
        
            
                
            
        

    


 In Praise of  Computer Organization and Design: The Hardware/

 Software Interface, Fifth Edition  

“Textbook selection is oft en a frustrating act of compromise—pedagogy, content 

coverage, quality of exposition, level of rigor, cost.  Computer Organization and 

 Design  is the rare book that hits all the right notes across the board, without 

compromise. It is not only the premier computer organization textbook, it is a 

shining example of what all computer science textbooks could and should be.” 

—Michael  Goldweber,  Xavier University 

“I have been using   Computer Organization and Design  for years, from the very 

fi rst edition. Th

e new Fift h Edition is yet another outstanding improvement on an 

already classic text. Th

e evolution from desktop computing to mobile computing 

to Big Data brings new coverage of embedded processors such as the ARM, new 

material on how soft ware and hardware interact to increase performance, and 

cloud computing. All this without sacrifi cing the fundamentals.” 

—Ed  Harcourt,  St. Lawrence University 

“To Millennials:   Computer Organization and Design  is   the  computer architecture book you should keep on your (virtual) bookshelf. Th

e book is both old and new, 

because it develops venerable principles—Moore's Law, abstraction, common case 

fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates 

them with contemporary designs, e.g., ARM Cortex A8 and Intel Core i7.” 

—Mark D. Hill,  University of Wisconsin-Madison 

“Th

e new edition of   Computer Organization and Design  keeps pace with advances 

in emerging embedded and many-core (GPU) systems, where tablets and 

smartphones will are quickly becoming our new desktops. Th

is text acknowledges 

these changes, but continues to provide a rich foundation of the fundamentals 

in computer organization and design which will be needed for the designers of 

hardware and soft ware that power this new class of devices and systems.” 

—Dave  Kaeli,  Northeastern University 

“Th

e Fift h Edition of   Computer Organization and Design  provides more than an 

introduction to computer architecture. It prepares the reader for the changes necessary 

to meet the ever-increasing performance needs of mobile systems and big data 

processing at a time that diffi

culties in semiconductor scaling are making all systems 

power constrained. In this new era for computing, hardware and soft ware must be co-

designed and system-level architecture is as critical as component-level optimizations.” 

—Christos  Kozyrakis,  Stanford University 

“Patterson and Hennessy brilliantly address the issues in ever-changing computer 

hardware architectures, emphasizing on interactions among hardware and soft ware 

components at various abstraction levels. By interspersing I/O and parallelism concepts 

with a variety of mechanisms in hardware and soft ware throughout the book, the new 

edition achieves an excellent holistic presentation of computer architecture for the 

PostPC era. Th

is book is an essential guide to hardware and soft ware professionals 

facing energy effi

ciency and parallelization challenges in Tablet PC to cloud computing.” 

—Jae C. Oh,  Syracuse University 
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 T H E   H A R D W A R E / S O F T W A R E   I N T E R F A C E 

 David A. Patterson   has been teaching computer architecture at the University of California, Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair 

of Computer Science. His teaching has been honored by the Distinguished Teaching 

Award from the University of California, the Karlstrom Award from ACM, and the 

Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson 

received the IEEE Technical Achievement Award and the ACM Eckert-Mauchly Award 

for contributions to RISC, and he shared the IEEE Johnson Information Storage Award 

for contributions to RAID. He also shared the IEEE John von Neumann Medal and 

the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of the 

American Academy of Arts and Sciences, the Computer History Museum, ACM, 

and IEEE, and he was elected to the National Academy of Engineering, the National 

Academy of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on 

the Information Technology Advisory Committee to the U.S. President, as chair of the 

CS division in the Berkeley EECS department, as chair of the Computing Research 

Association, and as President of ACM. Th

is record led to Distinguished Service Awards 

from ACM and CRA. 

At Berkeley, Patterson led the design and implementation of RISC I, likely the fi rst 

VLSI reduced instruction set computer, and the foundation of the commercial 

SPARC architecture. He was a leader of the Redundant Arrays of Inexpensive Disks 

(RAID) project, which led to dependable storage systems from many companies. 

He was also involved in the Network of Workstations (NOW) project, which led to 

cluster technology used by Internet companies and later to cloud computing. Th

ese 

projects earned three dissertation awards from ACM. His current research projects 

are Algorithm-Machine-People and Algorithms and Specializers for Provably Optimal 

Implementations with Resilience and Effi

ciency. Th

e AMP Lab is developing scalable 

machine learning algorithms, warehouse-scale-computer-friendly programming 

models, and crowd-sourcing tools to gain valuable insights quickly from big data in 

the cloud. Th

e ASPIRE Lab uses deep hardware and soft ware co-tuning to achieve the 

highest possible performance and energy effi

ciency for mobile and rack computing 

systems. 

 John L. Hennessy  is the tenth president of Stanford University, where he has been 

a member of the faculty since 1977 in the departments of electrical engineering and 

computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the 

National Academy of Engineering, the National Academy of Science, and the American 

Philosophical Society; and a Fellow of the American Academy of Arts and Sciences. 

Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to 

RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000 

John von Neumann Award, which he shared with David Patterson. He has also received 

seven honorary doctorates. 

In 1981, he started the MIPS project at Stanford with a handful of graduate students. 

Aft er completing the project in 1984, he took a leave from the university to cofound 

MIPS Computer Systems (now MIPS Technologies), which developed one of the fi rst 

commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have 

been shipped in devices ranging from video games and palmtop computers to laser printers 

and network switches. Hennessy subsequently led the DASH (Director Architecture 

for Shared Memory) project, which prototyped the fi rst scalable cache coherent 

multiprocessor; many of the key ideas have been adopted in modern multiprocessors. 

In addition to his technical activities and university responsibilities, he has continued to 

work with numerous start-ups both as an early-stage advisor and an investor. 
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 Preface  

  Th

   e most beautiful thing we can experience is the mysterious. It is the 

 source of all true art and science. 

 Albert Einstein , What I Believe, 1930   

 About This Book 

We believe that learning in computer science and engineering should refl ect 

the current state of the fi eld, as well as introduce the principles that are shaping 

computing. We also feel that readers in every specialty of computing need 

to appreciate the organizational paradigms that determine the capabilities, 

performance, energy, and, ultimately, the success of computer systems. 



Modern computer technology requires professionals of every computing 

specialty to understand both hardware and soft ware.  Th

e interaction between 

hardware and soft ware at a variety of levels also off ers a framework for understanding 

the fundamentals of computing. Whether your primary interest is hardware or 

soft ware, computer science or electrical engineering, the central ideas in computer 

organization and design are the same. Th

us, our emphasis in this book is to show 

the relationship between hardware and soft ware and to focus on the concepts that 

are the basis for current computers. 

Th

e recent switch from uniprocessor to multicore microprocessors confi rmed 

the soundness of this perspective, given since the fi rst edition. While programmers 

could ignore the advice and rely on computer architects, compiler writers, and silicon 

engineers to make their programs run faster or be more energy-effi

cient without 

change, that era is over. For programs to run faster, they must become parallel. 

While the goal of many researchers is to make it possible for programmers to be 

unaware of the underlying parallel nature of the hardware they are programming, 

it will take many years to realize this vision. Our view is that for at least the next 

decade, most programmers are going to have to understand the hardware/soft ware 

interface if they want programs to run effi

ciently on parallel computers. 

Th

e audience for this book includes those with little experience in assembly 

language or logic design who need to understand basic computer organization as 

well as readers with backgrounds in assembly language and/or logic design who 

want to learn how to design a computer or understand how a system works and 

why it performs as it does. 

xvi Preface

 About the Other Book 



Some readers may be familiar with  

 Computer Architecture: A Quantitative 

 Approach , popularly known as Hennessy and Patterson. (Th

is book in turn is 

oft en called Patterson and Hennessy.) Our motivation in writing the earlier book 

was to describe the principles of computer architecture using solid engineering 

fundamentals and quantitative cost/performance tradeoff s. We used an approach 

that combined examples and measurements, based on commercial systems, to 

create realistic design experiences. Our goal was to demonstrate that computer 

architecture could be learned using quantitative methodologies instead of a 

descriptive approach. It was intended for the serious computing professional who 

wanted a detailed understanding of computers. 

A majority of the readers for this book do not plan to become computer 

architects. Th

e performance and energy effi

ciency of future soft ware systems will 

be dramatically aff ected, however, by how well soft ware designers understand the 

basic hardware techniques at work in a system. Th

us, compiler writers, operating 

system designers, database programmers, and most other soft ware engineers need 

a fi rm grounding in the principles presented in this book. Similarly, hardware 

designers must understand clearly the eff ects of their work on soft ware applications. 

Th

us, we knew that this book had to be much more than a subset of the material 

in   Computer Architecture , and the material was extensively revised to match the 

diff erent audience. We were so happy with the result that the subsequent editions of 

 Computer Architecture  were revised to remove most of the introductory material; 

hence, there is much less overlap today than with the fi rst editions of both books. 

 Changes for the Fifth Edition 

We had six major goals for the fi ft h edition of   Computer Organization and Design: 

demonstrate the importance of understanding hardware with a running example; 

highlight major themes across the topics using margin icons that are introduced 

early; update examples to refl ect changeover from PC era to PostPC era; spread the 

material on I/O throughout the book rather than isolating it into a single chapter; 

update the technical content to refl ect changes in the industry since the publication 

of the fourth edition in 2009; and put appendices and optional sections online 

instead of including a CD to lower costs and to make this edition viable as an 

electronic book. 

Before discussing the goals in detail, let’s look at the table on the next page. It 

shows the hardware and soft ware paths through the material. Chapters 1, 4, 5, and 

6 are found on both paths, no matter what the experience or the focus. Chapter 1 

discusses the importance of energy and how it motivates the switch from single 

core to multicore microprocessors and introduces the eight great ideas in computer 

architecture. Chapter 2 is likely to be review material for the hardware-oriented, 

but it is essential reading for the soft ware-oriented, especially for those readers 

interested in learning more about compilers and object-oriented programming 

languages. Chapter  3 is for readers interested in constructing a datapath or in 
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xviii Preface

learning more about fl oating-point arithmetic. Some will skip parts of Chapter 3, 

either because they don’t need them or because they off er a review. However, we 

introduce the running example of matrix multiply in this chapter, showing how 

subword parallels off ers a fourfold improvement, so don’t skip sections 3.6 to 3.8. 

Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews 

and Section 4.12 gives the next performance boost for matrix multiply for those with 

a soft ware focus. Th

ose with a hardware focus, however, will fi nd that this chapter 

presents core material; they may also, depending on their background, want to read 

Appendix C on logic design fi rst. Th

e last chapter on multicores, multiprocessors, 

and clusters, is   mostly new content and should be read by everyone. It was 

signifi cantly reorganized in this edition to make the fl ow of ideas more natural 

and to include much more depth on GPUs, warehouse scale computers, and the 

hardware-soft ware interface of network interface cards that are key to clusters. 

Th

e fi rst of the six goals for this fi rth edition was to demonstrate the importance 

of understanding modern hardware to get good performance and energy effi

ciency 

with a concrete example. As mentioned above, we start with subword parallelism 

in Chapter 3 to improve matrix multiply by a factor of 4. We double performance 

in Chapter 4 by unrolling the loop to demonstrate the value of instruction level 

parallelism. Chapter 5 doubles performance again by optimizing for caches using 

blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by 

using thread-level parallelism. All four optimizations in total add just 24 lines of C 

code to our initial matrix multiply example. 

Th

e second goal was to help readers separate the forest from the trees by 

identifying eight great ideas of computer architecture early and then pointing out 

all the places they occur throughout the rest of the book. We use (hopefully) easy 

to remember margin icons and highlight the corresponding word in the text to 

remind readers of these eight themes. Th

ere are nearly 100 citations in the book. 

No chapter has less than seven examples of great ideas, and no idea is cited less than 

fi ve times. Performance via parallelism, pipelining, and prediction are the three 

most popular great ideas, followed closely by Moore’s Law. Th

e processor chapter 

(4) is the one with the most examples, which is not a surprise since it probably 

received the most attention from computer architects. Th

e one great idea found in 

every chapter is performance via parallelism, which is a pleasant observation given 

the recent emphasis in parallelism in the fi eld and in editions of this book. 

Th

e third goal was to recognize the generation change in computing from the 

PC era to the PostPC era by this edition with our examples and material. Th

us, 

Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6 

describes the computing infrastructure of the cloud. We also feature the ARM, 

which is the instruction set of choice in the personal mobile devices of the PostPC 

era, as well as the x86 instruction set that dominated the PC Era and (so far) 

dominates cloud computing. 

Th

e fourth goal was to spread the I/O material throughout the book rather 

than have it in its own chapter, much as we spread parallelism throughout all the 

chapters in the fourth edition. Hence, I/O material in this edition can be found in 
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Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. Th

e thought is that readers (and instructors) 

are more likely to cover I/O if it’s not segregated to its own chapter. 

Th

is is a fast-moving fi eld, and, as is always the case for our new editions, an 

important goal is to update the technical content. Th

e running example is the ARM 

Cortex A8 and the Intel Core i7, refl ecting our PostPC Era. Other highlights include 

an overview the new 64-bit instruction set of ARMv8, a tutorial on GPUs that 

explains their unique terminology, more depth on the warehouse scale computers 

that make up the cloud, and a deep dive into 10 Gigabyte Ethernet cards. 

To keep the main book short and compatible with electronic books, we placed 

the optional material as online appendices instead of on a companion CD as in 

prior editions. 

Finally, we updated all the exercises in the book. 

While some elements changed, we have preserved useful book elements from 

prior editions. To make the book work better as a reference, we still place defi nitions 

of new terms in the margins at their fi rst occurrence. Th

e book element called 

“Understanding Program Performance” sections helps readers understand the 

performance of their programs and how to improve it, just as the “Hardware/Soft ware 

Interface” book element helped readers understand the tradeoff s at this interface. 

“Th

e Big Picture” section remains so that the reader sees the forest despite all the 

trees. “Check Yourself ” sections help readers to confi rm their comprehension of the 

material on the fi rst time through with answers provided at the end of each chapter. 

Th

is edition still includes the green MIPS reference card, which was inspired by the 

“Green Card” of the IBM System/360. Th

is card has been updated and should be a 

handy reference when writing MIPS assembly language programs. 

 Changes for the Fifth Edition 

We have collected a great deal of material to help instructors teach courses using 

this book. Solutions to exercises, fi gures from the book, lecture slides, and other 

materials are available to adopters from the publisher. Check the publisher’s Web 

site for more information: 

  textbooks.elsevier.com/9780124077263   

 Concluding Remarks 

If you read the following acknowledgments section, you will see that we went to 

great lengths to correct mistakes. Since a book goes through many printings, we 

have the opportunity to make even more corrections. If you uncover any remaining, 

resilient bugs, please contact the publisher by electronic mail at   cod5bugs@mkp. 

 com  or by low-tech mail using the address found on the copyright page. 

Th

is edition is the second break in the long-standing collaboration between 

Hennessy and Patterson, which started in 1989. Th

e demands of running one of 

the world’s great universities meant that President Hennessy could no longer make 

the substantial commitment to create a new edition. Th

e remaining author felt 
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once again like a tightrope walker without a safety net. Hence, the people in the 

acknowledgments and Berkeley colleagues played an even larger role in shaping 

the contents of this book. Nevertheless, this time around there is only one author 

to blame for the new material in what you are about to read. 

 Acknowledgments for the Fifth Edition 
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(University of California, Davis); David Kaeli  (Northeastern University); Nicole 

Kaiyan  (University of Adelaide); John Oliver  (Cal Poly, San Luis Obispo); Milos Prvulovic  (Georgia Tech); and  Jichuan Chang , Jacob Leverich , Kevin Lim ,  and Partha Ranganathan  (all from Hewlett-Packard). 

Additional thanks goes to  Jason Bakos  for developing the new lecture slides. 

 

Preface 

xxi

I am grateful to the many instructors who have answered the publisher’s surveys, 

reviewed our proposals, and attended focus groups to analyze and respond to our 

plans for this edition. Th

ey include the following individuals: Focus Groups in 

2012: Bruce Barton (Suff olk County Community College), Jeff  Braun (Montana 

Tech), Ed Gehringer (North Carolina State), Michael Goldweber (Xavier University), 

Ed Harcourt (St. Lawrence University), Mark Hill (University of Wisconsin, 

Madison), Patrick Homer (University of Arizona), Norm Jouppi (HP Labs), Dave 

Kaeli (Northeastern University), Christos Kozyrakis (Stanford University), 

Zachary Kurmas (Grand Valley State University), Jae C. Oh (Syracuse University), 

Lu Peng (LSU), Milos Prvulovic (Georgia Tech), Partha Ranganathan (HP 

Labs), David Wood (University of Wisconsin), Craig Zilles (University of Illinois 

at Urbana-Champaign). Surveys and Reviews: Mahmoud Abou-Nasr (Wayne State 

University), Perry Alexander (Th

e University of Kansas), Hakan Aydin (George 

Mason University), Hussein Badr (State University of New York at Stony Brook), 

Mac Baker (Virginia Military Institute), Ron Barnes (George Mason University), 

Douglas Blough (Georgia Institute of Technology), Kevin Bolding (Seattle Pacifi c 

University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster 

College), Jeff  Braun (Montana Tech), Tom Briggs (Shippensburg University), Scott 

Burgess (Humboldt State University), Fazli Can (Bilkent University), Warren R. 

Carithers (Rochester Institute of Technology), Bruce Carlton (Mesa Community 

College), Nicholas Carter (University of Illinois at Urbana-Champaign), Anthony 

Cocchi (Th

e City University of New York), Don Cooley (Utah State University), 

Robert D. Cupper (Allegheny College), Edward W. Davis (North Carolina State 

University), Nathaniel J. Davis (Air Force Institute of Technology), Molisa Derk 

(Oklahoma City University), Derek Eager (University of Saskatchewan), Ernest 

Ferguson (Northwest Missouri State University), Rhonda Kay Gaede (Th

e University 

of Alabama), Etienne M. Gagnon (UQAM), Costa Gerousis (Christopher Newport 

University), Paul Gillard (Memorial University of Newfoundland), Michael 

Goldweber (Xavier University), Georgia Grant (College of San Mateo), Merrill Hall 

(Th

e Master’s College), Tyson Hall (Southern Adventist University), Ed Harcourt 

(St. Lawrence University), Justin E. Harlow (University of South Florida), Paul F. 

Hemler (Hampden-Sydney College), Martin Herbordt (Boston University), Steve 

J. Hodges (Cabrillo College), Kenneth Hopkinson (Cornell University), Dalton 

Hunkins (St. Bonaventure University), Baback Izadi (State University of New 

York—New Paltz), Reza Jafari, Robert W. Johnson (Colorado Technical University), 

Bharat Joshi (University of North Carolina, Charlotte), Nagarajan Kandasamy 

(Drexel University), Rajiv Kapadia, Ryan Kastner (University of California, 

Santa Barbara), E.J. Kim (Texas A&M University), Jihong Kim (Seoul National 

University), Jim Kirk (Union University), Geoff rey S. Knauth (Lycoming College), 

Manish M. Kochhal (Wayne State), Suzan Koknar-Tezel (Saint Joseph’s University), 

Angkul Kongmunvattana (Columbus State University), April Kontostathis (Ursinus 

College), Christos Kozyrakis (Stanford University), Danny Krizanc (Wesleyan 

University), Ashok Kumar, S. Kumar (Th

e University of Texas), Zachary Kurmas 

(Grand Valley State University), Robert N. Lea (University of Houston), Baoxin 

xxii Preface

Li (Arizona State University), Li Liao (University of Delaware), Gary Livingston 

(University of Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon Institute 

of Technology), Yashwant K Malaiya (Colorado State University), Bill Mark 

(University of Texas at Austin), Ananda Mondal (Clafl in University), Alvin Moser 

(Seattle University), Walid Najjar (University of California, Riverside), Danial J. 

Neebel (Loras College), John Nestor (Lafayette College), Jae C. Oh (Syracuse 

University), Joe Oldham (Centre College), Timour Paltashev, James Parkerson 

(University of Arkansas), Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted 

Pedersen (University of Minnesota), Lu Peng (Louisiana State University), Gregory 

D Peterson (Th

e University of Tennessee), Milos Prvulovic (Georgia Tech), Partha 

Ranganathan (HP Labs), Dejan Raskovic (University of Alaska, Fairbanks) Brad 

Richards (University of Puget Sound), Roman Rozanov, Louis Rubinfi eld (Villanova 

University), Md Abdus Salam (Southern University), Augustine Samba (Kent State 

University), Robert Schaefer (Daniel Webster College), Carolyn J. C. Schauble 

(Colorado State University), Keith Schubert (CSU San Bernardino), William 

L. Schultz, Kelly Shaw (University of Richmond), Shahram Shirani (McMaster 

University), Scott Sigman (Drury University), Bruce Smith, David Smith, Jeff  W. 

Smith (University of Georgia, Athens), Mark Smotherman (Clemson University), 

Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M), Timothy 

D. Stanley (Brigham Young University), Dean Stevens (Morningside College), 

Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander Taubin 

(Boston University), Will Th

acker (Winthrop University), Mithuna Th

ottethodi 

(Purdue University), Manghui Tu (Southern Utah University), Dean Tullsen 

(UC San Diego), Rama Viswanathan (Beloit College), Ken Vollmar (Missouri 

State University), Guoping Wang (Indiana-Purdue University), Patricia Wenner 

(Bucknell University), Kent Wilken (University of California, Davis), David Wolfe 

(Gustavus Adolphus College), David Wood (University of Wisconsin, Madison), 

Ki Hwan Yum (University of Texas, San Antonio), Mohamed Zahran (City College 

of New York), Gerald D. Zarnett (Ryerson University), Nian Zhang (South Dakota 

School of Mines & Technology), Jiling Zhong (Troy University), Huiyang Zhou 

(Th

e University of Central Florida), Weiyu Zhu (Illinois Wesleyan University). 

A special thanks also goes to  Mark Smotherman  for making multiple passes to 

fi nd technical and writing glitches that signifi cantly improved the quality of this 

edition. 

We wish to thank the extended Morgan Kaufmann family for agreeing to publish 

this book again under the able leadership of  Todd Green  and  Nate McFadden :  I 

certainly couldn’t have completed the book without them. We also want to extend 

thanks to  Lisa Jones , who managed the book production process, and  Russell 

Purdy , who did the cover design. Th

e new cover cleverly connects the PostPC Era 

content of this edition to the cover of the fi rst edition. 

Th

e contributions of the nearly 150 people we mentioned here have helped 

make this fi ft h edition what I hope will be our best book yet. Enjoy! 

David A. Patterson 

This page intentionally left blank

1

Computer 

Abstractions and 

Technology

 Civilization advances 

 by extending the 

1.1 Introduction 

3

 number of important 

1.2 

Eight Great Ideas in Computer 

 operations which we 

Architecture  11

 can perform without 

1.3 

Below Your Program  13

 thinking about them. 

1.4 

Under the Covers  16

1.5 

Technologies for Building Processors and 

Alfred North Whitehead, 

Memory  24

 An Introduction to Mathematics,  1911

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved. 

1.6 Performance 

28

1.7 

The Power Wall  40

1.8 

The Sea Change: The Switch from Uniprocessors to 

Multiprocessors  43

1.9 

Real Stuff: Benchmarking the Intel Core i7  46

1.10 

Fallacies and Pitfalls  49

1.11 Concluding 

Remarks 

52

1.12 

Historical Perspective and Further Reading  54

1.13 Exercises 

54

 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the 

excitement of the world of computer systems. Th

is is not a dry and dreary fi eld, 

where progress is glacial and where new ideas atrophy from neglect. No! Computers 

are the product of the incredibly vibrant information technology industry, all 

aspects of which are responsible for almost 10% of the gross national product of 

the United States, and whose economy has become dependent in part on the rapid 

improvements in information technology promised by Moore’s Law. Th

is unusual 

industry embraces innovation at a breath-taking rate. In the last 30 years, there have 

been a number of new computers whose introduction appeared to revolutionize 

the computing industry; these revolutions were cut short only because someone 

else built an even better computer. 

Th

is race to innovate has led to unprecedented progress since the inception 

of electronic computing in the late 1940s. Had the transportation industry kept 

pace with the computer industry, for example, today we could travel from New 

York to London in a second for a penny. Take just a moment to contemplate how 

such an improvement would change society—living in Tahiti while working in San 

Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can 

appreciate the implications of such a change. 
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Computers have led to a third revolution for civilization, with the information 

revolution taking its place alongside the agricultural and the industrial revolutions. 

Th

e resulting multiplication of humankind’s intellectual strength and reach 

naturally has aff ected our everyday lives profoundly and changed the ways in which 

the search for new knowledge is carried out. Th

ere is now a new vein of scientifi c 

investigation, with computational scientists joining theoretical and experimental 

scientists in the exploration of new frontiers in astronomy, biology, chemistry, and 

physics, among others. 

Th

e computer revolution continues. Each time the cost of computing improves 

by another factor of 10, the opportunities for computers multiply. Applications that 

were economically infeasible suddenly become practical. In the recent past, the 

following applications were “computer science fi ction.” 

■   Computers in automobiles: Until microprocessors improved dramatically 

in price and performance in the early 1980s, computer control of cars was 

ludicrous. Today, computers reduce pollution, improve fuel effi

ciency  via 

engine controls, and increase safety through blind spot warnings, lane 

departure warnings, moving object detection, and air bag infl ation to protect 

occupants in a crash. 

■   Cell phones: Who would have dreamed that advances in computer 

systems would lead to more than half of the planet having mobile phones, 

allowing person-to-person communication to almost anyone anywhere in 

the world? 

■   Human genome project: Th

e cost of computer equipment to map and analyze 

human DNA sequences was hundreds of millions of dollars. It’s unlikely that 

anyone would have considered this project had the computer costs been 10 

to 100 times higher, as they would have been 15 to 25 years earlier. Moreover, 

costs continue to drop; you will soon be able to acquire your own genome, 

allowing medical care to be tailored to you. 

■   World Wide Web: Not in existence at the time of the fi rst edition of this book, 

the web has transformed our society. For many, the web has replaced libraries 

and newspapers. 

■   Search engines: As the content of the web grew in size and in value, fi nding 

relevant information became increasingly important. Today, many people 

rely on search engines for such a large part of their lives that it would be a 

hardship to go without them. 

Clearly, advances in this technology now aff ect almost every aspect of our 

society. Hardware advances have allowed programmers to create wonderfully 

useful soft ware, which explains why computers are omnipresent. Today’s science 

fi ction suggests tomorrow’s killer applications: already on their way are glasses that 

augment reality, the cashless society, and cars that can drive themselves. 
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Classes of Computing Applications and Their 

Characteristics

Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used 

in computers ranging from smart home appliances to cell phones to the largest  personal computer supercomputers, these diff erent applications have diff erent design requirements  (PC) A computer designed for use by 

and employ the core hardware technologies in diff erent ways. Broadly speaking,  an individual, usually computers are used in three diff erent classes of applications. 

incorporating a graphics 

Personal computers (PCs) are possibly the best known form of computing,  display, a keyboard, and a which readers of this book have likely used extensively. Personal computers  mouse. 

emphasize delivery of good performance to single users at low cost and usually 

execute third-party soft ware. Th

is class of computing drove the evolution of many  server A computer 

used for running 

computing technologies, which is only about 35 years old! 

larger programs for 

Servers are the modern form of what were once much larger computers, and  multiple users, oft en are usually accessed only via a network. Servers are oriented to carrying large  simultaneously, and workloads, which may consist of either single complex applications—usually a  typically accessed only via scientifi c or engineering application—or handling many small jobs, such as would  a network. 

occur in building a large web server. Th

ese applications are usually based on  supercomputer A class 

soft ware from another source (such as a database or simulation system), but are  of computers with the oft en modifi ed or customized for a particular function. Servers are built from the  highest performance and same basic technology as desktop computers, but provide for greater computing,  cost; they are confi gured storage, and input/output capacity. In general, servers also place a greater emphasis  as servers and typically on dependability, since a crash is usually more costly than it would be on a single-cost tens to hundreds of 

millions of dollars. 

user PC. 

Servers span the widest range in cost and capability. At the low end, a server  terabyte (TB) Originally may be little more than a desktop computer without a screen or keyboard and  1,099,511,627,776 

cost a thousand dollars. Th

ese low-end servers are typically used for fi le storage,  (240) bytes, although 

small business applications, or simple web serving (see Section 6.10). At the other  communications and extreme are supercomputers, which at the present consist of tens of thousands of  secondary storage processors and many terabytes of memory, and cost tens to hundreds of millions  systems developers of dollars. Supercomputers are usually used for high-end scientifi c and engineering 

started using the term to 

mean 1,000,000,000,000 

calculations, such as weather forecasting, oil exploration, protein structure  (1012) bytes. To reduce determination, and other large-scale problems. Although such supercomputers  confusion, we now use the represent the peak of computing capability, they represent a relatively small fraction 

term tebibyte (TiB) for 

of the servers and a relatively small fraction of the overall computer market in  240 bytes, defi ning  terabyte terms of total revenue. 

(TB) to mean 1012 bytes. 

Embedded computers are the largest class of computers and span the widest  Figure 1.1 shows the full range of applications and performance. Embedded computers include the  range of decimal and 

binary values and names. 

microprocessors found in your car, the computers in a television set, and the 

networks of processors that control a modern airplane or cargo ship. Embedded  embedded computer computing systems are designed to run one application or one set of related  A computer inside another applications that are normally integrated with the hardware and delivered as a  device used for running one predetermined 

single system; thus, despite the large number of embedded computers, most users  application or collection of never really see that they are using a computer! 

soft ware. 
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Decimal 

Binary 

term

Abbreviation

Value

term

Abbreviation

Value

% Larger

kilobyte

KB

103

kibibyte

KiB

210

2%

megabyte

MB

106

mebibyte

MiB

220

5%

gigabyte

GB

109

gibibyte

GiB

230

7%

terabyte

TB

1012

tebibyte

TiB

240

10%

petabyte

PB

1015

pebibyte

PiB

250

13%

exabyte

EB

1018

exbibyte

EiB

260

15%

zettabyte

ZB

1021

zebibyte

ZiB

270

18%

yottabyte

YB

1024

yobibyte

YiB

280

21%

FIGURE 1.1  The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for all the common size terms.  In the last column we note how much larger the binary term is than its corresponding decimal term, which is compounded as we head down the chart. Th

ese prefi xes work for bits 

as well as bytes, so  gigabit (Gb) is 109 bits while  gibibits (Gib) is 230 bits. 

Embedded applications oft en have unique application requirements that 

combine a minimum performance with stringent limitations on cost or power. For 

example, consider a music player: the processor need only be as fast as necessary 

to handle its limited function, and beyond that, minimizing cost and power are the 

most important objectives. Despite their low cost, embedded computers oft en have 

lower tolerance for failure, since the results can vary from upsetting (when your 

new television crashes) to devastating (such as might occur when the computer in a 

plane or cargo ship crashes). In consumer-oriented embedded applications, such as 

a digital home appliance, dependability is achieved primarily through simplicity—

the emphasis is on doing one function as perfectly as possible. In large embedded 

systems, techniques of redundancy from the server world are oft en  employed. 

Although this book focuses on general-purpose computers, most concepts apply 

directly, or with slight modifi cations, to embedded computers. 

Elaboration:  Elaborations are short sections used throughout the text to provide more 

detail on a particular subject that may be of interest. Disinterested readers may skip 

over an elaboration, since the subsequent material will never depend on the contents 

of the elaboration. 

Many embedded processors are designed using  processor cores, a version of a 

processor written in a hardware description language, such as Verilog or VHDL (see 

Chapter 4). The core allows a designer to integrate other application-specifi c hardware 

with the processor core for fabrication on a single chip. 

Welcome to the PostPC Era

Th

e continuing march of technology brings about generational changes in 

computer hardware that shake up the entire information technology industry. 

Since the last edition of the book we have undergone such a change, as signifi cant 

in the past as the switch starting 30 years ago to personal computers. Replacing the 
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Smart phone sales

Millions

600

400

PC (not including 

tablet)
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FIGURE 1.2  The number manufactured per year of tablets and smart phones, which 

refl ect the PostPC era, versus personal computers and traditional cell phones.  Smart phones represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories are relatively fl at or declining. 

Personal mobile 

devices (PMDs) are 

small wireless devices to 

connect to the Internet; 

PC is the personal mobile device (PMD). PMDs are battery operated with wireless 

they rely on batteries for 

connectivity to the Internet and typically cost hundreds of dollars, and, like PCs,  power, and soft ware is users can download soft ware (“apps”) to run on them. Unlike PCs, they no longer  installed by downloading have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen  apps. Conventional or even speech input. Today’s PMD is a smart phone or a tablet computer, but  examples are smart 

tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time  phones and tablets. 

of tablets and smart phones versus that of PCs and traditional cell phones. 

Cloud Computing

Taking over from the traditional server is Cloud Computing, which relies upon 

refers 

to large collections of 

giant datacenters that are now known as  Warehouse Scale Computers (WSCs).  servers that provide services Companies like Amazon and Google build these WSCs containing 100,000 servers  over the Internet; some and then let companies rent portions of them so that they can provide soft ware  providers rent dynamically services to PMDs without having to build WSCs of their own. Indeed, Soft ware as  varying numbers of servers a Service (SaaS) deployed via the cloud is revolutionizing the soft ware industry just 

as a utility. 

as PMDs and WSCs are revolutionizing the hardware industry. Today’s soft ware 

developers will oft en have a portion of their application that runs on the PMD and  Soft ware as a Service (SaaS) delivers soft ware 

a portion that runs in the Cloud. 

and data as a service over 

the Internet, usually via 

What You Can Learn in This Book

a thin program such as a 

browser that runs on local 

Successful programmers have always been concerned about the performance of  client devices, instead of their programs, because getting results to the user quickly is critical in creating  binary code that must be successful soft ware. In the 1960s and 1970s, a primary constraint on computer  installed, and runs wholly performance was the size of the computer’s memory. Th

us, programmers oft en  on that device. Examples 

include web search and 

followed a simple credo: minimize memory space to make programs fast. In the  social networking. 
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last decade, advances in computer design and memory technology have greatly 

reduced the importance of small memory size in most applications other than 

those in embedded computing systems. 

Programmers interested in performance now need to understand the issues 

that have replaced the simple memory model of the 1960s: the parallel nature 

of processors and the hierarchical nature of memories. Moreover, as we explain 

in Section 1.7, today’s programmers need to worry about energy effi

ciency  of 

their programs running either on the PMD or in the Cloud, which also requires 

understanding what is below your code. Programmers who seek to build 

competitive versions of soft ware will therefore need to increase their knowledge of 

computer organization. 

We are honored to have the opportunity to explain what’s inside this revolutionary 

machine, unraveling the soft ware below your program and the hardware under the 

covers of your computer. By the time you complete this book, we believe you will 

be able to answer the following questions:

■  How are programs written in a high-level language, such as C or Java, 

translated into the language of the hardware, and how does the hardware 

execute the resulting program? Comprehending these concepts forms the 

basis of understanding the aspects of both the hardware and soft ware that 

aff ect program performance. 

■  What is the interface between the soft ware and the hardware, and how does 

soft ware instruct the hardware to perform needed functions? Th

ese concepts 

are vital to understanding how to write many kinds of soft ware. 

■  What determines the performance of a program, and how can a programmer 

improve the performance? As we will see, this depends on the original 

program, the soft ware translation of that program into the computer’s 

language, and the eff ectiveness of the hardware in executing the program. 

■  What techniques can be used by hardware designers to improve performance? 

Th

is book will introduce the basic concepts of modern computer design. Th

e 

interested reader will fi nd much more material on this topic in our advanced 

book,  Computer Architecture: A Quantitative Approach. 

■  What techniques can be used by hardware designers to improve energy 

effi

ciency? What can the programmer do to help or hinder energy effi

ciency? 

■  What are the reasons for and the consequences of the recent switch from 

multicore 

sequential processing to parallel processing? Th

is book gives the motivation, 

microprocessor 

describes the current hardware mechanisms to support parallelism, and 

A microprocessor 

surveys the new generation of  “multicore” microprocessors (see Chapter 6). 

containing multiple 

processors (“cores”) in a 

■  Since the fi rst commercial computer in 1951, what great ideas did computer 

single integrated circuit. 

architects come up with that lay the foundation of modern computing? 
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Without understanding the answers to these questions, improving the 

performance of your program on a modern computer or evaluating what features 

might make one computer better than another for a particular application will be 

a complex process of trial and error, rather than a scientifi c procedure driven by 

insight and analysis. 

Th

is fi rst chapter lays the foundation for the rest of the book. It introduces the 

basic ideas and defi nitions, places the major components of soft ware and hardware 

in perspective, shows how to evaluate performance and energy, introduces 

integrated circuits (the technology that fuels the computer revolution), and explains 

the shift  to multicores. 

In this chapter and later ones, you will likely see many new words, or words 

that you may have heard but are not sure what they mean. Don’t panic! Yes, there 

is a lot of special terminology used in describing modern computers, but the 

terminology actually helps, since it enables us to describe precisely a function or 

capability. In addition, computer designers (including your authors)  love using 

acronyms, which are  easy to understand once you know what the letters stand for! acronym A word To help you remember and locate terms, we have included a highlighted defi nition  constructed by taking the of every term in the margins the fi rst time it appears in the text. Aft er a short  initial letters of a string time of working with the terminology, you will be fl uent, and your friends will  of words. For example: RAM is an acronym for 

be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,  Random Access Memory, 

PCIe, SATA, and many others. 

and CPU is an acronym 

To reinforce how the soft ware and hardware systems used to run a program will  for Central Processing aff ect performance, we use a special section,  Understanding Program Performance,  Unit. 

throughout the book to summarize important insights into program performance. 

Th

e fi rst one appears below. 

Th

e performance of a program depends on a combination of the eff ectiveness of the 

Understanding 

algorithms used in the program, the soft ware systems used to create and translate  Program 

the program into machine instructions, and the eff ectiveness of the computer in 

executing those instructions, which may include input/output (I/O) operations. Performance

Th

is table summarizes how the hardware and soft ware aff ect performance. 

Hardware or software 

Where is this 

component

How this component affects performance

topic covered? 

Algorithm

Determines both the number of source-level 

Other books! 

statements and the number of I/O operations 

executed

Programming language, 

Determines the number of computer instructions 

Chapters 2 and 3

compiler, and architecture

for each source-level statement

Processor and memory 

Determines how fast instructions can be executed

Chapters 4, 5, and 6

system

I/O system (hardware and  Determines how fast I/O operations may be 

Chapters 4, 5, and 6

operating system)

executed
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To demonstrate the impact of the ideas in this book, we improve the performance 

of a C program that multiplies a matrix times a vector in a sequence of 

chapters. Each step leverages understanding how the underlying hardware 

really works in a modern microprocessor to improve performance by a factor 

of 200! 

■ In the category of  data level parallelism,  in Chapter 3 we use  subword 

 parallelism via C intrinsics to increase performance by a factor of 3.8. 

■  In the category of  instruction level parallelism,  in Chapter 4 we use  loop unrolling to exploit multiple instruction issue and out-of-order execution 

 hardware to increase performance by another factor of 2.3. 

■  In the category of  memory hierarchy optimization,  in Chapter 5 we use 

 cache blocking to increase performance on large matrices by another factor 

of 2.5. 

■  In the category of  thread level parallelism,  in Chapter 6 we use  parallel for loops in OpenMP to exploit multicore hardware to increase performance by 

another factor of 14. 

Check   Check Yourself sections are designed to help readers assess whether they 

comprehend the major concepts introduced in a chapter and understand the 

Yourself

implications of those concepts. Some  Check Yourself questions have simple answers; 

others are for discussion among a group. Answers to the specifi c questions can 

be found at the end of the chapter.  Check Yourself questions appear only at the 

end of a section, making it easy to skip them if you are sure you understand the 

material. 

1. Th

e number of embedded processors sold every year greatly outnumbers 

the number of PC and even PostPC processors. Can you confi rm or deny 

this insight based on your own experience? Try to count the number of 

embedded processors in your home. How does it compare with the number 

of conventional computers in your home? 

2.  As mentioned earlier, both the soft ware and hardware aff ect the performance 

of a program. Can you think of examples where each of the following is the 

right place to look for a performance bottleneck? 

■  Th

e algorithm chosen

■  Th

e programming language or compiler

■  Th

e operating system

■  Th

e processor

■  Th

e I/O system and devices
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 1.2 

 Eight Great Ideas in Computer 

Architecture

We now introduce eight great ideas that computer architects have been invented in 

the last 60 years of computer design. Th

ese ideas are so powerful they have lasted 

long aft er the fi rst computer that used them, with newer architects demonstrating 

their admiration by imitating their predecessors. Th

ese great ideas are themes that 

we will weave through this and subsequent chapters as examples arise. To point 

out their infl uence, in this section we introduce icons and highlighted terms that 

represent the great ideas and we use them to identify the nearly 100 sections of the 

book that feature use of the great ideas. 

Design for Moore’s Law

Th

e one constant for computer designers is rapid change, which is driven largely by 

Moore’s Law. It states that integrated circuit resources double every 18–24 months. 

Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made 

by Gordon Moore, one of the founders of Intel. As computer designs can take years, 

the resources available per chip can easily double or quadruple between the start 

and fi nish of the project. Like a skeet shooter, computer architects must anticipate 

where the technology will be when the design fi nishes rather than design for where 

it starts. We use an “up and to the right” Moore’s Law graph to represent designing 

for rapid change. 

Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to make 

themselves more productive, for otherwise design time would lengthen as 

dramatically as resources grew by Moore’s Law. A major productivity technique for 

hardware and soft ware is to use abstractions to represent the design at diff erent 

levels of representation; lower-level details are hidden to off er a simpler model at 

higher levels. We’ll use the abstract painting icon to represent this second great 

idea. 

Make the Common Case Fast

Making the common case fast will tend to enhance performance better than 

optimizing the rare case. Ironically, the common case is oft en simpler than the 

rare case and hence is oft en easier to enhance. Th

is common sense advice implies 

that you know what the common case is, which is only possible with careful 

experimentation and measurement (see Section 1.6). We use a sports car as the 

icon for making the common case fast, as the most common trip has one or two 

passengers, and it’s surely easier to make a fast sports car than a fast minivan! 

12 
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Performance via Parallelism

Since the dawn of computing, computer architects have off ered designs that get 

more performance by performing operations in parallel. We’ll see many examples 

of parallelism in this book. We use multiple jet engines of a plane as our icon for 

parallel performance. 

Performance via Pipelining

A particular pattern of parallelism is so prevalent in computer architecture that 

it merits its own name: pipelining. For example, before fi re engines, a “bucket 

brigade” would respond to a fi re, which many cowboy movies show in response to 

a dastardly act by the villain. Th

e townsfolk form a human chain to carry a water 

source to fi re, as they could much more quickly move buckets up the chain instead 

of individuals running back and forth. Our pipeline icon is a sequence of pipes, 

with each section representing one stage of the pipeline. 

Performance via Prediction

Following the saying that it can be better to ask for forgiveness than to ask for 

permission, the fi nal great idea is prediction. In some cases it can be faster on 

average to guess and start working rather than wait until you know for sure, 

assuming that the mechanism to recover from a misprediction is not too expensive 

and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as 

our prediction icon. 

Hierarchy of Memories

Programmers want memory to be fast, large, and cheap, as memory speed oft en 

shapes performance, capacity limits the size of problems that can be solved, and the 

cost of memory today is oft en the majority of computer cost. Architects have found 

that they can address these confl icting demands with a hierarchy of memories, with 

the fastest, smallest, and most expensive memory per bit at the top of the hierarchy 

and the slowest, largest, and cheapest per bit at the bottom. As we shall see in 

Chapter 5, caches give the programmer the illusion that main memory is nearly 

as fast as the top of the hierarchy and nearly as big and cheap as the bottom of 

the hierarchy. We use a layered triangle icon to represent the memory hierarchy. 

Th

e shape indicates speed, cost, and size: the closer to the top, the faster and more 

expensive per bit the memory; the wider the base of the layer, the bigger the memory. 

Dependability via Redundancy

Computers not only need to be fast; they need to be dependable. Since any physical 

device can fail, we make systems dependable by including redundant components that 

can take over when a failure occurs  and to help detect failures. We use the tractor-trailer as our icon, since the dual tires on each side of its rear axels allow the truck to continue 

driving even when one tire fails. (Presumably, the truck driver heads immediately to a 

repair facility so the fl at tire can be fi xed, thereby restoring redundancy!)
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 In Paris they simply 

 stared when I spoke to 

 1.3 

Below Your Program

 them in French; I never 

 did succeed in making 

 those idiots understand 

A typical application, such as a word processor or a large database system, may   their own language. 

consist of millions of lines of code and rely on sophisticated soft ware libraries that 

implement complex functions in support of the application. As we will see, the  Mark Twain,  Th e hardware in a computer can only execute extremely simple low-level instructions.  Innocents Abroad, 1869

To go from a complex application to the simple instructions involves several layers 

of soft ware that interpret or translate high-level operations into simple computer 

instructions, an example of the great idea of abstraction. 

Figure 1.3 shows that these layers of soft ware are organized primarily in a 

hierarchical fashion, with applications being the outermost ring and a variety of 

systems soft ware sitting between the hardware and applications soft ware. 

Th

ere are many types of systems soft ware, but two types of systems soft ware 

are central to every computer system today: an operating system and a compiler. 

An  operating system interfaces between a user’s program and the hardware 

and provides a variety of services and supervisory functions. Among the most 

important functions are:

systems soft ware 

Soft ware that provides 

■  Handling basic input and output operations

services that are 

commonly useful, 

■  Allocating storage and memory

including operating 

systems, compilers, 

■  Providing for protected sharing of the computer among multiple applications  loaders, and assemblers. 

using it simultaneously. 

Examples of operating systems in use today are Linux, iOS, and Windows. 

operating system 

Supervising program that 

manages the resources of 

a computer for the benefi t 

of the programs that run 

on that computer. 

Applications software 

ystems software

S



Hardware

FIGURE 1.3  A simplifi ed view of hardware and software as hierarchical layers, shown as concentric circles with hardware in the center and applications software outermost.  In 

complex applications, there are oft en multiple layers of application soft ware as well. For example, a database system may run on top of the systems soft ware hosting an application, which in turn runs on top of the database. 
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compiler A program 

Compilers perform another vital function: the translation of a program written 

that translates high-level 

in a high-level language, such as C, C⫹⫹, Java, or Visual Basic into instructions 

language statements 

that the hardware can execute. Given the sophistication of modern programming 

into assembly language 

languages and the simplicity of the instructions executed by the hardware, the 

statements. 

translation from a high-level language program to hardware instructions is 

complex. We give a brief overview of the process here and then go into more depth 

in Chapter 2 and in Appendix A. 

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. Th

e 

easiest signals for computers to understand are  on and  off , and so the computer 

alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 

how much can be written, the two letters of the computer alphabet do not limit 

what computers can do. Th

e two symbols for these two letters are the numbers 0 

and 1, and we commonly think of the computer language as numbers in base 2, or 

binary digit  Also called 

 binary numbers. We refer to each “letter” as a binary digit or bit. Computers are a bit. One of the two 

slaves to our commands, which are called instructions. Instructions, which are just 

numbers in base 2 (0 or 1) 

collections of bits that the computer understands and obeys, can be thought of as 

that are the components 

numbers. For example, the bits

of information. 

1000110010100000

instruction  A command 

that computer hardware 

tell one computer to add two numbers. Chapter 2 explains why we use numbers 

understands and obeys. 

for instructions  and data; we don’t want to steal that chapter’s thunder, but using 

numbers for both instructions and data is a foundation of computing. 

Th

e fi rst programmers communicated to computers in binary numbers, but this 

was so tedious that they quickly invented new notations that were closer to the way 

humans think. At fi rst, these notations were translated to binary by hand, but this 

process was still tiresome. Using the computer to help program the computer, the 

pioneers invented programs to translate from symbolic notation to binary. Th

e fi rst of 

assembler A program 

these programs was named an assembler. Th

is program translates a symbolic version 

that translates a symbolic 

of an instruction into the binary version. For example, the programmer would write

version of instructions 

into the binary version. 

add A,B

and the assembler would translate this notation into

1000110010100000

Th

is instruction tells the computer to add the two numbers A and B. Th

e name coined 

assembly language 

for this symbolic language, still used today, is assembly language. In contrast, the 

A symbolic representation 

binary language that the machine understands is the machine language. 

of machine instructions. 

Although a tremendous improvement, assembly language is still far from the 

notations a scientist might like to use to simulate fl uid fl ow or that an accountant 

machine language 

A binary representation of 

might use to balance the books. Assembly language requires the programmer 

machine instructions. 

to write one line for every instruction that the computer will follow, forcing the 

programmer to think like the computer. 
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Th

e recognition that a program could be written to translate a more powerful 

language into computer instructions was one of the great breakthroughs in the 

early days of computing. Programmers today owe their productivity—and their 

sanity—to the creation of high-level programming languages and compilers 

that translate programs in such languages into instructions. Figure 1.4 shows the relationships among these programs and languages, which are more examples of 

the power of abstraction. 

high-level 

High-level

swap(int v[], int k)

programming 

language

{int temp; 

language A portable 

program

temp = v[k]; 

language such as C, C⫹⫹, 

(in C)

v[k] = v[k+1]; 

Java, or Visual Basic that 

v[k+1] = temp; 

is composed of words 

}

and algebraic notation 

that can be translated by 

a compiler into assembly 

language. 

Compiler

Assembly

swap:

language

multi $2, $5,4

program

add   $2, $4,$2

(for MIPS)

lw    $15, 0($2)

lw    $16, 4($2)

sw    $16, 0($2)

sw    $15, 4($2)

jr    $31

Assembler

Binary machine

00000000101000100000000100011000

language

00000000100000100001000000100001

program

10001101111000100000000000000000

(for MIPS)

10001110000100100000000000000100

10101110000100100000000000000000

10101101111000100000000000000100

00000011111000000000000000001000

FIGURE 1.4  C program compiled into assembly language and then assembled into binary 

machine language.  Although the translation from high-level language to binary machine language is shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 

Th

ese languages and this program are examined in more detail in Chapter 2. 
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A compiler enables a programmer to write this high-level language expression:

A + B

Th

e compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary 

instructions that tell the computer to add the two numbers A and B. 

High-level programming languages off er several important benefi ts. First, they 

allow the programmer to think in a more natural language, using English words 

and algebraic notation, resulting in programs that look much more like text than 

like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be designed according to their intended use. Hence, Fortran was designed for scientifi c 

computation, Cobol for business data processing, Lisp for symbol manipulation, 

and so on. Th

ere are also domain-specifi c languages for even narrower groups of 

users, such as those interested in simulation of fl uids, for example. 

Th

e second advantage of programming languages is improved programmer 

productivity. One of the few areas of widespread agreement in soft ware development 

is that it takes less time to develop programs when they are written in languages 

that require fewer lines to express an idea. Conciseness is a clear advantage of high-

level languages over assembly language. 

Th

e fi nal advantage is that programming languages allow programs to be 

independent of the computer on which they were developed, since compilers and 

assemblers can translate high-level language programs to the binary instructions of 

any computer. Th

ese three advantages are so strong that today little programming 

is done in assembly language. 

 1.4 

Under the Covers

Now that we have looked below your program to uncover the underlying soft ware, 

let’s open the covers of your computer to learn about the underlying hardware. Th

e 

underlying hardware in any computer performs the same basic functions: inputting 

input device 

data, outputting data, processing data, and storing data. How these functions are 

A mechanism through 

performed is the primary topic of this book, and subsequent chapters deal with 

which the computer is 

fed information, such as a 

diff erent parts of these four tasks. 

keyboard. 

When we come to an important point in this book, a point so important that 

we hope you will remember it forever, we emphasize it by identifying it as a  Big 

output device 

 Picture item. We have about a dozen Big Pictures in this book, the fi rst being the 

A mechanism that 

fi ve components of a computer that perform the tasks of inputting, outputting, 

conveys the result of a 

computation to a user, 

processing, and storing data. 

such as a display, or to 

Two key components of computers are input devices, such as the microphone, 

another computer. 

and  output devices, such as the speaker. As the names suggest, input feeds the 
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computer, and output is the result of computation sent to the user. Some devices, 

such as wireless networks, provide both input and output to the computer. 

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s 

take an introductory tour through the computer hardware, starting with the 

external I/O devices. 

Th

e fi ve classic components of a computer are input, output, memory, 

datapath, and control, with the last two sometimes combined and called 

the processor. Figure 1.5 shows the standard organization of a computer. 

Th

is organization is independent of hardware technology: you can place 

The BIG

every piece of every computer, past and present, into one of these fi ve 

Picture

categories. To help you keep all this in perspective, the fi ve components of 

a computer are shown on the front page of each of the following chapters, 

with the portion of interest to that chapter highlighted. 

FIGURE 1.5  The organization of a computer, showing the fi ve  classic  components.   Th e 

processor gets instructions and data from memory. Input writes data to memory, and output reads data from memory. Control sends the signals that determine the operations of the datapath, memory, input, and output. 
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Through the Looking Glass

Th

e most fascinating I/O device is probably the graphics display. Most personal 

liquid crystal display 

mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display. 

A display technology 

Th

e LCD is not the source of light; instead, it controls the transmission of light. 

using a thin layer of liquid 

A typical LCD includes rod-shaped molecules in a liquid that form a twisting 

polymers that can be used 

helix that bends light entering the display, from either a light source behind the 

to transmit or block light 

display or less oft en from refl ected light. Th

e rods straighten out when a current is 

according to whether a 

applied and no longer bend the light. Since the liquid crystal material is between 

charge is applied. 

two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 

active matrix display 

Today, most LCD displays use an active matrix that has a tiny transistor switch at 

A liquid crystal display 

each pixel to precisely control current and make sharper images. A red-green-blue 

using a transistor to 

mask associated with each dot on the display determines the intensity of the three-

control the transmission 

color components in the fi nal image; in a color active matrix LCD, there are three 

of light at each individual 

pixel. 

transistor switches at each point. 

Th

e image is composed of a matrix of picture elements, or pixels, which can 

pixel  Th

e smallest 

be represented as a matrix of bits, called a  bit map. Depending on the size of the 

individual picture 

screen and the resolution, the display matrix in a typical tablet ranges in size from 

element. Screens are 

1024 ⫻ 768 to 2048 ⫻ 1536. A color display might use 8 bits for each of the three 

composed of hundreds 

of thousands to millions 

colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent 

of pixels, organized in a 

colors to be displayed. 

matrix. 

Th

e computer hardware support for graphics consists mainly of a  raster refresh 

 buff er, or  frame buff er, to store the bit map. Th

e image to be represented onscreen 

 Th

  rough computer 

is stored in the frame buff er, and the bit pattern per pixel is read out to the graphics 

 displays I have landed 

display at the refresh rate. Figure 1.6 shows a frame buff er with a simplifi ed design an airplane on the 

of just 4 bits per pixel. 

 deck of a moving 

Th

e goal of the bit map is to faithfully represent what is on the screen. Th

e 

 carrier, observed a 

challenges in graphics systems arise because the human eye is very good at detecting 

 nuclear particle hit a 

even subtle changes on the screen. 

 potential well, fl own 

 in a rocket at nearly 

 the speed of light and 

 watched a computer 

Frame buffer

 reveal its innermost 

 workings. 

Raster scan CRT display

Ivan Sutherland, the 

“father” of computer 

11

0

graphics,  Scientifi c 

Y0

0

Y0

 American, 1984

01

1

Y1

1

Y1

X0 X1

X0 X1

FIGURE 1.6  Each coordinate in the frame buffer on the left determines the shade of the corresponding coordinate for the raster scan CRT display on the right.  Pixel (X , Y ) contains 0

0

the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X , Y ). 

1

1
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Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the PostPC era 

have replaced the keyboard and mouse with touch sensitive displays, which has 

the wonderful user interface advantage of users pointing directly what they are 

interested in rather than indirectly with a mouse. 

While there are a variety of ways to implement a touch screen, many tablets  integrated circuit Also today use capacitive sensing. Since people are electrical conductors, if an insulator  called a chip. A device combining dozens to 

like glass is covered with a transparent conductor, touching distorts the electrostatic 

millions of transistors. 

fi eld of the screen, which results in a change in capacitance. Th

is technology can 

allow multiple touches simultaneously, which allows gestures that can lead to  central processor unit attractive user interfaces. 

(CPU) Also called 

processor. Th

e active part 

of the computer, which 

Opening the Box

contains the datapath and 

Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly,  control and which adds of the fi ve classic components of the computer, I/O dominates this reading device.  numbers, tests numbers, signals I/O devices to 

Th

e list of I/O devices includes a capacitive multitouch LCD display, front facing  activate, and so on. 

camera, rear facing camera, microphone, headphone jack, speakers, accelerometer, 

gyroscope, Wi-Fi network, and Bluetooth network. Th

e datapath, control, and  datapath  Th e 

memory are a tiny portion of the components. 

component of the 

Th

e small rectangles in Figure 1.8 contain the devices that drive our advancing  processor that performs technology, called integrated circuits and nicknamed chips. Th

e A5 package seen  arithmetic operations

in the middle of in Figure 1.8 contains two ARM processors that operate with a clock rate of 1 GHz. Th

e  processor is the active part of the computer, following the  control  Th e component instructions of a program to the letter. It adds numbers, tests numbers, signals I/O  of the processor that devices to activate, and so on. Occasionally, people call the processor the CPU, for  commands the datapath, memory, and I/O 

the more bureaucratic-sounding central processor unit. 

devices according to 

Descending even lower into the hardware, Figure 1.9 reveals details of a  the instructions of the microprocessor. Th

e processor logically comprises two main components: datapath 

program. 

and control, the respective brawn and brain of the processor. Th

e datapath performs 

the arithmetic operations, and control tells the datapath, memory, and I/O devices  memory  Th e storage what to do according to the wishes of the instructions of the program. Chapter 4  area in which programs are kept when they are 

explains the datapath and control for a higher-performance design. 

running and that contains 

Th

e A5 package in Figure 1.8 also includes two memory chips, each with  the data needed by the 2 gibibits of capacity, thereby supplying 512 MiB. Th

e memory is where the  running programs. 

programs are kept when they are running; it also contains the data needed by the 

running programs. Th

e memory is built from DRAM chips.  DRAM stands for  dynamic random access 

dynamic random access memory. Multiple DRAMs are used together to contain  memory (DRAM) the instructions and data of a program. In contrast to sequential access memories,  Memory built as an such as magnetic tapes, the  RAM portion of the term DRAM means that memory  integrated circuit; it provides random access to 

accesses take basically the same amount of time no matter what portion of the  any location. Access times memory is read. 

are 50 nanoseconds and 

Descending into the depths of any component of the hardware reveals insights  cost per gigabyte in 2012 

into the computer. Inside the processor is another type of memory—cache memory. 

was $5 to $10. 
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FIGURE 1.7  Components of the Apple iPad 2 A1395.  Th

e metal back of the iPad (with the reversed 

Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To the far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and off ers 10 hours of battery life. To the far left  is the metal frame that attaches the LCD to the back of the iPad. Th e 

small components surrounding the metal back in the center are what we think of as the computer; they are oft en L-shaped to fi t compactly inside the case next to the battery. Figure 1.8 shows a close-up of the L-shaped board to the lower left  of the metal case, which is the logic printed circuit board that contains the processor and the memory. Th

e tiny rectangle below the logic board contains a chip that provides wireless 

communication: Wi-Fi, Bluetooth, and FM tuner. It fi ts into a small slot in the lower left  corner of the logic board. Near the upper left  corner of the case is another L-shaped component, which is a front-facing camera assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and accelerometer. Th

ese last two chips combine to allow the iPad to recognize 6-axis motion. Th

e tiny rectangle 

next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. Th e 

cable at the bottom is the connector between the logic board and the camera/volume control board. Th e 

board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy iFixit, www.ifi xit.com)

FIGURE 1.8  Th

e logic board of Apple iPad 2 in Figure 1.7. Th

e photo highlights fi ve integrated circuits. 

Th

e large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of the processor chip inside the A5 package. Th

e similar sized chip to the left  is the 32 GB fl ash memory chip 

for non-volatile storage. Th

ere is an empty space between the two chips where a second fl ash chip can be 

installed to double storage capacity of the iPad. Th

e chips to the right of the A5 include power controller and 

I/O controller chips. (Courtesy iFixit, www.ifi xit.com)
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cache memory A small, 

fast memory that acts as a 

buff er for a slower, larger 

memory. 

static random access 

memory (SRAM) Also 

memory built as an 

FIGURE 1.9  Th

e processor integrated circuit inside the A5 package. Th

e size of chip is 12.1 by 10.1 mm, and 

integrated circuit, but 

it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or faster and less dense than 

cores in the middle left  of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the DRAM. 

upper left  quadrant. To the left  and bottom side of the ARM cores are interfaces to main memory (DRAM). 

(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buff er for the DRAM 

memory. (Th

e nontechnical defi nition of  cache is a safe place for hiding things.) 

Cache is built using a diff erent memory technology, static random access memory 

(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM 

(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy. 
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As mentioned above, one of the great ideas to improve design is abstraction. 

One of the most important abstractions is the interface between the hardware 

and the lowest-level soft ware. Because of its importance, it is given a special 

name: the instruction set architecture, or simply architecture, of a computer. 

Th

e instruction set architecture includes anything programmers need to know to 

make a binary machine language program work correctly, including instructions, 

I/O devices, and so on. Typically, the operating system will encapsulate the 

details of doing I/O, allocating memory, and other low-level system functions 

so that application programmers do not need to worry about such details. Th

e 

instruction set 

combination of the basic instruction set and the operating system interface 

architecture Also 

provided for application programmers is called the application binary interface 

called architecture. An 

abstract interface between 

(ABI). 

the hardware and the 

An instruction set architecture allows computer designers to talk about 

lowest-level soft ware 

functions independently from the hardware that performs them. For example, 

that encompasses all the 

we can talk about the functions of a digital clock (keeping time, displaying the 

information necessary to 

write a machine language 

time, setting the alarm) independently from the clock hardware (quartz crystal, 

program that will run 

LED displays, plastic buttons). Computer designers distinguish architecture from 

correctly, including 

an implementation of an architecture along the same lines: an implementation is 

instructions, registers, 

memory access, I/O, and 

hardware that obeys the architecture abstraction. Th

ese ideas bring us to another 

so on. 

Big Picture. 

application binary 

interface (ABI)  Th

e user 

portion of the instruction 

set plus the operating 

system interfaces used by 

application programmers. 

It defi nes a standard for 

binary portability across 

Both hardware and soft ware consist of hierarchical layers using abstraction, 

computers. 

with each lower layer hiding details from the level above. One key interface 

between the levels of abstraction is the  instruction set architecture—the 

interface between the hardware and low-level soft ware.  Th

is abstract 

The BIG

interface enables many  implementations of varying cost and performance 

Picture

to run identical soft ware. 

implementation 

Hardware that obeys the 

architecture abstraction. 

A Safe Place for Data

volatile memory 

Storage, such as DRAM, 

Th

us far, we have seen how to input data, compute using the data, and display 

that retains data only if it 

data. If we were to lose power to the computer, however, everything would be lost 

is receiving power. 

because the memory inside the computer is volatile—that is, when it loses power, 

it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off  the 

nonvolatile memory 

power to the DVD player, and is thus a nonvolatile memory technology. 

A form of memory that 

retains data even in the 

absence of a power source 

and that is used to store 

programs between runs. 

A DVD disk is nonvolatile. 
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To distinguish between the volatile memory used to hold data and programs 

while they are running and this nonvolatile memory used to store data and 

programs between runs, the term main memory or primary memory is used for 

the former, and secondary memory for the latter. Secondary memory forms the 

next lower layer of the memory hierarchy. DRAMs have dominated main memory 

since 1975, but magnetic disks dominated secondary memory starting even earlier. 

Because of their size and form factor, personal Mobile Devices use fl ash memory, 

a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip  main memory Also containing the fl ash memory of the iPad 2. While slower than DRAM, it is much  called primary memory. 

cheaper than DRAM in addition to being nonvolatile. Although costing more per  Memory used to hold programs while they are 

bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged,  running; typically consists and it is more power effi

cient than disks. Hence, fl ash memory is the standard  of DRAM in today’s 

secondary memory for PMDs. Alas, unlike disks and DRAM, fl ash memory bits  computers. 

wear out aft er 100,000 to 1,000,000 writes. Th

us, fi le systems must keep track of  secondary memory   

the number of writes and have a strategy to avoid wearing out storage, such as by  Nonvolatile memory moving popular data. Chapter 5 describes disks and fl ash memory in more detail. 

used to store programs 

and data between runs; 

typically consists of fl ash 

Communicating with Other Computers

memory in PMDs and 

magnetic disks in servers. 

We’ve explained how we can input, compute, display, and save data, but there is 

still one missing item found in today’s computers: computer networks. Just as the 

processor shown in Figure 1.5 is connected to memory and I/O devices, networks  magnetic disk Also called hard disk. A form 

interconnect whole computers, allowing computer users to extend the power of  of nonvolatile secondary computing by including communication. Networks have become so popular that  memory composed of 

they are the backbone of current computer systems; a new personal mobile device  rotating platters coated or server without a network interface would be ridiculed. Networked computers  with a magnetic recording material. Because they 

have several major advantages:

are rotating mechanical 

■   Communication: Information is exchanged between computers at high  devices, access times are about 5 to 20 milliseconds 

speeds. 

and cost per gigabyte in 

2012 was $0.05 to $0.10. 

■   Resource sharing: Rather than each computer having its own I/O devices, 

computers on the network can share I/O devices. 

fl ash memory 

A nonvolatile semi-

■   Nonlocal access: By connecting computers over long distances, users need not  conductor memory. It be near the computer they are using. 

is cheaper and slower 

than DRAM but more 

Networks vary in length and performance, with the cost of communication  expensive per bit and 

increasing according to both the speed of communication and the distance that  faster than magnetic disks. 

information travels. Perhaps the most popular type of network is  Ethernet. It can  Access times are about 5 

to 50 microseconds and 

be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and 

cost per gigabyte in 2012 

speed make Ethernet useful to connect computers on the same fl oor of a building;  was $0.75 to $1.00. 
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local area network 

hence, it is an example of what is generically called a local area network. Local area 

(LAN) A network 

networks are interconnected with switches that can also provide routing services 

designed to carry data 

and security. Wide area networks cross continents and are the backbone of the 

within a geographically 

Internet, which supports the web. Th

ey are typically based on optical fi bers and are 

confi ned area, typically 

leased from telecommunication companies. 

within a single building. 

Networks have changed the face of computing in the last 30 years, both by 

wide area network 

becoming much more ubiquitous and by making dramatic increases in performance. 

(WAN) A network 

In the 1970s, very few individuals had access to electronic mail, the Internet and 

extended over hundreds 

web did not exist, and physically mailing magnetic tapes was the primary way to 

of kilometers that can 

transfer large amounts of data between two locations. Local area networks were 

span a continent. 

almost nonexistent, and the few existing wide area networks had limited capacity 

and restricted access. 

As networking technology improved, it became much cheaper and had a much 

higher capacity. For example, the fi rst standardized local area network technology, 

developed about 30 years ago, was a version of Ethernet that had a maximum capacity 

(also called bandwidth) of 10 million bits per second, typically shared by tens of, if 

not a hundred, computers. Today, local area network technology off ers a capacity 

of from 1 to 40 gigabits per second, usually shared by at most a few computers. 

Optical communications technology has allowed similar growth in the capacity of 

wide area networks, from hundreds of kilobits to gigabits and from hundreds of 

computers connected to a worldwide network to millions of computers connected. 

Th

is combination of dramatic rise in deployment of networking combined with 

increases in capacity have made network technology central to the information 

revolution of the last 30 years. 

For the last decade another innovation in networking is reshaping the way 

computers communicate. Wireless technology is widespread, which enabled 

the PostPC Era. Th

e ability to make a radio in the same low-cost semiconductor 

technology (CMOS) used for memory and microprocessors enabled a signifi cant 

improvement in price, leading to an explosion in deployment. Currently available 

wireless technologies, called by the IEEE standard name 802.11, allow for transmission 

rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit 

diff erent from wire-based networks, since all users in an immediate area share the 

airwaves. 

Check 

■ Semiconductor DRAM memory, fl ash memory, and disk storage diff er 

signifi cantly. For each technology, list its volatility, approximate relative 

Yourself

access time, and approximate relative cost compared to DRAM. 

 1.5 

 Technologies for Building Processors 

and Memory

Processors and memory have improved at an incredible rate, because computer 

designers have long embraced the latest in electronic technology to try to win the 

race to design a better computer. Figure 1.10 shows the technologies that have 
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Year

Technology used in computers

Relative performance/unit cost

1951

Vacuum tube

1

1965

Transistor

35

1975

Integrated circuit

900

1995

Very large-scale integrated circuit

2,400,000

2013

Ultra large-scale integrated circuit

250,000,000,000

FIGURE 1.10  Relative performance per unit cost of technologies used in computers over 

time.  Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See 

Section 1.12. 

been used over time, with an estimate of the relative performance per unit cost for 

each technology. Since this technology shapes what computers will be able to do 

and how quickly they will evolve, we believe all computer professionals should be 

familiar with the basics of integrated circuits. 

A transistor is simply an on/off  switch controlled by electricity. Th

e  integrated  transistor An on/off  

 circuit (IC) combined dozens to hundreds of transistors into a single chip. When  switch controlled by an Gordon Moore predicted the continuous doubling of resources, he was predicting  electric signal. 

the growth rate of the number of transistors per chip. To describe the tremendous  very large-scale increase in the number of transistors from hundreds to millions, the adjective  very  integrated (VLSI) large scale is added to the term, creating the abbreviation  VLSI, for very large-scale  circuit A device integrated circuit. 

containing hundreds of 

Th

is rate of increasing integration has been remarkably stable. Figure 1.11 shows  thousands to millions of the growth in DRAM capacity since 1977. For decades, the industry has consistently  transistors. 

quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times! 

silicon   A natural 

To understand how manufacture integrated circuits, we start at the beginning.  element that is a 

Th

e manufacture of a chip begins with silicon, a substance found in sand. Because  semiconductor. 

silicon does not conduct electricity well, it is called a semiconductor. With a special 

chemical process, it is possible to add materials to silicon that allow tiny areas to  semiconductor transform into one of three devices:



A substance that does not 

■ Excellent conductors of electricity (using either microscopic copper or  conduct electricity well. 

aluminum wire)

10,000,000

4G

1,000,000

2G

1G

512M

100,000

256M

16M

128M

64M

10,000

4M

1M

Kibibit capacity

1000

256K

64K

100

16K

10

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of introduction

FIGURE 1.11  Growth of capacity per DRAM chip over time.  Th

e  y-axis is measured in kibibits (210 bits). Th

e DRAM industry 

quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two years to three years. 
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■  Excellent insulators from electricity (like plastic sheathing or glass)

■  Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of 

combinations of conductors, insulators, and switches manufactured in a single 

small package. 

silicon crystal ingot 

Th

e manufacturing process for integrated circuits is critical to the cost of the 

A rod composed of a 

chips and hence important to computer designers. Figure 1.12 shows that process. 

silicon crystal that is 

between 8 and 12 inches 

Th

e process starts with a silicon crystal ingot, which looks like a giant sausage. 

in diameter and about 12 

Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot 

to 24 inches long. 

is fi nely sliced into wafers no more than 0.1 inches thick. Th

ese wafers then go 

through a series of processing steps, during which patterns of chemicals are placed 

wafer  A slice from a 

on each wafer, creating the transistors, conductors, and insulators discussed earlier. 

silicon ingot no more than 

0.1 inches thick, used to 

Today’s integrated circuits contain only one layer of transistors but may have from 

create chips. 

two to eight levels of metal conductor, separated by layers of insulators. 

Blank

Silicon ingot

wafers

20 to 40


Slicer

processing steps

Tested dies

Tested

Patterned wafers

wafer

Bond die to

Wafer

Dicer

package

tester

Packaged dies

Tested packaged dies

Part

Ship to

tester

customers

FIGURE 1.12  The chip manufacturing process.  Aft er being sliced from the silicon ingot, blank wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). Th

ese patterned wafers are 

then tested with a wafer tester, and a map of the good parts is made. Th

en, the wafers are diced into dies (see 

Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) Th

e yield of good dies in this case was 17/20, or 85%. Th

ese good dies are then bonded into packages and 

tested one more time before shipping the packaged parts to customers. One bad packaged part was found in this fi nal test. 

A single microscopic fl aw in the wafer itself or in one of the dozens of patterning 

defect A microscopic 

steps can result in that area of the wafer failing. Th

ese defects, as they are called, 

fl aw in a wafer or in 

make it virtually impossible to manufacture a perfect wafer. Th

e simplest way to 

patterning steps that can 

result in the failure of the 

cope with imperfection is to place many independent components on a single 

die containing that defect. 

wafer. Th

e patterned wafer is then chopped up, or  diced,  into these components, 
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FIGURE 1.13  A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel).   Th

e number of 

dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. Th

e several dozen partially 

rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the masks used to pattern the silicon. Th

is die uses a 32-nanometer technology, which means that the smallest 

features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size. 

called dies and more informally known as chips. Figure 1.13 shows a photograph  die  Th e individual of a wafer containing microprocessors before they have been diced; earlier, Figure  rectangular sections that 

1.9 shows an individual microprocessor die. 

are cut from a wafer, more 

Dicing enables you to discard only those dies that were unlucky enough to  informally known as 

chips. 

contain the fl aws, rather than the whole wafer. Th

is concept is quantifi ed by the 

yield of a process, which is defi ned as the percentage of good dies from the total 

number of dies on the wafer. 

yield  Th

e percentage of 

good dies from the total 

Th

e cost of an integrated circuit rises quickly as the die size increases, due both  number of dies on the to the lower yield and the smaller number of dies that fi t on a wafer. To reduce the  wafer. 

cost, using the next generation process shrinks a large die as it uses smaller sizes for 

both transistors and wires. Th

is improves the yield and the die count per wafer. A 

32-nanometer (nm) process was typical in 2012, which means essentially that the 

smallest feature size on the die is 32 nm. 
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Once you’ve found good dies, they are connected to the input/output pins of a 

package, using a process called  bonding. Th

ese packaged parts are tested a fi nal time, 

since mistakes can occur in packaging, and then they are shipped to customers. 

Elaboration: The cost of an integrated circuit can be expressed in three simple 

equations:

Cost per wafer

Cost per die

Dies per wafer

yield

Wafer area

Dies per waffer ⬇

Die area

1

Yield

1

(

Defects per area

(

Die area

a/2))2

The fi rst equation is straightforward to derive. The second is an approximation, 

since it does not subtract the area near the border of the round wafer that cannot 

accommodate the rectangular dies (see Figure 1.13). The fi nal equation is based on empirical observations of yields at integrated circuit factories, with the exponent related 

to the number of critical processing steps. 

Hence, depending on the defect rate and the size of the die and wafer, costs are 

generally not linear in the die area. 

Check  A key factor in determining the cost of an integrated circuit is volume. Which of 

the following are reasons why a chip made in high volume should cost less? 

Yourself

1.  With high volumes, the manufacturing process can be tuned to a particular 

design, increasing the yield. 

2.  It is less work to design a high-volume part than a low-volume part. 

3. Th

e masks used to make the chip are expensive, so the cost per chip is lower 

for higher volumes. 

4.  Engineering development costs are high and largely independent of volume; 

thus, the development cost per die is lower with high-volume parts. 

5.  High-volume parts usually have smaller die sizes than low-volume parts and 

therefore have higher yield per wafer. 

 1.6 Performance

Assessing the performance of computers can be quite challenging. Th

e scale and 

intricacy of modern soft ware systems, together with the wide range of performance 

improvement techniques employed by hardware designers, have made performance 

assessment much more diffi

cult. 

When trying to choose among diff erent computers, performance is an important 

attribute. Accurately measuring and comparing diff erent computers is critical to 
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purchasers and therefore to designers. Th

e people selling computers know this as 

well. Oft en, salespeople would like you to see their computer in the best possible 

light, whether or not this light accurately refl ects the needs of the purchaser’s 

application. Hence, understanding how best to measure performance and the 

limitations of performance measurements is important in selecting a computer. 

Th

e rest of this section describes diff erent ways in which performance can be 

determined; then, we describe the metrics for measuring performance from the 

viewpoint of both a computer user and a designer. We also look at how these metrics 

are related and present the classical processor performance equation, which we will 

use throughout the text. 

Defi ning Performance

When we say one computer has better performance than another, what do we 

mean? Although this question might seem simple, an analogy with passenger 

airplanes shows how subtle the question of performance can be. Figure 1.14 

lists some typical passenger airplanes, together with their cruising speed, range, 

and capacity. If we wanted to know which of the planes in this table had the best 

performance, we would fi rst need to defi ne performance. For example, considering 

diff erent measures of performance, we see that the plane with the highest cruising 

speed was the Concorde (retired from service in 2003), the plane with the longest 

range is the DC-8, and the plane with the largest capacity is the 747. 

Passenger  Cruising range  Cruising speed  Passenger throughput 

Airplane

capacity

(miles)

(m.p.h.)

(passengers   m.p.h.)

× 

Boeing 777

375

4630

0610

228,750

Boeing 747

470

4150

0610

286,700

BAC/Sud Concorde

132

4000

1350

178,200

Douglas DC-8-50

146

8720

0544

79,424

FIGURE 1.14  The capacity, range, and speed for a number of commercial airplanes.  Th e last 

column shows the rate at which the airplane transports passengers, which is the capacity times the cruising speed (ignoring range and takeoff  and landing times). 

Let’s suppose we defi ne performance in terms of speed. Th

is still leaves two 

possible defi nitions. You could defi ne the fastest plane as the one with the highest 

cruising speed, taking a single passenger from one point to another in the least time. 

If you were interested in transporting 450 passengers from one point to another, response time Also however, the 747 would clearly be the fastest, as the last column of the fi gure shows.  called execution time. 

Similarly, we can defi ne computer performance in several diff erent ways. 

Th

e total time required 

If you were running a program on two diff erent desktop computers, you’d say  for the computer to complete a task, including 

that the faster one is the desktop computer that gets the job done fi rst. If you were  disk accesses, memory running a datacenter that had several servers running jobs submitted by many  accesses, I/O activities, users, you’d say that the faster computer was the one that completed the most  operating system 

jobs during a day. As an individual computer user, you are interested in reducing  overhead, CPU execution response time—the time between the start and completion of a task—also referred 

time, and so on. 
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throughput Also called 

to as execution time. Datacenter managers are oft en interested in increasing 

bandwidth. Another 

throughput or bandwidth—the total amount of work done in a given time. Hence, 

measure of performance, 

in most cases, we will need diff erent performance metrics as well as diff erent sets 

it is the number of tasks 

of applications to benchmark personal mobile devices, which are more focused on 

completed per unit time. 

response time, versus servers, which are more focused on throughput. 

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease 

EXAMPLE

response time, or both? 

1.  Replacing the processor in a computer with a faster version

2.  Adding additional processors to a system that uses multiple processors 

for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case 

ANSWER

1, both response time and throughput are improved. In case 2, no one task gets 

work done faster, so only throughput increases. 

If, however, the demand for processing in the second case was almost 

as large as the throughput, the system might force requests to queue up. In 

this case, increasing the throughput could also improve response time, since 

it would reduce the waiting time in the queue. Th

us, in many real computer 

systems, changing either execution time or throughput oft en aff ects the other. 

In discussing the performance of computers, we will be primarily concerned with 

response time for the fi rst few chapters. To maximize performance, we want to 

minimize response time or execution time for some task. Th

us, we can relate 

performance and execution time for a computer X:

1

Performance ⫽

X

Execution timeX

Th

is means that for two computers X and Y, if the performance of X is greater than 

the performance of Y, we have

Performance

⬎ Performance

X

Y

1

1

⬎

Execution time

Execution time

X

Y

E

Execution time ⬎ Execution time

Y

X

Th

at is, the execution time on Y is longer than that on X, if X is faster than Y. 
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In discussing a computer design, we oft en want to relate the performance of two 

diff erent computers quantitatively. We will use the phrase “X is  n times faster than 

Y”—or equivalently “X is  n times as fast as Y”—to mean

PerformanceX ⫽  n

PerformanceY

If X is  n times as fast as Y, then the execution time on Y is  n times as long as it is on X:

Performance

Execution time

X

Y

⫽

⫽  n

Performance

Execution time

Y

X

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same 

program in 15 seconds, how much faster is A than B? 

EXAMPLE

We know that A is  n times as fast as B if

ANSWER

Performance

Execution time

A

B

⫽

⫽  n

Performance

Execution time

B

A

Th

us the performance ratio is

15 ⫽ 1.5

10

and A is therefore 1.5 times as fast as B. 

In the above example, we could also say that computer B is 1.5 times  slower than 

computer A, since

PerformanceA ⫽ 1.5

PerformanceB

means that

PerformanceA ⫽ PerformanceB

1.5
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For simplicity, we will normally use the terminology  as fast as when we try to 

compare computers quantitatively. Because performance and execution time are 

reciprocals, increasing performance requires decreasing execution time. To avoid 

the potential confusion between the terms  increasing and  decreasing, we usually 

say “improve performance” or “improve execution time” when we mean “increase 

performance” and “decrease execution time.” 

Measuring Performance

Time is the measure of computer performance: the computer that performs the 

same amount of work in the least time is the fastest. Program  execution time is 

measured in seconds per program. However, time can be defi ned in diff erent ways, 

depending on what we count. Th

e most straightforward defi nition of time is called 

 wall clock time,  response time, or  elapsed time. Th

ese terms mean the total time 

to complete a task, including disk accesses, memory accesses,  input/output (I/O) 

activities, operating system overhead—everything. 

Computers are oft en shared, however, and a processor may work on several 

programs simultaneously. In such cases, the system may try to optimize throughput 

rather than attempt to minimize the elapsed time for one program. Hence, we 

oft en want to distinguish between the elapsed time and the time over which the 

CPU execution 

processor is working on our behalf. CPU execution time or simply CPU time, 

time Also called CPU 

which recognizes this distinction, is the time the CPU spends computing for this 

time. Th

e actual time the 

task and does not include time spent waiting for I/O or running other programs. 

CPU spends computing 

(Remember, though, that the response time experienced by the user will be the 

for a specifi c task. 

elapsed time of the program, not the CPU time.) CPU time can be further divided 

user CPU time  Th

e 

into the CPU time spent in the program, called user CPU time, and the CPU time 

CPU time spent in a 

spent in the operating system performing tasks on behalf of the program, called 

program itself. 

system CPU time. Diff erentiating between system and user CPU time is diffi

cult to 

do accurately, because it is oft en hard to assign responsibility for operating system 

system CPU time  Th

e 

CPU time spent in 

activities to one user program rather than another and because of the functionality 

the operating system 

diff erences among operating systems. 

performing tasks on 

For consistency, we maintain a distinction between performance based on 

behalf of the program. 

elapsed time and that based on CPU execution time. We will use the term  system 

 performance to refer to elapsed time on an unloaded system and  CPU performance 

to refer to user CPU time. We will focus on CPU performance in this chapter, 

although our discussions of how to summarize performance can be applied to 

either elapsed time or CPU time measurements. 

Understanding  Diff erent applications are sensitive to diff erent aspects of the performance of a computer system. Many applications, especially those running on servers, depend 

Program  as much on I/O performance, which, in turn, relies on both hardware and soft ware. 

Performance

Total elapsed time measured by a wall clock is the measurement of interest. In 
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some application environments, the user may care about throughput, response 

time, or a complex combination of the two (e.g., maximum throughput with a 

worst-case response time). To improve the performance of a program, one must 

have a clear defi nition of what performance metric matters and then proceed to 

look for performance bottlenecks by measuring program execution and looking 

for the likely bottlenecks. In the following chapters, we will describe how to search 

for bottlenecks and improve performance in various parts of the system. 

Although as computer users we care about time, when we examine the details 

of a computer it’s convenient to think about performance in other metrics. In  clock cycle Also called tick, clock tick, clock 

particular, computer designers may want to think about a computer by using a  period, clock, or cycle. 

measure that relates to how fast the hardware can perform basic functions. Almost  Th e time for one clock all computers are constructed using a clock that determines when events take  period, usually of the place in the hardware. Th

ese discrete time intervals are called clock cycles (or  processor clock, which 

ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a  runs at a constant rate. 

clock period both as the time for a complete  clock cycle (e.g., 250 picoseconds, or  clock period  Th e length 250 ps) and as the  clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the  of each clock cycle. 

clock period. In the next subsection, we will formalize the relationship between the 

clock cycles of the hardware designer and the seconds of the computer user. 

1.  Suppose we know that an application that uses both personal mobile  Check 

devices and the Cloud is limited by network performance. For the following  Yourself

changes, state whether only the throughput improves, both response time 

and throughput improve, or neither improves. 

a.  An extra network channel is added between the PMD and the Cloud, 

increasing the total network throughput and reducing the delay to obtain 

network access (since there are now two channels). 

b. Th

e networking soft ware is improved, thereby reducing the network 

communication delay, but not increasing throughput. 

c.  More memory is added to the computer. 

2.  Computer C’s performance is 4 times as fast as the performance of computer 

B, which runs a given application in 28 seconds. How long will computer C 

take to run that application? 

CPU Performance and Its Factors

Users and designers oft en examine performance using diff erent metrics. If we could 

relate these diff erent metrics, we could determine the eff ect of a design change 

on the performance as experienced by the user. Since we are confi ning ourselves 

to CPU performance at this point, the bottom-line performance measure is CPU 

34 

Chapter 1  Computer Abstractions and Technology

execution time. A simple formula relates the most basic metrics (clock cycles and 

clock cycle time) to CPU time:

CPU execution time

CPU clock cycles

for a program

for a progrram

Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses, 

CPU execution time

CPU clock cycles for a proggram

for a program

⫽

Clock rate

Th

is formula makes it clear that the hardware designer can improve performance 

by reducing the number of clock cycles required for a program or the length of 

the clock cycle. As we will see in later chapters, the designer oft en faces a trade-off  

between the number of clock cycles needed for a program and the length of each 

cycle. Many techniques that decrease the number of clock cycles may also increase 

the clock cycle time. 

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz 

EXAMPLE

clock. We are trying to help a computer designer build a computer, B, which will 

run this program in 6 seconds. Th

e designer has determined that a substantial 

increase in the clock rate is possible, but this increase will aff ect the rest of the 

CPU design, causing computer B to require 1.2 times as many clock cycles as 

computer A for this program. What clock rate should we tell the designer to 

target? 

Let’s fi rst fi nd the number of clock cycles required for the program on A:

ANSWER

CPU clock cycles

CPU time

A

A

Clock rateA

CPU clock   cycles

10 seconds

A

cycles

2

109 second

cycles

CPU clock cycles

10 seconds

9

9

A

2

10

20

10  cycles

second
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CPU time for B can be found using this equation:

1.2

CPU clock cycles

CPU time

A

B

Clock rateB

1.2

20

109  cycles

6 seconds

Clock rateB

1.2

20

109  cycles

0 2

20

109  cycles

4

109

. 

cycles

Clock rateB

4 GHz

6 secon

nds

second

second

To run the program in 6 seconds, B must have twice the clock rate of A. 

Instruction Performance

Th

e performance equations above did not include any reference to the number of 

instructions needed for the program. However, since the compiler clearly generated 

instructions to execute, and the computer had to execute the instructions to run 

the program, the execution time must depend on the number of instructions in a 

program. One way to think about execution time is that it equals the number of 

instructions executed multiplied by the average time per instruction. Th

erefore, the 

number of clock cycles required for a program can be written as

Average clock ccycles

CPU clock cycles

Instructions for a program

per instruction

Th

e term clock cycles per instruction, which is the average number of clock  clock cycles cycles each instruction takes to execute, is oft en abbreviated as CPI. Since diff erent  per instruction instructions may take diff erent amounts of time depending on what they do, CPI is  (CPI) Average number an average of all the instructions executed in the program. CPI provides one way of  of clock cycles per instruction for a program 

comparing two diff erent implementations of the same instruction set architecture,  or program fragment. 

since the number of instructions executed for a program will, of course, be the 

same. 

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture. 

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, 

EXAMPLE

and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same 

program. Which computer is faster for this program and by how much? 
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We know that each computer executes the same number of instructions for 

ANSWER

the program; let’s call this number  I. First, fi nd the number of processor clock 

cycles for each computer:

CPU clock cycles ⫽ ×

A

 I

2.0

CPU clock cycles ⫽ ×

B

 I

1.2

Now we can compute the CPU time for each computer:

CPU time

CPU clock cycles

Clock cycle time

A

A

 I

2.0

250 ps

5

500

 I  ps

Likewise, for B:

CPU time

 I

1.2

500 ps

600

 I  ps

B

Clearly, computer A is faster. Th

e amount faster is given by the ratio of the 

execution times:

CPU performance

Execution time

600

 I  ps

A

B

1.2

CPU performance

Execution 

B

ttime

500

 I  ps

A

We can conclude that computer A is 1.2 times as fast as computer B for this 

program. 

The Classic CPU Performance Equation

instruction count  Th

e 

We can now write this basic performance equation in terms of instruction count 

number of instructions 

(the number of instructions executed by the program), CPI, and clock cycle time:

executed by the program. 

CPU time

Instruction count

CPI

Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

Instruction count

CPI

CPU time

Clock rate

Th

ese formulas are particularly useful because they separate the three key factors 

that aff ect performance. We can use these formulas to compare two diff erent 

implementations or to evaluate a design alternative if we know its impact on these 

three parameters. 
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Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a 

particular computer. Th

e hardware designers have supplied the following facts:

EXAMPLE

CPI for each instruction class

 

A

B

C

CPI

1

2

3

For a particular high-level language statement, the compiler writer is 

considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Code sequence

A

B

C

1

2

1

2

2

4

1

1

Which code sequence executes the most instructions? Which will be faster? 

What is the CPI for each sequence? 

Sequence 1 executes 2 ⫹ 1 ⫹ 2 ⫽ 5 instructions. Sequence 2 executes 4 ⫹ 1 ⫹ 

1 ⫽ 6 instructions. Th

erefore, sequence 1 executes fewer instructions. 

ANSWER

We can use the equation for CPU clock cycles based on instruction count 

and CPI to fi nd the total number of clock cycles for each sequence:

 n

CPU clock cycles

C

( PI

C )

∑

 i

 i

 i  1

Th

is yields

CPU clock cycles

2

(

1)

1

(

2)

2

(

3)

2

2

6

10 cycles

1

CPU clock cycles

(4

1)

1

(

2)

1

(

3)

4

2

3

9 cycles

2

So code sequence 2 is faster, even though it executes one extra instruction. Since 

code sequence 2 takes fewer overall clock cycles but has more instructions, it 

must have a lower CPI. Th

e CPI values can be computed by

CPU clock cycles

CPI ⫽ Instruction count

CPU clock cycles

10

CPI ⫽

1 ⫽

⫽

1

2.0

Instruction coun 1

t

5

CPU clock cycles2

9

CP

⫽

⫽

⫽

2

I

1.5

Instructiion count2

6
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Figure 1.15 shows the basic measurements at diff erent levels in the 

computer and what is being measured in each case. We can see how these 

factors are combined to yield execution time measured in seconds per 

program:

Instructions

Clock cycles

Seconds

Time

Seconds/Program

Program

Instru

uction

Clock cycle

The BIG

Always bear in mind that the only complete and reliable measure of 

Picture

computer performance is time. For example, changing the instruction set 

to lower the instruction count may lead to an organization with a slower 

clock cycle time or higher CPI that off sets the improvement in instruction 

count. Similarly, because CPI depends on type of instructions executed, 

the code that executes the fewest number of instructions may not be the 

fastest. 

Components of performance

Units of measure

CPU execution time for a program

Seconds for the program

Instruction count

Instructions executed for the program

Clock cycles per instruction (CPI)

Average number of clock cycles per instruction

Clock cycle time 

Seconds per clock cycle

FIGURE 1.15  The basic components of performance and how each is measured. 

How can we determine the value of these factors in the performance equation? 

We can measure the CPU execution time by running the program, and the clock 

cycle time is usually published as part of the documentation for a computer. Th

e 

instruction count and CPI can be more diffi

cult to obtain. Of course, if we know 

the clock rate and CPU execution time, we need only one of the instruction count 

or the CPI to determine the other. 

We can measure the instruction count by using soft ware tools that profi le the 

execution or by using a simulator of the architecture. Alternatively, we can use 

hardware counters, which are included in most processors, to record a variety of 

measurements, including the number of instructions executed, the average CPI, 

and oft en, the sources of performance loss. Since the instruction count depends 

on the architecture, but not on the exact implementation, we can measure the 

instruction count without knowing all the details of the implementation. Th

e CPI, 

however, depends on a wide variety of design details in the computer, including 

both the memory system and the processor structure (as we will see in Chapter 4 

and Chapter 5), as well as on the mix of instruction types executed in an application. 

Th

us, CPI varies by application, as well as among implementations with the same 

instruction set. 
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Th

e above example shows the danger of using only one factor (instruction count) 

to assess performance. When comparing two computers, you must look at all three 

components, which combine to form execution time. If some of the factors are 

identical, like the clock rate in the above example, performance can be determined 

by comparing all the nonidentical factors. Since CPI varies by instruction mix, instruction mix both instruction count and CPI must be compared, even if clock rates are identical.  A measure of the dynamic Several exercises at the end of this chapter ask you to evaluate a series of computer  frequency of instructions and compiler enhancements that aff ect clock rate, CPI, and instruction count. In  across one or many programs. 

Section 1.10, we’ll examine a common performance measurement that does not 

incorporate all the terms and can thus be misleading. 

Th

e performance of a program depends on the algorithm, the language, the  Understanding 

compiler, the architecture, and the actual hardware. Th

e following table summarizes 

Program 

how these components aff ect the factors in the CPU performance equation. 

Performance

Hardware 

or software 

component

Affects what? 

How? 

Algorithm

Instruction count, 

The algorithm determines the number of source program 

possibly CPI

instructions executed and hence the number of processor 

instructions executed. The algorithm may also affect the CPI, 

by favoring slower or faster instructions. For example, if the 

algorithm uses more divides, it will tend to have a higher CPI. 

Programming 

Instruction count, 

The programming language certainly affects the instruction 

language

CPI

count, since statements in the language are translated to 

processor instructions, which determine instruction count. The 

language may also affect the CPI because of its features; for 

example, a language with heavy support for data abstraction 

(e.g., Java) will require indirect calls, which will use higher CPI 

instructions. 

Compiler

Instruction count, 

The effi ciency of the compiler affects both the instruction 

CPI

count and average cycles per instruction, since the compiler 

determines the translation of the source language instructions 

into computer instructions. The compiler’s role can be very 

complex and affect the CPI in complex ways. 

Instruction set 

Instruction count, 

The instruction set architecture affects all three aspects of 

architecture

clock rate, CPI

CPU performance, since it affects the instructions needed for a 

function, the cost in cycles of each instruction, and the overall 

clock rate of the processor. 

Elaboration:  Although you might expect that the minimum CPI is 1.0, as we’ll see in 

Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To 

refl ect that approach, some designers invert CPI to talk about  IPC, or  instructions per clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has an IPC of 2 and hence a CPI of 0.5. 
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Elaboration: Although clock cycle time has traditionally been fi xed, to save energy 

or temporarily boost performance, today’s processors can vary their clock rates, so we 

would need to use the  average clock rate for a program. For example, the Intel Core i7 

will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls 

this  Turbo mode. 

Check  A given application written in Java runs 15 seconds on a desktop processor. A new 

Java compiler is released that requires only 0.6 as many instructions as the old 

Yourself

compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the 

application to run using this new compiler? Pick the right answer from the three 

choices below:

15

0.6

a. 

8.2  sec

1.1

b. 15 

⫻ 0.6 ⫻ 1.1 ⫽ 9.9 sec

15

1.1

c. 

27.5  sec

0.6

 1.7 

The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel microprocessors over 30 years. Both clock rate and power increased rapidly for 

decades, and then fl attened off  recently. Th

e reason they grew together is that they 

are correlated, and the reason for their recent slowing is that we have run into the 

practical power limit for cooling commodity microprocessors. 

10,000

120

3600

2667

3300

3400

2000

100

1000

103

95

Clock Rate 200

80

75.3

87

66

77

100

60

25

12.5

16

40

Power

Power (watts)

10

Clock Rate (MHz)

29.1

10.1

20

3.3

4.1

4.9

1

0

80286

(1982)

80386

(1985)

80486

(1989)

Pentium

(1993)

(2007)

Core i5

(2010)

Core i5

(2012)

Pentium

(2001)

Clarkdale 

Ivy Bridge

Pro (1997)

Pentium 4

Willamette

Pentium 4

Prescott

(2004)

Core 2

Kentsfield

FIGURE 1.16  Clock rate and Power for Intel x86 microprocessors over eight generations 

and 25 years.  Th

e Pentium 4 made a dramatic jump in clock rate and power but less so in performance. Th

e 

Prescott thermal problems led to the abandonment of the Pentium 4 line. Th

e Core 2 line reverts to a simpler 

pipeline with lower clock rates and multiple processors per chip. Th

e Core i5 pipelines follow in its footsteps. 
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Although power provides a limit to what we can cool, in the PostPC Era the 

really critical resource is energy. Battery life can trump performance in the personal 

mobile device, and the architects of warehouse scale computers try to reduce the 

costs of powering and cooling 100,000 servers as the costs are high at this scale. Just 

as measuring time in seconds is a safer measure of program performance than a 

rate like MIPS (see Section 1.10), the energy metric joules is a better measure than 

a power rate like watts, which is just joules/second. 

Th

e dominant technology for integrated circuits is called CMOS (complementary 

metal oxide semiconductor). For CMOS, the primary source of energy consumption 

is so-called dynamic energy—that is, energy that is consumed when transistors 

switch states from 0 to 1 and vice versa. Th

e dynamic energy depends on the 

capacitive loading of each transistor and the voltage applied:

 Energy ∝  Capacitive load



⫻  Voltage 2

Th

is equation is the energy of a pulse during the logic transition of 0 → 1 → 0 or 

1 → 0 → 1. Th

e energy of a single transition is then

 Energy ∝ 1 2

 Capacitive load

 Voltage 2

/ ⫻

⫻

Th

e power required per transistor is just the product of energy of a transition and 

the frequency of transitions:

 Power ∝ 1 2 ⫻  Capacitive load ⫻  Voltage 2

/



⫻  Frequency switched

Frequency switched is a function of the clock rate. Th

e capacitive load per transistor 

is a function of both the number of transistors connected to an output (called the 

 fanout) and the technology, which determines the capacitance of both wires and 

transistors. 

With regard to Figure 1.16, how could clock rates grow by a factor of 1000 

while power grew by only a factor of 30? Energy and thus power can be reduced by 

lowering the voltage, which occurred with each new generation of technology, and 

power is a function of the voltage squared. Typically, the voltage was reduced about 

15% per generation. In 20 years, voltages have gone from 5 V to 1 V, which is why 

the increase in power is only 30 times. 

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive 

load of the more complex older processor. Further, assume that it has adjustable 

EXAMPLE

voltage so that it can reduce voltage 15% compared to processor B, which 

results in a 15% shrink in frequency. What is the impact on dynamic power? 
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Power

Capacitive loa

〈

d

0 8 〉

5

〈Voltage

0 8 〉

5 2

. 

. 

F

〈

〉

new

rrequency switched

0.85

ANSWER

Power

2

old

Capacitive load

Voltage

Frequency   switched

Th

us the power ratio is

0 854

. 

⫽ 0.52

Hence, the new processor uses about half the power of the old processor. 

Th

e problem today is that further lowering of the voltage appears to make the 

transistors too leaky, like water faucets that cannot be completely shut off . Even 

today about 40% of the power consumption in server chips is due to leakage. If 

transistors started leaking more, the whole process could become unwieldy. 

To try to address the power problem, designers have already attached large 

devices to increase cooling, and they turn off  parts of the chip that are not used in 

a given clock cycle. Although there are many more expensive ways to cool chips 

and thereby raise their power to, say, 300 watts, these techniques are generally 

too expensive for personal computers and even servers, not to mention personal 

mobile devices. 

Since computer designers slammed into a power wall, they needed a new way 

forward. Th

ey chose a diff erent path from the way they designed microprocessors 

for their fi rst 30 years. 

Elaboration:  Although dynamic energy is the primary source of energy consumption 

in CMOS, static energy consumption occurs because of leakage current that fl ows even 

when a transistor is off. In servers, leakage is typically responsible for 40% of the energy 

consumption. Thus, increasing the number of transistors increases power dissipation, 

even if the transistors are always off. A variety of design techniques and technology 

innovations are being deployed to control leakage, but it’s hard to lower voltage further. 

Elaboration:  Power is a challenge for integrated circuits for two reasons. First, power 

must be brought in and distributed around the chip; modern microprocessors use 

hundreds of pins just for power and ground! Similarly, multiple levels of chip interconnect 

are used solely for power and ground distribution to portions of the chip. Second, power 

is dissipated as heat and must be removed. Server chips can burn more than 100 watts, 

and cooling the chip and the surrounding system is a major expense in Warehouse Scale 

Computers (see Chapter 6). 
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 1.8 

 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors

Th

e power limit has forced a dramatic change in the design of microprocessors.  Up to now, most 

Figure 1.17 shows the improvement in response time of programs for desktop   soft ware has been like microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per   music written for a year to a factor of 1.2 per year. 

 solo performer; with 

Rather than continuing to decrease the response time of a single program   the current generation running on the single processor, as of 2006 all desktop and server companies are   of chips we’re getting a shipping microprocessors with multiple processors per chip, where the benefi t is   little experience with oft en more on throughput than on response time. To reduce confusion between the 

 duets and quartets and 

words processor and microprocessor, companies refer to processors as “cores,” and   other small ensembles; such microprocessors are generically called multicore microprocessors. Hence, a   but scoring a work for 

“quadcore” microprocessor is a chip that contains four processors or four cores. 

 large orchestra and 

In the past, programmers could rely on innovations in hardware, architecture,  chorus is a diff erent and compilers to double performance of their programs every 18 months without   kind of challenge. 

having to change a line of code. Today, for programmers to get signifi cant  Brian Hayes,  Computing improvement in response time, they need to rewrite their programs to take   in a Parallel Universe, advantage of multiple processors. Moreover, to get the historic benefi t of running  2007. 

faster on new microprocessors, programmers will have to continue to improve 

performance of their code as the number of cores increases. 

To reinforce how the soft ware and hardware systems work hand in hand, we use 

a special section,  Hardware/Soft ware Interface, throughout the book, with the fi rst 

one appearing below. Th

ese elements summarize important insights at this critical 

interface. 

Parallelism has always been critical to performance in computing, but it was  Hardware/ 

oft en hidden. Chapter 4 will explain pipelining, an elegant technique that runs  Software programs faster by overlapping the execution of instructions. Th

is is one example of 

 instruction-level parallelism, where the parallel nature of the hardware is abstracted  Interface away so the programmer and compiler can think of the hardware as executing 

instructions sequentially. 

Forcing programmers to be aware of the parallel hardware and to explicitly 

rewrite their programs to be parallel had been the “third rail” of computer 

architecture, for companies in the past that depended on such a change in behavior 

failed (see   Section 6.15). From this historical perspective, it’s startling that the 

whole IT industry has bet its future that programmers will fi nally  successfully 

switch to explicitly parallel programming. 
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100,000
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21,871
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Intel Core 2 Extreme 2 cores, 2.9 GHz 
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FIGURE 1.17  Growth in processor performance since the mid-1980s.  Th

is chart plots performance relative to the VAX 11/780 

as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-driven and averaged about 25% per year. Th

e increase in growth to about 52% since then is attributable to more advanced architectural and 

organizational ideas. Th

e higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of seven higher in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency have slowed uniprocessor performance recently, to about 22% per year. 

Why has it been so hard for programmers to write explicitly parallel programs? 

Th

e fi rst reason is that parallel programming is by defi nition  performance 

programming, which increases the diffi

culty of programming. Not only does the 

program need to be correct, solve an important problem, and provide a useful 

interface to the people or other programs that invoke it, the program must also be 

fast. Otherwise, if you don’t need performance, just write a sequential program. 

Th

e second reason is that fast for parallel hardware means that the programmer 

must divide an application so that each processor has roughly the same amount to 

do at the same time, and that the overhead of scheduling and coordination doesn’t 

fritter away the potential performance benefi ts of parallelism. 

As an analogy, suppose the task was to write a newspaper story. Eight reporters 

working on the same story could potentially write a story eight times faster. To achieve 

this increased speed, one would need to break up the task so that each reporter had 

something to do at the same time. Th

us, we must  schedule the sub-tasks. If anything 

went wrong and just one reporter took longer than the seven others did, then the 

benefi ts of having eight writers would be diminished. Th

us, we must  balance the 
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 load evenly to get the desired speedup. Another danger would be if reporters had to 

spend a lot of time talking to each other to write their sections. You would also fall 

short if one part of the story, such as the conclusion, couldn’t be written until all of 

the other parts were completed. Th

us, care must be taken to  reduce communication 

 and synchronization overhead. For both this analogy and parallel programming, the 

challenges include scheduling, load balancing, time for synchronization, and overhead 

for communication between the parties. As you might guess, the challenge is stiff er with 

more reporters for a newspaper story and more processors for parallel programming. 

To refl ect this sea change in the industry, the next fi ve chapters in this edition of the 

book each have a section on the implications of the parallel revolution to that chapter:

■   Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually 

independent parallel tasks need to coordinate at times, such as to say when 

they have completed their work. Th

is chapter explains the instructions used 

by multicore processors to synchronize tasks. 

■   Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword 

 Parallelism. Perhaps the simplest form of parallelism to build involves 

computing on elements in parallel, such as when multiplying two vectors. 

Subword parallelism takes advantage of the resources supplied by Moore’s 

Law to provider wider arithmetic units that can operate on many operands 

simultaneously. 

■   Chapter 4, Section 4.10: Parallelism via Instructions. Given the diffi

culty of 

explicitly parallel programming, tremendous eff ort was invested in the 1990s 

in having the hardware and the compiler uncover implicit parallelism, initially 

via  pipelining. Th

is chapter describes some of these aggressive techniques, 

including fetching and executing multiple instructions simultaneously and 

guessing on the outcomes of decisions, and executing instructions speculatively 

using prediction. 

■   Chapter 5, Section 5.10: Parallelism and Memory Hierarchies: Cache 

 Coherence. One way to lower the cost of communication is to have all 

processors use the same address space, so that any processor can read or 

write any data. Given that all processors today use caches to keep a temporary 

copy of the data in faster memory near the processor, it’s easy to imagine that 

parallel programming would be even more diffi

cult if the caches associated 

with each processor had inconsistent values of the shared data. Th

is chapter 

describes the mechanisms that keep the data in all caches consistent. 

■   Chapter 5,  Section 5.11: Parallelism and Memory Hierarchy: Redundant 

 Arrays of Inexpensive Disks. Th

is section describes how using many disks 

in conjunction can off er much higher throughput, which was the original 

inspiration of  Redundant Arrays of Inexpensive Disks (RAID). Th

e real 

popularity of RAID proved to be to the much greater dependability off ered 

by including a modest number of redundant disks. Th

e section explains the 

diff erences in performance, cost, and dependability between the diff erent 

RAID levels. 
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In addition to these sections, there is a full chapter on parallel processing. Chapter 6 

goes into more detail on the challenges of parallel programming; presents the 

two contrasting approaches to communication of shared addressing and explicit 

message passing; describes a restricted model of parallelism that is easier to 

program; discusses the diffi

culty of benchmarking parallel processors; introduces 

a new simple performance model for multicore microprocessors; and, fi nally, 

describes and evaluates four examples of multicore microprocessors using this 

model. 

As mentioned above, Chapters 3 to 6 use matrix vector multiply as a running 

 I thought [computers] 

example to show how each type of parallelism can signifi cantly increase performance. 

 would be a universally 

Appendix C describes an increasingly popular hardware component that 

 applicable idea, like 

is included with desktop computers, the  graphics processing unit (GPU). Invented 

 a book is. But I didn’t 

to accelerate graphics, GPUs are becoming programming platforms in their 

 think it would develop 

own right. As you might expect, given these times, GPUs rely on parallelism. 

 as fast as it did, because 

Appendix C describes the NVIDIA GPU and highlights parts of its parallel 

 I didn’t envision we’d 

programming environment. 

 be able to get as many 

 parts on a chip as 

 we fi nally got. Th

  e 

 transistor came along 

 unexpectedly. It all 

 1.9 

 Real Stuff: Benchmarking the 

 happened much faster 

Intel Core i7

 than we expected. 

J. Presper Eckert, 

Each chapter has a section entitled “Real Stuff ” that ties the concepts in the book 

coinventor of ENIAC, 

with a computer you may use every day. Th

ese sections cover the technology 

speaking in 1991

underlying modern computers. For this fi rst “Real Stuff ” section, we look at 

how integrated circuits are manufactured and how performance and power are 

workload  A set of 

programs run on a 

measured, with the Intel Core i7 as the example. 

computer that is either 

the actual collection of 

SPEC CPU Benchmark

applications run by a user 

or constructed from real 

A computer user who runs the same programs day in and day out would be the 

programs to approximate 

perfect candidate to evaluate a new computer. Th

e set of programs run would form 

such a mix. A typical 

a  workload. To evaluate two computer systems, a user would simply compare 

workload specifi es both 

the execution time of the workload on the two computers. Most users, however, 

the programs and the 

are not in this situation. Instead, they must rely on other methods that measure 

relative frequencies. 

the performance of a candidate computer, hoping that the methods will refl ect 

how well the computer will perform with the user’s workload. Th

is alternative is 

usually followed by evaluating the computer using a set of benchmarks—programs 

specifi cally chosen to measure performance. Th

e benchmarks form a workload that 

the user hopes will predict the performance of the actual workload. As we noted 

above, to make the common case fast, you fi rst need to know accurately which case 

is common, so benchmarks play a critical role in computer architecture. 

benchmark A program 

SPEC ( System Performance Evaluation Cooperative) is an eff ort funded and 

selected for use in 

comparing computer 

supported by a number of computer vendors to create standard sets of benchmarks 

performance. 

for modern computer systems. In 1989, SPEC originally created a benchmark 
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Execution

Reference

Instruction

Clock cycle time

T ime   

T ime   

9

Description

Name

Count x 10

CPI

(seconds x 10–9)

(seconds)

(seconds)

SPECratio

Interpreted string processing 

perl 

2252  

0.60   

0.376  

508 

9770  

19.2 

Block-sorting 

bzip2 

2390  

0.70  

0.376  

629 

9650  

15.4 

compression

GNU C compiler 

gcc 

794  

1.20  

0.376  

358 

8050  

22.5 

Combinatorial optimization 

mcf 

221  

2.66  

0.376  

221 

9120  

41.2 

Go game (AI) 

go 

1274  

1.10  

0.376  

527 

10490  

19.9 

Search gene sequence 

hmmer 

2616  

0.60  

0.376  

590 

9330  

15.8 

Chess game (AI) 

sjeng 

1948  

0.80  

0.376  

586 

12100  

20.7 

Quantum computer 

libquantum               659  

0.44  

0.376  

109 

20720  

190.0 

simulation

Video compression 

h264avc 

3793  

0.50  

0.376  

713 

22130  

31.0 

Discrete event  

omnetpp 

367  

2.10  

0.376  

290 

6250  

21.5 

simulation library

Games/path finding  

astar 

1250  

1.00  

0.376  

470 

7020  

14.9 

XML parsing 

xalancbmk 

1045  

0.70  

0.376  

275 

6900  

25.1 

Geometric mean 

–                          –                     –                      – 

– 

–    

25.7 

FIGURE 1.18  SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920.  As the equation on page 35 explains, execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. Th e single number 

quoted as SPECINTC2006 is the geometric mean of the SPECratios. 

set focusing on processor performance (now called SPEC89), which has evolved 

through fi ve generations. Th

e latest is SPEC CPU2006, which consists of a set of 12 

integer benchmarks (CINT2006) and 17 fl oating-point benchmarks (CFP2006). 

Th

e integer benchmarks vary from part of a C compiler to a chess program to a 

quantum computer simulation. Th

e fl oating-point benchmarks include structured 

grid codes for fi nite element modeling, particle method codes for molecular 

dynamics, and sparse linear algebra codes for fl uid dynamics. 

Figure 1.18 describes the SPEC integer benchmarks and their execution time 

on the Intel Core i7 and shows the factors that explain execution time: instruction 

count, CPI, and clock cycle time. Note that CPI varies by more than a factor of 5. 

To simplify the marketing of computers, SPEC decided to report a single number 

to summarize all 12 integer benchmarks. Dividing the execution time of a reference 

processor by the execution time of the measured computer normalizes the execution 

time measurements; this normalization yields a measure, called the  SPECratio,  which 

has the advantage that bigger numeric results indicate faster performance. Th

at is, 

the SPECratio is the inverse of execution time. A CINT2006 or CFP2006 summary 

measurement is obtained by taking the geometric mean of the SPECratios. 

Elaboration: When comparing two computers using SPECratios, use the geometric 

mean so that it gives the same relative answer no matter what computer is used to 

normalize the results. If we averaged the normalized execution time values with an 

arithmetic mean, the results would vary depending on the computer we choose as the 

reference. 
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The formula for the geometric mean is

 n

 n

Execution time ratio

∏

 i

 i⫽1

where Execution time ratio is the execution time, normalized to the reference computer, 

 i

for the  i th program of a total of  n in the workload, and

 n

 a

 a

means the product 

 a

∏

…

 a

 i

1

2

 n

 i

1

SPEC Power Benchmark

Given the increasing importance of energy and power, SPEC added a benchmark 

to measure power. It reports power consumption of servers at diff erent workload 

levels, divided into 10% increments, over a period of time. Figure 1.19 shows the results for a server using Intel Nehalem processors similar to the above. 

Performance  

Average Power  

Target Load %

(ssj_ops)

(watts)

100% 

865,618 

258

90% 

786,688 

242

80% 

698,051 

224

70% 

607,826 

204

60% 

521,391 

185

50% 

436,757 

170

40% 

345,919 

157

30% 

262,071 

146

20% 

176,061 

135

10% 

86,784 

121

0% 

0 

80

Overall Sum 



4,787,166 

1922

∑ssj_ops / ∑power = 



2490

FIGURE 1.19  SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650 

with 16 GB of DRAM and one 100 GB SSD disk. 

SPECpower started with another SPEC benchmark for Java business applications 

(SPECJBB2005), which exercises the processors, caches, and main memory as well 

as the Java virtual machine, compiler, garbage collector, and pieces of the operating 

system. Performance is measured in throughput, and the units are business 

operations per second. Once again, to simplify the marketing of computers, SPEC 
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boils these numbers down to a single number, called “overall ssj_ops per watt.” Th

e 

formula for this single summarizing metric is

⎛ 10

⎜

⎞⎟ ⎛ 10

⎜

⎞⎟

overall ssj_ops per watt ⫽ ⎜

ssj_ops ⎟ ⎜

power

⎜∑

⎜∑

⎟

 i ⎟

 i ⎟

⎝⎜

⎠⎟ ⎝⎜

⎠⎟

 i⫽0

 i⫽0

where ssj_ops  is performance at each 10% increment and power  is power 

i

i

consumed at each performance level. 

 

 

1.10

Fallacies and Pitfalls

Th

e purpose of a section on fallacies and pitfalls, which will be found in every   Science must begin chapter, is to explain some commonly held misconceptions that you might   with myths, and the 

encounter. We call them  fallacies. When discussing a fallacy, we try to give a   criticism of myths. 

counterexample. We also discuss  pitfalls, or easily made mistakes. Oft en pitfalls are  Sir Karl Popper,  Th e generalizations of principles that are only true in a limited context. Th

e purpose   Philosophy of Science,  

of these sections is to help you avoid making these mistakes in the computers you  1957

may design or use. Cost/performance fallacies and pitfalls have ensnared many a 

computer architect, including us. Accordingly, this section suff ers no shortage of 

relevant examples. We start with a pitfall that traps many designers and reveals an 

important relationship in computer design. 

 Pitfall:  Expecting the improvement of one aspect of a computer to increase overall 

 performance by an amount proportional to the size of the improvement. 

Th

e great idea of making the common case fast has a demoralizing corollary 

that has plagued designers of both hardware and soft ware. It reminds us that the 

opportunity for improvement is aff ected by how much time the event consumes. 

A simple design problem illustrates it well. Suppose a program runs in 100 

seconds on a computer, with multiply operations responsible for 80 seconds of this 

time. How much do I have to improve the speed of multiplication if I want my 

program to run fi ve times faster? 

Th

e execution time of the program aft er making the improvement is given by  Amdahl’s Law 

the following simple equation known as Amdahl’s Law:

A rule stating that 

the performance 

Execution time after improvement

enhancement possible 

Execution time affected byy improvement

with a given improvement 

Execution time unaffectted

Amount of improvement

is limited by the amount 

that the improved feature 

For this problem:

is used. It is a quantitative 

version of the law of 

80 seconds

diminishing returns. 

Execution time after improvement

100

(

80 second

ds)

 n
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Since we want the performance to be fi ve times faster, the new execution time 

should be 20 seconds, giving

80 seconds

20 seconds

20 seconds

 n

80 seconds

0

 n

Th

at is, there is  no amount by which we can enhance-multiply to achieve a fi vefold 

increase in performance, if multiply accounts for only 80% of the workload. Th

e 

performance enhancement possible with a given improvement is limited by the amount 

that the improved feature is used. In everyday life this concept also yields what we call 

the law of diminishing returns. 

We can use Amdahl’s Law to estimate performance improvements when we 

know the time consumed for some function and its potential speedup. Amdahl’s 

Law, together with the CPU performance equation, is a handy tool for evaluating 

potential enhancements. Amdahl’s Law is explored in more detail in the exercises. 

Amdahl’s Law is also used to argue for practical limits to the number of parallel 

processors. We examine this argument in the Fallacies and Pitfalls section of 

Chapter 6. 

 Fallacy:  Computers at low utilization use little power. 

Power effi

ciency matters at low utilizations because server workloads vary. 

Utilization of servers in Google’s warehouse scale computer, for example, is 

between 10% and 50% most of the time and at 100% less than 1% of the time. Even 

given fi ve years to learn how to run the SPECpower benchmark well, the specially 

confi gured computer with the best results in 2012 still uses 33% of the peak power 

at 10% of the load. Systems in the fi eld that are not confi gured for the SPECpower 

benchmark are surely worse. 

Since servers’ workloads vary but use a large fraction of peak power, Luiz 

Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve 

“energy-proportional computing.” If future servers used, say, 10% of peak power at 

10% workload, we could reduce the electricity bill of datacenters and become good 

corporate citizens in an era of increasing concern about CO  emissions. 

2

 Fallacy: Designing for performance and designing for energy effi

   ciency  are 

 unrelated goals. 

Since energy is power over time, it is oft en the case that hardware or soft ware 

optimizations that take less time save energy overall even if the optimization takes 

a bit more energy when it is used. One reason is that all of the rest of the computer is 

consuming energy while the program is running, so even if the optimized portion 

uses a little more energy, the reduced time can save the energy of the whole system. 

 Pitfall:  Using a subset of the performance equation as a performance metric. 

We have already warned about the danger of predicting performance based on 

simply one of clock rate, instruction count, or CPI. Another common mistake 
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is to use only two of the three factors to compare performance. Although using 

two of the three factors may be valid in a limited context, the concept is also 

easily misused. Indeed, nearly all proposed alternatives to the use of time as the 

performance metric have led eventually to misleading claims, distorted results, or 

incorrect interpretations. 

One alternative to time is MIPS (million instructions per second). For a given  million instructions program, MIPS is simply

per second (MIPS) 

A measurement of 

Instruction count

MIPS

program execution speed 

Execution time

106

based on the number of 

millions of instructions. 

Since MIPS is an instruction execution rate, MIPS specifi es performance inversely  MIPS is computed as the to execution time; faster computers have a higher MIPS rating. Th

e good news  instruction count divided 

about MIPS is that it is easy to understand, and faster computers mean bigger  by the product of the execution time and 106. 

MIPS, which matches intuition. 

Th

ere are three problems with using MIPS as a measure for comparing computers. 

First, MIPS specifi es the instruction execution rate but does not take into account 

the capabilities of the instructions. We cannot compare computers with diff erent 

instruction sets using MIPS, since the instruction counts will certainly diff er. 

Second, MIPS varies between programs on the same computer; thus, a computer 

cannot have a single MIPS rating. For example, by substituting for execution time, 

we see the relationship between MIPS, clock rate, and CPI:

Instruction count

C

Clock rate

MIPS

Instruction count

CPI

106

CPI

106

Clock rate

Th

e CPI varied by a factor of 5 for SPEC CPU2006 on an Intel Core i7 computer 

in Figure 1.18, so MIPS does as well. Finally, and most importantly, if a new 

program executes more instructions but each instruction is faster, MIPS can vary 

independently from performance! 

Consider the following performance measurements for a program:

Check 

Yourself

Measurement

Computer A

Computer B

Instruction count

10 billion

8 billion

Clock  rate

4 GHz

4 GHz

CPI

1.0

1.1

a.  Which computer has the higher MIPS rating? 

b.  Which computer is faster? 
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 1.11 Concluding 

Remarks

 Where … the ENIAC 

Although it is diffi

cult to predict exactly what level of cost/performance computers 

 is equipped with 

will have in the future, it’s a safe bet that they will be much better than they are 

 18,000 vacuum tubes 

today. To participate in these advances, computer designers and programmers 

 and weighs 30 tons, 

must understand a wider variety of issues. 

 computers in the 

Both hardware and soft ware designers construct computer systems in hierarchical 

 future may have 1,000 

layers, with each lower layer hiding details from the level above. Th

is great idea 

 vacuum tubes and 

of abstraction is fundamental to understanding today’s computer systems, but it 

 perhaps weigh just 1½ 

does not mean that designers can limit themselves to knowing a single abstraction. 

 tons. 

Perhaps the most important example of abstraction is the interface between 

hardware and low-level soft ware, called the  instruction set architecture. Maintaining 

 Popular Mechanics, 

March 1949

the instruction set architecture as a constant enables many implementations of 

that architecture—presumably varying in cost and performance—to run identical 

soft ware. On the downside, the architecture may preclude introducing innovations 

that require the interface to change. 

Th

ere is a reliable method of determining and reporting performance by using 

the execution time of real programs as the metric. Th

is execution time is related to 

other important measurements we can make by the following equation:

Seconds

Instructions

Clock cycles

Seconds

Program

Program

Instruction

Clock cycle

We will use this equation and its constituent factors many times. Remember, 

though, that individually the factors do not determine performance: only the 

product, which equals execution time, is a reliable measure of performance. 

Execution time is the only valid and unimpeachable measure of 

performance. Many other metrics have been proposed and found wanting. 

The BIG

Sometimes these metrics are fl awed from the start by not refl ecting 

execution time; other times a metric that is valid in a limited context 

Picture

is extended and used beyond that context or without the additional 

clarifi cation needed to make it valid. 
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Th

e key hardware technology for modern processors is silicon. Equal in 

importance to an understanding of integrated circuit technology is an understanding 

of the expected rates of technological change, as predicted by Moore’s Law.  While 

silicon fuels the rapid advance of hardware, new ideas in the organization of 

computers have improved price/performance. Two of the key ideas are exploiting 

parallelism in the program, typically today via multiple processors, and exploiting 

locality of accesses to a memory hierarchy, typically via caches. 

Energy effi

ciency has replaced die area as the most critical resource of 

microprocessor design. Conserving power while trying to increase performance 

has forced the hardware industry to switch to multicore microprocessors, thereby 

forcing the soft ware industry to switch to programming parallel hardware. 

Parallelism is now required for performance. 

Computer designs have always been measured by cost and performance, as well 

as other important factors such as energy, dependability, cost of ownership, and 

scalability. Although this chapter has focused on cost, performance, and energy, 

the best designs will strike the appropriate balance for a given market among all 

the factors. 

Road Map for This Book

At the bottom of these abstractions are the fi ve classic components of a computer: 

datapath, control, memory, input, and output (refer to Figure 1.5). Th

ese fi ve 

components also serve as the framework for the rest of the chapters in this book:

■   Datapath: Chapter 3, Chapter 4, Chapter 6, and   Appendix C

■   Control: Chapter 4, Chapter 6, and   Appendix C

■   Memory: Chapter 5

■   Input: Chapters 5 and 6

■   Output: Chapters 5 and 6

As mentioned above, Chapter 4 describes how processors exploit implicit 

parallelism, Chapter 6 describes the explicitly parallel multicore microprocessors 

that are at the heart of the parallel revolution, and    Appendix C describes 

the highly parallel graphics processor chip. Chapter 5 describes how a memory 

hierarchy exploits locality. Chapter 2 describes instruction sets—the interface 

between compilers and the computer—and emphasizes the role of compilers and 

programming languages in using the features of the instruction set. Appendix A 

provides a reference for the instruction set of Chapter 2. Chapter 3 describes how 

computers handle arithmetic data. Appendix B introduces logic design. 
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   Historical Perspective and Further 

1.12

Reading

 An active fi eld of 

For each chapter in the text, a section devoted to a historical perspective can be 

 science is like an 

found online on a site that accompanies this book. We may trace the development 

 immense anthill; the 

of an idea through a series of computers or describe some important projects, and 

 individual almost 

we provide references in case you are interested in probing further. 

 vanishes into the mass 

Th

e historical perspective for this chapter provides a background for some of the 

 of minds tumbling over 

key ideas presented in this opening chapter. Its purpose is to give you the human 

 each other, carrying 

story behind the technological advances and to place achievements in their historical 

 information from place 

context. By understanding the past, you may be better able to understand the forces 

 to place, passing it 

that will shape computing in the future. Each Historical Perspective section online 

 around at the speed of 

ends with suggestions for further reading, which are also collected separately online 

 light. 

under the section “Further Reading.” Th

e rest of   Section 1.12 is found online. 

Lewis Th

omas, “Natural 

Science,” in  Th

   e Lives of 

 a Cell, 1974

 1.13 Exercises

Th

e relative time ratings of exercises are shown in square brackets aft er  each 

exercise number. On average, an exercise rated [10] will take you twice as long as 

one rated [5]. Sections of the text that should be read before attempting an exercise 

will be given in angled brackets; for example, <§1.4> means you should have read 

Section 1.4, Under the Covers, to help you solve this exercise. 

1.1 [2] <§1.1> Aside from the smart cell phones used by a billion people, list and 

describe four other types of computers. 

1.2 [5] <§1.2> Th

e eight great ideas in computer architecture are similar to ideas 

from other fi elds.  Match the eight ideas from computer architecture, “Design for 

Moore’s Law”, “Use Abstraction to Simplify Design”, “Make the Common Case 

Fast”, “Performance via Parallelism”, “Performance via Pipelining”, “Performance 

via Prediction”, “Hierarchy of Memories”, and “Dependability via Redundancy” to 

the following ideas from other fi elds:

a.   Assembly lines in automobile manufacturing

b.   Suspension bridge cables

c.  Aircraft  and marine navigation systems that incorporate wind information

d.   Express elevators in buildings
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e.   Library reserve desk

f.   Increasing the gate area on a CMOS transistor to decrease its switching time

g.  Adding electromagnetic aircraft  catapults (which are electrically-powered 

as opposed to current steam-powered models), allowed by the increased power 

generation off ered by the new reactor technology

h.   Building self-driving cars whose control systems partially rely on existing sensor 

systems already installed into the base vehicle, such as lane departure systems and 

smart cruise control systems

1.3  [2] <§1.3> Describe the steps that transform a program written in a high-level 

language such as C into a representation that is directly executed by a computer 

processor. 

1.4  [2] <§1.4> Assume a color display using 8 bits for each of the primary colors 

(red, green, blue) per pixel and a frame size of 1280 × 1024. 

a.   What is the minimum size in bytes of the frame buff er to store a frame? 

b.   How long would it take, at a minimum, for the frame to be sent over a 100 

Mbit/s network? 

1.5  [4] <§1.6> Consider three diff erent processors P1, P2, and P3 executing 

the same instruction set.  P1 has a 3 GHz clock rate and a CPI of 1.5.  P2 has a 

2.5 GHz clock rate and a CPI of 1.0.  P3 has a 4.0 GHz clock rate and has a CPI 

of 2.2. 

a.   Which processor has the highest performance expressed in instructions per second? 

b.   If the processors each execute a program in 10 seconds, fi nd the number of 

cycles and the number of instructions. 

c.   We are trying to reduce the execution time by 30% but this leads to an increase 

of 20% in the CPI. What clock rate should we have to get this time reduction? 

1.6  [20] <§1.6> Consider two diff erent implementations of the same instruction 

set architecture.  Th

e instructions can be divided into four classes according to 

their CPI (class A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2, 3, 

and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2. 

Given a program with a dynamic instruction count of 1.0E6 instructions divided 

into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D, 

which implementation is faster? 

a.   What is the global CPI for each implementation? 

b.   Find the clock cycles required in both cases. 
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1.7  [15] <§1.6> Compilers can have a profound impact on the performance 

of an application. Assume that for a program, compiler A results in a dynamic 

instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B 

results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s. 

a.   Find the average CPI for each program given that the processor has a clock cycle 

time of 1 ns. 

b.   Assume the compiled programs run on two diff erent processors. If the execution 

times on the two processors are the same, how much faster is the clock of the 

processor running compiler A’s code versus the clock of the processor running 

compiler B’s code? 

c.  A new compiler is developed that uses only 6.0E8 instructions and has an 

average CPI of 1.1. What is the speedup of using this new compiler versus using 

compiler A or B on the original processor? 

1.8  Th

e Pentium 4 Prescott processor, released in 2004, had a clock rate of 3.6 

GHz and voltage of 1.25 V.  Assume that, on average, it consumed 10 W of static 

power and 90 W of dynamic power. 

Th

e Core i5 Ivy Bridge, released in 2012, had a clock rate of 3.4 GHz and voltage 

of 0.9 V.  Assume that, on average, it consumed 30 W of static power and 40 W of 

dynamic power. 

1.8.1  [5] <§1.7> For each processor fi nd the average capacitive loads. 

1.8.2  [5] <§1.7> Find the percentage of the total dissipated power comprised by 

static power and the ratio of static power to dynamic power for each technology. 

1.8.3  [15] <§1.7> If the total dissipated power is to be reduced by 10%, how much 

should the voltage be reduced to maintain the same leakage current?  Note:  power 

is defi ned as the product of voltage and current. 

1.9  Assume for arithmetic, load/store, and branch instructions, a processor has 

CPIs of 1, 12, and 5, respectively.  Also assume that on a single processor a program 

requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store 

instructions, and 256 million branch instructions.  Assume that each processor has 

a 2 GHz clock frequency. 

Assume that, as the program is parallelized to run over multiple cores, the number 

of arithmetic and load/store instructions per processor is divided by 0.7 x  p (where 

 p is the number of processors) but the number of branch instructions per processor 

remains the same. 

1.9.1  [5] <§1.7> Find the total execution time for this program on 1, 2, 4, and 8 

processors, and show the relative speedup of the 2, 4, and 8 processor result relative 

to the single processor result. 
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1.9.2  [10] <§§1.6, 1.8> If the CPI of the arithmetic instructions was doubled, 

what would the impact be on the execution time of the program on 1, 2, 4, or 8 

processors? 

1.9.3  [10] <§§1.6, 1.8> To what should the CPI of load/store instructions be 

reduced in order for a single processor to match the performance of four processors 

using the original CPI values? 

1.10  Assume a 15 cm diameter wafer has a cost of 12, contains 84 dies, and has 

0.020 defects/cm2. Assume a 20 cm diameter wafer has a cost of 15, contains 100 

dies, and has 0.031 defects/cm2. 

1.10.1  [10] <§1.5> Find the yield for both wafers. 

1.10.2  [5] <§1.5> Find the cost per die for both wafers. 

1.10.3  [5] <§1.5> If the number of dies per wafer is increased by 10% and the 

defects per area unit increases by 15%, fi nd the die area and yield. 

1.10.4  [5] <§1.5> Assume a fabrication process improves the yield from 0.92 to 

0.95.  Find the defects per area unit for each version of the technology given a die 

area of 200 mm2. 

1.11  Th

e results of the SPEC CPU2006 bzip2 benchmark running on an AMD 

Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a 

reference time of 9650 s. 

1.11.1  [5] <§§1.6, 1.9> Find the CPI if the clock cycle time is 0.333 ns. 

1.11.2  [5] <§1.9> Find the SPECratio. 

1.11.3  [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions of the benchmark is increased by 10% without aff ecting the CPI. 

1.11.4  [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions of the benchmark is increased by 10% and the CPI is increased by 5%. 

1.11.5  [5] <§§1.6, 1.9> Find the change in the SPECratio for this change. 

1.11.6  [10] <§1.6> Suppose that we are developing a new version of the AMD 

Barcelona processor with a 4 GHz clock rate. We have added some additional 

instructions to the instruction set in such a way that the number of instructions 

has been reduced by 15%.  Th

e execution time is reduced to 700 s and the new 

SPECratio is 13.7.  Find the new CPI. 

1.11.7  [10] <§1.6> Th

is CPI value is larger than obtained in 1.11.1 as the clock 

rate was increased from 3 GHz to 4 GHz. Determine whether the increase in the 

CPI is similar to that of the clock rate. If they are dissimilar, why? 

1.11.8  [5] <§1.6> By how much has the CPU time been reduced? 
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1.11.9  [10] <§1.6> For a second benchmark, libquantum, assume an execution 

time of 960 ns, CPI of 1.61, and clock rate of 3 GHz.  If the execution time is 

reduced by an additional 10% without aff ecting to the CPI and with a clock rate of 

4 GHz, determine the number of instructions. 

1.11.10  [10] <§1.6> Determine the clock rate required to give a further 10% 

reduction in CPU time while maintaining the number of instructions and with the 

CPI unchanged. 

1.11.11  [10] <§1.6> Determine the clock rate if the CPI is reduced by 15% and 

the CPU time by 20% while the number of instructions is unchanged. 

1.12  Section 1.10 cites as a pitfall the utilization of a subset of the performance 

equation as a performance metric. To illustrate this, consider the following two 

processors. P1 has a clock rate of 4 GHz, average CPI of 0.9, and requires the 

execution of 5.0E9 instructions.  P2 has a clock rate of 3 GHz, an average CPI of 

0.75, and requires the execution of 1.0E9 instructions. 

1.12.1  [5] <§§1.6, 1.10> One usual fallacy is to consider the computer with the 

largest clock rate as having the largest performance. Check if this is true for P1 and 

P2. 

1.12.2  [10] <§§1.6, 1.10> Another fallacy is to consider that the processor executing the largest number of instructions will need a larger CPU time. Considering that 

processor P1 is executing a sequence of 1.0E9 instructions and that the CPI of 

processors P1 and P2 do not change, determine the number of instructions that P2 

can execute in the same time that P1 needs to execute 1.0E9 instructions. 

1.12.3 [10] <§§1.6, 1.10> A common fallacy is to use MIPS (millions of 

instructions per second) to compare the performance of two diff erent processors, 

and consider that the processor with the largest MIPS has the largest performance. 

Check if this is true for P1 and P2. 

1.12.4  [10] <§1.10> Another common performance fi gure is MFLOPS (millions 

of fl oating-point operations per second), defi ned as

MFLOPS = No. FP operations / (execution time × 1E6)

but this fi gure has the same problems as MIPS. Assume that 40% of the instructions 

executed on both P1 and P2 are fl oating-point instructions.  Find the MFLOPS 

fi gures for the programs. 

1.13  Another pitfall cited in Section 1.10 is expecting to improve the overall 

performance of a computer by improving only one aspect of the computer. Consider 

a computer running a program that requires 250 s, with 70 s spent executing FP 

instructions, 85 s executed L/S instructions, and 40 s spent executing branch 

instructions. 

1.13.1  [5] <§1.10> By how much is the total time reduced if the time for FP 

operations is reduced by 20%? 
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1.13.2  [5] <§1.10> By how much is the time for INT operations reduced if the 

total time is reduced by 20%? 

1.13.3  [5] <§1.10> Can the total time can be reduced by 20% by reducing only 

the time for branch instructions? 

1.14  Assume a program requires the execution of 50 × 106 FP instructions, 

110 × 106 INT instructions, 80 × 106 L/S instructions, and 16 × 106 branch 

instructions.  Th

e CPI for each type of instruction is 1, 1, 4, and 2, respectively. 

Assume that the processor has a 2 GHz clock rate. 

1.14.1  [10] <§1.10> By how much must we improve the CPI of FP instructions if 

we want the program to run two times faster? 

1.14.2  [10] <§1.10> By how much must we improve the CPI of L/S instructions 

if we want the program to run two times faster? 

1.14.3  [5] <§1.10> By how much is the execution time of the program improved 

if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and 

Branch is reduced by 30%? 

1.15  [5] <§1.8> When a program is adapted to run on multiple processors in 

a multiprocessor system, the execution time on each processor is comprised of 

computing time and the overhead time required for locked critical sections and/or 

to send data from one processor to another. 

Assume a program requires t = 100 s of execution time on one processor.  When run 

 p processors, each processor requires t/p s, as well as an additional 4 s of overhead, 

irrespective of the number of processors.  Compute the per-processor execution 

time for 2, 4, 8, 16, 32, 64, and 128 processors.  For each case, list the corresponding 

speedup relative to a single processor and the ratio between actual speedup versus 

ideal speedup (speedup if there was no overhead). 

§1.1, page 10: Discussion questions: many answers are acceptable. 

Answers to 

§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds, 

Check Yourself

and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000 

to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than 

DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than 

DRAM, and cost per GB is 7 to 10 times cheaper than DRAM. 

§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because 

high volume can make the extra investment to reduce die size by, say, 10% a good 

economic decision, but it doesn’t have to be true. 

§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds. 

§1.6, page 40: b. 

§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster. 
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 2.1 Introduction

To command a computer’s hardware, you must speak its language. Th

e words of a 

instruction set  Th

e 

computer’s language are called  instructions, and its vocabulary is called an instruction vocabulary of commands 

set. In this chapter, you will see the instruction set of a real computer, both in the form understood by a given 

written by people and in the form read by the computer. We introduce instructions in 

architecture. 

a top-down fashion. Starting from a notation that looks like a restricted programming 

language, we refi ne it step-by-step until you see the real language of a real computer. 

Chapter 3 continues our downward descent, unveiling the hardware for arithmetic 

and the representation of fl oating-point numbers. 

You might think that the languages of computers would be as diverse as those of 

people, but in reality computer languages are quite similar, more like regional dialects 

than like independent languages. Hence, once you learn one, it is easy to pick up others. 

Th

e chosen instruction set comes from MIPS Technologies, and is an elegant 

example of the instruction sets designed since the 1980s. To demonstrate how 

easy it is to pick up other instruction sets, we will take a quick look at three other 

popular instruction sets. 

1.  ARMv7 is similar to MIPS. More than 9 billion chips with ARM processors 

were manufactured in 2011, making it the most popular instruction set in 

the world. 

2. Th

e second example is the Intel x86, which powers both the PC and the 

cloud of the PostPC Era. 

3. Th

e third example is ARMv8, which extends the address size of the ARMv7 

from 32 bits to 64 bits. Ironically, as we shall see, this 2013 instruction set is 

closer to MIPS than it is to ARMv7. 

Th

is similarity of instruction sets occurs because all computers are constructed 

from hardware technologies based on similar underlying principles and because 

there are a few basic operations that all computers must provide. Moreover, 

computer designers have a common goal: to fi nd a language that makes it easy 

to build the hardware and the compiler while maximizing performance and 

minimizing cost and energy. Th

is goal is time honored; the following quote 

was written before you could buy a computer, and it is as true today as it was in 1947:

 It is easy to see by formal-logical methods that there exist certain [instruction 

 sets] that are in abstract adequate to control and cause the execution of any 

 sequence of operations . . . . Th

   e really decisive considerations from the present 

 point of view, in selecting an [instruction set], are more of a practical nature: 

 simplicity of the equipment demanded by the [instruction set], and the clarity of 

 its application to the actually important problems together with the speed of its 

 handling of those problems. 

Burks, Goldstine, and von Neumann, 1947
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Th

e “simplicity of the equipment” is as valuable a consideration for today’s 

computers as it was for those of the 1950s. Th


e goal of this chapter is to teach 

an instruction set that follows this advice, showing both how it is represented 

in hardware and the relationship between high-level programming languages 

and this more primitive one. Our examples are in the C programming language; 

Section 2.15 shows how these would change for an object-oriented language 

like Java. 

By learning how to represent instructions, you will also discover the secret of 

computing: the stored-program concept. Moreover, you will exercise your “foreign 

stored-program 

language” skills by writing programs in the language of the computer and running  concept  Th e idea that them on the simulator that comes with this book. You will also see the impact of  instructions and data of programming languages and compiler optimization on performance. We conclude  many types can be stored in memory as numbers, 

with a look at the historical evolution of instruction sets and an overview of other  leading to the stored-computer dialects. 

program computer. 

We reveal our fi rst instruction set a piece at a time, giving the rationale along 

with the computer structures. Th

is top-down, step-by-step tutorial weaves the 

components with their explanations, making the computer’s language more 

palatable. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter. 

 2.2 

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. Th

e MIPS assembly language   Th

   ere must certainly 

notation

 be instructions 

 for performing 

add a, b, c

 the fundamental 

instructs a computer to add the two variables b and c and to put their sum in a. 

 arithmetic operations. 

Th

is notation is rigid in that each MIPS arithmetic instruction performs only  Burks, Goldstine, and one operation and must always have exactly three variables. For example, suppose  von Neumann, 1947

we want to place the sum of four variables b, c, d, and e into variable a. (In this 

section we are being deliberately vague about what a “variable” is; in the next 

section we’ll explain in detail.)

Th

e following sequence of instructions adds the four variables:

add a, b, c    # The sum of b and c is placed in a

add a, a, d    # The sum of b, c, and d is now in a

add a, a, e    # The sum of b, c, d, and e is now in a

Th

us, it takes three instructions to sum the four variables. 

Th

e words to the right of the sharp symbol (#) on each line above are  comments 

for the human reader, so the computer ignores them. Note that unlike other 

programming languages, each line of this language can contain at most one 
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MIPS operands

Name

Example

Comments

$s0–$s7, $t0–$t9, $zero, 

Fast locations for data. In MIPS, data must be in registers to per form arithmetic, 

32 registers

$a0–$a3, $v0–$v1, $gp, $fp,  register $zero always equals 0, and register $at is reserved by the assembler to $sp, $ra, $at

handle large constants. 

230 memor y  Memor y[0], Memor y[4], . . . , 

Accessed only by data transfer instructions. MIPS uses byte addresses, so 

words

Memor y[4294967292]

sequential word addresses differ by 4. Memor y holds data structures, arrays, and 

spilled registers. 

MIPS assembly language

Category Instruction

Example

Meaning

Comments

add

add  $s1,$s2,$s3

$s1 = $s2 + $s3

Three register operands

Arithmetic

subtract

sub  $s1,$s2,$s3

$s1 = $s2 – $s3

Three register operands

add immediate

addi $s1,$s2,20

$s1 = $s2 + 20

Used to add constants

load word

lw  $s1,20($s2)

$s1 = Memory[$s2 + 20]

Word from memor y to register

store word

sw  $s1,20($s2)

Memor y[$s2 + 20] = $s1

Word from register to memor y

load half

lh  $s1,20($s2)

$s1 = Memory[$s2 + 20]

Halfword memor y to register

load half unsigned

lhu  $s1,20($s2)

$s1 = Memory[$s2 + 20]

Halfword memor y to register

store half

sh  $s1,20($s2)

Memor y[$s2 + 20] = $s1

Halfword register to memor y

Data 

load byte

lb  $s1,20($s2)

$s1 = Memory[$s2 + 20]

Byte from memor y to register

transfer

load byte unsigned

lbu  $s1,20($s2)

$s1 = Memory[$s2 + 20]

Byte from memor y to register

store byte

sb  $s1,20($s2)

Memor y[$s2 + 20] = $s1

Byte from register to memor y

load linked word

ll  $s1,20($s2)

$s1 = Memory[$s2 + 20]

Load word as 1st half of atomic swap 

store condition. word sc  $s1,20($s2)

Memory[$s2+20]=$s1;$s1=0 or 1 Store word as 2nd half of atomic swap 

load upper immed. 

lui  $s1,20

$s1 = 20 * 216

Loads constant in upper 16 bits

and 

and   $s1,$s2,$s3 $s1 = $s2 & $s3

Three reg. operands; bit-by-bit AND

or

or    $s1,$s2,$s3 $s1 = $s2 | $s3

Three reg. operands; bit-by-bit OR

nor

nor   $s1,$s2,$s3 $s1 = ~ ($s2 | $s3)

Three reg. operands; bit-by-bit NOR

Logical

and immediate

andi  $s1,$s2,20

$s1 = $s2 & 20

Bit-by-bit AND reg with constant

or immediate

ori   $s1,$s2,20

$s1 = $s2 | 20

Bit-by-bit OR reg with constant

shift left logical

sll   $s1,$s2,10

$s1 = $s2 << 10

Shift left by constant

shift right logical

srl   $s1,$s2,10

$s1 = $s2 >> 10

Shift right by constant

branch on equal

beq  $s1,$s2,25

if ($s1 == $s2) go to 

Equal test; PC-relative branch

PC + 4 + 100

branch on not equal

bne  $s1,$s2,25

if ($s1!=  $s2) go to 

Not equal test; PC-relative 

PC + 4 + 100

set on less than

slt  $s1,$s2,$s3

if ($s2 < $s3)  $s1 = 1; 

Compare less than; for beq, bne

Conditional 

else $s1 = 0

branch

set on less than 

sltu  $s1,$s2,$s3

if ($s2 < $s3)  $s1 = 1; 

Compare less than unsigned

unsigned

else $s1 = 0

set less than 

slti $s1,$s2,20

if ($s2 < 20) $s1 = 1; 

Compare less than constant

immediate 

else $s1 = 0

set less than 

sltiu $s1,$s2,20

if ($s2 < 20) $s1 = 1; 

Compare less than constant 

immediate unsigned

else $s1 = 0

unsigned

jump

j    2500

go to 10000

Jump to target address

Unconditional  jump register

jr   $ra

go to $ra

For switch, procedure return

jump

jump and link

jal  2500

$ra = PC + 4; go to 10000

For procedure call

FIGURE 2.1  MIPS assembly language revealed in this chapter.  Th

is information is also found in Column 1 of the MIPS Reference 

Data Card at the front of this book. 
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instruction. Another diff erence from C is that comments always terminate at the 

end of a line. 

Th

e natural number of operands for an operation like addition is three: the 

two numbers being added together and a place to put the sum. Requiring every 

instruction to have exactly three operands, no more and no less, conforms to the 

philosophy of keeping the hardware simple: hardware for a variable number of 

operands is more complicated than hardware for a fi xed number. Th

is situation 

illustrates the fi rst of three underlying principles of hardware design:

 Design Principle 1:   Simplicity favors regularity. 

We can now show, in the two examples that follow, the relationship of programs 

written in higher-level programming languages to programs in this more primitive 

notation. 

Compiling Two C Assignment Statements into MIPS

Th

is segment of a C program contains the fi ve variables a, b, c, d, and e. Since 

Java evolved from C, this example and the next few work for either high-level 

EXAMPLE

programming language:

a = b + c; 

d = a – e; 

Th

e translation from C to MIPS assembly language instructions is performed 

by the  compiler. Show the MIPS code produced by a compiler. 

A MIPS instruction operates on two source operands and places the result 

in one destination operand. Hence, the two simple statements above compile 

ANSWER

directly into these two MIPS assembly language instructions:

add a, b, c

sub d, a, e

Compiling a Complex C Assignment into MIPS

EXAMPLE

A somewhat complex statement contains the fi ve variables f, g, h, i, and j:

f = (g + h) – (i + j); 

What might a C compiler produce? 
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Th

e compiler must break this statement into several assembly instructions, 

ANSWER

since only one operation is performed per MIPS instruction. Th

e fi rst MIPS 

instruction calculates the sum of g and h. We must place the result somewhere, 

so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and 

j before we can subtract. Th

us, the second instruction places the sum of i and 

j in another temporary variable created by the compiler, called t1:

add t1,i,j # temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the fi rst and 

places the diff erence in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 – t1, which is (g + h) – (i + j)

Check  For a given function, which programming language likely takes the most lines of 

code? Put the three representations below in order. 

Yourself

1. Java

2. C

3.  MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a 

software interpreter. The instruction set of this interpreter is called  Java bytecodes 

(see 

Section 2.15), which is quite different from the MIPS instruction set. To get 

performance close to the equivalent C program, Java systems today typically compile 

Java bytecodes into the native instruction sets like MIPS. Because this compilation is 

normally done much later than for C programs, such Java compilers are often called  Just 

 In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers 

in the start-up process, and Section 2.13 shows the performance consequences of 

compiling versus interpreting Java programs. 

 2.3 

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions 

are restricted; they must be from a limited number of special locations built directly 

word  Th

e natural unit 

in hardware called  registers. Registers are primitives used in hardware design that 

of access in a computer, 

are also visible to the programmer when the computer is completed, so you can 

usually a group of 32 bits; 

think of registers as the bricks of computer construction. Th

e size of a register in 

corresponds to the size 

of a register in the MIPS 

the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are 

architecture. 

given the name word in the MIPS architecture. 
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One major diff erence between the variables of a programming language and 

registers is the limited number of registers, typically 32 on current computers, 

like MIPS. (See   Section 2.21 for the history of the number of registers.) Th

us, 

continuing in our top-down, stepwise evolution of the symbolic representation of 

the MIPS language, in this section we have added the restriction that the three 

operands of MIPS arithmetic instructions must each be chosen from one of the 32 

32-bit registers. 

Th

e reason for the limit of 32 registers may be found in the second of our three 

underlying design principles of hardware technology:

 Design Principle 2:   Smaller is faster . 

A very large number of registers may increase the clock cycle time simply because 

it takes electronic signals longer when they must travel farther. 

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be 

faster than 32. Yet, the truth behind such observations causes computer designers 

to take them seriously. In this case, the designer must balance the craving of 

programs for more registers with the designer’s desire to keep the clock cycle fast. 

Another reason for not using more than 32 is the number of bits it would take in 

the instruction format, as Section 2.5 demonstrates. 

Chapter 4 shows the central role that registers play in hardware construction; 

as we shall see in this chapter, eff ective use of registers is critical to program 

performance. 

Although we could simply write instructions using numbers for registers, from 

0 to 31, the MIPS convention is to use two-character names following a dollar sign 

to represent a register. Section 2.8 will explain the reasons behind these names. For 

now, we will use $s0, $s1, . . . for registers that correspond to variables in C and 

Java programs and $t0, $t1, . . . for temporary registers needed to compile the 

program into MIPS instructions. 

Compiling a C Assignment Using Registers

EXAMPLE

It is the compiler’s job to associate program variables with registers. Take, for 

instance, the assignment statement from our earlier example:

f = (g + h) – (i + j); 

Th

e variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, 

$s3, and $s4, respectively. What is the compiled MIPS code? 
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Th

e compiled program is very similar to the prior example, except we replace 

ANSWER

the variables with the register names mentioned above plus two temporary 

registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h

add $t1,$s3,$s4 # register $t1 contains i + j

sub $s0,$t0,$t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

Memory Operands

Programming languages have simple variables that contain single data elements, 

as in these examples, but they also have more complex data structures—arrays and 

structures. Th

ese complex data structures can contain many more data elements 

than there are registers in a computer. How can a computer represent and access 

such large structures? 

Recall the fi ve components of a computer introduced in Chapter 1 and repeated 

on page 61. Th

e processor can keep only a small amount of data in registers, but 

computer memory contains billions of data elements. Hence, data structures 

(arrays and structures) are kept in memory. 

data transfer 

instruction A command 

As explained above, arithmetic operations occur only on registers in MIPS 

that moves data between 

instructions; thus, MIPS must include instructions that transfer data between 

memory and registers. 

memory and registers. Such instructions are called data transfer instructions. 

To access a word in memory, the instruction must supply the memory address. 

address  A value used to 

Memory is just a large, single-dimensional array, with the address acting as the 

delineate the location of 

a specifi c data element 

index to that array, starting at 0. For example, in Figure 2.2, the address of the third within a memory array. 

data element is 2, and the value of Memory [2] is 10. 

3

100

2

10

1

101

0

1

Address

Data

Processor

Memory

FIGURE 2.2  Memory addresses and contents of memory at those locations.  If these elements were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses. 

Th

e data transfer instruction that copies data from memory to a register is 

traditionally called  load. Th

e format of the load instruction is the name of the 

operation followed by the register to be loaded, then a constant and register used to 

access memory. Th

e sum of the constant portion of the instruction and the contents 

of the second register forms the memory address. Th

e actual MIPS name for this 

instruction is lw, standing for  load word. 
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Compiling an Assignment When an Operand Is in Memory

EXAMPLE

Let’s assume that A is an array of 100 words and that the compiler has 

associated the variables g and h with the registers $s1 and $s2 as before. 

Let’s also assume that the starting address, or  base address,  of the array is in 

$s3. Compile this C assignment statement:

g = h + A[8]; 

Although there is a single operation in this assignment statement, one of 

the operands is in memory, so we must fi rst transfer A[8] to a register. Th

e 

ANSWER

address of this array element is the sum of the base of the array A, found in 

register $s3, plus the number to select element 8. Th

e data should be placed 

in a temporary register for use in the next instruction. Based on Figure 2.2, the fi rst compiled instruction is

lw    $t0,8($s3) # Temporary reg $t0 gets A[8]

(We’ll be making a slight adjustment to this instruction, but we’ll use this 

simplifi ed version for now.) Th

e following instruction can operate on the value 

in $t0 (which equals A[8]) since it is in a register. Th

e instruction must add 

h (contained in $s2) to A[8] (contained in $t0) and put the sum in the 

register corresponding to g (associated with $s1):

add   $s1,$s2,$t0 # g = h + A[8]

Th

e constant in a data transfer instruction (8) is called the  off set,  and the 

register added to form the address ($s3) is called the  base register. 

In addition to associating variables with registers, the compiler allocates data  Hardware/

structures like arrays and structures to locations in memory. Th

e compiler can then 

Software 

place the proper starting address into the data transfer instructions. 

Since 8-bit  bytes are useful in many programs, virtually all architectures today  Interface address individual bytes. Th

erefore, the address of a word matches the address of 

one of the 4 bytes within the word, and addresses of sequential words diff er by 4. 

For example, Figure 2.3 shows the actual MIPS addresses for the words in Figure 

2.2; the byte address of the third word is 8. 

alignment restriction 

In MIPS, words must start at addresses that are multiples of 4. Th

is requirement  A requirement that data 

is called an alignment restriction, and many architectures have it. (Chapter 4  be aligned in memory on suggests why alignment leads to faster data transfers.)

natural boundaries. 
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12

100

8

10

4

101

0

1

Byte Address

Data

Processor

Memory

FIGURE 2.3  Actual MIPS memory addresses and contents of memory for those words.  

Th

e changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word addresses are multiples of 4: there are 4 bytes in a word. 

Computers divide into those that use the address of the left most or “big end” byte 

as the word address versus those that use the rightmost or “little end” byte. MIPS is 

in the  big-endian camp. Since the order matters only if you access the identical data 

both as a word and as four bytes, few need to be aware of the endianess. (Appendix 

A shows the two options to number bytes in a word.)

Byte addressing also aff ects the array index. To get the proper byte address in the 

code above,  the off set to be added to the base register $s3  must be 4   8, or 32,  so that the load address will select A[8] and not A[8/4]. (See the related pitfall on 

page 160 of Section 2.19.)

Th

e instruction complementary to load is traditionally called  store;  it copies data 

from a register to memory. Th

e format of a store is similar to that of a load: the 

name of the operation, followed by the register to be stored, then off set to select 

the array element, and fi nally the base register. Once again, the MIPS address is 

specifi ed in part by a constant and in part by the contents of a register. Th

e actual 

MIPS name is sw, standing for  store word. 

Hardware/

As the addresses in loads and stores are binary numbers, we can see why the 

DRAM for main memory comes in binary sizes rather than in decimal sizes. Th

at 

Software  is, in gebibytes (230) or tebibytes (240), not in gigabytes (109) or terabytes (1012); see Interface

Figure 1.1. 
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Compiling Using Load and Store

EXAMPLE

Assume variable h is associated with register $s2 and the base address of 

the array A is in $s3. What is the MIPS assembly code for the C assignment 

statement below? 

A[12] = h + A[8]; 

Although there is a single operation in the C statement, now two of the 

operands are in memory, so we need even more MIPS instructions. Th

e fi rst 

ANSWER

two instructions are the same as in the prior example, except this time we use 

the proper off set for byte addressing in the load word instruction to select 

A[8], and the add instruction places the sum in $t0:

lw   $t0,32($s3)  # Temporary reg $t0 gets A[8]

add  $t0,$s2,$t0  # Temporary reg $t0 gets h + A[8]

Th

e fi nal instruction stores the sum into A[12], using 48 (4  12) as the off set 

and register $s3 as the base register. 

sw  $t0,48($s3)  # Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between 

memory and registers in the MIPS architecture. Other brands of computers use 

other instructions along with load and store to transfer data. An architecture with 

such alternatives is the Intel x86, described in Section 2.17. 

Many programs have more variables than computers have registers. Consequently, Hardware/

the compiler tries to keep the most frequently used variables in registers and places  Software the rest in memory, using loads and stores to move variables between registers and 

memory. Th

e process of putting less commonly used variables (or those needed  Interface

later) into memory is called  spilling registers. 

Th

e hardware principle relating size and speed suggests that memory must be 

slower than registers, since there are fewer registers. Th

is is indeed the case; data 

accesses are faster if data is in registers instead of memory. 

Moreover, data is more useful when in a register. A MIPS arithmetic instruction 

can read two registers, operate on them, and write the result. A MIPS data transfer 

instruction only reads one operand or writes one operand, without operating on it. 

Th

us, registers take less time to access  and have higher throughput than memory, 

making data in registers both faster to access and simpler to use. Accessing registers 

also uses less energy than accessing memory. To achieve highest performance and 

conserve energy, an instruction set architecture must have a suffi

cient number of 

registers, and compilers must use registers effi

ciently. 
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Constant or Immediate Operands

Many times a program will use a constant in an operation—for example, 

incrementing an index to point to the next element of an array. In fact, more than 

half of the MIPS arithmetic instructions have a constant as an operand when 

running the SPEC CPU2006 benchmarks. 

Using only the instructions we have seen so far, we would have to load a constant 

from memory to use one. (Th

e constants would have been placed in memory when 

the program was loaded.) For example, to add the constant 4 to register $s3, we 

could use the code

lw $t0, AddrConstant4($s1)   # $t0 = constant 4

add $s3,$s3,$t0              # $s3 = $s3 + $t0 ($t0 == 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4. 

An alternative that avoids the load instruction is to off er versions of the arithmetic 

instructions in which one operand is a constant. Th

is quick add instruction with 

one constant operand is called  add immediate or addi. To add 4 to register $s3, 

we just write

addi    $s3,$s3,4            # $s3 = $s3 + 4

Constant operands occur frequently, and by including constants inside 

arithmetic instructions, operations are much faster and use less energy than if 

constants were loaded from memory. 

Th

e constant zero has another role, which is to simplify the instruction set 

by off ering useful variations. For example, the move operation is just an add 

instruction where one operand is zero. Hence, MIPS dedicates a register $zero 

to be hard-wired to the value zero. (As you might expect, it is register number 0.) 

Using frequency to justify the inclusions of constants is another example of the 

great idea of making the common case fast. 

Check  Given the importance of registers, what is the rate of increase in the number of 

registers in a chip over time? 

Yourself

1.  Very fast: Th

ey increase as fast as Moore’s law, which predicts doubling the 

number of transistors on a chip every 18 months. 

2.  Very slow: Since programs are usually distributed in the language of the 

computer, there is inertia in instruction set architecture, and so the number 

of registers increases only as fast as new instruction sets become viable. 

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 

64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight, 

they are offi cially called MIPS-32 and MIPS-64. In this chapter, we use a subset of 

MIPS-32. 

Appendix E shows the differences between MIPS-32 and MIPS-64. Sections 

2.16 and 2.18 show the much more dramatic difference between the 32-bit address 

ARMv7 and its 64-bit successor, ARMv8. 
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Elaboration:  The MIPS offset plus base register addressing is an excellent match to 

structures as well as arrays, since the register can point to the beginning of the structure 

and the offset can select the desired element. We’ll see such an example in Section 

2.13. 

Elaboration:  The register in the data transfer instructions was originally invented to 

hold an index of an array with the offset used for the starting address of an array. Thus, 

the base register is also called the  index register. Today’s memories are much larger and the software model of data allocation is more sophisticated, so the base address of 

the array is normally passed in a register since it won’t fi t in the offset, as we shall see. 

Elaboration:  Since MIPS supports negative constants, there is no need for subtract 

immediate in MIPS. 

 2.4 

Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught 

to think in base 10, but numbers may be represented in any base. For example, 123 

base 10  1111011 base 2. 

Numbers are kept in computer hardware as a series of high and low electronic 

signals, and so they are considered base 2 numbers. (Just as base 10 numbers are 

called  decimal numbers, base 2 numbers are called  binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all 

information is composed of binary digits or  bits. Th

is fundamental building block  binary digit Also 

can be one of two values, which can be thought of as several alternatives: high or  called binary bit. One low, on or off , true or false, or 1 or 0. 

of the two numbers 

Generalizing the point, in any number base, the value of  i th digit  d is

in base 2, 0 or 1, that 

are the components of 

 d

 i

 Base

information. 

where  i starts at 0 and increases from right to left . Th

is representation leads to an 

obvious way to number the bits in the word: simply use the power of the base for 

that bit. We subscript decimal numbers with  ten and binary numbers with  two. For 

example, 

1011two

represents

(1 x 23)   + (0 x 22) + (1 x 21)  + (1 x 20)ten

= (1 x 8)   + (0 x 4)  + (1 x 2)  + (1 x 1)ten

=    8      +    0     +    2     +    1ten

= 11ten
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We number the bits 0, 1, 2, 3, . . . from  right to left  in a word. Th

e drawing below 

shows the numbering of bits within a MIPS word and the placement of the number 

1011 :

two

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

(32 bits wide)

least signifi cant bit  Th

e 

Since words are drawn vertically as well as horizontally, left most and rightmost 

rightmost bit in a MIPS 

may be unclear. Hence, the phrase least signifi cant bit is used to refer to the right-

word. 

most bit (bit 0 above) and most signifi cant bit to the left most bit (bit 31). 

Th

e MIPS word is 32 bits long, so we can represent 232 diff erent 32-bit patterns. 

most signifi cant bit  Th

e 

left most bit in a MIPS 

It is natural to let these combinations represent the numbers from 0 to 232  1 

word. 

(4,294,967,295 ):

ten

0000 0000 0000 0000 0000 0000 0000 0000

= 0

two

ten

0000 0000 0000 0000 0000 0000 0000 0001

= 1

two

ten

0000 0000 0000 0000 0000 0000 0000 0010

= 2

two

ten



. 

. 

.                                         . 

. 

. 

1111 1111 1111 1111 1111 1111 1111 1101

= 4,294,967,293

two

ten

1111 1111 1111 1111 1111 1111 1111 1110

= 4,294,967,294

two

ten

1111 1111 1111 1111 1111 1111 1111 1111

= 4,294,967,295

two

ten

Th

at is, 32-bit binary numbers can be represented in terms of the bit value times a 

power of 2 (here  xi means the  i th bit of  x):

( x 31

231)

( x 30

230 )

( x 29

229 )

( x 1

21)

( x 0

20

…

)

For reasons we will shortly see, these positive numbers are called unsigned numbers. 

Hardware/

Base 2 is not natural to human beings; we have 10 fi ngers and so fi nd base 10 

natural. Why didn’t computers use decimal? In fact, the fi rst commercial computer 

Software   did off er decimal arithmetic. Th e problem was that the computer still used on Interface

and off  signals, so a decimal digit was simply represented by several binary digits. 

Decimal proved so ineffi

cient that subsequent computers reverted to all binary, 

converting to base 10 only for the relatively infrequent input/output events. 

Keep in mind that the binary bit patterns above are simply  representatives of 

numbers. Numbers really have an infi nite number of digits, with almost all being 

0 except for a few of the rightmost digits. We just don’t normally show leading 0s. 

Hardware can be designed to add, subtract, multiply, and divide these binary 

bit patterns. If the number that is the proper result of such operations cannot be 

represented by these rightmost hardware bits,  overfl ow is said to have occurred. 
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It’s up to the programming language, the operating system, and the program to 

determine what to do if overfl ow occurs. 

Computer programs calculate both positive and negative numbers, so we need a 

representation that distinguishes the positive from the negative. Th

e most obvious 

solution is to add a separate sign, which conveniently can be represented in a single 

bit; the name for this representation is  sign and magnitude. 

Alas, sign and magnitude representation has several shortcomings. First, it’s 

not obvious where to put the sign bit. To the right? To the left ? Early computers 

tried both. Second, adders for sign and magnitude may need an extra step to set 

the sign because we can’t know in advance what the proper sign will be. Finally, a 

separate sign bit means that sign and magnitude has both a positive and a negative 

zero, which can lead to problems for inattentive programmers. As a result of these 

shortcomings, sign and magnitude representation was soon abandoned. 

In the search for a more attractive alternative, the question arose as to what 

would be the result for unsigned numbers if we tried to subtract a large number 

from a small one. Th

e answer is that it would try to borrow from a string of leading 

0s, so the result would have a string of leading 1s. 

Given that there was no obvious better alternative, the fi nal solution was to pick 

the representation that made the hardware simple: leading 0s mean positive, and 

leading 1s mean negative. Th

is convention for representing signed binary numbers 

is called  two’s complement representation:

0000 0000 0000 0000 0000 0000 0000 0000

= 0

two

ten

0000 0000 0000 0000 0000 0000 0000 0001

= 1

two

ten

0000 0000 0000 0000 0000 0000 0000 0010

= 2

two

ten



. 

. 

.                                        . 

. 

. 

0111 1111 1111 1111 1111 1111 1111 1101

= 2,147,483,645

two

ten

0111 1111 1111 1111 1111 1111 1111 1110

= 2,147,483,646

two

ten

0111 1111 1111 1111 1111 1111 1111 1111

= 2,147,483,647

two

ten

1000 0000 0000 0000 0000 0000 0000 0000

= –2,147,483,648

two

ten

1000 0000 0000 0000 0000 0000 0000 0001

= –2,147,483,647

two

ten

1000 0000 0000 0000 0000 0000 0000 0010

= –2,147,483,646

two

ten

. 

. 

.                                        . 

. 

. 

1111 1111 1111 1111 1111 1111 1111 1101

= –3

two

ten

1111 1111 1111 1111 1111 1111 1111 1110

= –2

two

ten

1111 1111 1111 1111 1111 1111 1111 1111

= –1

two

ten

Th

e positive half of the numbers, from 0 to 2,147,483,647  (231 1), use the same 

ten

representation as before. Th

e following bit pattern (1000 . . . 0000 ) represents the most 

two

negative number 2,147,483,648  (231). It is followed by a declining set of negative 

ten

numbers: 2,147,483,647  (1000 . . . 0001 ) down to 1  (1111 . . . 1111 ). 

ten

two

ten

two

Two’s complement does have one negative number, 2,147,483,648 , that 

ten

has no corresponding positive number. Such imbalance was also a worry to the 

inattentive programmer, but sign and magnitude had problems for both the 

programmer  and the hardware designer. Consequently, every computer today uses 

two’s complement binary representations for signed numbers. 
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Two’s complement representation has the advantage that all negative numbers 

have a 1 in the most signifi cant bit. Consequently, hardware needs to test only 

this bit to see if a number is positive or negative (with the number 0 considered 

positive). Th

is bit is oft en called the  sign bit. By recognizing the role of the sign bit, 

we can represent positive and negative 32-bit numbers in terms of the bit value 

times a power of 2:

( x 31

231)

( x 30

230 )

( x 29

229 )

( x 1

21)

( x 0

20

+

…

)

Th

e sign bit is multiplied by 231, and the rest of the bits are then multiplied by 

positive versions of their respective base values. 

Binary to Decimal Conversion

EXAMPLE

What is the decimal value of this 32-bit two’s complement number? 

1111  1111  1111  1111  1111  1111  1111  1100two

Substituting the number’s bit values into the formula above:

ANSWER

(1

231)

(1

230 )

(1

229 )

… (1 21) (0 21) (0 20)

231

230

2229

2

… 2

0

0

2,147, 483,648

2,147, 483,644

ten

ten

4ten

We’ll see a shortcut to simplify conversion from negative to positive soon. 

Just as an operation on unsigned numbers can overfl ow the capacity of hardware 

to represent the result, so can an operation on two’s complement numbers. Overfl ow 

occurs when the left most retained bit of the binary bit pattern is not the same as the 

infi nite number of digits to the left  (the sign bit is incorrect): a 0 on the left  of the bit 

pattern when the number is negative or a 1 when the number is positive. 

Hardware/

Signed versus unsigned applies to loads as well as to arithmetic. Th

e  function of a 

signed load is to copy the sign repeatedly to fi ll the rest of the register—called  sign 

Software   extension—but its  purpose is to place a correct representation of the number within Interface that register. Unsigned loads simply fi ll with 0s to the left  of the data, since the number represented by the bit pattern is unsigned. 

When loading a 32-bit word into a 32-bit register, the point is moot; signed and 

unsigned loads are identical. MIPS does off er two fl avors of byte loads:  load byte (lb) treats the byte as a signed number and thus sign-extends to fi ll the 24 left -most bits 

of the register, while  load byte unsigned (lbu) works with unsigned integers. Since C 

programs almost always use bytes to represent characters rather than consider bytes 

as very short signed integers, lbu is used practically exclusively for byte loads. 
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Unlike the numbers discussed above, memory addresses naturally start at 0  Hardware/

and continue to the largest address. Put another way, negative addresses make  Software 

no sense. Th

us, programs want to deal sometimes with numbers that can be 

positive or negative and sometimes with numbers that can be only positive. Interface

Some programming languages refl ect this distinction. C, for example, names the 

former  integers (declared as int in the program) and the latter  unsigned integers 

(unsigned int). Some C style guides even recommend declaring the former as 

signed int to keep the distinction clear. 

Let’s examine two useful shortcuts when working with two’s complement 

numbers. Th

e fi rst shortcut is a quick way to negate a two’s complement binary 

number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. 

Th

is shortcut is based on the observation that the sum of a number and its inverted 

representation must be 111 . . . 111 , which represents 1. Since  x

 x

1, 

two

therefore   x

 x

1

0 or  x

1

 x

− . (We use the notation  x  to  mean  invert 

every bit in  x from 0 to 1 and vice versa.)

Negation Shortcut

EXAMPLE

Negate 2 , and then check the result by negating 2 . 

ten

ten

2   0000 0000 0000 0000 0000 0000 0000 0010

ten

two

ANSWER

Negating this number by inverting the bits and adding one, 



1111 



1111 



1111 



1111 



1111 



1111 



1111 



1101two



+  

1two

= 



1111 



1111 



1111 



1111 



1111 



1111 



1111 



1110two

= 



–2ten

Going the other direction, 

1111 1111 1111 1111 1111 1111 1111 1110two

is fi rst inverted and then incremented:

0000 



0000 



0000 



0000 



0000 



0000 



0000 



0001two



+                                     1two

= 

0000 



0000 



0000 



0000 



0000 



0000 



0000 



0010two

= 

2ten
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Our next shortcut tells us how to convert a binary number represented in  n bits 

to a number represented with more than  n bits. For example, the immediate fi eld 

in the load, store, branch, add, and set on less than instructions contains a two’s 

complement 16-bit number, representing 32,768  (215) to 32,767  (215  1). 

ten

ten

To add the immediate fi eld to a 32-bit register, the computer must convert that 16-

bit number to its 32-bit equivalent. Th

e shortcut is to take the most signifi cant bit 

from the smaller quantity—the sign bit—and replicate it to fi ll the new bits of the 

larger quantity. Th

e old nonsign bits are simply copied into the right portion of the 

new word. Th

is shortcut is commonly called  sign extension. 

Sign Extension Shortcut

EXAMPLE

Convert 16-bit binary versions of 2  and 2  to 32-bit binary numbers. 

ten

ten

Th

e 16-bit binary version of the number 2 is

ANSWER

0000 0000 0000 0010

= 2

two

ten

It is converted to a 32-bit number by making 16 copies of the value in the most 

signifi cant bit (0) and placing that in the left -hand half of the word. Th

e right 

half gets the old value:

0000 0000 0000 0000 0000 0000 0000 0010

= 2

two

ten

Let’s negate the 16-bit version of 2 using the earlier shortcut. Th

us, 

0000 0000 0000 0010two

becomes

1111 



1111 



1111 



1101two

+                

1two

= 1111 



1111 



1111 



1110two

Creating a 32-bit version of the negative number means copying the sign bit 

16 times and placing it on the left :

1111 1111 1111 1111 1111 1111 1111 1110

= –2

two

ten

Th

is trick works because positive two’s complement numbers really have an infi nite 

number of 0s on the left  and negative two’s complement numbers have an infi nite 

number of 1s. Th

e binary bit pattern representing a number hides leading bits to fi t 

the width of the hardware; sign extension simply restores some of them. 
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Summary

Th

e main point of this section is that we need to represent both positive and 

negative integers within a computer word, and although there are pros and cons to 

any option, the unanimous choice since 1965 has been two’s complement. 

Elaboration: For signed decimal numbers, we used “” to represent negative 

because there are no limits to the size of a decimal number. Given a fi xed word size, 

binary and hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not normally use “” or “” with binary or hexadecimal notation. 

What is the decimal value of this 64-bit two’s complement number? 

Check 

Yourself

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000two

1) –4ten

2) –8ten

3) –16ten

4) 18,446,744,073,709,551,609ten

one’s complement 

A notation that represents 

Elaboration:  Two’s complement gets its name from the rule that the unsigned sum 

the most negative value 

of an  n-bit number and its  n-bit negative is 2 n; hence, the negation or complement of a by 10 . . . 000  and the 

number  x is 2 n   x, or its “two’s complement.” 

two

most positive value by 

01 . . . 11 , leaving an 

two

A third alternative representation to two’s complement and sign and magnitude is 

equal number of negatives 

called  one’s complement. The negative of a one’s complement is found by inverting 

and positives but ending 

each bit, from 0 to 1 and from 1 to 0, or  x. This relation helps explain its name since 

up with two zeros, one 

the complement of  x is 2 n     x   1. It was also an attempt to be a better solution positive (00 . . . 00 ) and 

two

than sign and magnitude, and several early scientifi c computers did use the notation. 

one negative (11 . . . 11 ). 

two

This representation is similar to two’s complement except that it also has two 0s:  Th

e term is also used to 

00 . . . 00

is positive 0 and 11 . . . 11

is negative 0. The most negative number, 

mean the inversion of 

two

two

10 . . . 000

, represents 2,147,483,647 , and so the positives and negatives are 

every bit in a pattern: 0 to 

two

ten

balanced. One’s complement adders did need an extra step to subtract a number, and 

1 and 1 to 0. 

hence two’s complement dominates today. 

biased notation 

A fi nal notation, which we will look at when we discuss fl oating point in Chapter 3, 

A notation that represents 

is to represent the most negative value by 00 . . . 000

and the most positive value 

two

the most negative value 

by 11 . . . 11

, with 0 typically having the value 10 . . . 00

. This is called a biased 

by 00 . . . 000  and the 

two

two

two

notation, since it biases the number such that the number plus the bias has a non-

most positive value by 11 

negative representation. 

. . . 11 , with 0 typically 

two

having the value 10 . . . 

00 , thereby biasing 

two

the number such that 

the number plus the 

bias has a non-negative 

representation. 
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 2.5 

 Representing Instructions in the Computer

We are now ready to explain the diff erence between the way humans instruct 

computers and the way computers see instructions. 

Instructions are kept in the computer as a series of high and low electronic 

signals and may be represented as numbers. In fact, each piece of an instruction 

can be considered as an individual number, and placing these numbers side by side 

forms the instruction. 

Since registers are referred to in instructions, there must be a convention to 

map register names into numbers. In MIPS assembly language, registers $s0 to 

$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8 

to 15. Hence, $s0 means register 16, $s1 means register 17, $s2 means register 

18, . . . , $t0 means register 8, $t1 means register 9, and so on. We’ll describe the 

convention for the rest of the 32 registers in the following sections. 

Translating a MIPS Assembly Instruction into a Machine Instruction

EXAMPLE

Let’s do the next step in the refi nement of the MIPS language as an example. 

We’ll show the real MIPS language version of the instruction represented 

symbolically as

add $t0,$s1,$s2

fi rst as a combination of decimal numbers and then of binary numbers. 

Th

e decimal representation is

ANSWER

0

17

18

8

0

32

Each of these segments of an instruction is called a  fi eld. Th

e fi rst  and 

last fi elds (containing 0 and 32 in this case) in combination tell the MIPS 

computer that this instruction performs addition. Th

e second fi eld gives the 

number of the register that is the fi rst source operand of the addition operation 

(17  $s1), and the third fi eld gives the other source operand for the addition 

(18    $s2). Th

e fourth fi eld contains the number of the register that is to 

receive the sum (8  $t0). Th

e fi ft h fi eld is unused in this instruction, so it is 

set to 0. Th

us, this instruction adds register $s1 to register $s2 and places the 

sum in register $t0. 

Th

is instruction can also be represented as fi elds of binary numbers as 

opposed to decimal:

000000

10001

10010

01000

00000

100000

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits
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Th

is layout of the instruction is called the instruction format. As you can see  instruction format from counting the number of bits, this MIPS instruction takes exactly 32 bits—the  A form of representation same size as a data word. In keeping with our design principle that simplicity favors  of an instruction regularity, all MIPS instructions are 32 bits long. 

composed of fi elds of 

binary numbers. 

To distinguish it from assembly language, we call the numeric version of 

instructions machine language and a sequence of such instructions  machine code. 

machine 

It would appear that you would now be reading and writing long, tedious strings 

language Binary 

of binary numbers. We avoid that tedium by using a higher base than binary that  representation used for converts easily into binary. Since almost all computer data sizes are multiples of  communication within a computer system. 

4, hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, 

we can trivially convert by replacing each group of four binary digits by a single  hexadecimal Numbers hexadecimal digit, and vice versa. Figure 2.4 converts between hexadecimal and  in base 16. 

binary. 

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 

0hex

0000two

4hex

0100two

8hex

1000two

chex

1100two

1hex

0001two

5hex

0101two

9hex

1001two

dhex

1101two

2hex

0010two

6hex

0110two

ahex

1010two

ehex

1110two

3hex

0011two

7hex

0111two

bhex

1011two

fhex

1111two

FIGURE 2.4  The hexadecimal-binary conversion table.  Just replace one hexadecimal digit by the corresponding four binary digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left . 

Because we frequently deal with diff erent number bases, to avoid confusion 

we will subscript decimal numbers with  ten, binary numbers with  two, and 

hexadecimal numbers with  hex. (If there is no subscript, the default is base 10.) By 

the way, C and Java use the notation 0x nnnn for hexadecimal numbers. 

Binary to Hexadecimal and Back

EXAMPLE

Convert the following hexadecimal and binary numbers into the other base:

eca8  6420hex

0001  0011 0101  0111 1001  1011  1101  1111two
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Using Figure 2.4, the answer is just a table lookup one way:

ANSWER

eca8 

6420hex

1110 





1100  



1010 



1000 



0110 

0100  



0010 



0000two

And then the other direction: 

0001 





0011 0101 





0111 1001 

1011 





1101 



1111two



1357 9bdfhex

MIPS Fields

MIPS fi elds are given names to make them easier to discuss:

op

rs

rt

rd

shamt

funct

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

Here is the meaning of each name of the fi elds in MIPS instructions:

opcode  Th

e fi eld that 

■   op: Basic operation of the instruction, traditionally called the opcode. 

denotes the operation and 

■   rs: Th

e fi rst register source operand. 

format of an instruction. 

■   rt: Th

e second register source operand. 

■   rd: Th

e register destination operand. It gets the result of the operation. 

■   shamt: Shift  amount. (Section 2.6 explains shift  instructions and this term; it 

will not be used until then, and hence the fi eld contains zero in this section.)

■   funct: Function. Th

is fi eld, oft en called the  function code,  selects the specifi c 

variant of the operation in the op fi eld. 

A problem occurs when an instruction needs longer fi elds than those shown 

above. For example, the load word instruction must specify two registers and a 

constant. If the address were to use one of the 5-bit fi elds in the format above, the 

constant within the load word instruction would be limited to only 25 or 32. Th

is 

constant is used to select elements from arrays or data structures, and it oft en needs 

to be much larger than 32. Th

is 5-bit fi eld is too small to be useful. 

Hence, we have a confl ict between the desire to keep all instructions the same 

length and the desire to have a single instruction format. Th

is leads us to the fi nal 

hardware design principle:
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 Design Principle 3:   Good design demands good compromises . 

Th

e compromise chosen by the MIPS designers is to keep all instructions the 

same length, thereby requiring diff erent kinds of instruction formats for diff erent 

kinds of instructions. For example, the format above is called  R-type (for register) 

or  R-format. A second type of instruction format is called  I-type (for immediate) or  I-format and is used by the immediate and data transfer instructions. Th

e fi elds 

of I-format are

op

rs

rt

constant or address

6 bits

5 bits

5 bits

16 bits

Th

e 16-bit address means a load word instruction can load any word within 

a region of 215 or 32,768 bytes (213 or 8192 words) of the address in the base 

register rs. Similarly, add immediate is limited to constants no larger than 215. 

We see that more than 32 registers would be diffi

cult in this format, as the rs and rt 

fi elds would each need another bit, making it harder to fi t everything in one word. 

Let’s look at the load word instruction from page 71:

lw   $t0,32($s3)   # Temporary reg $t0 gets A[8]

Here, 19 (for $s3) is placed in the rs fi eld, 8 (for $t0) is placed in the rt fi eld, and 

32 is placed in the address fi eld. Note that the meaning of the rt fi eld has changed 

for this instruction: in a load word instruction, the rt fi eld specifi es the  destination 

register, which receives the result of the load. 

Although multiple formats complicate the hardware, we can reduce the complexity 

by keeping the formats similar. For example, the fi rst three fi elds of the R-type and 

I-type formats are the same size and have the same names; the length of the fourth 

fi eld in I-type is equal to the sum of the lengths of the last three fi elds of R-type. 

In case you were wondering, the formats are distinguished by the values in the 

fi rst fi eld: each format is assigned a distinct set of values in the fi rst fi eld (op) so that the hardware knows whether to treat the last half of the instruction as three fi elds 

(R-type) or as a single fi eld (I-type). Figure 2.5 shows the numbers used in each fi eld for the MIPS instructions covered so far. 

Instruction

Format

op

rs

rt

rd

shamt

funct

address

add

R

0

reg

reg

reg

0

32ten

n.a. 

sub (subtract)

R

0

reg

reg

reg

0

34ten

n.a. 

add immediate

I

8ten

reg

reg

n.a. 

n.a. 

n.a. 

constant

lw (load word)

I

35ten

reg

reg

n.a. 

n.a. 

n.a. 

address

sw (store word) 

I

43ten

reg

reg

n.a. 

n.a. 

n.a. 

address

FIGURE 2.5  MIPS instruction encoding.  In the table above, “reg” means a register number between 0 

and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this fi eld does not appear in this format. Note that add and sub instructions have the same value in the op fi eld; the hardware uses the funct fi eld to decide the variant of the operation: add (32) or subtract (34). 
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Translating MIPS Assembly Language into Machine Language

EXAMPLE

We can now take an example all the way from what the programmer writes 

to what the computer executes. If $t1 has the base of the array A and $s2 

corresponds to h, the assignment statement

A[300] = h + A[300]; 

is compiled into

lw   $t0,1200($t1) # Temporary reg $t0 gets A[300]

add  $t0,$s2,$t0   # Temporary reg $t0 gets h + A[300]

sw   $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions? 

For convenience, let’s fi rst represent the machine language instructions using 

ANSWER

decimal numbers. From Figure 2.5, we can determine the three machine 

language instructions:

address/

Op

rs

rt

rd

shamt

funct

35

9

8

1200

0

18

8

8

0

32

43

9

8

1200

Th

e lw instruction is identifi ed by 35 (see Figure 2.5) in the fi rst  fi eld 

(op). Th

e base register 9 ($t1) is specifi ed in the second fi eld (rs), and the 

destination register 8 ($t0) is specifi ed in the third fi eld (rt). Th

e off set to 

select A[300] (1200  300  4) is found in the fi nal fi eld (address). 

Th

e add instruction that follows is specifi ed with 0 in the fi rst fi eld (op) and 

32 in the last fi eld (funct). Th

e three register operands (18, 8, and 8) are found 

in the second, third, and fourth fi elds and correspond to $s2, $t0, and $t0. 

Th

e sw instruction is identifi ed with 43 in the fi rst fi eld. Th

e rest of this fi nal 

instruction is identical to the lw instruction. 

Since 1200   0000 0100 1011 0000 , the binary equivalent to the decimal 

ten

two

form is:

100011

01001

01000

0000 0100 1011 0000

000000

10010

01000

01000

00000

100000

101011

01001

01000

0000 0100 1011 0000
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Note the similarity of the binary representations of the fi rst and last 

instructions. Th

e only diff erence is in the third bit from the left , which is 

highlighted here. 

Th

e desire to keep all instructions the same size is in confl ict with the desire to  Hardware/

have as many registers as possible. Any increase in the number of registers uses  Software 

up at least one more bit in every register fi eld of the instruction format. Given 

these constraints and the design princple that smaller is faster, most instruction  Interface

sets today have 16 or 32 general purpose registers. 

Figure 2.6 summarizes the portions of MIPS machine language described in this section. As we shall see in Chapter 4, the similarity of the binary representations 

of related instructions simplifi es hardware design. Th

ese similarities are another 

example of regularity in the MIPS architecture. 

MIPS machine language

Name

Format

Example

Comments

add

R

0

18

19

17

0

32

add $s1,$s2,$s3

sub

R

0

18

19

17

0

34

sub $s1,$s2,$s3

addi

I

8

18

17

100

addi $s1,$s2,100

lw

I

35

18

17

100

lw $s1,100($s2)

sw

I

43

18

17

100

sw $s1,100($s2)

Field size

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

All MIPS instructions are 32 bits long

R-format

R

op

rs

r t

rd

shamt

funct

Arithmetic instruction format

I-format

I

op

rs

r t

address

Data transfer format

FIGURE 2.6  MIPS architecture revealed through Section 2.5.  Th

e two MIPS instruction formats so far are R and I. Th

e fi rst 16 bits 

are the same: both contain an  op fi eld, giving the base operation; an  rs fi eld, giving one of the sources; and the  rt fi eld, which specifi es the other source operand, except for load word, where it specifi es the destination register. R-format divides the last 16 bits into an  rd fi eld, specifying the destination register; the  shamt  fi eld, which Section 2.6 explains; and the  funct  fi eld, which specifi es the specifi c operation of R-format instructions. I-format combines the last 16 bits into a single  address fi eld. 
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Today’s computers are built on two key principles:

The BIG

1.  Instructions are represented as numbers. 

Picture

2.  Programs are stored in memory to be read or written, just like 

data. 

Th

ese principles lead to the  stored-program concept; its invention let 

the computing genie out of its bottle. Figure 2.7 shows the power of the 

concept; specifi cally, memory can contain the source code for an editor 

program, the corresponding compiled machine code, the text that the 

compiled program is using, and even the compiler that generated the 

machine code. 

One consequence of instructions as numbers is that programs are oft en 

shipped as fi les of binary numbers. Th

e commercial implication is that 

computers can inherit ready-made soft ware provided they are compatible 

with an existing instruction set. Such “binary compatibility” oft en leads 

industry to align around a small number of instruction set architectures. 

Memory

Accounting program

(machine code)

Editor program

(machine code)

C compiler

Processor

(machine code)

Payroll data

Book text

Source code in C

for editor program

FIGURE 2.7  The stored-program concept.  Stored programs allow a computer that performs accounting to become, in the blink of an eye, a computer that helps an author write a book. Th

e switch 

happens simply by loading memory with programs and data and then telling the computer to begin executing at a given location in memory. Treating instructions in the same way as data greatly simplifi es both the memory hardware and the soft ware of computer systems. Specifi cally, the memory technology needed for data can also be used for programs, and programs like compilers, for instance, can translate code written in a notation far more convenient for humans into code that the computer can understand. 
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What MIPS instruction does this represent? Choose from one of the four options  Check 

below. 

Yourself

op

rs

rt

rd

shamt

funct

0

8

9

10

0

34

1.  sub $t0, $t1, $t2

2.  add $t2, $t0, $t1

3.  sub $t2, $t1, $t0

4.  sub $t2, $t0, $t1

 2.6 Logical 

Operations

 “Contrariwise,” 

 continued Tweedledee, 

 “if it was so, it might 

Although the fi rst computers operated on full words, it soon became clear that   be; and if it were so, it was useful to operate on fi elds of bits within a word or even on individual bits.  it would be; but as it Examining characters within a word, each of which is stored as 8 bits, is one example 

 isn’t, it ain’t. Th

  at’s 

of such an operation (see Section 2.9). It follows that operations were added to   logic.” 

programming languages and instruction set architectures to simplify, among other 

things, the packing and unpacking of bits into words. Th

ese instructions are called  Lewis Carroll, 

logical operations. Figure 2.8 shows logical operations in C, Java, and MIPS. 

 Alice’s Adventures in 

 Wonderland, 1865

Logical operations

C operators

Java operators

MIPS instructions

Shift left

<< 

<< 

sll

Shift right

>> 

>>> 

srl

Bit-by-bit AND

& 

& 

and, andi

Bit-by-bit OR

|

|

or, ori

Bit-by-bit NOT

~

~

nor

FIGURE 2.8  C and Java logical operators and their corresponding MIPS instructions.  MIPS 

implements NOT using a NOR with one operand being zero. 

Th

e fi rst class of such operations is called  shift s. Th

ey move all the bits in a word 

to the left  or right, fi lling the emptied bits with 0s. For example, if register $s0 

contained

0000 0000 0000 0000 0000 0000 0000 1001

= 9

two

ten

and the instruction to shift  left  by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000

= 144

two

ten
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Th

e dual of a shift  left  is a shift  right. Th

e actual name of the two MIPS shift 

instructions are called  shift   left   logical  (sll) and  shift  right logical  (srl). Th e 

following instruction performs the operation above, assuming that the original 

value was in register $s0 and the result should go in register $t2:

sll  $t2,$s0,4  # reg $t2 = reg $s0 << 4 bits

We delayed explaining the  shamt fi eld in the R-format. Used in shift  instructions, 

it stands for  shift  amount. Hence, the machine language version of the instruction 

above is

op

rs

rt

rd

shamt

funct

0

0

16

10

4

0

Th

e encoding of sll is 0 in both the op and funct fi elds, rd contains 10 (register 

$t2), rt contains 16 (register $s0), and shamt contains 4. Th

e rs fi eld is unused 

and thus is set to 0. 

Shift  left  logical provides a bonus benefi t. Shift ing left  by  i bits gives the same 

result as multiplying by 2 i, just as shift ing a decimal number by  i digits is equivalent to multiplying by 10 i. For example, the above sll shift s by 4, which gives the same 

result as multiplying by 24 or 16. Th

e fi rst bit pattern above represents 9, and 9 16  

144, the value of the second bit pattern. 

AND  A logical bit-

Another useful operation that isolates fi elds is AND. (We capitalize the word to 

by-bit operation with two 

avoid confusion between the operation and the English conjunction.) AND is a bit-

operands that calculates 

by-bit operation that leaves a 1 in the result only if both bits of the operands are 1. 

a 1 only if there is a 1 in 

For example, if register $t2 contains

 both operands. 

0000 0000 0000 0000 0000 1101 1100 0000two

and register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000two

then, aft er executing the MIPS instruction

and $t0,$t1,$t2    # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

0000 0000 0000 0000 0000 1100 0000 0000two

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there 

is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally 

called a  mask, since the mask “conceals” some bits. 
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To place a value into one of these seas of 0s, there is the dual to AND, called 

OR. It is a bit-by-bit operation that places a 1 in the result if  either operand bit is  OR  A logical bit-by-a 1. To elaborate, if the registers $t1 and $t2 are unchanged from the preceding  bit operation with two example, the result of the MIPS instruction

operands that calculates 

a 1 if there is a 1 in  either 

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

operand. 

is this value in register $t0:

0000 0000 0000 0000 0011 1101 1100 0000two

Th

e fi nal logical operation is a contrarian. NOT takes one operand and places a 1  NOT  A logical bit-by-in the result if one operand bit is a 0, and vice versa. Using our prior notation, it  bit operation with one calculates  x. 

operand that inverts the 

In keeping with the three-operand format, the designers of MIPS decided to  bits; that is, it replaces every 1 with a 0, and 

include the instruction NOR (NOT OR) instead of NOT. If one operand is zero,  every 0 with a 1. 

then it is equivalent to NOT: A NOR 0  NOT (A OR 0)  NOT (A). 

If the register $t1 is unchanged from the preceding example and register $t3  NOR  A logical bit-by-has the value 0, the result of the MIPS instruction

bit operation with two 

operands that calculates 

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

the NOT of the OR of the 

two operands. Th

at is, it 

is this value in register $t0:

calculates a 1 only if there 

is a 0 in  both operands. 

1111 1111 1111 1111 1100 0011 1111 1111two

Figure 2.8 above shows the relationship between the C and Java operators and the MIPS instructions. Constants are useful in AND and OR logical operations as well 

as in arithmetic operations, so MIPS also provides the instructions  and immediate 

(andi) and  or immediate (ori). Constants are rare for NOR, since its main use is 

to invert the bits of a single operand; thus, the MIPS instruction set architecture has 

no immediate version of NOR. 

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which 

sets the bit to 1 when two corresponding bits differ, and to 0 when they are the same. C 

allows  bit fi elds or  fi elds to be defi ned within words, both allowing objects to be packed within a word and to match an externally enforced interface such as an I/O device. All 

fi elds must fi t within a single word. Fields are unsigned integers that can be as short as 

1 bit. C compilers insert and extract fi elds using logical instructions in MIPS: and, or, 

sll, and srl. 

Elaboration:  Logical AND immediate and logical OR immediate put 0s into the upper 

16 bits to form a 32-bit constant, unlike add immediate, which does sign extension. 

Which operations can isolate a fi eld in a word? 

Check 

1. AND

Yourself

2. A 

shift  left  followed by a shift  right
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 Th

   e utility of an 

 automatic computer lies 

 in the possibility of using 

 2.7 

Instructions for Making Decisions

 a given sequence of 

 instructions repeatedly, 

What distinguishes a computer from a simple calculator is its ability to make 

 the number of times it is 

decisions. Based on the input data and the values created during computation, 

 iterated being dependent 

diff erent instructions execute. Decision making is commonly represented in 

 upon the results of 

programming languages using the  if statement, sometimes combined with  go to 

 the computation . . . . 

statements and labels. MIPS assembly language includes two decision-making 

 Th

   is choice can be 

instructions, similar to an  if statement with a  go to. Th

e fi rst instruction is

 made to depend upon 

 the sign of a number 

beq register1, register2, L1

 (zero being reckoned 

Th

is instruction means go to the statement labeled L1 if the value in register1 

 as plus for machine 

equals the value in register2. Th

e mnemonic beq stands for  branch if equal. 

 purposes). Consequently,  Th e second instruction is

 we introduce an 

 [instruction] (the 

bne register1, register2, L1

 conditional transfer 

 [instruction]) which 

It means go to the statement labeled L1 if the value in register1 does  not equal 

 will, depending on the 

the value in register2. Th

e mnemonic bne stands for  branch if not equal. Th

ese 

 sign of a given number, 

two instructions are traditionally called conditional branches. 

 cause the proper one 

 of two routines to be 

 executed. 

Burks, Goldstine, and 

von Neumann, 1947

Compiling  if-then-else into Conditional Branches

EXAMPLE

In the following code segment, f,  g,  h,  i, and j are variables. If the fi ve 

variables f through j correspond to the fi ve registers $s0 through $s4, what 

is the compiled MIPS code for this C  if statement? 

if (i == j) f = g + h; else f = g – h; 

Figure 2.9 shows a fl owchart of what the MIPS code should do. Th

e fi rst 

ANSWER

expression compares for equality, so it would seem that we would want the 

branch if registers are equal instruction (beq). In general, the code will be 

more effi

cient if we test for the opposite condition to branch over the code that 

performs the subsequent  then part of the  if (the label Else is defi ned below) 

and so we use the branch if registers are  not equal instruction (bne):

bne $s3,$s4,Else   # go to Else if i ≠ j
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Th

e next assignment statement performs a single operation, and if all the  conditional branch An operands are allocated to registers, it is just one instruction:

instruction that requires 

the comparison of two 

add $s0,$s1,$s2    # f = g + h (skipped if i ≠ j)

values and that allows for 

a subsequent transfer of 

We now need to go to the end of the  if statement. Th

is example introduces  control to a new address 

another kind of branch, oft en called an  unconditional branch. Th

is instruction  in the program based 

says that the processor always follows the branch. To distinguish between  on the outcome of the 

conditional and unconditional branches, the MIPS name for this type of  comparison. 

instruction is  jump, abbreviated as j (the label Exit is defi ned below). 

j Exit     # go to Exit

Th

e assignment statement in the  else portion of the  if statement can again be 

compiled into a single instruction. We just need to append the label Else to 

this instruction. We also show the label Exit  that  is  aft er this instruction, 

showing the end of the  if-then-else compiled code:

Else:sub $s0,$s1,$s2  # f = g – h (skipped if i = j)

Exit:

Notice that the assembler relieves the compiler and the assembly language 

programmer from the tedium of calculating addresses for branches, just as it does 

for calculating data addresses for loads and stores (see Section 2.12). 

i = j

i ≠ j

i = = j? 

Else:

f = g + h

f = g – h

Exit:

FIGURE 2.9  Illustration of the options in the if statement above.  Th

e left  box corresponds to 

the  then part of the  if statement, and the right box corresponds to the  else part. 
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Hardware/

Compilers frequently create branches and labels where they do not appear in 

the programming language. Avoiding the burden of writing explicit labels and 

Software  branches is one benefi t of writing in high-level programming languages and is a Interface

reason coding is faster at that level. 

Loops

Decisions are important both for choosing between two alternatives—found in  if 

statements—and for iterating a computation—found in loops. Th

e same assembly 

instructions are the building blocks for both cases. 

Compiling a  while Loop in C

EXAMPLE

Here is a traditional loop in C:

while (save[i] == k)

i += 1; 

Assume that i and k correspond to registers $s3 and $s5 and the base of the 

array save is in $s6. What is the MIPS assembly code corresponding to this 

C segment? 

Th

e fi rst step is to load save[i] into a temporary register. Before we can load 

ANSWER

save[i] into a temporary register, we need to have its address. Before we 

can add i to the base of array save to form the address, we must multiply the 

index i by 4 due to the byte addressing problem. Fortunately, we can use shift  

left  logical, since shift ing left  by 2 bits multiplies by 22 or 4 (see page 88 in the 

prior section). We need to add the label Loop to it so that we can branch back 

to that instruction at the end of the loop:

Loop: sll  $t1,$s3,2    # Temp reg $t1 = i * 4

To get the address of save[i], we need to add $t1 and the base of save in $s6:

add $t1,$t1,$s6     # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw $t0,0($t1)       # Temp reg $t0 = save[i]

Th

e next instruction performs the loop test, exiting if save[i] ≠ k:

bne $t0,$s5, Exit   # go to Exit if save[i] ≠ k
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Th

e next instruction adds 1 to i:

addi $s3,$s3,1      # i = i + 1

Th

e end of the loop branches back to the  while test at the top of the loop. We 

just add the Exit label aft er it, and we’re done:

j     Loop          # go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compiling 

Hardware/

that they are given their own buzzword: a basic block is a sequence of instructions  Software without branches, except possibly at the end, and without branch targets or branch 

labels, except possibly at the beginning. One of the fi rst early phases of compilation 

Interface

is breaking the program into basic blocks. 

basic block A sequence 

of instructions without 

Th

e test for equality or inequality is probably the most popular test, but sometimes 

branches (except possibly 

at the end) and without 

it is useful to see if a variable is less than another variable. For example, a  for loop  branch targets or branch may want to test to see if the index variable is less than 0. Such comparisons are  labels (except possibly at accomplished in MIPS assembly language with an instruction that compares two  the beginning). 

registers and sets a third register to 1 if the fi rst is less than the second; otherwise, 

it is set to 0. Th

e MIPS instruction is called s et on less than,  or slt. For example, 

slt    $t0, $s3, $s4   # $t0 = 1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value 

in register $s4; otherwise, register $t0 is set to 0. 

Constant operands are popular in comparisons, so there is an immediate version 

of the set on less than instruction. To test if register $s2 is less than the constant 

10, we can just write

slti    $t0,$s2,10     # $t0 = 1 if $s2 < 10

MIPS compilers use the slt, slti, beq, bne, and the fi xed value of 0 (always  Hardware/

available by reading register $zero) to create all relative conditions: equal, not  Software 

equal, less than, less than or equal, greater than, greater than or equal. 

Interface
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Heeding von Neumann’s warning about the simplicity of the “equipment,” the 

MIPS architecture doesn’t include branch on less than because it is too complicated; 

either it would stretch the clock cycle time or it would take extra clock cycles per 

instruction. Two faster instructions are more useful. 

Hardware/

Comparison instructions must deal with the dichotomy between signed and 

unsigned numbers. Sometimes a bit pattern with a 1 in the most signifi cant bit 

Software  represents a negative number and, of course, is less than any positive number, 

Interface

which must have a 0 in the most signifi cant bit. With unsigned integers, on the 

other hand, a 1 in the most signifi cant bit represents a number that is  larger than 

any that begins with a 0. (We’ll soon take advantage of this dual meaning of the 

most signifi cant bit to reduce the cost of the array bounds checking.)

MIPS off ers two versions of the set on less than comparison to handle these 

alternatives.  Set on less than (slt) and  set on less than immediate (slti) work with signed integers. Unsigned integers are compared using  set on less than unsigned 

(sltu) and  set on less than immediate unsigned (sltiu). 

Signed versus Unsigned Comparison

EXAMPLE

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111two

and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001two

What are the values of registers $t0 and $t1 aft er these two instructions? 

slt      $t0, $s0, $s1 # signed comparison

sltu     $t1, $s0, $s1 # unsigned comparison

Th

e value in register $s0 represents 1  if it is an integer and 4,294,967,295  

ten

ten

ANSWER

if it is an unsigned integer. Th

e value in register $s1 represents 1  in either 

ten

case. Th

en register $t0 has the value 1, since 1  1 , and register $t1 has 

ten

ten

the value 0, since 4,294,967,295  1 . 

ten

ten
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Treating signed numbers as if they were unsigned gives us a low cost way of 

checking if 0 	  x   y,  which matches the index out-of-bounds check for arrays. Th e 

key is that negative integers in two’s complement notation look like large numbers 

in unsigned notation; that is, the most signifi cant bit is a sign bit in the former 

notation but a large part of the number in the latter. Th

us, an unsigned comparison 

of  x   y also checks if  x is negative as well as if  x is less than  y. 

Bounds Check Shortcut

EXAMPLE

Use this shortcut to reduce an index-out-of-bounds check: jump to 

IndexOutOfBounds if $s1 ≥ $t2 or if $s1 is negative. 

Th

e checking code just uses u to do both checks:

ANSWER

sltu $t0,$s1,$t2 # $t0=0 if $s1>=length or $s1<0

beq  $t0,$zero,IndexOutOfBounds #if bad, goto Error

Case/Switch Statement

Most programming languages have a  case or  switch statement that allows the 

programmer to select one of many alternatives depending on a single value. Th

e 

simplest way to implement  switch is via a sequence of conditional tests, turning the 

 switch statement into a chain of  if-then-else statements. 

Sometimes the alternatives may be more effi

ciently encoded as a table of 

addresses of alternative instruction sequences, called a jump address table or  jump address jump table, and the program needs only to index into the table and then jump to  table Also called jump the appropriate sequence. Th

e jump table is then just an array of words containing  table. A table of addresses 

addresses that correspond to labels in the code. Th

e program loads the appropriate  of alternative instruction 

sequences. 

entry from the jump table into a register. It then needs to jump using the address 

in the register. To support such situations, computers like MIPS include a  jump 

 register instruction (jr), meaning an unconditional jump to the address specifi ed 

in a register. Th

en it jumps to the proper address using this instruction. We’ll see an 

even more popular use of jr in the next section. 
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Hardware/

Although there are many statements for decisions and loops in programming 

languages like C and Java, the bedrock statement that implements them at the 

Software  instruction set level is the conditional branch. 

Interface

Elaboration:  If you have heard about  delayed branches, covered in Chapter 4, don’t worry: the MIPS assembler makes them invisible to the assembly language programmer. 

Check 

I.  C has many statements for decisions and loops, while MIPS has few. Which 

of the following do or do not explain this imbalance? Why? 

Yourself

1.  More decision statements make code easier to read and understand. 

2.  Fewer decision statements simplify the task of the underlying layer that is 

responsible for execution. 

3.  More decision statements mean fewer lines of code, which generally 

reduces coding time. 

4.  More decision statements mean fewer lines of code, which generally 

results in the execution of fewer operations. 

II.  Why does C provide two sets of operators for AND (& and &&) and two sets 

of operators for OR (| and ||), while MIPS doesn’t? 

1.  Logical operations AND and OR implement & and |, while conditional 

branches implement && and ||. 

2. Th

e previous statement has it backwards: && and || correspond to logical 

operations, while & and | map to conditional branches. 

3. Th

ey are redundant and mean the same thing: && and || are simply 

inherited from the programming language B, the predecessor of C. 

 2.8 

 Supporting Procedures in Computer 

Hardware

A procedure or function is one tool programmers use to structure programs, both 

to make them easier to understand and to allow code to be reused. Procedures 

allow the programmer to concentrate on just one portion of the task at a time; 

parameters act as an interface between the procedure and the rest of the program 

procedure A stored 

and data, since they can pass values and return results. We describe the equivalent 

subroutine that performs 

to procedures in Java in   Section 2.15, but Java needs everything from a computer 

a specifi c task based 

that C needs. Procedures are one way to implement abstraction in soft ware. 

on the parameters with 

which it is provided. 
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You can think of a procedure like a spy who leaves with a secret plan, acquires 

resources, performs the task, covers his or her tracks, and then returns to the point 

of origin with the desired result. Nothing else should be perturbed once the mission 

is complete. Moreover, a spy operates on only a “need to know” basis, so the spy 

can’t make assumptions about his employer. 

Similarly, in the execution of a procedure, the program must follow these six 

steps:

1.  Put parameters in a place where the procedure can access them. 

2.  Transfer control to the procedure. 

3.  Acquire the storage resources needed for the procedure. 

4.  Perform the desired task. 

5.  Put the result value in a place where the calling program can access it. 

6.  Return control to the point of origin, since a procedure can be called from 

several points in a program. 

As mentioned above, registers are the fastest place to hold data in a computer, 

so we want to use them as much as possible. MIPS soft ware follows the following 

convention for procedure calling in allocating its 32 registers:

■  $a0–$a3: four argument registers in which to pass parameters

■  $v0–$v1: two value registers in which to return values

■  $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an 

instruction just for the procedures: it jumps to an address and simultaneously 

saves the address of the following instruction in register $ra. Th

e jump-and-link  jump-and-link 

instruction (jal) is simply written

instruction An 

instruction that jumps 

jal ProcedureAddress

to an address and 

simultaneously saves the 

Th

e  link portion of the name means that an address or link is formed that points 

address of the following 

to the calling site to allow the procedure to return to the proper address. Th


is “link,”  instruction in a register 

stored in register$ra (register 31), is called the return address. Th

e return address  ($ra in MIPS). 

is needed because the same procedure could be called from several parts of the  return address  A link to program. 

the calling site that allows 

To support such situations, computers like MIPS use  jump register instruction  a procedure to return (jr), introduced above to help with case statements, meaning an unconditional  to the proper address; jump to the address specifi ed in a register:

in MIPS it is stored in 

register $ra. 

jr   $ra
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Th

e jump register instruction jumps to the address stored in register $ra—

caller  Th

e program that 

which is just what we want. Th

us, the calling program, or caller, puts the parameter 

instigates a procedure and 

values in $a0–$a3 and uses jal X to jump to procedure X (sometimes named 

provides the necessary 

the callee). Th

e callee then performs the calculations, places the results in $v0 and 

parameter values. 

$v1, and returns control to the caller using jr $ra. 

callee  A procedure that 

Implicit in the stored-program idea is the need to have a register to hold the 

executes a series of stored 

address of the current instruction being executed. For historical reasons, this 

instructions based on 

register is almost always called the program counter, abbreviated  PC in the MIPS 

parameters provided by 

architecture, although a more sensible name would have been  instruction address 

the caller and then returns 

 register. Th

e jal instruction actually saves PC  4 in register $ra to link to the 

control to the caller. 

following instruction to set up the procedure return. 

program counter 

(PC)  Th

e register 

Using More Registers

containing the address 

of the instruction in the 

Suppose a compiler needs more registers for a procedure than the four argument 

program being executed. 

and two return value registers. Since we must cover our tracks aft er our mission 

is complete, any registers needed by the caller must be restored to the values that 

stack  A data structure 

they contained  before the procedure was invoked. Th

is situation is an example in 

for spilling registers 

organized as a last-in-

which we need to spill registers to memory, as mentioned in the  Hardware/Soft ware 

fi rst-out queue. 

 Interface section above. 

Th

e ideal data structure for spilling registers is a stack—a last-in-fi rst-out 

stack pointer A value 

queue. A stack needs a pointer to the most recently allocated address in the stack 

denoting the most 

to show where the next procedure should place the registers to be spilled or where 

recently allocated address 

in a stack that shows 

old register values are found. Th

e stack pointer is adjusted by one word for each 

where registers should 

register that is saved or restored. MIPS soft ware reserves register 29 for the stack 

be spilled or where old 

pointer, giving it the obvious name $sp. Stacks are so popular that they have their 

register values can be 

own buzzwords for transferring data to and from the stack: placing data onto the 

found. In MIPS, it is 

stack is called a push, and removing data from the stack is called a pop. 

register $sp. 

By historical precedent, stacks “grow” from higher addresses to lower addresses. 

push  Add element to 

Th

is convention means that you push values onto the stack by subtracting from the 

stack. 

stack pointer. Adding to the stack pointer shrinks the stack, thereby popping values 

off  the stack. 

pop Remove element 

from stack. 

Compiling a C Procedure That Doesn’t Call Another Procedure

EXAMPLE

Let’s turn the example on page 65 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int i, int j)

{

int f; 

f = (g + h) – (i + j); 

return f; 

}

What is the compiled MIPS assembly code? 
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Th

e parameter variables g, h, i, and j correspond to the argument registers 

$a0, $a1, $a2, and $a3, and f corresponds to $s0. Th

e compiled program 

ANSWER

starts with the label of the procedure:

leaf_example:

Th

e next step is to save the registers used by the procedure. Th

e C assignment 

statement in the procedure body is identical to the example on page 68, which 

uses two temporary registers. Th

us, we need to save three registers: $s0, $t0, 

and $t1. We “push” the old values onto the stack by creating space for three 

words (12 bytes) on the stack and then store them:

addi $sp, $sp, –12  # adjust stack to make room for 3 items

sw  $t1, 8($sp)     # save register $t1 for use afterwards

sw  $t0, 4($sp)     # save register $t0 for use afterwards

sw  $s0, 0($sp)     # save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and aft er the procedure call. 

