.e.,

Indicates that 36% of the variance in
the dependent variable can be
predicted from the independent

fficient. .
coefficient Model Summary variables.
Adjusted R Std. Error of the
Model R R Square Square, Estimate
1 (653 426 (360 533030

a. Predictors: (Constant), gender, competence scale, father's education,
pleasure scale, grades in h.s., motivation scale, mother's education
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This partial eta squared indicates the proportion of
variance in math achievement that is due to
father’s education and not just random differences
between people in math achievement. (Variance
due to faedR, divided by variance due to faedR
plus error variance.)

Tests of Between-Subjects Effects

Dependent Variable: math achievement test

Type lll Sum Mean Partial Eta /Nonoent. Observed

Source of Squares df Square F Sig. Squared Parameter Power”
Corrected Model 1029.236° 5 205.847 6.863 000 .339 34.315 .997
Intercept 12094.308 1 12094.308 | 403.230 000 .858 403.230 1.000
mathgr 325776 1 325776 10.862 002 10.862 901
faedRevis 646.015 2 323.007 10.769 000 21.538 .987
mathgr * faedRevis 237.891 2 118.946 3.966 024 T 7.931 693
Error 2009.569 67 29.994
Total 14742.823 73
Corrected Total 3038.804 72

a. Computed using alpha = .05

b. R Squared = .339 (Adjusted R Squared

Focus on these three Fs and Sig
values, especially the Mathgr x
FaedRevis interaction.

The R Squared value is the percent of variance in
math achievement predictable from both
independent variables and the interaction.
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Proportion

Prop Var
cvi-1 .387
cvi-2 .335
Proportion

Prop Var
cva2-1 .161
cv2-2 045
Proportion

Prop Var
cv2-1 .575
cv2-2 425
Proportion

Prop Var
cvi-1 .240
cvi-2 .057

END MATRIX -

of Variance of Set-1 Explained by Its Own Can.

of Variance of Set-1 Explained by Opposite Can.Var

of Variance of Set-2 Explained by Opposite Can.

var.

iy N —

The Redundancy Analysis
suggests that canonical variates
for Set 2, especially the second
CV for Set 2 (CV2-2), do not
enable one to explain much of
the variance in corresponding
variate (CV1-2) for Set 1.

of Variance of Set-2 Explained by Its Own Can. Var.

Var.

Similarly, the
Redundancy Analysis
suggests that canonical
variates for Set 1,
especially the second CV/
for Set 1 (CV1-2), do not

enable one to explain
much of the variance in
the corresponding CV for
Set 2 (CV2-2).
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Case Processing Summary

No cases are missing.

There are 27
participants
at all ages.

/

, Cases /
Valid IMissmg /Total
Age in years N Percent N' Percent N / Percent
Distance (mm) from 8 27 100.0% 0 0% 27 100.0%
center of pituitary to 10 27 100.0% 0 0% 27 100.0%
pteryo-maxillary fissure 1, 27 | 100.0% 0 0% || 27| 100.0%
14 27 100.0% 0 0% 27 100.0%
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Variables Entered/Removed”

In the first column of this table there are
two models (1 and 2). This indicates that
first we tested a model with gender as a
predictor, and then we added the other
predictors and tested that model (Model 2).

Variables Variables

Model Entered Removed Method

1 gender® '\ Enter

1 gradesinhs., \%
motivation scale,
parents'
education, math

| § courses taken

a. All requested variables entered.

b. Dependent Variable: math achievement test

————— | Footnotes provide you with

relevant information.
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If we predicted that no one
would take algebra 2, we would
be correct 53% of the time,
which is not significant, p = .56.