Th

e next three statements correspond to the body of the procedure, which 

follows the example on page 68:

add $t0,$a0,$a1 # register  $t0 contains g + h

add $t1,$a2,$a3 # register  $t1 contains i + j

sub $s0,$t0,$t1 # f = $t0 – $t1, which is (g + h)–(i + j)

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by 

“popping” them from the stack:

lw $s0, 0($sp)  # restore register $s0 for caller

lw $t0, 4($sp)  # restore register $t0 for caller

lw $t1, 8($sp)  # restore register $t1 for caller

addi $sp,$sp,12 # adjust stack to delete 3 items

Th

e procedure ends with a jump register using the return address:

jr   $ra    # jump back to calling routine

In the previous example, we used temporary registers and assumed their old 

values must be saved and restored. To avoid saving and restoring a register whose 

value is never used, which might happen with a temporary register, MIPS soft ware 

separates 18 of the registers into two groups:

■  $t0–$t9: temporary registers that are  not preserved by the callee (called 

procedure) on a procedure call

■  $s0–$s7: saved registers that must be preserved on a procedure call (if 

used, the callee saves and restores them)
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High address

$sp

$sp

Contents of register $t1

Contents of register $t0

$sp

Contents of register $s0

Low address

(a)

(b)

(c)

FIGURE 2.10  The values of the stack pointer and the stack (a) before, (b) during, and (c) after the procedure call.  Th

e stack pointer always points to the “top” of the stack, or the last word in the 

stack in this drawing. 

Th

is simple convention reduces register spilling. In the example above, since the 

caller does not expect registers $t0 and $t1 to be preserved across a procedure 

call, we can drop two stores and two loads from the code. We still must save and 

restore $s0, since the callee must assume that the caller needs its value. 

Nested Procedures

Procedures that do not call others are called  leaf procedures. Life would be simple if 

all procedures were leaf procedures, but they aren’t. Just as a spy might employ other 

spies as part of a mission, who in turn might use even more spies, so do procedures 

invoke other procedures. Moreover, recursive procedures even invoke “clones” of 

themselves. Just as we need to be careful when using registers in procedures, more 

care must also be taken when invoking nonleaf procedures. 

For example, suppose that the main program calls procedure A with an argument 

of 3, by placing the value 3 into register $a0 and then using jal A. Th

en suppose 

that procedure A calls procedure B via jal B with an argument of 7, also placed 

in $a0. Since A hasn’t fi nished its task yet, there is a confl ict over the use of register 

$a0. Similarly, there is a confl ict over the return address in register $ra, since it 

now has the return address for B. Unless we take steps to prevent the problem, this 

confl ict will eliminate procedure A’s ability to return to its caller. 

One solution is to push all the other registers that must be preserved onto 

the stack, just as we did with the saved registers. Th

e caller pushes any argument 

registers ($a0–$a3) or temporary registers ($t0–$t9) that are needed aft er 

the call. Th

e callee pushes the return address register $ra and any saved registers 

($s0–$s7) used by the callee. Th

e stack pointer $sp is adjusted to account for the 

number of registers placed on the stack. Upon the return, the registers are restored 

from memory and the stack pointer is readjusted. 
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Compiling a Recursive C Procedure, Showing Nested Procedure 

Linking

EXAMPLE

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)

{

if (n < 1) return (1); 

else return (n * fact(n – 1)); 

}

What is the MIPS assembly code? 

Th

e parameter variable n corresponds to the argument register $a0. Th

e 

compiled program starts with the label of the procedure and then saves two 

ANSWER

registers on the stack, the return address and $a0:

fact:

addi  $sp, $sp, –8 # adjust stack for 2 items

sw    $ra, 4($sp)  # save the return address

sw    $a0, 0($sp)  # save the argument n

Th

e fi rst time fact is called, sw saves an address in the program that called 

fact. Th

e next two instructions test whether n is less than 1, going to L1 if 

n ≥ 1. 

slti  $t0,$a0,1     # test for n < 1

beq   $t0,$zero,L1  # if n >= 1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to 

0 and places that sum in $v0. It then pops the two saved values off  the stack 

and jumps to the return address:

addi  $v0,$zero,1 # return 1

addi  $sp,$sp,8   # pop 2 items off stack

jr    $ra         # return to caller

Before popping two items off  the stack, we could have loaded $a0 and 

$ra. Since $a0 and $ra don’t change when n is less than 1, we skip those 

instructions. 

If n is not less than 1, the argument n is decremented and then fact is 

called again with the decremented value:

L1: addi $a0,$a0,–1  # n >= 1: argument gets (n – 1)

jal fact         # call fact with (n –1)
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Th

e next instruction is where fact returns. Now the old return address and 

old argument are restored, along with the stack pointer:

lw   $a0, 0($sp)  # return from jal: restore argument n

lw   $ra, 4($sp)  # restore the return address

addi $sp, $sp, 8  # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and 

the current value of the value register. We assume a multiply instruction is 

available, even though it is not covered until Chapter 3:

mul  $v0,$a0,$v0   # return n * fact (n – 1)

Finally, fact jumps again to the return address:

jr   $ra           # return to the caller

Hardware/

A C variable is generally a location in storage, and its interpretation depends both 

on its  type and  storage class. Examples include integers and characters (see Section Software  2.9). C has two storage classes:  automatic and  static. Automatic variables are local to Interface

a procedure and are discarded when the procedure exits. Static variables exist across 

exits from and entries to procedures. C variables declared outside all procedures 

are considered static, as are any variables declared using the keyword  static. Th

e 

global pointer  Th

e 

register that is reserved to 

rest are automatic. To simplify access to static data, MIPS soft ware reserves another 

point to the static area. 

register, called the global pointer, or $gp. 

Figure 2.11 summarizes what is preserved across a procedure call. Note that 

several schemes preserve the stack, guaranteeing that the caller will get the same 

data back on a load from the stack as it stored onto the stack. Th

e stack above $sp 

is preserved simply by making sure the callee does not write above $sp; $sp is 

Preserved

Not preserved

Saved registers: $s0–$s7

Temporar y registers: $t0–$t9

Stack pointer register: $sp  Argument 

registers: 

$a0–$a3

Return address register: $ra 

Return value registers: $v0–$v1

Stack above the stack pointer

Stack below the stack pointer

FIGURE 2.11  What is and what is not preserved across a procedure call.  If the soft ware relies on the frame pointer register or on the global pointer register, discussed in the following subsections, they are also preserved. 
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itself preserved by the callee adding exactly the same amount that was subtracted 

from it; and the other registers are preserved by saving them on the stack (if they 

are used) and restoring them from there. 

Allocating Space for New Data on the Stack

Th

e fi nal complexity is that the stack is also used to store variables that are local 

to the procedure but do not fi t in registers, such as local arrays or structures. Th

e 

segment of the stack containing a procedure’s saved registers and local variables is 

called a procedure frame or activation record. Figure 2.12 shows the state of the  procedure frame Also stack before, during, and aft er the procedure call. 

called activation record. 

Some MIPS soft ware uses a frame pointer ($fp) to point to the fi rst word of  Th e segment of the stack the frame of a procedure. A stack pointer might change during the procedure, and  containing a procedure’s so references to a local variable in memory might have diff erent off sets depending  saved registers and local variables. 

on where they are in the procedure, making the procedure harder to understand. 

Alternatively, a frame pointer off ers a stable base register within a procedure for  frame pointer A value local memory-references. Note that an activation record appears on the stack  denoting the location of whether or not an explicit frame pointer is used. We’ve been avoiding using $fp by  the saved registers and avoiding changes to $sp within a procedure: in our examples, the stack is adjusted  local variables for a given only on entry and exit of the procedure. 

procedure. 

High address

$fp

$fp

$sp

$sp

$fp

Saved argument

registers (if any)

Saved return address

Saved saved

registers (if any)

Local arrays and

$sp

structures (if any)

Low address

(a)

(b)

(c)

FIGURE 2.12  Illustration of the stack allocation (a) before, (b) during, and (c) after the procedure call.  Th

e frame pointer ($fp) points to the fi rst word of the frame, oft en a saved argument 

register, and the stack pointer ($sp) points to the top of the stack. Th

e stack is adjusted to make room for 

all the saved registers and any memory-resident local variables. Since the stack pointer may change during program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the stack within a procedure, the compiler will save time by  not setting and restoring the frame pointer. When a frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp. Th is 

information is also found in Column 4 of the MIPS Reference Data Card at the front of this book. 
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Allocating Space for New Data on the Heap

In addition to automatic variables that are local to procedures, C programmers 

need space in memory for static variables and for dynamic data structures. Figure 

2.13 shows the MIPS convention for allocation of memory. Th

e stack starts in the 

high end of memory and grows down. Th

e fi rst part of the low end of memory is 

reserved, followed by the home of the MIPS machine code, traditionally called 

text segment  Th

e 

the  text segment. Above the code is the  static data segment, which is the place 

segment of a UNIX object 

for constants and other static variables. Although arrays tend to be a fi xed length 

fi le that contains the 

and thus are a good match to the static data segment, data structures like linked 

machine language code 

lists tend to grow and shrink during their lifetimes. Th

e segment for such data 

for routines in the source 

structures is traditionally called the  heap,  and it is placed next in memory. Note 

fi le. 

that this allocation allows the stack and heap to grow toward each other, thereby 

allowing the effi

cient use of memory as the two segments wax and wane. 

$sp

7fff fffchex

Stack

Dynamic data

$gp

1000 8000

Static data

hex

1000 0000hex

Text

pc

0040 0000hex

Reserved

0

FIGURE 2.13  The MIPS memory allocation for program and data.   Th

ese addresses are only 

a soft ware convention, and not part of the MIPS architecture. Th

e stack pointer is initialized to 7fff 

fffc  and grows down toward the data segment. At the other end, the program code (“text”) starts at hex

0040 0000 . Th

e static data starts at 1000 0000 . Dynamic data, allocated by malloc in C and by 

hex

hex

new in Java, is next. It grows up toward the stack in an area called the heap. Th

e global pointer, $gp, is set to 

an address to make it easy to access data. It is initialized to 1000 8000  so that it can access from 1000 

hex

0000  to 1000 ffff  using the positive and negative 16-bit off sets from $gp. Th

is information is also 

hex

hex

found in Column 4 of the MIPS Reference Data Card at the front of this book. 

C allocates and frees space on the heap with explicit functions. malloc() 

allocates space on the heap and returns a pointer to it, and free() releases 

space on the heap to which the pointer points. Memory allocation is controlled by 

programs in C, and it is the source of many common and diffi

cult bugs. Forgetting 

to free space leads to a “memory leak,” which eventually uses up so much memory 

that the operating system may crash. Freeing space too early leads to “dangling 

pointers,” which can cause pointers to point to things that the program never 

intended. Java uses automatic memory allocation and garbage collection just to 

avoid such bugs. 
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Figure 2.14 summarizes the register conventions for the MIPS assembly 

language. Th

  is convention is another example of making the common case fast: 

most procedures can be satisfi ed with up to 4 arguments, 2 registers for a return 

value, 8 saved registers, and 10 temporary registers without ever going to memory. 

Preserved on 

Name

Register number

Usage

call? 

$zero

0

The constant value 0

n.a. 

$v0–$v1

2–3

Values for results and expression evaluation

no

$a0–$a3

4–7

Arguments

no

$t0–$t7

5

1

–

8

s

e

i

r

a

r

o

p

m

e

T

o

n

$s0–$s7

3

2

–

6

1

Sa

d

e

v

s

e

y

$t8–$t9

5

2

–

4

2

e

r

o

M

s

e

i

r

a

r

o

p

m

e

t

o

n

$gp

8

2

a

b

o

l

G

l

r

e

t

n

i

o

p

s

e

y

$sp

9

2

S

k

c

a

t

o

p n

i

r

e

t

s

e

y

$fp

0

3

e

m

a

r

F

o

p n

i

r

e

t

s

e

y

$ra

1

3

r

u

t

e

R

n

s

e

r

d

d

a

s

s

e

y

FIGURE 2.14  MIPS register conventions.  Register 1, called $at, is reserved for the assembler (see Section 2.12), and registers 26–27, called $k0–$k1, are reserved for the operating system. Th

is information 

is also found in Column 2 of the MIPS Reference Data Card at the front of this book. 

Elaboration:  What if there are more than four parameters? The MIPS convention is 

to place the extra parameters on the stack just above the frame pointer. The procedure 

then expects the fi rst four parameters to be in registers $a0 through $a3 and the rest 

in memory, addressable via the frame pointer. 

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because all references to variables in the stack within a procedure will have the same offset. 

The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame 

pointer, but the C compiler from MIPS does not; it treats register 30 as another save 

register ($s8). 

Elaboration:  Some recursive procedures can be implemented iteratively without using 

recursion. Iteration can signifi cantly improve performance by removing the overhead 

associated with recursive procedure calls. For example, consider a procedure used to 

accumulate a sum:

int sum (int n, int acc) {

if (n >0)

return sum(n – 1, acc + n); 

else

return acc; 

}

Consider the procedure call sum(3,0). This will result in recursive calls to 

sum(2,3),  sum(1,5), and sum(0,6), and then the result 6 will be returned four 
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times. This recursive call of sum is referred to as a  tail call, and this example use of 

tail recursion can be implemented very effi ciently (assume $a0 = n and $a1 = acc):

sum: slti $t0, $a0, 1 

# test if n <= 0

bne $t0, $zero, sum_exit  # go to sum_exit if n <= 0

add$a1, $a1, $a0 

# add n to acc

addi$a0, $a0, –1 

# subtract 1 from n

j sum    

# go to sum

sum_exit:

add$v0, $a1, $zero 

# return value acc

jr $ra   

# return to caller

Check  Which of the following statements about C and Java are generally true? 

Yourself

1.  C programmers manage data explicitly, while it’s automatic in Java. 

2.  C leads to more pointer bugs and memory leak bugs than does Java. 

 !(@ |     (wow open 

 tab at bar is great)

Fourth line of the 

 2.9 

Communicating with People

keyboard poem “Hatless 

Atlas,” 1991 (some 

Computers were invented to crunch numbers, but as soon as they became 

give names to ASCII 

commercially viable they were used to process text. Most computers today off er 

characters: “!” is “wow,” 

8-bit bytes to represent characters, with the  American Standard Code for Information 

“(” is open, “|” is bar, 

and so on). 

 Interchange (ASCII) being the representation that nearly everyone follows. Figure 

2.15 summarizes ASCII. 

ASCII

Char-

ASCII

Char-

ASCII

Char-

ASCII

Char-

ASCII

Char-

ASCII

Char-

value

acter

value

acter

value

acter

value

acter

value

acter

value

acter

32

space

48

0

64

@

80

P

096

`

112

p

33

! 

49

1

65

A

81

Q

097

a

113

q

34

" 

50

2

66

B

82

R

098

b

114

r

35

#

51

3

67

C

83

S

099

c

115

s

36

$

52

4

68

D

84

T

100

d

116

t

37

%

53

5

69

E

85

U

101

e

117

u

38

& 

54

6

70

F

86

V

102

f

118

v

39

' 

55

7

71

G

87

W

103

g

119

w

40

(

56

8

72

H

88

X

104

h

120

x

41

)

57

9

73

I

89

Y

105

i

121

y

42

*

58

:

74

J

90

Z

106

j

122

z

43

+

59

; 

75

K

91

[

107

k

123

{

44

, 

60

< 

76

L

92

\

108

l

124

|

45

-

61

=

77

M

93

]

109

m

125

}

46

. 

62

> 

78

N

94

^

110

n

126

~

47

/

63

? 

79

O

95

_

111

o

127

DEL

FIGURE 2.15  ASCII representation of characters.  Note that upper- and lowercase letters diff er by exactly 32; this observation can lead to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace, 9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the end of a string. Th

is information is also found in Column 3 of the MIPS Reference Data Card at the front of this book. 
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ASCII versus Binary Numbers

EXAMPLE

We could represent numbers as strings of ASCII digits instead of as integers. 

How much does storage increase if the number 1 billion is represented in 

ASCII versus a 32-bit integer? 

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long. 

Th

us the storage expansion would be (10  8)/32 or 2.5. Beyond the expansion 

ANSWER

in storage, the hardware to add, subtract, multiply, and divide such decimal 

numbers is diffi

cult and would consume more energy. Such diffi

culties explain 

why computing professionals are raised to believe that binary is natural and 

that the occasional decimal computer is bizarre. 

A series of instructions can extract a byte from a word, so load word and store 

word are suffi

cient for transferring bytes as well as words. Because of the popularity 

of text in some programs, however, MIPS provides instructions to move bytes.  Load 

 byte (lb) loads a byte from memory, placing it in the rightmost 8 bits of a register. 

 Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to 

memory. Th

us, we copy a byte with the sequence

lb $t0,0($sp)        # Read byte from source

sb $t0,0($gp)        # Write byte to destination

Characters are normally combined into strings, which have a variable number 

of characters. Th

ere are three choices for representing a string: (1) the fi rst position 

of the string is reserved to give the length of a string, (2) an accompanying variable 

has the length of the string (as in a structure), or (3) the last position of a string is 

indicated by a character used to mark the end of a string. C uses the third choice, 

terminating a string with a byte whose value is 0 (named null in ASCII). Th

us, 

the string “Cal” is represented in C by the following 4 bytes, shown as decimal 

numbers: 67, 97, 108, 0. (As we shall see, Java uses the fi rst option.)
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Compiling a String Copy Procedure, Showing How to Use C Strings

EXAMPLE

Th

e procedure strcpy copies string y to string x using the null byte 

termination convention of C:

void strcpy (char x[], char y[])

{

int i; 

i = 0; 

while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */

i += 1; 

}

What is the MIPS assembly code? 

Below is the basic MIPS assembly code segment. Assume that base addresses 

ANSWER

for arrays x and y are found in $a0 and $a1, while i is in $s0.  strcpy 

adjusts the stack pointer and then saves the saved register $s0 on the stack:

strcpy:



addi  $sp,$sp,–4 

# adjust stack for 1 more item



sw 

$s0, 0($sp)  # save $s0

To initialize i to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and 

placing that sum in $s0:



add 

$s0,$zero,$zero # i = 0 + 0

Th

is is the beginning of the loop. Th

e address of y[i] is fi rst formed by adding 

i to y[]:

L1: add 

$t1,$s0,$a1  # address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of  bytes and not 

of words, as in prior examples. 

To load the character in y[i], we use load byte unsigned, which puts the 

character into $t2:



lbu 

$t2, 0($t1)  # $t2 = y[i]

A similar address calculation puts the address of x[i] in $t3, and then the 

character in $t2 is stored at that address. 
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add 

$t3,$s0,$a0  # address of x[i] in $t3



sb 

$t2, 0($t3)  # x[i] = y[i]

Next, we exit the loop if the character was 0. Th

at is, we exit if it is the last 

character of the string:



beq 

$t2,$zero,L2 # if y[i] == 0, go to L2

If not, we increment i and loop back:



addi  $s0, $s0,1 

# i = i + 1



j 

L1 

# go to L1

If we don’t loop back, it was the last character of the string; we restore $s0 and 

the stack pointer, and then return. 

L2: lw 

$s0, 0($sp)  # y[i] == 0: end of string. 







# Restore old $s0



addi   $sp,$sp,4 

# pop 1 word off stack

jr  $ra 

# 

return

String copies usually use pointers instead of arrays in C to avoid the operations 

on i in the code above. See Section 2.14 for an explanation of arrays versus 

pointers. 

Since the procedure strcpy above is a leaf procedure, the compiler could 

allocate  i to a temporary register and avoid saving and restoring $s0. Hence, 

instead of thinking of the $t registers as being just for temporaries, we can think of 

them as registers that the callee should use whenever convenient. When a compiler 

fi nds a leaf procedure, it exhausts all temporary registers before using registers it 

must save. 

Characters and Strings in Java

 Unicode is a universal encoding of the alphabets of most human languages. Figure 

2.16 gives a list of Unicode alphabets; there are almost as many  alphabets in Unicode as there are useful  symbols in ASCII. To be more inclusive, Java uses Unicode for 

characters. By default, it uses 16 bits to represent a character. 
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Latin

Malayalam

Tagbanwa

General Punctuation

Greek

Sinhala

Khmer

Spacing Modifier Letters

Cyrillic

Thai

Mongolian

Currency Symbols

Armenian

Lao

Limbu

Combining Diacritical Marks

Hebrew

Tibetan

Tai Le

Combining Marks for Symbols

Arabic

Myanmar

Kangxi Radicals

Superscripts and Subscripts

Syriac

Georgian

Hiragana

Number Forms

Thaana

Hangul Jamo

Katakana

Mathematical Operators

Devanagari

Ethiopic

Bopomofo

Mathematical Alphanumeric Symbols

Bengali

Cherokee

Kanbun

Braille Patterns

Gurmukhi

Unified Canadian 

Shavian

Optical Character Recognition

Aboriginal Syllabic

Gujarati

Ogham

Osmanya

Byzantine Musical Symbols

Oriya

Runic

Cypriot Syllabary

Musical Symbols

Tamil

Tagalog

Tai Xuan Jing Symbols

Arrows

Telugu

Hanunoo

Yijing Hexagram Symbols Box Drawing

Kannada

Buhid

Aegean Numbers

Geometric Shapes

FIGURE 2.16  Example alphabets in Unicode.  Unicode version 4.0 has more than 160 “blocks,” 

which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370 , and Cyrillic at 0400 . Th

e fi rst three columns show 48 blocks that correspond to human languages 

hex

hex

in roughly Unicode numerical order. Th

e last column has 16 blocks that are multilingual and are not in order. 

A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII subset as eight bits and uses 16 or 32 bits for the other characters. UTF-32 uses 32 bits per character. To learn more, see  www.unicode.org. 

Th

e MIPS instruction set has explicit instructions to load and store such 16-

bit quantities, called  halfwords.  Load half  (lh) loads a halfword from memory, 

placing it in the rightmost 16 bits of a register. Like load byte,  load half (lh) treats 

the halfword as a signed number and thus sign-extends to fi ll the 16 left most bits 

of the register, while  load halfword unsigned (lhu) works with unsigned integers. 

Th

us, lhu is the more popular of the two.  Store half (sh) takes a halfword from the 

rightmost 16 bits of a register and writes it to memory. We copy a halfword with 

the sequence

lhu $t0,0($sp) # Read halfword (16 bits) from source

sh $t0,0($gp)  # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefi ned 

methods for concatenation, comparison, and conversion. Unlike C, Java includes a 

word that gives the length of the string, similar to Java arrays. 
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Elaboration: MIPS software tries to keep the stack aligned to word addresses, 

allowing the program to always use lw and sw (which must be aligned) to access the 

stack. This convention means that a char variable allocated on the stack occupies 4 

bytes, even though it needs less. However, a C string variable or an array of bytes  will 

pack 4 bytes per word, and a Java string variable or array of shorts packs 2 halfwords 

per word. 

Elaboration: Refl ecting the international nature of the web, most web pages today 

use Unicode instead of ASCII. 

I.  Which of the following statements about characters and strings in C and  Check 

Java are true? 

Yourself

1.  A string in C takes about half the memory as the same string in Java. 

2.  Strings are just an informal name for single-dimension arrays of 

characters in C and Java. 

3.  Strings in C and Java use null (0) to mark the end of a string. 

4.  Operations on strings, like length, are faster in C than in Java. 

II.  Which type of variable that can contain 1,000,000,000  takes the most 

ten

memory space? 

1.  int in C

2.  string in C

3.  string in Java

 2.10   MIPS Addressing for 32-bit Immediates 

and Addresses

Although keeping all MIPS instructions 32 bits long simplifi es the hardware, there 

are times where it would be convenient to have a 32-bit constant or 32-bit address. 

Th

is section starts with the general solution for large constants, and then shows the 

optimizations for instruction addresses used in branches and jumps. 
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32-Bit Immediate Operands

Although constants are frequently short and fi t into the 16-bit fi eld, sometimes they 

are bigger. Th

e MIPS instruction set includes the instruction  load upper immediate 

(lui) specifi cally to set the upper 16 bits of a constant in a register, allowing a 

subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17 

shows the operation of lui. 

Loading a 32-Bit Constant

EXAMPLE

What is the MIPS assembly code to load this 32-bit constant into register $s0? 

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

ANSWER

lui $s0, 61   # 61 decimal = 0000 0000 0011 1101 binary

Th

e value of register $s0 aft erward is

0000 0000 0011 1101 0000 0000 0000 0000

Th

e next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

Th

e fi nal value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

The machine language version of  lui $t0, 255

# $t0 is register 8:

001111

00000

01000

0000 0000 1111 1111

Contents of register $t0 after executing lui $t0, 255:

0000 0000 1111 1111

0000 0000 0000 0000

FIGURE 2.17  The effect of the lui instruction. Th

e instruction lui transfers the 16-bit immediate constant fi eld value into the 

left most 16 bits of the register, fi lling the lower 16 bits with 0s. 
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Either the compiler or the assembler must break large constants into pieces and  Hardware/

then reassemble them into a register. As you might expect, the immediate fi eld’s  Software 

size restriction may be a problem for memory addresses in loads and stores as 

well as for constants in immediate instructions. If this job falls to the assembler, Interface as it does for MIPS soft ware, then the assembler must have a temporary register 

available in which to create the long values. Th

is need is a reason for the register 

$at (assembler temporary), which is reserved for the assembler. 

Hence, the symbolic representation of the MIPS machine language is no longer 

limited by the hardware, but by whatever the creator of an assembler chooses to 

include (see Section 2.12). We stick close to the hardware to explain the architecture 

of the computer, noting when we use the enhanced language of the assembler that 

is not found in the processor. 

Elaboration:  Creating 32-bit constants needs care. The instruction addi copies the 

left-most bit of the 16-bit immediate fi eld of the instruction into the upper 16 bits of a 

word.  Logical or immediate from Section 2.6 loads 0s into the upper 16 bits and hence 

is used by the assembler in conjunction with lui to create 32-bit constants. 

Addressing in Branches and Jumps

Th

e MIPS jump instructions have the simplest addressing. Th

ey use the fi nal MIPS 

instruction format, called the  J-type, which consists of 6 bits for the operation fi eld 

and the rest of the bits for the address fi eld. Th

us, 

j   10000   # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we will 

see):

2

10000

6 bits

26 bits

where the value of the jump opcode is 2 and the jump address is 10000. 

Unlike the jump instruction, the conditional branch instruction must specify 

two operands in addition to the branch address. Th

us, 

bne  $s0,$s1,Exit  # go to Exit if $s0 ≠ $s1

is assembled into this instruction, leaving only 16 bits for the branch address:

5

16

17

Exit

6 bits

5 bits

5 bits

16 bits
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If addresses of the program had to fi t in this 16-bit fi eld, it would mean that no 

program could be bigger than 216, which is far too small to be a realistic option 

today. An alternative would be to specify a register that would always be added 

to the branch address, so that a branch instruction would calculate the following:

Program counter

Register

Branch address

Th

is sum allows the program to be as large as 232 and still be able to use 

conditional branches, solving the branch address size problem. Th

en the question 

is, which register? 

Th

e answer comes from seeing how conditional branches are used. Conditional 

branches are found in loops and in  if statements, so they tend to branch to a 

nearby instruction. For example, about half of all conditional branches in SPEC 

benchmarks go to locations less than 16 instructions away. Since the  program 

 counter (PC) contains the address of the current instruction, we can branch within 

215 words of the current instruction if we use the PC as the register to be added 

to the address. Almost all loops and  if statements are much smaller than 216 words, 

so the PC is the ideal choice. 

PC-relative 

Th

is form of branch addressing is called PC-relative addressing. As we shall see 

addressing An 

in Chapter 4, it is convenient for the hardware to increment the PC early to point 

addressing regime 

to the next instruction. Hence, the MIPS address is actually relative to the address 

in which the address 

of the following instruction (PC  4) as opposed to the current instruction (PC). 

is the sum of the 

It is yet another example of making the common case fast, which in this case is 

 program counter (PC) 

addressing nearby instructions. 

and a constant in the 

instruction. 

Like most recent computers, MIPS uses PC-relative addressing for all conditional 

branches, because the destination of these instructions is likely to be close to the 

branch. On the other hand, jump-and-link instructions invoke procedures that 

have no reason to be near the call, so they normally use other forms of addressing. 

Hence, the MIPS architecture off ers long addresses for procedure calls by using the 

J-type format for both jump and jump-and-link instructions. 

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the 

branch by having PC-relative addressing refer to the number of  words to the next 

instruction instead of the number of bytes. Th

us, the 16-bit fi eld can branch four 

times as far by interpreting the fi eld as a relative word address rather than as a 

relative byte address. Similarly, the 26-bit fi eld in jump instructions is also a word 

address, meaning that it represents a 28-bit byte address. 

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for 

jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving 

the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be 

careful to avoid placing a program across an address boundary of 256 MB (64 million 

instructions); otherwise, a jump must be replaced by a jump register instruction preceded 

by other instructions to load the full 32-bit address into a register. 
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Showing Branch Offset in Machine Language

EXAMPLE

Th

e  while loop on pages 92–93 was compiled into this MIPS assembler code:

Loop:sll $t1,$s3,2        # Temp reg $t1 = 4 * i

add  $t1,$t1,$s6      # $t1 = address of save[i]

lw   $t0,0($t1)       # Temp reg $t0 = save[i]

bne  $t0,$s5, Exit    # go to Exit if save[i] ≠ k

addi $s3,$s3,1        # i = i + 1

j    Loop             # go to Loop

Exit:

If we assume we place the loop starting at location 80000 in memory, what is 

the MIPS machine code for this loop? 

Th

e assembled instructions and their addresses are:

ANSWER

80000

0

0

19

9

2

0

80004

0

9

22

9

0

32

80008

35

9

8

0

80012

5

8

21

2

80016

8

19

19

1

80020

2

20000

80024

. . . 

Remember that MIPS instructions have byte addresses, so addresses of 

sequential words diff er by 4, the number of bytes in a word. Th

e bne instruction 

on the fourth line adds 2 words or 8 bytes to the address of the  following 

instruction (80016), specifying the branch destination relative to that following 

instruction (8  80016) instead of relative to the branch instruction (12  

80012) or using the full destination address (80024). Th

e jump instruction on 

the last line does use the full address (20000  4  80000), corresponding to 

the label Loop. 
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Hardware/

Most conditional branches are to a nearby location, but occasionally they branch 

far away, farther than can be represented in the 16 bits of the conditional branch 

Software 

instruction. Th

e assembler comes to the rescue just as it did with large addresses 

Interface

or constants: it inserts an unconditional jump to the branch target, and inverts the 

condition so that the branch decides whether to skip the jump. 

Branching Far Away

EXAMPLE

Given a branch on register $s0 being equal to register $s1, 

beq    $s0, $s1, L1

replace it by a pair of instructions that off ers a much greater branching distance. 

Th

ese instructions replace the short-address conditional branch:

ANSWER

bne    $s0, $s1, L2

j      L1

L2:

MIPS Addressing Mode Summary

addressing mode One 

Multiple forms of addressing are generically called addressing modes. Figure 2.18 

of several addressing 

shows how operands are identifi ed for each addressing mode. Th

e MIPS addressing 

regimes delimited by their 

modes are the following:

varied use of operands 

and/or addresses. 

1.  Immediate addressing,  where the operand is a constant within the instruction 

itself

2.  Register addressing,  where the operand is a register

3.  Base or  displacement addressing,  where the operand is at the memory location 

whose address is the sum of a register and a constant in the instruction

4.  PC-relative addressing,  where the branch address is the sum of the PC and a 

constant in the instruction

5.  Pseudodirect addressing,  where the jump address is the 26 bits of the 

instruction concatenated with the upper bits of the PC
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1.  Immediate addressing

op

rs

rt

Immediate

2. Register addressing

op

rs

rt

rd

. . . funct

Registers

Register

3.  Base addressing

op

rs

rt

Address

Memory

Register

+

Byte Halfword

Word

4.  PC-relative addressing

op

rs

rt

Address

Memory

PC

+

Word

5.  Pseudodirect addressing

op

Address

Memory

PC

Word

FIGURE 2.18  Illustration of the fi ve MIPS addressing modes.  Th

e operands are shaded in color. 

Th

e operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. 

Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shift ed left  2 bits to the PC and mode 5 concatenating a 26-bit address shift ed left  2 bits with the 4 upper bits of the PC. Note that a single operation can use more than one addressing mode. Add, for example, uses both immediate (addi) and register (add) addressing. 

Although we show MIPS as having 32-bit addresses, nearly all microprocessors  Hardware/

(including MIPS) have 64-bit address extensions (see   Appendix E and Section  Software 2.18). Th

ese extensions were in response to the needs of soft ware for larger 

programs. Th

e process of instruction set extension allows architectures to expand in 

Interface

such a way that is able to move soft ware compatibly upward to the next generation 

of architecture. 
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Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the 

original assembly language. One example is when looking at “core dump.” Figure 

2.19 shows the MIPS encoding of the fi elds for the MIPS machine language. Th is 

fi gure helps when translating by hand between assembly language and machine 

language. 

Decoding Machine Code

EXAMPLE

What is the assembly language statement corresponding to this machine 

instruction? 

00af8020hex

Th

e fi rst step in converting hexadecimal to binary is to fi nd the op fi elds:

ANSWER

(Bits: 31 28 26                        5   2 0)

0000 0000 1010 1111 1000 0000 0010 0000

We look at the op fi eld to determine the operation. Referring to Figure 2.19, 

when bits 31–29 are 000 and bits 28–26 are 000, it is an R-format instruction. 

Let’s reformat the binary instruction into R-format fi elds, listed in Figure 2.20:

op        rs       rt       rd       shamt    funct

000000    00101    01111    10000    00000    100000

Th

e bottom portion of Figure 2.19 determines the operation of an R-format 

instruction. In this case, bits 5–3 are 100 and bits 2–0 are 000, which means 

this binary pattern represents an add instruction. 

We decode the rest of the instruction by looking at the fi eld values. Th

e 

decimal values are 5 for the rs fi eld, 15 for rt, and 16 for rd (shamt is unused). 

Figure 2.14 shows that these numbers represent registers $a1, $t7, and $s0. 

Now we can reveal the assembly instruction:

add $s0,$a1,$t7

 

2.10  MIPS Addressing for 32-bit Immediates and Addresses 

119

op(31:26)

28–26

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

31–29

0(000)

R-format

Bltz/gez

jump

jump & link branch eq

branch

blez

bgtz

ne

1(001)

add

addiu

set less

set less

andi

ori

xori

load upper

immediate

than imm. 

than imm. 

immediate

unsigned

2(010)

TLB

FlPt

3(011)

4(100)

load byte

load half

lwl

load word

load byte  load

lwr

unsigned

half

unsigned

5(101)

store byte

store half

swl

store word

swr

6(110)

load linked  lwc1

word

7(111)

store cond.  swc1

word

op(31:26)=010000 (TLB), rs(25:21)

23–21

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

25–24

0(00)

mfc0

cfc0

mtc0

ctc0

1(01)

2(10)

3(11)

op(31:26)=000000 (R-format), funct(5:0)

2–0

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

5–3

0(000)

shift left

shift right sra

sllv

srlv

srav

logical

logical

1(001)

jump register jalr

syscall

break

2(010)

mfhi

mthi

mfl o

mtlo

3(011)

mult

multu

div

divu

4(100)

add

addu

subtract

subu

and

or

xor

not or (nor)

5(101)

set l.t. 

set l.t. 

unsigned

6(110)

7(111)

FIGURE 2.19  MIPS instruction encoding.  Th

is notation gives the value of a fi eld by row and by column. For example, the top portion 

of the fi gure shows load word in row number 4 (100  for bits 31–29 of the instruction) and column number 3 (011  for bits 28–26 of the two

two

instruction), so the corresponding value of the op fi eld (bits 31–26) is 100011 . Underscore means the fi eld is used elsewhere. For example, two

R-format in row 0 and column 0 (op  000000 ) is defi ned in the bottom part of the fi gure. Hence, subtract in row 4 and column two

2 of the bottom section means that the funct fi eld (bits 5–0) of the instruction is 100010  and the op fi eld (bits 31–26) is 000000 . Th e 

two

two

floating point value in row 2, column 1 is defi ned in Figure 3.18 in Chapter 3. Bltz/gez is the opcode for four instructions found in Appendix A: bltz, bgez, bltzal, and bgezal. Th

is chapter describes instructions given in full name using color, while Chapter 3 

describes instructions given in mnemonics using color. Appendix A covers all instructions. 
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Name

Fields

Comments

Field size

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

All MIPS instructions are 32 bits long

R-format

op

rs

r t

rd

shamt

funct

Arithmetic instruction format

I-format op

rs

r t

address/immediate

Transfer, branch,imm. format 

r

o

f

-

J

a

m t

p

o

r

a

t

t

e

g

ad

e

r

d

ss

Jump instruction format

FIGURE 2.20  MIPS instruction formats. 

Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 64 shows the MIPS assembly language revealed in this chapter. Th

e remaining hidden portion 

of MIPS instructions deals mainly with arithmetic and real numbers, which are 

covered in the next chapter. 

Check 

I.  What is the range of addresses for conditional branches in MIPS (K  1024)? 

Yourself

1.  Addresses between 0 and 64K  1

2.  Addresses between 0 and 256K  1

3.  Addresses up to about 32K before the branch to about 32K aft er

4.  Addresses up to about 128K before the branch to about 128K aft er

II.  What is the range of addresses for jump and jump and link in MIPS 

(M  1024K)? 

1.  Addresses between 0 and 64M  1

2.  Addresses between 0 and 256M  1

3.  Addresses up to about 32M before the branch to about 32M aft er

4.  Addresses up to about 128M before the branch to about 128M aft er

5.  Anywhere within a block of 64M addresses where the PC supplies the 

upper 6 bits

6.  Anywhere within a block of 256M addresses where the PC supplies the 

upper 4 bits

III. What is the MIPS assembly language instruction corresponding to the 

machine instruction with the value 0000 0000 ? 

hex

1.  j

2.  R-format

3.  addi

4.  sll

5.  mfc0

6. Undefi ned opcode: there is no legal instruction that corresponds to 0
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 2.11   Parallelism and Instructions: 

Synchronization

Parallel execution is easier when tasks are independent, but oft en they need to 

cooperate. Cooperation usually means some tasks are writing new values that 

others must read. To know when a task is fi nished writing so that it is safe for 

another to read, the tasks need to synchronize. If they don’t synchronize, there is a 

danger of a data race, where the results of the program can change depending on  data race Two memory how events happen to occur. 

accesses form a data race 

For example, recall the analogy of the eight reporters writing a story on page 44 of 

if they are from diff erent 

Chapter 1. Suppose one reporter needs to read all the prior sections before writing  threads to same location, at least one is a write, 

a conclusion. Hence, he or she must know when the other reporters have fi nished  and they occur one aft er their sections, so that there is no danger of sections being changed aft erwards. Th

at  another. 

is, they had better synchronize the writing and reading of each section so that the 

conclusion will be consistent with what is printed in the prior sections. 

In computing, synchronization mechanisms are typically built with user-level 

soft ware routines that rely on hardware-supplied synchronization instructions. In 

this section, we focus on the implementation of  lock and  unlock synchronization 

operations. Lock and unlock can be used straightforwardly to create regions 

where only a single processor can operate, called a  mutual exclusion, as well as to 

implement more complex synchronization mechanisms. 

Th

e critical ability we require to implement synchronization in a multiprocessor 

is a set of hardware primitives with the ability to  atomically read and modify a 

memory location. Th

at is, nothing else can interpose itself between the read and 

the write of the memory location. Without such a capability, the cost of building 

basic synchronization primitives will be high and will increase unreasonably as the 

processor count increases. 

Th

ere are a number of alternative formulations of the basic hardware primitives, 

all of which provide the ability to atomically read and modify a location, together 

with some way to tell if the read and write were performed atomically. In general, 

architects do not expect users to employ the basic hardware primitives, but 

instead expect that the primitives will be used by system programmers to build a 

synchronization library, a process that is oft en complex and tricky. 

Let’s start with one such hardware primitive and show how it can be used to 

build a basic synchronization primitive. One typical operation for building 

synchronization operations is the  atomic exchange or  atomic swap, which inter-

changes a value in a register for a value in memory. 

To see how to use this to build a basic synchronization primitive, assume that 

we want to build a simple lock where the value 0 is used to indicate that the lock 

is free and 1 is used to indicate that the lock is unavailable. A processor tries to set 

the lock by doing an exchange of 1, which is in a register, with the memory address 

corresponding to the lock. Th

e value returned from the exchange instruction is 1 

if some other processor had already claimed access, and 0 otherwise. In the latter 
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case, the value is also changed to 1, preventing any competing exchange in another 

processor from also retrieving a 0. 

For example, consider two processors that each try to do the exchange 

simultaneously: this race is broken, since exactly one of the processors will perform 

the exchange fi rst, returning 0, and the second processor will return 1 when it does 

the exchange. Th

e key to using the exchange primitive to implement synchronization 

is that the operation is atomic: the exchange is indivisible, and two simultaneous 

exchanges will be ordered by the hardware. It is impossible for two processors 

trying to set the synchronization variable in this manner to both think they have 

simultaneously set the variable. 

Implementing a single atomic memory operation introduces some challenges in 

the design of the processor, since it requires both a memory read and a write in a 

single, uninterruptible instruction. 

An alternative is to have a pair of instructions in which the second instruction 

returns a value showing whether the pair of instructions was executed as if the pair 

were atomic. Th

e pair of instructions is eff ectively atomic if it appears as if all other 

operations executed by any processor occurred before or aft er the pair. Th

us, when 

an instruction pair is eff ectively atomic, no other processor can change the value 

between the instruction pair. 

In MIPS this pair of instructions includes a special load called a  load linked and 

a special store called a  store conditional. Th

ese instructions are used in sequence: 

if the contents of the memory location specifi ed by the load linked are changed 

before the store conditional to the same address occurs, then the store conditional 

fails. Th

e store conditional is defi ned to both store the value of a (presumably 

diff erent) register in memory  and to change the value of that register to a 1 if it 

succeeds and to a 0 if it fails. Since the load linked returns the initial value, and the 

store conditional returns 1 only if it succeeds, the following sequence implements 

an atomic exchange on the memory location specifi ed by the contents of $s1:

again: addi $t0,$zero,1       ;copy locked value

ll       $t1,0($s1)        ;load linked

sc       $t0,0($s1)        ;store conditional

beq      $t0,$zero,again   ;branch if store fails

add      $s4,$zero,$t1     ;put load value in $s4

Any time a processor intervenes and modifi es the value in memory between the 

ll and sc instructions, the sc returns 0 in $t0, causing the code sequence to try 

again. At the end of this sequence the contents of $s4 and the memory location 

specifi ed by $s1 have been atomically exchanged. 

Elaboration: Although it was presented for multiprocessor synchronization, atomic 

exchange is also useful for the operating system in dealing with multiple processes 

in a single processor. To make sure nothing interferes in a single processor, the store 

conditional also fails if the processor does a context switch between the two instructions 

(see Chapter 5). 

 

2.12  Translating and Starting a Program 

123

An advantage of the load linked/store conditional mechanism is that it can be used 

to build other synchronization primitives, such as  atomic compare and swap or  atomic 

 fetch-and-increment, which are used in some parallel programming models. These 

involve more instructions between the ll and the sc, but not too many. 

Since the store conditional will fail after either another attempted store to the load 

linked address or any exception, care must be taken in choosing which instructions are 

inserted between the two instructions. In particular, only register-register instructions 

can safely be permitted; otherwise, it is possible to create deadlock situations where 

the processor can never complete the sc because of repeated page faults. In addition, 

the number of instructions between the load linked and the store conditional should be 

small to minimize the probability that either an unrelated event or a competing processor 

causes the store conditional to fail frequently. 

When do you use primitives like load linked and store conditional? 

Check 

1.  When cooperating threads of a parallel program need to synchronize to get  Yourself

proper behavior for reading and writing shared data

2.  When cooperating processes on a uniprocessor need to synchronize for 

reading and writing shared data

 2.12  Translating and Starting a Program

Th

is section describes the four steps in transforming a C program in a fi le on disk 

into a program running on a computer. Figure 2.21 shows the translation hierarchy. 

Some systems combine these steps to reduce translation time, but these are the 

logical four phases that programs go through. Th

is section follows this translation 

hierarchy. 

Compiler

Th

e compiler transforms the C program into an  assembly language program, a 

symbolic form of what the machine understands. High-level language programs 

take many fewer lines of code than assembly language, so programmer productivity 

is much higher. 

In 1975, many operating systems and assemblers were written in assembly  assembly language 

language because memories were small and compilers were ineffi

cient.  Th

e  A symbolic language that 

million-fold increase in memory capacity per single DRAM chip has reduced  can be translated into program size concerns, and optimizing compilers today can produce assembly  binary machine language. 

language programs nearly as well as an assembly language expert, and sometimes 

even better for large programs. 
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C program

Compiler

Assembly language program

Assembler

Object: Machine language module

Object: Library routine (machine language)

Linker

Executable: Machine language program

Loader

Memory

FIGURE 2.21  A translation hierarchy for C.  A high-level language program is fi rst compiled into an assembly language program and then assembled into an object module in machine language. Th

e linker 

combines multiple modules with library routines to resolve all references. Th

e loader then places the machine 

code into the proper memory locations for execution by the processor. To speed up the translation process, some steps are skipped or combined. Some compilers produce object modules directly, and some systems use linking loaders that perform the last two steps. To identify the type of fi le, UNIX follows a suffi x convention 

for fi les: C source fi les are named x.c, assembly fi les are x.s, object fi les are named x.o, statically linked library routines are x.a, dynamically linked library routes are x.so, and executable fi les by default are called a.out. MS-DOS uses the suffi

xes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same eff ect. 

Assembler

Since assembly language is an interface to higher-level soft ware, the assembler 

can also treat common variations of machine language instructions as if they 

were instructions in their own right. Th

e hardware need not implement these 

instructions; however, their appearance in assembly language simplifi es translation 

pseudoinstruction 

and programming. Such instructions are called pseudoinstructions. 

A common variation 

As mentioned above, the MIPS hardware makes sure that register $zero always 

of assembly language 

has the value 0. Th

at is, whenever register $zero is used, it supplies a 0, and the 

instructions oft en treated 

programmer cannot change the value of register $zero. Register $zero is used 

as if it were an instruction 

to create the assembly language instruction that copies the contents of one register 

in its own right. 

to another. Th

us the MIPS assembler accepts this instruction even though it is not 

found in the MIPS architecture:

move $t0,$t1      # register $t0 gets register $t1
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Th

e assembler converts this assembly language instruction into the machine 

language equivalent of the following instruction:

add $t0,$zero,$t1 # register $t0 gets 0 + register $t1

Th

e MIPS assembler also converts blt (branch on less than) into the two 

instructions slt and bne mentioned in the example on page 95. Other examples 

include bgt, bge, and ble. It also converts branches to faraway locations into a 

branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants 

to be loaded into a register despite the 16-bit limit of the immediate instructions. 

In summary, pseudoinstructions give MIPS a richer set of assembly language 

instructions than those implemented by the hardware. Th

e only cost is reserving 

one register, $at, for use by the assembler. If you are going to write assembly 

programs, use pseudoinstructions to simplify your task. To understand the MIPS 

architecture and be sure to get best performance, however, study the real MIPS 

instructions found in Figures 2.1 and 2.19. 

Assemblers will also accept numbers in a variety of bases. In addition to binary 

and decimal, they usually accept a base that is more succinct than binary yet 

converts easily to a bit pattern. MIPS assemblers use hexadecimal. 

Such features are convenient, but the primary task of an assembler is assembly 

into machine code. Th

e assembler turns the assembly language program into an 

 object fi le, which is a combination of machine language instructions, data, and 

information needed to place instructions properly in memory. 

To produce the binary version of each instruction in the assembly language 

program, the assembler must determine the addresses corresponding to all labels. 

Assemblers keep track of labels used in branches and data transfer instructions 

in a symbol table. As you might expect, the table contains pairs of symbols and  symbol table A table addresses. 

that matches names of 

Th

e object fi le for UNIX systems typically contains six distinct pieces:

labels to the addresses of 

the memory words that 

■  Th

e  object fi le header describes the size and position of the other pieces of the  instructions occupy. 

object fi le. 

■  Th

e  text segment contains the machine language code. 

■  Th

e  static data segment contains data allocated for the life of the program. 

(UNIX allows programs to use both  static data,  which is allocated throughout 

the program, and  dynamic data, which can grow or shrink as needed by the 

program. See Figure 2.13.)

■  Th

e  relocation information identifi es instructions and data words that depend 

on absolute addresses when the program is loaded into memory. 

■  Th

e  symbol table contains the remaining labels that are not defi ned, such as 

external references. 
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■  Th

e  debugging information contains a concise description of how the modules 

were compiled so that a debugger can associate machine instructions with C 

source fi les and make data structures readable. 

Th

e next subsection shows how to attach such routines that have already been 

assembled, such as library routines. 

Linker

What we have presented so far suggests that a single change to one line of one 

procedure requires compiling and assembling the whole program. Complete 

retranslation is a terrible waste of computing resources. Th

is repetition is 

particularly wasteful for standard library routines, because programmers would 

be compiling and assembling routines that by defi nition almost never change. An 

alternative is to compile and assemble each procedure independently, so that a 

change to one line would require compiling and assembling only one procedure. 

linker Also called 

Th

is alternative requires a new systems program, called a link editor or linker, 

link editor. A systems 

which takes all the independently assembled machine language programs and 

program that combines 

“stitches” them together. 

independently assembled 

Th

ere are three steps for the linker:

machine language 

programs and resolves all 

1.  Place code and data modules symbolically in memory. 

undefi ned labels into an 

executable fi le. 

2.  Determine the addresses of data and instruction labels. 

3.  Patch both the internal and external references. 

Th

e linker uses the relocation information and symbol table in each object 

module to resolve all undefi ned labels. Such references occur in branch instructions, 

jump instructions, and data addresses, so the job of this program is much like that 

of an editor: it fi nds the old addresses and replaces them with the new addresses. 

Editing is the origin of the name “link editor,” or linker for short. Th

e reason a 

linker is useful is that it is much faster to patch code than it is to recompile and 

reassemble. 

executable fi le 

If all external references are resolved, the linker next determines the memory 

A functional program in 

locations each module will occupy. Recall that Figure 2.13 on page 104 shows 

the format of an object 

fi le that contains no 

the MIPS convention for allocation of program and data to memory. Since the 

unresolved references. 

fi les were assembled in isolation, the assembler could not know where a module’s 

It can contain symbol 

instructions and data would be placed relative to other modules. When the linker 

tables and debugging 

places a module in memory, all  absolute references, that is, memory addresses that 

information. A “stripped 

are not relative to a register, must be  relocated to refl ect its true location. 

executable” does not 

Th

e linker produces an executable fi le that can be run on a computer. Typically, 

contain that information. 

this fi le has the same format as an object fi le, except that it contains no unresolved 

Relocation information 

may be included for the 

references. It is possible to have partially linked fi les, such as library routines, that 

loader. 

still have unresolved addresses and hence result in object fi les. 
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Linking Object Files

EXAMPLE

Link the two object fi les below. Show updated addresses of the fi rst  few 

instructions of the completed executable fi le. We show the instructions in 

assembly language just to make the example understandable; in reality, the 

instructions would be numbers. 

Note that in the object fi les we have highlighted the addresses and symbols 

that must be updated in the link process: the instructions that refer to the 

addresses of procedures A and B and the instructions that refer to the addresses 

of data words X and Y. 

Object fi le header

Name

Procedure A

Text size

100hex

Data size

20hex

Text segment

Address

Instruction

0

lw $a0, 0($gp)

4

jal 0

…

…

Data segment

0

(X)

…

…

Relocation information

Address

Instruction type

Dependency

0

lw

X

4

jal 

B

Symbol table

Label

Address

X

–

B

–

Object fi le header

Name

Procedure B

Text size

200hex

Data size

30hex

Text segment

Address

Instruction

0

sw $a1, 0($gp)

4

jal 0

…

…

Data segment

0

(Y)

…

…

Relocation information

Address

Instruction type

Dependency

0

sw

Y

4

jal 

A

Symbol table

Label

Address

Y

–

A

–
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Procedure A needs to fi nd the address for the variable labeled X to put in the 

ANSWER

load instruction and to fi nd the address of procedure B to place in the jal 

instruction. Procedure B needs the address of the variable labeled Y for the 

store instruction and the address of procedure A for its jal instruction. 

From Figure 2.13 on page 104, we know that the text segment starts 

at address 40  0000  and the data segment at 1000  0000 . Th

e text of 

hex

hex

procedure A is placed at the fi rst address and its data at the second. Th

e object 

fi le header for procedure A says that its text is 100  bytes and its data is 20  

hex

hex

bytes, so the starting address for procedure B text is 40 0100 , and its data 

hex

starts at 1000 0020 . 

hex

Executable fi le header

Text size

300hex

Data size

50hex

Text segment

Address

Instruction

0040 0000

lw

($gp)

hex

$a0, 8000hex

0040 0004

jal 40 0100

hex

hex

…

…

0040 0100

sw

($gp)

hex

$a1, 8020hex

0040 0104

jal 40 0000

hex

hex

…

…

Data segment

Address

1000 0000

(X)

hex

…

…

1000 0020

(Y)

hex

…

…

Figure 2.13 also shows that the text segment starts at address 40 0000  

hex

and the data segment at 1000 0000 . Th

e text of procedure A is placed at the 

hex

fi rst address and its data at the second. Th

e object fi le header for procedure A 

says that its text is 100  bytes and its data is 20  bytes, so the starting address 

hex

hex

for procedure B text is 40 0100 , and its data starts at 1000 0020 . 

hex

hex

Now the linker updates the address fi elds of the instructions. It uses the 

instruction type fi eld to know the format of the address to be edited. We have 

two types here:

1. Th

e jals are easy because they use pseudodirect addressing. Th

e jal at 

address  40  0004  gets 40  0100  (the address of procedure B) in its 

hex

hex

address fi eld, and the jal at 40 0104  gets 40 0000  (the address of 

hex

hex

procedure A) in its address fi eld. 

2. Th

e load and store addresses are harder because they are relative to a base 

register. Th

is example uses the global pointer as the base register. Figure 2.13 

shows that $gp is initialized to 1000 8000 . To get the address 1000 0000

hex

hex 

(the address of word X), we place 8000  in the address fi eld of lw at address 

hex

40 0000 . Similarly, we place 8020  in the address fi eld of sw at address 

hex

hex

40 0100  to get the address 1000 0020  (the address of word Y). 

hex

hex
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Elaboration:  Recall that MIPS instructions are word aligned, so jal drops the right 

two bits to increase the instruction’s address range. Thus, it uses 26 bits to create a 

28-bit byte address. Hence, the actual address in the lower 26 bits of the jal instruction 

in this example is 10 0040

rather than 40 0100 . 

hex, 

hex

Loader

Now that the executable fi le is on disk, the operating system reads it to memory and 

starts it. Th

e loader follows these steps in UNIX systems:

loader A systems 

program that places an 

1.  Reads the executable fi le header to determine size of the text and data  object program in main segments. 

memory so that it is ready 

to execute. 

2.  Creates an address space large enough for the text and data. 

3.  Copies the instructions and data from the executable fi le into memory. 

4.  Copies the parameters (if any) to the main program onto the stack. 

5.  Initializes the machine registers and sets the stack pointer to the fi rst free 

location. 

6.  Jumps to a start-up routine that copies the parameters into the argument 

registers and calls the main routine of the program. When the main routine 

returns, the start-up routine terminates the program with an exit system 

call. 

Sections A.3 and A.4 in Appendix A describe linkers and loaders in more detail. 

Dynamically Linked Libraries

Th

e fi rst part of this section describes the traditional approach to linking libraries   Virtually every before the program is run. Although this static approach is the fastest way to call   problem in computer library routines, it has a few disadvantages:

 science can be solved 

 by another level of 

■  Th

e library routines become part of the executable code. If a new version of   indirection. 

the library is released that fi xes bugs or supports new hardware devices, the 

statically linked program keeps using the old version. 

David Wheeler

■  It loads all routines in the library that are called anywhere in the executable, 

even if those calls are not executed. Th

e library can be large relative to the 

program; for example, the standard C library is 2.5 MB. 

Th

ese disadvantages lead to dynamically linked libraries (DLLs), where the  dynamically linked library routines are not linked and loaded until the program is run. Both the  libraries (DLLs) Library program and library routines keep extra information on the location of nonlocal  routines that are linked procedures and their names. In the initial version of DLLs, the loader ran a dynamic 

to a program during 

execution. 

linker, using the extra information in the fi le to fi nd the appropriate libraries and to 

update all external references. 
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Th

e downside of the initial version of DLLs was that it still linked all routines 

of the library that might be called, versus only those that are called during the 

running of the program. Th

is observation led to the lazy procedure linkage version 

of DLLs, where each routine is linked only  aft er it is called. 

Like many innovations in our fi eld, this trick relies on a level of indirection. 

Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of dummy routines at the end of the program, with one entry per nonlocal routine. 

Th

ese dummy entries each contain an indirect jump. 

Th

e fi rst time the library routine is called, the program calls the dummy entry 

and follows the indirect jump. It points to code that puts a number in a register to 

Text

Text

jal

jal

... 

... 

lw


lw

jr

jr

... 

... 

Data

Data

Text

... 

li    ID

j... 

Text

Dynamic linker/loader

Remap DLL routine

j... 

Data/Text

Text

DLL routine

DLL routine

... 

... 

jr

jr

(a) First call to DLL routine

(b) Subsequent calls to DLL routine

FIGURE 2.22  Dynamically linked library via lazy procedure linkage.  (a) Steps for the fi rst time a call is made to the DLL routine. (b) Th

e steps to fi nd the routine, remap it, and link it are skipped on 

subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by remapping it using virtual memory management. 
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identify the desired library routine and then jumps to the dynamic linker/loader. 

Th

e linker/loader fi nds the desired routine, remaps it, and changes the address in 

the indirect jump location to point to that routine. It then jumps to it. When the 

routine completes, it returns to the original calling site. Th

ereaft er, the call to the 

library routine jumps indirectly to the routine without the extra hops. 

In summary, DLLs require extra space for the information needed for dynamic 

linking, but do not require that whole libraries be copied or linked. Th

ey pay a good 

deal of overhead the fi rst time a routine is called, but only a single indirect jump 

thereaft er. Note that the return from the library pays no extra overhead. Microsoft ’s 

Windows relies extensively on dynamically linked libraries, and it is also the default 

when executing programs on UNIX systems today. 

Starting a Java Program

Th

e discussion above captures the traditional model of executing a program, 

where the emphasis is on fast execution time for a program targeted to a specifi c 

instruction set architecture, or even a specifi c implementation of that architecture. 

Indeed, it is possible to execute Java programs just like C. Java was invented with 

a diff erent set of goals, however. One was to run safely on any computer, even if it 

might slow execution time. 

Figure 2.23 shows the typical translation and execution steps for Java. Rather than compile to the assembly language of a target computer, Java is compiled fi rst 

to instructions that are easy to interpret: the Java bytecode instruction set (see  Java bytecode Section 2.15). Th

is instruction set is designed to be close to the Java language  Instruction from an 

so that this compilation step is trivial. Virtually no optimizations are performed.  instruction set designed Like the C compiler, the Java compiler checks the types of data and produces the  to interpret Java programs. 

proper operation for each type. Java programs are distributed in the binary version 

of these bytecodes. 

A soft ware interpreter, called a Java Virtual Machine (JVM), can execute Java  Java Virtual Machine bytecodes. An interpreter is a program that simulates an instruction set architecture. 

(JVM)  Th

e program that 

interprets Java bytecodes. 

Java program

Compiler

Class files (Java bytecodes)

Java library routines (machine language)

Just In Time

Java Virtual Machine

compiler

Compiled Java methods (machine language)

FIGURE 2.23  A translation hierarchy for Java.  A Java program is fi rst compiled into a binary version of Java bytecodes, with all addresses defi ned by the compiler. Th

e Java program is now ready to run 

on the interpreter, called the  Java Virtual Machine (JVM). Th

e JVM links to desired methods in the Java 

library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, which selectively compiles methods into the native machine language of the machine on which it is running. 
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For example, the MIPS simulator used with this book is an interpreter. Th

ere is no 

need for a separate assembly step since either the translation is so simple that the 

compiler fi lls in the addresses or JVM fi nds them at runtime. 

Th

e upside of interpretation is portability. Th

e availability of soft ware Java virtual 

machines meant that most people could write and run Java programs shortly 

aft er Java was announced. Today, Java virtual machines are found in hundreds of 

millions of devices, in everything from cell phones to Internet browsers. 

Th

e downside of interpretation is lower performance. Th

e incredible advances in 

performance of the 1980s and 1990s made interpretation viable for many important 

applications, but the factor of 10 slowdown when compared to traditionally 

compiled C programs made Java unattractive for some applications. 

To preserve portability and improve execution speed, the next phase of Java 

development was compilers that translated  while the program was running. Such 

Just In Time compiler 

Just In Time compilers (JIT) typically profi le the running program to fi nd where 

(JIT)  Th

e name 

the “hot” methods are and then compile them into the native instruction set on 

commonly given to a 

which the virtual machine is running. Th

e compiled portion is saved for the next 

compiler that operates at 

time the program is run, so that it can run faster each time it is run. Th

is balance 

runtime, translating the 

of interpretation and compilation evolves over time, so that frequently run Java 

interpreted code segments 

programs suff er little of the overhead of interpretation. 

into the native code of the 

computer. 

As computers get faster so that compilers can do more, and as researchers 

invent betters ways to compile Java on the fl y, the performance gap between Java 

and C or C is closing. Section 2.15 goes into much greater depth on the 

implementation of Java, Java bytecodes, JVM, and JIT compilers. 

Check  Which of the advantages of an interpreter over a translator do you think was most 

important for the designers of Java? 

Yourself

1.  Ease of writing an interpreter

2.  Better error messages

3.  Smaller object code

4. Machine 

independence

 2.13  A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have no 

idea what a full assembly language program looks like. In this section, we derive 

the MIPS code from two procedures written in C: one to swap array elements and 

one to sort them. 
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void swap(int v[], int k) 

{ 

int temp; 

temp = v[k]; 

v[k] = v[k+1]; 

v[k+1] = temp; 

}

FIGURE 2.24  A C procedure that swaps two locations in memory.  Th

is subsection uses this 

procedure in a sorting example. 

The Procedure swap

Let’s start with the code for the procedure swap in Figure 2.24. Th

is procedure 

simply swaps two locations in memory. When translating from C to assembly 

language by hand, we follow these general steps:

1.  Allocate registers to program variables. 

2.  Produce code for the body of the procedure. 

3.  Preserve registers across the procedure invocation. 

Th

is section describes the swap procedure in these three pieces, concluding by 

putting all the pieces together. 

Register Allocation for swap

As mentioned on pages 98–99, the MIPS convention on parameter passing is to 

use registers $a0, $a1, $a2, and $a3. Since swap has just two parameters, v and 

k, they will be found in registers $a0 and $a1. Th

e only other variable is temp, 

which we associate with register $t0 since swap is a leaf procedure (see page 100). 

Th

is register allocation corresponds to the variable declarations in the fi rst part of 

the swap procedure in Figure 2.24. 

Code for the Body of the Procedure swap

Th

e remaining lines of C code in swap are

temp = v[k]; 

v[k] = v[k+1]; 

v[k+1] = temp; 

Recall that the memory address for MIPS refers to the  byte address, and so 

words are really 4 bytes apart. Hence we need to multiply the index k by 4 before 

adding it to the address.  Forgetting that sequential word addresses diff er by 4 instead 
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 of by 1 is a common mistake in assembly language programming. Hence the fi rst step 

is to get the address of v[k] by multiplying k by 4 via a shift  left  by 2:

sll   $t1, $a1,2     # reg $t1 = k * 4

add   $t1, $a0,$t1   # reg $t1 = v + (k * 4)

# reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

lw    $t0, 0($t1)    # reg $t0 (temp) = v[k]

lw    $t2, 4($t1)    # reg $t2 = v[k + 1]

# refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw    $t2, 0($t1)    # v[k] = reg $t2

sw    $t0, 4($t1)    # v[k+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations 

of the procedure. What is missing is the code for preserving the saved registers 

used within swap. Since we are not using saved registers in this leaf procedure, 

there is nothing to preserve. 

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and 

the return jump. To make it easier to follow, we identify in Figure 2.25 each block of code with its purpose in the procedure. 

Procedure body

swap: sll 

$t1, $a1, 2 



# reg $t1 = k * 4



add 

$t1, $a0, $t1 

# reg $t1 = v + (k * 4)

# reg $t1 has the address of v[k]

lw 

$t0, 0($t1) 



# reg $t0 (temp) = v[k]

lw 

$t2, 4($t1) 



# reg $t2 = v[k + 1]

# refers to next element of v

sw 

$t2, 0($t1) 



# v[k] = reg $t2

sw 

$t0, 4($t1) 



# v[k+1] = reg $t0 (temp)

Procedure return

jr 

$ra 



# return to calling routine

FIGURE 2.25  MIPS assembly code of the procedure swap in Figure 2.24. 
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The Procedure sort

To ensure that you appreciate the rigor of programming in assembly language, we’ll 

try a second, longer example. In this case, we’ll build a routine that calls the swap 

procedure. Th

is program sorts an array of integers, using bubble or exchange sort, 

which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C version of the program. Once again, we present this procedure in several steps, concluding 

with the full procedure. 

void sort (int v[], int n)

{



int i, j; 



for (i = 0; i < n; i += 1) {





for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j =1) {



swap(v,j); 





}



}

}

FIGURE 2.26  A C procedure that performs a sort on the array v. 

Register Allocation for sort

Th

e two parameters of the procedure sort, v and n, are in the parameter registers 

$a0 and $a1, and we assign register $s0 to i and register $s1 to j. 

Code for the Body of the Procedure sort

Th

e procedure body consists of two nested  for loops and a call to swap that includes 

parameters. Let’s unwrap the code from the outside to the middle. 

Th

e fi rst translation step is the fi rst  for loop:

for (i = 0; i <n; i += 1) {

Recall that the C  for statement has three parts: initialization, loop test, and iteration increment. It takes just one instruction to initialize i to 0, the fi rst part of the  for 

statement:

move    $s0, $zero    # i = 0

(Remember that move is a pseudoinstruction provided by the assembler for the 

convenience of the assembly language programmer; see page 124.) It also takes just 

one instruction to increment i, the last part of the  for statement:

addi    $s0, $s0, 1     # i += 1
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Th

e loop should be exited if i < n is  not true or, said another way, should be 

exited if i ≥ n. Th

e set on less than instruction sets register $t0 to 1 if $s0 < 

$a1 and to 0 otherwise. Since we want to test if $s0 ≥ $a1, we branch if register 

$t0 is 0. Th

is test takes two instructions:

for1tst:slt  $t0, $s0, $a1      # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)

beq  $t0, $zero,exit1  # go to exit1 if $s0 ≥ $a1 (i≥n)

Th

e bottom of the loop just jumps back to the loop test:

j  for1tst      # jump to test of outer loop

exit1:

Th

e skeleton code of the fi rst  for loop is then

move $s0, $zero       # i = 0

for1tst:slt $t0, $s0, $a1    # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)

beq  $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)

. . . 

(body of first for loop)

. . . 

addi $s0, $s0, 1      # i += 1

j    for1tst          # jump to test of outer loop

exit1:

Voila! (Th

e exercises explore writing faster code for similar loops.)

Th

e second  for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

Th

e initialization portion of this loop is again one instruction:

addi     $s1, $s0, –1 # j = i – 1

Th

e decrement of j at the end of the loop is also one instruction:

addi     $s1, $s1, –1 # j –= 1

Th

e loop test has two parts. We exit the loop if either condition fails, so the fi rst 

test must exit the loop if it fails ( j  0):

for2tst: slti $t0, $s1, 0       # reg $t0 = 1 if $s1 < 0 (j < 0)

bne  $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

Th

is branch will skip over the second condition test. If it doesn’t skip, j ≥ 0. 
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Th

e second test exits if v[j] > v[j + 1] is  not true, or exits if v[j] ≤ 

v[j + 1]. First we create the address by multiplying j by 4 (since we need a byte 

address) and add it to the base address of v:

sll    $t1, $s1, 2   # reg $t1 = j * 4

add    $t2, $a0, $t1 # reg $t2 = v + (j * 4)

Now we load v[j]:

lw     $t3, 0($t2)   # reg $t3  = v[j]

Since we know that the second element is just the following word, we add 4 to 

the address in register $t2 to get v[j + 1]:

lw     $t4, 4($t2)   # reg $t4  = v[j + 1]

Th

e test of v[j] ≤ v[j + 1] is the same as v[j + 1] ≥ v[j], so the 

two instructions of the exit test are

slt    $t0, $t4, $t3     # reg $t0 = 0 if $t4 ≥ $t3

beq    $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

Th

e bottom of the loop jumps back to the inner loop test:

j    for2tst   # jump to test of inner loop

Combining the pieces, the skeleton of the second  for loop looks like this:

addi $s1, $s0, –1     # j = i – 1

for2tst:slti $t0, $s1, 0      # reg $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

sll $t1, $s1, 2       # reg $t1 = j * 4

add $t2, $a0, $t1     # reg $t2 = v + (j * 4)

lw  $t3, 0($t2)       # reg $t3 = v[j]

lw  $t4, 4($t2)       # reg $t4 = v[j + 1]

slt $t0, $t4, $t3     # reg $t0 = 0 if $t4 ≥ $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

. . . 

(body of second for loop)

. . . 

addi $s1, $s1, –1     # j –= 1

j  for2tst            # jump to test of inner loop

exit2:

The Procedure Call in sort

Th

e next step is the body of the second  for loop:

swap(v,j); 

Calling swap is easy enough:

jal    swap
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Passing Parameters in sort

Th

e problem comes when we want to pass parameters because the sort procedure 

needs the values in registers $a0 and $a1, yet the swap procedure needs to have its 

parameters placed in those same registers. One solution is to copy the parameters 

for sort into other registers earlier in the procedure, making registers $a0 and 

$a1 available for the call of swap. (Th

is copy is faster than saving and restoring on 

the stack.) We fi rst copy $a0 and $a1 into $s2 and $s3 during the procedure:

move  $s2, $a0     # copy parameter $a0 into $s2

move  $s3, $a1     # copy parameter $a1 into $s3

Th

en we pass the parameters to swap with these two instructions:

move  $a0, $s2     # first swap parameter is v

move  $a1, $s1     # second swap parameter is j

Preserving Registers in sort

Th

e only remaining code is the saving and restoring of registers. Clearly, we must 

save the return address in register $ra, since sort is a procedure and is called 

itself. Th

e sort procedure also uses the saved registers $s0, $s1, $s2, and $s3, 

so they must be saved. Th

e prologue of the sort procedure is then

addi  $sp,$sp,–20  # make room on stack for 5 registers

sw    $ra,16($sp)  # save $ra on stack

sw    $s3,12($sp)  # save $s3 on stack

sw    $s2, 8($sp)  # save $s2 on stack

sw    $s1, 4($sp)  # save $s1 on stack

sw    $s0, 0($sp)  # save $s0 on stack

Th

e tail of the procedure simply reverses all these instructions, then adds a jr to 

return. 

The Full Procedure sort

Now we put all the pieces together in Figure 2.27, being careful to replace references to registers $a0 and $a1 in the  for loops with references to registers $s2 and $s3. 

Once again, to make the code easier to follow, we identify each block of code with 

its purpose in the procedure. In this example, nine lines of the sort procedure in 

C became 35 lines in the MIPS assembly language. 

Elaboration: One optimization that works with this example is  procedure inlining. 

Instead of passing arguments in parameters and invoking the code with a jal instruction, 

the compiler would copy the code from the body of the swap procedure where the call 

to swap appears in the code. Inlining would avoid four instructions in this example. The 

downside of the inlining optimization is that the compiled code would be bigger if the 

inlined procedure is called from several locations. Such a code expansion might turn 

into  lower performance if it increased the cache miss rate; see Chapter 5. 
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Saving registers

sort: addi  $sp,$sp, –20 

# make room on stack for 5 registers

sw 

$ra, 16($sp)# save $ra on stack

sw 

$s3,12($sp) # save $s3 on stack

sw 

$s2, 8($sp)# save $s2 on stack

sw 

$s1, 4($sp)# save $s1 on stack

sw 

$s0, 0($sp)# save $s0 on stack

Procedure body

move 

$s2, $a0 

# copy parameter $a0 into $s2 (save $a0)

Move parameters

move 

$s3, $a1 

# copy parameter $a1 into $s3 (save $a1)

move 

$s0, $zero# i = 0

Outer loop

for1tst:slt     $t0, $s0,$s3 #reg$t0=0if$s0Š$s3(iŠn)

beq 

$t0, $zero, exit1# go to exit1 if $s0 Š $s3 (i Š n)

addi 

$s1, $s0, –1# j = i – 1

for2tst:slti    $t0, $s1,0   #reg$t0=1if$s1<0(j<0)

bne 

$t0, $zero, exit2# go to exit2 if $s1 < 0 (j < 0)

sll 

$t1, $s1, 2# reg $t1 = j * 4

Inner loop

add 

$t2, $s2, $t1# reg $t2 = v + (j * 4)

lw 

$t3, 0($t2)# reg $t3 

= v[j]

lw 

$t4, 4($t2)# reg $t4 

= v[j + 1]

slt 

$t0, $t4, $t3 # reg $t0 = 0 if $t4 Š $t3

beq 

$t0, $zero, exit2# go to exit2 if $t4 Š $t3

move 

$a0, $s2  

# 1st parameter of swap is v (old $a0)

Pass parameters

move 

$a1, $s1 

# 2nd parameter of swap is j

and call

jal 

swap 



# swap code shown in Figure 2.25

Inner loop

addi 

$s1, $s1, –1# j –= 1

j 

for2tst 



# jump to test of inner loop

Outer loop

exit2: addi 

$s0, $s0, 1 

# i += 1

j 

for1tst 



# jump to test of outer loop

Restoring registers

exit1: lw 

$s0, 0($sp) 

# restore $s0 from stack

lw 

$s1, 4($sp)# restore $s1 from stack

lw 

$s2, 8($sp)# restore $s2 from stack

lw 

$s3,12($sp) # restore $s3 from stack

lw 

$ra,16($sp) # restore $ra from stack

addi 

$sp,$sp, 20  # restore stack pointer

Procedure return

jr 

$ra 



# return to calling routine

FIGURE 2.27  MIPS assembly version of procedure sort in Figure 2.26. 
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Figure 2.28 shows the impact of compiler optimization on sort program 

Understanding  performance, compile time, clock cycles, instruction count, and CPI. Note that Program  unoptimized code has the best CPI, and O1 optimization has the lowest instruction Performance

count, but O3 is the fastest, reminding us that time is the only accurate measure of 

program performance. 

Figure 2.29 compares the impact of programming languages, compilation 

versus interpretation, and algorithms on performance of sorts. Th

e fourth column 

shows that the unoptimized C program is 8.3 times faster than the interpreted 

Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times  faster than 

the unoptimized C and within a factor of 1.13 of the highest optimized C code. 

(  Section 2.15 gives more details on interpretation versus compilation of Java and 

the Java and MIPS code for Bubble Sort.) Th

e ratios aren’t as close for Quicksort 

in Column 5, presumably because it is harder to amortize the cost of runtime 

compilation over the shorter execution time. Th

e last column demonstrates the 

impact of a better algorithm, off ering three orders of magnitude a performance 

increases by when sorting 100,000 items. Even comparing interpreted Java in 

Column 5 to the C compiler at highest optimization in Column 4, Quicksort beats 

Bubble Sort by a factor of 50 (0.05  2468, or 123 times faster than the unoptimized 

C code versus 2.41 times faster). 

Elaboration:  The MIPS compilers always save room on the stack for the arguments 

in case they need to be stored, so in reality they always decrement $sp by 16 to make 

room for all four argument registers (16 bytes). One reason is that C provides a vararg 

option that allows a pointer to pick, say, the third argument to a procedure. When the 

compiler encounters the rare vararg, it copies the four argument registers onto the 

stack into the four reserved locations. 

Relative 

Clock cycles 

Instruction count 

gcc optimization

performance

(millions)

(millions)

CPI

None

1.00

158,615

114,938  1.38 

O1 (medium)

2.37

66,990

37,470

1.79 

O2 (full)

2.38

66,521

39,993

1.66 

O3 (procedure integration)

2.41

65,747

44,993

1.46 

FIGURE 2.28  Comparing performance, instruction count, and CPI using compiler 

optimization for Bubble Sort.  Th

e programs sorted 100,000 words with the array initialized to random 

values. Th

ese programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus 

with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20. 
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Bubble Sort relative  Quicksort relative 

Speedup Quicksort 

Language

Execution method

Optimization

performance

performance

vs. Bubble Sort

C

Compiler

None

1.00

1.00

2468

Compiler

O1

2.37

1.50

1562

Compiler

O2

2.38

1.50

1555

Compiler

O3

2.41

1.91

1955

Java

Interpreter

–

0.12

0.05

1050

JIT compiler

–

2.13

0.29

338

FIGURE 2.29  Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative to unoptimized C version.  Th

e last column shows the advantage in performance of Quicksort over Bubble Sort for each language and execution option. Th

ese programs were run on the same system as in Figure 2.28. Th

e JVM is Sun version 1.3.1, and the JIT is Sun Hotspot 

version 1.3.1. 

 2.14  Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing 

assembly code that uses arrays and array indices to the assembly code that uses 

pointers off ers insights about pointers. Th

is section shows C and MIPS assembly 

versions of two procedures to clear a sequence of words in memory: one using 

array indices and one using pointers. Figure 2.30 shows the two C procedures. 

Th

e purpose of this section is to show how pointers map into MIPS instructions, 

and not to endorse a dated programming style. We’ll see the impact of modern 

compiler optimization on these two procedures at the end of the section. 

Array Version of Clear

Let’s start with the array version, clear1, focusing on the body of the loop and 

ignoring the procedure linkage code. We assume that the two parameters array 

and  size are found in the registers $a0 and $a1, and that i is allocated to 

register $t0. 

Th

e initialization of i, the fi rst part of the  for loop, is straightforward:

move    $t0,$zero      # i = 0 (register $t0 = 0)

To set array[i] to 0 we must fi rst get its address. Start by multiplying i by 4 

to get the byte address:

loop1: sll   $t1,$t0,2      # $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index 

to get the address of array[i] using an add instruction:

add   $t2,$a0,$t1    # $t2 = address of array[i]
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clear1(int array[], int size)

{

int 

i; 



for (i = 0; i < size; i += 1)





array[i] = 0; 

}

clear2(int *array, int size)

{

int 

*p; 



for (p = &array[0]; p < &array[size]; p = p + 1)





*p = 0; 

}

FIGURE 2.30  Two C procedures for setting an array to all zeros.   Clear1 uses indices, while clear2 uses pointers. Th

e second procedure needs some explanation for those unfamiliar with C. 

Th

e address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. Th e 

declarations declare that array and p are pointers to integers. Th

e fi rst part of the  for loop in clear2 

assigns the address of the fi rst element of array to the pointer p. Th

e second part of the  for loop tests to see 

if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of the  for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS 

integer. Th

e assignment in the loop places 0 in the object pointed to by p. 

Finally, we can store 0 in that address:

sw   $zero, 0($t2)  # array[i] = 0

Th

is instruction is the end of the body of the loop, so the next step is to increment i:

addi $t0,$t0,1      # i = i + 1

Th

e loop test checks if i is less than size:

slt  $t3,$t0,$a1      # $t3 = (i < size)

bne  $t3,$zero,loop1  # if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the MIPS code for 

clearing an array using indices:

move  $t0,$zero       # i = 0

loop1: sll   $t1,$t0,2       # $t1 = i * 4

add   $t2,$a0,$t1     # $t2 = address of array[i]

sw    $zero, 0($t2)   # array[i] = 0

addi  $t0,$t0,1       # i = i + 1

slt   $t3,$t0,$a1     # $t3 = (i < size)

bne   $t3,$zero,loop1 # if (i < size) go to loop1

(Th

is code works as long as size is greater than 0; ANSI C requires a test of size 

before the loop, but we’ll skip that legality here.)
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Pointer Version of Clear

Th

e second procedure that uses pointers allocates the two parameters array and 

size to the registers $a0 and $a1 and allocates p to register $t0. Th

e code for 

the second procedure starts with assigning the pointer p to the address of the fi rst 

element of the array:

move  $t0,$a0         # p = address of array[0]

Th

e next code is the body of the  for loop, which simply stores 0 into p:

loop2: sw  $zero,0($t0)    # Memory[p] = 0

Th

is instruction implements the body of the loop, so the next code is the iteration 

increment, which changes p to point to the next word:

addi  $t0,$t0,4       # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential 

object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler 

increments p by 4. 

Th

e loop test is next. Th

e fi rst step is calculating the address of the last element 

of array. Start with multiplying size by 4 to get its byte address:

sll   $t1,$a1,2       # $t1 = size * 4

and then we add the product to the starting address of the array to get the address 

of the fi rst word  aft er the array:

add  $t2,$a0,$t1      # $t2 = address of array[size]

Th

e loop test is simply to see if p is less than the last element of array:

slt  $t3,$t0,$t2      # $t3 = (p<&array[size])

bne  $t3,$zero,loop2  # if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero 

an array:

move $t0,$a0         # p = address of array[0]

loop2: sw   $zero,0($t0)    # Memory[p] = 0

addi $t0,$t0,4       # p = p + 4

sll  $t1,$a1,2       # $t1 = size * 4

add  $t2,$a0,$t1     # $t2 = address of array[size]

slt  $t3,$t0,$t2     # $t3 = (p<&array[size])

bne   $t3,$zero,loop2 # if (p<&array[size]) go to loop2

As in the fi rst example, this code assumes size is greater than 0. 
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Note that this program calculates the address of the end of the array in every 

iteration of the loop, even though it does not change. A faster version of the code 

moves this calculation outside the loop:

move $t0,$a0         # p = address of array[0]

sll  $t1,$a1,2       # $t1 = size * 4

add  $t2,$a0,$t1     # $t2 = address of array[size]

loop2:  sw   $zero,0($t0)    # Memory[p] = 0

addi $t0,$t0,4       # p = p + 4

slt  $t3,$t0,$t2     # $t3 = (p<&array[size])

bne  $t3,$zero,loop2 # if (p<&array[size]) go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the diff erence between 

array indices and pointers (the changes introduced by the pointer version are 

highlighted):



move  $t0,$zero  

# i = 0

move 

$t0,$a0 

# p = & array[0]

loop1: 

sll 

$t1,$t0,2 

# $t1 = i * 4

sll 

$t1,$a1,2 

# $t1 = size * 4



add 

$t2,$a0,$t1 

# $t2 = &array[i]



add 

$t2,$a0,$t1 

# $t2 = &array[size]



sw 

$zero, 0($t2)  # array[i] = 0

loop2: 

sw $zero,0($t0) # Memory[p] = 0



addi  $t0,$t0,1 

# i = i + 1

addi 

$t0,$t0,4 # 

p = p + 4



slt 

$t3,$t0,$a1 

# $t3 = (i < size)

slt 

$t3,$t0,$t2    # $t3=(p<&array[size])



bne 

$t3,$zero,loop1# if () go to loop1  

bne 

$t3,$zero,loop2# if () go to loop2

Th

e version on the left  must have the “multiply” and add inside the loop because 

i is incremented and each address must be recalculated from the new index. Th

e 

memory pointer version on the right increments the pointer p directly. Th

e pointer 

version moves the scaling shift  and the array bound addition outside the loop, 

thereby reducing the instructions executed per iteration from 6 to 4. Th

is manual 

optimization corresponds to the compiler optimization of strength reduction (shift  

instead of multiply) and induction variable elimination (eliminating array address 

calculations within loops). Section 2.15 describes these two and many other 

optimizations. 

Elaboration:  As mentioned ealier, a C compiler would add a test to be sure that size 

is greater than 0. One way would be to add a jump just before the fi rst instruction of the 

loop to the slt instruction. 
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2.15

Advanced Material: Compiling C and 

Interpreting Java

Th

is section gives a brief overview of how the C compiler works and how Java 

is executed. Because the compiler will signifi cantly  aff ect the performance of a 

computer, understanding compiler technology today is critical to understanding 

performance. Keep in mind that the subject of compiler construction is usually 

taught in a one- or two-semester course, so our introduction will necessarily only 

touch on the basics. 

Th

e second part of this section, starting on page 2.15-15, is for readers interested 

in seeing how an objected-oriented language like Java executes on the MIPS 

architecture. It shows the Java bytecodes used for interpretation and the MIPS code 

for the Java version of some of the C segments in prior sections, including Bubble 

Sort. It covers both the Java virtual machine and just-in-time (JIT) compilers. 

Compiling C

Th

is fi rst part of the section introduces the internal anatomy of a compiler. To 

start, Figure 2.15.1 shows the structure of recent compilers, and we describe the 

optimizations in the order of the passes of that structure. 

Dependencies

Function

Language dependent; 

Transform language to

Front end per

machine independent

common intermediate form

language

 Intermediate

 representation

Somewhat language dependent; 

For example, loop

High-level

largely machine independent

transformations and

optimizations

procedure inlining

(also called 

procedure integration)

Small language dependencies; 

Including global and local

Global

machine dependencies slight

optimizations   register

optimizer

(e.g., register counts/types)

allocation

Highly machine dependent; 

Detailed instruction selection

Code generator

language independent

and machine-dependent

optimizations; may include

or be followed by assembler

FIGURE 2.15.1  The structure of a modern optimizing compiler consists of a number of 

passes or phases.  Logically, each pass can be thought of as running to completion before the next occurs. 

In practice, some passes may handle one procedure at a time, essentially interleaving with another pass. 
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To illustrate the concepts in this part of this section, we will use the C version of 

a  while loop from page 92:

while (save[i] == k)

i += 1; 

The Front End

Th

e function of the front end is to read in a source program; check the syntax 

and semantics; and translate the source program to an intermediate form that 

interprets most of the language-specifi c operation of the program. As we will see, 

intermediate forms are usually simple, and some are in fact similar to the Java 

bytecodes (see Figure 2.15.8). 

Th

e front end is usually broken into four separate functions:

1.  Scanning reads in individual characters and creates a string of tokens. 

Examples of  tokens are reserved words, names, operators, and punctuation 

symbols. In the above example, the token sequence is while,  (,  save, 

[, i, ], ==, k, ), i, +=, 1. A word like while is recognized as a reserved 

word in C, but save, i, and j are recognized as names, and 1 is recognized 

as a number. 

2.  Parsing takes the token stream, ensures the syntax is correct, and produces 

an  abstract syntax tree, which is a representation of the syntactic structure of 

the program. Figure 2.15.2 shows what the abstract syntax tree might look 

like for this program fragment. 

3.  Semantic analysis takes the abstract syntax tree and checks the program for 

semantic correctness. Semantic checks normally ensure that variables and 

types are properly declared and that the types of operators and objects match, 

a step called  type checking. During this process, a symbol table representing 

all the named objects—classes, variables, and functions—is usually created 

and used to type-check the program. 

4.  Generation of the intermediate representation (IR) takes the symbol table and 

the abstract syntax tree and generates the intermediate representation that is 

the output of the front end. Intermediate representations usually use simple 

operations on a small set of primitive types, such as integers, characters, and 

reals. Java bytecodes represent one type of intermediate form. In modern 

compilers, the most common intermediate form looks much like the MIPS 

instruction set but with an infi nite number of virtual registers; later, we describe 

how to map these virtual registers to a fi nite set of real registers. Figure 2.15.3 

shows how our example might be represented in such an intermediate form. We 

capitalize the MIPS instructions in this section when they represent IR forms. 

Th

e intermediate form specifi es the functionality of the program in a manner 

independent of the original source. Aft er this front end has created the intermediate 

form, the remaining passes are largely language independent. 
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 while  statement 

 while

d

n

o

c



i
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expression 

⫹⫽ assignment 

⫽⫽ comparison 

left-hand side 

expression 

expression expression  identifier factor 

factor factor 

l number 

array access 

identifier 

1 

a

r

r

a



y

expression 



k

identifier factor 

save identifier 

i 

FIGURE 2.15.2  An abstract syntax tree for the  while example. Th

e roots of the tree consist of 

the informational tokens such as numbers and names. Long chains of straight-line descendents are oft en omitted in constructing the tree. 

High-Level Optimizations

High-level optimizations are transformations that are done at something close to 

the source level. 

Th

e most common high-level transformation is probably  procedure inlining, 

which replaces a call to a function by the body of the function, substituting the 

loop-unrolling 

caller’s arguments for the procedure’s parameters. Other high-level optimizations 

A technique to get more 

involve loop transformations that can reduce loop overhead, improve memory 

performance from loops 

access, and exploit the hardware more eff ectively. For example, in loops that 

that access arrays, in 

execute many iterations, such as those traditionally controlled by a  for statement, 

which multiple copies of 

the optimization of loop-unrolling is oft en useful. Loop-unrolling involves taking 

the loop body are made 

a loop, replicating the body multiple times, and executing the transformed loop 

and instructions from 

diff erent iterations are 

fewer times. Loop-unrolling reduces the loop overhead and provides opportunities 

scheduled together. 

for many other optimizations. Other types of high-level transformations include 
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# comments are written like this--source code often included



# while (save[i] == k) 

loop:     

LI R1,save       

# loads the starting address of save into R1

LW 

R2,i



MULT R3,R2,4 #  Multiply R2 by 4

ADD 

R4,R3,R1



LW R5,0(R4) # load save[i]

LW 

R6,k

BNE 

R5,R6,endwhileloop



# i += 1



LW R6, i



ADD R7,R6,1   # increment

SW 

R7,i



branch loop # next iteration

endwhileloop:

FIGURE 2.15.3  The   while  loop example is shown using a typical intermediate representation.  In practice, the names save, i, and k would be replaced by some sort of address, such as a reference to either the local stack pointer or a global pointer, and an off set, similar to the way save[i] 

is accessed. Note that the format of the MIPS instructions is diff erent, because they are intermediate representations here: the operations are capitalized and the registers use RXX notation. 

sophisticated loop transformations such as interchanging nested loops and 

blocking loops to obtain better memory behavior; see Chapter 5 for examples. 

Local and Global Optimizations

Within the pass dedicated to local and global optimization, three classes of 

optimizations are performed:

1.  Local optimization works within a single basic block. A local optimization 

pass is oft en run as a precursor and successor to global optimization to 

“clean up” the code before and aft er global optimization. 

2.  Global optimization works across multiple basic blocks; we will see an 

example of this shortly. 

3. Global  register allocation allocates variables to registers for regions of the 

code. Register allocation is crucial to getting good performance in modern 

processors. 

Several optimizations are performed both locally and globally, including common 

subexpression elimination, constant propagation, copy propagation, dead store 

elimination, and strength reduction. Let’s look at some simple examples of these 

optimizations. 

2.15-6 

2.15  Advanced Material: Compiling C and Interpreting Java

 Common subexpression elimination  fi nds multiple instances of the same 

expression and replaces the second one by a reference to the fi rst. Consider, 

for example, a code segment to add 4 to an array element:

x[i] = x[i] + 4

Th

e address calculation for x[i] occurs twice and is identical since neither the 

starting address of x nor the value of i changes. Th

us, the calculation can be reused. 

Let’s look at the intermediate code for this fragment, since it allows several other 

optimizations to be performed. Th

e unoptimized intermediate code is on the left . On 

the right is the optimized code, using common subexpression elimination to replace 

the second address calculation with the fi rst. Note that the register allocation has 

not yet occurred, so the compiler is using virtual register numbers like R100 here. 

# x[i] + 4 

# x[i] + 4

li R100,x 

li R100,x

lw R101,i 

lw R101,i

mult R102,R101,4 

mult R102,R101,4

add R103,R100,R102 

add R103,R100,R102

lw R104,0(R103) 

lw R104,0(R103)

add R105,R104,4 

# value of x[i] is in R104

# 

x[i] = li R106,x add R105,R104,4

lw R107,i 

# x[i] =

mult R108,R107,4 

sw R105,0(R103)

add R109,R106,R107

sw R105,0(R109)

If the same optimization were possible across two basic blocks, it would then be an 

instance of  global common subexpression elimination. 

Let’s consider some of the other optimizations:

■   Strength reduction replaces complex operations by simpler ones and can be 

applied to this code segment, replacing the MULT by a shift  left . 

■   Constant propagation and its sibling  constant folding fi nd constants in code 

and propagate them, collapsing constant values whenever possible. 

■   Copy propagation propagates values that are simple copies, eliminating the 

need to reload values and possibly enabling other optimizations, such as 

common subexpression elimination. 

■   Dead store elimination  fi nds stores to values that are not used again and 

eliminates the store; its “cousin” is  dead code elimination, which fi nds unused 

code—code that cannot aff ect the result of the program—and eliminates it. 

With the heavy use of macros, templates, and the similar techniques designed 

to reuse code in high-level languages, dead code occurs surprisingly oft en. 

Compilers must be  conservative. Th

e fi rst task of a compiler is to produce correct 

code; its second task is usually to produce fast code, although other factors, such as 
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code size, may sometimes be important as well. Code that is fast but incorrect—for 

any possible combination of inputs—is simply wrong. Th

us, when we say a compiler 

is “conservative,” we mean that it performs an optimization only if it knows with 

100% certainty that, no matter what the inputs, the code will perform as the user 

wrote it. Since most compilers translate and optimize one function or procedure 

at a time, most compilers, especially at lower optimization levels, assume the worst 

about function calls and about their own parameters. 

Programmers concerned about performance of critical loops, especially in real-time  Understanding or embedded applications, oft en fi nd themselves staring at the assembly language  Program 

produced by a compiler and wondering why the compiler failed to perform some 

global optimization or to allocate a variable to a register throughout a loop. Th

e  Performance

answer oft en lies in the dictate that the compiler be conservative. Th

e opportunity for 

improving the code may seem obvious to the programmer, but then the programmer 

oft en has knowledge that the compiler does not have, such as the absence of aliasing 

between two pointers or the absence of side eff ects by a function call. Th

e compiler 

may indeed be able to perform the transformation with a little help, which could 

eliminate the worst-case behavior that it must assume. Th

is insight also illustrates 

an important observation: programmers who use pointers to try to improve 

performance in accessing variables, especially pointers to values on the stack that also 

have names as variables or as elements of arrays, are likely to disable many compiler 

optimizations. Th

e end result is that the lower-level pointer code may run no better, 

or perhaps even worse, than the higher-level code optimized by the compiler. 

Global Code Optimizations

Many global code optimizations have the same aims as those used in the local 

case, including common subexpression elimination, constant propagation, copy 

propagation, and dead store and dead code elimination. 

Th

ere are two other important global optimizations: code motion and induction 

variable elimination. Both are loop optimizations; that is, they are aimed at code 

in loops.  Code motion  fi nds code that is loop invariant: a particular piece of 

code computes the same value on every iteration of the loop and, hence, may be 

computed once outside the loop.  Induction variable elimination is a combination of 

transformations that reduce overhead on indexing arrays, essentially replacing array 

indexing with pointer accesses. Rather than examine induction variable elimination 

in depth, we point the reader to Section 2.14, which compares the use of array 

indexing and pointers; for most loops, the transformation from the more obvious 

array code to the pointer code can be performed by a modern optimizing compiler. 
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Implementing Local Optimizations

Local optimizations are implemented on basic blocks by scanning the basic block 

in instruction execution order, looking for optimization opportunities. In the 

assignment statement example on page 2.15-6, the duplication of the entire address 

calculation is recognized by a series of sequential passes over the code. Here is how 

the process might proceed, including a description of the checks that are needed:

1.  Determine that the two li operations return the same result by observing 

that the operand x is the same and that the value of its address has not been 

changed between the two li operations. 

2.  Replace all uses of R106 in the basic block by R101. 

3. Observe that i cannot change between the two LWs that reference it. So 

replace all uses of R107 with R101. 

4.  Observe that the mult instructions now have the same input operands, so 

that R108 may be replaced by R102. 

5.  Observe that now the two add instructions have identical input operands 

(R100 and R102), so replace the R109 with R103. 

6.  Use dead store code elimination to delete the second set of li, lw, mult, 

and add instructions since their results are unused. 

Th

roughout this process, we need to know when two instances of an operand have 

the same value. Th

is is easy to determine when they refer to virtual registers, since 

our intermediate representation uses such registers only once, but the problem can 

be trickier when the operands are variables in memory, even though we are only 

considering references within a basic block. 

It is reasonably easy for the compiler to make the common subexpression 

elimination determination in a conservative fashion in this case; as we will see in 

the next subsection, this is more diffi

cult when branches intervene. 

Implementing Global Optimizations

To understand the challenge of implementing global optimizations, let’s consider 

a few examples:

■  Consider the case of an opportunity for common subexpression elimination, 

say, of an IR statement like ADD Rx, R20, R50. To determine whether two 

such statements compute the same value, we must determine whether the 

values of R20 and R50 are identical in the two statements. In practice, this 

means that the values of R20 and R50 have not changed between the fi rst 

statement and the second. For a single basic block, this is easy to decide; it is 

more diffi

cult for a more complex program structure involving multiple basic 

blocks and branches. 

■  Consider the second LW of i into R107 within the earlier example: how do 

we know whether its value is used again? If we consider only a single basic 
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block, and we know that all uses of R107 are within that block, it is easy to 

see. As optimization proceeds, however, common subexpression elimination 

and copy propagation may create other uses of a value. Determining that a 

value is unused and the code is dead is more diffi

cult in the case of multiple 

basic blocks. 

■  Finally, consider the load of k in our loop, which is a candidate for code 

motion. In this simple example, we might argue it is easy to see that k is 

not changed in the loop and is, hence, loop invariant. Imagine, however, a 

more complex loop with multiple nestings and  if statements within the body. 

Determining that the load of k is loop invariant is harder in such a case. 

Th

e information we need to perform these global optimizations is similar: we 

need to know where each operand in an IR statement could have been changed or 

 defi ned (use-defi nition information). Th

e dual of this information is also needed: 

that is, fi nding all the uses of that changed operand (defi nition-use information). 

 Data fl ow analysis obtains both types of information. 

Global optimizations and data fl ow analysis operate on a  control fl ow graph, where 

the nodes represent basic blocks and the arcs represent control fl ow between basic 

blocks. Figure 2.15.4 shows the control fl ow graph for our simple loop example, 

with one important transformation introduced. We describe the transformation in 

the caption, but see if you can discover it, and why it was done, on your own! 

8.      LW R6,i

9.      ADD R7,R6,1

10.    SW R7,i

1.      LI R1,save

2.      LW R2,i

3.      SLL R3,R2,2

4.      ADD R4,R3,R1

5.      LW R5,0(R4)

6.      LW R6,k

7.      BEQ R5,R6,startwhileloop

FIGURE 2.15.4  A control fl ow graph for the  while loop example. Each node represents a basic block, which terminates with a branch or by sequential fall-through into another basic block that is also the target of a branch. Th

e IR statements have been numbered for ease in referring to them. Th

e important 

transformation performed was to move the  while test and conditional branch to the end. Th is eliminates the 

unconditional branch that was formerly inside the loop and places it before the loop. Th

is transformation 

is so important that many compilers do it during the generation of the IR. Th

e MULT was also replaced with 

(“strength-reduced to”) an SLL. 
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Suppose we have computed the use-defi nition information for the control 

fl ow graph in Figure 2.15.4. How does this information allow us to perform code 

motion? Consider IR statements number 1 and 6: in both cases, the use-defi nition 

information tells us that there are no defi nitions (changes) of the operands of these 

statements within the loop. Th

us, these IR statements can be moved outside the 

loop. Notice that if the LI of save and the LW of k are executed once, just prior 

to the loop entrance, the computational eff ect is the same, but the program now 

runs faster since these two statements are outside the loop. In contrast, consider 

IR statement 2, which loads the value of i. Th

e defi nitions of i that aff ect this 

statement are both outside the loop, where i is initially defi ned, and inside the loop 

in statement 10 where it is stored. Hence, this statement is not loop invariant. 

Figure 2.15.5 shows the code aft er performing both code motion and induction 

variable elimination, which simplifi es the address calculation. Th

e variable i can 

still be register allocated, eliminating the need to load and store it every time, and 

we will see how this is done in the next subsection. 

Before we turn to register allocation, we need to mention a caveat that also 

illustrates the complexity and diffi

culty of optimizers. Remember that the compiler 

must be conservative. To be conservative, a compiler must consider the following 

question: Is there  any way that the variable k could possibly ever change in this 

loop? Unfortunately, there is one way. Suppose that the variable k and the variable 

i actually refer to the same memory location, which could happen if they were 

accessed by pointers or reference parameters. 

LI R1,save

LW R6,k

LW R2,i

SLL R3,R2,2

ADD R4,R3,R1

LW R2,i

ADD R7,R2,1

ADD R4,R4,4

SW R7,i

LW R5,0(R4)

BEQ R5,R6,startwhileloop

FIGURE 2.15.5  The control fl ow graph showing the representation of the   while loop example after code motion and induction variable elimination. Th

e number of instructions in 

the inner loop has been reduced from 10 to 6. 
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I am sure that many readers are saying, “Well, that would certainly be a stupid 

piece of code!” Alas, this response is not open to the compiler, which must 

translate the code as it is written. Recall too that the aliasing information must 

also be conservative; thus, compilers oft en fi nd themselves negating optimization 

opportunities because of a possible alias that exists in one place in the code or 

because of incomplete information about aliasing. 

Register Allocation

Register allocation is perhaps the most important optimization for modern 

load-store architectures. Eliminating a load or a store eliminates an instruction. 

Furthermore, register allocation enhances the value of other optimizations, such as 

common subexpression elimination. Fortunately, the trend toward larger register 

counts in modern architectures has made register allocation simpler and more 

eff ective. Register allocation is done on both a local basis and a global basis, that is, 

across multiple basic blocks but within a single function. Local register allocation 

is usually done late in compilation, as the fi nal code is generated. Our focus here is 

on the more challenging and more opportunistic global register allocation. 

Modern global register allocation uses a region-based approach, where a 

region (sometimes called a  live range) represents a section of code during which 

a particular variable could be allocated to a particular register. How is a region 

selected? Th

e process is iterative:

1.  Choose a defi nition (change) of a variable in a given basic block; add that 

block to the region. 

2.  Find any uses of that defi nition, which is a data fl ow analysis problem; add 

any basic blocks that contain such uses, as well as any basic block that the 

value passes through to reach a use, to the region. 

3.  Find any other defi nitions that also can aff ect a use found in the previous 

step and add the basic blocks containing those defi nitions, as well as the 

blocks the defi nitions pass through to reach a use, to the region. 

4.  Repeat steps 2 and 3 using the defi nitions discovered in step 3 until 

convergence. 

Th

e set of basic blocks found by this technique has a special property: if the 

designated variable is allocated to a register in all these basic blocks, then there is 

no need for loading and storing the variable. 

Modern global register allocators start by constructing the regions for every 

virtual register in a function. Once the regions are constructed, the key question 

is how to allocate a register to each region: the challenge is that certain regions 

overlap and may not use the same register. Regions that do not overlap (i.e., share 

no common basic blocks) can share the same register. One way to represent 
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the interference among regions is with an  interference graph,  where each node 

represents a region, and the arcs between nodes represent that the regions have 

some basic blocks in common. 

Once an interference graph has been constructed, the problem of allocating 

registers is equivalent to a famous problem called  graph coloring: fi nd a color for 

each node in a graph such that no two adjacent nodes have the same color. If the 

number of colors equals the number of registers, then coloring an interference 

graph is equivalent to allocating a register for each region! Th

is insight was the 

initial motivation for the allocation method now known as region-based allocation, 

but originally called the graph-coloring approach. Figure 2.15.6 shows the fl ow 

graph representation of the  while loop example aft er register allocation. 

What happens if the graph cannot be colored using the number of registers 

available? Th

e allocator must spill registers until it can complete the coloring. By 

doing the coloring based on a priority function that takes into account the number 

of memory references saved and the cost of tying up the register, the allocator 

attempts to avoid spilling for the most important candidates. 

Spilling is equivalent to splitting up a region (or live range); if the region is split, 

fewer other regions will interfere with the two separate nodes representing the 

original region. A process of splitting regions and successive coloring is used to 

allow the allocation process to complete, at which point all candidates will have 

been allocated a register. Of course, whenever a region is split, loads and stores 

LI $t0,save

LW $t1,k

LW $t2,i

SLL $t3,$t2,2

ADDU $t4,$t3,$t0

ADD $t2,$t2,1

ADD $t4,$t4,4

LW $t3,0($t4)

BEQ $t3,$t1,startwhileloop

FIGURE 2.15.6   The control fl ow graph showing the representation of the  while  loop example after code motion and induction variable elimination and register allocation, 

using the MIPS register names. Th

e number of IR statements in the inner loop has now dropped to 

only four from six before register allocation and ten before any global optimizations. Th

e value of i resides 

in $t2 at the end of the loop and may need to be stored eventually to maintain the program semantics. If i were unused aft er the loop, not only could the store be avoided, but also the increment inside the loop could be eliminated completely! 
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must be introduced to get the value from memory or to store it there. Th

e location 

chosen to split a region must balance the cost of the loads and stores that must be 

introduced against the advantage of freeing up a register and reducing the number 

of interferences. 

Modern register allocators are incredibly eff ective in using the large register 

counts available in modern processors. In many programs, the eff ectiveness  of 

register allocation is limited not by the availability of registers but by the possibilities 

of aliasing that cause the compiler to be conservative in its choice of candidates. 

Code Generation

Th

e fi nal steps of the compiler are code generation and assembly. Most compilers 

do not use a stand-alone assembler that accepts assembly language source code; 

to save time, they instead perform most of the same functions: fi lling in symbolic 

values and generating the binary code as the fi nal stage of code generation. 

In modern processors, code generation is reasonably straightforward, since the 

simple architectures make the choice of instruction relatively obvious. For more 

complex architectures, such as the x86, code generation is more complex since 

multiple IR instructions may collapse into a single machine instruction. In modern 

compilers, this compilation process uses pattern matching with either a tree-based 

pattern matcher or a pattern matcher driven by a parser. 

During code generation, the fi nal stages of machine-dependent optimization 

are also performed. Th

ese include some constant folding optimizations, as well as 

localized instruction scheduling (see Chapter 4). 

Optimization Summary

Figure 2.15.7 gives examples of typical optimizations, and the last column indicates 

where the optimization is performed in the gcc compiler. It is sometimes diffi

cult 

to separate some of the simpler optimizations—local and processor-dependent 

optimizations—from transformations done in the code generator, and some 

optimizations are done multiple times, especially local optimizations, which may be 

performed before and aft er global optimization as well as during code generation. 

Today, essentially all programming for desktop and server applications is done  Hardware/

in high-level languages, as is most programming for embedded applications. Software 

Th

is development means that since most instructions executed are the output  Interface

of a compiler, an instruction set architecture is essentially a compiler target. 

With  Moore’s Law comes the temptation of adding sophisticated operations 

in an instruction set. Th

e challenge is that they may not exactly match what the 

compiler needs to produce or may be so general that they aren’t fast. For example, 

consider special loop instructions found in some computers. Suppose that instead 
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of decrementing by one, the compiler wanted to increment by four, or instead 

of branching on not equal zero, the compiler wanted to branch if the index was 

less than or equal to the limit. Th

e loop instruction may be a mismatch. When 

faced with such objections, the instruction set designer might then generalize the 

operation, adding another operand to specify the increment and perhaps an option 

on which branch condition to use. Th

en the danger is that a common case, say, 

incrementing by one, will be slower than a sequence of simple operations. 

Elaboration:  Some more sophisticated compilers, and many research compilers, use 

an analysis technique called  interprocedural analysis to obtain more information about 

functions and how they are called. Interprocedural analysis attempts to discover what 

properties remain true across a function call. For example, we might discover that a 

function call can never change any global variables, which might be useful in optimizing 

a loop that calls such a function. Such information is called  may-information or  fl ow-insensitive information and can be obtained reasonably effi ciently, although analyzing 
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FIGURE 2.15.7   Major types of optimizations and explanation of each class.   Th

e third column shows when these occur 

at diff erent levels of optimization in gcc. Th

e GNU organization calls the three optimization levels medium (O1), full (O2), and full with 

integration of small procedures (O3). 

 

2.15  Advanced Material: Compiling C and Interpreting Java 

2.15-15

a call to a function F requires analyzing all the functions that F calls, which makes 

the process somewhat time consuming for large programs. A more costly property to 

discover is that a function  must always change some variable; such information is called 

 must-information or  fl ow-sensitive  information.  Recall the dictate to be conservative: may-information can never be used as must-information—just because a function  may 

change a variable does not mean that it  must change it. It is conservative, however, to 

use the negation of may-information, so the compiler can rely on the fact that a function 

 will never change a variable in optimizations around the call site of that function. 

One of the most important uses of interprocedural analysis is to obtain so-

called alias information. An  alias occurs when two names may designate the same 

variable. For example, it is quite helpful to know that two pointers passed to a 

function may never designate the same variable. Alias information is usually fl ow-

insensitive and must be used conservatively. 

Interpreting Java

Th

is second part of the section is for readers interested in seeing how an object-

object-oriented 

oriented language like Java executes on a MIPS architecture. It shows the Java  language bytecodes used for interpretation and the MIPS code for the Java version of some  A programming language of the C segments in prior sections, including Bubble Sort. 

that is oriented around 

Let’s quickly review the Java lingo to make sure we are all on the same page. Th

e  objects rather than 

actions, or data versus 

big idea of object-oriented programming is for programmers to think in terms of  logic. 

abstract objects, and operations are associated with each  type of object. New types 

can oft en be thought of as refi nements to existing types, and so some operations 

for the existing types are used by the new type without change. Th

e hope is that 

the programmer thinks at a higher level, and that code can be reused more readily 

if the programmer implements the common operations on many diff erent types. 

Th

is diff erent perspective led to a diff erent set of terms. Th

e type of an object 

is a  class, which is the defi nition of a new data type together with the operations 

that are defi ned to work on that data type. A particular object is then an  instance 

of a class, and creating an object from a class is called  instantiation. Th

e operations 

in a class are called  methods, which are similar to C procedures. Rather than call 

a procedure as in C, you  invoke a method in Java. Th

e other members of a class 

are  fi elds, which correspond to variables in C. Variables inside objects are called 

 instance fi elds. Rather than access a structure with a pointer, Java uses an  object 

 reference to access an object. Th

e syntax for method invocation is x.y, where x is 

an object reference and y is the method name. 

Th

e parent–child relationship between older and newer classes is captured 

by the verb “extends”: a child class  extends (or sub classes) a parent class. Th

e 

child class typically will redefi ne some of the methods found in the parent to match 

the new data type. Some methods work fi ne, and the child class  inherits those 

methods. 

To reduce the number of errors associated with pointers and explicit memory 

deallocation, Java automatically frees unused storage, using a separate garbage 
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collector that frees memory when it is full. Hence, new creates a new instance of a 

dynamic object on the heap, but there is no free in Java. Java also requires array 

bounds to be checked at runtime to catch another class of errors that can occur in 

C programs. 

Interpretation

As mentioned before, Java programs are distributed as Java bytecodes, and the Java 

Virtual Machine (JVM) executes Java byte codes. Th

e JVM understands a binary 

format called the  class fi le format. A class fi le is a stream of bytes for a single class, containing a table of valid methods with their bytecodes, a pool of constants that 

acts in part as a symbol table, and other information such as the parent class of this 

class. 

When the JVM is fi rst started, it looks for the class method main. To start any 

Java class, the JVM dynamically loads, links, and initializes a class. Th

e JVM loads 

a class by fi rst fi nding the binary representation of the proper class (class fi le) and 

then creating a class from that binary representation. Linking combines the class 

into the runtime state of the JVM so that it can be executed. Finally, it executes the 

class initialization method that is included in every class. 

Figure 2.15.8 shows Java bytecodes and their corresponding MIPS instructions, 

illustrating fi ve major diff erences between the two:

1.  To simplify compilation, Java uses a stack instead of registers for operands. 

Operands are pushed on the stack, operated on, and then popped off  the 

stack. 

2. Th

e designers of the JVM were concerned about code size, so bytecodes 

vary in length between one and fi ve bytes, versus the 4-byte, fi xed-size 

MIPS instructions. To save space, the JVM even has redundant instructions 

of diff erent lengths whose only diff erence is size of the immediate. Th

is 

decision illustrates a code size variation of our third design principle: make 

the common case  small. 

3. Th

e JVM has safety features embedded in the architecture. For example, 

array data transfer instructions check to be sure that the fi rst operand is a 

reference and that the second index operand is within bounds. 

4.  To allow garbage collectors to fi nd all live pointers, the JVM uses diff erent 

instructions to operate on addresses versus integers so that the JVM can 

know what operands contain addresses. MIPS generally lumps integers and 

addresses together. 

5.  Finally, unlike MIPS, there are Java-specifi c instructions that perform complex 

operations, like allocating an array on the heap or invoking a method. 

 

2.15  Advanced Material: Compiling C and Interpreting Java 

2.15-17

Size 

MIPS 

t

a

C

g

e

r

o y

p

O

a

r

e

i

t

n

o

Ja a

v

b



e

t

y

o

c

e

d

(bits)

instr. 

Meaning

Ari h

t

e

m

i

t c

d

a d

i d

a d

8

add

NO

T

=

S

OS

S

O

N

+



; 

p

o

p

u

s

t

b a

r

t

c

i

b

u

s

8

s b

u

NOS T

=

S

O

O

N

–

; 

S   o

p p

i

r

c

n

t

n

e

m

e

i

i c

n   a

8

I

I

b

8

8

a

i

d

d

r

F a

[

e

m

a

8

I



=

]

r

F a

[

e

m

a

8

I



]



+

b

8

I

Data transfer

load local integer/address

iload I8/aload I8

16

lw 

TOS=Frame[I8]

load local integer/address

iload_ /aload_{0,1,2,3}

8

lw

TOS=Frame[{0,1,2,3}]

store local integer/address

istore I8/astore I8

16

sw

Frame[I8]=TOS; pop

load integer/address from array

iaload/aaload

8

lw

NOS=*NOS[TOS]; pop

store integer/address into array

iastore/aastore

8

sw

*NNOS[NOS]=TOS; pop2



d

a

o

l

l

a

h f f



m

o

r

a

rr y

a

a

s l

d

a

o

8

h

l

NO

N

*

=

S

S

O

T

[

S

O ]  

; 

p

o

p

t

s

r

o

l

a

h



e

i



f

o

t

n

a

rr y

a

sa

r

o

t

s

e

8

h

s

N

*

O

N

[

S

O

N S] T

=

S

O

p



; o 2

p

t

y

b



d

a

o

l

f



e



m

o

r

ar y

a

r

b o

l

a

d

a

8

b

l

NO

*

=

S

N

T

[

S

O

S

O ]  

; 

p

o

p

t

s

t

y

b



e

r

o



e

o

t

n

i

r

a



r y

a

b s

a t

e

r

o

8

b

s

N

*

O

N

[

S

O

N

]

S

T

=

S

O

p



; o 2

p

load immediate

bipush I8, sipush I16

16, 24

addi

push; TOS=I8 or I16

load immediate

iconst_{–1,0,1,2,3,4,5}

8

addi

push; TOS={–1,0,1,2,3,4,5}

i

g

o

L

c l

a

d

n

a

a

i nd

8

n

a d

NO

T

=

S

OS N

& O

p



; 

S

p

o

r

o

i r

o

8

r

o

NOS T

= O

N

|

S

O



; 

S

p

o

p

h

s f

i  

t

t

f

e

l

i

l

h

s

8

s l

l

N S

O

N

= O  

S



< 

< 

O

T S; o

p



p

h

s

t

f

i

r



t

h

g

i

i s

u

r

h

8

srl

O

N S N

=



S

O



> 

> 

O

T S  

; o

p p

Conditional 

branch on equal

if_icompeq I16

24

beq

if TOS == NOS, go to I16; pop2

branch

branch on not equal

if_icompne I16

24

bne

if TOS != NOS, go to I16; pop2

m

o

c

r

a

p

e

f

i _

p

m

o

c

i

{ t

l l

, e g

, , 

t

}

e

g

1

I

6

24

t

l

s



f

i

O

T



S < 

{ , =

< 

> 

, 

> 

, 

}

=   O

N



, 

S

o

g   o

t I





; 

6

1

o

p p2

Unconditional 

p

m

u

j

got  

o 1

I 6

4

2

j

go t



o 1

I 6

jump

t

e

r

r

u n

r t

e  

, 

r

u

t

e

r

i

n

8

jr

m

u

j

s



o

t



p

r

b

u

u

o i

t e

n

j  

r

s

6

1

I

4

2

j l

a

g



o

t



o

1

I

; 

6   u

p

h

s  

; T S

O

3

+

C

P

=

Stack 

remove from stack

pop, pop2

8

pop, pop2

management

p

u

d

i

l

t

a

c

s



n

o



e

t

k

c

a

d p

u

8

u

p

; 

h

s   O

T S

O

N

=

S



p

a

w

s

p

o

t

o

p



2



i

s i

t o



s

n



n

o

t

s a k

c

a

w

s

p

8

T N

=

S

O



; 

O

N

=

S

S

O

T

; 

S

O

T

=T
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check for null reference

ifnull I16, ifnotnull I16
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if TOS {==,!=} null, go to I16

get length of array

arraylength

8

push; TOS = length of array

check if object a type

instanceof I16

24

TOS = 1 if TOS matches type of 

Const[I16]; TOS = 0 otherwise

Invocation

invoke method

invokevirtual I16

24

Invoke method in Const[I16], dispatching 

on type

Allocation

create new class instance

new I16

24

Allocate object type Const[I16] on heap

create new array

newarray I16

24

Allocate array type Const[I16] on heap

FIGURE 2.15.8   Java bytecode architecture versus MIPS.  Although many bytecodes are simple, those in the last half-dozen rows above are complex and specifi c to Java. Bytecodes are one to fi ve bytes in length, hence their name. Th e Java mnemonics use the prefi x i for 

32-bit integer, a for reference (address), s for 16-bit integers (short), and b for 8-bit bytes. We use I8 for an 8-bit constant and I16 for a 16-bit constant. MIPS uses registers for operands, but the JVM uses a stack. Th

e compiler knows the maximum size of the operand stack for 

each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column: TOS: top of stack; NOS: next position below TOS; NNOS: next position below NOS; pop: remove TOS; pop2: remove TOS and NOS; and push: add a position to the stack. 

*NOS and *NNOS mean access the memory location pointed to by the address in the stack at those positions. Const[] refers to the runtime constant pool of a class created by the JVM, and Frame[] refers to the variables of the local method frame. Th e only missing MIPS instructions 

from Figure 2.1 are nor,  andi,  ori,  slti, and lui. Th

e missing bytecodes are a few arithmetic and logical operators, some tricky stack 

management, compares to 0 and branch, support for branch tables, type conversions, more variations of the complex, Java-specifi c instructions plus operations on fl oating-point data, 64-bit integers (longs), and 16-bit characters. 
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Compiling a  while Loop in Java Using Bytecodes

Compile the  while loop from page 92, this time using Java bytecodes:

EXAMPLE

while (save[i] == k)

i += 1; 

Assume that i,  k, and save are the fi rst three local variables. Show the 

addresses of the bytecodes. Th

e MIPS version of the C loop in Figure 

2.15.3 took six instructions and twenty-four bytes. How big is the bytecode 

version? 

Th

e fi rst step is to put the array reference in save on the stack:

ANSWER

0 aload_3 # Push local variable 3 (save[]) onto stack

Th

is 1-byte instruction informs the JVM that an address in local variable 3 is 

being put on the stack. Th

e 0 on the left  of this instruction is the byte address 

of this fi rst instruction; bytecodes for each method start at 0. Th

e next step is 

to put the index on the stack:

1 iload_1 # Push local variable 1 (i) onto stack

Like the prior instruction, this 1-byte instruction is a short version of a more 

general instruction that takes 2 bytes to load a local variable onto the stack. Th

e 

next instruction is to get the value from the array element:

2 iaload # Put array element (save[i]) onto stack

Th

is 1-byte instruction checks the prior two operands, pops them off  the stack, 

and then puts the value of the desired array element onto the new top of the 

stack. Next, we place k on the stack:

3 iload_2 # Push local variable 2 (k) onto stack

We are now ready for the  while test:

4 if_icompne, Exit # Compare and exit if not equal

Th

is 3-byte instruction compares the top two elements of the stack, pops them 

off  the stack, and branches if they are not equal. We are fi nally ready for the 

body of the loop:

7 iinc, 1, 1 # Increment local variable 1 by 1 (i+=1)
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Th

is unusual 3-byte instruction increments a local variable by 1 without using 

the operand stack, an optimization that again saves space. Finally, we return to 

the top of the loop with a 3-byte jump:

10 go to 0 # Go to top of Loop (byte address 0)

Th

us, the bytecode version takes seven instructions and thirteen bytes, almost 

half the size of the MIPS C code. (As before, we can optimize this code to jump 

less.)

Compiling for Java

Since Java is derived from C and Java has the same built-in types as C, the assignment 

statement examples in Sections 2.2 to 2.6 of Chapter 2 are the same in Java as they 

are in C. Th

e same is true for the  if statement example in Section 2.7. 

Th

e Java version of the  while loop is diff erent, however. Th

e designers of C 

leave it up to the programmers to be sure that their code does not exceed the array 

bounds. Th

e designers of Java wanted to catch array bound bugs, and thus require 

the compiler to check for such violations. To check bounds, the compiler needs to 

know what they are. Java includes an extra word in every array that holds the upper 

bound. Th

e lower bound is defi ned as 0. 

Compiling a  while Loop in Java

Modify the MIPS code for the  while loop on page 94 to include the array 

bounds checks that are required by Java. Assume that the length of the array is 

EXAMPLE

located just before the fi rst element of the array. 

Let’s assume that Java arrays reserved the fi rst two words of arrays before the 

data starts. We’ll see the use of the fi rst word soon, but the second word has the 

ANSWER

array length. Before we enter the loop, let’s load the length of the array into a 

temporary register:

lw $t2,4($s6)  # Temp reg $t2 = length of array save

Before we multiply i by 4, we must test to see if it’s less than 0 or greater than 

the last element of the array. Th

e fi rst step is to check if i is less than 0:

Loop: slt $t0,$s3,$zero 

# Temp reg $t0 = 1 if i < 0

Register  $t0 is set to 1 if i is less than 0. Hence, a branch to see if register 

$t0 is  not equal to zero will give us the eff ect of branching if i is less than 

0. Th

is pair of instructions, slt and bne, implements branch on less than. 
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Register $zero always contains 0, so this fi nal test is accomplished using the 

bne instruction and comparing register $t0 to register $zero:

bne $t0,$zero,IndexOutOfBounds  

# if i<0, goto Error

Since the array starts at 0, the index of the last array element is one less than the 

length of the array. Th

us, the test of the upper array bound is to be sure that i is 

less than the length of the array. Th

e second step is to set a temporary register 

to 1 if i is less than the array length and then branch to an error if it’s not less. 

Th

at is, we branch to an error if the temporary register is  equal to zero:

slt $t0,$s3,$t2 

# Temp reg $t0 = 0 if i >= length

beq $t0,$zero,IndexOutOfBounds  #if i>=length, goto 

Error

Note that these two instructions implement branch on greater than or equal to. 

Th

e next two lines of the MIPS  while loop are unchanged from the C version:

sll $t1,$s3,2 

# Temp reg $t1 = 4 * i

add $t1,$t1,$s6 

# $t1 = address of save[i]

We need to account for the fi rst 8 bytes that are reserved in Java. We do that by 

changing the address fi eld of the load from 0 to 8:

lw $t0,8($t1) 

# Temp reg $t0 = save[i]

Th

e rest of the MIPS code from the C  while loop is fi ne as is:

bne 

$t0,$s5, Exit 

# go to Exit if save[i] ? k

add 

$s3,$s3,1 

# i = i + 1

j 

Loop 

# go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Invoking Methods in Java

Th

e compiler picks the appropriate method depending on the type of the object. In a 

few cases, it is unambiguous, and the method can be invoked with no more overhead 

than a C procedure. In general, however, the compiler knows only that a given variable 

contains a pointer to an object that belongs to some subtype of a general class. Since 

it doesn’t know at compile time which subclass the object is, and thus which method 

should be invoked, the compiler will generate code that fi rst tests to be sure the pointer 

isn’t null and then uses the code to load a pointer to a table with all the legal methods 

for that type. Th

e fi rst word of the object has the method table address, which is why 

Java arrays reserve two words. Let’s say it’s using the fi ft h method that was declared for 

that class. (Th

e method order is the same for all subclasses.) Th

e compiler then takes 

the fi ft h address from that table and invokes the method at that address. 

 

2.15  Advanced Material: Compiling C and Interpreting Java 

2.15-21

Th

e cost of object orientation in general is that method invocation includes 1) a 

conditional branch to be sure that the pointer to the object is valid; 2) a load to get 

the address of the table of available methods; 3) another load to get the address of 

the proper method; 4) placing a return address into the return register, and fi nally 

5) a jump register to invoke the method. Th

e next subsection gives a concrete 

example of method invocation. 

A Sort Example in Java

Figure 2.15.9 shows the Java version of exchange sort. A simple diff erence is that 

there is no need to pass the length of the array as a separate parameter, since Java  public  A Java keyword arrays include their length: v.length denotes the length of v. 

that allows a method to 

A more signifi cant diff erence is that Java methods are prepended with keywords  be invoked by any other not found in the C procedures. Th

e sort method is declared public static  method. 

while  swap is declared protected static. Public means that sort can be  protected  A Java key invoked from any other method, while protected means swap can only be called by 

word that restricts 

other methods within the same package and from methods within derived classes.  invocation of a method A  static method is another name for a class method—methods that perform  to other methods in that classwide operations and do not apply to an individual object. Static methods are  package. 

essentially the same as C procedures. 

package Basically a 

Th

is straightforward translation from C into static methods means there is no  directory that contains a ambiguity on method invocation, and so it can be just as effi

cient as C. It also is limited 

group of related classes. 

to sorting integers, which means a diff erent sort has to be written for each data type. 

static method 

To demonstrate the object orientation of Java, Figure 2.15.10 shows the  A method that applies to new version with the changes highlighted. First, we declare v to be of the type  the whole class rather to Comparable and replace v[j] > v[j + 1] with an invocation of compareTo. 

an individual object. It is 

By changing v to this new class, we can use this code to sort many data types. 

unrelated to static in C. 

public class sort {

public static void sort (int[] v) {





for (int i = 0; i < v.length; i += 1) {





for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

swap(v, 

j); 





}



}

protected static void swap(int[] v, int k) {





int temp = v[k]; 





v[k] = v[k+1]; 





v[k+1] = temp; 

}}

FIGURE 2.15.9  An initial Java procedure that performs a sort on the array v.  Changes from Figures 2.24 and 2.26 are highlighted. 
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public class sort {

public static void sort (Comparable[] v) {



for (int i = 0; i < v.length; i += 1) {

for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]); 



j –= 1) {

swap(v, j); 

}

}



protected static void swap(Comparable[] v, int k) {



Comparable temp = v[k]; 



v[k] = v[k+1]; 



v[k+1] = temp; 

}}

public class Comparable {



public int(compareTo (int x)



{ return value – x; }



public int value; 

}

FIGURE 2.15.10  A revised Java procedure that sorts on the array v that can take on more types.  Changes from Figure 2.15.9 are highlighted. 

Th

e method compareTo compares two elements and returns a value greater than 

0 if the parameter is larger than the object, 0 if it is equal, and a negative number 

if it is smaller than the object. Th

ese two changes generalize the code so it can 

sort integers, characters, strings, and so on, if there are subclasses of Comparable 

with each of these types and if there is a version of compareTo for each type. 

For pedagogic purposes, we redefi ne the class Comparable and the method 

compareTo here to compare integers. Th

e actual defi nition of Comparable in the 

Java library is considerably diff erent. 

Starting from the MIPS code that we generated for C, we show what changes we 

made to create the MIPS code for Java. 

For swap, the only signifi cant diff erences are that we must check to be sure the 

object reference is not null and that each array reference is within bounds. Th

e fi rst 

test checks that the address in the fi rst parameter is not zero:

swap: beq $a0,$zero,NullPointer 

#if $a0==0,goto Error

Next, we load the length of v into a register and check that index k is OK. 

lw $t2,4($a0) 

# Temp reg $t2 = length of array v

slt $t0,$a1,$zero  # Temp reg $t0 = 1 if k < 0
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bne $t0,$zero,IndexOutOfBounds  # if k < 0, goto Error

slt $t0,$a1,$t2 

# Temp reg $t0 = 0 if k >= length

beq $t0,$zero,IndexOutOfBounds  #if k>=length,goto Error

Th

is check is followed by a check that k+1 is within bounds. 

addi $t1,$a1,1 

# Temp reg $t1 = k+1 

slt $t0,$t1,$zero 



# Temp reg $t0 = 1 if k+1 < 0

bne $t0,$zero,IndexOutOfBounds  

# if k+1 < 0, goto Error 

slt $t0,$t1,$t2 



# Temp reg $t0 = 0 if k+1 >= length

beq $t0,$zero,IndexOutOfBounds  

#if k+1>=length,goto Error

Figure 2.15.11 highlights the extra MIPS instructions in swap that a Java 

compiler might produce. We again must adjust the off set in the load and store to 

account for two words reserved for the method table and length. 

Figure 2.15.12 shows the method body for those new instructions for sort. (We 

can take the saving, restoring, and return from Figure 2.27.)

Th

e fi rst test is again to make sure the pointer to v is not null:

beq $a0,$zero,NullPointer #if $a0==0,goto Error

Next, we load the length of the array (we use register $s3 to keep it similar to the 

code for the C version of swap):

1w $s3,4($aO) 

#$s3 = length of array v

Bounds check

swap:  beq $a0,$zero,NullPointer 

#if 

$a0==0,goto 

Error



lw 

$t2,-4($a0) 



# Temp reg $t2 = length of array v



slt 

$t0,$a1,$zero 



# Temp reg $t0 = 1 if k < 0



bne 

$t0,$zero,IndexOutOfBounds  # if k < 0, goto Error



slt 

$t0,$a1,$t2 



# Temp reg $t0 = 0 if k >= length



beq 

$t0,$zero,IndexOutOfBounds  # if k >= length, goto Error



addi  $t1,$a1,1 



# Temp reg $t1 = k+1



slt 

$t0,$t1,$zero 



# Temp reg $t0 = 1 if k+1 < 0



bne 

$t0,$zero,IndexOutOfBounds  # if k+1 < 0, goto Error



slt 

$t0,$t1,$t2 



# Temp reg $t0 = 0 if k+1 >= length



beq 

$t0,$zero,IndexOutOfBounds  # if k+1 >= length, goto Error

Method body



sll 

$t1, $a1, 2 



# reg $t1 = k * 4 



add 

$t1, $a0, $t1 



# reg $t1 = v + (k * 4) 
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lw 

$t0, 

8($t1) 



# reg $t0 (temp) = v[k]

lw 

$t2, 12($t1) 



# reg $t2 = v[k + 1]
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sw 

$t2, 

8($t1) 



# v[k] = reg $t2

sw 

$t0, 

12($t1) 



# v[k+1] = reg $t0 (temp)

Procedure return



jr 

$ra 



# return to calling routine

FIGURE 2.15.11  MIPS assembly code of the procedure swap in Figure 2.24. 
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Method body

Move parameters
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Test ptr null



beq  

$a0,$zero,NullPointer 

# if $a0==0, goto Error

Get array length
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Outer loop

for1tst:  slt 

$t0, $s0, $s3  

# reg $t0 = 0 if $s0 Š $s3  (i Š n)



beq 

$t0, $zero, exit1 

# go to exit1 if $s0 Š $s3  (i Š n)



addi 

$s1, $s0, –1 

# j = i – 1

Inner loop start

for2tst:  slti 

$t0, $s1, 0 

# reg $t0 = 1 if $s1 < 0 (j < 0)



bne 

$t0, $zero, exit2 

# go to exit2 if $s1 < 0 (j < 0)



slt 

$t0,$s1,$s3 

# Temp reg $t0 = 0 if j >= length

Test if j too big



beq 

$t0,$zero,IndexOutOfBounds  # if j >= length, goto Error



sll 

$t1, $s1, 2 

# reg $t1 = j * 4 

Get v[j]



add 

$t2, $s2, $t1 

# reg $t2 = v + (j * 4) 



lw 

$t3, 0($t2) 

# reg $t3 = v[j]
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$t0,$t1,$zero 

# Temp reg $t0 = 1 if j+1 < 0

or if j+1 too big



bne 

$t0,$zero,IndexOutOfBounds  # if j+1 < 0, goto Error



slt 

$t0,$t1,$s3 

# Temp reg $t0 = 0 if j+1 >= length



beq 

$t0,$zero,IndexOutOfBounds  # if j+1 >= length, goto Error

Get v[j+1]



lw 

$t4, 4($t2) 

# reg $t4   = v[j + 1]

Load method table
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L1: 

slt 

$t0, $zero, $v0  

# reg $t0 = 0 if 0 Š $v0 

swap



beq 

$t0, $zero, exit2 

# go to exit2 if $t4 Š $t3 

Pass parameters
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addi 

$s1, $s1, –1 

# j –= 1

Inner loop end
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exit2: 

addi 

$s0, $s0, 1 

# i += 1

Outer loop
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for1tst 
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FIGURE 2.15.12  MIPS assembly version of the method body of the Java version of sort. Th e new code is highlighted in this 

fi gure. We must still add the code to save and restore registers and the return from the MIPS code found in Figure 2.27. To keep the code similar to that fi gure, we load v.length into $s3 instead of into a temporary register. To reduce the number of lines of code, we make the simplifying assumption that compareTo is a leaf procedure and we do not need to push registers to be saved on the stack. 

Now we must ensure that the index is within bounds. Since the fi rst test of the inner 

loop is to test if j is negative, we can skip that initial bound test. Th

at leaves the test 

for too big:

slt $t0,$s1,$s3    

# Temp reg $t0 = 0 if j >= length

beq $t0,$zero,IndexOutOfBounds  

#if j>=length, goto Error
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Th

e code for testing j + 1 is quite similar to the code for checking k + 1 in swap, 

so we skip it here. 

Th

e key diff erence is the invocation of compareTo. We fi rst load the address of 

the table of legal methods, which we assume is two words before the beginning of 

the array:

lw $t5,0($a0) 

# $t5 = address of method table

Given the address of the method table for this object, we then get the desired 

method. Let’s assume compareTo is the third method in the Comparable class. To 

pick the address of the third method, we load that address into a temporary register:

lw $t5,8($t5) 

# $t5 = address of third method

We are now ready to call compareTo. Th

e next step is to save the necessary 

registers on the stack. Fortunately, we don’t need the temporary registers or 

argument registers aft er the method invocation, so there is nothing to save. Th

us, 

we simply pass the parameters for compareTo:

move $a0, $t3 

# 1st parameter of compareTo is v[j]

move $a1, $t4 

# 2nd parameter of compareTo is v[j+1]

Since we are using a jump register to invoke compareTo, we need to pass the 

return address explicitly. We use the pseudoinstruction load address (la) and label 

where we want to return, and then do the indirect jump:

la $ra,L1 

# load return address

jr $t5 

# to code for compareTo

Th

e method returns, with $v0 determining which of the two elements is larger. 

If $v0 > 0, then v[j] >v[j+1], and we need to swap. Th

us, to skip the swap, 

we need to test if $v0 ð 0, which is the same as 0 š $v0. We also need to include 

the label for the return address:

L1: slt $t0, $zero, $v0 

# reg $t0 = 0 if 0 š $v0

beq $t0, $zero, exit2 



# go to exit2 if v[j+1] š v[j]

Th

e MIPS code for compareTo is left  as an exercise. 

Th

e main changes for the Java versions of sort and swap are testing for null object 

Hardware/ 

references and index out-of-bounds errors, and the extra method invocation to  Software 

give a more general compare. Th

is method invocation is more expensive than a 

C procedure call, since it requires a load, a conditional branch, a pair of chained  Interface loads, and an indirect jump. As we see in Chapter 4, dependent loads and indirect 

jumps can be relatively slow on modern processors. Th

e increasing popularity 
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of Java suggests that many programmers today are willing to leverage the high 

performance of modern processors to pay for error checking and code reuse. 

Elaboration:  Although we test each reference to  j and  j ⫹ 1 to be sure that these indices are within bounds, an assembly language programmer might look at the code 

and reason as follows:

1. Th

e inner  for loop is only executed if  j ⭐ 0 and since  j ⫹ 1 ⬎  j, there is no need to test  j ⫹ 1 to see if it is less than 0. 

2. Since 

 i takes on the values, 0, 1, 2, . . . , (data.length ⫺ 1) and since  j takes on 

the values i ⫺ 1, i ⫺ 2, . . . , 2, 1, 0, there is no need to test if  j ⭐ data.length 

since the largest value  j can be is data.length ⫺ 2. 

3.  Following the same reasoning, there is no need to test whether  j ⫹ 1 ⭐ data. 

length since the largest value of  j ⫹ 1 is data.length ⫺ 1. 

There are coding tricks in Chapter 2 and superscalar execution in Chapter 4 that 

lower the effective cost of such bounds checking, but only high optimizing compilers 

can reason this way. Note that if the compiler inlined the swap method into sort, many 

checks would be unnecessary. 

Elaboration: Look carefully at the code for swap in Figure 2.15.11. See anything 

wrong in the code, or at least in the explanation of how the code works? It implicitly 

assumes that each Comparable element in v is 4 bytes long. Surely, you need much more 

than 4 bytes for a complex subclass of Comparable, which could contain any number 

of fi elds. Surprisingly, this code does work, because an important property of Java’s 

semantics forces the use of the same, small representation for all variables, fi elds, and 

array elements that belong to Comparable or its subclasses. 

Java types are divided into  primitive types—the predefi ned types for numbers, 

characters, and Booleans—and  reference types—the built-in classes like String, 

user-defi ned classes, and arrays. Values of reference types are pointers (also called 

 references) to anonymous objects that are themselves allocated in the heap. For the 

programmer, this means that assigning one variable to another does not create a new 

object, but instead makes both variables refer to the same object. Because these 

objects are anonymous and programs therefore have no way to refer to them directly, 

a program must use indirection through a variable to read or write any objects’ fi elds 

(variables). Thus, because the data structure allocated for the array v consists entirely 

of pointers, it is safe to assume they are all the same size, and the same swapping code 

works for all of Comparable’s subtypes. 

To write sorting and swapping functions for arrays of primitive types requires that 

we write new versions of the functions, one for each type. This replication is for two 

reasons. First, primitive type values do not include the references to dispatching tables 

that we used on Comparables to determine at runtime how to compare values. Second, 

primitive values come in different sizes: 1, 2, 4, or 8 bytes. 

The pervasive use of pointers in Java is elegant in its consistency, with the penalty 

being a level of indirection and a requirement that objects be allocated on the heap. 

Furthermore, in any language where the lifetimes of the heap-allocated anonymous 
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objects are independent of the lifetimes of the named variables, fi elds, and array 

elements that reference them, programmers must deal with the problem of deciding 

when it is safe to deallocate heap-allocated storage. Java’s designers chose to use 

garbage collection. Of course, use of garbage collection rather than explicit user memory 

management also improves program safety. 

C⫹⫹ provides an interesting contrast. Although programmers can write essentially 

the same pointer-manipulating solution in C⫹⫹, there is another option. In C⫹⫹, 

programmers can elect to forgo the level of indirection and directly manipulate an array 

of objects, rather than an array of pointers to those objects. To do so, C⫹⫹ programmers 

would typically use the template capability, which allows a class or function to be 

parameterized by the  type of data on which it acts. Templates, however, are compiled 

using the equivalent of macro expansion. That is, if we declared an instance of sort 

capable of sorting types X and Y, C⫹⫹ would create two copies of the code for the class: 

one for sort⬍X⬎ and one for sort⬍Y⬎, each specialized accordingly. This solution 

increases code size in exchange for making comparison faster (since the function calls 

would not be indirect, and might even be subject to inline expansion). Of course, the 

speed advantage would be canceled if swapping the objects required moving large 

amounts of data instead of just single pointers. As always, the best design depends on 

the details of the problem. 
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People used to be taught to use pointers in C to get greater effi

ciency than that  Understanding 

available with arrays: “Use pointers, even if you can’t understand the code.” Modern 

Program 

optimizing compilers can produce code for the array version that is just as good. 

Most programmers today prefer that the compiler do the heavy lift ing. 

Performance
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2.15

Interpreting Java

Th

is section gives a brief overview of how the C compiler works and how Java 

is executed. Because the compiler will signifi cantly  aff ect the performance of a 

computer, understanding compiler technology today is critical to understanding 

performance. Keep in mind that the subject of compiler construction is usually 

taught in a one- or two-semester course, so our introduction will necessarily only 

touch on the basics. 

Th

e second part of this section is for readers interested in seeing how an object  object oriented oriented language like Java executes on a MIPS architecture. It shows the Java  language byte-codes used for interpretation and the MIPS code for the Java version of some  A programming language of the C segments in prior sections, including Bubble Sort. It covers both the Java  that is oriented around objects rather than 

Virtual Machine and JIT compilers. 

actions, or data versus 

Th

e rest of   Section 2.15 can be found online. 

logic. 

 2.16  Real Stuff: ARMv7 (32-bit) Instructions

ARM is the most popular instruction set architecture for embedded devices, with 

more than 9 billion devices in 2011 using ARM, and recent growth has been 2 

billion per year. Standing originally for the Acorn RISC Machine, later changed 

to Advanced RISC Machine, ARM came out the same year as MIPS and followed 

similar philosophies. Figure 2.31 lists the similarities. Th

e principal diff erence is 

that MIPS has more registers and ARM has more addressing modes. 

Th

ere is a similar core of instruction sets for arithmetic-logical and data transfer 

instructions for MIPS and ARM, as Figure 2.32 shows. 

Addressing Modes

Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS, 

ARM does not reserve a register to contain 0. Although MIPS has just three simple 

data addressing modes (see Figure 2.18), ARM has nine, including fairly complex calculations. For example, ARM has an addressing mode that can shift  one register 
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ARM MIPS 

Date announced

1985

1985

Instruction size (bits)

32

32

Address space (size, model)

32 bits, fl at

32 bits, fl at

Data alignment

Aligned

Aligned

Data addressing modes

9

3

Integer registers (number, model, size)

15 GPR  32 bits 

31 GPR  32 bits  

I/O

Memor y mapped

Memor y mapped

FIGURE 2.31  Similarities in ARM and MIPS instruction sets. 

Instruction name 

ARM

MIPS

d

d

A

add

addu, addiu

Add (trap if overfl ow)

adds; swivs

add

S b

u

a

r

t

t

c

sub

subu

Subtract (trap if overfl ow)

subs; swivs

sub

l

u

M

p

i

t

y

l

mul

mult, multu

D i

v

i de

—

div, divu

d

n

A

and

and

Register-register

r

O

orr

or

r

o

X

eor

xor

Load high par t register

—

lui

Shift left logical

lsl1

sllv, sll

Shift right logical

lsr1

srlv, srl

Shift right arithmetic

asr1

srav, sra 

o

C

e

r

a

p

m

cmp, cmn, tst, teq

slt/i,slt/iu

Load byte signed

ldrsb

lb

Load byte unsigned

ldrb

lbu

Load halfword signed

ldrsh

lh

Load halfword unsigned

ldrh

lhu

L a

o d

d

r

o

w

ldr

lw

Data transfer

S

r

o

t e

e

t

y

b

strb

sb

Store halfword

strh

sh

S

r

o

t e

d

r

o

w

str

sw

Read, write special registers

mrs, msr

move 

Atomic Exchange

swp, swpb

ll;sc

FIGURE 2.32  ARM register-register and data transfer instructions equivalent to MIPS 

core.  Dashes mean the operation is not available in that architecture or not synthesized in a few instructions. 

If there are several choices of instructions equivalent to the MIPS core, they are separated by commas. ARM 

includes shift s as part of every data operation instruction, so the shift s with superscript 1 are just a variation of a move instruction, such as lsr1. Note that ARM has no divide instruction. 
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by any amount, add it to the other registers to form the address, and then update 

one register with this new address. 

Addressing mode

ARM

MIPS

Register operand

X

X

Immediate operand

X

X

Register + offset (displacement or based)

X

X

Register + register (indexed)

X

—

Register + scaled register (scaled)

X

—

Register + offset and update register

X

—

Register + register and update register

X

—

Autoincrement, autodecrement

X

—

PC-relative data

X

—

FIGURE 2.33  Summary of data addressing modes.  ARM has separate register indirect and register 

 off set addressing modes, rather than just putting 0 in the off set of the latter mode. To get greater addressing range, ARM shift s the off set left  1 or 2 bits if the data size is halfword or word. 

Compare and Conditional Branch

MIPS uses the contents of registers to evaluate conditional branches. ARM uses the 

traditional four condition code bits stored in the program status word:  negative, 

 zero, carry,  and  overfl ow. Th

ey can be set on any arithmetic or logical instruction; 

unlike earlier architectures, this setting is optional on each instruction. An 

explicit option leads to fewer problems in a pipelined implementation. ARM uses 

conditional branches to test condition codes to determine all possible unsigned 

and signed relations. 

CMP subtracts one operand from the other and the diff erence sets the condition 

codes.  Compare negative (CMN)  adds one operand to the other, and the sum sets 

the condition codes. TST performs logical AND on the two operands to set all 

condition codes but overfl ow, while TEQ uses exclusive OR to set the fi rst three 

condition codes. 

One unusual feature of ARM is that every instruction has the option of executing 

conditionally, depending on the condition codes. Every instruction starts with a 

4-bit fi eld that determines whether it will act as a no operation instruction (nop) 

or as a real instruction, depending on the condition codes. Hence, conditional 

branches are properly considered as conditionally executing the unconditional 

branch instruction. Conditional execution allows avoiding a branch to jump over a 

single instruction. It takes less code space and time to simply conditionally execute 

one instruction. 

Figure 2.34 shows the instruction formats for ARM and MIPS. Th

e principal 

diff erences are the 4-bit conditional execution fi eld in every instruction and the 

smaller register fi eld, because ARM has half the number of registers. 
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31

28 27

20 19

16 15

12 11

4 3

0

ARM

Opx4

Op8

Rs14

Rd4

Rs24

Opx8

Register-register

31

26 25

21 20

16 15

11 10

6 5

0

MIPS

Const5

Rs15

Rs25

Rd5

Opx6

Op6

31

28 27

20 19

16 15

12 11

0

ARM

Opx4

Op8

Rs14

Rd4

Const12

Data transfer

31

26 25

21 20

16 15

0

MIPS

Const16

Rs15

Rd5

Op6

31

28 27

24 23

0

ARM

Opx4

Op4

Const24

Branch

31

26 25

21 20

16 15

0

MIPS

Rs15

Opx5/Rs25

Const16

Op6

31

28 27

24 23

0

ARM

Opx4

Op4

Const24

Jump/Call

31

26 25

0

Op6

MIPS

Const26

Opcode

Register

Constant

FIGURE 2.34  Instruction formats, ARM and MIPS.   Th

e diff erences result from whether the 

architecture has 16 or 32 registers. 

Unique Features of ARM

Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since ARM does not have a dedicated register for 0, it has separate opcodes to perform 

some operations that MIPS can do with $zero. In addition, ARM has support for 

multiword arithmetic. 

ARM’s 12-bit immediate fi eld has a novel interpretation. Th

e eight least-

signifi cant bits are zero-extended to a 32-bit value, then rotated right the number 

of bits specifi ed in the fi rst four bits of the fi eld multiplied by two. One advantage is 

that this scheme can represent all powers of two in a 32-bit word. Whether this split 

actually catches more immediates than a simple 12-bit fi eld would be an interesting 

study. 

Operand shift ing is not limited to immediates. Th

e second register of all 

arithmetic and logical processing operations has the option of being shift ed before 

being operated on. Th

e shift  options are shift  left  logical, shift  right logical, shift  

right arithmetic, and rotate right. 
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Name Defi nition 

ARM    

MIPS

Load immediate

Rd = Imm

mov

addi $0, 

Not

Rd = ~(Rs1)

mvn

nor $0, 

Move


Rd = Rs1

mov

or $0, 

Rd = Rs i >>  i

ror

Rotate right

Rd0. . . i–1 = Rs31–i. . . 31

And not

Rd = Rs1 & ~(Rs2)

bic

Reverse subtract

Rd = Rs2 – Rs1

rsb, rsc

Suppor t for multiword 

Carr yOut, Rd = Rd + Rs1 + 

adcs

—

integer add

OldCarr yOut

Suppor t for multiword 

Carr yOut, Rd = Rd – Rs1 + 

sbcs

—

integer sub

OldCarr yOut

FIGURE 2.35  ARM arithmetic/logical instructions not found in MIPS. 

ARM also has instructions to save groups of registers, called  block loads and 

 stores. Under control of a 16-bit mask within the instructions, any of the 16 registers 

can be loaded or stored into memory in a single instruction. Th

ese instructions can 

save and restore registers on procedure entry and return. Th

ese instructions can 

also be used for block memory copy, and today block copies are the most important 

use of such instructions. 
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Designers of instruction sets sometimes provide more powerful operations than   Beauty is altogether in those found in ARM and MIPS. Th

e goal is generally to reduce the number of   the eye of the beholder. 

instructions executed by a program. Th

e danger is that this reduction can occur at  Margaret Wolfe 

the cost of simplicity, increasing the time a program takes to execute because the  Hungerford,  Molly instructions are slower. Th

is slowness may be the result of a slower clock cycle time   Bawn, 1877

or of requiring more clock cycles than a simpler sequence. 

Th

e path toward operation complexity is thus fraught with peril. Section 2.19 

demonstrates the pitfalls of complexity. 

Evolution of the Intel x86

ARM and MIPS were the vision of single small groups in 1985; the pieces of these 

architectures fi t nicely together, and the whole architecture can be described 

succinctly. Such is not the case for the x86; it is the product of several independent 

groups who evolved the architecture over 35 years, adding new features to the 

original instruction set as someone might add clothing to a packed bag. Here are 

important x86 milestones. 
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■  1978: Th

e Intel 8086 architecture was announced as an assembly 

language–compatible extension of the then successful Intel 8080, an 8-bit 

microprocessor. Th

e 8086 is a 16-bit architecture, with all internal registers 

16 bits wide. Unlike MIPS, the registers have dedicated uses, and hence the 

general-purpose 

8086 is not considered a general-purpose register architecture. 

register (GPR) 

■  1980: Th

e Intel 8087 fl oating-point coprocessor is announced. Th

is archi-

A register that can be 

used for addresses or for 

tecture extends the 8086 with about 60 fl oating-point instructions. Instead of 

data with virtually any 

using registers, it relies on a stack (see   Section 2.21 and Section 3.7). 

instruction. 

■  1982: Th

e 80286 extended the 8086 architecture by increasing the address 

space to 24 bits, by creating an elaborate memory-mapping and protection 

model (see Chapter 5), and by adding a few instructions to round out the 

instruction set and to manipulate the protection model. 

■  1985: Th

e 80386 extended the 80286 architecture to 32 bits. In addition to 

a 32-bit architecture with 32-bit registers and a 32-bit address space, the 

80386 added new addressing modes and additional operations. Th

e added 

instructions make the 80386 nearly a general-purpose register machine. Th

e 

80386 also added paging support in addition to segmented addressing (see 

Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs 

without change. 

■  1989–95: Th

e subsequent 80486 in 1989, Pentium in 1992, and Pentium 

Pro in 1995 were aimed at higher performance, with only four instructions 

added to the user-visible instruction set: three to help with multiprocessing 

(Chapter 6) and a conditional move instruction. 

■  1997: Aft er the Pentium and Pentium Pro were shipping, Intel announced that 

it would expand the Pentium and the Pentium Pro architectures with MMX 

(Multi Media Extensions). Th

is new set of 57 instructions uses the fl oating-

point stack to accelerate multimedia and communication applications. MMX 

instructions typically operate on multiple short data elements at a time, in 

the tradition of  single instruction, multiple data (SIMD) architectures (see 

Chapter 6). Pentium II did not introduce any new instructions. 

■  1999: Intel added another 70 instructions, labeled SSE ( Streaming SIMD 

 Extensions) as part of Pentium III. Th

e primary changes were to add eight 

separate registers, double their width to 128 bits, and add a single precision 

fl oating-point data type. Hence, four 32-bit fl oating-point operations can be 

performed in parallel. To improve memory performance, SSE includes cache 

prefetch instructions plus streaming store instructions that bypass the caches 

and write directly to memory. 

■  2001: Intel added yet another 144 instructions, this time labeled SSE2. Th

e 

new data type is double precision arithmetic, which allows pairs of 64-bit 

fl oating-point operations in parallel. Almost all of these 144 instructions are 

versions of existing MMX and SSE instructions that operate on 64 bits of data 
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in parallel. Not only does this change enable more multimedia operations; 

it gives the compiler a diff erent target for fl oating-point operations than 

the unique stack architecture. Compilers can choose to use the eight SSE 

registers as fl oating-point registers like those found in other computers. Th

is 

change boosted the fl oating-point performance of the Pentium 4, the fi rst 

microprocessor to include SSE2 instructions. 

■  2003: A company other than Intel enhanced the x86 architecture this time. 

AMD announced a set of architectural extensions to increase the address 

space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address 

space in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also 

increases the number of registers to 16 and increases the number of 128-

bit SSE registers to 16. Th

e primary ISA change comes from adding a new 

mode called  long mode that redefi nes the execution of all x86 instructions 

with 64-bit addresses and data. To address the larger number of registers, it 

adds a new prefi x to instructions. Depending how you count, long mode also 

adds four to ten new instructions and drops 27 old ones. PC-relative data 

addressing is another extension. AMD64 still has a mode that is identical 

to x86 ( legacy mode) plus a mode that restricts user programs to x86 but 

allows operating systems to use AMD64 ( compatibility mode). Th

ese modes 

allow a more graceful transition to 64-bit addressing than the HP/Intel IA-64 

architecture. 

■  2004: Intel capitulates and embraces AMD64, relabeling it  Extended Memory 

 64 Technology (EM64T). Th

e major diff erence is that Intel added a 128-bit 

atomic compare and swap instruction, which probably should have been 

included in AMD64. At the same time, Intel announced another generation of 

media extensions. SSE3 adds 13 instructions to support complex arithmetic, 

graphics operations on arrays of structures, video encoding, fl oating-point 

conversion, and thread synchronization (see Section 2.11). AMD added SSE3 

in subsequent chips and the missing atomic swap instruction to AMD64 to 

maintain binary compatibility with Intel. 

■  2006: Intel announces 54 new instructions as part of the SSE4 instruction set 

extensions. Th

ese extensions perform tweaks like sum of absolute diff erences, 

dot products for arrays of structures, sign or zero extension of narrow data to 

wider sizes, population count, and so on. Th

ey also added support for virtual 

machines (see Chapter 5). 

■  2007: AMD announces 170 instructions as part of SSE5, including 46 

instructions of the base instruction set that adds three operand instructions 

like MIPS. 

■  2011: Intel ships the Advanced Vector Extension that expands the SSE 

register width from 128 to 256 bits, thereby redefi ning about 250 instructions 

and adding 128 new instructions. 
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Th

is history illustrates the impact of the “golden handcuff s” of compatibility on 

the x86, as the existing soft ware base at each step was too important to jeopardize 

with signifi cant architectural changes. 

Whatever the artistic failures of the x86, keep in mind that this instruction set 

largely drove the PC generation of computers and still dominates the cloud portion 

of the PostPC Era. Manufacturing 350M x86 chips per year may seem small 

compared to 9 billion ARMv7 chips, but many companies would love to control 

such a market. Nevertheless, this checkered ancestry has led to an architecture that 

is diffi

cult to explain and impossible to love. 

Brace yourself for what you are about to see! Do  not try to read this section 

with the care you would need to write x86 programs; the goal instead is to give you 

familiarity with the strengths and weaknesses of the world’s most popular desktop 

architecture. 

Rather than show the entire 16-bit, 32-bit, and 64-bit instruction set, in this 

section we concentrate on the 32-bit subset that originated with the 80386. We start 

our explanation with the registers and addressing modes, move on to the integer 

operations, and conclude with an examination of instruction encoding. 

x86 Registers and Data Addressing Modes

Th

e registers of the 80386 show the evolution of the instruction set (Figure 2.36). 

Th

e 80386 extended all 16-bit registers (except the segment registers) to 32 bits, 

prefi xing  an   E to their name to indicate the 32-bit version. We’ll refer to them 

generically as GPRs ( general-purpose registers). Th

e 80386 contains only eight 

GPRs. Th

is means MIPS programs can use four times as many and ARMv7 twice 

as many. 

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are two-operand instructions. Th

ere are two important diff erences here. Th

e x86 

arithmetic and logical instructions must have one operand act as both a source 

and a destination; ARMv7 and MIPS allow separate registers for source and 

destination. Th

is restriction puts more pressure on the limited registers, since one 

source register must be modifi ed. Th

e second important diff erence is that one of 

the operands can be in memory. Th

us, virtually any instruction may have one 

operand in memory, unlike ARMv7 and MIPS. 

Data memory-addressing modes, described in detail below, off er two sizes of 

addresses within the instruction. Th

ese so-called  displacements can be 8 bits or 32 

bits. 

Although a memory operand can use any addressing mode, there are restrictions 

on which  registers can be used in a mode. Figure 2.38 shows the x86 addressing modes and which GPRs cannot be used with each mode, as well as how to get the 

same eff ect using MIPS instructions. 

x86 Integer Operations

Th

e 8086 provides support for both 8-bit ( byte) and 16-bit ( word) data types. Th

e 

80386 adds 32-bit addresses and data ( double words) in the x86. (AMD64 adds 64-
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Name

Use

31

0

EAX

GPR 0

ECX

GPR 1

EDX

GPR 2

EBX

GPR 3

ESP

GPR 4

EBP

GPR 5

ESI

GPR 6

EDI

GPR 7

CS

Code segment pointer

SS

Stack segment pointer (top of stack)

DS

Data segment pointer 0

ES

Data segment pointer 1

FS

Data segment pointer 2

GS

Data segment pointer 3

EIP

Instruction pointer (PC)

EFLAGS

Condition codes

FIGURE 2.36  The 80386 register set.  Starting with the 80386, the top eight registers were extended to 32 bits and could also be used as general-purpose registers. 

Source/destination operand type

Second source operand

Register

Register

Register

Immediate

Register

Memor y

Memor y

Register

Memor y

Immediate

FIGURE 2.37  Instruction types for the arithmetic, logical, and data transfer instructions.  

Th

e x86 allows the combinations shown. Th

e only restriction is the absence of a memory-memory mode. 

Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36 

(not EIP or EFLAGS). 
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Register 

Mode

Description

restrictions

MIPS equivalent

Register indirect

Address is in a register. 

Not ESP or EBP

lw $s0,0($s1)

Based mode with 8- or 32-bit 

Address is contents of base register plus 

Not ESP 

lw $s0,100($s1) # <= 16-bit

displacement

displacement. 

# displacement

Base plus scaled index

The address is

Base: any GPR

mul

$t0,$s2,4

Base + (2Scale x Index) 

Index: not ESP

add

$t0,$t0,$s1

where Scale has the value 0, 1, 2, or 3. 

lw

$s0,0($t0)

Base plus scaled index with

The address is

Base: any GPR

mul

$t0,$s2,4

8- or 32-bit displacement

Base + (2Scale x Index) + displacement

Index: not ESP

add

$t0,$t0,$s1

where Scale has the value 0, 1, 2, or 3. 

lw

$s0,100($t0) # <=16-bit

# displacement

FIGURE 2.38  x86 32-bit addressing modes with register restrictions and the equivalent MIPS code.  Th e Base plus Scaled 

Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address with the base register $s1. (Intel gives two diff erent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)

bit addresses and data, called  quad words; we’ll stick to the 80386 in this section.) 

Th

e data type distinctions apply to register operations as well as memory accesses. 

Almost every operation works on both 8-bit data and on one longer data size. 

Th

at size is determined by the mode and is either 16 bits or 32 bits. 

Clearly, some programs want to operate on data of all three sizes, so the 80386 

architects provided a convenient way to specify each version without expanding 

code size signifi cantly. Th

ey decided that either 16-bit or 32-bit data dominates 

most programs, and so it made sense to be able to set a default large size. Th

is 

default data size is set by a bit in the code segment register. To override the default 

data size, an 8-bit  prefi x is attached to the instruction to tell the machine to use the other large size for this instruction. 

Th

e prefi x solution was borrowed from the 8086, which allows multiple prefi xes 

to modify instruction behavior. Th

e three original prefi xes override the default 

segment register, lock the bus to support synchronization (see Section 2.11), or 

repeat the following instruction until the register ECX counts down to 0. Th

is last 

prefi x was intended to be paired with a byte move instruction to move a variable 

number of bytes. Th

e 80386 also added a prefi x to override the default address size. 

Th

e x86 integer operations can be divided into four major classes:

1.  Data movement instructions, including move, push, and pop

2.  Arithmetic and logic instructions, including test, integer, and decimal 

arithmetic operations

3. Control fl ow, including conditional branches, unconditional jumps, calls, 

and returns

4.  String instructions, including string move and string compare
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Th

e fi rst two categories are unremarkable, except that the arithmetic and logic 

instruction operations allow the destination to be either a register or a memory 

location. Figure 2.39 shows some typical x86 instructions and their functions. 

Conditional branches on the x86 are based on  condition codes or  fl ags, like 

ARMv7. Condition codes are set as a side eff ect of an operation; most are used 

to compare the value of a result to 0. Branches then test the condition codes. PC-

Instruction

Function

je name

if equal(condition code) {EIP=name}; 

EIP–128 <= name < EIP+128

jmp name

EIP=name

call name

SP=SP–4; M[SP]=EIP+5; EIP=name; 

movw EBX,[EDI+45]

EBX=M[EDI+45]

push ESI

SP=SP–4; M[SP]=ESI

pop EDI

EDI=M[SP]; SP=SP+4

add EAX,#6765

EAX= EAX+6765

test EDX,#42

Set condition code (fl ags) with EDX and 42

movsl

M[EDI]=M[ESI]; 

EDI=EDI+4; ESI=ESI+4

FIGURE 2.39  Some typical x86 instructions and their functions.  A list of frequent operations appears in Figure 2.40. Th

e CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

relative branch addresses must be specifi ed in the number of bytes, since unlike 

ARMv7 and MIPS, 80386 instructions are not all 4 bytes in length. 

String instructions are part of the 8080 ancestry of the x86 and are not commonly 

executed in most programs. Th

ey are oft en slower than equivalent soft ware routines 

(see the fallacy on page 159). 

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions are available in both byte and word formats. 

x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80386 is complex, with 

many diff erent instruction formats. Instructions for the 80386 may vary from 1 

byte, when there are no operands, up to 15 bytes. 

Figure 2.41 shows the instruction format for several of the example instructions in 

Figure 2.39. Th

e opcode byte usually contains a bit saying whether the operand is 8 bits 

or 32 bits. For some instructions, the opcode may include the addressing mode and 

the register; this is true in many instructions that have the form “register  register op 

immediate.” Other instructions use a “postbyte” or extra opcode byte, labeled “mod, reg, 

r/m,” which contains the addressing mode information. Th

is postbyte is used for many 
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Instruction

Meaning

Control

Conditional and unconditional branches

jnz, jz

Jump if condition to EIP + 8-bit offset; JNE (forJNZ), JE (for JZ) are   

alternative names

jmp

Unconditional jump—8-bit or 16-bit offset 

call

Subroutine call—16-bit offset; return address pushed onto stack

ret

Pops return address from stack and jumps to it

loop

Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0  

Data transfer

Move data between registers or between register and memory

move

Move between two registers or between register and memor y

push, pop

Push source operand on stack; pop operand from stack top to a register

les

Load ES and one of the GPRs from memor y

Arithmetic, logical

Arithmetic and logical operations using the data registers and memory

add, sub

Add source to destination; subtract source from destination; register-memor y 

format

cmp

Compare source and destination; register-memor y format

shl, shr, rcr

Shift left; shift logical right; rotate right with carr y condition code as fi ll

cbw

Conver t byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test

Logical AND of source and destination sets condition codes

inc, dec

Increment destination, decrement destination

or, xor

Logical OR; exclusive OR; register-memor y format

String 

Move between string operands; length given by a repeat prefi x

movs

Copies from string source to destination by incrementing ESI and EDI; may be 

repeated

lods

Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40  Some typical operations on the x86.  Many operations use register-memory format, where either the source or the destination may be memory and the other may be a register or immediate operand. 

of the instructions that address memory. Th

e base plus scaled index mode uses a second 

postbyte, labeled “sc, index, base.” 

Figure 2.42 shows the encoding of the two postbyte address specifi ers  for 

both 16-bit and 32-bit mode. Unfortunately, to understand fully which registers 

and which addressing modes are available, you need to see the encoding of all 

addressing modes and sometimes even the encoding of the instructions. 

x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant 

architectures, such as the Motorola 68000, and this head start led to the selection 

of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that 

the x86 is more diffi

cult to build than computers like ARMv7 and MIPS, but the 

large market meant in the PC Era that AMD and Intel could aff ord more resources 
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a. JE EIP + displacement

4

4

8

Condi-

JE

Displacement

tion

b. CALL

8

32

CALL

Offset

c. MOV      EBX, [EDI + 45]

6

1 1

8

8

r/m

MOV

d w

Displacement

Postbyte

d. PUSH ESI

5

3

PUSH

Reg

e. ADD EAX, #6765

4

3

1

32

ADD

Reg w

Immediate

f. TEST EDX, #42

7

1

8

32

TEST

w

Postbyte

Immediate

FIGURE 2.41  Typical x86 instruction formats.  Figure 2.42 shows the encoding of the postbyte. 

Many instructions contain the 1-bit fi eld w, which says whether the operation is a byte or a double word. Th e 

d fi eld in MOV is used in instructions that may move to or from memory and shows the direction of the move. 

Th

e ADD instruction requires 32 bits for the immediate fi eld, because in 32-bit mode, the immediates are either 8 bits or 32 bits. Th

e immediate fi eld in the TEST is 32 bits long because there is no 8-bit immediate for 

test in 32-bit mode. Overall, instructions may vary from 1 to 15 bytes in length. Th

e long length comes from 

extra 1-byte prefi xes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes, and using the scaled index mode specifi er, which adds another byte. 

to help overcome the added complexity. What the x86 lacks in style, it made up for 

in market size, making it beautiful from the right perspective. 

Its saving grace is that the most frequently used x86 architectural components 

are not too diffi

cult to implement, as AMD and Intel have demonstrated by rapidly 

improving performance of integer programs since 1978. To get that performance, 
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reg

w = 0

w = 1

r/m

mod = 0

mod = 1

mod = 2

mod = 3

16b

32b

16b

32b

16b

32b

16b

32b

0

AL

AX

EAX

0

addr=BX+SI

=EAX

 same

 same

 same

 same

 same

1

CL

CX

ECX

1

addr=BX+DI

=ECX

 addr as 

 addr as 

 addr as 

 addr as 

 as

2

DL

DX

EDX

2

addr=BP+SI

=EDX

 mod=0

 mod=0

 mod=0

 mod=0

 reg

3

BL

BX

EBX

3

addr=BP+SI

=EBX

 + disp8

 + disp8

 + disp16

 + disp32

 fi eld

4

AH

SP

ESP

4

addr=SI

= (sib)

SI+disp8

 (sib)+disp8

SI+disp8

 (sib)+disp32

“

5

CH

BP

EBP

5

addr=DI

=disp32 DI+disp8

EBP+disp8

DI+disp16

EBP+disp32

“

6

DH

SI

ESI

6

addr=disp16

=ESI

BP+disp8

ESI+disp8

BP+disp16

ESI+disp32

“

7

BH

DI

EDI

7

addr=BX

=EDI

BX+disp8

EDI+disp8

BX+disp16

EDI+disp32

“

FIGURE 2.42  The encoding of the fi rst address specifi er of the x86: mod, reg, r/m.  Th e fi rst four columns show the encoding 

of the 3-bit reg fi eld, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). 

Th

e remaining columns explain the mod and r/m fi elds. Th

e meaning of the 3-bit r/m fi eld depends on the value in the 2-bit mod fi eld and the 

address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod  0, with mod  1 

adding an 8-bit displacement and mod  2 adding a 16-bit or 32-bit displacement, depending on the address mode. Th e exceptions are 1) r/m 

 6 when mod  1 or mod  2 in 16-bit mode selects BP plus the displacement; 2) r/m  5 when mod  1 or mod  2 in 32-bit mode selects EBP plus displacement; and 3) r/m  4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in 

Figure 2.38. When mod  3, the r/m fi eld indicates a register, using the same encoding as the reg fi eld combined with the w bit. 

compilers must avoid the portions of the architecture that are hard to implement 

fast. 

In the PostPC Era, however, despite considerable architectural and manufacturing 

expertise, x86 has not yet been competitive in the personal mobile device. 

 2.18  Real Stuff: ARMv8 (64-bit) Instructions

Of the many potential problems in an instruction set, the one that is almost impossible 

to overcome is having too small a memory address. While the x86 was successfully 

extended fi rst to 32-bit addresses and then later to 64-bit addresses, many of its 

brethren were left  behind. For example, the 16-bit address MOStek 6502 powered the 

Apple II, but even given this headstart with the fi rst commercially successful personal 

computer, its lack of address bits condemned it to the dustbin of history. 

ARM architects could see the writing on the wall of their 32-bit address 

computer, and began design of the 64-bit address version of ARM in 2007. It was 

fi nally revealed in 2013. Rather than some minor cosmetic changes to make all 

the registers 64 bits wide, which is basically what happened to the x86, ARM did a 

complete overhaul. Th

e good news is that if you know MIPS it will be very easy to 

pick up ARMv8, as the 64-bit version is called. 

First, as compared to MIPS, ARM dropped virtually all of the unusual features 

of v7:

■  Th

ere is no conditional execution fi eld, as there was in nearly every instruction 

in v7. 
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■  Th

e immediate fi eld is simply a 12 bit constant, rather than essentially an 

input to a function that produces a constant as in v7. 

■  ARM dropped Load Multiple and Store Multiple instructions. 

■  Th

e PC is no longer one of the registers, which resulted in unexpected 

branches if you wrote to it. 

Second, ARM added missing features that are useful in MIPS

■  V8 has 32 general-purpose registers, which compiler writers surely love. Like 

MIPS, one register is hardwired to 0, although in load and store instructions 

it instead refers to the stack pointer. 

■  Its addressing modes work for all word sizes in ARMv8, which was not the 

case in ARMv7. 

■  It includes a divide instruction, which was omitted from ARMv7. 

■  It adds the equivalent of MIPS branch if equal and branch if not equal. 

As the philosophy of the v8 instruction set is much closer to MIPS than it is to 

v7, our conclusion is that the main similarity between ARMv7 and ARMv8 is the 

name. 

 2.19  Fallacies and Pitfalls

 Fallacy:  More powerful instructions mean higher performance. 

Part of the power of the Intel x86 is the prefi xes that can modify the execution of 

the following instruction. One prefi x can repeat the following instruction until a 

counter counts down to 0. Th

us, to move data in memory, it would seem that the 

natural instruction sequence is to use move with the repeat prefi x to perform 32-bit 

memory-to-memory moves. 

An alternative method, which uses the standard instructions found in all 

computers, is to load the data into the registers and then store the registers back to 

memory. Th

is second version of this program, with the code replicated to reduce 

loop overhead, copies at about 1.5 times as fast. A third version, which uses the 

larger fl oating-point registers instead of the integer registers of the x86, copies at 

about 2.0 times as fast than the complex move instruction. 

 Fallacy:  Write in assembly language to obtain the highest performance. 

At one time compilers for programming languages produced naïve instruction 

sequences; the increasing sophistication of compilers means the gap between 

compiled code and code produced by hand is closing fast. In fact, to compete 

with current compilers, the assembly language programmer needs to understand 

the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory 

hierarchy). 
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Th

is battle between compilers and assembly language coders is another situation 

in which humans are losing ground. For example, C off ers the programmer a 

chance to give a hint to the compiler about which variables to keep in registers 

versus spilled to memory. When compilers were poor at register allocation, such 

hints were vital to performance. In fact, some old C textbooks spent a fair amount 

of time giving examples that eff ectively use register hints. Today’s C compilers 

generally ignore such hints, because the compiler does a better job at allocation 

than the programmer does. 

Even  if writing by hand resulted in faster code, the dangers of writing in assembly 

language are the longer time spent coding and debugging, the loss in portability, 

and the diffi

culty of maintaining such code. One of the few widely accepted axioms 

of soft ware engineering is that coding takes longer if you write more lines, and it 

clearly takes many more lines to write a program in assembly language than in C 

or Java. Moreover, once it is coded, the next danger is that it will become a popular 

program. Such programs always live longer than expected, meaning that someone 

will have to update the code over several years and make it work with new releases 

of operating systems and new models of machines. Writing in higher-level language 

instead of assembly language not only allows future compilers to tailor the code 

to future machines; it also makes the soft ware easier to maintain and allows the 

program to run on more brands of computers. 

 Fallacy: Th

  e importance of commercial binary compatibility means successful 

 instruction sets don’t change. 

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86 

architecture has grown dramatically. Th

e average is more than one instruction per 

month over its 35-year lifetime! 

 Pitfall:  Forgetting that sequential word addresses in machines with byte addressing 

 do not diff er by one. 

Many an assembly language programmer has toiled over errors made by assuming 

that the address of the next word can be found by incrementing the address in a 

register by one instead of by the word size in bytes. Forewarned is forearmed! 

 Pitfall:  Using a pointer to an automatic variable outside its defi ning procedure. 

A common mistake in dealing with pointers is to pass a result from a procedure 

that includes a pointer to an array that is local to that procedure. Following the 

stack discipline in Figure 2.12, the memory that contains the local array will be reused as soon as the procedure returns. Pointers to automatic variables can lead 

to chaos. 

 2.20 

Concluding 

Remarks 
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FIGURE 2.43  Growth of x86 instruction set over time.  While there is clear technical value to some of these extensions, this rapid change also increases the diffi

culty for other companies to try to build 

compatible processors. 

 2.20 Concluding 

Remarks

Th

e two principles of the  stored-program computer are the use of instructions that   Less is more. 

are indistinguishable from numbers and the use of alterable memory for programs.  Robert Browning, Th

ese principles allow a single machine to aid environmental scientists, fi nancial   Andrea del Sarto, 1855

advisers, and novelists in their specialties. Th

e selection of a set of instructions that 

the machine can understand demands a delicate balance among the number of 

instructions needed to execute a program, the number of clock cycles needed by an 

instruction, and the speed of the clock. As illustrated in this chapter, three design 

principles guide the authors of instruction sets in making that delicate balance:

1.  Simplicity favors regularity.  Regularity motivates many features of the MIPS 

instruction set: keeping all instructions a single size, always requiring three 

register operands in arithmetic instructions, and keeping the register fi elds 

in the same place in each instruction format. 

2.  Smaller is faster.  Th

e desire for speed is the reason that MIPS has 32 registers 

rather than many more. 

3.  Good design demands good compromises.  One MIPS example was the 

compromise between providing for larger addresses and constants in 

instructions and keeping all instructions the same length. 
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We also saw the great idea of making the common cast fast applied to instruction 

sets as well as computer architecture. Examples of making the common MIPS 

case fast include PC-relative addressing for conditional branches and immediate 

addressing for larger constant operands. 

Above this machine level is assembly language, a language that humans can read. 

Th

e assembler translates it into the binary numbers that machines can understand, 

and it even “extends” the instruction set by creating symbolic instructions that 

aren’t in the hardware. For instance, constants or addresses that are too big are 

broken into properly sized pieces, common variations of instructions are given 

their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered MIPS instructions

Name

Format

Pseudo MIPS

Name

Format

add

add

R

move

move

R

subtract

sub

R

multiply

mult

R

add immediate

addi

I

multiply immediate

multi

I

load word

lw

I

load immediate

li

I

store word

sw

I

branch less than

blt

I

load half

lh

I

branch less than 

or equal

ble

I

load half unsigned

lhu

I

store half

sh

I

branch greater than

bgt

I

load byte

lb

I

branch greater than 

or equal

bge

I

load byte unsigned

lbu

I

store byte

sb

I

load linked

ll

I

store conditional

sc

I

load upper immediate

lui

I

and 

and

R

or

or

R

nor

nor

R

and immediate

andi

I

or immediate

ori

I

shift left logical

sll

R

shift right logical

srl

R

branch on equal

beq

I

branch on not equal

bne

I

set less than

slt

R

set less than immediate

slti

I

set less than immediate 

sltiu

I

unsigned

jump

j

J

jump register

jr

R

jump and link

jal

J

FIGURE 2.44  The MIPS instruction set covered so far, with the real MIPS instructions 

on the left and the pseudoinstructions on the right.  Appendix A (Section A.10) describes the full MIPS architecture.  Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. Th e 

information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of the book. 
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so far, both real and pseudoinstructions. Hiding details from the higher level is 

another example of the great idea of abstraction. 

Each category of MIPS instructions is associated with constructs that appear in 

programming languages:

■  Arithmetic instructions correspond to the operations found in assignment 

statements. 

■ Transfer instructions are most likely to occur when dealing with data 

structures like arrays or structures. 

■  Conditional branches are used in  if statements and in loops. 

■  Unconditional jumps are used in procedure calls and returns and for  case/

 switch statements. 

Th

ese instructions are not born equal; the popularity of the few dominates the 

many. For example, Figure 2.45 shows the popularity of each class of instructions for SPEC CPU2006. Th

e varying popularity of instructions plays an important role 

in the chapters about datapath, control, and pipelining. 

Frequency

Instruction class

MIPS examples

HLL correspondence

Integer

Ft. pt. 

Arithmetic

add, sub, addi

Operations in assignment statement s

16%

48%

Data transfer

lw, sw, lb, lbu, lh, 

References to data structures, such as arrays

35%

36%

lhu, sb, lui

Logical

and, or, nor, andi, ori, 

0perations in assignment statement s

12%

4%

sll, srl

Conditional branch

beq, bne, slt, slti, 

 If  statements and loops

34%

8%

sltiu

Jump

j, jr, jal

Procedure calls, returns, and  case/switch statements

2%

0%

FIGURE 2.45  MIPS instruction classes, examples, correspondence to high-level program language constructs, and percentage of MIPS instructions executed by category for the average integer and fl oating point SPEC CPU2006 

benchmarks.  Figure 3.26 in Chapter 3 shows average percentage of the individual MIPS instructions executed. 

Aft er we explain computer arithmetic in Chapter 3, we reveal the rest of the 

MIPS instruction set architecture. 

 Historical Perspective and Further 

 

 

2.21

Reading

Th

is section surveys the history of  instruction set architectures (ISAs) over time, 

and we give a short history of programming languages and compilers. ISAs 
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include accumulator architectures, general-purpose register architectures, 

stack architectures, and a brief history of ARM and the x86. We also review the 

controversial subjects of high-level-language computer architectures and reduced 

instruction set computer architectures. Th

e history of programming languages 

includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C, and Java, 

and the history of compilers includes the key milestones and the pioneers who 

achieved them. Th

e rest of   Section 2.21 is found online. 

 2.22 Exercises

Appendix A describes the MIPS simulator, which is helpful for these exercises. 

Although the simulator accepts pseudoinstructions, try not to use pseudoinstructions 

for any exercises that ask you to produce MIPS code. Your goal should be to learn 

the real MIPS instruction set, and if you are asked to count instructions, your 

count should refl ect the actual instructions that will be executed and not the 

pseudoinstructions. 

Th

ere are some cases where pseudoinstructions must be used (for example, the 

la instruction when an actual value is not known at assembly time). In many cases, 

they are quite convenient and result in more readable code (for example, the li 

and move instructions). If you choose to use pseudoinstructions for these reasons, 

please add a sentence or two to your solution stating which pseudoinstructions you 

have used and why. 

2.1  [5] <§2.2> For the following C statement, what is the corresponding MIPS 

assembly code? Assume that the variables f, g, h, and i are given and could be 

considered 32-bit integers as declared in a C program. Use a minimal number of 

MIPS assembly instructions. 

f = g + (h − 5); 

2.2  [5] <§2.2> For the following MIPS assembly instructions above, what is a 

corresponding C statement? 

add  f, g, h

add  f, i, f
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2.3  [5] <§§2.2, 2.3> For the following C statement, what is the corresponding 

MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to 

registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address 

of the arrays A and B are in registers $s6 and $s7, respectively. 

B[8] = A[i−j]; 

2.4  [5] <§§2.2, 2.3> For the MIPS assembly instructions below, what is the 

corresponding C statement? Assume that the variables f, g, h, i, and j are assigned 

to registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address 

of the arrays A and B are in registers $s6 and $s7, respectively. 

sll  $t0, $s0, 2     # $t0 = f * 4

add  $t0, $s6, $t0   # $t0 = &A[f]

sll  $t1, $s1, 2     # $t1 = g * 4

add  $t1, $s7, $t1   # $t1 = &B[g]

lw   $s0, 0($t0)     # f = A[f]

addi $t2, $t0, 4

lw   $t0, 0($t2)

add  $t0, $t0, $s0

sw   $t0, 0($t1)

2.5  [5] <§§2.2, 2.3> For the MIPS assembly instructions in Exercise 2.4, rewrite 

the assembly code to minimize the number if MIPS instructions (if possible) 

needed to carry out the same function. 

2.6  Th

e table below shows 32-bit values of an array stored in memory. 

Address

Data

24

2

38

4

32

3

36

6

40

1
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2.6.1  [5] <§§2.2, 2.3> For the memory locations in the table above, write C 

code to sort the data from lowest to highest, placing the lowest value in the 

smallest memory location shown in the figure. Assume that the data shown 

represents the C variable called Array, which is an array of type int, and that 

the first number in the array shown is the first element in the array. Assume 

that this particular machine is a byte-addressable machine and a word consists 

of four bytes. 

2.6.2  [5] <§§2.2, 2.3> For the memory locations in the table above, write MIPS 

code to sort the data from lowest to highest, placing the lowest value in the smallest 

memory location. Use a minimum number of MIPS instructions. Assume the base 

address of Array is stored in register $s6. 

2.7  [5] <§2.3> Show how the value 0xabcdef12 would be arranged in memory 

of a little-endian and a big-endian machine. Assume the data is stored starting at 

address 0. 

2.8  [5] <§2.4> Translate 0xabcdef12 into decimal. 

2.9  [5] <§§2.2, 2.3>   Translate the following C code to MIPS. Assume that the variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 

respectively. Assume that the base address of the arrays A and B are in registers $s6 

and $s7, respectively. Assume that the elements of the arrays A and B are 4-byte 

words:

B[8] = A[i] + A[j]; 

2.10  [5] <§§2.2, 2.3> Translate the following MIPS code to C. Assume that the 

variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 

respectively. Assume that the base address of the arrays A and B are in registers $s6 

and $s7, respectively. 

addi $t0, $s6, 4

add  $t1, $s6, $0

sw   $t1, 0($t0)

lw   $t0, 0($t0)

add  $s0, $t1, $t0

2.11  [5] <§§2.2, 2.5> For each MIPS instruction, show the value of the opcode 

(OP), source register (RS), and target register (RT) fi elds. For the I-type instructions, 

show the value of the immediate fi eld, and for the R-type instructions, show the 

value of the destination register (RD) fi eld. 
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2.12  Assume that registers $s0 and $s1 hold the values 0x80000000 and 

0xD0000000, respectively. 

2.12.1  [5] <§2.4> What is the value of $t0 for the following assembly code? 

add $t0, $s0, $s1

2.12.2  [5] <§2.4> Is the result in $t0 the desired result, or has there been overfl ow? 

2.12.3  [5] <§2.4> For the contents of registers $s0 and $s1 as specifi ed above, 

what is the value of $t0 for the following assembly code? 

sub $t0, $s0, $s1

2.12.4  [5] <§2.4> Is the result in $t0 the desired result, or has there been overfl ow? 

2.12.5  [5] <§2.4> For the contents of registers $s0 and $s1 as specifi ed above, 

what is the value of $t0 for the following assembly code? 

add $t0, $s0, $s1

add $t0, $t0, $s0

2.12.6 [5] <§2.4> Is the result in $t0 the desired result, or has there been 

overfl ow? 

2.13  Assume that $s0 holds the value 128 . 

ten

2.13.1  [5] <§2.4> For the instruction add $t0, $s0, $s1, what is the range(s) of 

values for $s1 that would result in overfl ow? 

2.13.2  [5] <§2.4> For the instruction sub $t0, $s0, $s1, what is the range(s) of 

values for $s1 that would result in overfl ow? 

2.13.3  [5] <§2.4> For the instruction sub $t0, $s1, $s0, what is the range(s) of 

values for $s1 that would result in overfl ow? 

2.14  [5] <§§2.2, 2.5> Provide the type and assembly language instruction for the 

following binary value: 0000 0010 0001 0000 1000 0000 0010 0000two

2.15  [5] <§§2.2, 2.5> Provide the type and hexadecimal representation of 

following instruction: sw $t1, 32($t2)
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2.16  [5] <§2.5> Provide the type, assembly language instruction, and binary 

representation of instruction described by the following MIPS fi elds:

op=0, rs=3, rt=2, rd=3, shamt=0, funct=34

2.17  [5] <§2.5> Provide the type, assembly language instruction, and binary 

representation of instruction described by the following MIPS fi elds:

op=0x23, rs=1, rt=2, const=0x4

2.18  Assume that we would like to expand the MIPS register fi le to 128 registers 

and expand the instruction set to contain four times as many instructions. 

2.18.1  [5] <§2.5> How this would this aff ect the size of each of the bit fi elds in the R-type instructions? 

2.18.2  [5] <§2.5> How this would this aff ect the size of each of the bit fi elds in the I-type instructions? 

2.18.3  [5] <§§2.5, 2.10> How could each of the two proposed changes decrease 

the size of an MIPS assembly program? On the other hand, how could the proposed 

change increase the size of an MIPS assembly program? 

2.19  Assume the following register contents:

$t0 = 0xAAAAAAAA, $t1 = 0x12345678

2.19.1  [5] <§2.6> For the register values shown above, what is the value of $t2 

for the following sequence of instructions? 

sll $t2, $t0, 44

or  $t2, $t2, $t1

2.19.2  [5] <§2.6> For the register values shown above, what is the value of $t2 

for the following sequence of instructions? 

sll  $t2, $t0, 4

andi $t2, $t2, −1

2.19.3  [5] <§2.6> For the register values shown above, what is the value of $t2 

for the following sequence of instructions? 

srl  $t2, $t0, 3

andi $t2, $t2, 0xFFEF
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2.20  [5] <§2.6> Find the shortest sequence of MIPS instructions that extracts bits 

16 down to 11 from register $t0 and uses the value of this fi eld to replace bits 31 

down to 26 in register $t1 without changing the other 26 bits of register $t1. 

2.21  [5] <§2.6> Provide a minimal set of MIPS instructions that may be used to 

implement the following pseudoinstruction:

not $t1, $t2      // bit-wise invert

2.22  [5] <§2.6> For the following C statement, write a minimal sequence of MIPS 

assembly instructions that does the identical operation. Assume $t1 = A, $t2 = B, 

and $s1 is the base address of C. 

A = C[0] << 4; 

2.23  [5] <§2.7> Assume $t0 holds the value 0x00101000. What is the value of 

$t2 aft er the following instructions? 

slt  $t2, $0,  $t0

bne  $t2, $0,  ELSE

j    DONE

ELSE:  addi $t2, $t2, 2

DONE:

2.24  [5] <§2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is it 

possible to use the jump (j) MIPS assembly instruction to set the PC to the address 

as 0x4000 0000? Is it possible to use the branch-on-equal (beq) MIPS assembly 

instruction to set the PC to this same address? 

2.25  Th

e following instruction is not included in the MIPS instruction set:

rpt $t2, loop # if(R[rs]>0) R[rs]=R[rs]−1, PC=PC+4+BranchAddr

2.25.1 [5] <§2.7> If this instruction were to be implemented in the MIPS 

instruction set, what is the most appropriate instruction format? 

2.25.2 [5] <§2.7> What is the shortest sequence of MIPS instructions that 

performs the same operation? 
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2.26  Consider the following MIPS loop:

LOOP: slt  $t2, $0,  $t1

beq  $t2, $0,  DONE

subi $t1, $t1, 1

addi $s2, $s2, 2

j    LOOP

DONE:

2.26.1  [5] <§2.7> Assume that the register $t1 is initialized to the value 10. What is the value in register $s2 assuming $s2 is initially zero? 

2.26.2 [5] <§2.7> For each of the loops above, write the equivalent C code 

routine. Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and 

temp, respectively. 

2.26.3  [5] <§2.7> For the loops written in MIPS assembly above, assume that 

the register $t1 is initialized to the value N. How many MIPS instructions are 

executed? 

2.27  [5] <§2.7> Translate the following C code to MIPS assembly code. Use a 

minimum number of instructions. Assume that the values of a, b, i, and j are in 

registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 holds 

the base address of the array D. 

for(i=0; i<a; i++)

for(j=0; j<b; j++)

D[4*j] = i + j; 

2.28  [5] <§2.7> How many MIPS instructions does it take to implement the C 

code from Exercise 2.27? If the variables a and b are initialized to 10 and 1 and all 

elements of D are initially 0, what is the total number of MIPS instructions that is 

executed to complete the loop? 

2.29  [5] <§2.7> Translate the following loop into C. Assume that the C-level 

integer i is held in register $t1, $s2 holds the C-level integer called result, and 

$s0 holds the base address of the integer MemArray. 

addi $t1, $0, $0

LOOP: lw   $s1, 0($s0)

add  $s2, $s2, $s1

addi $s0, $s0, 4
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addi $t1, $t1, 1

slti $t2, $t1, 100

bne  $t2, $s0, LOOP

2.30  [5] <§2.7> Rewrite the loop from Exercise 2.29 to reduce the number of 

MIPS instructions executed. 

2.31  [5] <§2.8> Implement the following C code in MIPS assembly. What is the 

total number of MIPS instructions needed to execute the function? 

int fib(int n){

if (n==0)

return 0; 

else if (n == 1)

return 1; 

else

return fib(n−1) + fib(n−2); 

2.32  [5] <§2.8> Functions can oft en be implemented by compilers “in-line.” An 

in-line function is when the body of the function is copied into the program space, 

allowing the overhead of the function call to be eliminated. Implement an “in-line” 

version of the C code above in MIPS assembly. What is the reduction in the total 

number of MIPS assembly instructions needed to complete the function? Assume 

that the C variable n is initialized to 5. 

2.33  [5] <§2.8> For each function call, show the contents of the stack aft er the 

function call is made. Assume the stack pointer is originally at address 0x7ff ff ff c, 

and follow the register conventions as specifi ed in Figure 2.11. 

2.34  Translate function f into MIPS assembly language. If you need to use 

registers  $t0 through $t7, use the lower-numbered registers fi rst. Assume the 

function declaration for func is “int f(int a, int b);”. Th

e code for function 

f is as follows:

int f(int a, int b, int c, int d){

return func(func(a,b),c+d); 

}
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2.35  [5] <§2.8> Can we use the tail-call optimization in this function? If no, 

explain why not. If yes, what is the diff erence in the number of executed instructions 

in f with and without the optimization? 

2.36  [5] <§2.8> Right before your function f from Exercise 2.34 returns, what do 

we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that 

we know what the entire function f looks like, but for function func we only know 

its declaration. 

2.37  [5] <§2.9> Write a program in MIPS assembly language to convert an ASCII 

number string containing positive and negative integer decimal strings, to an 

integer. Your program should expect register $a0 to hold the address of a null-

terminated string containing some combination of the digits 0 through 9. Your 

program should compute the integer value equivalent to this string of digits, then 

place the number in register $v0. If a non-digit character appears anywhere in the 

string, your program should stop with the value −1 in register $v0. For example, 

if register $a0 points to a sequence of three bytes 50ten, 52ten, 0ten (the null-

terminated string “24”), then when the program stops, register $v0 should contain 

the value 24 . 

ten

2.38  [5] <§2.9> Consider the following code:

lbu $t0, 0($t1)

sw  $t0, 0($t2)

Assume that the register $t1 contains the address 0x1000 0000 and the register 

$t2 contains the address 0x1000 0010. Note the MIPS architecture utilizes 

big-endian addressing. Assume that the data (in hexadecimal) at address 0x1000 

0000 is: 0x11223344. What value is stored at the address pointed to by register 

$t2? 

2.39  [5] <§2.10> Write the MIPS assembly code that creates the 32-bit constant 

0010 0000 0000 0001 0100 1001 0010 0100

and stores that value to 

two

register $t1. 

2.40  [5] <§§2.6, 2.10> If the current value of the PC is 0x00000000, can you use 

a single jump instruction to get to the PC address as shown in Exercise 2.39? 

2.41  [5] <§§2.6, 2.10> If the current value of the PC is 0x00000600, can you use 

a single branch instruction to get to the PC address as shown in Exercise 2.39? 
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2.42  [5] <§§2.6, 2.10> If the current value of the PC is 0x1FFFf000, can you use 

a single branch instruction to get to the PC address as shown in Exercise 2.39? 

2.43  [5] <§2.11> Write the MIPS assembly code to implement the following C 

code:

lock(lk); 

shvar=max(shvar,x); 

unlock(lk); 

Assume that the address of the lk variable is in $a0, the address of the shvar 

variable is in $a1, and the value of variable x is in $a2. Your critical section should 

not contain any function calls. Use ll/sc instructions to implement the lock() 

operation, and the unlock() operation is simply an ordinary store instruction. 

2.44  [5] <§2.11> Repeat Exercise 2.43, but this time use ll/sc to perform 

an atomic update of the shvar variable directly, without using lock() and 

unlock(). Note that in this problem there is no variable lk. 

2.45  [5] <§2.11> Using your code from Exercise 2.43 as an example, explain what 

happens when two processors begin to execute this critical section at the same 

time, assuming that each processor executes exactly one instruction per cycle. 

2.46  Assume for a given processor the CPI of arithmetic instructions is 1, 

the CPI of load/store instructions is 10, and the CPI of branch instructions is 

3. Assume a program has the following instruction breakdowns: 500 million 

arithmetic instructions, 300 million load/store instructions, 100 million branch 

instructions. 

2.46.1  [5] <§2.19> Suppose that new, more powerful arithmetic instructions are 

added to the instruction set. On average, through the use of these more powerful 

arithmetic instructions, we can reduce the number of arithmetic instructions 

needed to execute a program by 25%, and the cost of increasing the clock cycle 

time by only 10%. Is this a good design choice? Why? 

2.46.2  [5] <§2.19> Suppose that we fi nd a way to double the performance of 

arithmetic instructions. What is the overall speedup of our machine? What if we 

fi nd a way to improve the performance of arithmetic instructions by 10 times? 

2.47  Assume that for a given program 70% of the executed instructions are 

arithmetic, 10% are load/store, and 20% are branch. 

174 

Chapter 2  Instructions: Language of the Computer

2.47.1 [5] <§2.19> Given this instruction mix and the assumption that an 

arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and 

a branch instruction takes 3 cycles, fi nd the average CPI. 

2.47.2  [5] <§2.19> For a 25% improvement in performance, how many cycles, on 

average, may an arithmetic instruction take if load/store and branch instructions 

are not improved at all? 

2.47.3  [5] <§2.19> For a 50% improvement in performance, how many cycles, on 

average, may an arithmetic instruction take if load/store and branch instructions 

are not improved at all? 

Answers to  §2.2, page 66: MIPS, C, Java

Check Yourself

§2.3, page 72: 2) Very slow

§2.4, page 79: 2) 8ten

§2.5, page 87: 4) sub $t2, $t0, $t1

§2.6, page 89: Both. AND with a mask pattern of 1s will leaves 0s everywhere but 

the desired fi eld. Shift ing left  by the correct amount removes the bits from the left  

of the fi eld. Shift ing right by the appropriate amount puts the fi eld into the right-

most bits of the word, with 0s in the rest of the word. Note that AND leaves the 

fi eld where it was originally, and the shift  pair moves the fi eld into the rightmost 

part of the word. 

§2.7, page 96: I. All are true. II. 1). 

§2.8, page 106: Both are true. 

§2.9, page 111: I. 1) and 2) II. 3)

§2.10, page 120: I. 4) 128K. II. 6) a block of 256M. III. 4) sll

§2.11, page 123: Both are true. 

§2.12, page 132: 4) Machine independence. 
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 3.1 Introduction

Computer words are composed of bits; thus, words can be represented as binary 

numbers. Chapter 2 shows that integers can be represented either in decimal or 

binary form, but what about the other numbers that commonly occur? For example:

■  What about fractions and other real numbers? 

■  What happens if an operation creates a number bigger than can be represented? 

■  And underlying these questions is a mystery: How does hardware really 

multiply or divide numbers? 

Th

e goal of this chapter is to unravel these mysteries including representation of 

real numbers, arithmetic algorithms, hardware that follows these algorithms, and 

the implications of all this for instruction sets. Th

ese insights may explain quirks 

that you have already encountered with computers. Moreover, we show how to use 

this knowledge to make arithmetic-intensive programs go much faster. 

 Subtraction: Addition’s 

 3.2 

Addition and Subtraction

 Tricky Pal

No. 10, Top Ten 

Addition is just what you would expect in computers. Digits are added bit by bit 

Courses for Athletes at a 

Football Factory, David 

from right to left , with carries passed to the next digit to the left , just as you would 

Letterman et al.,   Book of 

do by hand. Subtraction uses addition: the appropriate operand is simply negated 

 Top Ten Lists,  1990

before being added. 

Binary Addition and Subtraction

Let’s try adding 6  to 7  in binary and then subtracting 6  from 7  in binary. 

ten

ten

ten

ten

EXAMPLE



0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

+ 

0000 0000 0000 0000 0000 0000 0000 0110two = 6ten

= 

0000 0000 0000 0000 0000 0000 0000 1101two = 13ten

Th

e 4 bits to the right have all the action; Figure 3.1 shows the sums and 

carries. Th

e carries are shown in parentheses, with the arrows showing how 

they are passed. 

ANSWER

Subtracting 6  from 7  can be done directly:

ten

ten

 

3.2  Addition and Subtraction 

179

 (0)

 (0)

 (1)

 (1)

 (0)

 (Carries)

. . . 

0

0

0

1

1

1

. . . 

0

0

0

1

1

0

. . . (0) 0

(0) 0

(0) 1

(1) 1

(1) 0

(0)

1

FIGURE 3.1  Binary addition, showing carries from right to left.  Th

e rightmost bit adds 1 

to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation for the second digit to the right is 0  1  1. Th

is generates a 0 for this sum bit and a carry out of 1. Th

e 

third digit is the sum of 1  1  1, resulting in a carry out of 1 and a sum bit of 1. Th

e fourth bit is 1  

0  0, yielding a 1 sum and no carry. 



0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

– 

0000 0000 0000 0000 0000 0000 0000 0110two = 6ten

= 

0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

or via addition using the two’s complement representation of 6:



0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

+ 

1111 1111 1111 1111 1111 1111 1111 1010two = –6ten

= 

0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

Recall that overfl ow occurs when the result from an operation cannot be 

represented with the available hardware, in this case a 32-bit word. When can 

overfl ow occur in addition? When adding operands with diff erent signs, overfl ow 

cannot occur. Th

e reason is the sum must be no larger than one of the operands. 

For example, 10  4  6. Since the operands fi t in 32 bits and the sum is no 

larger than an operand, the sum must fi t in 32 bits as well. Th

erefore, no overfl ow 

can occur when adding positive and negative operands. 

Th

ere are similar restrictions to the occurrence of overfl ow during subtract, but 

it’s just the opposite principle: when the signs of the operands are the  same, overfl ow 

cannot occur. To see this, remember that  c   a   c  ( a) because we subtract by negating the second operand and then add. Th

erefore, when we subtract operands 

of the same sign we end up by  adding operands of  diff erent signs. From the prior paragraph, we know that overfl ow cannot occur in this case either. 

Knowing when overfl ow cannot occur in addition and subtraction is all well and 

good, but how do we detect it when it  does occur? Clearly, adding or subtracting 

two 32-bit numbers can yield a result that needs 33 bits to be fully expressed. 

Th

e lack of a 33rd bit means that when overfl ow occurs, the sign bit is set with 

the  value of the result instead of the proper sign of the result. Since we need just one 

extra bit, only the sign bit can be wrong. Hence, overfl ow occurs when adding two 

positive numbers and the sum is negative, or vice versa. Th

is spurious sum means 

a carry out occurred into the sign bit. 

Overfl ow occurs in subtraction when we subtract a negative number from a 

positive number and get a negative result, or when we subtract a positive number 

from a negative number and get a positive result. Such a ridiculous result means a 

borrow occurred from the sign bit. Figure 3.2 shows the combination of operations, operands, and results that indicate an overfl ow. 
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Result 

Operation

Operand A

Operand B

indicating overflow

 A +  B

≥ 0

≥ 0

< 0

 A +  B

< 0

< 0

≥ 0

 A –  B

≥ 0

< 0

< 0

 A –  B

< 0

≥ 0

≥ 0

FIGURE 3.2  Overfl ow conditions for addition and subtraction. 

We have just seen how to detect overfl ow for two’s complement numbers in a 

computer. What about overfl ow with unsigned integers? Unsigned integers are 

commonly used for memory addresses where overfl ows are ignored. 

Th

e computer designer must therefore provide a way to ignore overfl ow  in 

some cases and to recognize it in others. Th

e MIPS solution is to have two kinds of 

arithmetic instructions to recognize the two choices:

■ Add (add), add immediate (addi), and subtract (sub) cause exceptions on 

overfl ow. 

■  Add unsigned (addu), add immediate unsigned (addiu), and subtract 

unsigned (subu) do  not cause exceptions on overfl ow. 

Because C ignores overfl ows, the MIPS C compilers will always generate the 

unsigned versions of the arithmetic instructions addu,  addiu, and subu, no 

matter what the type of the variables. Th

e MIPS Fortran compilers, however, pick 

the appropriate arithmetic instructions, depending on the type of the operands. 

 Appendix B describes the hardware that performs addition and subtraction, 

Arithmetic Logic 

which is called an Arithmetic Logic Unit or ALU. 

Unit (ALU) Hardware 

that performs addition, 

Elaboration:  A constant source of confusion for addiu is its name and what happens 

subtraction, and usually 

to its immediate fi eld. The u stands for unsigned, which means addition cannot cause an 

logical operations such as 

overfl ow exception. However, the 16-bit immediate fi eld is sign extended to 32 bits, just 

AND and OR. 

like addi, slti, and sltiu. Thus, the immediate fi eld is signed, even if the operation 

is “unsigned.” 

Th

e computer designer must decide how to handle arithmetic overfl ows. Although 

Hardware/

some languages like C and Java ignore integer overfl ow, languages like Ada and 

Software  Fortran require that the program be notifi ed. Th e programmer or the programming Interface

environment must then decide what to do when overfl ow occurs. 

MIPS detects overfl ow with an exception, also called an interrupt on many 

exception  Also 

computers. An exception or interrupt is essentially an unscheduled procedure 

called interrupt on 

call. Th

e address of the instruction that overfl owed is saved in a register, and the 

many computers. An 

computer jumps to a predefi ned address to invoke the appropriate routine for that 

unscheduled event 

that disrupts program 

exception. Th

e interrupted address is saved so that in some situations the program 

execution; used to detect 

can continue aft er corrective code is executed. (Section 4.9 covers exceptions in 

overfl ow. 
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more detail; Chapter 5 describes other situations where exceptions and interrupts  interrupt  An exception occur.)

that comes from outside 

MIPS includes a register called the  exception program counter (EPC) to contain  of the processor. (Some the address of the instruction that caused the exception. Th

e instruction  move from   architectures use the 

term  interrupt for all 

 system control (mfc0) is used to copy EPC into a general-purpose register so that  exceptions.) MIPS soft ware has the option of returning to the off ending instruction via a jump 

register instruction. 

Summary

A major point of this section is that, independent of the representation, the fi nite 

word size of computers means that arithmetic operations can create results that 

are too large to fi t in this fi xed word size. It’s easy to detect overfl ow in unsigned 

numbers, although these are almost always ignored because programs don’t want to 

detect overfl ow for address arithmetic, the most common use of natural numbers. 

Two’s complement presents a greater challenge, yet some soft ware systems require 

detection of overfl ow, so today all computers have a way to detect it. 

Some programming languages allow two’s complement integer arithmetic 

Check 

on variables declared byte and half, whereas MIPS only has integer arithmetic 

Yourself

operations on full words. As we recall from Chapter 2, MIPS does have data transfer 

operations for bytes and halfwords. What MIPS instructions should be generated 

for byte and halfword arithmetic operations? 

1. Load 

with 

lbu, lhu; arithmetic with add, sub, mult, div; then store using 

sb, sh. 

2. Load 

with 

lb, lh; arithmetic with add, sub, mult, div; then store using 

sb, sh. 

3. Load 

with 

lb, lh; arithmetic with add, sub, mult, div, using AND to mask 

result to 8 or 16 bits aft er each operation; then store using sb, sh. 

Elaboration: One feature not generally found in general-purpose microprocessors is 

 saturating operations. Saturation means that when a calculation overfl ows, the result 

is set to the largest positive number or most negative number, rather than a modulo 

calculation as in two’s complement arithmetic. Saturation is likely what you want for media 

operations. For example, the volume knob on a radio set would be frustrating if, as you 

turned it, the volume would get continuously louder for a while and then immediately very 

soft. A knob with saturation would stop at the highest volume no matter how far you turned 

it. Multimedia extensions to standard instruction sets often offer saturating arithmetic. 

Elaboration:  MIPS can trap on overfl ow, but unlike many other computers, there is 

no conditional branch to test overfl ow. A sequence of MIPS instructions can discover 
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overfl ow. For signed addition, the sequence is the following (see the  Elaboration on page 89 in Chapter 2 for a description of the xor instruction):

addu $t0, $t1, $t2 # $t0 = sum, but don’t trap

xor  $t3, $t1, $t2 # Check if signs differ

slt  $t3, $t3, $zero # $t3 = 1 if signs differ

bne  $t3, $zero, No_overflow # $t1, $t2 signs ≠, 

# so no overflow

xor $t3, $t0, $t1 # signs =; sign of sum match too? 

# $t3 negative if sum sign different

slt $t3, $t3, $zero # $t3 = 1 if sum sign different

bne $t3, $zero, Overflow # All 3 signs ≠; goto overflow

For unsigned addition ($t0 = $t1 + $t2), the test is

addu $t0, $t1, $t2     # $t0 = sum

nor $t3, $t1, $zero    # $t3 = NOT $t1

# (2’s comp – 1: 232 – $t1 – 1)

sltu $t3, $t3, $t2     # (232 – $t1 – 1) < $t2

# ⇒ 232 – 1 < $t1 + $t2

bne $t3,$zero,Overflow # if(232–1<$t1+$t2) goto overflow

Elaboration: In the preceding text, we said that you copy EPC into a register via 

mfc0 and then return to the interrupted code via jump register. This directive leads to 

an interesting question: since you must fi rst transfer EPC to a register to use with jump 

register, how can jump register return to the interrupted code  and restore the original 

values of  all registers? Either you restore the old registers fi rst, thereby destroying your return address from EPC, which you placed in a register for use in jump register, or you 

restore all registers but the one with the return address so that you can jump—meaning 

an exception would result in changing that one register at any time during program 

execution! Neither option is satisfactory. 

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve 

registers  $k0 and $k1 for the operating system; these registers are  not restored on 

exceptions. Just as the MIPS compilers avoid using register $at so that the assembler 

can use it as a temporary register (see  Hardware/ Software Interface in Section 2.10), compilers also abstain from using registers $k0 and $k1 to make them available for the 

operating system. Exception routines place the return address in one of these registers 

and then use jump register to restore the instruction address. 

Elaboration: The speed of addition is increased by determining the carry in to the 

high-order bits sooner. There are a variety of schemes to anticipate the carry so that 

the worst-case scenario is a function of the log  of the number of bits in the adder. 

2

These anticipatory signals are faster because they go through fewer gates in sequence, 

but it takes many more gates to anticipate the proper carry. The most popular is  carry 

 lookahead, which Section B.6 in 

Appendix B describes. 
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 3.3 Multiplication

Now that we have completed the explanation of addition and subtraction, we are   Multiplication is ready to build the more vexing operation of multiplication. 

 vexation, Division is 

First, let’s review the multiplication of decimal numbers in longhand to remind   as bad; Th

   e rule of 

ourselves of the steps of multiplication and the names of the operands. For reasons   three doth puzzle me, that will become clear shortly, we limit this decimal example to using only the   And practice drives me digits 0 and 1. Multiplying 1000  by 1001 :

 mad. 

ten

ten

Anonymous, 

Multiplicand

1000ten

Elizabethan manuscript, 

Multiplier

x 1001ten

1570

1000

0000

0000

1000

Product

1001000ten

Th

e fi rst operand is called the  multiplicand and the second the  multiplier. 

Th

e fi nal result is called the  product. As you may recall, the algorithm learned in 

grammar school is to take the digits of the multiplier one at a time from right to 

left , multiplying the multiplicand by the single digit of the multiplier, and shift ing 

the intermediate product one digit to the left  of the earlier intermediate products. 

Th

e fi rst observation is that the number of digits in the product is considerably 

larger than the number in either the multiplicand or the multiplier. In fact, if we 

ignore the sign bits, the length of the multiplication of an  n- bit multiplicand and an 

 m- bit multiplier is a product that is  n   m bits long. Th

at is,  n   m bits are required 

to represent all possible products. Hence, like add, multiply must cope with 

overfl ow because we frequently want a 32-bit product as the result of multiplying 

two 32-bit numbers. 

In this example, we restricted the decimal digits to 0 and 1. With only two 

choices, each step of the multiplication is simple:

1.  Just place a copy of the multiplicand (1  multiplicand) in the proper place 

if the multiplier digit is a 1, or

2.  Place 0 (0  multiplicand) in the proper place if the digit is 0. 

Although the decimal example above happens to use only 0 and 1, multiplication 

of binary numbers must always use 0 and 1, and thus always off ers only these two 

choices. 

Now that we have reviewed the basics of multiplication, the traditional next 

step is to provide the highly optimized multiply hardware. We break with tradition 

in the belief that you will gain a better understanding by seeing the evolution of 

the multiply hardware and algorithm through multiple generations. For now, let’s 

assume that we are multiplying only positive numbers. 
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Multiplicand

Shift left

64 bits

Multiplier

64-bit ALU

Shift right

32 bits

Product

Control test

Write

64 bits

FIGURE 3.3  First version of the multiplication hardware. Th

e Multiplicand register, ALU, 

and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (Appendix B 

describes ALUs.) Th

e 32-bit multiplicand starts in the right half of the Multiplicand register and is shift ed left  

1 bit on each step. Th

e multiplier is shift ed in the opposite direction at each step. Th

e algorithm starts with 

the product initialized to 0. Control decides when to shift  the Multiplicand and Multiplier registers and when to write new values into the Product register. 

Sequential Version of the Multiplication Algorithm and 

Hardware

Th

is design mimics the algorithm we learned in grammar school; Figure 3.3 shows the hardware. We have drawn the hardware so that data fl ows from top to bottom 

to resemble more closely the paper-and-pencil method. 

Let’s assume that the multiplier is in the 32-bit Multiplier register and that the 64-

bit Product register is initialized to 0. From the paper-and-pencil example above, 

it’s clear that we will need to move the multiplicand left  one digit each step, as it may 

be added to the intermediate products. Over 32 steps, a 32-bit multiplicand would 

move 32 bits to the left . Hence, we need a 64-bit Multiplicand register, initialized 

with the 32-bit multiplicand in the right half and zero in the left  half. Th

is register 

is then shift ed left  1 bit each step to align the multiplicand with the sum being 

accumulated in the 64-bit Product register. 

Figure 3.4 shows the three basic steps needed for each bit. Th

e least signifi cant 

bit of the multiplier (Multiplier0) determines whether the multiplicand is added to 

the Product register. Th

e left  shift  in step 2 has the eff ect of moving the intermediate 

operands to the left , just as when multiplying with paper and pencil. Th

e shift  right 

in step 3 gives us the next bit of the multiplier to examine in the following iteration. 