Variables in the Equation

B SE. Wald df Sig. Exp(B)

Step 0  Constant -134 231 333 1 (564 ) 875






OEBPS/Images/fig00287.jpg
‘SummaryStatistics
scrpvo satts
‘Case Processing Summary

Mo Statstcs

¢ Tosts for covarance parameters

7 Congations of parameter estmates
‘Covariances of parametr estimates

 Covarisnces ofrandom sfects
Corances afresials

9 [Corkvast coaticient e

Contidence nena






OEBPS/Images/fig00244.jpg
Measure: MEASURE_1

Tests of Within-Subjects Effects

Type Ill Sum Mean Partial Eta | Noncent. | Observed
Source. of Squares df Square F Sig. Squared | Parameter Power®
product ‘Sphericity Assumed 17.229 3 5.743 41.768 000 807 125.303 1.000
Greenhouse-Geisser 17229 | (1640 10507 |(C41.768 000 807 68.490 1.000
Huynh-Feldt 17.229 iC 8148 | 2788000 Ly 88.317 1.000
Lower-bound 17229 | 1000 | 17229 | 41768 | 000 807 41.768 1.000
product * gender  Sphericity Assumed 3.896 3 1.299 9.444 000 486 28.333 993
Greenhouse-Geisser 3896 1640 2376 | (9444 003 486 15.487 924
Huynh-Feldt 389 T 1842 | 9444 [ 001 85 19.970 966
Lower-bound 3.896 1.000 3.896 9.444 012 486 9.444 791
Error(product) ‘Sphericity Assumed 4125 30 138
Greenhouse-Geisser 4125 | (16398 252
Huynh-Feldt 4125 | 2145 195
Lower-bound 4.125 10.000 413

2. Computed using alpha = .05
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Symmetric Measures

Value Approx. Sig
Nominal by [ Phi -412° ] ] 000
Nominal Tramers 5 000
N of Valid Cases 75

Strength of relationship
(effect size).

2. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.
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Explore Relationships

/

.

Compare Groups

i

Find Strength of Associations

v

Difference Questions

Associational Questions

i

i

Difference Inferential Statistics (
test and ANOVA)

Associational Inferential Statistics
(correlation and regression)

~~

General Linear Model (GLM)

/

One-way ANOVA with
ordered or dichotomous IV

One-way ANOVA with nominal
IV (made into dummy variables)

Q

Q

Bivariate regression

Multiple regression

Factorial ANOVA

Q

Multiple regression
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In the imputation of missing values for body
weight, logistic regression was used, with time,
binge, mood, and preo as the predictors.

Imputation Models /
Model /
Type Effects / Missing Values | imputed Values
cight.1: Body Weight Logistic ’
time,binge,mood,preo 30 600
Regression
binge. 1: Binge cating Logistic
) time,weight,moodpreo 2% 480
Regression
mood.1:  Mental state | Logistic
time,weight,binge,preo 28 560
(mood) Regression
preo.: Preoccupation with | Logistic 350
time,weight,binge.mood 29
food and weight Regression

/

U

There are 29 missing values being computed in
each of 20 imputations, yielding 580 (29X 20)
imputed values.






OEBPS/Images/fig00088.jpg
Colling

rity Diagnosticé

Variance Proportions

Condition motivation | competence | pleasure | grades | fathers | mothers
Model _Dimension | Eigenvalue | Index | (Constant) | _scale scale scale | inhs. | education | education | gender
T T 7.043 7,000 00 00 00 00 00 00 00

2 550 3578 00 00 00 00 00 04 02

3 211 5773 00 02 .l l 00 18 09

4 9.038 00 00 00 00 47 79

5 11.303 00 02 00 o7

6 02 ] 00 40 01 00

7 ) 2 00 o7 06

8 55 26 (& 28 02 01

2. Dependent Variable: math achievement test
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Correlations

stholastic math
aptiudetest- | parents Cubed pleasure mosaic, | achievement
math education Competence scale pattem test test
Pearson Conelation  scholastic aptude test- 1.000 il 205 m 110 790
math
parent's education 24 1.000 124 025 025 427
Cubed Competence 205 24 1.000 357 083 268
pleasure scale m 025 357 1.000 094 089
mosaic, pattern test M0 025 083 094 1.000 216
math achievement test 790 a1 268 089 26 1.000
scholasic aptitude test- 028 041 037 178 000
math
parents education 148 a7 418 000
Cubed Competence 148 5 001 242 01
pleasure scale 417 001 E 215 226
mosaic, pattern test 418 242 215 . 033
math achievement test 000 011 226 033
N scholasic aptitude test- n el I i n
hiath
parent's education 73 3 3 13 3 73
Cubed Competence 1 n I I n 7
pleasure scale 73 3 1 1 73 3
mosaic, pattern test 73 73 EE) 1 1 13
math achievement test 73 73 73 73 73 73
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Standardized Canonical Coefficients for Set-1