Th

ese three steps are repeated 32 times to obtain the product. If each step took a 

clock cycle, this algorithm would require almost 100 clock cycles to multiply two 

32-bit numbers. Th

e relative importance of arithmetic operations like multiply 

varies with the program, but addition and subtraction may be anywhere from 5 to 

100 times more popular than multiply. Accordingly, in many applications, multiply 

can take multiple clock cycles without signifi cantly  aff ecting performance. Yet 

Amdahl’s Law (see Section 1.10) reminds us that even a moderate frequency for a 

slow operation can limit performance. 
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Start

Multiplier0 = 1

1.  Test

Multiplier0 = 0

Multiplier0

1a.  Add multiplicand to product and

place the result in Product register

2.  Shift the Multiplicand register left 1 bit

3.  Shift the Multiplier register right 1 bit

No: < 32 repetitions

32nd repetition? 

Yes: 32 repetitions

Done

FIGURE 3.4  The fi rst multiplication algorithm, using the hardware shown in Figure 3.3.  If the least signifi cant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step. 

Shift  the multiplicand left  and the multiplier right in the next two steps. Th

ese three steps are repeated 32 

times. 

Th

is algorithm and hardware are easily refi ned to take 1 clock cycle per step. 

Th

e speed-up comes from performing the operations in parallel: the multiplier 

and multiplicand are shift ed while the multiplicand is added to the product if the 

multiplier bit is a 1. Th

e hardware just has to ensure that it tests the right bit of 

the multiplier and gets the preshift ed version of the multiplicand. Th

e hardware is 

usually further optimized to halve the width of the adder and registers by noticing 

where there are unused portions of registers and adders. Figure 3.5 shows the revised hardware. 
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Multiplicand

32 bits

32-bit ALU

Shift right

Product

Control

Write

test

64 bits

FIGURE 3.5  Refi ned version of the multiplication hardware.  Compare with the fi rst version in 

Figure 3.3. Th

e Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product register left  at 64 bits. Now the product is shift ed right. Th

e separate Multiplier register also disappeared. Th

e 

multiplier is placed instead in the right half of the Product register. Th

ese changes are highlighted in color. 

(Th

e Product register should really be 65 bits to hold the carry out of the adder, but it’s shown here as 64 bits to highlight the evolution from Figure 3.3.)

Replacing arithmetic by shift s can also occur when multiplying by constants. Some 

Hardware/

compilers replace multiplies by short constants with a series of shift s and adds. 

Software  Because one bit to the left  represents a number twice as large in base 2, shift ing Interface

the bits left  has the same eff ect as multiplying by a power of 2. As mentioned in 

Chapter 2, almost every compiler will perform the strength reduction optimization 

of substituting a left  shift  for a multiply by a power of 2. 

A Multiply Algorithm

EXAMPLE

Using 4-bit numbers to save space, multiply 2   3 , or 0010   0011 . 

ten

ten

two

two

Figure 3.6 shows the value of each register for each of the steps labeled 

ANSWER

according to Figure 3.4, with the fi nal value of 0000 0110  or 6 . Color is 

two

ten

used to indicate the register values that change on that step, and the bit circled 

is the one examined to determine the operation of the next step. 
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Iteration

Step

Multiplier

Multiplicand

Product

0

Initial values

0011

0000 0010

0000 0000

1

1a: 1 ⇒ Prod = Prod + Mcand

0011

0000 0010

0000 0010

2:  Shift left Multiplicand

0011

0000 0100

0000 0010

3:  Shift right Multiplier

0001

0000 0100

0000 0010

2

1a: 1 ⇒ Prod = Prod + Mcand

0001

0000 0100

0000 0110

2:  Shift left Multiplicand

0001

0000 1000

0000 0110

3:  Shift right Multiplier

0000

0000 1000

0000 0110

3

1: 0 ⇒ No operation

0000

0000 1000

0000 0110

2:  Shift left Multiplicand

0000

0001 0000

0000 0110

3:  Shift right Multiplier

0000

0001 0000

0000 0110

4

1: 0 ⇒ No operation

0000

0001 0000

0000 0110

2:  Shift left Multiplicand

0000

0010 0000

0000 0110

3:  Shift right Multiplier

0000

0010 0000

0000 0110

FIGURE 3.6  Multiply example using algorithm in Figure 3.4.  Th e bit examined to determine the 

next step is circled in color. 

Signed Multiplication

So far, we have dealt with positive numbers. Th

e easiest way to understand how 

to deal with signed numbers is to fi rst convert the multiplier and multiplicand to 

positive numbers and then remember the original signs. Th

e algorithms should 

then be run for 31 iterations, leaving the signs out of the calculation. As we learned 

in grammar school, we need negate the product only if the original signs disagree. 

It turns out that the last algorithm will work for signed numbers, provided that 

we remember that we are dealing with numbers that have infi nite digits, and we are 

only representing them with 32 bits. Hence, the shift ing steps would need to extend 

the sign of the product for signed numbers. When the algorithm completes, the 

lower word would have the 32-bit product. 

Faster Multiplication

Moore’s Law has provided so much more in resources that hardware designers can 

now build much faster multiplication hardware. Whether the multiplicand is to be 

added or not is known at the beginning of the multiplication by looking at each of 

the 32 multiplier bits. Faster multiplications are possible by essentially providing 

one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed 

with a multiplier bit, and the other is the output of a prior adder. 

A straightforward approach would be to connect the outputs of adders on the 

right to the inputs of adders on the left , making a stack of adders 32 high. An 

alternative way to organize these 32 additions is in a parallel tree, as Figure 3.7 

shows. Instead of waiting for 32 add times, we wait just the log  (32) or fi ve 32-bit 

2

add times. 
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Mplier31 • Mcand Mplier30 • Mcand

Mplier29 • Mcand Mplier28 • Mcand

Mplier3 • Mcand

Mplier2 • Mcand

Mplier1 • Mcand

Mplier0 • Mcand

. . . 

32 bits

32 bits

32 bits

32 bits

32 bits

32 bits

1 bit

1 bit

. . . 

. . . 

. . . 

1 bit

1 bit

32 bits

Product63 Product62

. . . 

Product47..16

. . . 

Product1 Product0

FIGURE 3.7  Fast multiplication hardware.  Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 31 

adders and then organizes them to minimize delay. 

In fact, multiply can go even faster than fi ve add times because of the use of  carry 

 save adders (see Section B.6 in   Appendix B) and because it is easy to pipeline such a design to be able to support many multiplies simultaneously (see Chapter 4). 

Multiply in MIPS

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product, 

called  Hi and  Lo. To produce a properly signed or unsigned product, MIPS has two 

instructions: multiply (mult) and multiply unsigned (multu). To fetch the integer 

32-bit product, the programmer uses  move from lo  (mflo). Th

e MIPS assembler 

generates a pseudoinstruction for multiply that specifi es three general-purpose 

registers, generating mflo and mfhi instructions to place the product into registers. 

Summary

Multiplication hardware simply shift s and add, as derived from the paper-and-

pencil method learned in grammar school. Compilers even use shift  instructions 

for multiplications by powers of 2. With much more hardware we can do the adds 

in parallel, and do them much faster. 

Both MIPS multiply instructions ignore overfl ow,  so  it  is  up  to  the  soft ware to 

Hardware/

check to see if the product is too big to fi t in 32 bits. Th

ere is no overfl ow if Hi is 

Software  0 for multu or the replicated sign of Lo for mult. Th e instruction  move from hi Interface

(mfhi) can be used to transfer Hi to a general-purpose register to test for overfl ow. 
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 3.4 Division

Th

e reciprocal operation of multiply is divide, an operation that is even less frequent 

 Divide et impera. 

and even more quirky. It even off ers the opportunity to perform a mathematically  Latin for “Divide and invalid operation: dividing by 0. 

rule,” ancient political 

Let’s start with an example of long division using decimal numbers to recall the  maxim cited by 

names of the operands and the grammar school division algorithm. For reasons  Machiavelli, 1532

similar to those in the previous section, we limit the decimal digits to just 0 or 1. 

Th

e example is dividing 1,001,010  by 1000 :

ten

ten

1001ten

Quotient 

Divisor 1000ten 1001010ten

Dividend

−1000

10

101

1010

−1000

10ten

Remainder

Divide’s two operands, called the dividend and divisor, and the result, called  dividend  A number the quotient, are accompanied by a second result, called the remainder. Here is  being divided. 

another way to express the relationship between the components:

divisor  A number that 

Dividend  Quotient  Divisor  Remainder

the dividend is divided by. 

where the remainder is smaller than the divisor. Infrequently, programs use the  quotient  Th e primary result of a division; 

divide instruction just to get the remainder, ignoring the quotient. 

a number that when 

Th

e basic grammar school division algorithm tries to see how big a number  multiplied by the 

can be subtracted, creating a digit of the quotient on each attempt. Our carefully  divisor and added to the selected decimal example uses only the numbers 0 and 1, so it’s easy to fi gure out  remainder produces the how many times the divisor goes into the portion of the dividend: it’s either 0 times  dividend. 

or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to  remainder  Th e these two choices, thereby simplifying binary division. 

secondary result of 

Let’s assume that both the dividend and the divisor are positive and hence the  a division; a number quotient and the remainder are nonnegative. Th

e division operands and both  that when added to the 

results are 32-bit values, and we will ignore the sign for now. 

product of the quotient 

and the divisor produces 

A Division Algorithm and Hardware

the dividend. 

Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move 

the divisor to the right one digit, so we start with the divisor placed in the left  half 

of the 64-bit Divisor register and shift  it right 1 bit each step to align it with the 

dividend. Th

e Remainder register is initialized with the dividend. 
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Divisor

Shift right

64 bits

Quotient

64-bit ALU

Shift left

32 bits

Remainder

Control

Write

test

64 bits

FIGURE 3.8  First version of the division hardware.  Th

e Divisor register, ALU, and Remainder 

register are all 64 bits wide, with only the Quotient register being 32 bits. Th

e 32-bit divisor starts in the 

left  half of the Divisor register and is shift ed right 1 bit each iteration. Th

e remainder is initialized with the 

dividend. Control decides when to shift  the Divisor and Quotient registers and when to write the new value into the Remainder register. 

Figure 3.9 shows three steps of the fi rst division algorithm. Unlike a human, the computer isn’t smart enough to know in advance whether the divisor is smaller 

than the dividend. It must fi rst subtract the divisor in step 1; remember that this is 

how we performed the comparison in the set on less than instruction. If the result 

is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in 

the quotient (step 2a). If the result is negative, the next step is to restore the original 

value by adding the divisor back to the remainder and generate a 0 in the quotient 

(step 2b). Th

e divisor is shift ed right and then we iterate again. Th

e remainder and 

quotient will be found in their namesake registers aft er the iterations are complete. 

A Divide Algorithm

EXAMPLE

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7  by 2 , 

ten

ten

or 0000 0111  by 0010 . 

two

two

Figure 3.10 shows the value of each register for each of the steps, with the 

ANSWER

quotient being 3  and the remainder 1 . Notice that the test in step 2 of whether 

ten

ten

the remainder is positive or negative simply tests whether the sign bit of the 

Remainder register is a 0 or 1. Th

e surprising requirement of this algorithm is 

that it takes  n + 1 steps to get the proper quotient and remainder. 
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Start

1.  Subtract the Divisor register from the

Remainder register and place the 

result in the Remainder register

Remainder ≥ 0

Remainder < 0

Test Remainder

2a.  Shift the Quotient register to the left, 

2b.  Restore the original value by adding

setting the new rightmost bit to 1

the Divisor register to the Remainder

register and placing the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

3.  Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition? 

Yes: 33 repetitions

Done

FIGURE 3.9  A division algorithm, using the hardware in Figure 3.8.  If the remainder is positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder aft er step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds the divisor to the remainder, thereby reversing the subtraction of step 1. Th

e fi nal shift , in step 3, aligns the 

divisor properly, relative to the dividend for the next iteration. Th

ese steps are repeated 33 times. 

Th

is algorithm and hardware can be refi ned to be faster and cheaper. Th

e speed-

up comes from shift ing the operands and the quotient simultaneously with the 

subtraction. Th

is refi nement halves the width of the adder and registers by noticing 

where there are unused portions of registers and adders. Figure 3.11 shows the revised hardware. 
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Iteration

Step

Quotient

Divisor

Remainder

0 

Initial values

0000

0010 0000

0000 0111

1:  Rem = Rem – Div

0000

0010 0000

1110 0111

1

2b:  Rem < 0 ⇒ +Div, sll Q, Q0 = 0

0000

0010 0000

0000 0111

3: Shift Div right

0000


0001 0000

0000 0111

1:  Rem = Rem – Div

0000

0001 0000

1111 0111

2

2b:  Rem < 0 ⇒ +Div, sll Q, Q0 = 0

0000

0001 0000

0000 0111

3: Shift Div right

0000

0000 1000

0000 0111

1:  Rem = Rem – Div

0000

0000 1000

1111 1111

3

2b:  Rem < 0 ⇒ +Div, sll Q, Q0 = 0

0000

0000 1000

0000 0111

3: Shift Div right

0000

0000 0100

0000 0111

1:  Rem = Rem – Div

0000

0000 0100

0000 0011

4

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1

0001

0000 0100

0000 0011

3: Shift Div right

0001

0000 0010

0000 0011

1:  Rem = Rem – Div

0001

0000 0010

0000 0001

5

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1

0011

0000 0010

0000 0001

3: Shift Div right

0011

0000 0001

0000 0001

FIGURE 3.10  Division example using the algorithm in Figure 3.9.  Th e bit examined to determine 

the next step is circled in color. 

Divisor

32 bits

32-bit ALU

Shift right

Remainder

Control

Shift left

Write

test

64 bits

FIGURE 3.11  An improved version of the division hardware.   Th

e Divisor register, ALU, and 

Quotient register are all 32 bits wide, with only the Remainder register left  at 64 bits. Compared to Figure 3.8, the ALU and Divisor registers are halved and the remainder is shift ed left . Th

is version also combines the 

Quotient register with the right half of the Remainder register. (As in Figure 3.5, the Remainder register should really be 65 bits to make sure the carry out of the adder is not lost.)

Signed Division

So far, we have ignored signed numbers in division. Th

e simplest solution is to 

remember the signs of the divisor and dividend and then negate the quotient if the 

signs disagree. 
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Elaboration:  The one complication of signed division is that we must also set the sign 

of the remainder. Remember that the following equation must always hold:

Dividend  Quotient  Divisor  Remainder

To understand how to set the sign of the remainder, let’s look at the example of dividing 

all the combinations of 7  by  2 . The fi rst case is easy:

ten

ten

7  2: Quotient  3,  Remainder  1

Checking the results:

7  3  2  (1)  6  1

If we change the sign of the dividend, the quotient must change as well:

7  2: Quotient  3

Rewriting our basic formula to calculate the remainder:

Remainder   (Dividend  Quotient  Divisor)  7  (3 x  2) 

 7  (6)  1

So, 

7  2: Quotient  3, Remainder  1

Checking the results again:

7  3  2  (1)  6  1

The reason the answer isn’t a quotient of 4 and a remainder of 1, which would also 

fi t this formula, is that the absolute value of the quotient would then change depending 

on the sign of the dividend and the divisor! Clearly, if

( x   y) ⬆ ( x)   y

programming would be an even greater challenge. This anomalous behavior is avoided 

by following the rule that the dividend and remainder must have the same signs, no 

matter what the signs of the divisor and quotient. 

We calculate the other combinations by following the same rule:

7  2: Quotient  3, Remainder  1

7  2: Quotient  3, Remainder  1
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Thus the correctly signed division algorithm negates the quotient if the signs of the 

operands are opposite and makes the sign of the nonzero remainder match the dividend. 

Faster Division

Moore’s Law applies to division hardware as well as multiplication, so we would 

like to be able to speed up division by throwing hardware at it. We used many 

adders to speed up multiply, but we cannot do the same trick for divide. Th

e reason 

is that we need to know the sign of the diff erence before we can perform the next 

step of the algorithm, whereas with multiply we could calculate the 32 partial 

products immediately. 

Th

ere are techniques to produce more than one bit of the quotient per step. 

Th

e  SRT division technique tries to predict several quotient bits per step, using a 

table lookup based on the upper bits of the dividend and remainder. It relies on 

subsequent steps to correct wrong predictions. A typical value today is 4 bits. Th

e 

key is guessing the value to subtract. With binary division, there is only a single 

choice. Th

ese algorithms use 6 bits from the remainder and 4 bits from the divisor 

to index a table that determines the guess for each step. 

Th

e accuracy of this fast method depends on having proper values in the lookup 

table. Th

e fallacy on page 231 in Section 3.9 shows what can happen if the table is 

incorrect. 

Divide in MIPS

You may have already observed that the same sequential hardware can be used for 

both multiply and divide in Figures 3.5 and 3.11. Th

e only requirement is a 64-bit 

register that can shift  left  or right and a 32-bit ALU that adds or subtracts. Hence, 

MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide. 

As we might expect from the algorithm above, Hi contains the remainder, and 

Lo contains the quotient aft er the divide instruction completes. 

To handle both signed integers and unsigned integers, MIPS has two instructions: 

 divide  (div) and  divide unsigned  (divu). Th

e MIPS assembler allows divide 

instructions to specify three registers, generating the mflo or mfhi instructions to 

place the desired result into a general-purpose register. 

Summary

Th

e common hardware support for multiply and divide allows MIPS to provide a 

single pair of 32-bit registers that are used both for multiply and divide. We accelerate 

division by predicting multliple quotient bits and then correcting mispredictions 

later, Figure 3.12 summarizes the enhancements to the MIPS architecture for the last two sections. 

 

3.4 Division 

195

MIPS assembly language

Category Instruction

Example

Meaning

Comments

add 

add     $s1,$s2,$s3

$s1 = $s2 + $s3

Three operands; overflow detected

subtract

sub     $s1,$s2,$s3

$s1 = $s2 – $s3

Three operands; overflow detected

add immediate

addi    $s1,$s2,100

$s1 = $s2 + 100

+ constant; overflow detected

add unsigned

addu    $s1,$s2,$s3

$s1 = $s2 + $s3

Three operands; overflow undetected

subtract unsigned

subu    $s1,$s2,$s3

$s1 = $s2 – $s3

Three operands; overflow undetected

add immediate unsigned

addiu   $s1,$s2,100

$s1 = $s2 + 100

+ constant; overflow undetected

move from coprocessor 

mfc0    $s1,$epc

$s1 = $epc

Copy Exception PC + special regs

register 

Arithmetic

multiply 

mult    $s2,$s3

Hi, Lo = $s2 × $s3

64-bit signed product in Hi, Lo

multiply unsigned

multu   $s2,$s3

Hi, Lo = $s2 × $s3

64-bit unsigned product in Hi, Lo

divide 

div     $s2,$s3

Lo = $s2 / $s3, 

Lo = quotient, Hi = remainder

Hi = $s2 mod $s3

divide unsigned

divu    $s2,$s3

Lo = $s2 / $s3, 

Unsigned quotient and remainder

Hi = $s2 mod $s3

move from Hi

mfhi    $s1

$s1 = Hi

Used to get copy of Hi

move from Lo

mflo     $s1

$s1 = Lo

Used to get copy of Lo

load word

lw      $s1,20($s2)

$s1 = Memory[$s2 + 20]

Word from memory to register

store word

sw      $s1,20($s2)

Memory[$s2 + 20] = $s1

Word from register to memory

load half unsigned

lhu     $s1,20($s2)

$s1 = Memory[$s2 + 20]

Halfword memory to register

store half

sh      $s1,20($s2)

Memory[$s2 + 20] = $s1

Halfword register to memory

Data 

load byte unsigned

lbu     $s1,20($s2)

$s1 = Memory[$s2 + 20]

Byte from memory to register

transfer

store byte

sb      $s1,20($s2)

Memory[$s2 + 20] = $s1

Byte from register to memory

load linked word

ll      $s1,20($s2)

$s1 = Memory[$s2 + 20]

Load word as 1st half of atomic swap 

store conditional word

sc      $s1,20($s2)

Memory[$s2+20]=$s1;$s1=0 

Store word as 2nd half atomic swap 

or 1

load upper immediate

lui     $s1,100

$s1 = 100 * 216

Loads constant in upper 16 bits

AND 

AND     $s1,$s2,$s3

$s1 = $s2 & $s3

Three reg. operands; bit-by-bit AND

OR

OR      $s1,$s2,$s3

$s1 = $s2 | $s3

Three reg. operands; bit-by-bit OR

NOR

NOR     $s1,$s2,$s3

$s1 = ~ ($s2 |$s3)

Three reg. operands; bit-by-bit NOR

Logical

AND immediate

ANDi    $s1,$s2,100

$s1 = $s2 & 100

Bit-by-bit AND with constant

OR immediate

ORi     $s1,$s2,100

$s1 = $s2 | 100

Bit-by-bit OR with constant

shift left logical

sll     $s1,$s2,10

$s1 = $s2 << 10

Shift left by constant

shift right logical

srl     $s1,$s2,10

$s1 = $s2 >> 10

Shift right by constant

branch on equal

beq     $s1,$s2,25

if ($s1 == $s2) go to PC + 4 + 100

Equal test; PC-relative branch

branch on not equal

bne     $s1,$s2,25

if ($s1 !=  $s2) go to PC + 4 + 100

Not equal test; PC-relative 

set on less than

slt     $s1,$s2,$s3

if ($s2 < $s3)  $s1 = 1; 

Compare less than; two’s 

else $s1 = 0

complement

Condi- 

set less than immediate

slti    $s1,$s2,100

if ($s2 < 100)  $s1 = 1; 

Compare < constant; two’s 

tional 

else $s1=0

complement

branch

set less than unsigned

sltu    $s1,$s2,$s3

if ($s2 < $s3)  $s1 = 1; 

Compare less than; natural numbers

else $s1=0

set less than immediate 

sltiu   $s1,$s2,100

if ($s2 < 100)  $s1 = 1; 

Compare < constant; natural numbers

unsigned

else $s1 = 0

Uncondi- 

jump

j       2500

go to 10000

Jump to target address

tional  

jump register

jr      $ra

go to $ra

For switch, procedure return

jump

jump and link

jal     2500

$ra = PC + 4; go to 10000

For procedure call

FIGURE 3.12  MIPS core architecture.  Th

e memory and registers of the MIPS architecture are not included for space reasons, but this 

section added the Hi and Lo registers to support multiply and divide. MIPS machine language is listed in the MIPS Reference Data Card at the front of this book. 
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MIPS divide instructions ignore overfl ow, so soft ware must determine whether the 

Hardware/

quotient is too large. In addition to overfl ow, division can also result in an improper 

Software  calculation: division by 0. Some computers distinguish these two anomalous events. 

Interface

MIPS soft ware must check the divisor to discover division by 0 as well as overfl ow. 

Elaboration: An even faster algorithm does not immediately add the divisor back 

if the remainder is negative. It simply  adds the dividend to the shifted remainder in 

the following step, since ( r    d)  2   d   r  2   d  2   d   r  2   d. This nonrestoring division algorithm, which takes 1 clock cycle per step, is explored further 

in the exercises; the algorithm above is called  restoring division. A third algorithm that doesn’t save the result of the subtract if it’s negative is called a  nonperforming division algorithm. It averages one-third fewer arithmetic operations. 

 3.5 Floating 

Point

 Speed gets you 

Going beyond signed and unsigned integers, programming languages support 

 nowhere if you’re 

numbers with fractions, which are called  reals in mathematics. Here are some 

 headed the wrong way. 

examples of reals:

American proverb

3.14159265…   (pi)

ten

2.71828…    (e)

ten

0.000000001  or 1.0  × 10−9 (seconds in a nanosecond)

ten

ten

3,155,760,000  or 3.15576  × 109 (seconds in a typical century)

ten

ten

scientifi c notation 

Notice that in the last case, the number didn’t represent a small fraction, but it 

A notation that renders 

was bigger than we could represent with a 32-bit signed integer. Th

e alternative 

numbers with a single 

notation for the last two numbers is called scientifi c notation, which has a single 

digit to the left  of the 

digit to the left  of the decimal point. A number in scientifi c notation that has no 

decimal point. 

leading 0s is called a normalized number, which is the usual way to write it. For 

example, 1.0   109 is in normalized scientifi c notation, but 0.1   108 and 

normalized  A number 

ten

ten

10.0   1010 are not. 

in fl oating-point notation 

ten

that has no leading 0s. 

Just as we can show decimal numbers in scientifi c notation, we can also show 

binary numbers in scientifi c notation:

1.0   21

two

To keep a binary number in normalized form, we need a base that we can increase 

or decrease by exactly the number of bits the number must be shift ed to have one 

nonzero digit to the left  of the decimal point. Only a base of 2 fulfi lls our need. Since 

the base is not 10, we also need a new name for decimal point;  binary point will do fi ne. 
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Computer arithmetic that supports such numbers is called fl oating  point  fl oating point because it represents numbers in which the binary point is not fi xed, as it is for  Computer arithmetic that integers. Th

e programming language C uses the name  fl oat for such numbers. Just  represents numbers in as in scientifi c notation, numbers are represented as a single nonzero digit to the  which the binary point is not fi xed. 

left  of the binary point. In binary, the form is

1.  xxxxxxxxx   2 yyyy

two

(Although the computer represents the exponent in base 2 as well as the rest of the 

number, to simplify the notation we show the exponent in decimal.)

A standard scientifi c notation for reals in normalized form off ers  three 

advantages. It simplifi es exchange of data that includes fl oating-point  numbers; 

it simplifi es the fl oating-point arithmetic algorithms to know that numbers will 

always be in this form; and it increases the accuracy of the numbers that can be 

stored in a word, since the unnecessary leading 0s are replaced by real digits to the 

right of the binary point. 

Floating-Point Representation

A designer of a fl oating-point representation must fi nd a compromise between the  fraction  Th e value, size of the fraction and the size of the exponent, because a fi xed word size means  generally between 0 and you must take a bit from one to add a bit to the other. Th

is tradeoff  is between  1, placed in the fraction 

precision and range: increasing the size of the fraction enhances the precision  fi eld. Th e fraction is also of the fraction, while increasing the size of the exponent increases the range of  called the  mantissa. 

numbers that can be represented. As our design guideline from Chapter 2 reminds  exponent  In the us, good design demands good compromise. 

numerical representation 

Floating-point numbers are usually a multiple of the size of a word. Th

e  system of fl oating-point 

representation of a MIPS fl oating-point number is shown below, where  s is the sign  arithmetic, the value that of the fl oating-point number (1 meaning negative),  exponent is the value of the  is placed in the exponent fi eld. 

8-bit exponent fi eld (including the sign of the exponent), and  fraction is the 23-bit 

number. As we recall from Chapter 2, this representation is  sign and magnitude, 

since the sign is a separate bit from the rest of the number. 

31 30 29 28 27 26 25 24 23 22 21

20

19 18 17 16 15 14 13 12 11 10 9

8

7 6 5 4

3

2

1

0

s

exponent

fraction

1 bit 

8 bits

23 bits

In general, fl oating-point numbers are of the form

(1)S  F  2E



F involves the value in the fraction fi eld and E involves the value in the exponent 

fi eld; the exact relationship to these fi elds will be spelled out soon. (We will shortly 

see that MIPS does something slightly more sophisticated.)
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Th

ese chosen sizes of exponent and fraction give MIPS computer arithmetic 

an extraordinary range. Fractions almost as small as 2.0   1038 and numbers 

ten

overfl ow (fl oating-

almost as large as 2.0   1038 can be represented in a computer. Alas, extraordinary 

ten

point)  A situation in 

diff ers from infi nite, so it is still possible for numbers to be too large. Th

us, overfl ow 

which a positive exponent 

interrupts can occur in fl oating-point arithmetic as well as in integer arithmetic. 

becomes too large to fi t in 

the exponent fi eld. 

Notice that overfl ow here means that the exponent is too large to be represented 

in the exponent fi eld. 

Floating point off ers a new kind of exceptional event as well. Just as programmers 

underfl ow (fl oating-

will want to know when they have calculated a number that is too large to be 

point)  A situation 

represented, they will want to know if the nonzero fraction they are calculating 

in which a negative 

has become so small that it cannot be represented; either event could result in a 

exponent becomes too 

program giving incorrect answers. To distinguish it from overfl ow, we call this 

large to fi t in the exponent 

fi eld. 

event underfl ow. Th

is situation occurs when the negative exponent is too large to 

fi t in the exponent fi eld. 

double precision 

One way to reduce chances of underfl ow or overfl ow is to off er another format 

A fl oating-point value 

that has a larger exponent. In C this number is called  double, and operations on 

represented in two 32-bit 

doubles are called double precision  fl oating-point  arithmetic; single precision 

words. 

fl oating point is the name of the earlier format. 

single precision 

Th

e representation of a double precision fl oating-point number takes two MIPS 

A fl oating-point value 

words, as shown below, where  s is still the sign of the number,  exponent is the value represented in a single 32-of the 11-bit exponent fi eld, and  fraction is the 52-bit number in the fraction fi eld. 

bit word. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

s

exponent

fraction

1 bit

11 bits

20 bits

fraction (continued)

32 bits

MIPS double precision allows numbers almost as small as 2.0   10308 and almost 

ten

as large as 2.0    10308. Although double precision does increase the exponent 

ten

range, its primary advantage is its greater precision because of the much larger 

fraction. 

Th

ese formats go beyond MIPS. Th

ey are part of the  IEEE 754 fl oating-point 

 standard, found in virtually every computer invented since 1980. Th

is standard has 

greatly improved both the ease of porting fl oating-point programs and the quality 

of computer arithmetic. 

To pack even more bits into the signifi cand, IEEE 754 makes the leading 1-bit 

of normalized binary numbers implicit. Hence, the number is actually 24 bits long 

in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double 

precision (1  52). To be precise, we use the term  signifi cand to represent the 24- 

or 53-bit number that is 1 plus the fraction, and  fraction when we mean the 23- or 

52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so 

that the hardware won’t attach a leading 1 to it. 
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Single precision

Double precision

Object represented

Exponent

Fraction

Exponent

Fraction

0

0

0

0

0

0

Nonzero

0

Nonzero

± denormalized number

1–254

Anything

1–2046

Anything

± floating-point number

255

0

2047

0

± infinity

255

Nonzero

2047

Nonzero

NaN (Not a Number)

FIGURE 3.13   EEE 754 encoding of fl oating-point  numbers.  A separate sign bit determines the sign. Denormalized numbers are described in the  Elaboration on page 222. Th

is information is also found in 

Column 4 of the MIPS Reference Data Card at the front of this book. 

Th

us 00 … 00  represents 0; the representation of the rest of the numbers uses 

two

the form from before with the hidden 1 added:

(1)S   (1  Fraction)  2E

where the bits of the fraction represent a number between 0 and 1 and E specifi es 

the value in the exponent fi eld, to be given in detail shortly. If we number the bits 

of the fraction from  left  to right s1, s2, s3, …, then the value is

(1)S  (1  ( s 1  21)  ( s 2  22)  ( s 3  23)  ( s 4  24)  ...)  2E

Figure 3.13 shows the encodings of IEEE 754 fl oating-point numbers. Other 

features of IEEE 754 are special symbols to represent unusual events. For example, 

instead of interrupting on a divide by 0, soft ware can set the result to a bit pattern 

representing ∞ or ∞; the largest exponent is reserved for these special symbols. 

When the programmer prints the results, the program will print an infi nity symbol. 

(For the mathematically trained, the purpose of infi nity is to form topological 

closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 

or subtracting infi nity from infi nity. Th

is symbol is  NaN, for  Not a Number. Th

e 

purpose of NaNs is to allow programmers to postpone some tests and decisions to 

a later time in the program when they are convenient. 

Th

e designers of IEEE 754 also wanted a fl oating-point representation that could 

be easily processed by integer comparisons, especially for sorting. Th

is desire is 

why the sign is in the most signifi cant bit, allowing a quick test of less than, greater 

than, or equal to 0. (It’s a little more complicated than a simple integer sort, since 

this notation is essentially sign and magnitude rather than two’s complement.)

Placing the exponent before the signifi cand also simplifi es the sorting of 

fl oating-point numbers using integer comparison instructions, since numbers with 

bigger exponents look larger than numbers with smaller exponents, as long as both 

exponents have the same sign. 
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Negative exponents pose a challenge to simplifi ed sorting. If we use two’s 

complement or any other notation in which negative exponents have a 1 in the 

most signifi cant bit of the exponent fi eld, a negative exponent will look like a big 

number. For example, 1.0   21 would be represented as

two

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

8

7

6

5

4

3

2

1

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

. 

. 

. 

(Remember that the leading 1 is implicit in the signifi cand.) Th

e value 1.0   21 

two

would look like the smaller binary number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

. 

. 

. 

Th

e desirable notation must therefore represent the most negative exponent as 

00 … 00  and the most positive as 11 … 11 . Th

is convention is called  biased 

two

two

 notation, with the bias being the number subtracted from the normal, unsigned 

representation to determine the real value. 

IEEE 754 uses a bias of 127 for single precision, so an exponent of 1 is 

represented by the bit pattern of the value 1  127 , or 126   0111 1110 , 

ten

ten

two

and 1 is represented by 1  127, or 128   1000 0000 . Th

e exponent bias for 

ten

two

double precision is 1023. Biased exponent means that the value represented by a 

fl oating-point number is really

(1)S   (1  Fraction)  2(Exponent  Bias)

Th

e range of single precision numbers is then from as small as

1.00000000000000000000000    2126

two

to as large as

1.11111111111111111111111    2127. 

two

Let’s demonstrate. 
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Floating-Point Representation

EXAMPLE

Show the IEEE 754 binary representation of the number 0.75  in single and 

ten

double precision. 

Th

e number 0.75  is also

ten

ANSWER

3/4  or  3/22

ten

ten

It is also represented by the binary fraction

11  /22  or  0.11

two

ten

two

In scientifi c notation, the value is

 0.11   20

two

and in normalized scientifi c notation, it is

1.1   21

two

Th

e general representation for a single precision number is

(1)S  (1  Fraction)  2(Exponent127)

Subtracting the bias 127 from the exponent of 1.1   21 yields

two

(1)1  (1  .1000 0000 0000 0000 0000 000 )  2(126127)

two

Th

e single precision binary representation of 0.75  is then

ten

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 bit 

8 bits

23 bits

Th

e double precision representation is

(1)1  (1  .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 )  2(10221023)

two

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

1

0

1

1

1

1

1

1

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 bit 

11 bits

20 bits

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

32 bits
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Now let’s try going the other direction. 

Converting Binary to Decimal Floating Point

EXAMPLE

What decimal number is represented by this single precision fl oat? 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

8

7

6

5

4

3

2

1

0

1

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

. 

. 

. 

Th

e sign bit is 1, the exponent fi eld contains 129, and the fraction fi eld contains 

ANSWER

1  22  1/4, or 0.25. Using the basic equation, 

(1)S  (1  Fraction)  2(ExponentBias)  (1)1  (1  0.25)  2(129127)







 1  1.25  22







 1.25  4







 5.0

In the next few subsections, we will give the algorithms for fl oating-point 

addition and multiplication. At their core, they use the corresponding integer 

operations on the signifi cands, but extra bookkeeping is necessary to handle the 

exponents and normalize the result. We fi rst give an intuitive derivation of the 

algorithms in decimal and then give a more detailed, binary version in the fi gures. 

Elaboration: Following IEEE guidelines, the IEEE 754 committee was reformed 20 

years after the standard to see what changes, if any, should be made. The revised 

standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and adds a 16-bit format 

(“half precision”) and a 128-bit format (“quadruple precision”). No hardware has yet been 

built that supports quadruple precision, but it will surely come. The revised standard 

also add decimal fl oating point arithmetic, which IBM mainframes have implemented. 

Elaboration:  In an attempt to increase range without removing bits from the signifi cand, some computers before the IEEE 754 standard used a base other than 2. For example, 

the IBM 360 and 370 mainframe computers use base 16. Since changing the IBM 

exponent by one means shifting the signifi cand by 4 bits, “normalized” base 16 numbers 

can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that up to 3 bits must 

be dropped from the signifi cand, which leads to surprising problems in the accuracy of 

fl oating-point arithmetic. IBM mainframes now support IEEE 754 as well as the hex format. 
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Floating-Point Addition

Let’s add numbers in scientifi c notation by hand to illustrate the problems in 

fl oating-point addition: 9.999   101  1.610   101. Assume that we can store 

ten

ten

only four decimal digits of the signifi cand and two decimal digits of the exponent. 



Step 1.  To be able to add these numbers properly, we must align the decimal 

point of the number that has the smaller exponent. Hence, we need 

a form of the smaller number, 1.610    101, that matches the 

ten

larger exponent. We obtain this by observing that there are multiple 

representations of an unnormalized fl oating-point number in 

scientifi c notation:

1.610   101  0.1610   100  0.01610   101

ten

ten

ten



Th

e number on the right is the version we desire, since its exponent 

matches the exponent of the larger number, 9.999   101. Th

us, the 

ten

fi rst step shift s the signifi cand of the smaller number to the right until 

its corrected exponent matches that of the larger number. But we can 

represent only four decimal digits so, aft er shift ing, the number is 

really

0.016 

 101



Step 2.  Next comes the addition of the signifi cands:

9.999ten

+ 

0.016ten

10.015ten



Th

e sum is 10.015   101. 

ten

Step 

3. 

Th

is sum is not in normalized scientifi c notation, so we need to 

adjust it:

10.015   101  1.0015   102

ten

ten



Th

us, aft er the addition we may have to shift  the sum to put it into 

normalized form, adjusting the exponent appropriately. Th

is example 

shows shift ing to the right, but if one number were positive and the 

other were negative, it would be possible for the sum to have many 

leading 0s, requiring left  shift s. Whenever the exponent is increased 

or decreased, we must check for overfl ow or underfl ow—that is, we 

must make sure that the exponent still fi ts in its fi eld. 



Step 4.  Since we assumed that the signifi cand can be only four digits long 

(excluding the sign), we must round the number. In our grammar 

school algorithm, the rules truncate the number if the digit to the 

right of the desired point is between 0 and 4 and add 1 to the digit if 

the number to the right is between 5 and 9. Th

e number

1.0015   102

ten
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is rounded to four digits in the signifi cand to

1.002   102

ten



since the fourth digit to the right of the decimal point was between 5 

and 9. Notice that if we have bad luck on rounding, such as adding 1 

to a string of 9s, the sum may no longer be normalized and we would 

need to perform step 3 again. 

Figure 3.14 shows the algorithm for binary fl oating-point addition that follows this decimal example. Steps 1 and 2 are similar to the example just discussed: 

adjust the signifi cand of the number with the smaller exponent and then add the 

two signifi cands. Step 3 normalizes the results, forcing a check for overfl ow or 

underfl ow. Th

e test for overfl ow and underfl ow in step 3 depends on the precision 

of the operands. Recall that the pattern of all 0 bits in the exponent is reserved and 

used for the fl oating-point representation of zero. Moreover, the pattern of all 1 bits 

in the exponent is reserved for indicating values and situations outside the scope of 

normal fl oating-point numbers (see the  Elaboration on page 222). For the example 

below, remember that for single precision, the maximum exponent is 127, and the 

minimum exponent is 126. 

Binary Floating-Point Addition

EXAMPLE

Try adding the numbers 0.5  and 0.4375  in binary using the algorithm in 

ten

ten

Figure 3.14. 

Let’s fi rst look at the binary version of the two numbers in normalized scientifi c 

ANSWER

notation, assuming that we keep 4 bits of precision:

0.5   1/2  

 1/21

ten

ten 

ten



 0.1  

 0.1   20 

 1.000   21

two

two

two

0.4375   7/16    7/24

ten

ten

ten



 0.0111   0.0111   20  1.110   22

two

two

two

Now we follow the algorithm:

Step 

1. 

Th

e signifi cand of the number with the lesser exponent (1.11  

two

 22) is shift ed right until its exponent matches the larger number:

1.110   22  0.111   21

two

two



Step 2.  Add the signifi cands:

1.000   21  (0.111   21)  0.001   21

two

two

two
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Start

1.  Compare the exponents of the two numbers; 

shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

Overflow or

Yes

underflow? 

No

Exception

4. Round the significand to the appropriate

number of bits

No

Still normalized? 

Yes

Done

FIGURE 3.14  Floating-point addition.   Th

e normal path is to execute steps 3 and 4 once, but if 

rounding causes the sum to be unnormalized, we must repeat step 3. 
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Step 3.  Normalize the sum, checking for overfl ow or underfl ow:

0.001   21  0.010   22  0.100   23

two

two

two



 1.000   24

two



Since 

127 

  4    126, there is no overfl ow or underfl ow. (Th

e 

biased exponent would be 4  127, or 123, which is between 1 and 

254, the smallest and largest unreserved biased exponents.)



Step 4.  Round the sum:

1.000   24

two



Th

e sum already fi ts exactly in 4 bits, so there is no change to the bits 

due to rounding. 



Th

is sum is then

1.000

 24  0.0001000   0.0001

two 

two

two



 1/24  

 1/16  

 0.0625

ten

ten

ten

Th

is sum is what we would expect from adding 0.5  to 0.4375 . 

ten

ten

Many computers dedicate hardware to run fl oating-point operations as fast as possible. 

Figure 3.15 sketches the basic organization of hardware for fl oating-point addition. 

Floating-Point Multiplication

Now that we have explained fl oating-point addition, let’s try fl oating-point 

multiplication. We start by multiplying decimal numbers in scientifi c notation by 

hand: 1.110   1010  9.200   105. Assume that we can store only four digits 

ten

ten

of the signifi cand and two digits of the exponent. 



Step 1.  Unlike addition, we calculate the exponent of the product by simply 

adding the exponents of the operands together:

New exponent  10  (5)  5



Let’s do this with the biased exponents as well to make sure we obtain 

the same result: 10 + 127 = 137, and 5 + 127 = 122, so

New exponent  137  122 259



Th

is result is too large for the 8-bit exponent fi eld, so something is 

amiss! Th

e problem is with the bias because we are adding the biases 

as well as the exponents:

New exponent  (10  127)  (5  127)  (5  2  127)  259



 Accordingly, to get the correct biased sum when we add biased numbers, 

 we must subtract the bias from the sum:
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Sign

Exponent

Fraction

Sign

Exponent

Fraction

Compare

Small ALU

exponents

Exponent

difference

0

1

0

1

0

1

Shift smaller

Control

Shift right

number right

Add

Big ALU

0

1

0

1

Increment or

Shift left or right

decrement

Normalize

Rounding hardware

Round

Sign

Exponent

Fraction

FIGURE 3.15  Block diagram of an arithmetic unit dedicated to fl oating-point addition.  Th e steps of Figure 3.14 correspond 

to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is larger and by how much. Th

is diff erence controls the three multiplexors; from left  to right, they select the larger exponent, the signifi cand of the smaller number, and the signifi cand of the larger number. Th

e smaller signifi cand is shift ed right, and then the signifi cands are added together 

using the big ALU. Th

e normalization step then shift s the sum left  or right and increments or decrements the exponent. Rounding then creates the fi nal result, which may require normalizing again to produce the actual fi nal result. 
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New exponent  137  122  127  259  127  132  (5  127)



and 5 is indeed the exponent we calculated initially. 



Step 2.  Next comes the multiplication of the signifi cands:



1.110ten





×  9.200ten



0000



0000



2220



9990

10212000ten



Th

ere are three digits to the right of the decimal point for each 

operand, so the decimal point is placed six digits from the right in the 

product signifi cand:

10.212000ten



Assuming that we can keep only three digits to the right of the decimal 

point, the product is 10.212  105. 

Step 

3. 

Th

is product is unnormalized, so we need to normalize it:

10.212   105  1.0212   106

ten

ten



Th

us, aft er the multiplication, the product can be shift ed right one digit 

to put it in normalized form, adding 1 to the exponent. At this point, 

we can check for overfl ow and underfl ow. Underfl ow may occur if both 

operands are small—that is, if both have large negative exponents. 



Step 4.  We assumed that the signifi cand is only four digits long (excluding the 

sign), so we must round the number. Th

e number

1.0212   106

ten



is rounded to four digits in the signifi cand to

1.021   106

ten

Step 

5. 

Th

e sign of the product depends on the signs of the original operands. 

If they are both the same, the sign is positive; otherwise, it’s negative. 

Hence, the product is

1.021   106

ten



Th

e sign of the sum in the addition algorithm was determined by 

addition of the signifi cands, but in multiplication, the sign of the 

product is determined by the signs of the operands. 
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Start

1.  Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

Overflow or

Yes

underflow? 

No

Exception

4. Round the significand to the appropriate

number of bits

No

Still normalized? 

Yes

5. Set the sign of the product to positive if the

signs of the original operands are the same; 

if they differ make the sign negative

Done

FIGURE 3.16  Floating-point multiplication.  Th

e normal path is to execute steps 3 and 4 once, but if 

rounding causes the sum to be unnormalized, we must repeat step 3. 
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Once again, as Figure 3.16 shows, multiplication of binary fl oating-point numbers is quite similar to the steps we have just completed. We start with calculating 

the new exponent of the product by adding the biased exponents, being sure to 

subtract one bias to get the proper result. Next is multiplication of signifi cands, 

followed by an optional normalization step. Th

e size of the exponent is checked 

for overfl ow or underfl ow, and then the product is rounded. If rounding leads to 

further normalization, we once again check for exponent size. Finally, set the sign 

bit to 1 if the signs of the operands were diff erent (negative product) or to 0 if they 

were the same (positive product). 

Binary Floating-Point Multiplication

EXAMPLE

Let’s try multiplying the numbers 0.5  and 0.4375 , using the steps in 

ten

ten

Figure 3.16. 

In binary, the task is multiplying 1.000   21 by 1.110   22. 

two

two

ANSWER



Step 1.  Adding the exponents without bias:

1  (2)  3



or, using the biased representation:

(1  127)  (2  127)  127  (1  2)  (127  127  127) 

 3  127  124 



Step 2.  Multiplying the signifi cands:



1.000two



  1.110two



0000



1000



1000



1000

1110000two



Th

e product is 1.110000   23, but we need to keep it to 4 bits, so it 

two

is 1.110   23. 

two



Step 3.  Now we check the product to make sure it is normalized, and then 

check the exponent for overfl ow or underfl ow. Th

e product is already 

normalized and, since 127   3    126, there is no overfl ow or 

underfl ow. (Using the biased representation, 254  124  1, so the 

exponent fi ts.)



Step 4.  Rounding the product makes no change:

1.110   23

two

 

3.5 Floating 

Point 

211



Step 5.  Since the signs of the original operands diff er, make the sign of the 

product negative. Hence, the product is

1.110   23

two



Converting to decimal to check our results:

1.110   23  0.001110   0.00111

two

two

two



 7/25   7/32   0.21875

ten

ten

ten



Th

e product of 0.5  and 0.4375  is indeed 0.21875 . 

ten

ten

ten

Floating-Point Instructions in MIPS

MIPS supports the IEEE 754 single precision and double precision formats with 

these instructions:

■ Floating-point  addition, single (add.s) and  addition, double (add.d)

■ Floating-point  subtraction, single (sub.s) and  subtraction, double (sub.d)

■ Floating-point  multiplication, single (mul.s) and  multiplication, double (mul.d)

■ Floating-point  division, single (div.s) and  division, double (div.d)

■ Floating-point  comparison, single (c.x.s) and  comparison, double (c.x.d), 

where x may be  equal (eq),  not equal (neq),  less than (lt),  less than or equal (le),  greater than (gt), or  greater than or equal (ge)

■ Floating-point  branch, true (bc1t) and  branch, false (bc1f)

Floating-point comparison sets a bit to true or false, depending on the comparison 

condition, and a fl oating-point branch then decides whether or not to branch, 

depending on the condition. 

Th

e MIPS designers decided to add separate fl oating-point  registers—called 

$f0, $f1, $f2, …—used either for single precision or double precision. Hence, 

they included separate loads and stores for fl oating-point  registers:  lwc1 and 

swc1. Th

e base registers for fl oating-point data transfers which are used for 

addresses remain integer registers. Th

e MIPS code to load two single precision 

numbers from memory, add them, and then store the sum might look like this:

lwc1      $f4,c($sp)  # Load 32-bit F.P. number into F4

lwc1      $f6,a($sp)  # Load 32-bit F.P. number into F6

add.s     $f2,$f4,$f6 # F2 = F4 + F6 single precision

swc1      $f2,b($sp)  # Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision registers, 

using the even register number as its name. Th

us, the pair of single precision 

registers $f2 and $f3 also form the double precision register named $f2. 

Figure 3.17 summarizes the fl oating-point portion of the MIPS architecture revealed in this chapter, with the additions to support fl oating point shown in color. Similar to 

Figure 2.19 in Chapter 2, Figure 3.18 shows the encoding of these instructions. 
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MIPS floating-point operands

Name

Example

Comments

32 floating- 

$f0, $f1, $f2, . . . , $f31

MIPS floating-point registers are used in pairs for double precision numbers. 

point registers

230 memory words

Memory[0], 

Accessed only by data transfer instructions. MIPS uses byte addresses, so 

Memory[4], . . . , 

sequential word addresses differ by 4. Memory holds data structures, such 

Memory[4294967292]

as arrays, and spilled registers, such as those saved on procedure calls. 

MIPS floating-point assembly language

Category Instruction

Example

Meaning

Comments

FP add single

add.s   $f2,$f4,$f6

$f2 = $f4 + $f6

FP add (single precision)

FP subtract single

sub.s   $f2,$f4,$f6

$f2 = $f4 – $f6

FP sub (single precision)

FP multiply single

mul.s   $f2,$f4,$f6

$f2 = $f4 × $f6

FP multiply (single precision)

FP divide single

div.s   $f2,$f4,$f6

$f2 = $f4 / $f6

FP divide (single precision)

Arithmetic

FP add double

add.d   $f2,$f4,$f6

$f2 = $f4 + $f6

FP add (double precision)

FP subtract double

sub.d   $f2,$f4,$f6

$f2 = $f4 – $f6

FP sub (double precision)

FP multiply double

mul.d   $f2,$f4,$f6

$f2 = $f4 × $f6

FP multiply (double 

precision)

FP divide double

div.d   $f2,$f4,$f6

$f2 = $f4 / $f6

FP divide (double precision)

Data 

load word copr. 1

lwc1    $f1,100($s2)

$f1 = Memory[$s2 + 100] 32-bit data to FP register

transfer

store word copr. 1

swc1    $f1,100($s2)

Memory[$s2 + 100] = $f1

32-bit data to memory

branch on FP true

bc1t    25

if (cond == 1) go to PC + 4 

PC-relative branch if FP  

+ 100

cond. 

branch on FP false

bc1f    25

if (cond == 0) go to PC + 4 

PC-relative branch if not  

Condi- 

+ 100

cond. 

tional 

FP compare single 

c.lt.s $f2,$f4

if ($f2 < $f4) 

FP compare less than 

branch

(eq,ne,lt,le,gt,ge)

cond = 1; else cond = 0

single precision

FP compare double 

c.lt.d $f2,$f4

if ($f2 < $f4) 

FP compare less than 

(eq,ne,lt,le,gt,ge)

cond = 1; else cond = 0

double precision

MIPS floating-point machine language

Name

Format

Example

Comments

add.s 

R

17

16

6

4

2

0

add.s  $f2,$f4,$f6

sub.s 

R

17

16

6

4

2

1

sub.s  $f2,$f4,$f6

mul.s 

R

17

16

6

4

2

2

mul.s  $f2,$f4,$f6

div.s 

R

17

16

6

4

2

3

div.s  $f2,$f4,$f6

add.d 

R

17

17

6

4

2

0

add.d  $f2,$f4,$f6

sub.d 

R

17

17

6

4

2

1

sub.d  $f2,$f4,$f6

mul.d 

R

17

17

6

4

2

2

mul.d  $f2,$f4,$f6

div.d 

R

17

17

6

4

2

3

div.d  $f2,$f4,$f6

lwc1 

I

49

20

2

100

lwc1   $f2,100($s4)

swc1 

I

57

20

2

100

swc1   $f2,100($s4)

bc1t 

I

17

8

1

25

bc1t   25

bc1f 

I

17

8

0

25

bc1f   25

c.lt.s

R

17

16

4

2

0

60

c.lt.s $f2,$f4

c.lt.d

R

17

17

4

2

0

60

c.lt.d $f2,$f4

Field size

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

All MIPS instructions 32 bits

FIGURE 3.17  MIPS fl oating-point architecture revealed thus far.  See Appendix A, Section A.10, for more detail. Th is information 

is also found in column 2 of the MIPS Reference Data Card at the front of this book. 
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op(31:26):

28–26

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

31–29

0(000)

Rfmt

Bltz/gez

j

jal

beq

bne

blez

bgtz

1(001)

addi

addiu

slti

sltiu

ANDi

ORi xORi

lui

2(010)

TLB

FlPt

3(011)

4(100)

lb

lh

lwl

lw

lbu

lhu

lwr

5(101)

sb

sh

swl

sw

swr

6(110)

lwc0

lwc1

7(111)

swc0

swc1

op(31:26) = 010001 (FlPt), (rt(16:16) = 0 =>  c = f, rt(16:16) = 1 =>  c = t), rs(25:21): 23–21

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

25–24

0(00)

mfc1

cfc1

mtc1

ctc1

1(01)

bc1.  c

2(10)

 f = single

 f = double

3(11)

op(31:26) = 010001 (FlPt), ( f above: 10000 =>  f = s, 10001 =>  f = d), funct(5:0): 2–0

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

5–3

0(000)

add.  f

sub.  f

mul.  f

div.  f

abs.  f

mov.  f

neg.  f

1(001)

2(010)

3(011)

4(100)

cvt.s.  f

cvt.d.  f

cvt.w.  f

5(101)

6(110)

c.f.  f

c.un.  f

c.eq.  f

c.ueq.  f

c.olt.  f

c.ult.  f

c.ole.  f

c.ule.  f

7(111)

c.sf.  f

c.ngle.  f

c.seq.  f

c.ngl.  f

c.lt.  f

c.nge.  f

c.le.  f

c.ngt.  f

FIGURE 3.18  MIPS fl oating-point instruction encoding.  Th

is notation gives the value of a fi eld by row and by column. For example, 

in the top portion of the fi gure, lw is found in row number 4 (100  for bits 31–29 of the instruction) and column number 3 (011  for bits two

two

28–26 of the instruction), so the corresponding value of the op fi eld (bits 31–26) is 100011 . Underscore means the fi eld is used elsewhere. 

two

For example, FlPt in row 2 and column 1 (op  010001 ) is defi ned in the bottom part of the fi gure. Hence sub.f in row 0 and column 1 of two

the bottom section means that the funct fi eld (bits 5–0) of the instruction) is 000001  and the op fi eld (bits 31–26) is 010001 . Note that the two

two

5-bit rs fi eld, specifi ed in the middle portion of the fi gure, determines whether the operation is single precision ( f   s, so rs  10000) or double precision ( f   d, so rs  10001). Similarly, bit 16 of the instruction determines if the bc1.c instruction tests for true (bit 16  1  	bc1.t) or false (bit 16  0  	 bc1.f). Instructions in color are described in Chapter 2 or this chapter, with Appendix A covering all instructions. 

Th

is information is also found in column 2 of the MIPS Reference Data Card at the front of this book. 

214 

Chapter 3  Arithmetic for Computers

Hardware/

One issue that architects face in supporting fl oating-point arithmetic is whether 

to use the same registers used by the integer instructions or to add a special set 

Software  for fl oating point. Because programs normally perform integer operations and 

Interface

fl oating-point operations on diff erent data, separating the registers will only 

slightly increase the number of instructions needed to execute a program. Th

e 

major impact is to create a separate set of data transfer instructions to move data 

between fl oating-point registers and memory. 

Th

e benefi ts of separate fl oating-point registers are having twice as many 

registers without using up more bits in the instruction format, having twice the 

register bandwidth by having separate integer and fl oating-point register sets, and 

being able to customize registers to fl oating point; for example, some computers 

convert all sized operands in registers into a single internal format. 

Compiling a Floating-Point C Program into MIPS Assembly Code

EXAMPLE

Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)

{

return ((5.0/9.0) *(fahr – 32.0)); 

}

Assume that the fl oating-point argument fahr is passed in $f12 and the 

result should go in $f0. (Unlike integer registers, fl oating-point register 0 can 

contain a number.) What is the MIPS assembly code? 

We assume that the compiler places the three fl oating-point constants in 

ANSWER

memory within easy reach of the global pointer $gp. Th

e fi rst two instruc-

tions load the constants 5.0 and 9.0 into fl oating-point registers:

f2c:

lwc1 $f16,const5($gp) # $f16 = 5.0 (5.0 in memory)

lwc1 $f18,const9($gp) # $f18 = 9.0 (9.0 in memory)

Th

ey are then divided to get the fraction 5.0/9.0:

div.s $f16, $f16, $f18 # $f16 = 5.0 / 9.0
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(Many compilers would divide 5.0 by 9.0 at compile time and save the single 

constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we 

load the constant 32.0 and then subtract it from fahr ($f12):

lwc1 $f18, const32($gp)# $f18 = 32.0

sub.s $f18, $f12, $f18 # $f18 = fahr – 32.0

Finally, we multiply the two intermediate results, placing the product in $f0 as 

the return result, and then return

mul.s $f0, $f16, $f18 # $f0 = (5/9)*(fahr – 32.0)

jr $ra                # return

Now let’s perform fl oating-point operations on matrices, code commonly 

found in scientifi c programs. 

Compiling Floating-Point C Procedure with Two-Dimensional 

Matrices into MIPS

EXAMPLE

Most fl oating-point calculations are performed in double precision. Let’s per-

form matrix multiply of C  C  A * B. It is commonly called DGEMM, 

for Double precision, General Matrix Multiply. We’ll see versions of DGEMM 

again in Section 3.8 and subsequently in Chapters 4, 5, and 6. Let’s assume C, 

A, and B are all square matrices with 32 elements in each dimension. 

void mm (double c[][], double a[][], double b[][])

{

int i, j, k; 

for (i = 0; i != 32; i = i + 1)

for (j = 0; j != 32; j = j + 1)

for (k = 0; k != 32; k = k + 1)

c[i][j] = c[i][j] + a[i][k] *b[k][j]; 

}

Th

e array starting addresses are parameters, so they are in $a0, $a1, and $a2. 

Assume that the integer variables are in $s0,  $s1, and $s2, respectively. 

What is the MIPS assembly code for the body of the procedure? 

Note that c[i][j] is used in the innermost loop above. Since the loop index 

is k, the index does not aff ect c[i][j], so we can avoid loading and storing 

ANSWER

c[i][j] each iteration. Instead, the compiler loads c[i][j] into a register 

outside the loop, accumulates the sum of the products of a[i][k] and 
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b[k][j] in that same register, and then stores the sum into c[i][j] upon 

termination of the innermost loop. 

We keep the code simpler by using the assembly language pseudoinstructions 

li (which loads a constant into a register), and l.d and s.d (which the 

assembler turns into a pair of data transfer instructions, lwc1 or swc1, to a 

pair of fl oating-point registers). 

Th

e body of the procedure starts with saving the loop termination value of 

32 in a temporary register and then initializing the three  for loop variables:

mm:... 

li     $t1, 32  # $t1 = 32 (row size/loop end)

li     $s0, 0   # i = 0; initialize 1st for loop

L1:   li     $s1, 0   # j = 0; restart 2nd for loop

L2:   li     $s2, 0   # k = 0; restart 3rd for loop

To calculate the address of c[i][j], we need to know how a 32  32, two-

dimensional array is stored in memory. As you might expect, its layout is the 

same as if there were 32 single-dimension arrays, each with 32 elements. So the 

fi rst step is to skip over the i “single-dimensional arrays,” or rows, to get the 

one we want. Th

us, we multiply the index in the fi rst dimension by the size of 

the row, 32. Since 32 is a power of 2, we can use a shift  instead:

sll  $t2, $s0, 5      # $t2 = i * 25 (size of row of c)

Now we add the second index to select the jth element of the desired row:

addu  $t2, $t2, $s1   # $t2 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix element 

in bytes. Since each element is 8 bytes for double precision, we can instead shift  

left  by 3:

sll  $t2, $t2, 3      # $t2 = byte offset of [i][j]

Next we add this sum to the base address of c, giving the address of c[i][j], 

and then load the double precision number c[i][j] into $f4:

addu  $t2, $a0, $t2   # $t2 = byte address of c[i][j]

l.d   $f4, 0($t2)     # $f4 = 8 bytes of c[i][j]

Th

e following fi ve instructions are virtually identical to the last fi ve: calculate 

the address and then load the double precision number b[k][j]. 

L3: sll $t0, $s2, 5     # $t0 = k * 25 (size of row of b)

addu $t0, $t0, $s1 # $t0 = k * size(row) + j

sll $t0, $t0, 3    # $t0 = byte offset of [k][j]

addu $t0, $a2, $t0 # $t0 = byte address of b[k][j]

l.d $f16, 0($t0)   # $f16 = 8 bytes of b[k][j]

Similarly, the next fi ve instructions are like the last fi ve: calculate the address 

and then load the double precision number a[i][k]. 
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sll     $t0, $s0, 5    # $t0 = i * 25 (size of row of a)

addu    $t0, $t0, $s2  # $t0 = i * size(row) + k

sll     $t0, $t0, 3    # $t0 = byte offset of [i][k]

addu    $t0, $a1, $t0  # $t0 = byte address of a[i][k]

l.d     $f18, 0($t0)   # $f18 = 8 bytes of a[i][k]

Now that we have loaded all the data, we are fi nally ready to do some fl oating-

point operations! We multiply elements of a and b located in registers $f18 

and $f16, and then accumulate the sum in $f4. 

mul.d $f16, $f18, $f16 # $f16 = a[i][k] * b[k][j]

add.d $f4, $f4, $f16    # f4 = c[i][j] + a[i][k] * b[k][j]

Th

e fi nal block increments the index k and loops back if the index is not 32. 

If it is 32, and thus the end of the innermost loop, we need to store the sum 

accumulated in $f4 into c[i][j]. 

addiu  $s2, $s2, 1     # $k = k + 1

bne    $s2, $t1, L3    # if (k != 32) go to L3

s.d    $f4, 0($t2)     # c[i][j] = $f4

Similarly, these fi nal four instructions increment the index variable of the 

middle and outermost loops, looping back if the index is not 32 and exiting if 

the index is 32. 

addiu  $s1, $s1, 1     # $j = j + 1

bne    $s1, $t1, L2    # if (j != 32) go to L2

addiu  $s0, $s0, 1     # $i = i + 1

bne    $s0, $t1, L1    # if (i != 32) go to L1

…

Figure 3.22 below shows the x86 assembly language code for a slightly diff erent version of DGEMM in Figure 3.21. 

Elaboration: The array layout discussed in the example, called  row-major order,  is used by C and many other programming languages. Fortran instead uses  column-major 

 order,  whereby the array is stored column by column. 

Elaboration: Only 16 of the 32 MIPS fl oating-point registers could originally be used 

for double precision operations: $f0, $f2, $f4, …, $f30. Double precision is computed 

using pairs of these single precision registers. The odd-numbered fl oating-point registers 

were used only to load and store the right half of 64-bit fl oating-point numbers. MIPS-32 

added l.d and s.d to the instruction set. MIPS-32 also added “paired single” versions of 

all fl oating-point instructions, where a single instruction results in two parallel fl oating-point operations on two 32-bit operands inside 64-bit registers (see Section 3.6). For example, 

add.ps $f0, $f2, $f4 is equivalent to add.s $f0, $f2, $f4 followed by add.s 

$f1, $f3, $f5. 
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Elaboration:  Another reason for separate integers and fl oating-point registers is that 

microprocessors in the 1980s didn’t have enough transistors to put the fl oating-point unit 

on the same chip as the integer unit. Hence, the fl oating-point unit, including the fl oating-

point registers, was optionally available as a second chip. Such optional accelerator 

chips are called  coprocessors,  and explain the acronym for fl oating-point loads in MIPS: lwc1 means load word to coprocessor 1, the fl oating-point unit. (Coprocessor 0 deals 

with virtual memory, described in Chapter 5.) Since the early 1990s, microprocessors 

have integrated fl oating point (and just about everything else) on chip, and hence the term 

 coprocessor joins  accumulator and  core memory as quaint terms that date the speaker. 

Elaboration:  As mentioned in Section 3.4, accelerating division is more challenging 

than multiplication. In addition to SRT, another technique to leverage a fast multiplier 

is   Newton’s iteration, where division is recast as fi nding the zero of a function to fi nd the reciprocal 1/ c,  which is then multiplied by the other operand. Iteration techniques 

 cannot be rounded properly without calculating many extra bits. A TI chip solved this 

problem by calculating an extra-precise reciprocal. 

Elaboration:  Java embraces IEEE 754 by name in its defi nition of Java fl oating-point 

data types and operations. Thus, the code in the fi rst example could have well been 

generated for a class method that converted Fahrenheit to Celsius. 

The second example above uses multiple dimensional arrays, which are not explicitly 

supported in Java. Java allows arrays of arrays, but each array may have its own length, 

unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version 

of this second example would require a good deal of checking code for array bounds, 

including a new length calculation at the end of row access. It would also need to check 

that the object reference is not null. 

Accurate Arithmetic

guard  Th

e fi rst of two 

Unlike integers, which can represent exactly every number between the smallest and 

extra bits kept on the 

largest number, fl oating-point numbers are normally approximations for a number 

right during intermediate 

they can’t really represent. Th

e reason is that an infi nite variety of real numbers 

calculations of fl oating-

exists between, say, 0 and 1, but no more than 253 can be represented exactly in 

point numbers; used 

double precision fl oating point. Th

e best we can do is getting the fl oating-point 

to improve rounding 

representation close to the actual number. Th

us, IEEE 754 off ers several modes of 

accuracy. 

rounding to let the programmer pick the desired approximation. 

round  Method to 

Rounding sounds simple enough, but to round accurately requires the hardware 

make the intermediate 

to include extra bits in the calculation. In the preceding examples, we were vague 

fl oating-point result fi t 

on the number of bits that an intermediate representation can occupy, but clearly, 

the fl oating-point format; 

if every intermediate result had to be truncated to the exact number of digits, there 

the goal is typically to fi nd 

would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits 

the nearest number that 

on the right during intermediate additions, called guard and round, respectively. 

can be represented in the 

format. 

Let’s do a decimal example to illustrate their value. 
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Rounding with Guard Digits

EXAMPLE

Add 2.56    100 to 2.34    102, assuming that we have three signifi cant 

ten

ten

decimal digits. Round to the nearest decimal number with three signifi cant 

decimal digits, fi rst with guard and round digits, and then without them. 

First we must shift  the smaller number to the right to align the exponents, so 

2.56   100 becomes 0.0256   102. Since we have guard and round digits, 

ANSWER

ten

ten

we are able to represent the two least signifi cant digits when we align expo-

nents. Th

e guard digit holds 5 and the round digit holds 6. Th

e sum is

2.3400ten

+ 0.0256ten

2.3656ten

Th

us the sum is 2.3656   102. Since we have two digits to round, we want 

ten

values 0 to 49 to round down and 51 to 99 to round up, with 50 being the 

tiebreaker. Rounding the sum up with three signifi cant digits yields 2.37   102. 

ten

Doing this  without guard and round digits drops two digits from the 

calculation. Th

e new sum is then

2.34ten

+ 0.02ten

2.36ten

Th

e answer is 2.36   102, off  by 1 in the last digit from the sum above. 

ten

Since the worst case for rounding would be when the actual number is halfway  units in the last place between two fl oating-point representations, accuracy in fl oating point is normally  (ulp)  Th e number of measured in terms of the number of bits in error in the least signifi cant bits of the  bits in error in the least signifi cand; the measure is called the number of units in the last place, or ulp. If  signifi cant bits of the signifi cand between 

a number were off  by 2 in the least signifi cant bits, it would be called off  by 2 ulps.  the actual number and Provided there is no overfl ow, underfl ow, or invalid operation exceptions, IEEE  the number that can be 754 guarantees that the computer uses the number that is within one-half ulp. 

represented. 

Elaboration:  Although the example above really needed just one extra digit, multiply 

can need two. A binary product may have one leading 0 bit; hence, the normalizing step 

must shift the product one bit left. This shifts the guard digit into the least signifi cant bit 

of the product, leaving the round bit to help accurately round the product. 

IEEE 754 has four rounding modes: always round up (toward +∞), always round down 

(toward ∞), truncate, and round to nearest even. The fi nal mode determines what to 

do if the number is exactly halfway in between. The U.S.  Internal Revenue Service (IRS) 

always rounds 0.50 dollars up, possibly to the benefi t of the IRS. A more equitable way 

would be to round up this case half the time and round down the other half. IEEE 754 

says that if the least signifi cant bit retained in a halfway case would be odd, add one; 
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if it’s even, truncate. This method always creates a 0 in the least signifi cant bit in the 

tie-breaking case, giving the rounding mode its name. This mode is the most commonly 

used, and the only one that Java supports. 

The goal of the extra rounding bits is to allow the computer to get the same results 

as if the intermediate results were calculated to infi nite precision and then rounded. To 

support this goal and round to the nearest even, the standard has a third bit in addition 

to guard and round; it is set whenever there are nonzero bits to the right of the round 

sticky bit  A bit used in 

bit. This sticky bit allows the computer to see the difference between 0.50 … 00   and 

ten

rounding in addition to 

0.50 … 01  when rounding. 

ten

guard and round that is 

The sticky bit may be set, for example, during addition, when the smaller number is 

set whenever there are 

shifted to the right. Suppose we added 5.01   101 to 2.34   102 in the example 

ten

ten

nonzero bits to the right 

above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of 

of the round bit. 

2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the 

sticky bit to remember whether any 1s were shifted off, we would assume the number 

is equal to 2.345000 … 00 and round to the nearest even of 2.34. With the sticky bit 

to remember that the number is larger than 2.345000 … 00, we round instead to 2.35. 

Elaboration:  PowerPC, SPARC64, AMD SSE5, and Intel AVX architectures provide a 

single instruction that does a multiply and add on three registers:  a     a    ( b     c). 

Obviously, this instruction allows potentially higher fl oating-point performance for this 

common operation. Equally important is that instead of performing two roundings—after 

fused multiply add 

the multiply and then after the add—which would happen with separate instructions, 

A fl oating-point 

the multiply add instruction can perform a single rounding after the add. A single 

instruction that performs 

rounding step increases the precision of multiply add. Such operations with a single 

both a multiply and an 

add, but rounds only once 

rounding are called fused multiply add. It was added to the IEEE 754-2008  standard 

aft er the add. 

(see 

Section 3.11). 

Summary

Th

e  Big Picture that follows reinforces the stored-program concept from Chapter 2; 

the meaning of the information cannot be determined just by looking at the bits, for 

the same bits can represent a variety of objects. Th

is section shows that computer 

arithmetic is fi nite and thus can disagree with natural arithmetic. For example, the 

IEEE 754 standard fl oating-point representation

(1)5  (1  Fraction)  2(Exponent Bias)

is almost always an approximation of the real number. Computer systems must 

take care to minimize this gap between computer arithmetic and arithmetic in the 

real world, and programmers at times need to be aware of the implications of this 

approximation. 

Bit patterns have no inherent meaning. Th

ey may represent signed integers, 

The BIG

unsigned integers, fl oating-point numbers, instructions, and so on. What is 

Picture

represented depends on the instruction that operates on the bits in the word. 
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Th

e major diff erence between computer numbers and numbers in the 

real world is that computer numbers have limited size and hence limited 

precision; it’s possible to calculate a number too big or too small to be 

represented in a word. Programmers must remember these limits and 

write programs accordingly. 

C type

Java type Data transfers

Operations

addu, addiu, subu, mult, div, AND, 

int

int

lw, sw, lui

ANDi, OR, ORi, NOR, slt, slti

addu, addiu, subu, multu, divu, AND, 

unsigned int

—

lw, sw, lui

ANDi, OR, ORi, NOR, sltu, sltiu

add, addi, sub, mult, div AND, ANDi, 


char

—

lb, sb, lui

OR, ORi, NOR, slt, slti

addu, addiu, subu, multu, divu, AND, 

—

char

lh, sh, lui

ANDi, OR, ORi, NOR, sltu, sltiu

add.s, sub.s, mult.s, div.s, c.eq.s, 

float

float

lwc1, swc1

c.lt.s, c.le.s

add.d, sub.d, mult.d, div.d, c.eq.d, 

double

double

l.d, s.d

c.lt.d, c.le.d

In the last chapter, we presented the storage classes of the programming language C  Hardware/ 

(see the  Hardware/Soft ware Interface section in Section 2.7). Th

e table above shows  Software 

some of the C and Java data types, the MIPS data transfer instructions, and instructions 

that operate on those types that appear in Chapter 2 and this chapter. Note that Java  Interface omits unsigned integers. 

Th

e revised IEEE 754-2008 standard added a 16-bit fl oating-point format with fi ve  Check 

exponent bits. What do you think is the likely range of numbers it could represent? 

Yourself

1.      1.0000 00  20              to     1.1111 1111 11  231, 0

2.  1.0000 0000 0  214   to 1.1111 1111 1  215, 0, ∞, NaN

3.  1.0000 0000 00  214 to 1.1111 1111 11  215, 0, ∞, NaN

4.  1.0000 0000 00  215 to 1.1111 1111 11  214, 0, ∞, NaN

Elaboration: To accommodate comparisons that may include NaNs, the standard 

includes  ordered and  unordered as options for compares. Hence, the full MIPS instruction set has many fl avors of compares to support NaNs. (Java does not support unordered 

compares.)
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In an attempt to squeeze every last bit of precision from a fl oating-point operation, 

the standard allows some numbers to be represented in unnormalized form. Rather than 

having a gap between 0 and the smallest normalized number, IEEE allows  denormalized  

 numbers (also known as  denorms or  subnormals). They have the same exponent as zero but a nonzero fraction. They allow a number to degrade in signifi cance until it 

becomes 0, called  gradual underfl ow. For example, the smallest positive single precision normalized number is

1.0000 0000 0000 0000 0000 000

 2126

two

but the smallest single precision denormalized number is

0.0000 0000 0000 0000 0000 001

 2126,  or 1.0   2149

two

two

For double precision, the denorm gap goes from 1.0  21022 to 1.0  21074. 

The possibility of an occasional unnormalized operand has given headaches to 

fl oating-point designers who are trying to build fast fl oating-point units. Hence, many 

computers cause an exception if an operand is denormalized, letting software complete 

the operation. Although software implementations are perfectly valid, their lower 

performance has lessened the popularity of denorms in portable fl oating-point software. 

Moreover, if programmers do not expect denorms, their programs may surprise them. 

 3.6 

 Parallelism and Computer Arithmetic: 

Subword Parallelism

Since every desktop microprocessor by defi nition has its own graphical displays, 

as transistor budgets increased it was inevitable that support would be added for 

graphics operations. 

Many graphics systems originally used 8 bits to represent each of the three 

primary colors plus 8 bits for a location of a pixel. Th

e addition of speakers and 

microphones for teleconferencing and video games suggested support of sound as 

well. Audio samples need more than 8 bits of precision, but 16 bits are suffi

cient. 

Every microprocessor has special support so that bytes and halfwords take up 

less space when stored in memory (see Section 2.9), but due to the infrequency of 

arithmetic operations on these data sizes in typical integer programs, there was 

little support beyond data transfers. Architects recognized that many graphics 

and audio applications would perform the same operation on vectors of this data. 

By partitioning the carry chains within a 128-bit adder, a processor could use 

parallelism to perform simultaneous operations on short vectors of sixteen 8-bit 

operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands. Th

e 

cost of such partitioned adders was small. 

Given that the parallelism occurs within a wide word, the extensions are 

classifi ed as  subword parallelism. It is also classifi ed under the more general name 

of   data level parallelism. Th

ey have been also called vector or SIMD, for single 

instruction, multiple data (see Section 6.6). Th

e rising popularity of multimedia 
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applications led to arithmetic instructions that support narrower operations that 

can easily operate in parallel. 

For example, ARM added more than 100 instructions in the NEON multimedia 

instruction extension to support subword parallelism, which can be used either 

with ARMv7 or ARMv8. It added 256 bytes of new registers for NEON that can be 

viewed as 32 registers 8 bytes wide or 16 registers 16 bytes wide. NEON supports 

all the subword data types you can imagine  except 64-bit fl oating point numbers:

■  8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers

■ 32-bit fl oating point numbers

Figure 3.19 gives a summary of the basic NEON instructions. 
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VMUL.F32, VMULL{S8,U8,S16,U16,S32,U32}

VEOR.64, VEOR.128

VST{1,2,3.4}.{I8,I16,I32}

VMLA.F32, VMLAL{S8,U8,S16,U16,S32,U32}

VBIC.64, VBIC.128

VMOV.{I8,I16,I32,F32}, #imm

VMLS.F32, VMLSL{S8,U8,S16,U16,S32,U32}

VORN.64, VORN.128

VMVN.{I8,I16,I32,F32}, #imm

VMAX.{S8,U8,S16,U16,S32,U32,F32}

VCEQ.{I8,I16,I32,F32}

VMOV.{I64,I128}
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FIGURE 3.19  Summary of ARM NEON instructions for subword parallelism. We use the curly brackets {} to show optional variations of the basic operations: {S8,U8,8} stand for signed and unsigned 8-bit integers or 8-bit data where type doesn’t matter, of which 16 

fi t in a 128-bit register; {S16,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fi t in a 128-bit register; 

{S32,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fi t in a 128-bit register; {S64,U64,64} stand for signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fi t in a 128-bit register; {F32} stand for signed and unsigned 32-bit fl oating point numbers, of which 4 fi t in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON 

registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged. 

Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers. 

Elaboration:  In addition to signed and unsigned integers, ARM includes “fi xed-point” 

format of four sizes called I8, I16, I32, and I64, of which 16, 8, 4, and 2 fi t in a 128-

bit register, respectively. A portion of the fi xed point is for the fraction (to the right of 

the binary point) and the rest of the data is the integer portion (to the left of the binary 

point).  The location of the binary point is up to the software. Many ARM processors do 

not have fl oating point hardware and thus fl oating point operations must be performed by 

library routines. Fixed point arithmetic can be signifi cantly faster than software fl oating 

point routines, but more work for the programmer. 
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 3.7 

 Real Stuff:  Streaming SIMD Extensions 

and Advanced Vector Extensions in x86

Th

e original MMX ( MultiMedia eXtension) and SSE ( Streaming SIMD Extension) 

instructions for the x86 included similar operations to those found in ARM NEON. 

Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture as 

part of SSE2, including double precision fl oating-point registers and operations. It 

includes eight 64-bit registers that can be used for fl oating-point operands. AMD 

expanded the number to 16 registers, called XMM, as part of AMD64, which 

Intel relabeled EM64T for its use. Figure 3.20 summarizes the SSE and SSE2 

instructions. 

In addition to holding a single precision or double precision number in a 

register, Intel allows multiple fl oating-point operands to be packed into a single 

128-bit SSE2 register: four single precision or two double precision. Th

us, the 16 

fl oating-point registers for SSE2 are actually 128 bits wide. If the operands can be 

arranged in memory as 128-bit aligned data, then 128-bit data transfers can load 

and store multiple operands per instruction. Th

is packed fl oating-point format is 

supported by arithmetic operations that can operate simultaneously on four singles 

(PS) or two doubles (PD). 

Data transfer

Arithmetic

Compare

MOV{A/U}{SS/PS/SD/

ADD{SS/PS/SD/PD} xmm,mem/xmm   CMP{SS/PS/SD/PD}

PD} xmm, mem/xmm

SUB{SS/PS/SD/PD} xmm,mem/xmm  

MOV {H/L} {PS/PD}  

MUL{SS/PS/SD/PD} xmm,mem/xmm 

xmm, mem/xmm 

DIV{SS/PS/SD/PD} xmm,mem/xmm 

SQRT{SS/PS/SD/PD} mem/xmm

MAX {SS/PS/SD/PD} mem/xmm

MIN{SS/PS/SD/PD} mem/xmm

FIGURE 3.20  The SSE/SSE2 fl oating-point instructions of the x86.  xmm means one operand is a 128-bit SSE2 register, and mem/xmm means the other operand is either in memory or it is an SSE2 register. 

We use the curly brackets {} to show optional variations of the basic operations: {SS} stands for  Scalar Single precision fl oating point, or one 32-bit operand in a 128-bit register; {PS} stands for  Packed Single precision fl oating point, or four 32-bit operands in a 128-bit register; {SD} stands for Scalar Double precision fl oating point, or one 64-bit operand in a 128-bit register; {PD} stands for  Packed Double precision fl oating point, or two 64-bit operands in a 128-bit register; {A} means the 128-bit operand is aligned in memory; {U} means the 128-bit operand is unaligned in memory; {H} means move the high half of the 128-bit operand; and {L} 

means move the low half of the 128-bit operand. 
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In 2011 Intel doubled the width of the registers again, now called YMM, with 

 Advanced Vector Extensions (AVX). Th

us, a single operation can now specify eight 

32-bit fl oating-point operations or four 64-bit fl oating-point operations. Th

e 

legacy SSE and SSE2 instructions now operate on the lower 128 bits of the YMM 

registers. Th

us, to go from 128-bit and 256-bit operations, you prepend the letter 

“v” (for vector) in front of the SSE2 assembly language operations and then use the 

YMM register names instead of the XMM register name. For example, the SSE2 

instruction to perform two 64-bit fl oating-point multiplies

addpd  %xmm0, %xmm4

It becomes

vaddpd  %ymm0, %ymm4 

which now produces four 64-bit fl oating-point multiplies. 

Elaboration:  AVX also added three address instructions to x86. For example, vaddpd 

can now specify 

vaddpd %ymm0, %ymm1, %ymm4 # %ymm4 = %ymm1 + %ymm2

instead of the standard two address version

addpd  %xmm0, %xmm4 # %xmm4 = %xmm4 + %xmm0

(Unlike MIPS, the destination is on the right in x86.) Three addresses can reduce the 

number of registers and instructions needed for a computation. 

 3.8 

 Going Faster:  Subword Parallelism and 

Matrix Multiply

To demonstrate the performance impact of subword parallelism, we’ll run the same 

code on the Intel Core i7 fi rst without AVX and then with it. Figure 3.21 shows an unoptimized version of a matrix-matrix multiply written in C.  As we saw in Section 

3.5, this program is commonly called  DGEMM, which stands for Double precision 

GEneral Matrix Multiply. Starting with this edition, we have added a new section 

entitled “Going Faster” to demonstrate the performance benefi t of adapting soft ware 

to the underlying hardware, in this case the Sandy Bridge version of the Intel Core 

i7 microprocessor. Th

is new section in Chapters 3, 4, 5, and 6 will incrementally 

improve DGEMM performance using the ideas that each chapter introduces. 

Figure 3.22 shows the x86 assembly language output for the inner loop of Figure 

3.21. Th

e fi ve  fl oating point-instructions start with a v like the AVX instructions, 

but note that they use the XMM registers instead of YMM, and they include sd in 

the name, which stands for scalar double precision. We’ll defi ne the subword parallel 

instructions shortly. 
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1. 

void dgemm (int n, double* A, double* B, double* C)

2.  {

3. 

for (int i = 0; i < n; ++i)

4. 

for (int j = 0; j < n; ++j) 

5. 

{

6. 

double cij = C[i+j*n]; /* cij = C[i][j] */

7. 

for( int k = 0; k < n; k++ )

8. 



cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

9. 

C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

FIGURE 3.21  Unoptimized C version of a double precision matrix multiply, widely known as DGEMM for Double-precision GEneral Matrix Multiply (GEMM). Because we are passing the matrix dimension as the parameter n, this version of DGEMM uses single dimensional versions of matrices C, A, and B and address arithmetic to get better performance instead of using the more intuitive two-dimensional arrays that we saw in Section 3.5. Th e comments remind 

us of this more intuitive notation. 

1. 

vmovsd (%r10),%xmm0 

# Load 1 element of C into %xmm0

2.  mov    %rsi,%rcx 

# register %rcx = %rsi

3.  xor    %eax,%eax 

# register %eax = 0

4. 

vmovsd (%rcx),%xmm1 

# Load 1 element of B into %xmm1

5.  add    %r9,%rcx 

# register %rcx = %rcx + %r9

6. 

vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1, element of A

7.  add    $0x1,%rax 

# register %rax = %rax + 1

8.  cmp    %eax,%edi 

# compare %eax to %edi

9.  vaddsd %xmm1,%xmm0,%xmm0 

# Add %xmm1, %xmm0

10.  jg     30 <dgemm+0x30> 

# jump if %eax > %edi

11.  add    $0x1,%r11d 

# register %r11 = %r11 + 1

12.  vmovsd %xmm0,(%r10) 

# Store %xmm0 into C element

FIGURE 3.22  The x86 assembly language for the body of the nested loops generated by compiling the 

optimized C code in Figure 3.21. Although it is dealing with just 64-bits of data, the compiler uses the AVX version of the instructions instead of SSE2 presumably so that it can use three address per instruction instead of two (see the Elaboration in Section 3.7). 
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1.  #include  <x86intrin.h> 

2.  void dgemm (int n, double* A, double* B, double* C)

3.  {

4.    for ( int i = 0; i < n; i+=4 )

5.      for ( int j = 0; j < n; j++ ) {

6. 

__m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

7.        for( int k = 0; k < n; k++ )

8. 

c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9. 

_mm256_mul_pd(_mm256_load_pd(A+i+k*n), 

10. _mm256_broadcast_sd(B+k+j*n))); 

11. 

_mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12.      }

13. }

FIGURE 3.23  Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel instructions for the x86. Figure 3.24 shows the assembly language produced by the compiler for the inner loop. 

While compiler writers may eventually be able to routinely produce high-

quality code that uses the AVX instructions of the x86, for now we must “cheat” by 

using C intrinsics that more or less tell the compiler exactly how to produce good 

code. Figure 3.23 shows the enhanced version of Figure 3.21 for which the Gnu C 

compiler produces AVX code. Figure 3.24 shows annotated x86 code that is the 

output of compiling using gcc with the –O3 level of optimization. 

Th

e declaration on line 6 of Figure 3.23 uses the __m256d data type, which tells the compiler the variable will hold 4 double-precision fl oating-point values. Th

e 

intrinsic  _mm256_load_pd() also on line 6 uses AVX instructions to load 4 

double-precision fl oating-point numbers in parallel (_pd) from the matrix C into 

c0.  Th

e address calculation C+i+j*n on line 6 represents element C[i+j*n]. 

Symmetrically, the fi nal step on line 11 uses the intrinsic _mm256_store_pd() 

to store 4 double-precision fl oating-point numbers from c0 into the matrix C. 

As we’re going through 4 elements each iteration, the outer  for loop on line 4 

increments i by 4 instead of by 1 as on line 3 of Figure 3.21. 

Inside the loops, on line 9 we fi rst load 4 elements of A again using _mm256_

load_pd(). To multiply these elements by one element of B, on line 10 we fi rst 

use the intrinsic _mm256_broadcast_sd(), which makes 4 identical copies 

of the scalar double precision number—in this case an element of B—in one of the 

YMM registers. We then use _mm256_mul_pd() on line 9 to multiply the four 

double-precision results in parallel. Finally, _mm256_add_pd() on line 8 adds 

the 4 products to the 4 sums in c0. 

Figure 3.24 shows resulting x86 code for the body of the inner loops produced by the compiler. You can see the fi ve AVX instructions—they all start with v and 
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1. 

vmovapd (%r11),%ymm0 

# Load 4 elements of C into %ymm0

2.  mov    %rbx,%rcx 

# register %rcx = %rbx

3.  xor    %eax,%eax  

# register %eax = 0

4. 

vbroadcastsd (%rax,%r8,1),%ymm1  # Make 4 copies of B element

5.  add    $0x8,%rax 

# register %rax = %rax + 8

6. 

vmulpd (%rcx),%ymm1,%ymm1 

# Parallel mul %ymm1,4 A elements

7.  add    %r9,%rcx 

# register %rcx = %rcx + %r9

8.  cmp    %r10,%rax 

# compare %r10 to %rax

9. 

vaddpd %ymm1,%ymm0,%ymm0 

# Parallel add %ymm1, %ymm0

10. 

jne    50 <dgemm+0x50> 

# jump if not %r10 != %rax

11.  add    $0x1,%esi 

# register % esi = % esi + 1

12. 

vmovapd %ymm0,(%r11) 

# Store %ymm0 into 4 C elements

FIGURE 3.24  The x86 assembly language for the body of the nested loops generated by compiling 

the optimized C code in Figure 3.23. Note the similarities to Figure 3.22, with the primary diff erence being that the fi ve fl oating-point operations are now using YMM registers and using the pd versions of the instructions for parallel double precision instead of the sd version for scalar double precision. 

four of the fi ve use pd for parallel double precision—that correspond to the C 

intrinsics mentioned above. Th

e code is very similar to that in Figure 3.22 above: 

both use 12 instructions, the integer instructions are nearly identical (but diff erent 

registers), and the fl oating-point instruction diff erences are generally just going 

from  scalar double (sd) using XMM registers to  parallel double (pd) with YMM 

registers. Th

e one exception is line 4 of Figure 3.24. Every element of A must be 

multiplied by one element of B. One solution is to place four identical copies of the 

64-bit B element side-by-side into the 256-bit YMM register, which is just what the 

instruction vbroadcastsd does. 

For matrices of dimensions of 32 by 32, the unoptimized DGEMM in Figure 3.21 

runs at 1.7 GigaFLOPS (FLoating point Operations Per Second) on one core of a 

2.6 GHz Intel Core i7 (Sandy Bridge).  Th

e optimized code in Figure 3.23 performs 

at 6.4 GigaFLOPS. Th

e AVX version is 3.85 times as fast, which is very close to the 

factor of 4.0 increase that you might hope for from performing 4 times as many 

operations at a time by using subword parallelism. 

Elaboration:  As mentioned in the Elaboration in Section 1.6, Intel offers Turbo mode 

that temporarily runs at a higher clock rate until the chip gets too hot. This Intel Core i7 

(Sandy Bridge) can increase from 2.6 GHz to 3.3 GHz in Turbo mode. The results above 

are with Turbo mode turned off. If we turn it on, we improve all the results by the increase 

in the clock rate of 3.3/2.6 = 1.27 to  2.1 GFLOPS for unoptimized DGEMM and 8.1 

GFLOPS with AVX. Turbo mode works particularly well when using only a single core of 

an eight-core chip, as in this case, as it lets that single core use much more than its fair 

share of power since the other cores are idle. 
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 3.9 

Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the diff erence between the   Th

  us mathematics 

limited precision of computer arithmetic and the unlimited precision of natural   may be defi ned as the arithmetic. 

 subject in which we 

 never know what we 

  

 Fallacy: Just as a left  shift  instruction can replace an integer multiply by a  are talking about, nor power of 2, a right shift  is the same as an integer division by a power of 2. 

 whether what we are 

Recall that a binary number  c,  where  xi means the  i th bit, represents the number saying is true. 

Bertrand Russell,  Recent 

…  ( x 3  23)  ( x 2  22) 1 ( x 1  21)  ( x 0  20)

 Words on the Principles 

 of Mathematics,  1901

Shift ing the bits of  c right by  n bits would seem to be the same as dividing by 

2 n. And this  is true for unsigned integers. Th

e problem is with signed integers. For 

example, suppose we want to divide 5  by 4 ; the quotient should be 1 . Th

e 

ten

ten

ten

two’s complement representation of 5  is

ten

1111  1111  1111  1111  1111  1111  1111  1011two

According to this fallacy, shift ing right by two should divide by 4  (22):

ten

0011  1111  1111  1111  1111  1111  1111  1110two

With a 0 in the sign bit, this result is clearly wrong. Th

e value created by the shift  

right is actually 1,073,741,822  instead of 1 . 

ten

ten

A solution would be to have an arithmetic right shift  that extends the sign bit 

instead of shift ing in 0s. A 2-bit arithmetic shift  right of 5  produces

ten

1111  1111  1111  1111  1111  1111  1111  1110two

Th

e result is 2  instead of 1 ; close, but no cigar. 

ten

ten

 Pitfall: Floating-point addition is not associative. 

Associativity holds for a sequence of two’s complement integer additions, even if the 

computation overfl ows. Alas, because fl oating-point numbers are approximations 

of real numbers and because computer arithmetic has limited precision, it does 

not hold for fl oating-point numbers. Given the great range of numbers that can be 

represented in fl oating point, problems occur when adding two large numbers of 

opposite signs plus a small number. For example, let’s see if  c  ( a   b)  ( c   a) 

  b. Assume  c  1.5   1038,  a  1.5   1038, and  b  1.0, and that these are ten

ten

all single precision numbers. 
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c

( a

)

 b

1.5

1038

(1.5

1038

1.0)

ten

ten

1.5

1038

(1.5

38

ten

ten

10 )

0.0

38

38

c

( a

 b)

(

1.5ten

10

1.5ten

10 )

1.0

(0.0ten ) 1.0

1.0

Since fl oating-point numbers have limited precision and result in approximations 

of real results, 1.5   1038 is so much larger than 1.0  that 1.5   1038  1.0 is still 

ten

ten

ten

1.5   1038. Th

at is why the sum of  c, a,  and  b is 0.0 or 1.0, depending on the order 

ten

of the fl oating-point additions, so  c  ( a   b) ⬆ ( c   a)   b. Th erefore, fl oating-point addition is  not associative. 

  

 Fallacy: Parallel execution strategies that work for integer data types also work 

 for fl oating-point data types. 

Programs have typically been written fi rst to run sequentially before being rewritten 

to run concurrently, so a natural question is, “Do the two versions get the same 

answer?” If the answer is no, you presume there is a bug in the parallel version that 

you need to track down. 

Th

is approach assumes that computer arithmetic does not aff ect the results when 

going from sequential to parallel. Th

at is, if you were to add a million numbers 

together, you would get the same results whether you used 1 processor or 1000 

processors. Th

is assumption holds for two’s complement integers, since integer 

addition is associative. Alas, since fl oating-point addition is not associative, the 

assumption does not hold. 

A more vexing version of this fallacy occurs on a parallel computer where the 

operating system scheduler may use a diff erent number of processors depending 

on what other programs are running on a parallel computer. As the varying 

number of processors from each run would cause the fl oating-point sums to be 

calculated in diff erent orders,  getting slightly diff erent answers each time  despite 

running identical code with identical input may fl ummox unaware parallel 

programmers. 

Given this quandary, programmers who write parallel code with fl oating-point 

numbers need to verify whether the results are credible even if they don’t give the 

same exact answer as the sequential code. Th

e fi eld that deals with such issues is 

called numerical analysis, which is the subject of textbooks in its own right. Such 

concerns are one reason for the popularity of numerical libraries such as LAPACK 

and SCALAPAK, which have been validated in both their sequential and parallel 

forms. 

  

 Pitfall: Th

   e MIPS instruction add immediate unsigned (addiu)  sign-extends 

 its 16-bit immediate fi eld. 
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Despite its name, add immediate unsigned (addiu) is used to add constants to 

signed integers when we don’t care about overfl ow. MIPS has no subtract immediate 

instruction, and negative numbers need sign extension, so the MIPS architects 

decided to sign-extend the immediate fi eld. 

  

 Fallacy: Only theoretical mathematicians care about fl oating-point accuracy. 

Newspaper headlines of November 1994 prove this statement is a fallacy (see 

Figure 3.25). Th

e following is the inside story behind the headlines. 

Th

e Pentium used a standard fl oating-point divide algorithm that generates 

multiple quotient bits per step, using the most signifi cant bits of divisor and 

dividend to guess the next 2 bits of the quotient. Th

e guess is taken from a lookup 

table containing 2, 1, 0, 1, or 2. Th

e guess is multiplied by the divisor and 

subtracted from the remainder to generate a new remainder. Like nonrestoring 

division, if a previous guess gets too large a remainder, the partial remainder is 

adjusted in a subsequent pass. 

Evidently, there were fi ve elements of the table from the 80486 that Intel 

engineers thought could never be accessed, and they optimized the logic to return 

0 instead of 2 in these situations on the Pentium. Intel was wrong: while the fi rst 11 

FIGURE 3.25  A sampling of newspaper and magazine articles from November 1994, 

including the   New York Times, San Jose Mercury News, San Francisco Chronicle, and 

 Infoworld.  Th

e Pentium fl oating-point divide bug even made the “Top 10 List” of the  David Letterman 

 Late Show on television. Intel eventually took a $300 million write-off  to replace the buggy chips. 
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bits were always correct, errors would show up occasionally in bits 12 to 52, or the 

4th to 15th decimal digits. 

A math professor at Lynchburg College in Virginia, Th

omas Nicely, discovered the 

bug in September 1994. Aft er calling Intel technical support and getting no offi

cial 

reaction, he posted his discovery on the Internet. Th

is post led to a story in a trade 

magazine, which in turn caused Intel to issue a press release. It called the bug a glitch 

that would aff ect only theoretical mathematicians, with the average spreadsheet 

user seeing an error every 27,000 years. IBM Research soon counterclaimed that the 

average spreadsheet user would see an error every 24 days. Intel soon threw in the 

towel by making the following announcement on December 21:

 “We at Intel wish to sincerely apologize for our handling of the recently publicized 

 Pentium processor fl aw. Th

   e Intel Inside symbol means that your computer has 

 a microprocessor second to none in quality and performance. Th

   ousands of Intel 

 employees work very hard to ensure that this is true. But no microprocessor is 

 ever perfect. What Intel continues to believe is technically an extremely minor 

 problem has taken on a life of its own. Although Intel fi rmly stands behind the 

 quality of the current version of the Pentium processor, we recognize that many 

 users have concerns. We want to resolve these concerns. Intel will exchange the 

 current version of the Pentium processor for an updated version, in which this 

 fl oating-point divide fl aw is corrected, for any owner who requests it, free of 

 charge anytime during the life of their computer.” 

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did not 

get a Christmas bonus that year. 

Th

is story brings up a few points for everyone to ponder. How much cheaper 

would it have been to fi x the bug in July 1994? What was the cost to repair the 

damage to Intel’s reputation? And what is the corporate responsibility in disclosing 

bugs in a product so widely used and relied upon as a microprocessor? 

 3.10 Concluding 

Remarks

Over the decades, computer arithmetic has become largely standardized, greatly 

enhancing the portability of programs. Two’s complement binary integer arithmetic is 

found in every computer sold today, and if it includes fl oating point support, it off ers 

the IEEE 754 binary fl oating-point arithmetic. 

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the 

constraints of limited precision. Th

is limit may result in invalid operations through 

calculating numbers larger or smaller than the predefi ned limits. Such anomalies, called 

“overfl ow” or “underfl ow,” may result in exceptions or interrupts, emergency events 

similar to unplanned subroutine calls. Chapters 4 and 5 discuss exceptions in more detail. 

Floating-point arithmetic has the added challenge of being an approximation 

of real numbers, and care needs to be taken to ensure that the computer number 
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selected is the representation closest to the actual number. Th

e challenges of 

imprecision and limited representation of fl oating point are part of the inspiration 

for the fi eld of numerical analysis. Th

e recent switch to parallelism shines the 

searchlight on numerical analysis again, as solutions that were long considered 

safe on sequential computers must be reconsidered when trying to fi nd the fastest 

algorithm for parallel computers that still achieves a correct result. 

Data-level parallelism, specifi cally subword parallelism, off ers a simple path to 

higher performance for programs that are intensive in arithmetic operations for 

either integer or fl oating-point data. We showed that we could speed up matrix 

multiply nearly fourfold by using instructions that could execute four fl oating-

point operations at a time. 

With the explanation of computer arithmetic in this chapter comes a description 

of much more of the MIPS instruction set. One point of confusion is the instructions 

covered in these chapters versus instructions executed by MIPS chips versus the 

instructions accepted by MIPS assemblers. Two fi gures try to make this clear. 

Figure 3.26 lists the MIPS instructions covered in this chapter and Chapter 2. 

We call the set of instructions on the left -hand side of the fi gure the  MIPS core. Th

e 

instructions on the right we call the  MIPS arithmetic core. On the left  of Figure 3.27 

are the instructions the MIPS processor executes that are not found in Figure 3.26. 

We call the full set of hardware instructions  MIPS-32. On the right of Figure 3.27 

are the instructions accepted by the assembler that are not part of MIPS-32. We call 

this set of instructions  Pseudo MIPS. 

Figure 3.28 gives the popularity of the MIPS instructions for SPEC CPU2006 

integer and fl oating-point benchmarks. All instructions are listed that were 

responsible for at least 0.2% of the instructions executed. 

Note that although programmers and compiler writers may use MIPS-32 to 

have a richer menu of options, MIPS core instructions dominate integer SPEC 

CPU2006 execution, and the integer core plus arithmetic core dominate SPEC 

CPU2006 fl oating point, as the table below shows. 

Instruction subset

Integer

Fl. pt. 

MIPS core

98%

31%

MIPS arithmetic core

2%

66%

Remaining MIPS-32

0%

3%

For the rest of the book, we concentrate on the MIPS core instructions—the integer 

instruction set excluding multiply and divide—to make the explanation of computer 

design easier. As you can see, the MIPS core includes the most popular MIPS 

instructions; be assured that understanding a computer that runs the MIPS core 

will give you suffi

cient background to understand even more ambitious computers. 

No matter what the instruction set or its size—MIPS, ARM, x86—never forget that 

bit patterns have no inherent meaning. Th

e same bit pattern may represent a signed 

integer, unsigned integer, fl oating-point number, string, instruction, and so on. In 

stored program computers, it is the operation on the bit pattern that determines its 

meaning. 
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MIPS core instructions

Name

Format

MIPS arithmetic core

Name

Format

add

add

R

multiply

mult

R

add immediate

addi

I

multiply unsigned

multu

R

add unsigned

addu

R

divide

div

R

add immediate unsigned

addiu

I

divide unsigned

divu

R

subtract

sub

R

move from Hi

mfhi

R

subtract unsigned

subu

R

move from Lo

mflo

R

AND

AND

R

move from system control (EPC)

mfc0

R

AND immediate

ANDi

I

floating-point add single

add.s

R

OR

OR

R

floating-point add double

add.d

R

OR immediate

ORi

I

floating-point subtract single

sub.s

R

NOR

NOR

R

floating-point subtract double

sub.d

R

shift left logical

sll

R

floating-point multiply single

mul.s

R

shift right logical

srl

R

floating-point multiply double

mul.d

R

load upper immediate

lui

I

floating-point divide single

div.s

R

load word

lw

I

floating-point divide double

div.d

R

store word

sw

I

load word to floating-point single

lwc1

I

load halfword unsigned

lhu

I

store word to floating-point single

swc1

I

store halfword

sh

I

load word to floating-point double

ldc1

I

load byte unsigned

lbu

I

store word to floating-point double

sdc1

I

store byte

sb

I

branch on floating-point true

bc1t

I

load linked ( atomic update)

ll

I

branch on floating-point false

bc1f

I

store cond. ( atomic update)

sc

I

floating-point compare single

c.x.s

R

branch on equal

beq

I

(x = eq, neq, lt, le, gt, ge)

branch on not equal

bne

I

floating-point compare double

c.x.d

R

jump

j

J

(x = eq, neq, lt, le, gt, ge)

jump and link

jal

J

jump register

jr

R

set less than

slt

R

set less than immediate

slti

I

set less than unsigned

sltu

R

set less than immediate unsigned

sltiu

I

FIGURE 3.26  The MIPS instruction set.  Th

is book concentrates on the instructions in the left  column. Th

is information is also found 

in columns 1 and 2 of the MIPS Reference Data Card at the front of this book. 
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Remaining MIPS-32

Name

Format

Pseudo MIPS

Name

Format

exclusive or ( rs ⊕  rt)

xor

R

absolute value

abs

rd,rs

exclusive or immediate

xori

I

negate  (signed or unsigned)

neg s

rd,rs

shift right arithmetic

sra

R

rotate left

rol

rd,rs,rt

shift left logical variable

sllv

R

rotate right

ror

rd,rs,rt

shift right logical variable

srlv

R

multiply and don’t check oflw  (signed or uns.)

mul s

rd,rs,rt

shift right arithmetic variable

srav

R

multiply and check oflw  (signed or uns.)

mulo s

rd,rs,rt

move to Hi

mthi

R

divide and check overflow

div

rd,rs,rt

move to Lo

mtlo

R

divide and don’t check overflow

divu

rd,rs,rt

load halfword

lh

I

remainder  (signed or unsigned)

rem s

rd,rs,rt

load byte

lb

I

load immediate

li

rd,imm

load word left  (unaligned)

lwl

I

load address

la

rd,addr

load word right  (unaligned)

lwr

I

load double

ld

rd,addr

store word left  (unaligned)

swl

I

store double

sd

rd,addr

store word right  (unaligned)

swr

I

unaligned load word

ulw

rd,addr

load linked ( atomic update)

ll

I

unaligned store word

usw

rd,addr

store cond. ( atomic update)

sc

I

unaligned load halfword  (signed or uns.)

ulh s

rd,addr

move if zero

movz

R

unaligned store halfword

ush

rd,addr

move if not zero

movn

R

branch 

b

Label

multiply and add (S or  uns.)

madd s

R

branch on equal zero

beqz

rs,L

multiply and subtract (S or  uns.)

msub s

I

branch on compare  (signed or unsigned)

bx s

rs,rt,L

branch on ≥ zero and link

bgezal

I

(x = lt, le, gt, ge)

branch on < zero and link

bltzal

I

set equal

seq

rd,rs,rt

jump and link register

jalr

R

set not equal

sne

rd,rs,rt

branch compare to zero

bxz

I

set on compare  (signed or unsigned)

sx s

rd,rs,rt

branch compare to zero likely

bxzl

I

(x = lt, le, gt, ge)

(x = lt, le, gt, ge)

load to floating point  (s or d)

l.  f

rd,addr

branch compare reg likely

bxl

I

store from floating point  (s or d)

s.  f

rd,addr

trap if compare reg

tx

R

trap if compare immediate

txi

I

(x = eq, neq, lt, le, gt, ge)

return from exception

rfe

R

system call

syscall

I

break  (cause exception)

break

I

move from FP to integer

mfc1

R

move to FP from integer

mtc1

R

FP move  (s or d)

mov.  f

R

FP move if zero  (s or d)

movz.  f

R

FP move if not zero  (s or d)

movn.  f

R

FP square root  (s or d)

sqrt.  f

R

FP absolute value  (s or d)

abs.  f

R

FP negate  (s or d)

neg.  f

R

FP convert  (w, s, or d)

cvt.  f.  f

R

FP compare un  (s or d)

c.xn.  f

R

FIGURE 3.27  Remaining MIPS-32 and Pseudo MIPS instruction sets.   f means single (s) or double (d) precision fl oating-point instructions, and  s means signed and unsigned (u) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd.f/ msub.  f), ceiling (ceil.  f), truncate (trunc.  f), round (round.  f), and reciprocal (recip.  f). Th e underscore represents the letter to include to represent 

that datatype. 
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Core MIPS 

Name

Integer

Fl. pt. 

Arithmetic core + MIPS-32 

Name

Integer

Fl. pt. 

add

add

0.0%

0.0%

FP add double

add.d

0.0%

10.6%

add immediate

addi

0.0%

0.0%

FP subtract double

sub.d

0.0%

4.9%

add unsigned

addu

5.2%

3.5%

FP multiply double

mul.d

0.0%

15.0%

add immediate unsigned

addiu

9.0%

7.2%

FP divide double

div.d

0.0%

0.2%

subtract unsigned

subu

2.2%

0.6%

FP add single

add.s

0.0%

1.5%

AND

AND

0.2%

0.1%

FP subtract single

sub.s

0.0%

1.8%

AND immediate

ANDi

0.7%

0.2%

FP multiply single

mul.s

0.0%

2.4%

OR

OR

4.0%

1.2%

FP divide single

div.s

0.0%

0.2%

OR immediate

ORi

1.0%

0.2%

load word to FP double

l.d

0.0%

17.5%

NOR

NOR

0.4%

0.2%

store word to FP double

s.d

0.0%

4.9%

shift left logical

sll

4.4%

1.9%

load word to FP single

l.s

0.0%

4.2%

shift right logical

srl

1.1%

0.5%

store word to FP single

s.s

0.0%

1.1%

load upper immediate

lui

3.3%

0.5%

branch on floating-point true

bc1t

0.0%

0.2%

load word

lw

18.6%

5.8%

branch on floating-point false

bc1f

0.0%

0.2%

store word

sw

7.6%

2.0%

floating-point compare double

c.x.d

0.0%

0.6%

load byte

lbu

3.7%

0.1%

multiply

mul

0.0%

0.2%

store byte

sb

0.6%

0.0%

shift right arithmetic

sra

0.5%

0.3%

branch on equal (zero)

beq

8.6%

2.2%

load half

lhu

1.3%

0.0%

branch on not equal (zero)

bne

8.4%

1.4%

store half

sh

0.1%

0.0%

jump and link

jal

0.7%

0.2%

jump register

jr

1.1%

0.2%

set less than

slt

9.9%

2.3%

set less than immediate

slti

3.1%

0.3%

set less than unsigned

sltu

3.4%

0.8%

set less than imm. uns. 

sltiu

1.1%

0.1%

FIGURE 3.28  The frequency of the MIPS instructions for SPEC CPU2006 integer and fl oating point.  All instructions that accounted for at least 0.2% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and hence do not appear here. 
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the rest of   Section 3.11 online. 
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 3.12 Exercises

 Never give in, never 

 give in, never, never, 

 never—in nothing, 

 great or small, large or 

3.1  [5] <§3.2> What is 5ED4  07A4 when these values represent unsigned 16-

bit hexadecimal numbers? Th

e result should be written in hexadecimal. Show your   petty—never give in. 

work. 

Winston Churchill, 

address at Harrow 

3.2  [5] <§3.2> What is 5ED4  07A4 when these values represent signed 16-

School, 1941

bit hexadecimal numbers stored in sign-magnitude format? Th

e result should be 

written in hexadecimal. Show your work. 

3.3 [10] <§3.2> Convert 5ED4 into a binary number. What makes base 16 

(hexadecimal) an attractive numbering system for representing values in 

computers? 

3.4  [5] <§3.2> What is 4365  3412 when these values represent unsigned 12-bit 

octal numbers? Th

e result should be written in octal. Show your work. 

3.5  [5] <§3.2> What is 4365  3412 when these values represent signed 12-bit 

octal numbers stored in sign-magnitude format? Th

e result should be written in 

octal. Show your work. 

3.6  [5] <§3.2> Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate 

185 – 122. Is there overfl ow, underfl ow, or neither? 

3.7  [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in 

sign-magnitude format. Calculate 185  122. Is there overfl ow,  underfl ow,  or 

neither? 

3.8  [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in 

sign-magnitude format. Calculate 185  122. Is there overfl ow,  underfl ow,  or 

neither? 

3.9  [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in 

two’s complement format. Calculate 151  214 using saturating arithmetic. Th

e 

result should be written in decimal. Show your work. 

3.10  [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in 

two’s complement format. Calculate 151  214 using saturating arithmetic. Th

e 

result should be written in decimal. Show your work. 

3.11  [10] <§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 151 

 214 using saturating arithmetic. Th

e result should be written in decimal. Show 

your work. 

3.12  [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the octal unsigned 6-bit integers 62 and 12 using the hardware described 

in Figure 3.3. You should show the contents of each register on each step. 
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3.13  [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware 

described in Figure 3.5. You should show the contents of each register on each step. 

3.14  [10] <§3.3> Calculate the time necessary to perform a multiply using the 

approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step of the operation takes 4 time units. Assume that in step 1a an addition is always 

performed—either the multiplicand will be added, or a zero will be. Also assume 

that the registers have already been initialized (you are just counting how long it 

takes to do the multiplication loop itself). If this is being done in hardware, the 

shift s of the multiplicand and multiplier can be done simultaneously. If this is being 

done in soft ware, they will have to be done one aft er the other. Solve for each case. 

3.15  [10] <§3.3> Calculate the time necessary to perform a multiply using the 

approach described in the text (31 adders stacked vertically) if an integer is 8 bits 

wide and an adder takes 4 time units. 

3.16  [20] <§3.3> Calculate the time necessary to perform a multiply using the 

approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes 4 time units. 

3.17  [20] <§3.3> As discussed in the text, one possible performance enhancement 

is to do a shift  and add instead of an actual multiplication. Since 9  6, for example, 

can be written (2  2  2  1)  6, we can calculate 9  6 by shift ing 6 to the left  3 

times and then adding 6 to that result. Show the best way to calculate 033  055 

using shift s and adds/subtracts. Assume both inputs are 8-bit unsigned integers. 

3.18  [20] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 74 divided by 21 using the hardware described in Figure 3.8. You should show 

the contents of each register on each step. Assume both inputs are unsigned 6-bit 

integers. 

3.19  [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 74 divided by 21 using the hardware described in Figure 3.11. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit 

integers. Th

is algorithm requires a slightly diff erent approach than that shown in 

Figure 3.9. You will want to think hard about this, do an experiment or two, or else go to the web to fi gure out how to make this work correctly. (Hint: one possible 

solution involves using the fact that Figure 3.11 implies the remainder register can be shift ed either direction.)

3.20 [5] <§3.5> What decimal number does the bit pattern 0×0C000000 

represent if it is a two’s complement integer? An unsigned integer? 

3.21  [10] <§3.5> If the bit pattern 0×0C000000 is placed into the Instruction 

Register, what MIPS instruction will be executed? 

3.22 [10] <§3.5> What decimal number does the bit pattern 0×0C000000 

represent if it is a fl oating point number? Use the IEEE 754 standard. 

 

3.12 Exercises 

239

3.23  [10] <§3.5> Write down the binary representation of the decimal number 

63.25 assuming the IEEE 754 single precision format. 

3.24  [10] <§3.5> Write down the binary representation of the decimal number 

63.25 assuming the IEEE 754 double precision format. 

3.25  [10] <§3.5> Write down the binary representation of the decimal number 

63.25 assuming it was stored using the single precision IBM format (base 16, 

instead of base 2, with 7 bits of exponent). 

3.26  [20] <§3.5> Write down the binary bit pattern to represent 1.5625  101 

assuming a format similar to that employed by the DEC PDP-8 (the left most 12 

bits are the exponent stored as a two’s complement number, and the rightmost 24 

bits are the fraction stored as a two’s complement number). No hidden 1 is used. 

Comment on how the range and accuracy of this 36-bit pattern compares to the 

single and double precision IEEE 754 standards. 

3.27  [20] <§3.5> IEEE 754-2008 contains a half precision that is only 16 bits 

wide. Th

e left most bit is still the sign bit, the exponent is 5 bits wide and has a bias 

of 15, and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the 

bit pattern to represent 1.5625  101 assuming a version of this format, which 

uses an excess-16 format to store the exponent. Comment on how the range and 

accuracy of this 16-bit fl oating point format compares to the single precision IEEE 

754 standard. 

3.28 [20] <§3.5> Th

e Hewlett-Packard 2114, 2115, and 2116 used a format 

with the left most 16 bits being the fraction stored in two’s complement format, 

followed by another 16-bit fi eld which had the left most 8 bits as an extension of the 

fraction (making the fraction 24 bits long), and the rightmost 8 bits representing 

the exponent. However, in an interesting twist, the exponent was stored in sign-

magnitude format with the sign bit on the far right! Write down the bit pattern to 

represent 1.5625  101 assuming this format. No hidden 1 is used. Comment on 

how the range and accuracy of this 32-bit pattern compares to the single precision 

IEEE 754 standard. 

3.29  [20] <§3.5> Calculate the sum of 2.6125  101 and 4.150390625  101 

by hand, assuming A and B are stored in the 16-bit half precision described in 

Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the 

nearest even. Show all the steps. 

3.30  [30] <§3.5> Calculate the product of –8.0546875  100 and 1.79931640625 

 10–1 by hand, assuming A and B are stored in the 16-bit half precision format 

described in Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round 

to the nearest even. Show all the steps; however, as is done in the example in the 

text, you can do the multiplication in human-readable format instead of using the 

techniques described in Exercises 3.12 through 3.14. Indicate if there is overfl ow 

or underfl ow. Write your answer in both the 16-bit fl oating point format described 

in Exercise 3.27 and also as a decimal number. How accurate is your result? How 

does it compare to the number you get if you do the multiplication on a calculator? 
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3.31  [30] <§3.5> Calculate by hand 8.625  101 divided by 4.875  100. Show 

all the steps necessary to achieve your answer. Assume there is a guard, a round bit, 

and a sticky bit, and use them if necessary. Write the fi nal answer in both the 16-bit 

fl oating point format described in Exercise 3.27 and in decimal and compare the 

decimal result to that which you get if you use a calculator. 

3.32  [20] <§3.9> Calculate (3.984375  101  3.4375  101)  1.771  103 

by hand, assuming each of the values are stored in the 16-bit half precision format 

described in Exercise 3.27 (and also described in the text).  Assume 1 guard, 1 

round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 

write your answer in both the 16-bit fl oating point format and in decimal. 

3.33  [20] <§3.9> Calculate 3.984375  101  (3.4375  101  1.771  103) 

by hand, assuming each of the values are stored in the 16-bit half precision format 

described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 

round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 

write your answer in both the 16-bit fl oating point format and in decimal. 

3.34  [10] <§3.9> Based on your answers to 3.32 and 3.33, does (3.984375  101 

 3.4375  101)  1.771  103 = 3.984375  101  (3.4375  101  1.771  

103)? 

3.35  [30] <§3.9> Calculate (3.41796875 103  6.34765625  103)  1.05625 

 102 by hand, assuming each of the values are stored in the 16-bit half precision 

format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 

1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 

write your answer in both the 16-bit fl oating point format and in decimal. 

3.36  [30] <§3.9> Calculate 3.41796875 103   (6.34765625  103   1.05625 

 102) by hand, assuming each of the values are stored in the 16-bit half precision 

format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 

1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 

write your answer in both the 16-bit fl oating point format and in decimal. 

3.37  [10] <§3.9> Based on your answers to 3.35 and 3.36, does (3.41796875 103 

 6.34765625  103)  1.05625  102 = 3.41796875  103  (6.34765625  

103  1.05625  102)? 

3.38  [30] <§3.9> Calculate 1.666015625  100 (1.9760  104    1.9744   

104) by hand, assuming each of the values are stored in the 16-bit half precision 

format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 

1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 

write your answer in both the 16-bit fl oating point format and in decimal. 

3.39  [30] <§3.9> Calculate (1.666015625  100  1.9760  104)  (1.666015625 

 100  1.9744  104) by hand, assuming each of the values are stored in the 

16-bit half precision format described in Exercise 3.27 (and also described in the 

text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the nearest even. 

Show all the steps, and write your answer in both the 16-bit fl oating point format 

and in decimal. 
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3.40  [10] <§3.9> Based on your answers to 3.38 and 3.39, does (1.666015625  

100  1.9760  104)  (1.666015625  100  1.9744  104) = 1.666015625  

100  (1.9760  104  1.9744  104)? 

3.41  [10] <§3.5> Using the IEEE 754 fl oating point format, write down the bit 

pattern that would represent 1/4. Can you represent 1/4 exactly? 

3.42  [10] <§3.5> What do you get if you add 1/4 to itself 4 times? What is 1/4 

 4? Are they the same? What should they be? 

3.43  [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming 

a fl oating point format that uses binary numbers in the fraction. Assume there are 

24 bits, and you do not need to normalize. Is this representation exact? 

3.44  [10] <§3.5> Write down the bit pattern in the fraction assuming a fl oating 

point format that uses Binary Coded Decimal (base 10) numbers in the fraction 

instead of base 2. Assume there are 24 bits, and you do not need to normalize. Is 

this representation exact? 

3.45  [10] <§3.5> Write down the bit pattern assuming that we are using base 15 

numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0–9 

and A–F. Base 15 numbers would use 0–9 and A–E.) Assume there are 24 bits, and 

you do not need to normalize. Is this representation exact? 

3.46  [20] <§3.5> Write down the bit pattern assuming that we are using base 30 

numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0–9 

and A–F. Base 30 numbers would use 0–9 and A–T.) Assume there are 20 bits, and 

you do not need to normalize. Is this representation exact? 

3.47  [45] <§§3.6, 3.7> Th

e following C code implements a four-tap FIR fi lter on 

input array sig_in.  Assume that all arrays are 16-bit fi xed-point values. 

for (i

3;i < 128;i

)

sig_out[i]

sig_in[i- 3] * f[0]

sig_in[i-2

2] * f[1]

sig_in[i-1] * f[2]

sig_in[i] * f[3]; 

Assume you are to write an optimized implementation this code in assembly 

language on a processor that has SIMD instructions and 128-bit registers.  Without 

knowing the details of the instruction set, briefl y describe how you would 

implement this code, maximizing the use of sub-word operations and minimizing 

the amount of data that is transferred between registers and memory.  State all your 

assumptions about the instructions you use. 

§3.2, page 182: 2. 

Answers to 

§3.5, page 221: 3. 
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 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key 

factors: instruction count, clock cycle time, and  clock cycles per instruction (CPI). 

Chapter 2 explains that the compiler and the instruction set architecture determine 

the instruction count required for a given program. However, the implementation 

of the processor determines both the clock cycle time and the number of clock 

cycles per instruction. In this chapter, we construct the datapath and control unit 

for two diff erent implementations of the MIPS instruction set. 

Th

is chapter contains an explanation of the principles and techniques used in 

implementing a processor, starting with a highly abstract and simplifi ed overview 

in this section. It is followed by a section that builds up a datapath and constructs a 

simple version of a processor suffi

cient to implement an instruction set like MIPS. 

Th

e bulk of the chapter covers a more realistic pipelined MIPS implementation, 

followed by a section that develops the concepts necessary to implement more 

complex instruction sets, like the x86. 

For the reader interested in understanding the high-level interpretation of 

instructions and its impact on program performance, this initial section and Section 

4.5 present the basic concepts of pipelining. Recent trends are covered in Section 

4.10, and Section 4.11 describes the recent Intel Core i7 and ARM Cortex-A8 

architectures. Section 4.12 shows how to use instruction-level parallelism to more 

than double the performance of the matrix multiply from Section 3.8. Th

ese sections 

provide enough background to understand the pipeline concepts at a high level. 

For the reader interested in understanding the processor and its performance in 

more depth, Sections 4.3, 4.4, and 4.6 will be useful. Th

ose interested in learning 

how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers with 

an interest in modern hardware design, Section 4.13 describes how hardware 

design languages and CAD tools are used to implement hardware, and then how 

to use a hardware design language to describe a pipelined implementation. It also 

gives several more illustrations of how pipelining hardware executes. 

A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS 

instruction set:

■  Th

e memory-reference instructions  load word (lw) and  store word (sw)

■  Th

e arithmetic-logical instructions add, sub, AND, OR, and slt

■  Th

e instructions  branch equal (beq) and  jump (j), which we add last

Th

is subset does not include all the integer instructions (for example, shift , 

multiply, and divide are missing), nor does it include any fl oating-point instructions. 
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However, it illustrates the key principles used in creating a datapath and designing 

the control. Th

e implementation of the remaining instructions is similar. 

In examining the implementation, we will have the opportunity to see how the 

instruction set architecture determines many aspects of the implementation, and 

how the choice of various implementation strategies aff ects the clock rate and CPI 

for the computer. Many of the key design principles introduced in Chapter 1 can 

be illustrated by looking at the implementation, such as  Simplicity favors regularity. 

In addition, most concepts used to implement the MIPS subset in this chapter are 

the same basic ideas that are used to construct a broad spectrum of computers, 

from high-performance servers to general-purpose microprocessors to embedded 

processors. 

An Overview of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer 

arithmetic-logical instructions, the memory-reference instructions, and the branch 

instructions. Much of what needs to be done to implement these instructions is the 

same, independent of the exact class of instruction. For every instruction, the fi rst 

two steps are identical:

1. Send the  program counter (PC) to the memory that contains the code and 

fetch the instruction from that memory. 

2.  Read one or two registers, using fi elds of the instruction to select the registers 

to read. For the load word instruction, we need to read only one register, but 

most other instructions require reading two registers. 

Aft er these two steps, the actions required to complete the instruction depend 

on the instruction class. Fortunately, for each of the three instruction classes 

(memory-reference, arithmetic-logical, and branches), the actions are largely the 

same, independent of the exact instruction. Th

e simplicity and regularity of the 

MIPS instruction set simplifi es the implementation by making the execution of 

many of the instruction classes similar. 

For example, all instruction classes, except jump, use the arithmetic-logical unit 

(ALU) aft er reading the registers. Th

e memory-reference instructions use the ALU 

for an address calculation, the arithmetic-logical instructions for the operation 

execution, and branches for comparison. Aft er using the ALU, the actions required 

to complete various instruction classes diff er. A memory-reference instruction 

will need to access the memory either to read data for a load or write data for a 

store. An arithmetic-logical or load instruction must write the data from the ALU 

or memory back into a register. Lastly, for a branch instruction, we may need to 

change the next instruction address based on the comparison; otherwise, the PC 

should be incremented by 4 to get the address of the next instruction. 

Figure 4.1 shows the high-level view of a MIPS implementation, focusing on 

the various functional units and their interconnection. Although this fi gure shows 

most of the fl ow of data through the processor, it omits two important aspects of 

instruction execution. 
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First, in several places, Figure 4.1 shows data going to a particular unit as coming from two diff erent sources. For example, the value written into the PC can come 

from one of two adders, the data written into the register fi le can come from either 

the ALU or the data memory, and the second input to the ALU can come from 

a register or the immediate fi eld of the instruction. In practice, these data lines 

cannot simply be wired together; we must add a logic element that chooses from 

among the multiple sources and steers one of those sources to its destination. Th

is 

selection is commonly done with a device called a  multiplexor, although this device 

might better be called a  data selector. Appendix B describes the multiplexor, which 

selects from among several inputs based on the setting of its control lines. Th

e 

control lines are set based primarily on information taken from the instruction 

being executed. 

Th

e second omission in Figure 4.1 is that several of the units must be controlled depending on the type of instruction. For example, the data memory must read 

4

Add

Add

Data

Register #
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Instruction

Registers

ALU
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Register #

Data

Instruction

memory

memory

Register #

Data

FIGURE 4.1  An abstract view of the implementation of the MIPS subset showing the 

major functional units and the major connections between them. All instructions start by using the program counter to supply the instruction address to the instruction memory. Aft er the instruction is fetched, the register operands used by an instruction are specifi ed by fi elds of that instruction. Once the register operands have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to a register. If the operation is a load or store, the ALU result is used as an address to either store a value from the registers or load a value from memory into the registers. Th

e result from the ALU or memory is written 

back into the register fi le. Branches require the use of the ALU output to determine the next instruction address, which comes either from the ALU (where the PC and branch off set are summed) or from an adder that increments the current PC by 4. Th

e thick lines interconnecting the functional units represent buses, 

which consist of multiple signals. Th

e arrows are used to guide the reader in knowing how information fl ows. 

Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot where the lines cross. 
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on a load and written on a store. Th

e register fi le must be written only on a load 

or an arithmetic-logical instruction. And, of course, the ALU must perform one 

of several operations. (Appendix B describes the detailed design of the ALU.) 

Like the multiplexors, control lines that are set on the basis of various fi elds in the 

instruction direct these operations. 

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors added, as well as control lines for the major functional units. A  control unit, 

which has the instruction as an input, is used to determine how to set the control 

lines for the functional units and two of the multiplexors. Th

e third multiplexor, 
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FIGURE 4.2  The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.  

Th

e top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. Th e middle 

multiplexor, whose output returns to the register fi le, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data memory (in the case of a load) for writing into the register fi le. Finally, the bottommost multiplexor is used to determine whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the off set fi eld of the instruction (for a load or store). Th

e added control lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and whether the registers should perform a write operation. Th

e control lines are shown in color to make them easier to 

see. 
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which determines whether PC + 4 or the branch destination address is written 

into the PC, is set based on the Zero output of the ALU, which is used to perform 

the comparison of a beq instruction. Th

e regularity and simplicity of the MIPS 

instruction set means that a simple decoding process can be used to determine how 

to set the control lines. 

In the remainder of the chapter, we refi ne this view to fi ll in the details, which 

requires that we add further functional units, increase the number of connections 

between units, and, of course, enhance a control unit to control what actions 

are taken for diff erent instruction classes. Sections 4.3 and 4.4 describe a simple 

implementation that uses a single long clock cycle for every instruction and follows 

the general form of Figures 4.1 and 4.2. In this fi rst design, every instruction begins execution on one clock edge and completes execution on the next clock edge. 

While easier to understand, this approach is not practical, since the clock cycle 

must be severely stretched to accommodate the longest instruction. Aft er designing 

the control for this simple computer, we will look at pipelined implementation with 

all its complexities, including exceptions. 

Check  How many of the fi ve classic components of a computer—shown on page 243—do 

Figures 4.1 and 4.2 include? 

Yourself

 4.2 

Logic Design Conventions

To discuss the design of a computer, we must decide how the hardware logic 

implementing the computer will operate and how the computer is clocked. Th

is 

section reviews a few key ideas in digital logic that we will use extensively in this 

chapter. If you have little or no background in digital logic, you will fi nd it helpful 

to read   Appendix B before continuing. 

Th

e datapath elements in the MIPS implementation consist of two diff erent types 

of logic elements: elements that operate on data values and elements that contain 

combinational 

state. Th

e elements that operate on data values are all combinational, which means 

element An operational 

that their outputs depend only on the current inputs. Given the same input, a 

element, such as an AND 

combinational element always produces the same output. Th

e ALU shown in Figure 

gate or an ALU. 

4.1 and discussed in   Appendix B is an example of a combinational element. Given a set of inputs, it always produces the same output because it has no internal storage. 

Other elements in the design are not combinational, but instead contain  state. An 

state element A memory  element contains state if it has some internal storage. We call these elements state element, such as a register 

elements because, if we pulled the power plug on the computer, we could restart it 

or a memory. 

accurately by loading the state elements with the values they contained before we 

pulled the plug. Furthermore, if we saved and restored the state elements, it would 

be as if the computer had never lost power. Th

us, these state elements completely 

characterize the computer. In Figure 4.1, the instruction and data memories, as well as the registers, are all examples of state elements. 
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A state element has at least two inputs and one output. Th

e required inputs are 

the data value to be written into the element and the clock, which determines when 

the data value is written. Th

e output from a state element provides the value that 

was written in an earlier clock cycle. For example, one of the logically simplest state 

elements is a D-type fl ip-fl op (see 

Appendix B), which has exactly these two 

inputs (a value and a clock) and one output. In addition to fl ip-fl ops, our MIPS 

implementation uses two other types of state elements: memories and registers, 

both of which appear in Figure 4.1. Th

e clock is used to determine when the state 

element should be written; a state element can be read at any time. 

Logic components that contain state are also called  sequential, because their 

outputs depend on both their inputs and the contents of the internal state. For 

example, the output from the functional unit representing the registers depends 

both on the register numbers supplied and on what was written into the registers 

previously. Th

e operation of both the combinational and sequential elements and 

their construction are discussed in more detail in   Appendix B. 

Clocking Methodology

A clocking methodology defi nes when signals can be read and when they can be  clocking written. It is important to specify the timing of reads and writes, because if a signal  methodology  Th e is written at the same time it is read, the value of the read could correspond to the  approach used to old value, the newly written value, or even some mix of the two! Computer designs  determine when data is valid and stable relative to 

cannot tolerate such unpredictability. A clocking methodology is designed to make  the clock. 

hardware predictable. 

For simplicity, we will assume an edge-triggered clocking methodology. An  edge-triggered edge-triggered clocking methodology means that any values stored in a sequential  clocking A clocking logic element are updated only on a clock edge, which is a quick transition from  scheme in which all state low to high or  vice versa (see Figure 4.3). Because only state elements can store a  changes occur on a clock edge. 

data value, any collection of combinational logic must have its inputs come from a 

set of state elements and its outputs written into a set of state elements. Th

e inputs 

are values that were written in a previous clock cycle, while the outputs are values 

that can be used in a following clock cycle. 

State

State

element

Combinational logic

element

1

2

Clock cycle

FIGURE 4.3  Combinational logic, state elements, and the clock are closely related. 

In a synchronous digital system, the clock determines when elements with state will write values into internal storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they will not change until aft er the clock edge) before the active clock edge causes the state to be updated. All state elements in this chapter, including memory, are assumed to be positive edge-triggered; that is, they change on the rising clock edge. 
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Figure 4.3 shows the two state elements surrounding a block of combinational 

logic, which operates in a single clock cycle: all signals must propagate from state 

element 1, through the combinational logic, and to state element 2 in the time of 

one clock cycle. Th

e time necessary for the signals to reach state element 2 defi nes 

the length of the clock cycle. 

control signal A signal 

For simplicity, we do not show a write control signal when a state element is 

used for multiplexor 

written on every active clock edge. In contrast, if a state element is not updated on 

selection or for directing 

every clock, then an explicit write control signal is required. Both the clock signal 

the operation of a 

and the write control signal are inputs, and the state element is changed only when 

functional unit; contrasts 

the write control signal is asserted and a clock edge occurs. 

with a  data signal, which 

We will use the word asserted to indicate a signal that is logically high and  assert 

contains information 

that is operated on by a 

to specify that a signal should be driven logically high, and  deassert or deasserted 

functional unit. 

to represent logically low. We use the terms assert and deassert because when 

we implement hardware, at times 1 represents logically high and at times it can 

asserted  Th

e signal is 

represent logically low. 

logically high or true. 

An edge-triggered methodology allows us to read the contents of a register, 

deasserted  Th

e signal is 

send the value through some combinational logic, and write that register in the 

logically low or false. 

same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we assume that all writes take place on the rising clock edge (from low to high) or on 

the falling clock edge (from high to low), since the inputs to the combinational 

logic block cannot change except on the chosen clock edge. In this book we use 

the rising clock edge. With an edge-triggered timing methodology, there is  no 

feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In Appendix B, we briefl y discuss additional timing constraints (such as setup and 

hold times) as well as other timing methodologies. 

For the 32-bit MIPS architecture, nearly all of these state and logic elements will 

have inputs and outputs that are 32 bits wide, since that is the width of most of the 

data handled by the processor. We will make it clear whenever a unit has an input 

or output that is other than 32 bits in width. Th

e fi gures will indicate  buses, which 

are signals wider than 1 bit, with thicker lines. At times, we will want to combine 

several buses to form a wider bus; for example, we may want to obtain a 32-bit bus 

by combining two 16-bit buses. In such cases, labels on the bus lines will make it 

State

Combinational logic

element

FIGURE 4.4  An edge-triggered methodology allows a state element to be read and 

written in the same clock cycle without creating a race that could lead to indeterminate 

data values. Of course, the clock cycle still must be long enough so that the input values are stable when the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered update of the state element. If feedback were possible, this design could not work properly. Our designs in this chapter and the next rely on the edge-triggered timing methodology and on structures like the one shown in this fi gure. 
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clear that we are concatenating buses to form a wider bus. Arrows are also added 

to help clarify the direction of the fl ow of data between elements. Finally, color 

indicates a control signal as opposed to a signal that carries data; this distinction 

will become clearer as we proceed through this chapter. 

True or false: Because the register fi le is both read and written on the same clock  Check 

cycle, any MIPS datapath using edge-triggered writes must have more than one  Yourself

copy of the register fi le. 

Elaboration: There is also a 64-bit version of the MIPS architecture, and, naturally 

enough, most paths in its implementation would be 64 bits wide. 

 4.3 

Building a Datapath

A reasonable way to start a datapath design is to examine the major components 

required to execute each class of MIPS instructions. Let’s start at the top by looking 

at which datapath elements each instruction needs, and then work our way down 

through the levels of abstraction. When we show the datapath elements, we will 

also show their control signals. We use abstraction in this explanation, starting 

from the bottom up. 

Figure 4.5a shows the fi rst element we need: a memory unit to store the 

instructions of a program and supply instructions given an address. Figure 

4.5b also shows the program counter (PC), which as we saw in Chapter 2 

is a register that holds the address of the current instruction. Lastly, we will  datapath element need an adder to increment the PC to the address of the next instruction. Th

is  A unit used to operate 

adder, which is combinational, can be built from the ALU described in detail  on or hold data within a in 

Appendix B simply by wiring the control lines so that the control always  processor. In the MIPS 

specifi es an add operation. We will draw such an ALU with the label  Add, as in  implementation, the 

Figure 4.5, to indicate that it has been permanently made an adder and cannot  datapath elements include the instruction and data 

perform the other ALU functions. 

memories, the register 

To execute any instruction, we must start by fetching the instruction from  fi le, the ALU, and adders. 

memory. To prepare for executing the next instruction, we must also increment 

the program counter so that it points at the next instruction, 4 bytes later. Figure  program counter 

4.6 shows how to combine the three elements from Figure 4.5 to form a datapath  (PC)  Th e register containing the address 

that fetches instructions and increments the PC to obtain the address of the next  of the instruction in the sequential instruction. 

program being executed. 

Now let’s consider the R-format instructions (see Figure 2.20 on page 120). 

Th

ey all read two registers, perform an ALU operation on the contents of the 

registers, and write the result to a register. We call these instructions either  R-type 

 instructions or  arithmetic-logical instructions (since they perform arithmetic or logical operations). Th

is instruction class includes add, sub, AND, OR, and slt, 
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FIGURE 4.5  Two state elements are needed to store and access instructions, and an 

adder is needed to compute the next instruction address.  Th

e state elements are the instruction 

memory and the program counter. Th

e instruction memory need only provide read access because the 

datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational logic: the output at any time refl ects the contents of the location specifi ed by the address input, and no read control signal is needed. (We will need to write the instruction memory when we load the program; this is not hard to add, and we ignore it for simplicity.) Th

e program counter is a 32-bit register that is written at the 

end of every clock cycle and thus does not need a write control signal. Th

e adder is an ALU wired to always 

add its two 32-bit inputs and place the sum on its output. 

which were introduced in Chapter 2. Recall that a typical instance of such an 

instruction is add $t1,$t2,$t3, which reads $t2 and $t3 and writes $t1. 

Th

e processor’s 32 general-purpose registers are stored in a structure called a 

register fi le A state 

register fi le. A register fi le is a collection of registers in which any register can be element that consists 

read or written by specifying the number of the register in the fi le. Th

e register fi le 

of a set of registers that 

contains the register state of the computer. In addition, we will need an ALU to 

can be read and written 

operate on the values read from the registers. 

by supplying a register 

R-format instructions have three register operands, so we will need to read two 

number to be accessed. 

data words from the register fi le and write one data word into the register fi le for 

each instruction. For each data word to be read from the registers, we need an input 

to the register fi le that specifi es the  register number to be read and an output from 

the register fi le that will carry the value that has been read from the registers. To 

write a data word, we will need two inputs: one to specify the register number to be 

written and one to supply the  data to be written into the register. Th

e register fi le 

always outputs the contents of whatever register numbers are on the Read register 

inputs. Writes, however, are controlled by the write control signal, which must be 

asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we need a total of four inputs (three for register numbers and one for data) and two 

outputs (both for data). Th

e register number inputs are 5 bits wide to specify one 

of 32 registers (32 = 25), whereas the data input and two data output buses are each 

32 bits wide. 

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit result, as well as a 1-bit signal if the result is 0. Th

e 4-bit control signal of the ALU is 

described in detail in   Appendix B; we will review the ALU control shortly when 

we need to know how to set it. 
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FIGURE 4.6  A portion of the datapath used for fetching instructions and incrementing 

the program counter.  Th

e fetched instruction is used by other parts of the datapath. 
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FIGURE 4.7  The two elements needed to implement R-format ALU operations are the 


register fi le and the ALU.  Th

e register fi le contains all the registers and has two read ports and one write 

port. Th

e design of multiported register fi les is discussed in Section B.8 of  

Appendix B. Th e register fi le 

always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to the register fi le are edge-triggered, our design can legally read and write the same register within a clock cycle: the read will get the value written in an earlier clock cycle, while the value written will be available to a read in a subsequent clock cycle. Th

e inputs carrying the register number to the register fi le are all 5 

bits wide, whereas the lines carrying data values are 32 bits wide. Th

e operation to be performed by the 

ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. Th e overfl ow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then. 
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Next, consider the MIPS load word and store word instructions, which have the 

general form lw $t1,offset_value($t2) or sw $t1,offset_value 

($t2). Th

ese instructions compute a memory address by adding the base register, 

which is $t2, to the 16-bit signed off set fi eld contained in the instruction. If the 

instruction is a store, the value to be stored must also be read from the register fi le 

where it resides in $t1. If the instruction is a load, the value read from memory 

must be written into the register fi le in the specifi ed register, which is $t1. Th

us, 

we will need both the register fi le and the ALU from Figure 4.7. 

sign-extend To increase 

In addition, we will need a unit to sign-extend the 16-bit off set fi eld in the 

the size of a data item by 

instruction to a 32-bit signed value, and a data memory unit to read from or write 

replicating the high-order 

to. Th

e data memory must be written on store instructions; hence, data memory 

sign bit of the original 

has read and write control signals, an address input, and an input for the data to be 

data item in the high-

written into memory. Figure 4.8 shows these two elements. 

order bits of the larger, 

Th

e beq instruction has three operands, two registers that are compared for 

destination data item. 

equality, and a 16-bit off set used to compute the branch target address relative 

branch target 

to the branch instruction address. Its form is beq $t1,$t2,offset. To 

address  Th

e address 

implement this instruction, we must compute the branch target address by adding 

specifi ed in a branch, 

the sign-extended off set fi eld of the instruction to the PC. Th

ere are two details in 

which becomes the new 

the defi nition of branch instructions (see Chapter 2) to which we must pay attention:

program counter (PC) 

if the branch is taken. In 

■  Th

e instruction set architecture specifi es that the base for the branch address 

the MIPS architecture the 

calculation is the address of the instruction following the branch. Since we 

branch target is given by 

compute PC + 4 (the address of the next instruction) in the instruction fetch 

the sum of the off set fi eld 

of the instruction and the 

datapath, it is easy to use this value as the base for computing the branch 

address of the instruction 

target address. 

following the branch. 

■  Th

e architecture also states that the off set fi eld is shift ed left  2 bits so that it 

is a word off set; this shift  increases the eff ective range of the off set fi eld by a 

factor of 4. 

To deal with the latter complication, we will need to shift  the off set fi eld by 2. 

branch taken 

As well as computing the branch target address, we must also determine whether 

A branch where the 

the next instruction is the instruction that follows sequentially or the instruction 

branch condition is 

at the branch target address. When the condition is true (i.e., the operands are 

satisfi ed and the program 

counter (PC) becomes 

equal), the branch target address becomes the new PC, and we say that the branch 

the branch target. All 

is  taken. If the operands are not equal, the incremented PC should replace the 

unconditional jumps are 

current PC (just as for any other normal instruction); in this case, we say that the 

taken branches. 

branch is not taken. 

Th

us, the branch datapath must do two operations: compute the branch target 

branch not taken or 

(untaken branch) 

address and compare the register contents. (Branches also aff ect the instruction 

A branch where the 

fetch portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the branch condition is false 

structure of the datapath segment that handles branches. To compute the branch 

and the program counter 

target address, the branch datapath includes a sign extension unit, from Figure 4.8 

(PC) becomes the address 

and an adder. To perform the compare, we need to use the register fi le shown in 

of the instruction that 

Figure 4.7a to supply the two register operands (although we will not need to write sequentially follows the 

into the register fi le). In addition, the comparison can be done using the ALU we 

branch. 
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FIGURE 4.8  The two units needed to implement loads and stores, in addition to the 

register fi le and ALU of Figure 4.7, are the data memory unit and the sign extension unit.  

Th

e memory unit is a state element with inputs for the address and the write data, and a single output for the read result. Th

ere are separate read and write controls, although only one of these may be asserted on 

any given clock. Th

e memory unit needs a read signal, since, unlike the register fi le, reading the value of 

an invalid address can cause problems, as we will see in Chapter 5. Th

e sign extension unit has a 16-bit 

input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be adapted to work with real memory chips. See Section B.8 of 

Appendix B for further discussion of how 

real memory chips work. 

designed in   Appendix B. Since that ALU provides an output signal that indicates 

whether the result was 0, we can send the two register operands to the ALU with 

the control set to do a subtract. If the Zero signal out of the ALU unit is asserted, 

we know that the two values are equal. Although the Zero output always signals 

if the result is 0, we will be using it only to implement the equal test of branches. 

Later, we will show exactly how to connect the control signals of the ALU for use 

in the datapath. 

Th

e jump instruction operates by replacing the lower 28 bits of the PC with the 

lower 26 bits of the instruction shift ed left  by 2 bits. Simply concatenating 00 to the 

jump off set accomplishes this shift , as described in Chapter 2. 

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the  branch  A type of branch instruction immediately following the branch is always executed,  independent of whether 

where the instruction 

the branch condition is true or false. When the condition is false, the execution looks 

immediately following the 

like a normal branch. When the condition is true, a delayed branch fi rst executes the 

branch is always executed, 

instruction immediately following the branch in sequential instruction order before  independent of whether jumping to the specifi ed branch target address. The motivation for delayed branches 

the branch condition is 

arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally 

true or false. 

ignore delayed branches in this chapter and implement a nondelayed beq instruction. 
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data 1
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register 2

To branch

Registers

ALU Zero

control logic

Write

register

Read

data 2

Write

data

RegWrite

16

32

Sign-

extend

FIGURE 4.9  The datapath for a branch uses the ALU to evaluate the branch condition and a separate adder to compute the branch target as the sum of the incremented PC and the 

sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2 

bits. Th

e unit labeled  Shift  left  2 is simply a routing of the signals between input and output that adds 00  

two

to the low-order end of the sign-extended off set fi eld; no actual shift  hardware is needed, since the amount of the “shift ” is constant. Since we know that the off set was sign-extended from 16 bits, the shift  will throw away only “sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC, based on the Zero output of the ALU. 

Creating a Single Datapath

Now that we have examined the datapath components needed for the individual 

instruction classes, we can combine them into a single datapath and add the control 

to complete the implementation. Th

is simplest datapath will attempt to execute all 

instructions in one clock cycle. Th

is means that no datapath resource can be used 

more than once per instruction, so any element needed more than once must be 

duplicated. We therefore need a memory for instructions separate from one for 

data. Although some of the functional units will need to be duplicated, many of the 

elements can be shared by diff erent instruction fl ows. 

To share a datapath element between two diff erent instruction classes, we may 

need to allow multiple connections to the input of an element, using a multiplexor 

and control signal to select among the multiple inputs. 
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Building a Datapath

EXAMPLE

Th

e operations of arithmetic-logical (or R-type) instructions and the memory 

instructions datapath are quite similar. Th

e key diff erences are the following:

■  Th

e arithmetic-logical instructions use the ALU, with the inputs coming 

from the two registers. Th

e memory instructions can also use the ALU 

to do the address calculation, although the second input is the sign-

extended 16-bit off set fi eld from the instruction. 

■  Th

e value stored into a destination register comes from the ALU (for an 

R-type instruction) or the memory (for a load). 

Show how to build a datapath for the operational portion of the memory-

reference and arithmetic-logical instructions that uses a single register fi le 

and a single ALU to handle both types of instructions, adding any necessary 

multiplexors. 

To create a datapath with only a single register fi le and a single ALU, we must 

support two diff erent sources for the second ALU input, as well as two diff erent 

ANSWER

sources for the data stored into the register fi le. Th

us, one multiplexor is placed 

at the ALU input and another at the data input to the register fi le. Figure 4.10 

shows the operational portion of the combined datapath. 

Now we can combine all the pieces to make a simple datapath for the core 

MIPS architecture by adding the datapath for instruction fetch (Figure 4.6), the datapath from R-type and memory instructions (Figure 4.10), and the datapath 

for branches (Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the separate pieces. Th

e branch instruction uses the main ALU for comparison of 

the register operands, so we must keep the adder from Figure 4.9 for computing the branch target address. An additional multiplexor is required to select either the 

sequentially following instruction address (PC + 4) or the branch target address to 

be written into the PC. 

Now that we have completed this simple datapath, we can add the control unit. 

Th

e control unit must be able to take inputs and generate a write signal for each 

state element, the selector control for each multiplexor, and the ALU control. Th

e 

ALU control is diff erent in a number of ways, and it will be useful to design it fi rst 

before we design the rest of the control unit. 

I.  Which of the following is correct for a load instruction? Refer to Figure 4.10. 

Check 

a.  MemtoReg should be set to cause the data from memory to be sent to the 

Yourself

register fi le. 
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FIGURE 4.10  The datapath for the memory instructions and the R-type instructions. Th is example shows how a single 

datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, as described in the example. 
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FIGURE 4.11  The simple datapath for the core MIPS architecture combines the elements required by different instruction classes.  Th

e components come from Figures 4.6, 4.9, and 4.10. Th

is datapath can execute the basic instructions (load-store 

word, ALU operations, and branches) in a single clock cycle. Just one additional multiplexor is needed to integrate branches. Th e support for 

jumps will be added later. 
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b.  MemtoReg should be set to cause the correct register destination to be 

sent to the register fi le. 

c.  We do not care about the setting of MemtoReg for loads. 

II. Th

e single-cycle datapath conceptually described in this section  must have 

separate instruction and data memories, because

a.  the formats of data and instructions are diff erent in MIPS, and hence 

diff erent memories are needed. 

b.  having separate memories is less expensive. 

c.  the processor operates in one cycle and cannot use a single-ported 

memory for two diff erent accesses within that cycle

 4.4 

A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible 

implementation of our MIPS subset. We build this simple implementation using 

the datapath of the last section and adding a simple control function. Th

is simple 

implementation covers  load word (lw),  store word (sw),  branch equal (beq), and the arithmetic-logical instructions add, sub, AND, OR, and set on less 

than. We will later enhance the design to include a jump instruction (j). 

The ALU Control

Th

e MIPS ALU in    Appendix B defi nes the 6 following combinations of four 

control inputs:

ALU control lines

Function

0000

AND

0001

OR

0010

add

0110

subtract

0111

set on less than

1100

NOR

Depending on the instruction class, the ALU will need to perform one of these 

fi rst fi ve functions. (NOR is needed for other parts of the MIPS instruction set not 

found in the subset we are implementing.) For load word and store word instructions, 

we use the ALU to compute the memory address by addition. For the R-type 

instructions, the ALU needs to perform one of the fi ve actions (AND, OR, subtract, 

add, or set on less than), depending on the value of the 6-bit funct (or function) fi eld 
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in the low-order bits of the instruction (see Chapter 2). For branch equal, the ALU 

must perform a subtraction. 

We can generate the 4-bit ALU control input using a small control unit that has 

as inputs the function fi eld of the instruction and a 2-bit control fi eld, which we 

call ALUOp. ALUOp indicates whether the operation to be performed should be 

add (00) for loads and stores, subtract (01) for beq, or determined by the operation 

encoded in the funct fi eld (10). Th

e output of the ALU control unit is a 4-bit signal 

that directly controls the ALU by generating one of the 4-bit combinations shown 

previously. 

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit 

ALUOp control and the 6-bit function code. Later in this chapter we will see how 

the ALUOp bits are generated from the main control unit. 

Th

is style of using multiple levels of decoding—that is, the main control unit 

generates the ALUOp bits, which then are used as input to the ALU control that 

generates the actual signals to control the ALU unit—is a common implementation 

technique. Using multiple levels of control can reduce the size of the main control 

unit. Using several smaller control units may also potentially increase the speed of 

the control unit. Such optimizations are important, since the speed of the control 

unit is oft en critical to clock cycle time. 

Th

ere are several diff erent ways to implement the mapping from the 2-bit 

ALUOp fi eld and the 6-bit funct fi eld to the four ALU operation control bits. 

Because only a small number of the 64 possible values of the function fi eld are of 

interest and the function fi eld is used only when the ALUOp bits equal 10, we can 

use a small piece of logic that recognizes the subset of possible values and causes 

the correct setting of the ALU control bits. 

As a step in designing this logic, it is useful to create a truth table for the 

interesting combinations of the function code fi eld and the ALUOp bits, as we’ve 

Instruction 

Instruction 

Desired 

ALU control 

opcode

ALUOp

operation

Funct field

ALU action

input

LW

00

load word

XXXXXX

add

0010

SW

00

store word

XXXXXX

add

0010

Branch equal

01

branch equal

XXXXXX

subtract

0110

R-type

10

add

100000

add

0010

R-type

10

subtract

100010

subtract

0110

R-type

10

AND

100100

AND

0000

R-type

10

OR

100101

OR

0001

R-type

10

set on less than

101010

set on less than

0111

FIGURE 4.12  How the ALU control bits are set depends on the ALUOp control bits and 

the different function codes for the R-type instruction.  Th

e opcode, listed in the fi rst column, 

determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the ALUOp code is 00 or 01, the desired ALU action does not depend on the function code fi eld; in this case, we say that we “don’t care” about the value of the function code, and the funct fi eld is shown as XXXXXX. When the ALUOp value is 10, then the function code is used to set the ALU control input. See 

Appendix B. 
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done in Figure 4.13; this truth table shows how the 4-bit ALU control is set  truth table  From logic, a depending on these two input fi elds. Since the full truth table is very large (28 = 256  representation of a logical entries) and we don’t care about the value of the ALU control for many of these input 

operation by listing all the 

combinations, we show only the truth table entries for which the ALU control must  values of the inputs and then in each case showing 

have a specifi c value. Th

roughout this chapter, we will use this practice of showing  what the resulting outputs 

only the truth table entries for outputs that must be asserted and not showing those  should be. 

that are all deasserted or don’t care. (Th

is practice has a disadvantage, which we 

discuss in Section D.2 of   Appendix D.)

Because in many instances we do not care about the values of some of the inputs, 

and because we wish to keep the tables compact, we also include don’t-care terms. don’t-care term An A don’t-care term in this truth table (represented by an X in an input column)  element of a logical indicates that the output does not depend on the value of the input corresponding  function in which the to that column. For example, when the ALUOp bits are 00, as in the fi rst row of  output does not depend on the values of all the 

Figure 4.13, we always set the ALU control to 0010, independent of the function  inputs. Don’t-care terms code. In this case, then, the function code inputs will be don’t cares in this line of  may be specifi ed in the truth table. Later, we will see examples of another type of don’t-care term. If you 

diff erent ways. 

are unfamiliar with the concept of don’t-care terms, see   Appendix B for more 

information. 

Once the truth table has been constructed, it can be optimized and then turned 

into gates. Th

is process is completely mechanical. Th

us, rather than show the fi nal 

steps here, we describe the process and the result in Section D.2 of   Appendix D. 

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and 

a 2-bit signal as its control inputs, we can return to looking at the rest of the control. 

To start this process, let’s identify the fi elds of an instruction and the control lines 

that are needed for the datapath we constructed in Figure 4.11. To understand how to connect the fi elds of an instruction to the datapath, it is useful to review 

ALUOp

Funct field

ALUOp1

ALUOp0

F5

F4

F3

F2

F1

F0

Operation

0

0

X

X

X

X

X

X

0010

X

1

X

X

X

X

X

X

0110 

1

X

X

X

0

0

0

0

0010 

1

X

X

X

0

0

1

0

0110 

1

X

X

X

0

1

0

0

0000

1

X

X

X

0

1

0

1

0001 

1

X

X

X

1

0

1

0

0111 

FIGURE 4.13  The truth table for the 4 ALU control bits (called Operation).  Th

e inputs are the 

ALUOp and function code fi eld. Only the entries for which the ALU control is asserted are shown. Some don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. Note that when the function fi eld is used, the fi rst 2 

bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX 

in the truth table. 
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Field

0

rs

rt

rd

shamt

funct

Bit positions

31:26

25:21

20:16

15:11

10:6

5:0

a. R-type instruction

Field

35 or 43

rs

rt

address

Bit positions

31:26

25:21

20:16

15:0

b.  Load or store instruction

Field

4

rs

rt

address

Bit positions

31:26

25:21

20:16

15:0

c. Branch instruction

FIGURE 4.14  The three instruction classes (R-type, load and store, and branch) use two different instruction formats.  Th

e jump instructions use another format, which we will discuss shortly. 

(a) Instruction format for R-format instructions, which all have an opcode of 0. Th

ese instructions have three 

register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. Th

e ALU function is 

in the funct fi eld and is decoded by the ALU control design in the previous section. Th

e R-type instructions 

that we implement are add, sub, AND, OR, and slt. Th

e shamt fi eld is used only for shift s; we will ignore it 

in this chapter. (b) Instruction format for load (opcode = 35 ) and store (opcode = 43 ) instructions. Th e 

ten

ten

register rs is the base register that is added to the 16-bit address fi eld to form the memory address. For loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should be stored into memory. (c) Instruction format for branch equal (opcode =4). Th

e registers rs and rt are the 

source registers that are compared for equality. Th

e 16-bit address fi eld is sign-extended, shift ed, and added 

to the PC + 4 to compute the branch target address. 

the formats of the three instruction classes: the R-type, branch, and load-store 

instructions. Figure 4.14 shows these formats. 

Th

ere are several major observations about this instruction format that we will 

rely on:

opcode  Th

e fi eld that 

■  Th

e op fi eld, which as we saw in Chapter 2 is called the opcode, is always 

denotes the operation and 

contained in bits 31:26. We will refer to this fi eld as Op[5:0]. 

format of an instruction. 

■  Th

e two registers to be read are always specifi ed by the rs and rt fi elds, at 

positions 25:21 and 20:16. Th

is is true for the R-type instructions, branch 

equal, and store. 

■  Th

e base register for load and store instructions is always in bit positions 

25:21 (rs). 

■  Th

e 16-bit off set for branch equal, load, and store is always in positions 15:0. 

■  Th

e destination register is in one of two places. For a load it is in bit positions 

20:16 (rt), while for an R-type instruction it is in bit positions 15:11 (rd). 

Th

us, we will need to add a multiplexor to select which fi eld of the instruction 

is used to indicate the register number to be written. 

Th

e fi rst design principle from Chapter 2— simplicity favors regularity—pays off  

here in specifying control. 
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FIGURE 4.15  The datapath of Figure 4.11 with all necessary multiplexors and all control lines identifi ed.  Th e control 

lines are shown in color. Th

e ALU control block has also been added. Th

e PC does not require a write control, since it is written once at the end 

of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address. 

Using this information, we can add the instruction labels and extra multiplexor 

(for the Write register number input of the register fi le) to the simple datapath. 

Figure 4.15 shows these additions plus the ALU control block, the write signals for state elements, the read signal for the data memory, and the control signals for the 

multiplexors. Since all the multiplexors have two inputs, they each require a single 

control line. 

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control signal. We have already defi ned how the ALUOp control signal works, and it is 

useful to defi ne what the seven other control signals do informally before we 

determine how to set these control signals during instruction execution. Figure 

4.16 describes the function of these seven control lines. 

Now that we have looked at the function of each of the control signals, we can 

look at how to set them. Th

e control unit can set all but one of the control signals 

based solely on the opcode fi eld of the instruction. Th

e PCSrc control line is the 

exception. Th

at control line should be asserted if the instruction is branch on equal 

(a decision that the control unit can make)  and the Zero output of the ALU, which 

is used for equality comparison, is asserted. To generate the PCSrc signal, we will 

need to AND together a signal from the control unit, which we call  Branch, with 

the Zero signal out of the ALU. 
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Signal 

name

Effect when deasserted

Effect when asserted

RegDst

The register destination number for the 

The register destination number for the Write 

Write register comes from the rt field 

register comes from the rd field (bits 15:11). 

(bits 20:16). 

RegWrite

None. 

The register on the Write register input is 

written with the value on the Write data input. 

ALUSrc

The second ALU operand comes from the  The second ALU operand is the sign-

second register file output (Read data 2). 

extended, lower 16 bits of the instruction. 

PCSrc

The PC is replaced by the output of the 

The PC is replaced by the output of the adder 

adder that computes the value of PC + 4. 

that computes the branch target. 

MemRead

None. 

Data memory contents designated by the 

address input are put on the Read data output. 

MemWrite

None. 

Data memory contents designated by the 

address input are replaced by the value on 

the Write data input. 

MemtoReg

The value fed to the register Write data 

The value fed to the register Write data input 

input comes from the ALU. 

comes from the data memory. 

FIGURE 4.16  The effect of each of the seven control signals.  When the 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element can create timing problems. (See 

Appendix B for further discussion of this problem.)

Th

ese nine control signals (seven from Figure 4.16 and two for ALUOp) can 

now be set on the basis of six input signals to the control unit, which are the opcode 

bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control signals. 

Before we try to write a set of equations or a truth table for the control unit, it 

will be useful to try to defi ne the control function informally. Because the setting 

of the control lines depends only on the opcode, we defi ne whether each control 

signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18 

defi nes how the control signals should be set for each opcode; this information 

follows directly from Figures 4.12, 4.16, and 4.17. 

Operation of the Datapath

With the information contained in Figures 4.16 and 4.18, we can design the control unit logic, but before we do that, let’s look at how each instruction uses the datapath. 

In the next few fi gures, we show the fl ow of three diff erent instruction classes 

through the datapath. Th

e asserted control signals and active datapath elements 

are highlighted in each of these. Note that a multiplexor whose control is 0 has 

a defi nite action, even if its control line is not highlighted. Multiple-bit control 

signals are highlighted if any constituent signal is asserted. 

Figure 4.19 shows the operation of the datapath for an R-type instruction, such as add $t1,$t2,$t3. Although everything occurs in one clock cycle, we can 
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M
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data Registers

Write

Data

data memory

Instruction [15–0]

16

Sign-

32

ALU

extend

control

Instruction [5–0]

FIGURE 4.17  The simple datapath with the control unit.  Th

e input to the control unit is the 6-bit opcode fi eld from the instruction. 

Th

e outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for controlling reads and writes in the register fi le and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one coming directly from the control unit. Th

us, we drop the signal name in subsequent fi gures. 

think of four steps to execute the instruction; these steps are ordered by the fl ow 

of information:

1. Th

e instruction is fetched, and the PC is incremented. 

2. Two registers, $t2 and $t3, are read from the register fi le; also, the main 

control unit computes the setting of the control lines during this step. 

3. Th

e ALU operates on the data read from the register fi le, using the function 

code (bits 5:0, which is the funct fi eld, of the instruction) to generate the 

ALU function. 
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Memto- 
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Mem- 

Mem- 

Instruction
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Reg
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Read

Write

Branch

ALUOp1

ALUOp0

R-format

1

0

0

1

0

0

0

1

0

lw 

0

1

1

1

1

0

0

0

0

sw

X

1

X

0

0

1

0

0

0

beq

X

0

X

0

0

0

1

0

1

FIGURE 4.18  The setting of the control lines is completely determined by the opcode fi elds of the instruction.  Th e fi rst 

row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these instructions, the source register fi elds are rs and rt, and the destination register fi eld is rd; this defi nes how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register (Reg-Write = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. Th e ALUOp fi eld for R-type 

instructions is set to 10 to indicate that the ALU control should be generated from the funct fi eld. Th e second and third rows of this table give the 

control signal settings for lw and sw. Th

ese ALUSrc and ALUOp fi elds are set to perform the address calculation. Th

e MemRead and MemWrite 

are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. Th e 

branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. Th e ALUOp fi eld for branch is set for a 

subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg fi eld is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on the register data write port is not used. Th us, the entry MemtoReg in the last two rows 

of the table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. Th is type of don’t care must be added 

by the designer, since it depends on knowledge of how the datapath works. 
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FIGURE 4.19  The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3.  Th e control lines, datapath units, 

and connections that are active are highlighted. 
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4. Th

e result from the ALU is written into the register fi le using bits 15:11 of the 

instruction to select the destination register ($t1). 

Similarly, we can illustrate the execution of a load word, such as

lw $t1, offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and asserted control lines for a load. We can think of a load instruction as operating in 

fi ve steps (similar to how the R-type executed in four):

1.  An instruction is fetched from the instruction memory, and the PC is 

incremented. 

2.  A register ($t2) value is read from the register fi le. 
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FIGURE 4.20  The datapath in operation for a load instruction.  Th

e control lines, datapath units, and connections that are active 

are highlighted. A store instruction would operate very similarly. Th

e main diff erence would be that the memory control would indicate a write 

rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to the register fi le would not occur. 
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3. Th

e ALU computes the sum of the value read from the register fi le and the 

sign-extended, lower 16 bits of the instruction (offset). 

4. Th

e sum from the ALU is used as the address for the data memory. 

5. Th

e data from the memory unit is written into the register fi le; the register 

destination is given by bits 20:16 of the instruction ($t1). 

Finally, we can show the operation of the branch-on-equal instruction, such as 

beq $t1, $t2, offset, in the same fashion. It operates much like an R-format 

instruction, but the ALU output is used to determine whether the PC is written with 

PC + 4 or the branch target address. Figure 4.21 shows the four steps in execution: 1.  An instruction is fetched from the instruction memory, and the PC is 

incremented. 
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FIGURE 4.21  The datapath in operation for a branch-on-equal instruction. Th

e control lines, datapath units, and connections 

that are active are highlighted. Aft er using the register fi le and ALU to perform the compare, the Zero output is used to select the next program counter from between the two candidates. 
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2. Two 

registers, 

$t1 and $t2, are read from the register fi le. 

3. Th

e ALU performs a subtract on the data values read from the register fi le. Th

e 

value of PC + 4 is added to the sign-extended, lower 16 bits of the instruction 

(offset) shift ed left  by two; the result is the branch target address. 

4. Th

e Zero result from the ALU is used to decide which adder result to store 

into the PC. 

Finalizing Control

Now that we have seen how the instructions operate in steps, let’s continue with 

the control implementation. Th

e control function can be precisely defi ned using 

the contents of Figure 4.18. Th

e outputs are the control lines, and the input is the 

6-bit opcode fi eld, Op [5:0]. Th

us, we can create a truth table for each of the outputs 

based on the binary encoding of the opcodes. 

Figure 4.22 shows the logic in the control unit as one large truth table that combines all the outputs and that uses the opcode bits as inputs. It completely 

specifi es the control function, and we can implement it directly in gates in an 

automated fashion. We show this fi nal step in Section D.2 in   Appendix D. 
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FIGURE 4.22  The control function for the simple single-cycle implementation is 

completely specifi ed by this truth table.  Th

e top half of the table gives the combinations of input 

signals that correspond to the four opcodes, one per column, that determine the control output settings. 

(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op fi eld.) Th e bottom 

portion of the table gives the outputs for each of the four opcodes. Th

us, the output RegWrite is asserted for 

two diff erent combinations of the inputs. If we consider only the four opcodes shown in this table, then we can simplify the truth table by using don’t cares in the input portion. For example, we can detect an R-format instruction with the expression Op5

⭈ Op2

, since this is suffi

cient to distinguish the R-format instructions 

from lw, sw, and beq. We do not take advantage of this simplifi cation, since the rest of the MIPS opcodes are used in a full implementation. 
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single-cycle 

Now that we have a single-cycle implementation of most of the MIPS core 

implementation Also 

instruction set, let’s add the jump instruction to show how the basic datapath and 

called single clock cycle 

control can be extended to handle other instructions in the instruction set. 

implementation. An 

implementation in which 

an instruction is executed 

in one clock cycle. While 

easy to understand, it is 

too slow to be practical. 

Implementing Jumps

EXAMPLE

Figure 4.17 shows the implementation of many of the instructions we looked at in Chapter 2. One class of instructions missing is that of the jump instruction. 

Extend the datapath and control of Figure 4.17 to include the jump instruction. 

Describe how to set any new control lines. 

Th

e jump instruction, shown in Figure 4.23, looks somewhat like a branch 

ANSWER

instruction but computes the target PC diff erently and is not conditional. Like 

a branch, the low-order 2 bits of a jump address are always 00 . Th

e next 

two

lower 26 bits of this 32-bit address come from the 26-bit immediate fi eld in the 

instruction. Th

e upper 4 bits of the address that should replace the PC come 

from the PC of the jump instruction plus 4. Th

us, we can implement a jump by 

storing into the PC the concatenation of

■  the upper 4 bits of the current PC + 4 (these are bits 31:28 of the 

sequentially following instruction address)

■  the 26-bit immediate fi eld of the jump instruction

■  the bits 00two

Figure 4.24 shows the addition of the control for jump added to Figure 4.17. An additional multiplexor is used to select the source for the new PC value, which 

is either the incremented PC (PC + 4), the branch target PC, or the jump target 

PC. One additional control signal is needed for the additional multiplexor. Th

is 

control signal, called  Jump, is asserted only when the instruction is a jump—

that is, when the opcode is 2. 

Field

000010

address

Bit positions

31:26

25:0

FIGURE 4.23  Instruction format for the jump instruction (opcode = 2). Th

e destination 

address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address fi eld in the jump instruction and adding 00 as the 2 low-order bits. 
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FIGURE 4.24  The simple control and datapath are extended to handle the jump instruction.  An additional multiplexor (at the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. Th is 

multiplexor is controlled by the jump control signal. Th

e jump target address is obtained by shift ing the lower 26 bits of the jump instruction 

left  2 bits, eff ectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit address. 

Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in 

modern designs because it is ineffi

cient. To see why this is so, notice that the clock 

cycle must have the same length for every instruction in this single-cycle design. 

Of course, the longest possible path in the processor determines the clock cycle. 

Th

is path is almost certainly a load instruction, which uses fi ve functional units 

in series: the instruction memory, the register fi le, the ALU, the data memory, and 

the register fi le. Although the CPI is 1 (see Chapter 1), the overall performance of 

a single-cycle implementation is likely to be poor, since the clock cycle is too long. 

Th

e penalty for using the single-cycle design with a fi xed clock cycle is signifi cant, 

but might be considered acceptable for this small instruction set. Historically, early 
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computers with very simple instruction sets did use this implementation technique. 

However, if we tried to implement the fl oating-point unit or an instruction set with 

more complex instructions, this single-cycle design wouldn’t work well at all. 

Because we must assume that the clock cycle is equal to the worst-case delay 

for all instructions, it’s useless to try implementation techniques that reduce the 

delay of the common case but do not improve the worst-case cycle time. A single-

cycle implementation thus violates the great idea from Chapter 1 of making the 

common case fast. 

In next section, we’ll look at another implementation technique, called 

pipelining, that uses a datapath very similar to the single-cycle datapath but is 

much more effi

cient by having a much higher throughput. Pipelining improves 

effi

ciency by executing multiple instructions simultaneously. 

Check  Look at the control signals in Figure 4.22. Can you combine any together? Can any control signal output in the fi gure be replaced by the inverse of another? (Hint: take 

Yourself

into account the don’t cares.) If so, can you use one signal for the other without 

adding an inverter? 

 4.5 

An Overview of Pipelining

 Never waste time. 

Pipelining is an implementation technique in which multiple instructions are 

American proverb

overlapped in execution. Today, pipelining is nearly universal. 

Th

is section relies heavily on one analogy to give an overview of the pipelining 

pipelining An 

terms and issues. If you are interested in just the big picture, you should concentrate 

implementation 

on this section and then skip to Sections 4.10 and 4.11 to see an introduction to the 

technique in which 

advanced pipelining techniques used in recent processors such as the Intel Core i7 

multiple instructions are 

and ARM Cortex-A8. If you are interested in exploring the anatomy of a pipelined 

overlapped in execution, 

much like an assembly 

computer, this section is a good introduction to Sections 4.6 through 4.9. 

line. 

Anyone who has done a lot of laundry has intuitively used pipelining. Th

e  non-

 pipelined approach to laundry would be as follows:

1.  Place one dirty load of clothes in the washer. 

2.  When the washer is fi nished, place the wet load in the dryer. 

3.  When the dryer is fi nished, place the dry load on a table and fold. 

4.  When folding is fi nished, ask your roommate to put the clothes away. 

When your roommate is done, start over with the next dirty load. 

Th

e  pipelined approach takes much less time, as Figure 4.25 shows. As soon as the washer is fi nished with the fi rst load and placed in the dryer, you load the 

washer with the second dirty load. When the fi rst load is dry, you place it on the 

table to start folding, move the wet load to the dryer, and put the next dirty load 
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into the washer. Next you have your roommate put the fi rst load away, you start 

folding the second load, the dryer has the third load, and you put the fourth load 

into the washer. At this point all steps—called  stages in pipelining—are operating 

concurrently. As long as we have separate resources for each stage, we can pipeline 

the tasks. 

Th

e pipelining paradox is that the time from placing a single dirty sock in the 

washer until it is dried, folded, and put away is not shorter for pipelining; the reason 

pipelining is faster for many loads is that everything is working in parallel, so more 

loads are fi nished per hour. Pipelining improves throughput of our laundry system. 

Hence, pipelining would not decrease the time to complete one load of laundry, 

but when we have many loads of laundry to do, the improvement in throughput 

decreases the total time to complete the work. 

If all the stages take about the same amount of time and there is enough work 

to do, then the speed-up due to pipelining is equal to the number of stages in the 
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FIGURE 4.25  The laundry analogy for pipelining.  Ann, Brian, Cathy, and Don each have dirty clothes to be washed, dried, folded, and put away. Th

e washer, dryer, “folder,” and “storer” each take 30 

minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours. We show the pipeline stage of diff erent loads over time by showing copies of the four resources on this two-dimensional time line, but we really have just one of each resource. 
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pipeline, in this case four: washing, drying, folding, and putting away. Th

erefore, 

pipelined laundry is potentially four times faster than nonpipelined: 20 loads would 

take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20 

times as long as 1 load. It’s only 2.3 times faster in Figure 4.25, because we only show 4 loads. Notice that at the beginning and end of the workload in the pipelined 

version in Figure 4.25, the pipeline is not completely full; this start-up and wind-down aff ects performance when the number of tasks is not large compared to the 

number of stages in the pipeline. If the number of loads is much larger than 4, then 

the stages will be full most of the time and the increase in throughput will be very 

close to 4. 

Th

e same principles apply to processors where we pipeline instruction-execution. 

MIPS instructions classically take fi ve steps:

1.  Fetch instruction from memory. 

2.  Read registers while decoding the instruction. Th

e regular format of MIPS 

instructions allows reading and decoding to occur simultaneously. 

3.  Execute the operation or calculate an address. 

4.  Access an operand in data memory. 

5.  Write the result into a register. 

Hence, the MIPS pipeline we explore in this chapter has fi ve stages. Th

e following 

example shows that pipelining speeds up instruction execution just as it speeds up 

the laundry. 

Single-Cycle versus Pipelined Performance

EXAMPLE

To make this discussion concrete, let’s create a pipeline. In this example, and in 

the rest of this chapter, we limit our attention to eight instructions: load word 

(lw), store word (sw), add (add), subtract (sub), AND (and), OR (or), set 

less than (slt), and branch on equal (beq). 

Compare the average time between instructions of a single-cycle 

implementation, in which all instructions take one clock cycle, to a pipelined 

implementation. Th

e operation times for the major functional units in this 

example are 200 ps for memory access, 200 ps for ALU operation, and 100 ps 

for register fi le read or write. In the single-cycle model, every instruction takes 

exactly one clock cycle, so the clock cycle must be stretched to accommodate 

the slowest instruction. 

Figure 4.26 shows the time required for each of the eight instructions. 

ANSWER

Th

e single-cycle design must allow for the slowest instruction—in Figure 

4.26 it is lw—so the time required for every instruction is 800 ps. Similarly 
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to Figure 4.25, Figure 4.27 compares nonpipelined and pipelined execution of three load word instructions. Th

us, the time between the fi rst and fourth 

instructions in the nonpipelined design is 3 × 800 ns or 2400 ps. 

All the pipeline stages take a single clock cycle, so the clock cycle must be long 

enough to accommodate the slowest operation. Just as the single-cycle design 

must take the worst-case clock cycle of 800 ps, even though some instructions 

can be as fast as 500 ps, the pipelined execution clock cycle must have the 

worst-case clock cycle of 200 ps, even though some stages take only 100 ps. 

Pipelining still off ers a fourfold performance improvement: the time between 

the fi rst and fourth instructions is 3 × 200 ps or 600 ps. 

We can turn the pipelining speed-up discussion above into a formula. If the 

stages are perfectly balanced, then the time between instructions on the pipelined 

processor—assuming ideal conditions—is equal to

Time between instructionnonpipelined

Time between

t

instruc ions

⫽

pipelined

Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up 

from pipelining is approximately equal to the number of pipe stages; a fi ve-stage 

pipeline is nearly fi ve times faster. 

Th

e formula suggests that a fi ve-stage pipeline should off er nearly a fi vefold 

improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. Th

e 

example shows, however, that the stages may be imperfectly balanced. Moreover, 

pipelining involves some overhead, the source of which will be clearer shortly. 

Th

us, the time per instruction in the pipelined processor will exceed the minimum 

possible, and speed-up will be less than the number of pipeline stages. 

Instruction  Register 

ALU 

Data 

Register 

Total 

Instruction class

fetch

read

operation

access

write

time

Load word (lw)

200 ps

100 ps

200 ps

200 ps

100 ps

800 ps

Store word (sw)

200 ps

100 ps

200 ps

200 ps

700 ps

R-format (add, sub, AND, 

200 ps

100 ps

200 ps

100 ps

600 ps

OR, slt)

Branch (beq)

200 ps

100 ps

200 ps

500 ps

FIGURE 4.26  Total time for each instruction calculated from the time for each component.  

Th

is calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no delay. 
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FIGURE 4.27  Single-cycle, nonpipelined execution in top versus pipelined execution in 

bottom.  Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this fi gure to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage would set the stage time. Th

e pipeline stage times of a computer are also limited by the slowest resource, 

either the ALU operation or the memory access. We assume the write to the register fi le occurs in the fi rst half of the clock cycle and the read from the register fi le occurs in the second half. We use this assumption throughout this chapter. 

Moreover, even our claim of fourfold improvement for our example is not 

refl ected in the total execution time for the three instructions: it’s 1400 ps versus 

2400 ps. Of course, this is because the number of instructions is not large. What 

would happen if we increased the number of instructions? We could extend the 

previous fi gures to 1,000,003 instructions. We would add 1,000,000 instructions 

in the pipelined example; each instruction adds 200 ps to the total execution time. 

Th

e total execution time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400 

ps. In the nonpipelined example, we would add 1,000,000 instructions, each 

taking 800 ps, so total execution time would be 1,000,000 × 800 ps + 2400 ps, or 

800,002,400 ps. Under these conditions, the ratio of total execution times for real 

programs on nonpipelined to pipelined processors is close to the ratio of times 

between instructions:

800,002, 400  ps

800 ps



 4.00

200,001, 400  ps

200 ps
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Pipelining improves performance by  increasing instruction throughput, as 

 opposed to decreasing the execution time of an individual instruction, but instruction 

throughput is the important metric because real programs execute billions of 

instructions. 

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design 

of the MIPS instruction set, which was designed for pipelined execution. 

First, all MIPS instructions are the same length. Th

is restriction makes it much 

easier to fetch instructions in the fi rst pipeline stage and to decode them in the 

second stage. In an instruction set like the x86, where instructions vary from 1 byte 

to 15 bytes, pipelining is considerably more challenging. Recent implementations 

of the x86 architecture actually translate x86 instructions into simple operations 

that look like MIPS instructions and then pipeline the simple operations rather 

than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fi elds 

being located in the same place in each instruction. Th

is symmetry means that the 

second stage can begin reading the register fi le at the same time that the hardware 

is determining what type of instruction was fetched. If MIPS instruction formats 

were not symmetric, we would need to split stage 2, resulting in six pipeline stages. 

We will shortly see the downside of longer pipelines. 

Th

ird, memory operands only appear in loads or stores in MIPS. Th

is restriction 

means we can use the execute stage to calculate the memory address and then 

access memory in the following stage. If we could operate on the operands in 

memory, as in the x86, stages 3 and 4 would expand to an address stage, memory 

stage, and then execute stage. 

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence, 

we need not worry about a single data transfer instruction requiring two data 

memory accesses; the requested data can be transferred between processor and 

memory in a single pipeline stage. 

Pipeline Hazards

Th

ere are situations in pipelining when the next instruction cannot execute in the 

following clock cycle. Th

ese events are called  hazards, and there are three diff erent 

types. 

Hazards

structural hazard When 

Th

e fi rst hazard is called a structural hazard. It means that the hardware cannot  a planned instruction support the combination of instructions that we want to execute in the same clock  cannot execute in the cycle. A structural hazard in the laundry room would occur if we used a washer-proper clock cycle because 

dryer combination instead of a separate washer and dryer, or if our roommate was  the hardware does not support the combination 

busy doing something else and wouldn’t put clothes away. Our carefully scheduled  of instructions that are set pipeline plans would then be foiled. 

to execute. 
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As we said above, the MIPS instruction set was designed to be pipelined, 

making it fairly easy for designers to avoid structural hazards when designing a 

pipeline. Suppose, however, that we had a single memory instead of two memories. 

If the pipeline in Figure 4.27 had a fourth instruction, we would see that in the same clock cycle the fi rst instruction is accessing data from memory while the 

fourth instruction is fetching an instruction from that same memory. Without two 

memories, our pipeline could have a structural hazard. 

Data Hazards

data hazard Also 

Data hazards occur when the pipeline must be stalled because one step must wait 

called a pipeline data 

for another to complete. Suppose you found a sock at the folding station for which 

hazard. When a planned 

no match existed. One possible strategy is to run down to your room and search 

instruction cannot 

through your clothes bureau to see if you can fi nd the match. Obviously, while you 

execute in the proper 

are doing the search, loads must wait that have completed drying and are ready to 

clock cycle because data 

fold as well as those that have fi nished washing and are ready to dry. 

that is needed to execute 

the instruction is not yet 

In a computer pipeline, data hazards arise from the dependence of one 

available. 

instruction on an earlier one that is still in the pipeline (a relationship that does not 

really exist when doing laundry). For example, suppose we have an add instruction 

followed immediately by a subtract instruction that uses the sum ($s0):

add   $s0, $t0, $t1

sub   $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. Th

e add 

instruction doesn’t write its result until the fi ft h stage, meaning that we would have 

forwarding Also called 

to waste three clock cycles in the pipeline. 

bypassing. A method of 

Although we could try to rely on compilers to remove all such hazards, the 

resolving a data hazard 

results would not be satisfactory. Th

ese dependences happen just too oft en and the 

by retrieving the missing 

delay is just too long to expect the compiler to rescue us from this dilemma. 

data element from 

Th

e primary solution is based on the observation that we don’t need to wait for 

internal buff ers rather 

than waiting for it to 

the instruction to complete before trying to resolve the data hazard. For the code 

arrive from programmer-

sequence above, as soon as the ALU creates the sum for the add, we can supply it as 

visible registers or 

an input for the subtract. Adding extra hardware to retrieve the missing item early 

memory. 

from the internal resources is called forwarding or bypassing. 

Forwarding with Two Instructions

EXAMPLE

For the two instructions above, show what pipeline stages would be connected 

by forwarding. Use the drawing in Figure 4.28 to represent the datapath during the fi ve stages of the pipeline. Align a copy of the datapath for each instruction, 

similar to the laundry pipeline in Figure 4.25. 
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FIGURE 4.28  Graphical representation of the instruction pipeline, similar in spirit to the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with the abbreviations for pipeline stages used throughout the chapter. Th

e symbols for the fi ve stages:  IF for 

the instruction fetch stage, with the box representing instruction memory;  ID for the instruction decode/

register fi le read stage, with the drawing showing the register fi le being read;  EX for the execution stage, with the drawing representing the ALU;  MEM for the memory access stage, with the box representing data memory; and  WB for the write-back stage, with the drawing showing the register fi le being written. Th e 

shading indicates the element is used by the instruction. Hence, MEM has a white background because add does not access the data memory. Shading on the right half of the register fi le or memory means the element is read in that stage, and shading of the left  half means it is written in that stage. Hence the right half of ID is shaded in the second stage because the register fi le is read, and the left  half of WB is shaded in the fi ft h stage because the register fi le is written. 

Figure 4.29 shows the connection to forward the value in $s0 aft er  the 

execution stage of the add instruction as input to the execution stage of the 

ANSWER

sub instruction. 

In this graphical representation of events, forwarding paths are valid only if the 

destination stage is later in time than the source stage. For example, there cannot 

be a valid forwarding path from the output of the memory access stage in the fi rst 

instruction to the input of the execution stage of the following, since that would 

mean going backward in time. 

Forwarding works very well and is described in detail in Section 4.7. It cannot 

prevent all pipeline stalls, however. For example, suppose the fi rst instruction was a 

load of $s0 instead of an add. As we can imagine from looking at Figure 4.29, the Program

execution
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sub $t2, $s0, $t3 

IF

ID

EX

MEM

WB

FIGURE 4.29  Graphical representation of forwarding. Th

e connection shows the forwarding path 

from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register $s0 read in the second stage of sub. 
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sub $t2, $s0, $t3 

IF
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FIGURE 4.30  We need a stall even with forwarding when an R-format instruction following a load tries to use the data.  Without the stall, the path from memory access stage output to execution stage input would be going backward in time, which is impossible. Th

is fi gure is actually a simplifi cation, 

since we cannot know until aft er the subtract instruction is fetched and decoded whether or not a stall will be necessary. Section 4.7 shows the details of what really happens in the case of a hazard. 

load-use data hazard 

desired data would be available only  aft er the fourth stage of the fi rst instruction 

A specifi c form of data 

in the dependence, which is too late for the  input of the third stage of sub. Hence, 

hazard in which the data 

even with forwarding, we would have to stall one stage for a load-use data hazard, 

being loaded by a load 

as Figure 4.30 shows. Th

is fi gure shows an important pipeline concept, offi

cially 

instruction has not yet 

called a pipeline stall, but oft en given the nickname bubble. We shall see stalls 

become available when 

elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like 

it is needed by another 

instruction. 

these, using either hardware detection and stalls or soft ware that reorders code to 

try to avoid load-use pipeline stalls, as this example illustrates. 

pipeline stall Also called 

bubble. A stall initiated 

in order to resolve a 

hazard. 

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

EXAMPLE

a = b + e; 

c = b + f; 

Here is the generated MIPS code for this segment, assuming all variables are in 

memory and are addressable as off sets from $t0:

lw    $t1, 0($t0)

lw    $t2, 4($t0)

add   $t3, $t1,$t2

sw    $t3, 12($t0)

lw    $t4, 8($t0)

add   $t5, $t1,$t4

sw    $t5, 16($t0)
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Find the hazards in the preceding code segment and reorder the instructions 

to avoid any pipeline stalls. 

Both add instructions have a hazard because of their respective dependence 

on the immediately preceding lw instruction. Notice that bypassing eliminates 

ANSWER

several other potential hazards, including the dependence of the fi rst add on 

the fi rst lw and any hazards for store instructions. Moving up the third lw 

instruction to become the third instruction eliminates both hazards:

lw   $t1, 0($t0)

lw   $t2, 4($t0)

lw   $t4, 8($t0)

add  $t3, $t1,$t2

sw   $t3, 12($t0)

add  $t5, $t1,$t4

sw   $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will 

complete in two fewer cycles than the original version. 

Forwarding yields another insight into the MIPS architecture, in addition to the 

four mentioned on page 277. Each MIPS instruction writes at most one result and 

does this in the last stage of the pipeline. Forwarding is harder if there are multiple 

results to forward per instruction or if there is a need to write a result early on in 

instruction execution. 

Elaboration: The name “forwarding” comes from the idea that the result is passed 

forward from an earlier instruction to a later instruction. “Bypassing” comes from 

passing the result around the register fi le to the desired unit. 

Control Hazards

Th

e third type of hazard is called a control hazard, arising from the need to make a  control hazard Also decision based on the results of one instruction while others are executing. 

called branch hazard. 

Suppose our laundry crew was given the happy task of cleaning the uniforms  When the proper 

of a football team. Given how fi lthy the laundry is, we need to determine whether  instruction cannot execute in the proper 

the detergent and water temperature setting we select is strong enough to get the  pipeline clock cycle uniforms clean but not so strong that the uniforms wear out sooner. In our laundry 

because the instruction 

pipeline, we have to wait until aft er the second stage to examine the dry uniform to  that was fetched is not the see if we need to change the washer setup or not. What to do? 

one that is needed; that 

Here is the fi rst of two solutions to control hazards in the laundry room and its  is, the fl ow of instruction computer equivalent. 

addresses is not what the 

pipeline expected. 

 Stall: Just operate sequentially until the fi rst batch is dry and then repeat until 

you have the right formula. 

Th

is conservative option certainly works, but it is slow. 
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Th

e equivalent decision task in a computer is the branch instruction. Notice that 

we must begin fetching the instruction following the branch on the very next clock 

cycle. Nevertheless, the pipeline cannot possibly know what the next instruction 

should be, since it  only just received the branch instruction from memory! Just as 

with laundry, one possible solution is to stall immediately aft er we fetch a branch, 

waiting until the pipeline determines the outcome of the branch and knows what 

instruction address to fetch from. 

Let’s assume that we put in enough extra hardware so that we can test registers, 

calculate the branch address, and update the PC during the second stage of the 

pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline 

involving conditional branches would look like Figure 4.31. Th

e lw instruction, 

executed if the branch fails, is stalled one extra 200 ps clock cycle before starting. 

Performance of “Stall on Branch” 

EXAMPLE

Estimate the impact on the  clock cycles per instruction (CPI) of stalling on 

branches. Assume all other instructions have a CPI of 1. 

Figure 3.27 in Chapter 3 shows that branches are 17% of the instructions 

ANSWER

executed in SPECint2006. Since the other instructions run have a CPI of 1, 

and branches took one extra clock cycle for the stall, then we would see a CPI 

of 1.17 and hence a slowdown of 1.17 versus the ideal case. 
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FIGURE 4.31  Pipeline showing stalling on every conditional branch as solution to control hazards. Th

is example assumes the conditional branch is taken, and the instruction at the destination of 

the branch is the OR instruction. Th

ere is a one-stage pipeline stall, or bubble, aft er the branch. In reality, the 

process of creating a stall is slightly more complicated, as we will see in Section 4.8. Th

e eff ect on performance, 

however, is the same as would occur if a bubble were inserted. 
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If we cannot resolve the branch in the second stage, as is oft en the case for longer 

pipelines, then we’d see an even larger slowdown if we stall on branches. Th

e cost of 

this option is too high for most computers to use and motivates a second solution 

to the control hazard using one of our great ideas from Chapter 1:

 Predict: If you’re pretty sure you have the right formula to wash uniforms, then 

just  predict  that it will work and wash the second load while waiting for the fi rst load to dry. 

Th

is option does not slow down the pipeline when you are correct. When you are 

wrong, however, you need to redo the load that was washed while guessing the 

decision. 

Computers do indeed use prediction to handle branches. One simple approach 

is to predict always that branches will be untaken. When you’re right, the pipeline 

proceeds at full speed. Only when branches are taken does the pipeline stall. Figure 

4.32 shows such an example. 
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FIGURE 4.32  Predicting that branches are not taken as a solution to control hazard. Th e 

top drawing shows the pipeline when the branch is not taken. Th

e bottom drawing shows the pipeline when 

the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifi es what actually happens, at least during the fi rst clock cycle immediately following the branch. Section 4.8 will reveal the details. 
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branch prediction 

A more sophisticated version of branch prediction would have some branches 

A method of resolving 

predicted as taken and some as untaken. In our analogy, the dark or home uniforms 

a branch hazard that 

might take one formula while the light or road uniforms might take another. In the 

assumes a given outcome 

case of programming, at the bottom of loops are branches that jump back to the top 

for the branch and 

of the loop. Since they are likely to be taken and they branch backward, we could 

proceeds from that 

always predict taken for branches that jump to an earlier address. 

assumption rather than 

waiting to ascertain the 

Such rigid approaches to branch prediction rely on stereotypical behavior 

actual outcome. 

and don’t account for the individuality of a specifi c branch instruction.  Dynamic 

hardware predictors, in stark contrast, make their guesses depending on the 

behavior of each branch and may change predictions for a branch over the life of 

a program. Following our analogy, in dynamic prediction a person would look at 

how dirty the uniform was and guess at the formula, adjusting the next prediction 

depending on the success of recent guesses. 

One popular approach to dynamic prediction of branches is keeping a history 

for each branch as taken or untaken, and then using the recent past behavior 

to predict the future. As we will see later, the amount and type of history kept 

have become extensive, with the result being that dynamic branch predictors can 

correctly predict branches with more than 90% accuracy (see Section 4.8). When 

the guess is wrong, the pipeline control must ensure that the instructions following 

the wrongly guessed branch have no eff ect and must restart the pipeline from the 

proper branch address. In our laundry analogy, we must stop taking new loads so 

that we can restart the load that we incorrectly predicted. 

As in the case of all other solutions to control hazards, longer pipelines exacerbate 

the problem, in this case by raising the cost of misprediction. Solutions to control 

hazards are described in more detail in Section 4.8. 

Elaboration: There is a third approach to the control hazard, called  delayed decision. 

In our analogy, whenever you are going to make such a decision about laundry, just place 

a load of nonfootball clothes in the washer while waiting for football uniforms to dry. As 

long as you have enough dirty clothes that are not affected by the test, this solution 

works fi ne. 

Called the  delayed branch in computers, and mentioned above, this is the solution 

actually used by the MIPS architecture. The delayed branch always executes the next 

sequential instruction, with the branch taking place  after that one instruction delay. 

It is hidden from the MIPS assembly language programmer because the assembler 

can automatically arrange the instructions to get the branch behavior desired by the 

programmer. MIPS software will place an instruction immediately after the delayed 

branch instruction that is not affected by the branch, and a taken branch changes 

the address of the instruction that  follows this safe instruction. In our example, the 

add instruction before the branch in Figure 4.31 does not affect the branch and can 

be moved after the branch to fully hide the branch delay. Since delayed branches are 

useful when the branches are short, no processor uses a delayed branch of more 

than one cycle. For longer branch delays, hardware-based branch prediction is usually 

used. 
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Pipeline Overview Summary

Pipelining is a technique that exploits parallelism among the instructions in 

a sequential instruction stream. It has the substantial advantage that, unlike 

programming a multiprocessor, it is fundamentally invisible to the programmer. 

In the next few sections of this chapter, we cover the concept of pipelining using 

the MIPS instruction subset from the single-cycle implementation in Section 4.4 

and show a simplifi ed version of its pipeline. We then look at the problems that 

pipelining introduces and the performance attainable under typical situations. 

If you wish to focus more on the soft ware and the performance implications of 

pipelining, you now have suffi

cient background to skip to Section 4.10. Section 

4.10 introduces advanced pipelining concepts, such as superscalar and dynamic 

scheduling, and Section 4.11 examines the pipelines of recent microprocessors. 

Alternatively, if you are interested in understanding how pipelining is 

implemented and the challenges of dealing with hazards, you can proceed to 

examine the design of a pipelined datapath and the basic control, explained in 

Section 4.6. You can then use this understanding to explore the implementation of 

forwarding and stalls in Section 4.7. You can then read Section 4.8 to learn more 

about solutions to branch hazards, and then see how exceptions are handled in 

Section 4.9. 

For each code sequence below, state whether it must stall, can avoid stalls using  Check 

only forwarding, or can execute without stalling or forwarding. 

Yourself

Sequence 1

Sequence 2

Sequence 3

lw   $t0,0($t0)

add   $t1,$t0,$t0

addi  $t1,$t0,#1

add  $t1,$t0,$t0

addi  $t2,$t0,#5

addi  $t2,$t0,#2

addi  $t4,$t1,#5

addi  $t3,$t0,#2

addi  $t3,$t0,#4

addi  $t5,$t0,#5

Outside the memory system, the eff ective operation of the pipeline is usually  Understanding 

the most important factor in determining the CPI of the processor and hence its  Program 

performance. As we will see in Section 4.10, understanding the performance of a 

modern multiple-issue pipelined processor is complex and requires understanding  Performance

more than just the issues that arise in a simple pipelined processor. Nonetheless, 

structural, data, and control hazards remain important in both simple pipelines 

and more sophisticated ones. 

For modern pipelines, structural hazards usually revolve around the fl oating-

point unit, which may not be fully pipelined, while control hazards are usually more 

of a problem in integer programs, which tend to have higher branch frequencies 

as well as less predictable branches. Data hazards can be performance bottlenecks 
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in both integer and fl oating-point programs. Oft en it is easier to deal with data 

hazards in fl oating-point programs because the lower branch frequency and more 

regular memory access patterns allow the compiler to try to schedule instructions 

to avoid hazards. It is more diffi

cult to perform such optimizations in integer 

programs that have less regular memory access, involving more use of pointers. 

As we will see in Section 4.10, there are more ambitious compiler and hardware 

techniques for reducing data dependences through scheduling. 

The BIG

Pipelining increases the number of simultaneously executing instructions 

Picture

and the rate at which instructions are started and completed. Pipelining 

latency (pipeline)  Th

e 

does not reduce the time it takes to complete an individual instruction, 

number of stages in a 

also called the latency. For example, the fi ve-stage pipeline still takes 5 

pipeline or the number 

clock cycles for the instruction to complete. In the terms used in Chapter 

of stages between two 

1, pipelining improves instruction  throughput rather than individual 

instructions during 

instruction  execution time or  latency. 

execution. 

Instruction sets can either simplify or make life harder for pipeline 

designers, who must already cope with structural, control, and data hazards. 

Branch prediction and forwarding help make a computer fast while still getting 

the right answers. 

 4.6 

Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline stages identifi ed. Th

e division of an instruction into fi ve stages means a fi ve-stage 

pipeline, which in turn means that up to fi ve instructions will be in execution 

during any single clock cycle. Th

us, we must separate the datapath into fi ve pieces, 

with each piece named corresponding to a stage of instruction execution:

1.  IF: Instruction fetch

2.  ID: Instruction decode and register fi le read

 Th

   ere is less in this 

 than meets the eye. 

3.  EX: Execution or address calculation

Tallulah 

4.  MEM: Data memory access

Bankhead, remark 

5.  WB: Write back

to Alexander 

Woollcott, 1922

In Figure 4.33, these fi ve components correspond roughly to the way the datapath is drawn; instructions and data move generally from left  to right through the 
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FIGURE 4.33  The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped onto the datapath from left  to right. Th

e only exceptions are the update of the PC and the write-back step, shown in color, which sends either the ALU result or the data from memory to the left  to be written into the register fi le. (Normally we use color lines for control, but these are data lines.)

fi ve stages as they complete execution. Returning to our laundry analogy, clothes 

get cleaner, drier, and more organized as they move through the line, and they 

never move backward. 

Th

ere are, however, two exceptions to this left -to-right fl ow of instructions:

■  Th

e write-back stage, which places the result back into the register fi le in the 

middle of the datapath

■  Th

e selection of the next value of the PC, choosing between the incremented 

PC and the branch address from the MEM stage

Data fl owing from right to left  does not aff ect the current instruction; these 

reverse data movements infl uence only later instructions in the pipeline. Note that 
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the fi rst right-to-left  fl ow of data can lead to data hazards and the second leads to 

control hazards. 

One way to show what happens in pipelined execution is to pretend that each 

instruction has its own datapath, and then to place these datapaths on a timeline to 

show their relationship. Figure 4.34 shows the execution of the instructions in Figure 

4.27 by displaying their private datapaths on a common timeline. We use a stylized version of the datapath in Figure 4.33 to show the relationships in Figure 4.34. 

Figure 4.34 seems to suggest that three instructions need three datapaths. 

Instead, we add registers to hold data so that portions of a single datapath can be 

shared during instruction execution. 

For example, as Figure 4.34 shows, the instruction memory is used during 

only one of the fi ve stages of an instruction, allowing it to be shared by following 

instructions during the other four stages. To retain the value of an individual 

instruction for its other four stages, the value read from instruction memory must 

be saved in a register. Similar arguments apply to every pipeline stage, so we must 

place registers wherever there are dividing lines between stages in Figure 4.33. 

Returning to our laundry analogy, we might have a basket between each pair of 

stages to hold the clothes for the next step. 
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FIGURE 4.34  Instructions being executed using the single-cycle datapath in Figure 4.33, assuming pipelined execution. Similar to Figures 4.28 through 4.30, this fi gure pretends that each instruction has its own datapath, and shades each portion according to use. Unlike those fi gures, each stage is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure 

4.33.  IM represents the instruction memory and the PC in the instruction fetch stage,  Reg stands for the register fi le and sign extender in the instruction decode/register fi le read stage (ID), and so on. To maintain proper time order, this stylized datapath breaks the register fi le into two logical parts: registers read during register fetch (ID) and registers written during write back (WB). Th

is dual use is represented by drawing 

the unshaded left  half of the register fi le using dashed lines in the ID stage, when it is not being written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the register fi le is written in the fi rst half of the clock cycle and the register fi le is read during the second half. 
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Figure 4.35 shows the pipelined datapath with the pipeline registers high-

lighted. All instructions advance during each clock cycle from one pipeline register 

to the next. Th

e registers are named for the two stages separated by that register. 

For example, the pipeline register between the IF and ID stages is called IF/ID. 

Notice that there is no pipeline register at the end of the write-back stage. All 

instructions must update some state in the processor—the register fi le, memory, or 

the PC—so a separate pipeline register is redundant to the state that is updated. For 

example, a load instruction will place its result in 1 of the 32 registers, and any later 

instruction that needs that data will simply read the appropriate register. 

Of course, every instruction updates the PC, whether by incrementing it or by 

setting it to a branch destination address. Th

e PC can be thought of as a pipeline 

register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline 

registers in Figure 4.35, however, the PC is part of the visible architectural state; its contents must be saved when an exception occurs, while the contents of the 

pipeline registers can be discarded. In the laundry analogy, you could think of the 

PC as corresponding to the basket that holds the load of dirty clothes before the 

wash step. 

To show how the pipelining works, throughout this chapter we show sequences 

of fi gures to demonstrate operation over time. Th

ese extra pages would seem to 

require much more time for you to understand. Fear not; the sequences take much 
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FIGURE 4.35  The pipelined version of the datapath in Figure 4.33. Th e pipeline registers, in color, separate each pipeline stage. 

Th

ey are labeled by the stages that they separate; for example, the fi rst is labeled  IF/ID because it separates the instruction fetch and instruction decode stages. Th

e registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC 

address. We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64 

bits, respectively. 
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less time than it might appear, because you can compare them to see what changes 

occur in each clock cycle. Section 4.7 describes what happens when there are data 

hazards between pipelined instructions; ignore them for now. 

Figures 4.36 through 4.38, our fi rst sequence, show the active portions of the datapath highlighted as a load instruction goes through the fi ve stages of pipelined 

execution. We show a load fi rst because it is active in all fi ve stages. As in Figures 

4.28 through 4.30, we highlight the  right half of registers or memory when they are being  read and highlight the  left  half  when they are being  written. 

We show the instruction abbreviation lw with the name of the pipe stage that is 

active in each fi gure. Th

e fi ve stages are the following:

1.  Instruction fetch: Th

e top portion of Figure 4.36 shows the instruction being 

read from memory using the address in the PC and then being placed in the 

IF/ID pipeline register. Th

e PC address is incremented by 4 and then written 

back into the PC to be ready for the next clock cycle. Th

is incremented 

address is also saved in the IF/ID pipeline register in case it is needed later 

for an instruction, such as beq. Th

e computer cannot know which type of 

instruction is being fetched, so it must prepare for any instruction, passing 

potentially needed information down the pipeline. 

2.  Instruction decode and register fi le read: Th

e bottom portion of Figure 4.36 

shows the instruction portion of the IF/ID pipeline register supplying the 

16-bit immediate fi eld, which is sign-extended to 32 bits, and the register 

numbers to read the two registers. All three values are stored in the ID/EX 

pipeline register, along with the incremented PC address. We again transfer 

everything that might be needed by any instruction during a later clock 

cycle. 

3.  Execute or address calculation: Figure 4.37 shows that the load instruction reads the contents of register 1 and the sign-extended immediate from the 

ID/EX pipeline register and adds them using the ALU. Th

at sum is placed in 

the EX/MEM pipeline register. 

4.  Memory access:  Th

e top portion of Figure 4.38 shows the load instruction 

reading the data memory using the address from the EX/MEM pipeline 

register and loading the data into the MEM/WB pipeline register. 

5.  Write-back: Th

e bottom portion of Figure 4.38 shows the fi nal step: reading 

the data from the MEM/WB pipeline register and writing it into the register 

fi le in the middle of the fi gure. 

Th

is walk-through of the load instruction shows that any information needed 

in a later pipe stage must be passed to that stage via a pipeline register. Walking 

through a store instruction shows the similarity of instruction execution, as well 

as passing the information for later stages. Here are the fi ve pipe stages of the store 

instruction:
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FIGURE 4.36  IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in 

Figure 4.35 highlighted. Th

e highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2, the processor doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX 

pipeline register. We don’t need all three operands, but it simplifi es control to keep all three. 
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FIGURE 4.37  EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35 

used in this pipe stage. Th

e register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register. 

1.  Instruction fetch:  Th

e instruction is read from memory using the address 

in the PC and then is placed in the IF/ID pipeline register. Th

is stage occurs 

before the instruction is identifi ed, so the top portion of Figure 4.36 works for store as well as load. 

2.  Instruction decode and register fi le read:  Th

e instruction in the IF/ID pipeline 

register supplies the register numbers for reading two registers and extends 

the sign of the 16-bit immediate. Th

ese three 32-bit values are all stored 

in the ID/EX pipeline register. Th

e bottom portion of Figure 4.36 for load 

instructions also shows the operations of the second stage for stores. Th

ese 

fi rst two stages are executed by all instructions, since it is too early to know 

the type of the instruction. 

3.  Execute and address calculation:  Figure 4.39 shows the third step; the eff ective address is placed in the EX/MEM pipeline register. 

4.  Memory access:   Th

e top portion of Figure 4.40 shows the data being written 

to memory. Note that the register containing the data to be stored was read in 

an earlier stage and stored in ID/EX. Th

e only way to make the data available 

during the MEM stage is to place the data into the EX/MEM pipeline register 

in the EX stage, just as we stored the eff ective address into EX/MEM. 
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FIGURE 4.38  MEM and WB: The fourth and fi fth pipe stages of a load instruction, highlighting the portions of the 

datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register fi le in the middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41. 
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FIGURE 4.39  EX: The third pipe stage of a store instruction.  Unlike the third stage of the load instruction in Figure 4.37,  the second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to understand. 

5.  Write-back:   Th

e bottom portion of Figure 4.40 shows the fi nal step of the 

store. For this instruction, nothing happens in the write-back stage. Since 

every instruction behind the store is already in progress, we have no way 

to accelerate those instructions. Hence, an instruction passes through a 

stage even if there is nothing to do, because later instructions are already 

progressing at the maximum rate. 

Th

e store instruction again illustrates that to pass something from an early pipe 

stage to a later pipe stage, the information must be placed in a pipeline register; 

otherwise, the information is lost when the next instruction enters that pipeline 

stage. For the store instruction we needed to pass one of the registers read in the 

ID stage to the MEM stage, where it is stored in memory. Th

e data was fi rst placed 

in the ID/EX pipeline register and then passed to the EX/MEM pipeline register. 

Load and store illustrate a second key point: each logical component of the 

datapath—such as instruction memory, register read ports, ALU, data memory, 

and register write port—can be used only within a  single pipeline stage. Otherwise, 

we would have a  structural hazard (see page 277). Hence these components, and 

their control, can be associated with a single pipeline stage. 

Now we can uncover a bug in the design of the load instruction. Did you see it? 

Which register is changed in the fi nal stage of the load? More specifi cally, which 
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FIGURE 4.40  MEM and WB: The fourth and fi fth pipe stages of a store instruction. In the fourth stage, the data is written into data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline register. Once the data is written in memory, there is nothing left  for the store instruction to do, so nothing happens in stage 5. 
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instruction supplies the write register number? Th

e instruction in the IF/ID pipeline 

register supplies the write register number, yet this instruction occurs considerably 

 aft er the load instruction! 

Hence, we need to preserve the destination register number in the load 

instruction. Just as store passed the register  contents from the ID/EX to the EX/

MEM pipeline registers for use in the MEM stage, load must pass the  register 

number from the ID/EX through EX/MEM to the MEM/WB pipeline register for 

use in the WB stage. Another way to think about the passing of the register number 

is that to share the pipelined datapath, we need to preserve the instruction read 

during the IF stage, so each pipeline register contains a portion of the instruction 

needed for that stage and later stages. 

Figure 4.41 shows the correct version of the datapath, passing the write register number fi rst to the ID/EX register, then to the EX/MEM register, and fi nally to the 

MEM/WB register. Th

e register number is used during the WB stage to specify 

the register to be written.  Figure 4.42 is a single drawing of the corrected datapath, highlighting the hardware used in all fi ve stages of the load word instruction in 

Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the branch instruction work as expected. 

Graphically Representing Pipelines

Pipelining can be diffi

cult to understand, since many instructions are simultaneously 

executing in a single datapath in every clock cycle. To aid understanding, there are 
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FIGURE 4.41  The corrected pipelined datapath to handle the load instruction properly. Th e write register number now 

comes from the MEM/WB pipeline register along with the data. Th

e register number is passed from the ID pipe stage until it reaches the MEM/

WB pipeline register, adding fi ve more bits to the last three pipeline registers. Th

is new path is shown in color. 
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two basic styles of pipeline fi gures:  multiple-clock-cycle pipeline diagrams, such as 

Figure 4.34 on page 288, and  single-clock-cycle pipeline diagrams, such as Figures 

4.36 through 4.40. Th

e multiple-clock-cycle diagrams are simpler but do not contain 

all the details. For example, consider the following fi ve-instruction sequence:

lw     $10, 20($1)

sub    $11, $2, $3

add    $12, $3, $4

lw     $13, 24($1)

add    $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these 

instructions. Time advances from left  to right across the page in these diagrams, 

and instructions advance from the top to the bottom of the page, similar to the 

laundry pipeline in Figure 4.25. A representation of the pipeline stages is placed in each portion along the instruction axis, occupying the proper clock cycles. 

Th

ese stylized datapaths represent the fi ve stages of our pipeline graphically, but 

a rectangle naming each pipe stage works just as well. Figure 4.44 shows the more traditional version of the multiple-clock-cycle pipeline diagram. Note that Figure 

4.43 shows the physical resources used at each stage, while Figure 4.44 uses the name of each stage. 

Single-clock-cycle pipeline diagrams show the state of the entire datapath during 

a single clock cycle, and usually all fi ve instructions in the pipeline are identifi ed by 

labels above their respective pipeline stages. We use this type of fi gure to show the 

details of what is happening within the pipeline during each clock cycle; typically, 

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.42  The portion of the datapath in Figure 4.41 that is used in all fi ve stages of a load instruction. 
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FIGURE 4.43  Multiple-clock-cycle pipeline diagram of fi ve instructions.  Th

is style of pipeline representation shows the complete 

execution of instructions in a single fi gure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move from left  to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw this diagram. 

the drawings appear in groups to show pipeline operation over a sequence of 

clock cycles. We use multiple-clock-cycle diagrams to give overviews of pipelining 

situations. (

Section 4.13  gives more illustrations of single-clock diagrams 

if you would like to see more details about Figure 4.43.) A single-clock-cycle diagram represents a vertical slice through a set of multiple-clock-cycle diagrams, 

showing the usage of the datapath by each of the instructions in the pipeline at 

the designated clock cycle. For example, Figure 4.45 shows the single-clock-cycle diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously, the single-clock-cycle diagrams have more detail and take signifi cantly more space 

to show the same number of clock cycles. Th

e exercises ask you to create such 

diagrams for other code sequences. 

Check  A group of students were debating the effi

ciency of the fi ve-stage pipeline when 

one student pointed out that not all instructions are active in every stage of the 

Yourself

pipeline. Aft er deciding to ignore the eff ects of hazards, they made the following 

four statements. Which ones are correct? 
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FIGURE 4.44  Traditional multiple-clock-cycle pipeline diagram of fi ve instructions in Figure 4.43. 
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FIGURE 4.45  The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44. 

As you can see, a single-clock-cycle fi gure is a vertical slice through a multiple-clock-cycle diagram. 

1.  Allowing jumps, branches, and ALU instructions to take fewer stages than 

the fi ve required by the load instruction will increase pipeline performance 

under all circumstances. 
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2.  Trying to allow some instructions to take fewer cycles does not help, since 

the throughput is determined by the clock cycle; the number of pipe stages 

per instruction aff ects latency, not throughput. 

3.  You cannot make ALU instructions take fewer cycles because of the write-

back of the result, but branches and jumps can take fewer cycles, so there is 

some opportunity for improvement. 

4.  Instead of trying to make instructions take fewer cycles, we should explore 

making the pipeline longer, so that instructions take more cycles, but the 

cycles are shorter. Th

is could improve performance. 

Pipelined Control

 In the 6600 Computer, 

Just as we added control to the single-cycle datapath in Section 4.3, we now add 

 perhaps even more 

control to the pipelined datapath. We start with a simple design that views the 

 than in any previous 

problem through rose-colored glasses. 

 computer, the control 

Th

e fi rst step is to label the control lines on the existing datapath. Figure 4.46 

 system is the diff erence. 

shows those lines. We borrow as much as we can from the control for the simple 

datapath in Figure 4.17. In particular, we use the same ALU control logic, branch James Th

ornton,  Design 

 of a Computer: Th

  e 

logic, destination-register-number multiplexor, and control lines. Th

ese functions 

 Control Data 6600,  1970

are defi ned in Figures 4.12, 4.16, and 4.18. We reproduce the key information in 

Figures 4.47 through 4.49 on a single page to make the following discussion easier to follow. 

As was the case for the single-cycle implementation, we assume that the PC is 

written on each clock cycle, so there is no separate write signal for the PC. By the 

same argument, there are no separate write signals for the pipeline registers (IF/

ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also written 

during each clock cycle. 

To specify control for the pipeline, we need only set the control values during 

each pipeline stage. Because each control line is associated with a component active 

in only a single pipeline stage, we can divide the control lines into fi ve  groups 

according to the pipeline stage. 

1.  Instruction fetch:  Th

e control signals to read instruction memory and to 

write the PC are always asserted, so there is nothing special to control in this 

pipeline stage. 

2.  Instruction decode/register fi le read:   As in the previous stage, the same thing 

happens at every clock cycle, so there are no optional control lines to set. 

3.  Execution/address calculation:   Th

e signals to be set are RegDst, ALUOp, 

and ALUSrc (see Figures 4.47 and 4.48). Th

e signals select the Result register, 

the ALU operation, and either Read data 2 or a sign-extended immediate 

for the ALU. 
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FIGURE 4.46  The pipelined datapath of Figure 4.41 with the control signals identifi ed. Th is datapath borrows the control 

logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct fi eld (function code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6 least signifi cant bits of the immediate fi eld in the instruction, so the ID/EX pipeline register can supply them from the immediate fi eld since sign extension leaves these bits unchanged. 
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FIGURE 4.47  A copy of Figure 4.12.  Th

is fi gure shows how the ALU control bits are set depending on the ALUOp control bits and the 

diff erent function codes for the R-type instruction. 
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Signal name

Effect when deasserted (0) 

Effect when asserted (1)
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The register destination number for the Write 

The register destination number for the Write register comes 

register comes from the rt field (bits 20:16). 

from the rd field (bits 15:11). 
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The register on the Write register input is written with the value 

on the Write data input. 

ALUSrc

The second ALU operand comes from the second 

The second ALU operand is the sign-extended, lower 16 bits of 

register file output (Read data 2). 

the instruction. 

PCSrc

The PC is replaced by the output of the adder that  The PC is replaced by the output of the adder that computes computes the value of PC + 4. 

the branch target. 

MemRead
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Data memory contents designated by the address input are 

put on the Read data output. 

MemWrite

None. 

Data memory contents designated by the address input are 

replaced by the value on the Write data input. 

MemtoReg

The value fed to the register Write data input 

The value fed to the register Write data input comes from the 

comes from the ALU. 

data memory. 

FIGURE 4.48  A copy of Figure 4.16. Th

e function of each of seven control signals is defi ned. Th

e ALU control lines (ALUOp) are defi ned 

in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.46. 

If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq instruction; otherwise, PCSrc is set to 0. 

Execution/address calculation stage 

Memory access stage 

Write-back stage 

control lines

control lines

control lines

Mem- 

Mem- 

Reg- 

Memto- 

Instruction

RegDst

ALUOp1

ALUOp0

ALUSrc

Branch
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Reg

R-format

1

1

0

0

0

0

0

1

0
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0

0

0

1

0

1

0

1

1

sw

X

0

0

1

0

0

1

0

X

beq

X

0

1

0

1

0

0

0

X

FIGURE 4.49  The values of the control lines are the same as in Figure 4.18, but they have been shuffl ed into three groups corresponding to the last three pipeline stages. 

4.  Memory access:   Th

e control lines set in this stage are Branch, MemRead, and 

MemWrite. Th

e branch equal, load, and store instructions set these signals, 

respectively. Recall that PCSrc in Figure 4.48 selects the next sequential 

address unless control asserts Branch and the ALU result was 0. 

5.  Write-back:   Th

e two control lines are MemtoReg, which decides between 

sending the ALU result or the memory value to the register fi le, and Reg-

Write, which writes the chosen value. 

Since pipelining the datapath leaves the meaning of the control lines unchanged, 

we can use the same control values. Figure 4.49 has the same values as in Section 4.4, but now the nine control lines are grouped by pipeline stage. 
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WB

Instruction

Control

M

WB

EX

M

WB

IF/ID

ID/EX

EX/MEM

MEM/WB

FIGURE 4.50  The control lines for the fi nal three stages. Note that four of the nine control lines are used in the EX phase, with the remaining fi ve control lines passed on to the EX/MEM pipeline register extended to hold the control lines; three are used during the MEM stage, and the last two are passed to MEM/

WB for use in the WB stage. 

Implementing control means setting the nine control lines to these values in 

each stage for each instruction. Th

e simplest way to do this is to extend the pipeline 

registers to include control information. 

Since the control lines start with the EX stage, we can create the control 

information during instruction decode. Figure 4.50 above shows that these control signals are then used in the appropriate pipeline stage as the instruction moves 

down the pipeline, just as the destination register number for loads moves down 

the pipeline in Figure 4.41. Figure 4.51 shows the full datapath with the extended pipeline registers and with the control lines connected to the proper stage. 

(

Section 4.13 gives more examples of MIPS code executing on pipelined 

hardware using single-clock diagrams, if you would like to see more details.)

 4.7 

Data Hazards: Forwarding versus Stalling

 What do you mean, 

 why’s it got to be built? 

 It’s a bypass. You’ve got 

Th

e examples in the previous section show the power of pipelined execution and   to build bypasses. 

how the hardware performs the task. It’s now time to take off  the rose-colored 

glasses and look at what happens with real programs. Th

e instructions in Figures  Douglas Adams,  Th e 

 Hitchhiker’s Guide to the 

4.43 through 4.45 were independent; none of them used the results calculated   Galaxy,  1979

by any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to 

pipelined execution. 
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M
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x
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1
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[15–0]
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Sign-

32

6

ALU

MemRead

extend

control

Instruction

[20–16]

ALUOp

0

M

Instruction

u

[15–11]

x

1

RegDst

FIGURE 4.51  The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of the pipeline registers. Th

e control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX pipeline register. Th

e control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage. 

Let’s look at a sequence with many dependences, shown in color:

sub   $2, $1,$3      # Register $2 written by sub

and   $12,$2,$5      # 1st operand($2) depends on sub

or    $13,$6,$2      # 2nd operand($2) depends on sub

add   $14,$2,$2      # 1st($2) & 2nd($2) depend on sub

sw    $15,100($2)    # Base ($2) depends on sub

Th

e last four instructions are all dependent on the result in register $2 of the 

fi rst instruction. If register $2 had the value 10 before the subtract instruction and 

−20 aft erwards, the programmer intends that −20 will be used in the following 

instructions that refer to register $2. 
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How would this sequence perform with our pipeline? Figure 4.52 illustrates the execution of these instructions using a multiple-clock-cycle pipeline representation. 

To demonstrate the execution of this instruction sequence in our current pipeline, 

the top of Figure 4.52 shows the value of register $2, which changes during the middle of clock cycle 5, when the sub instruction writes its result. 

Th

e last potential hazard can be resolved by the design of the register fi le 

hardware: What happens when a register is read and written in the same clock 

cycle? We assume that the write is in the fi rst half of the clock cycle and the read 

is in the second half, so the read delivers what is written. As is the case for many 

implementations of register fi les, we have no data hazard in this case. 

Figure 4.52 shows that the values read for register $2 would  not be the result of the sub instruction unless the read occurred during clock cycle 5 or later. Th

us, the 

instructions that would get the correct value of −20 are add and sw; the AND and 

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

Value of

register $2:

10 10 10 10 

10/–20

–20

–20

–20

–20

Program

execution

order

(in instructions)

sub $2, $1, $3

IM

Reg

DM

Reg

and $12, $2, $5 

IM

Reg

DM

Reg

or $13, $6, $2

IM

Reg

DM

Reg

add $14, $2,$2 

IM

Reg

DM

Reg

sw $15, 100($2)

IM

Reg

DM

Reg

FIGURE 4.52  Pipelined dependences in a fi ve-instruction sequence using simplifi ed datapaths to show the dependences. All the dependent actions are shown in color, and “CC 1” at the top of the fi gure means clock cycle 1. Th e fi rst instruction 

writes into $2, and all the following instructions read $2. Th

is register is written in clock cycle 5, so the proper value is unavailable before clock 

cycle 5. (A read of a register during a clock cycle returns the value written at the end of the fi rst half of the cycle, when such a write occurs.) Th e 

colored lines from the top datapath to the lower ones show the dependences. Th

ose that must go backward in time are  pipeline data hazards. 
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OR instructions would get the incorrect value 10! Using this style of drawing, such 

problems become apparent when a dependence line goes backward in time. 

As mentioned in Section 4.5, the desired result is available at the end of the 

EX stage or clock cycle 3. When is the data actually needed by the AND and OR 

instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively. 

Th

us, we can execute this segment without stalls if we simply  forward the data as 

soon as it is available to any units that need it before it is available to read from the 

register fi le. 

How does forwarding work? For simplicity in the rest of this section, we consider 

only the challenge of forwarding to an operation in the EX stage, which may be 

either an ALU operation or an eff ective address calculation. Th

is means that when 

an instruction tries to use a register in its EX stage that an earlier instruction 

intends to write in its WB stage, we actually need the values as inputs to the ALU. 

A notation that names the fi elds of the pipeline registers allows for a more 

precise notation of dependences. For example, “ID/EX.RegisterRs” refers to the 

number of one register whose value is found in the pipeline register ID/EX; that is, 

the one from the fi rst read port of the register fi le. Th

e fi rst part of the name, to the 

left  of the period, is the name of the pipeline register; the second part is the name of 

the fi eld in that register. Using this notation, the two pairs of hazard conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Th

e fi rst hazard in the sequence on page 304 is on register $2, between the 

result of sub $2,$1,$3 and the fi rst read operand of and $12,$2,$5. Th

is 

hazard can be detected when the and instruction is in the EX stage and the prior 

instruction is in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Dependence Detection

EXAMPLE

Classify the dependences in this sequence from page 304:

sub $2,   $1, $3  # Register $2 set by sub

and $12,  $2, $5  # 1st operand($2) set by sub

or  $13,  $6, $2  # 2nd operand($2) set by sub

add $14,  $2, $2  # 1st($2) & 2nd($2) set by sub

sw  $15,  100($2) # Index($2) set by sub
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As mentioned above, the sub-and is a type 1a hazard. Th

e remaining hazards 

are as follows:

ANSWER

■  Th

e sub-or is a type 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

■  Th

e two dependences on sub-add are not hazards because the register 

fi le supplies the proper data during the ID stage of add. 

■  Th

ere is no data hazard between sub and sw because sw reads $2 the 

clock cycle  aft er sub writes $2. 

Because some instructions do not write registers, this policy is inaccurate; 

sometimes it would forward when it shouldn’t. One solution is simply to check 

to see if the RegWrite signal will be active: examining the WB control fi eld of the 

pipeline register during the EX and MEM stages determines whether RegWrite 

is asserted. Recall that MIPS requires that every use of $0  as  an  operand  must 

yield an operand value of 0. In the event that an instruction in the pipeline has 

$0 as its destination (for example, sll $0, $1, 2), we want to avoid forwarding 

its possibly nonzero result value. Not forwarding results destined for $0 frees the 

assembly programmer and the compiler of any requirement to avoid using $0 as 

a destination. Th

e conditions above thus work properly as long we add EX/MEM. 

RegisterRd ≠ 0 to the fi rst hazard condition and MEM/WB.RegisterRd ≠ 0 to the 

second. 

Now that we can detect hazards, half of the problem is resolved—but we must 

still forward the proper data. 

Figure 4.53 shows the dependences between the pipeline registers and the inputs to the ALU for the same code sequence as in Figure 4.52. Th

e change is that the 

dependence begins from a  pipeline register, rather than waiting for the WB stage to 

write the register fi le. Th

us, the required data exists in time for later instructions, 

with the pipeline registers holding the data to be forwarded. 

If we can take the inputs to the ALU from  any pipeline register rather than just 

ID/EX, then we can forward the proper data. By adding multiplexors to the input 

of the ALU, and with the proper controls, we can run the pipeline at full speed in 

the presence of these data dependences. 

For now, we will assume the only instructions we need to forward are the four 

R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of the ALU and pipeline register before and aft er adding forwarding. Figure 4.55 

shows the values of the control lines for the ALU multiplexors that select either the 

register fi le values or one of the forwarded values. 

Th

is forwarding control will be in the EX stage, because the ALU forwarding 

multiplexors are found in that stage. Th

us, we must pass the operand register 

numbers from the ID stage via the ID/EX pipeline register to determine whether 

to forward values. We already have the rt fi eld (bits 20–16). Before forwarding, the 

ID/EX register had no need to include space to hold the rs fi eld. Hence, rs (bits 

25–21) is added to ID/EX. 
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Time (in clock cycles)

CC 

1 CC 

2 CC 

3 CC 

4 CC 

5 CC 

6 CC 

7 CC 

8 CC 

9

Value of register $2:

10 

10 

10 

10         10/–20        –20          –20          –20          –20

Value of EX/MEM:         X 

X 

X 

–20 

X 

X 

X 

X 

X

Value of MEM/WB:          X 

X 

X 

X

–20          X

X 

X

X

Program

execution

order

(in instructions)

sub $2, $1, $3

IM

Reg

DM

Reg

and $12,  $2, $5

IM

Reg

DM

Reg

or $13, $6, $2

IM

Reg

DM

Reg

add $14, $2 , $2

IM

Reg

DM

Reg

sw $15, 100($2)

IM

Reg

DM

Reg

FIGURE 4.53  The dependences between the pipeline registers move forward in time, so it is possible to supply the inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline registers. Th

e values in the pipeline registers show that the desired value is available before it is written into the register fi le. We assume that the register fi le forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the register fi le instead of a pipeline register. Register fi le “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock cycle 5 shows register $2 having the value 10 at the beginning and −20 at the end of the clock cycle. As in the rest of this section, we handle all forwarding except for the value to be stored by a store instruction. 

Let’s now write both the conditions for detecting hazards and the control signals 

to resolve them:

1.  EX hazard:

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd ≠  0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd ≠  0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10
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ID/EX
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x

a. No forwarding
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MEM/WB
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Registers
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ALU
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Data
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ForwardB
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Rt

EX/MEM.RegisterRd

Rt
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x

Forwarding

MEM/WB.RegisterRd

unit

b. With forwarding

FIGURE 4.54  On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding unit. Th

e new hardware is shown in color. Th

is fi gure is a stylized drawing, however, leaving out details 

from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt fi eld is shown twice, once to connect to the Mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding of a store value to a store instruction. Also note that this mechanism works for slt instructions as well. 
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Mux control

Source

Explanation

ForwardA = 00

ID/EX

The first ALU operand comes from the register file. 

ForwardA = 10

EX/MEM

The first ALU operand is forwarded from the prior ALU result. 

ForwardA = 01

MEM/WB

The first ALU operand is forwarded from data memory or an earlier 

ALU result. 

ForwardB = 00

ID/EX

The second ALU operand comes from the register file. 

ForwardB = 10

EX/MEM

The second ALU operand is forwarded from the prior ALU result. 

ForwardB = 01

MEM/WB

The second ALU operand is forwarded from data memory or an 

earlier ALU result. 

FIGURE 4.55  The control values for the forwarding multiplexors in Figure 4.54. Th e signed 

immediate that is another input to the ALU is described in the  Elaboration at the end of this section. 

Note that the EX/MEM.RegisterRd fi eld is the register destination for either 

an ALU instruction (which comes from the Rd fi eld of the instruction) or a load 

(which comes from the Rt fi eld). 

Th

is case forwards the result from the previous instruction to either input of the 

ALU. If the previous instruction is going to write to the register fi le, and the write 

register number matches the read register number of ALU inputs A or B, provided 

it is not register 0, then steer the multiplexor to pick the value instead from the 

pipeline register EX/MEM. 

2.  MEM hazard:

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠  0)

and ( 

MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠  0)

and  

(MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that 

the register fi le supplies the correct result if the instruction in the ID stage reads 

the same register written by the instruction in the WB stage. Such a register fi le 

performs another form of forwarding, but it occurs within the register fi le. 

One complication is potential data hazards between the result of the instruction 

in the WB stage, the result of the instruction in the MEM stage, and the source 

operand of the instruction in the ALU stage. For example, when summing a vector 

of numbers in a single register, a sequence of instructions will all read and write to 

the same register:

add $1,$1,$2

add $1,$1,$3

add $1,$1,$4

. . . 
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In this case, the result is forwarded from the MEM stage because the result in the 

MEM stage is the more recent result. Th

us, the control for the MEM hazard would 

be (with the additions highlighted):

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠  0)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠  0)

and (EX/MEM.RegisterRd ≠  ID/EX.RegisterRs))

and  

(MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠  0)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠  0)

and (EX/MEM.RegisterRd ≠  ID/EX.RegisterRt))

and  

(MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Figure 4.56 shows the hardware necessary to support forwarding for operations that use results during the EX stage. Note that the EX/MEM.RegisterRd fi eld is the 

register destination for either an ALU instruction (which comes from the Rd fi eld 

of the instruction) or a load (which comes from the Rt fi eld). 
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M
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u

x
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FIGURE 4.56  The datapath modifi ed to resolve hazards via forwarding.  Compared with the datapath in Figure 4.51, the additions are the multiplexors to the inputs to the ALU. Th

is fi gure is a more stylized drawing, however, leaving out details from the full datapath, such 

as the branch hardware and the sign extension hardware. 
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Section 4.13 shows two pieces of MIPS code with hazards that cause 

forwarding, if you would like to see more illustrated examples using single-cycle 

pipeline drawings. 

Elaboration: Forwarding can also help with hazards when store instructions are 

dependent on other instructions. Since they use just one data value during the MEM 

stage, forwarding is easy. However, consider loads immediately followed by stores, useful 

when performing memory-to-memory copies in the MIPS architecture. Since copies are 

frequent, we need to add more forwarding hardware to make them run faster. If we were 

to redraw Figure 4.53,  replacing the sub and AND instructions with lw and sw, we would see that it is possible to avoid a stall, since the data exists in the MEM/WB register of 

a load instruction in time for its use in the MEM stage of a store instruction. We would 

need to add forwarding into the memory access stage for this option. We leave this 

modifi cation as an exercise to the reader. 

In addition, the signed-immediate input to the ALU, needed by loads and stores, is 

missing from the datapath in Figure 4.56. Since central control decides between register and immediate, and since the forwarding unit chooses the pipeline register for a register 

ID/EX
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MEM/WB
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u

x

Registers
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ALU
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M
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u
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FIGURE 4.57  A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to select the signed immediate as an ALU input. 
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input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses between 

the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows this addition. 

Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when   If at fi rst you don’t an instruction tries to read a register following a load instruction that writes   succeed, redefi ne the same register. Figure 4.58 illustrates the problem. Th

e data is still being read   success. 

from memory in clock cycle 4 while the ALU is performing the operation for the  Anonymous

following instruction. Something must stall the pipeline for the combination of 

load followed by an instruction that reads its result. 

Hence, in addition to a forwarding unit, we need a  hazard detection unit. It 

operates during the ID stage so that it can insert the stall between the load and its 

Time (in clock cycles)

CC 1 

CC 2 

CC 3 

CC 4 

CC 5 

CC 6 

CC 7 

CC 8 

CC 9

Program

execution

order

(in instructions)

lw $2, 20($1)

IM

Reg

DM

Reg

and $4, $2, $5

IM

Reg

DM

Reg

or $8, $2, $6 

IM

Reg

DM

Reg

add $9, $4, $2 

IM

Reg

DM

Reg

slt $1, $6, $7

IM

Reg

DM

Reg

FIGURE 4.58  A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit. 
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use. Checking for load instructions, the control for the hazard detection unit is this 

single condition:

if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline

Th

e fi rst line tests to see if the instruction is a load: the only instruction that reads 

data memory is a load. Th

e next two lines check to see if the destination register 

fi eld of the load in the EX stage matches either source register of the instruction 

in the ID stage. If the condition holds, the instruction stalls one clock cycle. Aft er 

this 1-cycle stall, the forwarding logic can handle the dependence and execution 

proceeds. (If there were no forwarding, then the instructions in Figure 4.58 would need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage 

must also be stalled; otherwise, we would lose the fetched instruction. Preventing 

these two instructions from making progress is accomplished simply by preventing 

the PC register and the IF/ID pipeline register from changing. Provided these 

registers are preserved, the instruction in the IF stage will continue to be read 

using the same PC, and the registers in the ID stage will continue to be read using 

the same instruction fi elds in the IF/ID pipeline register. Returning to our favorite 

analogy, it’s as if you restart the washer with the same clothes and let the dryer 

continue tumbling empty. Of course, like the dryer, the back half of the pipeline 

starting with the EX stage must be doing something; what it is doing is executing 

nop  An instruction that 

instructions that have no eff ect: nops. 

does no operation to 

How can we insert these nops, which act like bubbles, into the pipeline? In Figure 

change state. 

4.49, we see that deasserting all nine control signals (setting them to 0) in the EX, MEM, and WB stages will create a “do nothing” or nop instruction. By identifying 

the hazard in the ID stage, we can insert a bubble into the pipeline by changing the 

EX, MEM, and WB control fi elds of the ID/EX pipeline register to 0. Th

ese benign 

control values are percolated forward at each clock cycle with the proper eff ect: no 

registers or memories are written if the control values are all 0. 

Figure 4.59 shows what really happens in the hardware: the pipeline execution slot associated with the AND instruction is turned into a nop and all instructions 

beginning with the AND instruction are delayed one cycle. Like an air bubble in 

a water pipe, a stall bubble delays everything behind it and proceeds down the 

instruction pipe one stage each cycle until it exits at the end. In this example, the 

hazard forces the AND and OR instructions to repeat in clock cycle 4 what they 

did in clock cycle 3: AND reads registers and decodes, and OR is refetched from 

instruction memory. Such repeated work is what a stall looks like, but its eff ect is 

to stretch the time of the AND and OR instructions and delay the fetch of the add 

instruction. 

Figure 4.60 highlights the pipeline connections for both the hazard detection unit and the forwarding unit. As before, the forwarding unit controls the ALU 
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CC 1 
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order

(in instructions)

lw $2, 20($1)
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Reg
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and becomes nop

IM

Reg
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and $4, $2, $5

IM

Reg
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Reg

or $8, $2, $6 
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DM

Reg

add $9, $4, $2

IM

Reg

DM

Reg

FIGURE 4.59  The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed until clock cycle 5 (versus the unstalled clock cycle 4 position). Aft er insertion of the bubble, all the dependences go forward in time and no further hazards occur. 

multiplexors to replace the value from a general-purpose register with the value 

from the proper pipeline register. Th

e hazard detection unit controls the writing 

of the PC and IF/ID registers plus the multiplexor that chooses between the real 

control values and all 0s. Th

e hazard detection unit stalls and deasserts the control 

fi elds if the load-use hazard test above is true. Section 4.13 gives an example of 

MIPS code with hazards that causes stalling, illustrated using single-clock pipeline 

diagrams, if you would like to see more details. 

Although the compiler generally relies upon the hardware to resolve hazards 

and thereby ensure correct execution, the compiler must understand the 

The BIG

pipeline to achieve the best performance. Otherwise, unexpected stalls 

Picture

will reduce the performance of the compiled code. 
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FIGURE 4.60  Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and the forwarding unit. Although the ID and EX stages have been simplifi ed—the sign-extended immediate and branch logic are missing—

this drawing gives the essence of the forwarding hardware requirements. 

Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid 

writing registers or memory: only the signals RegWrite and MemWrite need be 0, while 

the other control signals can be don’t cares. 

 Th

   ere are a thousand 

 hacking at the 

 branches of evil to one 

 4.8 Control 

Hazards

 who is striking at the 

 root. 

Th

us far, we have limited our concern to hazards involving arithmetic operations 

Henry David Th

oreau, 

and data transfers. However, as we saw in Section 4.5, there are also pipeline hazards 

 Walden, 1854

involving branches. Figure 4.61 shows a sequence of instructions and indicates when the branch would occur in this pipeline. An instruction must be fetched at every 

clock cycle to sustain the pipeline, yet in our design the decision about whether to 

branch doesn’t occur until the MEM pipeline stage. As mentioned in Section 4.5, 
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(in instructions)

40 beq $1, $3, 28

IM

Reg

DM

Reg

44 and $12, $2, $5

IM

Reg

DM

Reg

48 or $13, $6, $2

IM

Reg

DM

Reg

52 add $14, $2, $2

IM

Reg

DM

Reg

72 lw $4, 50($7)

IM

Reg

DM

Reg

FIGURE 4.61  The impact of the pipeline on the branch instruction. Th

e numbers to the left  of the instruction (40, 44, …) 

are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those three following instructions will begin execution before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the control hazard to one clock cycle; this fi gure uses the nonoptimized datapath.)

this delay in determining the proper instruction to fetch is called a  control hazard 

or  branch hazard, in contrast to the  data hazards  we have just examined. 

Th

is section on control hazards is shorter than the previous sections on data 

hazards. Th

e reasons are that control hazards are relatively simple to understand, 

they occur less frequently than data hazards, and there is nothing as eff ective 

against control hazards as forwarding is against data hazards. Hence, we use 

simpler schemes. We look at two schemes for resolving control hazards and one 

optimization to improve these schemes. 
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Assume Branch Not Taken

As we saw in Section 4.5, stalling until the branch is complete is too slow. One 

improvement over branch stalling is to predict that the branch will not be taken 

and thus continue execution down the sequential instruction stream. If the branch 

is taken, the instructions that are being fetched and decoded must be discarded. 

Execution continues at the branch target. If branches are untaken half the time, 

and if it costs little to discard the instructions, this optimization halves the cost of 

control hazards. 

To discard instructions, we merely change the original control values to 0s, much 

as we did to stall for a load-use data hazard. Th

e diff erence is that we must also 

change the three instructions in the IF, ID, and EX stages when the branch reaches 

fl ush To discard 

the MEM stage; for load-use stalls, we just change control to 0 in the ID stage and 

instructions in a pipeline, 

let them percolate through the pipeline. Discarding instructions, then, means we 

usually due to an 

must be able to fl ush instructions in the IF, ID, and EX stages of the pipeline. 

unexpected event. 

Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch. 

Th

us far, we have assumed the next PC for a branch is selected in the MEM 

stage, but if we move the branch execution earlier in the pipeline, then fewer 

instructions need be fl ushed. Th

e MIPS architecture was designed to support fast 

single-cycle branches that could be pipelined with a small branch penalty. Th

e 

designers observed that many branches rely only on simple tests (equality or sign, 

for example) and that such tests do not require a full ALU operation but can be 

done with at most a few gates. When a more complex branch decision is required, 

a separate instruction that uses an ALU to perform a comparison is required—a 

situation that is similar to the use of condition codes for branches (see Chapter 2). 

Moving the branch decision up requires two actions to occur earlier: computing 

the branch target address and evaluating the branch decision. Th

e easy part of 

this change is to move up the branch address calculation. We already have the PC 

value and the immediate fi eld in the IF/ID pipeline register, so we just move the 

branch adder from the EX stage to the ID stage; of course, the branch target address 

calculation will be performed for all instructions, but only used when needed. 

Th

e harder part is the branch decision itself. For branch equal, we would compare 

the two registers read during the ID stage to see if they are equal. Equality can be 

tested by fi rst exclusive ORing their respective bits and then ORing all the results. 

Moving the branch test to the ID stage implies additional forwarding and hazard 

detection hardware, since a branch dependent on a result still in the pipeline must 

still work properly with this optimization. For example, to implement branch on 

equal (and its inverse), we will need to forward results to the equality test logic that 

operates during ID. Th

ere are two complicating factors:

1.  During ID, we must decode the instruction, decide whether a bypass to the 

equality unit is needed, and complete the equality comparison so that if 

the instruction is a branch, we can set the PC to the branch target address. 
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Forwarding for the operands of branches was formerly handled by the ALU 

forwarding logic, but the introduction of the equality test unit in ID will 

require new forwarding logic. Note that the bypassed source operands of a 

branch can come from either the ALU/MEM or MEM/WB pipeline latches. 

2.  Because the values in a branch comparison are needed during ID but may be 

produced later in time, it is possible that a data hazard can occur and a stall 

will be needed. For example, if an ALU instruction immediately preceding 

a branch produces one of the operands for the comparison in the branch, 

a stall will be required, since the EX stage for the ALU instruction will 

occur aft er the ID cycle of the branch. By extension, if a load is immediately 

followed by a conditional branch that is on the load result, two stall cycles 

will be needed, as the result from the load appears at the end of the MEM 

cycle but is needed at the beginning of ID for the branch. 

Despite these diffi

culties, moving the branch execution to the ID stage is an 

improvement, because it reduces the penalty of a branch to only one instruction if 

the branch is taken, namely, the one currently being fetched. Th

e exercises explore 

the details of implementing the forwarding path and detecting the hazard. 

To fl ush instructions in the IF stage, we add a control line, called IF.Flush, 

that zeros the instruction fi eld of the IF/ID pipeline register. Clearing the register 

transforms the fetched instruction into a nop, an instruction that has no action 

and changes no state. 

Pipelined Branch

EXAMPLE

Show what happens when the branch is taken in this instruction sequence, 

assuming the pipeline is optimized for branches that are not taken and that we 

moved the branch execution to the ID stage:

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative branch to 40 



+ 

4 

+ 

7 

* 

4 

= 

72

44 and $12, $2, $5

48 or  $13, $2, $6

52 add $14, $4, $2

56 slt $15, $6, $7

. . . 

72 lw $4, 50($7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61, there is only one pipeline bubble on a taken branch. 

ANSWER
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FIGURE 4.62  The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC 

address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s arguable whether or not the ID stage in clock 4 should be highlighted.)
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Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of  branch prediction. In that case, 

we predict that branches are untaken, fl ushing the pipeline when we are wrong. For 

the simple fi ve-stage pipeline, such an approach, possibly coupled with compiler-

based prediction, is probably adequate. With deeper pipelines, the branch penalty 

increases when measured in clock cycles. Similarly, with multiple issue (see Section 

4.10), the branch penalty increases in terms of instructions lost. Th

is combination 

means that in an aggressive pipeline, a simple static prediction scheme will probably 

waste too much performance. As we mentioned in Section 4.5, with more hardware 

it is possible to try to predict branch behavior during program execution. 

One approach is to look up the address of the instruction to see if a branch was  dynamic branch taken the last time this instruction was executed, and, if so, to begin fetching new  prediction Prediction of instructions from the same place as the last time. Th

is technique is called dynamic  branches at runtime using 

branch prediction. 

runtime information. 

One implementation of that approach is a branch prediction buff er or branch  branch prediction history table. A branch prediction buff er is a small memory indexed by the lower  buff er Also called 

portion of the address of the branch instruction. Th

e memory contains a bit that  branch history table. 

says whether the branch was recently taken or not. 

A small memory that 

is indexed by the lower 

Th

is is the simplest sort of buff er; we don’t know, in fact, if the prediction is  portion of the address of the right one—it may have been put there by another branch that has the same  the branch instruction low-order address bits. However, this doesn’t aff ect correctness. Prediction is just  and that contains one a hint that we hope is correct, so fetching begins in the predicted direction. If the  or more bits indicating hint turns out to be wrong, the incorrectly predicted instructions are deleted, the  whether the branch was prediction bit is inverted and stored back, and the proper sequence is fetched and  recently taken or not. 

executed. 

Th

is simple 1-bit prediction scheme has a performance shortcoming: even if a 

branch is almost always taken, we can predict incorrectly twice, rather than once, 

when it is not taken. Th

e following example shows this dilemma. 

Loops and Prediction

EXAMPLE

Consider a loop branch that branches nine times in a row, then is not taken 

once. What is the prediction accuracy for this branch, assuming the prediction 

bit for this branch remains in the prediction buff er? 

Th

e steady-state prediction behavior will mispredict on the fi rst and last loop 

iterations. Mispredicting the last iteration is inevitable since the prediction 

ANSWER

bit will indicate taken, as the branch has been taken nine times in a row at 

that point. Th

e misprediction on the fi rst iteration happens because the bit is 

fl ipped on prior execution of the last iteration of the loop, since the branch 

was not taken on that exiting iteration. Th

us, the prediction accuracy for this 
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branch that is taken 90% of the time is only 80% (two incorrect predictions and 

eight correct ones). 

Ideally, the accuracy of the predictor would match the taken branch frequency for 

these highly regular branches. To remedy this weakness, 2-bit prediction schemes 

are oft en used. In a 2-bit scheme, a prediction must be wrong twice before it is 

changed.  Figure 4.63 shows the fi nite-state machine for a 2-bit prediction scheme. 

A branch prediction buff er can be implemented as a small, special buff er accessed 

with the instruction address during the IF pipe stage. If the instruction is predicted 

as taken, fetching begins from the target as soon as the PC is known; as mentioned 

on page 318, it can be as early as the ID stage. Otherwise, sequential fetching and 

executing continue. If the prediction turns out to be wrong, the prediction bits are 

changed as shown in Figure 4.63. 

Elaboration: As we described in Section 4.5, in a fi ve-stage pipeline we can make the 

control hazard a feature by redefi ning the branch. A delayed branch always executes the 

branch delay slot  Th

e 

following instruction, but the second instruction following the branch will be affected by 

slot directly aft er 

the branch. 

a delayed branch 

instruction, which in the 

Compilers and assemblers try to place an instruction that always executes after the 

MIPS architecture is fi lled 

branch in the branch delay slot. The job of the software is to make the successor 

by an instruction that 

instructions valid and useful. Figure 4.64 shows the three ways in which the branch does not aff ect the branch. 

delay slot can be scheduled. 

Taken

Not taken

Predict taken

Predict taken

Taken

Not taken

Taken

Not taken

Predict not taken

Predict not taken

Taken

Not taken

FIGURE 4.63  The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly favors taken or not taken—as many branches do—will be mispredicted only once. Th

e 2 bits are used 

to encode the four states in the system. Th

e 2-bit scheme is a general instance of a counter-based predictor, 

which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of its range as the division between taken and not taken. 
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The limitations on delayed branch scheduling arise from (1) the restrictions on the 

instructions that are scheduled into the delay slots and (2) our ability to predict at 

compile time whether a branch is likely to be taken or not. 

Delayed branching was a simple and effective solution for a fi ve-stage pipeline 

issuing one instruction each clock cycle. As processors go to both longer pipelines 

and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay 

becomes longer, and a single delay slot is insuffi cient. Hence, delayed branching has 

lost popularity compared to more expensive but more fl exible dynamic approaches. 

Simultaneously, the growth in available transistors per chip has due to Moore’s Law 

made dynamic prediction relatively cheaper. 

a.  From before

b.  From target

c.  From fall-through

add $s1, $s2, $s3

sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

. . . 

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

Delay slot

if $s1 = 0 then

sub $t4, $t5, $t6

Delay slot

Becomes

Becomes

Becomes

add $s1, $s2, $s3

if $s2 = 0 then

if $s1 = 0 then

add $s1, $s2, $s3

add $s1, $s2, $s3

sub $t4, $t5, $t6

if $s1 = 0 then

sub $t4, $t5, $t6

FIGURE 4.64  Scheduling the branch delay slot. Th

e top box in each pair shows the code before 

scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent instruction from before the branch. Th

is is the best choice. Strategies (b) and (c) are used when (a) is not 

possible. In the code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add instruction (whose destination is $s1) from being moved into the branch delay slot. In (b) the branch delay slot is scheduled from the target of the branch; usually the target instruction will need to be copied because it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will still execute correctly. Th

is is the case, for example, if $t4 were an unused temporary register when the branch goes in 

the unexpected direction. 
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Elaboration: A branch predictor tells us whether or not a branch is taken, but still 

requires the calculation of the branch target. In the fi ve-stage pipeline, this calculation 

takes one cycle, meaning that taken branches will have a 1-cycle penalty. Delayed 

branches are one approach to eliminate that penalty. Another approach is to use a 

branch target buff er 

cache to hold the destination program counter or destination instruction using a branch 

A structure that caches 

target buffer. 

the destination PC or 

The 2-bit dynamic prediction scheme uses only information about a particular branch. 

destination instruction 

Researchers noticed that using information about both a local branch, and the global 

for a branch. It is usually 

behavior of recently executed branches together yields greater prediction accuracy for 

organized as a cache with 

the same number of prediction bits. Such predictors are called correlating predictors. 

tags, making it more 

A typical correlating predictor might have two 2-bit predictors for each branch, with the 

costly than a simple 

choice between predictors made based on whether the last executed branch was taken 

prediction buff er. 

or not taken. Thus, the global branch behavior can be thought of as adding additional 

index bits for the prediction lookup. 

correlating predictor 

A more recent innovation in branch prediction is the use of tournament predictors. A 

A branch predictor that 

tournament predictor uses multiple predictors, tracking, for each branch, which predictor 

combines local behavior 

yields the best results. A typical tournament predictor might contain two predictions for 

of a particular branch 

and global information 

each branch index: one based on local information and one based on global branch 

about the behavior of 

behavior. A selector would choose which predictor to use for any given prediction. The 

some recent number of 

selector can operate similarly to a 1- or 2-bit predictor, favoring whichever of the two 

executed branches. 

predictors has been more accurate. Some recent microprocessors use such elaborate 

predictors. 

tournament branch 

predictor A branch 

predictor with multiple 

Elaboration:  One way to reduce the number of conditional branches is to add 

predictions for each 

 conditional move instructions. Instead of changing the PC with a conditional branch, the 

branch and a selection 

instruction conditionally changes the destination register of the move. If the condition 

mechanism that chooses 

fails, the move acts as a nop. For example, one version of the MIPS instruction set 

which predictor to enable 

architecture has two new instructions called movn (move if not zero) and movz (move 

for a given branch. 

if zero). Thus, movn  $8,  $11,  $4 copies the contents of register 11 into register 8, 

provided that the value in register 4 is nonzero; otherwise, it does nothing. 

The ARMv7 instruction set has a condition fi eld in most instructions. Hence, ARM 

programs could have fewer conditional branches than in MIPS programs. 

Pipeline Summary

We started in the laundry room, showing principles of pipelining in an everyday 

setting. Using that analogy as a guide, we explained instruction pipelining 

step-by-step, starting with the single-cycle datapath and then adding pipeline 

registers, forwarding paths, data hazard detection, branch prediction, and fl ushing 

instructions on exceptions.  Figure 4.65 shows the fi nal evolved datapath and control. 

We now are ready for yet another control hazard: the sticky issue of exceptions. 

Check  Consider three branch prediction schemes: predict not taken, predict taken, and 

dynamic prediction. Assume that they all have zero penalty when they predict 

Yourself

correctly and two cycles when they are wrong. Assume that the average predict 
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FIGURE 4.65  The fi nal datapath and control for this chapter.  Note that this is a stylized fi gure rather than a detailed datapath, so it’s missing the ALUsrc Mux from Figure 4.57 and the multiplexor controls from Figure 4.51. 

accuracy of the dynamic predictor is 90%. Which predictor is the best choice for   To make a computer the following branches? 

 with automatic 

 program-interruption 

1.  A branch that is taken with 5% frequency

 facilities behave 

2.  A branch that is taken with 95% frequency

 [sequentially] was 

 not an easy matter, 

3.  A branch that is taken with 70% frequency

 because the number of 

 instructions in various 

 stages of processing 

 when an interrupt 

 4.9 Exceptions

 signal occurs may be 

 large. 

Control is the most challenging aspect of processor design: it is both the hardest  Fred Brooks, Jr., part to get right and the hardest part to make fast. One of the hardest parts of   Planning a Computer System: Project Stretch, 

1962
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exception Also 

control is implementing exceptions and interrupts—events other than branches 

called interrupt. An 

or jumps that change the normal fl ow of instruction execution. Th

ey were initially 

unscheduled event 

created to handle unexpected events from within the processor, like arithmetic 

that disrupts program 

overfl ow. Th

e same basic mechanism was extended for I/O devices to communicate 

execution; used to detect 

with the processor, as we will see in Chapter 5. 

overfl ow. 

Many architectures and authors do not distinguish between interrupts and 

interrupt An exception 

exceptions, oft en using the older name  interrupt to refer to both types of events. 

that comes from outside 

For example, the Intel x86 uses interrupt. We follow the MIPS convention, using 

of the processor. (Some 

the term  exception to refer to  any unexpected change in control fl ow  without 

architectures use the 

distinguishing whether the cause is internal or external; we use the term  interrupt 

term  interrupt for all 

only when the event is externally caused. Here are fi ve examples showing whether 

exceptions.)

the situation is internally generated by the processor or externally generated:

Type of event

From where? 

MIPS terminology

I/O device request

External

Interrupt

Invoke the operating system from user program

Internal

Exception

Arithmetic overfl ow

Internal

Exception

Using an undefi ned instruction

Internal

Exception

Hardware malfunctions

Either

Exception or interrupt

Many of the requirements to support exceptions come from the specifi c 

situation that causes an exception to occur. Accordingly, we will return to this 

topic in Chapter 5, when we will better understand the motivation for additional 

capabilities in the exception mechanism. In this section, we deal with the control 

implementation for detecting two types of exceptions that arise from the portions 

of the instruction set and implementation that we have already discussed. 

Detecting exceptional conditions and taking the appropriate action is oft en 

on the critical timing path of a processor, which determines the clock cycle time 

and thus performance. Without proper attention to exceptions during design of 

the control unit, attempts to add exceptions to a complicated implementation 

can signifi cantly reduce performance, as well as complicate the task of getting the 

design correct. 

How Exceptions Are Handled in the MIPS Architecture

Th

e two types of exceptions that our current implementation can generate are 

execution of an undefi ned instruction and an arithmetic overfl ow. We’ll use 

arithmetic overfl ow in the instruction add $1, $2, $1 as the example exception 

in the next few pages. Th

e basic action that the processor must perform when an 

exception occurs is to save the address of the off ending instruction in the  exception 

 program counter (EPC) and then transfer control to the operating system at some 

specifi ed address. 

Th

e operating system can then take the appropriate action, which may involve 

providing some service to the user program, taking some predefi ned action in 
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response to an overfl ow, or stopping the execution of the program and reporting an 

error. Aft er performing whatever action is required because of the exception, the 

operating system can terminate the program or may continue its execution, using 

the EPC to determine where to restart the execution of the program. In Chapter 5, 

we will look more closely at the issue of restarting the execution. 

For the operating system to handle the exception, it must know the reason for 

the exception, in addition to the instruction that caused it. Th

ere are two main 

methods used to communicate the reason for an exception. Th

e method used in 

the MIPS architecture is to include a status register (called the  Cause register), 

which holds a fi eld that indicates the reason for the exception. 

A second method, is to use vectored interrupts. In a vectored interrupt, the  vectored interrupt An address to which control is transferred is determined by the cause of the exception.  interrupt for which For example, to accommodate the two exception types listed above, we might  the address to which 

defi ne the following two exception vector addresses:

control is transferred is 

determined by the cause 

of the exception. 

Exception type

Exception vector address (in hex)

Undefi ned instruction

8000 0000hex

Arithmetic overfl ow

8000 0180hex

Th

e operating system knows the reason for the exception by the address at which 

it is initiated. Th

e addresses are separated by 32 bytes or eight instructions, and the 

operating system must record the reason for the exception and may perform some 

limited processing in this sequence. When the exception is not vectored, a single 

entry point for all exceptions can be used, and the operating system decodes the 

status register to fi nd the cause. 

We can perform the processing required for exceptions by adding a few extra 

registers and control signals to our basic implementation and by slightly extending 

control. Let’s assume that we are implementing the exception system used in the 

MIPS architecture, with the single entry point being the address 8000 0180 . 

hex

(Implementing vectored exceptions is no more diffi

cult.) We will need to add two 

additional registers to our current MIPS implementation:

■   EPC:  A 32-bit register used to hold the address of the aff ected instruction. 

(Such a register is needed even when exceptions are vectored.)

■   Cause:  A register used to record the cause of the exception. In the MIPS 

architecture, this register is 32 bits, although some bits are currently unused. 

Assume there is a fi ve-bit  fi eld that encodes the two possible exception 

sources mentioned above, with 10 representing an undefi ned instruction and 

12 representing arithmetic overfl ow. 

Exceptions in a Pipelined Implementation

A pipelined implementation treats exceptions as another form of control hazard. 

For example, suppose there is an arithmetic overfl ow in an add instruction. Just as 
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we did for the taken branch in the previous section, we must fl ush the instructions 

that follow the add instruction from the pipeline and begin fetching instructions 

from the new address. We will use the same mechanism we used for taken branches, 

but this time the exception causes the deasserting of control lines. 

When we dealt with branch mispredict, we saw how to fl ush the instruction 

in the IF stage by turning it into a nop. To fl ush instructions in the ID stage, we 

use the multiplexor already in the ID stage that zeros control signals for stalls. A 

new control signal, called ID.Flush, is ORed with the stall signal from the hazard 

detection unit to fl ush during ID. To fl ush the instruction in the EX phase, we use 

a new signal called EX.Flush to cause new multiplexors to zero the control lines. To 

start fetching instructions from location 8000 0180 , which is the MIPS exception 

hex

address, we simply add an additional input to the PC multiplexor that sends 8000 

0180  to the PC. Figure 4.66 shows these changes. 

hex

Th

is example points out a problem with exceptions: if we do not stop execution 

in the middle of the instruction, the programmer will not be able to see the original 

value of register $1 that helped cause the overfl ow because it will be clobbered as 

the Destination register of the add instruction. Because of careful planning, the 

overfl ow exception is detected during the EX stage; hence, we can use the EX.Flush 

signal to prevent the instruction in the EX stage from writing its result in the WB 

stage. Many exceptions require that we eventually complete the instruction that 

caused the exception as if it executed normally. Th

e easiest way to do this is to fl ush 

the instruction and restart it from the beginning aft er the exception is handled. 

Th

e fi nal step is to save the address of the off ending instruction in the  exception 

 program counter (EPC). In reality, we save the address +4, so the exception handling 

the soft ware routine must fi rst subtract 4 from the saved value. Figure 4.66 shows a stylized version of the datapath, including the branch hardware and necessary 

accommodations to handle exceptions. 

Exception in a Pipelined Computer

EXAMPLE

Given this instruction sequence, 

40

sub  $11, $2, $4

hex

44

and  $12, $2, $5

hex

48

or   $13, $2, $6

hex

4C

add   $1, $2, $1

hex

50

slt  $15, $6, $7

hex

54

lw   $16, 50($7)

hex

. 

. 

. 

 

4.9 Exceptions 

329

EX.Flush

IF.Flush

ID.Flush

Hazard

detection

unit

M

ID/EX

u

x

WB

0

EX/MEM

M

Control

M

u

M

WB

u

MEM/WB

x

Cause

x

IF/ID

⫹

0

EX

0

M

WB

EPC

⫹

Shift

4

left 2

M

u

x

Registers

⫽

M

ALU

u

M

Instruction

80000180

PC

x

u

memory

x

M

Data

u

memory

x

Sign-

extend

M

u

x

Forwarding

unit

FIGURE 4.66  The datapath with controls to handle exceptions.  Th

e key additions include a new input with the value 8000 0180  

hex

in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save the address of the instruction that caused the exception. Th

e 8000 0180  input to the multiplexor is the initial address to begin fetching 

hex

instructions in the event of an exception. Although not shown, the ALU overfl ow signal is an input to the control unit. 

assume the instructions to be invoked on an exception begin like this:

80000180

sw     $26, 1000($0)

hex

80000184

sw     $27, 1004($0)

hex

. 

. 

. 

Show what happens in the pipeline if an overfl ow exception occurs in the add 

instruction. 

Figure 4.67 shows the events, starting with the add instruction in the EX stage. 

Th

e overfl ow is detected during that phase, and 8000 0180  is forced into the 

ANSWER

hex

PC. Clock cycle 7 shows that the add and following instructions are fl ushed, 

and the fi rst instruction of the exception code is fetched. Note that the address 

of the instruction  following the add is saved: 4C  + 4 = 50 . 

hex

hex
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lw $16, 50($7)
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FIGURE 4.67  The result of an exception due to arithmetic overfl ow in the add instruction.  Th e overfl ow is detected during 

the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 = 50 ). Overfl ow causes all the Flush signals to be set hex

near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted to bubbles in the pipeline plus the fetching of the fi rst instruction of the exception routine—sw $25,1000($0)—from instruction location 8000 0180 . Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown, the ALU overfl ow signal hex

is an input to the control unit. 
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We mentioned fi ve examples of exceptions on page 326, and we will see others 

in Chapter 5. With fi ve instructions active in any clock cycle, the challenge is 

to associate an exception with the appropriate instruction. Moreover, multiple 

exceptions can occur simultaneously in a single clock cycle. Th

e solution is to 

prioritize the exceptions so that it is easy to determine which is serviced fi rst. In 

most MIPS implementations, the hardware sorts exceptions so that the earliest 

instruction is interrupted. 

I/O device requests and hardware malfunctions are not associated with a specifi c 

instruction, so the implementation has some fl exibility as to when to interrupt the 

pipeline. Hence, the mechanism used for other exceptions works just fi ne. 

Th

e EPC captures the address of the interrupted instructions, and the MIPS 

Cause register records all possible exceptions in a clock cycle, so the exception 

soft ware must match the exception to the instruction. An important clue is knowing 

in which pipeline stage a type of exception can occur. For example, an undefi ned 

instruction is discovered in the ID stage, and invoking the operating system 

occurs in the EX stage. Exceptions are collected in the Cause register in a pending 

exception fi eld so that the hardware can interrupt based on later exceptions, once 

the earliest one has been serviced. 

Th

e hardware and the operating system must work in conjunction so that  Hardware/ 

exceptions behave as you would expect. Th

e hardware contract is normally to  Software 

stop the off ending instruction in midstream, let all prior instructions complete, 

fl ush all following instructions, set a register to show the cause of the exception, Interface save the address of the off ending instruction, and then jump to a prearranged 

address. Th

e operating system contract is to look at the cause of the exception and 

act appropriately. For an undefi ned instruction, hardware failure, or arithmetic 

overfl ow exception, the operating system normally kills the program and returns 

an indicator of the reason. For an I/O device request or an operating system service 

call, the operating system saves the state of the program, performs the desired task, 

and, at some point in the future, restores the program to continue execution. In 

the case of I/O device requests, we may oft en choose to run another task before 

resuming the task that requested the I/O, since that task may oft en not be able to 

proceed until the I/O is complete. Exceptions are why the ability to save and restore 

the state of any task is critical. One of the most important and frequent uses of 

exceptions is handling page faults and TLB exceptions; Chapter 5 describes these 

exceptions and their handling in more detail. 

imprecise 

interrupt Also called 

imprecise exception. 

Interrupts or exceptions 

Elaboration: The diffi culty of always associating the correct exception with the correct 

in pipelined computers 

instruction in pipelined computers has led some computer designers to relax this  that are not associated requirement in noncritical cases. Such processors are said to have imprecise interrupts 

with the exact instruction 

or imprecise exceptions. In the example above, PC would normally have 58

at the start 

hex

that was the cause of the 

of the clock cycle after the exception is detected, even though the offending instruction 

interrupt or exception. 
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precise interrupt Also 

is at address 4C

. A processor with imprecise exceptions might put 58

into EPC and 

hex

hex

called precise exception. 

leave it up to the operating system to determine which instruction caused the problem. 

An interrupt or exception 

MIPS and the vast majority of computers today support precise interrupts or precise 

that is always associated 

exceptions. (One reason is to support virtual memory, which we shall see in Chapter 5.)

with the correct 

instruction in pipelined 

Elaboration: Although MIPS uses the exception entry address 8000 0180  for 

computers. 

hex

almost all exceptions, it uses the address 8000 0000

to improve performance of the 

hex

exception handler for TLB-miss exceptions (see Chapter 5). 

Check  Which exception should be recognized fi rst in this sequence? 

Yourself

1. add $1, $2, $1  # arithmetic overfl ow

2. XXX $1, $2, $1  # undefi ned instruction

3. sub $1, $2, $1  # hardware error

 4.10  Parallelism via Instructions

Be forewarned: this section is a brief overview of fascinating but advanced 

topics. If you want to learn more details, you should consult our more advanced 

book,  Computer Architecture: A Quantitative Approach, fi ft h edition, where the 

material covered in these 13 pages is expanded to almost 200 pages (including 

appendices)! 

Pipelining exploits the potential parallelism among instructions. Th

is 

parallelism is called instruction-level parallelism (ILP). Th

ere are two primary 

methods for increasing the potential amount of instruction-level parallelism. Th

e 

fi rst is increasing the depth of the pipeline to overlap more instructions. Using our 

laundry analogy and assuming that the washer cycle was longer than the others 

were, we could divide our washer into three machines that perform the wash, rinse, 

and spin steps of a traditional washer. We would then move from a four-stage to a 

six-stage pipeline. To get the full speed-up, we need to rebalance the remaining steps 

so they are the same length, in processors or in laundry. Th

e amount of parallelism 

being exploited is higher, since there are more operations being overlapped. 

Performance is potentially greater since the clock cycle can be shorter. 

instruction-level 

Another approach is to replicate the internal components of the computer so 

parallelism  Th

e 

that it can launch multiple instructions in every pipeline stage. Th

e general name 

parallelism among 

for this technique is multiple issue. A multiple-issue laundry would replace our 

instructions. 

household washer and dryer with, say, three washers and three dryers. You would 

multiple issue A scheme  also have to recruit more assistants to fold and put away three times as much whereby multiple 

laundry in the same amount of time. Th

e downside is the extra work to keep all the 

instructions are launched 

machines busy and transferring the loads to the next pipeline stage. 

in one clock cycle. 
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Launching multiple instructions per stage allows the instruction execution rate to 

exceed the clock rate or, stated alternatively, the CPI to be less than 1. As mentioned 

in Chapter 1, it is sometimes useful to fl ip the metric and use  IPC, or  instructions per clock cycle. Hence, a 4 GHz four-way multiple-issue microprocessor can execute 

a peak rate of 16 billion instructions per second and have a best-case CPI of 0.25, 

or an IPC of 4. Assuming a fi ve-stage pipeline, such a processor would have 20 

instructions in execution at any given time. Today’s high-end microprocessors 

attempt to issue from three to six instructions in every clock cycle. Even moderate 

designs will aim at a peak IPC of 2. Th

ere are typically, however, many constraints 

on what types of instructions may be executed simultaneously, and what happens  static multiple issue An when dependences arise. 

approach to implementing 

Th

ere are two major ways to implement a multiple-issue processor, with the  a multiple-issue processor major diff erence being the division of work between the compiler and the hardware. 

where many decisions 

Because the division of work dictates whether decisions are being made statically  are made by the compiler (that is, at compile time) or dynamically (that is, during execution), the approaches  before execution. 

are sometimes called static multiple issue and dynamic multiple issue. As we will  dynamic multiple see, both approaches have other, more commonly used names, which may be less  issue  An approach to precise or more restrictive. 

implementing a multiple-

Th

ere are two primary and distinct responsibilities that must be dealt with in a  issue processor where multiple-issue pipeline:

many decisions are made 

during execution by the 

1.  Packaging instructions into issue slots: how does the processor determine  processor. 

how many instructions and which instructions can be issued in a given  issue slots  Th e positions clock cycle? In most static issue processors, this process is at least partially  from which instructions handled by the compiler; in dynamic issue designs, it is normally dealt with  could issue in a given at runtime by the processor, although the compiler will oft en have already  clock cycle; by analogy, tried to help improve the issue rate by placing the instructions in a benefi cial  these correspond to order. 

positions at the starting 

blocks for a sprint. 

2.  Dealing with data and control hazards: in static issue processors, the compiler 

handles some or all of the consequences of data and control hazards statically. 

In contrast, most dynamic issue processors attempt to alleviate at least some 

classes of hazards using hardware techniques operating at execution time. 

Although we describe these as distinct approaches, in reality one approach oft en 

borrows techniques from the other, and neither approach can claim to be perfectly 

pure. 

The Concept of Speculation

One of the most important methods for fi nding and exploiting more ILP is  speculation An 

speculation. Based on the great idea of prediction, speculation  is  an  approach  approach whereby the compiler or processor 

that allows the compiler or the processor to “guess” about the properties of an  guesses the outcome of an instruction, so as to enable execution to begin for other instructions that may  instruction to remove it as depend on the speculated instruction. For example, we might speculate on the  a dependence in executing outcome of a branch, so that instructions aft er the branch could be executed earlier. 

other instructions. 
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Another example is that we might speculate that a store that precedes a load does 

not refer to the same address, which would allow the load to be executed before the 

store. Th

e diffi

culty with speculation is that it may be wrong. So, any speculation 

mechanism must include both a method to check if the guess was right and a 

method to unroll or back out the eff ects of the instructions that were executed 

speculatively. Th

e implementation of this back-out capability adds complexity. 

Speculation may be done in the compiler or by the hardware. For example, the 

compiler can use speculation to reorder instructions, moving an instruction across 

a branch or a load across a store. Th

e processor hardware can perform the same 

transformation at runtime using techniques we discuss later in this section. 

Th

e recovery mechanisms used for incorrect speculation are rather diff erent. 

In the case of speculation in soft ware, the compiler usually inserts additional 

instructions that check the accuracy of the speculation and provide a fi x-up routine 

to use when the speculation is incorrect. In hardware speculation, the processor 

usually buff ers the speculative results until it knows they are no longer speculative. 

If the speculation is correct, the instructions are completed by allowing the 

contents of the buff ers to be written to the registers or memory. If the speculation is 

incorrect, the hardware fl ushes the buff ers and re-executes the correct instruction 

sequence. 

Speculation introduces one other possible problem: speculating on certain 

instructions may introduce exceptions that were formerly not present. For 

example, suppose a load instruction is moved in a speculative manner, but the 

address it uses is not legal when the speculation is incorrect. Th

e result would be 

an exception that should not have occurred. Th

e problem is complicated by the 

fact that if the load instruction were not speculative, then the exception must 

occur! In compiler-based speculation, such problems are avoided by adding 

special speculation support that allows such exceptions to be ignored until it is 

clear that they really should occur. In hardware-based speculation, exceptions 

are simply buff ered until it is clear that the instruction causing them is no longer 

speculative and is ready to complete; at that point the exception is raised, and 

nor-mal exception handling proceeds. 

Since speculation can improve performance when done properly and decrease 

performance when done carelessly, signifi cant eff ort goes into deciding when it 

is appropriate to speculate. Later in this section, we will examine both static and 

dynamic techniques for speculation. 

issue packet  Th

e set 

Static Multiple Issue

of instructions that 

Static multiple-issue processors all use the compiler to assist with packaging 

issues together in one 

instructions and handling hazards. In a static issue processor, you can think of the 

clock cycle; the packet 

may be determined 

set of instructions issued in a given clock cycle, which is called an issue packet, as 

statically by the compiler 

one large instruction with multiple operations. Th

is view is more than an analogy. 

or dynamically by the 

Since a static multiple-issue processor usually restricts what mix of instructions can 

processor. 

be initiated in a given clock cycle, it is useful to think of the issue packet as a single 
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instruction allowing several operations in certain predefi ned fi elds. Th

is view led to 

Very Long Instruction 

the original name for this approach: Very Long Instruction Word (VLIW). 

Word (VLIW) 

Most static issue processors also rely on the compiler to take on some  A style of instruction set responsibility for handling data and control hazards. Th

e compiler’s responsibilities 

architecture that launches 

many operations that are 

may include static branch prediction and code scheduling to reduce or prevent all  defi ned to be independent hazards. Let’s look at a simple static issue version of a MIPS processor, before we  in a single wide describe the use of these techniques in more aggressive processors. 

instruction, typically with 

many separate opcode 

An Example: Static Multiple Issue with the MIPS ISA

fi elds. 

To give a fl avor of static multiple issue, we consider a simple two-issue MIPS 

processor, where one of the instructions can be an integer ALU operation or 

branch and the other can be a load or store. Such a design is like that used in some 

embedded MIPS processors. Issuing two instructions per cycle will require fetching 

and decoding 64 bits of instructions. In many static multiple-issue processors, and 

essentially all VLIW processors, the layout of simultaneously issuing instructions 

is restricted to simplify the decoding and instruction issue. Hence, we will require 

that the instructions be paired and aligned on a 64-bit boundary, with the ALU 

or branch portion appearing fi rst. Furthermore, if one instruction of the pair 

cannot be used, we require that it be replaced with a nop. Th

us, the instructions 

always issue in pairs, possibly with a nop in one slot. Figure 4.68 shows how the instructions look as they go into the pipeline in pairs. 

Static multiple-issue processors vary in how they deal with potential data and 

control hazards. In some designs, the compiler takes full responsibility for removing 

 all hazards, scheduling the code and inserting no-ops so that the code executes 

without any need for hazard detection or hardware-generated stalls. In others, 

the hardware detects data hazards and generates stalls between two issue packets, 

while requiring that the compiler avoid all dependences within an instruction pair. 

Even so, a hazard generally forces the entire issue packet containing the dependent 

Instruction type
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IF
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MEM

WB
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MEM
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IF
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ALU or branch instruction
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WB

Load or store instruction

IF

ID
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MEM
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FIGURE 4.68  Static two-issue pipeline in operation. Th

e ALU and data transfer instructions 

are issued at the same time. Here we have assumed the same fi ve-stage structure as used for the single-issue pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the register writes at the end of the pipeline simplifi es the handling of exceptions and the maintenance of a precise exception model, which become more diffi

cult in multiple-issue processors. 

336 

Chapter 4  The Processor

instruction to stall. Whether the soft ware must handle all hazards or only try to 

reduce the fraction of hazards between separate issue packets, the appearance of 

having a large single instruction with multiple operations is reinforced. We will 

assume the second approach for this example. 

To issue an ALU and a data transfer operation in parallel, the fi rst need for 

additional hardware—beyond the usual hazard detection and stall logic—is extra 

ports in the register fi le (see Figure 4.69). In one clock cycle we may need to read two registers for the ALU operation and two more for a store, and also one write 

port for an ALU operation and one write port for a load. Since the ALU is tied 

up for the ALU operation, we also need a separate adder to calculate the eff ective 

address for data transfers. Without these extra resources, our two-issue pipeline 

would be hindered by structural hazards. 

Clearly, this two-issue processor can improve performance by up to a factor of 

two. Doing so, however, requires that twice as many instructions be overlapped 

in execution, and this additional overlap increases the relative performance loss 

from data and control hazards. For example, in our simple fi ve-stage  pipeline, 

⫹

⫹

M

u

4

x

ALU

M

Registers

u

M

Instruction

x

80000180

u

PC

memory

x

Write

data

Data

Sign-

ALU

memory

extend

Sign-

extend

Address

FIGURE 4.69  A static two-issue datapath.  Th

e additions needed for double issue are highlighted: another 32 bits from instruction 

memory, two more read ports and one more write port on the register fi le, and another ALU. Assume the bottom ALU handles address calculations for data transfers and the top ALU handles everything else. 
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loads have a use latency of one clock cycle, which prevents one instruction from  use latency Number using the result without stalling. In the two-issue, fi ve-stage pipeline the result of  of clock cycles between a load instruction cannot be used on the next  clock cycle.  Th

is means that the next  a load instruction and 

 two instructions cannot use the load result without stalling. Furthermore, ALU  an instruction that can use the result of the 

instructions that had no use latency in the simple fi ve-stage pipeline now have a  load without stalling the one-instruction use latency, since the results cannot be used in the paired load or  pipeline. 

store. To eff ectively exploit the parallelism available in a multiple-issue processor, 

more ambitious compiler or hardware scheduling techniques are needed, and static 

multiple issue requires that the compiler take on this role. 

Simple Multiple-Issue Code Scheduling

EXAMPLE

How would this loop be scheduled on a static two-issue pipeline for MIPS? 

Loop: lw    $t0, 0($s1)    # $t0=array element

addu  $t0,$t0,$s2# add scalar in $s2

sw    $t0, 0($s1)# store result

addi  $s1,$s1,–4# decrement pointer

bne   $s1,$zero,Loop# branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume 

branches are predicted, so that control hazards are handled by the hardware. 

Th

e fi rst three instructions have data dependences, and so do the last two. 

Figure 4.70 shows the best schedule for these instructions. Notice that just 

ANSWER

one pair of instructions has both issue slots used. It takes four clocks per loop 

iteration; at four clocks to execute fi ve instructions, we get the disappointing 

CPI of 0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice 

that in computing CPI or IPC, we do not count any nops executed as useful 

instructions. Doing so would improve CPI, but not performance! 

ALU or branch instruction

Data transfer instruction

Clock cycle

Loop:

lw $t0, 

0($s1)

1

addi $s1,$s1,–4

2

addu $t0,$t0,$s2

3

bne $s1,$zero,Loop

sw  $t0, 

4($s1)

4

FIGURE 4.70  The scheduled code as it would look on a two-issue MIPS pipeline. Th

e empty 

slots are no-ops. 

338 

Chapter 4  The Processor

loop unrolling 

An important compiler technique to get more performance from loops 

A technique to get more 

is  loop unrolling, where multiple copies of the loop body are made. After 

performance from loops 

unrolling, there is more ILP available by overlapping instructions from different 

that access arrays, in 

iterations. 

which multiple copies of 

the loop body are made 

and instructions from 

diff erent iterations are 

scheduled together

Loop Unrolling for Multiple-Issue Pipelines

EXAMPLE

See how well loop unrolling and scheduling work in the example above. For 

simplicity assume that the loop index is a multiple of four. 

To schedule the loop without any delays, it turns out that we need to make 

ANSWER

four copies of the loop body. Aft er unrolling and eliminating the unnecessary 

loop overhead instructions, the loop will contain four copies each of lw, add, 

and sw, plus one addi and one bne. Figure 4.71 shows the unrolled and 

scheduled code. 

register renaming  Th

e 

During the unrolling process, the compiler introduced additional registers 

renaming of registers 

($t1,  $t2,  $t3). Th

e goal of this process, called register renaming, is to 

by the compiler or 

eliminate dependences that are not true data dependences, but could either 

hardware to remove 

lead to potential hazards or prevent the compiler from fl exibly  scheduling 

antidependences. 

the code. Consider how the unrolled code would look using only $t0. Th

ere 

antidependence Also 

would be repeated instances of lw  $t0,0($$s1), addu $t0,  $t0,  $s2 

called name 

followed by sw  t0,4($s1), but these sequences, despite using $t0, are 

dependence. An 

actually completely independent—no data values fl ow between one set of these 

ordering forced by the 

instructions and the next set. Th

is case is what is called an antidependence or 

reuse of a name, typically 

name dependence, which is an ordering forced purely by the reuse of a name, 

a register, rather than by 

rather than a real data dependence that is also called a true dependence. 

a true dependence that 

carries a value between 

Renaming the registers during the unrolling process allows the compiler 

two instructions. 

to move these independent instructions subsequently so as to better schedule 

ALU or branch instruction

Data transfer instruction

Clock cycle

Loop:

addi $s1,$s1,–16

lw 

$t0, 

0($s1)

1

lw $t1,12($s1)

2

addu $t0,$t0,$s2

lw 

$t2, 

8($s1)

3

addu $t1,$t1,$s2

lw 

$t3, 

4($s1)

4

addu $t2,$t2,$s2

sw 

$t0, 

16($s1)

5

addu $t3,$t3,$s2

sw 

$t1,12($s1)

6

sw $t2, 

8($s1)

7

bne $s1,$zero,Loop

sw  $t3, 

4($s1)

8

FIGURE 4.71  The unrolled and scheduled code of Figure 4.70 as it would look on a static 

two-issue MIPS pipeline.  Th

e empty slots are no-ops. Since the fi rst instruction in the loop decrements 

$s1 by 16, the addresses loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12. 
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the code. Th

e renaming process eliminates the name dependences, while 

preserving the true dependences. 

Notice now that 12 of the 14 instructions in the loop execute as pairs. It takes 

8 clocks for 4 loop iterations, or 2 clocks per iteration, which yields a CPI of 8/14 

= 0.57. Loop unrolling and scheduling with dual issue gave us an improvement 

factor of almost 2, partly from reducing the loop control instructions and partly 

from dual issue execution. Th

e cost of this performance improvement is using four 

temporary registers rather than one, as well as a signifi cant increase in code size. 

Dynamic Multiple-Issue Processors

Dynamic multiple-issue processors are also known as superscalar processors, or  superscalar An simply superscalars. In the simplest superscalar processors, instructions issue in  advanced pipelining order, and the processor decides whether zero, one, or more instructions can issue  technique that enables the in a given clock cycle. Obviously, achieving good performance on such a processor  processor to execute more than one instruction per 

still requires the compiler to try to schedule instructions to move dependences  clock cycle by selecting apart and thereby improve the instruction issue rate. Even with such compiler  them during execution. 

scheduling, there is an important diff erence between this simple superscalar 

and a VLIW processor: the code, whether scheduled or not, is guaranteed by 

the hardware to execute correctly. Furthermore, compiled code will always run 

correctly independent of the issue rate or pipeline structure of the processor. In 

some VLIW designs, this has not been the case, and recompilation was required 

when moving across diff erent processor models; in other static issue processors, 

code would run correctly across diff erent implementations, but oft en so poorly as 

to make compilation eff ectively required. 

Many superscalars extend the basic framework of dynamic issue decisions to 

include  dynamic pipeline scheduling. Dynamic pipeline scheduling chooses  dynamic pipeline which instructions to execute in a given clock cycle while trying to avoid hazards 

scheduling Hardware 

and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the 

support for reordering 

following code sequence:

the order of instruction 

execution so as to avoid 

lw     $t0, 20($s2)

stalls. 

addu   $t1, $t0, $t2

sub    $s4, $s4, $t3

slti   $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw 

and addu to complete fi rst, which might take many clock cycles if memory is slow. 

(Chapter 5 explains cache misses, the reason that memory accesses are sometimes 

very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either 

fully or partially. 

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly 

reordering them to avoid stalls. In such processors, the pipeline is divided into 

three major units: an instruction fetch and issue unit, multiple functional units 
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Instruction fetch

In-order issue

and decode unit

Reservation

Reservation

Reservation

Reservation

station

station

. . . 

station

station

Functional

Floating

Load-

Integer

Integer

Out-of-order execute

units

. . . 

point

store

Commit

In-order commit

unit

FIGURE 4.72  The three primary units of a dynamically scheduled pipeline. Th

e fi nal step of 

updating the state is also called retirement or graduation. 

commit unit  Th

e unit in 

(a dozen or more in high-end designs in 2013), and a commit unit. Figure 4.72 

a dynamic or out-of-order 

shows the model. Th

e fi rst unit fetches instructions, decodes them, and sends 

execution pipeline that 

each instruction to a corresponding functional unit for execution. Each functional 

decides when it is safe to 

unit has buff ers,  called  reservation stations, which hold the operands and the 

release the result of an 

operation. (Th

e Elaboration discusses an alternative to reservation stations used 

operation to programmer-

by many recent processors.) As soon as the buff er contains all its operands and 

visible registers and 

memory. 

the functional unit is ready to execute, the result is calculated. When the result is 

completed, it is sent to any reservation stations waiting for this particular result 

reservation station 

as well as to the commit unit, which buff ers the result until it is safe to put the 

A buff er within a 

result into the register fi le or, for a store, into memory. Th

e buff er in the commit 

functional unit that holds 

unit, oft en called the reorder buff er, is also used to supply operands, in much the 

the operands and the 

operation. 

same way as forwarding logic does in a statically scheduled pipeline. Once a result 

is committed to the register fi le, it can be fetched directly from there, just as in a 

reorder buff er  Th

e 

normal pipeline. 

buff er that holds results in 

Th

e combination of buff ering operands in the reservation stations and results 

a dynamically scheduled 

in the reorder buff er provides a form of register renaming, just like that used by 

processor until it is safe 

to store the results to 

the compiler in our earlier loop-unrolling example on page 338. To see how this 

memory or a register. 

conceptually works, consider the following steps:
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1.  When an instruction issues, it is copied to a reservation station for the 

appropriate functional unit. Any operands that are available in the register 

fi le or reorder buff er are also immediately copied into the reservation station. 

Th

e instruction is buff ered in the reservation station until all the operands 

and the functional unit are available. For the issuing instruction, the register 

copy of the operand is no longer required, and if a write to that register 

occurred, the value could be overwritten. 

2.  If an operand is not in the register fi le or reorder buff er, it must be waiting to 

be produced by a functional unit. Th

e name of the functional unit that will 

produce the result is tracked. When that unit eventually produces the result, 

it is copied directly into the waiting reservation station from the functional 

unit bypassing the registers. 

Th

ese steps eff ectively use the reorder buff er and the reservation stations to 

implement register renaming. 

Conceptually, you can think of a dynamically scheduled pipeline as analyzing 

the data fl ow structure of a program. Th

e processor then executes the instructions 

in some order that preserves the data fl ow order of the program. Th

is style of 

execution is called an out-of-order execution, since the instructions can be  out-of-order executed in a diff erent order than they were fetched. 

execution  A situation in 

To make programs behave as if they were running on a simple in-order pipeline, 

pipelined execution when 

the instruction fetch and decode unit is required to issue instructions in order,  an instruction blocked from executing does 

which allows dependences to be tracked, and the commit unit is required to write  not cause the following results to registers and memory in program fetch order. Th

is conservative mode is  instructions to wait. 

called in-order commit. Hence, if an exception occurs, the computer can point to 

the last instruction executed, and the only registers updated will be those written  in-order commit by instructions before the instruction causing the exception. Although the front  A commit in which the results of pipelined 

end (fetch and issue) and the back end (commit) of the pipeline run in order,  execution are written to the functional units are free to initiate execution whenever the data they need is  the programmer visible available. Today, all dynamically scheduled pipelines use in-order commit. 

state in the same order 

Dynamic scheduling is oft en extended by including hardware-based speculation, 

that instructions are 

especially for branch outcomes. By predicting the direction of a branch, a  fetched. 

dynamically scheduled processor can continue to fetch and execute instructions 

along the predicted path. Because the instructions are committed in order, we know 

whether or not the branch was correctly predicted before any instructions from the 

predicted path are committed. A speculative, dynamically scheduled pipeline can 

also support speculation on load addresses, allowing load-store reordering, and 

using the commit unit to avoid incorrect speculation. In the next section, we will 

look at the use of dynamic scheduling with speculation in the Intel Core i7 design. 
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Given that compilers can also schedule code around data dependences, you might 

Understanding  ask why a superscalar processor would use dynamic scheduling. Th ere are three Program  major reasons. First, not all stalls are predictable. In particular, cache misses Performance

(see Chapter 5) in the memory hierarchy cause unpredictable stalls. Dynamic 

scheduling allows the processor to hide some of those stalls by continuing to 

execute instructions while waiting for the stall to end. 

Second, if the processor speculates on branch outcomes using dynamic branch 

prediction, it cannot know the exact order of instructions at compile time, since it 

depends on the predicted and actual behavior of branches. Incorporating dynamic 

speculation to exploit more  instruction-level parallelism (ILP) without incorporating 

dynamic scheduling would signifi cantly restrict the benefi ts of speculation. 

Th

ird, as the pipeline latency and issue width change from one implementation 

to another, the best way to compile a code sequence also changes. For example, how 

to schedule a sequence of dependent instructions is aff ected by both issue width and 

latency. Th

e pipeline structure aff ects both the number of times a loop must be unrolled 

to avoid stalls as well as the process of compiler-based register renaming. Dynamic 

scheduling allows the hardware to hide most of these details. Th

us, users and soft ware 

distributors do not need to worry about having multiple versions of a program for 

diff erent implementations of the same instruction set. Similarly, old legacy code will 

get much of the benefi t of a new implementation without the need for recompilation. 

The BIG

Picture

Both  pipelining and multiple-issue execution increase peak instruction 

throughput and attempt to exploit instruction-level parallelism (ILP). 

Data and control dependences in programs, however, off er an upper limit 

on sustained performance because the processor must sometimes wait for 

a dependence to be resolved. Soft ware-centric approaches to exploiting 

ILP rely on the ability of the compiler to fi nd and reduce the eff ects of such 

dependences, while hardware-centric approaches rely on extensions to the 

pipeline and issue mechanisms. Speculation, performed by the compiler 

or the hardware, can increase the amount of ILP that can be exploited via 

prediction, although care must be taken since speculating incorrectly is 

likely to reduce performance. 
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Modern, high-performance microprocessors are capable of issuing several instructions 

Hardware/ 

per clock; unfortunately, sustaining that issue rate is very diffi

cult. For example, despite 

Software 

the existence of processors with four to six issues per clock, very few applications can 


sustain more than two instructions per clock. Th

ere are two primary reasons for this. 

Interface

First, within the pipeline, the major performance bottlenecks arise from 

dependences that cannot be alleviated, thus reducing the parallelism among 

instructions and the sustained issue rate. Although little can be done about true data 

dependences, oft en the compiler or hardware does not know precisely whether a 

dependence exists or not, and so must conservatively assume the dependence exists. 

For example, code that makes use of pointers, particularly in ways that may lead to 

aliasing, will lead to more implied potential dependences. In contrast, the greater 

regularity of array accesses oft en allows a compiler to deduce that no dependences 

exist. Similarly, branches that cannot be accurately predicted whether at runtime or 

compile time will limit the ability to exploit ILP. Oft en, additional ILP is available, but 

the ability of the compiler or the hardware to fi nd ILP that may be widely separated 

(sometimes by the execution of thousands of instructions) is limited. 

Second, losses in the memory hierarchy  (the topic of Chapter 5) also limit the 

ability to keep the pipeline full. Some memory system stalls can be hidden, but 

limited amounts of ILP also limit the extent to which such stalls can be hidden. 

Energy Effi ciency and Advanced Pipelining

Th

e downside to the increasing exploitation of instruction-level parallelism via 

dynamic multiple issue and speculation is potential energy ineffi

ciency.  Each 

innovation was able to turn more transistors into performance, but they oft en did 

so very ineffi

ciently. Now that we have hit the power wall, we are seeing designs 

with multiple processors per chip where the processors are not as deeply pipelined 

or as aggressively speculative as its predecessors. 

Th

e belief is that while the simpler processors are not as fast as their sophisticated 

brethren, they deliver better performance per joule, so that they can deliver more 

performance per chip when designs are constrained more by energy than they are 

by number of transistors. 

Figure 4.73 shows the number of pipeline stages, the issue width, speculation level, clock rate, cores per chip, and power of several past and recent microprocessors. Note 

the drop in pipeline stages and power as companies switch to multicore designs. 

Elaboration: A commit unit controls updates to the register fi le   and memory. Some dynamically scheduled processors update the register fi le immediately during execution, 

using extra registers to implement the renaming function and preserving the older copy of a 

register until the instruction updating the register is no longer speculative. Other processors 

buffer the result, typically in a structure called a reorder buffer, and the actual update to the register fi le occurs later as part of the commit. Stores to memory must be buffered until 

commit time either in a  store buffer (see Chapter 5) or in the reorder buffer. The commit unit allows the store to write to memory from the buffer when the buffer has a valid address and 

valid data, and when the store is no longer dependent on predicted branches. 
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Pipeline 

Issue 

Out-of-Order/ 

Cores/ 

Microprocessor

Year

Clock Rate

Stages

Width

Speculation

Chip

Power

Intel 486

1989

25 MHz

5

1

No

1

5 

W

Intel Pentium

1993

66 MHz

5

2

No

1

10 

W

Intel Pentium Pro

1997

200 MHz

10

3

Yes

1

29 

W

Intel Pentium 4 Willamette

2001

2000 MHz

22

3

Yes

1

75 

W

Intel Pentium 4 Prescott

2004

3600 MHz

31

3

Yes

1

103 

W

Intel Core

2006

2930 MHz

14

4

Yes

2

75 

W

Intel Core i5 Nehalem

2010 

3300 MHz

14

4

Yes

1

87

W

Intel Core i5 Ivy Bridge

2012

3400 MHz

14

4

Yes

8

77

W

FIGURE 4.73  Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power. Th e Pentium 

4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper. 

Elaboration: Memory accesses benefi t from  nonblocking caches,  which continue 

servicing cache accesses during a cache miss (see Chapter 5). Out-of-order execution 

processors need the cache design to allow instructions to execute during a miss. 

Check  State whether the following techniques or components are associated primarily 

with a soft ware- or hardware-based approach to exploiting ILP. In some cases, the 

Yourself

answer may be both. 

1. Branch 

prediction

2. Multiple 

issue

3. VLIW

4. Superscalar

5. Dynamic 

scheduling

6. Out-of-order 

execution

7. Speculation

8. Reorder 

buff er

9. Register 

renaming

 4.11   Real Stuff: The ARM Cortex-A8 and Intel 

Core i7 Pipelines

Figure 4.74 describes the two microprocessors we examine in this section, whose targets are the two bookends of the PostPC Era. 
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Processor

ARM A8

Intel Core i7 920

Market

Personal Mobile Device

Server, Cloud

Thermal design power

2 Watts

130 Watts

Clock rate

1 GHz

2.66 GHz

Cores/Chip

1

4

Floating point? 

No

Yes

Multiple Issue? 

Dynamic

Dynamic

Peak instructions/clock cycle

2

4

Pipeline Stages

14

14

Pipeline schedule

Static In-order

Dynamic Out-of-order with Speculation

Branch prediction

2-level

2-level

1st level caches / core

32 KiB I, 32 KiB D

32 KiB I, 32 KiB D

2nd level cache / core

128 - 1024 KiB

256 KiB

3rd level cache (shared)

--

2 - 8 MiB

FIGURE 4.74  Specifi cation of the ARM Cortex-A8 and the Intel Core i7 920. 

The ARM Cortex-A8

Th

e ARM Corxtex-A8 runs at 1 GHz with a 14-stage pipeline. It uses dynamic 

multiple issue, with two instructions per clock cycle. It is a static in-order pipeline, 

in that instructions issue, execute, and commit in order.  Th

e pipeline consists of 

three sections for instruction fetch, instruction decode, and execute.  Figure 4.75 

shows the overall pipeline. 

Th

e fi rst three stages fetch two instructions at a time and try to keep a 

12-instruction entry prefetch buff er full. It uses a two-level branch predictor using 

both a 512-entry branch target buff er, a 4096-entry global history buff er, and an 

8-entry return stack to predict future returns. When the branch prediction is 

wrong, it empties the pipeline, resulting in a 13-clock cycle misprediction penalty. 

Th

e fi ve stages of the decode pipeline determine if there are dependences 

between a pair of instructions, which would force sequential execution,  and in 

which pipeline of the execution stages to send the instructions. 

Th

e six stages of the instruction execution section off er one pipeline for load 

and store instructions and two pipelines for arithmetic operations, although only 

the fi rst of the pair can handle multiplies. Either instruction from the pair can be 

issued to the load-store pipeline. Th

e execution stages have full bypassing between 

the three pipelines. 

Figure 4.76 shows the CPI of the A8 using small versions of programs derived 

from the SPEC2000 benchmarks. While the ideal CPI is 0.5, the best case here is 

1.4, the median case is 2.0, and the worst case is 5.2. For the median case, 80% of 

the stalls are due to the pipelining hazards and 20% are stalls due to the memory 
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F0

F1

F2

D0

D1

D2

D3

D4

E0

E1

E2

E3

E4

E5

Branch mispredict

penalty =13 cycles

Instruction execute and load/store

Architectural register file

Instruction

ALU/MUL pipe 0

BP

fetch

update

RAM

12-entry

AGU

+

fetch

Instruction decode

BP

TLB

queue

ALU pipe 1

update

BTB

GHB

BP

RS

LS pipe 0 or 1

update

FIGURE 4.75  The A8 pipeline. Th

e fi rst three stages fetch instructions into a 12-entry instruction fetch 

buff er. Th

e  Address Generation Unit (AGU) uses a  Branch Target Buff er (BTB),  Global History Buff er (GHB), and a  Return Stack (RS) to predict branches to try to keep the fetch queue full. Instruction decode is fi ve stages and instruction execution is six stages. 

hierarchy. Pipeline stalls are caused by branch mispredictions, structural hazards, 

and data dependencies between pairs of instructions. Given the static pipeline of the 

A8, it is up to the compiler to try to avoid structural hazards and data dependences. 

Elaboration: The Cortex-A8 is a confi gurable core that supports the ARMv7 instruction 

set architecture. It is delivered as an IP ( Intellectual Property)  core. IP cores are the dominant form of technology delivery in the embedded, personal mobile device, and 

related markets; billions of ARM and MIPS processors have been created from these 

IP cores. 

Note that IP cores are different than the cores in the Intel i7 multicore computers. An 

IP core (which may itself be a multicore) is designed to be incorporated with other logic 

(hence it is the “core” of a chip), including application-specifi c processors (such as an 

encoder or decoder for video), I/O interfaces, and memory interfaces, and then fabricated 

to yield a processor optimized for a particular application. Although the processor core is 

almost identical, the resultant chips have many differences. One parameter is the size 

of the L2 cache, which can vary by a factor of eight. 

The Intel Core i7 920

x86 microprocessors employ sophisticated pipelining approaches, using both 

dynamic multiple issue and dynamic pipeline scheduling with out-of-order 

execution and speculation for its 14-stage pipeline. Th

ese processors, however, 

are still faced with the challenge of implementing the complex x86 instruction 

set, described in Chapter 2. Intel fetches x86 instructions and translates them into 

internal MIPS-like instructions, which Intel calls  micro-operations. Th

e micro-

operations are then executed by a sophisticated, dynamically scheduled, speculative 

pipeline capable of sustaining an execution rate of up to six micro-operations per 

clock cycle. Th

is section focuses on that micro-operation pipeline. 
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6.00

Memory hierarchy stalls

5.17

5.00

Pipeline stalls

Ideal CPI

4.00

3.20 

3.00

2.41

2.00

1.85

1.95 2.01  2.07 

2.11 

1.63 1.69 1.70 

1.41

1.00

twolf

bzip2

gzip

parser

gap

perlbmk

gcc

crafty

vpr

vortex

eon

mcf

FIGURE 4.76  CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of the SPEC2000 

benchmarks. Th

ese benchmarks use the much smaller inputs to reduce running time by several orders of magnitude. Th e smaller size 

signifi cantly  underestimates the CPI impact of the memory hierarchy (See Chapter 5). 

When we consider the design of sophisticated, dynamically scheduled processors, the 

design of the functional units, the cache and register fi le, instruction issue, and overall 

pipeline control become intermingled, making it diffi

cult to separate the datapath from 

the pipeline. Because of this, many engineers and researchers have adopted the term 

microarchitecture to refer to the detailed internal architecture of a processor. 

microarchitecture  Th

e 

Th

e Intel Core i7 uses a scheme for resolving antidependences and incorrect  organization of the 

speculation that uses a reorder buff er together with register renaming. Register  processor, including the renaming explicitly renames the architectural registers in a processor (16 in the case  major functional units, their interconnection, and 

of the 64-bit version of the x86 architecture) to a larger set of physical registers. Th

e  control. 

Core i7 uses register renaming to remove antidependences. Register renaming requires 

the processor to maintain a map between the architectural registers and the physical  architectural registers, indicating which physical register is the most current copy of an architectural 

registers  Th

e instruction 

register. By keeping track of the renamings that have occurred, register renaming off ers  set of visible registers of a processor; for example, 

another approach to recovery in the event of incorrect speculation: simply undo the  in MIPS, these are the 32 

mappings that have occurred since the fi rst incorrectly speculated instruction. Th

is  integer and 16 fl oating-

will cause the state of the processor to return to the last correctly executed instruction,  point registers. 

keeping the correct mapping between the architectural and physical registers. 

Figure 4.77 shows the overall organization and pipeline of the Core i7. Below are the eight steps an x86 instruction goes through for execution. 

1. Instruction fetch—Th

e processor uses a multilevel branch target buff er to 

achieve a balance between speed and prediction accuracy. Th

ere is also a 

return address stack to speed up function return. Mispredictions cause a 

penalty of about 15 cycles. Using the predicted address, the instruction fetch 

unit fetches 16 bytes from the instruction cache. 

2. Th

e 16 bytes are placed in the predecode instruction buff er— Th

e predecode 

stage transforms the 16 bytes into individual x86 instructions. Th

is predecode 

348 

Chapter 4  The Processor

128-Entry

32 KB Inst. cache (four-way associative)

inst. TLB

(four-way)

16-Byte pre-decode + macro-op

fusion, fetch buffer

Instruction

fetch

18-Entry instruction queue

hardware

Complex

Simple

Simple

Simple

macro-op

macro-op

macro-op

macro-op

Micro

decoder

decoder

decoder

decoder

-code

28-Entry micro-op loop stream detect buffer

Register alias table and allocator

Retirement

register file

128-Entry reorder buffer

36-Entry reservation station

ALU

ALU

Load

Store

Store

ALU

shift

shift

address

address

data

shift

SSE

SSE

SSE

shuffle

shuffle

shuffle

Memory order buffer

ALU

ALU

ALU

128-bit

128-bit

128-bit

FMUL

FMUL

Store

FMUL

FDIV

FDIV

& load

FDIV

512-Entry unified

64-Entry data TLB

32-KB dual-ported data

256 KB unified l2

L2 TLB (4-way)

(4-way associative)

cache (8-way associative)

cache (eight-way)

8 MB all core shared and inclusive L3

Uncore arbiter (handles scheduling and

cache (16-way associative)

clock/power state differences)

FIGURE 4.77  The Core i7 pipeline with memory components. Th

e total pipeline depth is 14 

stages, with branch mispredictions costing 17 clock cycles. Th

is design can buff er 48 loads and 32 stores. Th

e 

six independent units can begin execution of a ready RISC operation each clock cycle. 

is nontrivial since the length of an x86 instruction can be from 1 to 15 bytes 

and the predecoder must look through a number of bytes before it knows the 

instruction length. Individual x86 instructions are placed into the 18-entry 

instruction queue. 

3.  Micro-op decode—Individual x86 instructions are translated into micro-

operations (micro-ops). Th

ree of the decoders handle x86 instructions that 

translate directly into one micro-op. For x86 instructions that have more complex 

semantics, there is a microcode engine that is used to produce the micro-op 

sequence; it can produce up to four micro-ops every cycle and continues until 

the necessary micro-op sequence has been generated. Th

e micro-ops are placed 

according to the order of the x86 instructions in the 28-entry micro-op buff er. 

4. Th

e micro-op buff er  performs   loop stream detection—If there is a small 

sequence of instructions (less than 28 instructions or 256 bytes in length) 

that comprises a loop, the loop stream detector will fi nd the loop and directly 
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issue the micro-ops from the buff er, eliminating the need for the instruction 

fetch and instruction decode stages to be activated. 

5.  Perform the basic instruction issue—Looking up the register location in the 

register tables, renaming the registers, allocating a reorder buff er entry, and 

fetching any results from the registers or reorder buff er before sending the 

micro-ops to the reservation stations. 

6. Th

e i7 uses a 36-entry centralized reservation station shared by six functional 

units. Up to six micro-ops may be dispatched to the functional units every 

clock cycle. 

7. Th

e individual function units execute micro-ops and then results are sent 

back to any waiting reservation station as well as to the register retirement 

unit, where they will update the register state, once it is known that the 

instruction is no longer speculative. Th

e entry corresponding to the 

instruction in the reorder buff er is marked as complete. 

8.  When one or more instructions at the head of the reorder buff er have been 

marked as complete, the pending writes in the register retirement unit are 

executed, and the instructions are removed from the reorder buff er. 

Elaboration: Hardware in the second and fourth steps can combine or  fuse operations together to reduce the number of operations that must be performed.  Macro-op fusion 

in the second step takes x86 instruction combinations, such as compare followed by a 

branch, and fuses them into a single operation.  Microfusion in the fourth step combines 

micro-operation pairs such as load/ALU operation and ALU operation/store and issues 

them to a single reservation station (where they can still issue independently), thus 

increasing the usage of the buffer. In a study of the Intel Core architecture, which also 

incorporated microfusion and macrofusion, Bird et al. [2007] discovered that microfusion 

had little impact on performance, while macrofusion appears to have a modest positive 

impact on integer performance and little impact on fl oating-point performance. 

Performance of the Intel Core i7 920

Figure 4.78 shows the CPI of the Intel Core i7 for each of the SPEC2006 benchmarks. 

While the ideal CPI is 0.25, the best case here is 0.44, the median case is 0.79, and 

the worst case is 2.67. 

While it is diffi

cult to diff erentiate between pipeline stalls and memory stalls 

in a dynamic out-of-order execution pipeline, we can show the eff ectiveness of 

branch prediction and speculation. Figure 4.79 shows the percentage of branches mispredicted and the percentage of the work (measured by the numbers of micro-ops dispatched into the pipeline) that does not retire (that is, their results are 

annulled) relative to all micro-op dispatches. Th

e min, median, and max of branch 

mispredictions are 0%, 2%, and 10%. For wasted work, they are 1%, 18%, and 39%. 

Th

e wasted work in some cases closely matches the branch misprediction rates, 

such as for gobmk and astar. In several instances, such as mcf, the wasted work 

seems relatively larger than the misprediction rate. Th

is divergence is likely due 
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FIGURE 4.78  CPI of Intel Core i7 920 running SPEC2006 integer benchmarks. 
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FIGURE 4.79  Percentage of branch mispredictions and wasted work due to unfruitful 

speculation of Intel Core i7 920 running SPEC2006 integer benchmarks. 
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to the memory behavior. With very high data cache miss rates, mcf will dispatch 

many instructions during an incorrect speculation as long as suffi

cient reservation 

stations are available for the stalled memory references. When a branch among the 

many speculated instructions is fi nally mispredicted, the micro-ops corresponding 

to all these instructions will be fl ushed. 

Th

e Intel Core i7 combines a 14-stage pipeline and aggressive multiple issue to  Understanding 

achieve high performance. By keeping the latencies for back-to-back operations  Program 

low, the impact of data dependences is reduced. What are the most serious potential 

performance bottlenecks for programs running on this processor? Th

e following  Performance

list includes some potential performance problems, the last three of which can 

apply in some form to any high-performance pipelined processor. 

■  Th

e use of x86 instructions that do not map to a few simple micro-operations

■  Branches that are diffi

cult to predict, causing misprediction stalls and restarts 

when speculation fails

■  Long dependences—typically caused by long-running instructions or the 

memory hierarchy—that lead to stalls

■  Performance delays arising in accessing memory (see Chapter 5) that cause 

the processor to stall

 4.12   Going Faster:  Instruction-Level 

Parallelism and Matrix Multiply

Returning to the DGEMM example from Chapter 3, we can see the impact of 

instruction level parallelism by unrolling the loop so that the multiple issue, out-of-

order execution processor has more instructions to work with. Figure 4.80 shows the unrolled version of Figure 3.23, which contains the C intrinsics to produce the 

AVX instructions. 

Like the unrolling example in Figure 4.71 above, we are going to unroll the loop 4 times. (We use the constant UNROLL in the C code to control the amount of 

unrolling in case we want to try other values.) Rather than manually unrolling the 

loop in C by making 4 copies of each of the intrinsics in Figure 3.23, we can rely 

on the gcc compiler to do the unrolling at –O3 optimization. We surround each 

intrinsic with a simple  for loop that 4 iterations (lines 9, 14, and 20) and replace the 

scalar C0 in Figure 3.23 with a 4-element array c[] (lines 8, 10, 16, and 21). 

Figure 4.81 shows the assembly language output of the unrolled code. As 

expected, in Figure 4.81 there are 4 versions of each of the AVX instructions in Figure 3.24, with one exception. We only need 1 copy of the vbroadcastsd 
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1 #include <x86intrin.h> 

2  #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)

5 {

6   

for ( int i = 0; i < n; i+=UNROLL*4 )

7   



for ( int j = 0; j < n; j++ ) {

8  





__m256d c[4]; 

9   





for ( int x = 0; x < UNROLL; x++ )

10       c[x] 

= 

_mm256_load_pd(C+i+x*4+j*n); 

11

12  





for( int k = 0; k < n; k++ )

13  





{

14  







__m256d b = _mm256_broadcast_sd(B+k+j*n); 

15  







for (int x = 0; x < UNROLL; x++)

16       c[x] 

= 

_mm256_add_pd(c[x], 

17  









_mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b)); 

18  





}

19

20  





for ( int x = 0; x < UNROLL; x++ )

21  







_mm256_store_pd(C+i+x*4+j*n, c[x]); 

22  





}

23  

}

FIGURE 4.80  Optimized C version of DGEMM using C intrinsics to generate the AVX subword-

parallel instructions for the x86 (Figure 3.23) and loop unrolling to create more opportunities for instruction-level parallelism. Figure 4.81 shows the assembly language produced by the compiler for the inner loop, which unrolls the three for-loop bodies to expose instruction level parallelism. 

instruction, since we can use the four copies of the B element in register %ymm0 

repeatedly throughout the loop. Th

us, the 5 AVX instructions in Figure 3.24 

become 17 in Figure 4.81, and the 7 integer instructions appear in both, although the constants and addressing changes to account for the unrolling. Hence, despite 

unrolling 4 times, the number of instructions in the body of the loop only doubles: 

from 12 to 24. 

Figure 4.82 shows the performance increase DGEMM for 32x32 matrices in 

going from unoptimized to AVX and then to AVX with unrolling. Unrolling more 

than doubles performance, going from 6.4 GFLOPS to 14.6 GFLOPS. Optimizations 

for  subword parallelism and instruction level parallelism result in an overall 

speedup of 8.8 versus the unoptimized DGEMM in Figure 3.21. 

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are with 

Turbo mode turned off. If we turn it on, like in Chapter 3 we improve all the results by the 

temporary increase in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized 

DGEMM, 8.1 GFLOPS with AVX, and 18.6 GFLOPS with unrolling and AVX. As mentioned 

in Section 3.8, Turbo mode works particularly well in this case because it is using only 

a single core of an eight-core chip. 
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1

vmovapd (%r11),%ymm4

# Load 4 elements of C into %ymm4

2

mov    %rbx,%rax

# register %rax = %rbx

3

xor    %ecx,%ecx

# register %ecx = 0

4

vmovapd 0x20(%r11),%ymm3

# Load 4 elements of C into %ymm3

5

vmovapd 0x40(%r11),%ymm2

# Load 4 elements of C into %ymm2

6

vmovapd 0x60(%r11),%ymm1

# Load 4 elements of C into %ymm1

7

vbroadcastsd (%rcx,%r9,1),%ymm0

# Make 4 copies of B element

8

add    $0x8,%rcx

# register %rcx = %rcx + 8

9

vmulpd (%rax),%ymm0,%ymm5

# Parallel mul %ymm1,4 A elements

10

vaddpd %ymm5,%ymm4,%ymm4

# Parallel add %ymm5, %ymm4

11

vmulpd 0x20(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

12

vaddpd %ymm5,%ymm3,%ymm3

# Parallel add %ymm5, %ymm3

13

vmulpd 0x40(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

14

vmulpd 0x60(%rax),%ymm0,%ymm0 # Parallel mul %ymm1,4 A elements

15

add    %r8,%rax

# register %rax = %rax + %r8

16

cmp    %r10,%rcx

# compare %r8 to %rax

17

vaddpd %ymm5,%ymm2,%ymm2

# Parallel add %ymm5, %ymm2

18

vaddpd %ymm0,%ymm1,%ymm1

# Parallel add %ymm0, %ymm1

19

jne    68 <dgemm+0x68> 

# jump if not %r8 != %rax

20

add    $0x1,%esi

# register % esi = % esi + 1

21

vmovapd %ymm4,(%r11)

# Store %ymm4 into 4 C elements

22

vmovapd %ymm3,0x20(%r11)

# Store %ymm3 into 4 C elements

23

vmovapd %ymm2,0x40(%r11)

# Store %ymm2 into 4 C elements

24

vmovapd %ymm1,0x60(%r11)

# Store %ymm1 into 4 C elements

FIGURE 4.81  The x86 assembly language for the body of the nested loops generated by compiling 

the unrolled C code in Figure 4.80. 

Elaboration: There are no pipeline stalls despite the reuse of register %ymm5 in lines 

9 to 17 Figure 4.81 because the Intel Core i7 pipeline renames the registers. 

Are the following statements true or false? 

Check 

1. Th

e Intel Core i7 uses a multiple-issue pipeline to directly execute x86 

Yourself

instructions. 

2.  Both the A8 and the Core i7 use dynamic multiple issue. 

3. Th

e Core i7 microarchitecture has many more registers than x86 requires. 

4. Th

e Intel Core i7 uses less than half the pipeline stages of the earlier Intel 

Pentium 4 Prescott (see Figure 4.73). 
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FIGURE 4.82  Performance of three versions of DGEMM for 32x32 matrices. Subword 

parallelism and instruction level parallelism has led to speedup of almost a factor of 9 over the unoptimized code in Figure 3.21. 
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4.13

Digital Design Using a Hardware Design 

Language to Describe and Model a 

Pipeline and More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern 

computer-aided synthesis tools that can create detailed hardware designs from the 

descriptions using both libraries and logic synthesis. Entire books are written on 

such languages and their use in digital design. Th

is section, which appears online, 

gives a brief introduction and shows how a hardware design language, Verilog in 

this case, can be used to describe the MIPS control both behaviorally and in a 

form suitable for hardware synthesis. It then provides a series of behavioral models 

in Verilog of the MIPS fi ve-stage pipeline. Th

e initial model ignores hazards, and 

additions to the model highlight the changes for forwarding, data hazards, and 

branch hazards. 

We then provide about a dozen illustrations using the single-cycle graphical 

pipeline representation for readers who want to see more detail on how pipelines 

work for a few sequences of MIPS instructions. 
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An Introduction to Digital Design Using a 

Hardware Design Language to Describe 

4.13

and Model a Pipeline and More Pipelining 

Illustrations

Th

is CD section covers hardware decription languages and then gives a dozen 

examples of pipeline diagrams, starting on page 4.13-18. 

As mentioned in Appendix C, Verilog can describe processors for simulation 

or with the intention that the Verilog specifi cation be synthesized. To achieve 

acceptable synthesis results in size and speed, and a behavioral specifi cation 

intended for synthesis must carefully delineate the highly combinational portions 

of the design, such as a datapath, from the control. Th

e datapath can then be 

synthesized using available libraries. A Verilog specifi cation intended for synthesis 

is usually longer and more complex. 

We start with a behavioral model of the 5-stage pipeline. To illustrate the 

dichotomy between behavioral and synthesizeable designs, we then give two 

Verilog descriptions of a multiple-cycle-per-instruction MIPS processor: one 

intended solely for simulations and one suitable for synthesis. 

Using Verilog for Behavioral Specifi cation with Simulation 

for the 5-Stage Pipeline

Figure 4.13.1 shows a Verilog behavioral description of the pipeline that handles 

ALU instructions as well as loads and stores. It does not accommodate branches 

(even incorrectly!), which we postpone including until later in the chapter. 

Because Verilog lacks the ability to defi ne registers with named fi elds such as 

structures in C, we use several independent registers for each pipeline register. We 

name these registers with a prefi x using the same convention; hence, IFIDIR is the 

IR portion of the IFID pipeline register. 

Th

is version is a behavioral description not intended for synthesis. Instructions 

take the same number of clock cycles as our hardware design, but the control 

is done in a simpler fashion by repeatedly decoding fi elds of the instruction in 

each pipe stage. Because of this diff erence, the instruction register (IR) is needed 

throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage. 

As you read the Verilog descriptions in this chapter, remember that the actions 

in the always block all occur in parallel on every clock cycle. Since there are 

no blocking assignments, the order of the events within the always block is 

arbitrary. 
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module CPU (clock); 

// Instruction opcodes

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0; input clock; 

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // Access register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; // Access opcodes

wire [31:0] Ain, Bin; // the ALU inputs

// These assignments defi ne fi elds from the pipeline registers

assign IDEXrs = IDEXIR[25:21];   // rs fi eld

assign IDEXrt = IDEXIR[20:16];   // rt fi eld

assign EXMEMrd = EXMEMIR[15:11]; // rd fi eld

assign MEMWBrd = MEMWBIR[15:11]; //rd fi eld

assign MEMWBrt = MEMWBIR[20:16]; //rt fi eld--used for loads 

assign EXMEMop = EXMEMIR[31:26]; // the opcode 

assign MEMWBop = MEMWBIR[31:26]; // the opcode 

assign IDEXop = IDEXIR[31:26];   // the opcode 

// Inputs to the ALU come directly from the ID/EX pipeline registers

assign Ain = IDEXA; 

assign Bin = IDEXB; 

reg [5:0] i; //used to initialize registers 

initial begin  

PC = 0; 

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

end

always @ (posedge clock) begin 

// Remember that ALL these actions happen every pipe stage and with the use of <= they happen in parallel! 

// fi rst instruction  in the pipeline is being fetched

IFIDIR <= IMemory[PC>>2]; 

PC <= PC + 4; 

end // Fetch & increment PC

// second instruction in pipeline is fetching registers 

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

IDEXIR <= IFIDIR;  //pass along IR--can happen anywhere, since this affects next stage only! 

// third instruction is doing address calculation or ALU operation

if ((IDEXop==LW) |(IDEXop==SW))  // address calculation 

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin;  //add operation

default: ; //other R-type operations: subtract, SLT, etc. 

endcase

FIGURE 4.13.1  A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards.  As in the design earlier in Chapter 4, we use separate instruction and data memories, which would be implemented using separate caches as we describe in Chapter 5. ( continues on next page)
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EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if  ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update registers if ALU operation and destination not 0

Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) // Update registers if load and destination not 0

Regs[MEMWBrt] <= MEMWBValue; 

end

endmodule

FIGURE 4.13.1  A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards.  

( Continued)

Implementing Forwarding in Verilog

To further extend the Verilog model, Figure 4.13.2 shows the addition of forwarding 

logic for the case when the source and destination are ALU instructions. Neither 

load stalls nor branches are handled; we will add these shortly. Th

e changes from 

the earlier Verilog description are highlighted. 

Check 

Someone has proposed moving the write for a result from an ALU instruction 

from the WB to the MEM stage, pointing out that this would reduce the maximum 

Yourself

length of forwards from an ALU instruction by one cycle. Which of the following 

are accurate reasons  not to consider such a change? 

1.  It would not actually change the forwarding logic, so it has no advantage. 

2.  It is impossible to implement this change under any circumstance since the 

write for the ALU result must stay in the same pipe stage as the write for a 

load result. 

3.  Moving the write for ALU instructions would create the possibility of writes 

occurring from two diff erent instructions during the same clock cycle. Either 

an extra write port would be required on the register fi le or a structural 

hazard would be created. 

4. Th

e result of an ALU instruction is not available in time to do the write 

during MEM. 
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module CPU (clock); 

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0; input clock; 

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin; 

// declare the bypass signals 

wire bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB, 

bypassAfromLWinWB, bypassBfromLWinWB; 

assign IDEXrs = IDEXIR[25:21];    assign IDEXrt = IDEXIR[15:11];    assign EXMEMrd = EXMEMIR[15:11]; assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26]; 

assign MEMWBrt = MEMWBIR[25:20]; 

assign MEMWBop = MEMWBIR[31:26];  assign IDEXop = IDEXIR[31:26]; 

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =( IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop); 

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =( IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW); 

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW); 

// The A input to the ALU is bypassed from MEM if there is a bypass there, 

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA; 

// The B input to the ALU is bypassed from MEM if there is a bypass there, 

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB; 

reg [5:0] i; //used to initialize registers 

initial begin  

PC = 0; 

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

end

always @ (posedge clock) begin 

// fi rst instruction in the pipeline is being fetched

IFIDIR <= IMemory[PC>>2]; 

PC <= PC + 4; 

end // Fetch & increment PC

FIGURE 4.13.2  A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address calculations.  Th

e code added to Figure 4.13.1 to handle bypassing is highlighted. Because these bypasses only require changing where the ALU inputs come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs. ( continues on next page)
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// second instruction is in register fetch 

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

IDEXIR <= IFIDIR;  //pass along IR--can happen anywhere, since this affects next stage only! 

// third instruction is doing address calculation or ALU operation

if ((IDEXop==LW) |(IDEXop==SW))  // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin;  //add operation

default: ; //other R-type operations: subtract, SLT, etc. 

endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue; 

end

endmodule

FIGURE 4.13.2  A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address calculations.  ( Continued)

The Behavioral Verilog with Stall Detection

If we ignore branches, stalls for data hazards in the MIPS pipeline are confi ned 

to one simple case: loads whose results are currently in the WB clock stage. Th

us, 

extending the Verilog to handle a load with a destination that is either an ALU 

instruction or an eff ective address calculation is reasonably straightforward, and 

Figure 4.13.3 shows the few additions needed. 

Check 

Someone has asked about the possibility of data hazards occurring through 

memory, as opposed to through a register. Which of the following statements about 

Yourself

such hazards are true? 

1.  Since memory accesses only occur in the MEM stage, all memory operations 

are done in the same order as instruction execution, making such hazards 

impossible in this pipeline. 

2. Such hazards  are possible in this pipeline; we just have not discussed them 

yet. 

3.  No pipeline can ever have a hazard involving memory, since it is the 

programmer’s job to keep the order of memory references accurate. 
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module CPU (clock); 

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0; input clock; 

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin; 

// declare the bypass signals 

wire stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB, 

bypassAfromLWinWB, bypassBfromLWinWB; 

assign IDEXrs = IDEXIR[25:21];    assign IDEXrt = IDEXIR[15:11];    assign EXMEMrd = EXMEMIR[15:11]; assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26]; 

assign MEMWBrt = MEMWBIR[25:20]; 

assign MEMWBop = MEMWBIR[31:26];  assign IDEXop = IDEXIR[31:26]; 

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =( IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop); 

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =( IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW); 

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW); 

// The A input to the ALU is bypassed from MEM if there is a bypass there, 

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA; 

// The B input to the ALU is bypassed from MEM if there is a bypass there, 

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB; 

// The signal for detecting a stall based on the use of a result from LW

assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load

((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc

((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

reg [5:0] i; //used to initialize registers 

initial begin  

PC = 0; 

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

end

always @ (posedge clock) begin 

if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard

FIGURE 4.13.3  A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation.  Th

e changes from Figure 4.13.2 are highlighted. ( continues on next page)
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// fi rst instruction  in the pipeline is being fetched

IFIDIR <= IMemory[PC>>2]; 

PC <= PC + 4; 

IDEXIR <= IFIDIR;  //pass along IR--can happen anywhere, since this affects next stage only! 

// second instruction is in register fetch 

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

// third instruction is doing address calculation or ALU operation

if ((IDEXop==LW) |(IDEXop==SW))  // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin;  //add operation

default: ; //other R-type operations: subtract, SLT, etc. 

endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

end

else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue; 

end

endmodule

FIGURE 4.13.3  A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation.  ( Continued)

4.  Memory hazards may be possible in some pipelines, but they cannot occur 

in this particular pipeline. 

5.  Although the pipeline control would be obligated to maintain ordering 

among memory references to avoid hazards, it is impossible to design a 

pipeline where the references could be out of order. 

Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for branches. 

We add the code to model branch equal using a “predict not taken” strategy. 

Th

e Verilog code is shown in Figure 4.13.4. It implements the branch hazard by 

detecting a taken branch in ID and using that signal to squash the instruction in 

IF (by setting the IR to 0, which is an eff ective no-op in MIPS-32); in addition, 

the PC is assigned to the branch target. Note that to prevent an unexpected latch, 

it is important that the PC is clearly assigned on every path through the always 

block; hence, we assign the PC in a single  if statement. Lastly, note that although 

Figure 4.13.4 incorporates the basic logic for branches and control hazards, the 

incorporation of branches requires additional bypassing and data hazard detection, 

which we have not included. 

 

4.13  An Introduction to Digital Design Using a Hardware Design Language 

4.13-9

module CPU (clock); 

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b0000000_0000000_0000000_0000000, ALUop = 6’b0; input clock; 

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd; //hold register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin; 

// declare the bypass signals 

wire takebranch, stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB, 

bypassAfromLWinWB, bypassBfromLWinWB; 

assign IDEXrs = IDEXIR[25:21];  assign IDEXrt = IDEXIR[15:11];  assign EXMEMrd = EXMEMIR[15:11]; 

assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26]; 

assign MEMWBop = MEMWBIR[31:26];  assign IDEXop = IDEXIR[31:26]; 

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =( IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop); 

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =( IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW); 

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW); 

// The A input to the ALU is bypassed from MEM if there is a bypass there, 

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA; 

// The B input to the ALU is bypassed from MEM if there is a bypass there, 

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB; 

// The signal for detecting a stall based on the use of a result from LW

assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load

((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc

((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

FIGURE 4.13.4  A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation.  Th

e changes from Figure 4.13.2 are highlighted. ( continues on next page)
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// Signal for a taken branch: instruction is BEQ and registers are equal

assign takebranch = (IFIDIR[31:26]==BEQ) && (Regs[IFIDIR[25:21]]== Regs[IFIDIR[20:16]]); 

reg [5:0] i; //used to initialize registers 

initial begin  

PC = 0; 

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t don’t cares end

always @ (posedge clock) begin 

if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard

if (~takebranch) begin     // fi rst instruction in the pipeline is being fetched normally

IFIDIR <= IMemory[PC>>2]; 

PC <= PC + 4; 

end else begin // a taken branch is in ID; instruction in IF is wrong; insert a no-op and reset the PC

IFDIR <= no-op; 

PC <= PC + 4 + ({{16{IFIDIR[15]}}, IFIDIR[15:0]}<<2); 

end 

// second instruction is in register fetch 

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

// third instruction is doing address calculation or ALU operation

IDEXIR <= IFIDIR;  //pass along IR

if ((IDEXop==LW) |(IDEXop==SW))  // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin;  //add operation

default: ; //other R-type operations: subtract, SLT, etc. 

endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

end

else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

// the WB stage

MEMWBIR <= EXMEMIR; //pass along IR

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBIR[20:16] != 0)) Regs[MEMWBIR[20:16]] <= MEMWBValue; 

end

endmodule

FIGURE 4.13.4  A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation.  ( Continued)
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Using Verilog for Behavioral Specifi cation with Synthesis

To demonstate the contrasting types of Verilog, we show two descriptions of a 

diff erent, nonpipelined implementation style of MIPS that uses multiple clock cycles 

per instruction. (Since some instructors make a synthesizable description of the MIPS 

pipe line project for a class, we chose not to include it here. It would also be long.)

Figure 4.13.5 gives a behavioral specifi cation of a multicycle implementation 

of the MIPS processor. Because of the use of behavioral operations, it would be 

diffi

cult to synthesize a separate datapath and control unit with any reasonable 

effi

ciency. Th

is version demonstrates another approach to the control by using a 

Mealy fi nite-state machine (see discussion in Section C.10 of Appendix B). Th

e 

use of a Mealy machine, which allows the output to depend both on inputs and the 

current state, allows us to decrease the total number of states. 

Since a version of the MIPS design intended for synthesis is considerably more 

complex, we have relied on a number of Verilog modules that were specifi ed in 

Appendix B, including the following:

■  Th

e 4-to-1 multiplexor shown in Figure B.4.2, and the 3-to-1 multiplexor that 

can be trivially derived based on the 4-to-1 multiplexor. 

■  Th

e MIPS ALU shown in Figure B.5.15. 

■  Th

e MIPS ALU control defi ned in Figure B.5.16. 

■  Th

e MIPS register fi le defi ned in Figure B.8.11. 

Now, let’s look at a Verilog version of the MIPS processor intended for synthesis. 

Figure 4.13.6 shows the structural version of the MIPS datapath. Figure 4.13.7 uses 

the datapath module to specify the MIPS CPU. Th

is version also demonstrates 

another approach to implementing the control unit, as well as some optimizations 

that rely on relationships between various control signals. Observe that the state 

machine specifi cation only provides the sequencing actions. 

Th

e setting of the control lines is done with a series of assign statements that 

depend on the state as well as the opcode fi eld of the instruction register. If one 

were to fold the setting of the control into the state specifi cation, this would look 

like a Mealy-style fi nite-state control unit. Because the setting of the control lines 

is specifi ed  using  assign statements outside of the always block, most logic 

synthesis systems will generate a small implementation of a fi nite-state machine 

that determines the setting of the state register and then uses external logic to 

derive the control inputs to the datapath. 

In writing this version of the control, we have also taken advantage of a number 

of insights about the relationship between various control signals as well as 

situations where we don’t care about the control signal value; some examples of 

these are given in the following elaboration. 

4.13-12 

4.13  An Introduction to Digital Design Using a Hardware Design Language to Describe

module CPU (clock); 

parameter LW = 6’b100011, SW = 6’b101011, BEQ=6’b000100, J=6’d2; 

input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for implementation

reg [31:0] PC, Regs[0:31], Memory [0:1023], IR, ALUOut, MDR, A, B; 

reg [2:0] state; // processor state 

wire [5:0] opcode; //use to get opcode easily

wire [31:0] SignExtend,PCOffset; //used to get sign-extended offset fi eld

assign opcode = IR[31:26]; //opcode is upper 6 bits

assign SignExtend = {{16{IR[15]}},IR[15:0]}; //sign extension of lower 16 bits of instruction

assign PCOffset = SignExtend << 2; //PC offset is shifted

// set the PC to 0 and start the control in state 0

initial begin PC = 0; state = 1; end

//The state machine--triggered on a rising clock

always @(posedge clock) begin 

Regs[0] = 0; //make R0 0 //shortcut way to make sure R0 is always 0

case (state) //action depends on the state

1: begin // fi rst step: fetch the instruction, increment PC, go to next state

IR <= Memory[PC>>2]; 

PC <= PC + 4; 

state = 2; //next state

end

2: begin // second step: Instruction decode, register fetch, also compute branch address

A <= Regs[IR[25:21]]; 

B <= Regs[IR[20:16]]; 

state = 3; 

ALUOut <= PC + PCOffset; // compute PC-relative branch target

end

3: begin // third step: Load-store execution, ALU execution, Branch completion

state = 4; // default next state

if ((opcode==LW) |(opcode==SW)) ALUOut <= A + SignExtend; //compute effective address

else if (opcode==6’b0) case (IR[5:0]) //case for the various R-type instructions

32: ALUOut = A + B; //add operation

default: ALUOut = A; //other R-type operations: subtract, SLT, etc. 

endcase

FIGURE 4.13.5  A behavioral specifi cation of the multicycle MIPS design.  Th

is has the same cycle behavior as the multicycle 

design, but is purely for simulation and specifi cation. It cannot be used for synthesis. ( continues on next page)
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else if (opcode == BEQ) begin 

if (A==B) PC <= ALUOut; // branch taken--update PC 

state = 1; 

end

else if (opocde=J) begin 

PC = {PC[31:28], IR[25:0],2’b00}; // the jump target PC

state = 1; 

end  //Jumps

else ; // other opcodes or exception for undefi ned instruction would go here

end

4: begin 

if (opcode==6’b0) begin //ALU Operation

Regs[IR[15:11]] <= ALUOut; // write the result

state = 1; 

end //R-type fi nishes

else if (opcode == LW) begin // load instruction

MDR <= Memory[ALUOut>>2]; // read the memory

state = 5; // next state

end

else if (opcode == LW) begin 

Memory[ALUOut>>2] <= B; // write the memory

state = 1; // return to state 1 

end //store fi nishes

else ; // other instructions go here 

end

5: begin // LW is the only instruction still in execution

Regs[IR[20:16]] = MDR; // write the MDR to the register

state = 1; 

end //complete an LW instruction

endcase

end

endmodule

FIGURE 4.13.5  A behavioral specifi cation of the multicycle MIPS design.  ( Continued)
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module Datapath (ALUOp, RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, 

PCWrite,   PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock); // the control inputs + clock input [1:0] ALUOp, ALUSrcB, PCSource; // 2-bit control signals 

input RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond, 

ALUSrcA,    clock; // 1-bit control signals

output [5:0] opcode ;// opcode is needed as an output by control

reg [31:0] PC, Memory [0:1023], MDR,IR, ALUOut; // CPU state + some temporaries

wire [31:0] A,B,SignExtendOffset, PCOffset, ALUResultOut, PCValue, JumpAddr, Writedata, ALUAin, 

ALUBin,MemOut; / these are signals derived from registers 

wire [3:0] ALUCtl; //. the ALU control lines

wire Zero; the Zero out signal from the ALU

wire[4:0] Writereg;// the signal used to communicate the destination register 

initial PC = 0; //start the PC at 0

//Combinational signals used in the datapath

// Read using word address with either ALUOut or PC as the address source

assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC)>>2]:0; 

assign opcode = IR[31:26];// opcode shortcut

// Get the write register address from one of two fi elds depending on RegDst

assign Writereg = RegDst ? IR[15:11]: IR[20:16]; 

// Get the write register data either from the ALUOut or from the MDR

assign Writedata = MemtoReg ? MDR : ALUOut; 

// Sign-extend the lower half of the IR from load/store/branch offsets

assign SignExtendOffset = {{16{IR[15]}},IR[15:0]}; //sign-extend lower 16 bits; 

// The branch offset is also shifted to make it a word offset

assign PCOffset = SignExtendOffset << 2; 

// The A input to the ALU is either the rs register or the PC

assign ALUAin = ALUSrcA ? A : PC; //ALU input is PC or A 

// Compose the Jump address

assign JumpAddr = {PC[31:28], IR[25:0],2’b00}; //The jump address

FIGURE 4.13.6  A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis.  Th is datapath relies 

on several units from Appendix B. Initial statements do not synthesize, and a version used for synthesis would have to incorporate a reset signal that had this eff ect. Also note that resetting R0 to 0 on every clock is not the best way to ensure that R0 stays 0; instead, modifying the register fi le module to produce 0 whenever R0 is read and to ignore writes to R0 would be a more effi

cient solution. ( continues on next page)
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// Creates an instance of the ALU control unit (see the module defi ned in Figure C.5.16 on page C-38

// Input ALUOp is control-unit set and used to describe the instruction class as in Chapter 4

// Input IR[5:0] is the function code fi eld for an ALU instruction

// Output ALUCtl are the actual ALU control bits as in Chapter 4

ALUControl alucontroller (ALUOp,IR[5:0],ALUCtl); //ALU control unit

// Creates a 3-to-1 multiplexor used to select the source of the next PC



// Inputs are ALUResultOut (the incremented PC) , ALUOut (the branch address), the jump target address

// PCSource is the selector input and PCValue is the multiplexor output

Mult3to1 PCdatasrc (ALUResultOut,ALUOut,JumpAddr, PCSource , PCValue); 

// Creates a 4-to-1 multiplexor used to select the B input of the ALU

//  

Inputs are register B,constant 4, sign-extended lower half of IR, sign-extended lower half of IR << 2

// ALUSrcB is the selector input

// ALUBin is the multiplexor output

Mult4to1 ALUBinput (B,32’d4,SignExtendOffset,PCOffset,ALUSrcB,ALUBin); 

// Creates a MIPS ALU

// Inputs are ALUCtl (the ALU control), ALU value inputs (ALUAin, ALUBin)

// Outputs are ALUResultOut (the 32-bit output) and Zero (zero detection output)

MIPSALU ALU (ALUCtl, ALUAin, ALUBin, ALUResultOut,Zero); //the ALU 

// Creates a MIPS register fi le

// Inputs are 

// the rs and rt fi elds of the IR used to specify which registers to read, 



// Writereg (the write register number), Writedata (the data to be written), RegWrite (indicates a write), the clock

// Outputs are A and B, the registers read

registerfi le regs (IR[25:21],IR[20:16],Writereg,Writedata,RegWrite,A,B,clock); //Register fi le

// The clock-triggered actions of the datapath

always @(posedge clock) begin   if (MemWrite) Memory[ALUOut>>2] <= B; // Write memory--must be a store ALUOut <= ALUResultOut; //Save the ALU result for use on a later clock cycle

if (IRWrite) IR <= MemOut; // Write the IR if an instruction fetch 

MDR <= MemOut; // Always save the memory read value

// The PC is written both conditionally (controlled by PCWrite) and unconditionally

if (PCWrite || (PCWriteCond & Zero)) PC <=PCValue; 

end 

endmodule

FIGURE 4.13.6  A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis.  
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module CPU (clock); 

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, J = 6’d2; //constants 

input clock; reg [2:0] state; 

wire [1:0] ALUOp, ALUSrcB, PCSource; wire [5:0] opcode; 

wire RegDst, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond, 

ALUSrcA, MemoryOp, IRWwrite, Mem2Reg; 

// Create an instance of the MIPS datapath, the inputs are the control signals; opcode is only output Datapath MIPSDP (ALUOp,RegDst,Mem2Reg, MemRead, MemWrite, IorD, RegWrite, 

IRWrite, PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock); 

initial begin state = 1; end // start the state machine in state 1

// These are the defi nitions of the control signals

assign IRWrite = (state==1); 

assign Mem2Reg = ~ RegDst; 

assign MemoryOp = (opcode==LW)|(opcode==SW); // a memory operation

assign ALUOp = ((state==1)|(state==2)|((state==3)&MemoryOp)) ? 2’b00 : // add

((state==3)&(opcode==BEQ)) ? 2’b01 : 2’b10; // subtract or use function code

assign RegDst = ((state==4)&(opcode==0)) ? 1 : 0; 

assign MemRead = (state==1) | ((state==4)&(opcode==LW)); 

assign MemWrite = (state==4)&(opcode==SW); 

assign IorD = (state==1) ? 0 : (state==4) ? 1 : X; 

assign RegWrite = (state==5) | ((state==4) &(opcode==0)); 

assign PCWrite = (state==1) | ((state==3)&(opcode==J)); 

assign PCWriteCond = (state==3)&(opcode==BEQ); 

assign ALUSrcA = ((state==1)|(state==2)) ? 0 :1; 

assign ALUSrcB = ((state==1) | ((state==3)&(opcode==BEQ))) ? 2’b01 : (state==2) ? 2’b11 :

((state==3)&MemoryOp) ? 2’b10 : 2’b00; // memory operation or other

assign PCSource = (state==1) ? 2’b00 : ((opcode==BEQ) ? 2’b01 : 2’b10); 

// Here is the state machine, which only has to sequence states

always @(posedge clock) begin // all state updates on a positive clock edge

case (state)

1: state = 2;  //unconditional next state

2: state = 3;  //unconditional next state

3: // third step: jumps and branches complete

state = ((opcode==BEQ) | (opcode==J)) ? 1 : 4;// branch or jump go back else next state

4: state = (opcode==LW) ? 5 : 1; //R-type and SW fi nish

5: state = 1; // go back

endcase 

end

endmodule

FIGURE 4.13.7  The MIPS CPU using the datapath from Figure 4.13.6. 
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Elaboration:  When specifying control, designers often take advantage of knowledge 

of the control so as to simplify or shorten the control specifi cation. Here are a few 

examples from the specifi cation in Figures 4.13.6 and 4.13.7. 

1.  MemtoReg is set only in two cases, and then it is always the inverse of 

RegDst, so we just use the inverse of RegDst. 

2.  IRWrite is set only in state 1. 

3. Th

e ALU does not operate in every state and, when unused, can safely do 

anything. 

4.  RegDst is 1 in only one case and can otherwise be set to 0. In practice it 

might be better to set it explicitly when needed and otherwise set it to X, as 

we do for IorD. First, it allows additional logic optimization possibilities 

through the exploitation of don’t-care terms (see Appendix B for further 

discussion and examples). Second, it is a more precise specifi cation,  and 

this allows the simulation to more closely model the hardware, possibly 

uncovering additional errors in the specifi cation. 

More Illustrations of Instruction Execution on the 

Hardware

To reduce the cost of this book, in the third edition we moved sections and fi gures 

that were used by a minority of instructors online. Th

is subsection recaptures 

those fi gures for readers who would like more supplemental material to better 

understand pipelining. Th

ese are all single-clock-cycle pipeline diagrams, which 

take many fi gures to illustrate the execution of a sequence of instructions. 

Th

e three examples are respectively for code with no hazards, an example of 

forwarding on the pipelined implementation, and an example of bypassing on the 

pipelined implementation. 

No Hazard Illustrations

On page 297, we gave the example code sequence

lw $10, 

20($1)

sub 

$11, $2, $3

add 

$12, $3, $4

lw $13, 

24($1)

add 

$14, $5, $6

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams for this 

two-instruction sequence executing across six clock cycles. Figures 4.13.8 through 

4.13.10 show the corresponding single-clock-cycle pipeline diagrams for these two 

instructions. Note that the order of the instructions diff ers between these two types 

of diagrams: the newest instruction is at the  bottom and to the right of the multiple-

clock-cycle pipeline diagram, and it is on the  left  in the single-clock-cycle pipeline 

diagram. 
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FIGURE 4.13.8   Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram).  Th is style of 

pipeline representation is a snapshot of every instruction executing during one clock cycle. Our example has but two instructions, so at most two stages are identifi ed in each clock cycle; normally, all fi ve stages are occupied. Th

e highlighted portions of the datapath are active in that 

clock cycle. Th

e load is fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make the fi gures easier to understand, the other pipeline stages are empty, but normally there is an instruction in every pipeline stage. 
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FIGURE 4.13.9   Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram).  In the third clock cycle in the top diagram, lw enters the EX stage. At the same time, sub enters ID. In the fourth clock cycle (bottom datapath), lw moves into MEM stage, reading memory using the address found in EX/MEM at the beginning of clock cycle 4. At the same time, the ALU subtracts and then places the diff erence into EX/MEM at the end of the clock cycle. 
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FIGURE 4.13.10  Single-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram).  In clock cycle 5, lw completes by writing the data in MEM/WB into register 10, and sub sends the diff erence in EX/MEM to MEM/WB. In the next clock cycle, sub writes the value in MEM/WB to register 11. 
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FIGURE 4.13.11  Clock cycles 1 and 2.  Th

e phrase “before <i> ” means the  i th instruction before lw. 

Th

e lw instruction in the top datapath is in the IF stage. At the end of the clock cycle, the lw instruction is in the IF/ID pipeline registers. In the second clock cycle, seen in the bottom datapath, the lw moves to the ID stage, and sub enters in the IF stage. Note that the values of the instruction fi elds and the selected source registers are shown in the ID stage. Hence register $1 and the constant 20, the operands of lw, are written into the ID/EX pipeline register. Th

e number 10, representing the destination register number of lw, is also 

placed in ID/EX. Bits 15–11 are 0, but we use  X to show that a fi eld plays no role in a given instruction. Th e 

top of the ID/EX pipeline register shows the control values for lw to be used in the remaining stages. Th ese 

control values can be read from the lw row of the table in Figure 4.18. 

IF:

ID:

EX:

MEM:

WB:

and $12,$4,$5

sub $11,$2,$3

lw $10,... 

before<1> 

before<2> 

IF/ID

ID/EX

EX/MEM

MEM/WB

0

M

10

11

u

WB

x

1

000

010

00

Control

M

WB

0

0

0

1100

EX 00

M 0

WB

1

0

0

Add

4

Add

Addresult

Branch

Shift

RegWrite

left 2

Read

ALUSrc

2

register 1

Read $2

$1

PC

Address

MemWrite

Read

data 1

3

register 2

Zero

Instruction

Instruction

Read $3

MemtoReg

Write

0

ALU ALU

memory

data 2

register

Read

Address

1

M

result

data

u

M

Write

Data

Registers

x

u

data

1

memory

x

0

Write

Instruction

data

X [15–0]

Sign-

X

20

ALU

MemRead

extend

Instruction

control

X [20–16]

X

10

0

ALUOp

Instruction

M

u

11 [15–11]

x

11

Clock 3

1 RegDst

IF: or $13,$6,$7

ID: and $12,$4,$5

EX: sub $11,... 

MEM: lw $10,... 

WB: before<1> 

0

IF/ID

ID/EX

EX/MEM

MEM/WB

M

10

10

u

WB

x

1

and

000

000

11

Control

M

WB

1

0

1100

0

EX 10

1

M

WB

0

0

0

Add

4

Add

Addresult

Branch

Shift

RegWrite

left 2

ALUSrc

4

Read

register 1

$4

$2

PC

Address

Read

MemWrite

5

Read

data 1

Zero

Instruction

Instruction

register 2

MemtoReg

$5

$3

Read

0

ALU ALU

memory

Write

Read

Address

1

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

Registers

1

data

0

Write

Instruction

data

X [15–0]

Sign-

X

ALU

MemRead

extend

control

Instruction

X [20–16]

X

0

ALUOp

Instruction

M

10

u

12 [15–11]

12

11

x

Clock 4

1 RegDst

FIGURE 4.13.12   Clock cycles 3 and 4.  In the top diagram, lw enters the EX stage in the third clock cycle, adding $1 and 20 to form the address in the EX/MEM pipeline register. (Th

e lw instruction is 

written lw $10,. . . upon reaching EX, because the identity of instruction operands is not needed by EX 

or the subsequent stages. In this version of the pipeline, the actions of EX, MEM, and WB depend only on the instruction and its destination register or its target address.) At the same time, sub enters ID, reading registers $2 and $3, and the and instruction starts IF. In the fourth clock cycle (bottom datapath), lw moves into MEM stage, reading memory using the value in EX/MEM as the address. In the same clock cycle, the ALU subtracts $3 from $2 and places the diff erence into EX/MEM, reads registers $4 and $5 during ID, and the or instruction enters IF. Th

e two diagrams show the control signals being created in the ID stage and 

peeled off  as they are used in subsequent pipe stages. 
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FIGURE 4.13.13  Clock cycles 5 and 6.  With add, the fi nal instruction in this example, entering IF in the top datapath, all instructions are engaged. By writing the data in MEM/WB into register 10, lw completes; both the data and the register number are in MEM/WB. In the same clock cycle, sub sends the diff erence in EX/MEM to MEM/WB, and the rest of the instructions move forward. In the next clock cycle, sub selects the value in MEM/WB to write to register number 11, again found in MEM/WB. Th

e remaining 

instructions play follow-the-leader: the ALU calculates the OR of $6 and $7 for the or instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the add instruction. Th

e instructions aft er 

add are shown as inactive just to emphasize what occurs for the fi ve instructions in the example. Th e phrase 

“aft er⬍i⬎” means the  i th instruction aft er add. 
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FIGURE 4.13.14   Clock cycles 7 and 8.  In the top datapath, the add instruction brings up the rear, adding the values corresponding to registers $8 and $9 during the EX stage. Th

e result of the or instruction 

is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the result of the and 

instruction in MEM/WB to register $12. Note that the control signals are deasserted (set to 0) in the ID 

stage, since no instruction is being executed. In the following clock cycle (lower drawing), the WB stage writes the result to register $13, thereby completing or, and the MEM stage passes the sum from the add in EX/MEM to MEM/WB. Th

e instructions aft er add are shown as inactive for pedagogical reasons. 
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FIGURE 4.13.15   Clock cycle 9.  Th

e WB stage writes the sum in MEM/WB into register $14, completing add and the fi ve-instruction 

sequence. Th

e instructions aft er add are shown as inactive for pedagogical reasons. 

More Examples

To understand how pipeline control works, let’s consider these fi ve instructions 

going through the pipeline:

lw $10, 

20($1)

sub 

$11, $2, $3

and 

$12, $4, $5

or 

$13, $6, $7

add 

$14, $8, $9

Figures 4.13.11 through 4.13.15 show these instructions proceeding through the 

nine clock cycles it takes them to complete execution, highlighting what is active 

in a stage and identifying the instruction associated with each stage during a clock 

cycle. If you examine them carefully, you may notice:

■  In Figure 4.13.13 you can see the sequence of the destination register numbers 

from left  to right at the bottom of the pipeline registers. Th

e numbers advance 
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to the right during each clock cycle, with the MEM/WB pipeline register 

supplying the number of the register written during the WB stage. 

■  When a stage is inactive, the values of control lines that are deasserted are 

shown as 0 or X (for don’t care). 

■ Sequencing of control is embedded in the pipeline structure itself. 

First, all instructions take the same number of clock cycles, so there is no special 

control for instruction duration. Second, all control information is computed 

during instruction decode and then passed along by the pipeline registers. 

Forwarding Illustrations

We can use the single-clock-cycle pipeline diagrams to show how forwarding 

operates, as well as how the control activates the forwarding paths. Consider the 

following code sequence in which the dependences have been highlighted:

sub 

$2, $1, $3

and 

$4, $2, $5

or 

$4, $4, $2

add 

$9, $4, $2

Figures 4.13.16 and 4.13.17 show the events in clock cycles 3–6 in the execution of 

these instructions. 

In clock cycle 4, the forwarding unit sees the writing by the sub instruction of 

register $2 in the MEM stage, while the and instruction in the EX stage is reading 

register $2. Th

e forwarding unit selects the EX/MEM pipeline register instead of 

the ID/EX pipeline register as the upper input to the ALU to get the proper value 

for register $2. Th

e following or instruction reads register $4, which is written by 

the and instruction, and register $2, which is written by the sub instruction. 

Th

us, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline register 

for the upper input to the ALU and the MEM/WB pipeline register for the lower 

input to the ALU. Th

e following add instruction reads both register $4, the target of 

the and instruction, and register $2, which the sub instruction has already written. 

Notice that the prior two instructions both write register $4, so the forwarding unit 

must pick the immediately preceding one (MEM stage). 

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline register, 

containing the result of the or instruction, for the upper ALU input but uses the 

nonforwarding register value for the lower input to the ALU. 

Illustrating Pipelines with Stalls and Forwarding

We can use the single-clock-cycle pipeline diagrams to show how the control for 

stalls works. Figures 4.13.18 through 4.13.20 show the single-cycle diagram for 

clocks 2 through 7 for the following code sequence (dependences highlighted):

1w $2, 

20($1)

and $4, 

$2,$5

or $4, 

$4,$2

add $9, 

$4,$2
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or $4,$4,$2

and $4,$2,$5

sub $2, $1, $3

before<1> 

before<2> 

ID/EX

10

10

WB

EX/MEM

Control

M

WB

MEM/WB

EX

M

WB

IF/ID

2

$2

$1

M

5

u

uction

x

Registers

Instruction

Instr

Data

PC

ALU

memory

memory

M

$5

$3

u

M

x

u

x

2

1

5

3

M

4

2

u

x

Forwarding

unit

Clock 3

add $9,$4,$2

or $4,$4,$2

and $4,$2,$5

sub $2,... 

before<1> 

ID/EX

10

10

WB

EX/MEM

10

Control

M

WB

MEM/WB

EX

IF/ID

M

WB

4

$4

$2

M

2

u

uction

x

Registers

Instruction

Instr

Data

PC

ALU

memory

memory

M

$2

$5

u

M

x

u

x

4

 2 

2

5

 2 

M

4

4

u

x

Forwarding

unit

Clock 4

FIGURE 4.13.16  Clock cycles 3 and 4 of the instruction sequence on page 4.13-26.  Th e bold lines are those active in a clock 

cycle, and the italicized register numbers in color indicate a hazard. Th

e forwarding unit is highlighted by shading it when it is forwarding data 

to the ALU. Th

e instructions before sub are shown as inactive just to emphasize what occurs for the four instructions in the example. Operand names are used in EX for control of forwarding; thus they are included in the instruction label for EX. Operand names are not needed in MEM 

or WB, so . . . is used. Compare this with Figures 4.13.12 through 4.13.15, which show the datapath without forwarding where ID is the last stage to need operand information. 
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after<1> 

add $9,$4,$2

or $4,$4,$2

and $4,... 

sub $2,.. 

ID/EX

10

10

WB

EX/MEM

10

Control

M

WB

MEM/WB

1

IF/ID

EX

M

WB

4

$4

$4

M

u

2
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x

Registers

Instr

2

Data

PC

Instruction

ALU

memory

memory

M

$2

$2

u

M

x

u

x

4

 4

2

 2 

M

  

 4

 2 

u

9

4

x

Forwarding

unit

Clock 5

after<2> 

after<1> 

add $9,$4,$2

or $4,... 

and $4,.. 

ID/EX

10

WB

EX/MEM

10

Control

M

WB

MEM/WB

1

IF/ID

EX

M

WB

$4

M

u

uction

x

Registers

Instr

4

Data

PC

Instruction

ALU

memory

memory

M

$2

u

M

x

ux

 4 

2

M

 4 

4

u

9

x

Forwarding

unit

Clock 6

FIGURE 4.13.17  Clock cycles 5 and 6 of the instruction sequence on page 4.13-26.  Th e forwarding unit is highlighted when 

it is forwarding data to the ALU. Th

e two instructions aft er add are shown as inactive just to emphasize what occurs for the four instructions in the example. Th

e bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a hazard. 
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and $4,$2,$5

lw $2,20($1)

before<1> 

before<2> 

before<3> 

Hazard

ID/EX.MemRead

detection

1

unit

ID/EX

X

11

ite

WB

EX/MEM

Wr

M

IF/ID

Control

u

M

WB

MEM/WB

x

0

IF/ID

EX

M

WB
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1
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M

PCWr
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memory
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$X
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u

M

x

u

x

1

X

2

M

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 2

or $4,$4,$2

and $4,$2,$5

lw $2,20($1)

before<1> 

before<2> 

Hazard

ID/EX.MemRead

detection

 2 

unit

ID/EX

5

00

11

ite

WB

EX/MEM

Wr

M

Control

IF/ID

u

M

WB

MEM/WB

x

0

EX

M

WB

IF/ID

2
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$2

$1

M

PCWr

5

u
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x
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Instr
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Data
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ALU

memory
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M

$5
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u

M

x

u

x

2

1

5

X

 2 

M

4

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 3

FIGURE 4.13.18   Clock cycles 2 and 3 of the instruction sequence on page 4.13-26 with a load replacing sub. Th e bold 

lines are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the . . . in the place of operands means that their identity is information not needed by that stage. Th

e values of the signifi cant control lines, registers, and register numbers are labeled in 

the fi gures. Th

e and instruction wants to read the value created by the lw instruction in clock cycle 3, so the hazard detection unit stalls the and and or instructions. Hence, the hazard detection unit is highlighted. 
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or $4,$4,$2

and $4,$2,$5

 Bubble 

lw $2,... 

before<1> 
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ID/EX.MemRead
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2
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ID/EX
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M
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add $9,$4,$2

or $4,$4,$2

and $4,$2,$5

 Bubble 

lw $2,... 

Hazard

ID/EX.MemRead

detection

 2 

unit

ID/EX

5

10
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FIGURE 4.13.19   Clock cycles 4 and 5 of the instruction sequence on page 4.13-26 with a load replacing sub. Th e 

bubble is inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. Th e forwarding unit 

is highlighted in clock cycle 5 because it is forwarding data from lw to the ALU. Note that in clock cycle 4, the forwarding unit forwards the address of the lw as if it were the contents of register $2; this is rendered harmless by the insertion of the bubble. Th e bold lines are those active 

in a clock cycle, and the italicized register numbers in color indicate a hazard. 
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after<1> 

add $9,$4,$2

or $4,$4,$2

and $4,... 
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after<2> 

after<1> 

add $9,$4,$2

or $4,... 

and $4,... 

Hazard

ID/EX.MemRead

detection

unit

ID/EX
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10
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FIGURE 4.13.20  Clock cycles 6 and 7 of the instruction sequence on page 4.13-26 with a load replacing sub. Note that unlike in Figure 4.13.17, the stall allows the lw to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register $4 for the add in the EX stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU. Th e bold lines show 

ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. Th e instructions aft er add are shown as inactive 

for pedagogical reasons. 
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 4.14  Fallacies and Pitfalls

 Fallacy: Pipelining is easy. 

Our books testify to the subtlety of correct pipeline execution. Our advanced book 

had a pipeline bug in its fi rst edition, despite its being reviewed by more than 100 

people and being class-tested at 18 universities. Th

e bug was uncovered only when 

someone tried to build the computer in that book. Th

e fact that the Verilog to 

describe a pipeline like that in the Intel Core i7 will be many thousands of lines is 

an indication of the complexity. Beware! 

 Fallacy: Pipelining ideas can be implemented independent of technology. 

When the number of transistors on-chip and the speed of transistors made a 

fi ve-stage pipeline the best solution, then the delayed branch (see the  Elaboration 

on page 255) was a simple solution to control hazards. With longer pipelines, 

superscalar execution, and dynamic branch prediction, it is now redundant. In 

the early 1990s, dynamic pipeline scheduling took too many resources and was 

not required for high performance, but as transistor budgets continued to double 

due to Moore’s Law and logic became much faster than memory, then multiple 

functional units and dynamic pipelining made more sense. Today, concerns about 

power are leading to less aggressive designs. 

 Pitfall: Failure to consider instruction set design can adversely impact pipelining. 

Many of the diffi

culties of pipelining arise because of instruction set complications. 

Here are some examples:

■  Widely variable instruction lengths and running times can lead to imbalance 

among pipeline stages and severely complicate hazard detection in a design 

pipelined at the instruction set level. Th

is problem was overcome, initially 

in the DEC VAX 8500 in the late 1980s, using the micro-operations and 

micropipelined scheme that the Intel Core i7 employs today. Of course, the 

overhead of translation and maintaining correspondence between the micro-

operations and the actual instructions remains. 

■  Sophisticated addressing modes can lead to diff erent sorts of problems. 

Addressing modes that update registers complicate hazard detection. Other 

addressing modes that require multiple memory accesses substantially 

complicate pipeline control and make it diffi

cult to keep the pipeline fl owing 

smoothly. 

■ Perhaps the best example is the DEC Alpha and the DEC NVAX. In 

comparable technology, the newer instruction set architecture of the Alpha 

allowed an implementation whose performance is more than twice as fast 

as NVAX. In another example, Bhandarkar and Clark [1991] compared the 

MIPS M/2000 and the DEC VAX 8700 by counting clock cycles of the SPEC 

benchmarks; they concluded that although the MIPS M/2000 executes more 
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instructions, the VAX on average executes 2.7 times as many clock cycles, so 

the MIPS is faster. 

 Nine-tenths of wisdom 

 consists of being wise 

 in time. 

 4.15 Concluding 

Remarks

American proverb

As we have seen in this chapter, both the datapath and control for a processor can be 

designed starting with the instruction set architecture and an understanding of the 

basic characteristics of the technology. In Section 4.3, we saw how the datapath for 

a MIPS processor could be constructed based on the architecture and the decision 

to build a single-cycle implementation. Of course, the underlying technology also 

aff ects many design decisions by dictating what components can be used in the 

datapath, as well as whether a single-cycle implementation even makes sense. 

Pipelining improves throughput but not the inherent execution time, or 

instruction latency, of instructions; for some instructions, the latency is similar 

in length to the single-cycle approach. Multiple instruction issue adds additional 

datapath hardware to allow multiple instructions to begin every clock cycle, but at 

an increase in eff ective latency. Pipelining was presented as reducing the clock cycle 

time of the simple single-cycle datapath. Multiple instruction issue, in comparison, 

instruction latency  Th

e 

clearly focuses on reducing  clock cycles per instruction (CPI). 

inherent execution time 

Pipelining and multiple issue both attempt to exploit instruction-level 

for an instruction. 

parallelism. Th

e presence of data and control dependences, which can become 

hazards, are the primary limitations on how much parallelism can be exploited. 

Scheduling and speculation via prediction, both in hardware and in soft ware, are 

the primary techniques used to reduce the performance impact of dependences. 

We showed that unrolling the DGEMM loop four times exposed more 

instructions that could take advantage of the out-of-order execution engine of the 

Core i7 to more than double performance. 

Th

e switch to longer pipelines, multiple instruction issue, and dynamic 

scheduling in the mid-1990s has helped sustain the 60% per year processor 

performance increase that started in the early 1980s. As mentioned in Chapter 

1, these microprocessors preserved the sequential programming model, but 

they eventually ran into the power wall. Th

us, the industry has been forced to 

switch to multiprocessors, which exploit parallelism at much coarser levels (the 

subject of Chapter 6). Th

is trend has also caused designers to reassess the energy-

performance implications of some of the inventions since the mid-1990s, resulting 

in a simplifi cation of pipelines in the more recent versions of microarchitectures. 

To sustain the advances in processing performance via parallel processors, 

Amdahl’s law suggests that another part of the system will become the bottleneck. 

Th

at bottleneck is the topic of the next chapter: the memory hierarchy. 
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 4.16

4.16  

 Historical Perspective and Further 

Reading

Th

is section, which appears online, discusses the history of the fi rst  pipelined 

processors, the earliest superscalars, and the development of out-of-order and 

speculative techniques, as well as important developments in the accompanying 

compiler technology. 

 4.17 Exercises

4.1  Consider the following instruction:

Instruction:  AND Rd,Rs,Rt

Interpretation:  Reg[Rd] = Reg[Rs] AND Reg[Rt]

4.1.1  [5] <§4.1> What are the values of control signals generated by the control in 

Figure 4.2 for the above instruction? 

4.1.2  [5] <§4.1> Which resources (blocks) perform a useful function for this 

instruction? 

4.1.3  [10] <§4.1> Which resources (blocks) produce outputs, but their outputs 

are not used for this instruction? Which resources produce no outputs for this 

instruction? 

4.2  Th

e basic single-cycle MIPS implementation in Figure 4.2 can only implement 

some instructions. New instructions can be added to an existing Instruction Set 

Architecture (ISA), but the decision whether or not to do that depends, among 

other things, on the cost and complexity the proposed addition introduces into the 

processor datapath and control. Th

e fi rst three problems in this exercise refer to the 

new instruction:

Instruction:  LWI Rt,Rd(Rs)

Interpretation:  Reg[Rt] = Mem[Reg[Rd]+Reg[Rs]]

4.2.1  [10] <§4.1> Which existing blocks (if any) can be used for this instruction? 

4.2.2 [10] <§4.1> Which new functional blocks (if any) do we need for this 

instruction? 

4.2.3  [10] <§4.1> What new signals do we need (if any) from the control unit to 

support this instruction? 

358 

Chapter 4  The Processor

4.3  When processor designers consider a possible improvement to the processor 

datapath, the decision usually depends on the cost/performance trade-off .  In 

the following three problems, assume that we are starting with a datapath from 

Figure 4.2, where I-Mem, Add, Mux, ALU, Regs, D-Mem, and Control blocks have 

latencies of 400 ps, 100 ps, 30 ps, 120 ps, 200 ps, 350 ps, and 100 ps, respectively, 

and costs of 1000, 30, 10, 100, 200, 2000, and 500, respectively. 

Consider the addition of a multiplier to the ALU.  Th

is addition will add 300 ps to the 

latency of the ALU and will add a cost of 600 to the ALU.  Th

e result will be 5% fewer 

instructions executed since we will no longer need to emulate the MUL instruction. 

4.3.1  [10] <§4.1> What is the clock cycle time with and without this improvement? 

4.3.2  [10] <§4.1> What is the speedup achieved by adding this improvement? 

4.3.3  [10] <§4.1> Compare the cost/performance ratio with and without this 

improvement. 

4.4  Problems in this exercise assume that logic blocks needed to implement a 

processor’s datapath have the following latencies:

I-Mem  

Add

Mux

ALU

Regs

D-Mem

Sign-Extend

Shift-Left-2

200ps

70ps

20ps

90ps

90ps

250ps

15ps

10ps

4.4.1  [10] <§4.3> If the only thing we need to do in a processor is fetch consecutive instructions (Figure 4.6), what would the cycle time be? 

4.4.2  [10] <§4.3> Consider a datapath similar to the one in Figure 4.11, but for a processor that only has one type of instruction: unconditional PC-relative branch. 

What would the cycle time be for this datapath? 

4.4.3  [10] <§4.3> Repeat 4.4.2, but this time we need to support only conditional 

PC-relative branches. 

Th

e remaining three problems in this exercise refer to the datapath element Shift -

left -2:

4.4.4  [10] <§4.3> Which kinds of instructions require this resource? 

4.4.5  [20] <§4.3> For which kinds of instructions (if any) is this resource on the 

critical path? 

4.4.6  [10] <§4.3> Assuming that we only support beq and add instructions, 

discuss how changes in the given latency of this resource aff ect the cycle time of the 

processor. Assume that the latencies of other resources do not change. 
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4.5  For the problems in this exercise, assume that there are no pipeline stalls and 

that the breakdown of executed instructions is as follows:

add  

addi

not

beq

lw

sw

20%

20%

0%

25%

25%

10%

4.5.1  [10] <§4.3> In what fraction of all cycles is the data memory used? 

4.5.2  [10] <§4.3> In what fraction of all cycles is the input of the sign-extend 

circuit needed? What is this circuit doing in cycles in which its input is not needed? 

4.6  When silicon chips are fabricated, defects in materials (e.g., silicon) and 

manufacturing errors can result in defective circuits. A very common defect is for 

one wire to aff ect the signal in another. Th

is is called a cross-talk fault. A special 

class of cross-talk faults is when a signal is connected to a wire that has a constant 

logical value (e.g., a power supply wire). In this case we have a stuck-at-0 or a stuck-

at-1 fault, and the aff ected signal always has a logical value of 0 or 1, respectively. 

Th

e following problems refer to bit 0 of the Write Register input on the register fi le 

in Figure 4.24. 

4.6.1  [10] <§§4.3, 4.4> Let us assume that processor testing is done by fi lling the PC, registers, and data and instruction memories with some values (you can choose 

which values), letting a single instruction execute, then reading the PC, memories, 

and registers. Th

ese values are then examined to determine if a particular fault is 

present. Can you design a test (values for PC, memories, and registers) that would 

determine if there is a stuck-at-0 fault on this signal? 

4.6.2  [10] <§§4.3, 4.4> Repeat 4.6.1 for a stuck-at-1 fault. Can you use a single 

test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, explain why not. 

4.6.3  [60] <§§4.3, 4.4> If we know that the processor has a stuck-at-1 fault on 

this signal, is the processor still usable? To be usable, we must be able to convert 

any program that executes on a normal MIPS processor into a program that works 

on this processor. You can assume that there is enough free instruction memory 

and data memory to let you make the program longer and store additional 

data. Hint: the processor is usable if every instruction “broken” by this fault can 

be replaced with a sequence of “working” instructions that achieve the same 

eff ect. 

4.6.4  [10] <§§4.3, 4.4> Repeat 4.6.1, but now the fault to test for is whether 

the “MemRead” control signal becomes 0 if RegDst control signal is 0, no fault 

otherwise. 

4.6.5  [10] <§§4.3, 4.4> Repeat 4.6.4, but now the fault to test for is whether the 

“Jump” control signal becomes 0 if RegDst control signal is 0, no fault otherwise. 
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4.7  In this exercise we examine in detail how an instruction is executed in a 

single-cycle datapath. Problems in this exercise refer to a clock cycle in which the 

processor fetches the following instruction word:

10101100011000100000000000010100. 

Assume that data memory is all zeros and that the processor’s registers have the 

following values at the beginning of the cycle in which the above instruction word 

is fetched:

r0  

r1

r2

r3

r4

r5

r6

r8

r12

r31

0

–1

2

–3

–4

10

6

8

2

–16

4.7.1  [5] <§4.4> What are the outputs of the sign-extend and the jump “Shift  left  

2” unit (near the top of Figure 4.24) for this instruction word? 

4.7.2  [10] <§4.4> What are the values of the ALU control unit’s inputs for this 

instruction? 

4.7.3  [10] <§4.4> What is the new PC address aft er this instruction is executed? 

Highlight the path through which this value is determined. 

4.7.4  [10] <§4.4> For each Mux, show the values of its data output during the 

execution of this instruction and these register values. 

4.7.5  [10] <§4.4> For the ALU and the two add units, what are their data input 

values? 

4.7.6  [10] <§4.4> What are the values of all inputs for the “Registers” unit? 

4.8  In this exercise, we examine how pipelining aff ects the clock cycle time of the 

processor. Problems in this exercise assume that individual stages of the datapath 

have the following latencies:

IF

ID

EX

MEM

WB

250ps

350ps

150ps

300ps

200ps

Also, assume that instructions executed by the processor are broken down as 

follows:

alu  

beq

lw

sw

45%

20%

20%

15%

4.8.1  [5] <§4.5> What is the clock cycle time in a pipelined and non-pipelined 

processor? 

4.8.2  [10] <§4.5> What is the total latency of an LW instruction in a pipelined 

and non-pipelined processor? 
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4.8.3  [10] <§4.5> If we can split one stage of the pipelined datapath into two new 

stages, each with half the latency of the original stage, which stage would you split 

and what is the new clock cycle time of the processor? 

4.8.4  [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization 

of the data memory? 

4.8.5  [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization 

of the write-register port of the “Registers” unit? 

4.8.6  [30] <§4.5> Instead of a single-cycle organization, we can use a multi-cycle 

organization where each instruction takes multiple cycles but one instruction 

fi nishes before another is fetched. In this organization, an instruction only goes 

through stages it actually needs (e.g., ST only takes 4 cycles because it does not 

need the WB stage). Compare clock cycle times and execution times with single-

cycle, multi-cycle, and pipelined organization. 

4.9  In this exercise, we examine how data dependences aff ect execution in the 

basic 5-stage pipeline described in Section 4.5. Problems in this exercise refer to the 

following sequence of instructions:

or r1,r2,r3

or r2,r1,r4

or r1,r1,r2

Also, assume the following cycle times for each of the options related to forwarding:

Without Forwarding 

With Full Forwarding

With ALU-ALU Forwarding Only

250ps

300ps

290ps

4.9.1  [10] <§4.5> Indicate dependences and their type. 

4.9.2  [10] <§4.5> Assume there is no forwarding in this pipelined processor. 

Indicate hazards and add nop instructions to eliminate them. 

4.9.3  [10] <§4.5> Assume there is full forwarding. Indicate hazards and add NOP 

instructions to eliminate them. 

4.9.4  [10] <§4.5> What is the total execution time of this instruction sequence 

without forwarding and with full forwarding? What is the speedup achieved by 

adding full forwarding to a pipeline that had no forwarding? 

4.9.5  [10] <§4.5> Add nop instructions to this code to eliminate hazards if there 

is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage). 

4.9.6  [10] <§4.5> What is the total execution time of this instruction sequence 

with only ALU-ALU forwarding? What is the speedup over a no-forwarding 

pipeline? 
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4.10  In this exercise, we examine how resource hazards, control hazards, and 

Instruction Set Architecture (ISA) design can aff ect pipelined execution. Problems 

in this exercise refer to the following fragment of MIPS code:

sw  r16,12(r6)

lw  r16,8(r6)

beq r5,r4,Label # Assume r5!=r4

add r5,r1,r4

slt r5,r15,r4

Assume that individual pipeline stages have the following latencies:

IF  

ID

EX

MEM

WB

200ps

120ps

150ps

190ps

100ps

4.10.1 [10] <§4.5> For this problem, assume that all branches are perfectly 

predicted (this eliminates all control hazards) and that no delay slots are used. If we 

only have one memory (for both instructions and data), there is a structural hazard 

every time we need to fetch an instruction in the same cycle in which another 

instruction accesses data. To guarantee forward progress, this hazard must always 

be resolved in favor of the instruction that accesses data. What is the total execution 

time of this instruction sequence in the 5-stage pipeline that only has one memory? 

We have seen that data hazards can be eliminated by adding nops to the code. Can 

you do the same with this structural hazard? Why? 

4.10.2 [20] <§4.5> For this problem, assume that all branches are perfectly 

predicted (this eliminates all control hazards) and that no delay slots are used. 

If we change load/store instructions to use a register (without an off set) as the 

address, these instructions no longer need to use the ALU. As a result, MEM and 

EX stages can be overlapped and the pipeline has only 4 stages. Change this code to 

accommodate this changed ISA. Assuming this change does not aff ect clock cycle 

time, what speedup is achieved in this instruction sequence? 

4.10.3  [10] <§4.5> Assuming stall-on-branch and no delay slots, what speedup is 

achieved on this code if branch outcomes are determined in the ID stage, relative to 

the execution where branch outcomes are determined in the EX stage? 

4.10.4 [10] <§4.5> Given these pipeline stage latencies, repeat the speedup 

calculation from 4.10.2, but take into account the (possible) change in clock cycle 

time. When EX and MEM are done in a single stage, most of their work can be 

done in parallel. As a result, the resulting EX/MEM stage has a latency that is the 

larger of the original two, plus 20 ps needed for the work that could not be done 

in parallel. 

4.10.5 [10] <§4.5> Given these pipeline stage latencies, repeat the speedup 

calculation from 4.10.3, taking into account the (possible) change in clock cycle 

time. Assume that the latency ID stage increases by 50% and the latency of the EX 

stage decreases by 10ps when branch outcome resolution is moved from EX to ID. 
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4.10.6  [10] <§4.5> Assuming stall-on-branch and no delay slots, what is the new 

clock cycle time and execution time of this instruction sequence if beq address 

computation is moved to the MEM stage? What is the speedup from this change? 

Assume that the latency of the EX stage is reduced by 20 ps and the latency of the 

MEM stage is unchanged when branch outcome resolution is moved from EX to 

MEM. 

4.11  Consider the following loop. 

loop:lw  r1,0(r1)

and r1,r1,r2

lw  r1,0(r1)

lw  r1,0(r1)

beq r1,r0,loop 

Assume that perfect branch prediction is used (no stalls due to control hazards), 

that there are no delay slots, and that the pipeline has full forwarding support. Also 

assume that many iterations of this loop are executed before the loop exits. 

4.11.1  [10] <§4.6> Show a pipeline execution diagram for the third iteration of 

this loop, from the cycle in which we fetch the fi rst instruction of that iteration up 

to (but not including) the cycle in which we can fetch the fi rst instruction of the 

next iteration. Show all instructions that are in the pipeline during these cycles (not 

just those from the third iteration). 

4.11.2  [10] <§4.6> How oft en (as a percentage of all cycles) do we have a cycle in which all fi ve pipeline stages are doing useful work? 

4.12  Th

is exercise is intended to help you understand the cost/complexity/

performance trade-off s of forwarding in a pipelined processor. Problems in this 

exercise refer to pipelined datapaths from Figure 4.45. Th

ese problems assume 

that, of all the instructions executed in a processor, the following fraction of these 

instructions have a particular type of RAW data dependence. Th

e type of RAW 

data dependence is identifi ed by the stage that produces the result (EX or MEM) 

and the instruction that consumes the result (1st instruction that follows the one 

that produces the result, 2nd instruction that follows, or both). We assume that the 

register write is done in the fi rst half of the clock cycle and that register reads are 

done in the second half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences 

are not counted because they cannot result in data hazards. Also, assume that the 

CPI of the processor is 1 if there are no data hazards. 

EX to 1st 

EX to 1st 

MEM to 1st 

EX to 2nd 

MEM to 2nd  

and MEM 

Other RAW 

Only

Only

Only

Only

to 2nd

Dependences

5%

20%

5%

10%

10%

10%
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Assume the following latencies for individual pipeline stages. For the EX stage, 

latencies are given separately for a processor without forwarding and for a processor 

with diff erent kinds of forwarding. 

EX (FW 

EX 

EX 

EX (FW from 

from MEM/

IF ID

(no FW)

(full FW)

EX/MEM only)

WB only)

MEM

WB

150 ps

100 ps

120 ps

150 ps

140 ps

130 ps

120 ps

100 ps

4.12.1  [10] <§4.7> If we use no forwarding, what fraction of cycles are we stalling due to data hazards? 

4.12.2 [5] <§4.7> If we use full forwarding (forward all results that can be 

forwarded), what fraction of cycles are we staling due to data hazards? 

4.12.3  [10] <§4.7> Let us assume that we cannot aff ord to have three-input Muxes 

that are needed for full forwarding. We have to decide if it is better to forward 

only from the EX/MEM pipeline register (next-cycle forwarding) or only from 

the MEM/WB pipeline register (two-cycle forwarding). Which of the two options 

results in fewer data stall cycles? 

4.12.4  [10] <§4.7> For the given hazard probabilities and pipeline stage latencies, what is the speedup achieved by adding full forwarding to a pipeline that had no 

forwarding? 

4.12.5  [10] <§4.7> What would be the additional speedup (relative to a processor 

with forwarding) if we added time-travel forwarding that eliminates all data 

hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100 ps to 

the latency of the full-forwarding EX stage. 

4.12.6 [20] <§4.7> Repeat 4.12.3 but this time determine which of the two 

options results in shorter time per instruction. 

4.13  Th

is exercise is intended to help you understand the relationship between 

forwarding, hazard detection, and ISA design. Problems in this exercise refer to 

the following sequence of instructions, and assume that it is executed on a 5-stage 

pipelined datapath:

add r5,r2,r1

lw  r3,4(r5)

lw  r2,0(r2)

or  r3,r5,r3

sw  r3,0(r5)

4.13.1  [5] <§4.7> If there is no forwarding or hazard detection, insert nops to 

ensure correct execution. 
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4.13.2  [10] <§4.7> Repeat 4.13.1 but now use nops only when a hazard cannot be 

avoided by changing or rearranging these instructions. You can assume register R7 

can be used to hold temporary values in your modifi ed code. 

4.13.3  [10] <§4.7> If the processor has forwarding, but we forgot to implement 

the hazard detection unit, what happens when this code executes? 

4.13.4 [20] <§4.7> If there is forwarding, for the fi rst  fi ve cycles during the 

execution of this code, specify which signals are asserted in each cycle by hazard 

detection and forwarding units in Figure 4.60. 

4.13.5  [10] <§4.7> If there is no forwarding, what new inputs and output signals 

do we need for the hazard detection unit in Figure 4.60? Using this instruction sequence as an example, explain why each signal is needed. 

4.13.6  [20] <§4.7> For the new hazard detection unit from 4.13.5, specify which 

output signals it asserts in each of the fi rst fi ve cycles during the execution of this 

code. 

4.14  Th

is exercise is intended to help you understand the relationship between 

delay slots, control hazards, and branch execution in a pipelined processor. In 

this exercise, we assume that the following MIPS code is executed on a pipelined 

processor with a 5-stage pipeline, full forwarding, and a predict-taken branch 

predictor:

lw r2,0(r1)

label1: beq r2,r0,label2 # not taken once, then taken

lw r3,0(r2)

beq r3,r0,label1 # taken

add r1,r3,r1

label2: sw r1,0(r2)

4.14.1  [10] <§4.8> Draw the pipeline execution diagram for this code, assuming 

there are no delay slots and that branches execute in the EX stage. 

4.14.2  [10] <§4.8> Repeat 4.14.1, but assume that delay slots are used. In the 

given code, the instruction that follows the branch is now the delay slot instruction 

for that branch. 

4.14.3  [20] <§4.8> One way to move the branch resolution one stage earlier is to 

not need an ALU operation in conditional branches. Th

e branch instructions would 

be “bez rd,label” and “bnez rd,label”, and it would branch if the register has 

and does not have a zero value, respectively. Change this code to use these branch 

instructions instead of beq. You can assume that register R8 is available for you 

to use as a temporary register, and that an seq (set if equal) R-type instruction can 

be used. 
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Section 4.8 describes how the severity of control hazards can be reduced by moving 

branch execution into the ID stage. Th

is approach involves a dedicated comparator 

in the ID stage, as shown in Figure 4.62. However, this approach potentially adds to the latency of the ID stage, and requires additional forwarding logic and hazard 

detection. 

4.14.4  [10] <§4.8> Using the fi rst branch instruction in the given code as an 

example, describe the hazard detection logic needed to support branch execution 

in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed to detect? 

4.14.5  [10] <§4.8> For the given code, what is the speedup achieved by moving 

branch execution into the ID stage? Explain your answer. In your speedup 

calculation, assume that the additional comparison in the ID stage does not aff ect 

clock cycle time. 

4.14.6  [10] <§4.8> Using the fi rst branch instruction in the given code as an 

example, describe the forwarding support that must be added to support branch 

execution in the ID stage. Compare the complexity of this new forwarding unit to 

the complexity of the existing forwarding unit in Figure 4.62. 

4.15  Th

e importance of having a good branch predictor depends on how oft en 

conditional branches are executed. Together with branch predictor accuracy, this 

will determine how much time is spent stalling due to mispredicted branches. In 

this exercise, assume that the breakdown of dynamic instructions into various 

instruction categories is as follows:

R-Type

BEQ

JMP

LW

SW

40%

25%

5%

25%

5%

Also, assume the following branch predictor accuracies:

Always-Taken  

Always-Not-Taken

2-Bit

45%

55%

85%

4.15.1 [10] <§4.8> Stall cycles due to mispredicted branches increase the 

CPI. What is the extra CPI due to mispredicted branches with the always-taken 

predictor? Assume that branch outcomes are determined in the EX stage, that there 

are no data hazards, and that no delay slots are used. 

4.15.2  [10] <§4.8> Repeat 4.15.1 for the “always-not-taken” predictor. 

4.15.3  [10] <§4.8> Repeat 4.15.1 for for the 2-bit predictor. 

4.15.4  [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if 

we could convert half of the branch instructions in a way that replaces a branch 

instruction with an ALU instruction? Assume that correctly and incorrectly 

predicted instructions have the same chance of being replaced. 
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4.15.5  [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if 

we could convert half of the branch instructions in a way that replaced each branch 

instruction with two ALU instructions? Assume that correctly and incorrectly 

predicted instructions have the same chance of being replaced. 

4.15.6  [10] <§4.8> Some branch instructions are much more predictable than 

others. If we know that 80% of all executed branch instructions are easy-to-predict 

loop-back branches that are always predicted correctly, what is the accuracy of the 

2-bit predictor on the remaining 20% of the branch instructions? 

4.16  Th

is exercise examines the accuracy of various branch predictors for the 

following repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT

4.16.1  [5] <§4.8> What is the accuracy of always-taken and always-not-taken 

predictors for this sequence of branch outcomes? 

4.16.2  [5] <§4.8> What is the accuracy of the two-bit predictor for the fi rst 4 

branches in this pattern, assuming that the predictor starts off  in the bottom left  

state from Figure 4.63 (predict not taken)? 

4.16.3  [10] <§4.8> What is the accuracy of the two-bit predictor if this pattern is repeated forever? 

4.16.4  [30] <§4.8> Design a predictor that would achieve a perfect accuracy if 

this pattern is repeated forever. You predictor should be a sequential circuit with 

one output that provides a prediction (1 for taken, 0 for not taken) and no inputs 

other than the clock and the control signal that indicates that the instruction is a 

conditional branch. 

4.16.5  [10] <§4.8> What is the accuracy of your predictor from 4.16.4 if it is 

given a repeating pattern that is the exact opposite of this one? 

4.16.6 [20] <§4.8> Repeat 4.16.4, but now your predictor should be able to 

eventually (aft er a warm-up period during which it can make wrong predictions) 

start perfectly predicting both this pattern and its opposite. Your predictor should 

have an input that tells it what the real outcome was. Hint: this input lets your 

predictor determine which of the two repeating patterns it is given. 

4.17  Th

is exercise explores how exception handling aff ects pipeline design. Th

e 

fi rst three problems in this exercise refer to the following two instructions:

Instruction 1 

Instruction 2

BNE R1, R2, Label

LW R1, 0(R1)

4.17.1  [5] <§4.9> Which exceptions can each of these instructions trigger? For 

each of these exceptions, specify the pipeline stage in which it is detected. 
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4.17.2  [10] <§4.9> If there is a separate handler address for each exception, show 

how the pipeline organization must be changed to be able to handle this exception. 


You can assume that the addresses of these handlers are known when the processor 

is designed. 

4.17.3 [10] <§4.9> If the second instruction is fetched right aft er the fi rst 

instruction, describe what happens in the pipeline when the fi rst instruction causes 

the fi rst exception you listed in 4.17.1. Show the pipeline execution diagram from 

the time the fi rst instruction is fetched until the time the fi rst instruction of the 

exception handler is completed. 

4.17.4  [20] <§4.9> In vectored exception handling, the table of exception handler 

addresses is in data memory at a known (fi xed) address. Change the pipeline to 

implement this exception handling mechanism. Repeat 4.17.3 using this modifi ed 

pipeline and vectored exception handling. 

4.17.5  [15] <§4.9> We want to emulate vectored exception handling (described 

in 4.17.4) on a machine that has only one fi xed handler address. Write the code 

that should be at that fi xed address. Hint: this code should identify the exception, 

get the right address from the exception vector table, and transfer execution to that 

handler. 

4.18  In this exercise we compare the performance of 1-issue and 2-issue 

processors, taking into account program transformations that can be made to 

optimize for 2-issue execution. Problems in this exercise refer to the following loop 

(written in C):

for(i=0;i!=j;i+=2)

b[i]=a[i]–a[i+1]; 

When writing MIPS code, assume that variables are kept in registers as follows, and 

that all registers except those indicated as Free are used to keep various variables, 

so they cannot be used for anything else. 

i  

j

a

b

c

Free

R5

R6

R1

R2

R3

R10, R11, R12

4.18.1  [10] <§4.10> Translate this C code into MIPS instructions. Your translation 

should be direct, without rearranging instructions to achieve better performance. 

4.18.2  [10] <§4.10> If the loop exits aft er executing only two iterations, draw a 

pipeline diagram for your MIPS code from 4.18.1 executed on a 2-issue processor 

shown in Figure 4.69. Assume the processor has perfect branch prediction and can fetch any two instructions (not just consecutive instructions) in the same cycle. 

4.18.3 [10] <§4.10> Rearrange your code from 4.18.1 to achieve better 

performance on a 2-issue statically scheduled processor from Figure 4.69. 

 

4.17 Exercises 

369

4.18.4  [10] <§4.10> Repeat 4.18.2, but this time use your MIPS code from 4.18.3. 

4.18.5  [10] <§4.10> What is the speedup of going from a 1-issue processor to 

a 2-issue processor from Figure 4.69? Use your code from 4.18.1 for both 1-issue and 2-issue, and assume that 1,000,000 iterations of the loop are executed. As in 

4.18.2, assume that the processor has perfect branch predictions, and that a 2-issue 

processor can fetch any two instructions in the same cycle. 

4.18.6 [10] <§4.10> Repeat 4.18.5, but this time assume that in the 2-issue 

processor one of the instructions to be executed in a cycle can be of any kind, and 

the other must be a non-memory instruction. 

4.19  Th

is exercise explores energy effi

ciency and its relationship with performance. 

Problems in this exercise assume the following energy consumption for activity in 

Instruction memory, Registers, and Data memory. You can assume that the other 

components of the datapath spend a negligible amount of energy. 

I-Mem 

1 Register Read

Register Write

D-Mem Read

D-Mem Write

140pJ

70pJ

60pJ

140pJ

120pJ

Assume that components in the datapath have the following latencies. You can 

assume that the other components of the datapath have negligible latencies. 

I-Mem

Control

Register Read or Write

ALU

D-Mem Read or Write

200ps

150ps

90ps

90ps

250ps

4.19.1  [10] <§§4.3, 4.6, 4.14> How much energy is spent to execute an ADD 

instruction in a single-cycle design and in the 5-stage pipelined design? 

4.19.2  [10] <§§4.6, 4.14> What is the worst-case MIPS instruction in terms of 

energy consumption, and what is the energy spent to execute it? 

4.19.3 [10] <§§4.6, 4.14> If energy reduction is paramount, how would you 

change the pipelined design? What is the percentage reduction in the energy spent 

by an LW instruction aft er this change? 

4.19.4  [10] <§§4.6, 4.14> What is the performance impact of your changes from 

4.19.3? 

4.19.5  [10] <§§4.6, 4.14> We can eliminate the MemRead control signal and have 

the data memory be read in every cycle, i.e., we can permanently have MemRead=1. 

Explain why the processor still functions correctly aft er this change. What is the 

eff ect of this change on clock frequency and energy consumption? 

4.19.6  [10] <§§4.6, 4.14> If an idle unit spends 10% of the power it would spend 

if it were active, what is the energy spent by the instruction memory in each cycle? 

What percentage of the overall energy spent by the instruction memory does this 

idle energy represent? 
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Answers to  §4.1, page 248: 3 of 5: Control, Datapath, Memory. Input and Output are missing. 

§4.2, page 251: false. Edge-triggered state elements make simultaneous reading and 

Check Yourself

writing both possible and unambiguous. 

§4.3, page 257: I. a. II. c. 

§4.4, page 272: Yes, Branch and ALUOp0 are identical. In addition, MemtoReg and 

RegDst are inverses of one another. You don’t need an inverter; simply use the other 

signal and fl ip the order of the inputs to the multiplexor! 

§4.5, page 285: I. Stall on the lw result. 2. Bypass the fi rst add result written into 

$t1. 3. No stall or bypass required. 

§4.6, page 298: Statements 2 and 4 are correct; the rest are incorrect. 

§4.8, page 324: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction. 

§4.9, page 332: Th

e fi rst instruction, since it is logically executed before the others. 

§4.10, page 344: 1. Both. 2. Both. 3. Soft ware. 4. Hardware. 5. Hardware. 6. 

Hardware. 7. Both. 8. Hardware. 9. Both. 

§4.11, page 353: First two are false and the last two are true. 
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Chapter 5  Large and Fast: Exploiting Memory Hierarchy

 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited 

amounts of fast memory. Th

e topics in this chapter aid programmers by creating 

that illusion. Before we look at creating the illusion, let’s consider a simple analogy 

that illustrates the key principles and mechanisms that we use. 

Suppose you were a student writing a term paper on important historical 

developments in computer hardware. You are sitting at a desk in a library with 

a collection of books that you have pulled from the shelves and are examining. 

You fi nd that several of the important computers that you need to write about are 

described in the books you have, but there is nothing about the EDSAC. Th

erefore, 

you go back to the shelves and look for an additional book. You fi nd a book on 

early British computers that covers the EDSAC. Once you have a good selection of 

books on the desk in front of you, there is a good probability that many of the topics 

you need can be found in them, and you may spend most of your time just using 

the books on the desk without going back to the shelves. Having several books on 

the desk in front of you saves time compared to having only one book there and 

constantly having to go back to the shelves to return it and take out another. 

Th

e same principle allows us to create the illusion of a large memory that we 

can access as fast as a very small memory. Just as you did not need to access all the 

books in the library at once with equal probability, a program does not access all of 

its code or data at once with equal probability. Otherwise, it would be impossible 

to make most memory accesses fast and still have large memory in computers, just 

as it would be impossible for you to fi t all the library books on your desk and still 

fi nd what you wanted quickly. 

Th

is  principle of locality underlies both the way in which you did your work in 

the library and the way that programs operate. Th

e principle of locality states that 

programs access a relatively small portion of their address space at any instant of 

time, just as you accessed a very small portion of the library’s collection. Th

ere are 

two diff erent types of locality:

temporal locality  Th

e 

■  Temporal locality (locality in time): if an item is referenced, it will tend to be 

principle stating that if a 

referenced again soon. If you recently brought a book to your desk to look at, 

data location is referenced 

you will probably need to look at it again soon. 

then it will tend to be 

referenced again soon. 

■  Spatial locality (locality in space): if an item is referenced, items whose 

addresses are close by will tend to be referenced soon. For example, when 

spatial locality  Th

e 

you brought out the book on early English computers to fi nd out about the 

locality principle stating 

EDSAC, you also noticed that there was another book shelved next to it about 

that if a data location is 

early mechanical computers, so you also brought back that book and, later 

referenced, data locations 

on, found something useful in that book. Libraries put books on the same 

with nearby addresses 

topic together on the same shelves to increase spatial locality. We’ll see how 

will tend to be referenced 

soon. 

memory hierarchies use spatial locality a little later in this chapter. 
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Cost ($/bit)

technology

Fastest

Memory

Smallest

Highest

SRAM

Memory

DRAM

Slowest

Memory

Biggest

Lowest

Magnetic disk

FIGURE 5.1 

The basic structure of a memory hierarchy.  By implementing the memory system as 

a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see Section 5.2. 

Just as accesses to books on the desk naturally exhibit locality, locality in 

programs arises from simple and natural program structures. For example, 

most programs contain loops, so instructions and data are likely to be accessed 

repeatedly, showing high amounts of temporal locality. Since instructions are 

normally accessed sequentially, programs also show high spatial locality. Accesses 

to data also exhibit a natural spatial locality. For example, sequential accesses to 

elements of an array or a record will naturally have high degrees of spatial locality. 

We take advantage of the principle of locality by implementing the memory 

of a computer as a memory hierarchy. A memory hierarchy consists of multiple  memory hierarchy levels of memory with diff erent speeds and sizes. Th

e faster memories are more  A structure that uses 

expensive per bit than the slower memories and thus are smaller. 

multiple levels of 

Figure 5.1 shows the faster memory is close to the processor and the slower,  memories; as the distance from the processor 

less expensive memory is below it. Th

e goal is to present the user with as much  increases, the size of the 

memory as is available in the cheapest technology, while providing access at the  memories and the access speed off ered by the fastest memory. 

time both increase. 

Th

e data is similarly hierarchical: a level closer to the processor is generally a 

subset of any level further away, and all the data is stored at the lowest level. By 

analogy, the books on your desk form a subset of the library you are working in, 

which is in turn a subset of all the libraries on campus. Furthermore, as we move 

away from the processor, the levels take progressively longer to access, just as we 

might encounter in a hierarchy of campus libraries. 

A memory hierarchy can consist of multiple levels, but data is copied between 

only two adjacent levels at a time, so we can focus our attention on just two levels. 
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Processor

Data is transferred

block (or line)  Th

e 

FIGURE 5.2 

Every pair of levels in the memory hierarchy can be thought of as having an 

upper and lower level.  Within each level, the unit of information that is present or not is called a  block or minimum unit of 

a  line. Usually we transfer an entire block when we copy something between levels. 

information that can 

be either present or not 

present in a cache. 

Th

e upper level—the one closer to the processor—is smaller and faster than the lower 

level, since the upper level uses technology that is more expensive. Figure 5.2 shows hit rate  Th

e fraction of  that the minimum unit of information that can be either present or not present in 

memory accesses found  the two-level hierarchy is called a block or a line; in our library analogy, a block of in a level of the memory  information is one book. 

hierarchy. 

If the data requested by the processor appears in some block in the upper level, 

this is called a  hit (analogous to your fi nding the information in one of the books 

miss rate  Th

e fraction 

of memory accesses not 

on your desk). If the data is not found in the upper level, the request is called a  miss. 

found in a level of the 

Th

e lower level in the hierarchy is then accessed to retrieve the block containing the 

memory hierarchy. 

requested data. (Continuing our analogy, you go from your desk to the shelves to 

fi nd the desired book.) Th

e hit rate, or  hit ratio, is the fraction of memory accesses 

hit time  Th

e time 

found in the upper level; it is oft en used as a measure of the performance of the 

required to access a level 

memory hierarchy. Th

e miss rate (1−hit rate) is the fraction of memory accesses 

of the memory hierarchy, 

not found in the upper level. 

including the time needed 

Since performance is the major reason for having a memory hierarchy, the time 

to determine whether the 

to service hits and misses is important. Hit time is the time to access the upper level 

access is a hit or a miss. 

of the memory hierarchy, which includes the time needed to determine whether 

the access is a hit or a miss (that is, the time needed to look through the books on 

miss penalty  Th

e time 

the desk). Th

e miss penalty is the time to replace a block in the upper level with 

required to fetch a block 

into a level of the memory 

the corresponding block from the lower level, plus the time to deliver this block to 

hierarchy from the lower 

the processor (or the time to get another book from the shelves and place it on the 

level, including the time 

desk). Because the upper level is smaller and built using faster memory parts, the 

to access the block, 

hit time will be much smaller than the time to access the next level in the hierarchy, 

transmit it from one level 

which is the major component of the miss penalty. (Th

e time to examine the books 

to the other, insert it in 

on the desk is much smaller than the time to get up and get a new book from the 

the level that experienced 

shelves.)

the miss, and then pass 

the block to the requestor. 
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As we will see in this chapter, the concepts used to build memory systems aff ect 

many other aspects of a computer, including how the operating system manages 

memory and I/O, how compilers generate code, and even how applications use 

the computer. Of course, because all programs spend much of their time accessing 

memory, the memory system is necessarily a major factor in determining 

performance. Th

e reliance on memory hierarchies to achieve performance 

has meant that programmers, who used to be able to think of memory as a fl at, 

random access storage device, now need to understand that memory is a hierarchy 

to get good performance. We show how important this understanding is in later 

examples, such as Figure 5.18 on page 408, and Section 5.14, which shows how to double matrix multiply performance. 

Since memory systems are critical to performance, computer designers devote a 

great deal of attention to these systems and develop sophisticated mechanisms for 

improving the performance of the memory system. In this chapter, we discuss the 

major conceptual ideas, although we use many simplifi cations and abstractions to 

keep the material manageable in length and complexity. 

Programs exhibit both temporal locality, the tendency to reuse recently 

accessed data items, and spatial locality, the tendency to reference data 

The BIG

items that are close to other recently accessed items. Memory hierarchies 

Picture

take advantage of temporal locality by keeping more recently accessed 

data items closer to the processor. Memory hierarchies take advantage of 

spatial locality by moving blocks consisting of multiple contiguous words 

in memory to upper levels of the hierarchy. 

Figure 5.3 shows that a memory hierarchy uses smaller and faster 

memory technologies close to the processor. Th

us, accesses that hit in the 

highest level of the hierarchy can be processed quickly. Accesses that miss 

go to lower levels of the hierarchy, which are larger but slower. If the hit 

rate is high enough, the memory hierarchy has an eff ective access time 

close to that of the highest (and fastest) level and a size equal to that of the 

lowest (and largest) level. 

In most systems, the memory is a true hierarchy, meaning that data 

cannot be present in level  i unless it is also present in level  i ⫹ 1. 

Which of the following statements are generally true? 

Check 

Yourself

1.  Memory hierarchies take advantage of temporal locality. 

2.  On a read, the value returned depends on which blocks are in the cache. 

3.  Most of the cost of the memory hierarchy is at the highest level. 

4.  Most of the capacity of the memory hierarchy is at the lowest level. 
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CPU

Increasing distance

Level 1

from the CPU in

access time

Levels in the

Level 2

memory hierarchy

Level  n

Size of the memory at each level

FIGURE 5.3 

This diagram shows the structure of a memory hierarchy: as the distance 

from the processor increases, so does the size.   Th

is structure, with the appropriate operating 

mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the hierarchy and yet have a memory as large as level  n. Maintaining this illusion is the subject of this chapter. 

Although the local disk is normally the bottom of the hierarchy, some systems use tape or a fi le server over a local area network as the next levels of the hierarchy. 

 5.2 Memory 

Technologies

Th

ere are four primary technologies used today in memory hierarchies. Main 

memory is implemented from DRAM (dynamic random access memory), while 

levels closer to the processor (caches) use SRAM (static random access memory). 

DRAM is less costly per bit than SRAM, although it is substantially slower. Th

e 

price diff erence arises because DRAM uses signifi cantly less area per bit of memory, 

and DRAMs thus have larger capacity for the same amount of silicon; the speed 

diff erence arises from several factors described in Section B.9 of   Appendix B. 

Th

e third technology is fl ash memory. Th

is nonvolatile memory is the secondary 

memory in Personal Mobile Devices. Th

e fourth technology, used to implement 

the largest and slowest level in the hierarchy in servers, is magnetic disk. Th

e access 

time and price per bit vary widely among these technologies, as the table below 

shows, using typical values for 2012:

Memory technology

Typical access time

$ per GiB in 2012

SRAM semiconductor memory

0.5–2.5 ns

$500–$1000

DRAM semiconductor memory

50–70 ns

$10–$20

Flash semiconductor memory

5,000–50,000 ns

$0.75–$1.00

Magnetic disk

5,000,000–20,000,000 ns

$0.05–$0.10

We describe each memory technology in the remainder of this section. 
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SRAM Technology

SRAMs are simply integrated circuits that are memory arrays with (usually) a 

single access port that can provide either a read or a write. SRAMs have a fi xed 

access time to any datum, though the read and write access times may diff er. 

SRAMs don’t need to refresh and so the access time is very close to the cycle 

time. SRAMs typically use six to eight transistors per bit to prevent the information 

from being disturbed when read. SRAM needs only minimal power to retain the 

charge in standby mode. 

In the past, most PCs and server systems used separate SRAM chips for either 

their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all 

levels of caches are integrated onto the processor chip, so the market for separate 

SRAM chips has nearly evaporated. 

DRAM Technology

In a SRAM, as long as power is applied, the value can be kept indefi nitely. In a 

dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. 

A single transistor is then used to access this stored charge, either to read the 

value or to overwrite the charge stored there. Because DRAMs use only a single 

transistor per bit of storage, they are much denser and cheaper per bit than SRAM. 

As DRAMs store the charge on a capacitor, it cannot be kept indefi nitely and must 

periodically be refreshed. Th

at is why this memory structure is called dynamic, as 

opposed to the static storage in an SRAM cell. 

To refresh the cell, we merely read its contents and write it back. Th

e charge 

can be kept for several milliseconds. If every bit had to be read out of the DRAM 

and then written back individually, we would constantly be refreshing the DRAM, 

leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding 

structure, and this allows us to refresh an entire  row (which shares a word line) 

with a read cycle followed immediately by a write cycle. 

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows how the density, cost, and access time of DRAMs have changed over the years. 

Th

e row organization that helps with refresh also helps with performance. To 

improve performance, DRAMs buff er rows for repeated access. Th

e buff er  acts 

like an SRAM; by changing the address, random bits can be accessed in the buff er 

until the next row access. Th

is capability improves the access time signifi cantly, 

since the access time to bits in the row is much lower. Making the chip wider also 

improves the memory bandwidth of the chip. When the row is in the buff er, it 

can be transferred by successive addresses at whatever the width of the DRAM is 

(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address 

within the buff er. 

To further improve the interface to processors, DRAMs added clocks and are 

properly called Synchronous DRAMs or SDRAMs. Th

e advantage of SDRAMs 

is that the use of a clock eliminates the time for the memory and processor to 

synchronize. Th

e speed advantage of synchronous DRAMs comes from the ability 

to transfer the bits in the burst without having to specify additional address bits. 
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Bank

Column

Rd/Wr

Act

Pre

Row

FIGURE 5.4  Internal organization of a DRAM. Modern DRAMs are organized in banks, typically four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closes a bank. A row address is sent with an Act (activate), which causes the row to transfer to a buff er. When the row is in the buff er, it can be transferred by successive column addresses at whatever the width of the DRAM is (typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command, as well as block transfers, is synchronized with a clock. 

Average column

Total access time to 

access time to 

Year introduced

Chip size

$ per GiB

a new row/column

existing row  

1980

64 Kibibit

$1,500,000

250 ns

150 ns

1983

256 Kibibit

$500,000

185 ns

100 ns

1985

1 Mebibit

$200,000

135 ns

40 ns

1989

4 Mebibit

$50,000

110 ns

40 ns

1992

16 Mebibit

$15,000

90 ns

30 ns

1996

64 Mebibit

$10,000

60 ns

12 ns

1998

128 Mebibit

$4,000

60 ns

10 ns

2000

256 Mebibit

$1,000

55 ns

7 ns

2004

512 Mebibit

$250

50 ns

5 ns

2007

1 Gibibit

$50

45 ns

1.25 ns

2010

2 Gibibit

$30

40 ns

1 ns

2012

4 Gibibit

$1

35 ns

0.8 ns

FIGURE 5.5 

DRAM size increased by multiples of four approximately once every three 

years until 1996, and thereafter considerably slower.  Th

e improvements in access time have been 

slower but continuous, and cost roughly tracks density improvements, although cost is oft en aff ected by other issues, such as availability and demand. Th

e cost per gibibyte is not adjusted for infl ation. 

Instead, the clock transfers the successive bits in a burst. Th

e fastest version is called 

 Double Data Rate (DDR) SDRAM. Th

e name means data transfers on both the 

rising  and falling edge of the clock, thereby getting twice as much bandwidth as you 

might expect based on the clock rate and the data width. Th

e latest version of this 

technology is called DDR4. A DDR4-3200 DRAM can do 3200 million transfers 

per second, which means it has a 1600 MHz clock. 

Sustaining that much bandwidth requires clever organization  inside the DRAM. 

Instead of just a faster row buff er, the DRAM can be internally organized to read or 
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write from multiple  banks, with each having its own row buff er. Sending an address 

to several banks permits them all to read or write simultaneously. For example, 

with four banks, there is just one access time and then accesses rotate between 

the four banks to supply four times the bandwidth. Th

is rotating access scheme is 

called  address  interleaving. 

Although Personal Mobile Devices like the iPad (see Chapter 1) use individual 

DRAMs, memory for servers are commonly sold on small boards called  dual inline 

 memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are 

normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-

3200 SDRAMs could transfer at 8 ⫻ 3200 ⫽ 25,600 megabytes per second. Such 

DIMMs are named aft er their bandwidth: PC25600. Since a DIMM can have so 

many DRAM chips that only a portion of them are used for a particular transfer, we 

need a term to refer to the subset of chips in a DIMM that share common address 

lines. To avoid confusion with the internal DRAM names of row and banks, we use 

the term  memory rank  for such a subset of chips in a DIMM. 

Elaboration:  One way to measure the performance of the memory system behind the 

caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of 

long vector operations. They have no temporal locality and they access arrays that are 

larger than the cache of the computer being tested. 

Flash Memory

Flash memory is a type of  electrically erasable programmable read-only memory 

(EEPROM). 

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out 

fl ash memory bits. To cope with such limits, most fl ash products include a controller 

to spread the writes by remapping blocks that have been written many times to less 

trodden blocks. Th

is technique is called  wear leveling. With wear leveling, personal 

mobile devices are very unlikely to exceed the write limits in the fl ash. Such wear 

leveling lowers the potential performance of fl ash, but it is needed unless higher-

level soft ware monitors block wear. Flash controllers that perform wear leveling can 

also improve yield by mapping out memory cells that were manufactured incorrectly. 

Disk Memory

As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which rotate on a spindle at 5400 to 15,000 revolutions per minute. Th

e metal platters are 

covered with magnetic recording material on both sides, similar to the material found 

on a cassette or videotape. To read and write information on a hard disk, a movable  arm 

containing a small electromagnetic coil called a  read-write head is located just above 

each surface. Th

e entire drive is permanently sealed to control the environment inside  track  One of thousands the drive, which, in turn, allows the disk heads to be much closer to the drive surface. 

of concentric circles that 

Each disk surface is divided into concentric circles, called tracks. Th

ere are  makes up the surface of a 

magnetic disk. 

typically tens of thousands of tracks per surface. Each track is in turn divided into 



382 

Chapter 5  Large and Fast: Exploiting Memory Hierarchy

sector  One of the 

sectors that contain the information; each track may have thousands of sectors. 

segments that make up a 

Sectors are typically 512 to 4096 bytes in size. Th

e sequence recorded on the 

track on a magnetic disk; 

magnetic media is a sector number, a gap, the information for that sector including 

a sector is the smallest 

error correction code (see Section 5.5), a gap, the sector number of the next sector, 

amount of information 

and so on. 

that is read or written on 

Th

e disk heads for each surface are connected together and move in conjunction, 

a disk. 

so that every head is over the same track of every surface. Th

e term  cylinder is used 

to refer to all the tracks under the heads at a given point on all surfaces. 

FIGURE 5.6  A disk showing 10 disk platters and the read/write heads. Th

e diameter of 

today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today. 

To access data, the operating system must direct the disk through a three-stage 

process. Th

e fi rst step is to position the head over the proper track. Th

is operation is 

seek  Th

e process of 

called a seek, and the time to move the head to the desired track is called the  seek time. 

positioning a read/write 

Disk manufacturers report minimum seek time, maximum seek time, and average 

head over the proper 

seek time in their manuals. Th

e fi rst two are easy to measure, but the average is open to 

track on a disk. 

wide interpretation because it depends on the seek distance. Th

e industry calculates 

average seek time as the sum of the time for all possible seeks divided by the number 

of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but, 

depending on the application and scheduling of disk requests, the actual average seek 

time may be only 25% to 33% of the advertised number because of locality of disk 
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references. Th

is locality arises both because of successive accesses to the same fi le and 

because the operating system tries to schedule such accesses together. 

Once the head has reached the correct track, we must wait for the desired sector 

to rotate under the read/write head. Th

is time is called the rotational latency or  rotational latency Also 

rotational delay. Th

e average latency to the desired information is halfway around  called rotational delay. 

the disk. Disks rotate at 5400 RPM to 15,000 RPM. Th

e average rotational latency  Th e time required for 

at 5400 RPM is

the desired sector of a 

disk to rotate under the 

0.5 rotation

0.5 rotatio

on

read/write head; usually 

Average rotational latency ⫽

⫽

assumed to be half the 

5400 RPM

⎛ seconds⎞

5400 RPM/ 60

⎜

⎟

rotation time. 

⎝⎜

⎟

minute ⎠⎟

⫽ 0.0056 seconds ⫽ 5.6 ms

Th

e last component of a disk access,  transfer time,  is the time to transfer a block 

of bits. Th

e transfer time is a function of the sector size, the rotation speed, and the 

recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec. 

One complication is that most disk controllers have a built-in cache that stores 

sectors as they are passed over; transfer rates from the cache are typically higher, 

and were up to 750 MB/sec (6 Gbit/sec) in 2012. 

Alas, where block numbers are located is no longer intuitive. Th

e assumptions of 

the sector-track-cylinder model above are that nearby blocks are on the same track, 

blocks in the same cylinder take less time to access since there is no seek time, 

and some tracks are closer than others. Th

e reason for the change was the raising 

of the level of the disk interfaces. To speed-up sequential transfers, these higher-

level interfaces organize disks more like tapes than like random access devices. 

Th

e logical blocks are ordered in serpentine fashion across a single surface, trying 

to capture all the sectors that are recorded at the same bit density to try to get best 

performance. Hence, sequential blocks may be on diff erent tracks. 

In summary, the two primary diff erences between magnetic disks and 

semiconductor memory technologies are that disks have a slower access time because 

they are mechanical devices—fl ash is 1000 times as fast and DRAM is 100,000 times 

as fast—yet they are cheaper per bit because they have very high storage capacity at a 

modest cost—disk is 10 to 100 time cheaper. Magnetic disks are nonvolatile like fl ash, 

but unlike fl ash there is no write wear-out problem. However, fl ash is much more 

rugged and hence a better match to the jostling inherent in personal mobile devices. 

 5.3 

The Basics of Caches

 Cache: a safe place 

 for hiding or storing 

 things. 

In our library example, the desk acted as a cache—a safe place to store things   Webster’s New World (books) that we needed to examine.  Cache was the name chosen to represent the   Dictionary of the level of the memory hierarchy between the processor and main memory in the fi rst   American Language, commercial computer to have this extra level. Th

e memories in the datapath in   Th ird College Edition,  

Chapter 4 are simply replaced by caches. Today, although this remains the dominant 

1988
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use of the word  cache, the term is also used to refer to any storage managed to take 

advantage of locality of access. Caches fi rst appeared in research computers in the 

early 1960s and in production computers later in that same decade; every general-

purpose computer built today, from servers to low-power embedded processors, 

includes caches. 

In this section, we begin by looking at a very simple cache in which the processor 

requests are each one word and the blocks also consist of a single word. (Readers 

already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows such a simple cache, before and aft er requesting a data item that is not initially in 

the cache. Before the request, the cache contains a collection of recent references 

X , X , …, X

, and the processor requests a word X  that is not in the cache. Th

is 

1

2

 n⫺1

 n

request results in a miss, and the word X  is brought from memory into the cache. 

 n

In looking at the scenario in Figure 5.7, there are two questions to answer: How do we know if a data item is in the cache? Moreover, if it is, how do we fi nd it? Th

e 

answers are related. If each word can go in exactly one place in the cache, then it 

is straightforward to fi nd the word if it is in the cache. Th

e simplest way to assign 

a location in the cache for each word in memory is to assign the cache location 

direct-mapped cache 

based on the  address of the word in memory. Th

is cache structure is called direct 

A cache structure in 

mapped, since each memory location is mapped directly to exactly one location in 

which each memory 

the cache. Th

e typical mapping between addresses and cache locations for a direct-

location is mapped to 

mapped cache is usually simple. For example, almost all direct-mapped caches use 

exactly one location in the 

this mapping to fi nd a block:

cache. 

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be 

computed simply by using the low-order log  (cache size in blocks) bits of the 

2

address. Th

us, an 8-block cache uses the three lowest bits (8 ⫽  23) of the block 

address. For example, Figure 5.8 shows how the memory addresses between 1  

ten

(00001 ) and 29  (11101 ) map to locations 1  (001 ) and 5  (101 ) in a 

two

ten

two

ten

two

ten

two

direct-mapped cache of eight words. 

Because each cache location can contain the contents of a number of diff erent 

memory locations, how do we know whether the data in the cache corresponds 

to a requested word? Th

at is, how do we know whether a requested word is in the 

cache or not? We answer this question by adding a set of tags to the cache. Th

e 

tag A fi eld in a table used 

for a memory hierarchy 

tags contain the address information required to identify whether a word in the 

that contains the address 

cache corresponds to the requested word. Th

e tag needs only to contain the upper 

information required 

portion of the address, corresponding to the bits that are not used as an index into 

to identify whether the 

the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address associated block in the 

bits in the tag, since the lower 3-bit index fi eld of the address selects the block. 

hierarchy corresponds to 

Architects omit the index bits because they are redundant, since by defi nition the 

a requested word. 

index fi eld of any address of a cache block must be that block number. 

We also need a way to recognize that a cache block does not have valid 

information. For instance, when a processor starts up, the cache does not have good 

data, and the tag fi elds will be meaningless. Even aft er executing many instructions, 
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X4

X4

X1

X1

X n – 2

X n – 2

X n – 1

X n – 1

X2

X2

X n

X3

X3

a. Before the reference to X n

b. After the reference to X n

FIGURE 5.7 

The cache just before and just after a reference to a word X  that is not 

 n

initially in the cache.  Th

is reference causes a miss that forces the cache to fetch X  from memory and 

 n

insert it into the cache. 

Cache

000

001

010

011

100

101

110

111

00001

00101

01001

01101

10001

10101

11001

11101

Memory

FIGURE 5.8 

A direct-mapped cache with eight entries showing the addresses of memory 

words between 0 and 31 that map to the same cache locations.  Because there are eight 

words in the cache, an address X maps to the direct-mapped cache word X modulo 8. Th

at is, the low-order 

log (8) ⫽ 3 bits are used as the cache index. Th

us, addresses 00001 , 01001 , 10001 , and 11001  all map 

2

two

two

two

two

to entry 001  of the cache, while addresses 00101 , 01101 , 10101 , and 11101  all map to entry 101  

two

two

two

two

two

two

of the cache. 
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some of the cache entries may still be empty, as in Figure 5.7. Th

us, we need to 

know that the tag should be ignored for such entries. Th

e most common method is 

valid bit A fi eld in 

to add a valid bit to indicate whether an entry contains a valid address. If the bit is 

the tables of a memory 

not set, there cannot be a match for this block. 

hierarchy that indicates 

For the rest of this section, we will focus on explaining how a cache deals with 

that the associated block 

reads. In general, handling reads is a little simpler than handling writes, since reads 

in the hierarchy contains 

do not have to change the contents of the cache. Aft er seeing the basics of how 

valid data. 

reads work and how cache misses can be handled, we’ll examine the cache designs 

for real computers and detail how these caches handle writes. 

The BIG

Caching is perhaps the most important example of the big idea of 

Picture

prediction. It relies on the principle of locality to try to fi nd  the 

desired data in the higher levels of the memory hierarchy, and provides 

mechanisms to ensure that when the prediction is wrong it fi nds and 

uses the proper data from the lower levels of the memory hierarchy. Th

e 

hit rates of the cache prediction on modern computers are oft en higher 

than 95% (see Figure 5.47). 

Accessing a Cache

Below is a sequence of nine memory references to an empty eight-block cache, 

including the action for each reference. Figure 5.9 shows how the contents of the cache change on each miss. Since there are eight blocks in the cache, the low-order 

three bits of an address give the block number:

Decimal address

Binary address

Hit or miss

Assigned cache block

of reference

of reference

in cache

(where found or placed)

22

10110

mod 8) = 110

two

miss (5.6b)

(10110two

two

26

11010

mod 8) = 010

two

miss (5.6c)

(11010two

two

22

10110

mod 8) = 110

two

hit

(10110two

two

26

11010

mod 8) = 010

two

hit

(11010two

two

16

10000

mod 8) = 000

two

miss (5.6d)

(10000two

two

3

00011

mod 8) = 011

two

miss (5.6e)

(00011two

two

16

10000

mod 8) = 000

two

hit

(10000two

two

18

10010

mod 8) = 010

two

miss (5.6f)

(10010two

two

16

10000

mod 8) = 000

two

hit

(10000two

two

Since the cache is empty, several of the fi rst references are misses; the caption of 

Figure 5.9 describes the actions for each memory reference. On the eighth reference 
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a. The initial state of the cache after power-on

b. After handling a miss of address (10110two)
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N
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Y
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001

N

001

N
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111

N

111
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c. After handling a miss of address (11010two)

d. After handling a miss of address (10000two)

Index

V

Tag

Data

Index

V
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10two

Memory (10000two)

000

Y

10two

Memory (10000two)

001

N

001

N
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Y
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Memory (11010
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two)
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10two

Memory (10010two)

011

Y

00two

Memory (00011two)

011

Y

00two

Memory (00011two)

100

N

100

N

101

N

101

N

110

Y

10two

Memory (10110two)

110

Y

10two

Memory (10110two)

111

N

111

N

e. After handling a miss of address (00011two)

f. After handling a miss of address (10010two)

FIGURE 5.9 

The cache contents are shown after each reference request that misses, with the index and tag fi elds shown in binary for the sequence of addresses on page 386.  Th

e cache is initially empty, with all valid bits (V entry in cache) 

turned off  (N). Th

e processor requests the following addresses: 10110  (miss), 11010  (miss), 10110  (hit), 11010  (hit), 10000  (miss), two

two

two

two

two

00011  (miss), 10000  (hit), 10010  (miss), and 10000  (hit). Th

e fi gures show the cache contents aft er each miss in the sequence has been 

two

two

two

two

handled. When address 10010  (18) is referenced, the entry for address 11010  (26) must be replaced, and a reference to 11010  will cause a two

two

two

subsequent miss. Th

e tag fi eld will contain only the upper portion of the address. Th

e full address of a word contained in cache block  i with tag 

fi eld  j for this cache is  j ⫻ 8 ⫹  i,  or equivalently the concatenation of the tag fi eld  j and the index  i. For example, in cache  f above, index 010  

two

has tag 10  and corresponds to address 10010 . 

two

two
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we have confl icting demands for a block. Th

e word at address 18 (10010 ) should 

two

be brought into cache block 2 (010 ). Hence, it must replace the word at address 

two

26 (11010 ), which is already in cache block 2 (010 ). Th

is behavior allows a 

two

two

cache to take advantage of temporal locality: recently referenced words replace less 

recently referenced words. 

Th

is situation is directly analogous to needing a book from the shelves and 

having no more space on your desk—some book already on your desk must be 

returned to the shelves. In a direct-mapped cache, there is only one place to put the 

newly requested item and hence only one choice of what to replace. 

We know where to look in the cache for each possible address: the low-order bits 

of an address can be used to fi nd the unique cache entry to which the address could 

map. Figure 5.10 shows how a referenced address is divided into

■ A t ag fi eld, which is used to compare with the value of the tag fi eld of the 

cache

■ A  cache index, which is used to select the block

Th

e index of a cache block, together with the tag contents of that block, uniquely 

specifi es the memory address of the word contained in the cache block. Because 

the index fi eld is used as an address to reference the cache, and because an  n-bit 

fi eld has 2 n values, the total number of entries in a direct-mapped cache must be a 

power of 2. In the MIPS architecture, since words are aligned to multiples of four 

bytes, the least signifi cant two bits of every address specify a byte within a word. 

Hence, the least signifi cant two bits are ignored when selecting a word in the block. 

Th

e total number of bits needed for a cache is a function of the cache size and 

the address size, because the cache includes both the storage for the data and the 

tags. Th

e size of the block above was one word, but normally it is several. For the 

following situation:

■ 32-bit addresses

■  A direct-mapped cache

■  Th

e cache size is 2 n blocks, so  n bits are used for the index

■  Th

e block size is 2 m words (2 m+2 bytes), so  m bits are used for the word within the block, and two bits are used for the byte part of the address

the size of the tag fi eld is

32 ⫺ ( n ⫹  m ⫹ 2). 

Th

e total number of bits in a direct-mapped cache is

2 n ⫻ (block size ⫹ tag size ⫹ valid fi eld size). 
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Address (showing bit positions)
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13 12 11

2   1 0

Byte

offset

Hit
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Tag
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Index

Index
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Data
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1

2

1021

1022

1023

20

32

=

FIGURE 5.10 

For this cache, the lower portion of the address is used to select a cache 

entry consisting of a data word and a tag.  Th

is cache holds 1024 words or 4 KiB. We assume 32-bit 

addresses in this chapter. Th

e tag from the cache is compared against the upper portion of the address to 

determine whether the entry in the cache corresponds to the requested address. Because the cache has 210 (or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 −10 − 2 = 20 bits to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs. 

Since the block size is 2 m words (2 m⫹5 bits), and we need 1 bit for the valid fi eld, the number of bits in such a cache is

2 n ⫻ (2 m ⫻ 32 ⫹ (32 ⫺  n ⫺  m ⫺ 2) ⫹ 1) ⫽ 2 n ⫻ (2 m ⫻ 32 ⫹ 31 ⫺  n ⫺  m). 

Although this is the actual size in bits, the naming convention is to exclude the size 

of the tag and valid fi eld and to count only the size of the data. Th

us, the cache in 

Figure 5.10 is called a 4 KiB cache. 
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Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of 

EXAMPLE

data and 4-word blocks, assuming a 32-bit address? 

We know that 16 KiB is 4096 (212) words. With a block size of 4 words (22), 

ANSWER

there are 1024 (210) blocks. Each block has 4 ⫻ 32 or 128 bits of data plus a 

tag, which is 32 ⫺ 10 ⫺ 2 ⫺ 2 bits, plus a valid bit. Th

us, the total cache size is

210 ⫻ (4 ⫻ 32 ⫹ (32 ⫺ 10 ⫺ 2 ⫺ 2) ⫹ 1) ⫽ 210 ⫻ 147 ⫽ 147 Kibibits

or 18.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the 

cache is about 1.15 times as many as needed just for the storage of the data. 

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block 

EXAMPLE

number does byte address 1200 map? 

We saw the formula on page 384. Th

e block is given by

ANSWER

(Block address) modulo (Number of blocks in the cache)

where the address of the block is

Byte address

Bytes per block

Notice that this block address is the block containing all addresses between

⎡ Byte address ⎤

⎢

⎥

Bytes per block

⎢Bytes per block

⎣

⎦⎥ ⫻
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and

⎡ Byte address ⎤

⎢

⎥

Bytes per block

(Bytes

⎢Bytes per block

⎣

⎦⎥

per  block 

1)

Th

us, with 16 bytes per block, byte address 1200 is block address

⎡1200⎤

⎢

⎥ ⫽ 75

⎣⎢ 6 ⎦⎥

which maps to cache block number (75 modulo 64) ⫽ 11. In fact, this block 

maps all addresses between 1200 and 1215. 

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.11 shows, increasing the block size usually decreases the miss rate. Th

e miss rate may go up 

eventually if the block size becomes a signifi cant fraction of the cache size, because 

the number of blocks that can be held in the cache will become small, and there will 

be a great deal of competition for those blocks. As a result, a block will be bumped 

out of the cache before many of its words are accessed. Stated alternatively, spatial 

locality among the words in a block decreases with a very large block; consequently, 

the benefi ts in the miss rate become smaller. 