1 2
item01 -.838 -.276 These indicate how much each item in Set 1 is weighted to
item07 -.259 -.089 | create the linear combinations used in each of the two
it:mg o g?z . ?ég canonical correlations (canonical variates). So, it is apparent

T o that canonical variate (CV) 1 involves primarily item01 from

Raw Canonical Coefficients for Set-1 Set 1, and CV 2 mainly involves item12 from Set 1.

1 2
item0l -.919 -.303
item07 -.243 -.083
iteml2 -.056 1.089

iteml3 -.013 .236
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Classification Table*®

Predicted
algebra2in hs. Percentage
Observed not taken taken Correct
Step0 algebra2inh.s. not taken 40 0 100.0
taken 35 0 0

Overall Percentage

a. Constant is included in the model.

b. The cut value is .500

40 students didn’t take algebra 2 and 35 did. 53% did not take
algebra 2. Thus, if one stated that no students took algebra 2, one

would correct 53.3% of the time.
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Summary ltem Statistics

Masmum /

Mean__| Minimum | Maximum | Range | Minmum | Variance | N of tems
T Wears. 3205 | 2622 3630 508 1285 T @
Inter-tem Correlations 88 25 742 a7 2281 025 4
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Classification Tablé'

Predicted
algebra2in h.s. Percentage
Observed not taken taken Correct
Step 1 algebra 2 in h.s. not taken 33 7 825
taken 10 25 7.4
Overall Percentage 77.3

. The cut value is .500
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This table indicates that there is a statistically significant linear trend only for dependent
variable 1 and that this time effect interacted with group. Examination of the means suggests
that this interaction indicates that the time effect held only for the intervention group. The
linear trend is the only polynomial contrast used because there are only two groups and only
two time points, so quadratic or cubic trends are not possible. This table also provides effect
sizes (partial eta squared), which indicate that the effects for dv1 were large.

Tests of Within-Subjects Contrasts

Type IIl Sum Mean Partial Eta | Noncent. | Observed
Source Measure _time | of Squares | df | Square F Sig. Squared | Parameter | _Power”
time dv1 Linear 72.900 1 72.900 81.000 000 818 81.000 1.000
av2 Linear 2500 | 1 2500 240 | 630 013 240 075
time * group dv1 Linear 52.900 1 52.900 58.778 000 766 58.778 1.000
av2 Linear 10.000 | 1] 10.000 960 | 340 051 960 153
Error(time)  dv1 Linear 16.200 18 900
dv2 Linear 187.500 18 10.417

2. Computed using alpha = .05
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Tests of Between-Subjects Effects

Dependent Variable: math achievement test

Type Il Sum Partial Eta | Noncent | Observed
Source of Squares df Mean Square F Sig. Squared Parameter Power®
Corrected Model 2082.329° 2 1041.164 61.946 000 632 123.892 1.000
Intercept 946.381 1 946.381 56.306 .000 439 56.306 1.000
mathers 1783.894 1 1783.894 | 106.136 000 596 106.136
gender 6.001 1 6.001 357 552 005 357
Error 1210.152 72 16.808
Total 15132.393 75
Corrected Total 3292.481 74

a. Computed using alpha = .05
b. R Squared = .632 (Adjusted R Squared = .622)

The covariate (mathcrs)
is significant, but the
gender difference is not
significant.