A more serious problem associated with just increasing the block size is that the 

cost of a miss increases. Th

e miss penalty is determined by the time required to fetch 

10%

4K

Miss 5%

rate

16K

64K

0%

256K

16

32

64

128

256

Block size

FIGURE 5.11 

Miss rate versus block size. Note that the miss rate actually goes up if the block size 

is too large relative to the cache size. Each line represents a cache of diff erent size. (Th

is fi gure is independent 

of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were included, so this data is based on SPEC92. 
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the block from the next lower level of the hierarchy and load it into the cache. Th

e 

time to fetch the block has two parts: the latency to the fi rst word and the transfer 

time for the rest of the block. Clearly, unless we change the memory system, the 

transfer time—and hence the miss penalty—will likely increase as the block size 

increases. Furthermore, the improvement in the miss rate starts to decrease as the 

blocks become larger. Th

e result is that the increase in the miss penalty overwhelms 

the decrease in the miss rate for blocks that are too large, and cache performance 

thus decreases. Of course, if we design the memory to transfer larger blocks more 

effi

ciently, we can increase the block size and obtain further improvements in cache 

performance. We discuss this topic in the next section. 

Elaboration:  Although it is hard to do anything about the longer latency component of 

the miss penalty for large blocks, we may be able to hide some of the transfer time so 

that the miss penalty is effectively smaller. The simplest method for doing this, called 

 early restart, is simply to resume execution as soon as the requested word of the block 

is returned, rather than wait for the entire block. Many processors use this technique 

for instruction access, where it works best. Instruction accesses are largely sequential, 

so if the memory system can deliver a word every clock cycle, the processor may be 

able to restart operation when the requested word is returned, with the memory system 

delivering new instruction words just in time. This technique is usually less effective for 

data caches because it is likely that the words will be requested from the block in a 

less predictable way, and the probability that the processor will need another word from 

a different cache block before the transfer completes is high. If the processor cannot 

access the data cache because a transfer is ongoing, then it must stall. 

An even more sophisticated scheme is to organize the memory so that the requested 

word is transferred from the memory to the cache fi rst. The remainder of the block 

is then transferred, starting with the address after the requested word and wrapping 

around to the beginning of the block. This technique, called  requested word fi rst or 

 critical word fi rst, can be slightly faster than early restart, but it is limited by the same properties that limit early restart. 

Handling Cache Misses

Before we look at the cache of a real system, let’s see how the control unit deals with 

cache miss  A request for 

cache misses. (We describe a cache controller in detail in Section 5.9). Th

e control 

data from the cache that 

unit must detect a miss and process the miss by fetching the requested data from 

cannot be fi lled because 

memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the 

the data is not present in 

computer continues using the data as if nothing happened. 

the cache. 

Modifying the control of a processor to handle a hit is trivial; misses, however, 

require some extra work. Th

e cache miss handling is done in collaboration with 

the processor control unit and with a separate controller that initiates the memory 

access and refi lls the cache. Th

e processing of a cache miss creates a pipeline stall 

(Chapter 4) as opposed to an interrupt, which would require saving the state of all 

registers. For a cache miss, we can stall the entire processor, essentially freezing 

the contents of the temporary and programmer-visible registers, while we wait 
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for memory. More sophisticated out-of-order processors can allow execution of 

instructions while waiting for a cache miss, but we’ll assume in-order processors 

that stall on cache misses in this section. 

Let’s look a little more closely at how instruction misses are handled; the same 

approach can be easily extended to handle data misses. If an instruction access 

results in a miss, then the content of the Instruction register is invalid. To get the 

proper instruction into the cache, we must be able to instruct the lower level in the 

memory hierarchy to perform a read. Since the program counter is incremented in 

the fi rst clock cycle of execution, the address of the instruction that generates an 

instruction cache miss is equal to the value of the program counter minus 4. Once 

we have the address, we need to instruct the main memory to perform a read. We 

wait for the memory to respond (since the access will take multiple clock cycles), 

and then write the words containing the desired instruction into the cache. 

We can now defi ne the steps to be taken on an instruction cache miss:

1.  Send the original PC value (current PC – 4) to the memory. 

2.  Instruct main memory to perform a read and wait for the memory to 

complete its access. 

3.  Write the cache entry, putting the data from memory in the data portion of 

the entry, writing the upper bits of the address (from the ALU) into the tag 

fi eld, and turning the valid bit on. 

4.  Restart the instruction execution at the fi rst step, which will refetch the 

instruction, this time fi nding it in the cache. 

Th

e control of the cache on a data access is essentially identical: on a miss, we 

simply stall the processor until the memory responds with the data. 

Handling Writes

Writes work somewhat diff erently. Suppose on a store instruction, we wrote the 

data into only the data cache (without changing main memory); then, aft er the 

write into the cache, memory would have a diff erent value from that in the cache. 

In such a case, the cache and memory are said to be  inconsistent. Th

e simplest way 

to keep the main memory and the cache consistent is always to write the data into 

both the memory and the cache. Th

is scheme is called write-through. 

write-through 

Th

e other key aspect of writes is what occurs on a write miss. We fi rst fetch the  A scheme in which writes words of the block from memory. Aft er the block is fetched and placed into the  always update both the cache and the next lower 

cache, we can overwrite the word that caused the miss into the cache block. We also  level of the memory write the word to main memory using the full address. 

hierarchy, ensuring that 

Although this design handles writes very simply, it would not provide very  data is always consistent good performance. With a write-through scheme, every write causes the data  between the two. 

to be written to main memory. Th

ese writes will take a long time, likely at least 

100 processor clock cycles, and could slow down the processor considerably. For 

example, suppose 10% of the instructions are stores. If the CPI without cache 
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misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of 

1.0 ⫹ 100 ⫻ 10% ⫽ 11, reducing performance by more than a factor of 10. 

write buff er A queue 

One solution to this problem is to use a write buff er. A write buff er stores the 

that holds data while 

data while it is waiting to be written to memory. Aft er writing the data into the 

the data is waiting to be 

cache and into the write buff er, the processor can continue execution. When a write 

written to memory. 

to main memory completes, the entry in the write buff er is freed. If the write buff er 

is full when the processor reaches a write, the processor must stall until there is an 

empty position in the write buff er. Of course, if the rate at which the memory can 

complete writes is less than the rate at which the processor is generating writes, no 

amount of buff ering can help, because writes are being generated faster than the 

memory system can accept them. 

Th

e rate at which writes are generated may also be  less than the rate at which the 

memory can accept them, and yet stalls may still occur. Th

is can happen when the 

writes occur in bursts. To reduce the occurrence of such stalls, processors usually 

increase the depth of the write buff er beyond a single entry. 

write-back A scheme 

Th

e alternative to a write-through scheme is a scheme called write-back. In a 

that handles writes by 

write-back scheme, when a write occurs, the new value is written only to the block 

updating values only to 

in the cache. Th

e modifi ed block is written to the lower level of the hierarchy when 

the block in the cache, 

it is replaced. Write-back schemes can improve performance, especially when 

then writing the modifi ed 

processors can generate writes as fast or faster than the writes can be handled by 

block to the lower level 

main memory; a write-back scheme is, however, more complex to implement than 

of the hierarchy when the 

write-through. 

block is replaced. 

In the rest of this section, we describe caches from real processors, and we 

examine how they handle both reads and writes. In Section 5.8, we will describe 

the handling of writes in more detail. 

Elaboration:  Writes introduce several complications into caches that are not present 

for reads. Here we discuss two of them: the policy on write misses and effi cient 

implementation of writes in write-back caches. 

Consider a miss in a write-through cache. The most common strategy is to allocate a 

block in the cache, called  write allocate. The block is fetched from memory and then the 

appropriate portion of the block is overwritten. An alternative strategy is to update the portion of the block in memory but not put it in the cache, called  no write allocate. The motivation is that sometimes programs write entire blocks of data, such as when the operating system 

zeros a page of memory. In such cases, the fetch associated with the initial write miss may 

be unnecessary. Some computers allow the write allocation policy to be changed on a per 

page basis. 

Actually implementing stores effi ciently in a cache that uses a write-back strategy is 

more complex than in a write-through cache. A write-through cache can write the data 

into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the 

cache is write-through, the overwriting of the block in the cache is not catastrophic, since 

memory has the correct value. In a write-back cache, we must fi rst write the block back 

to memory if the data in the cache is modifi ed and we have a cache miss. If we simply 

overwrote the block on a store instruction before we knew whether the store had hit in 

the cache (as we could for a write-through cache), we would destroy the contents of the 

block, which is not backed up in the next lower level of the memory hierarchy. 
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In a write-back cache, because we cannot overwrite the block, stores either require 

two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or 

require a write buffer to hold that data—effectively allowing the store to take only one 

cycle by pipelining it. When a store buffer is used, the processor does the cache lookup 

and places the data in the store buffer during the normal cache access cycle. Assuming 

a cache hit, the new data is written from the store buffer into the cache on the next 

unused cache access cycle. 

By comparison, in a write-through cache, writes can always be done in one cycle. 

We read the tag and write the data portion of the selected block. If the tag matches 

the address of the block being written, the processor can continue normally, since the 

correct block has been updated. If the tag does not match, the processor generates a 

write miss to fetch the rest of the block corresponding to that address. 

Many write-back caches also include write buffers that are used to reduce the miss 

penalty when a miss replaces a modifi ed block. In such a case, the modifi ed block is 

moved to a write-back buffer associated with the cache while the requested block is read 

from memory. The write-back buffer is later written back to memory. Assuming another 

miss does not occur immediately, this technique halves the miss penalty when a dirty 

block must be replaced. 

An Example Cache: The Intrinsity FastMATH Processor

Th

e Intrinsity FastMATH is an embedded microprocessor that uses the MIPS 

architecture and a simple cache implementation. Near the end of the chapter, we 

will examine the more complex cache designs of ARM and Intel microprocessors, 

but we start with this simple, yet real, example for pedagogical reasons. Figure 5.12 

shows the organization of the Intrinsity FastMATH data cache. 

Th

is processor has a 12-stage pipeline. When operating at peak speed, the 

processor can request both an instruction word and a data word on every clock. 

To satisfy the demands of the pipeline without stalling, separate instruction 

and data caches are used. Each cache is 16 KiB, or 4096 words, with 16-word 

blocks. 

Read requests for the cache are straightforward. Because there are separate 

data and instruction caches, we need separate control signals to read and write 

each cache. (Remember that we need to update the instruction cache when a miss 

occurs.) Th

us, the steps for a read request to either cache are as follows:

1.  Send the address to the appropriate cache. Th

e address comes either from 

the PC (for an instruction) or from the ALU (for data). 

2.  If the cache signals hit, the requested word is available on the data lines. 

Since there are 16 words in the desired block, we need to select the right one. 

A block index fi eld is used to control the multiplexor (shown at the bottom 

of the fi gure), which selects the requested word from the 16 words in the 

indexed block. 
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FIGURE 5.12 

The 16 KiB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block.  Th e tag 

fi eld is 18 bits wide and the index fi eld is 8 bits wide, while a 4-bit fi eld (bits 5–2) is used to index the block and select the word from the block using a 16-to-1 multiplexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags, with the block off set supplying the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 

times as many words as blocks in the cache. 

3.  If the cache signals miss, we send the address to the main memory. When 

the memory returns with the data, we write it into the cache and then read it 

to fulfi ll the request. 

For writes, the Intrinsity FastMATH off ers both write-through and write-back, 

leaving it up to the operating system to decide which strategy to use for an 

application. It has a one-entry write buff er. 

What cache miss rates are attained with a cache structure like that used by the 

Intrinsity FastMATH? Figure 5.13 shows the miss rates for the instruction and data caches. Th

e combined miss rate is the eff ective miss rate per reference for 

each program aft er accounting for the diff ering frequency of instruction and data 

accesses. 
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Instruction miss rate

Data miss rate

Effective combined miss rate

0.4%

11.4%

3.2%

FIGURE 5.13 

Approximate instruction and data miss rates for the Intrinsity FastMATH 

processor for SPEC CPU2000 benchmarks.  Th

e combined miss rate is the eff ective miss rate seen 

for the combination of the 16 KiB instruction cache and 16 KiB data cache. It is obtained by weighting the instruction and data individual miss rates by the frequency of instruction and data references. 

Although miss rate is an important characteristic of cache designs, the ultimate 

measure will be the eff ect of the memory system on program execution time; we’ll 

see how miss rate and execution time are related shortly. 

Elaboration: A combined cache with a total size equal to the sum of the two split  split cache A scheme caches will usually have a better hit rate. This higher rate occurs because the combined 

in which a level of the 

cache does not rigidly divide the number of entries that may be used by instructions 

memory hierarchy 

from those that may be used by data. Nonetheless, almost all processors today use 

is composed of two 

split instruction and data caches to increase cache  bandwidth  to match what modern 

independent caches that 

pipelines expect. (There may also be fewer confl ict misses; see Section 5.8.)

operate in parallel with 

Here are miss rates for caches the size of those found in the Intrinsity FastMATH 

each other, with one 

processor, and for a combined cache whose size is equal to the sum of the two caches:

handling instructions and 

one handling data. 

■  Total cache size: 32 KiB

■  Split cache effective miss rate: 3.24%

■  Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse. 

The advantage of doubling the cache bandwidth, by supporting both an instruction 

and data access simultaneously, easily overcomes the disadvantage of a slightly 

increased miss rate. This observation cautions us that we cannot use miss rate as the 

sole measure of cache performance, as Section 5.4 shows. 

Summary

We began the previous section by examining the simplest of caches: a direct-mapped 

cache with a one-word block. In such a cache, both hits and misses are simple, since 

a word can go in exactly one location and there is a separate tag for every word. To 

keep the cache and memory consistent, a write-through scheme can be used, so 

that every write into the cache also causes memory to be updated. Th

e alternative 

to write-through is a write-back scheme that copies a block back to memory when 

it is replaced; we’ll discuss this scheme further in upcoming sections. 
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To take advantage of spatial locality, a cache must have a block size larger than 

one word. Th

e use of a larger block decreases the miss rate and improves the 

effi

ciency of the cache by reducing the amount of tag storage relative to the amount 

of data storage in the cache. Although a larger block size decreases the miss rate, it 

can also increase the miss penalty. If the miss penalty increased linearly with the 

block size, larger blocks could easily lead to lower performance. 

To avoid performance loss, the bandwidth of main memory is increased to 

transfer cache blocks more effi

ciently. Common methods for increasing bandwidth 

external to the DRAM are making the memory wider and interleaving. DRAM 

designers have steadily improved the interface between the processor and memory 

to increase the bandwidth of burst mode transfers to reduce the cost of larger cache 

block sizes. 

Check  Th

e speed of the memory system aff ects the designer’s decision on the size of 

the cache block. Which of the following cache designer guidelines are generally 

Yourself

valid? 

1. Th

e shorter the memory latency, the smaller the cache block

2. Th

e shorter the memory latency, the larger the cache block

3. Th

e higher the memory bandwidth, the smaller the cache block

4. Th

e higher the memory bandwidth, the larger the cache block

 5.4 

 Measuring and Improving Cache 

Performance

In this section, we begin by examining ways to measure and analyze cache 

performance. We then explore two diff erent techniques for improving cache 

performance. One focuses on reducing the miss rate by reducing the probability 

that two diff erent memory blocks will contend for the same cache location. Th

e 

second technique reduces the miss penalty by adding an additional level to the 

hierarchy. Th

is technique, called  multilevel caching, fi rst appeared in high-end 

computers selling for more than $100,000 in 1990; since then it has become 

common on personal mobile devices selling for a few hundred dollars! 
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CPU time can be divided into the clock cycles that the CPU spends executing 

the program and the clock cycles that the CPU spends waiting for the memory 

system. Normally, we assume that the costs of cache accesses that are hits are part 

of the normal CPU execution cycles. Th

us, 

CPU time ⫽  (CPU execution clock cycles ⫹ Memory-stall clock cycles) 

⫻ Clock cycle time

Th

e memory-stall clock cycles come primarily from cache misses, and we make 

that assumption here. We also restrict the discussion to a simplifi ed model of the 

memory system. In real processors, the stalls generated by reads and writes can be 

quite complex, and accurate performance prediction usually requires very detailed 

simulations of the processor and memory system. 

Memory-stall clock cycles can be defi ned as the sum of the stall cycles coming 

from reads plus those coming from writes:

Memory-stall clock cycles ⫽ (Read-stall cycles ⫹ Write-stall cycles)

Th

e read-stall cycles can be defi ned in terms of the number of read accesses per 

program, the miss penalty in clock cycles for a read, and the read miss rate:

Reads

Re ad-stall cycles

Read miss rate

Read miss pen

nalty

Program

Writes are more complicated. For a write-through scheme, we have two sources of 

stalls: write misses, which usually require that we fetch the block before continuing 

the write (see the  Elaboration on page 394 for more details on dealing with writes), 

and write buff er stalls, which occur when the write buff er is full when a write 

occurs. Th

us, the cycles stalled for writes equals the sum of these two:

⎛ Writes

⎞⎟

Write-stall cycles

⎜⎜

Write miss rate

Write miss penalty⎟

⎝⎜

⎟

Program

⎠⎟

Write buffer stalls

Because the write buff er stalls depend on the proximity of writes, and not just 

the frequency, it is not possible to give a simple equation to compute such stalls. 

Fortunately, in systems with a reasonable write buff er depth (e.g., four or more 

words) and a memory capable of accepting writes at a rate that signifi cantly exceeds 

the average write frequency in programs (e.g., by a factor of 2), the write buff er 

stalls will be small, and we can safely ignore them. If a system did not meet these 

criteria, it would not be well designed; instead, the designer should have used either 

a deeper write buff er or a write-back organization. 
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Write-back schemes also have potential additional stalls arising from the need 

to write a cache block back to memory when the block is replaced. We will discuss 

this more in Section 5.8. 

In most write-through cache organizations, the read and write miss penalties are 

the same (the time to fetch the block from memory). If we assume that the write 

buff er stalls are negligible, we can combine the reads and writes by using a single 

miss rate and the miss penalty:

Memory accesses

Memory-stall clock cycles

Miss rate

Miss penalty

Program

We can also factor this as

Instructions

Misses

Memory-stall clock cycles

Miss penalty

Program

Instrucction

Let’s consider a simple example to help us understand the impact of cache 

performance on processor performance. 

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data 

EXAMPLE

cache is 4%. If a processor has a CPI of 2 without any memory stalls and the 

miss penalty is 100 cycles for all misses, determine how much faster a processor 

would run with a perfect cache that never missed. Assume the frequency of all 

loads and stores is 36%. 

Th

e number of memory miss cycles for instructions in terms of the Instruction 

ANSWER

count (I) is

Instruction miss cycles ⫽ I ⫻ 2% ⫻ 100 ⫽ 2.00 ⫻ I

As the frequency of all loads and stores is 36%, we can fi nd the number of 

memory miss cycles for data references:

Data miss cycles ⫽ I ⫻ 36% ⫻ 4% ⫻ 100 ⫽ 1.44 ⫻ I
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Th

e total number of memory-stall cycles is 2.00 I ⫹ 1.44 I ⫽ 3.44 I. Th

is is 

more than three cycles of memory stall per instruction. Accordingly, the total 

CPI including memory stalls is 2 ⫹ 3.44 ⫽ 5.44. Since there is no change in 

instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls

I

CPIstall

Clock cycle

CPU time with perfect cache

I

CPI

Clock cycle

perfect

CPI

5

stall

.44

CPIperfect

2

5.44

Th

e performance with the perfect cache is better by 

⫽ 2.72. 

2

What happens if the processor is made faster, but the memory system is not? Th

e 

amount of time spent on memory stalls will take up an increasing fraction of the 

execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of 

this fact. A few simple examples show how serious this problem can be. Suppose 

we speed-up the computer in the previous example by reducing its CPI from 2 to 1 

without changing the clock rate, which might be done with an improved pipeline. 

Th

e system with cache misses would then have a CPI of 1 ⫹ 3.44 ⫽ 4.44, and the 

system with the perfect cache would be

4.44 ⫽ 4.44 times as fast. 

1

Th

e amount of execution time spent on memory stalls would have risen from

3.44 ⫽ 63%

5.44

to

3.44 ⫽ 77%

4.44

Similarly, increasing the clock rate without changing the memory system also 

increases the performance lost due to cache misses. 

Th

e previous examples and equations assume that the hit time is not a factor in 

determining cache performance. Clearly, if the hit time increases, the total time to 

access a word from the memory system will increase, possibly causing an increase in 

the processor cycle time. Although we will see additional examples of what can increase 
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hit time shortly, one example is increasing the cache size. A larger cache could clearly 

have a longer access time, just as, if your desk in the library was very large (say, 3 square 

meters), it would take longer to locate a book on the desk. An increase in hit time 

likely adds another stage to the pipeline, since it may take multiple cycles for a cache 

hit. Although it is more complex to calculate the performance impact of a deeper 

pipeline, at some point the increase in hit time for a larger cache could dominate the 

improvement in hit rate, leading to a decrease in processor performance. 

To capture the fact that the time to access data for both hits and misses aff ects 

performance, designers sometime use  average memory access time (AMAT) as 

a way to examine alternative cache designs. Average memory access time is the 

average time to access memory considering both hits and misses and the frequency 

of diff erent accesses; it is equal to the following:

AMAT ⫽ Time for a hit ⫹ Miss rate ⫻ Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 

EXAMPLE

20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access 

time (including hit detection) of 1 clock cycle. Assume that the read and write 

miss penalties are the same and ignore other write stalls. 

Th

e average memory access time per instruction is

ANSWER

AMAT

Time for a hit

Miss rate

Miss penalty

1

0.05

20

2 clocck cycles

or 2 ns. 

Th

e next subsection discusses alternative cache organizations that decrease 

miss rate but may sometimes increase hit time; additional examples appear in 

Section 5.15, Fallacies and Pitfalls. 

Reducing Cache Misses by More Flexible Placement 

of Blocks

So far, when we place a block in the cache, we have used a simple placement scheme: 

A block can go in exactly one place in the cache. As mentioned earlier, it is called 

 direct mapped because there is a direct mapping from any block address in memory 

to a single location in the upper level of the hierarchy. However, there is actually a 

whole range of schemes for placing blocks. Direct mapped, where a block can be 

placed in exactly one location, is at one extreme. 
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At the other extreme is a scheme where a block can be placed in  any location 

in the cache. Such a scheme is called fully associative, because a block in memory  fully associative may be associated with any entry in the cache. To fi nd a given block in a fully  cache  A cache structure associative cache, all the entries in the cache must be searched because a block  in which a block can be can be placed in any one. To make the search practical, it is done in parallel with  placed in any location in the cache. 

a comparator associated with each cache entry. Th

ese comparators signifi cantly 

increase the hardware cost, eff ectively making fully associative placement practical 

only for caches with small numbers of blocks. 

Th

e middle range of designs between direct mapped and fully associative 

is called set associative. In a set-associative cache, there are a fi xed number of  set-associative cache locations where each block can be placed. A set-associative cache with  n locations  A cache that has a fi xed for a block is called an  n-way set-associative cache. An  n-way set-associative cache  number of locations (at consists of a number of sets, each of which consists of  n blocks. Each block in the  least two) where each block can be placed. 

memory maps to a unique  set in the cache given by the index fi eld, and a block can 

be placed in  any element of that set. Th

us, a set-associative placement combines 

direct-mapped placement and fully associative placement: a block is directly 

mapped into a set, and then all the blocks in the set are searched for a match. For 

example, Figure 5.14 shows where block 12 may be placed in a cache with eight blocks total, according to the three block placement policies. 

Remember that in a direct-mapped cache, the position of a memory block is 

given by

(Block number) modulo (Number of  blocks in the cache)

Direct mapped

Set associative

Fully associative

Block # 0 1 2 3 4 5 6 7

Set #

0

1

2

3

Data

Data

Data

1

1

1

Tag

Tag

Tag

2

2

2

Search

Search

Search

FIGURE 5.14 

The location of a memory block whose address is 12 in a cache with eight 

blocks varies for direct-mapped, set-associative, and fully associative placement.  In direct-mapped placement, there is only one cache block where memory block 12 can be found, and that block is given by (12 modulo 8) ⫽ 4. In a two-way set-associative cache, there would be four sets, and memory block 12 must be in set (12 mod 4) ⫽ 0; the memory block could be in either element of the set. In a fully associative placement, the memory block for block address 12 can appear in any of the eight cache blocks. 
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In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of  sets in the cache)

Since the block may be placed in any element of the set,  all the tags of all the elements 

 of the set must be searched. In a fully associative cache, the block can go anywhere, 

and  all tags of all the blocks in the cache must be searched. 

We can also think of all block placement strategies as a variation on set 

associativity.  Figure 5.15 shows the possible associativity structures for an eight-block cache. A direct-mapped cache is simply a one-way set-associative cache: 

each cache entry holds one block and each set has one element. A fully associative 

cache with  m entries is simply an  m-way set-associative cache; it has one set with  m blocks, and an entry can reside in any block within that set. 

Th

e advantage of increasing the degree of associativity is that it usually decreases 

the miss rate, as the next example shows. Th

e main disadvantage, which we discuss 

in more detail shortly, is a potential increase in the hit time. 

One-way set associative

(direct mapped)

Block

Tag Data

0

Two-way set associative

1

Set

Tag Data Tag Data

2

0

3

1

4

2

5

3

6

7

Four-way set associative

Set

Tag Data Tag Data Tag Data Tag Data

0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

FIGURE 5.15 

An eight-block cache confi gured as direct mapped, two-way set associative, 

four-way set associative, and fully associative.  Th

e total size of the cache in blocks is equal to the 

number of sets times the associativity. Th

us, for a fi xed cache size, increasing the associativity decreases 

the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-associative cache is the same as a fully associative cache. 
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Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks. 

One cache is fully associative, a second is two-way set-associative, and the 

EXAMPLE

third is direct-mapped. Find the number of misses for each cache organization 

given the following sequence of block addresses: 0, 8, 0, 6, and 8. 

Th

e direct-mapped case is easiest. First, let’s determine to which cache block 

each block address maps:

ANSWER

Block address

Cache block

0

(0 modulo 4) ⫽ 0

6

(6 modulo 4) ⫽ 2

8

(8 modulo 4) ⫽ 0

Now we can fi ll in the cache contents aft er each reference, using a blank entry to 

mean that the block is invalid, colored text to show a new entry added to the cache 

for the associated reference, and plain text to show an old entry in the cache:

Contents of cache blocks after reference

Address of memory

Hit

block accessed

or miss

0

1

2

3

0

miss

Memory[0]

8

miss

Memory[8]

0

miss

Memory[0]

6

miss

Memory[0]

Memory[6]

8

miss

Memory[8]

Memory[6]

Th

e direct-mapped cache generates fi ve misses for the fi ve accesses. 

Th

e set-associative cache has two sets (with indices 0 and 1) with two 

elements per set. Let’s fi rst determine to which set each block address maps:

Block address

Cache set

0

(0 modulo 2) ⫽ 0

6

(6 modulo 2) ⫽ 0

8

(8 modulo 2) ⫽ 0

Because we have a choice of which entry in a set to replace on a miss, we need 

a replacement rule. Set-associative caches usually replace the least recently 

used block within a set; that is, the block that was used furthest in the past 
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is replaced. (We will discuss other replacement rules in more detail shortly.) 

Using this replacement rule, the contents of the set-associative cache aft er each 

reference looks like this:

Contents of cache blocks after reference

Address of memory

Hit

block accessed

or miss

Set 0

Set 0

Set 1

Set 1

0

miss

Memory[0]

8

miss

Memory[0]

Memory[8]

0

hit

Memory[0]

Memory[8]

6

miss

Memory[0]

Memory[6]

8

miss

Memory[8]

Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 

been less recently referenced than block 0. Th

e two-way set-associative cache 

has four misses, one less than the direct-mapped cache. 

Th

e fully associative cache has four cache blocks (in a single set); any 

memory block can be stored in any cache block. Th

e fully associative cache has 

the best performance, with only three misses:

Contents of cache blocks after reference

Address of memory

Hit

block accessed

or miss

Block 0

Block 1

Block 2

Block 3

0

miss

Memory[0]

8

miss

Memory[0]

Memory[8]

0

hit

Memory[0]

Memory[8]

6

miss

Memory[0]

Memory[8]

Memory[6]

8

hit

Memory[0]

Memory[8]

Memory[6]

For this series of references, three misses is the best we can do, because three 

unique block addresses are accessed. Notice that if we had eight blocks in the 

cache, there would be no replacements in the two-way set-associative cache 

(check this for yourself), and it would have the same number of misses as the 

fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have 

the same number of misses. Even this trivial example shows that cache size and 

associativity are not independent in determining cache performance. 

How much of a reduction in the miss rate is achieved by associativity? 

Figure 5.16 shows the improvement for a 64 KiB data cache with a 16-word block, and associativity ranging from direct mapped to eight-way. Going from one-way 

to two-way associativity decreases the miss rate by about 15%, but there is little 

further improvement in going to higher associativity. 
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Associativity

Data miss rate

1

10.3%

2

8.6%

4

8.3%

8

8.1%

FIGURE 5.16 

The data cache miss rates for an organization like the Intrinsity FastMATH 

processor for SPEC CPU2000 benchmarks with associativity varying from one-way to 

eight-way.  Th

ese results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003). 

Tag

Index

Block offset

FIGURE 5.17 

The three portions of an address in a set-associative or direct-mapped 


cache. Th

e index is used to select the set, then the tag is used to choose the block by comparison with the blocks in the selected set. Th

e block off set is the address of the desired data within the block. 

Locating a Block in the Cache

Now, let’s consider the task of fi nding a block in a cache that is set associative. 

Just as in a direct-mapped cache, each block in a set-associative cache includes 

an address tag that gives the block address. Th

e tag of every cache block within 

the appropriate set is checked to see if it matches the block address from the 

processor. Figure 5.17 decomposes the address. Th

e index value is used to select 

the set containing the address of interest, and the tags of all the blocks in the set 

must be searched. Because speed is of the essence, all the tags in the selected set are 

searched in parallel. As in a fully associative cache, a sequential search would make 

the hit time of a set-associative cache too slow. 

If the total cache size is kept the same, increasing the associativity increases the 

number of blocks per set, which is the number of simultaneous compares needed 

to perform the search in parallel: each increase by a factor of 2 in associativity 

doubles the number of blocks per set and halves the number of sets. Accordingly, 

each factor-of-2 increase in associativity decreases the size of the index by 1 bit and 

increases the size of the tag by 1 bit. In a fully associative cache, there is eff ectively 

only one set, and all the blocks must be checked in parallel. Th

us, there is no index, 

and the entire address, excluding the block off set, is compared against the tag of 

every block. In other words, we search the entire cache without any indexing. 

In a direct-mapped cache, only a single comparator is needed, because the entry can 

be in only one block, and we access the cache simply by indexing. Figure 5.18 shows that in a four-way set-associative cache, four comparators are needed, together with 

a 4-to-1 multiplexor to choose among the four potential members of the selected set. 

Th

e cache access consists of indexing the appropriate set and then searching the tags 

of the set. Th

e costs of an associative cache are the extra comparators and any delay 

imposed by having to do the compare and select from among the elements of the set. 
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Address

31 30

12 11 10 9 8

3 2 1 0

22

8

Tag

Index

Index

V Tag

Data

V Tag

Data

V Tag

Data

V Tag

Data

012

253

254

255

22

32

=

=

=

=

4-to-1 multiplexor

Hit

Data

FIGURE 5.18 

The implementation of a four-way set-associative cache requires four 

comparators and a 4-to-1 multiplexor.  Th

e comparators determine which element of the selected set 

(if any) matches the tag. Th

e output of the comparators is used to select the data from one of the four blocks 

of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the output. Th

e Output enable signal comes from the comparators, causing the element that matches to drive the 

data outputs. Th

is organization eliminates the need for the multiplexor. 

Th

e choice among direct-mapped, set-associative, or fully associative mapping 

in any memory hierarchy will depend on the cost of a miss versus the cost of 

implementing associativity, both in time and in extra hardware. 

Elaboration: A   Content Addressable Memory (CAM) is a circuit that combines 

comparison and storage in a single device. Instead of supplying an address and reading 

a word like a RAM, you supply the data and the CAM looks to see if it has a copy and 

returns the index of the matching row. CAMs mean that cache designers can afford to 

implement much higher set associativity than if they needed to build the hardware out 

of SRAMs and comparators. In 2013, the greater size and power of CAM generally leads 

to 2-way and 4-way set associativity being built from standard SRAMs and comparators, 

with 8-way and above built using CAMs. 
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Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in 

exactly one position, and the block occupying that position must be replaced. In 

an associative cache, we have a choice of where to place the requested block, and 

hence a choice of which block to replace. In a fully associative cache, all blocks are 

candidates for replacement. In a set-associative cache, we must choose among the 

blocks in the selected set. 

least recently used 

(LRU)

Th

e most commonly used scheme is least recently used (LRU), which we used 

A replacement 

scheme in which the 

in the previous example. In an LRU scheme, the block replaced is the one that has  block replaced is the one been unused for the longest time. Th

e set associative example on page 405 uses  that has been unused for 

LRU, which is why we replaced Memory(0) instead of Memory(6). 

the longest time. 

LRU replacement is implemented by keeping track of when each element in a 

set was used relative to the other elements in the set. For a two-way set-associative 

cache, tracking when the two elements were used can be implemented by keeping 

a single bit in each set and setting the bit to indicate an element whenever that 

element is referenced. As associativity increases, implementing LRU gets harder; in 

Section 5.8, we will see an alternative scheme for replacement. 

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per 

cache block. Assuming a cache of 4096 blocks, a 4-word block size, and a 

EXAMPLE

32-bit address, fi nd the total number of sets and the total number of tag bits 

for caches that are direct mapped, two-way and four-way set associative, and 

fully associative. 

Since there are 16 (⫽ 24) bytes per block, a 32-bit address yields 32⫺4 ⫽ 28 bits 

to be used for index and tag. Th

e direct-mapped cache has the same number 

ANSWER

of sets as blocks, and hence 12 bits of index, since log (4096) ⫽ 12; hence, the 

2

total number is (28⫺12) ⫻ 4096 ⫽ 16 ⫻ 4096 ⫽ 66 K tag bits. 

Each degree of associativity decreases the number of sets by a factor of 2 and 

thus decreases the number of bits used to index the cache by 1 and increases 

the number of bits in the tag by 1. Th

us, for a two-way set-associative cache, 

there are 2048 sets, and the total number of tag bits is (28⫺11) ⫻ 2 ⫻ 2048 ⫽ 

34 ⫻ 2048 ⫽ 70 Kbits. For a four-way set-associative cache, the total number 

of sets is 1024, and the total number is (28⫺10) ⫻ 4 ⫻ 1024 ⫽ 72 ⫻ 1024 ⫽ 

74 K tag bits. 

For a fully associative cache, there is only one set with 4096 blocks, and the 

tag is 28 bits, leading to 28 ⫻ 4096 ⫻ 1 ⫽ 115 K tag bits. 

410 

Chapter 5  Large and Fast: Exploiting Memory Hierarchy

Reducing the Miss Penalty Using Multilevel Caches

All modern computers make use of caches. To close the gap further between the 

fast clock rates of modern processors and the increasingly long time required to 

access DRAMs, most microprocessors support an additional level of caching. Th

is 

second-level cache is normally on the same chip and is accessed whenever a miss 

occurs in the primary cache. If the second-level cache contains the desired data, 

the miss penalty for the fi rst-level cache will be essentially the access time of the 

second-level cache, which will be much less than the access time of main memory. 

If neither the primary nor the secondary cache contains the data, a main memory 

access is required, and a larger miss penalty is incurred. 

How signifi cant is the performance improvement from the use of a secondary 

cache? Th

e next example shows us. 

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references 

EXAMPLE

hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory 

access time of 100 ns, including all the miss handling. Suppose the miss rate 

per instruction at the primary cache is 2%. How much faster will the processor 

be if we add a secondary cache that has a 5 ns access time for either a hit or 

a miss and is large enough to reduce the miss rate to main memory to 0.5%? 

Th

e miss penalty to main memory is

ANSWER

100 ns

⫽ 400 clock cycles

ns

0.25  clock cycle

Th

e eff ective CPI with one level of caching is given by

Total CPI ⫽ Base CPI ⫹ Memory-stall cycles per instruction

For the processor with one level of caching, 

Total CPI ⫽ 1.0 ⫹ Memory-stall cycles per instruction ⫽ 1.0 ⫹ 2% ⫻ 400 ⫽ 9

With two levels of caching, a miss in the primary (or fi rst-level) cache can be 

satisfi ed either by the secondary cache or by main memory. Th

e miss penalty 

for an access to the second-level cache is

5 ns

⫽ 20 clock cycles

ns

0.25  clock cycle
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If the miss is satisfi ed in the secondary cache, then this is the entire miss 

penalty. If the miss needs to go to main memory, then the total miss penalty is 

the sum of the secondary cache access time and the main memory access time. 

Th

us, for a two-level cache, total CPI is the sum of the stall cycles from both 

levels of cache and the base CPI:

Total CPI

1

Primary stalls per instruction

Secondary stalls per instruction

1

2%

20

0.5%

400

1

0.4

2.0

3.4

Th

us, the processor with the secondary cache is faster by

9.0 ⫽ 2.6

3.4

Alternatively, we could have computed the stall cycles by summing the stall 

cycles of those references that hit in the secondary cache ((2%⫺0.5%)  ⫻ 

20 ⫽ 0.3). Th

ose references that go to main memory, which must include the 

cost to access the secondary cache as well as the main memory access time, are 

(0.5% ⫻ (20 ⫹ 400) ⫽ 2.1). Th

e sum, 1.0 ⫹ 0.3 ⫹ 2.1, is again 3.4. 

Th

e design considerations for a primary and secondary cache are signifi cantly 

diff erent, because the presence of the other cache changes the best choice versus 

a single-level cache. In particular, a two-level cache structure allows the primary 

cache to focus on minimizing hit time to yield a shorter clock cycle or fewer 

pipeline stages, while allowing the secondary cache to focus on miss rate to reduce 

the penalty of long memory access times. 

Th

e eff ect of these changes on the two caches can be seen by comparing each 

cache to the optimal design for a single level of cache. In comparison to a single-

level cache, the primary cache of a multilevel cache is oft en smaller. Furthermore, multilevel cache the primary cache may use a smaller block size, to go with the smaller cache size and 

A memory hierarchy with 

also to reduce the miss penalty. In comparison, the secondary cache will be much  multiple levels of caches, larger than in a single-level cache, since the access time of the secondary cache is  rather than just a cache and main memory. 

less critical. With a larger total size, the secondary cache may use a larger block size 

than appropriate with a single-level cache. It oft en uses higher associativity than 

the primary cache given the focus of reducing miss rates. 

Sorting has been exhaustively analyzed to fi nd better algorithms: Bubble Sort, Understanding 

Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by  Program item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix 

Sort has an algorithmic advantage over Quicksort in terms of number of operations. 

Performance

Figure 5.19(b) shows time per key instead of instructions executed. We see that the lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line 
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FIGURE 5.19 

Comparing Quicksort and Radix Sort by (a) instructions executed per item 

sorted, (b) time per item sorted, and (c) cache misses per item sorted.  Th

is data is from a 

paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). Th e basic 

idea of cache optimizations is to use all the data in a block repeatedly before it is replaced on a miss. 
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diverges as the data to sort increases. What is going on? Figure 5.19(c) answers by looking at the cache misses per item sorted: Quicksort consistently has many fewer 

misses per item to be sorted. 

Alas, standard algorithmic analysis oft en ignores the impact of the memory 

hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all of 

the performance out of a stream of instructions, using the memory hierarchy well 

is critical to high performance. As we said in the introduction, understanding the 

behavior of the memory hierarchy is critical to understanding the performance of 

programs on today’s computers. 

Software Optimization via Blocking

Given the importance of the memory hierarchy to program performance, not 

surprisingly many soft ware optimizations were invented that can dramatically 

improve performance by reusing data within the cache and hence lower miss rates 

due to improved temporal locality. 

When dealing with arrays, we can get good performance from the memory 

system if we store the array in memory so that accesses to the array are sequential 

in memory. Suppose that we are dealing with multiple arrays, however, with some 

arrays accessed by rows and some by columns. Storing the arrays row-by-row 

(called   row major order) or column-by-column ( column major order) does not 

solve the problem because both rows and columns are used in every loop iteration. 

Instead of operating on entire rows or columns of an array,  blocked algorithms 

operate on submatrices or  blocks. Th

e goal is to maximize accesses to the data 

loaded into the cache before the data are replaced; that is, improve temporal locality 

to reduce cache misses. 

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.21 in 

Chapter 3) are

for (int j = 0; j < n; ++j) 

{

double cij = C[i+j*n]; /* cij = C[i][j] */

for( int k = 0; k < n; k++ )



cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

C[i+j*n] = cij; /* C[i][j] = cij */

}

}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to 

one row of A repeatedly, and writes what corresponds to one row of N elements of 

C. (Th

e comments make the rows and columns of the matrices easier to identify.) 

Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade indicates a recent access, a light shade indicates an older access, and white means 

not yet accessed. 
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FIGURE 5.20 A snapshot of the three arrays C, A, and B when N ⴝ 6 and i ⴝ 1.  Th e age of 

accesses to the array elements is indicated by shade: white means not yet touched, light means older accesses, and dark means newer accesses. Compared to Figure 5.21, elements of A and B are read repeatedly to calculate new elements of x. Th

e variables i, j, and k are shown along the rows or columns used to access the arrays. 

Th

e number of capacity misses clearly depends on N and the size of the cache. If 

it can hold all three N-by-N matrices, then all is well, provided there are no cache 

confl icts. We purposely picked the matrix size to be 32 by 32 in DGEMM for 

Chapters 3 and 4 so that this would be the case. Each matrix is 32 ⫻ 32 ⫽ 1024 

elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which 

comfortably fi t in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge). 

If the cache can hold one N-by-N matrix and one row of N, then at least the ith 

row of A and the array B may stay in the cache. Less than that and misses may 

occur for both B and C. In the worst case, there would be 2 N3 ⫹ N2 memory words 

accessed for N3 operations. 

To ensure that the elements being accessed can fi t in the cache, the original code 

is changed to compute on a submatrix. Hence, we essentially invoke the version of 

DGEMM from Figure 4.80 in Chapter 4 repeatedly on matrices of size BLOCKSIZE 

by BLOCKSIZE. BLOCKSIZE is called the  blocking factor. 

Figure 5.21 shows the blocked version of DGEMM. Th

e function do_block is 

DGEMM from Figure 3.21 with three new parameters si, sj, and sk to specify 

the starting position of each submatrix of of A, B, and C. Th

e two inner loops of the 

do_block now compute in steps of size BLOCKSIZE rather than the full length 

of B and C. Th

e gcc optimizer removes any function call overhead by “inlining” the 

function; that is, it inserts the code directly to avoid the conventional parameter 

passing and return address bookkeeping instructions. 

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking only at capacity misses, the total number of memory words accessed is 2 N3/ 

BLOCKSIZE ⫹ N2. Th

is total is an improvement by about a factor of BLOCKSIZE. 

Hence, blocking exploits a combination of spatial and temporal locality, since A 

benefi ts from spatial locality and B benefi ts from temporal locality. 
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1  #define BLOCKSIZE 32

2  void do_block (int n, int si, int sj, int sk, double *A, double

3  *B, double *C)

4 {

5   

for (int i = si; i < si+BLOCKSIZE; ++i)

6   



for (int j = sj; j < sj+BLOCKSIZE; ++j)

7 



{

8 

double 

cij 

= 

C[i+j*n];/* cij = C[i][j] */

9   







for( int k = sk; k < sk+BLOCKSIZE; k++ )

10   









cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11 

C[i+j*n] 

= 

cij;/* C[i][j] = cij */

12 



}

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16  



for ( int sj = 0; sj < n; sj += BLOCKSIZE )

17  





for ( int si = 0; si < n; si += BLOCKSIZE )

18   





for ( int sk = 0; sk < n; sk += BLOCKSIZE )

19   







do_block(n, si, sj, sk, A, B, C); 

20 }

FIGURE 5.21 

Cache blocked version of DGEMM in Figure 3.21. Assume C is initialized to zero. Th

e do_block 

function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the submatrices of BLOCKSIZE. Th

e gcc optimizer can remove the function overhead instructions by inlining the do_block function. 
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FIGURE 5.22 

The age of accesses to the arrays C, A, and B when  BLOCKSIZE ⴝ 3. Note that, in contrast to Figure 5.20,  fewer elements are accessed. 

Although we have aimed at reducing cache misses, blocking can also be used to 

help register allocation. By taking a small blocking size such that the block can be 

held in registers, we can minimize the number of loads and stores in the program, 

which also improves performance. 
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Performance of unoptimized DGEMM (Figure 3.21) versus cache blocked 

DGEMM (Figure 5.21) as the matrix dimension varies from 32x32 (where all three matrices fi t in the cache) to 960x960. 

Figure 5.23 shows the impact of cache blocking on the performance of the 

unoptimized DGEMM as we increase the matrix size beyond where all three 

matrices fi t in the cache. Th

e unoptimized performance is halved for the largest 

matrix. Th

e cache-blocked version is less than 10% slower even at matrices that are 

960x960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4. 

Elaboration: Multilevel caches create several complications. First, there are now 

several different types of misses and corresponding miss rates. In the example on 

global miss rate  Th

e 

pages 410–411, we saw the primary cache miss rate and the global miss rate—the 

fraction of references 

fraction of references that missed in all cache levels. There is also a miss rate for the 

that miss in all levels of a 

secondary cache, which is the ratio of all misses in the secondary cache divided by the 

multilevel cache. 

number of accesses to it. This miss rate is called the local miss rate of the secondary 

cache. Because the primary cache fi lters accesses, especially those with good spatial 

local miss rate  Th

e 

and temporal locality, the local miss rate of the secondary cache is much higher than the 

fraction of references to 

global miss rate. For the example on pages 410–411, we can compute the local miss 

one level of a cache that 

rate of the secondary cache as 0.5%/2% ⫽ 25%! Luckily, the global miss rate dictates 

miss; used in multilevel 

how often we must access the main memory. 

hierarchies. 

Elaboration: With out-of-order processors (see Chapter 4), performance is more 

complex, since they execute instructions during the miss penalty. Instead of instruction 

miss rates and data miss rates, we use misses per instruction, and this formula:

Memory

stall cycles

Misses

(Total miss latency

Overlapped miss latency)

Instruction

Instruction
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There is no general way to calculate overlapped miss latency, so evaluations of 

memory hierarchies for out-of-order processors inevitably require simulation of the 

processor and the memory hierarchy. Only by seeing the execution of the processor 

during each miss can we see if the processor stalls waiting for data or simply fi nds other 

work to do. A guideline is that the processor often hides the miss penalty for an L1 

cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache. 

Elaboration:  The performance challenge for algorithms is that the memory hierarchy 

varies between different implementations of the same architecture in cache size, 

associativity, block size, and number of caches. To cope with such variability, some 

recent numerical libraries parameterize their algorithms and then search the parameter 

space at runtime to fi nd the best combination for a particular computer. This approach 

is called  autotuning. 

Which of the following is generally true about a design with multiple levels of  Check 

caches? 

Yourself

1.  First-level caches are more concerned about hit time, and second-level 

caches are more concerned about miss rate. 

2.  First-level caches are more concerned about miss rate, and second-level 

caches are more concerned about hit time. 

Summary

In this section, we focused on four topics: cache performance, using associativity to 

reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties, 

and soft ware optimizations to improve eff ectiveness of caches. 

Th

e memory system has a signifi cant eff ect on program execution time. Th

e 

number of memory-stall cycles depends on both the miss rate and the miss penalty. 

Th

e challenge, as we will see in Section 5.8, is to reduce one of these factors without 

signifi cantly aff ecting other critical factors in the memory hierarchy. 

To reduce the miss rate, we examined the use of associative placement schemes. 

Such schemes can reduce the miss rate of a cache by allowing more fl exible 

placement of blocks within the cache. Fully associative schemes allow blocks to be 

placed anywhere, but also require that every block in the cache be searched to satisfy 

a request. Th

e higher costs make large fully associative caches impractical. Set-

associative caches are a practical alternative, since we need only search among the 

elements of a unique set that is chosen by indexing. Set-associative caches have higher 

miss rates but are faster to access. Th

e amount of associativity that yields the best 

performance depends on both the technology and the details of the implementation. 

We looked at multilevel caches as a technique to reduce the miss penalty by 

allowing a larger secondary cache to handle misses to the primary cache. Second-

level caches have become commonplace as designers fi nd that limited silicon and 

the goals of high clock rates prevent primary caches from becoming large. Th

e 

secondary cache, which is oft en ten or more times larger than the primary cache, 

handles many accesses that miss in the primary cache. In such cases, the miss 

penalty is that of the access time to the secondary cache (typically < 10 processor 
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cycles) versus the access time to memory (typically > 100 processor cycles). As with 

associativity, the design tradeoff s between the size of the secondary cache and its 

access time depend on a number of aspects of the implementation. 

Finally, given the importance of the memory hierarchy in performance, we 

looked at how to change algorithms to improve cache behavior, with blocking 

being an important technique when dealing with large arrays. 

 5.5 

Dependable Memory Hierarchy

Implicit in all the prior discussion is that the memory hierarchy doesn’t forget. Fast 

but undependable is not very attractive. As we learned in Chapter 1, the one great 

idea for dependability is redundancy. In this section we’ll fi rst go over the terms to 

defi ne terms and measures associated with failure, and then show how redundancy 

can make nearly unforgettable memories. 

Defi ning Failure

We start with an assumption that you have a specifi cation of proper service. Users 

can then see a system alternating between two states of delivered service with 

respect to the service specifi cation:

1.   Service 

 accomplishment,  where the service is delivered as specifi ed

2.   Service interruption,  where the delivered service is diff erent from the 

specifi ed service

Transitions from state 1 to state 2 are caused by  failures, and transitions from state 

2 to state 1 are called  restorations. Failures can be permanent or intermittent. Th

e 

latter is the more diffi

cult case; it is harder to diagnose the problem when a system 

oscillates between the two states. Permanent failures are far easier to diagnose. 

Th

is defi nition leads to two related terms: reliability and availability. 

 Reliability is a measure of the continuous service accomplishment—or, equivalently, 

of the time to failure—from a reference point. Hence,  mean time to failure (MTTF) 

is a reliability measure. A related term is  annual failure rate (AFR), which is just the 

percentage of devices that would be expected to fail in a year for a given MTTF. 

When MTTF gets large it can be misleading, while AFR leads to better intuition. 

MTTF vs. AFR of Disks

Some disks today are quoted to have a 1,000,000-hour MTTF. As 1,000,000 

EXAMPLE

hours is 1,000,000/(365 ⫻ 24) ⫽ 114 years, it would seem like they practically 

never fail. Warehouse scale computers that run Internet services such as 

Search might have 50,000 servers. Assume each server has 2 disks. Use AFR to 

calculate how many disks we would expect to fail per year. 
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One year is 365 ⫻ 24 ⫽ 8760 hours. A 1,000,000-hour MTTF means an AFR 

of 8760/1,000,000 ⫽ 0.876%. With 100,000 disks, we would expect 876 disks to 

ANSWER

fail per year, or on average more than 2 disk failures per day! 

Service interruption is measured as  mean time to repair (MTTR).  Mean time 

 between failures (MTBF) is simply the sum of MTTF + MTTR. Although MTBF 

is widely used, MTTF is oft en the more appropriate term.  Availability is then a 

measure of service accomplishment with respect to the alternation between the two 

states of accomplishment and interruption. Availability is statistically quantifi ed as

MTTF

Availability

(MTTF

MTTR)

Note that reliability and availability are actually quantifi able measures, rather than 

just synonyms for dependability. Shrinking MTTR can help availability as much as 

increasing MTTF. For example, tools for fault detection, diagnosis, and repair can 

help reduce the time to repair faults and thereby improve availability. 

We want availability to be very high. One shorthand is to quote the number of 

“nines of availability” per year. For example, a very good Internet service today 

off ers 4 or 5 nines of availability. Given 365 days per year, which is 365 ⫻ 24 ⫻ 

60 ⫽ 526,000 minutes, then the shorthand is decoded as follows:

One nine: 

90% 

=>  36.5 days of repair/year

Two nines: 

99% 

=>  3.65 days of repair/year

Th

ree nines: 

99.9% 

=>  526 minutes of repair/year

Four nines: 

99.99% 

=>  52.6 minutes of repair/year

Five nines: 

99.999%  =>  5.26 minutes of repair/year

and so on. 

To increase MTTF, you can improve the quality of the components or design 

systems to continue operation in the presence of components that have failed. 

Hence, failure needs to be defi ned with respect to a context, as failure of a component 

may not lead to a failure of the system. To make this distinction clear, the term  fault 

is used to mean failure of a component. Here are three ways to improve MTTF:

1.   Fault 

 avoidanc e :  Preventing fault occurrence by construction. 

2.   Fault tolerance:  Using redundancy to allow the service to comply with the 

service specifi cation despite faults occurring. 

3.   Fault forecasting:  Predicting the presence and creation of faults, allowing 

the component to be replaced  before it fails. 
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The Hamming Single Error Correcting, Double Error 

Detecting Code (SEC/DED)

Richard Hamming invented a popular redundancy scheme for memory, for which 

he received the Turing Award in 1968. To invent redundant codes, it is helpful 

to talk about how “close” correct bit patterns can be. What we call the  Hamming 

 distance is just the minimum number of bits that are diff erent between any two 

correct bit patterns. For example, the distance between 011011 and 001111 is two. 

What happens if the minimum distance between members of a codes is two, and 

we get a one-bit error? It will turn a valid pattern in a code to an invalid one. Th

us, 

if we can detect whether members of a code are valid or not, we can detect single 

error detection 

bit errors, and can say we have a single bit  error detection code. 

code  A code that 

Hamming used a  parity code for error detection. In a parity code, the number 

enables the detection of 

of 1s in a word is counted; the word has odd parity if the number of 1s is odd and 

an error in data, but not 

even otherwise. When a word is written into memory, the parity bit is also written 

the precise location and, 

(1 for odd, 0 for even). Th

at is, the parity of the N+1 bit word should always be even. 

hence, correction of the 

Th

en, when the word is read out, the parity bit is read and checked. If the parity of the 

error. 

memory word and the stored parity bit do not match, an error has occurred. 

Calculate the parity of a byte with the value 31  and show the pattern stored to 

ten

EXAMPLE

memory. Assume the parity bit is on the right. Suppose the most signifi cant bit 

was inverted in memory, and then you read it back. Did you detect the error? 

What happens if the two most signifi cant bits are inverted? 

31  is 00011111 , which has fi ve 1s. To make parity even, we need to write a 1 

ten

two

ANSWER

in the parity bit, or 000111111 . If the most signifi cant bit is inverted when we 

two

read it back, we would see 100111111  which has seven 1s. Since we expect 

two

even parity and calculated odd parity, we would signal an error. If the  two most 

signifi cant bits are inverted, we would see 110111111  which has eight 1s or 

two

even parity and we would  not signal an error. 

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors, 

since the parity will match the data with two errors. (Actually, a 1-bit parity scheme 

can detect any odd number of errors; however, the probability of having 3 errors is 

much lower than the probability of having two, so, in practice, a 1-bit parity code is 

limited to detecting a single bit of error.) 

Of course, a parity code cannot correct errors, which Hamming wanted to do 

as well as detect them. If we used a code that had a minimum distance of 3, then 

any single bit error would be closer to the correct pattern than to any other valid 

pattern. He came up with an easy to understand mapping of data into a distance 3 

code that we call  Hamming Error Correction Code (ECC) in his honor. We use extra 
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parity bits to allow the position identifi cation of a single error. Here are the steps to 

calculate Hamming ECC

1.  Start numbering bits from 1 on the left , as opposed to the traditional 

numbering of the rightmost bit being 0. 

2.  Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8, 

16, …) . 

3.  All other bit positions are used for data bits (positions 3, 5, 6, 7, 9, 10, 11, 12, 

13, 14, 15, …). 

4. Th

e position of parity bit determines sequence of data bits that it checks 

(Figure 5.24 shows this coverage graphically) is:

■  Bit 1 (0001 ) checks bits (1,3,5,7,9,11,...), which are bits where rightmost 

two

bit of address is 1 (0001 , 0011 , 0101 , 0111 , 1001 , 1011 ,…). 

two

two

two

two

two

two

■  Bit 2 (0010 ) checks bits (2,3,6,7,10,11,14,15,…), which are the bits 

two

where the second bit to the right in the address is 1. 

■  Bit 4 (0100 ) checks bits (4–7, 12–15, 20–23,...) , which are the bits where 

two

the third bit to the right in the address is 1. 

■  Bit 8 (1000 ) checks bits (8–15, 24–31, 40–47,...), which are the bits 

two

where the fourth bit to the right in the address is 1. 



Note that each data bit is covered by two or more parity bits. 

5.  Set parity bits to create even parity for each group. 

Bit position

1

2

3

4

5

6

7

8

9

10

11

12

Encoded data bits

p1

p2

d1

p4

d2

d3

d4

p8

d5

d6

d7

d8

p1

X

X

X

X

X

X

Parity

p2

X

X

X

X

X

X

bit

coverage

p4

X

X

X

X

X

p8

X

X

X

X

X

FIGURE 5.24 

Parity bits, data bits, and fi eld coverage in a Hamming ECC code for 

eight data bits. 

In what seems like a magic trick, you can then determine whether bits are 

incorrect by looking at the parity bits. Using the 12 bit code in Figure 5.24, if the value of the four parity calculations (p8,p4,p2,p1) was 0000, then there was no 

error. However, if the pattern was, say, 1010, which is 10 , then Hamming ECC 

ten

tells us that bit 10 (d6) is an error. Since the number is binary, we can correct the 

error just by inverting the value of bit 10. 

422 

Chapter 5  Large and Fast: Exploiting Memory Hierarchy

Assume one byte data value is 10011010 . First show the Hamming ECC code 

two

EXAMPLE

for that byte, and then invert bit 10 and show that the ECC code fi nds and 

corrects the single bit error. 

Leaving spaces for the parity bits, the 12 bit pattern is _ _ 1 _ 0 0 1 _ 1 0 1 0. 

ANSWER

Position 1 checks bits 1,3,5,7,9, and11, which we highlight: __ 1 _ 0 0 1 _ 1 0 1 

0. To make the group even parity, we should set bit 1 to 0. 

Position 2 checks bits 2,3,6,7,10,11, which is 0 _ 1 _ 0 0 1 _ 1 0 1 0 or odd parity, so we set position 2 to a 1. 



Position 4 checks bits 4,5,6,7,12, which is 0 1 1 _ 0 0 1 _ 1 0 1, so we set it to a 1. 

Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1 _ 1 0 1 0, so we set it to a 0. 

Th

e fi nal code word is 011100101010. Inverting bit 10 changes it to 

011100101110. 

Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK). 

Parity bit 2 is 1 (011100101110 is fi ve 1s, so odd parity; there is an error somewhere). 

Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK). 

Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error 

somewhere). 

Parity bits 2 and 10 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence, 

we can correct the error by inverting bit 10: 011100101010. Voila! 

Hamming did not stop at single bit error correction code. At the cost of one more 

bit, we can make the minimum Hamming distance in a code be 4. Th

is means 

we can correct single bit errors  and detect double bit errors. Th

e idea is to add a 

parity bit that is calculated over the whole word. Let’s use a four-bit data word as 

an example, which would only need 7 bits for single bit error detection. Hamming 

parity bits H (p1 p2 p3) are computed (even parity as usual) plus the even parity 

over the entire word, p4:

1    2    3    4    5    6    7   8

p   p    d    p    d    d   d    p

1

2

1

3

2

3

4

4

Th

en the algorithm to correct one error and detect two is just to calculate parity 

over the ECC groups (H) as before plus one more over the whole group (p ). Th

ere 

4

are four cases:

1.  H is even and p  is even, so no error occurred. 

4

2.  H is odd and p  is odd, so a correctable single error occurred. (p should 

4

4 

calculate odd parity if one error occurred.)

3.  H is even and p  is odd, a single error occurred in p bit, not in the rest of the 

4

4 

word, so correct the p bit. 

4 
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4.  H is odd and p  is even, a double error occurred. (p should calculate even 

4

4 

parity if two errors occurred.)

Single Error Correcting / Double Error Detecting (SEC/DED) is common in 

memory for servers today. Conveniently, eight byte data blocks can get SEC/DED 

with just one more byte, which is why many DIMMs are 72 bits wide. 

Elaboration:  To calculate how many bits are needed for SEC, let  p  be total number of parity bits and  d  number of data bits in  p ⫹  d bit word. If  p error correction bits are to point to error bit ( p + d cases) plus one case to indicate that no error exists, we need: 2 p ⱖ  p ⫹  d ⫹  1  bits, and thus  p ⱖ log( p ⫹  d ⫹  1). 

For example, for 8 bits data means  d ⫽ 8 and 2p ⱖ  p ⫹ 8 ⫹ 1, so  p ⫽ 4. Similarly, p ⫽ 5 for 16 bits of data, 6 for 32 bits, 7 for 64 bits, and so on. 

Elaboration: In very large systems, the possibility of multiple errors as well as 

complete failure of a single wide memory chip becomes signifi cant. IBM introduced 

 chipkill to solve this problem, and many very large systems use this technology. (Intel 

calls their version SDDC.) Similar in nature to the RAID approach used for disks (see 

Section 5.11), Chipkill distributes the data and ECC information, so that the complete 

failure of a single memory chip can be handled by supporting the reconstruction of the 

missing data from the remaining memory chips. Assuming a 10,000-processor cluster 

with 4 GiB per processor, IBM calculated the following rates of  unrecoverable memory 

errors in three years of operation:

■   Parity only—about 90,000, or one unrecoverable (or undetected) failure every 17 

minutes. 

■   SEC/DED only—about 3500, or about one undetected or unrecoverable failure 

every 7.5 hours. 

■  Chipkill—6, or about one undetected or unrecoverable failure every 2 months. 

Hence, Chipkill is a requirement for warehouse-scale computers. 

Elaboration:  While single or double bit errors are typical for memory systems, networks 

can have bursts of bit errors. One solution is called  Cyclic Redundancy Check. For a 

block of  k bits, a transmitter generates an  n-k bit frame check sequence. It transmits n bits exactly divisible by some number. The receiver divides frame by that number. If 

there is no remainder, it assumes there is no error. If there is, the receiver rejects the 

message, and asks the transmitter to send again. As you might guess from Chapter 3, 

it is easy to calculate division for some binary numbers with a shift register, which made 

CRC codes popular even when hardware was more precious. Going even further, Reed-

Solomon codes use Galois fi elds to  correct multibit transmission errors, but now data is considered coeffi cients of a polynomials and the code space is values of a polynomial. 

The Reed-Solomon calculation is considerably more complicated than binary division! 
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 5.6 Virtual 

Machines

 Virtual Machines (VM) were fi rst developed in the mid-1960s, and they have 

remained an important part of mainframe computing over the years. Although 

largely ignored in the single user PC era in the 1980s and 1990s, they have recently 

gained popularity due to

■  Th

e increasing importance of isolation and security in modern systems

■  Th

e failures in security and reliability of standard operating systems

■  Th

e sharing of a single computer among many unrelated users, in particular 

for cloud computing

■  Th

e dramatic increases in raw speed of processors over the decades, which 

makes the overhead of VMs more acceptable

Th

e broadest defi nition of VMs includes basically all emulation methods that 

provide a standard soft ware interface, such as the Java VM. In this section, we are 

interested in VMs that provide a complete system-level environment at the binary 

 instruction set architecture (ISA) level. Although some VMs run diff erent ISAs in 

the VM from the native hardware, we assume they always match the hardware. Such 

VMs are called (Operating)  System Virtual Machines. IBM VM/370, VirtualBox, 

VMware ESX Server, and Xen are examples. 

System virtual machines present the illusion that the users have an entire 

computer to themselves, including a copy of the operating system. A single 

computer runs multiple VMs and can support a number of diff erent   operating 

 systems (OSes). On a conventional platform, a single OS “owns” all the hardware 

resources, but with a VM, multiple OSes all share the hardware resources. 

Th

e soft ware that supports VMs is called a  virtual machine monitor (VMM) or 

 hypervisor;  the VMM is the heart of virtual machine technology. Th

e underlying 

hardware platform is called the  host, and its resources are shared among the  guest 

VMs. Th

e VMM determines how to map virtual resources to physical resources: a 

physical resource may be time-shared, partitioned, or even emulated in soft ware. 

Th

e VMM is much smaller than a traditional OS; the isolation portion of a VMM 

is perhaps only 10,000 lines of code. 

Although our interest here is in VMs for improving protection, VMs provide 

two other benefi ts that are commercially signifi cant:

1.   Managing soft ware. VMs provide an abstraction that can run the complete 

soft ware stack, even including old operating systems like DOS. A typical 

deployment might be some VMs running legacy OSes, many running the 

current stable OS release, and a few testing the next OS release. 

2.  Managing hardware. One reason for multiple servers is to have each 

application running with the compatible version of the operating system 

on separate computers, as this separation can improve dependability. VMs 
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allow these separate soft ware stacks to run independently yet share hardware, 

thereby consolidating the number of servers. Another example is that some 

VMMs support migration of a running VM to a diff erent computer, either 

to balance load or to evacuate from failing hardware. 

 Amazon Web Services (AWS) uses the virtual machines in its cloud computing  Hardware/ 

off ering EC2 for fi ve reasons:

Software 

1.  It allows AWS to protect users from each other while sharing the same server. 

Interface

2. It simplifi es  soft ware distribution within a warehouse scale computer. A 

customer installs a virtual machine image confi gured with the appropriate 

soft ware, and AWS distributes it to all the instances a customer wants to use. 

3.  Customers (and AWS) can reliably “kill” a VM to control resource usage 

when customers complete their work. 

4.  Virtual machines hide the identity of the hardware on which the customer is 

running, which means AWS can keep using old servers  and introduce new, 

more effi

cient servers. Th

e customer expects performance for instances to 

match their ratings in “EC2 Compute Units,” which AWS defi nes: to “provide 

the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007 

Intel Xeon processor.” Th

anks to Moore’s Law, newer servers clearly off er 

more EC2 Compute Units than older ones, but AWS can keep renting old 

servers as long as they are economical. 

5.  Virtual Machine Monitors can control the rate that a VM uses the processor, 

the network, and disk space, which allows AWS to off er many price points 

of instances of diff erent types running on the same underlying servers. 

For example, in 2012 AWS off ered 14 instance types, from small standard 

instances at $0.08 per hour to high I/O quadruple extra large instances at 

$3.10 per hour. 

In general, the cost of processor virtualization depends on the workload. User-

level processor-bound programs have zero virtualization overhead, because the 

OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads 

are generally also OS-intensive, executing many system calls and privileged 

instructions that can result in high virtualization overhead. On the other hand, if 

the I/O-intensive workload is also  I/O-bound, the cost of processor virtualization 

can be completely hidden, since the processor is oft en idle waiting for I/O. 

Th

e overhead is determined by both the number of instructions that must be 

emulated by the VMM and by how much time each takes to emulate them. Hence, 

when the guest VMs run the same ISA as the host, as we assume here, the goal 
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of the architecture and the VMM is to run almost all instructions directly on the 

native hardware. 

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a soft ware interface to guest soft ware, it 

must isolate the state of guests from each other, and it must protect itself from guest 

soft ware (including guest OSes). Th

e qualitative requirements are:

■ Guest soft ware should behave on a VM exactly as if it were running on the 

native hardware, except for performance-related behavior or limitations of 

fi xed resources shared by multiple VMs. 

■ Guest soft ware should not be able to change allocation of real system resources 

directly. 

To “virtualize” the processor, the VMM must control just about everything—access 

to privileged state, I/O, exceptions, and interrupts—even though the guest VM and 

OS currently running are temporarily using them. 

For example, in the case of a timer interrupt, the VMM would suspend the 

currently running guest VM, save its state, handle the interrupt, determine which 

guest VM to run next, and then load its state. Guest VMs that rely on a timer 

interrupt are provided with a virtual timer and an emulated timer interrupt by the 

VMM. 

To be in charge, the VMM must be at a higher privilege level than the guest 

VM, which generally runs in user mode; this also ensures that the execution of 

any privileged instruction will be handled by the VMM. Th

e basic requirements of 

system virtual:

■  At least two processor modes, system and user. 

■  A privileged subset of instructions that is available only in system mode, 

resulting in a trap if executed in user mode; all system resources must be 

controllable only via these instructions. 

(Lack of) Instruction Set Architecture Support for Virtual 

Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to reduce 

both the number of instructions that must be executed by a VMM and improve 

their emulation speed. An architecture that allows the VM to execute directly on 

the hardware earns the title  virtualizable,  and the IBM 370 architecture proudly 

bears that label. 

Alas, since VMs have been considered for PC and server applications only fairly 

recently, most instruction sets were created without virtualization in mind. Th

ese 

culprits include x86 and most RISC architectures, including ARMv7 and MIPS. 
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Because the VMM must ensure that the guest system only interacts with virtual 

resources, a conventional guest OS runs as a user mode program on top of the 

VMM. Th

en, if a guest OS attempts to access or modify information related to 

hardware resources via a privileged instruction—for example, reading or writing 

a status bit that enables interrupts—it will trap to the VMM. Th

e VMM can then 

eff ect the appropriate changes to corresponding real resources. 

Hence, if any instruction that tries to read or write such sensitive information 

traps when executed in user mode, the VMM can intercept it and support a virtual 

version of the sensitive information, as the guest OS expects. 

In the absence of such support, other measures must be taken. A VMM must 

take special precautions to locate all problematic instructions and ensure that they 

behave correctly when executed by a guest OS, thereby increasing the complexity 

of the VMM and reducing the performance of running the VM. 

Protection and Instruction Set Architecture

Protection is a joint eff ort of architecture and operating systems, but architects 

had to modify some awkward details of existing instruction set architectures when 

virtual memory became popular. 

For example, the x86 instruction POPF loads the fl ag registers from the top of 

the stack in memory. One of the fl ags is the  Interrupt Enable (IE) fl ag. If you run 

the POPF instruction in user mode, rather than trap it, it simply changes all the 

fl ags except IE. In system mode, it does change the IE. Since a guest OS runs in user 

mode inside a VM, this is a problem, as it expects to see a changed IE. 

Historically, IBM mainframe hardware and VMM took three steps to improve 

performance of virtual machines:

1.  Reduce the cost of processor virtualization. 

2.  Reduce interrupt overhead cost due to the virtualization. 

3.  Reduce interrupt cost by steering interrupts to the proper VM without 

invoking VMM. 

AMD and Intel tried to address the fi rst point in 2006 by reducing the cost of 

processor virtualization. It will be interesting to see how many generations of  …  a system has architecture and VMM modifi cations it will take to address all three points, and   been devised to how long before virtual machines of the 21st century will be as effi

cient as the IBM   make the core drum 

mainframes and VMMs of the 1970s. 

 combination appear 

 to the programmer 

 as a single level 

 5.7

 store, the requisite 

 Virtual 

Memory

 transfers taking place 

 automatically. 

In earlier sections, we saw how caches provided fast access to recently used portions 

Kilburn et al.,   One-level 

of a program’s code and data. Similarly, the main memory can act as a “cache” for   storage system,  1962
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the secondary storage, usually implemented with magnetic disks. Th

is technique is 

virtual memory 

called virtual memory. Historically, there were two major motivations for virtual 

A technique that uses 

memory: to allow effi

cient and safe sharing of memory among multiple programs, 

main memory as a “cache” 

such as for the memory needed by multiple virtual machines for cloud computing, 

for secondary storage. 

and to remove the programming burdens of a small, limited amount of main 

memory. Five decades aft er its invention, it’s the former reason that reigns today. 

Of course, to allow multiple virtual machines to share the same memory, we 

must be able to protect the virtual machines from each other, ensuring that a 

program can only read and write the portions of main memory that have been 

assigned to it. Main memory need contain only the active portions of the many 

virtual machines, just as a cache contains only the active portion of one program. 

Th

us, the principle of locality enables virtual memory as well as caches, and virtual 

memory allows us to effi

ciently share the processor as well as the main memory. 

We cannot know which virtual machines will share the memory with other 

virtual machines when we compile them. In fact, the virtual machines sharing 

the memory change dynamically while the virtual machines are running. Because 

of this dynamic interaction, we would like to compile each program into its 

physical address 

own  address space—a separate range of memory locations accessible only to this 

An address in main 

program. Virtual memory implements the translation of a program’s address space 

memory. 

to physical addresses. Th

is translation process enforces protection of a program’s 

protection A set 

address space from other virtual machines. 

of mechanisms for 

Th

e second motivation for virtual memory is to allow a single user program 

ensuring that multiple 

to exceed the size of primary memory. Formerly, if a program became too large 

processes sharing the 

processor, memory, 

for memory, it was up to the programmer to make it fi t. Programmers divided 

or I/O devices cannot 

programs into pieces and then identifi ed the pieces that were mutually exclusive. 

interfere, intentionally 

Th

ese  overlays were loaded or unloaded under user program control during 

or unintentionally, with 

execution, with the programmer ensuring that the program never tried to access 

one another by reading or 

an overlay that was not loaded and that the overlays loaded never exceeded the 

writing each other’s data. 

total size of the memory. Overlays were traditionally organized as modules, each 

Th

ese mechanisms also 

containing both code and data. Calls between procedures in diff erent  modules 

isolate the operating system 

from a user process. 

would lead to overlaying of one module with another. 

As you can well imagine, this responsibility was a substantial burden on 

page fault  An event that 

programmers. Virtual memory, which was invented to relieve programmers of 

occurs when an accessed 

this diffi

culty, automatically manages the two levels of the memory hierarchy 

page is not present in 

represented by main memory (sometimes called  physical memory to distinguish it 

main memory. 

from virtual memory) and secondary storage. 

virtual address 

Although the concepts at work in virtual memory and in caches are the same, 

An address that 

their diff ering historical roots have led to the use of diff erent terminology. A virtual 

corresponds to a location 

memory block is called a  page, and a virtual memory miss is called a page fault. 

in virtual space and is 

With virtual memory, the processor produces a virtual address, which is translated 

translated by address 

mapping to a physical 

by a combination of hardware and soft ware to a  physical address, which in turn can 

address when memory is 

be used to access main memory. Figure 5.25 shows the virtually addressed memory accessed. 

with pages mapped to main memory. Th

is process is called  address mapping or 
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address translation. Today, the two memory hierarchy levels controlled by virtual  address translation memory are usually DRAMs and fl ash memory in personal mobile devices and  Also called address DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library  mapping. Th e process by analogy, we can think of a virtual address as the title of a book and a physical  which a virtual address is mapped to an address 

address as the location of that book in the library, such as might be given by the  used to access memory. 

Library of Congress call number. 

Virtual memory also simplifi es loading the program for execution by providing 

 relocation. Relocation maps the virtual addresses used by a program to diff erent 

physical addresses before the addresses are used to access memory. Th

is relocation 

allows us to load the program anywhere in main memory. Furthermore, all virtual 

memory systems in use today relocate the program as a set of fi xed-size blocks 

(pages), thereby eliminating the need to fi nd a contiguous block of memory to 

allocate to a program; instead, the operating system need only fi nd a suffi

cient 

number of pages in main memory. 

In virtual memory, the address is broken into a  virtual page number and a  page 

 off set. Figure 5.26 shows the translation of the virtual page number to a  physical page number. Th

e physical page number constitutes the upper portion of the 

physical address, while the page off set, which is not changed, constitutes the lower 

portion. Th

e number of bits in the page off set fi eld determines the page size. Th

e 

number of pages addressable with the virtual address need not match the number 

of pages addressable with the physical address. Having a larger number of virtual 

pages than physical pages is the basis for the illusion of an essentially unbounded 

amount of virtual memory. 

Virtual addresses

Physical addresses

Address translation

Disk addresses

FIGURE 5.25 

In virtual memory, blocks of memory (called  pages) are mapped from one 

set of addresses (called  virtual addresses) to another set (called  physical addresses).  

Th

e processor generates virtual addresses while the memory is accessed using physical addresses. Both the virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual addresses point to the same physical address. Th

is capability is used to allow two diff erent programs to share 

data or code. 
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Virtual address

31 30 29 28 27

15 14 13 12 11 10 9 8

3 2 1 0

Virtual page number

Page offset

Translation

29 28 27

15 14 13 12 11 10 9 8

3 2 1 0

Physical page number

Page offset

Physical address

FIGURE 5.26 

Mapping from a virtual to a physical address.  Th

e page size is 212 ⫽ 4 KiB. Th

e 

number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Th us, 

main memory can have at most 1 GiB, while the virtual address space is 4 GiB. 

Many design choices in virtual memory systems are motivated by the high cost 

of a page fault. A page fault to disk will take millions of clock cycles to process. 

(Th

e table on page 378 shows that main memory latency is about 100,000 times 

quicker than disk.) Th

is enormous miss penalty, dominated by the time to get the 

fi rst word for typical page sizes, leads to several key decisions in designing virtual 

memory systems:

■  Pages should be large enough to try to amortize the high access time. Sizes 

from 4 KiB to 16 KiB are typical today. New desktop and server systems are 

being developed to support 32 KiB and 64 KiB pages, but new embedded 

systems are going in the other direction, to 1 KiB pages. 

■  Organizations that reduce the page fault rate are attractive. Th

e primary 

technique used here is to allow fully associative placement of pages in 

memory. 

■  Page faults can be handled in soft ware because the overhead will be small 

compared to the disk access time. In addition, soft ware can aff ord to use clever 

algorithms for choosing how to place pages because even small reductions in 

the miss rate will pay for the cost of such algorithms. 

■  Write-through will not work for virtual memory, since writes take too long. 

Instead, virtual memory systems use write-back. 
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Th

e next few subsections address these factors in virtual memory design. 

Elaboration:  We present the motivation for virtual memory as many virtual machines 

sharing the same memory, but virtual memory was originally invented so that many 

programs could share a computer as part of a timesharing system. Since many readers 

today have no experience with time-sharing systems, we use virtual machines to motivate 

this section. 

Elaboration:  For servers and even PCs, 32-bit address processors are problematic. 

Although we normally think of virtual addresses as much larger than physical addresses, 

the opposite can occur when the processor address size is small relative to the state 

of the memory technology. No single program or virtual machine can benefi t, but a 

collection of programs or virtual machines running at the same time can benefi t from 

not having to be swapped to memory or by running on parallel processors. 

Elaboration:  The discussion of virtual memory in this book focuses on paging, 

which uses fi xed-size blocks. There is also a variable-size block scheme called 

segmentation. In segmentation, an address consists of two parts: a segment number 

segmentation 

and a segment offset. The segment number is mapped to a physical address, and 

A variable-size address 

the offset is  added to fi nd the actual physical address. Because the segment can 

mapping scheme in which 

vary in size, a bounds check is also needed to make sure that the offset is within 

an address consists of two 

the segment. The major use of segmentation is to support more powerful methods 

parts: a segment number, 

of protection and sharing in an address space. Most operating system textbooks 

which is mapped to a 

contain extensive discussions of segmentation compared to paging and of the use 

physical address, and a 

of segmentation to logically share the address space. The major disadvantage of 

segment off set. 

segmentation is that it splits the address space into logically separate pieces that 

must be manipulated as a two-part address: the segment number and the offset. 

Paging, in contrast, makes the boundary between page number and offset invisible 

to programmers and compilers. 

Segments have also been used as a method to extend the address space without 

changing the word size of the computer. Such attempts have been unsuccessful because 

of the awkwardness and performance penalties inherent in a two-part address, of which 

programmers and compilers must be aware. 

Many architectures divide the address space into large fi xed-size blocks that simplify 

protection between the operating system and user programs and increase the effi ciency 

of implementing paging. Although these divisions are often called “segments,” this 

mechanism is much simpler than variable block size segmentation and is not visible to 

user programs; we discuss it in more detail shortly. 

Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault, designers reduce page fault 

frequency by optimizing page placement. If we allow a virtual page to be mapped 

to any physical page, the operating system can then choose to replace any page 

it wants when a page fault occurs. For example, the operating system can use a 
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sophisticated algorithm and complex data structures that track page usage to try 

to choose a page that will not be needed for a long time. Th

e ability to use a clever 

and fl exible replacement scheme reduces the page fault rate and simplifi es the use 

of fully associative placement of pages. 

As mentioned in Section 5.4, the diffi

culty in using fully associative placement 

is in locating an entry, since it can be anywhere in the upper level of the hierarchy. 

page table  Th

e table 

A full search is impractical. In virtual memory systems, we locate pages by using a 

containing the virtual 

table that indexes the memory; this structure is called a page table, and it resides 

to physical address 

in memory. A page table is indexed with the page number from the virtual address 

translations in a virtual 

memory system. Th

e 

to discover the corresponding physical page number. Each program has its own 

table, which is stored 

page table, which maps the virtual address space of that program to main memory. 

in memory, is typically 

In our library analogy, the page table corresponds to a mapping between book 

indexed by the virtual 

titles and library locations. Just as the card catalog may contain entries for books 

page number; each entry 

in another library on campus rather than the local branch library, we will see that 

in the table contains the 

the page table may contain entries for pages not present in memory. To indicate the 

physical page number 

location of the page table in memory, the hardware includes a register that points to 

for that virtual page if 

the page is currently in 

the start of the page table; we call this the  page table register. Assume for now that 

memory. 

the page table is in a fi xed and contiguous area of memory. 

Hardware/  Th e page table, together with the program counter and the registers, specifi es the  state of a virtual machine. If we want to allow another virtual machine to use 

Software  the processor, we must save this state. Later, aft er restoring this state, the virtual Interface

machine can continue execution. We oft en refer to this state as a  process. Th

e 

process is considered  active when it is in possession of the processor; otherwise, it 

is considered  inactive. Th

e operating system can make a process active by loading 

the process’s state, including the program counter, which will initiate execution at 

the value of the saved program counter. 

Th

e process’s address space, and hence all the data it can access in memory, is 

defi ned by its page table, which resides in memory. Rather than save the entire page 

table, the operating system simply loads the page table register to point to the page 

table of the process it wants to make active. Each process has its own page table, 

since diff erent processes use the same virtual addresses. Th

e operating system is 

responsible for allocating the physical memory and updating the page tables, so 

that the virtual address spaces of diff erent processes do not collide. As we will see 

shortly, the use of separate page tables also provides protection of one process from 

another. 
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Figure 5.27 uses the page table register, the virtual address, and the indicated page table to show how the hardware can form a physical address. A valid bit is used 

in each page table entry, just as we did in a cache. If the bit is off , the page is not 

present in main memory and a page fault occurs. If the bit is on, the page is in 

memory and the entry contains the physical page number. 

Because the page table contains a mapping for every possible virtual page, no 

tags are required. In cache terminology, the index that is used to access the page 

table consists of the full block address, which is the virtual page number. 

Page table register

Virtual address

3 1   3 0   2 9   2 8   2 7

1 5   1 4   1 3   1 2   1 1   1 0   9   8

3   2   1   0

Virtual page number

Page offset

20

12

Valid

Physical page number

Page table

18

If 0 then page is not

present in memory

2 9   2 8   2 7

1 5   1 4   1 3   1 2   1 1   1 0   9   8

3   2   1   0

Physical page number

Page offset

Physical address

FIGURE 5.27 

The page table is indexed with the virtual page number to obtain the 

corresponding portion of the physical address.  We assume a 32-bit address. Th

e page table pointer 

gives the starting address of the page table. In this fi gure, the page size is 212 bytes, or 4 KiB. Th e virtual 

address space is 232 bytes, or 4 GiB, and the physical address space is 230 bytes, which allows main memory of up to 1 GiB. Th

e number of entries in the page table is 220, or 1 million entries. Th

e valid bit for each entry 

indicates whether the mapping is legal. If it is off , then the page is not present in memory. Although the page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of indexing. Th

e extra bits would be used to store additional information that needs to be kept on a per-page 

basis, such as protection. 
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Page Faults

If the valid bit for a virtual page is off , a page fault occurs. Th

e operating system 

must be given control. Th

is transfer is done with the exception mechanism, which 

we saw in Chapter 4 and will discuss again later in this section. Once the operating 

system gets control, it must fi nd the page in the next level of the hierarchy (usually 

fl ash memory or magnetic disk) and decide where to place the requested page in 

main memory. 

Th

e virtual address alone does not immediately tell us where the page is on disk. 

Returning to our library analogy, we cannot fi nd the location of a library book on 

the shelves just by knowing its title. Instead, we go to the catalog and look up the 

book, obtaining an address for the location on the shelves, such as the Library of 

Congress call number. Likewise, in a virtual memory system, we must keep track 

of the location on disk of each page in virtual address space. 

Because we do not know ahead of time when a page in memory will be replaced, 

the operating system usually creates the space on fl ash memory or disk for all the 

swap space  Th

e space on 

pages of a process when it creates the process. Th

is space is called the swap space. 

the disk reserved for the 

At that time, it also creates a data structure to record where each virtual page is 

full virtual memory space 

stored on disk. Th

is data structure may be part of the page table or may be an 

of a process. 

auxiliary data structure indexed in the same way as the page table. Figure 5.28 

shows the organization when a single table holds either the physical page number 

or the disk address. 

Th

e operating system also creates a data structure that tracks which processes 

and which virtual addresses use each physical page. When a page fault occurs, 

if all the pages in main memory are in use, the operating system must choose a 

page to replace. Because we want to minimize the number of page faults, most 

operating systems try to choose a page that they hypothesize will not be needed 

in the near future. Using the past to predict the future, operating systems follow 

the  least recently used (LRU) replacement scheme, which we mentioned in Section 

5.4. Th

e operating system searches for the least recently used page, assuming that 

a page that has not been used in a long time is less likely to be needed than a more 

recently accessed page. Th

e replaced pages are written to swap space on the disk. 

In case you are wondering, the operating system is just another process, and these 

tables controlling memory are in memory; the details of this seeming contradiction 

will be explained shortly. 
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Virtual page

number

Page table

Physical page or

Physical memory

Valid disk address

11

1

1

0

1101

Disk storage

1

0

1

FIGURE 5.28 

The page table maps each page in virtual memory to either a page in main 

memory or a page stored on disk, which is the next level in the hierarchy.  Th

e virtual page 

number is used to index the page table. If the valid bit is on, the page table supplies the physical page number (i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off , the page currently resides only on disk, at a specifi ed disk address. In many systems, the table of physical page addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual tables are justifi ed in part because we must keep the disk addresses of all the pages, even if they are currently in main memory. Remember that the pages in main memory and the pages on disk are the same size. 

Implementing a completely accurate LRU scheme is too expensive, since it requires 

Hardware/ 

updating a data structure on  every memory reference. Instead, most operating  Software systems approximate LRU by keeping track of which pages have and which pages 

have not been recently used. To help the operating system estimate the LRU pages, Interface

some computers provide a reference bit or use bit, which is set whenever a page  reference bit Also called is accessed. Th

e operating system periodically clears the reference bits and later  use bit. A fi eld that is records them so it can determine which pages were touched during a particular  set whenever a page time period. With this usage information, the operating system can select a page  is accessed and that is that is among the least recently referenced (detected by having its reference bit off ).  used to implement LRU 

or other replacement 

If this bit is not provided by the hardware, the operating system must fi nd another  schemes. 

way to estimate which pages have been accessed. 
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Elaboration:  With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table 

entry, we can compute the total page table size:

232

Number of page table entries

220

⫽

⫽

212

bytes

Size of page table

220  page table entries

22

4 MiB

page table

e entry

That is, we would need to use 4 MiB of memory for each program in execution at any 

time. This amount is not so bad for a single process. What if there are hundreds of 

processes running, each with their own page table? And how should we handle 64-bit 

addresses, which by this calculation would need 252 words? 

A range of techniques is used to reduce the amount of storage required for the page 

table. The fi ve techniques below aim at reducing the total maximum storage required as 

well as minimizing the main memory dedicated to page tables:

1. 

The simplest technique is to keep a limit register that restricts the size of the 

page table for a given process. If the virtual page number becomes larger than 

the contents of the limit register, entries must be added to the page table. This 

technique allows the page table to grow as a process consumes more space. 

Thus, the page table will only be large if the process is using many pages of 

virtual address space. This technique requires that the address space expand in 

only one direction. 

2. 

Allowing growth in only one direction is not suffi cient, since most languages require 

two areas whose size is expandable: one area holds the stack and the other area 

holds the heap. Because of this duality, it is convenient to divide the page table 

and let it grow from the highest address down, as well as from the lowest address 

up. This means that there will be two separate page tables and two separate 

limits. The use of two page tables breaks the address space into two segments. 

The high-order bit of an address usually determines which segment and thus which 

page table to use for that address. Since the high-order address bit specifi es the 

segment, each segment can be as large as one-half of the address space. A 

limit register for each segment specifi es the current size of the segment, which 

grows in units of pages. This type of segmentation is used by many architectures, 

including MIPS. Unlike the type of segmentation discussed in the third elaboration 

on page 431, this form of segmentation is invisible to the application program, 

although not to the operating system. The major disadvantage of this scheme is 

that it does not work well when the address space is used in a sparse fashion 

rather than as a contiguous set of virtual addresses. 

3. 

Another approach to reducing the page table size is to apply a hashing function 

to the virtual address so that the page table need be only the size of the number 

of  physical pages in main memory. Such a structure is called an  inverted page 

 table. Of course, the lookup process is slightly more complex with an inverted 

page table, because we can no longer just index the page table. 

4. 

Multiple levels of page tables can also be used to reduce the total amount of 

page table storage. The fi rst level maps large fi xed-size blocks of virtual address 

space, perhaps 64 to 256 pages in total. These large blocks are sometimes 

called segments, and this fi rst-level mapping table is sometimes called a 
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segment table, though the segments are again invisible to the user. Each entry 

in the segment table indicates whether any pages in that segment are allocated 

and, if so, points to a page table for that segment. Address translation happens 

by fi rst looking in the segment table, using the highest-order bits of the address. 

If the segment address is valid, the next set of high-order bits is used to index 

the page table indicated by the segment table entry. This scheme allows the 

address space to be used in a sparse fashion (multiple noncontiguous segments 

can be active) without having to allocate the entire page table. Such schemes 

are particularly useful with very large address spaces and in software systems 

that require noncontiguous allocation. The primary disadvantage of this two-level 

mapping is the more complex process for address translation. 

5. 

To reduce the actual main memory tied up in page tables, most modern systems 

also allow the page tables to be paged. Although this sounds tricky, it works 

by using the same basic ideas of virtual memory and simply allowing the page 

tables to reside in the virtual address space. In addition, there are some small 

but critical problems, such as a never-ending series of page faults, which must 

be avoided. How these problems are overcome is both very detailed and typically 

highly processor specifi c. In brief, these problems are avoided by placing all the 

page tables in the address space of the operating system and placing at least 

some of the page tables for the operating system in a portion of main memory 

that is physically addressed and is always present and thus never on disk. 

What about Writes? 

Th

e diff erence between the access time to the cache and main memory is tens to 

hundreds of cycles, and write-through schemes can be used, although we need a 

write buff er to hide the latency of the write from the processor. In a virtual memory 

system, writes to the next level of the hierarchy (disk) can take millions of processor 

clock cycles; therefore, building a write buff er to allow the system to write-through 

to disk would be completely impractical. Instead, virtual memory systems must use 

write-back, performing the individual writes into the page in memory, and copying 

the page back to disk when it is replaced in the memory. 

A write-back scheme has another major advantage in a virtual memory system. Hardware/ 

Because the disk transfer time is small compared with its access time, copying back  Software 

an entire page is much more effi

cient than writing individual words back to the disk. 

A write-back operation, although more effi

cient than transferring individual words, is  Interface

still costly. Th

us, we would like to know whether a page  needs to be copied back when 

we choose to replace it. To track whether a page has been written since it was read into 

the memory, a  dirty bit is added to the page table. Th

e dirty bit is set when any word 

in a page is written. If the operating system chooses to replace the page, the dirty bit 

indicates whether the page needs to be written out before its location in memory can be 

given to another page. Hence, a modifi ed page is oft en called a  dirty page. 
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Making Address Translation Fast: the TLB

Since the page tables are stored in main memory, every memory access by a program 

can take at least twice as long: one memory access to obtain the physical address 

and a second access to get the data. Th

e key to improving access performance is to 

rely on locality of reference to the page table. When a translation for a virtual page 

number is used, it will probably be needed again in the near future, because the 

references to the words on that page have both temporal and spatial locality. 

Accordingly, modern processors include a special cache that keeps track of recently 

used translations. Th

is special address translation cache is traditionally referred to as 

translation-lookaside 

a translation-lookaside buff er (TLB), although it would be more accurate to call it 

buff er (TLB) A cache 

a translation cache. Th

e TLB corresponds to that little piece of paper we typically use 

that keeps track of 

to record the location of a set of books we look up in the card catalog; rather than 

recently used address 

continually searching the entire catalog, we record the location of several books and 

mappings to try to avoid 

use the scrap of paper as a cache of Library of Congress call numbers. 

an access to the page 

table. 

Figure 5.29 shows that each tag entry in the TLB holds a portion of the virtual page number, and each data entry of the TLB holds a physical page number. 

TLB

Virtual page

Physical page

number Valid Dirty Ref

Tag

address

1 0 1

1 1 1

Physical memory

1 1 1

1 0 1

0 0 0

1 0 1

Page table

Physical page

Valid Dirty Ref or disk address

1 0 1

1 0 0

Disk storage

1 0 0

1 0 1

0 0 0

1 0 1

1 0 1

0 0 0

1 1 1

1 1 1

0 0 0

1 1 1

FIGURE 5.29 

The TLB acts as a cache of the page table for the entries that map to 

physical pages only.  Th

e TLB contains a subset of the virtual-to-physical page mappings that are in the 

page table. Th

e TLB mappings are shown in color. Because the TLB is a cache, it must have a tag fi eld. If there is no matching entry in the TLB for a page, the page table must be examined. Th

e page table either supplies a 

physical page number for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no tag fi eld is needed; in other words, unlike a TLB, a page table is  not a cache. 
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Because we access the TLB instead of the page table on every reference, the TLB 

will need to include other status bits, such as the dirty and the reference bits. 

On every reference, we look up the virtual page number in the TLB. If we get a 

hit, the physical page number is used to form the address, and the corresponding 

reference bit is turned on. If the processor is performing a write, the dirty bit is also 

turned on. If a miss in the TLB occurs, we must determine whether it is a page fault 

or merely a TLB miss. If the page exists in memory, then the TLB miss indicates 

only that the translation is missing. In such cases, the processor can handle the TLB 

miss by loading the translation from the page table into the TLB and then trying the 

reference again. If the page is not present in memory, then the TLB miss indicates 

a true page fault. In this case, the processor invokes the operating system using an 

exception. Because the TLB has many fewer entries than the number of pages in 

main memory, TLB misses will be much more frequent than true page faults. 

TLB misses can be handled either in hardware or in soft ware. In practice, with 

care there can be little performance diff erence between the two approaches, because 

the basic operations are the same in either case. 

Aft er a TLB miss occurs and the missing translation has been retrieved from the 

page table, we will need to select a TLB entry to replace. Because the reference and 

dirty bits are contained in the TLB entry, we need to copy these bits back to the page 

table entry when we replace an entry. Th

ese bits are the only portion of the TLB 

entry that can be changed. Using write-back—that is, copying these entries back at 

miss time rather than when they are written—is very effi

cient, since we expect the 

TLB miss rate to be small. Some systems use other techniques to approximate the 

reference and dirty bits, eliminating the need to write into the TLB except to load 

a new table entry on a miss. 

Some typical values for a TLB might be

■  TLB size: 16–512 entries

■  Block size: 1–2 page table entries (typically 4–8 bytes each)

■  Hit time: 0.5–1 clock cycle

■  Miss penalty: 10–100 clock cycles

■  Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use 

small, fully associative TLBs because a fully associative mapping has a lower miss 

rate; furthermore, since the TLB is small, the cost of a fully associative mapping is 

not too high. Other systems use large TLBs, oft en with small associativity. With 

a fully associative mapping, choosing the entry to replace becomes tricky since 

implementing a hardware LRU scheme is too expensive. Furthermore, since TLB 

misses are much more frequent than page faults and thus must be handled more 

cheaply, we cannot aff ord an expensive soft ware algorithm, as we can for page faults. 

As a result, many systems provide some support for randomly choosing an entry 

to replace. We’ll examine replacement schemes in a little more detail in Section 5.8. 
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The Intrinsity FastMATH TLB

To see these ideas in a real processor, let’s take a closer look at the TLB of the 

Intrinsity FastMATH. Th

e memory system uses 4 KiB pages and a 32-bit address 

space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.30. 

Th

e physical address is the same size as the virtual address. Th

e TLB contains 16 

entries, it is fully associative, and it is shared between the instruction and data 

references. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual 

page number for that TLB entry), the corresponding physical page number (also 20 

bits), a valid bit, a dirty bit, and other bookkeeping bits. Like most MIPS systems, 

it uses soft ware to handle TLB misses. 

Figure 5.30 shows the TLB and one of the caches, while Figure 5.31 shows the steps in processing a read or write request. When a TLB miss occurs, the MIPS 

hardware saves the page number of the reference in a special register and generates 

an exception. Th

e exception invokes the operating system, which handles the miss 

in soft ware. To fi nd the physical address for the missing page, the TLB miss routine 

indexes the page table using the page number of the virtual address and the page 

table register, which indicates the starting address of the active process page table. 

Using a special set of system instructions that can update the TLB, the operating 

system places the physical address from the page table into the TLB. A TLB miss 

takes about 13 clock cycles, assuming the code and the page table entry are in the 

instruction cache and data cache, respectively. (We will see the MIPS TLB code 

on page 449.) A true page fault occurs if the page table entry does not have a valid 

physical address. Th

e hardware maintains an index that indicates the recommended 

entry to replace; the recommended entry is chosen randomly. 

Th

ere is an extra complication for write requests: namely, the write access bit in 

the TLB must be checked. Th

is bit prevents the program from writing into pages 

for which it has only read access. If the program attempts a write and the write 

access bit is off , an exception is generated. Th

e write access bit forms part of the 

protection mechanism, which we will discuss shortly. 

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data 

cannot be in the cache unless it is present in main memory. Th

e operating system 

helps maintain this hierarchy by fl ushing the contents of any page from the cache 

when it decides to migrate that page to disk. At the same time, the OS modifi es the 

page tables and TLB, so that an attempt to access any data on the migrated page 

will generate a page fault. 

Under the best of circumstances, a virtual address is translated by the TLB and 

sent to the cache where the appropriate data is found, retrieved, and sent back to 

the processor. In the worst case, a reference can miss in all three components of the 

memory hierarchy: the TLB, the page table, and the cache. Th

e following example 

illustrates these interactions in more detail. 
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Virtual address

31   30   29

14   13   12   11   10   9

3   2   1   0

Virtual page number

Page offset

20

12

Valid Dirty

Tag

Physical page number

=

TLB

=

TLB hit

=

=

=

=

20

Physical page number

Page offset

Physical address

Block

Byte

Physical address tag

Cache index

offset

offset

18

8

4

2

8

12

Data

Valid

Tag

Cache

=

Cache hit

32

Data

FIGURE 5.30 

The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity FastMATH.  Th

is fi gure shows the organization of the TLB and the data cache, assuming a 4 KiB page size. Th

is diagram focuses on a read; 

Figure 5.31 describes how to handle writes. Note that unlike Figure 5.12, the tag and data RAMs are split. By addressing the long but narrow data RAM with the cache index concatenated with the block off set, we select the desired word in the block without a 16:1 multiplexor. While the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the  Elaboration on page 408.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from the page off set form the index that is used to access the cache. 
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Virtual address

TLB access

No

Yes

TLB miss

TLB hit? 

exception

Physical address

No

Yes

Write? 

Try to read data

from cache

No

Yes

Write access

bit on? 

Write protection

Try to write data

No

Yes

exception

Cache miss stall

to cache

Cache hit? 

while read block

Deliver data

to the CPU

No

Yes

Cache miss stall

Cache hit? 

while read block

Write data into cache, 

update the dirty bit, and

put the data and the

address into the write buffer

FIGURE 5.31 

Processing a read or a write-through in the Intrinsity FastMATH TLB and cache.  If the TLB generates a hit, the cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to the write buff er if we assume write-through. A write miss is just like a read miss except that the block is modifi ed aft er it is read from memory. 

Write-back requires writes to set a dirty bit for the cache block, and a write buff er is loaded with the whole block only on a read miss or write miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur aft er a TLB 

hit occurs, which means that the data must be present in memory. Th

e relationship between TLB misses and cache misses is examined further 

in the following example and the exercises at the end of this chapter. 
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Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.30, which includes a TLB and a 

cache organized as shown, a memory reference can encounter three diff erent 

EXAMPLE

types of misses: a TLB miss, a page fault, and a cache miss. Consider all 

the combinations of these three events with one or more occurring (seven 

possibilities). For each possibility, state whether this event can actually occur 

and under what circumstances. 

Figure 5.32 shows all combinations and whether each is possible in practice. 

ANSWER

Elaboration: Figure 5.32 assumes that all memory addresses are translated to physical addresses before the cache is accessed. In this organization, the cache is 

 physically indexed and  physically tagged (both the cache index and tag are physical, rather than virtual, addresses). In such a system, the amount of time to access memory, 

assuming a cache hit, must accommodate both a TLB access and a cache access; of 

course, these accesses can be pipelined. 

Alternatively, the processor can index the cache with an address that is completely 

or partially virtual. This is called a virtually addressed cache, and it uses tags that 

are virtual addresses; hence, such a cache is  virtually indexed and  virtually tagged. In virtually addressed 

such caches, the address translation hardware (TLB) is unused during the normal cache 

cache  A cache that is 

access, since the cache is accessed with a virtual address that has not been translated 

accessed with a virtual 

to a physical address. This takes the TLB out of the critical path, reducing cache latency. 

address rather than a 

When a cache miss occurs, however, the processor needs to translate the address to a 

physical address. 

physical address so that it can fetch the cache block from main memory. 

Page 

TLB

table

Cache 

Possible? If so, under what circumstance? 

Hit

Hit

Miss

Possible, although the page table is never really checked if TLB hits. 

Miss

Hit

Hit

TLB misses, but entry found in page table; after retry, data is found in cache. 

Miss

Hit

Miss

TLB misses, but entry found in page table; after retry, data misses in cache. 

Miss

Miss

Miss

TLB misses and is followed by a page fault; after retry, data must miss in cache. 

Hit

Miss

Miss

Impossible: cannot have a translation in TLB if page is not present in memory. 

Hit

Miss

Hit

Impossible: cannot have a translation in TLB if page is not present in memory. 

Miss

Miss

Hit

Impossible: data cannot be allowed in cache if the page is not in memory. 

FIGURE 5.32 

The possible combinations of events in the TLB, virtual memory system, 

and cache.  Th

ree of these combinations are impossible, and one is possible (TLB hit, virtual memory hit, 

cache miss) but never detected. 

444 

Chapter 5  Large and Fast: Exploiting Memory Hierarchy

When the cache is accessed with a virtual address and pages are shared between 

processes (which may access them with different virtual addresses), there is the 

aliasing A situation 

possibility of aliasing. Aliasing occurs when the same object has two names—in this 

in which two addresses 

case, two virtual addresses for the same page. This ambiguity creates a problem, because 

access the same object; 

a word on such a page may be cached in two different locations, each corresponding 

it can occur in virtual 

to different virtual addresses. This ambiguity would allow one program to write the data 

memory when there are 

without the other program being aware that the data had changed. Completely virtually 

two virtual addresses for 

addressed caches either introduce design limitations on the cache and TLB to reduce 

the same physical page. 

aliases or require the operating system, and possibly the user, to take steps to ensure 

that aliases do not occur. 

A common compromise between these two design points is caches that are virtually 

indexed—sometimes using just the page-offset portion of the address, which is really 

a physical address since it is not translated—but use physical tags. These designs, 

which are  virtually indexed but physically tagged, attempt to achieve the performance 

advantages of virtually indexed caches with the architecturally simpler advantages of a 

physically addressed 

physically addressed cache. For example, there is no alias problem in this case. Figure 

cache  A cache that is 

5.30 assumed a 4 KiB page size,  but it’s really 16 KiB, so the Intrinsity FastMATH can addressed by a physical 

use this trick. To pull it off, there must be careful coordination between the minimum 

address. 

page size, the cache size, and associativity. 

Implementing Protection with Virtual Memory

Perhaps the most important function of virtual memory today is to allow sharing of 

a single main memory by multiple processes, while providing memory protection 

among these processes and the operating system. Th

e protection mechanism must 

ensure that although multiple processes are sharing the same main memory, one 

renegade process cannot write into the address space of another user process or into 

the operating system either intentionally or unintentionally. Th

e write access bit in 

the TLB can protect a page from being written. Without this level of protection, 

computer viruses would be even more widespread. 

Hardware/  To enable the operating system to implement protection in the virtual memory 

system, the hardware must provide at least the three basic capabilities summarized 

Software  below. Note that the fi rst two are the same requirements as needed for virtual 

Interface

machines (Section 5.6). 

1.  Support at least two modes that indicate whether the running process is a 

supervisor mode Also 

user process or an operating system process, variously called a supervisor 

called kernel mode. A 

process, a kernel process, or an  executive process. 

mode indicating that a 

running process is an 

2.  Provide a portion of the processor state that a user process can read but not 

operating system process. 

write. Th

is includes the user/supervisor mode bit, which dictates whether 

the processor is in user or supervisor mode, the page table pointer, and the 
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TLB. To write these elements, the operating system uses special instructions 

that are only available in supervisor mode. 

3.  Provide mechanisms whereby the processor can go from user mode to 

supervisor mode and vice versa. Th

e fi rst direction is typically accomplished 

by a system call exception, implemented as a special instruction ( syscall in  system call A special the MIPS instruction set) that transfers control to a dedicated location in  instruction that transfers supervisor code space. As with any other exception, the program counter  control from user mode 

from the point of the system call is saved in the exception PC (EPC), and  to a dedicated location in supervisor code space, 

the processor is placed in supervisor mode. To return to user mode from the  invoking the exception exception, use the  return from exception (ERET) instruction, which resets to  mechanism in the process. 

user mode and jumps to the address in EPC. 

By using these mechanisms and storing the page tables in the operating system’s 

address space, the operating system can change the page tables while preventing a 

user process from changing them, ensuring that a user process can access only the 

storage provided to it by the operating system. 

We also want to prevent a process from reading the data of another process. For 

example, we wouldn’t want a student program to read the grades while they were 

in the processor’s memory. Once we begin sharing main memory, we must provide 

the ability for a process to protect its data from both reading and writing by another 

process; otherwise, sharing the main memory will be a mixed blessing! 

Remember that each process has its own virtual address space. Th

us, if the 

operating system keeps the page tables organized so that the independent virtual 

pages map to disjoint physical pages, one process will not be able to access another’s 

data. Of course, this also requires that a user process be unable to change the page 

table mapping. Th

e operating system can assure safety if it prevents the user process 

from modifying its own page tables. However, the operating system must be able 

to modify the page tables. Placing the page tables in the protected address space of 

the operating system satisfi es both requirements. 

When processes want to share information in a limited way, the operating system 

must assist them, since accessing the information of another process requires 

changing the page table of the accessing process. Th

e write access bit can be used 

to restrict the sharing to just read sharing, and, like the rest of the page table, this 

bit can be changed only by the operating system. To allow another process, say, P1, 

to read a page owned by process P2, P2 would ask the operating system to create 

a page table entry for a virtual page in P1’s address space that points to the same 

physical page that P2 wants to share. Th

e operating system could use the write 

protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits 

that determine the access rights for a page must be included in both the page table 

and the TLB, because the page table is accessed only on a TLB  miss. 
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Elaboration: When the operating system decides to change from running process 

context switch 

P1 to running process P2 (called a context switch or  process switch), it must ensure A changing of the internal 

that P2 cannot get access to the page tables of P1 because that would compromise 

state of the processor to 

protection. If there is no TLB, it suffi ces to change the page table register to point to P2’s 

allow a diff erent process 

page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to 

to use the processor 

P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the 

that includes saving the 

process switch rate were high, this could be quite ineffi cient. For example, P2 might load 

state needed to return to 

only a few TLB entries before the operating system switched back to P1. Unfortunately, 

the currently executing 

P1 would then fi nd that all its TLB entries were gone and would have to pay TLB misses 

process. 

to reload them. This problem arises because the virtual addresses used by P1 and P2 

are the same, and we must clear out the TLB to avoid confusing these addresses. 

A common alternative is to extend the virtual address space by adding a  process 

 identifi er or  task identifi er. The Intrinsity FastMATH has an 8-bit address space ID (ASID) fi eld for this purpose. This small fi eld identifi es the currently running process; it is kept 

in a register loaded by the operating system when it switches processes. The process 

identifi er is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if 

both the page number  and the process identifi er match. This combination eliminates the 

need to clear the TLB, except on rare occasions. 

Similar problems can occur for a cache, since on a process switch the cache will 

contain data from the running process. These problems arise in different ways for 

physically addressed and virtually addressed caches, and a variety of different solutions, 

such as process identifi ers, are used to ensure that a process gets its own data. 

Handling TLB Misses and Page Faults

Although the translation of virtual to physical addresses with a TLB is 

straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and 

page faults is more complex. A TLB miss occurs when no entry in the TLB matches 

a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. Th

e page is present in memory, and we need only create the missing TLB 

entry. 

2. Th

e page is not present in memory, and we need to transfer control to the 

operating system to deal with a page fault. 

MIPS traditionally handles a TLB miss in soft ware. It brings in the page table 

entry from memory and then re-executes the instruction that caused the TLB miss. 

Upon re-executing, it will get a TLB hit. If the page table entry indicates the page is 

not in memory, this time it will get a page fault exception. 

Handling a TLB miss or a page fault requires using the exception mechanism 

to interrupt the active process, transferring control to the operating system, and 

later resuming execution of the interrupted process. A page fault will be recognized 


sometime during the clock cycle used to access memory. To restart the instruction 

aft er the page fault is handled, the program counter of the instruction that caused 

the page fault must be saved. Just as in Chapter 4, the  exception program counter 

(EPC) is used to hold this value. 
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In addition, a TLB miss or page fault exception must be asserted by the end 

of the same clock cycle that the memory access occurs, so that the next clock 

cycle will begin exception processing rather than continue normal instruction 

execution. If the page fault was not recognized in this clock cycle, a load instruction 

could overwrite a register, and this could be disastrous when we try to restart the 

instruction. For example, consider the instruction lw $1,0($1): the computer 

must be able to prevent the write pipeline stage from occurring; otherwise, it could 

not properly restart the instruction, since the contents of $1 would have been 

destroyed. A similar complication arises on stores. We must prevent the write into 

memory from actually completing when there is a page fault; this is usually done 

by deasserting the write control line to the memory. 

Between the time we begin executing the exception handler in the operating  Hardware/ 

system and the time that the operating system has saved all the state of the process, Software the operating system is particularly vulnerable. For example, if another exception 

occurred when we were processing the fi rst exception in the operating system, the  Interface

control unit would overwrite the exception program counter, making it impossible 

to return to the instruction that caused the page fault! We can avoid this disaster 

by providing the ability to disable and enable exceptions. When an exception fi rst  exception enable Also occurs, the processor sets a bit that disables all other exceptions; this could happen  called interrupt enable. 

at the same time the processor sets the supervisor mode bit. Th

e operating system  A signal or action that 

will then save just enough state to allow it to recover if another exception occurs—

controls whether the 

process responds to 

namely, the  exception program counter (EPC) and Cause registers. EPC and Cause  an exception or not; are two of the special control registers that help with exceptions, TLB misses, and  necessary for preventing page faults; Figure 5.33 shows the rest. Th

e operating system can then re-enable  the occurrence of 

exceptions. Th

ese steps make sure that exceptions will not cause the processor  exceptions during 

to lose any state and thereby be unable to restart execution of the interrupting  intervals before the instruction. 

processor has safely saved 

the state needed to restart. 

Once the operating system knows the virtual address that caused the page fault, it 

must complete three steps:

1.  Look up the page table entry using the virtual address and fi nd the location 

of the referenced page on disk. 

2.  Choose a physical page to replace; if the chosen page is dirty, it must be 

written out to disk before we can bring a new virtual page into this physical 

page. 

3.  Start a read to bring the referenced page from disk into the chosen physical 

page. 
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Register

CP0 register number

Description

EPC

14

Where to restart after exception

Cause

13

Cause of exception

BadVAddr

8

Address that caused exception

Index

0

Location in TLB to be read or written

Random

1

Pseudorandom location in TLB

EntryLo

2

Physical page address and flags

EntryHi

10

Virtual page address

Context

4

Page table address and page number

FIGURE 5.33 

MIPS control registers.  Th

ese are considered to be in coprocessor 0, and hence are 

read using mfc0 and written using mtc0. 

Of course, this last step will take millions of processor clock cycles (so will the 

second if the replaced page is dirty); accordingly, the operating system will usually 

select another process to execute in the processor until the disk access completes. 

Because the operating system has saved the state of the process, it can freely give 

control of the processor to another process. 

When the read of the page from disk is complete, the operating system can 

restore the state of the process that originally caused the page fault and execute 

the instruction that returns from the exception. Th

is instruction will reset the 

processor from kernel to user mode, as well as restore the program counter. Th

e 

user process then re-executes the instruction that faulted, accesses the requested 

page successfully, and continues execution. 

Page fault exceptions for data accesses are diffi

cult to implement properly in a 

processor because of a combination of three characteristics:

1. Th

ey occur in the middle of instructions, unlike instruction page faults. 

restartable 

2. Th

e instruction cannot be completed before handling the exception. 

instruction An 

3. Aft er handling the exception, the instruction must be restarted as if nothing 

instruction that can 

resume execution aft er 

had occurred. 

an exception is resolved 

Making instructions restartable, so that the exception can be handled and the 

without the exception’s 

instruction later continued, is relatively easy in an architecture like the MIPS. 

aff ecting the result of the 

instruction. 

Because each instruction writes only one data item and this write occurs at the end 

of the instruction cycle, we can simply prevent the instruction from completing (by 

not writing) and restart the instruction at the beginning. 

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware 

saves the page number of the reference in a special register called BadVAddr and 

generates an exception. 
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Th

e exception invokes the operating system, which handles the miss in soft ware. 

Control is transferred to address 8000 0000 , the location of the TLB miss handler. 

hex

handler  Name of a 

To fi nd the physical address for the missing page, the TLB miss routine indexes the  soft ware routine invoked page table using the page number of the virtual address and the page table register,  to “handle” an exception which indicates the starting address of the active process page table. To make this  or interrupt. 

indexing fast, MIPS hardware places everything you need in the special Context 

register: the upper 12 bits have the address of the base of the page table, and the 

next 18 bits have the virtual address of the missing page. Each page table entry is 

one word, so the last 2 bits are 0. Th

us, the fi rst two instructions copy the Context 

register into the kernel temporary register $k1 and then load the page table entry 

from that address into $k1. Recall that $k0 and $k1 are reserved for the operating 

system to use without saving; a major reason for this convention is to make the TLB 

miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:

mfc0  $k1,Context 

# copy address of PTE into temp $k1

lw 

$k1,0($k1) 

# put PTE into temp $k1

mtc0 $k1,EntryLo  # 

put PTE into special register EntryLo

tlbwr  

# 

put EntryLo into TLB entry at Random

eret 



# return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the 

TLB. Th

e instruction tlbwr copies from control register EntryLo into the TLB 

entry selected by the control register Random. Random implements random 

replacement, so it is basically a free-running counter. A TLB miss takes about a 

dozen clock cycles. 

Note that the TLB miss handler does not check to see if the page table entry is 

valid. Because the exception for TLB entry missing is much more frequent than 

a page fault, the operating system loads the TLB from the page table without 

examining the entry and restarts the instruction. If the entry is invalid, another 

and diff erent exception occurs, and the operating system recognizes the page fault. 

Th

is method makes the frequent case of a TLB miss fast, at a slight performance 

penalty for the infrequent case of a page fault. 

Once the process that generated the page fault has been interrupted, it transfers 

control to 8000 0180 , a diff erent address than the TLB miss handler. Th

is is 

hex

the general address for exception; TLB miss has a special entry point to lower the 

penalty for a TLB miss. Th

e operating system uses the exception Cause register 

to diagnose the cause of the exception. Because the exception is a page fault, the 

operating system knows that extensive processing will be required. Th

us, unlike a 

TLB miss, it saves the entire state of the active process. Th

is state includes all the 

general-purpose and fl oating-point registers, the page table address register, the 

EPC, and the exception Cause register. Since exception handlers do not usually use 

the fl oating-point registers, the general entry point does not save them, leaving that 

to the few handlers that need them. 
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Figure 5.34 sketches the MIPS code of an exception handler. Note that we 

save and restore the state in MIPS code, taking care when we enable and disable 

exceptions, but we invoke C code to handle the particular exception. 

Th

e virtual address that caused the fault depends on whether the fault was an 

instruction or data fault. Th

e address of the instruction that generated the fault is 

in the EPC. If it was an instruction page fault, the EPC contains the virtual address 

of the faulting page; otherwise, the faulting virtual address can be computed by 

examining the instruction (whose address is in the EPC) to fi nd the base register 

and off set fi eld. 

Elaboration:  This simplifi ed version assumes that the  stack pointer (sp) is valid. To avoid the problem of a page fault during this low-level exception code, MIPS sets aside 

unmapped A portion 

a portion of its address space that cannot have page faults, called unmapped. The 

of the address space that 

operating system places the exception entry point code and the exception stack in 

cannot have page faults. 

unmapped memory. MIPS hardware translates virtual addresses 8000 0000

to BFFF 

hex

FFFF

to physical addresses simply by ignoring the upper bits of the virtual address, 

hex

thereby placing these addresses in the low part of physical memory. Thus, the operating 

system places exception entry points and exception stacks in unmapped memory. 

Elaboration:  The code in Figure 5.34 shows the MIPS-32 exception return sequence. 

The older MIPS-I architecture uses rfe and jr instead of eret. 

Elaboration: For processors with more complex instructions that can touch many 

memory locations and write many data items, making instructions restartable is much 

harder. Processing one instruction may generate a number of page faults in the middle 

of the instruction. For example, x86 processors have block move instructions that touch 

thousands of data words. In such processors, instructions often cannot be restarted 

from the beginning, as we do for MIPS instructions. Instead, the instruction must be 

interrupted and later continued midstream in its execution. Resuming an instruction in 

the middle of its execution usually requires saving some special state, processing the 

exception, and restoring that special state. Making this work properly requires careful 

and detailed coordination between the exception-handling code in the operating system 

and the hardware. 

Elaboration:  Rather than pay an extra level of indirection on every memory access, the 

VMM maintains a  shadow page table that maps directly from the guest virtual address 

space to the physical address space of the hardware. By detecting all modifi cations to 

the guest’s page table, the VMM can ensure the shadow page table entries being used 

by the hardware for translations correspond to those of the guest OS environment, with 

the exception of the correct physical pages substituted for the real pages in the guest 

tables. Hence, the VMM must trap any attempt by the guest OS to change its page table 

or to access the page table pointer. This is commonly done by write protecting the guest 

page tables and trapping any access to the page table pointer by a guest OS. As noted 

above, the latter happens naturally if accessing the page table pointer is a privileged 

operation. 
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Save state

Save GPR



addi 

$k1,$sp, -XCPSIZE  # save space on stack for state 



sw 

$sp, XCT_SP($k1) 

# save $sp on stack 



sw 

$v0, XCT_V0($k1) 

# save $v0 on stack 



... 





# save $v1, $ai, $si, $ti,... on stack



sw 

$ra, XCT_RA($k1) 

# save $ra on stack

Save hi, lo

mfhi 

$v0 



# copy Hi 



mflo $v1  

# 

copy 

Lo 



sw 

$v0, XCT_HI($k1) 

# save Hi value on stack 



sw 

$v1, XCT_LO($k1) 

# save Lo value on stack

Save exception

mfc0 

$a0, $cr  

# copy cause register 

registers



sw 

$a0, XCT_CR($k1) 

# save $cr value on stack 

... 



# 

save 

$v1,.... 

mfc0 

$a3, 

$sr 



# copy status register 



sw 

$a3, XCT_SR($k1) 

# save $sr on stack

Set sp

move 

$sp, $k1  

# sp = sp - XCPSIZE

Enable nested exceptions



andi 

$v0, $a3, MASK1 

# $v0 = $sr & MASK1, enable exceptions 

mtc0 

$v0, 

$sr 



# $sr = value that enables exceptions

Call C exception handler

Set $gp



move 

$gp, GPINIT 

# set $gp to point to heap area

move 

$a0, 

$sp 



# arg1 = pointer to exception stack 

Call C code



jal 

xcpt_deliver  

# call C code to handle exception

Restoring state

Restore most 

move 

$at, 

$sp 



# temporary value of $sp 

GPR, hi, lo



lw 

$ra, XCT_RA($at) 

# restore $ra from stack 

... 



# 

restore 

$t0,...., 

$a1 



lw 

$a0, XCT_A0($k1) 

# restore $a0 from stack

Restore status 

lw 

$v0, XCT_SR($at) 

# load old $sr from stack 

register



li 

$v1, MASK2 

# mask to disable exceptions 



and 

$v0, $v0, $v1 

# $v0 = $sr & MASK2, disable exceptions 

mtc0 

$v0, 

$sr 



# set status register

Exception return

Restore $sp 



lw 

$sp, XCT_SP($at) 

# restore $sp from stack 

and rest of 



lw 

$v0, XCT_V0($at) 

# restore $v0 from stack 

GPR used as 

temporary 



lw 

$v1, XCT_V1($at) 

# restore $v1 from stack 

registers



lw 

$k1, XCT_EPC($at)  # copy old $epc from stack 



lw 

$at, XCT_AT($at) 

# restore $at from stack

Restore ERC 



mtc0 

$k1, $epc 

# restore $epc 

and return



eret 

$ra 



# return to interrupted instruction

FIGURE 5.34 

MIPS code to save and restore state on an exception. 

452 

Chapter 5  Large and Fast: Exploiting Memory Hierarchy

Elaboration: The fi nal portion of the architecture to virtualize is I/O. This is by far 

the most diffi cult part of system virtualization because of the increasing number of 

I/O devices attached to the computer  and the increasing diversity of I/O device types. 

Another diffi culty is the sharing of a real device among multiple VMs, and yet another 

comes from supporting the myriad of device drivers that are required, especially if 

different guest OSes are supported on the same VM system. The VM illusion can be 

maintained by giving each VM generic versions of each type of I/O device driver, and then 

leaving it to the VMM to handle real I/O. 

Elaboration: In addition to virtualizing the instruction set for a virtual machine, 

another challenge is virtualization of virtual memory, as each guest OS in every virtual 

machine manages its own set of page tables. To make this work, the VMM separates 

the notions of  real and  physical memory (which are often treated synonymously), and makes real memory a separate, intermediate level between virtual memory and physical 

memory. (Some use the terms  virtual memory, physical memory,  and  machine memory 

to name the same three levels.) The guest OS maps virtual memory to real memory 

via its page tables, and the VMM page tables map the guest’s real memory to physical 

memory. The virtual memory architecture is specifi ed either via page tables, as in IBM 

VM/370 and the x86, or via the TLB structure, as in MIPS. 

Summary

Virtual memory is the name for the level of memory hierarchy that manages 

caching between the main memory and secondary memory. Virtual memory 

allows a single program to expand its address space beyond the limits of main 

memory. More importantly, virtual memory supports sharing of the main memory 

among multiple, simultaneously active processes, in a protected manner. 

Managing the memory hierarchy between main memory and disk is challenging 

because of the high cost of page faults. Several techniques are used to reduce the 

miss rate:

1.  Pages are made large to take advantage of spatial locality and to reduce the 

miss rate. 

2. Th

e mapping between virtual addresses and physical addresses, which is 

implemented with a page table, is made fully associative so that a virtual 

page can be placed anywhere in main memory. 

3. Th

e operating system uses techniques, such as LRU and a reference bit, to 

choose which pages to replace. 
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Writes to secondary memory are expensive, so virtual memory uses a write-back 

scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid 

writing unchanged pages. 

Th

e virtual memory mechanism provides address translation from a virtual 

address used by the program to the physical address space used for accessing 

memory. Th

is address translation allows protected sharing of the main memory 

and provides several additional benefi ts, such as simplifying memory allocation. 

Ensuring that processes are protected from each other requires that only the 

operating system can change the address translations, which is implemented by 

preventing user programs from changing the page tables. Controlled sharing of 

pages among processes can be implemented with the help of the operating system 

and access bits in the page table that indicate whether the user program has read or 

write access to a page. 

If a processor had to access a page table resident in memory to translate every 

access, virtual memory would be too expensive, as caches would be pointless! 

Instead, a TLB acts as a cache for translations from the page table. Addresses are 

then translated from virtual to physical using the translations in the TLB. 

Caches, virtual memory, and TLBs all rely on a common set of principles and 

policies. Th

e next section discusses this common framework. 

Although virtual memory was invented to enable a small memory to act as a large  Understanding one, the performance diff erence between secondary memory and main memory  Program 

means that if a program routinely accesses more virtual memory than it has 

physical memory, it will run very slowly. Such a program would be continuously  Performance

swapping pages between memory and disk, called  thrashing. Th

rashing is a disaster 

if it occurs, but it is rare. If your program thrashes, the easiest solution is to run it on 

a computer with more memory or buy more memory for your computer. A more 

complex choice is to re-examine your algorithm and data structures to see if you 

can change the locality and thereby reduce the number of pages that your program 

uses simultaneously. Th

is set of popular pages is informally called the  working set. 

A more common performance problem is TLB misses. Since a TLB might 

handle only 32–64 page entries at a time, a program could easily see a high TLB 

miss rate, as the processor may access less than a quarter mebibyte directly: 64 

⫻ 4 KiB ⫽ 0.25 MiB. For example, TLB misses are oft en a challenge for Radix 

Sort. To try to alleviate this problem, most computer architectures now support 

variable page sizes. For example, in addition to the standard 4 KiB page, MIPS 

hardware supports 16 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 64 MiB, and 

256 MiB pages. Hence, if a program uses large page sizes, it can access more 

memory directly without TLB misses. 

Th

e practical challenge is getting the operating system to allow programs to 

select these larger page sizes. Once again, the more complex solution to reducing 
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TLB misses is to re-examine the algorithm and data structures to reduce the 

working set of pages; given the importance of memory accesses to performance 

and the frequency of TLB misses, some programs with large working sets have 

been redesigned with that goal. 

Check  Match the defi nitions in the right column to the terms in the left  column. 

Yourself

1. L1 cache

a. A cache for a cache

2. L2 cache

b. A cache for disks

3. Main memory

c. A cache for a main memory

4. TLB

d. A cache for page table entries

 5.8 

 A Common Framework for Memory 

Hierarchy

By now, you’ve recognized that the diff erent types of memory hierarchies have a 

great deal in common. Although many of the aspects of memory hierarchies diff er 

quantitatively, many of the policies and features that determine how a hierarchy 

functions are similar qualitatively. Figure 5.35 shows how some of the quantitative characteristics of memory hierarchies can diff er. In the rest of this section, we will 

discuss the common operational alternatives for memory hierarchies, and how 

these determine their behavior. We will examine these policies as a series of four 

questions that apply between any two levels of a memory hierarchy, although for 

simplicity we will primarily use terminology for caches. 

Typical values 

Typical values 

Typical values for 

Typical values 

Feature

for L1 caches

for L2 caches

paged memory

for a TLB

Total size in blocks

250–2000

2,500–25,000

16,000–250,000

40–1024

Total size in kilobytes

16–64

125–2000

1,000,000–1,000,000,000

0.25–16

Block size in bytes

16–64

64–128

4000–64,000

4–32

Miss penalty in clocks

10–25

100–1000

10,000,000–100,000,000

10–1000

Miss rates (global for L2)

2%–5%

0.1%–2%

0.00001%–0.0001%

0.01%–2%

FIGURE 5.35 

The key quantitative design parameters that characterize the major elements of memory hierarchy in a computer.  Th

ese are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values that have shift ed over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches lower the L2 miss penalty to 30 to 40 clock cycles. 
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Question 1: Where Can a Block Be Placed? 

We have seen that block placement in the upper level of the hierarchy can use a range 

of schemes, from direct mapped to set associative to fully associative. As mentioned 

above, this entire range of schemes can be thought of as variations on a set-associative 

scheme where the number of sets and the number of blocks per set varies:

Scheme name

Number of sets

Blocks per set

Direct mapped

Number of blocks in cache

1

Number of blocks in the cache

Set associative

Associativity (typically 2–16)

Associativity

Fully associative

1

Number of blocks in the cache

Th

e advantage of increasing the degree of associativity is that it usually decreases 

the miss rate. Th

e improvement in miss rate comes from reducing misses that 

compete for the same location. We will examine these in more detail shortly. First, 

let’s look at how much improvement is gained. Figure 5.36 shows the miss rates for several cache sizes as associativity varies from direct mapped to eight-way set 

associative. Th

e largest gains are obtained in going from direct mapped to two-way 

set associative, which yields between a 20% and 30% reduction in the miss rate. 

As cache sizes grow, the relative improvement from associativity increases only 

15%

1 KiB

12%

2 KiB

9%

ate

4 KiB

Miss r

6%

8 KiB

3%

16 KiB

32 KiB

64 KiB

128 KiB

0

One-way

Two-way

Four-way

Eight-way

Associativity

FIGURE 5.36 

The data cache miss rates for each of eight cache sizes improve as the 

associativity increases.  While the benefi t of going from one-way (direct mapped) to two-way set associative is signifi cant, the benefi ts of further associativity are smaller (e.g., 1%–10% improvement going from two-way to four-way versus 20%–30% improvement going from one-way to two-way). Th

ere is even 

less improvement in going from four-way to eight-way set associative, which, in turn, comes very close to the miss rates of a fully associative cache. Smaller caches obtain a signifi cantly larger absolute benefi t from associativity because the base miss rate of a small cache is larger. Figure 5.16 explains how this data was collected. 
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slightly; since the overall miss rate of a larger cache is lower, the opportunity for 

improving the miss rate decreases and the absolute improvement in the miss rate 

from associativity shrinks signifi cantly. Th

e potential disadvantages of associativity, 

as we mentioned earlier, are increased cost and slower access time. 

Question 2: How Is a Block Found? 

Th

e choice of how we locate a block depends on the block placement scheme, since 

that dictates the number of possible locations. We can summarize the schemes as 

follows:

Associativity

Location method

Comparisons required

Direct mapped

Index

1

Set associative

Index the set, search among elements

Degree of associativity

Search all cache entries

Size of the cache

Full

Separate lookup table

0

Th

e choice among direct-mapped, set-associative, or fully associative mapping 

in any memory hierarchy will depend on the cost of a miss versus the cost of 

implementing associativity, both in time and in extra hardware. Including the 

L2 cache on the chip enables much higher associativity, because the hit times are 

not as critical and the designer does not have to rely on standard SRAM chips as 

the building blocks. Fully associative caches are prohibitive except for small sizes, 

where the cost of the comparators is not overwhelming and where the absolute 

miss rate improvements are greatest. 

In virtual memory systems, a separate mapping table—the page table—is kept 

to index the memory. In addition to the storage required for the table, using an 

index table requires an extra memory access. Th

e choice of full associativity for 

page placement and the extra table is motivated by these facts:

1.  Full associativity is benefi cial, since misses are very expensive. 

2.  Full associativity allows soft ware to use sophisticated replacement schemes 

that are designed to reduce the miss rate. 

3. Th

e full map can be easily indexed with no extra hardware and no searching 

required. 

Th

erefore, virtual memory systems almost always use fully associative placement. 

Set-associative placement is oft en used for caches and TLBs, where the access 

combines indexing and the search of a small set. A few systems have used direct-

mapped caches because of their advantage in access time and simplicity. Th

e 

advantage in access time occurs because fi nding the requested block does not 

depend on a comparison. Such design choices depend on many details of the 
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implementation, such as whether the cache is on-chip, the technology used for 

implementing the cache, and the critical role of cache access time in determining 

the processor cycle time. 

Question 3: Which Block Should Be Replaced on 

a Cache Miss? 

When a miss occurs in an associative cache, we must decide which block to replace. 

In a fully associative cache, all blocks are candidates for replacement. If the cache is 

set associative, we must choose among the blocks in the set. Of course, replacement 

is easy in a direct-mapped cache because there is only one candidate. 

Th

ere are the two primary strategies for replacement in set-associative or fully 

associative caches:

■   Random: Candidate blocks are randomly selected, possibly using some hardware 

assistance. For example, MIPS supports random replacement for TLB misses. 

■   Least recently used (LRU): Th

e block replaced is the one that has been unused 

for the longest time. 

In practice, LRU is too costly to implement for hierarchies with more than a small 

degree of associativity (two to four, typically), since tracking the usage information 

is costly. Even for four-way set associativity, LRU is oft en  approximated—for 

example, by keeping track of which pair of blocks is LRU (which requires 1 bit), 

and then tracking which block in each pair is LRU (which requires 1 bit per pair). 

For larger associativity, either LRU is approximated or random replacement is 

used. In caches, the replacement algorithm is in hardware, which means that the 

scheme should be easy to implement. Random replacement is simple to build in 

hardware, and for a two-way set-associative cache, random replacement has a miss 

rate about 1.1 times higher than LRU replacement. As the caches become larger, the 

miss rate for both replacement strategies falls, and the absolute diff erence becomes 

small. In fact, random replacement can sometimes be better than the simple LRU 

approximations that are easily implemented in hardware. 

In virtual memory, some form of LRU is always approximated, since even a tiny 

reduction in the miss rate can be important when the cost of a miss is enormous. 

Reference bits or equivalent functionality are oft en provided to make it easier for 

the operating system to track a set of less recently used pages. Because misses are 

so expensive and relatively infrequent, approximating this information primarily 

in soft ware is acceptable. 

Question 4: What Happens on a Write? 

A key characteristic of any memory hierarchy is how it deals with writes. We have 

already seen the two basic options:

■   Write-through: Th

e information is written to both the block in the cache and 

the block in the lower level of the memory hierarchy (main memory for a 

cache). Th

e caches in Section 5.3 used this scheme. 
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■   Write-back: Th

e information is written only to the block in the cache. Th

e 

modifi ed block is written to the lower level of the hierarchy only when it 

is replaced. Virtual memory systems always use write-back, for the reasons 

discussed in Section 5.7. 

Both write-back and write-through have their advantages. Th

e key advantages of 

write-back are the following:

■  Individual words can be written by the processor at the rate that the cache, 

rather than the memory, can accept them. 

■  Multiple writes within a block require only one write to the lower level in the 

hierarchy. 

■  When blocks are written back, the system can make eff ective use of a high-

bandwidth transfer, since the entire block is written. 

Write-through has these advantages:

■  Misses are simpler and cheaper because they never require a block to be 

written back to the lower level. 

■ Write-through is easier to implement than write-back, although to be 

practical, a write-through cache will still need to use a write buff er. 

Caches, TLBs, and virtual memory may initially look very diff erent, but 

they rely on the same two principles of locality, and they can be understood 

by their answers to four questions:

Question 1:

Where can a block be placed? 

Answer:

One place (direct mapped), a few places (set associative), 

or any place (fully associative). 

Question 2:

How is a block found? 

The BIG

Answer:

Th

ere are four methods: indexing (as in a direct-mapped 

Picture

cache), limited search (as in a set-associative cache), full 

search (as in a fully associative cache), and a separate 

lookup table (as in a page table). 

Question 3:

What block is replaced on a miss? 

Answer:

Typically, either the least recently used or a random block. 

Question 4:

How are writes handled? 

Answer:

Each level in the hierarchy can use either write-through 

or write-back. 
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In virtual memory systems, only a write-back policy is practical because of the long 

latency of a write to the lower level of the hierarchy. Th

e rate at which writes are 

generated by a processor generally exceeds the rate at which the memory system can 

process them, even allowing for physically and logically wider memories and burst 

modes for DRAM. Consequently, today lowest-level caches typically use write-back. 

The Three Cs: An Intuitive Model for Understanding the 

Behavior of Memory Hierarchies

In this subsection, we look at a model that provides insight into the sources of  three Cs model A cache misses in a memory hierarchy and how the misses will be aff ected by changes  model in which all cache in the hierarchy. We will explain the ideas in terms of caches, although the ideas  misses are classifi ed into carry over directly to any other level in the hierarchy. In this model, all misses are  one of three categories: compulsory misses, 

classifi ed into one of three categories (the three Cs):

capacity misses, and 

■  Compulsory misses: Th

ese are cache misses caused by the fi rst access to  confl ict misses. 

a block that has never been in the cache. Th

ese are also called cold-start  compulsory miss Also 

misses. 

called cold-start miss. 

A cache miss caused by 

■  Capacity misses: Th

ese are cache misses caused when the cache cannot  the fi rst access to a block 

contain all the blocks needed during execution of a program. Capacity misses 

that has never been in the 

occur when blocks are replaced and then later retrieved. 

cache. 

■  Confl ict  misses: Th

ese are cache misses that occur in set-associative or  capacity miss A cache 

direct-mapped caches when multiple blocks compete for the same set.  miss that occurs because 

Confl ict misses are those misses in a direct-mapped or set-associative cache  the cache, even with that are eliminated in a fully associative cache of the same size. Th

ese cache  full associativity, cannot 

misses are also called collision misses. 

contain all the blocks 

needed to satisfy the 

Figure 5.37 shows how the miss rate divides into the three sources. Th

ese sources of 

request. 

misses can be directly attacked by changing some aspect of the cache design. Since  confl ict miss Also called confl ict misses arise directly from contention for the same cache block, increasing  collision miss. A cache associativity reduces confl ict misses. Associativity, however, may slow access time,  miss that occurs in a leading to lower overall performance. 

set-associative or direct-

Capacity misses can easily be reduced by enlarging the cache; indeed, second-

mapped cache when 

level caches have been growing steadily larger for many years. Of course, when we  multiple blocks compete make the cache larger, we must also be careful about increasing the access time,  for the same set and that which could lead to lower overall performance. Th

us, fi rst-level caches have been  are eliminated in a fully 

associative cache of the 

growing slowly, if at all. 

same size. 

Because compulsory misses are generated by the fi rst reference to a block, the 

primary way for the cache system to reduce the number of compulsory misses is 

to increase the block size. Th

is will reduce the number of references required to 

touch each block of the program once, because the program will consist of fewer 
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The miss rate can be broken into three sources of misses.  Th

is graph shows 

the total miss rate and its components for a range of cache sizes. Th

is data is for the SPEC CPU2000 integer 

and fl oating-point benchmarks and is from the same source as the data in Figure 5.36 Th

e compulsory 

miss component is 0.006% and cannot be seen in this graph. Th

e next component is the capacity miss rate, 

which depends on cache size. Th

e confl ict portion, which depends both on associativity and on cache size, is 

shown for a range of associativities from one-way to eight-way. In each case, the labeled section corresponds to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to the labeled degree of associativity. For example, the section labeled  two-way indicates the additional misses arising when the cache has associativity of two rather than four. Th

us, the diff erence in the miss rate incurred 

by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections marked  four-way, two-way,  and  one-way. Th

e diff erence between eight-way and four-way is so small that it 

is diffi

cult to see on this graph. 

Th

e challenge in designing memory hierarchies is that every change 

The BIG

that potentially improves the miss rate can also negatively aff ect overall 

performance,  as Figure 5.38 summarizes. Th

is combination of positive 

Picture

and negative eff ects is what makes the design of a memory hierarchy 

interesting. 
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Design change

Effect on miss rate

performance effect

Increases cache size

Decreases capacity misses

May increase access time

Increases associativity

Decreases miss rate due to conflict 

May increase access time

misses

Increases block size

Decreases miss rate for a wide range of 

Increases miss penalty. Very large 

block sizes due to spatial locality

block could increase miss rate

FIGURE 5.38 

Memory hierarchy design challenges. 

cache blocks. As mentioned above, increasing the block size too much can have a 

negative eff ect on performance because of the increase in the miss penalty. 

Th

e decomposition of misses into the three Cs is a useful qualitative model. In 

real cache designs, many of the design choices interact, and changing one cache 

characteristic will oft en aff ect several components of the miss rate. Despite such 

shortcomings, this model is a useful way to gain insight into the performance of 

cache designs. 

Which of the following statements (if any) are generally true? 

Check 

1. Th

ere is no way to reduce compulsory misses. 

Yourself

2.  Fully associative caches have no confl ict misses. 

3.  In reducing misses, associativity is more important than capacity. 

 5.9 

 Using a Finite-State Machine to Control a 

Simple Cache

We can now implement control for a cache, just as we implemented control for 

the single-cycle and pipelined datapaths in Chapter 4. Th

is section starts with a 

defi nition of a simple cache and then a description of  fi nite-state machines (FSMs). 

It fi nishes with the FSM of a controller for this simple cache. Section 5.12 goes 

into more depth, showing the cache and controller in a new hardware description 

language. 

A Simple Cache

We’re going to design a controller for a simple cache. Here are the key characteristics 

of the cache:

■ Direct-mapped cache
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■  Write-back using write allocate

■  Block size is 4 words (16 bytes or 128 bits)

■  Cache size is 16 KiB, so it holds 1024 blocks

■ 32-byte addresses

■  Th

e cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fi elds of an address for the cache:

■  Cache index is 10 bits

■ Block off set is 4 bits

■  Tag size is 32 ⫺ (10 ⫹ 4) or 18 bits

Th

e signals between the processor to the cache are

■  1-bit Read or Write signal

■  1-bit Valid signal, saying whether there is a cache operation or not

■ 32-bit address

■  32-bit data from processor to cache

■  32-bit data from cache to processor

■  1-bit Ready signal, saying the cache operation is complete

Th

e interface between the memory and the cache has the same fi elds as between 

the processor and the cache, except that the data fi elds are now 128 bits wide. Th

e 

extra memory width is generally found in microprocessors today, which deal with 

either 32-bit or 64-bit words in the processor while the DRAM controller is oft en 

128 bits. Making the cache block match the width of the DRAM simplifi ed the 

design. Here are the signals:

■  1-bit Read or Write signal

■  1-bit Valid signal, saying whether there is a memory operation or not

■ 32-bit address

■  128-bit data from cache to memory

■  128-bit data from memory to cache

■  1-bit Ready signal, saying the memory operation is complete

Note that the interface to memory is not a fi xed number of cycles. We assume a 

memory controller that will notify the cache via the Ready signal when the memory 

read or write is fi nished. 

Before describing the cache controller, we need to review fi nite-state machines, 

which allow us to control an operation that can take multiple clock cycles. 
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Finite-State Machines

To design the control unit for the single-cycle datapath, we used a set of truth tables 

that specifi ed the setting of the control signals based on the instruction class. For a 

cache, the control is more complex because the operation can be a series of steps. 

Th

e control for a cache must specify both the signals to be set in any step and the 

next step in the sequence. 

Th

e most common multistep control method is based on fi nite-state machines, fi nite-state machine which are usually represented graphically. A fi nite-state machine consists of a set  A sequential logic of states and directions on how to change states. Th

e directions are defi ned by a  function consisting of a 

next-state function, which maps the current state and the inputs to a new state.  set of inputs and outputs, a next-state function that 

When we use a fi nite-state machine for control, each state also specifi es a set of  maps the current state and outputs that are asserted when the machine is in that state. Th

e implementation  the inputs to a new state, 

of a fi nite-state machine usually assumes that all outputs that are not explicitly  and an output function asserted are deasserted. Similarly, the correct operation of the datapath depends on 

that maps the current 

the fact that a signal that is not explicitly asserted is deasserted, rather than acting  state and possibly the as a don’t care. 

inputs to a set of asserted 

Multiplexor controls are slightly diff erent, since they select one of the inputs  outputs. 

whether they are 0 or 1. Th

us, in the fi nite-state machine, we always specify the 

setting of all the multiplexor controls that we care about. When we implement  next-state function the fi nite-state machine with logic, setting a control to 0 may be the default and  A combinational function thus may not require any gates. A simple example of a fi nite-state machine appears  that, given the inputs in Appendix B, and if you are unfamiliar with the concept of a fi nite-state machine,  and the current state, determines the next state 

you may want to examine Appendix B before proceeding. 

of a fi nite-state machine. 

A fi nite-state machine can be implemented with a temporary register that holds 

the current state and a block of combinational logic that determines both the 

data-path signals to be asserted and the next state. Figure 5.39 shows how such an implementation might look. Appendix D describes in detail how the fi nite-state 

machine is implemented using this structure. In Section B.3, the combinational 

control logic for a fi nite-state machine is implemented both with either a ROM 

( read-only memory) or a PLA ( programmable logic array). (Also see Appendix B 

for a description of these logic elements.)

Elaboration: Note that this simple design is called a  blocking cache, in that the 

processor must wait until the cache has fi nished the request. 

Section 5.12 describes 

the alternative, which is called a  nonblocking cache. 

Elaboration:  The style of fi nite-state machine in this book is called a Moore machine, 

after Edward Moore. Its identifying characteristic is that the output depends only on the 

current state. For a Moore machine, the box labeled combinational control logic can be 

split into two pieces. One piece has the control output and only the state input, while the 

other has only the next-state output. 

An alternative style of machine is a Mealy machine, named after George Mealy. The 

Mealy machine allows both the input and the current state to be used to determine the 

output. Moore machines have potential implementation advantages in speed and size 

of the control unit. The speed advantages arise because the control outputs, which are 
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FIGURE 5.39 

Finite-state machine controllers are typically implemented using a block of 

combinational logic and a register to hold the current state.  Th

e outputs of the combinational 

logic are the next-state number and the control signals to be asserted for the current state. Th

e inputs to the 

combinational logic are the current state and any inputs used to determine the next state. Notice that in the fi nite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs. Th e 

 Elaboration explains this in more detail. 

needed early in the clock cycle, do not depend on the inputs, but only on the current 

state. In Appendix B, when the implementation of this fi nite-state machine is taken down 

to logic gates, the size advantage can be clearly seen. The potential disadvantage of a 

Moore machine is that it may require additional states. For example, in situations where 

there is a one-state difference between two sequences of states, the Mealy machine 

may unify the states by making the outputs depend on the inputs. 

FSM for a Simple Cache Controller

Figure 5.40 shows the four states of our simple cache controller:

■   Idle: Th

is state waits for a valid read or write request from the processor, 

which moves the FSM to the Compare Tag state. 

■   Compare Tag: As the name suggests, this state tests to see if the requested read 

or write is a hit or a miss. Th

e index portion of the address selects the tag to 

be compared. If the data in the cache block referred to by the index portion 

of the address is valid, and the tag portion of the address matches the tag, 

then it is a hit. Either the data is read from the selected word if it is a load or  

written to the selected word if it is a store. Th

e Cache Ready signal is then 
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Four states of the simple controller. 

set. If it is a write, the dirty bit is set to 1. Note that a write hit also sets the 

valid bit and the tag fi eld; while it seems unnecessary, it is included because 

the tag is a single memory, so to change the dirty bit we also need to change 

the valid and tag fi elds. If it is a hit and the block is valid, the FSM returns to 

the idle state. A miss fi rst updates the cache tag and then goes either to the 

Write-Back state, if the block at this location has dirty bit value of 1, or to the 

Allocate state if it is 0. 

■   Write-Back: Th

is state writes the 128-bit block to memory using the address 

composed from the tag and cache index. We remain in this state waiting for 

the Ready signal from memory. When the memory write is complete, the 

FSM goes to the Allocate state. 

■   Allocate: Th

e new block is fetched from memory. We remain in this state 

waiting for the Ready signal from memory. When the memory read is 

complete, the FSM goes to the Compare Tag state. Although we could 

have gone to a new state to complete the operation instead of reusing the 

Compare Tag state, there is a good deal of overlap, including the update of the 

appropriate word in the block if the access was a write. 
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Th

is simple model could easily be extended with more states to try to improve 

performance. For example, the Compare Tag state does both the compare and the 

read or write of the cache data in a single clock cycle. Oft en the compare and cache 

access are done in separate states to try to improve the clock cycle time. Another 

optimization would be to add a write buff er so that we could save the dirty block 

and then read the new block fi rst so that the processor doesn’t have to wait for two 

memory accesses on a dirty miss. Th

e cache would then write the dirty block from 

the write buff er while the processor is operating on the requested data. 

Section 5.12, goes into more detail about the FSM, showing the full controller 

in a hardware description language and a block diagram of this simple cache. 

  5.10   Parallelism and Memory Hierarchy: 

Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single chip, 

these processors very likely share a common physical address space. Caching shared 

data introduces a new problem, because the view of memory held by two diff erent 

processors is through their individual caches, which, without any additional 

precautions, could end up seeing two diff erent values. Figure 5.41 illustrates the problem and shows how two diff erent processors can have two diff erent values 

for the same location. Th

is diffi

culty is generally referred to as the  cache coherence 

 problem. 

Informally, we could say that a memory system is coherent if any read of a data 

item returns the most recently written value of that data item. Th

is defi nition, 

although intuitively appealing, is vague and simplistic; the reality is much more 

complex. Th

is simple defi nition contains two diff erent aspects of memory system 

behavior, both of which are critical to writing correct shared memory programs. 

Th

e fi rst aspect, called  coherence,  defi nes  what values can be returned by a read. Th e 

second aspect, called  consistency,  determines  when a written value will be returned by a read. 

Let’s look at coherence fi rst. A memory system is coherent if

1.  A read by a processor P to a location X that follows a write by P to X, with no 

writes of X by another processor occurring between the write and the read 

by P, always returns the value written by P. Th

us, in Figure 5.41, if CPU A 

were to read X aft er time step 3, it should see the value 1. 

2.  A read by a processor to location X that follows a write by another processor 

to X returns the written value if the read and write are suffi

ciently separated 

in time and no other writes to X occur between the two accesses. Th

us, in 

Figure 5.41, we need a mechanism so that the value 0 in the cache of CPU B 

is replaced by the value 1 aft er CPU A stores 1 into memory at address X in 

time step 3. 
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3.  Writes to the same location are  serialized; that is, two writes to the same 

location by any two processors are seen in the same order by all processors. 

For example, if CPU B stores 2 into memory at address X aft er time step 3, 

processors can never read the value at location X as 2 and then later read 

it as 1. 

Th

e fi rst property simply preserves program order—we certainly expect this 

property to be true in uniprocessors, for example. Th

e second property defi nes 

the notion of what it means to have a coherent view of memory: if a processor 

could continuously read an old data value, we would clearly say that memory was 

incoherent. 

Th

e need for  write serialization is more subtle, but equally important. Suppose 

we did not serialize writes, and processor P1 writes location X followed by P2 

writing location X. Serializing the writes ensures that every processor will see the 

write done by P2 at some point. If we did not serialize the writes, it might be the 

case that some processor could see the write of P2 fi rst and then see the write of P1, 

maintaining the value written by P1 indefi nitely. Th

e simplest way to avoid such 

diffi

culties is to ensure that all writes to the same location are seen in the same 

order, which we call  write serialization. 

Basic Schemes for Enforcing Coherence

In a cache coherent multiprocessor, the caches provide both  migration and 

 replication of shared data items:

■   Migration: A data item can be moved to a local cache and used there in a 

transparent fashion. Migration reduces both the latency to access a shared 

data item that is allocated remotely and the bandwidth demand on the shared 

memory. 

Memory 
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Cache  contents for 

Cache  contents 

contents for 

step

Event

CPU A

for CPU B

location X

0

0

1

CPU A reads X

0

0

2

CPU B reads X

0

0

0

3

CPU A stores 1 into X

1

0

1

FIGURE 5.41 

The cache coherence problem for a single memory location (X), read and 

written by two processors (A and B).  We initially assume that neither cache contains the variable and that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but similar complications. Aft er the value of X has been written by A, A’s cache and the memory both contain the new value, but B’s cache does not, and if B reads the value of X, it will receive 0! 
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■   Replication: When shared data are being simultaneously read, the caches 

make a copy of the data item in the local cache. Replication reduces both 

latency of access and contention for a read shared data item. 

Supporting migration and replication is critical to performance in accessing 

shared data, so many multiprocessors introduce a hardware protocol to maintain 

coherent caches. Th

e protocols to maintain coherence for multiple processors are 

called  cache coherence protocols. Key to implementing a cache coherence protocol 

is tracking the state of any sharing of a data block. 

Th

e most popular cache coherence protocol is  snooping. Every cache that has a 

copy of the data from a block of physical memory also has a copy of the sharing 

status of the block, but no centralized state is kept. Th

e caches are all accessible via 

some broadcast medium (a bus or network), and all cache controllers monitor or 

 snoop on the medium to determine whether or not they have a copy of a block that 

is requested on a bus or switch access. 

In the following section we explain snooping-based cache coherence as 

implemented with a shared bus, but any communication medium that broadcasts 

cache misses to all processors can be used to implement a snooping-based 

coherence scheme. Th

is broadcasting to all caches makes snooping protocols 

simple to implement but also limits their scalability. 

Snooping Protocols

One method of enforcing coherence is to ensure that a processor has exclusive 

access to a data item before it writes that item. Th

is style of protocol is called a  write 

 invalidate protocol because it invalidates copies in other caches on a write. Exclusive 

access ensures that no other readable or writable copies of an item exist when the 

write occurs: all other cached copies of the item are invalidated. 

Figure 5.42 shows an example of an invalidation protocol for a snooping bus 

with write-back caches in action. To see how this protocol ensures coherence, 

consider a write followed by a read by another processor: since the write requires 

exclusive access, any copy held by the reading processor must be invalidated (hence 

the protocol name). Th

us, when the read occurs, it misses in the cache, and the 

cache is forced to fetch a new copy of the data. For a write, we require that the 

writing processor have exclusive access, preventing any other processor from being 

able to write simultaneously. If two processors do attempt to write the same data 

simultaneously, one of them wins the race, causing the other processor’s copy to be 

invalidated. For the other processor to complete its write, it must obtain a new copy 

of the data, which must now contain the updated value. Th

erefore, this protocol 

also enforces write serialization. 
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FIGURE 5.42 

An example of an invalidation protocol working on a snooping bus for a 

single cache block (X) with write-back caches.  We assume that neither cache initially holds X 

and that the value of X in memory is 0. Th

e CPU and memory contents show the value aft er the processor 

and bus activity have both completed. A blank indicates no activity or no copy cached. When the second miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both the contents of B’s cache and the memory contents of X are updated. Th

is update of memory, which occurs 

when a block becomes shared, simplifi es the protocol, but it is possible to track the ownership and force the write-back only if the block is replaced. Th

is requires the introduction of an additional state called “owner,” 

which indicates that a block may be shared, but the owning processor is responsible for updating any other processors and memory when it changes the block or replaces it. 

One insight is that block size plays an important role in cache coherency. For  Hardware/ 

example, take the case of snooping on a cache with a block size of eight words, Software 

with a single word alternatively written and read by two processors. Most protocols 

exchange full blocks between processors, thereby increasing coherency bandwidth  Interface

demands. 

Large blocks can also cause what is called false sharing: when two unrelated  false sharing When two shared variables are located in the same cache block, the full block is exchanged  unrelated shared variables between processors even though the processors are accessing diff erent variables.  are located in the same cache block and the 

Programmers and compilers should lay out data carefully to avoid false sharing. 

full block is exchanged 

between processors even 

though the processors 

are accessing diff erent 

Elaboration:  Although the three properties on pages 466 and 467 are suffi cient to  variables. 

ensure coherence, the question of when a written value will be seen is also important. To 

see why, observe that we cannot require that a read of X in Figure 5.41 instantaneously sees the value written for X by some other processor. If, for example, a write of X on one 

processor precedes a read of X on another processor very shortly beforehand, it may be 

impossible to ensure that the read returns the value of the data written, since the written 

data may not even have left the processor at that point. The issue of exactly  when a 

written value must be seen by a reader is defi ned by a  memory consistency model. 
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We make the following two assumptions. First, a write does not complete (and allow 

the next write to occur) until all processors have seen the effect of that write. Second, 

the processor does not change the order of any write with respect to any other memory 

access. These two conditions mean that if a processor writes location X followed by 

location Y, any processor that sees the new value of Y must also see the new value of 

X. These restrictions allow the processor to reorder reads, but forces the processor to 

fi nish a write in program order. 

Elaboration: Since input can change memory behind the caches and since output 

could need the latest value in a write back cache, there is also a cache coherency 

problem for I/O with the caches of a single processor as well as just between caches 

of multiple processors. The cache coherence problem for multiprocessors and I/O 

(see Chapter 6), although similar in origin, has different characteristics that affect the 

appropriate solution. Unlike I/O, where multiple data copies are a rare event—one to 

be avoided whenever possible—a program running on multiple processors will normally 

have copies of the same data in several caches. 

Elaboration:  In addition to the snooping cache coherence protocol where the status 

of shared blocks is distributed, a  directory-based cache coherence protocol keeps the 

sharing status of a block of physical memory in just one location, called the  directory. 

Directory-based coherence has slightly higher implementation overhead than snooping, 

but it can reduce traffi c between caches and thus scale to larger processor counts. 

5.11    Parallelism and Memory Hierarchy: 

Redundant Arrays of Inexpensive Disks 

Th

is online section describes how using many disks in conjunction can off er much 

higher throughput, which was the orginal inspiration of  Redundant Arrays of 

 Inexpensive Disks (RAID). Th

e real popularlity of RAID, however, was due more to 

the much greater dependability off ered by including a modest number of redundant 

disks. Th

e section explains the diff erences in performance, cost, and dependability 

between the diff erent RAID levels. 

5.12    Advanced Material: Implementing Cache 

Controllers 

Th

is online section shows how to implement control for a cache, just as we 

implemented control for the single-cycle and pipelined datapaths in Chapter 4. 

Th

is section starts with a description of fi nite-state machines and the implemention 

of a cache controller for a simple data cache, including a description of the cache 

controller in a hardware description language. It then goes into details of an example 

cache coherence protocol and the diffi

culties in implementing such a protocol. 

 

 

Parallelism and the Memory Hierarchy: 

5.11

Redundant Arrays of Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolution 

is foolhardy. A simple example demonstrates this. 

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of 

EXAMPLE

which 90 seconds is CPU time and the rest is I/O time. Suppose the number 

of processors doubles every two years, but the processors remain at the same 

speed, and I/O time doesn’t improve. How much faster will our program run 

at the end of six years? 

We know that

ANSWER

Elapsed time ⫽ CPU time ⫹ I/O time

100 ⫽ 90 ⫹ I/O time

I/O time ⫽ 10 seeconds

Th

e new CPU times and the resulting elapsed times are computed in the 

following table. 

After  n years

CPU time

I/O time

Elapsed time

% I/O time

0 years

90 seconds

10 seconds

100 seconds

10%

2 years

10 seconds

55 seconds

18%

90 ⫽ 45 seconds

2

4 years

10 seconds

33 seconds

31%

45 ⫽ 23 seconds

2

6 years

10 seconds

21 seconds

47%

23 ⫽ 11 seconds

2

Th

e improvement in CPU performance aft er six years is

90 ⫽ 8

11
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However, the improvement in elapsed time is only

100 ⫽ 4.7

21

and the I/O time has increased from 10% to 47% of the elapsed time. 

Hence, the parallel revolution needs to come to I/O as well as to computation, or 

the eff ort spent in parallelizing could be squandered whenever programs do I/O, 

which they all must do. 

Accelerating I/O performance was the original motivation of disk arrays. In 

the late 1980s, the high performance storage of choice was large, expensive disks. 

Th

e argument was that by replacing a few large disks with many small disks, 

performance would improve because there would be more read heads. Th

is shift  is 

a good match for multiple processors as well, since many read/write heads mean 

the storage system could support many more independent accesses as well as large 

transfers spread across many disks. Th

at is, you could get both high I/Os per second 

and high data transfer rates. In addition to higher performance, there could be 

advantages in cost, power, and fl oor space, since smaller disks are generally more 

effi

cient per gigabyte than larger disks. 

Th

e fl aw in the argument was that disk arrays could make reliability much 

worse. Th

ese smaller, inexpensive drives had lower MTTF ratings than the large 

drives, but more importantly, by replacing a single drive with, say, 50 small drives, 

the failure rate would go up by at least a factor of 50. 

Th

e solution was to add redundancy so that the system could cope with disk 

failures without losing information. By having many small disks, the cost of extra 

redundancy to improve dependability is small, relative to the solutions for a few 

large disks. Th

us, dependability was more aff ordable if you constructed a redundant 

array of inexpensive disks. Th

is observation led to its name: redundant arrays of  redundant arrays of 

inexpensive disks, abbreviated RAID. 

inexpensive disks 

In retrospect, although its invention was motivated by performance, (RAID) An organization of disks that uses an array 

dependability was the key reason for the widespread popularity of RAID. Th

e  of small and inexpensive 

parallel revolution has resurfaced the original performance side of the argument  disks so as to increase for RAID. Th

e rest of this section surveys the options for dependability and their  both performance and 

impacts on cost and performance. 

reliability. 

How much redundancy do you need? Do you need extra information to fi nd the 

faults? Does it matter how you organize the data and the extra check information 

on these disks? Th

e paper that coined the term gave an evolutionary answer to 

these questions, starting with the simplest but most expensive solution. Figure 

5.11.1 shows the evolution and example cost in number of extra check disks. To 

keep track of the evolution, the authors numbered the stages of RAID, and they are 

still used today. 
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Data disks

Redundant check disks

RAID 0

(No redundancy)

Widely used

RAID 1

(Mirroring)

EMC, HP(Tandem), IBM

RAID 2

(Error detection and

correction code) Unused 

RAID 3

(Bit-interleaved parity)

Storage concepts

RAID 4

(Block-interleaving parity)

Network appliance

RAID 5

(Distributed block-

interleaved parity)

Widely used

RAID 6

(P + Q redundancy)

Recently popular

FIGURE 5.11.1  RAID for an example of four data disks showing extra check disks per 

RAID level and companies that use each level.  Figures 5.11.2 and 5.11.3 explain the diff erence between RAID 3, RAID 4, and RAID 5. 

No Redundancy (RAID 0)

striping Allocation of 

Simply spreading data over multiple disks, called striping, automatically forces 

logically sequential blocks 

accesses to several disks. Striping across a set of disks makes the collection appear 

to separate disks to allow 

to soft ware as a single large disk, which simplifi es storage management. It also 

higher performance than 

improves performance for large accesses, since many disks can operate at once. 

a single disk can deliver. 

Video-editing systems, for example, oft en stripe their data and may not worry 

about dependability as much as, say, databases. 

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID 

levels are oft en left  to the operator to set when creating a storage system, and RAID 

0 is oft en listed as one of the options. Hence, the term RAID 0 has become widely 

used. 
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Mirroring (RAID 1)

Th

is traditional scheme for tolerating disk failure, called mirroring or  shadowing,   mirroring Writing uses twice as many disks as does RAID 0. Whenever data is written to one disk,  identical data to multiple that data is also written to a redundant disk, so that there are always two copies  disks to increase data of the information. If a disk fails, the system just goes to the “mirror” and reads  availability. 

its contents to get the desired information. Mirroring is the most expensive RAID 

solution, since it requires the most disks. 

Error Detecting and Correcting Code (RAID 2)

RAID 2 borrows an error detection and correction scheme most oft en used for 

memories (see Section 5.5). Since RAID 2 has fallen into disuse, we’ll not describe 

it here. 

Bit-Interleaved Parity (RAID 3)

Th

e cost of higher availability can be reduced to 1/ n,  where  n is the number of 

disks in a protection group. Rather than have a complete copy of the original data  protection group  Th e for each disk, we need only add enough redundant information to restore the lost  group of data disks information on a failure. Reads or writes go to all disks in the group, with one extra  or blocks that share a disk to hold the check information in case there is a failure. RAID 3 is popular in  common check disk or block. 

applications with large data sets, such as multimedia and some scientifi c codes. 

 Parity is one such scheme. Readers unfamiliar with parity can think of the 

redundant disk as having the sum of all the data in the other disks. When a disk fails, 

then you subtract all the data in the good disks from the parity disk; the remaining 

information must be the missing information. Parity is simply the sum modulo two. 

Unlike RAID 1, many disks must be read to determine the missing data. Th

e 

assumption behind this technique is that taking longer to recover from failure but 

spending less on redundant storage is a good tradeoff . 

Block-Interleaved Parity (RAID 4)

RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they 

access data diff erently. Th

e parity is stored as blocks and associated with a set of 

data blocks. 

In RAID 3, every access went to all disks. However, some applications prefer 

smaller accesses, allowing independent accesses to occur in parallel. Th

at is the 

purpose of the RAID levels 4 to 7. Since error detection information in each sector 

is checked on reads to see if the data is correct, such “small reads” to each disk can 

occur independently as long as the minimum access is one sector. In the RAID 

context, a small access goes to just one disk in a protection group while a large 

access goes to all the disks in a protection group. 

Writes are another matter. It would seem that each small write would demand 

that all other disks be accessed to read the rest of the information needed to 

recalculate the new parity, as in the left  in Figure 5.11.2. A “small write” would 

5.11-6 

5.11  Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

New Data

1. Read 2. Read 3. Read

New Data1. Read

2. Read

D0′

D0

D1

D2

D3

P

D0′

D0

D1

D2

D3

P

+ XOR

+ XOR

+ XOR

D0′

D1

D2

D3

P′

D0′

D1

D2

D3

P′

4. Write 

5. Write 

3. Write

4. Write

FIGURE 5.11.2  Small write update on RAID 4.   Th

is optimization for small writes reduces the 

number of disk accesses as well as the number of disks occupied. Th

is fi gure assumes we have four blocks 

of data and one block of parity. Th

e naive RAID 4 parity calculation in the left  of the fi gure reads blocks D1, 

D2, and D3 before adding block D0? to calculate the new parity P?. (In case you were wondering, the new data D0? comes directly from the CPU, so disks are not involved in reading it.) Th

e RAID 4 shortcut on the 

right reads the old value D0 and compares it to the new value D0? to see which bits will change. You then read the old parity P and then change the corresponding bits to form P?. Th

e logical function exclusive OR 

does exactly what we want. Th

is example replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?) 

involving all the disks for two disk reads (D0, P) and two disk writes (D0?, P?), which involve just two disks. 

Increasing the size of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut. 

require reading the old data and old parity, adding the new information, and then 

writing the new parity to the parity disk and the new data to the data disk. 

Th

e key insight to reduce this overhead is that parity is simply a sum of 

information; by watching which bits change when we write the new information, 

we need only change the corresponding bits on the parity disk. Th

e right of Figure 

5.11.2 shows the shortcut. We must read the old data from the disk being written, 

compare old data to the new data to see which bits change, read the old parity, 

change the corresponding bits, and then write the new data and new parity. Th

us, 

the small write involves four disk accesses to two disks instead of accessing all 

disks. Th

is organization is RAID 4. 

Distributed Block-Interleaved Parity (RAID 5)

RAID 4 effi

ciently supports a mixture of large reads, large writes, and small reads, 

plus it allows small writes. One drawback to the system is that the parity disk must be 

updated on every write, so the parity disk is the bottleneck for back-to-back writes. 

To fi x the parity-write bottleneck, the parity information can be spread 

throughout all the disks so that there is no single bottleneck for writes. Th

e 

distributed parity organization is RAID 5. 

Figure 5.11.3 shows how data is distributed in RAID 4 versus RAID 5. As the 

organization on the right shows, in RAID 5 the parity associated with each row of 

data blocks is no longer restricted to a single disk. Th

is organization allows multiple 

writes to occur simultaneously as long as the parity blocks are not located on the 

same disk. For example, a write to block 8 on the right must also access its parity 
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FIGURE 5.11.3  Block-interleaved parity (RAID 4) versus distributed block-interleaved 

parity (RAID 5).  By distributing parity blocks to all disks, some small writes can be performed in parallel. 

block P2, thereby occupying the fi rst and third disks. A second write to block 5 on 

the right, implying an update to its parity block P1, accesses the second and fourth 

disks and thus could occur concurrently with the write to block 8. Th

ose same 

writes to the organization on the left  result in changes to blocks P1 and P2, both on 

the fi ft h disk, which is a bottleneck. 

P ⴙ Q Redundancy (RAID 6)

Parity-based schemes protect against a single self-identifying failure. When a 

single failure correction is not suffi

cient, parity can be generalized to have a second 

calculation over the data and another check disk of information. Th

is second check 

block allows recovery from a second failure. Th

us, the storage overhead is twice 

that of RAID 5. Th

e small write shortcut of Figure 5.11.2 works as well, except now 

there are six disk accesses instead of four to update both P and Q information. 

RAID Summary

RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in 

servers are found in a RAID organization. 

One weakness of the RAID systems is repair. First, to avoid making the data 

unavailable during repair, the array must be designed to allow the failed disks to be 

replaced without having to turn off  the system. RAIDs have enough redundancy 

to allow continuous operation, but hot-swapping disks place demands on the  hot-swapping Replacing physical and electrical design of the array and the disk interfaces. Second, another  a hardware component failure could occur during repair, so the repair time aff ects the chances of losing  while the system is data: the longer the repair time, the greater the chances of another failure that will  running. 
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lose data. Rather than having to wait for the operator to bring in a good disk, some 

standby spares Reserve 

systems include standby spares so that the data can be reconstructed immediately 

hardware resources that 

upon discovery of the failure. Th

e operator can then replace the failed disks in a 

can immediately take 

more leisurely fashion. Note that a human operator ultimately determines which 

the place of a failed 

disks to remove. Operators are only human, so they occasionally remove the good 

component. 

disk instead of the broken disk, leading to an unrecoverable disk failure. 

In addition to designing the RAID system for repair, there are questions about 

how disk technology changes over time. Although disk manufacturers quote very 

high MTTF for their products, those numbers are under nominal conditions. 

If a particular disk array has been subject to temperature cycles due to, say, the 

failure of the air conditioning system, or to shaking due to a poor rack design, 

construction, or installation, the failure rates can be three to six times higher (see 

the fallacy on page 479). Th

e calculation of RAID reliability assumes independence 

between disk failures, but disk failures could be correlated, because such damage 

due to the environment would likely happen to all the disks in the array. Another 

concern is that since disk bandwidth is growing more slowly than disk capacity, the 

time to repair a disk in a RAID system is increasing, which in turn increases the 

chances of a second failure. For example, a 3 TB disk could take almost nine hours 

to read sequentially, assuming no interference. Given that the damaged RAID is 

likely to continue to serve data, reconstruction could be stretched considerably. 

Besides increasing that time, another concern is that reading much more data 

during reconstruction means increasing the chance of an uncorrectable read 

media failure, which would result in data loss. Other arguments for concern about 

simultaneous multiple failures are the increasing number of disks in arrays and the 

use of higher capacity disks. 

Hence, these trends have led to a growing interest in protecting against more 

than one failure, and so RAID 6 is increasingly being off ered as an option and being 

used in the fi eld. 

Check  Which of the following are true about RAID levels 1, 3, 4, 5, and 6? 

Yourself

1.  RAID systems rely on redundancy to achieve high availability. 

2.  RAID 1 (mirroring) has the highest check disk overhead. 

3.  For small writes, RAID 3 (bit-interleaved parity) has the worst throughput. 

4.  For large writes, RAID 3, 4, and 5 have the same throughput. 

Elaboration: One issue is how mirroring interacts with striping. Suppose you had, 

say, four disks’ worth of data to store and eight physical disks to use. Would you create 

four pairs of disks—each organized as RAID 1—and then stripe data across the four 

RAID 1 pairs? Alternatively, would you create two sets of four disks—each organized as 

RAID 0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved 

to call the former RAID 1 ⫹ 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 ⫹ 1 

or RAID 01 (“mirrored stripes”). 
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  5.13   Real Stuff: The ARM Cortex-A8 and Intel 

Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors 

described in Chapter 4: the ARM Cortex-A8 and Intel Core i7. Th

is section is based 

on Section 2.6 of  Computer Architecture: A Quantitative Approach, 5th edition. 

Figure 5.43 summarizes the address sizes and TLBs of the two processors. Note that the A8 has two TLBs with a 32-bit virtual address space and a 32-bit physical 

address space. Th

e Core i7 has three TLBs with a 48-bit virtual address and a 44-bit 

physical address. Although the 64-bit registers of the Core i7 could hold a larger 

virtual address, there was no soft ware need for such a large space and 48-bit virtual 

addresses shrinks both the page table memory footprint and the TLB hardware. 

Figure 5.44 shows their caches. Keep in mind that the A8 has just one processor or core while the Core i7 has four. Both have identically organized 32 KiB, 4-way 

set associative, L1 instruction caches (per core) with 64 byte blocks. Th

e A8 uses the 

same design for data cache, while the Core i7 keeps everything the same except the 

associativity, which it increases to 8-way. Both use an 8-way set associative unifi ed 

L2 cache (per core) with 64 byte blocks, although the A8 varies in size from 128 KiB 

to 1 MiB while the Core i7 is fi xed at 256 KiB. As the Core i7 is used for servers, it 

Characteristic

ARM Cortex-A8

Intel Core i7

Virtual address 

32 bits

48 bits

Physical address

32 bits

44 bits

Page size

Variable: 4, 16, 64 KiB, 1, 16 MiB

Variable: 4 KiB, 2/4 MiB

TLB organization

1 TLB for instructions and 1 TLB

1 TLB for instructions and 1 TLB for

for data

data per core

Both TLBs are fully associative, 

Both L1 TLBs are four-way set

with 32 entries, round robin

associative, LRU replacement

replacement

L1 I-TLB has 128 entries for small

TLB misses handled in hardware

pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small 

pages, 32 for large pages

The L2 TLB is four-way set associative, 

LRU replacement

The L2 TLB has 512 entries 

TLB misses handled in hardware

FIGURE 5.43 

Address translation and TLB hardware for the ARM Cortex-A8 and Intel 

Core i7 920.  Both processors provide support for large pages, which are used for things like the operating system or mapping a frame buff er. Th

e large-page scheme avoids using a large number of entries to map a 

single object that is always present. 
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Characteristic

ARM Cortex-A8

Intel Nehalem

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

32 KiB each for instructions/data 

32 KiB each for instructions/data

per core

L1 cache associativityy 4-way (I), 4-way (D) set associative

4-way (I), 8-way (D) set associative

L1 replacement

Random 

Approximated LRU 

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate(?)

Write-back, No-write-allocate

L1 hit time (load-use))

1 clock cycle

4 clock cycles, pipelined

L2 cache organization

Unified (instruction and data)

Unified (instruction and data) per core

L2 cache size

128 KiB to 1 MiB

256 KiB (0.25 MiB)

L2 cache associativity 8-way set associative

8-way set associative

L2 replacement

Random(?)

Approximated LRU 

L2 block size

64 bytes

64 bytes

L2 write policy

Write-back, Write-allocate (?)

Write-back, Write-allocate

L2 hit time

11 clock cycles

10 clock cycles

L3 cache organization

--

Unified (instruction and data)

L3 cache size

--

8 MiB, shared

L3 cache associativity

--

16-way set associative

L3 replacement

--

Approximated LRU

L3 block size

--

64 bytes

L3 write policy

--

Write-back, Write-allocate

L3 hit time

--

35 clock cycles

FIGURE 5.44  Caches in the ARM Cortex-A8 and Intel Core i7 920. 

also off ers an L3 cache shared by all the cores on the chip. Its size varies depending 

on the number of cores. With four cores, as in this case, the size is 8 MiB. 

A signifi cant challenge facing cache designers is to support processors like the 

A8 and the Core i7 that can execute more than one memory instruction per clock 

cycle. A popular technique is to break the cache into banks and allow multiple, 

independent, parallel accesses, provided the accesses are to diff erent banks. Th

e 

technique is similar to interleaved DRAM banks (see Section 5.2). 

Th

e Core i7 has additional optimizations that allow them to reduce the miss 

penalty. Th

e fi rst of these is the return of the requested word fi rst on a miss. It also 

continues to execute instructions that access the data cache during a cache miss. 

Designers who are attempting to hide the cache miss latency commonly use this 

nonblocking cache 

technique, called a nonblocking cache, when building out-of-order processors. 

A cache that allows 

Th

ey implement two fl avors of nonblocking.  Hit under miss allows additional cache 

the processor to make 

hits during a miss, while  miss under miss allows multiple outstanding cache misses. 

references to the cache 

Th

e aim of the fi rst of these two is hiding some miss latency with other work, while 

while the cache is 

the aim of the second is overlapping the latency of two diff erent misses. 

handling an earlier miss. 

Overlapping a large fraction of miss times for multiple outstanding misses 

requires a high-bandwidth memory system capable of handling multiple misses in 

parallel. In a personal mobile device, the memory may only be able to take limited 
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advantage of this capability, but large servers and multiprocessors oft en  have 

memory systems capable of handling more than one outstanding miss in parallel. 

Th

e Core i7 has a prefetch mechanism for data accesses. It looks at a pattern 

of data misses and use this information to try to predict the next address to start 

fetching the data before the miss occurs. Such techniques generally work best when 

accessing arrays in loops. 

Th

e sophisticated memory hierarchies of these chips and the large fraction of 

the dies dedicated to caches and TLBs show the signifi cant design eff ort expended 

to try to close the gap between processor cycle times and memory latency. 

Performance of the A8 and Core i7 Memory Hierarchies

Th

e memory hierarchy of the Cortex-A8 was simulated with a 1 MiB eight-way 

set associative L2 cache using the integer Minnespec benchmarks. As mentioned 

in Chapter 4, Minnespec is a set of benchmarks consisting of the SPEC2000 

benchmarks but with diff erent inputs that reduce the running times by several 

orders of magnitude. Although the use of smaller inputs does not change the 

instruction mix, it does aff ect the cache behavior. For example, on mcf, the most 

memory-intensive SPEC2000 integer benchmark, Minnespec has a miss rate for a 

32 KiB cache that is only 65% of the miss rate for the full SPEC2000 version. For 

a 1 MiB cache the diff erence is a factor of six! For this reason, one cannot compare 

the Minnespec benchmarks against the SPEC2000 benchmarks, much less the even 

larger SPEC2006 benchmarks used for the Core i7 in Figure 5.47. Instead, the data are useful for looking at the relative impact of L1 and L2 misses and on overall CPI, 

which we used in Chapter 4. 

Th

e A8 instruction cache miss rates for these benchmarks (and also for the 

full SPEC2000 versions on which Minnespec is based) are very small even for 

just the L1: close to zero for most and under 1% for all of them. Th

is low rate 

probably results from the computationally intensive nature of the SPEC programs 

and the four-way set associative cache that eliminates most confl ict misses. Figure 

5.45 shows the data cache results for the A8, which have signifi cant L1 and L2 

miss rates. Th

e L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while 

the L2 miss penalty is assumed to be 60 clock cycles. Using these miss penalties, 

Figure 5.46 shows the average miss penalty per data access. 

Figure 5.47 shows the miss rates for the caches of the Core i7 using the SPEC2006 

benchmarks. Th

e L1 instruction cache miss rate varies from 0.1% to 1.8%, 

averaging just over 0.4%. Th

is rate is in keeping with other studies of instruction 

cache behavior for the SPECCPU2006 benchmarks, which show low instruction 

cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes 

higher, the importance of the L2 and L3 caches should be obvious. Since the cost 

for a miss to memory is over 100 cycles and the average data miss rate in L2 is 4%, 

L3 is obviously critical. Assuming about half the instructions are loads or stores, 

without L3 the L2 cache misses could add two cycles per instruction to the CPI! In 

comparison, the average L3 data miss rate of 1% is still signifi cant but four times 

lower than the L2 miss rate and six times less than the L1 miss rate. 
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L1 Data Miss Rate
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L2 Data Miss Rate
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FIGURE 5.45  Data cache miss rates for ARM Cortex-A8 when running Minnespec, a small 

version of SPEC2000.  Applications with larger memory footprints tend to have higher miss rates in both L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references, including those that hit in L1. (See Elaboration in Section 5.4.) Mcf is known as a cache buster. Note that this fi gure is for the same systems and benchmarks as Figure 4.76 in Chapter 4. 
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FIGURE 5.46 

The average memory access penalty in clock cycles per data memory 

reference coming from L1 and L2 is shown for the ARM processor when running Minnespec.  

Although the miss rates for L1 are signifi cantly higher, the L2 miss penalty, which is more than fi ve times higher, means that the L2 misses can contribute signifi cantly. 
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FIGURE 5.47 

The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running 

the full integer SPECCPU2006 benchmarks. 

Elaboration:  Because speculation may sometimes be wrong (see Chapter 4), there 

are references to the L1 data cache that do not correspond to loads or stores that 

eventually complete execution. The data in Figure 5.45 is measured against all data requests including some that are cancelled. The miss rate when measured against only 

completed data accesses is 1.6 times higher (an average of 9.5% versus 5.9% for L1 

Dcache misses)

  5.14  

 

Going Faster: Cache Blocking and Matrix 

Multiply

Our next step in the continuing saga of improving performance of DGEMM by 

tailoring it to the underlying hardware is to add cache blocking to the subword 

parallelism and instruction level parallelism optimizations of Chapters 3 and 4. 

Figure 5.48 shows the blocked version of DGEMM from Figure 4.80. Th

e changes 

are the same as was made earlier in going from unoptimized DGEMM in Figure 

3.21 to blocked DGEMM in Figure 5.21 above. Th

is time we taking the unrolled 

version of DGEMM from Chapter 4 and invoke it many times on the submatrices 
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1 #include <x86intrin.h> 

2 #define UNROLL (4)

3 #define BLOCKSIZE 32

4 void do_block (int n, int si, int sj, int sk, 

5                double *A, double *B, double *C)

6 {

7   for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )

8     for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {

9       __m256d c[4]; 

10       for ( int x = 0; x < UNROLL; x++ ) 

11         c[x] = _mm256_load_pd(C+i+x*4+j*n); 

12      /* c[x] = C[i][j] */

13       for( int k = sk; k < sk+BLOCKSIZE; k++ )

14       {

15         __m256d b = _mm256_broadcast_sd(B+k+j*n); 

16      /* b = B[k][j] */

17         for (int x = 0; x < UNROLL; x++)

18           c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */

19                  _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b)); 

20       }

21

22

23       for ( int x = 0; x < UNROLL; x++ ) 

24         _mm256_store_pd(C+i+x*4+j*n, c[x]); 

/* C[i][j] = c[x] */

25     }

26 }

27

28 void dgemm (int n, double* A, double* B, double* C)

29 {

30   for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 

31     for ( int si = 0; si < n; si += BLOCKSIZE )

32       for ( int sk = 0; sk < n; sk += BLOCKSIZE )

33         do_block(n, si, sj, sk, A, B, C); 

34 }

FIGURE 5.48 

Optimized C version of DGEMM from Figure 4.80 using cache blocking. Th

ese changes 

are the same ones found in Figure 5.21. Th

e assembly language produced by the compiler for the do_block function 

is nearly identical to Figure 4.81. Once again, there is no overhead to call the do_block because the compiler inlines the function call. 
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of A, B, and C. Indeed, lines 28 – 34 and lines 7 – 8 in Figure 5.48 are identical to lines 14 – 20 and lines 5 – 6 in Figure 5.21, with the exception of incrementing the for loop in line 7 by the amount unrolled. 

Unlike the earlier chapters, we do not show the resulting x86 code because the 

inner loop code is nearly identical to Figure 4.81, as the blocking does not aff ect the 

computation, just the order that it accesses data in memory. What does change is 

the bookkeeping integer instructions to implement the for loops. It expands from 

14 instructions before the inner loop and 8 aft er the loop for Figure 4.80 to 40 and 

28 instructions respectively for the bookkeeping code generated for Figure 5.48. 

Nevertheless, the extra instructions executed pale in comparison to the performance 

improvement of reducing cache misses. Figure 5.49 compares unoptimzed to 

optimizations for subword parallelism, instruction level parallelism, and caches. 

Blocking improves performance over unrolled AVX code by factors of 2 to 2.5 for 

the larger matrices. When we compare unoptimized code to the code with all three 

optimizations, the performance improvement is factors of 8 to 15, with the largest 

increase for the largest matrix. 
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4.0
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2.3 2.5

1.7 1.5 1.3 0.8
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AVX

AVX + unroll
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blocked

FIGURE 5.49 

Performance of four versions of DGEMM from matrix dimensions 32x32 to 

960x960. Th

e fully optimized code for largest matrix is almost 15 times as fast the unoptimized version in 

Figure 3.21 in Chapter 3. 

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are 

with Turbo mode turned off. As in Chapters 3 and 4, when we turn it on we improve all 

the results by the temporary increase in the clock rate of 3.3/2.6 ⫽ 1.27. Turbo mode 

works particularly well in this case because it is using only a single core of an eight-

core chip. However, if we want to run fast we should use all cores, which we’ll see in 

Chapter 6. 
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 5.15  Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the 

memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not 

only have there been many fallacies propagated and pitfalls encountered, but some 

have led to major negative outcomes. We start with a pitfall that oft en traps students 

in exercises and exams. 

 Pitfall: Ignoring memory system behavior when writing programs or when 

 generating code in a compiler. 

Th

is could easily be rewritten as a fallacy: “Programmers can ignore memory 

hierarchies in writing code.” Th

e evaluation of sort in Figure 5.19 and of cache blocking 

in Section 5.14 demonstrate that programmers can easily double performance if they 

factor the behavior of the memory system into the design of their algorithms. 

 Pitfall: Forgetting to account for byte addressing or the cache block size in simulating 

 a cache. 

When simulating a cache (by hand or by computer), we need to make sure we 

account for the eff ect of byte addressing and multiword blocks in determining into 

which cache block a given address maps. For example, if we have a 32-byte direct-

mapped cache with a block size of 4 bytes, the byte address 36 maps into block 1 

of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1. On the 

other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4. 

Make sure the problem clearly states the base of the address. 

In like fashion, we must account for the block size. Suppose we have a cache with 

256 bytes and a block size of 32 bytes. Into which block does the byte address 300 

fall? If we break the address 300 into fi elds, we can see the answer:

31

30

29

. . . 

. . . 

. . . 

11

10

9

8

7

6

5

4

3

2

1

0

0

0

0

. . . 

. . . 

. . . 

0

0

0

1

0

0

1

0

1

1

0

0

Cache block 

Block offset

number

Block address

Byte address 300 is block address

⎡300⎤

⎢

⎥ ⫽ 9

⎣⎢ 32 ⎦⎥

Th

e number of blocks in the cache is

⎡256⎤

⎢

⎥ ⫽ 8

⎣⎢ 32 ⎦⎥

Block number 9 falls into cache block number (9 modulo 8) ⫽ 1. 
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Th

is mistake catches many people, including the authors (in earlier draft s) and 

instructors who forget whether they intended the addresses to be in words, bytes, 

or block numbers. Remember this pitfall when you tackle the exercises. 

 Pitfall: Having less set associativity for a shared cache than the number of cores or 

 threads sharing that cache. 

Without extra care, a parallel program running on 2n processors or threads can 

easily allocate data structures to addresses that would map to the same set of a 

shared L2 cache. If the cache is at least 2n-way associative, then these accidental 

confl icts are hidden by the hardware from the program. If not, programmers could 

face apparently mysterious performance bugs—actually due to L2 confl ict misses—

when migrating from, say, a 16-core design to 32-core design if both use 16-way 

associative L2 caches. 

 Pitfall: Using average memory access time to evaluate the memory hierarchy of an 

 out-of-order processor. 

If a processor stalls during a cache miss, then you can separately calculate the 

memory-stall time and the processor execution time, and hence evaluate the memory 

hierarchy independently using average memory access time (see page 399). 

If the processor continues to execute instructions, and may even sustain more 

cache misses during a cache miss, then the only accurate assessment of the memory 

hierarchy is to simulate the out-of-order processor along with the memory hierarchy. 

 Pitfall: Extending an address space by adding segments on top of an unsegmented 

 address space. 

During the 1970s, many programs grew so large that not all the code and data could 

be addressed with just a 16-bit address. Computers were then revised to off er 32-

bit addresses, either through an unsegmented 32-bit address space (also called a  fl at 

 address space) or by adding 16 bits of segment to the existing 16-bit address. From 

a marketing point of view, adding segments that were programmer-visible and that 

forced the programmer and compiler to decompose programs into segments could 

solve the addressing problem. Unfortunately, there is trouble any time a programming 

language wants an address that is larger than one segment, such as indices for large 

arrays, unrestricted pointers, or reference parameters. Moreover, adding segments 

can turn every address into two words—one for the segment number and one for the 

segment off set—causing problems in the use of addresses in registers. 

 Fallacy: Disk failure rates in the fi eld match their specifi cations. 

Two recent studies evaluated large collections of disks to check the relationship 

between results in the fi eld compared to specifi cations. One study was of almost 

100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of 

0.6% to 0.8%. Th

ey found AFRs of 2% to 4% to be common, oft en three to fi ve 

times higher than the specifi ed rates [Schroeder and Gibson, 2007]. A second study 

of more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw 

failure rates of 1.7% for drives in their fi rst year rise to 8.6% for drives in their third 

year, or about fi ve to six times the specifi ed rate [Pinheiro, Weber, and Barroso, 

2007]. 
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 Fallacy:   Operating systems are the best place to schedule disk accesses. 

As mentioned in Section 5.2, higher-level disk interfaces off er logical block 

addresses to the host operating system. Given this high-level abstraction, the best 

an OS can do to try to help performance is to sort the logical block addresses into 

increasing order. However, since the disk knows the actual mapping of the logical 

addresses onto the physical geometry of sectors, tracks, and surfaces, it can reduce 

the rotational and seek latencies by rescheduling. 

For example, suppose the workload is four reads [Anderson, 2003]:

Operation

Starting LBA

Length

Read

724

8

Read

100

  16

Read

9987

1

Read

26

128

Th

e host might reorder the four reads into logical block order:

Operation

Starting LBA

Length

Read

26

128

Read

100

16

Read

724

8

Read

9987

1

Depending on the relative location of the data on the disk, reordering could 

make it worse, as Figure 5.50 shows. Th

e disk-scheduled reads complete in three-

quarters of a disk revolution, but the OS-scheduled reads take three revolutions. 

100

724

26

Host-ordered queue

Drive-ordered queue

9987

FIGURE 5.50  Example showing OS versus disk schedule accesses, labeled host-ordered 

versus drive-ordered. Th

e former takes three revolutions to complete the four reads, while the latter 

completes them in just three-fourths of a revolution (from Anderson [2003]). 
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Problem category

Problem x86 instructions

Access sensitive registers without 

Store global descriptor table register (SGDT) 

trapping when running in user mode 

Store local descriptor table register (SLDT) 

Store interrupt descriptor table register (SIDT)

Store machine status word (SMSW)

Push flags (PUSHF, PUSHFD)

Pop flags (POPF, POPFD)

When accessing virtual memory 

Load access rights from segment descriptor (LAR)

mechanisms in user mode, instructions  Load segment limit from segment descriptor (LSL)

fail the x86 protection checks

Verify if segment descriptor is readable (VERR)

Verify if segment descriptor is writable (VERW)

Pop to segment register (POP CS, POP SS, . . .)

Push segment register (PUSH CS, PUSH SS, . . .)

Far call to different privilege level (CALL)

Far return to different privilege level (RET)

Far jump to different privilege level (JMP)

Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

FIGURE 5.51 

Summary of 18 x86 instructions that cause problems for virtualization 

[Robin and Irvine, 2000].  Th

e fi rst fi ve instructions in the top group allow a program in user mode to 

read a control register, such as descriptor table registers, without causing a trap. Th

e pop fl ags instruction 

modifi es a control register with sensitive information but fails silently when in user mode. Th

e protection 

checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these instructions checks the privilege level implicitly as part of instruction execution when reading a control register. Th

e checking assumes that the OS must be at the highest privilege level, which is not the case for 

guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it as well. 

 Pitfall: Implementing a virtual machine monitor on an instruction set architecture 

 that wasn’t designed to be virtualizable. 

Many architects in the 1970s and 1980s weren’t careful to make sure that all 

instructions reading or writing information related to hardware resource 

information were privileged. Th

is  laissez-faire attitude causes problems for VMMs 

for all of these architectures, including the x86, which we use here as an example. 

Figure 5.51 describes the 18 instructions that cause problems for virtualization 

[Robin and Irvine, 2000]. Th

e two broad classes are instructions that

■  Read control registers in user mode that reveals that the guest operating 

system is running in a virtual machine (such as POPF, mentioned earlier)

■  Check protection as required by the segmented architecture but assume that 

the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have 

proposed extensions to the architecture via a new mode. Intel’s VT-x provides 

a new execution mode for running VMs, an architected defi nition of the VM 
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state, instructions to swap VMs rapidly, and a large set of parameters to select the 

circumstances where a VMM must be invoked. Altogether, VT-x adds 11 new 

instructions for the x86. AMD’s Pacifi ca makes similar proposals. 

An alternative to modifying the hardware is to make small modifi cations to the 

operating system to avoid using the troublesome pieces of the architecture. Th

is 

technique is called  paravirtualization, and the open source Xen VMM is a good 

example. Th

e Xen VMM provides a guest OS with a virtual machine abstraction 

that uses only the easy-to-virtualize parts of the physical x86 hardware on which 

the VMM runs. 

 5.16 Concluding 

Remarks

Th

e diffi

culty of building a memory system to keep pace with faster processors 

is underscored by the fact that the raw material for main memory, DRAMs, is 

essentially the same in the fastest computers as it is in the slowest and cheapest. 

It is the principle of locality that gives us a chance to overcome the long latency of 

memory access—and the soundness of this strategy is demonstrated at all levels of 

the memory hierarchy. Although these levels of the hierarchy look quite diff erent 

in quantitative terms, they follow similar strategies in their operation and exploit 

the same properties of locality. 

Multilevel caches make it possible to use more cache optimizations more easily 

for two reasons. First, the design parameters of a lower-level cache are diff erent 

from a fi rst-level cache. For example, because a lower-level cache will be much 

larger, it is possible to use larger block sizes. Second, a lower-level cache is not 

constantly being used by the processor, as a fi rst-level cache is. Th

is allows us to 

consider having the lower-level cache do something when it is idle that may be 

useful in preventing future misses. 

Another trend is to seek soft ware help. Effi

ciently managing the memory 

hierarchy using a variety of program transformations and hardware facilities is a 

major focus of compiler enhancements. Two diff erent ideas are being explored. 

One idea is to reorganize the program to enhance its spatial and temporal locality. 

Th

is approach focuses on loop-oriented programs that use large arrays as the 

major data structure; large linear algebra problems are a typical example, such as 

DGEMM. By restructuring the loops that access the arrays, substantially improved 

locality—and, therefore, cache performance—can be obtained. 

prefetching 

Another approach is prefetching. In prefetching, a block of data is brought into 

A technique in which 

the cache before it is actually referenced. Many microprocessors use hardware 

data blocks needed in the 

prefetching to try to  predict accesses that may be diffi

cult for soft ware to notice. 

future are brought into 

A third approach is special cache-aware instructions that optimize memory 

the cache early by the use 

transfer. For example, the microprocessors in Section 6.10 in Chapter 6 use 

of special instructions that 

an optimization that does not fetch the contents of a block from memory on a 

specify the address of the 

block. 

write miss because the program is going to write the full block. Th

is optimization 

signifi cantly reduces memory traffi

c for one kernel. 
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As we will see in Chapter 6, memory systems are a central design issue for parallel 

processors. Th

e growing importance of the memory hierarchy in determining 

system performance means that this important area will continue to be a focus for 

both designers and researchers for some years to come. 

5.17    Historical Perspective and Further 

Reading

Th

is section, which appears online, gives an overview of memory technologies, 

from mercury delay lines to DRAM, the invention of the memory hierarchy, 

protection mechanisms, and virtual machines, and concludes with a brief history 

of operating systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, 

Windows, and Linux. 

 5.18 Exercises

5.1  In this exercise we look at memory locality properties of matrix computation. 

Th

e following code is written in C, where elements within the same row are stored 

contiguously.  Assume each word is a 32-bit integer. 

for (I=0; I<8; I++)

for (J=0; J<8000; J++)

A[I][J]=B[I][0]+A[J][I]; 

5.1.1  [5] <§5.1> How many 32-bit integers can be stored in a 16-byte cache block? 

5.1.2 [5] <§5.1> References to which variables exhibit temporal locality? 

5.1.3 [5] <§5.1> References to which variables exhibit spatial locality? 

Locality is aff ected by both the reference order and data layout. Th

e same computation 

can also be written below in Matlab, which diff ers from C by storing matrix elements 

within the same column contiguously in memory. 

for I=1:8

for J=1:8000

A(I,J)=B(I,0)+A(J,I); 

end

end
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5.1.4 [10] <§5.1> How many 16-byte cache blocks are needed to store all 32-bit 

matrix elements being referenced? 

5.1.5 [5] <§5.1> References to which variables exhibit temporal locality? 

5.1.6 [5] <§5.1> References to which variables exhibit spatial locality? 

5.2  Caches are important to providing a high-performance memory hierarchy 

to processors. Below is a list of 32-bit memory address references, given as word 

addresses. 

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

5.2.1 [10] <§5.3> For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also list if each 

reference is a hit or a miss, assuming the cache is initially empty. 

5.2.2 [10] <§5.3> For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with two-word blocks and a total size of 8 

blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. 

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given 

references. Th

ere are three direct-mapped cache designs possible, all with a total of 8 

words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks. 

In terms of miss rate, which cache design is the best? If the miss stall time is 25 cycles, 

and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is 

the best cache design? 

Th

ere are many diff erent design parameters that are important to a cache’s overall 

performance. Below are listed parameters for diff erent direct-mapped cache designs. 

Cache Data Size:  32 KiB

Cache Block Size:  2 words

Cache Access Time:  1 cycle

5.2.4 [15] <§5.3> Calculate the total number of bits required for the cache listed 

above, assuming a 32-bit address. Given that total size, fi nd the total size of the closest 

direct-mapped cache with 16-word blocks of equal size or greater. Explain why the 

second cache, despite its larger data size, might provide slower performance than the 

fi rst cache. 

5.2.5 [20] <§§5.3, 5.4> Generate a series of read requests that have a lower miss rate on a 2 KiB 2-way set associative cache than the cache listed above. Identify one possible 

solution that would make the cache listed have an equal or lower miss rate than the 2 

KiB cache. Discuss the advantages and disadvantages of such a solution. 

5.2.6 [15] <§5.3> Th

e formula shown in Section 5.3 shows the typical method to 

index a direct-mapped cache, specifi cally (Block address) modulo (Number of blocks in 

the cache). Assuming a 32-bit address and 1024 blocks in the cache, consider a diff erent 
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indexing function, specifi cally (Block address[31:27] XOR Block address[26:22]). Is it 

possible to use this to index a direct-mapped cache? If so, explain why and discuss any 

changes that might need to be made to the cache. If it is not possible, explain why. 

5.3  For a direct-mapped cache design with a 32-bit address, the following bits of the 

address are used to access the cache. 

 Tag

Index

Offset

31–10

9–5

4–0

5.3.1 [5] <§5.3> What is the cache block size (in words)? 

5.3.2 [5] <§5.3> How many entries does the cache have? 

5.3.3 [5] <§5.3> What is the ratio between total bits required for such a cache 

implementation over the data storage bits? 

Starting from power on, the following byte-addressed cache references are recorded. 

Address

0

4

16

132

232

160

1024

30

140

3100

180

2180

5.3.4 [10] <§5.3> How many blocks are replaced? 

5.3.5 [10] <§5.3> What is the hit ratio? 

5.3.6 [20] <§5.3> List the fi nal state of the cache, with each valid entry represented as a record of <index, tag, data>. 

5.4  Recall that we have two write policies and write allocation policies, and their 

combinations can be implemented either in L1 or L2 cache. Assume the following 

choices for L1 and L2 caches:

L1

L2 

Write through, non-write allocate

Write back, write allocate

5.4.1 [5] <§§5.3, 5.8> Buff ers are employed between diff erent levels of memory 

hierarchy to reduce access latency. For this given confi guration, list the possible buff ers 

needed between L1 and L2 caches, as well as L2 cache and memory. 

5.4.2 [20] <§§5.3, 5.8> Describe the procedure of handling an L1 write-miss, 

considering the component involved and the possibility of replacing a dirty block. 

5.4.3 [20] <§§5.3, 5.8> For a multilevel exclusive cache (a block can only reside in one of the L1 and L2 caches), confi guration, describe the procedure of handling an L1 

write-miss, considering the component involved and the possibility of replacing a dirty 

block. 
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Consider the following program and cache behaviors. 

Data Reads per 

Data Writes per 

Instruction Cache 

Data Cache 

Block Size 

1000 Instructions

1000 Instructions

Miss Rate

Miss Rate

(byte)

250

100

0.30%

2%

64

5.4.4 [5] <§§5.3, 5.8> For a write-through, write-allocate cache, what are the minimum read and write bandwidths (measured by byte per cycle) needed to achieve a CPI of 2? 

5.4.5 [5] <§§5.3, 5.8> For a write-back, write-allocate cache, assuming 30% of 

replaced data cache blocks are dirty, what are the minimal read and write bandwidths 

needed for a CPI of 2? 

5.4.6 [5] <§§5.3, 5.8> What are the minimal bandwidths needed to achieve the 

performance of CPI=1.5? 

5.5  Media applications that play audio or video fi les are part of a class of workloads 

called “streaming” workloads; i.e., they bring in large amounts of data but do not reuse 

much of it. Consider a video streaming workload that accesses a 512 KiB working set 

sequentially with the following address stream:

0, 2, 4, 6, 8, 10, 12, 14, 16, …

5.5.1 [5] <§§5.4, 5.8> Assume a 64 KiB direct-mapped cache with a 32-byte block. 

What is the miss rate for the address stream above? How is this miss rate sensitive to 

the size of the cache or the working set? How would you categorize the misses this 

workload is experiencing, based on the 3C model? 

5.5.2 [5] <§§5.1, 5.8> Re-compute the miss rate when the cache block size is 16 bytes, 64 bytes, and 128 bytes. What kind of locality is this workload exploiting? 

5.5.3 [10] <§5.13>“Prefetching” is a technique that leverages predictable address 

patterns to speculatively bring in additional cache blocks when a particular cache block 

is accessed. One example of prefetching is a stream buff er that prefetches sequentially 

adjacent cache blocks into a separate buff er when a particular cache block is brought 

in. If the data is found in the prefetch buff er, it is considered as a hit and moved into 

the cache and the next cache block is prefetched. Assume a two-entry stream buff er 

and assume that the cache latency is such that a cache block can be loaded before the 

computation on the previous cache block is completed. What is the miss rate for the 

address stream above? 

Cache block size (B) can aff ect both miss rate and miss latency. Assuming a 1-CPI 

machine with an average of 1.35 references (both instruction and data) per instruction, 

help fi nd the optimal block size given the following miss rates for various block sizes. 

8: 4%

16: 3%

32: 2%

64: 1.5%

128: 1%

5.5.4 [10] <§5.3> What is the optimal block size for a miss latency of 20×B cycles? 

5.5.5 [10] <§5.3> What is the optimal block size for a miss latency of 24+B cycles? 

5.5.6 [10] <§5.3> For constant miss latency, what is the optimal block size? 
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5.6  In this exercise, we will look at the diff erent ways capacity aff ects  overall 

performance. In general, cache access time is proportional to capacity. Assume that 

main memory accesses take 70 ns and that memory accesses are 36% of all instructions. 

Th

e following table shows data for L1 caches attached to each of two processors, P1 and 

P2. 

 

L1 Size

L1 Miss Rate

L1 Hit Time

P1

2 KiB

8.0%

0.66 ns

P2

4 KiB

6.0%

0.90 ns

5.6.1 [5] <§5.4> Assuming that the L1 hit time determines the cycle times for P1 and P2, what are their respective clock rates? 

5.6.2 [5] <§5.4> What is the Average Memory Access Time for P1 and P2? 

5.6.3 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is the 

total CPI for P1 and P2? Which processor is faster? 

For the next three problems, we will consider the addition of an L2 cache to P1 to 

presumably make up for its limited L1 cache capacity. Use the L1 cache capacities 

and hit times from the previous table when solving these problems. Th

e L2 miss rate 

indicated is its local miss rate. 

L2 Size

L2 Miss Rate

L2 Hit Time

1 MiB

95%

5.62 ns

5.6.4 [10] <§5.4> What is the AMAT for P1 with the addition of an L2 cache? Is the 

AMAT better or worse with the L2 cache? 

5.6.5 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is the 

total CPI for P1 with the addition of an L2 cache? 

5.6.6 [10] <§5.4> Which processor is faster, now that P1 has an L2 cache? If P1 is 

faster, what miss rate would P2 need in its L1 cache to match P1’s performance? If P2 is 

faster, what miss rate would P1 need in its L1 cache to match P2’s performance? 

5.7  Th

is exercise examines the impact of diff erent cache designs, specifi cally 

comparing associative caches to the direct-mapped caches from Section 5.4. For these 

exercises, refer to the address stream shown in Exercise 5.2. 

5.7.1 [10] <§5.4> Using the sequence of references from Exercise 5.2, show the fi nal cache contents for a three-way set associative cache with two-word blocks and a total 

size of 24 words. Use LRU replacement. For each reference identify the index bits, the 

tag bits, the block off set bits, and if it is a hit or a miss. 

5.7.2 [10] <§5.4> Using the references from Exercise 5.2, show the fi nal  cache 

contents for a fully associative cache with one-word blocks and a total size of 8 words. 

Use LRU replacement. For each reference identify the index bits, the tag bits, and if it 

is a hit or a miss. 
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5.7.3 [15] <§5.4> Using the references from Exercise 5.2, what is the miss rate for 

a fully associative cache with two-word blocks and a total size of 8 words, using LRU 

replacement? What is the miss rate using MRU (most recently used) replacement? 

Finally what is the best possible miss rate for this cache, given any replacement policy? 

Multilevel caching is an important technique to overcome the limited amount of 

space that a fi rst level cache can provide while still maintaining its speed. Consider a 

processor with the following parameters:

y 

 

 

 

uction 

vel 

y Set a

y Access 

y Set 

vel Cache, 

vel Cache, 

vel Cache, 

a

 No Memor

ime

vel Cache 

Stalls

T

 Eight-W

st Le

Associative

ir

Direct-Mapped

Eight-W

Processor Speed

F

Associative Speed

Global Miss Rate 

with Second Le

Base CPI, 

Main Memor

Second Le

Direct-Mapped Speed

Global Miss Rate with 

Second Le

Second Le

Cache, 

MissRate per Instr

1.5

2 GHz

100 ns

7%

12 cycles

3.5%

28 cycles

1.5%

5.7.4 [10] <§5.4> Calculate the CPI for the processor in the table using: 1) only a 

fi rst level cache, 2) a second level direct-mapped cache, and 3) a second level eight-way 

set associative cache. How do these numbers change if main memory access time is 

doubled? If it is cut in half? 

5.7.5 [10] <§5.4> It is possible to have an even greater cache hierarchy than two 

levels. Given the processor above with a second level, direct-mapped cache, a designer 

wants to add a third level cache that takes 50 cycles to access and will reduce the global 

miss rate to 1.3%. Would this provide better performance? In general, what are the 

advantages and disadvantages of adding a third level cache? 

5.7.6 [20] <§5.4> In older processors such as the Intel Pentium or Alpha 21264, the 

second level of cache was external (located on a diff erent chip) from the main processor 

and the fi rst level cache. While this allowed for large second level caches, the latency to 

access the cache was much higher, and the bandwidth was typically lower because the 

second level cache ran at a lower frequency. Assume a 512 KiB off -chip second level 

cache has a global miss rate of 4%. If each additional 512 KiB of cache lowered global 

miss rates by 0.7%, and the cache had a total access time of 50 cycles, how big would 

the cache have to be to match the performance of the second level direct-mapped cache 

listed above? Of the eight-way set associative cache? 

5.8  Mean Time Between Failures (MTBF), Mean Time To Replacement (MTTR), and 

Mean Time To Failure (MTTF) are useful metrics for evaluating the reliability and 

availability of a storage resource. Explore these concepts by answering the questions 

about devices with the following metrics. 

MTTF

MTTR

3 Years

1 Day

 

5.18 Exercises 

489

5.8.1 [5] <§5.5> Calculate the MTBF for each of the devices in the table. 

5.8.2 [5] <§5.5> Calculate the availability for each of the devices in the table. 

5.8.3 [5] <§5.5> What happens to availability as the MTTR approaches 0? Is this a 

realistic situation? 

5.8.4 [5] <§5.5> What happens to availability as the MTTR gets very high, i.e., a 

device is diffi

cult to repair? Does this imply the device has low availability? 

5.9  Th

is Exercise examines the single error correcting, double error detecting (SEC/

DED) Hamming code. 

5.9.1 [5] <§5.5> What is the minimum number of parity bits required to protect a 

128-bit word using the SEC/DED code? 

5.9.2 [5] <§5.5> Section 5.5 states that modern server memory modules (DIMMs) 

employ SEC/DED ECC to protect each 64 bits with 8 parity bits.  Compute the cost/

performance ratio of this code to the code from 5.9.1. In this case, cost is the relative 

number of parity bits needed while performance is the relative number of errors that 

can be corrected.  Which is better? 

5.9.3  Consider a SEC code that protects 8 bit words with 4 parity bits.  If we read the 

value 0x375, is there an error?  If so, correct the error. 

5.10  For a high-performance system such as a B-tree index for a database, the page 

size is determined mainly by the data size and disk performance. Assume that on 

average a B-tree index page is 70% full with fi x-sized entries. Th

e utility of a page is 

its B-tree depth, calculated as log (entries). Th

e following table shows that for 16-byte 

2

entries, and a 10-year-old disk with a 10 ms latency and 10 MB/s transfer rate, the 

optimal page size is 16K. 

Page Utility or B-Tree 

Index Page 

Depth (Number of Disk 

Access 

Page Size (KiB)

Accesses Saved)

Cost (ms)

Utility/Cost

2

6.49 (or log (2048/16×0.7))

10.2

0.64

2

4

7.49

10.4

0.72

8

8.49

10.8

0.79

16

9.49

11.6

0.82

32

10.49

13.2

0.79

64

11.49

16.4

0.70

128

12.49

22.8

0.55

256

13.49

35.6

0.38

5.10.1 [10] <§5.7> What is the best page size if entries now become 128 bytes? 

5.10.2 [10] <§5.7> Based on 5.10.1, what is the best page size if pages are half full? 

5.10.3 [20] <§5.7> Based on 5.10.2, what is the best page size if using a modern disk with a 3 ms latency and 100 MB/s transfer rate? Explain why future servers are likely 

to have larger pages. 
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Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but how 

do we determine the exact meaning of “frequently used” for a given system? Data 

engineers use the cost ratio between DRAM and disk access to quantify the reuse time 

threshold for hot pages. Th

e cost of a disk access is $Disk/accesses_per_sec, while the 

cost to keep a page in DRAM is $DRAM_MiB/page_size. Th

e typical DRAM and disk 

costs and typical database page sizes at several time points are listed below:

DRAM Cost 

Page Size 

Disk Cost 

Disk Access Rate 

Year

($/MiB)

(KiB)

($/disk)

(access/sec)

1987

5000

1

15,000

15

1997

15

8

2000

64

2007

0.05

64

80

83

5.10.4 [10] <§§5.1, 5.7> What are the reuse time thresholds for these three 

technology generations? 

5.10.5 [10] <§5.7> What are the reuse time thresholds if we keep using the same 4K 

page size? What’s the trend here? 

5.10.6 [20] <§5.7> What other factors can be changed to keep using the same page 

size (thus avoiding soft ware rewrite)? Discuss their likeliness with current technology 

and cost trends. 

5.11  As described in Section 5.7, virtual memory uses a page table to track the 

mapping of virtual addresses to physical addresses. Th

is exercise shows how this table 

must be updated as addresses are accessed. Th

e following data constitutes a stream of 

virtual addresses as seen on a system. Assume 4 KiB pages, a 4-entry fully associative 

TLB, and true LRU replacement. If pages must be brought in from disk, increment the 

next largest page number. 

4669, 2227, 13916, 34587, 48870, 12608, 49225

TLB

Physical Page 

Valid

Tag

Number

1

11

12

1

7

4

1

3

6

0

4

9
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Page table

Valid

Physical Page or in Disk

1

5

0

Disk

0

Disk

1

6

1

9

1

11

0

Disk

1

4

0

Disk

0

Disk

1

3

1

12

5.11.1 [10] <§5.7> Given the address stream shown, and the initial TLB and page 

table states provided above, show the fi nal state of the system. Also list for each reference 

if it is a hit in the TLB, a hit in the page table, or a page fault. 