Notice that the power for
the covariate (mathcrs)
is extremely high (1.0),
and for gender it is very
low (.09).
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Excluded Variables®

Collinearity Statistics

Partial Minimum

Model Beta In t Sig. Caorrelation | Tolerance VIF Tolerance
i Cubed Competence - 0637 -.808 422 -.088 817 1.225 735
3 Cubed Competence -063° -.808 422 -.098 817 1225 77
mosaic, pattern test -086° -1.187 240 -.142 942 1.061 772

a. Dependent Variable: scholastic aptitude test- math

b. Predictors in the Model: (Constant), math achievement test, pleasure scale, mosaic, pattern test, parent's education

¢. Predictors in the Model: (Constant), math achievement test, pleasure scale, parent's education
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Amount of within-
time variance

Estimates of Covariance Parameters”

95% Confidence

Interval

Fraction | Relative | Relative
Imputation Lower | Upper | Missing | Increase | Efficien
Number __Parameter Estimate_| S Error | WaldZ | sig. | Bound | Bound | info. | Variance | ¢y
Original Repeated 1.394746 140365 9.937 | .000 1.145070 | 1.698864
data Measures (“AR| rho 530202 | osies0| 10342] 00| 425533 | 621836
i Repeated  ART diagon 1420065 | 128921 | 11085 | 000 | 1197464 | 1705461
Measures ARI rho 430374 053686 8.017] .000 319611 529534
2 Repeated ARl diagonal | \1443690 | 133098 | 10847] 000 | 1205035 | 1729611
Measures ARI rho 9460 051577 9.102 | .000 362457 564248
Pooled  Repeated ARl diagonal | 140983 [ 133378 000 114742 | 670764 | 076 02| 99
Measures AR tho 446520\ 058521 00| 331547 sera03| 197 20| 9%

a. Dependent Variable: weight.1: Body Weight

Covariation between adjacent times
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Model Summary’

Adjusted Std. Error of
Model R R Square | [R Square | the Estimate
1 6782 459 .427_| 5.11249

a. Predictors: (Constant), gender, grades in h.s.,
motivation scale, parents' education

b. Dependent Variable: math achievement test

The adjusted R square
indicates that we have a
fairly good model,
explaining about 43% of
the variance in math
achievement.
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Descriptive Statistics

Dependent Variable: math achievement test

The six-boxed cell means
will be shown in the plot.

math grades _father's educ revised Mean Std. Deviation

less A-B HS grad or less 9.8261 5.03708 23
Some College 12.8149 5.05553 9
BS or More 12.3636 7.18407 "
Total 5.69068 43

most A-B HS grad or less 10.4889 | 6.56574 15
Some College 16.4284 3.43059 7
BS or More 21.8335 2.84518 8
Total 14.9000 | 7.00644 30

Total HS grad or less 10.0877 5.61297 38
Some College 14.3958 4.66544 16
BS or More 16.3509 7.40918 19
Total 12.6621 6.49659 73
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Kk kdkkdkkdkkokdokkxkx PROCESS Procedure for SPSS Release 2.10 **kxkdkdkdrdadask

Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2013). www.guilford.com/p/hayes3

AR K| Thils shows us that the variables in the

Model = 1
Y = salary
X salbegin
M = prevexp

Sample size
474

B e ke ke ek ko ok ke ke

model and the sample size.

A

Outcome: salary

Here are the R and R wxwssisxnl Hereare the F, dfs,andp |****
square. values.

Model Summary

I3 R-sq F df1 df2 P
L9049 .8188 63.4593 3.0000  470.0000 .0000
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ANOVA

SumofSquares| df | Mean Square 3 sig |
Between People 18871.282 7 255017
Within People  Between ltems 41676 2 20938| 4473 013
Residual 692791 148 4681
Total 734667 150 4898
Total 19605 949 224 87527

Grand Mean = 27.1422
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General Purpose Explore Relationships Between Variables Description (Only)