5.11.2 [15] <§5.7> Repeat 5.11.1, but this time use 16 KiB pages instead of 4 KiB 

pages. What would be some of the advantages of having a larger page size? What are 

some of the disadvantages? 

5.11.3 [15] <§§5.4, 5.7> Show the fi nal contents of the TLB if it is 2-way set 

associative. Also show the contents of the TLB if it is direct mapped. Discuss the 

importance of having a TLB to high performance. How would virtual memory 

accesses be handled if there were no TLB? 

Th

ere are several parameters that impact the overall size of the page table. Listed below 

are key page table parameters. 

Virtual Address Size

Page Size

Page Table Entry Size

32 bits

8 KiB

4 bytes

5.11.4 [5] <§5.7> Given the parameters shown above, calculate the total page table 

size for a system running 5 applications that utilize half of the memory available. 

5.11.5 [10] <§5.7> Given the parameters shown above, calculate the total page table 

size for a system running 5 applications that utilize half of the memory available, given 

a two level page table approach with 256 entries. Assume each entry of the main page 

table is 6 bytes. Calculate the minimum and maximum amount of memory required. 

5.11.6 [10] <§5.7> A cache designer wants to increase the size of a 4 KiB virtually 

indexed, physically tagged cache. Given the page size shown above, is it possible to 

make a 16 KiB direct-mapped cache, assuming 2 words per block? How would the 

designer increase the data size of the cache? 
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5.12  In this exercise, we will examine space/time optimizations for page tables. Th

e 

following list provides parameters of a virtual memory system. 

Physical DRAM 

Virtual Address (bits)

Installed

Page Size

PTE Size (byte)

43

16 GiB

4 KiB

4

5.12.1 [10] <§5.7> For a single-level page table, how many page table entries (PTEs) are needed? How much physical memory is needed for storing the page table? 

5.12.2 [10] <§5.7> Using a multilevel page table can reduce the physical memory 

consumption of page tables, by only keeping active PTEs in physical memory. How 

many levels of page tables will be needed in this case? And how many memory 

references are needed for address translation if missing in TLB? 

5.12.3 [15] <§5.7> An inverted page table can be used to further optimize space 

and time. How many PTEs are needed to store the page table? Assuming a hash table 

implementation, what are the common case and worst case numbers of memory 

references needed for servicing a TLB miss? 

Th

e following table shows the contents of a 4-entry TLB. 

Entry-ID

Valid

VA Page

Modifi ed

Protection

PA Page

1

1

140

1

RW

30

2

0

40

0

RX

34

3

1

200

1

RO

32

4

1

280

0

RW

31

5.12.4 [5] <§5.7> Under what scenarios would entry 2’s valid bit be set to zero? 

5.12.5 [5] <§5.7> What happens when an instruction writes to VA page 30? When 

would a soft ware managed TLB be faster than a hardware managed TLB? 

5.12.6 [5] <§5.7> What happens when an instruction writes to VA page 200? 

5.13  In this exercise, we will examine how replacement policies impact miss rate. 

Assume a 2-way set associative cache with 4 blocks. To solve the problems in this 

exercise, you may fi nd it helpful to draw a table like the one below, as demonstrated for 

the address sequence “0, 1, 2, 3, 4.” 

Address of 

Contents of Cache Blocks After Reference

Memory

Evicted 

Block Accessed

Hit or Miss

Block

Set 0

Set 0

Set 1

Set 1

0

Miss

Mem[0]

1

Miss

Mem[0]

Mem[1]

2

Miss

Mem[0]

Mem[2]

Mem[1]

3

Miss

Mem[0]

Mem[2]

Mem[1]

Mem[3]

4

Miss

0

Mem[4]

Mem[2]

Mem[1]

Mem[3]

…
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Consider the following address sequence:  0, 2, 4, 8, 10, 12, 14, 16, 0

5.13.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, how many hits does 

this address sequence exhibit? 

5.13.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement policy, 

how many hits does this address sequence exhibit? 

5.13.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by fl ipping a coin. For example, “heads” means to evict the fi rst block in a set and “tails” means to evict the 

second block in a set. How many hits does this address sequence exhibit? 

5.13.4 [10] <§§5.4, 5.8> Which address should be evicted at each replacement to 

maximize the number of hits? How many hits does this address sequence exhibit if you 

follow this “optimal” policy? 

5.13.5 [10] <§§5.4, 5.8> Describe why it is diffi

cult to implement a cache replacement 

policy that is optimal for all address sequences. 

5.13.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory 

reference whether or not you want the requested address to be cached. What impact 

could this have on miss rate? 

5.14  To support multiple virtual machines, two levels of memory virtualization are 

needed. Each virtual machine still controls the mapping of virtual address (VA) to 

physical address (PA), while the hypervisor maps the physical address (PA) of each 

virtual machine to the actual machine address (MA). To accelerate such mappings, 

a soft ware approach called “shadow paging” duplicates each virtual machine’s page 

tables in the hypervisor, and intercepts VA to PA mapping changes to keep both copies 

consistent. To remove the complexity of shadow page tables, a hardware approach 

called nested page table (NPT) explicitly supports two classes of page tables (VA ⇒ PA 

and PA ⇒ MA) and can walk such tables purely in hardware. 

Consider the following sequence of operations: (1) Create process; (2) TLB miss; 

(3) page fault; (4) context switch; 

5.14.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence for 

shadow page table and nested page table, respectively? 

5.14.2 [10] <§§5.6, 5.7> Assuming an x86-based 4-level page table in both guest and 

nested page table, how many memory references are needed to service a TLB miss for 

native vs. nested page table? 

5.14.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate, and page fault handler latency, which metrics are more important for shadow page table? 

Which are important for nested page table? 
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Assume the following parameters for a shadow paging system. 

TLB Misses per 

NPT TLB Miss 

Page Faults per 

Shadowing Page 

1000 Instructions

Latency

1000 Instructions

Fault Overhead

0.2

200 cycles

0.001

30,000 cycles

5.14.4 [10] <§5.6> For a benchmark with native execution CPI of 1, what are the CPI 

numbers if using shadow page tables vs. NPT (assuming only page table virtualization 

overhead)? 

5.14.5 [10] <§5.6> What techniques can be used to reduce page table shadowing 

induced overhead? 

5.14.6 [10] <§5.6> What techniques can be used to reduce NPT induced overhead? 

5.15  One of the biggest impediments to widespread use of virtual machines is the 

performance overhead incurred by running a virtual machine. Listed below are various 

performance parameters and application behavior. 

Priviliged 

O/S 

Performance 

I/O Access Time 

Accesses 

Impact to 

Performance 

I/O Access 

(Includes Time 

per 10,000 

Trap to the 

Impact to Trap 

per 10,000 

to Trap to Guest 

Base CPI Instructions

Guest O/S

to VMM

Instructions

O/S)

1.5

120

15 cycles

175 cycles

30

1100 cycles

5.15.1 [10] <§5.6> Calculate the CPI for the system listed above assuming that there are no accesses to I/O. What is the CPI if the VMM performance impact doubles? If it is 

cut in half? If a virtual machine soft ware company wishes to obtain a 10% performance 

degradation, what is the longest possible penalty to trap to the VMM? 

5.15.2 [10] <§5.6> I/O accesses oft en have a large impact on overall system 

performance. Calculate the CPI of a machine using the performance characteristics 

above, assuming a non-virtualized system. Calculate the CPI again, this time using a 

virtualized system. How do these CPIs change if the system has half the I/O accesses? 

Explain why I/O bound applications have a smaller impact from virtualization. 

5.15.3 [30] <§§5.6, 5.7> Compare and contrast the ideas of virtual memory and 

virtual machines. How do the goals of each compare? What are the pros and cons of 

each? List a few cases where virtual memory is desired, and a few cases where virtual 

machines are desired. 

5.15.4 [20] <§5.6> Section 5.6 discusses virtualization under the assumption that 

the virtualized system is running the same ISA as the underlying hardware. However, 

one possible use of virtualization is to emulate non-native ISAs. An example of this is 

QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC. What 

are some of the diffi

culties involved in this kind of virtualization? Is it possible for an 

emulated system to run faster than on its native ISA? 
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5.16  In this exercise, we will explore the control unit for a cache controller for a 

processor with a write buff er. Use the fi nite state machine found in Figure 5.40 as a 

starting point for designing your own fi nite state machines. Assume that the cache 

controller is for the simple direct-mapped cache described on page 465 (Figure 5.40 in Section 5.9), but you will add a write buff er with a capacity of one block. 

Recall that the purpose of a write buff er is to serve as temporary storage so that the 

processor doesn’t have to wait for two memory accesses on a dirty miss. Rather than 

writing back the dirty block before reading the new block, it buff ers the dirty block and 

immediately begins reading the new block. Th

e dirty block can then be written to main 

memory while the processor is working. 

5.16.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request that 

 hits in the cache while a block is being written back to main memory from the write 

buff er? 

5.16.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request that 

 misses in the cache while a block is being written back to main memory from the write 

buff er? 

5.16.3 [30] <§§5.8, 5.9> Design a fi nite state machine to enable the use of a write buff er. 

5.17  Cache coherence concerns the views of multiple processors on a given cache 

block. Th

e following data shows two processors and their read/write operations on two 

diff erent words of a cache block X (initially X[0] = X[1] = 0).  Assume the size of integers is 

32 bits. 

P1

P2

X[0] ++; X[1] = 3; 

X[0] = 5; X[1] +=2; 

5.17.1 [15] <§5.10> List the possible values of the given cache block for a correct 

cache coherence protocol implementation. List at least one more possible value of the 

block if the protocol doesn’t ensure cache coherency. 

5.17.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on each processor/cache to fi nish the above read/write operations. 

5.17.3 [10] <§5.10> What are the best-case and worst-case numbers of cache misses 

needed to execute the listed read/write instructions? 

Memory consistency concerns the views of multiple data items. Th

e following data 

shows two processors and their read/write operations on diff erent cache blocks (A and 

B initially 0). 

P1

P2

A = 1; B = 2; A+=2; B++; 

C = B; D = A; 
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5.17.4 [15] <§5.10> List the possible values of C and D for an implementation that 

ensures both consistency assumptions on page 470. 

5.17.5 [15] <§5.10> List at least one more possible pair of values for C and D if such assumptions are not maintained. 

5.17.6 [15] <§§5.3, 5.10> For various combinations of write policies and write 

allocation policies, which combinations make the protocol implementation simpler? 

5.18  Chip multiprocessors (CMPs) have multiple cores and their caches on a single 

chip. CMP on-chip L2 cache design has interesting trade-off s.  Th

e following table 

shows the miss rates and hit latencies for two benchmarks with private vs. shared L2 

cache designs. Assume L1 cache misses once every 32 instructions. 

 

Private

Shared

Benchmark A misses-per-instruction

0.30%

0.12%

Benchmark B misses-per-instruction

0.06%

0.03%

Assume the following hit latencies:

Private Cache

Shared Cache

Memory

5

20

180

5.18.1 [15] <§5.13> Which cache design is better for each of these benchmarks? Use 

data to support your conclusion. 

5.18.2 [15] <§5.13> Shared cache latency increases with the CMP size. Choose 

the best design if the shared cache latency doubles. Off -chip bandwidth becomes the 

bottleneck as the number of CMP cores increases. Choose the best design if off -chip 

memory latency doubles. 

5.18.3 [10] <§5.13> Discuss the pros and cons of shared vs. private L2 caches for both single-threaded, multi-threaded, and multiprogrammed workloads, and reconsider 

them if having on-chip L3 caches. 

5.18.4 [15] <§5.13> Assume both benchmarks have a base CPI of 1 (ideal L2 cache). 

If having non-blocking cache improves the average number of concurrent L2 misses 

from 1 to 2, how much performance improvement does this provide over a shared L2 

cache? How much improvement can be achieved over private L2? 

5.18.5 [10] <§5.13> Assume new generations of processors double the number of 

cores every 18 months. To maintain the same level of per-core performance, how much 

more off -chip memory bandwidth is needed for a processor released in three years? 

5.18.6 [15]  <§5.13> Consider the entire memory hierarchy. What kinds of 

optimizations can improve the number of concurrent misses? 
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5.19  In this exercise we show the defi nition of a web server log and examine code 

optimizations to improve log processing speed. Th

e data structure for the log is defi ned 

as follows:

struct entry {

int srcIP;   // remote IP address

char URL[128]; // request URL (e.g., “GET index.html”)

long long refTime; // reference time

int status;  // connection status

char browser[64]; // client browser name

} log [NUM_ENTRIES]; 

Assume the following processing function for the log:

topK_sourceIP (int hour); 

5.19.1 [5] <§5.15> Which fi elds in a log entry will be accessed for the given log 

processing function? Assuming 64-byte cache blocks and no prefetching, how many 

cache misses per entry does the given function incur on average? 

5.19.2 [10] <§5.15> How can you reorganize the data structure to improve cache 

utilization and access locality? Show your structure defi nition code. 

5.19.3 [10] <§5.15> Give an example of another log processing function that would 

prefer a diff erent data structure layout. If both functions are important, how would you 

rewrite the program to improve the overall performance? Supplement the discussion 

with code snippet and data. 

For the problems below, use data from “Cache Performance for SPEC CPU2000 

Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for the pairs of benchmarks shown in the following table. 

a. 

Mesa / gcc

b. 

mcf / swim

5.19.4 [10] <§5.15> For 64 KiB data caches with varying set associativities, what are the miss rates broken down by miss types (cold, capacity, and confl ict misses) for each 

benchmark? 

5.19.5 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data cache shared by both benchmarks. If the L1 cache has to be directly mapped, select the set 

associativity for the 1 MiB L2 cache. 

5.19.6 [20] <§5.15> Give an example in the miss rate table where higher set 

associativity actually increases miss rate. Construct a cache confi guration and reference 

stream to demonstrate this. 
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Answers to  §5.1, page 377: 1 and 4. (3 is false because the cost of the memory hierarchy varies per computer, but in 2013 the highest cost is usually the DRAM.)

Check Yourself

§5.3, page 398: 1 and 4: A lower miss penalty can enable smaller blocks, since you 

don’t have that much latency to amortize, yet higher memory bandwidth usually 

leads to larger blocks, since the miss penalty is only slightly larger. 

§5.4, page 417: 1. 

§5.7, page 454: 1-a, 2-c, 3-b, 4-d. 

§5.8, page 461: 2. (Both large block sizes and prefetching may reduce compulsory 

misses, so 1 is false.)
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 6.1 Introduction

 Over the Mountains Of   Computer architects have long sought the “Th

e City of Gold” (El Dorado) of 

 the Moon, Down the 

computer design: to create powerful computers simply by connecting many existing 

 Valley of the Shadow, 

smaller ones. Th

is golden vision is the fountainhead of multiprocessors. Ideally, 

 Ride, boldly ride the 

customers order as many processors as they can aff ord and receive a commensurate 

 shade replied— If you 

amount of performance. Th

us, multiprocessor soft ware must be designed to work 

 seek for El Dorado! 

with a variable number of processors. As mentioned in Chapter 1, energy has 

become the overriding issue for both microprocessors and datacenters. Replacing 

Edgar Allan Poe, 

large ineffi

cient processors with many smaller, effi

cient processors can deliver 

“El Dorado,” 

stanza 4, 1849

better performance per joule both in the large and in the small, if soft ware can 

effi

ciently use them. Th

us, improved energy effi

ciency joins scalable performance 

in the case for multiprocessors. 

multiprocessor 

Since multiprocessor soft ware should scale, some designs support operation 

A computer system with at 

in the presence of broken hardware; that is, if a single processor fails in a 

least two processors. Th

is 

multiprocessor with  n processors, these system would continue to provide service 

computer is in contrast to 

with   n  – 1 processors. Hence, multiprocessors can also improve availability (see 

a uniprocessor, which has 

one, and is increasingly 

Chapter 5). 

hard to fi nd today. 

High performance can mean high throughput for independent tasks, called 

task-level parallelism or process-level parallelism. Th

ese tasks are independent 

single-threaded applications, and they are an important and popular use of 

multiple processors. Th

is approach is in contrast to running a single job on 

multiple processors. We use the term parallel processing program to refer to a 

single program that runs on multiple processors simultaneously. 

Th

ere have long been scientifi c problems that have needed much faster 

computers, and this class of problems has been used to justify many novel parallel 

computers over the decades. Some of these problems can be handled simply today, 

task-level parallelism 

using a cluster composed of microprocessors housed in many independent servers 

or process-level 

(see Section 6.7). In addition, clusters can serve equally demanding applications 

parallelism Utilizing 

outside the sciences, such as search engines, Web servers, email servers, and 

multiple processors by 

databases. 

running independent 

As described in Chapter 1, multiprocessors have been shoved into the spotlight 

programs simultaneously. 

because the energy problem means that future increases in performance will 

parallel processing 

primarily come from explicit hardware parallelism rather than much higher 

program A single 

clock rates or vastly improved CPI. As we said in Chapter 1, they are called 

program that runs on 

multiple processors 

simultaneously. 

cluster  A set of 

computers connected over 

a local area network that 

function as a single large 

multiprocessor. 
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multicore microprocessors instead of multiprocessor microprocessors, multicore 

presumably to avoid redundancy in naming. Hence, processors are oft en called  microprocessor 

 cores in a multicore chip. Th

e number of cores is expected to increase with  A microprocessor 

Moore’s Law. Th

ese multicores are almost always Shared Memory Processors  containing multiple 

processors (“cores”) 

(SMPs), as they usually share a single physical address space. We’ll see SMPs  in a single integrated more in Section 6.5. 

circuit. Virtually all 

Th

e state of technology today means that programmers who care about  microprocessors today in 

performance must become parallel programmers, for sequential code now means  desktops and servers are slow code. 

multicore. 

Th

e tall challenge facing the industry is to create hardware and soft ware that  shared memory 

will make it easy to write correct parallel processing programs that will execute  multiprocessor effi

ciently in performance and energy as the number of cores per chip scales. 

(SMP) A parallel 

Th

is abrupt shift  in microprocessor design caught many off  guard, so there is a  processor with a single great deal of confusion about the terminology and what it means. Figure 6.1 tries to  physical address space. 

clarify the terms serial, parallel, sequential, and concurrent. Th

e columns of this fi gure 

represent the soft ware, which is either inherently sequential or concurrent. Th

e rows 

of the fi gure represent the hardware, which is either serial or parallel. For example, the 

programmers of compilers think of them as sequential programs: the steps include 

parsing, code generation, optimization, and so on. In contrast, the programmers 

of operating systems normally think of them as concurrent programs: cooperating 

processes handling I/O events due to independent jobs running on a computer. 

Th

e point of these two axes of Figure 6.1 is that concurrent soft ware can run on serial hardware, such as operating systems for the Intel Pentium 4 uniprocessor, 

or on parallel hardware, such as an OS on the more recent Intel Core i7. Th

e same 

is true for sequential soft ware. For example, the MATLAB programmer writes 

a matrix multiply thinking about it sequentially, but it could run serially on the 

Pentium 4 or in parallel on the Intel Core i7. 

You might guess that the only challenge of the parallel revolution is fi guring out how 

to make naturally sequential soft ware have high performance on parallel hardware, but 

it is also to make concurrent programs have high performance on multiprocessors as the 

number of processors increases. With this distinction made, in the rest of this chapter 

we will use  parallel processing program or  parallel soft ware to mean either sequential or concurrent soft ware running on parallel hardware. Th

e next section of this chapter 

describes why it is hard to create effi

cient parallel processing programs. 

Software

Sequential

Concurrent

Matrix Multiply written in MatLab

Windows Vista Operating System

Serial

running on an Intel Pentium 4

running on an Intel Pentium 4

Hardware

Matrix Multiply written in MATLAB

Windows Vista Operating System

Parallel

running on an Intel Core i7

running on an Intel Core i7

FIGURE 6.1  Hardware/software categorization and examples of application perspective 

on concurrency versus hardware perspective on parallelism. 
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Before proceeding further down the path to parallelism, donಬt forget our initial 

incursions from the earlier chapters:

■  Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword 

Parallelism

■  Chapter 4, Section 4.10: Parallelism via Instructions

■  Chapter 5, Section 5.10: Parallelism and Memory Hierarchy: Cache Coherence

Check 

Yourself

True or false: To benefi t from a multiprocessor, an application must be concurrent. 

 6.2 The 

Diffi culty of Creating Parallel 

Processing Programs

Th

e diffi

culty with parallelism is not the hardware; it is that too few important 

application programs have been rewritten to complete tasks sooner on multiprocessors. 

It is diffi

cult to write soft ware that uses multiple processors to complete one task 

faster, and the problem gets worse as the number of processors increases. 

Why has this been so? Why have parallel processing programs been so much 

harder to develop than sequential programs? 

Th

e fi rst reason is that you  must get better performance or better energy 

effi

ciency from a parallel processing program on a multiprocessor; otherwise, you 

would just use a sequential program on a uniprocessor, as sequential programming 

is simpler. In fact, uniprocessor design techniques such as superscalar and out-of-

order execution take advantage of instruction-level parallelism (see Chapter 4), 

normally without the involvement of the programmer. Such innovations reduced 

the demand for rewriting programs for multiprocessors, since programmers 

could do nothing and yet their sequential programs would run faster on new 

computers. 

Why is it diffi

cult to write parallel processing programs that are fast, especially 

as the number of processors increases? In Chapter 1, we used the analogy of 

eight reporters trying to write a single story in hopes of doing the work eight 

times faster. To succeed, the task must be broken into eight equal-sized pieces, 

because otherwise some reporters would be idle while waiting for the ones with 

larger pieces to fi nish. Another speed-up obstacle could be that the reporters 

would spend too much time communicating with each other instead of writing 

their pieces of the story. For both this analogy and parallel programming, 

the challenges include scheduling, partitioning the work into parallel pieces, 

balancing the load evenly between the workers, time to synchronize, and 

 6.2 

The 

Diffi culty of Creating Parallel Processing Programs 

505

overhead for communication between the parties. Th

e challenge is stiff er with the 

more reporters for a newspaper story and with the more processors for parallel 

programming. 

Our discussion in Chapter 1 reveals another obstacle, namely Amdahlಬs Law. It 

reminds us that even small parts of a program must be parallelized if the program 

is to make good use of many cores. 

Speed-up Challenge

EXAMPLE

Suppose you want to achieve a speed-up of 90 times faster with 100 processors. 

What percentage of the original computation can be sequential? 

Amdahlಬs Law (Chapter 1) says

ANSWER

Execution time after improvement =

Execution time affected by improvement + Execution time unaffectted

Amount of improvement

We can reformulate Amdahlಬs Law in terms of speed-up versus the original 

execution time:

Execution time before

Speed-up =

Execution time affected

(Execution time before − Executtion time affected) + Amount of improovement

Th

is formula is usually rewritten assuming that the execution time before is 

1 for some unit of time, and the execution time aff ected by improvement is 

considered the fraction of the original execution time:

1

Speed-up =

Fraction time affecte

(1 − Fraction time affected) +

d

Amount of improvement

Substituting 90 for speed-up and 100 for amount of improvement into the 

formula above:

1

90 =

Fraction time affected

(1 − Fraction time affected) +

100
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Th

en simplifying the formula and solving for fraction time aff ected:

90 × (1 − 0.99 × Fraction time affected) = 1

90 − (90 × 0.99 × Fraction tiime affected) = 1

90 − 1 = 90 × 0.99 × Fraction time affected

Fraction time affected = 89/89.1 = 0.999

Th

us, to achieve a speed-up of 90 from 100 processors, the sequential 

percentage can only be 0.1%. 

Yet, there are applications with plenty of parallelism, as we shall see next. 

Speed-up Challenge: Bigger Problem

EXAMPLE

Suppose you want to perform two sums: one is a sum of 10 scalar variables, and 

one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10. 

For now let’s assume only the matrix sum is parallelizable; we’ll see soon how to 

parallelize scalar sums. What speed-up do you get with 10 versus 40 processors? 

Next, calculate the speed-ups assuming the matrices grow to 20 by 20. 

If we assume performance is a function of the time for an addition,  t, then 

ANSWER

there are 10 additions that do not benefi t from parallel processors and 100 

additions that do. If the time for a single processor is 110  t, the execution time 

for 10 processors is

Execution time after improvement =

Execution time affected by improvement + Execution time unaffectted

Amount of improvement

100 t

Execution time after improvement =

+  t

10 =

 t

20

10

so the speed-up with 10 processors is 110 t/20 t = 5.5. Th

e execution time for 

40 processors is

100 t

Execution time after improvement =

+  t

10 = 12.  t

5

40

so the speed-up with 40 processors is 110 t/12.5 t = 8.8. Th

us, for this problem 

size, we get about 55% of the potential speed-up with 10 processors, but only 

22% with 40. 
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Look what happens when we increase the matrix. Th

e sequential program now 

takes 10 t + 400 t = 410t. Th

e execution time for 10 processors is

400 t

Execution time after improvement =

+  t

10 =

 t

50

10

so the speed-up with 10 processors is 410 t/50 t = 8.2. Th

e execution time for 

40 processors is

400 t

Execution time after improvement =

+  t

10 =

 t

20

40

so the speed-up with 40 processors is 410 t/20 t = 20.5. Th

us, for this larger problem 

size, we get 82% of the potential speed-up with 10 processors and 51% with 40. 

Th

ese examples show that getting good speed-up on a multiprocessor while 

keeping the problem size fi xed is harder than getting good speed-up by increasing 

the size of the problem. Th

is insight allows us to introduce two terms that describe 

ways to scale up. 

Strong scaling means measuring speed-up while keeping the problem size fi xed. strong scaling Speed-Weak scaling means that the problem size grows proportionally to the increase in  up achieved on a the number of processors. Let’s assume that the size of the problem, M, is the working 

multiprocessor without 

set in main memory, and we have P processors. Th

en the memory per processor for  increasing the size of the 

problem. 

strong scaling is approximately M/P, and for weak scaling, it is approximately M. 

Note that the memory hierarchy can interfere with the conventional wisdom  weak scaling Speed-about weak scaling being easier than strong scaling. For example, if the weakly  up achieved on a scaled dataset no longer fi ts in the last level cache of a multicore microprocessor,  multiprocessor while increasing the size of the 

the resulting performance could be much worse than by using strong scaling. 

problem proportionally 

Depending on the application, you can argue for either scaling approach. For  to the increase in the example, the TPC-C debit-credit database benchmark requires that you scale up  number of processors. 

the number of customer accounts in proportion to the higher transactions per 

minute. Th

e argument is that itಬs nonsensical to think that a given customer base 

is suddenly going to start using ATMs 100 times a day just because the bank gets a 

faster computer. Instead, if youಬre going to demonstrate a system that can perform 

100 times the numbers of transactions per minute, you should run the experiment 

with 100 times as many customers. Bigger problems oft en need more data, which 

is an argument for weak scaling. 

Th

is fi nal example shows the importance of load balancing. 

Speed-up Challenge: Balancing Load

To achieve the speed-up of 20.5 on the previous larger problem with 40 

EXAMPLE

processors, we assumed the load was perfectly balanced. Th

at is, each of the 40 
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processors had 2.5% of the work to do. Instead, show the impact on speed-up if 

one processorಬs load is higher than all the rest. Calculate at twice the load (5%) 

and fi ve times the load (12.5%) for that hardest working processor. How well 

utilized are the rest of the processors? 

If one processor has 5% of the parallel load, then it must do 5% × 400 or 20 

ANSWER

additions, and the other 39 will share the remaining 380. Since they are operating 

simultaneously, we can just calculate the execution time as a maximum

⎛380 t  20 t ⎞

Execution time after improvement = Max⎜

, 

⎟

=

⎝⎜

⎟ + 110 t

30 t

39

1 ⎠

Th

e speed-up drops from 20.5 to 410 t/30 t = 14. Th

e remaining 39 processors 

are utilized less than half the time: while waiting 20t for hardest working 

processor to fi nish, they only compute for 380 t/39 = 9.7 t. 

If one processor has 12.5% of the load, it must perform 50 additions. Th

e 

formula is:

⎛350 t  50 t ⎞

Execution time after improvement = Max⎜

, 

⎟

=

⎝⎜

⎟ + 110 t

60 t

39

1 ⎠

Th

e speed-up drops even further to 410 t/60 t = 7. Th

e rest of the processors 

are utilized less than 20% of the time (9 t/50 t). Th

is example demonstrates the 

importance of balancing load, for just a single processor with twice the load 

of the others cuts speed-up by a third, and fi ve times the load on just one 

processor reduces speed-up by almost a factor of three. 

Now that we better understand the goals and challenges of parallel processing, 

we  give  an  overview  of  the  rest  of  the  chapter.  Th

e next Section (6.3) describes 

a much older classifi cation scheme than in Figure 6.1. In addition, it describes two styles of instruction set architectures that support running of sequential 

applications on parallel hardware, namely  SIMD and  vector. Section 6.4 then 

describes   multithreading, a term oft en confused with multiprocessing, in part 

because it relies upon similar concurrency in programs. Section 6.5 describes the 

fi rst the two alternatives of a fundamental parallel hardware characteristic, which is 

whether or not all the processors in the systems rely upon a single physical address 

space. As mentioned above, the two popular versions of these alternatives are called 

 shared memory multiprocessors (SMPs) and  clusters, and this section covers the 

former. Section 6.6 describes a relatively new style of computer from the graphics 

hardware community, called a  graphics-processing unit (GPU) that also assumes 

a single physical address. (  Appendix C describes GPUs in even more detail.) 

Section 6.7 describes clusters, a popular example of a computer with multiple 

physical address spaces.  Section 6.8 shows typical topologies used to connect many 

processors together, either server nodes in a cluster or cores in a microprocessor. 

Section 6.9 describes the hardware and soft ware for communicating between 
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nodes in a cluster using Ethernet. It shows how to optimize its performance using 

custom soft ware and hardware. We next discuss the diffi

culty of fi nding parallel 

benchmarks in Section 6.10. Th

is section also includes a simple, yet insightful 

performance model that helps in the design of applications as well as architectures. 

We use this model as well as parallel benchmarks in Section 6.11 to compare a 

multicore computer to a GPU. Section 6.12 divulges the fi nal and largest step in 

our journey of accelerating matrix multiply. For matrices that don’t fi t in the cache, 

parallel processing uses 16 cores to improve performance by a factor of 14. We 

close with fallacies and pitfalls and our conclusions for parallelism. 

In the next section, we introduce acronyms that you probably have already seen 

to identify diff erent types of parallel computers. 

Check 

True or false: Strong scaling is not bound by Amdahlಬs Law. 

Yourself

 6.3 

SISD, MIMD, SIMD, SPMD, and Vector

One categorization of parallel hardware proposed in the 1960s is still used today. It  SISD or Single was based on the number of instruction streams and the number of data streams.  Instruction stream, 

Figure 6.2 shows the categories. Th

us, a conventional uniprocessor has a single  Single Data stream. 

A uniprocessor. 

instruction stream and single data stream, and a conventional multiprocessor has 

multiple instruction streams and multiple data streams. Th

ese two categories are  MIMD or Multiple 

abbreviated SISD and MIMD, respectively. 

Instruction streams, 

While it is possible to write separate programs that run on diff erent processors  Multiple Data streams. 

on a MIMD computer and yet work together for a grander, coordinated goal,  A multiprocessor. 

programmers normally write a single program that runs on all processors of an 

MIMD computer, relying on conditional statements when diff erent  processors 

should execute diff erent sections of code. Th

is style is called Single Program  SPMD Single Program, 

Multiple Data (SPMD), but it is just the normal way to program a MIMD computer. 

Multiple Data streams. 

Th

e closest we can come to multiple instruction streams and single data stream  Th e conventional MIMD 

(MISD) processor might be a “stream processor” that would perform a series of  programming model, where a single program 

computations on a single data stream in a pipelined fashion: parse the input from  runs across all processors. 

the network, decrypt the data, decompress it, search for match, and so on. Th

e 

inverse of MISD is much more popular. SIMD computers operate on vectors of  SIMD or Single Instruction stream, 

Multiple Data streams. 

Th

e same instruction 

Data Streams

is applied to many data 

streams, as in a vector 

Single

Multiple

processor. 

Single

SISD: Intel Pentium 4

SIMD: SSE instructions of x86

Instruction 

Streams

Multiple

MISD: No examples today

MIMD: Intel Core i7

FIGURE 6.2  Hardware categorization and examples based on number of instruction 

streams and data streams: SISD, SIMD, MISD, and MIMD. 
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data. For example, a single SIMD instruction might add 64 numbers by sending 64 

data streams to 64 ALUs to form 64 sums within a single clock cycle. Th

e subword 

parallel instructions that we saw in Sections 3.6 and 3.7 are another example of 

SIMD; indeed, the middle letter of Intel’s SSE acronym stands for SIMD. 

Th

e virtues of SIMD are that all the parallel execution units are synchronized and 

they all respond to a single instruction that emanates from a single  program counter 

(PC). From a programmerಬs perspective, this is close to the already familiar SISD. 

Although every unit will be executing the same instruction, each execution unit has 

its own address registers, and so each unit can have diff erent data addresses. Th

us, 

in terms of Figure 6.1, a sequential application might be compiled to run on serial hardware organized as a SISD or in parallel hardware that was organized as a SIMD. 

Th

e original motivation behind SIMD was to amortize the cost of the control 

unit over dozens of execution units. Another advantage is the reduced instruction 

bandwidth and spaceಧSIMD needs only one copy of the code that is being 

simultaneously executed, while message-passing MIMDs may need a copy in every 

processor, and shared memory MIMD will need multiple instruction caches. 

SIMD works best when dealing with arrays in for loops. Hence, for parallelism 

to work in SIMD, there must be a great deal of identically structured data, which 

data-level 

is called data-level parallelism. SIMD is at its weakest in case or switch 

parallelism Parallelism 

statements, where each execution unit must perform a diff erent operation on its 

achieved by performing 

data, depending on what data it has. Execution units with the wrong data must be 

the same operation on 

disabled so that units with proper data may continue. If there are  n cases, in these 

independent data. 

situations SIMD processors essentially run at 1/ n th of peak performance. 

Th

e so-called array processors that inspired the SIMD category have faded 

into history (see   Section 6.15 online), but two current interpretations of SIMD 

remain active today. 

SIMD in x86: Multimedia Extensions

As described in Chapter 3, subword parallelism for narrow integer data was the 

original inspiration of the Multimedia Extension (MMX) instructions of the x86 

in 1996. As Moore’s Law continued, more instructions were added, leading fi rst 

to  Streaming SIMD Extensions (SSE) and now  Advanced Vector Extensions (AVX). 

AVX supports the simultaneous execution of four 64-bit fl oating-point numbers. 

Th

e width of the operation and the registers is encoded in the opcode of these 

multimedia instructions. As the data width of the registers and operations grew, 

the number of opcodes for multimedia instructions exploded, and now there are 

hundreds of SSE and AVX instructions (see Chapter 3). 

Vector

An older and, as we shall see, more elegant interpretation of SIMD is called a  vector 

 architecture, which has been closely identifi ed with computers designed by Seymour 

Cray starting in the 1970s. It is also a great match to problems with lots of data-level 

parallelism. Rather than having 64 ALUs perform 64 additions simultaneously, like 

the old array processors, the vector architectures pipelined the ALU to get good 

performance at lower cost. Th

e basic philosophy of vector architecture is to collect 
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data elements from memory, put them in order into a large set of registers, operate 

on them sequentially in registers using pipelined execution units, and then write 

the results back to memory. A key feature of vector architectures is then a set of 

vector registers. Th

us, a vector architecture might have 32 vector registers, each 

with 64 64-bit elements. 

Comparing Vector to Conventional Code

Suppose we extend the MIPS instruction set architecture with vector 

instructions and vector registers. Vector operations use the same names as 

EXAMPLE

MIPS operations, but with the letter ಯVರ appended. For example, addv.d 

adds two double-precision vectors. Th

e vector instructions take as their input 

either a pair of vector registers (addv.d) or a vector register and a scalar 

register (addvs.d). In the latter case, the value in the scalar register is used 

as the input for all operationsಧthe operation addvs.d will add the contents 

of a scalar register to each element in a vector register. Th

e names lv and sv 

denote vector load and vector store, and they load or store an entire vector 

of double-precision data. One operand is the vector register to be loaded or 

stored; the other operand, which is a MIPS general-purpose register, is the 

starting address of the vector in memory. Given this short description, show 

the conventional MIPS code versus the vector MIPS code for

 Y =  a ×  X +  Y

where   X and  Y are vectors of 64 double precision fl oating-point  numbers, 

initially resident in memory, and  a is a scalar double precision variable. (Th

is 

example is the so-called DAXPY loop that forms the inner loop of the Linpack 

benchmark; DAXPY stands for double precision  a × X  plus  Y.). Assume that the starting addresses of  X and  Y are in $s0 and $s1, respectively. 

Here is the conventional MIPS code for DAXPY:

ANSWER



l.d 

$f0,a($sp) 

:load scalar a



addiu 

$t0,$s0,#512 

:upper bound of what to load

loop: l.d 

$f2,0($s0) 

:load x(i)



mul.d 

$f2,$f2,$f0 

:a x x(i)

l.d  $f4,0($s1) 

:load 

y(i)



add.d 

$f4,$f4,$f2 

:a x x(i) + y(i)



s.d 

$f4,0($s1) 

:store into y(i)



addiu 

$s0,$s0,#8 

:increment index to x



addiu 

$s1,$s1,#8 

:increment index to y

subu $t1,$t0,$s0  :compute 

bound



bne 

$t1,$zero,loop 

:check if done

Here is the vector MIPS code for DAXPY:
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l.d 

$f0,a($sp) 

:load scalar a



lv 

$v1,0($s0) 

:load vector x

mulvs.d 

$v2,$v1,$f0  :vector-scalar 

multiply



lv 

$v3,0($s1) 

:load vector y



addv.d  $v4,$v2,$v3 

:add y to product



sv 

$v4,0($s1) 

:store the result

Th

ere are some interesting comparisons between the two code segments in 

this example. Th

e most dramatic is that the vector processor greatly reduces the 

dynamic instruction bandwidth, executing only 6 instructions versus almost 600 

for the traditional MIPS architecture. Th

is reduction occurs both because the vector 

operations work on 64 elements at a time and because the overhead instructions 

that constitute nearly half the loop on MIPS are not present in the vector code. As 

you might expect, this reduction in instructions fetched and executed saves energy. 

Another important diff erence is the frequency of pipeline hazards (Chapter 4). 

In the straightforward MIPS code, every add.d must wait for a mul.d, every 

s.d must wait for the add.d and every add.d  and mul.d must wait on l.d. 

On the vector processor, each vector instruction will only stall for the fi rst element 

in each vector, and then subsequent elements will fl ow smoothly down the pipeline. 

Th

us, pipeline stalls are required only once per vector  operation, rather than once 

per vector  element. In this example, the pipeline stall frequency on MIPS will be 

about 64 times higher than it is on the vector version of MIPS. Th

e pipeline stalls 

can be reduced on MIPS by using loop unrolling (see Chapter 4). However, the 

large diff erence in instruction bandwidth cannot be reduced. 

Since the vector elements are independent, they can be operated on in parallel, 

much like subword parallelism for AVX instructions. All modern vector computers 

have vector functional units with multiple parallel pipelines (called  vector  lanes; see 

Figures 6.2 and 6.3) that can produce two or more results per clock cycle. 

Elaboration:  The loop in the example above exactly matched the vector length. When 

loops are shorter, vector architectures use a register that reduces the length of vector 

operations. When loops are larger, we add bookkeeping code to iterate full-length vector 

operations and to handle the leftovers. This latter process is called  strip mining. 

Vector versus Scalar

Vector instructions have several important properties compared to conventional 

instruction set architectures, which are called  scalar architectures in this context:

■  A single vector instruction specifi es a great deal of workಧit is equivalent 

to executing an entire loop. Th

e instruction fetch and decode bandwidth 

needed is dramatically reduced. 

■  By using a vector instruction, the compiler or programmer indicates that the 

computation of each result in the vector is independent of the computation of 

other results in the same vector, so hardware does not have to check for data 

hazards within a vector instruction. 

■  Vector architectures and compilers have a reputation of making it much 

easier than when using MIMD multiprocessors to write effi

cient applications 

when they contain data-level parallelism. 
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■  Hardware need only check for data hazards between two vector instructions 

once per vector operand, not once for every element within the vectors. 

Reduced checking can save energy as well as time. 

■  Vector instructions that access memory have a known access pattern. If 

the vectorಬs elements are all adjacent, then fetching the vector from a set 

of heavily interleaved memory banks works very well. Th

us, the cost of the 

latency to main memory is seen only once for the entire vector, rather than 

once for each word of the vector. 

■  Because an entire loop is replaced by a vector instruction whose behavior 

is predetermined, control hazards that would normally arise from the loop 

branch are nonexistent. 

■  Th

e savings in instruction bandwidth and hazard checking plus the effi

cient 

use of memory bandwidth give vector architectures advantages in power and 

energy versus scalar architectures. 

For these reasons, vector operations can be made faster than a sequence of 

scalar operations on the same number of data items, and designers are motivated 

to include vector units if the application domain can oft en use them. 

Vector versus Multimedia Extensions

Like multimedia extensions found in the x86 AVX instructions, a vector instruction 

specifi es multiple operations. However, multimedia extensions typically specify a 

few operations while vector specifi es dozens of operations. Unlike multimedia 

extensions, the number of elements in a vector operation is not in the opcode but in a 

separate register. Th

is distinction means diff erent versions of the vector architecture 

can be implemented with a diff erent number of elements just by changing the 

contents of that register and hence retain binary compatibility. In contrast, a new 

large set of opcodes is added each time the ಯvectorರ length changes in the multimedia 

extension architecture of the x86: MMX, SSE, SSE2, AVX, AVX2, … . 

Also unlike multimedia extensions, the data transfers need not be contiguous. 

Vectors support both strided accesses, where the hardware loads every  n th data 

element in memory, and indexed accesses, where hardware fi nds the addresses of 

the items to be loaded in a vector register. Indexed accesses are also called  gather-

 scatter, in that indexed loads gather elements from main memory into contiguous 

vector elements and indexed stores scatter vector elements across main memory. 

Like multimedia extensions, vector architectures easily capture the fl exibility 

in data widths, so it is easy to make a vector operation work on 32 64-bit data 

elements or 64 32-bit data elements or 128 16-bit data elements or 256 8-bit data 

elements. Th

e parallel semantics of a vector instruction allows an implementation 

to execute these operations using a deeply pipelined functional unit, an array of 

parallel functional units, or a combination of parallel and pipelined functional 

units. Figure 6.3 illustrates how to improve vector performance by using parallel pipelines to execute a vector add instruction. 

Vector arithmetic instructions usually only allow element N of one vector 

register to take part in operations with element N from other vector registers. Th

is 
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FIGURE 6.3  Using multiple functional units to improve the performance of a single vector add instruction, C = A + B. Th

e vector processor (a) on the left  has a single add pipeline and can complete 

one addition per cycle. Th

e vector processor (b) on the right has four add pipelines or lanes and can complete 

four additions per cycle. Th

e elements within a single vector add instruction are interleaved across the four 

vector lane One or 

lanes. 

more vector functional 

units and a portion of 

dramatically simplifi es the construction of a highly parallel vector unit, which can 

the vector register fi le. 

be structured as multiple parallel vector lanes. As with a traffi

c highway, we can 

Inspired by lanes on 

increase the peak throughput of a vector unit by adding more lanes. Figure 6.4 

highways that increase 

shows the structure of a four-lane vector unit. Th

us, going to four lanes from one 

traffi

c speed, multiple 

lanes execute vector 

lane reduces the number of clocks per vector instruction by roughly a factor of four. 

operations 

For multiple lanes to be advantageous, both the applications and the architecture 

simultaneously. 

must support long vectors. Otherwise, they will execute so quickly that you’ll run 

out of instructions, requiring instruction level parallel techniques like those in 

Chapter 4 to supply enough vector instructions. 

Generally, vector architectures are a very effi

cient way to execute data parallel 

processing programs; they are better matches to compiler technology than 

multimedia extensions; and they are easier to evolve over time than the multimedia 

extensions to the x86 architecture. 

Given these classic categories, we next see how to exploit parallel streams of 

instructions to improve the performance of a  single processor, which we will reuse 

with multiple processors. 

Check  True or false: As exemplifi ed in the x86, multimedia extensions can be thought of 

as a vector architecture with short vectors that supports only contiguous vector 

Yourself

data transfers. 

 

6.3  SISD, MIMD, SIMD, SPMD, and Vector 

515

Lane 0
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pipe 1

pipe 2

pipe 3

Vector load store unit

FIGURE 6.4  Structure of a vector unit containing four lanes. Th

e vector-register storage is 

divided across the lanes, with each lane holding every fourth element of each vector register. Th e fi gure 

shows three vector functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector arithmetic units contains four execution pipelines, one per lane, which acts in concert to complete a single vector instruction. Note how each section of the vector-register fi le only needs to provide enough read and write ports (see Chapter 4) for functional units local to its lane. 

Elaboration:  Given the advantages of vector, why aren’t they more popular outside 

high-performance computing? There were concerns about the larger state for vector 

registers increasing context switch time and the diffi culty of handling page faults in 

vector loads and stores, and SIMD instructions achieved some of the benefi ts of vector 

instructions.  In addition, as long as advances in instruction level parallelism could 

deliver on the performance promise of Moore’s Law, there was little reason to take the 

chance of changing architecture styles. 

Elaboration:  Another advantage of vector and multimedia extensions is that it is 

relatively easy to extend a scalar instruction set architecture with these instructions to 

improve performance of data parallel operations. 

Elaboration:  The Haswell-generation x86 processors from Intel support AVX2, which 

has a gather operation but not a scatter operation. 
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hardware 

multithreading 

Increasing utilization of a 

 6.4 Hardware 

Multithreading

processor by switching to 

another thread when one 

thread is stalled. 

A related concept to MIMD, especially from the programmer’s perspective, is 

hardware multithreading. While MIMD relies on multiple processes or threads 

thread  A thread includes 

to try to keep multiple processors busy, hardware multithreading allows multiple 

the program counter, the 

register state, and the 

threads to share the functional units of a  single processor in an overlapping fashion 

stack. It is a lightweight 

to try to utilize the hardware resources effi

ciently. To permit this sharing, the 

process; whereas threads 

processor must duplicate the independent state of each thread. For example, each 

commonly share a single 

thread would have a separate copy of the register fi le and the program counter. 

address space, processes 

Th

e memory itself can be shared through the virtual memory mechanisms, which 

don’t. 

already support multi-programming. In addition, the hardware must support the 

process A process 

ability to change to a diff erent thread relatively quickly. In particular, a thread 

includes one or more 

switch should be much more effi

cient than a process switch, which typically 

threads, the address space, 

requires hundreds to thousands of processor cycles while a thread switch can be 

and the operating system 

instantaneous. 

state. Hence, a process 

Th

ere are two main approaches to hardware multithreading. Fine-grained 

switch usually invokes the 

operating system, but not 

multithreading switches between threads on each instruction, resulting in 

a thread switch. 

interleaved execution of multiple threads. Th

is interleaving is oft en done in a 

round-robin fashion, skipping any threads that are stalled at that clock cycle. To 

fi ne-grained 

make fi ne-grained multithreading practical, the processor must be able to switch 

multithreading 

threads on every clock cycle. One advantage of fi ne-grained multithreading is 

A version of hardware 

that it can hide the throughput losses that arise from both short and long stalls, 

multithreading that 

implies switching between 

since instructions from other threads can be executed when one thread stalls. Th

e 

threads aft er every 

primary disadvantage of fi ne-grained multithreading is that it slows down the 

instruction. 

execution of the individual threads, since a thread that is ready to execute without 

stalls will be delayed by instructions from other threads. 

coarse-grained 

Coarse-grained multithreading was invented as an alternative to fi ne-grained 

multithreading 

multithreading. Coarse-grained multithreading switches threads only on costly 

A version of hardware 

multithreading that 

stalls, such as last-level cache misses. Th

is change relieves the need to have thread 

implies switching between 

switching be extremely fast and is much less likely to slow down the execution of an 

threads only aft er 

individual thread, since instructions from other threads will only be issued when 

signifi cant events, such as 

a thread encounters a costly stall. Coarse-grained multithreading suff ers, however, 

a last-level cache miss. 

from a major drawback: it is limited in its ability to overcome throughput losses, 

especially from shorter stalls. Th


is limitation arises from the pipeline start-up 

costs of coarse-grained multithreading. Because a processor with coarse-grained 

multithreading issues instructions from a single thread, when a stall occurs, the 

pipeline must be emptied or frozen. Th

e new thread that begins executing aft er 

the stall must fi ll the pipeline before instructions will be able to complete. Due 

to this start-up overhead, coarse-grained multithreading is much more useful for 

reducing the penalty of high-cost stalls, where pipeline refi ll is negligible compared 

to the stall time. 
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Simultaneous multithreading (SMT) is a variation on hardware multithreading 

that uses the resources of a multiple-issue, dynamically scheduled pipelined 

processor to exploit thread-level parallelism at the same time it exploits instruction-

level parallelism (see Chapter 4). Th

e key insight that motivates SMT is that 

multiple-issue processors oft en have more functional unit parallelism available 

than most single threads can eff ectively use. Furthermore, with register renaming 

and dynamic scheduling (see Chapter 4), multiple instructions from independent 

threads can be issued without regard to the dependences among them; the resolution 

of the dependences can be handled by the dynamic scheduling capability. 

Since SMT relies on the existing dynamic mechanisms, it does not switch  simultaneous 

resources every cycle. Instead, SMT is  always executing instructions from multiple  multithreading threads, leaving it up to the hardware to associate instruction slots and renamed  (SMT) A version registers with their proper threads. 

of multithreading 

that lowers the cost 

Figure 6.5 conceptually illustrates the diff erences in a processorಬs ability to exploit  of multithreading by superscalar resources for the following processor confi gurations. Th

e top portion shows 

utilizing the resources 

needed for multiple issue, 

dynamically scheduled 

Issue slots

microarchitecture. 

Thread A

Thread B

Thread C

Thread D

Time

Issue slots

Coarse MT

Fine MT

SMT

Time

FIGURE 6.5  How four threads use the issue slots of a superscalar processor in different approaches.   Th

e four threads at the top show how each would execute running alone on a standard 

superscalar processor without multithreading support. Th

e three examples at the bottom show how they 

would execute running together in three multithreading options. Th

e horizontal dimension represents the 

instruction issue capability in each clock cycle. Th

e vertical dimension represents a sequence of clock cycles. 

An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. Th e shades of 

gray and color correspond to four diff erent threads in the multithreading processors. Th

e additional pipeline 

start-up eff ects for coarse multithreading, which are not illustrated in this fi gure, would lead to further loss in throughput for coarse multithreading. 
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how four threads would execute independently on a superscalar with no multithreading 

support. Th

e bottom portion shows how the four threads could be combined to execute 

on the processor more effi

ciently using three multithreading options:

■  A superscalar with coarse-grained multithreading

■  A superscalar with fi ne-grained multithreading

■  A superscalar with simultaneous multithreading

In the superscalar without hardware multithreading support, the use of issue 

slots is limited by a lack of instruction-level parallelism. In addition, a major stall, 

such as an instruction cache miss, can leave the entire processor idle. 

In the coarse-grained multithreaded superscalar, the long stalls are partially 

hidden by switching to another thread that uses the resources of the processor. 

Although this reduces the number of completely idle clock cycles, the pipeline 

start-up overhead still leads to idle cycles, and limitations to ILP means all issue 

slots will not be used. In the fi ne-grained case, the interleaving of threads mostly 

eliminates idle clock cycles. Because only a single thread issues instructions in a 

given clock cycle, however, limitations in instruction-level parallelism still lead to 

idle slots within some clock cycles. 
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Energy efficiency
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1.00

i7 SMT performance and energy efficiency ratio
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Ferret

Vips ×264

BodytrackCannealFacesim
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Blackscholes
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FIGURE 6.6  The speed-up from using multithreading on one core on an i7 processor 

averages 1.31 for the PARSEC benchmarks (see 

Section 6.9) and the energy effi ciency 

improvement is 1.07. Th

is data was collected and analyzed by Esmaeilzadeh et. al. [2011]. 
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In the SMT case, thread-level parallelism and instruction-level parallelism are 

both exploited, with multiple threads using the issue slots in a single clock cycle. 

Ideally, the issue slot usage is limited by imbalances in the resource needs and 

resource availability over multiple threads. In practice, other factors can restrict 

how many slots are used. Although Figure 6.5 greatly simplifi es the real operation of these processors, it does illustrate the potential performance advantages of 

multithreading in general and SMT in particular. 

Figure 6.6 plots the performance and energy benefi ts of multithreading on a 

single processors of the Intel Core i7 960, which has hardware support for two 

threads. Th

e average speed-up is 1.31, which is not bad given the modest extra 

resources for hardware multithreading. Th

e average improvement in energy 

effi

ciency is 1.07, which is excellent. In general, you’d be happy with a performance 

speed-up being energy neutral. 

Now that we have seen how multiple threads can utilize the resources of a single 

processor more eff ectively, we next show how to use them to exploit multiple 

processors. 

1.  True or false: Both multithreading and multicore rely on parallelism to get  Check 

more effi

ciency from a chip. 

Yourself

2.  True or false:  Simultaneous multithreading (SMT) uses threads to improve 

resource utilization of a dynamically scheduled, out-of-order processor. 

 6.5 

Multicore and Other Shared Memory 

Multiprocessors

While hardware multithreading improved the effi

ciency of processors at modest 

cost, the big challenge of the last decade has been to deliver on the performance 

potential of Moore’s Law by effi

ciently programming the increasing number of 

processors per chip. 

Given the diffi

culty of rewriting old programs to run well on parallel hardware, 

a natural question is: what can computer designers do to simplify the task? One 

answer was to provide a single physical address space that all processors can share, 

so that programs need not concern themselves with where their data is, merely that 

programs may be executed in parallel. In this approach, all variables of a program 

can be made available at any time to any processor. Th

e alternative is to have a 

separate address space per processor that requires that sharing must be explicit; 

weಬll describe this option in the Section 6.7. When the physical address space is 

commonthen the hardware typically provides cache coherence to give a consistent 

view of the shared memory (see Section 5.8). 

As mentioned above, a  shared memory multiprocessor (SMP) is one that off ers 

the programmer a  single physical address space across all processorsಧwhich is 
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nearly always the case for multicore chipsಧalthough a more accurate term would 

uniform memory access 

have been shared- address multiprocessor. Processors communicate through shared 

(UMA) A multiprocessor  variables in memory, with all processors capable of accessing any memory location in which latency to any 

word in main memory is 

via loads and stores. Figure 6.7 shows the classic organization of an SMP. Note that about the same no matter 

such systems can still run independent jobs in their own virtual address spaces, 

which processor requests 

even if they all share a physical address space. 

the access. 

Single address space multiprocessors come in two styles. In the fi rst style, the 

latency to a word in memory does not depend on which processor asks for it. 

nonuniform memory 

Such machines are called uniform memory access (UMA) multiprocessors. In the 

access (NUMA) A type 

of single address space 

second style, some memory accesses are much faster than others, depending on 

multiprocessor in which 

which processor asks for which word, typically because main memory is divided 

some memory accesses 

and attached to diff erent microprocessors or to diff erent memory controllers on 

are much faster than 

the same chip. Such machines are called nonuniform memory access (NUMA) 

others depending on 

multiprocessors. As you might expect, the programming challenges are harder for 

which processor asks for 

a NUMA multiprocessor than for a UMA multiprocessor, but NUMA machines 

which word. 

can scale to larger sizes and NUMAs can have lower latency to nearby memory. 

synchronization  Th

e 

As processors operating in parallel will normally share data, they also need to 

process of coordinating 

coordinate when operating on shared data; otherwise, one processor could start 

the behavior of two or 

working on data before another is fi nished with it. Th

is coordination is called 

more processes, which 

synchronization, which we saw in Chapter 2. When sharing is supported with a 

may be running on 

single address space, there must be a separate mechanism for synchronization. One 

diff erent processors. 

approach uses a lock for a shared variable. Only one processor at a time can acquire 

lock A synchronization 

the lock, and other processors interested in shared data must wait until the original 

device that allows access 

processor unlocks the variable. Section 2.11 of Chapter 2 describes the instructions 

to data to only one 

for locking in the MIPS instruction set. 

processor at a time. 
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FIGURE 6.7  Classic organization of a shared memory multiprocessor. 
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A Simple Parallel Processing Program for a Shared Address Space

EXAMPLE

Suppose we want to sum 64,000 numbers on a shared memory multiprocessor 

computer with uniform memory access time. Letಬs assume we have 64 

processors. 

Th

e fi rst step is to ensure a balanced load per processor, so we split the set 

of numbers into subsets of the same size. We do not allocate the subsets to a 

ANSWER

diff erent memory space, since there is a single memory space for this machine; 

we just give diff erent starting addresses to each processor. Pn is the number that 

identifi es the processor, between 0 and 63. All processors start the program by 

running a loop that sums their subset of numbers:

sum[Pn] = 0; 

for (i = 1000*Pn; i < 1000*(Pn+1); i += 1)

sum[Pn] += A[i]; /*sum the assigned areas*/

(Note the C code i += 1 is just a shorter way to say i = i + 1.)

Th

e next step is to add these 64 partial sums. Th

is step is called a reduction, reduction A function 

where we divide to conquer. Half of the processors add pairs of partial sums,  that processes a data and then a quarter add pairs of the new partial sums, and so on until we  structure and returns a have the single, fi nal sum. Figure 6.8 illustrates the hierarchical nature of this  single value. 

reduction. 

In this example, the two processors must synchronize before the ಯconsumerರ 

processor tries to read the result from the memory location written by the 

ಯproducerರ processor; otherwise, the consumer may read the old value of 

0

(half = 1) 0 1

(half = 2) 0 1 2 3

(half = 4) 0 1 2 3 4 5 6 7

FIGURE 6.8  The last four levels of a reduction that sums results from each processor, 

from bottom to top.  For all processors whose number i is less than half, add the sum produced by processor number (i + half) to its sum. 
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the data. We want each processor to have its own version of the loop counter 

variable  i, so we must indicate that it is a ಯprivateರ variable. Here is the code 

(half is private also):

half = 64; /*64 processors in multiprocessor*/

do

synch(); /*wait for partial sum completion*/

if (half%2 != 0 && Pn == 0)

sum[0] += sum[half–1]; 

/*Conditional sum needed when half is

odd; Processor0 gets missing element */

half = half/2; /*dividing line on who sums */

if (Pn < half) sum[Pn] += sum[Pn+half]; 

while (half > 1); /*exit with final sum in Sum[0] */

Hardware/

Given the long-term interest in parallel programming, there have been hundreds 

of attempts to build parallel programming systems. A limited but popular example 

Software  is OpenMP. It is just an  Application Programmer Interface (API) along with a set of Interface

compiler directives, environment variables, and runtime library routines that can 

extend standard programming languages. It off ers a portable, scalable, and simple 

OpenMP An API 

programming model for shared memory multiprocessors. Its primary goal is to 

for shared memory 

multiprocessing in C, 

parallelize loops and to perform reductions. 

C++, or Fortran that runs 

Most C compilers already have support for OpenMP.  Th

e command to uses the 

on UNIX and Microsoft  

OpenMP API with the UNIX C compiler is just:

platforms. It includes 

compiler directives, a 

cc –fopenmp foo.c

library, and runtime 

directives. 

OpenMP extends C using  pragmas, which are just commands to the C macro 

preprocessor like #define and #include. To set the number of processors we 

want to use to be 64, as we wanted in the example above, we just use the command

#define P 64 /* define a constant that we’ll use a few times */

#pragma omp parallel num_threads(P)

Th

at is, the runtime libraries should use 64 parallel threads. 

To turn the sequential for loop into a parallel for loop that divides the work 

equally between all the threads that we told it to use, we just write (assuming sum 

is initialized to 0)

#pragma omp parallel for

for (Pn = 0; Pn < P; Pn += 1)

for (i = 0; 1000*Pn; i < 1000*(Pn+1); i += 1)

sum[Pn] += A[i]; /*sum the assigned areas*/
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To perform the reduction, we can use another command that tells OpenMP 

what the reduction operator is and what variable you need to use to place the result 

of the reduction. 

#pragma omp parallel for reduction(+ : FinalSum)

for (i = 0; i < P; i += 1)

FinalSum += sum[i]; /* Reduce to a single number */

Note that it is now up to the OpenMP library to fi nd effi

cient code to sum 64 

numbers effi

ciently using 64 processors. 

While OpenMP makes it easy to write simple parallel code, it is not very helpful 

with debugging, so many parallel programmers use more sophisticated parallel 

programming systems than OpenMP, just as many programmers today use more 

productive languages than C. 

Given this tour of classic MIMD hardware and soft ware, our next path is a more 

exotic tour of a type of MIMD architecture with a diff erent heritage and thus a very 

diff erent perspective on the parallel programming challenge. 

True or false: Shared memory multiprocessors cannot take advantage of task-level  Check 

parallelism. 

Yourself

Elaboration:  Some writers repurposed the acronym SMP to mean  symmetric 

 multiprocessor, to indicate that the latency from processor to memory was about the 

same for all processors. This shift was done to contrast them from large-scale NUMA 

multiprocessors, as both classes used a single address space. As clusters proved much 

more popular than large-scale NUMA multiprocessors, in this book we restore SMP to 

its original meaning, and use it to contrast against that use multiple address spaces, 

such as clusters. 

Elaboration:  An alternative to sharing the physical address space would be to have 

separate physical address spaces but share a common virtual address space, leaving 

it up to the operating system to handle communication. This approach has been tried, 

but it has too high an overhead to offer a practical shared memory abstraction to the 

performance-oriented programmer. 
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 6.6 

Introduction to Graphics Processing Units

Th

e original justifi cation for adding SIMD instructions to existing architectures 

was that many microprocessors were connected to graphics displays in PCs and 

workstations, so an increasing fraction of processing time was used for graphics. 

As Moore’s Law increased the number of transistors available to microprocessors, 

it therefore made sense to improve graphics processing. 

A major driving force for improving graphics processing was the computer game 

industry, both on PCs and in dedicated game consoles such as the Sony PlayStation. 

Th

e rapidly growing game market encouraged many companies to make increasing 

investments in developing faster graphics hardware, and this positive feedback loop 

led graphics processing to improve at a faster rate than general-purpose processing 

in mainstream microprocessors. 

Given that the graphics and game community had diff erent goals than the 

microprocessor development community, it evolved its own style of processing and 

terminology. As the graphics processors increased in power, they earned the name 

 Graphics Processing Units or  GPUs to distinguish themselves from CPUs. 

For a few hundred dollars, anyone can buy a GPU today with hundreds of 

parallel fl oating-point units, which makes high-performance computing more 

accessible. Th

e interest in GPU computing blossomed when this potential was 

combined with a programming language that made GPUs easier to program. 

Hence, many programmers of scientifi c and multimedia applications today are 

pondering whether to use GPUs or CPUs. 

(Th

is section concentrates on using GPUs for computing. To see how GPU 

computing combines with the traditional role of graphics acceleration, see 

Appendix C.)

Here are some of the key characteristics as to how GPUs vary from CPUs:

■  GPUs are accelerators that supplement a CPU, so they do not need be able 

to perform all the tasks of a CPU. Th

is role allows them to dedicate all their 

resources to graphics. Itಬs fi ne for GPUs to perform some tasks poorly or not 

at all, given that in a system with both a CPU and a GPU, the CPU can do 

them if needed. 

■  Th

e GPU problems sizes are typically hundreds of megabytes to gigabytes, 

but not hundreds of gigabytes to terabytes. 

Th

ese diff erences led to diff erent styles of architecture:

■  Perhaps the biggest diff erence is that GPUs do not rely on multilevel caches 

to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on 

hardware multithreading (Section 6.4) to hide the latency to memory. Th

at is, 

between the time of a memory request and the time that data arrives, the GPU 

executes hundreds or thousands of threads that are independent of that request. 
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■  Th

e GPU memory is thus oriented toward bandwidth rather than latency. 

Th

ere are even special graphics DRAM chips for GPUs that are wider and 

have higher bandwidth than DRAM chips for CPUs. In addition, GPU 

memories have traditionally had smaller main memories than conventional 

microprocessors. In 2013, GPUs typically have 4 to 6 GiB or less, while 

CPUs have 32 to 256 GiB. Finally, keep in mind that for general-purpose 

computation, you must include the time to transfer the data between CPU 

memory and GPU memory, since the GPU is a coprocessor. 

■  Given the reliance on many threads to deliver good memory bandwidth, 

GPUs can accommodate many parallel processors (MIMD) as well as many 

threads. Hence, each GPU processor is more highly multithreaded than a 

typical CPU, plus they have more processors. 

Although GPUs were designed for a narrower set of applications, some programmers 

Hardware/

wondered if they could specify their applications in a form that would let them  Software 

tap the high potential performance of GPUs. Aft er tiring of trying to specify their 

problems using the graphics APIs and languages, they developed C-inspired  Interface

programming languages to allow them to write programs directly for the GPUs. 

An example is NVIDIAಬs CUDA (Compute Unifi ed Device Architecture), which 

enables the programmer to write C programs to execute on GPUs, albeit with some 

restrictions. 

Appendix C gives examples of CUDA code. (OpenCL is a multi-

company initiative to develop a portable programming language that provides 

many of the benefi ts of CUDA.) 

NVIDIA decided that the unifying theme of all these forms of parallelism is 

the   CUDA Th

  read. Using this lowest level of parallelism as the programming 

primitive, the compiler and the hardware can gang thousands of CUDA Th

reads 

together to utilize the various styles of parallelism within a GPU: multithreading, 

MIMD, SIMD, and instruction-level parallelism. Th

ese threads are blocked 

together and executed in groups of 32 at a time. A multithreaded processor inside 

a GPU executes these blocks of threads, and a GPU consists of 8 to 32 of these 

multithreaded processors .  

An Introduction to the NVIDIA GPU Architecture

We use NVIDIA systems as our example as they are representative of GPU 

architectures. Specifi cally, we follow the terminology of the CUDA parallel 

programming language and use the Fermi architecture as the example. 

Like vector architectures, GPUs work well only with data-level parallel problems. 

Both styles have gather-scatter data transfers, and GPU processors have even more 
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registers than do vector processors. Unlike most vector architectures, GPUs also 

rely on hardware multithreading within a single multi-threaded SIMD processor 

to hide memory latency (see Section 6.4). 

A multithreaded SIMD processor is similar to a Vector Processor, but the former 

has many parallel functional units instead of just a few that are deeply pipelined, 

as does the latter. 

As mentioned above, a GPU contains a collection of multithreaded SIMD 

processors; that is, a GPU is a MIMD composed of multithreaded SIMD processors. 

For example, NVIDIA has four implementations of the Fermi architecture at 

diff erent price points with 7, 11, 14, or 15 multithreaded SIMD processors. To 

provide transparent scalability across models of GPUs with diff ering number of 

multithreaded SIMD processors, the Th

read Block Scheduler hardware assigns 

blocks of threads to multithreaded SIMD processors.  Figure 6.9 shows a simplifi ed block diagram of a multithreaded SIMD processor. 

Dropping down one more level of detail, the machine object that the hardware 

creates, manages, schedules, and executes is a  thread of SIMD instructions, which 

we will also call a  SIMD thread. It is a traditional thread, but it contains exclusively 

SIMD instructions. Th

ese SIMD threads have their own program counters and 

they run on a multithreaded SIMD processor. Th

e  SIMD Th

  read Scheduler includes 

a controller that lets it know which threads of SIMD instructions are ready to 

run, and then it sends them off  to a dispatch unit to be run on the multithreaded 
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FIGURE 6.9  Simplifi ed block diagram of the datapath of a multithreaded SIMD Processor. 

It has 16 SIMD lanes. Th

e SIMD Th

read Scheduler has many independent SIMD threads that it chooses from 

to run on this processor. 
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SIMD processor. It is identical to a hardware thread scheduler in a traditional 

multithreaded processor (see Section 6.4), except that it is scheduling threads of 

SIMD instructions. Th

us, GPU hardware has two levels of hardware schedulers: 

1. Th

e  Th

   read Block Scheduler that assigns blocks of threads to multithreaded 

SIMD processors, and 

2.  the SIMD Th

read Scheduler  within a SIMD processor, which schedules 

when SIMD threads should run. 

Th

e SIMD instructions of these threads are 32 wide, so each thread of SIMD 

instructions would compute 32 of the elements of the computation. Since the 

thread consists of SIMD instructions, the SIMD processor must have parallel 

functional units to perform the operation. We call them  SIMD Lanes, and they are 

quite similar to the Vector Lanes in Section 6.3. 

Elaboration:  The number of lanes per SIMD processor varies across GPU generations. 

With Fermi, each 32-wide thread of SIMD instructions is mapped to 16 SIMD Lanes, 

so each SIMD instruction in a thread of SIMD instructions takes two clock cycles to 

complete. Each thread of SIMD instructions is executed in lock step. Staying with the 

analogy of a SIMD processor as a vector processor, you could say that it has 16 lanes, 

and the vector length would be 32. This wide but shallow nature is why we use the term 

SIMD processor instead of vector processor, as it is more intuitive. 

Since by defi nition the threads of SIMD instructions are independent, the SIMD 

Thread Scheduler can pick whatever thread of SIMD instructions is ready, and need not 

stick with the next SIMD instruction in the sequence within a single thread. Thus, using 

the terminology of Section 6.4, it uses fi ne-grained multithreading. 

To hold these memory elements, a Fermi SIMD processor has an impressive 32,768 

32-bit registers. Just like a vector processor, these registers are divided logically across 

the vector lanes or, in this case, SIMD Lanes. Each SIMD Thread is limited to no more than 

64 registers, so you might think of a SIMD Thread as having up to 64 vector registers, 

with each vector register having 32 elements and each element being 32 bits wide. 

Since Fermi has 16 SIMD Lanes, each contains 2048 registers. Each CUDA Thread 

gets one element of each of the vector registers.  Note that a CUDA thread is just a 

vertical cut of a thread of SIMD instructions, corresponding to one element executed by 

one SIMD Lane. Beware that CUDA Threads are very different from POSIX threads; you 

canಬt make arbitrary system calls or synchronize arbitrarily in a CUDA Thread. 

NVIDIA GPU Memory Structures

Figure 6.10 shows the memory structures of an NVIDIA GPU. We call the on-

chip memory that is local to each multithreaded SIMD processor  Local Memory. 

It is shared by the SIMD Lanes within a multithreaded SIMD processor, but this 

memory is not shared between multithreaded SIMD processors. We call the off -

chip DRAM shared by the whole GPU and all thread blocks  GPU Memory. 

Rather than rely on large caches to contain the whole working sets of an 

application, GPUs traditionally use smaller streaming caches and rely on extensive 

multithreading of threads of SIMD instructions to hide the long latency to DRAM, 
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CUDA Thread

Per-CUDA Thread Private Memory

Thread block

Per-Block

Local Memory

Grid 0 

Sequence

. . . 

Inter-Grid Synchronization

GPU Memory

Grid 1 

. . . 

FIGURE 6.10  GPU Memory structures. GPU Memory is shared by the vectorized loops. All threads of SIMD instructions within a thread block share Local Memory. 

since their working sets can be hundreds of megabytes. Th

us, they will not fi t 

in the last level cache of a multicore microprocessor. Given the use of hardware 

multithreading to hide DRAM latency, the chip area used for caches in system 

processors is spent instead on computing resources and on the large number of 

registers to hold the state of the many threads of SIMD instructions. 

Elaboration:  While hiding memory latency is the underlying philosophy, note that the 

latest GPUs and vector processors have added caches. For example, the recent Fermi 

architecture has added caches, but they are thought of as either bandwidth fi lters to 

reduce demands on GPU Memory or as accelerators for the few variables whose latency 

cannot be hidden by multithreading. Local memory for stack frames, function calls, 

and register spilling is a good match to caches, since latency matters when calling a 

function. Caches can also save energy, since on-chip cache accesses take much less 

energy than accesses to multiple, external DRAM chips. 
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Putting GPUs into Perspective

At a high level, multicore computers with SIMD instruction extensions do share 

similarities with GPUs. Figure 6.11 summarizes the similarities and diff erences. 

Both are MIMDs whose processors use multiple SIMD lanes, although GPUs 

have more processors and many more lanes. Both use hardware multithreading 

to improve processor utilization, although GPUs have hardware support for many 

more threads. Both use caches, although GPUs use smaller streaming caches and 

multicore computers use large multilevel caches that try to contain whole working 

sets completely. Both use a 64-bit address space, although the physical main 

memory is much smaller in GPUs. While GPUs support memory protection at the 

page level, they do not yet support demand paging. 

SIMD processors are also similar to vector processors. Th

e multiple SIMD 

processors in GPUs act as independent MIMD cores, just as many vector computers 

have multiple vector processors. Th

is view would consider the Fermi GTX 580 as 

a 16-core machine with hardware support for multithreading, where each core has 

16 lanes. Th

e biggest diff erence is multithreading, which is fundamental to GPUs 

and missing from most vector processors. 

GPUs and CPUs do not go back in computer architecture genealogy to a 

common ancestor; there is no Missing Link that explains both. As a result of this 

uncommon heritage, GPUs have not used  the terms common in the computer 

architecture community, which has led to confusion about what GPUs are and 

how they work. To help resolve the confusion, Figure 6.12 (from left  to right) lists the more descriptive term used in this section, the closest term from mainstream 

computing, the offi

cial NVIDIA GPU term in case you are interested, and then 

a short description of the term. Th

is “GPU Rosetta Stone” may help relate this 

section and ideas to more conventional GPU descriptions, such as those found in 

Appendix C. 

While GPUs are moving toward mainstream computing, they canಬt abandon 

their responsibility to continue to excel at graphics. Th

us, the design of GPUs may 

Feature

Multicore with SIMD

GPU

SIMD processors

4 to 8

8 to 16

SIMD lanes/processor

2 to 4

8 to 16

Multithreading hardware support for SIMD threads

2 to 4

16 to 32

Largest cache size

8 MiB

0.75 MiB

Size of memory address

64-bit

64-bit

Size of main memory

8 GiB to 256 GiB

4 GiB to 6 GiB

Memory protection at level of page

Yes

Yes

Demand paging

Yes

No

Cache coherent

Yes

No

FIGURE 6.11  Similarities and differences between multicore with Multimedia SIMD 

extensions and recent GPUs. 
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More descriptive

Closest old term

Official CUDA/

Type

Book definition

name

outside of GPUs

NVIDIA GPU term

Vectorizable

Vectorizable Loop

Grid

A vectorizable loop, executed on the GPU, made

Loop

up of one or more Thread Blocks (bodies of

vectorized loop) that can execute in parallel. 

Body of

Body of a

Thread Block

A vectorized loop executed on a multithreaded

Vectorized Loop

(Strip-Mined)

SIMD Processor, made up of one or more threads

Vectorized Loop

of SIMD instructions. They can communicate via

Local Memory. 

Sequence of

One iteration of

CUDA Thread

A vertical cut of a thread of SIMD instructions

Program abstractions

SIMD Lane

a Scalar Loop

corresponding to one element executed by one

Operations

SIMD Lane. Result is stored depending on mask

and predicate register. 

A Thread of

Thread of Vector

Warp

A traditional thread, but it contains just SIMD

SIMD

Instructions

instructions that are executed on a multithreaded

Instructions

SIMD Processor. Results stored depending on a

per-element mask. 

SIMD

Vector Instruction

PTX Instruction

A single SIMD instruction executed across SIMD

Machine object

Instruction

Lanes. 

Multithreaded

(Multithreaded)

Streaming

A multithreaded SIMD Processor executes

SIMD

Vector Processor

Multiprocessor

threads of SIMD instructions, independent of

Processor

other SIMD Processors. 

Thread Block

Scalar Processor

Giga Thread

Assigns multiple Thread Blocks (bodies of

Scheduler

Engine

vectorized loop) to multithreaded SIMD

Processors. 

SIMD Thread

Thread scheduler

Warp Scheduler

Hardware unit that schedules and issues threads

Scheduler

in a Multithreaded

of SIMD instructions when they are ready to

CPU

execute; includes a scoreboard to track SIMD

Thread execution. 

Processing hardware

SIMD Lane

Vector lane

Thread Processor

A SIMD Lane executes the operations in a thread

of SIMD instructions on a single element. Results

stored depending on mask. 

GPU Memory

Main Memory

Global Memory

DRAM memory accessible by all multithreaded

SIMD Processors in a GPU. 

Local Memory

Local Memory

Shared Memory

Fast local SRAM for one multithreaded SIMD

Processor, unavailable to other SIMD Processors. 

Memory hardware

SIMD Lane

Vector Lane

Thread Processor

Registers in a single SIMD Lane allocated across

Registers

Registers

Registers

a full thread block (body of vectorized loop). 

FIGURE 6.12  Quick guide to GPU terms. We use the fi rst column for hardware terms. Four groups cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware, and Memory Hardware. 

make more sense when architects ask, given the hardware invested to do graphics 

well, how can we supplement it to improve the performance of a wider range of 

applications? 

Having covered two diff erent styles of MIMD that have a shared address 

space, we next introduce parallel processors where each processor has its 

own private address space, which makes it much easier to build much larger 

systems. Th

e Internet services that you use every day depend on these large scale 

systems. 
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Elaboration:  While the GPU was introduced as having a separate memory from the 

CPU, both AMD and Intel have announced “fused” products that combine GPUs and 

CPUs to share a single memory. The challenge will be to maintain the high bandwidth 

memory in a fused architecture that has been a foundation of GPUs. 

True or false: GPUs rely on graphics DRAM chips to reduce memory latency and  Check 

thereby increase performance on graphics applications. 

Yourself

 

 

Clusters, Warehouse Scale Computers, 

6.7

and Other Message-Passing 

Multiprocessors

Th

e alternative approach to sharing an address space is for the processors to  message passing 

each have their own private physical address space. Figure 6.13 shows the classic  Communicating between organization of a multiprocessor with multiple private address spaces. Th

is  multiple processors by 

alternative multiprocessor must communicate via explicit message passing,  explicitly sending and receiving information. 

which traditionally is the name of such style of computers. Provided the system 

has routines to send and receive messages, coordination is built in with message  send message routine passing, since one processor knows when a message is sent, and the receiving  A routine used by a processor knows when a message arrives. If the sender needs confi rmation that the  processor in machines message has arrived, the receiving processor can then send an acknowledgment  with private memories to pass a message to another 

message back to the sender. 

processor. 

Th

ere have been several attempts to build large-scale computers based on 

high-performance message-passing networks, and they do off er better absolute  receive message routine A routine used by a 

processor in machines 

with private memories 

to accept a message from 

another processor. 

Processor

Processor

. . . 

Processor

Cache

Cache

. . . 

Cache

Memory

Memory

. . . 

Memory

Interconnection Network

FIGURE 6.13  Classic organization of a multiprocessor with multiple private address 

spaces, traditionally called a message-passing multiprocessor.  Note that unlike the SMP in 

Figure 6.7, the interconnection network is not between the caches and memory but is instead between processor-memory nodes. 
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communication performance than clusters built using local area networks. Indeed, 

many supercomputers today use custom networks. Th

e problem is that they are 

much more expensive than local area networks like Ethernet. Few applications today 

outside of high performance computing can justify the higher communication 

performance, given the much higher costs. 

Hardware/

Computers that rely on message passing for communication rather than cache 

coherent shared memory are much easier for hardware designers to build (see 

Software  Section 5.8). Th ere is an advantage for programmers as well, in that communication Interface

is explicit, which means there are fewer performance surprises than with the implicit 

communication in cache-coherent shared memory computers. Th

e downside 

for programmers is that itಬs harder to port a sequential program to a message-

passing computer, since every communication must be identifi ed in advance or 

the program doesnಬt work. Cache-coherent shared memory allows the hardware to 

fi gure out what data needs to be communicated, which makes porting easier. Th

ere 

are diff erences of opinion as to which is the shortest path to high performance, 

given the pros and cons of implicit communication, but there is no confusion in the 

marketplace today. Multicore microprocessors use shared physical memory and 

nodes of a cluster communicate with each other using message passing. 

Some concurrent applications run well on parallel hardware, independent of 

whether it off ers shared addresses or message passing. In particular, task-level 

parallelism and applications with little communicationಧlike Web search, mail 

servers, and fi le serversಧdo not require shared addressing to run well. As a result, 

clusters Collections of 

clusters have become the most widespread example today of the message-passing 

computers connected 

parallel computer. Given the separate memories, each node of a cluster runs a 

via I/O over standard 

distinct copy of the operating system. In contrast, the cores inside a microprocessor 

network switches to 

are connected using a high-speed network inside the chip, and a multichip shared-

form a message-passing 

memory system uses the memory interconnect for communication. Th

e memory 

multiprocessor. 

interconnect has higher bandwidth and lower latency, allowing much better 

communication performance for shared memory multiprocessors. 

Th

e weakness of separate memories for user memory from a parallel programming 

perspective turns into a strength in system dependability (see Section 5.5). Since a 

cluster consists of independent computers connected through a local area network, it 

is much easier to replace a computer without bringing down the system in a cluster 

than in an shared memory multiprocessor. Fundamentally, the shared address means 

that  it  is  diffi

cult to isolate a processor and replace it without heroic work by the 

operating system and in the physical design of the server. It is also easy for clusters 

to scale down gracefully when a server fails, thereby improving dependability. Since 

the cluster soft ware is a layer that runs on top of the local operating systems running 

on each computer, it is much easier to disconnect and replace a broken computer. 
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Given that clusters are constructed from whole computers and independent, 

scalable networks, this isolation also makes it easier to expand the system without 

bringing down the application that runs on top of the cluster. 

Th

eir lower cost, higher availability, and rapid, incremental expandability make 

clusters attractive to service Internet providers, despite their poorer communication 

performance when compared to large-scale shared memory multiprocessors. Th

e 

search engines that hundreds of millions of us use every day depend upon this 

technology. Amazon, Facebook, Google, Microsoft , and others all have multiple 

datacenters each with clusters of tens of thousands of servers. Clearly, the use of 

multiple processors in Internet service companies has been hugely successful. 

Warehouse-Scale Computers

Internet services, such as those described above, necessitated the construction   Anyone can build a fast of new buildings to house, power, and cool 100,000 servers. Although they may   CPU. Th e trick is to build a be classifi ed as just large clusters, their architecture and operation are more   fast system. 

sophisticated. Th

ey act as one giant computer and cost on the order of $150M  Seymour Cray, considered 

for the building, the electrical and cooling infrastructure, the servers, and the  the father of the networking equipment that connects and houses 50,000 to 100,000 servers. We  supercomputer. 

consider them a new class of computer, called  Warehouse-Scale Computers (WSC). 

Th

e most popular framework for batch processing in a WSC is MapReduce [Dean, Hardware/

2008] and its open-source twin Hadoop. Inspired by the Lisp functions of the same 

Software 

name, Map fi rst applies a programmer-supplied function to each logical input 

record. Map runs on thousands of servers to produce an intermediate result of key-

Interface

value pairs. Reduce collects the output of those distributed tasks and collapses them 

using another programmer-defi ned function. With appropriate soft ware support, 

both are highly parallel yet easy to understand and to use. Within 30 minutes, a 

novice programmer can run a MapReduce task on thousands of servers. 

For example, one MapReduce program calculates the number of occurrences of 

every English word in a large collection of documents. Below is a simplifi ed version 

of that program, which shows just the inner loop and assumes just one occurrence 

of all English words found in a document:

map(String key, String value): 

// key: document name

// value: document contents 

for each word w in value:

EmitIntermediate(w, “1”); // Produce list of all words reduce(String key, Iterator values):

// key: a word 

// values: a list of counts 

int result = 0; 

for each v in values:

result += ParseInt(v); // get integer from key-value pair

Emit(AsString(result)); 
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Th

e function EmitIntermediate used in the Map function emits each 

word in the document and the value one. Th

en the Reduce function sums all the 

values per word for each document using ParseInt() to get the number of 

occurrences per word in all documents. Th

e MapReduce runtime environment 

schedules map tasks and reduce tasks to the servers of a WSC. 

At this extreme scale, which requires innovation in power distribution, cooling, 

monitoring, and operations, the WSC is a modern descendant of the 1970s 

supercomputers—making Seymour Cray the godfather of today’s WSC architects. 

His extreme computers handled computations that could be done nowhere else, but 

were so expensive that only a few companies could aff ord them. Th

is time the target 

is providing information technology for the world instead of high performance 

computing for scientists and engineers. Hence, WSCs surely play a more important 

societal role today than Cray’s supercomputers did in the past. 

While they share some common goals with servers, WSCs have three major 

distinctions:

1.  Ample, easy parallelism: A concern for a server architect is whether the 

applications in the targeted marketplace have enough parallelism to justify 

the amount of parallel hardware and whether the cost is too high for suffi

cient 

communication hardware to exploit this parallelism. A WSC architect has 

no such concern. First, batch applications like MapReduce benefi t from the 

soft ware as a service 

(SaaS) Rather than 

large number of independent data sets that need independent processing, 

selling soft ware that 

such as billions of Web pages from a Web crawl. Second, interactive Internet 

is installed and run 

service applications, also known as Soft ware as a Service (SaaS), can benefi t 

on customers’ own 

from millions of independent users of interactive Internet services. Reads 

computers, soft ware is run 

and writes are rarely dependent in SaaS, so SaaS rarely needs to synchronize. 

at a remote site and made 

For example, search uses a read-only index and email is normally reading 

available over the Internet 

and writing independent information. We call this type of easy parallelism 

typically via a Web 

interface to customers. 

 Request-Level Parallelism, as many independent eff orts can proceed in 

SaaS customers are 

parallel naturally with little need for communication or synchronization. 

charged based on use 

2.  Operational Costs Count: Traditionally, server architects design their systems 

versus on ownership. 

for peak performance within a cost budget and worry about energy only to 

make sure they don’t exceed the cooling capacity of their enclosure. Th

ey 

usually ignored operational costs of a server, assuming that they pale in 

comparison to purchase costs. WSC have longer lifetimes—the building and 

electrical and cooling infrastructure are oft en amortized over 10 or more 

years—so the operational costs add up: energy, power distribution, and 

cooling represent more than 30% of the costs of a WSC over 10 years. 

3.  Scale and the Opportunities/Problems Associated with Scale: To construct a 

single WSC, you must purchase 100,000 servers along with the supporting 

infrastructure, which means volume discounts. Hence, WSCs are so massive 
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internally that you get economy of scale even if there are not many WSCs. 

Th

ese economies of scale led to  cloud computing, as the lower per unit costs 

of a WSC meant that cloud companies could rent servers at a profi table rate 

and still be below what it costs outsiders to do it themselves. Th

e fl ip side 

of the economic opportunity of scale is the need to cope with the failure 

frequency of scale. Even if a server had a Mean Time To Failure of an amazing 

25 years (200,000 hours), the WSC architect would need to design for 5 

server failures every day. Section 5.15 mentioned annualized disk failure rate 

(AFR) was measured at Google at 2% to 4%. If there were 4 disks per server 

and their annual failure rate was 2%, the WSC architect should expect to see 

one disk fail every  hour. Th

us, fault tolerance is even more important for the 

WSC architect than the server architect. 

Th

e economies of scale uncovered by WSC have realized the long dreamed of 

goal of computing as a utility. Cloud computing means anyone anywhere with good 

ideas, a business model, and a credit card can tap thousands of servers to deliver 

their vision almost instantly around the world. Of course, there are important 

obstacles that could limit the growth of cloud computing—such as security, 

privacy, standards, and the rate of growth of Internet bandwidth—but we foresee 

them being addressed so that WSCs and cloud computing can fl ourish. 

To put the growth rate of cloud computing into perspective, in 2012 Amazon 

Web Services announced that it adds enough new server capacity  every day to 

support all of Amazon’s global infrastructure as of 2003, when Amazon was a 

$5.2Bn annual revenue enterprise with 6000 employees. 

Now that we understand the importance of message-passing multiprocessors, 

especially for cloud computing, we next cover ways to connect the nodes of a WSC 

together. Th

anks to Moore’s Law and the increasing number of cores per chip, we 

now need networks inside a chip as well, so these topologies are important in the 

small as well as in the large. 

Elaboration:  The MapReduce framework shuffl es and sorts the key-value pairs at the 

end of the  Map phase to produce groups that all share the same key.  These groups are 

then passed to the Reduce phase. 

Elaboration:  Another form of large scale computing is  grid computing, where the 

computers are spread across large areas, and then the programs that run across them 

must communicate via long haul networks. The most popular and unique form of grid 

computing was pioneered by the SETI@home project. As millions of PCs are idle at 

any one time doing nothing useful, they could be harvested and put to good uses if 

someone developed software that could run on those computers and then gave each PC 

an independent piece of the problem to work on. The fi rst example was the Search for 

 ExtraTerrestrial Intelligence (SETI), which was launched at UC Berkeley in 1999. Over 5 

million computer users in more than 200 countries have signed up for SETI@home, with 

more than 50% outside the US. By the end of 2011, the average performance of the 

SETI@home grid was 3.5 PetaFLOPS. 
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Check 

1.  True or false: Like SMPs, message-passing computers rely on locks for 

synchronization. 

Yourself

2.  True or false: Clusters have separate memories and thus need many copies of 

the operating system. 

 6.8 

Introduction to Multiprocessor Network 

Topologies

Multicore chips require on-chip networks to connect cores together, and clusters 

require local area networks to connect servers together. Th

is section reviews the 

pros and cons of diff erent interconnection network topologies. 

Network costs include the number of switches, the number of links on a switch 

to connect to the network, the width (number of bits) per link, and length of the 

links when the network is mapped into silicon. For example, some cores or servers  

may be adjacent and others may be on the other side of the chip or the other side of 

the datacenter. Network performance is multifaceted as well. It includes the latency 

on an unloaded network to send and receive a message, the throughput in terms of 

the maximum number of messages that can be transmitted in a given time period, 

delays caused by contention for a portion of the network, and variable performance 

depending on the pattern of communication. Another obligation of the network 

may be fault tolerance, since systems may be required to operate in the presence 

of broken components. Finally, in this era of energy-limited systems, the energy 

effi

ciency of diff erent organizations may trump other concerns. 

Networks are normally drawn as graphs, with each edge of the graph representing 

a link of the communication network. In the fi gures in this section, the processor-

memory node is shown as a black square and the switch is shown as a colored 

circle. We assume here that all links are  bidirectional;  that is, information can fl ow 

in either direction. All networks consist of  switches whose links go to processor-

memory nodes and to other switches. Th

e fi rst network connects a sequence of 

nodes together:

Th

is topology is called a  ring. Since some nodes are not directly connected, some 

messages will have to hop along intermediate nodes until they arrive at the fi nal 

destination. 

Unlike a bus—a shared set of wires that allows broadcasting to all connected 

devices—a ring is capable of many simultaneous transfers. 
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Because there are numerous topologies to choose from, performance metrics 

are needed to distinguish these designs. Two are popular. Th

e fi rst is  total network  network 

bandwidth, which is the bandwidth of each link multiplied by the number of links. bandwidth Informally, Th

is represents the peak bandwidth. For the ring network above, with  P processors, 

the peak transfer rate of a 

the total network bandwidth would be  P times the bandwidth of one link; the total  network; can refer to the network bandwidth of a bus is just the bandwidth of that bus. 

speed of a single link or 

the collective transfer rate 

To balance this best bandwidth case, we include another metric that is closer to  of all links in the network. 

the worst case: the bisection bandwidth. Th

is metric is calculated by dividing the 

machine into two halves. Th

en you sum the bandwidth of the links that cross that  bisection 

imaginary dividing line. Th

e bisection bandwidth of a ring is two times the link  bandwidth  Th e 

bandwidth between 

bandwidth. It is one times the link bandwidth for the bus. If a single link is as fast  two equal parts of as the bus, the ring is only twice as fast as a bus in the worst case, but it is  P times  a multiprocessor. 

faster in the best case. 

Th

is measure is for a 

Since some network topologies are not symmetric, the question arises  worst case split of the 

of where to draw the imaginary line when bisecting the machine. Bisection  multiprocessor. 

bandwidth is a worst-case metric, so the answer is to choose the division that 

yields the most pessimistic network performance. Stated alternatively, calculate 

all possible bisection bandwidths and pick the smallest. We take this pessimistic 

view because parallel programs are oft en limited by the weakest link in the 

communication chain. 

At the other extreme from a ring is a fully connected network, where every  fully connected processor has a bidirectional link to every other processor. For fully connected  network A network networks, the total network bandwidth is  P ×( P – 1)/2, and the bisection bandwidth  that connects processor-is ( P/2)2. 

memory nodes by 

supplying a dedicated 

Th

e tremendous improvement in performance of fully connected networks is  communication link 

off set by the tremendous increase in cost. Th

is consequence inspires engineers  between every node. 

to invent new topologies that are between the cost of rings and the performance 

of fully connected networks. Th

e evaluation of success depends in large part on 

the nature of the communication in the workload of parallel programs run on the 

computer. 

Th

e number of diff erent topologies that have been discussed in publications 

would be diffi

cult to count, but only a few have been used in commercial parallel 

processors. Figure 6.14 illustrates two of the popular topologies. 

An alternative to placing a processor at every node in a network is to leave only  multistage network the switch at some of these nodes. Th

e switches are smaller than processor-memory-

A network that supplies a 

switch nodes, and thus may be packed more densely, thereby lessening distance and 

small switch at each node. 

increasing performance. Such networks are frequently called multistage networks 

to refl ect the multiple steps that a message may travel. Types of multistage networks  crossbar network A network that allows 

are as numerous as single-stage networks; Figure 6.15 illustrates two of the popular  any node to communicate multistage organizations. A fully connected or crossbar network allows any  with any other node in node to communicate with any other node in one pass through the network. An  one pass through the Omega network uses less hardware than the crossbar network (2 n log  n versus  n 2  network. 

2 

switches), but contention can occur between messages, depending on the pattern 
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a. 2-D grid or mesh of 16 nodes

b.  n-cube tree of 8 nodes (8 = 23 so  n = 3)

FIGURE 6.14  Network topologies that have appeared in commercial parallel processors.  

Th

e colored circles represent switches and the black squares represent processor-memory nodes. Even though a switch has many links, generally only one goes to the processor. Th

e Boolean n-cube topology is 

an n-dimensional interconnect with 2n nodes, requiring n links per switch (plus one for the processor) and thus n nearest-neighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to improve performance and reliability. 

of communication. For example, the Omega network in Figure 6.15 cannot send a message from P  to P  at the same time that it sends a message from P  to P

0

6

1

4. 

Implementing Network Topologies

Th

is simple analysis of all the networks in this section ignores important practical 

considerations in the construction of a network. Th

e distance of each link aff ects 

the cost of communicating at a high clock rateಧgenerally, the longer the distance, 

the more expensive it is to run at a high clock rate. Shorter distances also make 

it easier to assign more wires to the link, as the power to drive many wires is less 

if the wires are short. Shorter wires are also cheaper than longer wires. Another 

practical limitation is that the three-dimensional drawings must be mapped onto 

chips that are essentially two-dimensional media. Th

e fi nal concern is energy. 

Energy concerns may force multicore chips to rely on simple grid topologies, for 

example. Th

e bottom line is that topologies that appear elegant when sketched on 

the blackboard may be impractical when constructed in silicon or in a datacenter. 

Now that we understand the importance of clusters and have seen topologies 

that we can follow to connect them together, we next look at the hardware and 

soft ware of the interface of the network to the processor. 

Check  True or false: For a ring with P nodes, the ratio of the total network bandwidth to the bisection bandwidth is P/2. 

Yourself
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P0

P1

P2

P0
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P1

P4

P2
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P3

P6

P4

P7

P5

P6

P7

a. Crossbar

b. Omega network

A

C

B

D

c. Omega network switch box

FIGURE 6.15  Popular multistage network topologies for eight nodes. Th

e switches in these 

drawings are simpler than in earlier drawings because the links are unidirectional; data comes in at the left and exits out the right link. Th

e switch box in c can pass A to C and B to D or B to C and A to D. Th

e crossbar 

uses n2 switches, where n is the number of processors, while the Omega network uses 2n log n of the large 2

switch boxes, each of which is logically composed of four of the smaller switches. In this case, the crossbar uses 64 switches versus 12 switch boxes, or 48 switches, in the Omega network. Th

e crossbar, however, can 

support any combination of messages between processors, while the Omega network cannot. 
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Cluster Networking

Th

is online section describes the networking hardware and soft ware used to 

connect the nodes of a cluster together. Th

e example is 10 gigabit/second Ethernet 

connected to the computer  using  Peripheral Component Interconnect Express 

(PCIe). It shows both soft ware and hardware optimizations how to improve 

network performance, including zero copy messaging, user space communication, 

using polling instead of I/O interrupts, and hardware calculation of checksums. 

While the example is networking, the techniques in this section apply to storage 

controllers and other I/O devices as well. 
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6.9

Cluster Networking

Th

is online section describes the networking hardware and soft ware used to 

connect the nodes of cluster together. As there are whole books and courses just on 

networking, this section only introduces the main terms and concepts. While our 

example is networking, the techniques we describe apply to storage controllers and 

other I/O devices as well. 

Ethernet has dominated local area networks for decades, so it is not surprising 

that clusters primarily rely on Ethernet as the cluster interconnect. It became 

commercially popular at 10 Megabits per second link speed in the 1980s, but 

today 1 Gigabit per second Ethernet is standard and 10 Gigabit per second is being 

deployed in datacenters. Figure 6.9.1 shows a network interface card (NIC) for 10 

Gigabit Ethernet. 

Computers off er high-speed links to plug in fast I/O devices like this NIC. While 

there used to be separate chips to connect the microprocessor to the memory and 

high-speed I/O devices, thanks to  Moore’s Law these functions have been absorbed 

into the main chip in recent off erings like Intel’s Sandy Bridge. A popular high-

speed link today is PCIe, which stands for Peripheral Component Interconnect 

Express. It is called a  link in that the basic building block, called a  serial lane, consists of just four wires: two for receiving data and two for transmitting data. 

Th

is small number contrasts with an earlier version of PCI that consisted of 64 

FIGURE 6.9.1  The NetFPGA 10-Gigabit Ethernet card (see http://netfpga.org/), which connects up to four 10-Gigabit/sec Ethernet links. It is an FPGA-based open platform for 

network research and classroom experimentation. Th

e DMA engine and the four “MAC chips” 

in Figure 6.9.2 are just portions of the Xilinx Virtex FPGA in the middle of the board. Th

e four PHY chips 

in Figure 6.9.2 are the four black squares just to the right of the four white rectangles on the left  edge of the board, which is where the Ethernet cables are plugged in. 
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wires, which was called a  parallel bus. PCIe allows anywhere from 1 to 32 lanes to 

be used to connect to I/O devices, depending on its needs. Th

is NIC uses PCI 1.1, 

so each lane transfers at 2 Gigabits/second. 

Th

e NIC in Figure 6.9.1 connects to the host computer over an 8-lane PCIe link, 

which off ers 16 Gigabits/second in both directions. To communicate, a NIC must 

both send or transmit messages and receive them, oft en abbreviated as TX and 

RX, respectively. For this NIC, each 10G link uses separate transmit and receive 

queues, each of which can store two full-length Ethernet packets, used between 

the Ethernet links and the NIC. Figure 6.9.2 is a block diagram of the NIC showing 

the TX and RX queues. Th

e NIC also has two 32-entry queues for transmitting and 

receiving between the host computer and the NIC. 

To give a command to the NIC, the processor must be able to address the device 

and to supply one or more command words. In memory-mapped I/O, portions of  memory-mapped the address space are assigned to I/O devices. During initialization (at boot time), I/O  An I/O scheme in PCIe devices can request to be assigned an address region of a specifi ed length.  which portions of the All subsequent processor reads and writes to that address region are forwarded  address space are assigned to I/O devices, and reads 

over PCIe to that device. Reads and writes to those addresses are interpreted as  and writes to those commands to the I/O device. 

addresses are interpreted 

For example, a write operation can be used to send data to the network interface  as commands to the I/O 

where the data will be interpreted as a command. When the processor issues the  device. 

address and data, the memory system ignores the operation because the address 

indicates a portion of the memory space used for I/O. Th

e NIC, however, sees the 

operation and records the data. User programs are prevented from issuing I/O 

operations directly, because the OS does not provide access to the address space 

assigned to the I/O devices, and thus the addresses are protected by the address 

translation. Memory-mapped I/O can also be used to transmit data by writing or 

reading to select addresses. Th

e device uses the address to determine the type of 

command, and the data may be provided by a write or obtained by a read. In any 

event, the address encodes both the device identity and the type of transmission 

between processor and device. 

Control

Data

PCIe

MAC

PHY

Port 0

TX

MAC

PHY

Port 1

DMA

MAC

PHY

Port 2

RX

MAC

PHY

Port 3

FIGURE 6.9.2  Block diagram of the NetFPGA Ethernet card in Figure 6.9.1 showing the 

control paths and the data paths.  Th

e control path allows the DMA engine to read the status of the 

queues, such as empty vs. on-empty, and the content of the next available queue entry. Th

e DMA engine also 

controls port multiplexing. Th

e data path simply passes through the DMA block to the TX/RX queues or 

to main memory. Th

e “MAC chips” are described below. Th

e PHY chips, which refer to the physical layer, 

connect the “MAC chips” to physical networking medium, such as copper wire or optical fi ber. 
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While the processor could transfer the data from the user space into the I/O 

space by itself, the overhead for transferring data from or to a high-speed network 

could be intolerable, since it could consume a large fraction of the processor. Th

us, 

computer designers long ago invented a mechanism for offl

oading the processor and 

direct memory access 

having the device controller transfer data directly to or from the memory without 

(DMA) A mechanism 

involving the processor. Th

is mechanism is called direct memory access (DMA). 

that provides a device 

DMA is implemented with a specialized controller that transfers data between 

controller with the ability 

the network interface and memory independent of the processor, and in this case 

to transfer data directly 

the DMA engine is inside the NIC. 

to or from the memory 

without involving the 

To notify the operating system (and eventually the application that will receive 

processor. 

the packet) that a transfer is complete, the DMA sends an  I/O interrupt. 

interrupt-driven 

An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5, with two 

I/O  An I/O scheme that 

important distinctions:

employs interrupts to 

indicate to the processor 

1.  An I/O interrupt is asynchronous with respect to the instruction execution. 

that an I/O device needs 

Th

at is, the interrupt is not associated with any instruction and does not 

attention. 

prevent the instruction completion, so it is very diff erent from either page fault 

exceptions or exceptions such as arithmetic overfl ow. Our control unit needs 

only check for a pending I/O interrupt at the time it starts a new instruction. 

2.  In addition to the fact that an I/O interrupt has occurred, we would like to 

convey further information, such as the identity of the device generating 

the interrupt. Furthermore, the interrupts represent devices that may have 

diff erent priorities and whose interrupt requests have diff erent  urgencies 

associated with them. 

To communicate information to the processor, such as the identity of the device 

raising the interrupt, a system can use either vectored interrupts or an exception 

identifi cation register, called the Cause register in MIPS (see Section 4.9). When 

the processor recognizes the interrupt, the device can send either the vector 

address or a status fi eld to place in the Cause register. As a result, when the OS 

gets control, it knows the identity of the device that caused the interrupt and can 

immediately interrogate the device. An interrupt mechanism eliminates the need 

for the processor to keep checking the device and instead allows the processor to 

focus on executing programs. 

The Role of the Operating System in Networking

Th

e operating system acts as the interface between the hardware and the program 

that requests I/O. Th

e network responsibilities of the operating system arise from 

three characteristics of networks:

1.  Multiple programs using the processor share the network. 

2. Networks oft en use interrupts to communicate information about the 

operations. Because interrupts cause a transfer to kernel or supervisor mode, 

they must be handled by the operating system (OS). 
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3. Th

e low-level control of an network is complex, because it requires managing 

a set of concurrent events and because the requirements for correct device 

control are oft en very detailed. 

Th

ese three characteristics of networks specifi cally and I/O systems in general lead  Hardware/ 

to several diff erent functions the OS must provide:

Software 

■  Th

e OS guarantees that a user’s program accesses only the portions of an I/O  Interface

device to which the user has rights. For example, the OS must not allow a 

program to read or write a fi le on disk if the owner of the fi le has not granted 

access to this program. In a system with shared I/O devices, protection could 

not be provided if user programs could perform I/O directly. 

■  Th

e OS provides abstractions for accessing devices by supplying routines 

that handle low-level device operations. 

■  Th

e OS handles the interrupts generated by I/O devices, just as it handles the 

exceptions generated by a program. 

■  Th

e OS tries to provide equitable access to the shared I/O resources, as well 

as schedule accesses to enhance system throughput. 

Th

e soft ware inside the operating system that interfaces to a specifi c I/O device 

like this NIC is called a device driver. Th

e driver for this NIC follows fi ve steps  device driver A program 

when transmitting or receiving a message. Figure 6.9.3 shows the relationship of  that controls an I/O device these steps as an Ethernet packet is sent from one node of the cluster and received  that is attached to the by another node in the cluster. 

computer. 

First, the transmit steps:

1. Th

e driver fi rst prepares a packet buff er in host memory. It copies a packet 

from the user address space into a buff er that it allocates in the operating 

system address space. 

2.  Next, it “talks” to the NIC. Th

e driver writes an  I/O descriptor to the 

appropriate NIC register that gives the address of the buff er and its length. 

3. Th

e DMA in the NIC next copies the outgoing Ethernet packet from the host 

buff er over PCIe. 

4.  When the transmission is complete, the DMA interrupts the processor to 

notify the processor that the packet has been successfully transmitted. 

5.  Finally, the driver de-allocates the transmit buff er. 
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Source

Step 1

RAM

Step 5

CPU

Step 2

PCIe

Step 4

NIC

Step 3

Ethernet

Step 3

NIC

Step 2

Step 4

PCIe

CPU

Step 1

RAM

Step 5

Destination

FIGURE 6.9.3  Relationship of the fi ve steps of the driver when transmitting an Ethernet packet from one node and receiving that packet on another node. 

Next, the receive steps:

1.  First, the driver prepares a packet buff er in host memory, allocating a new 

buff er in which to place the received packet. 

2.  Next, it “talks” to the NIC. Th

e driver writes an I/O descriptor to the 

appropriate NIC register that gives the address of the buff er and its length. 

3. Th

e DMA in the NIC next copies the incoming Ethernet packet over PCIe 

into the allocated host buff er. 

4.  When the transmission is complete, the DMA interrupts the processor to 

notify the host of the newly received packet and its size. 

5.  Finally, the driver copies the received packet into the user address space. 

As you can see in Figure 6.9.3, the fi rst three steps are time critical when transmitting 

a packet (since the last two occur aft er the packet is sent), and the last three steps 

are time critical when receiving a packet (since the fi rst two occur before a packet 

arrives). However, these non-critical steps must be completed before individual 

nodes run out of resources, such as memory space. Failure to do so negatively 

aff ects network performance. 
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Improving Network Performance

Th

e importance of networking in clusters means it is certainly worthwhile to try to 

improve performance. We show both soft ware and hardware techniques. 

Starting with soft ware optimizations, one performance target is reducing the 

number of times the packet is copied, which you may have noticed happening 

repeatedly in the fi ve steps of the driver above. Th

e  zero-copy optimization allows 

the DMA engine to get the message directly from the user program data space 

during transmission and be placed where the user wants it when the message is 

received, rather than go through intermediary buff ers in the operating system 

along the way. 

A second soft ware optimization is to cut out the operating system almost entirely 

by moving the communication into the user address space. By not invoking the 

operating system and not causing a context switch, we can reduce the soft ware 

overhead considerably. 

In this more radical scenario, a third step would be to drop interrupts. One 

reason is that modern processors normally go into lower power mode while 

waiting for an interrupt, and it takes time to come out of low power to service the 

interrupt as well for the disruption to the pipeline, which increases latency. Th

e 

alternative to interrupts is for the processor to periodically check status bits to see 

if I/O operation is complete, which is called polling. Hence, we can require the user 

polling  Th

e process of 

program to poll the NIC continuously to see when the DMA unit has delivered a  periodically checking the message, and as a side eff ect the processor does not go into low power mode. 

status of an I/O device 

Looking at hardware optimizations, one potential target for improvement is  to determine the need to service the device. 

in calculating the values of the fi elds of the Ethernet packet. Th

e 48-bit Ethernet 

address, called the  Media Access Control address or  MAC address, is a unique 

number assigned to each Ethernet NIC. To improve performance, the “MAC 

chip”—actually just a portion of the FPGA on this NIC—calculates the value for 

the preamble fi elds and the CRC fi eld (see Section 5.5). Th

e driver is left  with 

placing the MAC destination address, MAC source address, message type, the 

data payload, and padding if needed. (Ethernet requires that the minimum packet, 

including the header and CRC fi elds but not the preamble, be 64 bytes.) Note that 

even the least expensive Ethernet NICs do CRC calculation in hardware today. 

A second hardware optimization, available on the most recent Intel processors 

such as Ivy Bridge, improves the performance of the NIC with respect to the memory 

hierarchy.  Direct Data IO (DDIO) allowing up to 10% of the last level cache is used 

as a fast scratchpad for the DMA engine. Data is copied directly into the last level 

cache rather than to DRAM by the DMA, and only written to DRAM upon eviction 

from the cache. Th

is optimization helps with latency, but also with bandwidth; some 

memory regions used for control might be written by the NIC repeatedly, and these 

writes no longer need to go to DRAM. Th

us, DDIO off ers benefi ts similar to those of 

a write back cache versus a write through cache (Chapter 5). 

Let’s look at an object store that follows a client-server architecture and uses most 

of the optimizations above: zero copy messaging, user space communication, polling 

instead of interrupts, and hardware calculation of preamble and CRC. Th

e driver 
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FIGURE 6.9.4  Time to send an object broken into transmit driver and NIC hardware time 

vs. receive driver and NIC hardware time.  NIC transmit time is much larger than the NIC receive time because transmit requires more PCIe round-trips. Th

e NIC does PCIe reads to read the descriptor and 

data, but on receive the NIC does PCIe writes of data, length of data, and interrupt. PCIe reads incur a round trip latency because NIC waits for the reply, but PCIe writes require no response because PCIe is reliable, so PCIe writes can be sent back-to-back. 

operates in user address space as a library that the application invokes. It grants this 

application exclusive and direct access to the NIC. All of the I/O register space on the 

NIC is mapped into the application, and all of the driver state is kept in the application. 

Th

e OS kernel doesn’t even see the NIC as such, which avoids the overheads of context 

switching, the standard kernel network soft ware stack, and interrupts. 

Figure 6.9.4 shows the time to send an object from one node to another. It varies 

from about 9.5 to 12.5 microseconds, depending on the size of the object. Here is 

the time for each step in microseconds:

 0.7 – for the client “driver” (library) to make the request (Driver TX in Figure 6.9.4). 

 6.4 to 8.7 – for the NIC hardware to transmit the client’s request over the PCIe bus 

 to the Ethernet, depending on the size of the object (NIC TX). 

 0.02 – to send object over the 10 G Ethernet (Time of Flight). Th

   e time of fl ight 

 is limited by speed of light to 5 ns per meter. Th

   e three-meter cables used in this 

 measurement mean the time of fl ight is 15 ns, which is too small to be clearly 

 visible in the fi gure. 
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 1.8 to 2.5 – for the NIC hardware to receive the object, depending on its size (NIC 

 RX). 

 0.6 – for the server “driver” to transmit the message with the requested object to 

 the app (Driver RX). 

Now that we have seen how to measure the performance of network at a low 

level of detail, let’s raise the perspective to see how to benchmark multiprocessors 

of all kinds with much higher level programs. 

Elaboration:  There are three versions of PCIe. This NIC uses PCIe 1.1, which transfers 

at 2 gigabits per second per lane, so this NIC transfers at up to 16 gigabits per second 

in each direction. PCIe 2.0, which is found on most PC motherboards today, doubles 

the lane bandwidth to 4 gigabits per second. PCIe 3.0 doubles again to 8 gigabits per 

second, and it is starting to be found on some motherboards. We applaud the standard 

committee’s logical rate of bandwidth improvement, which has been about 2version number 

gigabits/second. The limitations of the Virtex 5 FPGA prevented the NIC from using 

faster versions of PCIe. 

Elaboration: While Ethernet is the foundation of cluster communication, clusters 

commonly use higher-level protocols for reliable communication. Transmission Control 

Protocol and Internet Protocol (TCP/IP), although invented for planet-wide communication, 

is often used inside a warehouse scale computer, due in part to its dependability. While 

IP makes no deliver guarantees in the protocol, TCP does. The sender keeps the packet 

sent until it gets the acknowledgment message back that it was received correctly from 

the receiver. The receiver knows that the message was not corrupted along the way, by 

double-checking the contents with the TCP CRC fi eld. To ensure that IP delivers to the right 

destination, the IP header includes a checksum to make sure the destination number 

remains unchanged. The success of the Internet is due in large part to the elegance 

and popularity of TCP/IP, which allows independent local area networks to communicate 

dependably. Given its importance in the Internet and in clusters, many have accelerated 

TCP/IP, using techniques like those listed in this section [Regnier, 2004]. 

Elaboration:  Adding DMA is another path to the memory system—one that does not 

go through the address translation mechanism or the cache hierarchy. This difference 

generates some problems both in virtual memory and in caches. These problems are 

usually solved with a combination of hardware techniques and software support. The 

diffi culties in having DMA in a virtual memory system arise because pages have both 

a physical and a virtual address. DMA also creates problems for systems with caches, 

because there can be two copies of a data item: one in the cache and one in memory. 

Because the DMA issues memory requests directly to the memory rather than through 

the processor cache, the value of a memory location seen by the DMA unit and the 

processor may differ. Consider a read from a NIC that the DMA unit places directly 

into memory. If some of the locations into which the DMA writes are in the cache, the 

processor will receive the old value when it does a read. Similarly, if the cache is write-

back, the DMA may read a value directly from memory when a newer value is in the 
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cache, and the value has not been written back. This is called the  stale data problem or 

coherence problem (see Chapter 5). Similar solutions for coherence are used with DMA. 

Elaboration: Virtual Machine support clearly can negatively impact networking 

performance. As a result, microprocessor designers have been adding hardware 

to reduce the performance overhead of virtual machines for networking in particular 

and I/O in general. Intel offers  Virtualization Technology for Directed I/O  ( VT-d) to help virtualize I/O. It is an I/O memory management unit that enables guest virtual machines 

to directly use I/O devices, such as Ethernet. It supports  DMA remapping, which allows 

the DMA to read or write the data directly in the I/O buffers of the guest virtual machine, 

rather than into the host I/O buffers and then copy them into the guest I/O buffers. It 

also supports  interrupt remapping, which lets the virtual machine monitor route interrupt requests directly to the proper virtual machine. 

Check  Two options for networking are using interrupts or polling, and using DMA or 

using the processor via load and store instructions. 

Yourself

1.  If we want the lowest latency for small packets, which combination is likely 

best? 

2.  If we want the lowest latency for large packets, which combination is likely 

best? 
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Aft er covering the performance of network at a low level of detail in this online 

section, the next section shows how to benchmark multiprocessors of all kinds 

with much higher-level programs. 

 6.10  Multiprocessor Benchmarks and 

Performance Models

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because 

it is a highly visible way to try to determine which system is better. Th

e results aff ect 

not only the sales of commercial systems, but also the reputation of the designers 

of those systems. Hence, all participants want to win the competition, but they also 

want to be sure that if someone else wins, they deserve to win because they have 

a genuinely better system. Th

is desire leads to rules to ensure that the benchmark 

results are not simply engineering tricks for that benchmark, but are instead 

advances that improve performance of real applications. 

To avoid possible tricks, a typical rule is that you canಬt change the benchmark. 

Th

e source code and data sets are fi xed, and there is a single proper answer. Any 

deviation from those rules makes the results invalid. 

Many multiprocessor benchmarks follow these traditions. A common exception 

is to be able to increase the size of the problem so that you can run the benchmark 

on systems with a widely diff erent number of processors. Th

at is, many benchmarks 

allow weak scaling rather than require strong scaling, even though you must take 

care when comparing results for programs running diff erent problem sizes. 

Figure 6.16 gives a summary of several parallel benchmarks, also described below:

■   Linpack is a collection of linear algebra routines, and the routines for 

performing Gaussian elimination constitute what is known as the Linpack 

benchmark. Th

e DGEMM routine in the example on page 215 represents a 

small fraction of the source code of the Linpack benchmark, but it accounts 

for most of the execution time for the benchmark. It allows weak scaling, 

letting the user pick any size problem. Moreover, it allows the user to rewrite 

Linpack in almost any form and in any language, as long as it computes the 

proper result and performs the same number of fl oating point operations 

for a given problem size. Twice a year, the 500 computers with the fastest 

Linpack performance are published at www.top500.org. Th

e fi rst on this list 

is considered by the press to be the worldಬs fastest computer. 

■   SPECrate is a throughput metric based on the SPEC CPU benchmarks, 

such as SPEC CPU 2006 (see Chapter 1). Rather than report performance 

of the individual programs, SPECrate runs many copies of the program 

simultaneously. Th

us, it measures task-level parallelism, as there is no 
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Benchmark

Scaling? 

Reprogram? 

Description

Linpack

Weak

Yes

Dense matrix linear algebra [Dongarra, 1979]

SPECrate

Weak

No

Independent job parallelism [Henning, 2007]

Complex 1D FFT

Blocked LU Decomposition

Blocked Sparse Cholesky Factorization

Integer Radix Sort

Stanford Parallel 

Strong  

Barnes-Hut

Applications for 

(although  

Adaptive Fast Multipole

Shared Memory 

offers  

No

Ocean Simulation

SPLASH 2 [Woo 

two problem 

et al., 1995]

sizes)

Hierarchical Radiosity

Ray Tracer

Volume Renderer

Water Simulation with Spatial Data Structure

Water Simulation without Spatial Data Structure

EP: embarrassingly parallel

NAS Parallel 

Yes  

MG: simplified multigrid

Benchmarks 

Weak

(C or  

CG: unstructured grid for a conjugate gradient method

[Bailey et al., 

Fortran only)

FT: 3-D partial differential equation solution using FFTs  

1991]

IS: large integer sort

Blackscholes—Option pricing with Black-Scholes PDE

Bodytrack—Body tracking of a person

Canneal—Simulated cache-aware annealing to optimize routing

Dedup—Next-generation compression with data deduplication

Facesim—Simulates the motions of a human face

PARSEC 

Benchmark Suite 

Ferret—Content similarity search server

Weak

No

[Bienia et al., 

Fluidanimate—Fluid dynamics for animation with SPH method

2008]

Freqmine—Frequent itemset mining

Streamcluster—Online clustering of an input stream

Swaptions—Pricing of a portfolio of swaptions

Vips—Image processing

x264—H.264 video encoding

Finite-State Machine

Combinational Logic

Graph Traversal

Structured Grid

Dense Matrix

Berkeley  

Sparse Matrix

Design  

Strong or  

Patterns 

Yes

Spectral Methods (FFT)

Weak

[Asanovic et al., 

Dynamic Programming

2006]

N-Body

MapReduce

Backtrack/Branch and Bound

Graphical Model Inference

Unstructured Grid

FIGURE 6.16  Examples of parallel benchmarks. 

communication between the tasks. You can run as many copies of the 

programs as you want, so this is again a form of weak scaling. 

■   SPLASH and  SPLASH 2 (Stanford Parallel Applications for Shared Memory) 

were eff orts by researchers at Stanford University in the 1990s to put together 

a parallel benchmark suite similar in goals to the SPEC CPU benchmark 

suite. It includes both kernels and applications, including many from the 

high-performance computing community. Th

is benchmark requires strong 

scaling, although it comes with two data sets. 

542 

Chapter 6  Parallel Processors from Client to Cloud

■  Th

e  NAS (NASA Advanced Supercomputing) parallel benchmarks were 

another attempt from the 1990s to benchmark multiprocessors. Taken from 

computational fl uid dynamics, they consist of fi ve kernels. Th

ey allow weak 

scaling by defi ning a few data sets. Like Linpack, these benchmarks can be 

rewritten, but the rules require that the programming language can only be C 

or Fortran. 

■  Th

e recent  PARSEC (Princeton Application Repository for Shared Memory 

 Computers) benchmark suite consists of multithreaded programs that use 

Pthreads A UNIX 

Pthreads (POSIX threads) and OpenMP (Open MultiProcessing; see 

API for creating and 

Section 6.5). Th

ey focus on emerging computational domains and consist of 

manipulating threads. It is 

nine applications and three kernels. Eight rely on data parallelism, three rely 

structured as a library. 

on pipelined parallelism, and one on unstructured parallelism. 

■  On the cloud front, the goal of the  Yahoo! Cloud Serving Benchmark (YCSB) 

is to compare performance of cloud data services. It off ers a framework that 

makes it easy for a client to benchmark new data services, using Cassandra 

and HBase as representative examples. [Cooper, 2010]

Th

e downside of such traditional restrictions to benchmarks is that innovation is 

chiefl y limited to the architecture and compiler. Better data structures, algorithms, 

programming languages, and so on oft en cannot be used, since that would give a 

misleading result. Th

e system could win because of, say, the algorithm, and not 

because of the hardware or the compiler. 

While these guidelines are understandable when the foundations of computing 

are relatively stableಧas they were in the 1990s and the fi rst half of this decadeಧ

they are undesirable during a programming revolution. For this revolution to 

succeed, we need to encourage innovation at all levels. 

Researchers at the University of California at Berkeley have advocated one 

approach. Th

ey identifi ed 13 design patterns that they claim will be part of 

applications of the future. Frameworks or kernels implement these design 

patterns. Examples are sparse matrices, structured grids, fi nite-state  machines, 

map reduce, and graph traversal. By keeping the defi nitions at a high level, they 

hope to encourage innovations at any level of the system. Th

us, the system with the 

fastest sparse matrix solver is welcome to use any data structure, algorithm, and 

programming language, in addition to novel architectures and compilers. 

Performance Models

A topic related to benchmarks is performance models. As we have seen with the 

increasing architectural diversity in this chapter—multithreading, SIMD, GPUs—

it would be especially helpful if we had a simple model that off ered insights into the 

performance of diff erent architectures. It need not be perfect, just insightful. 

Th

e 3Cs for cache performance from Chapter 5 is an example performance 

model. It is not a perfect performance model, since it ignores potentially important 
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factors like block size, block allocation policy, and block replacement policy. 

Moreover, it has quirks. For example, a miss can be ascribed due to capacity in one 

design and to a confl ict miss in another cache of the same size. Yet 3Cs model has 

been popular for 25 years, because it off ers insight into the behavior of programs, 

helping both architects and programmers improve their creations based on insights 

from that model. 

To fi nd such a model for parallel computers, letಬs start with small kernels, 

like those from the 13 Berkeley design patterns in Figure 6.16. While there are versions with diff erent data types for these kernels, fl oating point is popular in 

several implementations. Hence, peak fl oating-point performance is a limit on the 

speed of such kernels on a given computer. For multicore chips, peak fl oating-point 

performance is the collective peak performance of all the cores on the chip. If there 

were multiple microprocessors in the system, you would multiply the peak per chip 

by the total number of chips. 

Th

e demands on the memory system can be estimated by dividing this peak 

fl oating-point performance by the average number of fl oating-point operations per 

byte accessed:

Floating-Point Operations/Sec



= Bytes/Sec

Floating-Point Operations/Bytte

Th

e ratio of fl oating-point operations per byte of memory accessed is called the 

arithmetic intensity. It can be calculated by taking the total number of fl oating-

arithmetic intensity 

point operations for a program divided by the total number of data bytes transferred 

Th

e ratio of fl oating-

to main memory during program execution. Figure 6.17 shows the arithmetic  point operations in a intensity of several of the Berkeley design patterns from Figure 6.16. 

program to the number 

of data bytes accessed by 

a program from main 

O(1) 

O(N) 

memory. 

O(log(N)) 

A r i t h m e t i c   I n t e n s i t y 
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PDEs)

Methods)

FIGURE 6.17  Arithmetic intensity, specifi ed as the number of fl oat-point operations to run the program divided by the number of bytes accessed in main memory [Williams, 

Waterman, and Patterson 2009]. Some kernels have an arithmetic intensity that scales with problem size, such as Dense Matrix, but there are many kernels with arithmetic intensities independent of problem size. For kernels in this former case, weak scaling can lead to diff erent results, since it puts much less demand on the memory system. 
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The Roofl ine Model

Th

is simple model ties fl oating-point performance, arithmetic intensity, and memory 

performance together in a two-dimensional graph [Williams, Waterman, and 

Patterson 2009]. Peak fl oating-point performance can be found using the hardware 

specifi cations mentioned above. Th

e working sets of the kernels we consider here 

do not fi t in on-chip caches, so peak memory performance may be defi ned by the 

memory system behind the caches. One way to fi nd the peak memory performance 

is the Stream benchmark. (See the  Elaboration on page 381 in Chapter 5). 

Figure 6.18 shows the model, which is done once for a computer, not for each 

kernel. Th

e vertical Y-axis is achievable fl oating-point performance from 0.5 to 

64.0 GFLOPs/second. Th

e horizontal X-axis is arithmetic intensity, varying from 

1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the 

graph is a log-log scale. 

For a given kernel, we can fi nd a point on the X-axis based on its arithmetic 

intensity. If we draw a vertical line through that point, the performance of the kernel 

on that computer must lie somewhere along that line. We can plot a horizontal line 

showing peak fl oating-point performance of the computer. Obviously, the actual 

fl oating-point performance can be no higher than the horizontal line, since that is 

a hardware limit. 

64.0

32.0

peak floating-point performance

16.0

8.0

4.0

peak memory BW (stream)

2.0

Kernel 1

Kernel 2

Attainable GFLOPs/second

(Memory

(Computation

1.0

Bandwidth

limited)

limited) 

0.51/

1

1

8

/4

/2
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8

16

Arithmetic Intensity: FLOPs/Byte Ratio

FIGURE 6.18  Roofl ine Model [Williams, Waterman, and Patterson 2009]. Th

is example has a 

peak fl oating-point performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the Stream benchmark. (Since Stream is actually four measurements, this line is the average of the four.) Th e 

dotted vertical line in color on the left  represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/

byte. It is limited by memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. Th

e dotted 

vertical line to the right represents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited only computationally to 16 GFLOPS/s. (Th

is data is based on the AMD Opteron X2 (Revision F) using dual 

cores running at 2 GHz in a dual socket system.)
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How could we plot the peak memory performance, which is measured in bytes/

second? Since the X-axis is FLOPs/byte and the Y-axis FLOPs/second, bytes/second 

is just a diagonal line at a 45-degree angle in this fi gure. Hence, we can plot a third 

line that gives the maximum fl oating-point performance that the memory system 

of that computer can support for a given arithmetic intensity. We can express the 

limits as a formula to plot the line in the graph in Figure 6.18:

Attainable GFLOPs/sec = Min (Peak Memory BW × Arithmetic Inten

nsity, Peak

Floating-Point Performance)

Th

e horizontal and diagonal lines give this simple model its name and indicate its 

value. Th

e ಯroofl ineರ sets an upper bound on performance of a kernel depending on 

its arithmetic intensity. Given a roofl ine of a computer, you can apply it repeatedly, 

since it doesnಬt vary by kernel. 

If we think of arithmetic intensity as a pole that hits the roof, either it hits 

the slanted part of the roof, which means performance is ultimately limited by 

memory bandwidth, or it hits the fl at part of the roof, which means performance is 

computationally limited. In Figure 6.18, kernel 1 is an example of the former, and kernel 2 is an example of the latter. 

Note that the ಯridge point,ರ where the diagonal and horizontal roofs meet, off ers 

an interesting insight into the computer. If it is far to the right, then only kernels 

with very high arithmetic intensity can achieve the maximum performance of 

that computer. If it is far to the left , then almost any kernel can potentially hit the 

maximum performance. 

Comparing Two Generations of Opterons

Th

e AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron 

X2 with two cores. To simplify board design, they use the same socket. Hence, they 

have the same DRAM channels and thus the same peak memory bandwidth. In 

addition to doubling the number of cores, the Opteron X4 also has twice the peak 

fl oating-point performance per core: Opteron X4 cores can issue two fl oating-point 

SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one. As the 

two systems weಬre comparing have similar clock ratesಧ2.2 GHz for Opteron X2 

versus 2.3 GHz for Opteron X4ಧthe Opteron X4 has about four times the peak 

fl oating-point performance of the Opteron X2 with the same DRAM bandwidth. 

Th

e Opteron X4 also has a 2MiB L3 cache, which is not found in the Opteron X2. 

In Figure 6.19 the roofl ine models for both systems are compared. As we would expect, the ridge point moves to the right, from 1 in the Opteron X2 to 5 in the 

Opteron X4. Hence, to see a performance gain in the next generation, kernels need 

an arithmetic intensity higher than 1, or their working sets must fi t in the caches 

of the Opteron X4. 

Th

e roofl ine model gives an upper bound to performance. Suppose your 

program is far below that bound. What optimizations should you perform, and in 

what order? 

546 

Chapter 6  Parallel Processors from Client to Cloud

128.0
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FIGURE 6.19  Roofl ine models of two generations of Opterons. Th

e Opteron X2 roofl ine, which 

is the same as in Figure 6.18, is in black, and the Opteron X4 roofl ine is in color. Th e bigger ridge point of 

Opteron X4 means that kernels that were computationally bound on the Opteron X2 could be memory-

performance bound on the Opteron X4. 

To reduce computational bottlenecks, the following two optimizations can help 

almost any kernel:

1.  Floating-point operation mix. Peak fl oating-point performance for a computer 

typically requires an equal number of nearly simultaneous additions and 

multiplications. Th

at balance is necessary either because the computer 

supports a fused multiply-add instruction (see the  Elaboration on page 220 

in Chapter 3) or because the fl oating-point unit has an equal number of 

fl oating-point adders and fl oating-point multipliers. Th

e best performance 

also requires that a signifi cant fraction of the instruction mix is fl oating-

point operations and not integer instructions. 

2.  Improve  instruction-level parallelism and apply SIMD. For modern archi-

tectures, the highest performance comes when fetching, executing, and 

committing three to four instructions per clock cycle (see Section 4.10). Th

e 

goal for this step is to improve the code from the compiler to increase ILP. One 

way is by unrolling loops, as we saw in Section 4.12. For the x86 architectures, 

a single AVX instruction can operate on four double precision operands, so 

they should be used whenever possible (see Sections 3.7 and 3.8). 

To reduce memory bottlenecks, the following two optimizations can help:

1.  Soft ware prefetching. Usually the highest performance requires keeping many 

memory operations in fl ight, which is easier to do by performing predicting 

accesses via soft ware prefetch instructions rather than waiting until the data 

is required by the computation. 
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2.  Memory affi

   nity.  Microprocessors today include a memory controller on 

the same chip with the microprocessor, which improves performance of the 

memory hierarchy. If the system has multiple chips, this means that some 

addresses go to the DRAM that is local to one chip, and the rest require 

accesses over the chip interconnect to access the DRAM that is local to 

another chip.  Th

is split results in non-uniform memory accesses, which we 

described in Section 6.5. Accessing memory through another chip lowers 

performance. Th

is second optimization tries to allocate data and the threads 

tasked to operate on that data to the same memory-processor pair, so that 

the processors rarely have to access the memory of the other chips. 

Th

e roofl ine model can help decide which of these two optimizations to 

perform and the order in which to perform them. We can think of each of these 

optimizations as a ಯceilingರ below the appropriate roofl ine, meaning that you 

cannot break through a ceiling without performing the associated optimization. 

Th

e computational roofl ine can be found from the manuals, and the memory 

roofl ine can be found from running the Stream benchmark. Th

e computational 

ceilings, such as fl oating-point balance, can also come from the manuals for 

that computer. A memory ceiling, such as memory affi

nity,  requires  running 

experiments on each computer to determine the gap between them. Th

e good 

news is that this process only need be done once per computer, for once someone 

characterizes a computerಬs ceilings, everyone can use the results to prioritize their 

optimizations for that computer. 

Figure 6.20 adds ceilings to the roofl ine model in Figure 6.18, showing the computational ceilings in the top graph and the memory bandwidth ceilings on the 

bottom graph. Although the higher ceilings are not labeled with both optimizations, 

they are implied in this fi gure; to break through the highest ceiling, you need to 

have already broken through all the ones below. 

Th

e width of the gap between the ceiling and the next higher limit is the reward 

for trying that optimization. Th

us, Figure 6.20 suggests that optimization 2, which 

improves ILP, has a large benefi t for improving computation on that computer, and 

optimization 4, which improves memory affi

nity, has a large benefi t for improving 

memory bandwidth on that computer. 

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. Th e 

arithmetic intensity of a kernel determines the optimization region, which in turn 

suggests which optimizations to try. Note that the computational optimizations 

and the memory bandwidth optimizations overlap for much of the arithmetic 

intensity. Th

ree regions are shaded diff erently in Figure 6.21 to indicate the diff erent optimization strategies. For example, Kernel 2 falls in the blue trapezoid on the 

right, which suggests working only on the computational optimizations. Kernel 1 

falls in the blue-gray parallelogram in the middle, which suggests trying both types 

of optimizations. Moreover, it suggests starting with optimizations 2 and 4. Note 

that the Kernel 1 vertical lines fall below the fl oating-point imbalance optimization, 

so optimization 1 may be unnecessary. If a kernel fell in the gray triangle on the 

lower left , it would suggest trying just memory optimizations. 
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AMD Opteron
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FIGURE 6.20  Roofl ine model with ceilings. Th

e top graph shows the computational “ceilings” of 

8 GFLOPs/sec if the fl oating-point operation mix is imbalanced and 2 GFLOPs/sec if the optimizations to increase ILP and SIMD are also missing. Th

e bottom graph shows the memory bandwidth ceilings of 11 GB/

sec without soft ware prefetching and 4.8 GB/sec if memory affi

nity optimizations are also missing. 
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FIGURE 6.21  Roofl ine model with ceilings, overlapping areas shaded, and the two kernels 

from Figure 6.18. Kernels whose arithmetic intensity land in the blue trapezoid on the right should focus on computation optimizations, and kernels whose arithmetic intensity land in the gray triangle in the lower left  should focus on memory bandwidth optimizations. Th

ose that land in the blue-gray parallelogram in 

the middle need to worry about both. As Kernel 1 falls in the parallelogram in the middle, try optimizing ILP and SIMD, memory affi

nity, and soft ware prefetching. Kernel 2 falls in the trapezoid on the right, so try 

optimizing ILP and SIMD and the balance of fl oating-point operations. 

Th

us far, we have been assuming that the arithmetic intensity is fi xed, but that is 

not really the case. First, there are kernels where the arithmetic intensity increases 

with problem size, such as for Dense Matrix and N-body problems (see Figure 6.17). 

Indeed, this can be a reason that programmers have more success with weak scaling 

than with strong scaling. Second, the eff ectiveness of the memory hierarchy 

aff ects the number of accesses that go to memory, so optimizations that improve 

cache performance also improve arithmetic intensity. One example is improving 

temporal locality by unrolling loops and then grouping together statements with 

similar addresses. Many computers have special cache instructions that allocate 

data in a cache but do not fi rst fi ll the data from memory at that address, since it 

will soon be over-written. Both these optimizations reduce memory traffi

c, thereby 

moving the arithmetic intensity pole to the right by a factor of, say, 1.5. Th

is shift  

right could put the kernel in a diff erent optimization region. 

While the examples above show how to help programmers improve performance, 

architects can also use the model to decide where they should optimize hardware to 

improve performance of the kernels that they think will be important. 

Th

e next section uses the roofl ine model to demonstrate the performance 

diff erence between a multicore microprocessor and a GPU and to see whether 

these diff erences refl ect performance of real programs. 
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Elaboration:  The ceilings are ordered so that lower ceilings are easier to optimize. 

Clearly, a programmer can optimize in any order, but following this sequence reduces the 

chances of wasting effort on an optimization that has no benefi t due to other constraints. 

Like the 3Cs model, as long as the roofl ine model delivers on insights, a model can 

have assumptions that may prove optimistic. For example, roofl ine assumes the load is 

balanced between all processors. 

Elaboration:  An alternative to the Stream benchmark is to use the raw DRAM 

bandwidth as the roofl ine. While the raw bandwidth defi nitely is a hard upper bound, 

actual memory performance is often so far from that boundary that itಬs not that useful. 

That is, no program can go close to that bound. The downside to using Stream is that 

very careful programming may exceed the Stream results, so the memory roofl ine may 

not be as hard a limit as the computational roofl ine. We stick with Stream because few 

programmers will be able to deliver more memory bandwidth than Stream discovers. 

Elaboration:  Although the roofl ine model shown is for multicore processors, it clearly 

would work for a uniprocessor as well. 

Check  True or false: Th

e main drawback with conventional approaches to benchmarks 

for parallel computers is that the rules that ensure fairness also slow soft ware 

Yourself

innovation. 

 

 

Real Stuff: Benchmarking and Roofl ines 

6.11

of the Intel Core i7 960 and the NVIDIA 

Tesla GPU

A group of Intel researchers published a paper [Lee et al., 2010] comparing a 

quad-core Intel Core i7 960 with multimedia SIMD extensions to the previous 

generation GPU, the NVIDIA Tesla GTX 280. Figure 6.22 lists the characteristics of the two systems. Both products were purchased in Fall 2009. Th

e Core i7 is 

in Intelಬs 45-nanometer semiconductor technology while the GPU is in TSMCಬs 

65-nanometer technology. Although it might have been fairer to have a comparison 

by a neutral party or by both interested parties, the purpose of this section is  not to 

determine how much faster one product is than another, but to try to understand 

the relative value of features of these two contrasting architecture styles. 

Th

e roofl ines of the Core i7 960 and GTX 280 in Figure 6.23 illustrate the 

diff erences in the computers. Not only does the GTX 280 have much higher 

memory bandwidth and double-precision fl oating-point performance, but also its 

double-precision ridge point is considerably to the left . Th

e double-precision ridge 

point is 0.6 for the GTX 280 versus 3.1 for the Core i7. As mentioned above, it is 

much easier to hit peak computational performance the further the ridge point of 
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Core i7-

Ratio

Ratio

960

GTX 280

GTX 480

280/i7

480/i7

Number of processing elements (cores or SMs)

4

30

15

7.5

3.8

Clock frequency (GHz)

3.2

1.3

1.4

0.41

0.44

Die size

263

576

520

2.2

2.0

Technology

Intel 45 nm

TSMC 65 nm

TSMC 40 nm

1.6

1.0

Power (chip, not module)

130

130

167

1.0

1.3

Transistors

700 M

1400 M

3030 M

2.0

4.4

Memory brandwith (GBytes/sec)

32

141

177

4.4

5.5

Single-precision SIMD width

4

8

32

2.0

8.0

Double-precision SIMD width

2

1

16

0.5

8.0

Peak Single-precision scalar FLOPS (GFLOP/sec)

26

117

63

4.6

2.5

Peak Single-precision SIMD FLOPS (GFLOP/Sec)

102

311 to 933

515 or 1344

3.0–9.1

6.6–13.1

(SP 1 add or multiply)

N.A. 

(311)

(515)

(3.0)

(6.6)

(SP 1 instruction fused multiply-adds)

N.A. 

(622)

(1344)

(6.1)

(13.1)

(Rare SP dual issue fused multiply-add and multiply)

N.A. 

(933)

N.A. 

(9.1)

–

Peal double-precision SIMD FLOPS (GFLOP/sec)

51

78

515

1.5

10.1

FIGURE 6.22  Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifi cations. Th

e rightmost columns show the ratios of the 

Tesla GTX 280 and the Fermi GTX 480 to Core i7. Although the case study is between the Tesla 280 and i7, we include the Fermi 480 to show its relationship to the Tesla 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 6.23 because these are DRAM pin bandwidths and those in Figure 6.23 are at the processors as measured by a benchmark program. (From Table 2 in Lee et al. [2010].)

the roofl ine is to the left . For single-precision performance, the ridge point moves 

far to the right for both computers, so itಬs much harder to hit the roof of single-

precision performance. Note that the arithmetic intensity of the kernel is based on 

the bytes that go to main memory, not the bytes that go to cache memory. Th

us, 

as mentioned above, caching can change the arithmetic intensity of a kernel on a 

particular computer, if most references really go to the cache. Note also that this 

bandwidth is for unit-stride accesses in both architectures. Real gather-scatter 

addresses can be slower on the GTX 280 and on the Core i7, as we shall see. 

Th

e researchers selected the benchmark programs by analyzing the computational 

and memory characteristics of four recently proposed benchmark suites and then 

ಯformulated the set of  throughput computing kernels that capture these characteristics.ರ 

Figure 6.24 shows the performance results, with larger numbers meaning faster. Th e 

Roofl ines help explain the relative performance in this case study. 

Given that the raw performance specifi cations of the GTX 280 vary from 2.5 × 

slower (clock rate) to 7.5 × faster (cores per chip) while the performance varies 
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Core i7 960
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128

NVIDIA GTX280

(Nehalem)
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1024

512

512

624 GF/s
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78 GF/s
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8

Stream = 16.4 GB/s
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4

4

1/8
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8

16

32

1/8

1/4

1/2

1

2

4

8

16

32

Arithmetic intensity

Arithmetic intensity

FIGURE 6.23  Roofl ine model [Williams, Waterman, and Patterson 2009].  Th

ese roofl ines show double-precision fl oating-point 

performance in the top row and single-precision performance in the bottom row. (Th

e DP FP performance ceiling is also in the bottom row 

to give perspective.) Th

e Core i7 960 on the left  has a peak DP FP performance of 51.2 GFLOP/sec, a SP FP peak of 102.4 GFLOP/sec, and a peak memory bandwidth of 16.4 GBytes/sec. Th

e NVIDIA GTX 280 has a DP FP peak of 78 GFLOP/sec, SP FP peak of 624 GFLOP/sec, and 

127 GBytes/sec of memory bandwidth. Th

e dashed vertical line on the left  represents an arithmetic intensity of 0.5 FLOP/byte. It is limited by memory bandwidth to no more than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. Th

e dashed vertical line to the right has an arithmetic 

intensity of 4 FLOP/byte. It is limited only computationally to 51.2 DP GFLOP/sec and 102.4 SP GFLOP/sec on the Core i7 and 78 DP GFLOP/

sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7 you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need to use fused multiply-add instructions on all multithreaded SIMD 

processors. 
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GTX 280/

Kernel

Units

Core i7-960

GTX 280

i7-960

SGEMM

GFLOP/sec

94

364

3.9

MC

Billion paths/sec

0.8

1.4

1.8

Conv

Million pixels/sec

1250

3500

2.8

FFT

GFLOP/sec

71.4

213

3.0

SAXPY

GBytes/sec

16.8

88.8

5.3

LBM

Million lookups/sec

85

426

5.0

Solv

Frames/sec

103

52

0.5

SpMV

GFLOP/sec

4.9

9.1

1.9

GJK

Frames/sec

67

1020

15.2

Sort

Million elements/sec

250

198

0.8

RC

Frames/sec

5

8.1

1.6

Search

Million queries/sec

50

90

1.8

Hist

Million pixels/sec

1517

2583

1.7

Bilat

Million pixels/sec

83

475

5.7

FIGURE 6.24  Raw and relative performance measured for the two platforms. In this study, SAXPY is just used as a measure of memory bandwidth, so the right unit is GBytes/sec and not GFLOP/sec. 

(Based on Table 3 in [Lee et al., 2010].)

from 2.0 × slower (Solv) to 15.2 × faster (GJK), the Intel researchers decided to 

fi nd the reasons for the diff erences:

■   Memory bandwidth. Th

e GPU has 4.4 ×the memory bandwidth, which helps 

explain why LBM and SAXPY run 5.0 and 5.3 × faster; their working sets are 

hundreds of megabytes and hence donಬt fi t into the Core i7 cache. (So as to 

access memory intensively, they purposely did not use cache blocking as in 

Chapter 5.) Hence, the slope of the roofl ines explains their performance. SpMV 

also has a large working set, but it only runs 1.9 × faster because the double-

precision fl oating point of the GTX 280 is only 1.5 × as faster as the Core i7. 

■   Compute bandwidth. Five of the remaining kernels are compute bound: 

SGEMM, Conv, FFT, MC, and Bilat. Th

e GTX is faster by 3.9, 2.8, 3.0, 1.8, and 

5.7 ×, respectively. Th e fi rst three of these use single-precision fl oating-point 

arithmetic, and GTX 280 single precision is 3 to 6 ×faster. MC uses double 

precision, which explains why itಬs only 1.8 × faster since DP performance 

is only 1.5 × faster. Bilat uses transcendental functions, which the GTX 

280 supports directly. Th

e Core i7 spends two-thirds of its time calculating 

transcendental functions for Bilat, so the GTX 280 is 5.7 × faster. Th

is 

observation helps point out the value of hardware support for operations that 

occur in your workload: double-precision fl oating point and perhaps even 

transcendentals. 
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■   Cache benefi ts.  Ray casting (RC) is only 1.6 × faster on the GTX because 

cache blocking with the Core i7 caches prevents it from becoming memory 

bandwidth bound (see Sections 5.4 and 5.14), as it is on GPUs. Cache 

blocking can help Search, too. If the index trees are small so that they fi t in 

the cache, the Core i7 is twice as fast. Larger index trees make them memory 

bandwidth bound. Overall, the GTX 280 runs search 1.8 × faster. Cache 

blocking also helps Sort. While most programmers wouldnಬt run Sort on 

a SIMD processor, it can be written with a 1-bit Sort primitive called  split. 

However, the split algorithm executes many more instructions than a scalar 

sort does. As a result, the Core i7 runs 1.25 × as fast as the GTX 280. Note 

that caches also help other kernels on the Core i7, since cache blocking allows 

SGEMM, FFT, and SpMV to become compute bound. Th

is observation re-

emphasizes the importance of cache blocking optimizations in Chapter 5. 

■   Gather-Scatter. Th

e multimedia SIMD extensions are of little help if the data are 

scattered throughout main memory; optimal performance comes only when 

accesses are to data are aligned on 16-byte boundaries. Th

us, GJK gets little benefi t 

from SIMD on the Core i7. As mentioned above, GPUs off er  gather-scatter 

addressing that is found in a vector architecture but omitted from most SIMD 

extensions. Th

e memory controller even batches accesses to the same DRAM 

page together (see Section 5.2). Th

is combination means the GTX 280 runs GJK 

a startling 15.2 ×as fast as the Core i7, which is larger than any single physical 

parameter in Figure 6.22. Th

is observation reinforces the importance of gather-

scatter to vector and GPU architectures that is missing from SIMD extensions. 

■   Synchronization. Th

e performance of synchronization is limited by atomic 

updates, which are responsible for 28% of the total runtime on the Core i7 

despite its having a hardware fetch-and-increment instruction. Th

us, Hist is only 

1.7 ×faster on the GTX 280. Solv solves a batch of independent constraints in 

a small amount of computation followed by barrier synchronization. Th

e Core 

i7 benefi ts from the atomic instructions and a memory consistency model that 

ensures the right results even if not all previous accesses to memory hierarchy 

have completed. Without the memory consistency model, the GTX 280 

version launches some batches from the system processor, which leads to the 

GTX 280 running 0.5 × as fast as the Core i7. Th

is observation points out how 

synchronization performance can be important for some data parallel problems. 

It is striking how oft en weaknesses in the Tesla GTX 280 that were uncovered by 

kernels selected by Intel researchers were already being addressed in the successor 

architecture to Tesla: Fermi has faster double-precision fl oating-point performance, 

faster atomic operations, and caches. It was also interesting that the gather-scatter 

support of vector architectures that predate the SIMD instructions by decades was 

so important to the eff ective usefulness of these SIMD extensions, which some had 

predicted before the comparison. Th

e Intel researchers noted that 6 of the 14 kernels 

would exploit SIMD better with more effi

cient gather-scatter support on the Core 

i7. Th

is study certainly establishes the importance of cache blocking as well. 
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Now that we seen a wide range of results of benchmarking diff erent 

multiprocessors, let’s return to our DGEMM example to see in detail how much we 

have to change the C code to exploit multiple processors. 

 6.12  Going Faster:  Multiple Processors and 

Matrix Multiply

Th

is section is the fi nal and largest step in our incremental performance journey of 

adapting DGEMM to the underlying hardware of the Intel Core i7 (Sandy Bridge). 

Each Core i7 has 8 cores, and the computer we have been using has 2 Core i7s. 

Th

us, we have 16 cores on which to run DGEMM. 

Figure 6.25 shows the OpenMP version of DGEMM that utilizes those cores. 

Note that line 30 is the  single line added to Figure 5.48 to make this code run on 

multiple processors: an OpenMP pragma that tells the compiler to use multiple 

threads in the outermost for loop. It tells the computer to spread the work of the 

outermost loop across all the threads. 

Figure 6.26 plots a classic multiprocessor speedup graph, showing the 

performance improvement versus a single thread as the number of threads increase. 

Th

is graph makes it easy to see the challenges of strong scaling versus weak scaling. 

When everything fi ts in the fi rst level data cache, as is the case for 32 × 32 matrices, 

adding threads actually hurts performance. Th

e 16-threaded version of DGEMM 

is almost half as fast as the single-threaded version in this case. In contrast, the two 

largest matrices get a 14 × speedup from 16 threads, and hence the classic two “up 

and to the right” lines in Figure 6.26. 

Figure 6.27 shows the absolute performance increase as we increase the number of threads from 1 to 16.  DGEMM operates now operates at 174 GLOPS for 960 × 960 

matrices. As our unoptimized C version of DGEMM in Figure 3.21 ran this code at 

just 0.8 GFOPS, the optimizations in Chapters 3 to 6 that tailor the code to the 

underlying hardware result in a speedup of over 200 times! 

Next up is our warnings of the fallacies and pitfalls of multiprocessing. Th

e 

computer architecture graveyard is fi lled with parallel processing projects that have 

ignored them. 

Elaboration:  These results are with Turbo mode turned off. We are using a dual chip 

system in this system, so not surprisingly, we can get the full Turbo speedup (3.3/2.6 

= 1.27) with either 1 thread (only 1 core on one of the chips) or 2 threads (1 core per 

chip). As we increase the number of threads and hence the number of active cores, the 

benefi t of Turbo mode decreases, as there is less of the power budget to spend on the 

active cores. For 4 threads the average Turbo speedup is 1.23, for 8 it is 1.13, and for 

16 it is 1.11. 
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1 #include <x86intrin.h> 

2 #define UNROLL (4)

3 #define BLOCKSIZE 32

4 void do_block (int n, int si, int sj, int sk, 

5                double *A, double *B, double *C)

6 {

7   for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )

8     for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {

9       __m256d c[4]; 

10       for ( int x = 0; x < UNROLL; x++ ) 

11         c[x] = _mm256_load_pd(C+i+x*4+j*n); 

12      /* c[x] = C[i][j] */

13       for( int k = sk; k < sk+BLOCKSIZE; k++ )

14       {

15         __m256d b = _mm256_broadcast_sd(B+k+j*n); 

16      /* b = B[k][j] */

17         for (int x = 0; x < UNROLL; x++)

18           c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */

19                  _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b)); 

20       }

21

22       for ( int x = 0; x < UNROLL; x++ ) 

23         _mm256_store_pd(C+i+x*4+j*n, c[x]); 

24         /* C[i][j] = c[x] */

25     }

26 }

27

28 void dgemm (int n, double* A, double* B, double* C)

29 {

30 #pragma omp parallel for

31   for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 

32     for ( int si = 0; si < n; si += BLOCKSIZE )

33       for ( int sk = 0; sk < n; sk += BLOCKSIZE )

34         do_block(n, si, sj, sk, A, B, C); 

35 }

FIGURE 6.25  OpenMP version of DGEMM from Figure 5.48. Line 30 is the only OpenMP code, making the outermost for loop operate in parallel. Th

is line is the only diff erence from Figure 5.48. 

Elaboration:  Although the Sandy Bridge supports two hardware threads per core, we 

do not get more performance from 32 threads. The reason is that a single AVX hardware 

is shared between the two threads multiplexed onto one core, so assigning two threads 

per core actually hurts performance due to the multiplexing overhead. 

 

6.12  Going Faster:  Multiple Processors and Matrix Multiply 

557

14

13

12

11

10

9

8

960 X 960

7

480 X 480

6

160 X 160

5

Speedup relative to 1 core

32 X 32

4

3

2

1

–

0

4

8

12

16

Threads

FIGURE 6.26  Performance improvements relative to a single thread as the number of 

threads increase. Th

e most honest way to present such graphs is to make performance relative to the best 

version of a single processor program, which we did. Th

is plot is relative to the performance of the code in 

Figure 5.48  without including OpenMP pragmas. 
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FIGURE 6.27  DGEMM performance versus the number of threads for four matrix sizes. 

Th

e performance improvement compared unoptimized code in Figure 3.21 for the 960 × 960 matrix with 16 

threads is an astounding 212 times faster! 

558 

Chapter 6  Parallel Processors from Client to Cloud

 6.13  Fallacies and Pitfalls

 For over a decade 

Th

e many assaults on parallel processing have uncovered numerous fallacies and 

 prophets have voiced 

pitfalls. We cover four here. 

 the contention that the 

 Fallacy: Amdahl’s Law doesn’t apply to parallel computers. 

 organization of a single   In 1987, the head of a research organization claimed that a multiprocessor machine computer has reached 

had broken Amdahl’s Law. To try to understand the basis of the media reports, letಬs 

 its limits and that truly 

see the quote that gave us Amdahlಬs Law [1967, p. 483]:

 signifi cant advances 

 can be made only 

 A fairly obvious conclusion which can be drawn at this point is that the eff ort 

 by interconnection 

 expended on achieving high parallel processing rates is wasted unless it is 

 of a multiplicity of 

 accompanied by achievements in sequential processing rates of very nearly the 

 computers in such a 

 same magnitude. 

 manner as to permit 

Th

is statement must still be true; the neglected portion of the program must limit 

 cooperative solution. 

performance. One interpretation of the law leads to the following lemma: portions 

 …Demonstration is 

of every program must be sequential, so there must be an economic upper bound 

 made of the continued 

to the number of processorsಧsay, 100. By showing linear speed-up with 1000 

 validity of the single 

processors, this lemma is disproved; hence the claim that Amdahlಬs Law was broken. 

 processor approach …

Th

e approach of the researchers was just to use weak scaling: rather than going 

Gene Amdahl, “Validity 

1000 times faster on the same data set, they computed 1000 times more work in 

of the single processor 

comparable time. For their algorithm, the sequential portion of the program was 

approach to achieving 

constant, independent of the size of the input, and the rest was fully parallelಧ

large scale computing 

hence, linear speed-up with 1000 processors. 

capabilities,” Spring Joint 

Amdahlಬs Law obviously applies to parallel processors. What this research does 

Computer Conference, 

point out is that one of the main uses of faster computers is to run larger problems. 

1967

Just be sure that users really care about those problems versus being a justifi cation 

to buying an expensive computer by fi nding a problem that just keeps lots of 

processors busy. 

 Fallacy: Peak performance tracks observed performance. 

Th

e supercomputer industry once used this metric in marketing, and the fallacy 

is exacerbated with parallel machines. Not only are marketers using the nearly 

unattainable peak performance of a uniprocessor node, but also they are then 

multiplying it by the total number of processors, assuming perfect speed-up! 

Amdahlಬs Law suggests how diffi

cult it is to reach either peak; multiplying the two 

together multiplies the sins. Th

e roofl ine model helps put peak performance in 

perspective. 

 Pitfall: Not developing the soft ware to take advantage of, or optimize for, a 

 multiprocessor architecture. 

Th

ere is a long history of parallel soft ware lagging behind on parallel hardware, 

possibly because the soft ware problems are much harder. We give one example to 

show the subtlety of the issues, but there are many examples we could choose! 
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One frequently encountered problem occurs when soft ware designed for a 

uniprocessor is adapted to a multiprocessor environment. For example, the Silicon 

Graphics operating system originally protected the page table with a single lock, 

assuming that page allocation is infrequent. In a uniprocessor, this does not 

represent a performance problem. In a multiprocessor, it can become a major 

performance bottleneck for some programs. Consider a program that uses a large 

number of pages that are initialized at start-up, which UNIX does for statically 

allocated pages. Suppose the program is parallelized so that multiple processes 

allocate the pages. Because page allocation requires the use of the page table, which 

is locked whenever it is in use, even an OS kernel that allows multiple threads in the 

OS will be serialized if the processes all try to allocate their pages at once (which is 

exactly what we might expect at initialization time!). 

Th

is page table serialization eliminates parallelism in initialization and has 

signifi cant impact on overall parallel performance. Th

is performance bottleneck 

persists even for task-level parallelism. For example, suppose we split the parallel 

processing program apart into separate jobs and run them, one job per processor, 

so that there is no sharing between the jobs. (Th

is is exactly what one user did, 

since he reasonably believed that the performance problem was due to unintended 

sharing or interference in his application.) Unfortunately, the lock still serializes all 

the jobsಧso even the independent job performance is poor. 

Th

is pitfall indicates the kind of subtle but signifi cant performance bugs 

that can arise when soft ware runs on multiprocessors. Like many other key 

soft ware components, the OS algorithms and data structures must be rethought 

in a multiprocessor context. Placing locks on smaller portions of the page table 

eff ectively eliminated the problem. 

 Fallacy: You can get good vector performance without providing memory 

 bandwidth. 

As we saw with the Roofl ine model, memory bandwidth is quite important to 

all architectures. DAXPY requires 1.5 memory references per fl oating-point 

operation, and this ratio is typical of many scientifi c codes. Even if the fl oating-point 

operations took no time, a Cray-1 could not increase the DAXPY performance of 

the vector sequence used, since it was memory limited. Th

e Cray-1 performance on 

Linpack jumped when the compiler used blocking to change the computation so 

that values could be kept in the vector registers. Th

is approach lowered the number 

of memory references per FLOP and improved the performance by nearly a factor 

of two! Th

us, the memory bandwidth on the Cray-1 became suffi

cient for a loop 

that formerly required more bandwidth, which is just what the Roofl ine model 

would predict. 
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 6.14 Concluding 

Remarks

 We are dedicating 

Th

e dream of building computers by simply aggregating processors has been 

 all of our future 

around since the earliest days of computing. Progress in building and using eff ective 

 product development 

and effi

cient parallel processors, however, has been slow. Th

is rate of progress has 

 to multicore designs. 

been limited by diffi

cult soft ware problems as well as by a long process of evolving 

 We believe this is a 

the architecture of multiprocessors to enhance usability and improve effi

ciency. 

 key infl ection point 

We have discussed many of the soft ware challenges in this chapter, including the 

 for the industry. …

diffi

culty of writing programs that obtain good speed-up due to Amdahlಬs Law. Th

e 

 Th

   is is not a race. 

wide variety of diff erent architectural approaches and the limited success and short 

 Th

   is is a sea change in 

life of many of the parallel architectures of the past have compounded the soft ware 

 computing…” 

diffi

culties. We discuss the history of the development of these multiprocessors 

in online   Section 6.15. To go into even greater depth on topics in this chapter, 

Paul Otellini, Intel 

see Chapter 4 of  Computer Architecture: A Quantitative Approach, Fift h Edition for 

President, Intel 

Developers Forum, 2004

more on GPUs and comparisons between GPUs and CPUs and Chapter 6 for more 

on WSCs. 

As we said in Chapter 1, despite this long and checkered past, the information 

technology industry has now tied its future to parallel computing. Although it is 

easy to make the case that this eff ort will fail like many in the past, there are reasons 

to be hopeful:

■ Clearly,  soft ware as a service (SaaS) is growing in importance, and clusters 

have proven to be a very successful way to deliver such services. By providing 

redundancy at a higher-level, including geographically distributed datacenters, 

such services have delivered 24 ×7 × 365 availability for customers around 

the world. 

■  We believe that Warehouse-Scale Computers are changing the goals and 

principles of server design, just as the needs of mobile clients are changing the 

goals and principles of microprocessor design. Both are revolutionizing the 

soft ware industry as well. Performance per dollar and performance per joule 

drive both mobile client hardware and the WSC hardware, and parallelism is 

the key to delivering on those sets of goals. 

■  SIMD and vector operations are a good match to multimedia applications, 

which are playing a larger role in the PostPC Era. Th

ey share the advantage of 

being easier for the programmer than classic parallel MIMD programming 

and being more energy effi

cient than MIMD. To put into perspective the 

importance of SIMD versus MIMD, Figure 6.28 plots the number of cores 

for MIMD versus the number of 32-bit and 64-bit operations per clock cycle 

in SIMD mode for x86 computers over time. For x86 computers, we expect 

to see two additional cores per chip about every two years and the SIMD 

width to double about every four years. Given these assumptions, over the 

next decade the potential speed-up from SIMD parallelism is twice that of 
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FIGURE 6.28  Potential speed-up via parallelism from MIMD, SIMD, and both MIMD and 

SIMD over time for x86 computers. Th

is fi gure assumes that two cores per chip for MIMD will be 

added every two years and the number of operations for SIMD will double every four years. 

MIMD parallelism. Given the eff ectiveness of SIMD for multimedia and its 

increasing importance in the PostPC Era, that emphasis may be appropriate. 

Hence, it’s as least as important to understand SIMD parallelism as MIMD 

parallelism, even though the latter has received much more attention. 

■  Th

e use of parallel processing in domains such as scientifi c and engineering 

computation is popular. Th

is application domain has an almost limitless 

thirst for more computation. It also has many applications that have lots of 

natural concurrency. Once again, clusters dominate this application area. For 

example, using the 2012 Top 500 report, clusters are responsible for more 

than 80% of the 500 fastest Linpack results. 

■ All desktop and server microprocessor manufacturers are building 

multiprocessors to achieve higher performance, so, unlike in the past, there 

is no easy path to higher performance for sequential applications. As we said 

earlier, sequential programs are now slow programs. Hence, programmers 

who need higher performance  must parallelize their codes or write new 

parallel processing programs. 

562 

Chapter 6  Parallel Processors from Client to Cloud

■ In the past, microprocessors and multiprocessors were subject to 

diff erent  defi nitions of success. When scaling uniprocessor performance, 

microprocessor architects were happy if single thread performance went up 

by the square root of the increased silicon area. Th

us, they were happy with 

sublinear performance in terms of resources. Multiprocessor success used 

to be defi ned as  linear speed-up as a function of the number of processors, 

assuming that the cost of purchase or cost of administration of  n processors 

was  n times as much as one processor. Now that parallelism is happening on-

chip via multicore, we can use the traditional microprocessor metric of being 

successful with sublinear performance improvement. 

■  Th

e success of just-in-time runtime compilation and autotuning makes it 

feasible to think of soft ware adapting itself to take advantage of the increasing 

number of cores per chip, which provides fl exibility that is not available when 

limited to static compilers. 

■  Unlike in the past, the open source movement has become a critical portion 

of the soft ware industry. Th

is movement is a meritocracy, where better 

engineering solutions can win the mind share of the developers over legacy 

concerns. It also embraces innovation, inviting change to old soft ware and 

welcoming new languages and soft ware products. Such an open culture could 

be extremely helpful in this time of rapid change. 

To motivate readers to embrace this revolution, we demonstrated the potential 

of parallelism concretely for matrix multiply on the Intel Core i7 (Sandy Bridge) in 

the Going Faster sections of Chapters 3 to 6:

■  Data-level parallelism in Chapter 3 improved performance by a factor of 3.85 

by executing four 64-bit fl oating-point operations in parallel using the 256-

bit operands of the AVX instructions, demonstrating the value of SIMD. 

■  Instruction-level parallelism in Chapter 4 pushed performance up by another 

factor of 2.3 by unrolling loops 4 times to give the out-of-order execution 

hardware more instructions to schedule. 

■  Cache optimizations in Chapter 5 improved performance of matrices that 

didn’t fi t into the L1 data cache by another factor of 2.0 to 2.5 by using cache 

blocking to reduce cache misses. 

■  Th

read-level parallelism in this chapter improved performance of matrices 

that don’t fi t into a single L1 data cache by another factor of 4 to 14 by utilizing 

all 16 cores of our multicore chips, demonstrating the value of MIMD. We 

did this by adding a single line using an OpenMP pragma. 

Using the ideas in this book and tailoring the soft ware to this computer added 

24 lines of code to DGEMM. For the matrix sizes of 32x32, 160x160, 480x480, and 

960x960, the overall performance speedup from these ideas realized in those two-

dozen lines of code is factors of 8, 39, 129, and 212! 
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Th

is parallel revolution in the hardware/soft ware interface is perhaps the 

greatest challenge facing the fi eld in the last 60 years. You can also think of it as 

the greatest opportunity, as our Going Faster sections demonstrate. Th

is revolution 

will provide many new research and business prospects inside and outside the IT 

fi eld, and the companies that dominate the multicore era may not be the same 

ones that dominated the uniprocessor era. Aft er understanding the underlying 

hardware trends and learning to adapt soft ware to them, perhaps you will be one 

of the innovators who will seize the opportunities that are certain to appear in the 

uncertain times ahead. We look forward to benefi ting from your inventions! 

  5.9   Historical Perspective and Further 

6.15

Reading

Th

is section online gives the rich and oft en disastrous history of multiprocessors 

over the last 50 years. 
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 6.16 Exercises

6.1  First, write down a list of your daily activities that you typically do on a 

weekday. For instance, you might get out of bed, take a shower, get dressed, eat 

breakfast, dry your hair, brush your teeth. Make sure to break down your list so you 

have a minimum of 10 activities. 

6.1.1  [5] <§6.2> Now consider which of these activities is already exploiting some 

form of parallelism (e.g., brushing multiple teeth at the same time, versus one at 

a time, carrying one book at a time to school, versus loading them all into your 
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backpack and then carry them “in parallel”). For each of your activities, discuss if 

they are already working in parallel, but if not, why they are not. 

6.1.2  [5] <§6.2> Next, consider which of the activities could be carried out 

concurrently (e.g., eating breakfast and listening to the news). For each of your 

activities, describe which other activity could be paired with this activity. 

6.1.3  [5] <§6.2> For 6.1.2, what could we change about current systems (e.g., 

showers, clothes, TVs, cars) so that we could perform more tasks in parallel? 

6.1.4  [5] <§6.2> Estimate how much shorter time it would take to carry out these 

activities if you tried to carry out as many tasks in parallel as possible. 

6.2  You are trying to bake 3 blueberry pound cakes. Cake ingredients are as 

follows:

1 cup butter, soft ened

1 cup sugar

4 large eggs

1 teaspoon vanilla extract

1/2 teaspoon salt

1/4 teaspoon nutmeg

1 1/2 cups fl our

1 cup blueberries

Th

e recipe for a single cake is as follows:

Step 1: Preheat oven to 325°F (160°C). Grease and fl our your cake pan. 

Step 2: In large bowl, beat together with a mixer butter and sugar at medium 

speed until light and fl uff y. Add eggs, vanilla, salt and nutmeg. Beat until 

thoroughly blended. Reduce mixer speed to low and add fl our, 1/2 cup at a time, 

beating just until blended. 

Step 3: Gently fold in blueberries. Spread evenly in prepared baking pan. Bake 

for 60 minutes. 

6.2.1  [5] <§6.2> Your job is to cook 3 cakes as effi

ciently as possible. Assuming 

that you only have one oven large enough to hold one cake, one large bowl, one 

cake pan, and one mixer, come up with a schedule to make three cakes as quickly 

as possible. Identify the bottlenecks in completing this task. 

6.2.2  [5] <§6.2> Assume now that you have three bowls, 3 cake pans and 3 mixers. 

How much faster is the process now that you have additional resources? 
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6.2.3  [5] <§6.2> Assume now that you have two friends that will help you cook, 

and that you have a large oven that can accommodate all three cakes. How will this 

change the schedule you arrived at in Exercise 6.2.1 above? 

6.2.4  [5] <§6.2> Compare the cake-making task to computing 3 iterations 

of a loop on a parallel computer. Identify data-level parallelism and task-level 

parallelism in the cake-making loop. 

6.3  Many computer applications involve searching through a set of data and 

sorting the data. A number of effi

cient searching and sorting algorithms have been 

devised in order to reduce the runtime of these tedious tasks. In this problem we 

will consider how best to parallelize these tasks. 

6.3.1  [10] <§6.2> Consider the following binary search algorithm (a classic divide 

and conquer algorithm) that searches for a value  X in a sorted N-element array A 

and returns the index of matched entry:

BinarySearch(A[0..N−1], X) {

low = 0

high = N −1

while (low <= high) {

mid = (low + high) / 2

if (A[mid] >X)

high = mid −1

else if (A[mid] <X)

low = mid + 1

else

return mid // found

}

return −1 // not found

}

Assume that you have Y cores on a multi-core processor to run BinarySearch. 

Assuming that Y is much smaller than N, express the speedup factor you might 

expect to obtain for values of Y and N. Plot these on a graph. 

6.3.2  [5] <§6.2> Next, assume that Y is equal to N. How would this aff ect your 

conclusions in your previous answer? If you were tasked with obtaining the best 

speedup factor possible (i.e., strong scaling), explain how you might change this 

code to obtain it. 

6.4  Consider the following piece of C code:

for (j=2;j<1000;j++)

D[j] = D[j−1]+D[j−2]; 
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Th

e MIPS code corresponding to the above fragment is:

addiu   $s2,$zero,7992

addiu   $s1,$zero,16

loop:  l.d     $f0, ⫺16($s1)

l.d     $f2, ⫺8($s1)

add.d   $f4, $f0, $f2

s.d     $f4, 0($s1)

addiu   $s1, $s1, 8

bne     $s1, $s2, loop

Instructions have the following associated latencies (in cycles):

add.d

l.d

s.d

addiu

4

6

1

2

6.4.1  [10] <§6.2> How many cycles does it take for all instructions in a single 

iteration of the above loop to execute? 

6.4.2  [10] <§6.2> When an instruction in a later iteration of a loop depends upon 

a data value produced in an earlier iteration of the same loop, we say that there is 

a  loop carried dependence between iterations of the loop. Identify the loop-carried 

dependences in the above code. Identify the dependent program variable and 

assembly-level registers. You can ignore the loop induction variable j. 

6.4.3  [10] <§6.2> Loop unrolling was described in Chapter 4. Apply loop 

unrolling to this loop and then consider running this code on a 2-node distributed 

memory message passing system. Assume that we are going to use message passing 

as described in Section 6.7, where we introduce a new operation send (x, y) that 

sends to node x the value y, and an operation receive( ) that waits for the value being 

sent to it. Assume that send operations take a cycle to issue (i.e., later instructions 

on the same node can proceed on the next cycle), but take 10 cycles be received 

on the receiving node. Receive instructions stall execution on the node where they 

are executed until they receive a message. Produce a schedule for the two nodes 

assuming an unroll factor of 4 for the loop body (i.e., the loop body will appear 

4 times). Compute the number of cycles it will take for the loop to run on the 

message passing system. 

6.4.4  [10] <§6.2> Th

e latency of the interconnect network plays a large role in 

the effi

ciency of message passing systems. How fast does the interconnect need to 

be in order to obtain any speedup from using the distributed system described in 

Exercise 6.4.3? 

6.5  Consider the following recursive mergesort algorithm (another classic divide 

and conquer algorithm). Mergesort was fi rst described by John Von Neumann in 

1945. Th

e basic idea is to divide an unsorted list  x of  m elements into two sublists 

of about half the size of the original list. Repeat this operation on each sublist, and 
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continue until we have lists of size 1 in length. Th

en starting with sublists of length 

1, “merge” the two sublists into a single sorted list. 

Mergesort(m)

var list left, right, result

if length(m) ≤ 1

return m

else

var middle = length(m) / 2

for each x in m up to middle

add x to left

for each x in m after middle

add x to right

left = Mergesort(left)

right = Mergesort(right)

result = Merge(left, right)

return result

Th

e merge step is carried out by the following code:

Merge(left,right)

var list result

while length(left) >0 and length(right) > 0

if first(left) ≤ first(right)

append first(left) to result

left = rest(left)

else

append first(right) to result

right = rest(right)

if length(left) >0

append rest(left) to result

if length(right) >0

append rest(right) to result

return result

6.5.1  [10] <§6.2> Assume that you have Y cores on a multicore processor to run 

MergeSort. Assuming that Y is much smaller than length(m), express the speedup 

factor you might expect to obtain for values of Y and length(m). Plot these on a 

graph. 

6.5.2  [10] <§6.2> Next, assume that Y is equal to length (m). How would this 

aff ect your conclusions your previous answer? If you were tasked with obtaining 

the best speedup factor possible (i.e., strong scaling), explain how you might 

change this code to obtain it. 
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6.6  Matrix multiplication plays an important role in a number of applications. 

Two matrices can only be multiplied if the number of columns of the fi rst matrix is 

equal to the number of rows in the second. 

Let’s assume we have an  m ×  n matrix  A and we want to multiply it by an  n ×  p matrix  B. We can express their product as an  m ×  p matrix denoted by  AB (or  A ⋅  B). 

If we assign  C =  AB, and  c  denotes the entry in  C at position ( i,  j), then for each i,j

element  i and  j with 1 ≤  i ≤  m and 1 ≤  j ≤  p. Now we want to see if we can parallelize the computation of C. Assume that matrices are laid out in memory sequentially as 

follows: a , a , a , a , …, etc. 

1,1

2,1

3,1

4,1

6.6.1  [10] <§6.5> Assume that we are going to compute  C on both a single core shared memory machine and a 4-core shared-memory machine. Compute the 

speedup we would expect to obtain on the 4-core machine, ignoring any memory 

issues. 

6.6.2  [10] <§6.5> Repeat Exercise 6.6.1, assuming that updates to  C incur a cache miss due to false sharing when consecutive elements are in a row (i.e., index  i) are 

updated. 

6.6.3  [10] <§6.5> How would you fi x the false sharing issue that can occur? 

6.7  Consider the following portions of two diff erent programs running at the 

same time on four processors in a symmetric multicore processor (SMP). Assume 

that before this code is run, both x and y are 0. 

Core 1: x = 2; 

Core 2: y = 2; 

Core 3: w = x + y + 1; 

Core 4: z = x + y; 

6.7.1  [10] <§6.5> What are all the possible resulting values of w, x, y, and z? For each possible outcome, explain how we might arrive at those values. You will need 

to examine all possible interleavings of instructions. 

6.7.2  [5] <§6.5> How could you make the execution more deterministic so that 

only one set of values is possible? 

6.8  Th

e dining philosopher’s problem is a classic problem of synchronization and 

concurrency. Th

e general problem is stated as philosophers sitting at a round table 

doing one of two things: eating or thinking. When they are eating, they are not 

thinking, and when they are thinking, they are not eating. Th

ere is a bowl of pasta 

in the center. A fork is placed in between each philosopher. Th

e result is that each 

philosopher has one fork to her left  and one fork to her right. Given the nature of 

eating pasta, the philosopher needs two forks to eat, and can only use the forks on 

her immediate left  and right. Th

e philosophers do not speak to one another. 
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6.8.1  [10] <§6.7> Describe the scenario where none of philosophers ever eats (i.e., starvation). What is the sequence of events that happen that lead up to this problem? 

6.8.2  [10] <§6.7> Describe how we can solve this problem by introducing the 

concept of a priority? But can we guarantee that we will treat all the philosophers 

fairly? Explain. 

Now assume we hire a waiter who is in charge of assigning forks to philosophers. 

Nobody can pick up a fork until the waiter says they can. Th

e waiter has global 

knowledge of all forks. Further, if we impose the policy that philosophers will 

always request to pick up their left  fork before requesting to pick up their right 

fork, then we can guarantee to avoid deadlock. 

6.8.3  [10] <§6.7> We can implement requests to the waiter as either a queue of 

requests or as a periodic retry of a request. With a queue, requests are handled in 

the order they are received. Th

e problem with using the queue is that we may not 

always be able to service the philosopher whose request is at the head of the queue 

(due to the unavailability of resources). Describe a scenario with 5 philosophers 

where a queue is provided, but service is not granted even though there are forks 

available for another philosopher (whose request is deeper in the queue) to eat. 

6.8.4  [10] <§6.7> If we implement requests to the waiter by periodically repeating 

our request until the resources become available, will this solve the problem 

described in Exercise 6.8.3? Explain. 

6.9  Consider the following three CPU organizations:

CPU SS: A 2-core superscalar microprocessor that provides out-of-order issue 

capabilities on 2 function units (FUs). Only a single thread can run on each core 

at a time. 

CPU MT: A fi ne-grained multithreaded processor that allows instructions from 2 

threads to be run concurrently (i.e., there are two functional units), though only 

instructions from a single thread can be issued on any cycle. 

CPU SMT: An SMT processor that allows instructions from 2 threads to be run 

concurrently (i.e., there are two functional units), and instructions from either or 

both threads can be issued to run on any cycle. 

Assume we have two threads X and Y to run on these CPUs that include the 

following operations:

Thread X

Thread Y

A1 – takes 3 cycles to execute

B1 – take 2 cycles to execute

A2 – no dependences

B2 – confl icts for a functional unit with B1

A3 – confl icts for a functional unit with A1

B3 – depends on the result of B2

A4 – depends on the result of A3

B4 – no dependences and takes 2 cycles to execute
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Assume all instructions take a single cycle to execute unless noted otherwise or 

they encounter a hazard. 

6.9.1  [10] <§6.4> Assume that you have 1 SS CPU. How many cycles will it take to 

execute these two threads? How many issue slots are wasted due to hazards? 

6.9.2  [10] <§6.4> Now assume you have 2 SS CPUs. How many cycles will it take 

to execute these two threads? How many issue slots are wasted due to hazards? 

6.9.3  [10] <§6.4> Assume that you have 1 MT CPU. How many cycles will it take 

to execute these two threads? How many issue slots are wasted due to hazards? 

6.10  Virtualization soft ware is being aggressively deployed to reduce the costs of 

managing today’s high performance servers. Companies like VMWare, Microsoft  

and IBM have all developed a range of virtualization products. Th

e general concept, 

described in Chapter 5, is that a hypervisor layer can be introduced between the 

hardware and the operating system to allow multiple operating systems to share 

the same physical hardware. Th

e hypervisor layer is then responsible for allocating 

CPU and memory resources, as well as handling services typically handled by the 

operating system (e.g., I/O). 

Virtualization provides an abstract view of the underlying hardware to the hosted 

operating system and application soft ware. Th

is will require us to rethink how 

multi-core and multiprocessor systems will be designed in the future to support 

the sharing of CPUs and memories by a number of operating systems concurrently. 

6.10.1  [30] <§6.4> Select two hypervisors on the market today, and compare 

and contrast how they virtualize and manage the underlying hardware (CPUs and 

memory). 

6.10.2  [15] <§6.4> Discuss what changes may be necessary in future multi-core 

CPU platforms in order to better match the resource demands placed on these 

systems. For instance, can multithreading play an eff ective role in alleviating the 

competition for computing resources? 

6.11  We would like to execute the loop below as effi

ciently as possible. We have 

two diff erent machines, a MIMD machine and a SIMD machine. 

for (i=0; i < 2000; i++)

for (j=0; j<3000; j++)

X_array[i][j] = Y_array[j][i] + 200; 

6.11.1  [10] <§6.3> For a 4 CPU MIMD machine, show the sequence of MIPS 

instructions that you would execute on each CPU. What is the speedup for this 

MIMD machine? 

6.11.2  [20] <§6.3> For an 8-wide SIMD machine (i.e., 8 parallel SIMD functional 

units), write an assembly program in using your own SIMD extensions to MIPS 

to execute the loop. Compare the number of instructions executed on the SIMD 

machine to the MIMD machine. 
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6.12  A systolic array is an example of an MISD machine. A systolic array is a 

pipeline network or “wavefront” of data processing elements. Each of these elements 

does not need a program counter since execution is triggered by the arrival of data. 

Clocked systolic arrays compute in “lock-step” with each processor undertaking 

alternate compute and communication phases. 

6.12.1  [10] <§6.3> Consider proposed implementations of a systolic array (you 

can fi nd these in on the Internet or in technical publications). Th

en attempt to 

program the loop provided in Exercise 6.11 using this MISD model. Discuss any 

diffi

culties you encounter. 

6.12.2  [10] <§6.3> Discuss the similarities and diff erences between an MISD and 

SIMD machine. Answer this question in terms of data-level parallelism. 

6.13  Assume we want to execute the DAXPY loop show on page 511 in MIPS 

assembly on the NVIDIA 8800 GTX GPU described in this chapter. In this problem, 

we will assume that all math operations are performed on single-precision fl oating-

point numbers (we will rename the loop SAXPY). Assume that instructions take 

the following number of cycles to execute. 

Loads

Stores

Add.S

Mult.S

5

2

3

4

6.13.1  [20] <§6.6> Describe how you will constructs warps for the SAXPY loop 

to exploit the 8 cores provided in a single multiprocessor. 

6.14  Download the CUDA Toolkit and SDK from http://www.nvidia.com/object/

cuda_get.html. Make sure to use the “emurelease” (Emulation Mode) version of the code (you will not need actual NVIDIA hardware for this assignment). Build the 

example programs provided in the SDK, and confi rm that they run on the emulator. 

6.14.1  [90] <§6.6> Using the “template” SDK sample as a starting point, write a 

CUDA program to perform the following vector operations:

1)   a −  b (vector-vector subtraction)

2) a ⋅ b (vector dot product)

Th

e dot product of two vectors  a = [ a ,  a , … ,  a ] and  b = [ b ,  b , … ,  b ] is defi ned as: 1

2

 n

1

2

 n

 n

…

a ⋅ b

∑ a b a b a b

 a b

 i i

1 1

2 2

 n n  

 i  1

Submit code for each program that demonstrates each operation and verifi es the 

correctness of the results. 

6.14.2  [90] <§6.6> If you have GPU hardware available, complete a performance 

analysis your program, examining the computation time for the GPU and a CPU 

version of your program for a range of vector sizes. Explain any results you see. 
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6.15  AMD has recently announced that they will be integrating a graphics 

processing unit with their x86 cores in a single package, though with diff erent 

clocks for each of the cores. Th

is is an example of a heterogeneous multiprocessor 

system which we expect to see produced commericially in the near future. One 

of the key design points will be to allow for fast data communication between 

the CPU and the GPU. Presently communications must be performed between 

discrete CPU and GPU chips. But this is changing in AMDs Fusion architecture. 

Presently the plan is to use multiple (at least 16) PCI express channels for facilitate 

intercommunication. Intel is also jumping into this arena with their Larrabee chip. 

Intel is considering to use their QuickPath interconnect technology. 

6.15.1  [25] <§6.6> Compare the bandwidth and latency associated with these 

two interconnect technologies. 

6.16  Refer to Figure 6.14b, which shows an n-cube interconnect topology of order 3 that interconnects 8 nodes. One attractive feature of an n-cube interconnection 

network topology is its ability to sustain broken links and still provide connectivity. 

6.16.1  [10] <§6.8> Develop an equation that computes how many links in the 

n-cube (where n is the order of the cube) can fail and we can still guarantee an 

unbroken link will exist to connect any node in the n-cube. 

6.16.2  [10] <§6.8> Compare the resiliency to failure of n-cube to a fully-

connected interconnection network. Plot a comparison of reliability as a function 

of the added number of links for the two topologies. 

6.17  Benchmarking is fi eld of study that involves identifying representative 

workloads to run on specifi c computing platforms in order to be able to objectively 

compare performance of one system to another. In this exercise we will compare 

two classes of benchmarks: the Whetstone CPU benchmark and the PARSEC 

Benchmark suite. Select one program from PARSEC. All programs should be freely 

available on the Internet. Consider running multiple copies of Whetstone versus 

running the PARSEC Benchmark on any of systems described in Section 6.11. 

6.17.1  [60] <§6.10> What is inherently diff erent between these two classes of 

workload when run on these multi-core systems? 

6.17.2  [60] <§6.10> In terms of the Roofl ine Model, how dependent will the 

results you obtain when running these benchmarks be on the amount of sharing 

and synchronization present in the workload used? 

6.18  When performing computations on sparse matrices, latency in the memory 

hierarchy becomes much more of a factor. Sparse matrices lack the spatial locality 

in the data stream typically found in matrix operations. As a result, new matrix 

representations have been proposed. 

One the earliest sparse matrix representations is the Yale Sparse Matrix Format. It 

stores an initial sparse  m ×  n matrix,  M in row form using three one-dimensional 
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arrays. Let  R be the number of nonzero entries in  M. We construct an array  A 

of length  R  that contains all nonzero entries of  M (in left -to-right top-to-bottom order). We also construct a second array  IA of length  m + 1 (i.e., one entry per row, plus one).  IA( i) contains the index in  A of the fi rst nonzero element of row  i. Row i of the original matrix extends from  A( IA( i)) to  A( IA( i+1)−1). Th e third array,  JA, 

contains the column index of each element of  A, so it also is of length  R. 

6.18.1  [15] <§6.10> Consider the sparse matrix  X below and write C code that would store this code in Yale Sparse Matrix Format. 

Row 1 [1, 2, 0, 0, 0, 0]

Row 2 [0, 0, 1, 1, 0, 0]

Row 3 [0, 0, 0, 0, 9, 0]

Row 4 [2, 0, 0, 0, 0, 2]

Row 5 [0, 0, 3, 3, 0, 7]

Row 6 [1, 3, 0, 0, 0, 1]

6.18.2  [10] <§6.10> In terms of storage space, assuming that each element in 

matrix  X is single precision fl oating point, compute the amount of storage used to 

store the Matrix above in Yale Sparse Matrix Format. 

6.18.3  [15] <§6.10> Perform matrix multiplication of Matrix X by Matrix Y 

shown below. 

[2, 4, 1, 99, 7, 2]

Put this computation in a loop, and time its execution. Make sure to increase 

the number of times this loop is executed to get good resolution in your timing 

measurement. Compare the runtime of using a naïve representation of the matrix, 

and the Yale Sparse Matrix Format. 

6.18.4  [15] <§6.10> Can you fi nd a more effi

cient sparse matrix representation 

(in terms of space and computational overhead)? 

6.19  In future systems, we expect to see heterogeneous computing platforms 

constructed out of heterogeneous CPUs. We have begun to see some appear in the 

embedded processing market in systems that contain both fl oating point DSPs and 

a microcontroller CPUs in a multichip module package. 

Assume that you have three classes of CPU:

CPU A—A moderate speed multi-core CPU (with a fl oating point unit) that can 

execute multiple instructions per cycle. 

CPU B—A fast single-core integer CPU (i.e., no fl oating point unit) that can 

execute a single instruction per cycle. 

CPU C—A slow vector CPU (with fl oating point capability) that can execute 

multiple copies of the same instruction per cycle. 
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Assume that our processors run at the following frequencies:

CPU A

CPU B

CPU C

1 GHz

3 GHz

250 MHz

CPU A can execute 2 instructions per cycle, CPU B can execute 1 instruction per 

cycle, and CPU C can execute 8 instructions (though the same instruction) per 

cycle. Assume all operations can complete execution in a single cycle of latency 

without any hazards. 

All three CPUs have the ability to perform integer arithmetic, though CPU B cannot 

perform fl oating point arithmetic. CPU A and B have an instruction set similar 

to a MIPS processor. CPU C can only perform fl oating point add and subtract 

operations, as well as memory loads and stores. Assume all CPUs have access to 

shared memory and that synchronization has zero cost. 

Th

e task at hand is to compare two matrices X and Y that each contain 1024 × 1024 

fl oating point elements. Th

e output should be a count of the number indices where 

the value in X was larger or equal to the value in Y. 

6.19.1  [10] <§6.11> Describe how you would partition the problem on the 3 

diff erent CPUs to obtain the best performance. 

6.19.2  [10] <§6.11> What kind of instruction would you add to the vector CPU 

C to obtain better performance? 

6.20  Assume a quad-core computer system can process database queries at a 

steady state rate of requests per second. Also assume that each transaction takes, 

on average, a fi xed amount of time to process. Th

e following table shows pairs of 

transaction latency and processing rate. 

Average Transaction Latency

Maximum transaction processing rate

1 ms

5000/sec

2 ms

5000/sec

1 ms

10,000/sec

2 ms

10,000/sec

For each of the pairs in the table, answer the following questions:

6.20.1  [10] <§6.11> On average, how many requests are being processed at any 

given instant? 

6.20.2  [10] <§6.11> If move to an 8-core system, ideally, what will happen to the 

system throughput (i.e., how many queries/second will the computer process)? 

6.20.3  [10] <§6.11> Discuss why we rarely obtain this kind of speedup by simply 

increasing the number of cores. 
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§6.1, page 504: False. Task-level parallelism can help sequential applications and  Answers to sequential applications can be made to run on parallel hardware, although it is  Check Yourself more challenging. 

§6.2, page 509: False.  Weak scaling can compensate for a serial portion of the 

program that would otherwise limit scalability, but not so for strong scaling. 

§6.3, page 514: True, but they are missing useful vector features like gather-scatter 

and vector length registers that improve the effi

ciency of vector architectures. 

(As an elaboration in this section mentions, the AVX2 SIMD extensions off ers 

indexed loads via a gather operation but  not scatter for indexed stores. Th

e Haswell 

generation x86 microprocessor is the fi rst to support AVX2.)

§6.4, page 519: 1. True. 2. True. 

§6.5, page 523: False. Since the shared address is a  physical address, multiple 

tasks each in their own  virtual address spaces can run well on a shared memory 

multiprocessor. 

§6.6, page 531: False. Graphics DRAM chips are prized for their higher bandwidth. 

§6.7, page 536: 1. False. Sending and receiving a message is an implicit 

synchronization, as well as a way to share data. 2. True. 

§6.8, page 538: True. 

§6.10, page 550: True. We likely need innovation at all levels of the hardware and 

soft ware stack for parallel computing to succeed. 
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 A.1 Introduction

Encoding instructions as binary numbers is natural and effi

cient for computers. 

Humans, however, have a great deal of diffi

culty understanding and manipulating 

these numbers. People read and write symbols (words) much better than long 

sequences of digits. Chapter 2 showed that we need not choose between numbers 

and words, because computer instructions can be represented in many ways. 

Humans can write and read symbols, and computers can execute the equivalent 

binary numbers. Th

is appendix describes the process by which a human-readable 

program is translated into a form that a computer can execute, provides a few hints 

about writing assembly programs, and explains how to run these programs on 

SPIM, a simulator that executes MIPS programs. UNIX, Windows, and Mac OS X 

versions of the SPIM simulator are available on the CD. 

 Assembly language is the symbolic representation of a computer’s binary  machine language encoding—the  machine language. Assembly language is more readable than  Binary representation machine language, because it uses symbols instead of bits. Th

e symbols in assembly 

used for communication 

language name commonly occurr in bit patterns, such as opcodes and register  within a computer 

specifi ers, so people can read and remember them. In addition, assembly language  system. 
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Source

Object

file

Assembler

file

Source

Object

Executable

Assembler

Linker

file

file

file

Source

Object

Program

Assembler

file

file

library

FIGURE A.1.1  The process that produces an executable fi le. An assembler translates a fi le of assembly language into an object fi le, which is linked with other fi les and libraries into an executable fi le. 

assembler A program 

permits programmers to use  labels to identify and name particular memory words 

that translates a symbolic 

that hold instructions or data. 

version of instruction into 

A tool called an assembler translates assembly language into binary instructions. 

the binary ver sion. 

Assemblers provide a friendlier representation than a computer’s 0s and 1s, which 

macro A pattern-

sim plifi es writing and reading programs. Symbolic names for operations and loca-

matching and replacement 

tions are one facet of this representation. Another facet is programming facilities 

facility that pro vides a 

that increase a program’s clarity. For example, macros, discussed in  Section A.2, 

simple mechanism to name 

enable a programmer to extend the assembly language by defi ning new operations. 

a frequently used sequence 

An assembler reads a single assembly language  source fi le and produces an 

of instructions. 

 object fi le containing machine instructions and bookkeeping information that 

unresolved reference 

helps combine several object fi les into a program. Figure A.1.1 illustrates how a A  reference that requires 

program is built. Most programs consist of several fi les—also  called   modules—

more  information from 

that are written, compiled, and assembled independently. A program may also use 

an outside source to be 

prewritten routines supplied in a  program library. A module typically contains  ref-

complete. 

 erences to subroutines and data defi ned in other modules and in libraries. Th

e code 

linker Also called 

in a module cannot be executed when it contains unresolved references to labels 

link editor. A systems 

in other object fi les or libraries. Another tool, called a linker, combines a collection 

program that combines 

of object and library fi les into an  executable fi le, which a computer can run. 

independently assembled 

machine  language 

To see the advantage of assembly language, consider the following sequence of 

programs and resolves all 

fi gures, all of which contain a short subroutine that computes and prints the sum of 

undefi ned labels into an 

the squares of integers from 0 to 100. Figure A.1.2 shows the machine language that executable fi le. 

a MIPS computer executes. With considerable eff ort, you could use the opcode and 

instruction format tables in Chapter 2 to translate the instructions into a symbolic 

program similar to that shown in Figure A.1.3. Th

is form of the routine is much 

easier to read, because operations and operands are written with symbols rather 
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00100111101111011111111111100000

10101111101111110000000000010100

10101111101001000000000000100000

10101111101001010000000000100100

10101111101000000000000000011000

10101111101000000000000000011100

10001111101011100000000000011100

10001111101110000000000000011000

00000001110011100000000000011001

00100101110010000000000000000001

00101001000000010000000001100101

10101111101010000000000000011100

00000000000000000111100000010010

00000011000011111100100000100001

00010100001000001111111111110111

10101111101110010000000000011000

00111100000001000001000000000000

10001111101001010000000000011000

00001100000100000000000011101100

00100100100001000000010000110000

10001111101111110000000000010100

00100111101111010000000000100000

00000011111000000000000000001000

00000000000000000001000000100001

FIGURE A.1.2  MIPS machine language code for a routine to compute and print the sum 

of the squares of integers between 0 and 100.  

than with bit patterns. However, this assembly language is still diffi

cult to follow, 

because memory locations are named by their address rather than by a symbolic 

label. 

Figure A.1.4 shows assembly language that labels memory addresses with mne-

monic names. Most programmers prefer to read and write this form. Names that 

begin with a period, for example .data and .globl, are assembler directives  assembler directive that tell the assembler how to translate a program but do not produce machine  An operation that tells the instructions. Names followed by a colon, such as str: or main:, are labels that  assembler how to translate name the next memory location. Th

is program is as readable as most assembly  a program but does not 

produce machine instruc-

language programs (except for a glaring lack of comments), but it is still diffi

cult  tions; always begins with 

to follow, because many simple operations are required to accomplish simple tasks  a period. 

and because assembly language’s lack of control fl ow constructs provides few hints 

about the program’s operation. 

By contrast, the C routine in Figure A.1.5 is both shorter and clearer, since variables have mnemonic names and the loop is explicit rather than constructed with 

branches. In fact, the C routine is the only one that we wrote. Th

e other forms of 

the program were produced by a C compiler and assembler. 

In general, assembly language plays two roles (see Figure A.1.6). Th

e fi rst role 

is the output language of compilers. A  compiler translates a program written in a 

 high-level language (such as C or Pascal) into an equivalent program in machine or 

A-6 

Appendix A  Assemblers, Linkers, and the SPIM Simulator

addiu 

$29, $29, -32

sw $31, 

20($29)

sw $4, 

32($29)

sw $5, 

36($29)

sw $0, 

24($29)

sw $0, 

28($29)

lw $14, 

28($29)

lw $24, 

24($29)

multu $14, 

$14

addiu 

$8, $14, 1

slti 

$1, $8, 101

sw $8, 

28($29)

mflo $15

addu 

$25, $24, $15

bne 

$1, $0, -9

sw $25, 

24($29)

lui $4, 

4096

lw $5, 

24($29)

jal 1048812

addiu 

$4, $4, 1072

lw $31, 

20($29)

addiu 

$29, $29, 32

jr $31

move $2, 

$0

FIGURE A.1.3  The same routine as in Figure A.1.2 written in assembly language. However, 

the code for the routine does not label registers or memory locations or include comments. 

source language  Th

e 

assembly language. Th

e high-level language is called the source  language, and the 

high-level language 

compiler’s output is its  target language. 

in which a pro gram is 

Assembly language’s other role is as a language in which to write programs. Th

is 

originally written. 

role used to be the dominant one. Today, however, because of larger main memo-

ries and better compilers, most programmers write in a high-level language and 

rarely, if ever, see the instructions that a computer executes. Nevertheless, assembly 

language is still important to write programs in which speed or size is critical or to 

exploit hardware features that have no analogues in high-level  languages. 

Although this appendix focuses on MIPS assembly language, assembly pro-

gramming on most other machines is very similar. Th

e additional instructions and 

address modes in CISC machines, such as the VAX, can make assembly pro grams 

shorter but do not change the process of assembling a program or provide assembly 

language with the advantages of high-level languages, such as type-checking and 

structured control fl ow. 
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FIGURE A.1.4  The same routine as in Figure A.1.2 written in assembly language with 

labels, but no com ments. Th

e commands that start with periods are assembler directives (see pages 

A-47–49).  .text indicates that succeeding lines contain instructions. .data indicates that they contain data. .align n indicates that the items on the succeeding lines should be aligned on a 2 n byte boundary. 

Hence, .align 2 means the next item should be on a word boundary. .globl main declares that main is a global symbol that should be visible to code stored in other fi les. Finally, .asciiz stores a null-terminated string in memory. 

When to Use Assembly Language

Th

e primary reason to program in assembly language, as opposed to an available 

high-level language, is that the speed or size of a program is critically important. 

For example, consider a computer that controls a piece of machinery, such as a 

car’s brakes. A computer that is incorporated in another device, such as a car, is 

called an  embedded computer. Th

is type of computer needs to respond rapidly 

and predictably to events in the outside world. Because a compiler introduces 
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#include <stdio.h> 

int

main (int argc, char *argv[])

{



int i; 



int sum = 0; 



for (i = 0; i <= 100; i = i + 1) sum = sum + i * i; 



printf (“The sum from 0 .. 100 is %d\n”, sum); 

}

FIGURE A.1.5  The routine in Figure A.1.2 written in the C programming language.  

High-level language program

Program

Compiler

Assembler

Linker

Computer

Assembly language program

FIGURE A.1.6  Assembly language either is written by a programmer or is the output of 

a compiler.  

uncertainty about the time cost of operations, programmers may fi nd it diffi

cult 

to ensure that a high-level language program responds within a defi nite  time 

interval—say, 1 millisecond aft er a sensor detects that a tire is skidding. An 

assembly language programmer, on the other hand, has tight control over which 

instruc tions execute. In addition, in embedded applications, reducing a program’s 

size, so that it fi ts in fewer memory chips, reduces the cost of the embedded 

computer. 

A hybrid approach, in which most of a program is written in a high-level lan-

guage and time-critical sections are written in assembly language, builds on the 

strengths of both languages. Programs typically spend most of their time execut ing 

a small fraction of the program’s source code. Th

is observation is just the prin ciple 

of locality that underlies caches (see Section 5.1 in Chapter 5). 

Program profi ling measures where a program spends its time and can fi nd the 

time-critical parts of a program. In many cases, this portion of the program can 

be made faster with better data structures or algorithms. Sometimes, however, sig-

nifi cant performance improvements only come from recoding a critical portion of 

a program in assembly language. 
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Th

is improvement is not necessarily an indication that the high-level  language’s 

compiler has failed. Compilers typically are better than programmers at produc-

ing uniformly high-quality machine code across an entire program. Pro grammers, 

however, understand a program’s algorithms and behavior at a deeper level than 

a compiler and can expend considerable eff ort and ingenuity improving small 

sections of the program. In particular, programmers oft en consider several proce-

dures simultaneously while writing their code. Compilers typically compile each 

procedure in isolation and must follow strict conventions governing the use of 

registers at procedure boundaries. By retaining commonly used values in regis-

ters, even across procedure boundaries, programmers can make a program run 

faster. 

Another major advantage of assembly language is the ability to exploit special-

ized instructions—for example, string copy or pattern-matching instructions. 

Compilers, in most cases, cannot determine that a program loop can be replaced 

by a single instruction. However, the programmer who wrote the loop can replace 

it easily with a single instruction. 

Currently, a programmer’s advantage over a compiler has become diffi

cult  to 

maintain as compilation techniques improve and  machines’ pipelines increase in 

complexity (Chapter 4). 

Th

e fi nal reason to use assembly language is that no high-level language is 

available on a particular computer. Many older or specialized computers do not 

have a compiler, so a programmer’s only alternative is assembly language. 

Drawbacks of Assembly Language

Assembly language has many disadvantages that strongly argue against its wide-

spread use. Perhaps its major disadvantage is that programs written in assembly 

language are inherently machine-specifi c and must be totally rewritten to run on 

another computer architecture. Th

e rapid evolution of computers discussed in 

Chapter 1 means that architectures become obsolete. An assembly language pro-

gram remains tightly bound to its original archi tecture, even aft er the computer is 

eclipsed by new, faster, and more cost-eff ective machines. 

Another disadvantage is that assembly language programs are longer than the 

equivalent programs written in a high-level language. For example, the C program 

in Figure A.1.5 is 11 lines long, while the assembly program in Figure A.1.4 is 31 lines long. In more complex programs, the ratio of assembly to high-level language (its  expansion factor) can be much larger than the factor of three in this 

exam ple. Unfortunately, empirical studies have shown that programmers write 

roughly the same number of lines of code per day in assembly as in high-level 

languages. Th

is means that programmers are roughly  x times more productive in a 

high-level language, where  x is the assembly language expansion factor. 
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To compound the problem, longer programs are more diffi

cult to read and 

understand, and they contain more bugs. Assembly language exacerbates the prob-

lem because of its complete lack of structure. Common programming idioms, 

such as  if-then statements and loops, must be built from branches and jumps. Th

e 

resulting programs are hard to read, because the reader must reconstruct every 

higher-level construct from its pieces and each instance of a statement may be 

slightly diff erent. For example, look at Figure A.1.4 and answer these questions: What type of loop is used? What are its lower and upper bounds? 

Elaboration:  Compilers can produce machine language directly instead of relying on 

an assembler. These compilers typically execute much faster than those that invoke 

an assembler as part of compilation. However, a compiler that generates machine lan-

guage must perform many tasks that an assembler normally handles, such as resolv-

ing addresses and encoding instructions as binary numbers. The tradeoff is between 

compilation speed and compiler simplicity. 

Elaboration:  Despite these considerations, some embedded applications are writ-

ten in a high-level language. Many of these applications are large and complex pro-

grams that must be extremely reliable. Assembly language programs are longer and 

more diffi cult to write and read than high-level language programs. This greatly increases 

the cost of writing an assembly language program and makes it extremely dif fi cult  to 

verify the correctness of this type of program. In fact, these considerations led the US 

Department of Defense, which pays for many complex embedded systems, to develop 

Ada, a new high-level language for writing embedded systems. 

 A.2 Assemblers

An assembler translates a fi le of assembly language statements into a fi le of binary 

machine instructions and binary data. Th

e translation process has two major 

parts. Th

e fi rst step is to fi nd memory locations with labels so that the relationship 

between symbolic names and addresses is known when instructions are trans lated. 

Th

e second step is to translate each assembly statement by combining the numeric 

external label Also called

equivalents of opcodes, register specifi ers, and labels into a legal instruc tion. As 

global label. A label 

shown in Figure A.1.1, the assembler produces an output fi le, called an  object fi le, referring to an object that 

which contains the machine instructions, data, and bookkeeping infor mation. 

can be referenced from 

fi les other than the one in 

An object fi le typically cannot be executed, because it references procedures or 

which it is defi ned. 

data in other fi les. A label is external (also called global) if the labeled object can 
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be referenced from fi les other than the one in which it is defi ned. A label is  local 

if the object can be used only within the fi le in which it is defi ned. In most assem-

blers, labels are local by default and must be explicitly declared global. Subrou tines 

and global variables require external labels since they are referenced from many  local label A label fi les in a program. Local labels hide names that should not be visible to other  referring to an object that modules—for example, static functions in C, which can only be called by other  can be used only within functions in the same fi le. In addition, compiler-generated names—for example, a  the fi le in which it is name for the instruction at the beginning of a loop—are local so that the compiler  defi ned. 

need not produce unique names in every fi le. 

Local and Global Labels

Consider the program in Figure A.1.4. Th

e subroutine has an external (global) 

label  main. It also contains two local labels—loop and str—that are only 

EXAMPLE

visible with this assembly language fi le. Finally, the routine also contains an 

unresolved reference to an external label printf, which is the library routine 

that prints values. Which labels in Figure A.1.4 could be referenced from 

another fi le? 

Only global labels are visible outside a fi le, so the only label that could be 

referenced from another fi le is main. 

ANSWER

Since the assembler processes each fi le in a program individually and in isola tion, 

it only knows the addresses of local labels. Th

e assembler depends on another tool, 

the linker, to combine a collection of object fi les and libraries into an executable 

fi le by resolving external labels. Th

e assembler assists the linker by pro viding lists 

of labels and unresolved references. 

However, even local labels present an interesting challenge to an assembler. 

Unlike names in most high-level languages, assembly labels may be used before 

they are defi ned. In the example in Figure A.1.4, the label str is used by the la instruction before it is defi ned. Th

e possibility of a forward reference, like this one, forward reference 

forces an assembler to translate a program in two steps: fi rst fi nd all labels and then  A label that is used produce instructions. In the example, when the assembler sees the la instruction,  before it is  defi ned. 

it does not know where the word labeled str is located or even whether str labels 

an instruction or datum. 
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An assembler’s fi rst pass reads each line of an assembly fi le and breaks it into its 

component pieces. Th

ese pieces, which are called  lexemes, are individual words, 

numbers, and punctuation characters. For example, the line 



ble 

$t0, 100, loop

contains six lexemes: the opcode ble, the register specifi er  $t0, a comma, the 

number 100, a comma, and the symbol loop. 

symbol table A table 

If a line begins with a label, the assembler records in its symbol table the name 

that matches names of 

of the label and the address of the memory word that the instruction occupies. 

labels to the addresses of 

Th

e assembler then calculates how many words of memory the instruction on the 

the memory words that 

current line will occupy. By keeping track of the instructions’ sizes, the assembler 

instructions  occupy. 

can determine where the next instruction goes. To compute the size of a variable-

length instruction, like those on the VAX, an assembler has to examine it in detail. 

However, fi xed-length instructions, like those on MIPS, require only a cursory 

examination. Th

e assembler performs a similar calculation to compute the space 

required for data statements. When the assembler reaches the end of an assembly 

fi le, the symbol table records the location of each label defi ned in the fi le. 

Th

e assembler uses the information in the symbol table during a second pass 

over the fi le, which actually produces machine code. Th

e assembler again exam-

ines each line in the fi le. If the line contains an instruction, the assembler com-

bines the binary representations of its opcode and operands (register specifi ers or 

memory address) into a legal instruction. Th

e process is similar to the one used in 

Section 2.5 in Chapter 2. Instructions and data words that reference an external 

symbol defi ned in another fi le cannot be completely assembled (they are unre-

solved), since the symbol’s address is not in the symbol table. An assembler does 

not complain about unresolved references, since the corresponding label is likely 

to be defi ned in another fi le. 

Assembly language is a programming language. Its principal diff erence 

The BIG

from high-level languages such as BASIC, Java, and C is that assembly lan-

Picture

guage provides only a few, simple types of data and control fl ow. Assembly 

language programs do not specify the type of value held in a variable. 

Instead, a programmer must apply the appropriate operations (e.g., integer 

or fl oating-point addition) to a value. In addition, in assem bly language, 

programs must implement all control fl ow with  go to s. Both factors make 

assembly language programming for any machine—MIPS or x86—more 

diffi

cult and error-prone than writing in a high-level  language. 
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Elaboration:  If an assembler’s speed is important, this two-step process can be done 

in one pass over the assembly fi le with a technique known as backpatching. In its 

backpatching 

pass over the fi le, the assembler builds a (possibly incomplete) binary representation 

A method for translating 

of every instruction. If the instruction references a label that has not yet been defi ned, 

from assembly lan guage 

the assembler records the label and instruction in a table. When a label is defi ned, the 

to machine instructions 

assembler consults this table to fi nd all instructions that contain a forward reference to 

in which the  assembler 

the label. The assembler goes back and corrects their binary representation to incorpo-

builds a (possibly 

rate the address of the label. Backpatching speeds assembly because the assembler 

incomplete) binary 

only reads its input once. However, it requires an assembler to hold the entire binary rep-

representation of every 

instruc tion in one pass 

resentation of a program in memory so instructions can be backpatched. This require-

over a program and then 

ment can limit the size of programs that can be assembled. The process is com plicated 

returns to fi ll in previ-

by machines with several types of branches that span different ranges of instructions. 

ously  undefi ned labels. 

When the assembler fi rst sees an unresolved label in a branch instruction, it must either 

use the largest possible branch or risk having to go back and readjust many instructions 

to make room for a larger branch. 

Object File Format

Assemblers produce object fi les. An object fi le on UNIX contains six distinct 

sections (see Figure A.2.1): 



■ Th

e  object fi le header  describes the size and position of the other pieces of 

the fi le. 

text segment  Th

e 

segment of a UNIX 



■ Th

e text segment contains the machine language code for routines in the  object fi le that  contains source fi le.  Th

ese routines may be unexecutable because of unresolved  the machine language 

references. 

code for rou tines in the 

source fi le. 



■ Th

e data segment contains a binary representation of the data in the source 

fi le. Th

e data also may be incomplete because of unresolved references to  data segment  Th e 

labels in other fi les. 

segment of a UNIX 

object or executable fi le 



■ Th

e relocation information identifi es instructions and data words that  that contains a binary depend on absolute addresses. Th

ese references must change if portions of  represen tation of the 

the program are moved in memory. 

initialized data used by 

the program. 



■ Th

e  symbol table  associates addresses with external labels in the source fi le  relocation information and lists unresolved references. 

Th

e segment of a UNIX 



■ Th

e  debugging information contains a concise description of the way the  object fi le that identifi es program was compiled, so a debugger can fi nd which instruction addresses  instructions and data 

words that  depend on 

correspond to lines in a source fi le and print the data structures in readable  absolute addresses. 

form. 

absolute address 

Th

e assembler produces an object fi le that contains a binary representation of  A variable’s or routine’s the program and data and additional information to help link pieces of a  program.  actual  address in memory. 
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Object file

Text

Data

Relocation

Symbol

Debugging

header

segment

segment

information

table

information

FIGURE A.2.1  Object fi le.   A UNIX assembler produces an object fi le with six distinct sections. 

Th

is relocation information is necessary because the assembler does not know 

which memory locations a procedure or piece of data will occupy aft er it is linked 

with the rest of the program. Procedures and data from a fi le are stored in a con-

tiguous piece of memory, but the assembler does not know where this mem ory will 

be located. Th

e assembler also passes some symbol table entries to the linker. In 

particular, the assembler must record which external symbols are defi ned in a fi le 

and what unresolved references occur in a fi le. 

Elaboration:  For convenience, assemblers assume each fi le starts at the same 

address (for example, location 0) with the expectation that the linker will  relocate the code and data when they are assigned locations in memory. The assembler produces  relocation 

 information, which contains an entry describing each instruction or data word in the fi le that references an absolute address. On MIPS, only the subroutine call, load, and store 

instructions reference absolute addresses. Instructions that use PC- relative addressing, 

such as branches, need not be relocated. 

Additional Facilities

Assemblers provide a variety of convenience features that help make assembler 

programs shorter and easier to write, but do not fundamentally change assembly 

language. For example,  data layout directives allow a programmer to describe data 

in a more concise and natural manner than its binary representation. 

In Figure A.1.4, the directive 

.asciiz “The sum from 0 .. 100 is %d\n” 

stores characters from the string in memory. Contrast this line with the alternative 

of writing each character as its ASCII value (Figure 2.15 in Chapter 2 describes the 

ASCII encoding for characters):

.byte 84, 104, 101, 32, 115, 117, 109, 32

.byte 102, 114, 111, 109, 32, 48, 32, 46

.byte 46, 32, 49, 48, 48, 32, 105, 115

.byte 32, 37, 100, 10, 0

Th

e .asciiz directive is easier to read because it represents characters as letters, 

not binary numbers. An assembler can translate characters to their binary repre-

sentation much faster and more accurately than a human can. Data layout directives 
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specify data in a human-readable form that the assembler translates to binary. Other 

layout directives are described in Section A.10. 