SN

Specific Purpose Compare Groups Find Strength of Summarize Data
Associations, Relate
Variables
Type of Question/Hypothesis Difference Associational Descriptive
General Type of Statistic Difference Inferential Associational Descriptive Statistics
Statistics (e.g.. ! test, Inferential Statistics (e.g., mean,
ANOVA) (e.g., correlation, percentage, range)

multiple regression)
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Check this to display your
syntax in the output.
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The Tolerance and VIF assess multicollinearity.
Since the Tolerance values are close to 1 and
the VIF values are low, collinearity does not
seem to be a problem.
Coefficients®
Unstandardized Standardized
Coefficients Coeficients Collinearily Statistics
Model B Std. Error Beta t Sig Tolerance \ VIF
1 (Constant) 125 209 597 553
gender -101 108 -101 -938 351 873 1.145
parents’ education 076 023 352 3390 001 933 1072
mosaic, pattern test -005 005 -101 -999 321 997 1.003
visualization test 039 013 306) 2924 005 920 1,087

a. Dependent variable: algebra
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Note that this is what the data view for
your product data looks like. In most
Studies the N would be larger.
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Written by Andrew F. Hayes,
Documentation available in Hayes

Ph.D.

PROCESS Procedure for SPSS Release 2.10 ****kkskskkskshskskskshk

www.afhayes.com
(2013) . www.guilford.com/p/hayes3

ek e ke ko ko kK ok ko ko ok ke ko ko ko ok ko ko ko ko ko ko ko ko ok

Model = 4
Y = satm
X = mathach
M = motivati

Sample size
73

/

overall sample size. SPSS has

letters.

This show us our variables and our

shortened the variable names to 8

-

Here are the R and R square (similar to

bhowsdessssssssrsrissisrsy

Outcome: motivati what you see in the Model Summary box). Below are the F, dfs, and p values.
Model Summar
R R-sq F df1 df2 o
.3161 .0999 7.8823 1.0000 71.0000 .0064
Model
coeff se t P | The Model information gives us the
constant 2.4982 -1518 16.4537 -0000 | same information as the Coefficients
mathach .0299 .0106 2.8075 .0064 table.
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Linear & quadratic are covariates

MIXED distance WITH linear quadratic
/CRITERIA=CIN (95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) HCONVERGE (0
LCONVERGE (0, ABSOLUTE) PCONVERGE (0.000001, ABSOLUTE)

1Jnear quadratic | SSTYPE(3)

We requested Restricted Maximum

/PRINT=G LMATRIX SOLUTION TESTCOV § Likelihood Estimation. This has been
RANDOM=INTERCEPT | SUBJECT (subject) COVTYPE (VC)
PEATE | SUBJECT (subject) COVIYPE (ARN.. found to be the most accurate when sample

size is relatively small.

ARTI is the autoregressive 1 covariance
Subject is the nesting variable. structure, which takes into account the fact that
adjacent assessments are likely to be correlated
more highly than assessments that are further
removed in time.
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Measure: MEASURE_1

Tests of Within-Subjects Contrasts /

Univariate within subjects and
interaction polynomial trends.

Type lll Sum Mean Partial Eta | Noncent | Observed
Source product of Squares df Square F S Squared Parameter Power®
product Linear 13538 1 13538 | 64209 000\ 865 64.209 1.000
Quadratic 187 1 187 5.000 049 333 5.000 524
Cubic 3.504 1 3504 | 21.345 001 681 21.345 985
product * gender Linear 3504 1 3504 | 16.621 002 624 16.621 956
Quadratic 188 1 188 5.000 049 333 5.000 524
Cubic 204 1 204 1.244 291 111 1.244 173
Error(product)  Linear 2.108 10 211
Quadratic 375 10 038
Cubic 1.642 10 164

a. Computed using alpha = .05
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Model

coeff t ULCI
constant 34573.0459 99.6587 .0000 33891.3504 35254.7414
prevexp -28.4251 -8.4959 -21.8506
albegin 0284 144 175
(int 1 -.0041 -5.4823 -.0027 |
Interactions: These are the
int 1 salbegin The int_1 line tells us about the l?yerand upper
- interaction. limit 95%
confidence

B L R I T

intervals.






OEBPS/Images/fig00172.jpg
Procrovanies Use Corananca tox

© s groups o -
© cCompue rom oroupszes © Segaraterows
Dsiar P
[——— [—
[] ‘Separate roups
Y[summantaod Torsonaimap






OEBPS/Images/fig00017.jpg
Descriptives

_gender Statistic St Error
ath achievement test male Wiean 703440
o 95% Confidence Lower Bound
Interval for Mean Upper Bound
5% Trimmed Mean
Median
N Variance
Note that we have circled, Std. Deviation
for males and for females, Minimum
three key statistics: mean, Maximum
variance, and skewness. Range
Interquartiie Range
Skewness 403
Kurtosis 788
Qm_ap Mean 1.04576
95% Confidence Lower Bound
Interval for Mean Upper Bound asts
5% Trimmed Mean 10,6454
Median 10.3330
Variance Caso3s )
Std. Deviation 669612
Minimum ER
Maximum 27
Range 253
Interquartie Range 10,5000,
Skewness 369
Kurtosis 698 724
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Component Matri@

Component
1 2

grades in h.s. 624 -.322
math achievement test 931 044
mosaic, pattern test 220 949
visualization test 571 -.056
scholastic aptitude

test - math i 865 ~020

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

This unrotated matrix should not be
interpreted; it provides information about
how the loadings change when the
solution is rotated. However, the first
unrotated component provides the simplest
summary of the variables. In this case, it
appears that if one used the first
component only as the basis for creating
summary scores, such scores would not
include mosaic pattern score, which does
not have a high loading for the first
component.
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Model Summary

-2 Log Cox & Snell | Nagelkerke
Step likelihood R Square R Square
1 79.407 (276 369

Note that these pseudo R’s and percentage
correct are higher than they were when
only gender and parents’ education were
entered and that they are the same as we
found when all variables were entered
simultaneously. The -2 log likelihood is
lower than it was in the first model,
indicating a slightly better fit of this model
to the data.
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Collinearity Diagnostics®

Variance Proportions

math
Condition parent's Cubed pleasure mosaic, achievement

Model  Dimension | Eigenvalue Index (Constant) | education Competence scale pattern test test
1 1 5.466 1.000 00 00 00 00 00 00
2 204 5171 n 3 05 01 05 20
3 128 6511 n g 20 01 03 52
4 124 6635 00 12 42 00 30 18
5 061 9502 08 12 29 RE] 58 A0
[ 016 18.408 90 03 03 85 04 00
2 1 4588 1.000 00 0 00 00 0
2 196 4842 n 3 02 10 2
3 127 6.002 0o 50 01 03 72
4 072 7.975 04 14 12 82 06
5 o7 16.633 95 03 85 05 .00
k! 1 3692 1.000 oo 0 00 01
2 168 4690 04 2 06 3
3 13 5473 00 74 .00 .68
4 7 14629 96 02 94 00

a, Dependent Variahle: scholastic aptitude fest- math
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Unstructured covariance type.
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Test Statistics®

N
Chi-Square
df
Asymp. Sig

12
26.170
3

.000

The overall difference between the
mean ranks is significant at p <.001.

a. Friedman Test
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MIXED distance BY gender WITH linear quadratic
/CRITERIA-CIN(95) MXITER(100) MXSTEP(10) SCORING (1) SINGULAR(0.000000000001) HCONVERGE (0,
ABSOLUTE, ~ TDDM ABSOLUTE)
r

/FIXEDFlinear quadratic gender linear*gender|| SSTYPE(3)
/METHOD=REML"

/PRINT=G LMATRIX SOLUTION TESTCOV
/RANDOM=INTERCEPT | SUBJECT (subject) COVTYPE (VC) The linear effect of age,

| SUBJECT (subject) COVTYPE (AR1). the quadratic effect of age,
gender, and the interaction
between the /inear effect of
age and gender all are

fixed effects in this model.
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father's education