String Directive

Defi ne the sequence of bytes produced by this directive: 

EXAMPLE

.asciiz “The quick brown fox jumps over the lazy dog” 

.byte 84,  104, 101, 32,   113, 117, 105, 99

.byte 107, 32,  98,  114, 

111, 119, 110, 32

ANSWER

.byte 102, 111, 120, 32,  106, 117, 109, 112

.byte 115, 32,  111, 118, 101, 114, 



32,  116

.byte 104, 101, 32,  108, 



97,  122, 121, 32

.byte 100, 111, 103, 0

 Macro is a pattern-matching and replacement facility that provides a simple 

mechanism to name a frequently used sequence of instructions. Instead of repeat-

edly typing the same instructions every time they are used, a programmer invokes 

the macro and the assembler replaces the macro call with the corresponding 

sequence of instructions. Macros, like subroutines, permit a programmer to create 

and name a new abstraction for a common operation. Unlike subroutines, how-

ever, macros do not cause a subroutine call and return when the program runs, 

since a macro call is replaced by the macro’s body when the program is assembled. 

Aft er this replacement, the resulting assembly is indistinguishable from the equiv-

alent program written without macros. 

Macros

As an example, suppose that a programmer needs to print many numbers. Th

e 

library routine printf accepts a format string and one or more values to print 

EXAMPLE

as its arguments. A programmer could print the integer in register $7 with the 

following instructions: 

.data

int_str: .asciiz“%d” 

.text



la 

$a0, int_str # Load string address



# into first arg
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mov 

$a1, $7  # Load value into







# second arg



jal 

printf 

# Call the printf routine

Th

e .data directive tells the assembler to store the string in the program’s data 

segment, and the .text directive tells the assembler to store the instruc tions 

in its text segment. 

However, printing many numbers in this fashion is tedious and produces a 

verbose program that is diffi

cult to understand. An alternative is to introduce 

a macro, print_int, to print an integer: 

.data


int_str:.asciiz “%d” 

.text

.macro 

print_int($arg)



la  $a0, int_str # Load string address into





# first arg



mov $a1, $arg    



# Load macro’s parameter 





# ($arg) into second arg



jal printf       



# Call the printf routine

.end_macro

print_int($7)

formal parameter 

Th

e macro has a formal parameter,  $arg, that names the argument to the 

A variable that is the 

macro. When the macro is expanded, the argument from a call is substituted 

argument to a proce dure 

for the formal parameter throughout the macro’s body. Th

en the assembler 

or macro; it is replaced by 

replaces the call with the macro’s newly expanded body. In the fi rst call on 

that argument once the 

print_int, the argument is $7, so the macro expands to the code

macro is expanded. 

la  $a0, int_str

mov $a1, $7

jal printf

In a second call on print_int, say, print_int($t0), the argument is $t0, 

so the macro expands to

la  $a0, int_str 

mov $a1, $t0 

jal printf

What does the call print_int($a0) expand to? 
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la  $a0, int_str 

mov $a1, $a0 

ANSWER

jal printf

Th

is example illustrates a drawback of macros. A programmer who uses 

this macro must be aware that print_int uses register $a0 and so cannot 

correctly print the value in that register. 

Some assemblers also implement  pseudoinstructions,  which are instructions pro-

Hardware/

vided by an assembler but not implemented in hardware. Chapter 2 contains  Software

many examples of how the MIPS assembler synthesizes pseudoinstructions 

and addressing modes from the spartan MIPS hardware instruction set. For  Interface

example, Section 2.7 in Chapter 2 describes how the assembler synthesizes the 

blt instruc tion from two other instructions: slt and bne. By extending the 

instruction set, the MIPS assembler makes assembly language programming 

easier without complicating the hardware. Many pseudoinstructions could also 

be simulated with macros, but the MIPS assembler can generate better code for 

these instructions because it can use a dedicated register ($at) and is able to 

optimize the generated code. 

Elaboration:  Assemblers   conditionally assemble pieces of code, which permits a 

programmer to include or exclude groups of instructions when a program is assembled. 

This feature is particularly useful when several versions of a program differ by a small 

amount. Rather than keep these programs in separate fi les—which greatly complicates 

fi xing bugs in the common code—programmers typically merge the versions into a sin-

gle fi le. Code particular to one version is conditionally assembled, so it can be excluded 

when other versions of the program are assembled. 

If macros and conditional assembly are useful, why do assemblers for UNIX systems 

rarely, if ever, provide them? One reason is that most programmers on these systems 

write programs in higher-level languages like C. Most of the assembly code is produced 

by compilers, which fi nd it more convenient to repeat code rather than defi ne macros. 

Another reason is that other tools on UNIX—such as cpp, the C preprocessor, or m4, a 

general macro processor—can provide macros and conditional assembly for assembly 

language programs. 
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 A.3 Linkers

separate compilation   

Separate compilation permits a program to be split into pieces that are stored in 

Split ting a program across 

diff erent fi les. Each fi le contains a logically related collection of subroutines and 

many fi les, each of which 

data structures that form a  module in a larger program. A fi le can be compiled 

can be com piled without 

and assembled independently of other fi les, so changes to one module do not 

knowledge of what is in 

require recompiling the entire program. As we discussed above, separate compila-

the other fi les. 

tion necessitates the additional step of linking to combine object fi les from separate 

modules and fi xing their unresolved references. 

Th

e tool that merges these fi les is the  linker (see Figure A.3.1). It performs three tasks: 



■ Searches the program libraries to fi nd library routines used by the program



■ Determines the memory locations that code from each module will occupy 

and relocates its instructions by adjusting absolute references



■ Resolves references among fi les

A linker’s fi rst task is to ensure that a program contains no undefi ned labels. Th

e 

linker matches the external symbols and unresolved references from a pro gram’s 

fi les. An external symbol in one fi le resolves a reference from another fi le if both 

refer to a label with the same name. Unmatched references mean a symbol was 

used but not defi ned anywhere in the program. 

Unresolved references at this stage in the linking process do not necessarily 

mean a programmer made a mistake. Th

e program could have referenced a library 

routine whose code was not in the object fi les passed to the linker. Aft er matching 

symbols in the program, the linker searches the system’s program librar ies to 

fi nd predefi ned subroutines and data structures that the program references. Th

e 

basic libraries contain routines that read and write data, allocate and deallo cate 

memory, and perform numeric operations. Other libraries contain routines to 

access a database or manipulate terminal windows. A program that references an 

unresolved symbol that is not in any library is erroneous and cannot be linked. 

When the program uses a library routine, the linker extracts the routine’s code 

from the library and incorporates it into the program text segment. Th

is new rou-

tine, in turn, may depend on other library routines, so the linker continues to 

fetch other library routines until no external references are unresolved or a rou tine 

cannot be found. 

If all external references are resolved, the linker next determines the memory 

locations that each module will occupy. Since the fi les were assembled in isolation, 
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FIGURE A.3.1  The linker searches a collection of object fi les and program libraries to 

fi nd nonlocal routines used in a program, combines them into a single executable fi le, and 

resolves references between routines in different fi les.  

the assembler could not know where a module’s instructions or data would be 

placed relative to other modules. When the linker places a module in memory, all 

abso lute references must be  relocated to refl ect its true location. Since the linker 

has relocation information that identifi es all relocatable references, it can effi

ciently 

fi nd and backpatch these references. 

Th

e linker produces an executable fi le that can run on a computer. Typically, 

this fi le has the same format as an object fi le, except that it contains no unresolved 

references or relocation information. 

 A.4 Loading

A program that links without an error can be run. Before being run, the program 

resides in a fi le on secondary storage, such as a disk. On UNIX systems, the  operating 
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system kernel brings a program into memory and starts it running. To start a program, 

the operating system performs the following steps: 

1.  It reads the executable fi le’s header to determine the size of the text and data 

segments. 

2.  It creates a new address space for the program. Th

is address space is large 

enough to hold the text and data segments, along with a stack segment (see 

Section A.5). 

3.  It copies instructions and data from the executable fi le into the new address 

space. 

4.  It copies arguments passed to the program onto the stack. 

5.  It initializes the machine registers. In general, most registers are cleared, but 

the stack pointer must be assigned the address of the fi rst free stack location 

(see Section A.5). 

6.  It jumps to a start-up routine that copies the program’s arguments from the 

stack to registers and calls the program’s main routine. If the main routine 

returns, the start-up routine terminates the program with the exit system call. 

 A.5 Memory 

Usage

Th

e next few sections elaborate the description of the MIPS architecture presented 

earlier in the book. Earlier chapters focused primarily on hardware and its relationship 

with low-level soft ware. Th

ese sections focus primarily on how assembly language 

programmers use MIPS hardware. Th

ese sections describe a set of conventions 

followed on many MIPS systems. For the most part, the hardware does not impose 

these conventions. Instead, they represent an agreement among programmers to 

follow the same set of rules so that soft ware written by diff erent people can work 

together and make eff ective use of MIPS hardware. 

Systems based on MIPS processors typically divide memory into three parts 

(see Figure A.5.1). Th

e fi rst part, near the bottom of the address space (starting 

at address 400000hex), is the  text segment, which holds the program’s instructions. 

Th

e second part, above the text segment, is the  data segment, which is further 

static data  Th

e portion 

divided into two parts. Static data (starting at address 10000000hex) contains 

of memory that contains 

objects whose size is known to the compiler and whose lifetime—the interval 

data whose size is known 

dur ing which a program can access them—is the program’s entire execution. For 

to the com piler and whose 

example, in C, global variables are statically allocated, since they can be referenced 

lifetime is the program’s 

entire execution. 
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7fffffffhex

Stack segment

Dynamic data

Data segment

Static data

10000000hex

Text segment

400000hex

Reserved

FIGURE A.5.1  Layout of memory.  

anytime during a program’s execution. Th

e linker both assigns static objects to 

locations in the data segment and resolves references to these objects. 

Immediately above static data is  dynamic data. Th

is data, as its name implies, is 

allocated by the program as it executes. In C programs, the malloc library rou tine 

Because the data segment begins far above the program at address 10000000hex, Hardware/

load and store instructions cannot directly reference data objects with their 16-bit  Software off set fi elds (see Section 2.5 in Chapter 2). For example, to load the word in the 

data segment at address 10010020

Interface

hex into register $v0 requires two instructions:

lui  $s0, 0x1001 # 0x1001 means 1001 base 16 

lw 

$v0, 0x0020($s0) # 0x10010000 + 0x0020 = 0x10010020

(Th

e  0x before a number means that it is a hexadecimal value. For example, 0x8000 

is 8000hex or 32,768ten.)

To avoid repeating the lui instruction at every load and store, MIPS systems 

typically dedicate a register ($gp) as a  global pointer to the static data segment. Th

is 

register contains address 10008000hex, so load and store instructions can use their 

signed 16-bit off set fi elds to access the fi rst 64 KB of the static data segment. With 

this global pointer, we can rewrite the example as a single instruction: 

lw $v0, 0x8020($gp)

Of course, a global pointer register makes addressing locations 10000000hex–

10010000hex faster than other heap locations. Th e MIPS compiler usually stores 

 global variables in this area, because these variables have fi xed locations and fi t better than other global data, such as arrays. 
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fi nds and returns a new block of memory. Since a compiler cannot predict how 

much memory a program will allocate, the operating system expands the dynamic 

data area to meet demand. As the upward arrow in the fi gure indicates, malloc 

expands the dynamic area with the sbrk system call, which causes the operating 

system to add more pages to the program’s virtual address space (see Section 5.7 in 

Chapter 5) immediately above the dynamic data segment. 

stack segment  Th

e 

Th

e third part, the program stack segment, resides at the top of the virtual 

portion of memory used 

address space (starting at address 7ff ff ff fhex). Like dynamic data, the maximum size 

by a  program to hold 

of a program’s stack is not known in advance. As the program pushes values on to 

procedure call frames. 

the stack, the operating system expands the stack segment down toward the data 

segment. 

Th

is three-part division of memory is not the only possible one. However, it has 

two important characteristics: the two dynamically expandable segments are as far 

apart as possible, and they can grow to use a program’s entire address space. 

 A.6 

Procedure Call Convention

Conventions governing the use of registers are necessary when procedures in a 

program are compiled separately. To compile a particular procedure, a compiler 

must know which registers it may use and which registers are reserved for other 

register use convention 

procedures. Rules for using registers are called register use or procedure call 

Also called procedure 

conventions. As the name implies, these rules are, for the most part, conventions 

call  convention. 

fol lowed by soft ware rather than rules enforced by hardware. However, most com-

A soft ware proto col 

pilers and programmers try very hard to follow these conventions because violat-

governing the use of 

ing them causes insidious bugs. 

registers by procedures. 

Th

e calling convention described in this section is the one used by the gcc com-

piler. Th

e native MIPS compiler uses a more complex convention that is slightly 

faster. 

Th

e MIPS CPU contains 32 general-purpose registers that are numbered  0–31. 

Register $0 always contains the hardwired value 0. 



■ Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler and 

operating system and should not be used by user programs or compilers. 



■ Registers $a0–$a3 (4–7) are used to pass the fi rst four arguments to rou tines 

(remaining arguments are passed on the stack). Registers $v0 and $v1 (2, 3) 

are used to return values from functions. 
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■ Registers  $t0–$t9 (8–15, 24, 25) are caller-saved registers that are used  caller-saved register to hold temporary quantities that need not be preserved across calls (see  A regis ter saved by the Section 2.8 in Chapter 2). 

routine  being called. 



■ Registers  $s0–$s7 (16–23) are callee-saved registers that hold long-lived  callee-saved register values that should be preserved across calls. 

A regis ter saved by 

the routine making a 



■ Register $gp (28) is a global pointer that points to the middle of a 64K block  procedure call. 

of memory in the static data segment. 



■ Register $sp (29) is the stack pointer, which points to the last location on 

the stack. Register $fp (30) is the frame pointer. Th

e jal instruction writes 

register $ra (31), the return address from a procedure call. Th

ese two regis-

ters are explained in the next section. 

Th

e two-letter abbreviations and names for these registers—for example $sp 

for the stack pointer—refl ect the registers’ intended uses in the procedure call 

convention. In describing this convention, we will use the names instead of regis ter 

numbers. Figure A.6.1 lists the registers and describes their intended uses. 

Procedure Calls

Th

is section describes the steps that occur when one procedure (the  caller) invokes 

another procedure (the  callee). Programmers who write in a high-level language 

(like C or Pascal) never see the details of how one procedure calls another, because 

the compiler takes care of this low-level bookkeeping. However, assembly language 

programmers must explicitly implement every procedure call and return. 

Most of the bookkeeping associated with a call is centered around a block 

of memory called a procedure call frame. Th

is memory is used for a variety of  procedure call frame 

purposes: 

A block of memory that 

is used to hold values 



■ To hold values passed to a procedure as arguments

passed to a procedure 

as arguments, to save 



■ To save registers that a procedure may modify, but which the procedure’s  registers that a procedure caller does not want changed

may modify but that the 

procedure’s caller does not 



■ To provide space for variables local to a procedure

want changed, and to pro-

In most programming languages, procedure calls and returns follow a strict  vide space for variables last-in, fi rst-out (LIFO) order, so this memory can be allocated and deallocated on  local to a procedure. 

a stack, which is why these blocks of memory are sometimes called stack frames. 

Figure A.6.2 shows a typical stack frame. Th

e frame consists of the memory 

between the frame pointer ($fp), which points to the fi rst word of the frame, 

and the stack pointer ($sp), which points to the last word of the frame. Th

e stack 

grows down from higher memory addresses, so the frame pointer points above the 
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 Register name

Number 

Usage

$zero

0

constant 0

$at

1

reserved for assembler 

$v0

2

expression evaluation and results of a function

$v1

3

expression evaluation and results of a function

$a0

4

argument 1 

$a1

5

argument 2 

$a2

6

argument 3 

$a3

7

argument 4 

$t0

8

temporary (not preserved across call) 

$t1

9

temporary (not preserved across call) 

$t2

10

temporary (not preserved across call) 

$t3

11

temporary (not preserved across call) 

$t4

12

temporary (not preserved across call) 

$t5

13

temporary (not preserved across call) 

$t6

14

temporary (not preserved across call) 

$t7

15

temporary (not preserved across call) 

$s0

16

saved temporary (preserved across call) 

$s1

17

saved temporary (preserved across call) 

$s2

18

saved temporary (preserved across call) 

$s3

19

saved temporary (preserved across call) 

$s4

20

saved temporary (preserved across call) 

$s5

21

saved temporary (preserved across call) 

$s6

22

saved temporary (preserved across call) 

$s7

23

saved temporary (preserved across call) 

$t8

24

temporary (not preserved across call) 

$t9

25

temporary (not preserved across call) 

$k0

26

reserved for OS kernel 

$k1

27

reserved for OS kernel 

$gp

28

pointer to global area 

$sp

29

stack pointer 

$fp

30

frame pointer 

$ra

31

return address (used by function call) 

FIGURE A.6.1  MIPS registers and usage convention.  

stack pointer. Th

e executing procedure uses the frame pointer to quickly access 

values in its stack frame. For example, an argument in the stack frame can be 

loaded into register $v0 with the instruction

lw $v0, 0($fp)
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Higher memory addresses

Argument 6

Argument 5

$fp

Saved registers

Stack

grows

Local variables

$sp

Lower memory addresses

FIGURE A.6.2  Layout of a stack frame. Th

e frame pointer ($fp) points to the fi rst word in the 

currently executing procedure’s stack frame. Th

e stack pointer ($sp) points to the last word of the frame. Th

e 

fi rst four arguments are passed in registers, so the fi ft h argument is the fi rst one stored on the stack. 

A stack frame may be built in many diff erent ways; however, the caller and 

callee must agree on the sequence of steps. Th

e steps below describe the calling 

convention used on most MIPS machines. Th

is convention comes into play at three 

points during a procedure call: immediately before the caller invokes the callee, 

just as the callee starts executing, and immediately before the callee returns to the 

caller. In the fi rst part, the caller puts the procedure call arguments in stan dard 

places and invokes the callee to do the following:

1.  Pass arguments. By convention, the fi rst four arguments are passed in regis-

ters $a0–$a3. Any remaining arguments are pushed on the stack and appear 

at the beginning of the called procedure’s stack frame. 

2.  Save caller-saved registers. Th

e called procedure can use these registers 

($a0–$a3 and $t0–$t9) without fi rst saving their value. If the caller expects 

to use one of these registers aft er a call, it must save its value before the call. 

3. Execute 

a 

jal instruction (see Section 2.8 of Chapter 2), which jumps to the 

callee’s fi rst instruction and saves the return address in register $ra. 
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Before a called routine starts running, it must take the following steps to set up 

its stack frame: 

1.  Allocate memory for the frame by subtracting the frame’s size from the stack 

pointer. 

2.  Save callee-saved registers in the frame. A callee must save the values in 

these registers ($s0–$s7,  $fp, and $ra) before altering them, since the 

caller expects to fi nd these registers unchanged aft er the call. Register $fp is 

saved by every procedure that allocates a new stack frame. However, register 

$ra only needs to be saved if the callee itself makes a call. Th

e other callee-

saved registers that are used also must be saved. 

3.  Establish the frame pointer by adding the stack frame’s size minus 4 to $sp 

and storing the sum in register $fp. 

Th

e MIPS register use convention provides callee- and caller-saved registers, 

Hardware/

because both types of registers are advantageous in diff erent circumstances. Callee-

Software

saved registers are better used to hold long-lived values, such as variables from a 

Interface

user’s program. Th

ese registers are only saved during a procedure call if the callee 

expects to use the register. On the other hand, caller-saved registers are bet ter used 

to hold short-lived quantities that do not persist across a call, such as immediate 

values in an address calculation. During a call, the callee can also use these registers 

for short-lived temporaries. 

Finally, the callee returns to the caller by executing the following steps: 

1.  If the callee is a function that returns a value, place the returned value in 

register $v0. 

2.  Restore all callee-saved registers that were saved upon procedure entry. 

3.  Pop the stack frame by adding the frame size to $sp. 

4.  Return by jumping to the address in register $ra. 

recursive procedures

Elaboration:  A programming language that does not permit recursive procedures—

Procedures that call 

procedures that call themselves either directly or indirectly through a chain of calls—need 

themselves  either directly 

not allocate frames on a stack. In a nonrecursive language, each procedure’s frame 

or indirectly through a 

may be statically allocated, since only one invocation of a procedure can be active at a 

chain of calls. 

time. Older versions of Fortran prohibited recursion, because statically allocated frames 

produced faster code on some older machines. However, on load store architec tures like 

MIPS, stack frames may be just as fast, because a frame pointer register points directly 
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to the active stack frame, which permits a single load or store instruc tion to access 

values in the frame. In addition, recursion is a valuable programming technique. 

Procedure Call Example

As an example, consider the C routine

main ()

{



printf (“The factorial of 10 is %d\n”, fact (10)); 

}

int fact (int n)

{



if (n < 1)

return 

(1); 

else





return (n * fact (n - 1)); 

}

which computes and prints 10! (the factorial of 10, 10! = 10 × 9 × . . . × 1). fact is 

a recursive routine that computes  n! by multiplying  n times ( n - 1)!. Th

e assembly 

code for this routine illustrates how programs manipulate stack frames. 

Upon entry, the routine main creates its stack frame and saves the two callee-

saved registers it will modify: $fp and $ra. Th

e frame is larger than required for 

these two register because the calling convention requires the minimum size of a 

stack frame to be 24 bytes. Th

is minimum frame can hold four argument registers 

($a0–$a3) and the return address $ra, padded to a double-word boundary 

(24 bytes). Since main also needs to save $fp, its stack frame must be two words 

larger (remember: the stack pointer is kept doubleword aligned). 

.text

.globl 

main

main:



subu  $sp,$sp,32 

# Stack frame is 32 bytes long



sw 

$ra,20($sp) 

# Save return address



sw 

$fp,16($sp) 

# Save old frame pointer



addiu  $fp,$sp,28 

# Set up frame pointer

Th

e routine main then calls the factorial routine and passes it the single argument 

10. Aft er fact returns, main calls the library routine printf and passes it both 

a format string and the result returned from fact:
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li 

$a0,10 

# Put argument (10) in $a0



jal 

fact 

# Call factorial function



la 

$a0,$LC 

# Put format string in $a0



move 

$a1,$v0 

# Move fact result to $a1



jal 

printf 

# Call the print function

Finally, aft er printing the factorial, main returns. But fi rst, it must restore the 

registers it saved and pop its stack frame:



lw 

$ra,20($sp)  # Restore return address



lw 

$fp,16($sp)  # Restore frame pointer



addiu 

$sp,$sp,32 

# Pop stack frame



jr 

$ra 

# Return to caller

.rdata

$LC:



.ascii 

“The factorial of 10 is %d\n\000” 

Th

e factorial routine is similar in structure to main. First, it creates a stack frame 

and saves the callee-saved registers it will use. In addition to saving $ra and $fp, 

fact also saves its argument ($a0), which it will use for the recursive call:



.text 

fact:





subu 

$sp,$sp,32 

# Stack frame is 32 bytes long





sw 

$ra,20($sp) 

# Save return address





sw 

$fp,16($sp) 

# Save frame pointer





addiu 

$fp,$sp,28 

# Set up frame pointer





sw 

$a0,0($fp) 

# Save argument (n)

Th

e heart of the fact routine performs the computation from the C program. 

It tests whether the argument is greater than 0. If not, the routine returns the 

value 1. If the argument is greater than 0, the routine recursively calls itself to 

compute fact(n–1) and multiplies that value times  n:



lw 

$v0,0($fp) 

# Load n



bgtz 

$v0,$L2 

# Branch if n > 0



li 

$v0,1 

# Return 1



jr 

$L1 

# Jump to code to return

$L2:



lw 

$v1,0($fp) 

# Load n



subu 

$v0,$v1,1 

# Compute n - 1



move 

$a0,$v0 

# Move value to $a0
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jal 

fact 

# Call factorial function



lw 

$v1,0($fp) 

# Load n



mul 

$v0,$v0,$v1 

# Compute fact(n-1) * n

Finally, the factorial routine restores the callee-saved registers and returns the 

value in register $v0: 

$L1: 



# Result is in $v0



lw 

$ra, 20($sp)  # Restore $ra



lw 

$fp, 16($sp)  # Restore $fp



addiu 

$sp, $sp, 32  # Pop stack



jr 

$ra 

# Return to caller

Stack in Recursive Procedure

Figure A.6.3 shows the stack at the call  fact(7). main runs fi rst, so its frame is deepest on the stack. main calls fact(10), whose stack frame is next on the 

EXAMPLE

stack. Each invocation recursively invokes fact to compute the next-lowest 

factorial. Th

e stack frames parallel the LIFO order of these calls. What does the 

stack look like when the call to fact(10) returns? 

Stack

Old $ra

Old $fp

main

Old $a0

Old $ra

fact (10)

Old $fp

Old $a0

Old $ra

fact (9)

Old $fp

Old $a0

Old $ra

fact (8)

Old $fp

Old $a0

Stack grows

Old $ra

fact (7)

Old $fp

FIGURE A.6.3  Stack frames during the call of fact(7).  
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Stack

ANSWER

Old $ra

main

Stack grows

Old $fp

Elaboration:  The difference between the MIPS compiler and the gcc compiler is that 

the MIPS compiler usually does not use a frame pointer, so this register is available as 

another callee-saved register, $s8. This change saves a couple of instructions in the 

procedure call and return sequence. However, it complicates code generation, because 

a procedure must access its stack frame with $sp, whose value can change during a 

procedure’s execution if values are pushed on the stack. 

Another Procedure Call Example

As another example, consider the following routine that computes the tak func-

tion, which is a widely used benchmark created by Ikuo Takeuchi. Th

is function 

does not compute anything useful, but is a heavily recursive program that illustrates 

the MIPS calling convention. 

int tak (int x, int y, int z)

{



if (y < x)





return 1+ tak (tak (x - 1, y, z), 





tak (y - 1, z, x), 





tak (z - 1, x, y)); 

else

return 

z; 

}

int main ()

{



tak(18, 12, 6); 

}

Th

e assembly code for this program is shown below. Th

e tak function fi rst saves 

its return address in its stack frame and its arguments in callee-saved regis ters, 

since the routine may make calls that need to use registers $a0–$a2 and $ra. Th

e 

function uses callee-saved registers, since they hold values that persist over the 
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lifetime of the function, which includes several calls that could potentially modify 

registers. 

.text

.globl 

tak

tak:



subu 

$sp, $sp, 40

sw 

$ra, 

32($sp)



sw 

$s0, 16($sp) 

# x

move  $s0, 

$a0



sw 

$s1, 20($sp) 

# y

move  $s1, 

$a1



sw 

$s2, 24($sp) 

# z

move  $s2, 

$a2



sw 

$s3, 28($sp) 

# temporary

Th

e routine then begins execution by testing if y < x. If not, it branches to label 

L1, which is shown below. 



bge 

$s1, $s0, L1 

# if (y < x)

If  y < x, then it executes the body of the routine, which contains four recursive 

calls. Th

e fi rst call uses almost the same arguments as its parent:



addiu 

$a0, $s0, -1

move  $a1, 

$s1

move  $a2, 

$s2



jal 

tak 

# tak (x - 1, y, z)

move  $s3, 

$v0

Note that the result from the fi rst recursive call is saved in register $s3, so that it 

can be used later. 

Th

e function now prepares arguments for the second recursive call. 



addiu 

$a0, $s1, -1

move  $a1, 

$s2

move  $a2, 

$s0



jal 

tak 

# tak (y - 1, z, x)

In the instructions below, the result from this recursive call is saved in register 

$s0. But fi rst we need to read, for the last time, the saved value of the fi rst argu-

ment from this register. 
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addiu 

$a0, $s2, -1

move 

$a1, 

$s0

move 

$a2, 

$s1

move 

$s0, 

$v0



jal 

tak 

# tak (z - 1, x, y)

Aft er the three inner recursive calls, we are ready for the fi nal recursive call. Aft er 

the call, the function’s result is in $v0 and control jumps to the function’s epilogue. 

move $a0, 

$s3

move $a1, 

$s0

move $a2, 

$v0

jal tak 

# 

tak (tak(...), tak(...), tak(...))

addiu 

$v0, $v0, 1

j L2

Th

is code at label L1 is the consequent of the  if-then-else statement. It just moves 

the value of argument z into the return register and falls into the function epilogue. 

L1:

move  $v0, 

$s2

Th

e code below is the function epilogue, which restores the saved registers and 

returns the function’s result to its caller. 

L2:

lw 

$ra, 

32($sp)

lw 

$s0, 

16($sp)

lw 

$s1, 

20($sp)

lw 

$s2, 

24($sp)

lw 

$s3, 

28($sp)



addiu 

$sp, $sp, 40

jr 

$ra

Th

e main routine calls the tak function with its initial arguments, then takes the 

computed result (7) and prints it using SPIM’s system call for printing integers. 

.globl main

main:



subu 

$sp, $sp, 24

sw 

$ra, 

16($sp)

li 

$a0, 

18

li 

$a1, 

12
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li 

$a2, 

6



jal 

tak 

# tak(18, 12, 6)

move  $a0, 

$v0



li 

$v0, 1 

# print_int syscall

syscall

lw 

$ra, 

16($sp)



addiu 

$sp, $sp, 24

jr 

$ra

 A.7 

Exceptions and Interrupts

Section 4.9 of Chapter 4 describes the MIPS exception facility, which responds both 

to exceptions caused by errors during an instruction’s execution and to external 

interrupts caused by I/O devices. Th

is section describes exception and interrupt  interrupt handler 

handling in more detail.1 In MIPS processors, a part of the CPU called  coprocessor 0  A piece of code that is run records the information the soft ware needs to handle excep tions and interrupts.  as a result of an exception Th

e MIPS simulator SPIM does not implement all of copro cessor 0’s registers, since 

or an interrupt. 

many are not useful in a simulator or are part of the memory system, which SPIM 

does not implement. However, SPIM does provide the following coprocessor 0 

registers:

Register

Register

name

number

Usage

BadVAddr 

8 

memory address at which an offending memory reference occurred 

Count 9 

timer 

Compare 

11

value compared against timer that causes interrupt when they match

Status 

12

interrupt mask and enable bits

Cause

13

exception type and pending interrupt bits 

EPC

14

address of instruction that caused exception

Confi g

16

confi guration of machine

1. Th

is section discusses exceptions in the MIPS-32 architecture, which is what SPIM imple ments 

in Version 7.0 and later. Earlier versions of SPIM implemented the MIPS-1 architecture, which 

handled exceptions slightly diff erently. Converting programs from these versions to run on 

MIPS-32 should not be diffi

cult, as the changes are limited to the Status and Cause register fi elds 

and the  replacement of the rfe instruction by the eret instruction. 
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Th

ese seven registers are part of coprocessor 0’s register set. Th

ey are accessed 

by the mfc0 and mtc0 instructions. Aft er an exception, register EPC contains the 

address of the instruction that was executing when the exception occurred. If the 

exception was caused by an external interrupt, then the instruction will not have 

started executing. All other exceptions are caused by the execution of the instruc-

tion at EPC, except when the off ending instruction is in the delay slot of a branch 

or jump. In that case, EPC points to the branch or jump instruction and the BD bit 

is set in the Cause register. When that bit is set, the exception handler must look 

at EPC + 4 for the off ending instruction. However, in either case, an excep tion 

handler properly resumes the program by returning to the instruction at EPC. 

If the instruction that caused the exception made a memory access, register 

BadVAddr contains the referenced memory location’s address. 

Th

e Count register is a timer that increments at a fi xed rate (by default, every 

10 milliseconds) while SPIM is running. When the value in the Count register 

equals the value in the Compare register, a hardware interrupt at priority level 5 

occurs. 

Figure A.7.1 shows the subset of the Status register fi elds implemented by the MIPS simulator SPIM. Th

e interrupt mask fi eld contains a bit for each of the 

six hardware and two soft ware interrupt levels. A mask bit that is 1 allows inter-

rupts at that level to interrupt the processor. A mask bit that is 0 disables inter-

rupts at that level. When an interrupt arrives, it sets its interrupt pending bit in the 

Cause register, even if the mask bit is disabled. When an interrupt is pending, it will 

interrupt the processor when its mask bit is subsequently enabled. 

Th

e user mode bit is 0 if the processor is running in kernel mode and 1 if it is 

running in user mode. On SPIM, this bit is fi xed at 1, since the SPIM processor 

does not implement kernel mode. Th

e exception level bit is normally 0, but is set to 

1 aft er an exception occurs. When this bit is 1, interrupts are disabled and the EPC 

is not updated if another exception occurs. Th

is bit prevents an exception handler 

from being disturbed by an interrupt or exception, but it should be reset when the 

handler fi nishes. If the interrupt enable bit is 1, interrupts are allowed. If it is 

0, they are disabled. 

Figure A.7.2 shows the subset of Cause register fi elds that SPIM implements. 

Th

e branch delay bit is 1 if the last exception occurred in an instruction executed in 

the delay slot of a branch. Th

e interrupt pending bits become 1 when an inter rupt 
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upt le

vel

User mode Exception le Interr enab

15

8

4

1 0

Interrupt

mask

FIGURE A.7.1  The Status register.  
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15

8

6

2

Branch

Pending

Exception

delay

interrupts

code

FIGURE A.7.2  The Cause register.  

is raised at a given hardware or soft ware level. Th

e exception code register describes 

the cause of an exception through the following codes:

Number

Name

Cause of exception

0

Int

interrupt (hardware)

4

AdEL

address error exception (load or instruction fetch) 

5

AdES

address error exception (store) 

6

IBE

bus error on instruction fetch 

7

DBE

bus error on data load or store 

8

Sys

syscall exception 

9

Bp

breakpoint exception 

10

RI

reserved instruction exception

11

CpU

coprocessor unimplemented

12

Ov

arithmetic overfl ow exception

13

Tr

trap

15

FPE

fl oating point

Exceptions and interrupts cause a MIPS processor to jump to a piece of code, 

at address 80000180hex (in the kernel, not user address space), called an  exception 

 handler. Th

is code examines the exception’s cause and jumps to an appropriate point 

in the operating system. Th

e operating system responds to an exception either by 

terminating the process that caused the exception or by performing some action. 

A process that causes an error, such as executing an unimplemented instruction, is 

killed by the operating system. On the other hand, other exceptions such as page 
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faults are requests from a process to the operating system to perform a service, 

such as bringing in a page from disk. Th

e operating system processes these requests 

and resumes the process. Th

e fi nal type of exceptions are interrupts from external 

devices. Th

ese generally cause the operating system to move data to or from an I/O 

device and resume the interrupted process. 

Th

e code in the example below is a simple exception handler, which invokes 

a routine to print a message at each exception (but not interrupts). Th

is code is 

similar to the exception handler (exceptions.s) used by the SPIM simulator. 

Exception Handler

Th

e exception handler fi rst saves register $at, which is used in pseudo-

EXAMPLE

instructions in the handler code, then saves $a0 and $a1, which it later uses to 

pass arguments. Th

e exception handler cannot store the old values from these 

registers on the stack, as would an ordinary routine, because the cause of the 

exception might have been a memory reference that used a bad value (such 

as 0) in the stack pointer. Instead, the exception handler stores these registers 

in an exception handler register  ($k1, since it can’t access memory without 

using $at) and two memory locations (save0 and save1). If the exception 

routine itself could be interrupted, two locations would not be enough since 

the second exception would overwrite values saved during the fi rst exception. 

However, this simple exception handler fi nishes running before it enables 

interrupts, so the problem does not arise. 

.ktext 0x80000180

mov $k1, $at    # Save $at register

sw  $a0, save0  # Handler is not re-entrant and can’t use

sw  $a1, save1  # stack to save $a0, $a1

# Don’t need to save $k0/$k1

Th

e exception handler then moves the Cause and EPC registers into CPU 

registers. Th

e Cause and EPC registers are not part of the CPU register set. 

In stead, they are registers in coprocessor 0, which is the part of the CPU that 

han dles exceptions. Th

e instruction  mfc0  $k0,  $13 moves coprocessor 0’s 

register 13 (the Cause register) into CPU register $k0. Note that the exception 

handler need not save registers $k0 and $k1, because user programs are not 

supposed to use these registers. Th

e exception handler uses the value from the 

Cause reg ister to test whether the exception was caused by an interrupt (see 

the preceding ta ble). If so, the exception is ignored. If the exception was not an 

interrupt, the handler calls print_excp to print a message. 
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mfc0   $k0, $13        # Move Cause into $k0

srl  

$a0, $k0, 2     # Extract ExcCode field

andi   $a0, $a0, Oxf

bgtz   $a0, done       # Branch if ExcCode is Int (0)

mov  

$a0, $k0        # Move Cause into $a0

mfco   $a1, $14        # Move EPC into $a1

jal  

print_excp      # Print exception error message

Before returning, the exception handler clears the Cause register; resets 

the Status register to enable interrupts and clear the EXL bit, which allows 

subse quent exceptions to change the EPC register; and restores registers $a0, 

$a1, and $at. It then executes the eret (exception return) instruction, which 

returns to the instruction pointed to by EPC. Th

is exception handler returns 

to the instruction following the one that caused the exception, so as to not 

re-execute the faulting instruction and cause the same exception again. 

done:    mfc0    $k0, $14       # Bump EPC

addiu   $k0, $k0, 4    # Do not re-execute

# faulting instruction

mtc0    $k0, $14       # EPC

mtc0    $0, $13        # Clear Cause register

mfc0    $k0, $12       # Fix Status register

andi    $k0, Oxfffd    # Clear EXL bit

ori     $k0, Ox1       # Enable interrupts

mtc0    $k0, $12

lw      $a0, save0     # Restore registers

lw      $a1, save1

mov     $at, $k1

eret                   # Return to EPC

.kdata

save0:   .word 0

save1:   .word 0
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Elaboration:  On real MIPS processors, the return from an exception handler is more 

complex. The exception handler cannot always jump to the instruction following EPC. For 

example, if the instruction that caused the exception was in a branch instruction’s delay 

slot (see Chapter 4), the next instruction to execute may not be the following instruction 

in memory. 

 A.8 

Input and Output

SPIM simulates one I/O device: a memory-mapped console on which a program 

can read and write characters. When a program is running, SPIM connects its 

own terminal (or a separate console window in the X-window version xspim or 

the Windows version PCSpim) to the processor. A MIPS program running on 

SPIM can read the characters that you type. In addition, if the MIPS program 

writes characters to the terminal, they appear on SPIM’s terminal or console win-

dow. One exception to this rule is control-C: this character is not passed to the 

program, but instead causes SPIM to stop and return to command mode. When 

the program stops running (for example, because you typed control-C or because 

the program hit a breakpoint), the terminal is reconnected to SPIM so you can type 

SPIM commands. 

To use memory-mapped I/O (see below), spim or xspim must be started 

with the -mapped_io fl ag. PCSpim can enable memory-mapped I/O through a 

command line fl ag or the “Settings” dialog. 

Th

e terminal device consists of two independent units: a  receiver and a  trans-

 mitter. Th

e receiver reads characters from the keyboard. Th

e transmitter displays 

characters on the console. Th

e two units are completely independent. Th

is means, 

for example, that characters typed at the keyboard are not automatically echoed on 

the display. Instead, a program echoes a character by reading it from the receiver 

and writing it to the transmitter. 

A program controls the terminal with four memory-mapped device registers, 

as shown in Figure A.8.1. “Memory-mapped’’ means that each register  appears as a special memory location. Th

e  Receiver Control register is at location ff ff 0000hex. 

Only two of its bits are actually used. Bit 0 is called “ready’’: if it is 1, it means 

that a character has arrived from the keyboard but has not yet been read from the 

Receiver Data register. Th

e ready bit is read-only: writes to it are ignored. Th

e ready 

bit changes from 0 to 1 when a character is typed at the keyboard, and it changes 

from 1 to 0 when the character is read from the Receiver Data register. 
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Unused

1

1

Receiver control

(0xffff0000)

Interrupt

Ready

enable

Unused

8

Receiver data

(0xffff0004)

Received byte

Unused

1

1

Transmitter control

(0xffff0008)

Interrupt

Ready

enable

8

Unused

Transmitter data

(0xffff000c)

Transmitted byte

FIGURE A.8.1  The terminal is controlled by four device registers, each of which appears 

as a memory location at the given address. Only a few bits of these registers are actually used. Th e 

others always read as 0s and are ignored on writes. 

Bit 1 of the Receiver Control register is the keyboard “interrupt enable.” Th

is 

bit may be both read and written by a program. Th

e interrupt enable is initially 0. 

If it is set to 1 by a program, the terminal requests an interrupt at hardware level 1 

whenever a character is typed, and the ready bit becomes 1. However, for the inter-

rupt to aff ect the processor, interrupts must also be enabled in the Status register 

(see Section A.7). All other bits of the Receiver Control register are unused. 

Th

e second terminal device register is the  Receiver Data register (at address 

ff ff 0004hex). Th e low-order eight bits of this register contain the last character typed 

at the keyboard. All other bits contain 0s. Th

is register is read-only and changes 

only when a new character is typed at the keyboard. Reading the Receiver Data 

register resets the ready bit in the Receiver Control register to 0. Th

e value in this 

register is undefi ned if the Receiver Control register is 0. 

Th

e third terminal device register is the  Transmitter Control register (at address 

ff ff 0008hex). Only the low-order two bits of this register are used. Th ey behave much 

like the corresponding bits of the Receiver Control register. Bit 0 is called “ready’’ 
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and is read-only. If this bit is 1, the transmitter is ready to accept a new character 

for output. If it is 0, the transmitter is still busy writing the previous character. 

Bit 1 is “interrupt enable’’ and is readable and writable. If this bit is set to 1, then 

the terminal requests an interrupt at hardware level 0 whenever the transmitter is 

ready for a new character, and the ready bit becomes 1. 

Th

e fi nal device register is the  Transmitter Data register (at address ff ff 000chex). 

When a value is written into this location, its low-order eight bits (i.e., an ASCII 

character as in Figure 2.15 in Chapter 2) are sent to the console. When the Trans-

mitter Data register is written, the ready bit in the Transmitter Control register is 

reset to 0. Th

is bit stays 0 until enough time has elapsed to transmit the character 

to the terminal; then the ready bit becomes 1 again. Th

e Trans mitter Data register 

should only be written when the ready bit of the Transmitter Control register is 1. 

If the transmitter is not ready, writes to the Transmitter Data register are ignored 

(the write appears to succeed but the character is not output). 

Real computers require time to send characters to a console or terminal. Th

ese 

time lags are simulated by SPIM. For example, aft er the transmitter starts to write a 

character, the transmitter’s ready bit becomes 0 for a while. SPIM measures time in 

instructions executed, not in real clock time. Th

is means that the transmitter does 

not become ready again until the processor executes a fi xed number of instructions. 

If you stop the machine and look at the ready bit, it will not change. However, if you 

let the machine run, the bit eventually changes back to 1. 

 A.9 SPIM

SPIM is a soft ware simulator that runs assembly language programs written for 

processors that implement the MIPS-32 architecture, specifi cally Release 1 of this 

architecture with a fi xed memory mapping, no caches, and only coprocessors 0 

and 1.2 SPIM’s name is just MIPS spelled backwards. SPIM can read and immedi-

ately execute assembly language fi les. SPIM is a self-contained system for running 

2.  Earlier versions of SPIM (before 7.0) implemented the MIPS-1 architecture used in the origi nal MIPS R2000 processors. Th

is architecture is almost a proper subset of the MIPS-32 architec ture, 

with the diff erence being the manner in which exceptions are handled. MIPS-32 also introduced 

approximately 60 new instructions, which are supported by SPIM. Programs that ran on the 

earlier versions of SPIM and did not use exceptions should run unmodifi ed on newer ver sions of 

SPIM. Programs that used exceptions will require minor changes. 
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MIPS programs. It contains a debugger and provides a few operating system-like 

services. SPIM is much slower than a real computer (100 or more times). How ever, 

its low cost and wide availability cannot be matched by real hardware! 

An obvious question is, “Why use a simulator when most people have PCs that 

contain processors that run signifi cantly faster than SPIM?” One reason is that 

the processors in PCs are Intel 80×86s, whose architecture is far less regular and 

far more complex to understand and program than MIPS processors. Th

e MIPS 

architecture may be the epitome of a simple, clean RISC machine. 

In addition, simulators can provide a better environment for assembly pro-

gramming than an actual machine because they can detect more errors and  provide 

a better interface than can an actual computer. 

Finally, simulators are useful tools in studying computers and the programs that 

run on them. Because they are implemented in soft ware, not silicon, simulators can 

be examined and easily modifi ed to add new instructions, build new systems such 

as multiprocessors, or simply collect data. 

Simulation of a Virtual Machine

Th

e basic MIPS architecture is diffi

cult to program directly because of delayed 

branches, delayed loads, and restricted address modes. Th

is diffi

culty is tolerable 

since these computers were designed to be programmed in high-level languages 

and present an interface designed for compilers rather than assembly language 

programmers. A good part of the programming complexity results from delayed 

instructions. A  delayed branch requires two cycles to execute (see the  Elabora tions 

on pages 284 and 322 of Chapter 4). In the second cycle, the instruction imme-

diately following the branch executes. Th

is instruction can perform useful work 

that normally would have been done before the branch. It can also be a nop (no 

operation) that does nothing. Similarly,  delayed loads require two cycles to bring 

a value from memory, so the instruction immediately  following a load cannot use 

the value (see Section 4.2 of Chapter 4). 

MIPS wisely chose to hide this complexity by having its assembler implement 

a  virtual machine.   Th

is virtual computer appears to have nondelayed branches  virtual machine 

and loads and a richer instruction set than the actual hardware. Th

e assembler  A virtual computer 

 reorga nizes (rearranges) instructions to fi ll the delay slots. Th

e virtual computer  that appears to have 

also provides  pseudoinstructions, which appear as real instructions in assembly  nondelayed branches and loads and a richer 

lan guage programs. Th

e hardware, however, knows nothing about pseudoinstruc-

instruction set than the 

tions, so the assembler must translate them into equivalent sequences of actual  actual hardware. 

machine instructions. For example, the MIPS hardware only provides instructions 

to branch when a register is equal to or not equal to 0. Other conditional branches, 

such as one that branches when one register is greater than another, are synthesized 

by comparing the two registers and branching when the result of the comparison 

is true (nonzero). 
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By default, SPIM simulates the richer virtual machine, since this is the machine 

that most programmers will fi nd useful. However, SPIM can also simulate the 

delayed branches and loads in the actual hardware. Below, we describe the virtual 

machine and only mention in passing features that do not belong to the actual 

hardware. In doing so, we follow the convention of MIPS assembly language pro-

grammers (and compilers), who routinely use the extended machine as if it was 

implemented in silicon. 

Getting Started with SPIM

Th

e rest of this appendix introduces SPIM and the MIPS R2000 Assembly lan-

guage. Many details should never concern you; however, the sheer volume of 

information can sometimes obscure the fact that SPIM is a simple, easy-to-use 

program. Th

is section starts with a quick tutorial on using SPIM, which should 

enable you to load, debug, and run simple MIPS programs. 

SPIM comes in diff erent versions for diff erent types of computer systems. Th

e 

one constant is the simplest version, called spim, which is a command-line-driven 

pro gram that runs in a console window. It operates like most programs of this type: 

you type a line of text, hit the return key, and spim executes your command. 

Despite its lack of a fancy interface, spim can do everything that its fancy cousins 

can do. 

Th

ere are two fancy cousins to spim. Th

e version that runs in the X-windows 

environment of a UNIX or Linux system is called xspim. xspim is an easier pro-

gram to learn and use than spim, because its commands are always visible on the 

screen and because it continually displays the machine’s registers and memory. 

Th

e other fancy version is called PCspim and runs on Microsoft  Windows. Th

e 

UNIX and Windows versions of SPIM 

are available online at the publisher’s 

companion Web site for this book. Tutorials on xspim, pcSpim, spim, and SPIM 

command-line options   are also online. 

If you are going to run SPIM on a PC running Microsoft  Windows, you should 

fi rst look at the tutorial on PCSpim   on the companion Web site. If you are going 

to run SPIM on a computer running UNIX or Linux, you should read the tutorial 

on xspim  . 

Surprising Features

Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator, and 

certain things are not identical to an actual computer. Th

e most obvious diff er-

ences are that instruction timing and the memory systems are not identical. 

SPIM does not simulate caches or memory latency, nor does it accurately refl ect 

fl oating-point operation or multiply and divide instruction delays. In addition, 

the fl oating-point instructions do not detect many error conditions, which would 

cause exceptions on a real machine. 
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Another surprise (which occurs on the real machine as well) is that a pseudo-

instruction expands to several machine instructions. When you single-step or 

exam ine memory, the instructions that you see are diff erent from the source 

program. Th

e correspondence between the two sets of instructions is fairly simple, 

since SPIM does not reorganize instructions to fi ll slots. 

Byte Order

Processors can number bytes within a word so the byte with the lowest number is 

either the left most or rightmost one. Th

e convention used by a machine is called 

its  byte order. MIPS processors can operate with either  big-endian or   little-endian byte order. For example, in a big-endian machine, the directive .byte 0, 1, 2, 3 

would result in a memory word containing

Byte #

0

1

2

3

while in a little-endian machine, the word would contain

Byte #

3

2

1

0

SPIM operates with both byte orders. SPIM’s byte order is the same as the byte 

order of the underlying machine that runs the simulator. For example, on an Intel 

80x86, SPIM is little-endian, while on a Macintosh or Sun SPARC, SPIM is big-

endian. 

System Calls

SPIM provides a small set of operating system–like services through the system 

call (syscall) instruction. To request a service, a program loads the system call 

code (see Figure A.9.1) into register $v0 and arguments into registers $a0–$a3 

(or $f12 for fl oating-point values). System calls that return values put their results 

in register $v0 (or $f0 for fl oating-point results). For example, the follow ing code 

prints "the answer = 5":



.data

str:

.asciiz “the answer = ” 



.text

A-44 

Appendix A  Assemblers, Linkers, and the SPIM Simulator

Service

System call code

Arguments

Result

print_int

1

$a0 = integer

print_float

2

$f12 = fl oat

print_double

3

$f12 = double

print_string

4

$a0 = string

read_int

5

integer (in $v0) 

read_float

6

fl oat (in $f0) 

read_double

7

double (in $f0) 

read_string

8

$a0 = buffer, $a1 = length

sbrk

9

$a0 = amount

address (in $v0) 

exit

10

print_char

11

$a0 = char

read_char

12

char (in $v0)

open

$a0 = fi lename (string), 

fi le descriptor (in $a0)

13

$a1 = fl ags, $a2 = mode

read

$a0 = fi le descriptor, 

num chars read (in 

14

$a1 = buffer, $a2 = length

$a0)

write

$a0 = fi le descriptor, 

num chars written (in 

15

$a1 = buffer, $a2 = length

$a0)

close

16

$a0 = fi le descriptor

exit2

17

$a0 = result

FIGURE A.9.1  System services.  

li  

$v0, 4    # system call code for print_str

la 

$a0, str  # address of string to print 



syscall 

# print the string



li 

$v0, 1    # system call code for print_int



li 

$a0, 5    # integer to print



syscall 

# print it

Th

e print_int system call is passed an integer and prints it on the console. 

print_float prints a single fl oating-point  number;  print_double prints 

a double precision number; and print_string is passed a pointer to a null- 

terminated string, which it writes to the console. 

Th

e system calls read_int, read_float, and read_double to read an entire 

line of input up to and including the newline. Characters following the number 

are ignored. read_string has the same semantics as the UNIX library routine 

fgets. It reads up to  n − 1 characters into a buff er and terminates the string with 

a null byte. If fewer than  n − 1 characters are on the current line, read_string 

reads up to and including the newline and again null-terminates the string. 
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 Warning: Programs that use these syscalls to read from the terminal should not use 

memory-mapped I/O (see Section A.8). 

sbrk returns a pointer to a block of memory containing  n additional bytes. 

exit stops the program SPIM is running. exit2 terminates the SPIM pro gram, 

and the argument to exit2 becomes the value returned when the SPIM simulator 

itself terminates. 

print_char and read_char write and read a single character. open, read, 

write, and close are the standard UNIX library calls. 

  A.10  MIPS R2000 Assembly Language

A MIPS processor consists of an integer processing unit (the CPU) and a collec-

tion of coprocessors that perform ancillary tasks or operate on other types of data, 

such as fl oating-point numbers (see Figure A.10.1). SPIM simulates two coprocessors. Coprocessor 0 handles exceptions and interrupts. Coprocessor 1 is the 

fl oating-point unit. SPIM simulates most aspects of this unit. 

Addressing Modes

MIPS is a load store architecture, which means that only load and store instruc tions 

access memory. Computation instructions operate only on values in regis ters. Th

e 

bare machine provides only one memory-addressing mode: c(rx), which uses 

the sum of the immediate c and register rx as the address. Th

e virtual machine 

provides the following addressing modes for load and store instructions:

Format

Address computation

(register)

contents of register 

imm

immediate 

imm (register)

immediate + contents of register 

label

address of label 

label ± imm

address of label + or – immediate 

label ± imm (register)

address of label + or – (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is 

 aligned if its memory address is a multiple of its size in bytes. Th

erefore, a half word 
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Memory

CPU

Coprocessor 1 (FPU)

Registers

Registers

$0

$0

$31

$31

Arithmetic

Multiply

unit

divide

Arithmetic

Lo

Hi

unit

Coprocessor 0 (traps and memory)

Registers

BadVAddr

Cause

Status

EPC

FIGURE A.10.1  MIPS R2000 CPU and FPU.  

object must be stored at even addresses, and a full word object must be stored at 

addresses that are a multiple of four. However, MIPS provides some instructions to 

manipulate unaligned data (lwl, lwr, swl, and swr). 

Elaboration:  The MIPS assembler (and SPIM) synthesizes the more complex address-

ing modes by producing one or more instructions before the load or store to compute a 

complex address. For example, suppose that the label table referred to memory loca-

tion 0x10000004 and a program contained the instruction

ld $a0, table + 4($a1)

The assembler would translate this instruction into the instructions
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lui $at, 4096

addu $at, $at, $a1

lw $a0, 8($at)

The fi rst instruction loads the upper bits of the label’s address into register $at, which 

is the register that the assembler reserves for its own use. The second instruction adds 

the contents of register $a1 to the label’s partial address. Finally, the load instruction 

uses the hardware address mode to add the sum of the lower bits of the label’s address 

and the offset from the original instruction to the value in register $at. 

Assembler Syntax

Comments in assembler fi les begin with a sharp sign (#). Everything from the 

sharp sign to the end of the line is ignored. 

Identifi ers are a sequence of alphanumeric characters, underbars (_), and dots 

(.) that do not begin with a number. Instruction opcodes are reserved words that 

 cannot be used as identifi ers. Labels are declared by putting them at the beginning 

of a line followed by a colon, for example: 

.data

item: .word 1

.text



.globl main 

# Must be global

main: lw 

$t0, item

Numbers are base 10 by default. If they are preceded by  0x,  they are interpreted 

as hexadecimal. Hence, 256 and 0x100 denote the same value. 

Strings are enclosed in double quotes (”). Special characters in strings follow the 

C convention: 



■ newline  \n



■ tab 

\t



■ quote 

\” 

SPIM supports a subset of the MIPS assembler directives:

.align n 

Align the next datum on a 2 n byte boundary. For 

example,  .align 2 aligns the next value on a word 

boundary. .align 0 turns off  automatic alignment 

of .half, .word, .float, and .double  directives 

until the next .data or .kdata directive. 

.ascii str 

Store the string  str in memory, but do not null-

terminate it. 
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.asciiz str   

Store the string  str in memory and null- terminate it. 

.byte b1,..., bn  

Store 

the 

 n values in successive bytes of memory. 

.data <addr> 

Subsequent items are stored in the data segment. 

If the optional argument  addr is present, subse-

quent items are stored starting at address  addr. 

.double d1,..., dn   Store the  n  fl 

oating-point double preci-

sion  num-bers in successive memory locations. 

.extern sym size   

Declare that the datum stored at  sym is  size bytes 

large and is a global label. Th

is directive enables 

the assembler to store the datum in a portion of 

the data segment that is effi

ciently  accessed  via 

register $gp. 

.float f1,..., fn  

Store 

the 

 n fl oating-point single precision num-

bers in successive memory locations. 

.globl sym 

Declare that label  sym is global and can be refer-

enced from other fi les. 

.half h1,..., hn 

Store the  n 16-bit quantities in successive mem ory 

halfwords. 

.kdata <addr> 

Subsequent data items are stored in the kernel 

data segment. If the optional argument  addr is 

present, subsequent items are stored starting at 

address  addr. 

.ktext <addr> 

Subsequent items are put in the kernel text seg-

ment. In SPIM, these items may only be instruc-

tions or words (see the .word directive below). If 

the optional argument  addr is present, subse quent 

items are stored starting at address  addr. 

.set noat and .set at    Th

e fi rst directive prevents SPIM from complain-

ing about subsequent instructions that use regis ter 

$at. Th

e second directive re-enables the warning. 

Since pseudoinstructions expand into code that 

uses register $at, programmers must be very care-

ful about leaving values in this register. 

.space n Allocates 

 n bytes of space in the current segment 

(which must be the data segment in SPIM). 
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.text <addr> 

Subsequent items are put in the user text seg ment. 

In SPIM, these items may only be instruc tions 

or words (see the .word directive below). If the 

optional  argument   addr is present, subse quent 

items are stored starting at address  addr. 

.word w1,..., wn  

Store 

the 

 n 32-bit quantities in successive mem ory 

words. 

SPIM does not distinguish various parts of the data segment (.data, .rdata, and 

.sdata). 

Encoding MIPS Instructions

Figure A.10.2 explains how a MIPS instruction is encoded in a binary number. 

Each column contains instruction encodings for a fi eld (a contiguous group of 

bits) from an instruction. Th

e numbers at the left  margin are values for a fi eld. 

For example, the j opcode has a value of 2 in the opcode fi eld. Th

e text at the top 

of a column names a fi eld and specifi es which bits it occupies in an instruction. 

For example, the op fi eld is contained in bits 26–31 of an instruction. Th

is fi eld 

encodes most instructions. However, some groups of instructions use additional 

fi elds to distinguish related instructions. For example, the diff erent fl oating-point 

instructions are specifi ed by bits 0–5. Th

e arrows from the fi rst column show which 

opcodes use these additional fi elds. 

Instruction Format

Th

e rest of this appendix describes both the instructions implemented by actual 

MIPS hardware and the pseudoinstructions provided by the MIPS assembler. Th

e 

two types of instructions are easily distinguished. Actual instructions depict the 

fi elds in their binary representation. For example, in 

Addition (with overfl ow)

0

rs

rt

rd

0

0x20

add rd, rs, rt

6

5

5

5

5

6

the add instruction consists of six fi elds. Each fi eld’s size in bits is the small num ber 

below the fi eld. Th

is instruction begins with six bits of 0s. Register specifi ers begin 

with an  r,  so the next fi eld is a 5-bit register specifi er called rs. Th

is is the same 

register that is the second argument in the symbolic assembly at the left  of this 

line. Another common fi eld is imm16, which is a 16-bit immediate number. 
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 (16:16)

 (16:16)

0 movf

0 movf.  f

1 movt

1 movt.  f

 10

 16 op(31:26)

 10

 funct(5:0)

 10

 funct(5:0)

 funct(5:0)

0

00

0

sll

0 add.  f

madd

1

01

1

1 sub.  f

maddu

2

02 j

2

srl

2 mul.  f

mul

3

03 jal

3

sra

3 div.  f

4

04 beq

4

sllv

4 sqrt.  f

msub

5

05 bne

5

5 abs.  f

msubu

6

06 blez

6

srlv

6 mov.  f

7

07 bgtz

7

srav

7 neg.  f

8

08 addi

8

jr

8

9

09 addiu

9

jalr

9

10

0a slti

10

movz

10

11

0b sltiu

11

movn

11

12

0c andi

12

syscall

12 round.  w.  f

13

0d ori

13

break

13 trunc.  w.  f

14

0e xori

14

14 cell.  w.  f

15

0 f lui

15

sync

15 floor.  w.  f

16

10  z = 0

16

mfhi

16

17

11  z = 1

17

mthi

17

18

12  z = 2

18

mflo

18 movz.  f

19

13

19

mtlo

19 movn.  f

20

14 beql

20

20

21

15 bnel

21

21

22

16 blezl

22

22

23

17 bgtzl

23

23

24

18

24

mult

24

25

19

25

multu

25

26

1a

26

div

26

27

1b

27

divu

27

28

1c

28

28

29

1d

29

29

30

if  z = 1 or  z = 2

1e

 rs

 funct

 rt

30

30

31

1 f

 (25:21)

 (17:16)

 (4:0)

 (20:16)

31

31

32

20 lb

0

mfc z

0 bc z f

0

0

bltz

32

add

32 cvt.s.  f

clz

33

21 lh

1

1 bc z t

1

tlbr

1

bgez

33

addu

33 cvt.d.  f

clo

34

22 lwl

2

cfc z

2 bc z fl

2

tlbwi

2

bltzl

34

sub

34

35

23 lw

3

3 bc z tl

3

3

bgezl

35

subu

35

36

24 lbu

4

mtc z

4

4

36

and

36 cvt.w.  f

37

25 lhu

5

5

5

37

or

37

38

26 lwr

6

ctc z

6

tlbwr

6

38

xor

38

39

27

7

7

7

39

nor

39

40

28 sb

8

8

tlbp

8

tgei

40

40

41

29 sh

9

9

9

tgeiu

41

41

42

2a swl

10

10

10

tlti

42

slt

42

43

2b sw

11

11

11

tltiu

43

sltu

43

44

2c

12

12

12

tegi

44

44

45

2d

13

13

13

45

45

46

2e swr

14

if  z = 0

14

14

tnei

46

46

47

2 f cache

15

15

15

47

47

48

30 ll

16

cop z

16

16

bltzal

48

tge

48 c.f.  f

49

31 lwc1

17

cop z

17

17

bgezal

49

tgeu

49 c.un.  f

50

32 lwc2

18

if  z = 1,if  z = 1, 

18

18

bltzall

50

tlt

50 c.eq.  f

51

33 pref

19

 f = d

 f = s

19

19

bgczall

51

tltu

51 c.ueq.  f

52

34

20

20

20

52

teq

52 c.olt.  f

53

35 ldc1

21

21

21

53

53 c.ult.  f

54

36 ldc2

22

22

22

54

tne

54 c.ole.  f

55

37

23

23

23

55

55 c.ule.  f

56

38 sc

24

24

eret

24

56

56 c.sf.  f

57

39 swc1

25

25

25

57

57 c.ngle.  f

58

3a swc2

26

26

26

58

58 c.seq.  f

59

3b

27

27

27

59

59 c.ngl.  f

60

3c

28

28

28

60

60 c.lt.  f

61

3d sdc1

29

29

29

61

61 c.nge.  f

62

3e sdc2

30

30

30

62

62 c.le.  f

63

3 f

31

31

deret

31

63

63 c.ngt.  f

FIGURE A.10.2  MIPS opcode map.  Th

e values of each fi eld are shown to its left . Th

e fi rst column shows the values in base 10, and the 

second shows base 16 for the op fi eld (bits 31 to 26) in the third column. Th

is op fi eld completely specifi es the MIPS operation except for six 

op values:  0, 1, 16, 17, 18, and 19. Th

ese operations are determined by other fi elds, identifi ed by pointers. Th

e last fi eld (funct) uses “f ” to 

mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. Th

e second fi eld (rs) uses “z” to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19, respectively. If rs = 16, the operation is specifi ed elsewhere: if  z = 0, the operations are specifi ed in the fourth fi eld (bits 4 to 0); if  z = 1, then the operations are in the last fi eld with  f = s. If rs = 17 and  z = 1, then the operations are in the last fi eld with  f = d. 
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Pseudoinstructions follow roughly the same conventions, but omit instruction 

encoding information. For example:

Multiply (without overfl ow)

mul rdest, rsrc1, src2

 pseudoinstruction

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a regis-

ter or an immediate value. In general, the assembler and SPIM translate a more 

general form of an instruction (e.g., add $v1, $a0, 0x55) to a specialized form 

(e.g., addi $v1, $a0, 0x55). 

Arithmetic and Logical Instructions

Absolute value

abs rdest, rsrc

 pseudoinstruction

Put the absolute value of register rsrc in register rdest. 

Addition (with overfl ow)

0

rs

rt

rd

0

0x20

add rd, rs, rt

6

5

5

5

5

6

Addition (without overfl ow)

0

rs

rt

rd

0

0x21

addu rd, rs, rt

6

5

5

5

5

6

Put the sum of registers rs and rt into register rd. 

Addition immediate (with overfl ow)

8

rs

rt

imm

addi rt, rs, imm

6

5

5

16

Addition immediate (without overfl ow)

9

rs

rt

imm

addiu rt, rs, imm

6

5

5

16

Put the sum of register rs and the sign-extended immediate into register rt. 
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AND

0

rs

rt

rd

0

0x24

and rd, rs, rt

6

5

5

5

5

6

Put the logical AND of registers rs and rt into register rd. 

AND immediate

0xc

rs

rt

imm

andi rt, rs, imm

6

5

5

16

Put the logical AND of register rs and the zero-extended immediate into reg-

ister rt. 

Count leading ones

0x1c

rs

0

rd

0

0x21

clo rd, rs

6

5

5

5

5

6

Count leading zeros

0x1c

rs

0

rd

0

0x20

clz rd, rs

6

5

5

5

5

6

Count the number of leading ones (zeros) in the word in register rs and put 

the result into register rd. If a word is all ones (zeros), the result is 32. 

Divide (with overfl ow)

0

rs

rt

0

0x1a

div rs, rt

6

5

5

10

6

Divide (without overfl ow)

0

rs

rt

0

0x1b

divu rs, rt

6

5

5

10

6

Divide register rs by register rt. Leave the quotient in register lo and the remain-

der in register hi. Note that if an operand is negative, the remainder is unspecifi ed 

by the MIPS architecture and depends on the convention of the machine on which 

SPIM is run. 
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Divide (with overfl ow)

div rdest, rsrc1, src2

 pseudoinstruction

Divide (without overfl ow)

divu rdest, rsrc1, src2

 pseudoinstruction

Put the quotient of register rsrc1 and src2 into register rdest. 

Multiply

0

rs

rt

0

0x18

mult rs, rt

6

5

5

10

6

Unsigned multiply

0

rs

rt

0

0x19

multu rs, rt

6

5

5

10

6

Multiply registers rs and rt. Leave the low-order word of the product in register 

lo and the high-order word in register hi. 

Multiply (without overfl ow)

0x1c

rs

rt

rd

0

2

mul rd, rs, rt

6

5

5

5

5

6

Put the low-order 32 bits of the product of rs and rt into register rd. 

Multiply (with overfl ow)

mulo rdest, rsrc1, src2

 pseudoinstruction

Unsigned multiply (with overfl ow)

mulou rdest, rsrc1, src2

 pseudoinstruction

Put the low-order 32 bits of the product of register rsrc1 and src2 into register 

rdest. 
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Multiply add

0x1c

rs

rt

0

0

madd rs, rt

6

5

5

10

6

Unsigned multiply add

0x1c

rs

rt

0

1

maddu rs, rt

6

5

5

10

6

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit 

value in the concatenated registers lo and hi. 

Multiply subtract

0x1c

rs

rt

0

4

msub rs, rt

6

5

5

10

6

Unsigned multiply subtract

0x1c

rs

rt

0

5

msub rs, rt

6

5

5

10

6

Multiply registers rs and rt and subtract the resulting 64-bit product from the 64-

bit value in the concatenated registers lo and hi. 

Negate value (with overfl ow)

neg rdest, rsrc

 pseudoinstruction

Negate value (without overfl ow)

negu rdest, rsrc

 pseudoinstruction

Put the negative of register rsrc into register rdest. 

NOR

0

rs

rt

rd

0

0x27

nor rd, rs, rt

6

5

5

5

5

6

Put the logical NOR of registers rs and rt into register rd. 
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NOT

not rdest, rsrc

 pseudoinstruction

Put the bitwise logical negation of register rsrc into register rdest. 

OR

0

rs

rt

rd

0

0x25

or rd, rs, rt

6

5

5

5

5

6

Put the logical OR of registers rs and rt into register rd. 

OR immediate

0xd

rs

rt

imm

ori rt, rs, imm

6

5

5

16

Put the logical OR of register rs and the zero-extended immediate into register rt. 

Remainder

rem rdest, rsrc1, rsrc2

 pseudoinstruction

Unsigned remainder

remu rdest, rsrc1, rsrc2

 pseudoinstruction

Put the remainder of register rsrc1 divided by register rsrc2 into register  rdest. 

Note that if an operand is negative, the remainder is unspecifi ed by the MIPS 

architecture and depends on the convention of the machine on which SPIM is run. 

Shift left logical

0

rs

rt

rd

shamt

0

sll rd, rt, shamt

6

5

5

5

5

6

Shift left logical variable

0

rs

rt

rd

0

4

sllv rd, rt, rs

6

5

5

5

5

6
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Shift right arithmetic

0

rs

rt

rd

shamt

3

sra rd, rt, shamt

6

5

5

5

5

6

Shift right arithmetic variable

0

rs

rt

rd

0

7

srav rd, rt, rs

6

5

5

5

5

6

Shift right logical

0

rs

rt

rd

shamt

2

srl rd, rt, shamt

6

5

5

5

5

6

Shift right logical variable

0

rs

rt

rd

0

6

srlv rd, rt, rs

6

5

5

5

5

6

Shift  register rt left  (right) by the distance indicated by immediate shamt or the 

register rs and put the result in register rd. Note that argument rs is ignored for 

sll, sra, and srl. 

Rotate left

rol rdest, rsrc1, rsrc2

 pseudoinstruction

Rotate right

ror rdest, rsrc1, rsrc2

 pseudoinstruction

Rotate register rsrc1 left  (right) by the distance indicated by rsrc2 and put the 

result in register rdest. 

Subtract (with overfl ow)

0

rs

rt

rd

0

0x22

sub rd, rs, rt

6

5

5

5

5

6
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Subtract (without overfl ow)

0

rs

rt

rd

0

0x23

subu rd, rs, rt

6

5

5

5

5

6

Put the diff erence of registers rs and rt into register rd. 

Exclusive OR

0

rs

rt

rd

0

0x26

xor rd, rs, rt

6

5

5

5

5

6

Put the logical XOR of registers rs and rt into register rd. 

XOR immediate

0xe

rs

rt

Imm

xori rt, rs, imm

6

5

5

16

Put the logical XOR of register rs and the zero-extended immediate into reg-

ister rt. 

Constant-Manipulating Instructions

Load upper immediate

0xf

O

rt

imm

lui rt, imm

6

5

5

16

Load the lower halfword of the immediate imm into the upper halfword of reg-

ister rt. Th

e lower bits of the register are set to 0. 

Load immediate

li rdest, imm

 pseudoinstruction

Move the immediate imm into register rdest. 

Comparison Instructions

Set less than

0

rs

rt

rd

0

0x2a

slt rd, rs, rt

6

5

5

5

5

6
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Set less than unsigned

0

rs

rt

rd

0

0x2b

sltu rd, rs, rt

6

5

5

5

5

6

Set register rd to 1 if register rs is less than rt, and to 0 otherwise. 

Set less than immediate

0xa

rs

rt

imm

slti rt, rs, imm

6

5

5

16

Set less than unsigned immediate

0xb

rs

rt

imm

sltiu rt, rs, imm

6

5

5

16

Set register rt to 1 if register rs is less than the sign-extended immediate, and to 

0 otherwise. 

Set equal

seq rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise. 

Set greater than equal

sge rdest, rsrc1, rsrc2

 pseudoinstruction

Set greater than equal unsigned

sgeu rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and to 

0 otherwise. 

Set greater than

sgt rdest, rsrc1, rsrc2

 pseudoinstruction
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Set greater than unsigned

sgtu rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise. 

Set less than equal

sle rdest, rsrc1, rsrc2

 pseudoinstruction

Set less than equal unsigned

sleu rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0 

otherwise. 

Set not equal

sne rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 otherwise. 

Branch Instructions

Branch instructions use a signed 16-bit instruction  off set  fi eld; hence, they can 

jump 215  − 1  instructions (not bytes) forward or 215 instructions backward. Th

e 

 jump instruction contains a 26-bit address fi eld. In actual MIPS processors, branch 

instructions are delayed branches, which do not transfer control until the instruction 

following the branch (its “delay slot”) has executed (see Chapter 4). Delayed branches 

aff ect the off set calculation, since it must be computed relative to the address of the 

delay slot instruction (PC + 4), which is when the branch occurs. SPIM does not 

simulate this delay slot, unless the -bare or -delayed_branch fl ags are specifi ed. 

In assembly code, off sets are not usually specifi ed as numbers. Instead, an 

instructions branch to a label, and the assembler computes the distance between 

the branch and the target instructions. 

In MIPS-32, all actual (not pseudo) conditional branch instructions have a 

“likely” variant (for example, beq’s likely variant is beql), which does  not execute 

the instruction in the branch’s delay slot if the branch is not taken. Do not use 
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these instructions; they may be removed in subsequent versions of the architec ture. 

SPIM implements these instructions, but they are not described further. 

Branch instruction

b label

 pseudoinstruction

Unconditionally branch to the instruction at the label. 

Branch coprocessor false

0x11

8

 cc

0

Offset

bclf cc label

6

5

3

2

16

Branch coprocessor true

0x11

8

 cc

1

Offset

bclt cc label

6

5

3

2

16

Conditionally branch the number of instructions specifi ed by the off set if the 

fl oating-point coprocessor’s condition fl ag  numbered   cc is false (true). If  cc is omitted from the instruction, condition code fl ag 0 is assumed. 

Branch on equal

4

rs

rt

Offset

beq rs, rt, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs equals rt. 

Branch on greater than equal zero

1

rs

1

Offset

bgez rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is greater than or equal to 0. 
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Branch on greater than equal zero and link

1

rs

0x11

Offset

bgezal rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is greater than or equal to 0. Save the address of the next instruction in reg-

ister 31. 

Branch on greater than zero

7

rs

0

Offset

bgtz rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is greater than 0. 

Branch on less than equal zero

6

rs

0

Offset

blez rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is less than or equal to 0. 

Branch on less than and link

1

rs

0x10

Offset

bltzal rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is less than 0. Save the address of the next instruction in register 31. 

Branch on less than zero

1

rs

0

Offset

bltz rs, label 

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is less than 0. 
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Branch on not equal

5

rs

rt

Offset

bne rs, rt, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if  register 

rs is not equal to rt. 

Branch on equal zero

beqz rsrc, label

 pseudoinstruction

Conditionally branch to the instruction at the label if rsrc equals 0. 

Branch on greater than equal

bge rsrc1, rsrc2, label

 pseudoinstruction

Branch on greater than equal unsigned

bgeu rsrc1, rsrc2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than 

or equal to rsrc2. 

Branch on greater than

bgt rsrc1, src2, label

 pseudoinstruction

Branch on greater than unsigned

bgtu rsrc1, src2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than 

src2. 

Branch on less than equal

ble rsrc1, src2, label

 pseudoinstruction
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Branch on less than equal unsigned

bleu rsrc1, src2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than or 

equal to src2. 

Branch on less than

blt rsrc1, rsrc2, label

 pseudoinstruction

Branch on less than unsigned

bltu rsrc1, rsrc2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than 

rsrc2. 

Branch on not equal zero

bnez rsrc, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc is not equal to 0. 

Jump Instructions

Jump

2

target

j target

6

26

Unconditionally jump to the instruction at target. 

Jump and link

3

target

jal target

6

26

Unconditionally jump to the instruction at target. Save the address of the next 

instruction in register $ra. 
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Jump and link register

0

rs

0

rd

0

9

jalr rs, rd

6

5

5

5

5

6

Unconditionally jump to the instruction whose address is in register rs. Save the 

address of the next instruction in register rd (which defaults to 31). 

Jump register

0

rs

0

8

jr rs

6

5

15

6

Unconditionally jump to the instruction whose address is in register rs. 

Trap Instructions

Trap if equal

0

rs

rt

0

0x34

teq rs, rt

6

5

5

10

6

If register rs is equal to register rt, raise a Trap exception. 

Trap if equal immediate

1

rs

0xc

imm

teqi rs, imm

6

5

5

16

If register rs is equal to the sign-extended value imm, raise a Trap exception. 

Trap if not equal

0

rs

rt

0

0x36

teq rs, rt

6

5

5

10

6

If register rs is not equal to register rt, raise a Trap exception. 

Trap if not equal immediate

1

rs

0xe

imm

teqi rs, imm

6

5

5

16

If register rs is not equal to the sign-extended value imm, raise a Trap exception. 
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Trap if greater equal

0

rs

rt

0

0x30

tge rs, rt

6

5

5

10

6

Unsigned trap if greater equal

0

rs

rt

0

0x31

tgeu rs, rt

6

5

5

10

6

If register rs is greater than or equal to register rt, raise a Trap exception. 

Trap if greater equal immediate

1

rs

8

imm

tgei rs, imm

6

5

5

16

Unsigned trap if greater equal immediate

1

rs

9

imm

tgeiu rs, imm

6

5

5

16

If register rs is greater than or equal to the sign-extended value imm, raise a Trap 

exception. 

Trap if less than

0

rs

rt

0

0x32

tlt rs, rt

6

5

5

10

6

Unsigned trap if less than

0

rs

rt

0

0x33

tltu rs, rt

6

5

5

10

6

If register rs is less than register rt, raise a Trap exception. 

Trap if less than immediate

1

rs

a

imm

tlti rs, imm

6

5

5

16
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Unsigned trap if less than immediate

1

rs

b

imm

tltiu rs, imm

6

5

5

16

If register rs is less than the sign-extended value imm, raise a Trap exception. 

Load Instructions

Load address

la rdest, address

 pseudoinstruction

Load computed  address—not the contents of the location—into register rdest. 

Load byte

0x20

rs

rt

Offset

lb rt, address

6

5

5

16

Load unsigned byte

0x24

rs

rt

Offset

lbu rt, address

6

5

5

16

Load the byte at  address into register rt. Th

e byte is sign-extended by lb, but not 

by lbu. 

Load halfword

0x21

rs

rt

Offset

lh rt, address

6

5

5

16

Load unsigned halfword

0x25

rs

rt

Offset

lhu rt, address

6

5

5

16

Load the 16-bit quantity (halfword) at  address into register rt. Th

e halfword is 

sign-extended by lh, but not by lhu. 
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Load word

0x23

rs

rt

Offset

lw rt, address

6

5

5

16

Load the 32-bit quantity (word) at  address into register rt. 

Load word coprocessor 1

0x31

rs

rt

Offset

lwcl ft, address

6

5

5

16

Load the word at  address into register ft in the fl oating-point unit. 

Load word left

0x22

rs

rt

Offset

lwl rt, address

6

5

5

16

Load word right

0x26

rs

rt

Offset

lwr rt, address

6

5

5

16

Load the left  (right) bytes from the word at the possibly unaligned  address into 

register rt. 

Load doubleword

ld rdest, address

 pseudoinstruction

Load the 64-bit quantity at  address into registers rdest and rdest + 1. 

Unaligned load halfword

ulh rdest, address

 pseudoinstruction
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Unaligned load halfword unsigned

ulhu rdest, address

 pseudoinstruction

Load the 16-bit quantity (halfword) at the possibly unaligned  address into  register 

rdest. Th

e halfword is sign-extended by ulh, but not ulhu. 

Unaligned load word

ulw rdest, address

 pseudoinstruction

Load the 32-bit quantity (word) at the possibly unaligned  address into register 

rdest. 

Load linked

0x30

rs

rt

Offset

ll rt, address

6

5

5

16

Load the 32-bit quantity (word) at  address into register rt and start an atomic 

read-modify-write operation. Th

is operation is completed by a store conditional 

(sc) instruction, which will fail if another processor writes into the block contain-

ing the loaded word. Since SPIM does not simulate multiple processors, the store 

conditional operation always succeeds. 

Store Instructions

Store byte

0x28

rs

rt

Offset

sb rt, address

6

5

5

16

Store the low byte from register rt at  address. 

Store halfword

0x29

rs

rt

Offset

sh rt, address

6

5

5

16

Store the low halfword from register rt at  address. 
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Store word

0x2b

rs

rt

Offset

sw rt, address

6

5

5

16

Store the word from register rt at  address. 

Store word coprocessor 1

0x31

rs

ft

Offset

swcl ft, address

6

5

5

16

Store the fl oating-point value in register ft of fl oating-point coprocessor at  address. 

Store double coprocessor 1

0x3d

rs

ft

Offset

sdcl ft, address

6

5

5

16

Store the doubleword fl oating-point value in registers ft and ft + l of fl oating-

point coprocessor at  address. Register ft must be even numbered. 

Store word left

0x2a

rs

rt

Offset

swl rt, address

6

5

5

16

Store word right

0x2e

rs

rt

Offset

swr rt, address



6

5

5

16

Store the left  (right) bytes from register rt at the possibly unaligned  address. 

Store doubleword

sd rsrc, address

 pseudoinstruction

Store the 64-bit quantity in registers rsrc and rsrc + 1 at  address. 
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Unaligned store halfword

ush rsrc, address

 pseudoinstruction

Store the low halfword from register rsrc at the possibly unaligned  address. 

Unaligned store word

usw rsrc, address

 pseudoinstruction

Store the word from register rsrc at the possibly unaligned  address. 

Store conditional

0x38

rs

rt

Offset

sc rt, address

6

5

5

16

Store the 32-bit quantity (word) in register rt into memory at  address and com plete 

an atomic read-modify-write operation. If this atomic operation is success ful, the 

memory word is modifi ed and register rt is set to 1. If the atomic operation fails 

because another processor wrote to a location in the block contain ing the addressed 

word, this instruction does not modify memory and writes 0 into register rt. Since 

SPIM does not simulate multiple processors, the instruc tion always succeeds. 

Data Movement Instructions

Move

move rdest, rsrc

 pseudoinstruction

Move register rsrc to rdest. 

Move from hi

0

0

rd

0

0x10

mfhi rd

6

10

5

5

6
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Move from lo

0

0

rd

0

0x12

mflo rd

6

10

5

5

6

Th

e multiply and divide unit produces its result in two additional registers, hi 

and lo. Th

ese instructions move values to and from these registers. Th

e multiply, 

divide, and remainder pseudoinstructions that make this unit appear to operate on 

the general registers move the result aft er the computation fi nishes. 

Move the hi (lo) register to register rd. 

Move to hi

0

rs

0

0x11

mthi rs

6

5

15

6

Move to lo

0

rs

0

0x13

mtlo rs

6

5

15

6

Move register rs to the hi (lo) register. 

Move from coprocessor 0

0x10

0

rt

rd

0

mfc0 rt, rd

6

5

5

5

11

Move from coprocessor 1

0x11

0

rt

fs

0

mfcl rt, fs

6

5

5

5

11

Coprocessors have their own register sets. Th

ese instructions move values between 

these registers and the CPU’s registers. 

Move register rd in a coprocessor (register fs in the FPU) to CPU register rt. Th

e 

fl oating-point unit is coprocessor 1. 
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Move double from coprocessor 1

mfc1.d rdest, frsrc1

 pseudoinstruction

Move fl oating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest 

and rdest + 1. 

Move to coprocessor 0

0x10

4

rt

rd

0

mtc0 rd, rt

6

5

5

5

11

Move to coprocessor 1

0x11

4

rt

fs

0

mtc1 rd, fs

6

5

5

5

11

Move CPU register rt to register rd in a coprocessor (register fs in the FPU). 

Move conditional not zero

0

rs

rt

rd

0xb

movn rd, rs, rt

6

5

5

5

11

Move register rs to register rd if register rt is not 0. 

Move conditional zero

0

rs

rt

rd

0xa

movz rd, rs, rt

6

5

5

5

11

Move register rs to register rd if register rt is 0. 

Move conditional on FP false

0

rs

 cc

0

rd

0

1

movf rd, rs, cc

6

5

3

2

5

5

6

Move CPU register rs to register rd if FPU condition code fl ag number  cc is 0. If 

 cc is omitted from the instruction, condition code fl ag 0 is assumed. 
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Move conditional on FP true

0

rs

 cc

1

rd

0

1

movt rd, rs, cc

6

5

3

2

5

5

6

Move CPU register rs to register rd if FPU condition code fl ag number  cc is 1. If 

 cc is omitted from the instruction, condition code bit 0 is assumed. 

Floating-Point Instructions

Th

e MIPS has a fl oating-point coprocessor (numbered 1) that operates on single 

precision (32-bit) and double precision (64-bit) fl oating-point numbers. Th

is 

coprocessor has its own registers, which are numbered $f0–$f31. Because these 

registers are only 32 bits wide, two of them are required to hold doubles, so only 

fl oating-point registers with even numbers can hold double precision values. Th

e 

fl oating-point coprocessor also has eight condition code ( cc) fl ags, numbered 0–7, 

which are set by compare instructions and tested by branch (bclf or bclt) and 

conditional move instructions. 

Values are moved in or out of these registers one word (32 bits) at a time by 

lwc1, swc1, mtc1, and mfc1 instructions or one double (64 bits) at a time by ldcl 

and sdcl, described above, or by the l.s, l.d, s.s, and s.d pseudoinstructions 

described below. 

In the actual instructions below, bits 21–26 are 0 for single precision and 1 

for double precision. In the pseudoinstructions below, fdest is a fl oating-point 

register (e.g., $f2). 

Floating-point absolute value double

0x11

1

0

fs

fd

5

abs.d fd, fs

6

5

5

5

5

6

Floating-point absolute value single

0x11

0

0

fs

fd

5

abs.s fd, fs

Compute the absolute value of the fl oating-point double (single) in register fs and 

put it in register fd. 

Floating-point addition double

0x11

0x11

ft

fs

fd

0

add.d fd, fs, ft

6

5

5

5

5

6
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Floating-point addition single

0x11

0x10

ft

fs

fd

0

add.s fd, fs, ft

6

5

5

5

5

6

Compute the sum of the fl oating-point doubles (singles) in registers fs and ft and 

put it in register fd. 

Floating-point ceiling to word

0x11

0x11

0

fs

fd

0xe

ceil.w.d fd, fs

6

5

5

5

5

6

0x11

0x10

0

fs

fd

0xe

ceil.w.s fd, fs

Compute the ceiling of the fl oating-point double (single) in register fs, convert to 

a 32-bit fi xed-point value, and put the resulting word in register fd. 

Compare equal double

0x11

0x11

ft

fs

 cc

0

FC

2

c.eq.d cc fs, ft

6

5

5

5

3

2

2

4

Compare equal single

0x11

0x10

ft

fs

 cc

0

FC

2

c.eq.s cc fs, ft

6

5

5

5

3

2

2

4

Compare the fl oating-point double (single) in register fs against the one in ft 

and set the fl oating-point condition fl ag  cc to 1 if they are equal. If  cc is omitted, condition code fl ag 0 is assumed. 

Compare less than equal double

0x11

0x11

ft

fs

 cc

0

FC

0xe

c.le.d cc fs, ft

6

5

5

5

3

2

2

4

Compare less than equal single

0x11

0x10

ft

fs

 cc

0

FC

0xe

c.le.s cc fs, ft

6

5

5

5

3

2

2

4
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Compare the fl oating-point double (single) in register fs against the one in ft and 

set the fl oating-point condition fl ag  cc to 1 if the fi rst is less than or equal to the second. If  cc is omitted, condition code fl ag 0 is assumed. 

Compare less than double

0x11

0x11

ft

fs

 cc

0

FC

0xc

c.lt.d cc fs, ft

6

5

5

5

3

2

2

4

Compare less than single

0x11

0x10

ft

fs

 cc

0

FC

0xc

c.lt.s cc fs, ft

6

5

5

5

3

2

2

4

Compare the fl oating-point double (single) in register fs against the one in ft 

and set the condition fl ag  cc to 1 if the fi rst is less than the second. If  cc is omitted, condition code fl ag 0 is assumed. 

Convert single to double

0x11

0x10

0

fs

fd

0x21

cvt.d.s fd, fs

6

5

5

5

5

6

Convert integer to double

0x11

0x14

0

fs

fd

0x21

cvt.d.w fd, fs

6

5

5

5

5

6

Convert the single precision fl oating-point number or integer in register fs to a 

double (single) precision number and put it in register fd. 

Convert double to single

0x11

0x11

0

fs

fd

0x20

cvt.s.d fd, fs

6

5

5

5

5

6

Convert integer to single

0x11

0x14

0

fs

fd

0x20

cvt.s.w fd, fs

6

5

5

5

5

6

Convert the double precision fl oating-point number or integer in register fs to a 

single precision number and put it in register fd. 
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Convert double to integer

0x11

0x11

0

fs

fd

0x24

cvt.w.d fd, fs

6

5

5

5

5

6

Convert single to integer

0x11

0x10

0

fs

fd

0x24

cvt.w.s fd, fs

6

5

5

5

5

6

Convert the double or single precision fl oating-point number in register fs to an 

integer and put it in register fd. 

Floating-point divide double

0x11

0x11

ft

fs

fd

3

div.d fd, fs, ft

6

5

5

5

5

6

Floating-point divide single

0x11

0x10

ft

fs

fd

3

div.s fd, fs, ft

6

5

5

5

5

6

Compute the quotient of the fl oating-point doubles (singles) in registers fs and ft 

and put it in register fd. 

Floating-point fl oor to word

0x11

0x11

0

fs

fd

0xf

floor.w.d fd, fs

6

5

5

5

5

6

0x11

0x10

0

fs

fd

0xf

floor.w.s fd, fs

Compute the fl oor of the fl oating-point double (single) in register fs and put the 

resulting word in register fd. 

Load fl oating-point double

l.d fdest, address

 pseudoinstruction
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Load fl oating-point single

l.s fdest, address

 pseudoinstruction

Load the fl oating-point double (single) at address into register fdest. 

Move fl oating-point double

0x11

0x11

0

fs

fd

6

mov.d fd, fs

6

5

5

5

5

6

Move fl oating-point single

0x11

0x10

0

fs

fd

6

mov.s fd, fs

6

5

5

5

5

6

Move the fl oating-point double (single) from register fs to register fd. 

Move conditional fl oating-point double false

0x11

0x11

 cc

0

fs

fd

0x11

movf.d fd, fs, cc

6

5

3

2

5

5

6

Move conditional fl oating-point single false

0x11

0x10

 cc

0

fs

fd

0x11

movf.s fd, fs, cc

6

5

3

2

5

5

6

Move the fl oating-point double (single) from register fs to register fd if condi tion 

code fl ag  cc is 0. If  cc is omitted, condition code fl ag 0 is assumed. 

Move conditional fl oating-point double true

0x11

0x11

 cc

1

fs

fd

0x11

movt.d fd, fs, cc

6

5

3

2

5

5

6

Move conditional fl oating-point single true

0x11

0x10

 cc

1

fs

fd

0x11

movt.s fd, fs, cc

6

5

3

2

5

5

6
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Move the fl oating-point double (single) from register fs to register fd if condi tion 

code fl ag  cc is 1. If  cc is omitted, condition code fl ag 0 is assumed. 

Move conditional fl oating-point double not zero

0x11

0x11

rt

fs

fd

0x13

movn.d fd, fs, rt

6

5

5

5

5

6

Move conditional fl oating-point single not zero

0x11

0x10

rt

fs

fd

0x13

movn.s fd, fs, rt

6

5

5

5

5

6

Move the fl oating-point double (single) from register fs to register fd if proces sor 

register rt is not 0. 

Move conditional fl oating-point double zero

0x11

0x11

rt

fs

fd

0x12

movz.d fd, fs, rt

6

5

5

5

5

6

Move conditional fl oating-point single zero

0x11

0x10

rt

fs

fd

0x12

movz.s fd, fs, rt

6

5

5

5

5

6

Move the fl oating-point double (single) from register fs to register fd if proces sor 

register rt is 0. 

Floating-point multiply double

0x11

0x11

ft

fs

fd

2

mul.d fd, fs, ft

6

5

5

5

5

6

Floating-point multiply single

0x11

0x10

ft

fs

fd

2

mul.s fd, fs, ft

6

5

5

5

5

6

Compute the product of the fl oating-point doubles (singles) in registers fs and ft 

and put it in register fd. 

Negate double

0x11

0x11

0

fs

fd

7

neg.d fd, fs

6

5

5

5

5

6
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Negate single

0x11

0x10

0

fs

fd

7

neg.s fd, fs

6

5

5

5

5

6

Negate the fl oating-point double (single) in register fs and put it in register fd. 

Floating-point round to word

0x11

0x11

0

fs

fd

0xc

round.w.d fd, fs

6

5

5

5

5

6

round.w.s fd, fs

0x11

0x10

0

fs

fd

0xc

Round the fl oating-point double (single) value in register fs, convert to a 32-bit 

fi xed-point value, and put the resulting word in register fd. 

Square root double

0x11

0x11

0

fs

fd

4

sqrt.d fd, fs

6

5

5

5

5

6

Square root single

0x11

0x10


0

fs

fd

4

sqrt.s fd, fs

6

5

5

5

5

6

Compute the square root of the fl oating-point double (single) in register fs and 

put it in register fd. 

Store fl oating-point double

s.d fdest, address

 pseudoinstruction

Store fl oating-point single

s.s fdest, address

 pseudoinstruction

Store the fl oating-point double (single) in register fdest at  address. 

Floating-point subtract double

0x11

0x11

ft

fs

fd

1

sub.d fd, fs, ft

6

5

5

5

5

6
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Floating-point subtract single

0x11

0x10

ft

fs

fd

1

sub.s fd, fs, ft

6

5

5

5

5

6

Compute the diff erence of the fl oating-point doubles (singles) in registers fs and 

ft and put it in register fd. 

Floating-point truncate to word

0x11

0x11

0

fs

fd

0xd

trunc.w.d fd, fs

6

5

5

5

5

6

trunc.w.s fd, fs

0x11

0x10

0

fs

fd

0xd

Truncate the fl oating-point double (single) value in register fs, convert to a 32-bit 

fi xed-point value, and put the resulting word in register fd. 

Exception and Interrupt Instructions

Exception return

0x10

1

0

0x18

eret

6

1

19

6

Set the EXL bit in coprocessor 0’s Status register to 0 and return to the instruction 

pointed to by coprocessor 0’s EPC register. 

System call

0

0

0xc

syscall

6

20

6

Register $v0 contains the number of the system call (see Figure A.9.1) provided 

by SPIM. 

Break

0

code

0xd

break code

6

20

6

Cause exception  code. Exception 1 is reserved for the debugger. 

No operation

0

0

0

0

0

0

nop

6

5

5

5

5

6

Do nothing. 
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  A.11 Concluding 

Remarks

Programming in assembly language requires a programmer to trade helpful fea-

tures of high-level languages—such as data structures, type checking, and control 

constructs—for complete control over the instructions that a computer executes. 

External constraints on some applications, such as response time or program size, 

require a programmer to pay close attention to every instruction. However, the 

cost of this level of attention is assembly language programs that are longer, more 

time-consuming to write, and more diffi

cult to maintain than high-level language 

programs. 

Moreover, three trends are reducing the need to write programs in assembly 

language. Th

e fi rst trend is toward the improvement of compilers. Modern com-

pilers produce code that is typically comparable to the best handwritten code—

and is sometimes better. Th

e second trend is the introduction of new processors 

that are not only faster, but in the case of processors that execute multiple instruc-

tions simultaneously, also more diffi

cult to program by hand. In addition, the rapid 

evolution of the modern computer favors high-level language programs that are 

not tied to a single architecture. Finally, we witness a trend toward increasingly 

complex applications, characterized by complex graphic interfaces and many more 

features than their predecessors had. Large applications are written by teams of 

programmers and require the modularity and semantic checking features pro vided 

by high-level languages. 

Further Reading

Aho, A., R. Sethi, and J. Ullman [1985].  Compilers: Principles, Techniques, and Tools, Reading, MA: Addison-

Wesley. 

 Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers. 

Sweetman, D. [1999].  See MIPS Run, San Francisco, CA: Morgan Kaufmann Publishers. 

 A complete, detailed, and engaging introduction to the MIPS instruction set and assembly language programming on these machines. 

Detailed documentation on the MIPS-32 architecture is available on the Web:

MIPS32™ Architecture for Programmers Volume I: Introduction to the MIPS32™ Architecture 

 (http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/

 ArchitectureProgrammingPublicationsforMIPS32/MD00082-2B-MIPS32INT-AFP-02.00.pdf/

 getDownload)

MIPS32™ Architecture for Programmers Volume II: Th

e MIPS32™ Instruction Set 

 (http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/

 ArchitectureProgrammingPublicationsforMIPS32/MD00086-2B-MIPS32BIS-AFP-02.00.pdf/getDownload)

MIPS32™ Architecture for Programmers Volume III: Th

e MIPS32™ Privileged Resource Architecture

 (http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/

 ArchitectureProgrammingPublicationsforMIPS32/MD00090-2B-MIPS32PRA-AFP-02.00.pdf/getDownload)

A-82 

Appendix A  Assemblers, Linkers, and the SPIM Simulator

  A.12 Exercises

A.1  [5] <§A.5> Section A.5 described how memory is partitioned on most MIPS 

systems. Propose another way of dividing memory that meets the same goals. 

A.2  [20] <§A.6> Rewrite the code for fact to use fewer instructions. 

A.3  [5] <§A.7> Is it ever safe for a user program to use registers $k0 or $k1? 

A.4  [25] <§A.7> Section A.7 contains code for a very simple exception handler. 

One serious problem with this handler is that it disables interrupts for a long 

time. Th

is means that interrupts from a fast I/O device may be lost. Write a better 

exception handler that is interruptable and enables interrupts as quickly as possible. 

A.5  [15] <§A.7> Th

e simple exception handler always jumps back to the instruc-

tion following the exception. Th

is works fi ne unless the instruction that causes the 

exception is in the delay slot of a branch. In that case, the next instruction is the 

target of the branch. Write a better handler that uses the EPC register to determine 

which instruction should be executed aft er the exception. 

A.6  [5] <§A.9> Using SPIM, write and test an adding machine program that 

repeatedly reads in integers and adds them into a running sum. Th

e program 

should stop when it gets an input that is 0, printing out the sum at that point. Use 

the SPIM system calls described on pages A-43 and A-45. 

A.7  [5] <§A.9> Using SPIM, write and test a program that reads in three integers 

and prints out the sum of the largest two of the three. Use the SPIM system calls 

described on pages A-43 and A-45. You can break ties arbitrarily. 

A.8  [5] <§A.9> Using SPIM, write and test a program that reads in a positive inte-

ger using the SPIM system calls. If the integer is not positive, the program should 

terminate with the message “Invalid Entry”; otherwise the program should print 

out the names of the digits of the integers, delimited by exactly one space. For 

example, if the user entered “728,” the output would be “Seven Two Eight.” 

A.9  [25] <§A.9> Write and test a MIPS assembly language program to compute 

and print the fi rst 100 prime numbers. A number  n is prime if no numbers except 

1 and  n divide it evenly. You should implement two routines: 



■ test_prime (n)    Return 1 if  n is prime and 0 if  n is not prime. 



■ main ()    Iterate over the integers, testing if each is prime. Print the fi rst 

100 numbers that are prime. 

Test your programs by running them on SPIM. 
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A.10  [10] <§§A.6, A.9> Using SPIM, write and test a recursive program for solv ing 

the classic mathematical recreation, the Towers of Hanoi puzzle. (Th

is will require 

the use of stack frames to support recursion.) Th

e puzzle consists of three pegs 

(1, 2, and 3) and  n disks (the number  n  can vary; typical values might be in the range from 1 to 8). Disk 1 is smaller than disk 2, which is in turn smaller than disk 

3, and so forth, with disk  n being the largest. Initially, all the disks are on peg 1, 

starting with disk  n on the bottom, disk  n − 1 on top of that, and so forth, up to disk 1 on the top. Th

e goal is to move all the disks to peg 2. You may only move one 

disk at a time, that is, the top disk from any of the three pegs onto the top of either 

of the other two pegs. Moreover, there is a constraint: You must not place a larger 

disk on top of a smaller disk. 

Th

e C program below can be used to help write your assembly language program. 

/* move n smallest disks from start to finish using 

extra */

void hanoi(int n, int start, int finish, int extra){



if(n != 0){



hanoi(n-1, start, extra, finish); 



print_string(“Move 

disk”); 



print_int(n); 



print_string(“from 

peg”); 



print_int(start); 



print_string(“to 

peg”); 



print_int(finish); 



print_string(“.\n”); 



hanoi(n-1, extra, finish, start); 



}

}

main(){

int 

n; 



print_string(“Enter number of disks>“); 



n = read_int(); 



hanoi(n, 1, 2, 3); 

return 

0; 

}
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 B.1 Introduction

Th

is appendix provides a brief discussion of the basics of logic design. It does not 

replace a course in logic design, nor will it enable you to design signifi cant working 

logic systems. If you have little or no exposure to logic design, however, this 

appendix will provide suffi

cient background to understand all the material in this 

book. In addition, if you are looking to understand some of the motivation behind 

how computers are implemented, this material will serve as a useful introduction. 

If your curiosity is aroused but not sated by this appendix, the references at the end 

provide several additional sources of information. 

Section B.2 introduces the basic building blocks of logic, namely,  gates. Section 

B.3 uses these building blocks to construct simple  combinational logic systems, 

which contain no memory. If you have had some exposure to logic or digital 

systems, you will probably be familiar with the material in these fi rst two sections. 

Section B.5 shows how to use the concepts of Sections B.2 and B.3 to design an 

ALU for the MIPS processor. Section B.6 shows how to make a fast adder, and 
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may be safely skipped if you are not interested in this topic. Section B.7 is a short 

introduction to the topic of clocking, which is necessary to discuss how memory 

elements work. Section B.8 introduces memory elements, and Section B.9 extends 

it to focus on random access memories; it describes both the characteristics that 

are important to understanding how they are used, as discussed in Chapter 4, and 

the background that motivates many of the aspects of memory hierarchy design 

discussed in Chapter 5. Section B.10 describes the design and use of fi nite-state 

machines, which are sequential logic blocks. If you intend to read   Appendix D, 

you should thoroughly understand the material in Sections B.2 through B.10. If 

you intend to read only the material on control in Chapter 4, you can skim the 

appendices; however, you should have some familiarity with all the material except 

Section B.11. Section B.11 is intended for those who want a deeper understanding 

of clocking methodologies and timing. It explains the basics of how edge-triggered 

clocking works, introduces another clocking scheme, and briefl y describes the 

problem of synchronizing asynchronous inputs. 

Th

roughout this appendix, where it is appropriate, we also include segments 

to demonstrate how logic can be represented in Verilog, which we introduce in 

Section B.4. A more extensive and complete Verilog tutorial appears elsewhere on 

the CD. 

 B.2 

Gates, Truth Tables, and Logic Equations

Th

e electronics inside a modern computer are  digital. Digital electronics operate 

with only two voltage levels of interest: a high voltage and a low voltage. All other 

voltage values are temporary and occur while transitioning between the values. 

(As we discuss later in this section, a possible pitfall in digital design is sampling 

a signal when it not clearly either high or low.) Th

e fact that computers are digital 

is also a key reason they use binary numbers, since a binary system matches the 

underlying abstraction inherent in the electronics. In various logic families, the 

values and relationships between the two voltage values diff er. Th

us, rather than 

refer to the voltage levels, we talk about signals that are (logically) true, or 1, or are 

asserted signal A signal 

asserted; or signals that are (logically) false, or 0, or are deasserted. Th

e values 0 

that is (logically) true, 

and 1 are called  complements or  inverses of one another. 

or 1. 

Logic blocks are categorized as one of two types, depending on whether they 

contain memory. Blocks without memory are called  combinational; the output of 

deasserted signal 

A signal that is (logically) 

a combinational block depends only on the current input. In blocks with memory, 

false, or 0. 

the outputs can depend on both the inputs and the value stored in memory, which 

is called the  state of the logic block. In this section and the next, we will focus 
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only on combinational logic. Aft er introducing diff erent memory elements in  combinational logic Section B.8, we will describe how sequential logic, which is logic including state,  A logic system whose is designed. 

blocks do not contain 

memory and hence 

compute the same output 

Truth Tables

given the same input. 

Because a combinational logic block contains no memory, it can be completely  sequential logic specifi ed by defi ning the values of the outputs for each possible set of input values.  A group of logic elements Such a description is normally given as a  truth table. For a logic block with  n  that contain memory inputs, there are 2 n entries in the truth table, since there are that many possible  and hence whose value depends on the inputs 

combinations of input values. Each entry specifi es the value of all the outputs for  as well as the current that particular input combination. 

contents of the memory. 

Truth Tables

EXAMPLE

Consider a logic function with three inputs,  A,  B, and  C, and three outputs,  D, E, and  F. Th

e function is defi ned as follows:  D is true if at least one input is true, 

 E is true if exactly two inputs are true, and  F is true only if all three inputs are true. Show the truth table for this function. 

Th

e truth table will contain 23 ⫽ 8 entries. Here it is:

Inpu

ANSWER

Inputs

Outputs

A

B

C

D

E

F

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1

0

0

1

0

1

1

1

0

1

1

0

1

1

0

1

1

1

1

0

1

Truth tables can completely describe any combinational logic function; however, 

they grow in size quickly and may not be easy to understand. Sometimes we want 

to construct a logic function that will be 0 for many input combinations, and we 

use a shorthand of specifying only the truth table entries for the nonzero outputs. 

Th

is approach is used in Chapter 4 and   Appendix D. 
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Boolean Algebra

Another approach is to express the logic function with logic equations. Th

is 

is done with the use of  Boolean algebra (named aft er Boole, a 19th-century 

mathematician). In Boolean algebra, all the variables have the values 0 or 1 and, in 

typical formulations, there are three operators:

■  Th

e OR operator is written as ⫹, as in  A ⫹  B. Th

e result of an OR operator is 

1 if either of the variables is 1. Th

e OR operation is also called a  logical sum, 

since its result is 1 if either operand is 1. 

■  Th

e AND operator is written as ⭈ , as in  A ⭈  B. Th

e result of an AND operator 

is 1 only if both inputs are 1. Th

e AND operator is also called  logical product, 

since its result is 1 only if both operands are 1. 

■  Th

e unary operator NOT is written as  A. Th

e result of a NOT operator is 1 only if 

the input is 0. Applying the operator NOT to a logical value results in an inversion 

or negation of the value (i.e., if the input is 0 the output is 1, and vice versa). 

Th

ere are several laws of Boolean algebra that are helpful in manipulating logic 

equations. 

■ Identity law:  A ⫹ 0 ⫽  A and  A ⭈ 1 ⫽  A

■  Zero and One laws:  A ⫹ 1 ⫽ 1 and  A ⭈ 0 ⫽ 0

■ Inverse laws:  A

 A

1 and  A A

0

■ Commutative laws:  A ⫹  B ⫽  B ⫹  A and  A ⭈  B ⫽  B ⭈  A

■ Associative laws:  A ⫹ ( B ⫹  C) ⫽ ( A ⫹  B) ⫹  C and  A ⭈ ( B ⭈  C) ⫽ ( A ⭈  B) ⭈  C

■ Distributive laws:  A ⭈ ( B ⫹  C) ⫽ ( A ⭈  B) ⫹ ( A ⭈  C) and A ⫹ ( B ⭈  C) ⫽ ( A ⫹  B) ⭈ ( A ⫹  C)

In addition, there are two other useful theorems, called DeMorgan’s laws, that are 

discussed in more depth in the exercises. 

Any set of logic functions can be written as a series of equations with an output 

on the left -hand side of each equation and a formula consisting of variables and the 

three operators above on the right-hand side. 
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Logic Equations

Show the logic equations for the logic functions,  D,  E, and  F, described in the previous example. 

EXAMPLE

Here’s the equation for  D:

ANSWER

 D

 A

 B

 C

 F is equally simple:

 F

 A B C

 E is a little tricky. Th

ink of it in two parts: what must be true for  E to be true 

(two of the three inputs must be true), and what cannot be true (all three 

cannot be true). Th

us we can write  E as

 E

(( A B)

( A C)

( B C)) ( A B C)

We can also derive  E by realizing that  E is true only if exactly two of the inputs are true. Th

en we can write  E as an OR of the three possible terms that have 

two true inputs and one false input:

 E

( A B C)

( A C B)

( B C A)

Proving that these two expressions are equivalent is explored in the exercises. 

In Verilog, we describe combinational logic whenever possible using the assign 

statement, which is described beginning on page B-23. We can write a defi nition 

for  E using the Verilog exclusive-OR operator as assign E ⫽ (A ^ B ^ C) * 

(A + B + C) * (A * B * C), which is yet another way to describe this function. 

 D and  F have even simpler representations, which are just like the corresponding C 

code: D ⫽ A | B | C and F ⫽ A & B & C. 
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Gates

gate  A device that 

Logic blocks are built from gates that implement basic logic functions. For example, 

implements basic logic 

an AND gate implements the AND function, and an OR gate implements the OR 

functions, such as AND 

function. Since both AND and OR are commutative and associative, an AND or an 

or OR. 

OR gate can have multiple inputs, with the output equal to the AND or OR of all 

the inputs. Th

e logical function NOT is implemented with an inverter that always 

has a single input. Th

e standard representation of these three logic building blocks 

is shown in Figure B.2.1. 

Rather than draw inverters explicitly, a common practice is to add “bubbles” 

to the inputs or outputs of a gate to cause the logic value on that input line or 

output line to be inverted. For example, Figure B.2.2 shows the logic diagram for the function  A ⫹  B , using explicit inverters on the left  and bubbled inputs and outputs on the right. 

Any logical function can be constructed using AND gates, OR gates, and 

inversion; several of the exercises give you the opportunity to try implementing 

some common logic functions with gates. In the next section, we’ll see how an 

implementation of any logic function can be constructed using this knowledge. 

In fact, all logic functions can be constructed with only a single gate type, if that 

NOR gate An inverted 

gate is inverting. Th

e two common inverting gates are called NOR and NAND and 

OR gate. 

correspond to inverted OR and AND gates, respectively. NOR and NAND gates are 

NAND gate An inverted 

called  universal, since any logic function can be built using this one gate type. Th

e 

AND gate. 

exercises explore this concept further. 

Check  Are the following two logical expressions equivalent? If not, fi nd a setting of the variables to show they are not:

Yourself

■  ( A B C)

( A C B)

( B C

)

 A

■   B ( A C

 C A)

FIGURE B.2.1  Standard drawing for an AND gate, OR gate, and an inverter, shown from 

left to right.  Th

e signals to the left  of each symbol are the inputs, while the output appears on the right. Th

e 

AND and OR gates both have two inputs. Inverters have a single input. 

A

A

B

B

FIGURE B.2.2  Logic gate implementation of  A ⴙ  B using explicit inverts on the left and bubbled inputs and outputs on the right.  Th

is logic function can be simplifi ed to  A B

⭈ or in Verilog, 

A & ~ B. 
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 B.3 Combinational 

Logic

In this section, we look at a couple of larger logic building blocks that we use 

heavily, and we discuss the design of structured logic that can be automatically 

implemented from a logic equation or truth table by a translation program. Last, 

we discuss the notion of an array of logic blocks. 

Decoders

One logic block that we will use in building larger components is a decoder. Th

e  decoder  A logic block 

most common type of decoder has an  n-bit input and 2 n outputs, where only one  that has an  n-bit input output is asserted for each input combination. Th

is decoder translates the  n-bit  and 2 n outputs, where 

input into a signal that corresponds to the binary value of the  n-bit input. Th

e  only one output is 

asserted for each input 

outputs are thus usually numbered, say, Out0, Out1, … , Out2 n ⫺ 1. If the value of  combination. 

the input is  i, then Out i will be true and all other outputs will be false. Figure B.3.1 

shows a 3-bit decoder and the truth table. Th

is decoder is called a  3-to-8 decoder 

since there are 3 inputs and 8 (23) outputs. Th

ere is also a logic element called 

an  encoder that performs the inverse function of a decoder, taking 2 n inputs and 

producing an  n-bit output. 

s

t

u

p

n

I

t

u

p

t

u

O

s

Out0

12

11

10

Out7

Out6

Out5

Out4

Out3

Out2

Out1

Out0

Out1

0

0

0

0

0

0

0

0

0

0

1

Out2

0

0

1

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

3

Out3

Decoder

0

1

1

0

0

0

0

1

0

0

0

Out4

1

0

0

0

0

0

1

0

0

0

0

Out5

1

0

1

0

0

1

0

0

0

0

0

Out6

1

1

0

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

Out7

a. A 3-bit decoder

b. The truth table for a 3-bit decoder

FIGURE B.3.1  A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7.  Only the output corresponding to the binary value of the input is true, as shown in the truth table. Th

e label 3 on the input to the decoder says that the 

input signal is 3 bits wide. 
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A

A

0

M

u

C

C

x

B

1

B

S

S

FIGURE B.3.2  A two-input multiplexor on the left and its implementation with gates on 

the right.  Th

e multiplexor has two data inputs ( A and  B), which are labeled  0 and  1, and one selector input ( S), as well as an output  C. Implementing multiplexors in Verilog requires a little more work, especially when they are wider than two inputs. We show how to do this beginning on page B-23. 

Multiplexors

One basic logic function that we use quite oft en in Chapter 4 is the  multiplexor. 

A multiplexor might more properly be called a  selector, since its output is one of 

the inputs that is selected by a control. Consider the two-input multiplexor. Th

e 

left  side of Figure B.3.2 shows this multiplexor has three inputs: two data values selector value Also 

and a selector  (or  control) value. Th

e selector value determines which of the 

called control value. Th

e 

inputs becomes the output. We can represent the logic function computed by a 

control signal that is used 

two-input multiplexor, shown in gate form on the right side of Figure B.3.2, as 

to select one of the input 

 C

( A S)

( B S) . 

values of a multiplexor 

Multiplexors can be created with an arbitrary number of data inputs. When 

as the output of the 

there are only two inputs, the selector is a single signal that selects one of the inputs 

multiplexor. 

if it is true (1) and the other if it is false (0). If there are  n data inputs, there will need to be ⎡log  n

⎢

⎤

2 ⎥ selector inputs. In this case, the multiplexor basically consists 

of three parts:

1.  A decoder that generates  n signals, each indicating a diff erent input value

2.  An array of  n AND gates, each combining one of the inputs with a signal 

from the decoder

3.  A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we oft en label the data inputs numerically 

(i.e., 0, 1, 2, 3, …,  n ⫺ 1) and interpret the data selector inputs as a binary number. 

Sometimes, we make use of a multiplexor with undecoded selector signals. 

Multiplexors are easily represented combinationally in Verilog by using  if 

expressions. For larger multiplexors,  case statements are more convenient, but care 

must be taken to synthesize combinational logic. 
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Two-Level Logic and PLAs

As pointed out in the previous section, any logic function can be implemented with 

only AND, OR, and NOT functions. In fact, a much stronger result is true. Any logic 

function can be written in a canonical form, where every input is either a true or 

complemented variable and there are only two levels of gates—one being AND and 

the other OR—with a possible inversion on the fi nal output. Such a representation 

is called a  two-level representation, and there are two forms, called sum of products  sum of products A form and  product of sums. A sum-of-products representation is a logical sum (OR) of  of logical representation products (terms using the AND operator); a product of sums is just the opposite.  that employs a logical sum In our earlier example, we had two equations for the output  E:

(OR) of products (terms 

joined using the AND 

operator). 

 E

(( A B)

( A C)

( B C)) ( A B C)

and

 E

( A B C)

( A C B) ( B C A)

Th

is second equation is in a sum-of-products form: it has two levels of logic and the 

only inversions are on individual variables. Th

e fi rst equation has three levels of logic. 

Elaboration:  We can also write  E as a product of sums:

 E

( A

 B

 C) ( A

 C

 B)

 B

(

 C

 A)

To derive this form, you need to use  DeMorgan’s theorems, which are discussed in the 

exercises. 

In this text, we use the sum-of-products form. It is easy to see that any logic 

function can be represented as a sum of products by constructing such a 

representation from the truth table for the function. Each truth table entry for 

which the function is true corresponds to a product term. Th

e product term 

consists of a logical product of all the inputs or the complements of the inputs, 

depending on whether the entry in the truth table has a 0 or 1 corresponding to 

this variable. Th

e logic function is the logical sum of the product terms where the 

function is true. Th

is is more easily seen with an example. 
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Sum of Products

Show the sum-of-products representation for the following truth table for  D. 

EXAMPLE

Inputs

Outputs

A

B

C

D

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

0

1

1

1

1

Th

ere are four product terms, since the function is true (1) for four diff erent 

ANSWER

input combinations. Th

ese are:

 A ⭈  B ⭈ C

 A ⭈  B ⭈ C

 A ⭈  B ⭈ C

 A ⭈  B ⭈ C

programmable logic 

array (PLA) 

A structured-logic 

Th

us, we can write the function for  D as the sum of these terms:

element composed 

of a set of inputs and 

 D

( A B C)( A B C)( A B C)( A B C)

corresponding input 

complements and two 

Note that only those truth table entries for which the function is true generate 

stages of logic: the fi rst 

terms in the equation. 

generates product terms 

of the inputs and input 

complements, and the 

We can use this relationship between a truth table and a two-level representation 

second generates sum 

to generate a gate-level implementation of any set of logic functions. A set of logic 

terms of the product 

functions corresponds to a truth table with multiple output columns, as we saw in 

terms. Hence, PLAs 

the example on page B-5. Each output column represents a diff erent logic function, 

implement logic functions 

which may be directly constructed from the truth table. 

as a sum of products. 

Th

e sum-of-products representation corresponds to a common structured-logic 

minterms Also called 

implementation called a programmable logic array (PLA). A PLA has a set of 

product terms. A set 

inputs and corresponding input complements (which can be implemented with a 

of logic inputs joined 

set of inverters), and two stages of logic. Th

e fi rst stage is an array of AND gates that 

by conjunction (AND 

form a set of product terms (sometimes called minterms); each product term can 

operations); the product 

consist of any of the inputs or their complements. Th

e second stage is an array of 

terms form the fi rst logic 

stage of the  programmable 

OR gates, each of which forms a logical sum of any number of the product terms. 

 logic array (PLA). 

Figure B.3.3 shows the basic form of a PLA. 
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Inputs

AND gates

Product terms

OR gates

Outputs

FIGURE B.3.3  The basic form of a PLA consists of an array of AND gates followed by an 

array of OR gates.  Each entry in the AND gate array is a product term consisting of any number of inputs or inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms. 

A PLA can directly implement the truth table of a set of logic functions with 

multiple inputs and outputs. Since each entry where the output is true requires 

a product term, there will be a corresponding row in the PLA. Each output 

corresponds to a potential row of OR gates in the second stage. Th

e number of OR 

gates corresponds to the number of truth table entries for which the output is true. 

Th

e total size of a PLA, such as that shown in Figure B.3.3, is equal to the sum of the size of the AND gate array (called the  AND plane) and the size of the OR gate array 

(called the  OR plane). Looking at Figure B.3.3, we can see that the size of the AND 

gate array is equal to the number of inputs times the number of diff erent product 

terms, and the size of the OR gate array is the number of outputs times the number 

of product terms. 

A PLA has two characteristics that help make it an effi

cient way to implement a 

set of logic functions. First, only the truth table entries that produce a true value for 

at least one output have any logic gates associated with them. Second, each diff erent 

product term will have only one entry in the PLA, even if the product term is used 

in multiple outputs. Let’s look at an example. 

PLAs

Consider the set of logic functions defi ned in the example on page B-5. Show 

a PLA implementation of this example for  D,  E, and  F. 

EXAMPLE
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Here is the truth table we constructed earlier:

ANSWER

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1

0

0

1

0

1

1

1

0

1

1

0

1

1

0

1

1

1

1

0

1

Since there are seven unique product terms with at least one true value in the 

output section, there will be seven columns in the AND plane. Th

e number of 

rows in the AND plane is three (since there are three inputs), and there are also 

three rows in the OR plane (since there are three outputs). Figure B.3.4 shows the resulting PLA, with the product terms corresponding to the truth table 

entries from top to bottom. 

read-only memory 

Rather than drawing all the gates, as we do in Figure B.3.4, designers oft en show (ROM) A memory 

just the position of AND gates and OR gates. Dots are used on the intersection of a 

whose contents are 

product term signal line and an input line or an output line when a corresponding 

designated at creation 

AND gate or OR gate is required. Figure B.3.5 shows how the PLA of Figure B.3.4 

time, aft er which the 

contents can only be read. 

would look when drawn in this way. Th

e contents of a PLA are fi xed when the PLA 

ROM is used as structured 

is created, although there are also forms of PLA-like structures, called  PALs, that 

logic to implement a 

can be programmed electronically when a designer is ready to use them. 

set of logic functions by 

using the terms in the 

ROMs

logic functions as address 

inputs and the outputs as 

Another form of structured logic that can be used to implement a set of logic 

bits in each word of the 

functions is a read-only memory (ROM). A ROM is called a memory because it 

memory. 

has a set of locations that can be read; however, the contents of these locations are 

programmable ROM 

fi xed, usually at the time the ROM is manufactured. Th

ere are also programmable 

(PROM)  A form of 

ROMs (PROMs) that can be programmed electronically, when a designer knows 

read-only memory that 

their contents. Th

ere are also erasable PROMs; these devices require a slow erasure 

can be pro grammed 

process using ultraviolet light, and thus are used as read-only memories, except 

when a designer knows its 

during the design and debugging process. 

contents. 

A ROM has a set of input address lines and a set of outputs. Th

e number of 

addressable entries in the ROM determines the number of address lines: if the 
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ROM contains 2 m addressable entries, called the  height, then there are  m input lines. Th

e number of bits in each addressable entry is equal to the number of output 

bits and is sometimes called the  width of the ROM. Th

e total number of bits in the 

ROM is equal to the height times the width. Th

e height and width are sometimes 

collectively referred to as the  shape of the ROM. 

Inputs

A

B

C

Outputs

D

E

F

FIGURE B.3.4  The PLA for implementing the logic function described in the example. 

A ROM can encode a collection of logic functions directly from the truth table. 

For example, if there are  n functions with  m inputs, we need a ROM with  m address lines (and 2 m entries), with each entry being  n bits wide. Th

e entries in the input 

portion of the truth table represent the addresses of the entries in the ROM, while 

the contents of the output portion of the truth table constitute the contents of the 

ROM. If the truth table is organized so that the sequence of entries in the input 

portion constitutes a sequence of binary numbers (as have all the truth tables 

we have shown so far), then the output portion gives the ROM contents in order 

as well. In the example starting on page B-13, there were three inputs and three 

outputs. Th

is leads to a ROM with 23 ⫽ 8 entries, each 3 bits wide. Th

e contents of 

those entries in increasing order by address are directly given by the output portion 

of the truth table that appears on page B-14. 

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full 

output word for every possible input combination. A PLA is only partially decoded. 

Th

is means that a ROM will always contain more entries. For the earlier truth table 

on page B-14, the ROM contains entries for all eight possible inputs, whereas the 

PLA contains only the seven active product terms. As the number of inputs grows, 
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Inputs

A

B

AND plane

C

Outputs

D

OR plane

E

F

FIGURE B.3.5  A PLA drawn using dots to indicate the components of the product terms 

and sum terms in the array.  Rather than use inverters on the gates, usually all the inputs are run the width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding product term appears in the corresponding output. 

the number of entries in the ROM grows exponentially. In contrast, for most real 

logic functions, the number of product terms grows much more slowly (see the 

examples in   Appendix D). Th

is diff erence makes PLAs generally more effi

cient 

for implementing combinational logic functions. ROMs have the advantage of 

being able to implement any logic function with the matching number of inputs 

and outputs. Th

is advantage makes it easier to change the ROM contents if the logic 

function changes, since the size of the ROM need not change. 

In addition to ROMs and PLAs, modern logic synthesis systems will also 

translate small blocks of combinational logic into a collection of gates that can 

be placed and wired automatically. Although some small collections of gates are 

usually not area effi

cient, for small logic functions they have less overhead than the 

rigid structure of a ROM and PLA and so are preferred. 

For designing logic outside of a custom or semicustom integrated circuit, a common 

choice is a fi eld programming device; we describe these devices in Section B.12. 

 B.3 

Combinational 

Logic 
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Don’t Cares

Oft en in implementing some combinational logic, there are situations where we do 

not care what the value of some output is, either because another output is true or 

because a subset of the input combinations determines the values of the outputs. 

Such situations are referred to as  don’t cares. Don’t cares are important because they 

make it easier to optimize the implementation of a logic function. 

Th

ere are two types of don’t cares: output don’t cares and input don’t cares, both 

of which can be represented in a truth table.  Output don’t cares arise when we don’t 

care about the value of an output for some input combination. Th

ey appear as Xs in 

the output portion of a truth table. When an output is a don’t care for some input 

combination, the designer or logic optimization program is free to make the output 

true or false for that input combination.  Input don’t cares arise when an output 

depends on only some of the inputs, and they are also shown as Xs, though in the 

input portion of the truth table. 

Don’t Cares

Consider a logic function with inputs  A,  B, and  C defi ned as follows:

EXAMPLE

■ If  A or  C is true, then output  D is true, whatever the value of  B. 

■ If  A or  B is true, then output  E is true, whatever the value of  C. 

■ Output  F is true if exactly one of the inputs is true, although we don’t care 

about the value of  F, whenever  D and  E are both true. 

Show the full truth table for this function and the truth table using don’t cares. 

How many product terms are required in a PLA for each of these? 

Here’s the full truth table, without don’t cares:

ANSWER

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

1

0

1

0

0

1

1

1

1

0

1

1

1

0

1

1

0

1

1

0

1

1

1

1

1

0
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Th

is requires seven product terms without optimization. Th

e truth table 

written with output don’t cares looks like this:

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

1

X

1

0

0

1

1

X

1

0

1

1

1

X

1

1

0

1

1

X

1

1

1

1

1

X

If we also use the input don’t cares, this truth table can be further simplifi ed 

to yield the following:

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

X

1

1

1

1

X

1

X

X

1

1

X

Th

is simplifi ed truth table requires a PLA with four minterms, or it can be 

implemented in discrete gates with one two-input AND gate and three OR gates 

(two with three inputs and one with two inputs). Th

is compares to the original 

truth table that had seven minterms and would have required four AND gates. 

Logic minimization is critical to achieving effi

cient implementations. One tool 

useful for hand minimization of random logic is  Karnaugh maps. Karnaugh maps 

represent the truth table graphically, so that product terms that may be combined 

are easily seen. Nevertheless, hand optimization of signifi cant logic functions 

using Karnaugh maps is impractical, both because of the size of the maps and their 

complexity. Fortunately, the process of logic minimization is highly mechanical and 

can be performed by design tools. In the process of minimization, the tools take 

advantage of the don’t cares, so specifying them is important. Th

e text book references 

at the end of this appendix provide further discussion on logic minimization, 

Karnaugh maps, and the theory behind such minimization algorithms. 

Arrays of Logic Elements

Many of the combinational operations to be performed on data have to be done 

to an entire word (32 bits) of data. Th

us we oft en want to build an array of logic 
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elements, which we can represent simply by showing that a given operation will 

happen to an entire collection of inputs. Inside a machine, much of the time we 

want to select between a pair of  buses. A bus is a collection of data lines that is  bus  In logic design, a treated together as a single logical signal. (Th

e term  bus is also used to indicate a  collection of data lines 

shared collection of lines with multiple sources and uses.)

that is treated together 

For example, in the MIPS instruction set, the result of an instruction that is written 

as a single logical signal; 

also, a shared collection 

into a register can come from one of two sources. A multiplexor is used to choose  of lines with multiple which of the two buses (each 32 bits wide) will be written into the Result register.  sources and uses. 

Th

e 1-bit multiplexor, which we showed earlier, will need to be replicated 32 times. 

We indicate that a signal is a bus rather than a single 1-bit line by showing it with 

a thicker line in a fi gure. Most buses are 32 bits wide; those that are not are explicitly 

labeled with their width. When we show a logic unit whose inputs and outputs are 

buses, this means that the unit must be replicated a suffi

cient number of times to 

accommodate the width of the input. Figure B.3.6 shows how we draw a multiplexor that selects between a pair of 32-bit buses and how this expands in terms of 1-bit-wide multiplexors. Sometimes we need to construct an array of logic elements 

where the inputs for some elements in the array are outputs from earlier elements. 

For example, this is how a multibit-wide ALU is constructed. In such cases, we must 

explicitly show how to create wider arrays, since the individual elements of the array 

are no longer independent, as they are in the case of a 32-bit-wide multiplexor. 

Select

Select

32

A

A31

M

M

u

32

C

u

C31

32

x

x

B

B31

A30

M

u

C30

x

. 

B30

.. 

... 

A0

M

u

C0

x

B0

a. A 32-bit wide 2-to-1 multiplexor 

b. The 32-bit wide multiplexor is actually 

an array of 32 1-bit multiplexors

FIGURE B.3.6  A multiplexor is arrayed 32 times to perform a selection between two 32-

bit inputs.  Note that there is still only one data selection signal used for all 32 1-bit multiplexors. 
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Check  Parity is a function in which the output depends on the number of 1s in the input. 

For an even parity function, the output is 1 if the input has an even number of ones. 

Yourself

Suppose a ROM is used to implement an even parity function with a 4-bit input. 

Which of A, B, C, or D represents the contents of the ROM? 

Address

A

B

C

D

0

0

1

0

1

1

0

1

1

0

2

0

1

0

1

3

0

1

1

0

4

0

1

0

1

5

0

1

1

0

6

0

1

0

1

7

0

1

1

0

8

1

0

0

1

9

1

0

1

0

10

1

0

0

1

11

1

0

1

0

12

1

0

0

1

13

1

0

1

0

14

1

0

0

1

15

1

0

1

0
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Using a Hardware Description Language

Today most digital design of processors and related hardware systems is done 

hardware description 

using a hardware description language. Such a language serves two purposes. 

language 

First, it provides an abstract description of the hardware to simulate and debug the 

A programming language 

design. Second, with the use of logic synthesis and hardware compilation tools, this 

for describing hardware, 

description can be compiled into the hardware implementation. 

used for generating 

In this section, we introduce the hardware description language Verilog and 

simulations of a hardware 

show how it can be used for combinational design. In the rest of the appendix, 

design and also as input 

to synthesis tools that can 

we expand the use of Verilog to include design of sequential logic. In the optional 

generate actual hardware. 

sections of Chapter 4 that appear online, we use Verilog to describe processor 

implementations. In the optional section from Chapter 5 that appears online, we 

Verilog  One of the two 

use system Verilog to describe cache controller implementations. System Verilog 

most common hardware 

adds structures and some other useful features to Verilog. 

description languages. 

Verilog is one of the two primary hardware description languages; the other 

VHDL  One of the two 

is VHDL. Verilog is somewhat more heavily used in industry and is based on C, 

most common hardware 

as opposed to VHDL, which is based on Ada. Th

e reader generally familiar with 

description languages. 

C will fi nd the basics of Verilog, which we use in this appendix, easy to follow. 
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Readers already familiar with VHDL should fi nd the concepts simple, provided 

they have been exposed to the syntax of C. 

Verilog can specify both a behavioral and a structural defi nition of a digital 

system. A behavioral specifi cation describes how a digital system functionally  behavioral operates. A structural specifi cation describes the detailed organization of a digital  specifi cation Describes system, usually using a hierarchical description. A structural specifi cation can be  how a digital system used to describe a hardware system in terms of a hierarchy of basic elements such  operates functionally. 

as gates and switches. Th

us, we could use Verilog to describe the exact contents of  structural 

the truth tables and datapath of the last section. 

specifi cation Describes 

With the arrival of hardware synthesis tools, most designers now use Verilog  how a digital system is or VHDL to structurally describe only the datapath, relying on logic synthesis to  organized in terms of a generate the control from a behavioral description. In addition, most CAD systems 

hierarchical connection of 

provide extensive libraries of standardized parts, such as ALUs, multiplexors,  elements. 

register fi les, memories, and programmable logic blocks, as well as basic gates. 

hardware synthesis 

Obtaining an acceptable result using libraries and logic synthesis requires that  tools Computer-aided the specifi cation be written with an eye toward the eventual synthesis and the  design soft ware that desired outcome. For our simple designs, this primarily means making clear what  can generate a gate-we expect to be implemented in combinational logic and what we expect to require  level design based on behavioral descriptions of 

sequential logic. In most of the examples we use in this section and the remainder  a digital system. 

of this appendix, we have written the Verilog with the eventual synthesis in mind. 

Datatypes and Operators in Verilog

Th

ere are two primary datatypes in Verilog:

1. A 

wire specifi es a combinational signal. 

wire  In Verilog, specifi es 

a combinational signal. 

2. A reg (register) holds a value, which can vary with time. A reg need not 

necessarily correspond to an actual register in an implementation, although  reg  In Verilog, a register. 

it oft en will. 

A register or wire, named X, that is 32 bits wide is declared as an array: reg 

[31:0] X or wire [31:0] X, which also sets the index of 0 to designate the 

least signifi cant bit of the register. Because we oft en want to access a subfi eld of a 

register or wire, we can refer to a contiguous set of bits of a register or wire with the 

notation [starting bit: ending bit], where both indices must be constant 

values. 

An array of registers is used for a structure like a register fi le or memory. Th

us, 

the declaration

reg [31:0] registerfile[0:31]

specifi es a variable registerfi le that is equivalent to a MIPS registerfi le,  where 

register 0 is the fi rst. When accessing an array, we can refer to a single element, as 

in C, using the notation registerfile[regnum]. 
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Th

e possible values for a register or wire in Verilog are

■  0 or 1, representing logical false or true

■  X, representing unknown, the initial value given to all registers and to any 

wire not connected to something

■  Z, representing the high-impedance state for tristate gates, which we will not 

discuss in this appendix

Constant values can be specifi ed as decimal numbers as well as binary, octal, or 

hexadecimal. We oft en want to say exactly how large a constant fi eld is in bits. Th

is 

is done by prefi xing the value with a decimal number specifying its size in bits. For 

example:

■  4’b0100 specifi es a 4-bit binary constant with the value 4, as does 4’d4. 

■  - 8 ‘h4 specifi es an 8-bit constant with the value ⫺4 (in two’s complement 

representation)

Values can also be concatenated by placing them within { } separated by commas. 

Th

e notation {x{bit field}} replicates bit field x times. For example:

■  {16{2’b01}} creates a 32-bit value with the pattern 0101 … 01. 

■  {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A 

and whose lower 16 bits come from B. 

Verilog provides the full set of unary and binary operators from C, including the 

arithmetic operators (⫹, ⫺, *. /), the logical operators (&, |, ⬃), the comparison 

operators (⫽ ⫽, !⫽, ⬎, ⬍, ⬍ ⫽, ⬎ ⫽), the shift  operators (⬍⬍, ⬎⬎), and C’s 

conditional operator (?, which is used in the form condition ? expr1 :expr2 

and returns expr1 if the condition is true and expr2 if it is false). Verilog adds 

a set of unary logic reduction operators (&, |, ^) that yield a single bit by applying 

the logical operator to all the bits of an operand. For example, &A returns the value 

obtained by ANDing all the bits of A together, and ^A returns the reduction obtained 

by using exclusive OR on all the bits of A. 

Check  Which of the following defi ne exactly the same value? 

Yourself

l. 8’bimoooo

2. 8’hF0

3. 8’d240

4. {{4{1’b1}},{4{1’b0}}}

5. {4’b1,4’b0)
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Structure of a Verilog Program

A Verilog program is structured as a set of modules, which may represent anything 

from a collection of logic gates to a complete system. Modules are similar to classes 

in C⫹⫹, although not nearly as powerful. A module specifi es its input and output 

ports, which describe the incoming and outgoing connections of a module. A 

module may also declare additional variables. Th

e body of a module consists of:

■  initial constructs, which can initialize reg variables

■  Continuous assignments, which defi ne only combinational logic

■  always constructs, which can defi ne either sequential or combinational 

logic

■  Instances of other modules, which are used to implement the module being 

defi ned

Representing Complex Combinational Logic in Verilog

A continuous assignment, which is indicated with the keyword assign, acts like 

a combinational logic function: the output is continuously assigned the value, and 

a change in the input values is refl ected immediately in the output value. Wires 

may only be assigned values with continuous assignments. Using continuous 

assignments, we can defi ne a module that implements a half-adder, as Figure B.4.1 

shows. 

Assign statements are one sure way to write Verilog that generates combinational 

logic. For more complex structures, however, assign statements may be awkward or 

tedious to use. It is also possible to use the always block of a module to describe 

a combinational logic element, although care must be taken. Using an always 

block allows the inclusion of Verilog control constructs, such as  if-then-else, case 

statements,  for statements, and  repeat statements, to be used. Th

ese statements are 

similar to those in C with small changes. 

An  always block specifi es an optional list of signals on which the block is 

sensitive (in a list starting with @). Th

e always block is re-evaluated if any of the 

FIGURE B.4.1  A Verilog module that defi nes a half-adder using continuous assignments. 
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listed signals changes value; if the list is omitted, the always block is constantly re-

sensitivity list  Th

e list of 

evaluated. When an always block is specifying combinational logic, the sensitivity 

signals that specifi es when 

list should include all the input signals. If there are multiple Verilog statements to 

an always block should 

be executed in an always block, they are surrounded by the keywords begin and 

be re-evaluated. 

end, which take the place of the { and } in C. An always block thus looks like this:

always @(list of signals that cause reevaluation) begin

Verilog statements including assignments and other 

control statements end

Reg variables may only be assigned inside an always block, using a procedural 

assignment statement (as distinguished from continuous assignment we saw 

earlier). Th

ere are, however, two diff erent types of procedural assignments. Th

e 

assignment operator ⫽ executes as it does in C; the right-hand side is evaluated, 

and the left -hand side is assigned the value. Furthermore, it executes like the 

normal C assignment statement: that is, it is completed before the next statement is 

blocking assignment 

executed. Hence, the assignment operator ⫽ has the name blocking assignment. 

In Verilog, an assignment 

Th

is blocking can be useful in the generation of sequential logic, and we will return 

that completes before 

to it shortly. Th

e other form of assignment (nonblocking) is indicated by <=. In 

the execution of the next 

nonblocking assignment, all right-hand sides of the assignments in an always 

statement. 

group are evaluated and the assignments are done simultaneously. As a fi rst 

nonblocking 

example of combinational logic implemented using an always block, Figure B.4.2 

assignment An 

shows the implementation of a 4-to-1 multiplexor, which uses a case construct to 

assignment that continues 

make it easy to write. Th

e case construct looks like a C switch statement. Figure 

aft er evaluating the right-

B.4.3 shows a defi nition of a MIPS ALU, which also uses a case statement. 

hand side, assigning the 

Since only reg variables may be assigned inside always blocks, when we want to 

left -hand side the value 

describe combinational logic using an always block, care must be taken to ensure 

only aft er all right-hand 

sides are evaluated. 

that the reg does not synthesize into a register. A variety of pitfalls are described in 

the elaboration below. 

Elaboration: Continuous assignment statements always yield combinational logic, 

but other Verilog structures, even when in always blocks, can yield unexpected results 

during logic synthesis. The most common problem is creating sequential logic by 

implying the existence of a latch or register, which results in an implementation that is 

both slower and more costly than perhaps intended. To ensure that the logic that you 

intend to be combinational is synthesized that way, make sure you do the following:

1.  Place all combinational logic in a continuous assignment or an always block. 

2.  Make sure that all the signals used as inputs appear in the sensitivity list of an 

always block. 

3.  Ensure that every path through an always block assigns a value to the exact 

same set of bits. 

The last of these is the easiest to overlook; read through the example in Figure 

B.5.15 to convince yourself that this property is adhered to. 
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FIGURE B.4.2  A Verilog defi nition of a 4-to-1 multiplexor with 32-bit inputs, using a case statement. Th

e case statement acts like a C switch statement, except that in Verilog only the code 

associated with the selected case is executed (as if each case state had a break at the end) and there is no fall-through to the next statement. 

FIGURE B.4.3  A Verilog behavioral defi nition of a MIPS ALU.  Th

is could be synthesized using a module library containing basic 

arithmetic and logical operations. 
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Check  Assuming all values are initially zero, what are the values of A and B aft er executing this Verilog code inside an always block? 

Yourself

C=1; 

A <= C; 

B = C; 

 B.5 

Constructing a Basic Arithmetic Logic 

Unit

 ALU n. [A rthritic 

Th

e arithmetic logic unit (ALU) is the brawn of the computer, the device that per-

L ogic U nit or (rare) 

forms the arithmetic operations like addition and subtraction or logical operations 

A rithmetic L ogic U nit] 

like AND and OR. Th

is section constructs an ALU from four hardware building 

 A random-number 

blocks (AND and OR gates, inverters, and multiplexors) and illustrates how 

 generator supplied 

combinational logic works. In the next section, we will see how addition can be 

 as standard with all 

sped up through more clever designs. 

 computer systems. 

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s assume 

that we will connect 32 1-bit ALUs to create the desired ALU. We’ll therefore start 

Stan Kelly-Bootle,  Th

  e 

by constructing a 1-bit ALU. 

 Devil’s DP Dictionary,  

1981

A 1-Bit ALU

Th

e logical operations are easiest, because they map directly onto the hardware 

components in Figure B.2.1. 

Th

e 1-bit logical unit for AND and OR looks like Figure B.5.1. Th

e multiplexor 

on the right then selects  a AND  b or  a OR  b, depending on whether the value of   Operation is 0 or 1. Th

e line that controls the multiplexor is shown in color 

to distinguish it from the lines containing data. Notice that we have renamed the 

control and output lines of the multiplexor to give them names that refl ect the 

function of the ALU. 

Th

e next function to include is addition. An adder must have two inputs for the 

operands and a single-bit output for the sum. Th

ere must be a second output to 

pass on the carry, called  CarryOut. Since the CarryOut from the neighbor adder 

must be included as an input, we need a third input. Th

is input is called  CarryIn. 

Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what addition is supposed to do, we can specify the outputs of this “black box” based on 

its inputs, as Figure B.5.3 demonstrates. 

We can express the output functions CarryOut and Sum as logical equations, 

and these equations can in turn be implemented with logic gates. Let’s do CarryOut. 

Figure B.5.4 shows the values of the inputs when CarryOut is a 1. 

We can turn this truth table into a logical equation:

CarryOut

(b CarryIn)

a

(

CarryIn)

a

(

b)

a

(

b CarryIn)
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Operation

a

0

Result

1

b

FIGURE B.5.1  The 1-bit logical unit for AND and OR. 

CarryIn

a

+

Sum

b

CarryOut

FIGURE B.5.2  A 1-bit adder.  Th

is adder is called a full adder; it is also called a (3,2) adder because it has 

3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder. 

In

s

t

u

p

u

O

s

t

u

p

t

a

b

CarryIn

CarryOut

Sum

Comments

0

0

0

0

0

0 + 0 + 0 = 00two

0

0

1

0

1

0 + 0 + 1 = 01two

0

1

0

0

1

0 + 1 + 0 = 01two

0

1

1

1

0

0 + 1 + 1 = 10two

1

0

0

0

1

1 + 0 + 0 = 01two

1

0

1

1

0

1 + 0 + 1 = 10two

1

1

0

1

0

1 + 1 + 0 = 10two

1

1

1

1

1

1 + 1 + 1 = 11two

FIGURE B.5.3  Input and output specifi cation for a 1-bit adder. 
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If a ⭈ b ⭈ CarryIn is true, then all of the other three terms must also be true, so we 

can leave out this last term corresponding to the fourth line of the table. We can 

thus simplify the equation to

CarryOut

(b CarryIn)

a

(

CarryIn)

a

(

b)

Figure B.5.5 shows that the hardware within the adder black box for CarryOut 

consists of three AND gates and one OR gate. Th

e three AND gates correspond 

exactly to the three parenthesized terms of the formula above for CarryOut, and 

the OR gate sums the three terms. 

Inputs

a

b

CarryIn

0

1

1

1

0

1

1

1

0

1

1

1

FIGURE B.5.4  Values of the inputs when CarryOut is a 1. 

CarryIn

a

b

CarryOut

FIGURE B.5.5  Adder hardware for the CarryOut signal.  Th

e rest of the adder hardware is the logic 

for the Sum output given in the equation on this page. 

Th

e Sum bit is set when exactly one input is 1 or when all three inputs are 1. Th

e 

Sum results in a complex Boolean equation (recall that a means NOT a):

Sum

a

(

b CarryIn)

(a b CarryIn)

(a b CarryIn)

a

(

b CarryIn)

Th

e drawing of the logic for the Sum bit in the adder black box is left  as an exercise 

for the reader. 
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Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier components. Sometimes designers also want the ALU to perform a few more 

simple operations, such as generating 0. Th

e easiest way to add an operation is to 

expand the multiplexor controlled by the Operation line and, for this example, to 

connect 0 directly to the new input of that expanded multiplexor. 

Operation

CarryIn

a

0

1

Result

⫹

2

b

CarryOut

FIGURE B.5.6  A 1-bit ALU that performs AND, OR,  and addition (see Figure B.5.5). 

A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by 

connecting adjacent “black boxes.” Using  xi to mean the  i th bit of  x, Figure B.5.7 

shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores 

of a quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all 

the way through the adder, causing a carry out of the most signifi cant bit (Result31). 

Hence, the adder created by directly linking the carries of 1-bit adders is called a 

 ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 

page B-38. 

Subtraction is the same as adding the negative version of an operand, and this 

is how adders perform subtraction. Recall that the shortcut for negating a two’s 

complement number is to invert each bit (sometimes called the  one’s complement) 

and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 

between b and b, as Figure B.5.8 shows. 

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. Th

e added 

multiplexor gives the option of b or its inverted value, depending on Binvert, but 
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Operation

CarryIn

a0

CarryIn

ALU0

Result0

b0

CarryOut

a1

CarryIn

ALU1

Result1

b1

CarryOut

a2

CarryIn

ALU2

Result2

b2

CarryOut

. 

. 

. 

. 

. 

. 

. 

. 

. 

a31

CarryIn

ALU31

Result31

b31

FIGURE B.5.7  A 32-bit ALU constructed from 32 1-bit ALUs.  CarryOut of the less signifi cant bit is connected to the CarryIn of the more signifi cant bit. Th

is organization is called ripple carry. 

this is only one step in negating a two’s complement number. Notice that the least 

signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 

What happens if we set this CarryIn to 1 instead of 0? Th

e adder will then calculate 

a ⫹ b ⫹ 1. By selecting the inverted version of b, we get exactly what we want:

a

b

1

a

(b

1)

a

( b)

a

b

Th

e simplicity of the hardware design of a two’s complement adder helps explain 

why two’s complement representation has become the universal standard for 

integer computer arithmetic. 

 

B.5  Constructing a Basic Arithmetic Logic Unit 

B-31

Binvert

Operation

CarryIn

a

0

1

Result

b

0

⫹

2

1

CarryOut

FIGURE B.5.8  A 1-bit ALU that performs AND, OR, and addition on a and b or a and b.  By selecting b (Binvert ⫽ 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s complement subtraction of b from a instead of addition of b to a. 

A MIPS ALU also needs a NOR function. Instead of adding a separate gate 

for NOR, we can reuse much of the hardware already in the ALU, like we did for 

subtract. Th

e insight comes from the following truth about NOR:

(a

)

b

a b

Th

at is, NOT (a OR b) is equivalent to NOT a AND NOT b. Th

is fact is called 

DeMorgan’s theorem and is explored in the exercises in more depth. 

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure 

B.5.9 shows that change. 

Tailoring the 32-Bit ALU to MIPS

Th

ese four operations—add, subtract, AND, OR—are found in the ALU of almost 

every computer, and the operations of most MIPS instructions can be performed 

by this ALU. But the design of the ALU is incomplete. 

One instruction that still needs support is the set on less than instruction (slt). 

Recall that the operation produces 1 if rs ⬍ rt, and 0 otherwise. Consequently, slt 

will set all but the least signifi cant bit to 0, with the least signifi cant bit set according to the comparison. For the ALU to perform slt, we fi rst need to expand the three-input 
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Ainvert

Operation

Binvert

CarryIn

a

0

0

1

1

Result

b

0

⫹

2

1

CarryOut

FIGURE B.5.9  A 1-bit ALU that performs AND, OR, and addition on a and b or a and b.  By selecting a (Ainvert ⫽ 1) and b (Binvert ⫽ 1), we get a NOR b instead of a AND b. 

multiplexor in Figure B.5.8 to add an input for the slt result. We call that new input Less and use it only for slt. 

Th

e top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded 

multiplexor. From the description of slt above, we must connect 0 to the Less 

input for the upper 31 bits of the ALU, since those bits are always set to 0. What 

remains to consider is how to compare and set the  least signifi cant bit for set on less 

than instructions. 

What happens if we subtract b from a? If the diff erence is negative, then a ⬍ b 

since

(a

)

b

0 ⇒ ((a

)

b

)

b

(0

)

b

⇒ a

b

We want the least signifi cant bit of a set on less than operation to be a 1 if a ⬍ b; 

that is, a 1 if a ⫺ b is negative and a 0 if it’s positive. Th

is desired result corresponds 

exactly to the sign bit values: 1 means negative and 0 means positive. Following this 

line of argument, we need only connect the sign bit from the adder output to the 

least signifi cant bit to get set on less than. 

Unfortunately, the Result output from the most signifi cant ALU bit in the top of 

Figure B.5.10 for the slt operation is  not the output of the adder; the ALU output for the slt operation is obviously the input value Less. 

Operation

Ainvert

Binvert

CarryIn

a

0

0

1

1

Result

b

0

⫹

2

1

Less

3

CarryOut

Operation

Ainvert

Binvert

CarryIn

a

0

0

1

1


Result

b

0

⫹

2

1

Less

3

Set

Overflow

Overflow

detection

FIGURE B.5.10  (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b , and (bottom) a 1-bit ALU for the most signifi cant bit.  Th

e top drawing includes a direct input that is 

connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output from the adder for the less than comparison called Set. (See Exercise B.24 at the end of this appendix to see how to calculate overfl ow with fewer inputs.)
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Binvert

Operation

Ainvert

CarryIn

a0

CarryIn

Result0

b0

ALU0

Less

CarryOut

a1

CarryIn

Result1

b1

ALU1

0

Less

CarryOut

a2

CarryIn

Result2

b2

ALU2

0

Less

CarryOut

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. . 

CarryIn

. 

a31

CarryIn

Result31

b31

ALU31

Set

0

Less

Overflow

FIGURE B.5.11  A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top 

of Figure B.5.10 and one 1-bit ALU in the bottom of that fi gure.  Th e Less inputs are connected 

to 0 except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU performs a ⫺ b and we select the input 3 in the multiplexor in Figure B.5.10, then Result ⫽ 0 … 001 if a ⬍ b, and Result ⫽ 0 … 000 otherwise. 

Th

us, we need a new 1-bit ALU for the most signifi cant bit that has an extra 

output bit: the adder output. Th

e bottom drawing of Figure B.5.10 shows the 

design, with this new adder output line called  Set, and used only for slt. As long 

as we need a special ALU for the most signifi cant bit, we added the overfl ow detec-

tion logic since it is also associated with that bit. 
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Alas, the test of less than is a little more complicated than just described because 

of overfl ow, as we explore in the exercises. Figure B.5.11 shows the 32-bit ALU. 

Notice that every time we want the ALU to subtract, we set both CarryIn and 

Binvert to 1. For adds or logical operations, we want both control lines to be 0. We 

can therefore simplify control of the ALU by combining the CarryIn and Binvert to 

a single control line called  Bnegate. 

To further tailor the ALU to the MIPS instruction set, we must support 

conditional branch instructions. Th

ese instructions branch either if two registers 

are equal or if they are unequal. Th

e easiest way to test equality with the ALU is to 

subtract b from a and then test to see if the result is 0, since

(a

b

)

0 ⇒ a

b

Th

us, if we add hardware to test if the result is 0, we can test for equality. Th

e 

simplest way is to OR all the outputs together and then send that signal through 

an inverter:

Zero

Re

(

sult31

Result30

… Result2 Result1 Result )

0

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination of the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-bit 

control lines for the ALU, telling it to perform add, subtract, AND, OR, or set on 

less than. Figure B.5.13 shows the ALU control lines and the corresponding ALU 

operation. 

Finally, now that we have seen what is inside a 32-bit ALU, we will use the 

universal symbol for a complete ALU, as shown in Figure B.5.14. 

Defi ning the MIPS ALU in Verilog

Figure B.5.15 shows how a combinational MIPS ALU might be specifi ed in Verilog; such a specifi cation would probably be compiled using a standard parts library that 

provided an adder, which could be instantiated. For completeness, we show the 

ALU control for MIPS in Figure B.5.16, which is used in Chapter 4, where we build a Verilog version of the MIPS datapath. 

Th

e next question is, “How quickly can this ALU add two 32-bit operands?” 

We can determine the a and b inputs, but the CarryIn input depends on the 

operation in the adjacent 1-bit adder. If we trace all the way through the chain of 

dependencies, we connect the most signifi cant bit to the least signifi cant bit, so 

the most signifi cant bit of the sum must wait for the  sequential evaluation of all 32 

1-bit adders. Th

is sequential chain reaction is too slow to be used in time-critical 

hardware. Th

e next section explores how to speed-up addition. Th

is topic is not 

crucial to understanding the rest of the appendix and may be skipped. 
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Bnegate

Operation

Ainvert

a0

CarryIn

Result0

b0

ALU0

Less

CarryOut

a1

CarryIn

Result1

b1

ALU1

0

Less

Zero

CarryOut

... 

a2

CarryIn

Result2

b2

ALU2

0

Less

CarryOut

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

CarryIn

Result31

a31

CarryIn

b31

ALU31

Set

0

Less

Overflow

FIGURE B.5.12  The fi nal 32-bit ALU.  Th

is adds a Zero detector to Figure B.5.11. 

ALU control lines

Function

0000

AND

0001

OR

0010

add

0110

subtract

0111

set on less than

1100

NOR

FIGURE B.5.13  The values of the three ALU control lines, Bnegate, and Operation, and the corresponding ALU operations. 
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ALU operation

a

Zero

ALU

Result

Overflow

b

CarryOut

FIGURE B.5.14  The symbol commonly used to represent an ALU, as shown in Figure 

B.5.12.  Th

is symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder. 

FIGURE B.5.15  A Verilog behavioral defi nition of a MIPS ALU. 

B-38 

Appendix B  The Basics of Logic Design

FIGURE B.5.16  The MIPS ALU control: a simple piece of combinational control logic. 

Check  Suppose you wanted to add the operation NOT (a AND b), called NAND. How 

could the ALU change to support it? 

Yourself

1.  No change. You can calculate NAND quickly using the current ALU since 

( a

)

 b

 a

 b  and we already have NOT a, NOT b, and OR. 

2.  You must expand the big multiplexor to add another input, and then add 

new logic to calculate NAND. 

 B.6 

Faster Addition: Carry Lookahead

Th

e key to speeding up addition is determining the carry in to the high-order bits 

sooner. Th

ere are a variety of schemes to anticipate the carry so that the worst-

case scenario is a function of the log  of the number of bits in the adder. Th

ese 

2

anticipatory signals are faster because they go through fewer gates in sequence, but 

it takes many more gates to anticipate the proper carry. 

A key to understanding fast-carry schemes is to remember that, unlike soft 

ware, hardware executes in parallel whenever inputs change. 

Fast Carry Using “Infi nite” Hardware

As we mentioned earlier, any equation can be represented in two levels of logic. 

Since the only external inputs are the two operands and the CarryIn to the least 
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signifi cant bit of the adder, in theory we could calculate the CarryIn values to all 

the remaining bits of the adder in just two levels of logic. 

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1, 

so the formula is

CarryIn2

(b1 CarryIn1)

a

( 1 CarryIn1)

a

( 1 b1)

Similarly, CarryIn1 is defi ned as

CarryIn1

(b0 CarryIn0)

a

( 0 CarryIn0)

a

( 0 b0)

Using the shorter and more traditional abbreviation of c i for CarryIn i, we can 

rewrite the formulas as

c2

(b1 c1)

a

( 1 c1)

a

( 1 b1)

c1

(b0 c0)

a

( 0 c0)

a

( 0 b0)

Substituting the defi nition of c1 for the fi rst equation results in this formula:

c2

a

( 1 a0 b0)

a

( 1 a0 c0) a

( 1 b0 c0)

(b1 a0 b0)

(b1 a0 c0)

(b1 b0 c )

0

(a1 b )

1

You can imagine how the equation expands as we get to higher bits in the adder; 

it grows rapidly with the number of bits. Th

is complexity is refl ected in the cost of 

the hardware for fast carry, making this simple scheme prohibitively expensive for 

wide adders. 

Fast Carry Using the First Level of Abstraction: Propagate 

and Generate

Most fast-carry schemes limit the complexity of the equations to simplify the 

hardware, while still making substantial speed improvements over ripple carry. 

One such scheme is a  carry-lookahead adder. In Chapter 1, we said computer 

systems cope with complexity by using levels of abstraction. A carry-lookahead 

adder relies on levels of abstraction in its implementation. 

Let’s factor our original equation as a fi rst step:

c i

1

(b i  c i)

a

(  i  c i)

a

(  i  b i)

= a

(  i  b i)

a

(  i

b i) c i

If we were to rewrite the equation for c2 using this formula, we would see some 

repeated patterns:

c2

a

( 1 b1)

a

( 1 b1) ( a

( 0 b0)

a

( 0

b0) c0)

Note the repeated appearance of (a i ⭈ b i) and (a i ⫹ b i) in the formula above. Th ese 

two important factors are traditionally called  generate (g i) and  propagate (p i):
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g i

a i  b i

p i

a i

b i

Using them to defi ne c i ⫹ 1, we get

c i

1

g i

p i  c i

To see where the signals get their names, suppose g i is 1. Th

en

c i

1

g i

p i  c i

1

p i  c i

1

Th

at is, the adder  generates a CarryOut (c i ⫹  1) independent of the value of CarryIn (c i). Now suppose that g i is 0 and p i is 1. Th

en

c i

1

g i

p i  c i

0

1 c i

c i

Th

at is, the adder  propagate s CarryIn to a CarryOut. Putting the two together, 

CarryIn i ⫹  1 is a 1 if either g i is 1 or both p i is 1 and CarryIn i is 1. 

As an analogy, imagine a row of dominoes set on edge. Th

e end domino can be 

tipped over by pushing one far away, provided there are no gaps between the two. 

Similarly, a carry out can be made true by a generate far away, provided all the 

propagates between them are true. 

Relying on the defi nitions of propagate and generate as our fi rst level of 

abstraction, we can express the CarryIn signals more economically. Let’s show it 

for 4 bits:

c1

g0

(p0 c0)

c2

g1

(p1 g0)

(p1 p0 c0)

c3

g2

(p2 g1)

(p2 p1 g0)

(p2 p1 p0 c0)

c4

g3

(p3 g2)

(p3 p2 g1)

(p3 p2 p1 g0)

(p

p3 p2 p1 p0 c0) 

Th

ese equations just represent common sense: CarryIn i is a 1 if some earlier adder 

generates a carry and all intermediary adders propagate a carry. Figure B.6.1 uses plumbing to try to explain carry lookahead. 

Even this simplifi ed form leads to large equations and, hence, considerable logic 

even for a 16-bit adder. Let’s try moving to two levels of abstraction. 

Fast Carry Using the Second Level of Abstraction

First, we consider this 4-bit adder with its carry-lookahead logic as a single building 

block. If we connect them in ripple carry fashion to form a 16-bit adder, the add 

will be faster than the original with a little more hardware. 
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To go faster, we’ll need carry lookahead at a higher level. To perform carry look 

ahead for 4-bit adders, we need to propagate and generate signals at this higher 

level. Here they are for the four 4-bit adder blocks:

P0

p3 p2 p1 p0

P1

p7 p6 p5 p4

P2

p11 p10 p9 p8

P3

p15 p14 p13 p12

Th

at is, the “super” propagate signal for the 4-bit abstraction (P i) is true only if each 

of the bits in the group will propagate a carry. 

For the “super” generate signal (G i), we care only if there is a carry out of the 

most signifi cant bit of the 4-bit group. Th

is obviously occurs if generate is true 

for that most signifi cant bit; it also occurs if an earlier generate is true  and all the intermediate propagates, including that of the most signifi cant bit, are also true:

G0

g3

(p3 g2)

(p3 p2 g1)

(p3 p2 p1 g0)

G1

g7

(p7 g6)

(p7 p6 g5)

(p7 p6 p5 g4)

G2

g11

(p11 g10)

(p11 p10 g9)

(p11 p10 p9 g8)

G3

g15

(p15 g14)

(p15 p14 g13)

(p15 p14 p13 g12)

Figure B.6.2 updates our plumbing analogy to show P0 and G0. 

Th

en the equations at this higher level of abstraction for the carry in for each 

4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure B.6.3) are very similar to the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page B-40:

C1

G0

P

( 0 c0)

C2

G1

P

( 1 G0)

P

( 1 P0 c0)

C3

G2

P

( 2 G1)

P

( 2 P1 G0)

P

( 2 P1 P0 c0)

C4

G3

P

( 3 G2)

P

( 3 P2 G1)

P

( 3 P2 P1 G0) 

(P3 P2 P1 P0 c )

0

Figure B.6.3 shows 4-bit adders connected with such a carry-lookahead unit. 

Th

e exercises explore the speed diff erences between these carry schemes, diff erent 

notations for multibit propagate and generate signals, and the design of a 64-bit 

adder. 
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c0

g0

p0

c1

c0

g0

c0

p0

g0

g1

p0

p1

g1

c2

p1

g2

p2

g3

p3

c4

FIGURE B.6.1  A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using water pipes and valves.  Th

e wrenches are turned to open and close valves. Water is shown in color. Th

e 

output of the pipe (c i ⫹ 1) will be full if either the nearest generate value (g i) is turned on or if the  i propagate value (p i) is on and there is water further upstream, either from an earlier generate or a propagate with water behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of  all propagates. 
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p0

p1

g0

p2

p3

g1

P0

p1

g2

p2

g3

p3

G0

FIGURE B.6.2  A plumbing analogy for the next-level carry-lookahead signals P0 and G0.  

P0 is open only if all four propagates (p i) are open, while water fl ows in G0 only if at least one generate (g i) is open and all the propagates downstream from that generate are open. 
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Both Levels of the Propagate and Generate

Determine the g i, p i, P i, and G i values of these two 16-bit numbers: EXAMPLE

a:    0001 1010 0011 0011two

b:    1110 0101 1110 1011two

Also, what is CarryOut15 (C4)? 

Aligning the bits makes it easy to see the values of generate g i (a i  ⭈  b i) and ANSWER

propagate p i (a i ⫹ b i):

a:    0001 1010 0011 0011

b:    1110 0101 1110 1011

g i:    0000 0000 0010 0011

p i:    1111 1111 1111 1011

where the bits are numbered 15 to 0 from left  to right. Next, the “super” 

propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P3

1 1 1 1

1

P2

1 1 1 1

1

P1

1 1 1 1

1

P0

1 0 1 1

0

Th

e “super” generates are more complex, so use the following equations:

G0

g3

(p3 g2)

(p3 p2 g1)

(p3 p2 p1 g0)

= 0

1

( 0)

1

( 0 1)

1

( 0 1 1)

0

0

0

0

0

1

G

g7

( 7

p

g6)

( 7

p

6

p

g5)

( 7

p

6

p

5

p

g4)

0

(1 )

0

(1 1 )

1

(1 1 1 )

0

0

0

1

0

1

G2

1

g 1

( 1

p 1 1

g )

0

( 1

p 1

1

p 0 g9)

( 11

p

10

p

9

p

g8)

0

1

( 0)

1

( 1 0)

1

( 1 1 0)

0

0

0

0

0

G3

g15

(p15 g14)

(p15 p14 g13)

(p15 p14 p13 g12)

0

1

( 0)

(1 1 )

0

(1 1 1 )

0

0

0

0

0

0

Finally, CarryOut15 is

C4

G3

P

( 3 G2)

P

( 3 P2 G1)

P

( 3 P2 P1 G0)

P

( 3 P2 P1 P0 c0)

0

(1 )

0

(1 1 )

1

(1 1 1 )

0

(1 1 1 0

)

0

0

0

1

0

0

1

Hence, there  is a carry out when adding these two 16-bit numbers. 
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CarryIn

a0

CarryIn

b0

Result0–3

a1

b1

a2

ALU0

b2

P0

p i

a3

G0

g i

b3

C1

Carry-lookahead unit

c i + 1

a4

CarryIn

b4

Result4–7

a5

b5

a6

ALU1

b6

P1

p i + 1

a7

G1

g i + 1

b7

C2

c i + 2

a8

CarryIn

b8

Result8–11

a9

b9

a10

ALU2
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FIGURE B.6.3  Four 4-bit ALUs using carry lookahead to form a 16-bit adder.  Note that the carries come from the carry-lookahead unit, not from the 4-bit ALUs. 
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Th

e reason carry lookahead can make carries faster is that all logic begins 

evaluating the moment the clock cycle begins, and the result will not change once 

the output of each gate stops changing. By taking the shortcut of going through 

fewer gates to send the carry in signal, the output of the gates will stop changing 

sooner, and hence the time for the adder can be less. 

To appreciate the importance of carry lookahead, we need to calculate the 

relative performance between it and ripple carry adders. 

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate 

EXAMPLE

takes the same time for a signal to pass through it. Time is estimated by simply 

counting the number of gates along the path through a piece of logic. Compare 

the number of  gate delays for paths of two 16-bit adders, one using ripple carry 

and one using two-level carry lookahead. 

Figure B.5.5 on page B-28 shows that the carry out signal takes two gate 

ANSWER

delays per bit. Th

en the number of gate delays between a carry in to the least 

signifi cant bit and the carry out of the most signifi cant is 16 ⫻ 2 ⫽ 32. 

For carry lookahead, the carry out of the most signifi cant bit is just C4, 

defi ned in the example. It takes two levels of logic to specify C4 in terms of 

P i and G i (the OR of several AND terms). P i is specifi ed in one level of logic (AND) using p i, and G i is specifi ed in two levels using p i and g i, so the worst case for this next level of abstraction is two levels of logic. p i and g i are each one level of logic, defi ned in terms of a i and b i. If we assume one gate delay 

for each level of logic in these equations, the worst case is 2 ⫹ 2 ⫹ 1 ⫽ 5 gate 

delays. 

Hence, for the path from carry in to carry out, the 16-bit addition by a 

carry-lookahead adder is six times faster, using this very simple estimate of 

hardware speed. 

Summary

Carry lookahead off ers a faster path than waiting for the carries to ripple through 

all 32 1-bit adders. Th

is faster path is paved by two signals, generate and propagate. 
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Th

e former creates a carry regardless of the carry input, and the latter passes a carry 

along. Carry lookahead also gives another example of how abstraction is important 

in computer design to cope with complexity. 

Using the simple estimate of hardware speed above with gate delays, what is the  Check 

relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-

Yourself

lookahead logic? 

1.  A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate 

delays and 64-bit adds are 7 gate delays. 

2. Th

ey are about the same speed, since 64-bit adds need more levels of logic in 

the 16-bit adder. 

3.  8-bit adds are faster than 64 bits, even with carry lookahead. 

Elaboration: We have now accounted for all but one of the arithmetic and logical 

operations for the core MIPS instruction set: the ALU in Figure B.5.14 omits support of shift instructions. It would be possible to widen the ALU multiplexor to include a left shift 

by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit called a 

 barrel shifter,  which can shift from 1 to 31 bits in no more time than it takes to add two 32-bit numbers, so shifting is normally done outside the ALU. 

Elaboration:  The logic equation for the Sum output of the full adder on page B-28 can 

be expressed more simply by using a more powerful gate than AND and OR. An  exclusive 

 OR gate is true if the two operands disagree; that is, 

x ≠ y ⇒ 1 and x ⫽⫽ y ⇒ 0

In some technologies, exclusive OR is more effi cient than two levels of AND and OR 

gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Sum ⫽ a ⊕ b ⊕ CarryIn

Also, we have drawn the ALU the traditional way, using gates. Computers are designed 

today in CMOS transistors, which are basically switches. CMOS ALU and barrel shifters 

take advantage of these switches and have many fewer multiplexors than shown in our 

designs, but the design principles are similar. 

Elaboration:  Using lowercase and uppercase to distinguish the hierarchy of generate 

and propagate symbols breaks down when you have more than two levels. An alternate 

notation that scales is g  and p  for the generate and propagate signals for bits  i to  j. 

 i..j

 i..j

Thus, g

is generated for bit 1, g

is for bits 4 to 1, and g

is for bits 16 to 1. 

1..1

4..1

16..1
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 B.7 Clocks

Before we discuss memory elements and sequential logic, it is useful to discuss 

briefl y the topic of clocks. Th

is short section introduces the topic and is similar 

to the discussion found in Section 4.2. More details on clocking and timing 

methodologies are presented in Section B.11. 

 Clocks are needed in sequential logic to decide when an element that contains 

state should be updated. A clock is simply a free-running signal with a fi xed  cycle 

 time; the  clock frequency is simply the inverse of the cycle time. As shown in Figure 

B.7.1, the  clock cycle time or  clock period is divided into two portions: when the edge-triggered 

clock is high and when the clock is low. In this text, we use only edge-triggered 

clocking A clocking 

clocking. Th

is means that all state changes occur on a clock edge. We use an edge-

scheme in which all state 

triggered methodology because it is simpler to explain. Depending on the tech-

changes occur on a clock 

nology, it may or may not be the best choice for a clocking methodology. 

edge. 

clocking methodology 

Th

e approach used to 

Falling edge

determine when data is 

valid and stable relative to 

the clock. 

Clock period

Rising edge

FIGURE B.7.1  A clock signal oscillates between high and low values.  Th

e clock period is the 

time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and causes state to be changed. 

In an edge-triggered methodology, either the rising edge or the falling edge of 

the clock is  active and causes state changes to occur. As we will see in the next 

state element 

section, the state elements in an edge-triggered design are implemented so that the 

A memory element. 

contents of the state elements only change on the active clock edge. Th

e choice of 

which edge is active is infl uenced by the implementation technology and does not 

aff ect the concepts involved in designing the logic. 

synchronous system 

Th

e clock edge acts as a sampling signal, causing the value of the data input to a 

A memory system that 

state element to be sampled and stored in the state element. Using an edge trigger 

employs clocks and where 

means that the sampling process is essentially instantaneous, eliminating problems 

data signals are read only 

that could occur if signals were sampled at slightly diff erent times. 

when the clock indicates 

that the signal values are 

Th

e major constraint in a clocked system, also called a synchronous system, is 

stable. 

that the signals that are written into state elements must be  valid when the active 
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clock edge occurs. A signal is valid if it is stable (i.e., not changing), and the value 

will not change again until the inputs change. Since combinational circuits cannot 

have feedback, if the inputs to a combinational logic unit are not changed, the 

outputs will eventually become valid. 

Figure B.7.2 shows the relationship among the state elements and the 

combinational logic blocks in a synchronous, sequential logic design. Th

e state 

elements, whose outputs change only aft er the clock edge, provide valid inputs 

to the combinational logic block. To ensure that the values written into the state 

elements on the active clock edge are valid, the clock must have a long enough 

period so that all the signals in the combinational logic block stabilize, and then the 

clock edge samples those values for storage in the state elements. Th

is constraint 

sets a lower bound on the length of the clock period, which must be long enough 

for all state element inputs to be valid. 

In the rest of this appendix, as well as in Chapter 4, we usually omit the clock 

signal, since we are assuming that all state elements are updated on the same clock 

edge. Some state elements will be written on every clock edge, while others will be 

written only under certain conditions (such as a register being updated). In such 

cases, we will have an explicit write signal for that state element. Th

e write signal 

must still be gated with the clock so that the update occurs only on the clock edge if 

the write signal is active. We will see how this is done and used in the next section. 

One other advantage of an edge-triggered methodology is that it is possible 

to have a state element that is used as both an input and output to the same 

combinational logic block, as shown in Figure B.7.3. In practice, care must be taken to prevent races in such situations and to ensure that the clock period is long 

enough; this topic is discussed further in Section B.11. 

Now that we have discussed how clocking is used to update state elements, we 

can discuss how to construct the state elements. 

State

State

element

Combinational logic

element

1

2

Clock cycle

FIGURE B.7.2  The inputs to a combinational logic block come from a state element, and 

the outputs are written into a state element.  Th

e clock edge determines when the contents of the 

state elements are updated. 
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State

Combinational logic

element

FIGURE B.7.3  An edge-triggered methodology allows a state element to be read and 

written in the same clock cycle without creating a race that could lead to undetermined 

data values.  Of course, the clock cycle must still be long enough so that the input values are stable when the active clock edge occurs. 

Elaboration:  Occasionally, designers fi nd it useful to have a small number of state 

elements that change on the opposite clock edge from the majority of the state elements. 

Doing so requires extreme care, because such an approach has effects on both the 

inputs and the outputs of the state element. Why then would designers ever do this? 

Consider the case where the amount of combinational logic before and after a state 

element is small enough so that each could operate in one-half clock cycle, rather than 

register fi le A state 

the more usual full clock cycle. Then the state element can be written on the clock edge 

element that consists 

corresponding to a half clock cycle, since the inputs and outputs will both be usable 

of a set of registers that 

can be read and written 

after one-half clock cycle. One common place where this technique is used is in register 

by supplying a register 

fi les, where simply reading or writing the register fi le can often be done in half the normal number to be accessed. 

clock cycle. Chapter 4 makes use of this idea to reduce the pipelining overhead. 

 B.8 

Memory Elements: Flip-Flops, Latches, 

and Registers

In this section and the next, we discuss the basic principles behind memory 

elements, starting with fl ip-fl ops and latches, moving on to register fi les,  and 

fi nishing with memories. All memory elements store state: the output from any 

memory element depends both on the inputs and on the value that has been stored 

inside the memory element. Th

us all logic blocks containing a memory element 

contain state and are sequential. 

R

Q

Q

S

FIGURE B.8.1  A pair of cross-coupled NOR gates can store an internal value.   Th

e value 

stored on the output  Q is recycled by inverting it to obtain  Q and then inverting  Q to obtain  Q. If either  R or Q is asserted,  Q will be deasserted and vice versa. 

 

B.8  Memory Elements: Flip-Flops, Latches, and Registers 

B-51

Th

e simplest type of memory elements are  unclocked; that is, they do not 

have any clock input. Although we only use clocked memory elements in this 

text, an unclocked latch is the simplest memory element, so let’s look at this 

circuit fi rst. Figure B.8.1 shows an  S-R latch (set-reset latch), built from a pair of NOR gates (OR gates with inverted outputs). Th

e outputs  Q and  Q represent the 

value of the stored state and its complement. When neither  S nor  R are asserted, 

the cross-coupled NOR gates act as inverters and store the previous values of 

 Q and  Q. 

For example, if the output,  Q, is true, then the bottom inverter produces a false 

output (which is  Q), which becomes the input to the top inverter, which produces 

a true output, which is  Q, and so on. If  S is asserted, then the output  Q will be asserted and  Q will be deasserted, while if  R is asserted, then the output  Q will be asserted and  Q will be deasserted. When  S and  R are both deasserted, the last values of  Q and  Q will continue to be stored in the cross-coupled structure. Asserting  S 

and  R simultaneously can lead to incorrect operation: depending on how  S and  R 

are deasserted, the latch may oscillate or become metastable (this is described in 

more detail in Section B.11). 

Th

is cross-coupled structure is the basis for more complex memory elements 

that allow us to store data signals. Th

ese elements contain additional gates used to 

store signal values and to cause the state to be updated only in conjunction with a 

clock. Th

e next section shows how these elements are built. 

Flip-Flops and Latches

fl ip-fl op A memory 

Flip-fl ops and latches are the simplest memory elements. In both fl ip-fl ops and  element for which the output is equal to the 

latches, the output is equal to the value of the stored state inside the element.  value of the stored state Furthermore, unlike the S-R latch described above, all the latches and fl ip-fl ops we  inside the element and for will use from this point on are clocked, which means that they have a clock input  which the internal state is and the change of state is triggered by that clock. Th

e diff erence between a fl ip-

changed only on a clock 

fl op and a latch is the point at which the clock causes the state to actually change.  edge. 

In a clocked latch, the state is changed whenever the appropriate inputs change  latch  A memory element and the clock is asserted, whereas in a fl ip-fl op, the state is changed only on a clock 

in which the output is 

edge. Since throughout this text we use an edge-triggered timing methodology  equal to the value of the where state is only updated on clock edges, we need only use fl ip-fl ops. Flip-fl ops  stored state inside the are oft en built from latches, so we start by describing the operation of a simple  element and the state is clocked latch and then discuss the operation of a fl ip-fl op constructed from that  changed whenever the latch. 

appropriate inputs change 

and the clock is asserted. 

For computer applications, the function of both fl ip-fl ops and latches is to 

store a signal. A  D latch or D fl ip-fl op stores the value of its data input signal in  D fl ip-fl op A fl ip-fl op the internal memory. Although there are many other types of latch and fl ip-fl op,  with one data input the D type is the only basic building block that we will need. A D latch has two  that stores the value of inputs and two outputs. Th

e inputs are the data value to be stored (called  D) and  that input signal in the 

internal memory when 

a clock signal (called  C) that indicates when the latch should read the value on  the clock edge occurs. 

the  D input and store it. Th

e outputs are simply the value of the internal state ( Q) 
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and its complement ( Q). When the clock input  C is asserted, the latch is said to 

be  open, and the value of the output ( Q) becomes the value of the input  D. When the clock input  C is deasserted, the latch is said to be  closed, and the value of the output ( Q) is whatever value was stored the last time the latch was open. 

Figure B.8.2 shows how a D latch can be implemented with two additional gates added to the cross-coupled NOR gates. Since when the latch is open the value of  Q 

changes as  D changes, this structure is sometimes called a  transparent latch. Figure 

B.8.3 shows how this D latch works, assuming that the output  Q is initially false and that  D changes fi rst. 

As mentioned earlier, we use fl ip-fl ops as the basic building block, rather than 

latches. Flip-fl ops are not transparent: their outputs change  only on the clock edge. 

A fl ip-fl op can be built so that it triggers on either the rising (positive) or falling 

(negative) clock edge; for our designs we can use either type. Figure B.8.4 shows how a falling-edge D fl ip-fl op is constructed from a pair of D latches. In a D fl ip-fl op, the output is stored when the clock edge occurs. Figure B.8.5 shows how this fl ip-fl op operates. 

 C

 Q

 Q

 D

FIGURE B.8.2  A D latch implemented with NOR gates.  A NOR gate acts as an inverter if the other input is 0. Th

us, the cross-coupled pair of NOR gates acts to store the state value unless the clock input,  C, is asserted, in which case the value of input  D replaces the value of  Q and is stored. Th e value of input  D must 

be stable when the clock signal  C changes from asserted to deasserted. 

 D

 C

 Q

FIGURE B.8.3  Operation of a D latch, assuming the output is initially deasserted.  When the clock,  C, is asserted, the latch is open and the  Q output immediately assumes the value of the  D input. 
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 D

 D

 Q

 D

 Q

D

D

 Q

latch

latch

 Q

 C

 C

 Q

 C

FIGURE B.8.4  A D fl ip-fl op with a falling-edge trigger.  Th

e fi rst latch, called the master, is open 

and follows the input  D when the clock input,  C, is asserted. When the clock input,  C, falls, the fi rst latch is closed, but the second latch, called the slave, is open and gets its input from the output of the master latch. 

 D

 C

 Q

FIGURE B.8.5  Operation of a D fl ip-fl op with a falling-edge trigger, assuming the output is initially deasserted.  When the clock input ( C) changes from asserted to deasserted, the  Q output stores the value of the  D input. Compare this behavior to that of the clocked D latch shown in Figure B.8.3. In a clocked latch, the stored value and the output,  Q, both change whenever  C is high, as opposed to only when C transitions. 

Here is a Verilog description of a module for a rising-edge D fl ip-fl op, assuming 

that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar); 

input clock, D; 



output reg Q; // Q is a reg since it is assigned in an 

always block

output Qbar; 



assign Qbar = ~ Q; // Qbar is always just the inverse 

of Q



always @(posedge clock) // perform actions whenever the 

clock rises



Q = D; 

endmodule

setup time  Th

e 

minimum time that the 

Because the  D input is sampled on the clock edge, it must be valid for a period  input to a memory device of time immediately before and immediately aft er the clock edge. Th

e minimum  must be valid before the 

time that the input must be valid before the clock edge is called the setup time; the  clock edge. 
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 D

Setup time

Hold time

 C

FIGURE B.8.6  Setup and hold time requirements for a D fl ip-fl op with a falling-edge trigger.  

Th

e input must be stable for a period of time before the clock edge, as well as aft er the clock edge. Th e 

minimum time the signal must be stable before the clock edge is called the setup time, while the minimum time the signal must be stable aft er the clock edge is called the hold time. Failure to meet these minimum requirements can result in a situation where the output of the fl ip-fl op may not be predictable, as described in Section B.11. Hold times are usually either 0 or very small and thus not a cause of worry. 

hold time  Th

e minimum  minimum time during which it must be valid aft er the clock edge is called the hold time during which the 

time. Th

us the inputs to any fl ip-fl op (or anything built using fl ip-fl ops) must be valid 

input must be valid aft er 

during a window that begins at time  t

before the clock edge and ends at  t

aft er 

setup

hold

the clock edge. 

the clock edge, as shown in Figure B.8.6. Section B.11 talks about clocking and timing constraints, including the propagation delay through a fl ip-fl op, in more detail. 

We can use an array of D fl ip-fl ops to build a register that can hold a multibit 

datum, such as a byte or word. We used registers throughout our datapaths in 

Chapter 4. 

Register Files

One structure that is central to our datapath is a  register fi le. A register fi le consists of a set of registers that can be read and written by supplying a register number 

to be accessed. A register fi le can be implemented with a decoder for each read 

or write port and an array of registers built from D fl ip-fl ops. Because reading a 

register does not change any state, we need only supply a register number as an 

input, and the only output will be the data contained in that register. For writing a 

register we will need three inputs: a register number, the data to write, and a clock 

that controls the writing into the register. In Chapter 4, we used a register fi le that 

has two read ports and one write port. Th

is register fi le is drawn as shown in Figure 

B.8.7. Th

e read ports can be implemented with a pair of multiplexors, each of which 

is as wide as the number of bits in each register of the register fi le. Figure B.8.8 

shows the implementation of two register read ports for a 32-bit-wide register fi le. 

Implementing the write port is slightly more complex, since we can only change 

the contents of the designated register. We can do this by using a decoder to generate 

a signal that can be used to determine which register to write. Figure B.8.9 shows how to implement the write port for a register fi le. It is important to remember that 

the fl ip-fl op changes state only on the clock edge. In Chapter 4, we hooked up write 

signals for the register fi le explicitly and assumed the clock shown in Figure B.8.9 

is attached implicitly. 

What happens if the same register is read and written during a clock cycle? 

Because the write of the register fi le occurs on the clock edge, the register will be 
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Read register

number 1

Read 

data 1

Read register

number 2

Register file

Write

Read 

register

data 2

Write

data

Write

FIGURE B.8.7  A register fi le with two read ports and one write port has fi ve inputs and two outputs.  Th

e control input Write is shown in color. 

Read register

number 1

Register 0

Register 1

M

. . . 

u

Read data 1

x

Register  n – 2

Register  n – 1

Read register

number 2

M

u

Read data 2

x

FIGURE B.8.8  The implementation of two read ports for a register fi le with  n registers can be done with a pair of n-to-1 multiplexors, each 32 bits wide.  Th

e register read number 

signal is used as the multiplexor selector signal. Figure B.8.9 shows how the write port is implemented. 
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Write

 C

0

1

Register 0

 n-to-2 n

 D

. 

Register number

. 

decoder

. 

 C

Register 1

 n – 2

 D

 n – 1

... 

 C

Register  n – 2

 D

 C

Register  n – 1

Register data

 D

FIGURE B.8.9  The write port for a register fi le is implemented with a decoder that is used with the write signal to generate the  C input to the registers. All three inputs (the register number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct data is written into the register fi le. 

valid during the time it is read, as we saw earlier in Figure B.7.2. Th

e value returned 

will be the value written in an earlier clock cycle. If we want a read to return the 

value currently being written, additional logic in the register fi le or outside of it is 

needed. Chapter 4 makes extensive use of such logic. 

Specifying Sequential Logic in Verilog

To specify sequential logic in Verilog, we must understand how to generate a 

clock, how to describe when a value is written into a register, and how to specify 

sequential control. Let us start by specifying a clock. A clock is not a predefi ned 

object in Verilog; instead, we generate a clock by using the Verilog notation #n 

before a statement; this causes a delay of n simulation time steps before the execu-

tion of the statement. In most Verilog simulators, it is also possible to generate 

a clock as an external input, allowing the user to specify at simulation time the 

number of clock cycles during which to run a simulation. 

Th

e code in Figure B.8.10 implements a simple clock that is high or low for one simulation unit and then switches state. We use the delay capability and blocking 

assignment to implement the clock. 
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FIGURE B.8.10  A specifi cation of a clock. 

Next, we must be able to specify the operation of an edge-triggered register. In 

Verilog, this is done by using the sensitivity list on an always block and specifying 

as a trigger either the positive or negative edge of a binary variable with the 

notation  posedge or negedge, respectively. Hence, the following Verilog code 

causes register A to be written with the value b at the positive edge clock:

FIGURE B.8.11  A MIPS register fi le written in behavioral Verilog.  Th

is register fi le writes on 

the rising clock edge. 

Th

roughout this chapter and the Verilog sections of Chapter 4, we will assume 

a positive edge-triggered design. Figure B.8.11 shows a Verilog specifi cation of a MIPS register fi le that assumes two reads and one write, with only the write being 

clocked. 
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Check  In the Verilog for the register fi le in Figure B.8.11, the output ports corresponding to the registers being read are assigned using a continuous assignment, but the register 

Yourself

being written is assigned in an always block. Which of the following is the reason? 

a. Th

ere is no special reason. It was simply convenient. 

b.  Because Data1 and Data2 are output ports and WriteData is an input port. 

c.  Because reading is a combinational event, while writing is a sequential event. 

 B.9 

Memory Elements: SRAMs and DRAMs

Registers and register fi les provide the basic building blocks for small memories, 

static random access 

but larger amounts of memory are built using either SRAMs (static random 

memory (SRAM) 

access memories) or  DRAMs (dynamic random access memories). We fi rst discuss 

A memory where data 

SRAMs, which are somewhat simpler, and then turn to DRAMs. 

is stored statically (as 

in fl ip-fl ops) rather 

than dynamically (as 

SRAMs

in DRAM). SRAMs are 

SRAMs are simply integrated circuits that are memory arrays with (usually) a single 

faster than DRAMs, 

access port that can provide either a read or a write. SRAMs have a fi xed access 

but less dense and more 

time to any datum, though the read and write access characteristics oft en diff er. 

expensive per bit. 

An SRAM chip has a specifi c confi guration in terms of the number of addressable 

locations, as well as the width of each addressable location. For example, a 4M ⫻ 8 

SRAM provides 4M entries, each of which is 8 bits wide. Th

us it will have 22 address 

lines (since 4M ⫽ 222), an 8-bit data output line, and an 8-bit single data input line. 

As with ROMs, the number of addressable locations is oft en called the  height, with 

the number of bits per unit called the  width. For a variety of technical reasons, the 

newest and fastest SRAMs are typically available in narrow confi gurations: ⫻ 1 and 

⫻ 4. Figure B.9.1 shows the input and output signals for a 2M ⫻ 16 SRAM. 

21

Address

Chip select

SRAM

16

Output enable

Dout[15–0]

2M ⫻ 16

Write enable

16

Din[15–0]

FIGURE B.9.1  A 32K ⴛ 8 SRAM showing the 21 address lines (32K ⴝ 215) and 16 data inputs, the 3 control lines, and the 16 data outputs. 
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To initiate a read or write access, the Chip select signal must be made active. 

For reads, we must also activate the Output enable signal that controls whether or 

not the datum selected by the address is actually driven on the pins. Th

e Output 

enable is useful for connecting multiple memories to a single-output bus and using 

Output enable to determine which memory drives the bus. Th

e SRAM read access 

time is usually specifi ed as the delay from the time that Output enable is true and 

the address lines are valid until the time that the data is on the output lines. Typical 

read access times for SRAMs in 2004 varied from about 2–4 ns for the fastest CMOS 

parts, which tend to be somewhat smaller and narrower, to 8–20 ns for the typical 

largest parts, which in 2004 had more than 32 million bits of data. Th

e demand for 

low-power SRAMs for consumer products and digital appliances has grown greatly 

in the past fi ve years; these SRAMs have much lower stand-by and access power, 

but usually are 5–10 times slower. Most recently, synchronous SRAMs—similar to 

the synchronous DRAMs, which we discuss in the next section—have also been 

developed. 

For writes, we must supply the data to be written and the address, as well as 

signals to cause the write to occur. When both the Write enable and Chip select are 

true, the data on the data input lines is written into the cell specifi ed by the address. 

Th

ere are setup-time and hold-time requirements for the address and data lines, 

just as there were for D fl ip-fl ops and latches. In addition, the Write enable signal 

is not a clock edge but a pulse with a minimum width requirement. Th

e time to 

complete a write is specifi ed by the combination of the setup times, the hold times, 

and the Write enable pulse width. 

Large SRAMs cannot be built in the same way we build a register fi le because, 

unlike a register fi le where a 32-to-1 multiplexor might be practical, the 64K-to-

1 multiplexor that would be needed for a 64K ⫻ 1 SRAM is totally impractical. 

Rather than use a giant multiplexor, large memories are implemented with a shared 

output line, called a  bit line, which multiple memory cells in the memory array can 

assert. To allow multiple sources to drive a single line, a  three-state buff er (or  tristate buff er) is used. A three-state buff er has two inputs—a data signal and an Output 

enable—and a single output, which is in one of three states: asserted, deasserted, 

or high impedance. Th

e output of a tristate buff er is equal to the data input signal, 

either asserted or deasserted, if the Output enable is asserted, and is otherwise in a 

 high-impedance state that allows another three-state buff er whose Output enable is 

asserted to determine the value of a shared output. 

Figure B.9.2 shows a set of three-state buff ers wired to form a multiplexor with a decoded input. It is critical that the Output enable of at most one of the three-state 

buff ers be asserted; otherwise, the three-state buff ers may try to set the output line 

diff erently. By using three-state buff ers in the individual cells of the SRAM, each 

cell that corresponds to a particular output can share the same output line. Th

e use 

of a set of distributed three-state buff ers is a more effi

cient implementation than a 

large centralized multiplexor. Th

e three-state buff ers are incorporated into the fl ip-

fl ops that form the basic cells of the SRAM. Figure B.9.3 shows how a small 4 ⫻ 2 

SRAM might be built, using D latches with an input called Enable that controls the 

three-state output. 

B-60 

Appendix B  The Basics of Logic Design

Select 0

Enable

In

Out

Data 0

Select 1

Enable

In

Out

Data 1

Select 2

Enable

Output

In

Out

Data 2

Select 3

Enable
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FIGURE B.9.2  Four three-state buffers are used to form a multiplexor.  Only one of the four Select inputs can be asserted. A three-state buff er with a deasserted Output enable has a high-impedance output that allows a three-state buff er whose Output enable is asserted to drive the shared output line. 

Th

e design in Figure B.9.3 eliminates the need for an enormous multiplexor; 

however, it still requires a very large decoder and a correspondingly large number 

of word lines. For example, in a 4M ⫻ 8 SRAM, we would need a 22-to-4M decoder 

and 4M word lines (which are the lines used to enable the individual fl ip-fl ops)! 

To circumvent this problem, large memories are organized as rectangular arrays 

and use a two-step decoding process. Figure B.9.4 shows how a 4M ⫻ 8 SRAM 

might be organized internally using a two-step decode. As we will see, the two-level 

decoding process is quite important in understanding how DRAMs operate. 

Recently we have seen the development of both synchronous SRAMs (SSRAMs) 

and synchronous DRAMs (SDRAMs). Th

e key capability provided by synchronous 

RAMs is the ability to transfer a  burst of data from a series of sequential addresses 

within an array or row. Th

e burst is defi ned by a starting address, supplied in the 

usual fashion, and a burst length. Th

e speed advantage of synchronous RAMs 

comes from the ability to transfer the bits in the burst without having to specify 

additional address bits. Instead, a clock is used to transfer the successive bits in the 

burst. Th

e elimination of the need to specify the address for the transfers within 

the burst signifi cantly improves the rate for transferring the block of data. Because 

of this capability, synchronous SRAMs and DRAMs are rapidly becoming the 

RAMs of choice for building memory systems in computers. We discuss the use of 

synchronous DRAMs in a memory system in more detail in the next section and 

in Chapter 5. 
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FIGURE B.9.3  The basic structure of a 4 ⴛ 2 SRAM consists of a decoder that selects which pair of cells to activate.  

Th

e activated cells use a three-state output connected to the vertical bit lines that supply the requested data. Th e address that selects the cell is 

sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip select signals have been omitted, but they could easily be added with a few AND gates. 
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DRAMs

In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting gates, 

and as long as power is applied, the value can be kept indefi nitely. In a dynamic 

RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. A single 

transistor is then used to access this stored charge, either to read the value or to 

overwrite the charge stored there. Because DRAMs use only a single transistor per 

bit of storage, they are much denser and cheaper per bit. By comparison, SRAMs 

require four to six transistors per bit. Because DRAMs store the charge on a 

capacitor, it cannot be kept indefi nitely and must periodically be  refreshed. Th

at is 

why this memory structure is called  dynamic, as opposed to the static storage in a 

SRAM cell. 

To refresh the cell, we merely read its contents and write it back. Th

e charge can 

be kept for several milliseconds, which might correspond to close to a million clock 

cycles. Today, single-chip memory controllers oft en handle the refresh function 

independently of the processor. If every bit had to be read out of the DRAM and 

then written back individually, with large DRAMs containing multiple megabytes, 

we would constantly be refreshing the DRAM, leaving no time for accessing it. 

Fortunately, DRAMs also use a two-level decoding structure, and this allows us 

to refresh an entire row (which shares a word line) with a read cycle followed 

immediately by a write cycle. Typically, refresh operations consume 1% to 2% of 

the active cycles of the DRAM, leaving the remaining 98% to 99% of the cycles 

available for reading and writing data. 

Elaboration: How does a DRAM read and write the signal stored in a cell? The 

transistor inside the cell is a switch, called a  pass transistor, that allows the value stored on the capacitor to be accessed for either reading or writing. Figure B.9.5 shows how the single-transistor cell looks. The pass transistor acts like a switch: when the signal 

on the word line is asserted, the switch is closed, connecting the capacitor to the bit 

line. If the operation is a write, then the value to be written is placed on the bit line. If 

the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will 

be discharged. Reading is slightly more complex, since the DRAM must detect a very 

small charge stored in the capacitor. Before activating the word line for a read, the bit 

line is charged to the voltage that is halfway between the low and high voltage. Then, by 

activating the word line, the charge on the capacitor is read out onto the bit line. This 

causes the bit line to move slightly toward the high or low direction, and this change is 

detected with a sense amplifi er, which can detect small changes in voltage. 
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Word line

Pass transistor

Capacitor
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FIGURE B.9.5  A single-transistor DRAM cell contains a capacitor that stores the cell 

contents and a transistor used to access the cell. 
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2048 ⫻ 2048
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11-to-2048

Address[10–0]
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Mux

Dout

FIGURE B.9.6  A 4M ⴛ 1 DRAM is built with a 2048 ⫻ 2048 array.  Th

e row access uses 11 bits to 

select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048 

latches. Th

e RAS and CAS signals control whether the address lines are sent to the row decoder or column 

multiplexor. 
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DRAMs use a two-level decoder consisting of a  row access followed by a  column 

 access, as shown in Figure B.9.6. Th

e row access chooses one of a number of rows 

and activates the corresponding word line. Th

e contents of all the columns in the 

active row are then stored in a set of latches. Th

e column access then selects the 

data from the column latches. To save pins and reduce the package cost, the same 

address lines are used for both the row and column address; a pair of signals called 

RAS ( Row Access Strobe) and CAS ( Column Access Strobe) are used to signal the 

DRAM that either a row or column address is being supplied. Refresh is performed 

by simply reading the columns into the column latches and then writing the same 

values back. Th

us, an entire row is refreshed in one cycle. Th

e two-level addressing 

scheme, combined with the internal circuitry, makes DRAM access times much 

longer (by a factor of 5–10) than SRAM access times. In 2004, typical DRAM access 

times ranged from 45 to 65 ns; 256 Mbit DRAMs are in full production, and the 

fi rst customer samples of 1 GB DRAMs became available in the fi rst quarter of 

2004. Th

e much lower cost per bit makes DRAM the choice for main memory, 

while the faster access time makes SRAM the choice for caches. 

You might observe that a 64M ⫻ 4 DRAM actually accesses 8K bits on every 

row access and then throws away all but 4 of those during a column access. DRAM 

designers have used the internal structure of the DRAM as a way to provide 

higher bandwidth out of a DRAM. Th

is is done by allowing the column address to 

change without changing the row address, resulting in an access to other bits in the 

column latches. To make this process faster and more precise, the address inputs 

were clocked, leading to the dominant form of DRAM in use today: synchronous 

DRAM or SDRAM. 

Since about 1999, SDRAMs have been the memory chip of choice for most 

cache-based main memory systems. SDRAMs provide fast access to a series of bits 

within a row by sequentially transferring all the bits in a burst under the control 

of a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called 

double data rate because they transfer data on both the rising and falling edge of 

an externally supplied clock, were the most heavily used form of SDRAMs. As we 

discuss in Chapter 5, these high-speed transfers can be used to boost the bandwidth 

available out of main memory to match the needs of the processor and caches. 

Error Correction

Because of the potential for data corruption in large memories, most computer 

systems use some sort of error-checking code to detect possible corruption of data. 

One simple code that is heavily used is a  parity code. In a parity code the number 

of 1s in a word is counted; the word has odd parity if the number of 1s is odd and 
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even otherwise. When a word is written into memory, the parity bit is also written 

(1 for odd, 0 for even). Th

en, when the word is read out, the parity bit is read and 

checked. If the parity of the memory word and the stored parity bit do not match, 

an error has occurred. 

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there 

are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since the 

parity will match the data with two errors. (Actually, a 1-bit parity scheme can 

detect any odd number of errors; however, the probability of having three errors is 

much lower than the probability of having two, so, in practice, a 1-bit parity code is 

limited to detecting a single bit of error.) Of course, a parity code cannot tell which 

bit in a data item is in error. 

error detection code 

A 1-bit parity scheme is an error detection code; there are also  error correction 

A code that enables the 

 codes (ECC) that will detect and allow correction of an error. For large main 

detection of an error in 

memories, many systems use a code that allows the detection of up to 2 bits of error 

data, but not the precise 

and the correction of a single bit of error. Th

ese codes work by using more bits to 

location and, hence, 

encode the data; for example, the typical codes used for main memories require 7 

correction of the error. 

or 8 bits for every 128 bits of data. 

Elaboration: A 1-bit parity code is a  distance-2 code, which means that if we look at the data plus the parity bit, no 1-bit change is suffi cient to generate another legal 

combination of the data plus parity. For example, if we change a bit in the data, the parity 

will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data 

bit and the parity bit), the parity will match the data and the error cannot be detected. 

Hence, there is a distance of two between legal combinations of parity and data. 

To detect more than one error or correct an error, we need a  distance-3 code, which 

has the property that any legal combination of the bits in the error correction code and 

the data has at least 3 bits differing from any other combination. Suppose we have such 

a code and we have one error in the data. In that case, the code plus data will be one bit 

away from a legal combination, and we can correct the data to that legal combination. 

If we have two errors, we can recognize that there is an error, but we cannot correct 

the errors. Let’s look at an example. Here are the data words and a distance-3 error 

correction code for a 4-bit data item. 

Data Word

Code bits

Data

Code bits

0000

000

1000

111

0001

011

1001

100

0010

101

1010

010

0011

110

1011

001

0100

110

1100

001

0101

101

1101

010

0110

011

1110

100

0111

000

1111

111
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To see how this works, let’s choose a data word, say 0110, whose error correction 

code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100, 

and 0111. Now look at the data item with the same code (011), which is the entry with 

the value 0001. If the error correction decoder received one of the four possible data 

words with an error, it would have to choose between correcting to 0110 or 0001. While 

these four words with error have only one bit changed from the correct pattern of 0110, 

they each have two bits that are different from the alternate correction of 0001. Hence, 

the error correction mechanism can easily choose to correct to 0110, since a single 

error is a much higher probability. To see that two errors can be detected, simply notice 

that all the combinations with two bits changed have a different code. The one reuse of 

the same code is with three bits different, but if we correct a 2-bit error, we will correct 

to the wrong value, since the decoder will assume that only a single error has occurred. 

If we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit errors, we 

need a distance-4 code. 

Although we distinguished between the code and data in our explanation, in truth, 

an error correction code treats the combination of code and data as a single word in 

a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the 

same fashion as errors in the data bits. 

While the above example requires  n ⫺ 1 bits for  n bits of data, the number of bits required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a 

128-bit word needs 8. This type of code is called a  Hamming code, after R. Hamming, 

who described a method for creating such codes. 

 B.10 Finite-State 

Machines

fi nite-state machine 

As we saw earlier, digital logic systems can be classifi ed as combinational or  A sequential logic sequential. Sequential systems contain state stored in memory elements internal to  function consisting of a the system. Th

eir behavior depends both on the set of inputs supplied and on the  set of inputs and out puts, 

contents of the internal memory, or state of the system. Th

us, a sequential system  a next-state function that 

cannot be described with a truth table. Instead, a sequential system is described as  maps the current state and a fi nite-state machine (or oft en just  state machine). A fi nite-state machine has a set  the inputs to a new state, and an output function 

of states and two functions, called the next-state function and the  output function.  that maps the current Th

e set of states corresponds to all the possible values of the internal storage.  state and possibly the Th

us, if there are  n bits of storage, there are 2 n states. Th

e next-state function is a  inputs to a set of asserted 

combinational function that, given the inputs and the current state, determines the  outputs. 

next state of the system. Th

e output function produces a set of outputs from the  next-state function

current state and the inputs. Figure B.10.1 shows this diagrammatically. 



A combinational function 

Th

e state machines we discuss here and in Chapter 4 are  synchronous. Th

is means  that, given the inputs 

that the state changes together with the clock cycle, and a new state is computed  and the current state, once every clock. Th

us, the state elements are updated only on the clock edge. We  determines the next state 

use this methodology in this section and throughout Chapter 4, and we do not  of a fi nite-state machine. 
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function
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FIGURE B.10.1  A state machine consists of internal storage that contains the state and two combinational functions: the next-state function and the output function.  Oft en, the output function is restricted to take only the current state as its input; this does not change the capability of a sequential machine, but does aff ect its internals. 

usually show the clock explicitly. We use state machines throughout Chapter 4 to 

control the execution of the processor and the actions of the datapath. 

To illustrate how a fi nite-state machine operates and is designed, let’s look at a 

simple and classic example: controlling a traffi

c light. (Chapters 4 and 5 contain more 

detailed examples of using fi nite-state machines to control processor execution.) When 

a fi nite-state machine is used as a controller, the output function is oft en restricted to 

depend on just the current state. Such a fi nite-state machine is called a  Moore machine. 

Th

is is the type of fi nite-state machine we use throughout this book. If the output 

function can depend on both the current state and the current input, the machine 

is called a  Mealy machine. Th

ese two machines are equivalent in their capabilities, 

and one can be turned into the other mechanically. Th

e basic advantage of a Moore 

machine is that it can be faster, while a Mealy machine may be smaller, since it may 

need fewer states than a Moore machine. In Chapter 5, we discuss the diff erences in 

more detail and show a Verilog version of fi nite-state control using a Mealy machine. 

Our example concerns the control of a traffi

c light at an intersection of a north-

south route and an east-west route. For simplicity, we will consider only the green 

and red lights; adding the yellow light is left  for an exercise. We want the lights to 

cycle no faster than 30 seconds in each direction, so we will use a 0.033 Hz clock 

so that the machine cycles between states at no faster than once every 30 seconds. 

Th

ere are two output signals:
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■   NSlite: When this signal is asserted, the light on the north-south road is 

green; when this signal is deasserted, the light on the north-south road is red. 

■   EWlite: When this signal is asserted, the light on the east-west road is green; 

when this signal is deasserted, the light on the east-west road is red. 

In addition, there are two inputs:

■   NScar: Indicates that a car is over the detector placed in the roadbed in front 

of the light on the north-south road (going north or south). 

■   EWcar: Indicates that a car is over the detector placed in the roadbed in front 

of the light on the east-west road (going east or west). 

Th

e traffi

c light should change from one direction to the other only if a car is 

waiting to go in the other direction; otherwise, the light should continue to show 

green in the same direction as the last car that crossed the intersection. 

To implement this simple traffi

c light we need two states:

■   NSgreen: Th

e traffi

c light is green in the north-south direction. 

■   EWgreen: Th

e traffi

c light is green in the east-west direction. 

We also need to create the next-state function, which can be specifi ed with a table:

Inputs

 

NScar

EWcar

Next state

NSgreen

0

0

NSgreen

NSgreen

0

1

EWgreen

NSgreen

1

0

NSgreen

NSgreen

1

1

EWgreen

EWgreen

0

0

EWgreen

EWgreen

0

1

EWgreen

EWgreen

1

0

NSgreen

EWgreen

1

1

NSgreen

Notice that we didn’t specify in the algorithm what happens when a car 

approaches from both directions. In this case, the next-state function given above 

changes the state to ensure that a steady stream of cars from one direction cannot 

lock out a car in the other direction. 

Th

e fi nite-state machine is completed by specifying the output function. 

Before we examine how to implement this fi nite-state machine, let’s look at a 

graphical representation, which is oft en used for fi nite-state machines. In this 

representation, nodes are used to indicate states. Inside the node we place a list of 

the outputs that are active for that state. Directed arcs are used to show the next-state
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w

Outputs

NSlite

EWlite

NSgreen

1

0

EWgreen

0

1

function, with labels on the arcs specifying the input condition as logic functions. 

Figure B.10.2 shows the graphical representation for this fi nite-state machine. 

EWcar

NSgreen

EWgreen

NScar

NSlite

EWlite

EWcar

NScar

FIGURE B.10.2  The graphical representation of the two-state traffi c light controller.  We simplifi ed the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen in the next-state table is (NScar EWcar)

(NScar EWcar), which is equivalent to EWcar. 

A fi nite-state machine can be implemented with a register to hold the current 

state and a block of combinational logic that computes the next-state function and 

the output function. Figure B.10.3 shows how a fi nite-state machine with 4 bits of state, and thus up to 16 states, might look. To implement the fi nite-state machine 

in this way, we must fi rst assign state numbers to the states. Th

is process is called 

 state assignment. For example, we could assign NSgreen to state 0 and EWgreen to 

state 1. Th

e state register would contain a single bit. Th

e next-state function would 

be given as

NextState

C

( urrentState EWcar)

Current

(

State NScar)
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where CurrentState is the contents of the state register (0 or 1) and NextState is the 

output of the next-state function that will be written into the state register at the 

end of the clock cycle. Th

e output function is also simple:

NSlite ⫽ CurrentState

EWlite ⫽ CurrentState

Th

e combinational logic block is oft en implemented using structured logic, 

such as a PLA. A PLA can be constructed automatically from the next-state and 

output function tables. In fact, there are  computer-aided design (CAD) programs 

Outputs

Combinational logic

Next state

State register

Inputs

FIGURE B.10.3  A fi nite-state machine is implemented with a state register that holds 

the current state and a combinational logic block to compute the next state and output 

functions.  Th

e latter two functions are oft en split apart and implemented with two separate blocks of logic, 

which may require fewer gates. 

that take either a graphical or textual representation of a fi nite-state machine and 

produce an optimized implementation automatically. In Chapters 4 and 5, fi nite-

state machines were used to control processor execution. Appendix D discusses 

the detailed implementation of these controllers with both PLAs and ROMs. 

To show how we might write the control in Verilog, Figure B.10.4 shows a 

Verilog version designed for synthesis. Note that for this simple control function, 

a Mealy machine is not useful, but this style of specifi cation is used in Chapter 5 to 

implement a control function that is a Mealy machine and has fewer states than the 

Moore machine controller. 
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FIGURE B.10.4  A Verilog version of the traffi c light controller. 

Check  What is the smallest number of states in a Moore machine for which a Mealy 

machine could have fewer states? 

Yourself

a.  Two, since there could be a one-state Mealy machine that might do the same 

thing. 

b. Th

ree, since there could be a simple Moore machine that went to one of two 

diff erent states and always returned to the original state aft er that. For such a 

simple machine, a two-state Mealy machine is possible. 

c.  You need at least four states to exploit the advantages of a Mealy machine 

over a Moore machine. 

 B.11 Timing 

Methodologies

Th

roughout this appendix and in the rest of the text, we use an edge-triggered 

timing methodology. Th

is timing methodology has an advantage in that it is 

simpler to explain and understand than a level-triggered methodology. In this 

section, we explain this timing methodology in a little more detail and also 

introduce level-sensitive clocking. We conclude this section by briefl y discussing 
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the issue of asynchronous signals and synchronizers, an important problem for 

digital designers. 

Th

e purpose of this section is to introduce the major concepts in clocking 

methodology. Th

e section makes some important simplifying assumptions; if you 

are interested in understanding timing methodology in more detail, consult one of 

the references listed at the end of this appendix. 

We use an edge-triggered timing methodology because it is simpler to explain 

and has fewer rules required for correctness. In particular, if we assume that all 

clocks arrive at the same time, we are guaranteed that a system with edge-triggered 

registers between blocks of combinational logic can operate correctly without races 

if we simply make the clock long enough. A  race occurs when the contents of a 

state element depend on the relative speed of diff erent logic elements. In an edge-

triggered design, the clock cycle must be long enough to accommodate the path 

from one fl ip-fl op through the combinational logic to another fl ip-fl op where it 

must satisfy the setup-time requirement. Figure B.11.1 shows this requirement for a system using rising edge-triggered fl ip-fl ops. In such a system the clock period 

(or cycle time) must be at least as large as

 t

⫹  t

⫹  t

prop

combinational

setup

for the worst-case values of these three delays, which are defi ned as follows:

■   t

is the time for a signal to propagate through a fl ip-fl op; it is also sometimes 

prop

called clock-to- Q. 

■   t

is the longest delay for any combinational logic (which by defi nition 

combinational

is surrounded by two fl ip-fl ops). 

■   t

is the time before the rising clock edge that the input to a fl ip-fl op must 

setup

be valid. 

 D

 Q

 D

 Q

Combinational

Flip-flop

Flip-flop

logic block

 C

 C

 t prop

 t combinational

 t setup

FIGURE B.11.1  In an edge-triggered design, the clock must be long enough to allow 

signals to be valid for the required setup time before the next clock edge.  Th

e time for a 

fl ip-fl op input to propagate to the fl ip-fl ip outputs is  t

; the signal then takes  t

to travel through the 

prop

combinational

combinational logic and must be valid  t

before the next clock edge. 

setup
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We make one simplifying assumption: the hold-time requirements are satisfi ed, 

which is almost never an issue with modern logic. 

One additional complication that must be considered in edge-triggered designs 

clock skew  Th

e 

is clock skew. Clock skew is the diff erence in absolute time between when two state 

diff erence in absolute time 

elements see a clock edge. Clock skew arises because the clock signal will oft en 

between the times when 

use two diff erent paths, with slightly diff erent delays, to reach two diff erent state 

two state elements see a 

elements. If the clock skew is large enough, it may be possible for a state element to 

clock edge. 

change and cause the input to another fl ip-fl op to change before the clock edge is 

seen by the second fl ip-fl op. 