Cumulative
Frequency | Percent | Valid Percent | _Percent
Valid <h.s. grad 22 293 30.1 30.1
h.s. grad 16 213 219 52.1
<2yrsvoc 3 40 41 56.2
2 yrs voc 8 10.7 11.0 67.1
<2yrscoll 4 53 55 72.6 74% of fathers
>2yrs coll 1 13 14 @ have less than a
coll grad 7 9.3 9.6 . bachelor’s degree.
master's 6 8.0 8.2 91.8
MD/PhD 6 8.0 8.2 100.0
Total 73 97.3 100.0
Missing ~ System 2 27
Total 75 100.0
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Sig." Meaning Null Hypothesis Interpretation

1.00 p=1.00 Do Not Reject Not Statistically Significant
(could be due to chance)

50 p=.50 l l

.06 p=.06

.05 p=<.05 Reject Statistically Significant ©
(not likely due to chance)

01 p=.01 l

.000 p<.001

* SPSS uses Sig. to indicate the significance or probability level (p) of all inferential statistics. This is just a sample
of Sig. values, which could be any value from 0 to 1.
® p <.05 is the typical alpha level that researchers use to assess whether the null hypothesis should be rejected.

However, sometimes researchers use more liberal levels (e.g., .10 in exploratory studies) or more often conservative

levels (e.g., .01).

¢ Statistically significant does nor mean that the results have practical significance or importance.
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Pattern

Each row shows a particular pattern of missing
data. Row 1 shows the pattern of no missing
data. All other rows involve some missing data.

Missing Value Patterns

Type

Nonmissing
Missing

T T T T
binge.1 I preo.1 |binge.2 mood.2 ‘weigm.?lmood.:{ weight.4| mood.4
mood.1 weight1 binge.3 preo.2 weight2 preo.3 binge.4 preo.4

Variable
. B N Each variable is listed at the
Bmge. 1 is the only variable bottom, with a hatch mark
not missing any values. indicating the middle of the
column referring to that variable.
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Ranks

gender N Mean Rank | Sum of Ranks
visualization test male 34 43.65 )J;gg_ Mean ranks to
female 41 Q{:& 136 be compared.
Total 75
math achievement test male 34 45.10 1533.50
female 41 QZ_& 1316.50
Total 75
grades in h.s. male 34 35.78 1216.50
female 41 39.84 1633.50
Total 75
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Chi-Square Tests

Asymp. Sig. | ExactSig. | Exact Sig Indicates if
Value df (@2-sided) | (2-sided) | (1-sided) i

Pearson Chi-Square 127140 000 :fk::;g:::;p s
Continuity Correction® TTTT TOT e .
Likelihood Ratio 13.086 000
Fisher's Exact Test 000 000
Linear-by-Linear
Association 12544 R
N of Valid Cases 75

. Computed only for a 2x2 table This is good.

({b- 0 cells (:0%) have expected count less than 5. The minimum expected count is 16.32.

]/
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Estimates of Covariance Parameters'

Within schools variance (residual) is
still significant.

95% Confidence Interval

Parameter Estimate | Std. Error W; Sig. Lower Bound | Upper Bound
Residual 36.700197 625744 58.650 000 | 35.494027 37.947355
Intercept + cses % 8681643 | 1.079626 8.041 .000 6.803757 |  11.077840
[subject = school] 5 050747 | 406393 125 901 -745768 847262

[N 22) 693994 | 280786 2.472 013 314026 1.533723

a. Depend;m’ Variable: mathach.

Variance of cses.

Variance of schools in mathach.
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Descriptive Statistics
Mean | Std. Deviation N ]

Scholastic aptitude test- 49041 95.851 73
math

parent's education 43356 224700 73
Cubed Competence 396027 1716401 73
pleasure scale 31404 60379 73
mosaic, patiern test 27.356 96962 73
math achieverent test 126073 6.74892 73

The N in this table is 73
which indicates that 2
participants did not have
complete data for all of
the variables.