Figure B.11.2 illustrates this problem, ignoring setup time and fl ip-fl op 

propagation delay. To avoid incorrect operation, the clock period is increased to 

allow for the maximum clock skew. Th

us, the clock period must be longer than

 t

⫹  t

⫹  t

⫹  t

prop

combinational

setup

skew

With this constraint on the clock period, the two clocks can also arrive in the 

opposite order, with the second clock arriving  t

earlier, and the circuit will work 

skew

 D

 Q

 D

 Q

Combinational

Flip-flop

Flip-flop

logic block with

Clock arrives

Clock arrives

 C

delay time of 

at time  t

Δ

 C

after  t + Δ

FIGURE B.11.2  Illustration of how clock skew can cause a race, leading to incorrect operation.  Because of the diff erence in when the two fl ip-fl ops see the clock, the signal that is stored into the fi rst fl ip-fl op can race forward and change the input to the second fl ip-fl op before the clock arrives at the second fl ip-fl op. 

correctly. Designers reduce clock-skew problems by carefully routing the clock 

signal to minimize the diff erence in arrival times. In addition, smart designers also 

provide some margin by making the clock a little longer than the minimum; this 

allows for variation in components as well as in the power supply. Since clock skew 

can also aff ect the hold-time requirements, minimizing the size of the clock skew 

level-sensitive 

is important. 

clocking A timing 

Edge-triggered designs have two drawbacks: they require extra logic and they 

methodology in which 

may sometimes be slower. Just looking at the D fl ip-fl op versus the level-sensitive 

state changes occur 

latch that we used to construct the fl ip-fl op shows that edge-triggered design 


at either high or low 

requires more logic. An alternative is to use level-sensitive clocking. Because state 

clock levels but are not 

changes in a level-sensitive methodology are not instantaneous, a level-sensitive 

instantaneous as such 

changes are in edge-

scheme is slightly more complex and requires additional care to make it operate 

triggered designs. 

correctly. 
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Level-Sensitive Timing

In level-sensitive timing, the state changes occur at either high or low levels, but 

they are not instantaneous as they are in an edge-triggered methodology. Because of 

the noninstantaneous change in state, races can easily occur. To ensure that a level-

sensitive design will also work correctly if the clock is slow enough, designers use  two-

 phase clocking. Two-phase clocking is a scheme that makes use of two nonoverlapping 

clock signals. Since the two clocks, typically called φ  and φ , are nonoverlapping, at 

1

2

most one of the clock signals is high at any given time, as Figure B.11.3 shows. We can use these two clocks to build a system that contains level-sensitive latches but is 

free from any race conditions, just as the edge-triggered designs were. 

Φ1

Φ2

Nonoverlapping

periods

FIGURE B.11.3  A two-phase clocking scheme showing the cycle of each clock and the 

nonoverlapping periods. 

 D

 Q

 D

 Q

 D

Combinational

Combinational

Latch

Latch

Latch

logic block

Φ

logic block

Φ

Φ

1

 C

2

 C

1

 C

FIGURE B.11.4  A two-phase timing scheme with alternating latches showing how the system operates on both clock phases.  Th

e output of a latch is stable on the opposite phase from its C input. Th

us, the fi rst block of combinational inputs has a stable input 

during φ , and its output is latched by φ . Th

e second (rightmost) combinational block operates in just the opposite fashion, with stable inputs 2

2

during φ . Th

us, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. Th e 

1

size of the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block. 

One simple way to design such a system is to alternate the use of latches that are 

open on φ  with latches that are open on φ . Because both clocks are not asserted 

1

2

at the same time, a race cannot occur. If the input to a combinational block is a φ  

1

clock, then its output is latched by a φ  clock, which is open only during φ  when 

2

2

the input latch is closed and hence has a valid output. Figure B.11.4 shows how a system with two-phase timing and alternating latches operates. As in an edge-triggered design, we must pay attention to clock skew, particularly between the two 
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clock phases. By increasing the amount of nonoverlap between the two phases, we 

can reduce the potential margin of error. Th

us, the system is guaranteed to operate 

correctly if each phase is long enough and if there is large enough nonoverlap 

between the phases. 

Asynchronous Inputs and Synchronizers

By using a single clock or a two-phase clock, we can eliminate race conditions 

if clock-skew problems are avoided. Unfortunately, it is impractical to make an 

entire system function with a single clock and still keep the clock skew small. 

While the CPU may use a single clock, I/O devices will probably have their own 

clock. An asynchronous device may communicate with the CPU through a series 

of handshaking steps. To translate the asynchronous input to a synchronous signal 

that can be used to change the state of a system, we need to use a  synchronizer, 

whose inputs are the asynchronous signal and a clock and whose output is a signal 

synchronous with the input clock. 

Our fi rst attempt to build a synchronizer uses an edge-triggered D fl ip-fl op, 

whose   D input is the asynchronous signal, as Figure B.11.5 shows. Because we communicate with a handshaking protocol, it does not matter whether we detect 

the asserted state of the asynchronous signal on one clock or the next, since the 

signal will be held asserted until it is acknowledged. Th

us, you might think that this 

simple structure is enough to sample the signal accurately, which would be the case 

except for one small problem. 

Asynchronous input

 D

 Q

Synchronous output

Flip-flop

Clock

 C

FIGURE B.11.5  A synchronizer built from a D fl ip-fl op is used to sample an asynchronous signal to produce an output that is synchronous with the clock.  Th

is “synchronizer” will  not 

work properly! 

metastability 

A situation that occurs if 

a signal is sampled when 

Th

e problem is a situation called metastability. Suppose the asynchronous 

it is not stable for the 

signal is transitioning between high and low when the clock edge arrives. Clearly, 

required setup and hold 

it is not possible to know whether the signal will be latched as high or low. Th

at 

times, possibly causing 

problem we could live with. Unfortunately, the situation is worse: when the signal 

the sampled value to 

that is sampled is not stable for the required setup and hold times, the fl ip-fl op may 

fall in the indeterminate 

go into a  metastable state. In such a state, the output will not have a legitimate high 

region between a high and 

low value. 

or low value, but will be in the indeterminate region between them. Furthermore, 
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the fl ip-fl op is not guaranteed to exit this state in any bounded amount of time. 

Some logic blocks that look at the output of the fl ip-fl op may see its output as 0, 

while others may see it as 1. Th

is situation is called a synchronizer failure. 

synchronizer failure 

In a purely synchronous system, synchronizer failure can be avoided by ensuring  A situation in which that the setup and hold times for a fl ip-fl op or latch are always met, but this is  a fl ip-fl op enters a impossible when the input is asynchronous. Instead, the only solution possible is to  metastable state and where some logic blocks 

wait long enough before looking at the output of the fl ip-fl op to ensure that its output 

reading the output of the 

is stable, and that it has exited the metastable state, if it ever entered it. How long is  fl ip-fl op see a 0 while long enough? Well, the probability that the fl ip-fl op will stay in the metastable state  others see a 1. 

decreases exponentially, so aft er a very short time the probability that the fl ip-fl op 

is in the metastable state is very low; however, the probability never reaches 0! So 

designers wait long enough such that the probability of a synchronizer failure is very 

low, and the time between such failures will be years or even thousands of years. 

For most fl ip-fl op designs, waiting for a period that is several times longer than 

the setup time makes the probability of synchronization failure very low. If the 

clock rate is longer than the potential metastability period (which is likely), then a 

safe synchronizer can be built with two D fl ip-fl ops, as Figure B.11.6 shows. If you are interested in reading more about these problems, look into the references. 

 D

 Q

 D

 Q

Asynchronous input

Synchronous output

Flip-flop

Flip-flop

Clock

 C

 C

FIGURE B.11.6  This synchronizer will work correctly if the period of metastability that we wish to guard against is less than the clock period.  Although the output of the fi rst fl ip-fl op may be metastable, it will not be seen by any other logic element until the second clock, when the second D 

fl ip-fl op samples the signal, which by that time should no longer be in a metastable state. 

Suppose we have a design with very large clock skew—longer than the register  Check 

propagation time. Is it always possible for such a design to slow the clock down  Yourself enough to guarantee that the logic operates properly? 

a.  Yes, if the clock is slow enough the signals can always propagate and the  propagation time  Th e design will work, even if the skew is very large. 

time required for an input 

b.  No, since it is possible that two registers see the same clock edge far enough  to a fl ip-fl op to propagate apart that a register is triggered, and its outputs propagated and seen by a  to the outputs of the fl ip-fl op. 

second register with the same clock edge. 
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 B.12  Field Programmable Devices

fi eld programmable 

devices (FPD) 

Within a custom or semicustom chip, designers can make use of the fl exibility of the 

An integrated circuit 

underlying structure to easily implement combinational or sequential logic. How 

containing combinational 

can a designer who does not want to use a custom or semicustom IC implement 

logic, and possibly 

a complex piece of logic taking advantage of the very high levels of integration 

memory devices, that are 

available? Th

e most popular component used for sequential and combinational 

confi gurable by the end 

logic design outside of a custom or semicustom IC is a fi eld  programmable 

user. 

device (FPD). An FPD is an integrated circuit containing combinational logic, and 

programmable logic 

possibly memory devices, that are confi gurable by the end user. 

device (PLD) 

FPDs generally fall into two camps: programmable logic devices  (PLDs), 

An integrated circuit 

which are purely combinational, and fi eld programmable gate arrays (FPGAs), 

containing combinational 

which provide both combinational logic and fl ip-fl ops. PLDs consist of two forms: 

logic whose function is 

confi gured by the end 

simple PLDs (SPLDs), which are usually either a PLA or a programmable array 

user. 

logic (PAL), and complex PLDs, which allow more than one logic block as well as 

confi gurable interconnections among blocks. When we speak of a PLA in a PLD, 

fi eld programmable 

we mean a PLA with user programmable and-plane and or-plane. A PAL is like a 

gate array (FPGA) 

PLA, except that the or-plane is fi xed. 

A confi gurable integrated 

circuit containing both 

Before we discuss FPGAs, it is useful to talk about how FPDs are confi gured. 

combinational logic 

Confi guration is essentially a question of where to make or break connections. 

blocks and fl ip-fl ops. 

Gate and register structures are static, but the connections can be confi gured. 

Notice that by confi guring the connections, a user determines what logic functions 

simple programmable 

are implemented. Consider a confi gurable PLA: by determining where the 

logic device 

connections are in the and-plane and the or-plane, the user dictates what logical 

(SPLD) Programmable 

logic device, usually 

functions are computed in the PLA. Connections in FPDs are either permanent 

containing either a single 

or reconfi gurable. Permanent connections involve the creation or destruction of 

PAL or PLA. 

a connection between two wires. Current FPLDs all use an antifuse technology, 

which allows a connection to be built at programming time that is then permanent. 

programmable array 

Th

e other way to confi gure CMOS FPLDs is through a SRAM. Th

e SRAM is 

logic (PAL) Contains a 

programmable and-plane 

downloaded at power-on, and the contents control the setting of switches, which 

followed by a fi xed or-

in turn determines which metal lines are connected. Th

e use of SRAM control 

plane. 

has the advantage in that the FPD can be reconfi gured by changing the contents 

of the SRAM. Th

e disadvantages of the SRAM-based control are two fold: the 

antifuse  A structure in 

confi guration is volatile and must be reloaded on power-on, and the use of active 

an integrated circuit that 

transistors for switches slightly increases the resistance of such connections. 

when programmed makes 

a permanent connection 

FPGAs include both logic and memory devices, usually structured in a two-

between two wires. 

dimensional array with the corridors dividing the rows and columns used for 
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global interconnect between the cells of the array. Each cell is a combination of 

gates and fl ip-fl ops that can be programmed to perform some specifi c function. 

Because they are basically small, programmable RAMs, they are also called lookup 

lookup tables (LUTs) 

tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as  In a fi eld programmable pieces of adders and RAM blocks that can be used to build register fi les. A few large 

device, the name given 

FPGAs even contain 32-bit RISC cores! 

to the cells because they 

consist of a small amount 

In addition to programming each cell to perform a specifi c function, the  of logic and RAM. 

interconnections between cells are also programmable, allowing modern FPGAs 

with hundreds of blocks and hundreds of thousands of gates to be used for complex 

logic functions. Interconnect is a major challenge in custom chips, and this is even 

more true for FPGAs, because cells do not represent natural units of decomposition 

for structured design. In many FPGAs, 90% of the area is reserved for interconnect 

and only 10% is for logic and memory blocks. 

Just as you cannot design a custom or semicustom chip without CAD tools, you 

also need them for FPDs. Logic synthesis tools have been developed that target 

FPGAs, allowing the generation of a system using FPGAs from structural and 

behavioral Verilog. 

 B.13 Concluding 

Remarks

Th

is appendix introduces the basics of logic design. If you have digested the 

material in this appendix, you are ready to tackle the material in Chapters 4 and 5, 

both of which use the concepts discussed in this appendix extensively. 

Further Reading

Th

ere are a number of good texts on logic design. Here are some you might like to 

look into. 

Ciletti, M. D. [2002].  Advanced Digital Design with the Verilog HDL,  Englewood 

Cliff s, NJ: Prentice Hall. 

 A thorough book on logic design using Verilog. 

Katz, R. H. [2004].  Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley. 

 A general text on logic design. 

Wakerly, J. F. [2000].  Digital Design: Principles and Practices,  3rd ed., Englewood 

Cliff s, NJ: Prentice Hall. 

 A general text on logic design. 
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 B.14 Exercises

B.1  [10] ⬍§B.2⬎ In addition to the basic laws we discussed in this section, there 

are two important theorems, called DeMorgan’s theorems:

A

B

A B and A B

A

B

Prove DeMorgan’s theorems with a truth table of the form

A

B

A

B

A + B

A ˙ B

A ˙ B

A + B

0

0

1

1

1

1

1

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

0

0

0

0

B.2  [15] ⬍§B.2⬎ Prove that the two equations for E in the example starting on 

page B-7 are equivalent by using DeMorgan’s theorems and the axioms shown on 

page B-7. 

B.3  [10] ⬍§B.2⬎ Show that there are 2 n entries in a truth table for a function with n inputs. 

B.4  [10]  ⬍§B.2⬎ One logic function that is used for a variety of purposes 

(including within adders and to compute parity) is  exclusive OR. Th

e output of a 

two-input exclusive OR function is true only if exactly one of the inputs is true. 

Show the truth table for a two-input exclusive OR function and implement this 

function using AND gates, OR gates, and inverters. 

B.5  [15] ⬍§B.2⬎ Prove that the NOR gate is universal by showing how to build 

the AND, OR, and NOT functions using a two-input NOR gate. 

B.6  [15] ⬍§B.2⬎ Prove that the NAND gate is universal by showing how to build 

the AND, OR, and NOT functions using a two-input NAND gate. 

B.7  [10]  ⬍§§B.2, B.3⬎ Construct the truth table for a four-input odd-parity 

function (see page B-65 for a description of parity). 

B.8  [10] ⬍§§B.2, B.3⬎ Implement the four-input odd-parity function with AND 

and OR gates using bubbled inputs and outputs. 

B.9  [10] ⬍§§B.2, B.3⬎ Implement the four-input odd-parity function with a PLA. 
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B.10  [15] ⬍§§B.2, B.3⬎ Prove that a two-input multiplexor is also universal by 

showing how to build the NAND (or NOR) gate using a multiplexor. 

B.11  [5] ⬍§§4.2, B.2, B.3⬎ Assume that X consists of 3 bits, x2 x1 x0. Write four 

logic functions that are true if and only if

■  X contains only one 0

■  X contains an even number of 0s

■  X when interpreted as an unsigned binary number is less than 4

■  X when interpreted as a signed (two’s complement) number is negative

B.12  [5] ⬍§§4.2, B.2, B.3⬎ Implement the four functions described in Exercise 

B.11 using a PLA. 

B.13  [5]  ⬍§§4.2, B.2, B.3⬎ Assume that X consists of 3 bits, x2 x1 x0, and Y 

consists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X ⬍ Y, where X and Y are thought of as unsigned binary numbers

■ X ⬍ Y, where X and Y are thought of as signed (two’s complement) numbers

■ X ⫽ Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show 

how can you extend it to 6-bit comparison. 

B.14  [5] ⬍§§B.2, B.3⬎ Implement a switching network that has two data inputs 

( A and  B), two data outputs ( C and  D), and a control input ( S). If  S equals 1, the network is in pass-through mode, and  C should equal  A, and  D should equal  B. If S equals 0, the network is in crossing mode, and  C should equal  B, and  D should equal  A. 

B.15  [15] ⬍§§B.2, B.3⬎ Derive the product-of-sums representation for  E shown 

on page B-11 starting with the sum-of-products representation. You will need to 

use DeMorgan’s theorems. 

B.16  [30] ⬍§§B.2, B.3⬎ Give an algorithm for constructing the sum-of- products 

representation for an arbitrary logic equation consisting of AND, OR, and NOT. 

Th

e algorithm should be recursive and should not construct the truth table in the 

process. 

B.17  [5] ⬍§§B.2, B.3⬎ Show a truth table for a multiplexor (inputs  A,  B, and  S; output  C ), using don’t cares to simplify the table where possible. 
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B.18  [5]  ⬍§B.3⬎ What is the function implemented by the following Verilog 

modules:

module FUNC1 (I0, I1, S, out); 



input I0, I1; 

input 

S; 

output 

out; 



out = S? I1: I0; 

endmodule

module FUNC2 (out,ctl,clk,reset); 



output [7:0] out; 



input ctl, clk, reset; 



reg [7:0] out; 



always @(posedge clk)



if (reset) begin





out <= 8’b0 ; 

end



else if (ctl) begin





out <= out + 1; 

end

else 

begin





out <= out - 1; 

end

endmodule

B.19  [5]  ⬍§B.4⬎ Th

e Verilog code on page B-53 is for a D fl ip-fl op. Show the 

Verilog code for a D latch. 

B.20  [10] ⬍§§B.3, B.4⬎ Write down a Verilog module implementation of a 2-to-4 

decoder (and/or encoder). 

B.21  [10] ⬍§§B.3, B.4⬎ Given the following logic diagram for an accumulator, 

write down the Verilog module implementation of it. Assume a positive edge-

triggered register and asynchronous Rst. 
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In

⫹

Adder

16

16

Load

Out

Clk

Rst

Register

Load

B.22  [20]  ⬍§§B3, B.4, B.5⬎ Section 3.3 presents basic operation and possible 

implementations of multipliers. A basic unit of such implementations is a shift -

and-add unit. Show a Verilog implementation for this unit. Show how can you use 

this unit to build a 32-bit multiplier. 

B.23  [20]  ⬍§§B3, B.4, B.5⬎ Repeat Exercise B.22, but for an unsigned divider 

rather than a multiplier. 

B.24  [15] ⬍§B.5⬎ Th

e ALU supported set on less than (slt) using just the sign 

bit of the adder. Let’s try a set on less than operation using the values ⫺7  and 6 . 

ten

ten

To make it simpler to follow the example, let’s limit the binary representations to 4 

bits: 1001  and 0110 . 

two

two

1001

– 0110

= 1001

+ 1010

= 0011

two

two

two

two

two

Th

is result would suggest that ⫺7  ⬎ 6, which is clearly wrong. Hence, we must 

factor in overfl ow in the decision. Modify the 1-bit ALU in Figure B.5.10 on page B-33 to handle slt correctly. Make your changes on a photocopy of this fi gure to 

save time. 

B.25  [20] ⬍§B.6⬎ A simple check for overfl ow during addition is to see if the 

CarryIn to the most signifi cant bit is not the same as the CarryOut of the most 

signifi cant bit. Prove that this check is the same as in Figure 3.2. 

B.26  [5] ⬍§B.6⬎ Rewrite the equations on page B-44 for a carry-lookahead logic 

for a 16-bit adder using a new notation. First, use the names for the CarryIn signals 

of the individual bits of the adder. Th

at is, use c4, c8, c12, … instead of C1, C2, 

C3, …. In addition, let P i,  j; mean a propagate signal for bits  i to  j, and G i,  j; mean a generate signal for bits  i to  j. For example, the equation

C2

G1

P

( 1 G0)

P

( 1 P0 c0)
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can be rewritten as

c8

G

P

(

G

)

P

(

P

c0)

7,4

7,4

3,0

7,4

3,0

Th

is more general notation is useful in creating wider adders. 

B.27  [15]  ⬍§B.6⬎ Write the equations for the carry-lookahead logic for a 64-

bit adder using the new notation from Exercise B.26 and using 16-bit adders as 

building blocks. Include a drawing similar to Figure B.6.3 in your solution. 

B.28  [10] ⬍§B.6⬎ Now calculate the relative performance of adders. Assume that 

hardware corresponding to any equation containing only OR or AND terms, such 

as the equations for p i and g i on page B-40, takes one time unit T. Equations that consist of the OR of several AND terms, such as the equations for c1, c2, c3, and 

c4 on page B-40, would thus take two time units, 2T. Th

e reason is it would take T 

to produce the AND terms and then an additional T to produce the result of the 

OR. Calculate the numbers and performance ratio for 4-bit adders for both ripple 

carry and carry lookahead. If the terms in equations are further defi ned by other 

equations, then add the appropriate delays for those intermediate equations, and 

continue recursively until the actual input bits of the adder are used in an equation. 

Include a drawing of each adder labeled with the calculated delays and the path of 

the worst-case delay highlighted. 

B.29  [15] ⬍§B.6⬎ Th

is exercise is similar to Exercise B.28, but this time calculate 

the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit 

groups that use carry lookahead, and the carry-lookahead scheme on page B-39. 

B.30  [15]  ⬍§B.6⬎  Th

is exercise is similar to Exercises B.28 and B.29, but this 

time calculate the relative speeds of a 64-bit adder using ripple carry only, ripple 

carry of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use 

carry lookahead, and the carry-lookahead scheme from Exercise B.27. 

B.31  [10]  ⬍§B.6⬎ Instead of thinking of an adder as a device that adds two 

numbers and then links the carries together, we can think of the adder as a hardware 

device that can add three inputs together (a i, b i, c i) and produce two outputs (s,  ci ⫹ 1). When adding two numbers together, there is little we can do with this 

observation. When we are adding more than two operands, it is possible to reduce 

the cost of the carry. Th

e idea is to form two independent sums, called S⬘ (sum bits) 

and C⬘ (carry bits). At the end of the process, we need to add C⬘ and S⬘ together 

using a normal adder. Th

is technique of delaying carry propagation until the end 

of a sum of numbers is called  carry save addition. Th

e block drawing on the lower 

right of Figure B.14.1 (see below) shows the organization, with two levels of carry save adders connected by a single normal adder. 

Calculate the delays to add four 16-bit numbers using full carry-lookahead adders 

versus carry save with a carry-lookahead adder forming the fi nal sum. (Th

e time 

unit T in Exercise B.28 is the same.)
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FIGURE B.14.1  Traditional ripple carry and carry save addition of four 4-bit numbers.  Th e 

details are shown on the left , with the individual signals in lowercase, and the corresponding higher-level blocks are on the right, with collective signals in upper case. Note that the sum of four  n-bit numbers can take  n + 2 bits. 

B.32  [20] ⬍§B.6⬎ Perhaps the most likely case of adding many numbers at once 

in a computer would be when trying to multiply more quickly by using many 

adders to add many numbers in a single clock cycle. Compared to the multiply 

algorithm in Chapter 3, a carry save scheme with many adders could multiply more 

than 10 times faster. Th

is exercise estimates the cost and speed of a combinational 

multiplier to multiply two positive 16-bit numbers. Assume that you have 16 

intermediate terms M15, M14, …, M0, called  partial products, that contain the 

multiplicand ANDed with multiplier bits m15, m14, …, m0. Th

e idea is to use 

carry save adders to reduce the  n operands into 2 n/3 in parallel groups of three, and do this repeatedly until you get two large numbers to add together with a 

traditional adder. 
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First, show the block organization of the 16-bit carry save adders to add these 16 

terms, as shown on the right in Figure B.14.1. Th

en calculate the delays to add these 

16 numbers. Compare this time to the iterative multiplication scheme in Chapter 

3 but only assume 16 iterations using a 16-bit adder that has full carry lookahead 

whose speed was calculated in Exercise B.29. 

B.33  [10] ⬍§B.6⬎ Th

ere are times when we want to add a collection of numbers 

together. Suppose you wanted to add four 4-bit numbers (A, B, E, F) using 1-bit 

full adders. Let’s ignore carry lookahead for now. You would likely connect the 

1-bit adders in the organization at the top of Figure B.14.1. Below the traditional organization is a novel organization of full adders. Try adding four numbers using 

both organizations to convince yourself that you get the same answer. 

B.34  [5]  ⬍§B.6⬎ First, show the block organization of the 16-bit carry save 

adders to add these 16 terms, as shown in Figure B.14.1. Assume that the time delay through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to 

the organization at the top versus the organization at the bottom of Figure B.14.1. 

B.35  [5]  ⬍§B.8⬎ Quite oft en, you would expect that given a timing diagram 

containing a description of changes that take place on a data input  D and a clock 

input  C (as in Figures B.8.3 and B.8.6 on pages B-52 and B-54, respectively), there would be diff erences between the output waveforms ( Q) for a D latch and a D fl ip-fl op. In a sentence or two, describe the circumstances (e.g., the nature of the inputs) 

for which there would not be any diff erence between the two output waveforms. 

B.36  [5] ⬍§B.8⬎ Figure B.8.8 on page B-55 illustrates the implementation of the register fi le for the MIPS datapath. Pretend that a new register fi le is to be built, 

but that there are only two registers and only one read port, and that each register 

has only 2 bits of data. Redraw Figure B.8.8 so that every wire in your diagram corresponds to only 1 bit of data (unlike the diagram in Figure B.8.8, in which some wires are 5 bits and some wires are 32 bits). Redraw the registers using D fl ip-fl ops. You do not need to show how to implement a D fl ip-fl op or a multiplexor. 

B.37  [10] ⬍§B.10⬎ A friend would like you to build an “electronic eye” for use 

as a fake security device. Th

e device consists of three lights lined up in a row, 

controlled by the outputs Left , Middle, and Right, which, if asserted, indicate that 

a light should be on. Only one light is on at a time, and the light “moves” from 

left  to right and then from right to left , thus scaring away thieves who believe that 

the device is monitoring their activity. Draw the graphical representation for the 

fi nite-state machine used to specify the electronic eye. Note that the rate of the eye’s 

movement will be controlled by the clock speed (which should not be too great) 

and that there are essentially no inputs. 

B.38  [10] ⬍§B.10⬎ Assign state numbers to the states of the fi nite-state machine 

you constructed for Exercise B.37 and write a set of logic equations for each of the 

outputs, including the next-state bits. 
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B.39  [15]  ⬍§§B.2, B.8, B.10⬎ Construct a 3-bit counter using three D fl ip-

fl ops and a selection of gates. Th

e inputs should consist of a signal that resets the 

counter to 0, called  reset, and a signal to increment the counter, called  inc. Th e 

outputs should be the value of the counter. When the counter has value 7 and is 

incremented, it should wrap around and become 0. 

B.40  [20] ⬍§B.10⬎ A  Gray code is a sequence of binary numbers with the property 

that no more than 1 bit changes in going from one element of the sequence to 

another. For example, here is a 3-bit binary Gray code: 000, 001, 011, 010, 110, 

111, 101, and 100. Using three D fl ip-fl ops and a PLA, construct a 3-bit Gray code 

counter that has two inputs:  reset, which sets the counter to 000, and  inc, which makes the counter go to the next value in the sequence. Note that the code is cyclic, 

so that the value aft er 100 in the sequence is 000. 

B.41  [25] ⬍§B.10⬎ We wish to add a yellow light to our traffi

c light example on 

page B-68. We will do this by changing the clock to run at 0.25 Hz (a 4-second clock 

cycle time), which is the duration of a yellow light. To prevent the green and red lights 

from cycling too fast, we add a 30-second timer. Th

e timer has a single input, called 

 TimerReset, which restarts the timer, and a single output, called  TimerSignal, which indicates that the 30-second period has expired. Also, we must redefi ne the traffi

c 

signals to include yellow. We do this by defi ning two out put signals for each light: 

green and yellow. If the output NSgreen is asserted, the green light is on; if the output 

NSyellow is asserted, the yellow light is on. If both signals are off , the red light is on. Do 

 not assert both the green and yellow signals at the same time, since American drivers 

will certainly be confused, even if European drivers understand what this means! Draw 

the graphical representation for the fi nite-state machine for this improved controller. 

Choose names for the states that are  diff erent from the names of the outputs. 

B.42  [15] ⬍§B.10⬎ Write down the next-state and output-function tables for the 

traffi

c light controller described in Exercise B.41. 

B.43  [15] ⬍§§B.2, B.10⬎ Assign state numbers to the states in the traf-fi c light 

example of Exercise B.41 and use the tables of Exercise B.42 to write a set of logic 

equations for each of the outputs, including the next-state outputs. 

B.44  [15]  ⬍§§B.3, B.10⬎ Implement the logic equations of Exercise B.43 as a 

PLA. 

§B.2, page B-8: No. If  A ⫽ 1,  C ⫽ 1,  B ⫽ 0, the fi rst is true, but the second is false. 

Answers to 

§B.3, page B-20: C. 

Check Yourself

§B.4, page B-22: Th

ey are all exactly the same. 

§B.4, page B-26: A ⫽ 0, B ⫽ 1. 

§B.5, page B-38: 2. 

§B.6, page B-47: 1. 

§B.8, page B-58: c. 

§B.10, page B-72: b. 

§B.11, page B-77: b. 
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 C.1 Introduction

Th

is appendix focuses on the GPU—the ubiquitous graphics processing unit  graphics processing in every PC, laptop, desktop computer, and workstation. In its most basic form, unit (GPU) A processor the GPU generates 2D and 3D graphics, images, and video that enable window-optimized for 2D and 3D 

based operating systems, graphical user interfaces, video games, visual imaging  graphics, video, visual computing, and display. 

applications, and video. Th

e modern GPU that we describe here is a highly parallel, 

highly multithreaded multiprocessor optimized for visual computing. To provide  visual computing real-time visual interaction with computed objects via graphics, images, and video, 

A mix of graphics 

the GPU has a unifi ed graphics and computing architecture that serves as both a  processing and computing programmable graphics processor and a scalable parallel computing platform. PCs  that lets you visually interact with computed 

and game consoles combine a GPU with a CPU to form heterogeneous systems. 

objects via graphics, 

images, and video. 

A Brief History of GPU Evolution

heterogeneous 

Fift een years ago, there was no such thing as a GPU. Graphics on a PC were  system A system performed by a  video graphics array (VGA) controller. A VGA controller was  combining diff erent simply a memory controller and display generator connected to some DRAM. In  processor types. A PC is a the 1990s, semiconductor technology advanced suffi

ciently that more functions  heterogeneous CPU–GPU 

system. 

could be added to the VGA controller. By 1997, VGA controllers were beginning 

to incorporate some  three-dimensional (3D) acceleration functions, including 
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hardware for triangle setup and rasterization (dicing triangles into individual 

pixels) and texture mapping and shading (applying “decals” or patterns to pixels 

and blending colors). 

In 2000, the single chip graphics processor incorporated almost every detail of 

the traditional high-end workstation graphics pipeline and, therefore, deserved a 

new name beyond VGA controller. Th

e term GPU was coined to denote that the 

graphics device had become a processor. 

Over time, GPUs became more programmable, as programmable processors 

replaced fi xed function dedicated logic while maintaining the basic 3D graphics 

pipeline organization. In addition, computations became more precise over time, 

progressing from indexed arithmetic, to integer and fi xed point, to single precision 

fl oating-point, and recently to double precision fl oating-point. GPUs have become 

massively parallel programmable processors with hundreds of cores and thousands 

of threads. 

Recently, processor instructions and memory hardware were added to support 

general purpose programming languages, and a programming environment was 

created to allow GPUs to be programmed using familiar languages, including C 

and C. Th

is innovation makes a GPU a fully general-purpose, programmable, 

manycore processor, albeit still with some special benefi ts and limitations. 

GPU Graphics Trends

GPUs and their associated drivers implement the OpenGL and DirectX 

models of graphics processing. OpenGL is an open standard for 3D graphics 

programming available for most computers. DirectX is a series of Microsoft 

multimedia programming interfaces, including Direct3D for 3D graphics. Since 

application 

these  application programming interfaces (APIs) have well-defi ned  behavior, 

programming interface 

it is possible to build eff ective hardware acceleration of the graphics processing 

(API)  A set of function 

functions defi ned by the APIs. Th

is is one of the reasons (in addition to increasing 

and data structure 

device density) why new GPUs are being developed every 12 to 18 months that 

defi nitions providing an 

double the performance of the previous generation on existing applications. 

interface to a library of 

Frequent doubling of GPU performance enables new applications that were 

functions. 

not previously possible. Th

e intersection of graphics processing and parallel 

computing invites a new paradigm for graphics, known as visual computing. It 

replaces large sections of the traditional sequential hardware graphics pipeline 

model with programmable elements for geometry, vertex, and pixel programs. 

Visual computing in a modern GPU combines graphics processing and parallel 

computing in novel ways that permit new graphics algorithms to be implemented, 

and opens the door to entirely new parallel processing applications on pervasive 

high-performance GPUs. 

Heterogeneous System

Although the GPU is arguably the most parallel and most powerful processor in 

a typical PC, it is certainly not the only processor. Th

e CPU, now multicore and 
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soon to be manycore, is a complementary, primarily serial processor companion 

to the massively parallel manycore GPU. Together, these two types of processors 

comprise a heterogeneous multiprocessor system. 

Th

e best performance for many applications comes from using both the CPU 

and the GPU. Th

is appendix will help you understand how and when to best split 

the work between these two increasingly parallel processors. 

GPU Evolves into Scalable Parallel Processor

GPUs have evolved functionally from hardwired, limited capability VGA controllers 

to programmable parallel processors. Th

is evolution has proceeded by changing 

the logical (API-based) graphics pipeline to incorporate programmable elements 

and also by making the underlying hardware pipeline stages less specialized and 

more programmable. Eventually, it made sense to merge disparate programmable 

pipeline elements into one unifi ed array of many programmable processors. 

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel 

processing all run on the same type of processor. Th

is unifi cation allows for 

dramatic scalability. More programmable processor cores increase the total system 

throughput. Unifying the processors also delivers very eff ective load balancing, 

since any processing function can use the whole processor array. At the other end 

of the spectrum, a processor array can now be built with very few processors, since 

all of the functions can be run on the same processors. 

Why CUDA and GPU Computing? 

Th

is uniform and scalable array of processors invites a new model of programming 

for the GPU. Th

e large amount of fl oating-point processing power in the GPU 

processor array is very attractive for solving nongraphics problems. Given the large  GPU computing Using degree of parallelism and the range of scalability of the processor array for graphics 

a GPU for computing via 

applications, the programming model for more general computing must express  a parallel programming the massive parallelism directly, but allow for scalable execution. 

language and API. 

GPU computing is the term coined for using the GPU for computing via a 

parallel programming language and API, without using the traditional graphics 

API and graphics pipeline model. Th

is is in contrast to the earlier General Purpose 

GPGPU  Using a GPU 

computation on GPU (GPGPU) approach, which involves programming the GPU 

for general-purpose 

using a graphics API and graphics pipeline to perform nongraphics tasks. 

computation via a 

Compute Unifed Device Architecture (CUDA) is a scalable parallel programming 

traditional graphics API 

and graphics pipeline. 

model and soft ware platform for the GPU and other parallel processors that allows 

the programmer to bypass the graphics API and graphics interfaces of the GPU 

and simply program in C or C. Th

e CUDA programming model has an SPMD  CUDA A scalable 

(single-program multiple data) soft ware style, in which a programmer writes a  parallel programming program for one thread that is instanced and executed by many threads in parallel  model and language based on C/C. It is a parallel 

on the multiple processors of the GPU. In fact, CUDA also provides a facility for  programming platform programming multiple CPU cores as well, so CUDA is an environment for writing  for GPUs and multicore parallel programs for the entire heterogeneous computer system. 

CPUs. 

C-6 

Appendix C  Graphics and Computing GPUs

GPU Unifes Graphics and Computing

With the addition of CUDA and GPU computing to the capabilities of the GPU, 

it is now possible to use the GPU as both a graphics processor and a computing 

processor at the same time, and to combine these uses in visual computing 

applications. Th

e underlying processor architecture of the GPU is exposed in two 

ways: fi rst, as implementing the programmable graphics APIs, and second, as a 

massively parallel processor array programmable in C/C with CUDA. 

Although the underlying processors of the GPU are unifi ed, it is not necessary 

that all of the SPMD thread programs are the same. Th

e GPU can run graphics 

shader programs for the graphics aspect of the GPU, processing geometry, vertices, 

and pixels, and also run thread programs in CUDA. 

Th

e GPU is truly a versatile multiprocessor architecture, supporting a variety of 

processing tasks. GPUs are excellent at graphics and visual computing as they were 

specifi cally designed for these applications. GPUs are also excellent at many general-

purpose throughput applications that are “fi rst cousins” of graphics, in that they 

perform a lot of parallel work, as well as having a lot of regular problem structure. 

In general, they are a good match to data-parallel problems (see Chapter 6), 

particularly large problems, but less so for less regular, smaller problems. 

GPU Visual Computing Applications

Visual computing includes the traditional types of graphics applications plus many 

new applications. Th

e original purview of a GPU was “anything with pixels,” but it 

now includes many problems without pixels but with regular computation and/or 

data structure. GPUs are eff ective at 2D and 3D graphics, since that is the purpose 

for which they are designed. Failure to deliver this application performance would 

be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the 

processing power of the GPU through the graphics APIs, OpenGL™, and DirectX™. 

Games are built on the 3D graphics processing capability. 

Beyond 2D and 3D graphics, image processing and video are important 

applications for GPUs. Th

ese can be implemented using the graphics APIs or as 

computational programs, using CUDA to program the GPU in computing mode. 

Using CUDA, image processing is simply another data-parallel array program. To 

the extent that the data access is regular and there is good locality, the program 

will be effi

cient. In practice, image processing is a very good application for GPUs. 

Video processing, especially encode and decode (compression and decompression 

according to some standard algorithms), is quite effi

cient. 

Th

e greatest opportunity for visual computing applications on GPUs is to “break 

the graphics pipeline.” Early GPUs implemented only specifi c graphics APIs, albeit 

at very high performance. Th

is was wonderful if the API supported the operations 

that you wanted to do. If not, the GPU could not accelerate your task, because early 

GPU functionality was immutable. Now, with the advent of GPU computing and 

CUDA, these GPUs can be programmed to implement a diff erent virtual pipeline 

by simply writing a CUDA program to describe the computation and data fl ow that 
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is desired. So, all applications are now possible, which will stimulate new visual 

computing approaches. 

 C.2 

GPU System Architectures

In this section, we survey GPU system architectures in common use today. We 

discuss system confi gurations, GPU functions and services, standard programming 

interfaces, and a basic GPU internal architecture. 

Heterogeneous CPU–GPU System Architecture

A heterogeneous computer system architecture using a GPU and a CPU can be 

described at a high level by two primary characteristics: fi rst, how many functional 

subsystems and/or chips are used and what are their interconnection technologies 

and topology; and second, what memory subsystems are available to these 

functional subsystems. See Chapter 6 for background on the PC I/O systems and 

chip sets. 

The Historical PC (circa 1990)

Figure C.2.1 shows a high-level block diagram of a legacy PC, circa 1990. Th

e north 

bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU, 

memory, and PCI bus. Th

e south bridge contains legacy interfaces and devices: 

ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In 

this system, the display was driven by a simple framebuff er subsystem known 

CPU

Front Side Bus

North

Memory

Bridge

PCI Bus

South

VGA

Framebuffer

Bridge

Controller

Memory

VGA

LAN

UART

Display

FIGURE C.2.1  Historical PC.  VGA controller drives graphics display from framebuff er memory. 
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as a VGA (video graphics array) which was attached to the PCI bus. Graphics 

subsystems with built-in processing elements (GPUs) did not exist in the PC 

PCI-Express (PCIe) 

landscape of 1990. 

A standard system I/O 

Figure C.2.2 illustrates two confgurations in common use today. Th

ese are 

interconnect that uses 

characterized by a separate GPU (discrete GPU) and CPU with respective memory 

point-to-point links. 

subsystems. In Figure C.2.2a, with an Intel CPU, we see the GPU attached via a 

Links have a confi gurable 

number of lanes and 

16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate, (peak of 8 

bandwidth. 

GB/s in each direction). Similarly, in Figure C.2.2b, with an AMD CPU, the GPU 

Intel

CPU

Front Side Bus

x16 PCI-Express Link

North

DDR2

GPU

Bridge

Memory

display

x4 PCI-Express Link

128-bit

derivative

667 MT/s

GPU

South

Memory

Bridge

(a)

AMD

CPU

CPU

core

128-bit

internal bus

667 MT/s

North

DDR2

Memory

Bridge

x16 PCI-Express Link

HyperTransport 1.03

GPU

Chipset

display

GPU

Memory

(b)

FIGURE C.2.2  Contemporary PCs with Intel and AMD CPUs.  See Chapter 6 for an explanation of the components and interconnects in this fi gure. 
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is attached to the chipset, also via PCI-Express with the same available bandwidth. 

In both cases, the GPUs and CPUs may access each other’s memory, albeit with less 

available bandwidth than their access to the more directly attached memories. In 

the case of the AMD system, the north bridge or memory controller is integrated 

into the same die as the CPU. 

A low-cost variation on these systems, a unifi ed memory architecture  unifi ed memory 

(UMA) system, uses only CPU system memory, omitting GPU memory from  architecture (UMA) the system. Th

ese systems have relatively low performance GPUs, since their  A system architecture in 

achieved performance is limited by the available system memory bandwidth and  which the CPU and GPU 

share a common system 

increased latency of memory access, whereas dedicated GPU memory provides  memory. 

high bandwidth and low latency. 

A high performance system variation uses multiple attached GPUs, typically 

two to four working in parallel, with their displays daisy-chained. An example is 

the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for high 

performance gaming and workstations. 

Th

e next system category integrates the GPU with the north bridge (Intel) or 

chipset (AMD) with and without dedicated graphics memory. 

Chapter 5 explains how caches maintain coherence in a shared address space. 

With CPUs and GPUs, there are multiple address spaces. GPUs can access their 

own physical local memory and the CPU system’s physical memory using virtual 

addresses that are translated by an MMU on the GPU. Th

e operating system kernel 

manages the GPU’s page tables. A system physical page can be accessed using either 

coherent or noncoherent PCI-Express transactions, determined by an attribute in 

the GPU’s page table. Th

e CPU can access GPU’s local memory through an address 

range (also called aperture) in the PCI-Express address space. 

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft  Xbox 360 

resemble the PC system architectures previously described. Console systems are 

designed to be shipped with identical performance and functionality over a lifespan 

that can last fi ve years or more. During this time, a system may be reimplemented 

many times to exploit more advanced silicon manufacturing processes and thereby 

to provide constant capability at ever lower costs. Console systems do not need 

to have their subsystems expanded and upgraded the way PC systems do, so the 

major internal system buses tend to be customized rather than standardized. 

AGP An extended 

version of the original PCI 

I/O bus, which provided 

GPU Interfaces and Drivers

up to eight times the 

In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations  bandwidth of the original PCI bus to a single card 

used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D 

slot. Its primary purpose 

[Microsoft  DirectX Specifcation] API functions that use the GPU as a coprocessor.  was to connect graphics Th

e APIs send commands, programs, and data to the GPU via a graphics device  subsystems into PC 

driver optimized for the particular GPU. 

systems. 
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Graphics Logical Pipeline

Th

e graphics logical pipeline is described in Section C.3. Figure C.2.3 illustrates 

the major processing stages, and highlights the important programmable stages 

(vertex, geometry, and pixel shader stages). 

Input

Vertex

Geometry

Setup & 

Pixel

Raster Operations/

Assembler

Shader

Shader

Rasterizer

Shader

Output Merger

FIGURE C.2.3  Graphics logical pipeline.  Programmable graphics shader stages are blue, and fi xed-function blocks are white. 

Mapping Graphics Pipeline to Unifi ed GPU Processors

Figure C.2.4 shows how the logical pipeline comprising separate independent 

programmable stages is mapped onto a physical distributed array of processors. 

Basic Unifed GPU Architecture

Unifi ed GPU architectures are based on a parallel array of many programmable 

processors. Th

ey unify vertex, geometry, and pixel shader processing and parallel 

computing on the same processors, unlike earlier GPUs which had separate 

processors dedicated to each processing type. Th

e programmable processor array is 

tightly integrated with fi xed function processors for texture fi ltering, rasterization, 

raster operations, anti-aliasing, compression, decompression, display, video 

decoding, and high-defi nition video processing. Although the fi xed-function 

processors signifi cantly outperform more general programmable processors in 

terms of absolute performance constrained by an area, cost, or power budget, we 

will focus on the programmable processors here. 

Compared with multicore CPUs, manycore GPUs have a diff erent architectural 

design point, one focused on executing many parallel threads effi

ciently on many 
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FIGURE C.2.4  Logical pipeline mapped to physical processors.   Th

e programmable shader 

stages execute on the array of unifi ed processors, and the logical graphics pipeline datafl ow  recirculates through the processors. 
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processor cores. By using many simpler cores and optimizing for data-parallel 

behavior among groups of threads, more of the per-chip transistor budget is 

devoted to computation, and less to on-chip caches and overhead. 

Processor Array

A unifi ed GPU processor array contains many processor cores, typically organized 

into multithreaded multiprocessors. Figure C.2.5 shows a GPU with an array 

of 112  streaming processor (SP) cores, organized as 14 multithreaded  streaming 

 multiprocessors (SMs). Each SP core is highly multithreaded, managing 96 

concurrent threads and their state in hardware. Th

e processors connect with 

four 64-bit-wide DRAM partitions via an interconnection network. Each SM 

has eight SP cores, two  special function units (SFUs), instruction and constant 

caches, a multithreaded instruction unit, and a shared memory. Th

is is the basic 

Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unifi ed 

architecture in which the traditional graphics programs for vertex, geometry, and 

pixel shading run on the unifi ed SMs and their SP cores, and computing programs 

run on the same processors. 
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Th

e processor array architecture is scalable to smaller and larger GPU 

confi gurations by scaling the number of multiprocessors and the number of 

memory partitions. Figure C.2.5 shows seven clusters of two SMs sharing a texture 

unit and a texture L1 cache. Th

e texture unit delivers fi ltered results to the SM 

given a set of coordinates into a texture map. Because fi lter regions of support 

oft en overlap for successive texture requests, a small streaming L1 texture cache is 

eff ective to reduce the number of requests to the memory system. Th

e processor 

array connects with  raster operation  processors (ROPs), L2 texture caches, external DRAM memories, and system memory via a GPU-wide interconnection network. 

Th

e number of processors and number of memories can scale to design balanced 

GPU systems for diff erent performance and market segments. 

 C.3 Programming 

GPUs

Programming multiprocessor GPUs is qualitatively diff erent than programming 

other multiprocessors like multicore CPUs. GPUs provide two to three orders of 

magnitude more thread and data parallelism than CPUs, scaling to hundreds of 

processor cores and tens of thousands of concurrent threads. GPUs continue 

to increase their parallelism, doubling it about every 12 to 18 months, enabled 

by Moore’s law [1965] of increasing integrated circuit density and by improving 

architectural effi

ciency. To span the wide price and performance range of diff erent 

market segments, diff erent GPU products implement widely varying numbers of 

processors and threads. Yet users expect games, graphics, imaging, and computing 

applications to work on any GPU, regardless of how many parallel threads it 

executes or how many parallel processor cores it has, and they expect more 

expensive GPUs (with more threads and cores) to run applications faster. As a 

result, GPU programming models and application programs are designed to scale 

transparently to a wide range of parallelism. 

Th

e driving force behind the large number of parallel threads and cores in a 

GPU is real-time graphics performance—the need to render complex 3D scenes 

with high resolution at interactive frame rates, at least 60 frames per second. 

Correspondingly, the scalable programming models of graphics shading languages 

such as Cg (C for graphics) and HLSL (high-level shading language) are designed 

to exploit large degrees of parallelism via many independent parallel threads and to 

scale to any number of processor cores. Th

e CUDA scalable parallel programming 

model similarly enables general parallel computing applications to leverage large 

numbers of parallel threads and scale to any number of parallel processor cores, 

transparently to the application. 

In these scalable programming models, the programmer writes code for a single 

thread, and the GPU runs myriad thread instances in parallel. Programs thus scale 

transparently over a wide range of hardware parallelism. Th

is simple paradigm 

arose from graphics APIs and shading languages that describe how to shade one 
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vertex or one pixel. It has remained an eff ective paradigm as GPUs have rapidly 

increased their parallelism and performance since the late 1990s. 

Th

is section briefl y describes programming GPUs for real-time graphics 

applications using graphics APIs and programming languages. It then describes 

programming GPUs for visual computing and general parallel computing 

applications using the C language and the CUDA programming model. 

Programming Real-Time Graphics

APIs have played an important role in the rapid, successful development of GPUs 

and processors. Th

ere are two primary standard graphics APIs: OpenGL and  OpenGL An open-

Direct3D, one of the Microsoft  DirectX multimedia programming interfaces.  standard graphics API. 

OpenGL, an open standard, was originally proposed and defi ned by Silicon  Direct3D A graphics Graphics Incorporated. Th

e ongoing development and extension of the OpenGL  API defi ned by Microsoft  

standard [Segal and Akeley, 2006], [Kessenich, 2006] is managed by Khronos,  and partners. 

an industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defi ned 

and evolved forward by Microsoft  and partners. OpenGL and Direct3D are 

similarly structured, and continue to evolve rapidly with GPU hardware advances. 

Th

ey defi ne a logical graphics processing pipeline that is mapped onto the GPU 

hardware and processors, along with programming models and languages for the 

programmable pipeline stages. 

Logical Graphics Pipeline

Figure C.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a 

similar graphics pipeline structure. Th

e API and logical pipeline provide a streaming 

datafl ow infrastructure and plumbing for the programmable shader stages, shown in 

blue. Th

e 3D application sends the GPU a sequence of vertices grouped into geometric 

primitives—points, lines, triangles, and polygons. Th

e input assembler collects 

vertices and primitives. Th

e vertex shader program executes per-vertex processing, 
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FIGURE C.3.1  Direct3D 10 graphics pipeline.  Each logical pipeline stage maps to GPU hardware or to a GPU processor. Programmable shader stages are blue, fi xed-function blocks are white, and memory objects are gray. Each stage processes a vertex, geometric primitive, or pixel in a streaming datafl ow fashion. 
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including transforming the vertex 3D position into a screen position and lighting the 

vertex to determine its color. Th

e geometry shader program executes per-primitive 

processing and can add or drop primitives. Th

e setup and rasterizer unit generates 

pixel fragments (fragments are potential contributions to pixels) that are covered by 

a geometric primitive. Th

e pixel shader program performs per-fragment processing, 

including interpolating per-fragment parameters, texturing, and coloring. Pixel 

shaders make extensive use of sampled and fi ltered lookups into large 1D, 2D, or 

texture  A 1D, 2D, or 

3D arrays called textures, using interpolated fl oating-point coordinates. Shaders use 

3D array that supports 

texture accesses for maps, functions, decals, images, and data. Th

e raster operations 

sampled and fi ltered 

processing (or output merger) stage performs Z-buff er depth testing and stencil 

lookups with interpolated 

testing, which may discard a hidden pixel fragment or replace the pixel’s depth with 

coordinates. 

the fragment’s depth, and performs a color blending operation that combines the 

fragment color with the pixel color and writes the pixel with the blended color. 

Th

e graphics API and graphics pipeline provide input, output, memory objects, 

and infrastructure for the shader programs that process each vertex, primitive, and 

pixel fragment. 

Graphics Shader Programs

shader  A program that 

Real-time graphics applications use many diff erent  shader programs to model 

operates on graphics data 

how light interacts with diff erent materials and to render complex lighting and 

such as a vertex or a pixel 

shadows. Shading languages are based on a datafl ow or streaming programming 

fragment. 

model that corresponds with the logical graphics pipeline. Vertex shader programs 

map the position of triangle vertices onto the screen, altering their position, color, 

shading language 

or orientation. Typically a vertex shader thread inputs a fl oating-point (x, y, z, w) 

A graphics rendering 

vertex position and computes a fl oating-point (x, y, z) screen position. Geometry 

language, usually having 

shader programs operate on geometric primitives (such as lines and triangles) 

a datafl ow or streaming 

defi ned by multiple vertices, changing them or generating additional primitives. 

programming model. 

Pixel fragment shaders each “shade” one pixel, computing a fl oating-point  red, 

green, blue, alpha (RGBA) color contribution to the rendered image at its pixel 

sample (x, y) image position. Shaders (and GPUs) use fl oating-point arithmetic 

for all pixel color calculations to eliminate visible artifacts while computing the 

extreme range of pixel contribution values encountered while rendering scenes with 

complex lighting, shadows, and high dynamic range. For all three types of graphics 

shaders, many program instances can be run in parallel, as independent parallel 

threads, because each works on independent data, produces independent results, 

and has no side eff ects. Independent vertices, primitives, and pixels further enable 

the same graphics program to run on diff erently sized GPUs that process diff erent 

numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale 

transparently to GPUs with diff erent amounts of parallelism and performance. 

Users program all three logical graphics threads with a common targeted high-

level language. HLSL (high-level shading language) and Cg (C for graphics) are 

commonly used. Th

ey have C-like syntax and a rich set of library functions for 

matrix operations, trigonometry, interpolation, and texture access and fi ltering, 

but are far from general computing languages: they currently lack general memory 
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access, pointers, fi le I/O, and recursion. HLSL and Cg assume that programs live 

within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel 

fragment shader may expect the geometric normal and multiple texture coordinates 

to have been interpolated from vertex values by upstream fi xed-function stages and 

can simply assign a value to the COLOR output parameter to pass it downstream to 

be blended with a pixel at an implied (x, y) position. 

Th

e GPU hardware creates a new independent thread to execute a vertex, 

geometry, or pixel shader program for every vertex, every primitive, and every 

pixel fragment. In video games, the bulk of threads execute pixel shader programs, 

as there are typically 10 to 20 times or more pixel fragments than vertices, and 

complex lighting and shadows require even larger ratios of pixel to vertex shader 

threads. Th

e graphics shader programming model drove the GPU architecture to 

effi

ciently execute thousands of independent fi ne-grained threads on many parallel 

processor cores. 

Pixel Shader Example

Consider the following Cg pixel shader program that implements the “environment 

mapping” rendering technique. For each pixel thread, this shader is passed fi ve 

parameters, including 2D fl oating-point texture image coordinates needed to 

sample the surface color, and a 3D fl oating-point vector giving the refection of 

the view direction off  the surface. Th

e other three “uniform” parameters do not 

vary from one pixel instance (thread) to the next. Th

e shader looks up color in 

two texture images: a 2D texture access for the surface color, and a 3D texture 

access into a cube map (six images corresponding to the faces of a cube) to obtain 

the external world color corresponding to the refection direction. Th

en the fi nal 

four-component (red, green, blue, alpha) fl oating-point color is computed using a 

weighted average called a “lerp” or linear interpolation function. 

void refection(

float2 

texCoord 

: 

TEXCOORD0, 

float3 

refection_dir : 

TEXCOORD1, 



out float4 

color 

: COLOR, 

uniform 

float 

shiny, 

uniform 

sampler2D 

surfaceMap, 

uniform 

samplerCUBE  envMap)

{

// Fetch the surface color from a texture



float4 surfaceColor = tex2D(surfaceMap, texCoord); 

// Fetch reflected color by sampling a cube map





float4 reflectedColor = texCUBE(environmentMap, refection_dir); 

// Output is weighted average of the two colors



color = lerp(surfaceColor, refectedColor, shiny); 

}
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Although this shader program is only three lines long, it activates a lot of GPU 

hardware. For each texture fetch, the GPU texture subsystem makes multiple 

memory accesses to sample image colors in the vicinity of the sampling coordinates, 

and then interpolates the fi nal result with fl oating-point fi ltering arithmetic. Th

e 

multithreaded GPU executes thousands of these lightweight Cg pixel shader threads 

in parallel, deeply interleaving them to hide texture fetch and memory latency. 

Cg focuses the programmer’s view to a single vertex or primitive or pixel, 

which the GPU implements as a single thread; the shader program transparently 

scales to exploit thread parallelism on the available processors. Being application-

specifi c, Cg provides a rich set of useful data types, library functions, and language 

constructs to express diverse rendering techniques. 

Figure C.3.2 shows skin rendered by a fragment pixel shader. Real skin appears 

quite diff erent from fl esh-color paint because light bounces around a lot before 

re-emerging. In this complex shader, three separate skin layers, each with unique 

subsurface scattering behavior, are modeled to give the skin a visual depth and 

translucency. Scattering can be modeled by a blurring convolution in a fattened 

“texture” space, with red being blurred more than green, and blue blurred less. Th

e 

FIGURE C.3.2  GPU-rendered image.  To give the skin visual depth and translucency, the pixel shader program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400 

instructions to render the red, green, blue, and alpha color components of each skin pixel fragment. 
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compiled Cg shader executes 1400 instructions to compute the color of one skin 

pixel. 

As GPUs have evolved superior fl oating-point performance and very high 

streaming memory bandwidth for real-time graphics, they have attracted highly 

parallel applications beyond traditional graphics. At fi rst, access to this power 

was available only by couching an application as a graphics-rendering algorithm, 

but this GPGPU approach was oft en awkward and limiting. More recently, the 

CUDA programming model has provided a far easier way to exploit the scalable 

high-performance fl oating-point and memory bandwidth of GPUs with the C 

programming language. 

Programming Parallel Computing Applications

CUDA, Brook, and CAL are programming interfaces for GPUs that are focused 

on data parallel computation rather than on graphics. CAL (Compute Abstraction 

Layer) is a low-level assembler language interface for AMD GPUs. Brook is a 

streaming language adapted for GPUs by Buck et al. [2004]. CUDA, developed 

by NVIDIA [2007], is an extension to the C and C languages for scalable 

parallel programming of manycore GPUs and multicore CPUs. Th

e CUDA 

programming model is described below, adapted from an article by Nickolls et al. 

[2008]. 

With the new model the GPU excels in data parallel and throughput computing, 

executing high performance computing applications as well as graphics applications. 

Data Parallel Problem Decomposition

To map large computing problems eff ectively to a highly parallel processing 

architecture, the programmer or compiler decomposes the problem into many 

small problems that can be solved in parallel. For example, the programmer 

partitions a large result data array into blocks and further partitions each block into 

elements, such that the result blocks can be computed independently in parallel, 

and the elements within each block are computed in parallel. Figure C.3.3 shows 

a decomposition of a result data array into a 3  2 grid of blocks, where each 

block is further decomposed into a 5  3 array of elements. Th

e two-level parallel 

decomposition maps naturally to the GPU architecture: parallel multiprocessors 

compute result blocks, and parallel threads compute result elements. 

Th

e programmer writes a program that computes a sequence of result data 

grids, partitioning each result grid into coarse-grained result blocks that can be 

computed independently in parallel. Th

e program computes each result block with 

an array of fi ne-grained parallel threads, partitioning the work among threads so 

that each computes one or more result elements. 

Scalable Parallel Programming with CUDA

Th

e CUDA scalable parallel programming model extends the C and C 

languages to exploit large degrees of parallelism for general applications on highly 

parallel multiprocessors, particularly GPUs. Early experience with CUDA shows 
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FIGURE C.3.3  Decomposing result data into a grid of blocks of elements to be computed 

in parallel. 

that many sophisticated programs can be readily expressed with a few easily 

understood abstractions. Since NVIDIA released CUDA in 2007, developers have 

rapidly developed scalable parallel programs for a wide range of applications, 

including seismic data processing, computational chemistry, linear algebra, sparse 

matrix solvers, sorting, searching, physics models, and visual computing. Th

ese 

applications scale transparently to hundreds of processor cores and thousands of 

concurrent threads. NVIDIA GPUs with the Tesla unifi ed graphics and computing 

architecture (described in Sections C.4 and C.7) run CUDA C programs, and are 

widely available in laptops, PCs, workstations, and servers. Th

e CUDA model is 

also applicable to other shared memory parallel processing architectures, including 

multicore CPUs. 

CUDA provides three key abstractions—a  hierarchy of thread groups, shared 

 memories, and  barrier synchronization—that provide a clear parallel structure to 

conventional C code for one thread of the hierarchy. Multiple levels of threads, 

memory, and synchronization provide fi ne-grained data parallelism and thread 

parallelism, nested within coarse-grained data parallelism and task parallelism. Th

e 

abstractions guide the programmer to partition the problem into coarse subproblems 

that can be solved independently in parallel, and then into fi ner pieces that can be 

solved in parallel. Th

e programming model scales transparently to large numbers of 

processor cores: a compiled CUDA program executes on any number of processors, 

and only the runtime system needs to know the physical processor count. 
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The CUDA Paradigm

CUDA is a minimal extension of the C and C programming languages. Th

e 

programmer writes a serial program that calls parallel kernels, which may be simple 

kernel  A program or 

functions or full programs. A kernel executes in parallel across a set of parallel  function for one thread, threads. Th

e programmer organizes these threads into a hierarchy of thread blocks  designed to be executed 

and grids of thread blocks. A thread block is a set of concurrent threads that can  by many threads. 

cooperate among themselves through barrier synchronization and through shared 

access to a memory space private to the block. A grid is a set of thread blocks that  thread block A set may each be executed independently and thus may execute in parallel. 

of concurrent threads 

When invoking a kernel, the programmer specifi es the number of threads per  that execute the same thread program and may 

block and the number of blocks comprising the grid. Each thread is given a unique  cooperate to compute a thread ID number threadIdx within its thread block, numbered 0, 1, 2, ...,  result. 

blockDim-1, and each thread block is given a unique  block ID number blockIdx 

within its grid. CUDA supports thread blocks containing up to 512 threads. For  grid  A set of thread convenience, thread blocks and grids may have 1, 2, or 3 dimensions, accessed via  blocks that execute the 

.x, .y, and .z index fi elds. 

same kernel program. 

As a very simple example of parallel programming, suppose that we are given 

two vectors  x and  y of  n fl oating-point numbers each and that we wish to compute the result of  y   ax   y for some scalar value  a. Th

is is the so-called SAXPY kernel 

defi ned by the BLAS linear algebra library. Figure C.3.4 shows C code for performing 

this computation on both a serial processor and in parallel using CUDA. 

Th

e __global__ declaration specifi er indicates that the procedure is a kernel 

entry point. CUDA programs launch parallel kernels with the extended function 

call syntax:

kernel<<<dimGrid, dimBlock>>>(... parameter list ...); 

where dimGrid and dimBlock are three-element vectors of type dim3 that specify 

the dimensions of the grid in blocks and the dimensions of the blocks in threads, 

respectively. Unspecifi ed dimensions default to one. 

In Figure C.3.4, we launch a grid of  n threads that assigns one thread to each 

element of the vectors and puts 256 threads in each block. Each individual thread 

computes an element index from its thread and block IDs and then performs the 

desired calculation on the corresponding vector elements. Comparing the serial and 

parallel versions of this code, we see that they are strikingly similar. Th

is represents 

a fairly common pattern. Th

e serial code consists of a loop where each iteration is 

independent of all the others. Such loops can be mechanically transformed into 

parallel kernels: each loop iteration becomes an independent thread. By assigning 

a single thread to each output element, we avoid the need for any synchronization 

among threads when writing results to memory. 

Th

e text of a CUDA kernel is simply a C function for one sequential thread. 

Th

us, it is generally straightforward to write and is typically simpler than writing 

parallel code for vector operations. Parallelism is determined clearly and explicitly 

by specifying the dimensions of a grid and its thread blocks when launching a 

kernel. 
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 Computing y =  ax +  y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)

{



for(int i = 0; i<n; ++i)





y[i] = alpha*x[i] + y[i]; 

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y); 

 Computing y =  ax +  y in parallel using CUDA:

__global__

void saxpy_parallel(int n, float alpha, float *x, float *y)

{



int i = blockIdx.x*blockDim.x + threadIdx.x; 



if( i<n ) y[i] = alpha*x[i] + y[i]; 

}

// Invoke parallel SAXPY kernel (256 threads per block)

int nblocks = (n + 255) / 256; 

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y); 

FIGURE C.3.4  Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY 

(see Chapter 6).  CUDA parallel threads replace the C serial loop—each thread computes the same result as one loop iteration. Th

e parallel code computes  n results with  n threads organized in blocks of 256 threads. 

Parallel execution and thread management is automatic. All thread creation, 

scheduling, and termination is handled for the programmer by the underlying 

system. Indeed, a Tesla architecture GPU performs all thread management directly 

in hardware. Th

e threads of a block execute concurrently and may synchronize 

synchronization 

at a synchronization barrier by calling the __syncthreads() intrinsic. Th

is 

barrier  Th

reads wait at 

guarantees that no thread in the block can proceed until all threads in the block 

a synchronization barrier 

have reached the barrier. Aft er passing the barrier, these threads are also guaranteed 

until all threads in the 

to see all writes to memory performed by threads in the block before the barrier. 

thread block arrive at the 

Th

us, threads in a block may communicate with each other by writing and reading 

barrier. 

per-block shared memory at a synchronization barrier. 

Since threads in a block may share memory and synchronize via barriers, they 

will reside together on the same physical processor or multiprocessor. Th

e number 

of thread blocks can, however, greatly exceed the number of processors. Th

e CUDA 

thread programming model virtualizes the processors and gives the programmer the 

fl exibility to parallelize at whatever granularity is most convenient. Virtualization 
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into threads and thread blocks allows intuitive problem decompositions, as the 

number of blocks can be dictated by the size of the data being processed rather than 

by the number of processors in the system. It also allows the same CUDA program 

to scale to widely varying numbers of processor cores. 

To manage this processing element virtualization and provide scalability, CUDA 

requires that thread blocks be able to execute independently. It must be possible to 

execute blocks in any order, in parallel or in series. Diff erent blocks have no means of 

direct communication, although they may  coordinate their activities using atomic  atomic memory memory operations on the global memory visible to all threads—by atomically  operation A memory incrementing queue pointers, for example. Th

is independence requirement allows  read, modify, write 

thread blocks to be scheduled in any order across any number of cores, making  operation sequence that the CUDA model scalable across an arbitrary number of cores as well as across a  completes without any intervening access. 

variety of parallel architectures. It also helps to avoid the possibility of deadlock. 

An application may execute multiple grids either independently or dependently. 

Independent grids may execute concurrently, given suffi

cient hardware resources. 

Dependent grids execute sequentially, with an implicit interkernel barrier between 

them, thus guaranteeing that all blocks of the fi rst grid complete before any block 

of the second, dependent grid begins. 

Th

reads may access data from multiple memory spaces during their execution. 

Each thread has a private local memory. CUDA uses local memory for thread-

local memory Per-

private variables that do not fi t in the thread’s registers, as well as for stack frames  thread local memory and register spilling. Each thread block has a shared memory, visible to all threads  private to the thread. 

of the block, which has the same lifetime as the block. Finally, all threads have  shared memory Per-access to the same global memory. Programs declare variables in shared and  block memory shared by global memory with the __shared__ and __device__ type qualifers. On a  all threads of the block. 

Tesla architecture GPU, these memory spaces correspond to physically separate 

memories: per-block shared memory is a low-latency on-chip RAM, while global  global memory Per-application memory 

memory resides in the fast DRAM on the graphics board. 

shared by all threads. 

Shared memory is expected to be a low-latency memory near each processor, 

much like an L1 cache. It can therefore provide high-performance communication 

and data sharing among the threads of a thread block. Since it has the same lifetime 

as its corresponding thread block, kernel code will typically initialize data in shared 

variables, compute using shared variables, and copy shared memory results to 

global memory. Th

read blocks of sequentially dependent grids communicate via 

global memory, using it to read input and write results. 

Figure C.3.5 shows diagrams of the nested levels of threads, thread blocks, 

and grids of thread blocks. It further shows the corresponding levels of memory 

sharing: local, shared, and global memories for per-thread, per-thread-block, and 

per-application data sharing. 

A program manages the global memory space visible to kernels through calls 

to the CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may 

execute on a physically separate device, as is the case when running kernels on 

the GPU. Consequently, the application must use cudaMemcpy()  to  copy  data 

between the allocated space and the host system memory. 
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Thread

per-Thread Local Memory

Thread Block

per-Block

Shared Memory

Grid 0 

Sequence

. . . 

Inter-Grid Synchronization

Global Memory

Grid 1 

. . . 

FIGURE C.3.5  Nested granularity levels—thread, thread block, and grid—have 

corresponding memory sharing levels—local, shared, and global.  Per-thread local memory is private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global memory is shared by all threads. 

single-program 

Th

e CUDA programming model is similar in style to the familiar single- 

multiple data 

program multiple data (SPMD) model—it expresses parallelism explicitly, and 

(SPMD)  A style of 

each kernel executes on a fi xed number of threads. However, CUDA is more fl exible 

parallel programming 

than most realizations of SPMD, because each kernel call dynamically creates a 

model in which all 

new grid with the right number of thread blocks and threads for that application 

threads execute the same 

step. Th

e programmer can use a convenient degree of parallelism for each kernel, 

program. SPMD threads 

typically coordinate with 

rather than having to design all phases of the computation to use the same number 

barrier synchronization. 

of threads. Figure C.3.6 shows an example of an SPMD-like CUDA code sequence. 

It fi rst instantiates kernelF on a 2D grid of 3  2 blocks where each 2D thread 

block consists of 5  3 threads. It then instantiates kernelG on a 1D grid of four 

1D thread blocks with six threads each. Because kernelG depends on the results 

of kernelF, they are separated by an interkernel synchronization barrier. 

Th

e concurrent threads of a thread block express fi ne-grained data parallelism 

and thread parallelism. Th

e independent thread blocks of a grid express coarse-

 C.3 
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Sequence

kernelF 2D Grid is 3   2 thread blocks; each block is 5   3 threads

Block 0, 0

Block 1, 0

Block 2, 0

kernelF<<<(3, 2), (5, 3)>>>(params); 

Block 0, 1

Block 1, 1

Block 2, 1

Block 1, 1

Thread 0, 0

Thread 1, 0

Thread 2, 0

Thread 3, 0

Thread 4, 0

Thread 0, 1

Thread 1, 1

Thread 2, 1

Thread 3, 1

Thread 4, 1

Thread 0, 2

Thread 1, 2

Thread 2, 2

Thread 3, 2

Thread 4, 2

Interkernel Synchronization Barrier 



kernelG 1D Grid is 4 thread blocks; each block is 6 threads

Block 0

Block 1

Block 2

Block 3

kernelG<<<4, 6>>>(params); 

Block 2

Thread 0 

Thread 1 

Thread 2

Thread 3

Thread 4

Thread 5

FIGURE C.3.6  Sequence of kernel  F instantiated on a 2D grid of 2D thread blocks, an interkernel synchronization barrier, followed by kernel  G on a 1D grid of 1D thread blocks. 

grained data parallelism. Independent grids express coarse-grained task parallelism. 

A kernel is simply C code for one thread of the hierarchy. 

Restrictions

For effi

ciency, and to simplify its implementation, the CUDA programming model 

has some restrictions. Th

reads and thread blocks may only be created by invoking 

a parallel kernel, not from within a parallel kernel. Together with the required 

independence of thread blocks, this makes it possible to execute CUDA programs 
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with a simple scheduler that introduces minimal runtime overhead. In fact, the 

Tesla GPU architecture implements  hardware management and scheduling of 

threads and thread blocks. 

Task parallelism can be expressed at the thread block level but is diffi

cult  to 

express within a thread block because thread synchronization barriers operate on 

all the threads of the block. To enable CUDA programs to run on any number of 

processors, dependencies among thread blocks within the same kernel grid are not 

allowed—blocks must execute independently. Since CUDA requires that thread 

blocks be independent and allows blocks to be executed in any order, combining 

results generated by multiple blocks must in general be done by launching a second 

kernel on a new grid of thread blocks (although thread blocks may  coordinate their 

activities using atomic memory operations on the global memory visible to all 

threads—by atomically incrementing queue pointers, for example). 

Recursive function calls are not currently allowed in CUDA kernels. Recursion 

is unattractive in a massively parallel kernel, because providing stack space for the 

tens of thousands of threads that may be active would require substantial amounts 

of memory. Serial algorithms that are normally expressed using recursion, such as 

quicksort, are typically best implemented using nested data parallelism rather than 

explicit recursion. 

To support a heterogeneous system architecture combining a CPU and a 

GPU, each with its own memory system, CUDA programs must copy data and 

results between host memory and device memory. Th

e overhead of CPU–GPU 

interaction and data transfers is minimized by using DMA block transfer engines 

and fast interconnects. Compute-intensive problems large enough to need a GPU 

performance boost amortize the overhead better than small problems. 

Implications for Architecture

Th

e parallel programming models for graphics and computing have driven 

GPU architecture to be diff erent than CPU architecture. Th

e key aspects of GPU 

programs driving GPU processor architecture are:

■   Extensive use of fi ne-grained data parallelism: Shader programs describe how 

to process a single pixel or vertex, and CUDA programs describe how to 

compute an individual result. 

■   Highly threaded programming model: A shader thread program processes a 

single pixel or vertex, and a CUDA thread program may generate a single 

result. A GPU must create and execute millions of such thread programs per 

frame, at 60 frames per second. 

■   Scalability: A program must automatically increase its performance when 

provided with additional processors, without recompiling. 

■   Intensive fl oating-point (or integer) computation. 

■   Support of high throughput computations. 
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 C.4 Multithreaded 

Multiprocessor 

Architecture

To address diff erent market segments, GPUs implement scalable numbers of multi-

processors—in fact, GPUs are multiprocessors composed of multiprocessors. 

Furthermore, each multiprocessor is highly multithreaded to execute many fi ne-

grained vertex and pixel shader threads effi

ciently. A quality basic GPU has two to 

four multiprocessors, while a gaming enthusiast’s GPU or computing platform has 

dozens of them. Th

is section looks at the architecture of one such multithreaded 

multiprocessor, a simplifi ed version of the NVIDIA Tesla  streaming multiprocessor 

(SM) described in Section C.7. 

Why use a multiprocessor, rather than several independent processors? Th

e 

parallelism within each multiprocessor provides localized high performance and 

supports extensive multithreading for the fi ne-grained parallel programming 

models described in Section C.3. Th

e individual threads of a thread block execute 

together within a multiprocessor to share data. Th

e multithreaded multiprocessor 

design we describe here has eight scalar processor cores in a tightly coupled 

architecture, and executes up to 512 threads (the SM described in Section C.7 

executes up to 768 threads). For area and power effi

ciency, the multiprocessor shares 

large complex units among the eight processor cores, including the instruction 

cache, the multithreaded instruction unit, and the shared memory RAM. 

Massive Multithreading

GPU processors are highly multithreaded to achieve several goals:

■  Cover the latency of memory loads and texture fetches from DRAM

■ Support fi ne-grained parallel graphics shader programming models

■ Support fi ne-grained parallel computing programming models

■  Virtualize the physical processors as threads and thread blocks to provide 

transparent scalability

■  Simplify the parallel programming model to writing a serial program for one 

thread

Memory and texture fetch latency can require hundreds of processor clocks, 

because GPUs typically have small streaming caches rather than large working-set 

caches like CPUs. A fetch request generally requires a full DRAM access latency 

plus interconnect and buff ering latency. Multithreading helps cover the latency with 

useful computing—while one thread is waiting for a load or texture fetch to complete, 

the processor can execute another thread. Th

e fi ne-grained parallel programming 

models provide literally thousands of independent threads that can keep many 

processors busy despite the long memory latency seen by individual threads. 
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A graphics vertex or pixel shader program is a program for a single thread that 

processes a vertex or a pixel. Similarly, a CUDA program is a C program for a 

single thread that computes a result. Graphics and computing programs instantiate 

many parallel threads to render complex images and compute large result arrays. 

To dynamically balance shift ing vertex and pixel shader thread workloads, each 

multiprocessor concurrently executes multiple diff erent thread programs and 

diff erent types of shader programs. 

To support the independent vertex, primitive, and pixel programming model of 

graphics shading languages and the single-thread programming model of CUDA 

C/C, each GPU thread has its own private registers, private per-thread memory, 

program counter, and thread execution state, and can execute an independent code 

path. To effi

ciently execute hundreds of concurrent lightweight threads, the GPU 

multiprocessor is hardware multithreaded—it manages and executes hundreds 

of concurrent threads in hardware without scheduling overhead. Concurrent 

threads within thread blocks can synchronize at a barrier with a single instruction. 

Lightweight thread creation, zero-overhead thread scheduling, and fast barrier 

synchronization effi

ciently support very fi ne-grained parallelism. 

Multiprocessor Architecture

A unifi ed graphics and computing multiprocessor executes vertex, geometry, and 

pixel fragment shader programs, and parallel computing programs. As Figure C.4.1 

shows, the example multiprocessor consists of eight  scalar processor (SP) cores each 

with a large multithreaded  register fi le (RF), two  special function units (SFUs), a multithreaded instruction unit, an instruction cache, a read-only constant cache, 

and a shared memory. 

Th

e 16 KB shared memory holds graphics data buff ers and shared computing 

data. CUDA variables declared as __shared__ reside in the shared memory. To 

map the logical graphics pipeline workload through the multiprocessor multiple 

times, as shown in Section C.2, vertex, geometry, and pixel threads have independent 

input and output buff ers, and workloads arrive and depart independently of thread 

execution. 

Each SP core contains scalar integer and fl oating-point arithmetic units that 

execute most instructions. Th

e SP is hardware multithreaded, supporting up to 

64 threads. Each pipelined SP core executes one scalar instruction per thread per 

clock, which ranges from 1.2 GHz to 1.6 GHz in diff erent GPU products. Each SP 

core has a large RF of 1024 general-purpose 32-bit registers, partitioned among its 

assigned threads. Programs declare their register demand, typically 16 to 64 scalar 

32-bit registers per thread. Th

e SP can concurrently run many threads that use 

a few registers or fewer threads that use more registers. Th

e compiler optimizes 

register allocation to balance the cost of spilling registers versus the cost of fewer 

threads. Pixel shader programs oft en use 16 or fewer registers, enabling each SP to 

run up to 64 pixel shader threads to cover long-latency texture fetches. Compiled 

CUDA programs oft en need 32 registers per thread, limiting each SP to 32 threads, 

which limits such a kernel program to 256 threads per thread block on this example 

multiprocessor, rather than its maximum of 512 threads. 
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Multithreaded Multiprocessor

Instruction Cache

Multithreaded Instruction Unit

Multiprocessor

Controller

Constant Cache

Work Interface

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SFU

RF

RF

RF

RF

RF

RF

RF

RF

Input

Interface

Interconnection Network

Output

Interface

Texture

Shared Memory

Interface

Memory

Interface

FIGURE C.4.1  Multithreaded multiprocessor with eight scalar processor (SP) cores.  Th e 

eight SP cores each have a large multithreaded register fi le (RF) and share an instruction cache, multithreaded instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a multibank shared memory. 

Th

e pipelined SFUs execute thread instructions that compute special functions 

and interpolate pixel attributes from primitive vertex attributes. Th

ese instructions 

can execute concurrently with instructions on the SPs. Th

e SFU is described later. 

Th

e multiprocessor executes texture fetch instructions on the texture unit via the 

texture interface, and uses the memory interface for external memory load, store, 

and atomic access instructions. Th

ese instructions can execute concurrently with 

instructions on the SPs. Shared memory access uses a low-latency interconnection 

network between the SP processors and the shared memory banks. 

single-instruction 

multiple-thread 

Single-Instruction Multiple-Thread (SIMT)

(SIMT) A processor 

architecture that applies 

To manage and execute hundreds of threads running several diff erent programs  one instruction to effi

ciently, the multiprocessor employs a single-instruction multiple-thread  multiple independent (SIMT) architecture. It creates, manages, schedules, and executes concurrent threads 

threads in parallel. 

in groups of parallel threads called  warps. Th

e term warp originates from weaving, warp  Th e set of parallel 

the fi rst parallel thread technology. Th

e photograph in Figure C.4.2 shows a warp of  threads that execute the 

parallel threads emerging from a loom. Th

is example multiprocessor uses a SIMT  same instruction together 

warp size of 32 threads, executing four threads in each of the eight SP cores over four  in a SIMT architecture. 
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Photo: Judy Schoonmaker

SIMT multithreaded

instruction scheduler

time

warp 8 instruction 11

warp 1 instruction 42


warp 3 instruction 95

warp 8 instruction 12

warp 3 instruction 96

warp 1 instruction 43

FIGURE C.4.2  SIMT multithreaded warp scheduling.  Th

e scheduler selects a ready warp and issues 

an instruction synchronously to the parallel threads composing the warp. Because warps are independent, the scheduler may select a diff erent warp each time. 

clocks. Th

e Tesla SM multiprocessor described in Section C.7 also uses a warp size 

of 32 parallel threads, executing four threads per SP core for effi

ciency on plentiful 

pixel threads and computing threads. Th

read blocks consist of one or more warps. 

Th

is example SIMT multiprocessor manages a pool of 16 warps, a total of 512 

threads. Individual parallel threads composing a warp are the same type and start 

together at the same program address, but are otherwise free to branch and execute 

independently. At each instruction issue time, the SIMT multithreaded instruction 

unit selects a warp that is ready to execute its next instruction, and then issues that 

instruction to the active threads of that warp. A SIMT instruction is broadcast 

synchronously to the active parallel threads of a warp; individual threads may be 

inactive due to independent branching or predication. In this multiprocessor, each 

SP scalar processor core executes an instruction for four individual threads of a 

warp using four clocks, refl ecting the 4:1 ratio of warp threads to cores. 

SIMT processor architecture is akin to  single-instruction multiple data (SIMD) 

design, which applies one instruction to multiple data lanes, but diff ers in that 

SIMT applies one instruction to multiple independent threads in parallel, not just 
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to multiple data lanes. An instruction for a SIMD processor controls a vector of 

multiple data lanes together, whereas an instruction for a SIMT processor controls 

an individual thread, and the SIMT instruction unit issues an instruction to a warp 

of independent parallel threads for effi

ciency. Th

e SIMT processor fi nds data-level 

parallelism among threads at runtime, analogous to the way a superscalar processor 

fi nds instruction-level parallelism among instructions at runtime. 

A SIMT processor realizes full effi

ciency and performance when all threads 

of a warp take the same execution path. If threads of a warp diverge via a data-

dependent conditional branch, execution serializes for each branch path taken, and 

when all paths complete, the threads converge to the same execution path. For equal 

length paths, a divergent if-else code block is 50% effi

cient. Th

e multiprocessor 

uses a branch synchronization stack to manage independent threads that diverge 

and converge. Diff erent warps execute independently at full speed regardless of 

whether they are executing common or disjoint code paths. As a result, SIMT 

GPUs are dramatically more effi

cient and fl exible on branching code than earlier 

GPUs, as their warps are much narrower than the SIMD width of prior GPUs. 

In contrast with SIMD vector architectures, SIMT enables programmers 

to write thread-level parallel code for individual independent threads, as well 

as data-parallel code for many coordinated threads. For program correctness, 

the programmer can essentially ignore the SIMT execution attributes of warps; 

however, substantial performance improvements can be realized by taking care that 

the code seldom requires threads in a warp to diverge. In practice, this is analogous 

to the role of cache lines in traditional codes: cache line size can be safely ignored 

when designing for correctness but must be considered in the code structure when 

designing for peak performance. 

SIMT Warp Execution and Divergence

Th

e SIMT approach of scheduling independent warps is more fl exible than the 

scheduling of previous GPU architectures. A warp comprises parallel threads of 

the same type: vertex, geometry, pixel, or compute. Th

e basic unit of pixel fragment 

shader processing is the 2-by-2 pixel quad implemented as four pixel shader threads. 

Th

e multiprocessor controller packs the pixel quads into a warp. It similarly groups 

vertices and primitives into warps, and packs computing threads into a warp. A 

thread block comprises one or more warps. Th

e SIMT design shares the instruction 

fetch and issue unit effi

ciently across parallel threads of a warp, but requires a full 

warp of active threads to get full performance effi

ciency. 

Th

is unifi ed multiprocessor schedules and executes multiple warp types 

concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp 

scheduler operates at less than the processor clock rate, because there are four thread 

lanes per processor core. During each scheduling cycle, it selects a warp to execute 

a SIMT warp instruction, as shown in Figure C.4.2. An issued warp-instruction 

executes as four sets of eight threads over four processor cycles of throughput. Th

e 

processor pipeline uses several clocks of latency to complete each instruction. If the 

number of active warps times the clocks per warp exceeds the pipeline latency, the 
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programmer can ignore the pipeline latency. For this multiprocessor, a round-robin 

schedule of eight warps has a period of 32 cycles between successive instructions 

for the same warp. If the program can keep 256 threads active per multiprocessor, 

instruction latencies up to 32 cycles can be hidden from an individual sequential 

thread. However, with few active warps, the processor pipeline depth becomes 

visible and may cause processors to stall. 

A challenging design problem is implementing zero-overhead warp scheduling 

for a dynamic mix of diff erent warp programs and program types. Th

e instruction 

scheduler must select a warp every four clocks to issue one instruction per clock 

per thread, equivalent to an IPC of 1.0 per processor core. Because warps are 

independent, the only dependences are among sequential instructions from the 

same warp. Th

e scheduler uses a register dependency scoreboard to qualify warps 

whose active threads are ready to execute an instruction. It prioritizes all such ready 

warps and selects the highest priority one for issue. Prioritization must consider 

warp type, instruction type, and the desire to be fair to all active warps. 

Managing Threads and Thread Blocks

Th

e multiprocessor controller and instruction unit manage threads and thread 

blocks. Th

e controller accepts work requests and input data and arbitrates access 

to shared resources, including the texture unit, memory access path, and I/O 

paths. For graphics workloads, it creates and manages three types of graphics 

threads concurrently: vertex, geometry, and pixel. Each of the graphics work 

types has independent input and output paths. It accumulates and packs each of 

these input work types into SIMT warps of parallel threads executing the same 

thread program. It allocates a free warp, allocates registers for the warp threads, 

and starts warp execution in the multiprocessor. Every program declares its per-

thread register demand; the controller starts a warp only when it can allocate the 

requested register count for the warp threads. When all the threads of the warp 

exit, the controller unpacks the results and frees the warp registers and resources. 

cooperative thread 

Th

e controller creates cooperative thread arrays (CTAs) which implement 

array (CTA) A set 

CUDA thread blocks as one or more warps of parallel threads. It creates a CTA 

of concurrent threads 

when it can create all CTA warps and allocate all CTA resources. In addition to 

that executes the same 

threads and registers, a CTA requires allocating shared memory and barriers. 

thread program and may 

Th

e program declares the required capacities, and the controller waits until it can 

cooperate to compute 

allocate those amounts before launching the CTA. Th

en it creates CTA warps at the 

a result. A GPU CTA 

implements a CUDA 

warp scheduling rate, so that a CTA program starts executing immediately at full 

thread block. 

multiprocessor performance. Th

e controller monitors when all threads of a CTA 

have exited, and frees the CTA shared resources and its warp resources. 

Thread Instructions

Th

e SP thread processors execute scalar instructions for individual threads, unlike 

earlier GPU vector instruction architectures, which executed four-component 

vector instructions for each vertex or pixel shader program. Vertex programs 
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generally compute (x, y, z, w) position vectors, while pixel shader programs 

compute (red, green, blue, alpha) color vectors. However, shader programs are 

becoming longer and more scalar, and it is increasingly diffi

cult to fully occupy 

even two components of a legacy GPU four-component vector architecture. In 

eff ect, the SIMT architecture parallelizes across 32 independent pixel threads, 

rather than parallelizing the four vector components within a pixel. CUDA C/C 

programs have predominantly scalar code per thread. Previous GPUs employed 

vector packing (e.g., combining subvectors of work to gain effi

ciency)  but  that 

complicated the scheduling hardware as well as the compiler. Scalar instructions 

are simpler and compiler friendly. Texture instructions remain vector based, taking 

a source coordinate vector and returning a fi ltered color vector. 

To support multiple GPUs with diff erent binary microinstruction formats, high-

level graphics and computing language compilers generate intermediate assembler-

level instructions (e.g., Direct3D vector instructions or PTX scalar instructions), 

which are then optimized and translated to binary GPU microinstructions. 

Th

e NVIDIA PTX (parallel thread execution) instruction set defi nition  [2007] 

provides a stable target ISA for compilers, and provides compatibility over several 

generations of GPUs with evolving binary microinstruction-set architectures. Th

e 

optimizer readily expands Direct3D vector instructions to multiple scalar binary 

microinstructions. PTX scalar instructions translate nearly one to one with scalar 

binary microinstructions, although some PTX instructions expand to multiple 

binary microinstructions, and multiple PTX instructions may fold into one binary 

microinstruction. Because the intermediate assembler-level instructions use virtual 

registers, the optimizer analyzes data dependencies and allocates real registers. Th

e 

optimizer eliminates dead code, folds instructions together when feasible, and 

optimizes SIMT branch diverge and converge points. 

Instruction Set Architecture (ISA)

Th

e thread ISA described here is a simplifi ed version of the Tesla architecture 

PTX ISA, a register-based scalar instruction set comprising fl oating-point, integer, 

logical, conversion, special functions, fl ow control, memory access, and texture 

operations. Figure C.4.3 lists the basic PTX GPU thread instructions; see the 

NVIDIA PTX specifi cation [2007] for details. Th

e instruction format is:

opcode.type d, a, b, c; 

where  d is the destination operand, a,  b,  c are source operands, and .type is 

one of:

Type

.type Specifer

Untyped bits 8, 16, 32, and 64 bits

.b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits

.u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits

.s8, .s16, .s32, .s64

Floating-point 16, 32, and 64 bits

.f16, .f32, .f64
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Basic PTX GPU Thread Instructions

Group

Instruction

Example

Meaning

Comments

arithmetic  .type = .s32, .u32, .f32, .s64, .u64, .f64

add .type

add.f32 d, a, b

d = a + b; 

sub.  type

sub.f32 d, a, b

d = a – b; 

mul.  type

mul.f32 d, a, b

d = a * b; 

mad.  type

mad.f32 d, a, b, c

d = a * b + c; 

multiply-add

div.  type

div.f32 d, a, b

d = a / b; 

multiple microinstructions

rem.  type

rem.u32 d, a, b

d = a % b; 

integer remainder

abs.  type

abs.f32 d, a

d = |a|; 

Arithmetic

neg .type

neg.f32 d, a

d = 0 - a; 

min.  type

min.f32 d, a, b

d = (a < b)? a:b; 

floating selects non-NaN

max.  type

max.f32 d, a, b

d = (a > b)? a:b; 

floating selects non-NaN

setp.  cmp.  type

setp.lt.f32 p, a, b

p = (a < b); 

compare and set predicate

numeric  .cmp =  eq, ne, lt, le, gt, ge; unordered  cmp = equ, neu, ltu, leu, gtu, geu, num, nan mov.  type

mov.b32 d, a

d = a; 

move

selp .type

selp.f32 d, a, b, p

d = p? a: b; 

select with predicate

cvt.dtype.atype

cvt.f32.s32 d, a

d = convert(a); 

convert atype to dtype

special .  type = .f32 (some .f64)

rcp .type

rcp.f32 d, a

d = 1/a; 

reciprocal

sqrt .type

sqrt.f32 d, a

d = sqrt(a); 

square root

Special 

rsqrt .type

rsqrt.f32 d, a

d = 1/sqrt(a); 

reciprocal square root

Function

sin .type

sin.f32 d, a

d = sin(a); 

sine

cos .type

cos.f32 d, a

d = cos(a); 

cosine

lg2 .type

lg2.f32 d, a

d = log(a)/log(2)

binary logarithm

ex2 .type

ex2.f32 d, a

d = 2 ** a; 

binary exponential

logic . type = .pred, .b32, .b64

and.  type

and.b32 d, a, b

d = a & b; 

or.  type

or.b32 d, a, b

d = a | b; 

xor.  type

xor.b32 d, a, b

d = a ^ b; 

Logical

not.  type

not.b32 d, a, b

d = ~a; 

one’s complement

cnot.  type

cnot.b32 d, a, b

d = (a==0)? 1:0; 

C logical not

shl.  type

shl.b32 d, a, b

d = a << b; 

shift left

shr.  type

shr.s32 d, a, b

d = a >> b; 

shift right

memory  .space = .global, .shared, .local, .const;   .type = .b8, .u8, .s8, .b16, .b32, .b64

ld.  space.type

ld.global.b32 d, [a+off]

d = *(a+off); 

load from memory  space

st.  space.type

st.shared.b32 [d+off], a

*(d+off) = a; 

store to memory  space

Memory

tex.  nd.  dtyp.  btype

tex.2d.v4.f32.f32 d, a, b

d = tex2d(a, b); 

texture lookup

Access

atom.  spc.  op.  type

atom.global.add.u32 d,[a], b 

atomic { d = *a; 

atomic read-modify-write  

atom.global.cas.b32 d,[a], b, c

*a = op(*a, b); }

operation

atom  .op =  and, or, xor, add, min, max, exch, cas;  .spc = .global;   .type = .b32

branch

@p bra target

if (p) goto 

conditional branch

target; 

Control

call

call (ret), func, (params)

ret = func(params); call function

Flow

ret

ret

return; 

return from function call

bar.sync

bar.sync d

wait for threads

barrier synchronization

exit

exit

exit; 

terminate thread execution

FIGURE C.4.3  Basic PTX GPU thread instructions. 
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Source operands are scalar 32-bit or 64-bit values in registers, an immediate 

value, or a constant; predicate operands are 1-bit Boolean values. Destinations are 

registers, except for store to memory. Instructions are predicated by prefi xing them 

with @p or @!p, where p is a predicate register. Memory and texture instructions 

transfer scalars or vectors of two to four components, up to 128 bits in total. PTX 

instructions specify the behavior of one thread. 

Th

e PTX arithmetic instructions operate on 32-bit and 64-bit fl oating-point, 

signed integer, and unsigned integer types. Recent GPUs support 64-bit double 

precision fl oating-point; see Section C.6. On current GPUs, PTX 64-bit integer 

and logical instructions are translated to two or more binary microinstructions 

that perform 32-bit operations. Th

e GPU special function instructions are limited 

to 32-bit fl oating-point.  Th

e thread control fl ow instructions are conditional 

branch, function call and return, thread exit, and bar.sync (barrier 

synchronization). Th

e conditional branch instruction @p bra target uses a 

predicate register p (or !p) previously set by a compare and set predicate setp 

instruction to determine whether the thread takes the branch or not. Other 

instructions can also be predicated on a predicate register being true or false. 

Memory Access Instructions

Th

e tex instruction fetches and fi lters texture samples from 1D, 2D, and 3D 

texture arrays in memory via the texture subsystem. Texture fetches generally use 

interpolated fl oating-point coordinates to address a texture. Once a graphics pixel 

shader thread computes its pixel fragment color, the raster operations processor 

blends it with the pixel color at its assigned (x, y) pixel position and writes the fi nal 

color to memory. 

To support computing and C/C language needs, the Tesla PTX ISA 

implements memory load/store instructions. It uses integer byte addressing with 

register plus off set address arithmetic to facilitate conventional compiler code 

optimizations. Memory load/store instructions are common in processors, but are 

a signifi cant new capability in the Tesla architecture GPUs, as prior GPUs provided 

only the texture and pixel accesses required by the graphics APIs. 

For computing, the load/store instructions access three read/write memory 

spaces that implement the corresponding CUDA memory spaces in Section C.3:

■ Local memory for per-thread private addressable temporary data 

(implemented in external DRAM)

■  Shared memory for low-latency access to data shared by cooperating threads 

in the same CTA/thread block (implemented in on-chip SRAM)

■  Global memory for large data sets shared by all threads of a computing 

application (implemented in external DRAM)

Th

e memory load/store instructions ld.global,  st.global,  ld.shared, 

st.shared,  ld.local, and st.local access the global, shared, and local 

memory spaces. Computing programs use the fast barrier synchronization 

instruction  bar.sync to synchronize threads within a CTA/thread block that 

communicate with each other via shared and global memory. 
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To improve memory bandwidth and reduce overhead, the local and global load/

store instructions coalesce individual parallel thread requests from the same SIMT 

warp together into a single memory block request when the addresses fall in the 

same block and meet alignment criteria. Coalescing memory requests provides a 

signifi cant performance boost over separate requests from individual threads. Th

e 

multiprocessor’s large thread count, together with support for many outstanding 

load requests, helps cover load-to-use latency for local and global memory 

implemented in external DRAM. 

Th

e latest Tesla architecture GPUs also provide effi

cient atomic memory operations 

on memory with the atom.  op.u32 instructions, including integer operations add, 

min, max, and, or, xor, exchange, and cas (compare-and-swap) operations, 

facilitating parallel reductions and parallel data structure management. 

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently 

via shared memory and global memory by simply calling __syncthreads(); as 

part of each interthread communication step. Th

e synchronization intrinsic function 

generates a single bar.sync instruction. However, implementing fast barrier 

synchronization among up to 512 threads per CUDA thread block is a challenge. 

Grouping threads into SIMT warps of 32 threads reduces the synchronization 

diffi

culty by a factor of 32. Th

reads wait at a barrier in the SIMT thread scheduler so 

they do not consume any processor cycles while waiting. When a thread executes 

a bar.sync instruction, it increments the barrier’s thread arrival counter and the 

scheduler marks the thread as waiting at the barrier. Once all the CTA threads 

arrive, the barrier counter matches the expected terminal count, and the scheduler 

releases all the threads waiting at the barrier and resumes executing threads. 

Streaming Processor (SP)

Th

e multithreaded streaming processor (SP) core is the primary thread instruction 

processor in the multiprocessor. Its register fi le (RF) provides 1024 scalar 32-

bit registers for up to 64 threads. It executes all the fundamental fl oating-point 

operations, including add.f32, mul.f32, mad.f32 (fl oating multiply-add), min. 

f32, max.f32, and setp.f32 (fl oating compare and set predicate). Th

e fl oating-

point add and multiply operations are compatible with the IEEE 754 standard 

for single precision FP numbers, including not-a-number (NaN) and infi nity 

values. Th

e SP core also implements all of the 32-bit and 64-bit integer arithmetic, 

comparison, conversion, and logical PTX instructions shown in Figure C.4.3. 

Th

e fl oating-point add and mul operations employ IEEE round-to-nearest-even 

as the default rounding mode. Th

e mad.f32 fl oating-point multiply-add operation 

performs a multiplication with truncation, followed by an addition with round-

to-nearest-even. Th

e SP fl ushes input denormal operands to sign-preserved-zero. 

Results that underfl ow the target output exponent range are fl ushed to sign-

preserved-zero aft er rounding. 
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Special Function Unit (SFU)

Certain thread instructions can execute on the SFUs, concurrently with other 

thread instructions executing on the SPs. Th

e SFU implements the special function 

instructions of Figure C.4.3, which compute 32-bit fl oating-point approximations 

to reciprocal, reciprocal square root, and key transcendental functions. It also 

implements 32-bit fl oating-point planar attribute interpolation for pixel shaders, 

providing accurate interpolation of attributes such as color, depth, and texture 

coordinates. 

Each pipelined SFU generates one 32-bit fl oating-point special function result 

per cycle; the two SFUs per multiprocessor execute special function instructions 

at a quarter the simple instruction rate of the eight SPs. Th

e SFUs also execute the 

mul.f32 multiply instruction concurrently with the eight SPs, increasing the peak 

computation rate up to 50% for threads with a suitable instruction mixture. 

For functional evaluation, the Tesla architecture SFU employs quadratic 

interpolation based on enhanced minimax approximations for approximating the 

reciprocal, reciprocal square-root, log  x, 2 x, and sin/cos functions. Th

e accuracy of 

2

the function estimates ranges from 22 to 24 mantissa bits. See Section C.6 for more 

details on SFU arithmetic. 

Comparing with Other Multiprocessors

Compared with SIMD vector architectures such as x86 SSE, the SIMT multiprocessor 

can execute individual threads independently, rather than always executing them 

together in synchronous groups. SIMT hardware fi nds data parallelism among 

independent threads, whereas SIMD hardware requires the soft ware to express 

data parallelism explicitly in each vector instruction. A SIMT machine executes a 

warp of 32 threads synchronously when the threads take the same execution path, 

yet can execute each thread independently when they diverge. Th

e advantage is 

signifi cant because SIMT programs and instructions simply describe the behavior 

of a single independent thread, rather than a SIMD data vector of four or more 

data lanes. Yet the SIMT multiprocessor has SIMD-like effi

ciency, spreading the 

area and cost of one instruction unit across the 32 threads of a warp and across the 

eight streaming processor cores. SIMT provides the performance of SIMD together 

with the productivity of multithreading, avoiding the need to explicitly code SIMD 

vectors for edge conditions and partial divergence. 

Th

e SIMT multiprocessor imposes little overhead because it is hardware 

multithreaded with hardware barrier synchronization. Th

at allows graphics 

shaders and CUDA threads to express very fi ne-grained parallelism. Graphics and 

CUDA programs use threads to express fi ne-grained data parallelism in a per-

thread program, rather than forcing the programmer to express it as SIMD vector 

instructions. It is simpler and more productive to develop scalar single-thread code 

than vector code, and the SIMT multiprocessor executes the code with SIMD-like 

effi

ciency. 
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Coupling eight streaming processor cores together closely into a multiprocessor 

and then implementing a scalable number of such multiprocessors makes a two-

level multiprocessor composed of multiprocessors. Th

e CUDA programming model 

exploits the two-level hierarchy by providing individual threads for fi ne-grained 

parallel computations, and by providing grids of thread blocks for coarse-grained 

parallel operations. Th

e same thread program can provide both fi ne-grained and 

coarse-grained operations. In contrast, CPUs with SIMD vector instructions must 

use two diff erent programming models to provide fi ne-grained and coarse-grained 

operations: coarse-grained parallel threads on diff erent cores, and SIMD vector 

instructions for fi ne-grained data parallelism. 

Multithreaded Multiprocessor Conclusion

Th

e example GPU multiprocessor based on the Tesla architecture is highly 

multithreaded, executing a total of up to 512 lightweight threads concurrently to 

support fi ne-grained pixel shaders and CUDA threads. It uses a variation on SIMD 

architecture and multithreading called SIMT (single-instruction multiple-thread) 

to effi

ciently broadcast one instruction to a warp of 32 parallel threads, while 

permitting each thread to branch and execute independently. Each thread executes 

its instruction stream on one of the eight  streaming processor (SP) cores, which are 

multithreaded up to 64 threads. 

Th

e PTX ISA is a register-based load/store scalar ISA that describes the execution 

of a single thread. Because PTX instructions are optimized and translated to binary 

microinstructions for a specifi c GPU, the hardware instructions can evolve rapidly 

without disrupting compilers and soft ware tools that generate PTX instructions. 

 C.5 

Parallel Memory System

Outside of the GPU itself, the memory subsystem is the most important 

determiner of the performance of a graphics system. Graphics workloads demand 

very high transfer rates to and from memory. Pixel write and blend (read-modify-

write) operations, depth buff er reads and writes, and texture map reads, as well 

as command and object vertex and attribute data reads, comprise the majority of 

memory traffi

c. 

Modern GPUs are highly parallel, as shown in Figure C.2.5. For example, the 

GeForce 8800 can process 32 pixels per clock, at 600 MHz. Each pixel typically 

requires a color read and write and a depth read and write of a 4-byte pixel. Usually 

an average of two or three texels of four bytes each are read to generate the pixel’s 

color. So for a typical case, there is a demand of 28 bytes times 32 pixels  896 bytes 

per clock. Clearly the bandwidth demand on the memory system is enormous. 
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To supply these requirements, GPU memory systems have the following 

characteristics:

■  Th

ey are wide, meaning there are a large number of pins to convey data 

between the GPU and its memory devices, and the memory array itself 

comprises many DRAM chips to provide the full total data bus width. 

■  Th

ey are fast, meaning aggressive signaling techniques are used to maximize 

the data rate (bits/second) per pin. 

■  GPUs seek to use every available cycle to transfer data to or from the memory 

array. To achieve this, GPUs specifi cally do not aim to minimize latency to the 

memory system. High throughput (utilization effi

ciency) and short latency 

are fundamentally in confl ict. 

■  Compression techniques are used, both lossy, of which the programmer must 

be aware, and lossless, which is invisible to the application and opportunistic. 

■  Caches and work coalescing structures are used to reduce the amount of off -

chip traffi

c needed and to ensure that cycles spent moving data are used as 

fully as possible. 

DRAM Considerations

GPUs must take into account the unique characteristics of DRAM. DRAM chips 

are internally arranged as multiple (typically four to eight) banks, where each bank 

includes a power-of-2 number of rows (typically around 16,384), and each row 

contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of 

timing requirements on their controlling processor. For example, dozens of cycles 

are required to activate one row, but once activated, the bits within that row are 

randomly accessible with a new column address every four clocks. Double-data 

rate (DDR) synchronous DRAMs transfer data on both rising and falling edges 

of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers 

data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 32 

bidirectional data pins, so eight bytes can be read or written from the DRAM per 

clock. 

GPUs internally have a large number of generators of memory traffi

c. Diff erent 

stages of the logical graphics pipeline each have their own request streams: 

command and vertex attribute fetch, shader texture fetch and load/store, and 

pixel depth and color read-write. At each logical stage, there are oft en multiple 

independent units to deliver the parallel throughput. Th

ese are each independent 

memory requestors. When viewed at the memory system, there are an enormous 

number of uncorrelated requests in fl ight. Th

is is a natural mismatch to the reference 

pattern preferred by the DRAMs. A solution is for the GPU’s memory controller to 

maintain separate heaps of traffi

c bound for diff erent DRAM banks, and wait until 
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enough traffi

c for a particular DRAM row is pending before activating that row 

and transferring all the traffi

c at once. Note that accumulating pending requests, 

while good for DRAM row locality and thus effi

cient use of the data bus, leads to 

longer average latency as seen by the requestors whose requests spend time waiting 

for others. Th

e design must take care that no particular request waits too long, 

otherwise some processing units can starve waiting for data and ultimately cause 

neighboring processors to become idle. 

GPU memory subsystems are arranged as multiple  memory partitions, each of 

which comprises a fully independent memory controller and one or two DRAM 

devices that are fully and exclusively owned by that partition. To achieve the best 

load balance and therefore approach the theoretical performance of  n partitions, 

addresses are fi nely interleaved evenly across all memory partitions. Th

e partition 

interleaving stride is typically a block of a few hundred bytes. Th

e number of 

memory partitions is designed to balance the number of processors and other 

memory requesters. 

Caches

GPU workloads typically have very large working sets—on the order of hundreds 

of megabytes to generate a single graphics frame. Unlike with CPUs, it is not 

practical to construct caches on chips large enough to hold anything close to the 

full working set of a graphics application. Whereas CPUs can assume very high 

cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must 

therefore cope with many misses in fl ight. While a CPU can reasonably be designed 

to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and 

hits intermingled. We call this a  streaming cache architecture. 

GPU caches must deliver very high-bandwidth to their clients. Consider the case 

of a texture cache. A typical texture unit may evaluate two bilinear interpolations for 

each of four pixels per clock cycle, and a GPU may have many such texture units all 

operating independently. Each bilinear interpolation requires four separate texels, 

and each texel might be a 64-bit value. Four 16-bit components are typical. Th

us, 

total bandwidth is 2  4  4  64  2048 bits per clock. Each separate 64-bit texel 

is independently addressed, so the cache needs to handle 32 unique addresses per 

clock. Th

is naturally favors a multibank and/or multiport arrangement of SRAM 

arrays. 

MMU

Modern GPUs are capable of translating virtual addresses to physical addresses. 

On the GeForce 8800, all processing units generate memory addresses in a 

40-bit virtual address space. For computing, load and store thread instructions use 

32-bit byte addresses, which are extended to a 40-bit virtual address by adding a 

40-bit off set. A memory management unit performs virtual to physical address 
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translation; hardware reads the page tables from local memory to respond to 

misses on behalf of a hierarchy of translation lookaside buff ers spread out among 

the processors and rendering engines. In addition to physical page bits, GPU page 

table entries specify the compression algorithm for each page. Page sizes range 

from 4 to 128 kilobytes. 

Memory Spaces

As introduced in Section C.3, CUDA exposes diff erent memory spaces to allow the 

programmer to store data values in the most performance-optimal way. For the 

following discussion, NVIDIA Tesla architecture GPUs are assumed. 

Global memory

Global memory is stored in external DRAM; it is not local to any one physical 

 streaming multiprocessor (SM) because it is meant for communication among 

diff erent CTAs (thread blocks) in diff erent grids. In fact, the many CTAs that 

reference a location in global memory may not be executing in the GPU at the 

same time; by design, in CUDA a programmer does not know the relative order 

in which CTAs are executed. Because the address space is evenly distributed 

among all memory partitions, there must be a read/write path from any streaming 

multiprocessor to any DRAM partition. 

Access to global memory by diff erent threads (and diff erent processors) is not 

guaranteed to have sequential consistency. Th

read programs see a relaxed memory 

ordering model. Within a thread, the order of memory reads and writes to the same 

address is preserved, but the order of accesses to diff erent addresses may not be 

preserved. Memory reads and writes requested by diff erent threads are unordered. 

Within a CTA, the barrier synchronization instruction bar.sync can be used 

to obtain strict memory ordering among the threads of the CTA. Th

e membar 

thread instruction provides a memory barrier/fence operation that commits prior 

memory accesses and makes them visible to other threads before proceeding. 

Th

reads can also use the atomic memory operations described in Section C.4 to 

coordinate work on memory they share. 

Shared memory

Per-CTA shared memory is only visible to the threads that belong to that CTA, 

and shared memory only occupies storage from the time a CTA is created to the 

time it terminates. Shared memory can therefore reside on-chip. Th

is approach has 

many benefi ts. First, shared memory traff c does not need to compete with limited 

off -chip bandwidth needed for global memory references. Second, it is practical to 

build very high-bandwidth memory structures on-chip to support the read/write 

demands of each streaming multiprocessor. In fact, the shared memory is closely 

coupled to the streaming multiprocessor. 
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Each streaming multiprocessor contains eight physical thread processors. During 

one shared memory clock cycle, each thread processor can process two threads’ 

worth of instructions, so 16 threads’ worth of shared memory requests must be 

handled in each clock. Because each thread can generate its own addresses, and the 

addresses are typically unique, the shared memory is built using 16 independently 

addressable SRAM banks. For common access patterns, 16 banks are suffi

cient 

to maintain throughput, but pathological cases are possible; for example, all 16 

threads might happen to access a diff erent address on one SRAM bank. It must be 

possible to route a request from any thread lane to any bank of SRAM, so a 16-by-

16 interconnection network is required. 

Local Memory

Per-thread local memory is private memory visible only to a single thread. Local 

memory is architecturally larger than the thread’s register fi le, and a program 

can compute addresses into local memory. To support large allocations of local 

memory (recall the total allocation is the per-thread allocation times the number 

of active threads), local memory is allocated in external DRAM. 

Although global and per-thread local memory reside off -chip, they are well-

suited to being cached on-chip. 

Constant Memory

Constant memory is read-only to a program running on the SM (it can be written 

via commands to the GPU). It is stored in external DRAM and cached in the SM. 

Because commonly most or all threads in a SIMT warp read from the same address 

in constant memory, a single address lookup per clock is suffi

cient. Th

e constant 

cache is designed to broadcast scalar values to threads in each warp. 

Texture Memory

Texture memory holds large read-only arrays of data. Textures for computing have 

the same attributes and capabilities as textures used with 3D graphics. Although 

textures are commonly two-dimensional images (2D arrays of pixel values), 1D 

(linear) and 3D (volume) textures are also available. 

A compute program references a texture using a tex instruction. Operands 

include an identifi er to name the texture, and 1, 2, or 3 coordinates based on the 

texture dimensionality. Th

e fl oating-point coordinates include a fractional portion 

that specifi es a sample location, oft en in between texel locations. Noninteger 

coordinates invoke a bilinear weighted interpolation of the four closest values (for 

a 2D texture) before the result is returned to the program. 

Texture fetches are cached in a streaming cache hierarchy designed to optimize 

throughput of texture fetches from thousands of concurrent threads. Some 

programs use texture fetches as a way to cache global memory. 
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Surfaces

 Surface is a generic term for a one-dimensional, two-dimensional, or three-

dimensional array of pixel values and an associated format. A variety of formats 

are defi ned; for example, a pixel may be defi ned as four 8-bit RGBA integer 

components, or four 16-bit fl oating-point components. A program kernel does 

not need to know the surface type. A tex instruction recasts its result values as 

fl oating-point, depending on the surface format. 

Load/Store Access

Load/store instructions with integer byte addressing enable the writing and 

compiling of programs in conventional languages like C and C. CUDA 

programs use load/store instructions to access memory. 

To improve memory bandwidth and reduce overhead, the local and global load/

store instructions coalesce individual parallel thread requests from the same warp 

together into a single memory block request when the addresses fall in the same 

block and meet alignment criteria. Coalescing individual small memory requests 

into large block requests provides a signifi cant performance boost over separate 

requests. Th

e large thread count, together with support for many outstanding load 

requests, helps cover load-to-use latency for local and global memory implemented 

in external DRAM. 

ROP

As shown in Figure C.2.5, NVIDIA Tesla architecture GPUs comprise a scalable 

streaming processor array (SPA), which performs all of the GPU’s programmable 

calculations, and a scalable memory system, which comprises external DRAM 

control and fi xed function  Raster Operation Processors (ROPs) that perform color 

and depth framebuff er operations directly on memory. Each ROP unit is paired 

with a specifi c memory partition. ROP partitions are fed from the SMs via an 

interconnection network. Each ROP is responsible for depth and stencil tests and 

updates, as well as color blending. Th

e ROP and memory controllers cooperate 

to implement lossless color and depth compression (up to 8:1) to reduce external 

bandwidth demand. ROP units also perform atomic operations on memory. 

 C.6 Floating-point 

Arithmetic

GPUs today perform most arithmetic operations in the programmable processor 

cores using IEEE 754-compatible single precision 32-bit fl oating-point operations 

(see Chapter 3). Th

e fi xed-point arithmetic of early GPUs was succeeded by 16-

bit, 24-bit, and 32-bit fl oating-point, then IEEE 754-compatible 32-bit fl oating-
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point. Some fi xed-function logic within a GPU, such as texture-fi ltering hardware, 

continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754-

compatible double precision 64-bit fl oating-point instructions. 

Supported Formats

Th

e IEEE 754 standard for fl oating-point arithmetic specifi es basic and storage 

formats. GPUs use two of the basic formats for computation, 32-bit and 64-bit 

binary fl oating-point, commonly called single precision and double precision. Th

e 

half precision A 16-bit 

standard also specifi es a 16-bit binary storage fl oating-point format, half precision. 

binary fl oating-point 

GPUs and the Cg shading language employ the narrow 16-bit half data format for 

format, with 1 sign bit, 

effi

cient data storage and movement, while maintaining high dynamic range. GPUs 

5-bit exponent, 10-bit 

perform many texture fi ltering and pixel blending computations at half precision 

fraction, and an implied 

within the texture fi ltering unit and the raster operations unit. Th

e OpenEXR high 

integer bit. 

dynamic-range image fi le format developed by Industrial Light and Magic [2003] 

uses the identical half format for color component values in computer imaging and 

motion picture applications. 

Basic Arithmetic

Common single precision fl oating-point operations in GPU programmable cores 

multiply-add (MAD) 

include addition, multiplication, multiply-add, minimum, maximum, compare, 

A single fl oating-point 

set predicate, and conversions between integer and fl oating-point  numbers. 

instruction that performs 

Floating-point instructions oft en provide source operand modifi ers for negation 

a compound operation: 

and absolute value. 

multiplication followed by 

Th

e fl oating-point addition and multiplication operations of most GPUs today are 

addition. 

compatible with the IEEE 754 standard for single precision FP numbers, including not-

a-number (NaN) and infi nity values. Th

e FP addition and multiplication operations 

use IEEE round-to-nearest-even as the default rounding mode. To increase fl oating-

point instruction throughput, GPUs oft en use a compound multiply-add instruction 

(mad). Th

e multiply-add operation performs FP multiplication with truncation, 

followed by FP addition with round-to-nearest-even. It provides two fl oating-point 

operations in one issuing cycle, without requiring the instruction scheduler to 

dispatch two separate instructions, but the computation is not fused and truncates 

the product before the addition. Th

is makes it diff erent from the fused multiply-add 

instruction discussed in Chapter 3 and later in this section. GPUs typically fl ush 

denormalized source operands to sign-preserved zero, and they fl ush results that 

underfl ow the target output exponent range to sign-preserved zero aft er rounding. 

Specialized Arithmetic

GPUs provide hardware to accelerate special function computation, attribute 

interpolation, and texture fi ltering. Special function instructions include cosine, 
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sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root. 

Attribute interpolation instructions provide effi

cient generation of pixel attributes, 

derived from plane equation evaluation. Th

e special function unit (SFU)  special function unit 

introduced in Section C.4 computes special functions and interpolates planar  (SFU)  A hardware unit attributes [Oberman and Siu, 2005]. 

that computes special 

Several methods exist for evaluating special functions in hardware. It has been  functions and interpolates planar attributes. 

shown that quadratic interpolation based on Enhanced Minimax Approximations 

is a very effi

cient method for approximating functions in hardware, including 

reciprocal, reciprocal square-root, log  x, 2 x, sin, and cos. 

2

We can summarize the method of SFU quadratic interpolation. For a binary 

input operand X with  n-bit signifi cand, the signifi cand is divided into two parts: 

X  is the upper part containing  m bits, and X  is the lower part containing  n-m bits. 

u

l

Th

e upper  m bits X  are used to consult a set of three lookup tables to return three 

u

fi nite-word coeffi

cients C , C , and C . Each function to be approximated requires 

0

1

2

a unique set of tables. Th

ese coeffi

cients are used to approximate a given function 

f(X) in the range X   X  X   2m by evaluating the expression:

u

u

f(X)

C

C X

C X 2

0

1

1

2

1

Th

e accuracy of each of the function estimates ranges from 22 to 24 signifi cand 

bits. Example function statistics are shown in Figure C.6.1. 

Th

e IEEE 754 standard specifi es exact-rounding requirements for division 

and square root; however, for many GPU applications, exact compliance is not 

required. Rather, for those applications, higher computational throughput is more 

important than last-bit accuracy. For the SFU special functions, the CUDA math 

library provides both a full accuracy function and a fast function with the SFU 

instruction accuracy. 

Another specialized arithmetic operation in a GPU is attribute interpolation. 

Key  attributes are usually specifi ed for vertices of primitives that make up a scene 

to be rendered. Example attributes are color, depth, and texture coordinates. Th

ese 

attributes must be interpolated in the (x,y) screen space as needed to determine the 

Input 

Accuracy
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% exactly 

Function

interval

(good bits)

error

rounded

Monotonic

1/ x

[1, 2)

24.02

0.98
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1/sqrt( x)

[1, 4)

23.40

1.52

78

Yes

2 x

[0, 1)

22.51

1.41

74

Yes

log  x

[1, 2)

22.57

N/A**

N/A

Yes

2

sin/cos

[0,  /2)

22.47

N/A

N/A
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*ULP: unit in the last place. **N/A: not applicable. 

FIGURE C.6.1  Special function approximation statistics.  For the NVIDIA GeForce 8800 special function unit (SFU). 

C-44 

Appendix C  Graphics and Computing GPUs

values of the attributes at each pixel location. Th

e value of a given attribute  U in an 

(x, y) plane can be expressed using plane equations of the form:

U(x, y)

A x

B y

C

u

u

u

where  A,  B, and  C are interpolation parameters associated with each attribute  U. 

Th

e interpolation parameters  A,  B, and  C are all represented as single precision fl oating-point numbers. 

Given the need for both a function evaluator and an attribute interpolator in a 

pixel shader processor, a single SFU that performs both functions for effi

ciency can 

be designed. Both functions use a sum of products operation to interpolate results, 

and the number of terms to be summed in both functions is very similar. 

Texture Operations

Texture mapping and fi ltering is another key set of specialized fl oating-point 

arithmetic operations in a GPU. Th

e operations used for texture mapping include:

1.  Receive texture address (s, t) for the current screen pixel (x, y), where s and 

t are single precision fl oating-point numbers. 

MIP-map A Latin 

2.  Compute the level of detail to identify the correct texture MIP-map level. 

phrase  multum in parvo, 

or much in a small space. 

3.  Compute the trilinear interpolation fraction. 

A MIP-map contains 

4.  Scale texture address (s, t) for the selected MIP-map level. 

precalculated images of 

diff erent resolutions, used 

5.  Access memory and retrieve desired texels (texture elements). 

to increase rendering 

speed and reduce 

6. Perform fi ltering operation on texels. 

artifacts. 

Texture mapping requires a signifi cant amount of fl oating-point  computation 

for full-speed operation, much of which is done at 16-bit half precision. As an 

example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format 

fl oating-point computation for texture mapping instructions, in addition to its 

conventional IEEE single precision fl oating-point instructions. For more details on 

texture mapping and fi ltering, see Foley and van Dam [1995]. 

Performance

Th

e fl oating-point addition and multiplication arithmetic hardware is fully 

pipelined, and latency is optimized to balance delay and area. While pipelined, 

the throughput of the special functions is less than the fl oating-point  addition 

and multiplication operations. Quarter-speed throughput for the special functions 

is typical performance in modern GPUs, with one SFU shared by four SP cores. 

In contrast, CPUs typically have signifi cantly lower throughput for similar 

functions, such as division and square root, albeit with more accurate results. Th

e 

attribute interpolation hardware is typically fully pipelined to enable full-speed 

pixel shaders. 
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Double precision

Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double precision 

operations in hardware. Standard fl oating-point arithmetic operations in double 

precision include addition, multiplication, and conversions between diff erent 

fl oating-point and integer formats. Th

e 2008 IEEE 754 fl oating-point  standard 

includes specifi cation for the  fused-multiply-add (FMA) operation, as discussed 

in Chapter 3. Th

e FMA operation performs a fl oating-point  multiplication 

followed by an addition, with a single rounding. Th

e fused multiplication and 

addition operations retain full accuracy in intermediate calculations. Th

is behavior 

enables more accurate fl oating-point computations involving the accumulation 

of products, including dot products, matrix multiplication, and polynomial 

evaluation. Th

e FMA instruction also enables effi

cient soft ware implementations 

of exactly rounded division and square root, removing the need for a hardware 

division or square root unit. 

A double precision hardware FMA unit implements 64-bit addition, 

multiplication, conversions, and the FMA operation itself. Th

e architecture of a 

64

64

64

A

B

C

53

53

53

Inversion

Multiplier Array

53 x 53

Alignment

Exp

shifter 

Diff 

Sum

Carry

Shifted 161

C

3-2 CSA  161 bits

Sum

Carry

Carry Propagate Adder

Complementer

Normalizer

Rounder

FIGURE C.6.2  Double precision fused-multiply-add (FMA) unit.  Hardware to implement fl oating-point A  B  C for double precision. 
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double precision FMA unit enables full-speed denormalized number support on 

both inputs and outputs. Figure C.6.2 shows a block diagram of an FMA unit. 

As shown in Figure C.6.2, the signifi cands of A and B are multiplied to form a 106-

bit product, with the results left  in carry-save form. In parallel, the 53-bit addend C is 

conditionally inverted and aligned to the 106-bit product. Th

e sum and carry results 

of the 106-bit product are summed with the aligned addend through a 161-bit-

wide  carry-save adder (CSA). Th

e carry-save output is then summed together in 

a carry-propagate adder to produce an unrounded result in nonredundant, two’s 

complement form. Th

e result is conditionally recomplemented, so as to return a 

result in sign-magnitude form. Th

e complemented result is normalized, and then 

it is rounded to fi t within the target format. 

 C.7 

Real Stuff: The NVIDIA GeForce 8800

Th

e NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unifi ed vertex 

and pixel processor design that also supports parallel computing applications written 

in C using the CUDA parallel programming model. It is the fi rst implementation 

of the Tesla unifi ed graphics and computing architecture described in Section C.4 

and in Lindholm et al. [2008]. A family of Tesla architecture GPUs addresses the 

diff erent needs of laptops, desktops, workstations, and servers. 

Streaming Processor Array (SPA)

Th

e GeForce 8800 GPU shown in Figure C.7.1 contains 128  streaming processor 

(SP) cores organized as 16  streaming multiprocessors (SMs). Two SMs share a texture 

unit in each  texture/processor cluster (TPC). An array of eight TPCs makes up the 

 streaming processor array (SPA), which executes all graphics shader programs and 

computing programs. 

Th

e host interface unit communicates with the host CPU via the PCI-Express 

bus, checks command consistency, and performs context switching. Th

e input 

assembler collects geometric primitives (points, lines, triangles). Th

e work 

distribution blocks dispatch vertices, pixels, and compute thread arrays to the 

TPCs in the SPA. Th

e TPCs execute vertex and geometry shader programs and 

computing programs. Output geometric data is sent to the viewport/clip/setup/

raster/zcull block to be rasterized into pixel fragments that are then redistributed 

back into the SPA to execute pixel shader programs. Shaded pixels are sent across 

the interconnection network for processing by the ROP units. Th

e network also 

routes texture memory read requests from the SPA to DRAM and reads data from 

DRAM through a level-2 cache back to the SPA. 
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FIGURE C.7.1  NVIDIA Tesla unifi ed graphics and computing GPU architecture.  Th

is GeForce 8800 has 128 streaming processor 

(SP) cores in 16 streaming multiprocessors (SMs), arranged in eight texture/processor clusters (TPCs). Th e processors connect with six 64-bit-wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs, DRAM partitions, and other units. 

Texture/Processor Cluster (TPC)

Each TPC contains a geometry controller, an SMC, two SMs, and a texture unit as 

shown in Figure C.7.2. 

Th

e geometry controller maps the logical graphics vertex pipeline into recir-

culation on the physical SMs by directing all primitive and vertex attribute and 

topology fl ow in the TPC. 

Th

e SMC controls multiple SMs, arbitrating the shared texture unit, load/store 

path, and I/O path. Th

e SMC serves three graphics workloads simultaneously: 

vertex, geometry, and pixel. 

Th

e texture unit processes a texture instruction for one vertex, geometry, or pixel 

quad, or four compute threads per cycle. Texture instruction sources are texture 

coordinates, and the outputs are weighted samples, typically a four-component 

(RGBA) fl oating-point color. Th

e texture unit is deeply pipelined. Although it 

contains a streaming cache to capture fi ltering locality, it streams hits mixed with 

misses without stalling. 
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FIGURE C.7.2  Texture/processor cluster (TPC) and a streaming multiprocessor (SM).  Each SM has eight streaming processor (SP) cores, two SFUs, and a shared memory. 

Streaming Multiprocessor (SM)

Th

e SM is a unifi ed graphics and computing multiprocessor that executes vertex, 

geometry, and pixel-fragment shader programs and parallel computing programs. 

Th

e SM consists of eight SP thread processor cores, two SFUs, a multithreaded 

instruction fetch and issue unit (MT issue), an instruction cache, a read-

only constant cache, and a 16 KB read/write shared memory. It executes scalar 

instructions for individual threads. 

Th

e GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GHz, for a peak of 

36 GFLOPS per SM. To optimize power and area effi

ciency, some SM nondatapath 

units operate at half the SP clock rate. 
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To effi

ciently execute hundreds of parallel threads while running several diff erent 

programs, the SM is hardware multithreaded. It manages and executes up to 768 

concurrent threads in hardware with zero scheduling overhead. Each thread has its 

own thread execution state and can execute an independent code path. 

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel, 

or compute. Th

e SIMT design, previously described in Section C.4, shares the SM 

instruction fetch and issue unit effi

ciently across 32 threads but requires a full warp 

of active threads for full performance effi

ciency. 

Th

e SM schedules and executes multiple warp types concurrently. Each issue 

cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction. 

An issued warp instruction executes as four sets of 8 threads over four processor 

cycles. Th

e SP and SFU units execute instructions independently, and by issuing 

instructions between them on alternate cycles, the scheduler can keep both fully 

occupied. A scoreboard qualifi es each warp for issue each cycle. Th

e instruction 

scheduler prioritizes all ready warps and selects the one with highest priority for 

issue. Prioritization considers warp type, instruction type, and “fairness” to all 

warps executing in the SM. 

Th

e SM executes  cooperative thread arrays (CTAs) as multiple concurrent warps 

which access a shared memory region allocated dynamically for the CTA. 

Instruction Set

Th

reads execute scalar instructions, unlike previous GPU vector instruction 

architectures. Scalar instructions are simpler and compiler friendly. Texture 

instructions remain vector based, taking a source coordinate vector and returning 

a fi ltered color vector. 

Th

e register-based instruction set includes all the fl oating-point and integer 

arithmetic, transcendental, logical, fl ow control, memory load/store, and texture 

instructions listed in the PTX instruction table of Figure C.4.3. Memory load/store 

instructions use integer byte addressing with register-plus-off set address arithmetic. 

For computing, the load/store instructions access three read-write memory spaces: 

local memory for per-thread, private, temporary data; shared memory for low-

latency per-CTA data shared by the threads of the CTA; and global memory for data 

shared by all threads. Computing programs use the fast barrier synchronization 

bar.sync instruction to synchronize threads within a CTA that communicate 

with each other via shared and global memory. Th

e latest Tesla architecture GPUs 

implement PTX atomic memory operations, which facilitate parallel reductions 

and parallel data structure management. 

Streaming Processor (SP)

Th

e multithreaded SP core is the primary thread processor, as introduced in 

Section C.4. Its register fi le provides 1024 scalar 32-bit registers for up to 96 threads 

(more threads than in the example SP of Section C.4). Its fl oating-point add and 
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multiply operations are compatible with the IEEE 754 standard for single precision 

FP numbers, including not-a-number (NaN) and infi nity. Th

e add and multiply 

operations use IEEE round-to-nearest-even as the default rounding mode. Th

e SP 

core also implements all of the 32-bit and 64-bit integer arithmetic, comparison, 

conversion, and logical PTX instructions in Figure C.4.3. Th

e processor is fully 

pipelined, and latency is optimized to balance delay and area. 

Special Function Unit (SFU)

Th

e SFU supports computation of both transcendental functions and planar 

attribute interpolation. As described in Section C.6, it uses quadratic interpolation 

based on enhanced minimax approximations to approximate the reciprocal, 

reciprocal square root, log  x, 2 x, and sin/cos functions at one result per cycle. Th e 

2

SFU also supports pixel attribute interpolation such as color, depth, and texture 

coordinates at four samples per cycle. 

Rasterization

Geometry primitives from the SMs go in their original round-robin input order 

to the viewport/clip/setup/raster/zcull block. Th

e viewport and clip units clip 

the primitives to the view frustum and to any enabled user clip planes, and then 

transform the vertices into screen (pixel) space. 

Surviving primitives then go to the setup unit, which generates edge equations 

for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at 

least partially inside the primitive. Th

e zcull unit maintains a hierarchical  z surface, 

rejecting pixel tiles if they are conservatively known to be occluded by previously 

drawn pixels. Th

e rejection rate is up to 256 pixels per clock. Pixels that survive zcull 

then go to a fi ne-rasterization stage that generates detailed coverage information 

and depth values. 

Th

e depth test and update can be performed ahead of the fragment shader, or 

aft er, depending on current state. Th

e SMC assembles surviving pixels into warps 

to be processed by an SM running the current pixel shader. Th

e SMC then sends 

surviving pixel and associated data to the ROP. 

Raster Operations Processor (ROP) and Memory System

Each ROP is paired with a specifi c memory partition. For each pixel fragment 

emitted by a pixel shader program, ROPs perform depth and stencil testing and 

updates, and in parallel, color blending and updates. Lossless color compression 

(up to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth. 

Each ROP has a peak rate of four pixels per clock and supports 16-bit fl oating-

point and 32-bit fl oating-point HDR formats. ROPs support double-rate-depth 

processing when color writes are disabled. 
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Antialiasing support includes up to 16 multisampling and supersampling. Th

e 

coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean 

coverage at up to 16 samples and compresses redundant color, depth, and stencil 

information into the memory footprint and a bandwidth of four or eight samples 

for improved performance. 

Th

e DRAM memory data bus width is 384 pins, arranged in six independent 

partitions of 64 pins each. Each partition supports double-data-rate DDR2 and 

graphics-oriented GDDR3 protocols at up to 1.0 GHz, yielding a bandwidth of 

about 16 GB/s per partition, or 96 GB/s. 

Th

e memory controllers support a wide range of DRAM clock rates, protocols, 

device densities, and data bus widths. Texture and load/store requests can occur 

between any TPC and any memory partition, so an interconnection network routes 

requests and responses. 

Scalability

Th

e Tesla unifi ed architecture is designed for scalability. Varying the number of 

SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for 

diff erent performance and cost targets in GPU market segments. Scalable link 

interconnect (SLI) connects multiple GPUs, providing further scalability. 

Performance

Th

e GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz, 

for a theoretical operation peak of 576 GFLOPS. Th

e GeForce 8800 GTX has a 1.35 

GHz processor clock and a corresponding peak of 518 GFLOPS. 

Th

e following three sections compare the performance of a GeForce 8800 GPU 

with a multicore CPU on three diff erent applications—dense linear algebra, fast 

Fourier transforms, and sorting. Th

e GPU programs and libraries are compiled 

CUDA C code. Th

e CPU code uses the single precision multithreaded Intel MKL 

10.0 library to leverage SSE instructions and multiple cores. 

Dense Linear Algebra Performance

Dense linear algebra computations are fundamental in many applications. Volkov 

and Demmel [2008] present GPU and CPU performance results for single precision 

dense matrix-matrix multiplication (the SGEMM routine) and LU, QR, and 

Cholesky matrix factorizations. Figure C.7.3 compares GFLOPS rates on SGEMM 

dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a quad-

core CPU. Figure C.7.4 compares GFLOPS rates on matrix factorization for a GPU 

with a quad-core CPU. 

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the 

bulk of the work in matrix factorization, their performance sets an upper bound on 

factorization rate. As the matrix order increases beyond 200 to 400, the factorization 
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FIGURE C.7.3  SGEMM dense matrix-matrix multiplication performance rates.   Th

e graph 

shows single precision GFLOPS rates achieved in multiplying square NN matrices (solid lines) and thin N64 and 64N matrices (dashed lines). Adapted from Figure 6 of Volkov and Demmel [2008]. Th

e black 

lines are a 1.35 GHz GeForce 8800 GTX using Volkov’s SGEMM code (now in NVIDIA CUBLAS 2.0) on 

matrices in GPU memory. Th

e blue lines are a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, 

Intel MKL 10.0 on matrices in CPU memory. 
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FIGURE C.7.4  Dense matrix factorization performance rates.  Th

e graph shows GFLOPS rates 

achieved in matrix factorizations using the GPU and using the CPU alone. Adapted from Figure 7 of Volkov and Demmel [2008]. Th

e black lines are for a 1.35 GHz NVIDIA GeForce 8800 GTX, CUDA 1.1, Windows 

XP attached to a 2.67 GHz Intel Core2 Duo E6700 Windows XP, including all CPU–GPU data transfer times. 

Th

e blue lines are for a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, Intel MKL 10.0. 
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problem becomes large enough that SGEMM can leverage the GPU parallelism and 

overcome the CPU–GPU system and copy overhead. Volkov’s SGEMM matrix-

matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX peak 

multiply-add rate, while the QR factorization reached 192 GFLOPS, about 4.3 

times the quad-core CPU. 

FFT Performance

Fast Fourier Transforms are used in many applications. Large transforms and 

multidimensional transforms are partitioned into batches of smaller 1D transforms. 

Figure C.7.5 compares the in-place 1D complex single precision FFT 

performance of a 1.35 GHz GeForce 8800 GTX (dating from late 2006) with a 2.8 

GHz quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating from 

late 2007). CPU performance was measured using the Intel Math Kernel Library 

(MKL) 10.0 FFT with four threads. GPU performance was measured using the 

NVIDIA CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency 

FFTs. Both CPU and GPU throughput performance was measured using batched 

FFTs; batch size was 224/ n, where  n is the transform size. Th

us, the workload for 

every transform size was 128 MB. To determine GFLOPS rate, the number of 

operations per transform was taken as 5 n log   n. 
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FIGURE C.7.5  Fast Fourier Transform throughput performance.   Th

e graph compares the 

performance of batched one-dimensional in-place complex FFTs on a 1.35 GHz GeForce 8800 GTX with a quad-core 2.8 GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 1600 

FSB, Red Hat Linux, Intel MKL 10.0. 
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Sorting Performance

In contrast to the applications just discussed, sort requires far more substantial 

coordination among parallel threads, and parallel scaling is correspondingly 

harder to obtain. Nevertheless, a variety of well-known sorting algorithms can 

be effi

ciently parallelized to run well on the GPU. Satish et al. [2008] detail the 

design of sorting algorithms in CUDA, and the results they report for radix sort 

are summarized below. 

Figure C.7.6 compares the parallel sorting performance of a GeForce 8800 Ultra 

with an 8-core Intel Clovertown system, both of which date to early 2007. Th

e 

CPU cores are distributed between two physical sockets. Each socket contains a 

multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All 

sorting routines were designed to sort key-value pairs where both keys and values 

are 32-bit integers. Th

e primary algorithm being studied is radix sort, although 

the quicksort-based parallel_sort() procedure provided by Intel’s Th

reading 

Building Blocks is also included for comparison. Of the two CPU-based radix sort 

codes, one was implemented using only the scalar instruction set and the other 

utilizes carefully hand-tuned assembly language routines that take advantage of the 

SSE2 SIMD vector instructions. 

Th

e graph itself shows the achieved sorting rate—defi ned as the number of 

elements sorted divided by the time to sort—for a range of sequence sizes. It is 
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FIGURE C.7.6  Parallel sorting performance.  Th

is graph compares sorting rates for parallel radix 

sort implementations on a 1.5 GHz GeForce 8800 Ultra and an 8-core 2.33 GHz Intel Core2 Xeon E5345 

system. 
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apparent from this graph that the GPU radix sort achieved the highest sorting 

rate for all sequences of 8K-elements and larger. In this range, it is on average 2.6 

times faster than the quicksort-based routine and roughly 2 times faster than the 

radix sort routines, all of which were using the eight available CPU cores. Th

e CPU 

radix sort performance varies widely, likely due to poor cache locality of its global 

permutations. 

 C.8 

Real Stuff: Mapping Applications to GPUs

Th

e advent of multicore CPUs and manycore GPUs means that mainstream 

processor chips are now parallel systems. Furthermore, their parallelism continues 

to scale with Moore’s law. Th

e challenge is to develop mainstream visual computing 

and high-performance computing applications that transparently scale their 

parallelism to leverage the increasing number of processor cores, much as 3D 

graphics applications transparently scale their parallelism to GPUs with widely 

varying numbers of cores. 

Th

is section presents examples of mapping scalable parallel computing 

applications to the GPU using CUDA. 

Sparse Matrices

A wide variety of parallel algorithms can be written in CUDA in a fairly 

straightforward manner, even when the data structures involved are not simple 

regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of an 

important numerical building block that can be parallelized quite directly using the 

abstractions provided by CUDA. Th

e kernels we discuss below, when combined 

with the provided CUBLAS vector routines, make writing iterative solvers such as 

the conjugate gradient method straightforward. 

A sparse  n   n matrix is one in which the number of nonzero entries  m is only a small fraction of the total. Sparse matrix representations seek to store only the 

nonzero elements of a matrix. Since it is fairly typical that a sparse  n   n matrix will contain only  m  O( n) nonzero elements, this represents a substantial saving in storage space and processing time. 

One of the most common representations for general unstructured sparse 

matrices is the  compressed sparse row (CSR) representation. Th

e  m nonzero 

elements of the matrix  A are stored in row-major order in an array Av. A second 

array Aj records the corresponding column index for each entry of Av. Finally, an 

array Ap of  n  1 elements records the extent of each row in the previous arrays; the 

entries for row  i in Aj and Av extend from index Ap[i] up to, but not including, 

index Ap[i + 1]. Th

is implies that Ap[0] will always be 0 and Ap[n] will always 

be the number of nonzero elements in the matrix. Figure C.8.1 shows an example 

of the CSR representation of a simple matrix. 
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FIGURE C.8.1  Compressed sparse row (CSR) matrix. 

float multiply_row(unsigned int rowsize, 

unsigned int *Aj, // column indices for row

float *Av,        // nonzero entries for row

float *x)         // the RHS vector

{

float sum = 0; 

for(unsigned int column=0; column<rowsize; ++column)

sum += Av[column] * x[Aj[column]]; 

return sum; 

}

FIGURE C.8.2  Serial C code for a single row of sparse matrix-vector multiply. 

Given a matrix  A in CSR form and a vector  x, we can compute a single row of 

the product  y   Ax using the multiply_row() procedure shown in Figure C.8.2. 

Computing the full product is then simply a matter of looping over all rows and 

computing the result for that row using multiply_row(), as in the serial C code 

shown in Figure C.8.3. 

Th

is algorithm can be translated into a parallel CUDA kernel quite easily. We 

simply spread the loop in csrmul_serial() over many parallel threads. Each 

thread will compute exactly one row of the output vector  y. Th

e code for this kernel 

is shown in Figure C.8.4. Note that it looks extremely similar to the serial loop 

used in the csrmul_serial() procedure. Th

ere are really only two points of 

diff erence. First, the row index for each thread is computed from the block and 

thread indices assigned to each thread, eliminating the for-loop. Second, we have a 

conditional that only evaluates a row product if the row index is within the bounds 

of the matrix (this is necessary since the number of rows  n need not be a multiple 

of the block size used in launching the kernel). 
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void csrmul_serial(unsigned int *Ap, unsigned int *Aj, 

float *Av, unsigned int num_rows, 

float *x, float *y)

{

for(unsigned int row=0; row<num_rows; ++row)

{

unsigned int row_begin = Ap[row]; 

unsigned int row_end   = Ap[row+1]; 

y[row] = multiply_row(row_end-row_begin, Aj+row_begin, 

Av+row_begin, x); 

}

}

FIGURE C.8.3  Serial code for sparse matrix-vector multiply. 

__global__

void csrmul_kernel(unsigned int *Ap, unsigned int *Aj, 

float *Av, unsigned int num_rows, 

float *x, float *y)

{

unsigned int row = blockIdx.x*blockDim.x + threadIdx.x; 

if( row<num_rows )

{

unsigned int row_begin = Ap[row]; 

unsigned int row_end   = Ap[row+1]; 

y[row] = multiply_row(row_end-row_begin, Aj+row_begin, 

Av+row_begin, x); 

}

}

FIGURE C.8.4  CUDA version of sparse matrix-vector multiply. 

Assuming that the matrix data structures have already been copied to the GPU 

device memory, launching this kernel will look like:

unsigned int blocksize = 128;  // or any size up to 512

unsigned int nblocks    

=  

(num_rows + blocksize - 1) / blocksize; 

csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y); 
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Th

e pattern that we see here is a very common one. Th

e original serial 

algorithm is a loop whose iterations are independent of each other. Such loops 

can be parallelized quite easily by simply assigning one or more iterations of the 

loop to each parallel thread. Th

e programming model provided by CUDA makes 

expressing this type of parallelism particularly straightforward. 

Th

is general strategy of decomposing computations into blocks of independent 

work, and more specifi cally breaking up independent loop iterations, is not unique 

to CUDA. Th

is is a common approach used in one form or another by various 

parallel programming systems, including OpenMP and Intel’s Th

reading Building 

Blocks. 

Caching in Shared memory

Th

e SpMV algorithms outlined above are fairly simplistic. Th

ere are a number of 

optimizations that can be made in both the CPU and GPU codes that can improve 

performance, including loop unrolling, matrix reordering, and register blocking. 

Th

e parallel kernels can also be reimplemented in terms of data parallel  scan 

operations presented by Sengupta, et al. [2007]. 

One of the important architectural features exposed by CUDA is the presence of 

the per-block shared memory, a small on-chip memory with very low latency. Taking 

advantage of this memory can deliver substantial performance improvements. One 

common way of doing this is to use shared memory as a soft ware-managed cache 

to hold frequently reused data. Modifcations using shared memory are shown in 

Figure C.8.5. 

In the context of sparse matrix multiplication, we observe that several rows of  A 

may use a particular array element x[i]. In many common cases, and particularly 

when the matrix has been reordered, the rows using x[i] will be rows near row  i. 

We can therefore implement a simple caching scheme and expect to achieve some 

performance benefi t. Th

e block of threads processing rows  i through  j will load 

x[i] through x[j] into its shared memory. We will unroll the multiply_row() 

loop and fetch elements of x from the cache whenever possible. Th

e resulting 

code is shown in Figure C.8.5. Shared memory can also be used to make other 

optimizations, such as fetching Ap[row+1] from an adjacent thread rather than 

refetching it from memory. 

Because the Tesla architecture provides an explicitly managed on-chip shared 

memory, rather than an implicitly active hardware cache, it is fairly common to add 

this sort of optimization. Although this can impose some additional development 

burden on the programmer, it is relatively minor, and the potential performance 

benefi ts can be substantial. In the example shown above, even this fairly simple 

use of shared memory returns a roughly 20% performance improvement on 

representative matrices derived from 3D surface meshes. Th

e availability of an 

explicitly managed memory in lieu of an implicit cache also has the advantage 

that caching and prefetching policies can be specifi cally tailored to the application 

needs. 
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__global__ 

void csrmul_cached(unsigned int *Ap, unsigned int *Aj, 

float *Av, unsigned int num_rows, 

const float *x, float *y)

{

// Cache the rows of x[] corresponding to this block. 

__shared__ float cache[blocksize]; 

unsigned int block_begin = blockIdx.x * blockDim.x; 

unsigned int block_end   = block_begin + blockDim.x; 

unsigned int row         = block_begin + threadIdx.x; 

// Fetch and cache our window of x[]. 

if( row<num_rows)  cache[threadIdx.x] = x[row]; 

__syncthreads(); 

if( row<num_rows )

{

unsigned int row_begin = Ap[row]; 

unsigned int row_end   = Ap[row+1]; 

float sum = 0, x_j; 

for(unsigned int col=row_begin; col<row_end; ++col)

{

unsigned int j = Aj[col]; 



// Fetch x_j from our cache when possible

if( j>=block_begin && j<block_end )

x_j = cache[j-block_begin]; 

else

x_j = x[j]; 

sum += Av[col] * x_j; 

}

y[row] = sum; 

}

}

FIGURE C.8.5  Shared memory version of sparse matrix-vector multiply. 
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Th

ese are fairly simple kernels whose purpose is to illustrate basic techniques 

in writing CUDA programs, rather than how to achieve maximal performance. 

Numerous possible avenues for optimization are available, several of which are 

explored by Williams, et al. [2007] on a handful of diff erent multicore architectures. 

Nevertheless, it is still instructive to examine the comparative performance of even 

these simplistic kernels. On a 2 GHz Intel Core2 Xeon E5335 processor, the csrmul_

serial() kernel runs at roughly 202 million nonzeros processed per second, for 

a collection of Laplacian matrices derived from 3D triangulated surface meshes. 

Parallelizing this kernel with the parallel_for construct provided by Intel’s 

Th

reading Building Blocks produces parallel speed-ups of 2.0, 2.1, and 2.3 running 

on two, four, and eight cores of the machine, respectively. On a GeForce 8800 Ultra, 

the csrmul_kernel() and csrmul_cached() kernels achieve processing rates 

of roughly 772 and 920 million nonzeros per second, corresponding to parallel 

speed-ups of 3.8 and 4.6 times over the serial performance of a single CPU core. 

Scan and Reduction

Parallel   scan, also known as parallel  prefi x  sum, is one of the most important building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence  a 

of  n elements:

[ a ,  a ,…,  a

]

0

1

 n  1



and a binary associative operator ⊕, the scan function computes the sequence:

scan( a, )

⊕

[ a ,( a ⊕  a ),…,( a ⊕  a ⊕ … ⊕  a

)]

0

0

1

0

1

 n  1

As an example, if we take ⊕ to be the usual addition operator, then applying scan 

to the input array

 a  [3 1 7 0 4 1 6 ]

3

will produce the sequence of partial sums:

scan( a, )

[3 4 11 11 15 16 22

]

25

Th

is scan operator is an  inclusive scan, in the sense that element  i of the output 

sequence incorporates element  a  of the input. Incorporating only previous elements 

i

would yield an  exclusive scan operator, also known as a  prefi x-sum operation. 

Th

e serial implementation of this operation is extremely simple. It is simply a 

loop that iterates once over the entire sequence, as shown in Figure C.8.6. 

At fi rst glance, it might appear that this operation is inherently serial. However, 

it can actually be implemented in parallel effi

ciently. Th

e key observation is that 
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template<class T> 

__host__ T plus_scan(T *x, unsigned int n)

{

for(unsigned int i=1; i<n; ++i)

x[i] = x[i-1] + x[i]; 

}

FIGURE C.8.6  Template for serial plus-scan. 

template<class T> 

__device__ T plus_scan(T *x)

{

unsigned int i = threadIdx.x; 

unsigned int n = blockDim.x; 

for(unsigned int offset=1; offset<n; offset *= 2)

{

T t; 

if(i>=offset)  t = x[i-offset]; 

__syncthreads(); 

if(i>=offset)  x[i] = t + x[i]; 

__syncthreads(); 

}

return x[i]; 

}

FIGURE C.8.7  CUDA template for parallel plus-scan. 

because addition is associative, we are free to change the order in which elements 

are added together. For instance, we can imagine adding pairs of consecutive 

elements in parallel, and then adding these partial sums, and so on. 

One simple scheme for doing this is from Hillis and Steele [1989]. An 

implementation of their algorithm in CUDA is shown in Figure C.8.7. It assumes 

that the input array x[ ] contains exactly one element per thread of the thread 

block. It performs log   n iterations of a loop collecting partial sums together. 

2

To understand the action of this loop, consider Figure C.8.8, which illustrates 

the simple case for  n  8 threads and elements. Each level of the diagram represents 

one step of the loop. Th

e lines indicate the location from which the data is being 

fetched. For each element of the output (i.e., the fi nal row of the diagram) we are 

building a summation tree over the input elements. Th

e edges highlighted in blue 

show the form of this summation tree for the fi nal element. Th

e leaves of this tree 

are all the initial elements. Tracing back from any output element shows that it 

incorporates all input values up to and including itself. 
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x [ i ]   + = x [ i – 2 ] ; 
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x[5]

x[6]

x[7]

x [ i ]   + = x [ i – 4 ] ; 

FIGURE C.8.8  Tree-based parallel scan data references. 

While simple, this algorithm is not as effi

cient as we would like. Examining 

the serial implementation, we see that it performs  O(n) additions. Th

e parallel 

implementation, in contrast, performs  O(n log  n) additions. For this reason, it 

is not  work effi

   cient, since it does more work than the serial implementation to 

compute the same result. Fortunately, there are other techniques for implementing 

scan that are work effi

cient. Details on more effi

cient implementation techniques 

and the extension of this per-block procedure to multiblock arrays are provided by 

Sengupta, et al. [2007]. 

In some instances, we may only be interested in computing the sum of all 

elements in an array, rather than the sequence of all prefi x sums returned by scan. 

Th

is is the  parallel reduction problem. We could simply use a scan algorithm to 

perform this computation, but reduction can generally be implemented more 

effi

ciently than scan. 

Figure C.8.9 shows the code for computing a reduction using addition. In this 

example, each thread simply loads one element of the input sequence (i.e., it initially 

sums a subsequence of length 1). At the end of the reduction, we want thread 0 to 

hold the sum of all elements initially loaded by the threads of its block. Th

e loop in 

this kernel implicitly builds a summation tree over the input elements, much like 

the scan algorithm above. 

At the end of this loop, thread 0 holds the sum of all the values loaded by this block. 

If we want the fi nal value of the location pointed to by total to contain the total of all 

elements in the array, we must combine the partial sums of all the blocks in the grid. 

One strategy to do this would be to have each block write its partial sum into a second 

array and then launch the reduction kernel again, repeating the process until we had 

reduced the sequence to a single value. A more attractive alternative supported by 

the Tesla GPU architecture is to use the atomicAdd() primitive, an effi

cient atomic 
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__global__

void plus_reduce(int *input, unsigned int N, int *total)

{

unsigned int tid = threadIdx.x; 

unsigned int i   = blockIdx.x*blockDim.x + threadIdx.x; 

// Each block loads its elements into shared memory, padding

// with 0 if N is not a multiple of blocksize

__shared__ int x[blocksize]; 

x[tid] = (i<N) ? input[i] : 0; 

__syncthreads(); 

// Every thread now holds 1 input value in x[]

//

// Build summation tree over elements. 

for(int s=blockDim.x/2; s>0; s=s/2)

{

if(tid < s)  x[tid] += x[tid + s]; 

__syncthreads(); 

}

// Thread 0 now holds the sum of all input values

// to this block. Have it add that sum to the running total

if( tid == 0 )  atomicAdd(total, x[tid]); 

}

FIGURE C.8.9  CUDA implementation of plus-reduction. 

read-modify-write primitive supported by the memory subsystem. Th

is eliminates 

the need for additional temporary arrays and repeated kernel launches. 

Parallel reduction is an essential primitive for parallel programming and 

highlights the importance of per-block shared memory and low-cost barriers in 

making cooperation among threads effi

cient. Th

is degree of data shuffl

ing among 

threads would be prohibitively expensive if done in off -chip global memory. 

Radix Sort

One important application of scan primitives is in the implementation of sorting 

routines. Th

e code in Figure C.8.10 implements a radix sort of integers across a 

single thread block. It accepts as input an array values containing one 32-bit 

integer for each thread of the block. For effi

ciency, this array should be stored in 

per-block shared memory, but this is not required for the sort to behave correctly. 

Th

is is a fairly simple implementation of radix sort. It assumes the availability of 

a procedure partition_by_bit() that will partition the given array such that 
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__device__ void radix_sort(unsigned int *values)

{

for(int bit=0; bit<32; ++bit)

{

partition_by_bit(values, bit); 

__syncthreads(); 

}

}

FIGURE C.8.10  CUDA code for radix sort. 

__device__ void partition_by_bit(unsigned int *values, 

unsigned int bit)

{

unsigned int i    = threadIdx.x; 

unsigned int size = blockDim.x; 

unsigned int x_i  = values[i]; 

unsigned int p_i  = (x_i >> bit) & 1; 

values[i] = p_i; 

__syncthreads(); 

// Compute number of T bits up to and including p_i. 

// Record the total number of F bits as well. 

unsigned int T_before = plus_scan(values); 

unsigned int T_total  = values[size-1]; 

unsigned int F_total  = size - T_total; 

__syncthreads(); 

// Write every x_i to its proper place

if( p_i )

values[T_before-1 + F_total] = x_i; 

else

values[i - T_before] = x_i; 

}

FIGURE C.8.11  CUDA code to partition data on a bit-by-bit basis, as part of radix sort. 

all values with a 0 in the designated bit will come before all values with a 1 in that 

bit. To produce the correct output, this partitioning must be stable. 

Implementing the partitioning procedure is a simple application of scan. Th

read 

 i holds the value  x  and must calculate the correct output index at which to write i

this value. To do so, it needs to calculate (1) the number of threads  j   i for which the designated bit is 1 and (2) the total number of bits for which the designated bit 


is 0. Th

e CUDA code for partition_by_bit() is shown in Figure C.8.11. 
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A similar strategy can be applied for implementing a radix sort kernel that sorts 

an array of large length, rather than just a one-block array. Th

e fundamental step 

remains the scan procedure, although when the computation is partitioned across 

multiple kernels, we must double-buff er the array of values rather than doing the 

partitioning in place. Details on performing radix sorts on large arrays effi

ciently 

are provided by Satish et al. [2008]. 

N-Body Applications on a GPU1

Nyland, et al. [2007] describe a simple yet useful computational kernel with 

excellent GPU performance—the  all-pairs N-body algorithm. It is a time-consuming 

component of many scientifi c applications. N-body simulations calculate the 

evolution of a system of bodies in which each body continuously interacts with 

every other body. One example is an astrophysical simulation in which each body 

represents an individual star, and the bodies gravitationally attract each other. 

Other examples are protein folding, where N-body simulation is used to calculate 

electrostatic and van der Waals forces; turbulent fl uid fl ow simulation; and global 

illumination in computer graphics. 

Th

e all-pairs N-body algorithm calculates the total force on each body in the 

system by computing each pair-wise force in the system, summing for each body. 

Many scientists consider this method to be the most accurate, with the only loss of 

precision coming from the fl oating-point hardware operations. Th

e drawback is its 

O( n 2) computational complexity, which is far too large for systems with more than 

10 bodies. To overcome this high cost, several simplifi cations have been proposed 

to yield O( n log  n) and O( n) algorithms; examples are the Barnes-Hut algorithm, the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the  fast 

methods still rely on the all-pairs method as a kernel for accurate computation of 

short-range forces; thus it continues to be important. 

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary 

physics. Between two bodies indexed by  i and  j, the 3D force vector is:

 i

 m mj

 ij

r

f 

×

 ij

 G ||r ||2 ||r

 ij

 ij ||

Th

e force magnitude is calculated in the left  term, while the direction is computed 

in the right (unit vector pointing from one body to the other). 

Given a list of interacting bodies (an entire system or a subset), the calculation is 

simple: for all pairs of interactions, compute the force and sum for each body. Once 

the total forces are calculated, they are used to update each body’s position and 

velocity, based on the previous position and velocity. Th

e calculation of the forces 

has complexity O( n 2), while the update is O( n). 

1 Adapted from Nyland et al. [2007], “Fast N-Body Simulation with CUDA,” Chapter 31 of 

 GPU Gems 3. 
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Th

e serial force-calculation code uses two nested for-loops iterating over pairs of 

bodies. Th

e outer loop selects the body for which the total force is being calculated, 

and the inner loop iterates over all the bodies. Th

e inner loop calls a function that 

computes the pair-wise force, then adds the force into a running sum. 

To compute the forces in parallel, we assign one thread to each body, since the 

calculation of force on each body is independent of the calculation on all other 

bodies. Once all of the forces are computed, the positions and velocities of the 

bodies can be updated. 

Th

e code for the serial and parallel versions is shown in Figure C.8.12 and Figure 

C.8.13. Th

e serial version has two nested for-loops. Th

e conversion to CUDA, 

like many other examples, converts the serial outer loop to a per-thread kernel 

where each thread computes the total force on a single body. Th

e CUDA kernel 

computes a global thread ID for each thread, replacing the iterator variable of the 

serial outer loop. Both kernels fi nish by storing the total acceleration in a global 

array used to compute the new position and velocity values in a subsequent step. 

void accel_on_all_bodies()

{



int i, j; 



float3 acc(0.0f, 0.0f, 0.0f); 



for (i = 0; i < N; i++) {



for (j = 0; j < N; j++) {



acc = body_body_interaction(acc, body[i], body[j]); 



}



accel[i] = acc; 



}

}

FIGURE C.8.12  Serial code to compute all pair-wise forces on N bodies. 

__global__ void accel_on_one_body()

{



int i = threadIdx.x + blockDim.x * blockIdx.x; 

int 

j; 



float3 acc(0.0f, 0.0f, 0.0f); 



for (j = 0; j < N; j++) {





acc = body_body_interaction(acc, body[i], body[j]); 



}



accel[i] = acc; 

}

FIGURE C.8.13  CUDA thread code to compute the total force on a single body. 
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Th

e outer loop is replaced by a CUDA kernel grid that launches  N threads, one 

for each body. 

Optimization for GPU Execution

Th

e CUDA code shown is functionally correct, but is not effi

cient, as it ignores 

key architectural features. Better performance can be achieved with three main 

optimizations. First, shared memory can be used to avoid identical memory reads 

between threads. Second, using multiple threads per body improves performance 

for small values of  N. Th

ird, loop unrolling reduces loop overhead. 

Using Shared memory

Shared memory can hold a subset of body positions, much like a cache, eliminating 

redundant global memory requests between threads. We optimize the code shown 

above to have each of  p threads in a thread-block load  one position into shared 

memory (for a total of  p positions). Once all the threads have loaded a value into 

shared memory, ensured by __syncthreads(), each thread can then perform 

 p interactions (using the data in shared memory). Th

is is repeated  N/ p times to 

complete the force calculation for each body, which reduces the number of requests 

to memory by a factor of  p (typically in the range 32–128). 

Th

e function called accel_on_one_body() requires a few changes to support 

this optimization. Th

e modifi ed code is shown in Figure C.8.14. 

__shared__ float4 shPosition[256]; 

…

__global__ void accel_on_one_body()

{



int i = threadIdx.x + blockDim.x * blockIdx.x; 



int j, k; 



int p = blockDim.x; 



float3 acc(0.0f, 0.0f, 0.0f); 



float4 myBody = body[i]; 



for (j = 0; j < N; j += p) {  // Outer loops jumps by p each time





shPosition[threadIdx.x] = body[j+threadIdx.x]; 

__syncthreads(); 





for (k = 0; k < p; k++) { // Inner loop accesses p positions







acc = body_body_interaction(acc, myBody, shPosition[k]); 





}

__syncthreads(); 



}



accel[i] = acc; 

}

FIGURE C.8.14  CUDA code to compute the total force on each body, using shared memory to improve performance. 
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N-Body Performance on GPUs
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FIGURE C.8.15  Performance measurements of the N-body application on a GeForce 8800 

GTX and a GeForce 9600.  Th

e 8800 has 128 stream processors at 1.35 GHz, while the 9600 has 64 at 0.80 

GHz (about 30% of the 8800). Th

e peak performance is 242 GFLOPS. For a GPU with more processors, the 

problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the 8800 

doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can signifi cantly improve performance, but eventually incurs a performance penalty as N grows. 

Th

e loop that formerly iterated over all bodies now jumps by the block dimension 

 p. Each iteration of the outer loop loads  p successive positions into shared memory (one position per thread). Th

e threads synchronize, and then  p force calculations 

are computed by each thread. A second synchronization is required to ensure that 

new values are not loaded into shared memory prior to all threads completing the 

force calculations with the current data. 

Using shared memory reduces the memory bandwidth required to less than 

10% of the total bandwidth that the GPU can sustain (using less than 5 GB/s). 

Th

is optimization keeps the application busy performing computation rather than 

waiting on memory accesses, as it would have done without the use of shared 

memory. Th

e performance for varying values of N is shown in Figure C.8.15. 

Using Multiple Threads per Body

Figure C.8.15 shows performance degradation for problems with small values of  N 

( N  4096) on the GeForce 8800 GTX. Many research eff orts that rely on N-body 

calculations focus on small  N (for long simulation times), making it a target of 

our optimization eff orts. Our presumption to explain the lower performance was 

that there was simply not enough work to keep the GPU busy when  N is small. 

Th

e solution is to allocate more threads per body. We change the thread-block 

dimensions from ( p, 1, 1) to ( p,  q, 1), where  q threads divide the work of a single body into equal parts. By allocating the additional threads within the same thread block, 

partial results can be stored in shared memory. When all the force calculations are 

 

C.8  Real Stuff: Mapping Applications to GPUs 

C-69

done, the  q partial results can be collected and summed to compute the fi nal result. 

Using two or four threads per body leads to large improvements for small  N. 

As an example, the performance on the 8800 GTX jumps by 110% when  N 

 1024 (one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS). 

Performance degrades slightly on large  N, so we only use this optimization for  N 

smaller than 4096. Th

e performance increases are shown in Figure C.8.15 for a 

GPU with 128 processors and a smaller GPU with 64 processors clocked at two-

thirds the speed. 

Performance Comparison

Th

e performance of the N-body code is shown in Figure C.8.15 and Figure C.8.16. 

In Figure C.8.15, performance of high- and medium-performance GPUs is shown, 

along with the performance improvements achieved by using multiple threads per 

body. Th

e performance on the faster GPU ranges from 90 to just under 250 GFLOPS. 

Figure C.8.16 shows nearly identical code (C versus CUDA) running on 

Intel Core2 CPUs. Th

e CPU performance is about 1% of the GPU, in the range of 

0.2 to 2 GFLOPS, remaining nearly constant over the wide range of problem sizes. 

N-Body Performance on Intel CPUs
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FIGURE C.8.16  Performance measurements on the N-body code on a CPU.  Th

e graph shows 

single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note the dramatic reduction in GFLOPS performance (shown in GFLOPS on the  y-axis), demonstrating how much faster the GPU is compared to the CPU. Th

e performance on the CPU is generally independent of 

problem size, except for an anomalously low performance when N16,384 on the X9775 CPU. Th

e graph 

also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler) 

on a single CPU core, where it outperforms the C code by 24%. As a programming language, CUDA 

exposes parallelism and locality that a compiler can exploit. Th

e Intel CPUs are a 3.2 GHz Extreme X9775 

(code named “Penryn”), a 2.66 GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a 1.83 GHz T2400 (code named “Yonah”), a 2007 laptop CPU. Th

e Penryn version of the Core 2 architecture 

is particularly interesting for N-body calculations with its 4-bit divider, allowing division and square root operations to execute four times faster than previous Intel CPUs. 
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Th

e graph also shows the results of compiling the CUDA version of the code 

for a CPU, where the performance improves by 24%. CUDA, as a programming 

language, exposes parallelism, allowing the compiler to make better use of the SSE 

vector unit on a single core. Th

e CUDA version of the N-body code naturally maps 

to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect 

scaling on an eight-core system with N  4096 (ratios of 2.0, 3.97, and 7.94 on two, 

four, and eight cores, respectively). 

Results

With a modest eff ort, we developed a computational kernel that improves GPU 

performance over multicore CPUs by a factor of up to 157. Execution time for 

the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz, 

single core) took more than 3 seconds per frame to run the same code that runs at a 

44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires 

6–16 seconds, and on older Core2 processors and Pentium IV processor, the time 

is about 25 seconds. We must divide the apparent increase in performance in half, 

as the CPU requires only half as many calculations to compute the same result 

(using the optimization that the forces on a pair of bodies are equal in strength and 

opposite in direction). 

How can the GPU speed up the code by such a large amount? Th

e answer 

requires inspecting architectural details. Th

e pair-wise force calculation requires 

20 fl oating-point operations, comprised mostly of addition and multiplication 

instructions (some of which can be combined using a multiply-add instruction), 

but there are also division and square root instructions for vector normalization. 

Intel CPUs take many cycles for single precision division and square root 

instructions,2 although this has improved in the latest Penryn CPU family with its 

faster 4-bit divider.3 Additionally, the limitations in register capacity lead to many 

MOV instructions in the x86 code (presumably to/from L1 cache). In contrast, the 

GeForce 8800 executes a reciprocal square-root thread instruction in four clocks; 

see Section C.6 for special function accuracy. It has a larger register fi le (per thread) 

and shared memory that can be accessed as an instruction operand. Finally, the 

CUDA compiler emits 15 instructions for one iteration of the loop, compared 

with more than 40 instructions from a variety of x86 CPU compilers. Greater 

parallelism, faster execution of complex instructions, more register space, and an 

effi

cient compiler all combine to explain the dramatic performance improvement 

of the N-body code between the CPU and the GPU. 

2 Th

e x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were 

not considered, as their accuracy is too low to be comparable. 

3 Intel Corporation,  Intel 64 and IA-32 Architectures Optimization Reference Manual. 

November 2007. Order Number: 248966-016. Also available at www3.intel.com/design/

processor/manuals/248966.pdf. 
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On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240 

GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential 

processors. Compiling and executing the CUDA version of the code on a CPU 

demonstrates that the problem scales well to multicore CPUs, but is still signifi cantly 

slower than a single GPU. 

We coupled the GPU N-body simulation with a graphical display of the motion, 

and can interactively display 16K bodies interacting at 44 frames per second. 

Th

is allows astrophysical and biophysical events to be displayed and navigated at 

interactive rates. Additionally, we can parameterize many settings, such as noise 

reduction, damping, and integration techniques, immediately displaying their 

eff ects on the dynamics of the system. Th

is provides scientists with stunning visual 

imagery, boosting their insights on otherwise invisible systems (too large or small, 

too fast or too slow), allowing them to create better models of physical phenomena. 

Figure C.8.17 shows a time-series display of an astrophysical simulation 

of 16K bodies, with each body acting as a galaxy. Th

e initial confi guration is a 

FIGURE C.8.17  12 images captured during the evolution of an N-body system with 16,384 bodies. 
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spherical shell of bodies rotating about the  z-axis. One phenomenon of interest to 

astrophysicists is the clustering that occurs, along with the merging of galaxies over 

time. For the interested reader, the CUDA code for this application is available in 

the CUDA SDK from www.nvidia.com/CUDA. 

 C.9 

Fallacies and Pitfalls

GPUs have evolved and changed so rapidly that many fallacies and pitfalls have 

arisen. We cover a few here. 

Fallacy: GPUs are just SIMD vector multiprocessors.  It is easy to draw the false 

conclusion that GPUs are simply SIMD vector multiprocessors. GPUs do have 

a SPMD-style programming model, in that a programmer can write a single 

program that is executed in multiple thread instances with multiple data. Th

e 

execution of these threads is not purely SIMD or vector, however; it is  single-

 instruction multiple-thread (SIMT), described in Section C.4. Each GPU thread 

has its own scalar registers, thread private memory, thread execution state, thread 

ID, independent execution and branch path, and eff ective program counter, and 

can address memory independently. Although a group of threads (e.g., a warp of 32 

threads) executes more effi

ciently when the PCs for the threads are the same, this is 

not necessary. So, the multiprocessors are not purely SIMD. Th

e thread execution 

model is MIMD with barrier synchronization and SIMT optimizations. Execution 

is more effi

cient if individual thread load/store memory accesses can be coalesced 

into block accesses, as well. However, this is not strictly necessary. In a purely 

SIMD vector architecture, memory/register accesses for diff erent threads must be 

aligned in a regular vector pattern. A GPU has no such restriction for register or 

memory accesses; however, execution is more effi

cient if warps of threads access 

local blocks of data. 

In a further departure from a pure SIMD model, an SIMT GPU can execute 

more than one warp of threads concurrently. In graphics applications, there may 

be multiple groups of vertex programs, pixel programs, and geometry programs 

running in the multiprocessor array concurrently. Computing programs may also 

execute diff erent programs concurrently in diff erent warps. 

Fallacy: GPU performance cannot grow faster than Moore’s law.  Moore’s law 

is simply a rate. It is not a “speed of light” limit for any other rate. Moore’s law 

describes an expectation that, over time, as semiconductor technology advances 

and transistors become smaller, the manufacturing cost per transistor will decline 
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exponentially. Put another way, given a constant manufacturing cost, the number 

of transistors will increase exponentially. Gordon Moore [1965] predicted that this 

progression would provide roughly two times the number of transistors for the 

same manufacturing cost every year, and later revised it to doubling every two 

years. Although Moore made the initial prediction in 1965 when there were just 

50 components per integrated circuit, it has proved remarkably consistent. Th

e 

reduction of transistor size has historically had other benefi ts, such as lower power 

per transistor and faster clock speeds at constant power. 

Th

is increasing bounty of transistors is used by chip architects to build processors, 

memory, and other components. For some time, CPU designers have used the 

extra transistors to increase processor performance at a rate similar to Moore’s law, 

so much so that many people think that processor performance growth of two 

times every 18–24 months is Moore’s law. In fact, it is not. 

Microprocessor designers spend some of the new transistors on processor cores, 

improving the architecture and design, and pipelining for more clock speed. Th

e 

rest of the new transistors are used for providing more cache, to make memory 

access faster. In contrast, GPU designers use almost none of the new transistors to 

provide more cache; most of the transistors are used for improving the processor 

cores and adding more processor cores. 

GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law 

bounty directly by applying exponentially more transistors to building more parallel, 

and thus faster, processors. Second, GPU designers can improve on the architecture 

over time, increasing the effi

ciency of the processing. Th

ird, Moore’s law assumes 

constant cost, so the Moore’s law rate can clearly be exceeded by spending more for 

larger chips with more transistors. Fourth, GPU memory systems have increased their 

eff ective bandwidth at a pace nearly comparable to the processing rate, by using faster 

memories, wider memories, data compression, and better caches. Th

e combination of 

these four approaches has historically allowed GPU performance to double regularly, 

roughly every 12 to 18 months. Th

is rate, exceeding the rate of Moore’s law, has been 

demonstrated on graphics applications for approximately ten years and shows no 

sign of signifi cant slowdown. Th

e most challenging rate limiter appears to be the 

memory system, but competitive innovation is advancing that rapidly too. 

Fallacy: GPUs only render 3D graphics; they can’t do general computation.  GPUs 

are built to render 3D graphics as well as 2D graphics and video. To meet the demands 

of graphics soft ware developers as expressed in the interfaces and performance/

feature requirements of the graphics APIs, GPUs have become massively parallel 

programmable fl oating-point processors. In the graphics domain, these processors 

are programmed through the graphics APIs and with arcane graphics programming 

languages (GLSL, Cg, and HLSL, in OpenGL and Direct3D). However, there is 

C-74 

Appendix C  Graphics and Computing GPUs

nothing preventing GPU architects from exposing the parallel processor cores to 

programmers without the graphics API or the arcane graphics languages. 

In fact, the Tesla architecture family of GPUs exposes the processors through 

a soft ware environment known as CUDA, which allows programmers to develop 

general application programs using the C language and soon C. GPUs are 

Turing-complete processors, so they can run any program that a CPU can run, 

although perhaps less well. And perhaps faster. 

Fallacy: GPUs cannot run double precision fl oating-point programs fast.  In the 

past, GPUs could not run double precision fl oating-point programs at all, except 

through soft ware emulation. And that’s not very fast at all. GPUs have made the 

progression from indexed arithmetic representation (lookup tables for colors) to 

8-bit integers per color component, to fi xed-point arithmetic, to single precision 

fl oating-point, and recently added double precision. Modern GPUs perform 

virtually all calculations in single precision IEEE fl oating-point arithmetic, and are 

beginning to use double precision in addition. 

For a small additional cost, a GPU can support double precision fl oating-point 

as well as single precision fl oating-point. Today, double precision runs more slowly 

than the single precision speed, about fi ve to ten times slower. For incremental 

additional cost, double precision performance can be increased relative to single 

precision in stages, as more applications demand it. 

Fallacy: GPUs don’t do fl oating-point  correctly.  GPUs, at least in the Tesla 

architecture family of processors, perform single precision fl oating-point 

processing at a level prescribed by the IEEE 754 fl oating-point standard. So, in 

terms of accuracy, GPUs are the equal of any other IEEE 754-compliant processors. 

Today, GPUs do not implement some of the specifi c features described in the 

standard, such as handling denormalized numbers and providing precise fl oating-

point exceptions. However, the recently introduced Tesla T10P GPU provides full 

IEEE rounding, fused-multiply-add, and denormalized number support for double 

precision. 

Pitfall: Just use more threads to cover longer memory latencies.  CPU cores are 

typically designed to run a single thread at full speed. To run at full speed, every 

instruction and its data need to be available when it is time for that instruction to 

run. If the next instruction is not ready or the data required for that instruction is 

not available, the instruction cannot run and the processor stalls. External memory 

is distant from the processor, so it takes many cycles of wasted execution to fetch 

data from memory. Consequently, CPUs require large local caches to keep running 
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without stalling. Memory latency is long, so it is avoided by striving to run in the 

cache. At some point, program working set demands may be larger than any cache. 

Some CPUs have used multithreading to tolerate latency, but the number of threads 

per core has generally been limited to a small number. 

Th

e GPU strategy is diff erent. GPU cores are designed to run many threads 

concurrently, but only one instruction from any thread at a time. Another way to 

say this is that a GPU runs each thread slowly, but in aggregate runs the threads 

effi

ciently. Each thread can tolerate some amount of memory latency, because 

other threads can run. 

Th

e downside of this is that multiple—many multiple threads—are required to 

cover the memory latency. In addition, if memory accesses are scattered or not 

correlated among threads, the memory system will get progressively slower in 

responding to each individual request. Eventually, even the multiple threads will 

not be able to cover the latency. So, the pitfall is that for the “just use more threads” 

strategy to work for covering latency, you have to have enough threads, and the 

threads have to be well-behaved in terms of locality of memory access. 

Fallacy: O( n) algorithms are diffi

  cult to speed up.  No matter how fast the GPU is 

at processing data, the steps of transferring data to and from the device may limit 

the performance of algorithms with O( n) complexity (with a small amount of work 

per datum). Th

e highest transfer rate over the PCIe bus is approximately 48 GB/

second when DMA transfers are used, and slightly less for nonDMA transfers. Th

e 

CPU, in contrast, has typical access speeds of 8–12 GB/second to system memory. 

Example problems, such as vector addition, will be limited by the transfer of the 

inputs to the GPU and the returning output from the computation. 

Th

ere are three ways to overcome the cost of transferring data. First, try to leave 

the data on the GPU for as long as possible, instead of moving the data back and 

forth for diff erent steps of a complicated algorithm. CUDA deliberately leaves data 

alone in the GPU between launches to support this. 

Second, the GPU supports the concurrent operations of copy-in, copy-out and 

computation, so data can be streamed in and out of the device while it is computing. 

Th

is model is useful for any data stream that can be processed as it arrives. Examples 

are video processing, network routing, data compression/decompression, and even 

simpler computations such as large vector mathematics. 

Th

e third suggestion is to use the CPU and GPU together, improving performance 

by assigning a subset of the work to each, treating the system as a heterogeneous 

computing platform. Th

e CUDA programming model supports allocation of work 

to one or more GPUs along with continued use of the CPU without the use of 

threads (via asynchronous GPU functions), so it is relatively simple to keep all 

GPUs and a CPU working concurrently to solve problems even faster. 
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 C.10 Concluding 

Remarks

GPUs are massively parallel processors and have become widely used, not only 

for 3D graphics, but also for many other applications. Th

is wide application was 

made possible by the evolution of graphics devices into programmable processors. 

Th

e graphics application programming model for GPUs is usually an API such 

as DirectX™ or OpenGL™. For more general-purpose computing, the CUDA 

programming model uses an SPMD (single-program multiple data) style, executing 

a program with many parallel threads. 

GPU parallelism will continue to scale with Moore’s law, mainly by increasing 

the number of processors. Only the parallel programming models that can readily 

scale to hundreds of processor cores and thousands of threads will be successful 

in supporting manycore GPUs and CPUs. Also, only those applications that have 

many largely independent parallel tasks will be accelerated by massively parallel 

manycore architectures. 

Parallel programming models for GPUs are becoming more fl exible, for both 

graphics and parallel computing. For example, CUDA is evolving rapidly in the 

direction of full C/C functionality. Graphics APIs and programming models 

will likely adapt parallel computing capabilities and models from CUDA. Its 

SPMD-style threading model is scalable, and is a convenient, succinct, and easily 

learned model for expressing large amounts of parallelism. 

Driven by these changes in the programming models, GPU architecture is in 

turn becoming more fl exible and more programmable. GPU fi xed-function units 

are becoming accessible from general programs, along the lines of how CUDA 

programs already use texture intrinsic functions to perform texture lookups using 

the GPU texture instruction and texture unit. 

GPU architecture will continue to adapt to the usage patterns of both graphics 

and other application programmers. GPUs will continue to expand to include 

more processing power through additional processor cores, as well as increasing 

the thread and memory bandwidth available for programs. In addition, the 

programming models must evolve to include programming heterogeneous 

manycore systems including both GPUs and CPUs. 

Acknowledgments

Th

is appendix is the work of several authors at NVIDIA. We gratefully acknowledge 

the signifi cant contributions of Michael Garland, John Montrym, Doug Voorhies, 

Lars Nyland, Erik Lindholm, Paulius Micikevicius, Massimiliano Fatica, Stuart 

Oberman, and Vasily Volkov. 

 

C.11  Historical Perspective and Further Reading 

C-77

 C.11  Historical Perspective and Further 

Reading

Graphics Pipeline Evolution

3D graphics pipeline hardware evolved from the large expensive systems of the 

early 1980s to small workstations and then to PC accelerators in the mid- to late 

1990s. During this period, three major transitions occurred:

■  Performance-leading graphics subsystems declined in price from $50,000 to 

$200. 

■  Performance increased from 50 million pixels per second to 1 billion pixels per 

second and from 100,000 vertices per second to 10 million vertices per second. 

■  Native hardware capabilities evolved from wireframe (polygon outlines) to 

fl at shaded (constant color) fi lled polygons, to smooth shaded (interpolated 

color) fi lled polygons, to full-scene anti-aliasing with texture mapping and 

rudimentary multitexturing. 

Fixed-Function Graphics Pipelines

Th

roughout this period, graphics hardware was confi gurable, but not programmable 

by the application developer. With each generation, incremental improvements 

were off ered. But developers were growing more sophisticated and asking for 

more new features than could be reasonably off ered as built-in fi xed functions. Th

e 

NVIDIA GeForce 3, described by Lindholm et al. [2001], took the fi rst step toward 

true general shader programmability. It exposed to the application developer what 

had been the private internal instruction set of the fl oating-point vertex engine. 

Th

is coincided with the release of Microsoft ’s DirectX 8 and OpenGL’s vertex shader 

extensions. Later GPUs, at the time of DirectX 9, extended general programmability 

and fl oating point capability to the pixel fragment stage, and made texture 

available at the vertex stage. Th

e ATI Radeon 9700, introduced in 2002, featured 

a programmable 24-bit fl oating-point pixel fragment processor programmed 

with DirectX 9 and OpenGL. Th

e GeForce FX added 32-bit fl oating-point pixel 

processors. Th

is was part of a general trend toward unifying the functionality of 

the diff erent stages, at least as far as the application programmer was concerned. 

NVIDIA’s GeForce 6800 and 7800 series were built with separate processor designs 

and separate hardware dedicated to the vertex and to the fragment processing. Th

e 

XBox 360 introduced an early unifi ed processor GPU in 2005, allowing vertex and 

pixel shaders to execute on the same processor. 
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Evolution of Programmable Real-Time Graphics

During the last 30 years, graphics architecture has evolved from a simple pipeline for 

drawing wireframe diagrams to a highly parallel design consisting of several deep 

parallel pipelines capable of rendering complex interactive imagery that appears 

three-dimensional. Concurrently, many of the calculations involved became far 

more sophisticated and user programmable. 

In these graphics pipelines, certain stages do a great deal of fl oating-point 

arithmetic on completely independent data, such as transforming the position 

of triangle vertexes or generating pixel colors. Th

is data independence is a key 

diff erence between GPUs and CPUs. A single frame, rendered in 1/60th of a 

second, might have 1 million triangles and 6 million pixels. Th

e opportunity to use 

hardware parallelism to exploit this data independence is tremendous. 

Th

e specifi c functions executed at a few graphics pipeline stages vary with 

rendering algorithms and have evolved to be programmable. Vertex programs 

map the position of triangle vertices on to the screen, altering their position, color, 

or orientation. Typically a vertex shader thread inputs a fl oating-point (x, y, z, w) 

vertex position and computes a fl oating-point (x, y, z) screen position. Geometry 

programs operate on primitives defi ned by multiple vertices, changing them or 

generating additional primitives. Pixel fragment shaders each “shade” one pixel, 

computing a fl oating-point red, green, blue, alpha (RGBA) color contribution to 

the rendered image at its pixel sample (x, y) image position. For all three types of 

graphics shaders, program instances can be run in parallel, because each works on 

independent data, produces independent results, and has no side eff ects. 

Between these programmable graphics pipeline stages are dozens of fi xed-function 

stages which perform well-defi ned tasks far more effi

ciently than a programmable 

processor could and which would benefi t far less from programmability. For 

example, between the geometry processing stage and the pixel processing stage is 

a “rasterizer,” a complex state machine that determines exactly which pixels (and 

portions thereof) lie within each geometric primitive’s boundaries. Together, the 

mix of programmable and fi xed-function stages is engineered to balance extreme 

performance with user control over the rendering algorithms. 

Common rendering algorithms perform a single pass over input primitives and 

access other memory resources in a highly coherent manner; these algorithms 

provide excellent bandwidth utilization and are largely insensitive to memory 

latency. Combined with a pixel shader workload that is usually compute-limited, 

these characteristics have guided GPUs along a diff erent evolutionary path than 

CPUs. Whereas CPU die area is dominated by cache memory, GPUs are dominated 

by fl oating-point datapath and fi xed-function logic. GPU memory interfaces 

emphasize bandwidth over latency (since latency can be readily hidden by a high 

thread count); indeed, bandwidth is typically many times higher than a CPU, 

exceeding 100 GB/second in some cases. Th

e far-higher number of fi ne-grained 

lightweight threads eff ectively exploits the rich parallelism available. 
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Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable 

graphics stages are mapped to an array of unifi ed processors; the logical graphics 

pipeline is physically a recirculating path that visits these processors three times, 

with much fi xed-function graphics logic between visits. Since diff erent rendering 

algorithms present wildly diff erent loads among the three programmable stages, 

this unifi cation provides processor load balancing. 

Unifi ed Graphics and Computing Processors

By the DirectX 10 generation, the functionality of vertex and pixel fragment 

shaders was to be made identical to the programmer, and in fact a new logical 

stage was introduced, the geometry shader, to process all the vertices of a primitive 

rather than vertices in isolation. Th

e GeForce 8800 was designed with DirectX 10 

in mind. Developers were coming up with more sophisticated shading algorithms, 

and this motivated a sharp increase in the available shader operation rate, 

particularly fl oating-point operations. NVIDIA chose to pursue a processor design 

with higher operating frequency than standard-cell methodologies had allowed, 

to deliver the desired operation throughput as area-effi

ciently as possible. High-

clock-speed design requires substantially more engineering eff ort, and this favored 

designing one processor, rather than two (or three, given the new geometry stage). 

It became worthwhile to take on the engineering challenges of a unifi ed processor 

(load balancing and recirculation of a logical pipeline onto threads of the processor 

array) to get the benefi ts of one processor design. 

GPGPU: an Intermediate Step

As DirectX 9-capable GPUs became available, some researchers took notice of the 

raw performance growth path of GPUs and began to explore the use of GPUs to 

solve complex parallel problems. DirectX 9 GPUs had been designed only to match 

the features required by the graphics API. To access the computational resources, a 

programmer had to cast their problem into native graphics operations. For example, 

to run many simultaneous instances of a pixel shader, a triangle had to be issued to 

the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did 

not have the means to perform arbitrary scatter operations to memory. Th

e only 

way to write a result to memory was to emit it as a pixel color value, and confi gure 

the framebuff er operation stage to write (or blend, if desired) the result to a two-

dimensional framebuff er. Furthermore, the only way to get a result from one pass 

of computation to the next was to write all parallel results to a pixel framebuff er, 

then use that framebuff er as a texture map as input to the pixel fragment shader of 

the next stage of the computation. Mapping general computations to a GPU in this 

era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful 

of useful applications with painstaking eff orts. Th

is fi eld was called “GPGPU” for 

general purpose computing on GPUs. 
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GPU Computing

While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its 

potential usefulness would be much greater if programmers could think of the GPU 

as a processor. NVIDIA selected a programming approach in which programmers 

would explicitly declare the data-parallel aspects of their workload. 

For the DirectX 10 generation, NVIDIA had already begun work on a high-

effi

ciency  fl oating-point and integer processor that could run a variety of 

simultaneous workloads to support the logical graphics pipeline. Th

is processor 

was designed to take advantage of the common case of groups of threads executing 

the same code path. NVIDIA added memory load and store instructions with 

integer byte addressing to support the requirements of compiled C programs. It 

introduced the thread block (cooperative thread array), grid of thread blocks, and 

barrier synchronization to dispatch and manage highly parallel computing work. 

Atomic memory operations were added. NVIDIA developed the CUDA C/C 

compiler, libraries, and runtime soft ware to enable programmers to readily access 

the new data-parallel computation model and develop applications. 

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the beginning. 

Workstation graphics systems gave customers a choice in pixel horsepower by 

varying the number of pixel processor circuit boards installed. Prior to the mid-

1990s PC graphics scaling was almost nonexistent. Th

ere was one option—the 

VGA controller. As 3D-capable accelerators appeared, the market had room for a 

range of off erings. 3dfx introduced multiboard scaling with the original SLI (Scan 

Line Interleave) on their Voodoo2, which held the performance crown for its time 

(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single 

architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), fi rst 

by speed binning and packaging, then with separate chip designs (GeForce 2 GTS & 

GeForce 2 MX). At present, for a given architecture generation, four or fi ve separate 

GPU chip designs are needed to cover the range of desktop PC performance and 

price points. In addition, there are separate segments in notebook and workstation 

systems. Aft er acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in 

2004, starting with GeForce 6800—providing multi-GPU scalability transparently 

to the programmer and to the user. Functional behavior is identical across the 

scaling range; one application will run unchanged on any implementation of an 

architectural family. 

CPUs are scaling to higher transistor counts by increasing the number of 

constant-performance cores on a die, rather than increasing the performance of 

a single core. At this writing the industry is transitioning from dual-core to quad-

core, with eight-core not far behind. Programmers are forced to fi nd fourfold to 

eightfold task parallelism to fully utilize these processors, and applications using 

task parallelism must be rewritten frequently to target each successive doubling of 

 

C.11  Historical Perspective and Further Reading 

C-81

core count. In contrast, the highly multithreaded GPU encourages the use of many-

fold data parallelism and thread parallelism, which readily scales to thousands of 

parallel threads on many processors. Th

e GPU scalable parallel programming 

model for graphics and parallel computing is designed for transparent and 

portable scalability. A graphics program or CUDA program is written once and 

runs on a GPU with any number of processors. As shown in Section C.1, a CUDA 

programmer explicitly states both fi ne-grained and coarse-grained parallelism in 

a thread program by decomposing the problem into grids of thread blocks—the 

same program will run effi

ciently on GPUs or CPUs of any size in current and 

future generations as well. 

Recent Developments

Academic and industrial work on applications using CUDA has produced 

hundreds of examples of successful CUDA programs. Many of these programs run 

the application tens or hundreds of times faster than multicore CPUs are capable 

of running them. Examples include n-body simulation, molecular modeling, 

computational fi nance, and oil and gas exploration data processing. Although 

many of these use single precision fl oating-point arithmetic, some problems require 

double precision. Th

e recent arrival of double precision fl oating point in GPUs 

enables an even broader range of applications to benefi t from GPU acceleration. 

For a comprehensive list and examples of current developments in applications 

that are accelerated by GPUs, visit CUDAZone: www.nvidia.com/CUDA. 

Future Trends

Naturally, the number of processor cores will continue to increase in proportion to 

increases in available transistors as silicon processes improve. In addition, GPUs 

will continue to enjoy vigorous architectural evolution. Despite their demonstrated 

high performance on data-parallel applications, GPU core processors are still of 

relatively simple design. More aggressive techniques will be introduced with each 

successive architecture to increase the actual utilization of the calculating units. 

Because scalable parallel computing on GPUs is a new fi eld, novel applications 

are rapidly being created. By studying them, GPU designers will discover and 

implement new machine optimizations. 
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 D.1 Introduction

Control typically has two parts: a combinational part that lacks state and a sequential 

control unit that handles sequencing and the main control in a multicycle design. 

Combinational control units are oft en used to handle part of the decode and 

control process. Th

e ALU control in Chapter 4 is such an example. A single-cycle 

implementation like that in Chapter 4 can also use a combinational controller, 

since it does not require multiple states. Section D.2 examines the implementation 

of these two combinational units from the truth tables of Chapter 4. 

Since sequential control units are larger and oft en more complex, there are a wider 

variety of techniques for implementing a sequential control unit. Th

e usefulness of 

these techniques depends on the complexity of the control, characteristics such 

as the average number of next states for any given state, and the implementation 

technology. 

Th

e most straightforward way to implement a sequential control function is with 

a block of logic that takes as inputs the current state and the opcode fi eld of the 

Instruction register and produces as outputs the datapath control signals and the 

value of the next state. Th

e initial representation may be either a fi nite-state diagram 

or a microprogram. In the latter case, each microinstruction represents a state. 
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In an implementation using a fi nite-state controller, the next-state function will 

be computed with logic. Section D.3 constructs such an implementation both for 

a ROM and a PLA. 

An alternative method of implementation computes the next-state function by 

using a counter that increments the current state to determine the next state. When 

the next state doesn’t follow sequentially, other logic is used to determine the state. 

Section D.4 explores this type of implementation and shows how it can be used to 

implement fi nite-state control. 

In Section D.5, we show how a microprogram representation of sequential 

control is translated to control logic. 

Implementing Combinational 

 D.2 

Control Units

In this section, we show how the ALU control unit and main control unit for the 

single clock design are mapped down to the gate level. With modern  computer-

 aided design (CAD) systems, this process is completely mechanical. Th

e examples 

illustrate how a CAD system takes advantage of the structure of the control 

function, including the presence of don’t-care terms. 

Mapping the ALU Control Function to Gates

Figure D.2.1 shows the truth table for the ALU control function that was developed 

in Section 4.4. A logic block that implements this ALU control function will have 

four distinct outputs (called Operation3, Operation2, Operation1, and Operation0), 

each corresponding to one of the four bits of the ALU control in the last column 

of Figure D.2.1. Th

e logic function for each output is constructed by combining all 

the truth table entries that set that particular output. For example, the low-order 

bit of the ALU control (Operation0) is set by the last two entries of the truth table 

in Figure D.2.1. Th

us, the truth table for Operation0 will have these two entries. 

Figure D.2.2 shows the truth tables for each of the four ALU control bits. 

We have taken advantage of the common structure in each truth table to 

incorporate additional don’t cares. For example, the fi ve lines in the truth table of 

Figure D.2.1 that set Operation1 are reduced to just two entries in Figure D.2.2. A 

logic minimization program will use the don’t-care terms to reduce the number of 

gates and the number of inputs to each gate in a logic gate realization of these truth 

tables. 

A confusing aspect of Figure D.2.2 is that there is no logic function for Opera-

tion3. Th

at is because this control line is only used for the NOR operation, which is 

not needed for the MIPS subset in Figure 4.12. 

From the simplifi ed truth table in Figure D.2.2, we can generate the logic shown 

in Figure D.2.3, which we call the  ALU control block.  Th

is process is straightforward 
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ALUOp
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0
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X

X

X

X

X
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X

1

X

X

X

X

X

X

0110 

1

X

X

X

0

0

0

0
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1

X

X

X

0

0

1

0

0110 

1

X

X

X

0

1

0

0

0000

1

X

X

X

0

1

0

1

0001 

1

X

X

X

1

0

1

0

0111 

FIGURE D.2.1  The truth table for the 4 ALU control bits (called Operation) as a function of the ALUOp and function code fi eld. Th

is table is the same as that shown in Figure 4.13. 
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c. The truth table for Operation0 = 1

FIGURE D.2.2  The truth tables for three ALU control lines. Only the entries for which the output is 1 are shown. Th

e bits in each fi eld are numbered from right to left  starting with 0; thus F5 is the most 

signifi cant bit of the function fi eld, and F0 is the least signifi cant bit. Similarly, the names of the signals corresponding to the 4-bit operation code supplied to the ALU are Operation3, Operation2, Operation1, and Operation0 (with the last being the least signifi cant bit). Th

us the truth table above shows the input 

combinations for which the ALU control should be 0010, 0001, 0110, or 0111 (the other combinations are not used). Th

e ALUOp bits are named ALUOp1 and ALUOp0. Th

e three output values depend on the 2-bit 

ALUOp fi eld and, when that fi eld is equal to 10, the 6-bit function code in the instruction. Accordingly, when the ALUOp fi eld is not equal to 10, we don’t care about the function code value (it is represented by an X). 

Th

ere is no truth table for when Operation3⫽1 because it is always set to 0 in Figure D.2.1. See Appendix B 

for more background on don’t cares. 
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ALUOp

ALU control block

ALUOp0

ALUOp1

Operation3

Operation2

F3

Operation

F2

Operation1

F (5–0)

F1

Operation0

F0

FIGURE D.2.3   The ALU control block generates the four ALU control bits, based on the 

function code and ALUOp bits.  Th

is logic is generated directly from the truth table in Figure D.2.2. Only 

four of the six bits in the function code are actually needed as inputs, since the upper two bits are always don’t cares. Let’s examine how this logic relates to the truth table of Figure D.2.2. Consider the Operation2 output, which is generated by two lines in the truth table for Operation2. Th

e second line is the AND of two terms 

(F1 ⫽ 1 and ALUOp1 ⫽ 1); the top two-input AND gate corresponds to this term. Th

e other term that causes 

Operation2 to be asserted is simply ALUOp0. Th

ese two terms are combined with an OR gate whose output 

is Operation2. Th

e outputs Operation0 and Operation1 are derived in similar fashion from the truth table. 

Since Operation3 is always 0, we connect a signal and its complement as inputs to an AND gate to generate 0. 

and can be done with a CAD program. An example of how the logic gates can be 

derived from the truth tables is given in the legend to Figure D.2.3. 

Th

is ALU control logic is simple because there are only three outputs, and only a 

few of the possible input combinations need to be recognized. If a large number of 

possible ALU function codes had to be transformed into ALU control signals, this 

simple method would not be effi

cient. Instead, you could use a decoder, a memory, 

or a structured array of logic gates. Th

ese techniques are described in Appendix B, 

and we will see examples when we examine the implementation of the multicycle 

controller in Section D.3. 

Elaboration:   In general, a logic equation and truth table representation of a logic 

function are equivalent. (We discuss this in further detail in Appendix B. However, when a 

truth table only specifi es the entries that result in nonzero outputs, it may not completely 

describe the logic function. A full truth table completely indicates all don’t-care entries. 

For example, the encoding 11 for ALUOp always generates a don’t care in the output. 

Thus a complete truth table would have XXX in the output portion for all entries with 11 

in the ALUOp fi eld. These don’t-care entries allow us to replace the ALUOp fi eld 10 and 
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01 with 1X and X1, respectively. Incorporating the don’t-care terms and minimizing the 

logic is both complex and error-prone and, thus, is better left to a program. 

Mapping the Main Control Function to Gates

Implementing the main control function with an unstructured collection of gates, 

as we did for the ALU control, is reasonable because the control function is neither 

complex nor large, as we can see from the truth table shown in Figure D.2.4. 

However, if most of the 64 possible opcodes were used and there were many more 

control lines, the number of gates would be much larger and each gate could have 

many more inputs. 

Since any function can be computed in two levels of logic, another way to 

implement a logic function is with a structured two-level logic array. Figure D.2.5 

shows such an implementation. It uses an array of AND gates followed by an array 

of OR gates. Th

is structure is called a  programmable logic array (PLA). A PLA is one 

of the most common ways to implement a control function. We will return to the 

topic of using structured logic elements to implement control when we implement 

the fi nite-state controller in the next section. 

Control

Signal name

R-format

lw

sw

beq

Op5

0

1

1

0

Op4

0

0

0

0

Op3

0

0

1

0

Inputs

Op2

0

0

0

1

Op1

0

1

1

0

Op0

0

1

1

0

RegDst

1

0

X

X

ALUSrc

0

1

1

0

MemtoReg

0

1

X

X

RegWrite

1

1

0

0

Outputs

MemRead

0

1

0

0

MemWrite

0

0

1

0

Branch

0

0

0

1

ALUOp1

1

0

0

0

ALUOp0

0

0

0

1

FIGURE D.2.4  The control function for the simple one-clock implementation is completely specifi ed by this truth table.  Th

is table is the same as that shown in Figure 4.22. 
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Inputs

Op5

Op4

Op3

Op2

Op1

Op0

Outputs

R-format

Iw

sw

beq

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

FIGURE D.2.5  The structured implementation of the control function as described by the truth table in Figure D.2.4.  Th

e structure, called a programmable logic array (PLA), uses an array of 

AND gates followed by an array of OR gates. Th

e inputs to the AND gates are the function inputs and their 

inverses (bubbles indicate inversion of a signal). Th

e inputs to the OR gates are the outputs of the AND gates 

(or, as a degenerate case, the function inputs and inverses). Th

e output of the OR gates is the function outputs. 
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Control

To implement the control as a fi nite-state machine, we must fi rst assign a number to 

each of the 10 states; any state could use any number, but we will use the sequential 

numbering for simplicity. Figure D.3.1 shows the fi nite-state diagram. With 10 

states, we will need 4 bits to encode the state number, and we call these state bits S3, 

S2, S1, and S0. Th

e current-state number will be stored in a state register, as shown 

in Figure D.3.2. If the states are assigned sequentially, state  i is encoded using the 

 

D.3  Implementing Finite-State Machine Control 

D-9

Instruction decode/

Instruction fetch

register fetch

0

MemRead

1

ALUSrcA = 0

IorD = 0

ALUSrcA = 0

IRWrite
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ALUSrcB = 11

ALUSrcB = 01

ALUOp = 00
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PCWrite

PCSource = 00
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(Op = R-type)

Branch
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computation

(Op = 'BEQ')
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Execution

completion

completion

2

(Op = 'LW') or (Op = 'SW')

6

8

9

ALUSrcA = 1

ALUSrcA = 1

ALUSrcB = 00

ALUSrcA = 1

PCWrite

ALUSrcB = 10

ALUOp = 01

ALUSrcB = 00

PCSource = 10

ALUOp = 00

PCWriteCond

ALUOp = 10

PCSource = 01

(Op = 'SW')

Memory

Memory

(Op = 'LW')

access

access

R-type completion

3

5

7

RegDst = 1

MemRead

MemWrite

RegWrite

IorD = 1

IorD = 1

MemtoReg = 0

Write-back step

4

RegDst = 0

RegWrite

MemtoReg = 1

FIGURE D.3.1  The fi nite-state diagram for multicycle control. 
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PCWrite

PCWriteCond

IorD

MemRead

MemWrite

IRWrite

Control logic

MemtoReg

PCSource

ALUOp

Outputs

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

Inputs

NS0

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

Instruction register

State register

opcode field

FIGURE D.3.2  The control unit for MIPS will consist of some control logic and a register to hold the state.  Th

e state register is written at the active clock edge and is stable during the clock 

cycle

state bits as the binary number  i.  For example, state 6 is encoded as 0110  or S3 ⫽ 

two

0, S2 ⫽ 1, S1 ⫽ 1, S0 ⫽ 0, which can also be written as

S3 · S2 · S1 · S0

Th

e control unit has outputs that specify the next state. Th

ese are written into 

the state register on the clock edge and become the new state at the beginning of 

the next clock cycle following the active clock edge. We name these outputs NS3, 

NS2, NS1, and NS0. Once we have determined the number of inputs, states, and 

outputs, we know what the basic outline of the control unit will look like, as we 

show in Figure D.3.2. 
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Th

e block labeled “control logic” in Figure D.3.2 is combinational logic. We can 

think of it as a big table giving the value of the outputs in terms of the inputs. Th

e 

logic in this block implements the two diff erent parts of the fi nite-state machine. 

One part is the logic that determines the setting of the datapath control outputs, 

which depend only on the state bits. Th

e other part of the control logic implements 

the next-state function; these equations determine the values of the next-state bits 

based on the current-state bits and the other inputs (the 6-bit opcode). 

Figure D.3.3 shows the logic equations: the top portion shows the outputs, and 

the bottom portion shows the next-state function. Th

e values in this table were 

Ou
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t

n

e

t

a

t

s

 

s

Op

PCWrite

state0 + state9

PCWriteCond

state8

IorD

state3 + state5

MemRead

state0 + state3

MemWrite

state5

IRWrite

state0

MemtoReg

state4

PCSource1

state9

PCSource0

state8

ALUOp1

state6

ALUOp0

state8

ALUSrcB1

state1 +state2 

ALUSrcB0

state0 + state1

ALUSrcA

state2 + state6 + state8

RegWrite

state4 + state7

RegDst

state7

NextState0

state4 + state5 + state7 + state8 + state9

NextState1

state0

NextState2

state1

(Op = 'lw') + (Op = 'sw')   

NextState3

state2

(Op = 'lw') 

NextState4

state3

NextState5

state2

(Op = 'sw')  

NextState6

state1

(Op = 'R-type') 

NextState7

state6

NextState8

state1

(Op = 'beq') 

NextState9

state1

(Op = 'jmp') 

FIGURE D.3.3  The logic equations for the control unit shown in a shorthand form.  Remember that “⫹” stands for OR in logic equations. Th

e state inputs and NextState outputs must be expanded by using 

the state encoding. Any blank entry is a don’t care. 
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determined from the state diagram in Figure D.3.1. Whenever a control line is 

active in a state, that state is entered in the second column of the table. Likewise, the 

next-state entries are made whenever one state is a successor to another. 

In Figure D.3.3, we use the abbreviation state N to stand for current state  N. Th

us, 

state N is replaced by the term that encodes the state number  N. We use NextState N 

to stand for the setting of the next-state outputs to  N. Th

is output is implemented 

using the next-state outputs (NS). When NextState N is active, the bits NS[3–0] are 

set corresponding to the binary version of the value  N. Of course, since a given 

next-state bit is activated in multiple next states, the equation for each state bit will 

be the OR of the terms that activate that signal. Likewise, when we use a term such 

as (Op ⫽ ‘lw’), this corresponds to an AND of the opcode inputs that specifi es the 

encoding of the opcode lw in 6 bits, just as we did for the simple control unit in the 

previous section of this chapter. Translating the entries in Figure D.3.3 into logic 

equations for the outputs is straightforward. 

Logic Equations for Next-State Outputs

EXAMPLE

Give the logic equation for the low-order next-state bit, NS0. 

Th

e next-state bit NS0 should be active whenever the next state has NS0 ⫽ 1 

ANSWER

in the state encoding. Th

is is true for NextState1, NextState3, NextState5, 

NextState7, and NextState9. Th

e entries for these states in Figure D.3.3 supply 

the conditions when these next-state values should be active. Th

e equation for 

each of these next states is given below. Th

e fi rst equation states that the next 

state is 1 if the current state is 0; the current state is 0 if each of the state input 

bits is 0, which is what the rightmost product term indicates. 

NextState1 ⫽ State0 ⫽ S3 · S2 · S1 · S0 

NextState3  ⫽  State2 · (Op[5-0]⫽1w)

⫽  S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1 · Op0
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NextState5 ⫽ State2 · (Op[5-0]⫽sw)

⫽  S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1 · Op0

NextState7 ⫽ State6 ⫽ S3 · S2 · S1 · S0

NextState9 ⫽ State1 · (Op[5-0]⫽jmp)

⫽  S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1 · Op0

NS0 is the logical sum of all these terms. 

As we have seen, the control function can be expressed as a logic equation for each 

output. Th

is set of logic equations can be implemented in two ways: corresponding 

to a complete truth table, or corresponding to a two-level logic structure that allows 

a sparse encoding of the truth table. Before we look at these implementations, let’s 

look at the truth table for the complete control function. 

It is simplest if we break the control function defi ned in Figure D.3.3 into two 

parts: the next-state outputs, which may depend on all the inputs, and the control 

signal outputs, which depend only on the current-state bits. Figure D.3.4 shows 

the truth tables for all the datapath control signals. Because these signals actually 

depend only on the state bits (and not the opcode), each of the entries in a table 

in Figure D.3.4 actually represents 64 (⫽  26) entries, with the 6 bits named Op 

having all possible values; that is, the Op bits are don’t-care bits in determining 

the data path control outputs. Figure D.3.5 shows the truth table for the next-state 

bits NS[3–0], which depend on the state input bits and the instruction bits, which 

supply the opcode. 

Elaboration: There are many opportunities to simplify the control function by 

observing similarities among two or more control signals and by using the semantics of 

the implementation. For example, the signals PCWriteCond, PCSource0, and ALUOp0 are 

all asserted in exactly one state, state 8. These three control signals can be replaced 

by a single signal. 
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m. Truth table for ALUSrcB0

n. Truth table for ALUSrcA

o. Truth table for RegWrite
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p. Truth table for RegDst

FIGURE D.3.4  The truth tables are shown for the 16 datapath control signals that depend only on the current-state input bits, which are shown for each table.  Each truth table row corresponds to 64 entries: one for each possible value of the six Op bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case of PCWriteCond, PCSource0, and ALUOp0, these signals are active only in state 8 (see b, i, and k). Th

ese three signals could be replaced by one signal. Th

ere are other 

opportunities for reducing the logic needed to implement the control function by taking advantage of further similarities in the truth tables. 
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a.  The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when the current state is 1. 
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b.  The truth table for the NS2 output, which is active when the next state is 4, 5, 6, or 7. This situation occurs when the current state is one of 1, 2, 3, or 6. 
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c.  The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state is one of 2, 3, 6, or 7 only if the current state is one of 1, 2, or 6. 
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d.  The truth table for the NS0 output, which is active when the next state is 1, 3, 5, 7, or 9. This happens only if the current state is one of 0, 1, 2, or 6. 

FIGURE D.3.5  The four truth tables for the four next-state output bits (NS[3–0]).  Th e next-state outputs depend on the value of Op[5-0], which is the opcode fi eld, and the current state, given by S[3–

0]. Th

e entries with X are don’t-care terms. Each entry with a don’t-care term corresponds to two entries, one with that input at 0 and one with that input at 1. Th

us an entry with  n don’t-care terms actually corresponds 

to  2n truth table entries. 

A ROM Implementation

Probably the simplest way to implement the control function is to encode the truth 

tables in a read-only memory (ROM). Th

e number of entries in the memory for the 

truth tables of Figures D.3.4 and D.3.5 is equal to all possible values of the inputs 

(the 6 opcode bits plus the 4 state bits), which is 2# inputs ⫽ 210 ⫽ 1024. Th

e inputs 
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to the control unit become the address lines for the ROM, which implements 

the control logic block that was shown in Figure D.3.2. Th

e width of each entry 

(or word in the memory) is 20 bits, since there are 16 datapath control outputs and 

4 next-state bits. Th

is means the total size of the ROM is 210 ⫻ 20 ⫽ 20 Kbits. 

Th

e setting of the bits in a word in the ROM depends on which outputs are active 

in that word. Before we look at the control words, we need to order the bits within 

the control input (the address) and output words (the contents), respectively. We 

will number the bits using the order in Figure D.3.2, with the next-state bits being 

the low-order bits of the control  word and the current-state input bits being the 

low-order bits of the  address.  Th

is means that the PCWrite output will be the high-

order bit (bit 19) of each memory word, and NS0 will be the low-order bit. Th

e 

high-order address bit will be given by Op5, which is the high-order bit of the 

instruction, and the low-order address bit will be given by S0. 

We can construct the ROM contents by building the entire truth table in a form 

where each row corresponds to one of the 2 n   unique input combinations, and a 

set of columns indicates which outputs are active for that input combination. We 

don’t have the space here to show all 1024 entries in the truth table. However, by 

separating the datapath control and next-state outputs, we do, since the datapath 

control outputs depend only on the current state. Th

e truth table for the datapath 

control outputs is shown in Figure D.3.6. We include only the encodings of the state 

inputs that are in use (that is, values 0 through 9 corresponding to the 10 states of 

the state machine). 

Th

e truth table in Figure D.3.6 directly gives the contents of the upper 16 bits of 

each word in the ROM. Th

e 4-bit input fi eld gives the low-order 4 address bits of 

each word, and the column gives the contents of the word at that address. 

If we did show a full truth table for the datapath control bits with both 

the state number and the opcode bits as inputs, the opcode inputs would all 

be don’t cares. When we construct the ROM, we cannot have any don’t cares, 

since the addresses into the ROM must be complete. Th

us, the same datapath 

control outputs will occur many times in the ROM, since this part of the ROM 

is the same whenever the state bits are identical, independent of the value of the 

opcode inputs. 

Control ROM Entries

For what ROM addresses will the bit corresponding to PCWrite, the high bit 

EXAMPLE

of the control word, be 1? 
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FIGURE D.3.6  The truth table for the 16 datapath control outputs, which depend only on the state inputs.  Th

e values are determined from Figure D.3.4. Although there are 16 possible values 

for the 4-bit state fi eld, only ten of these are used and are shown here. Th

e ten possible values are shown at 

the top; each column shows the setting of the datapath control outputs for the state input value that appears at the top of the column. For example, when the state inputs are 0011 (state 3), the active datapath control outputs are IorD or MemRead. 

PCWrite is high in states 0 and 9; this corresponds to addresses with the 4 

low-order bits being either 0000 or 1001. Th

e bit will be high in the memory 

ANSWER

word independent of the inputs Op[5–0], so the addresses with the bit high 

are 000000000, 0000001001, 0000010000, 0000011001, .  .  . , 1111110000, 

1111111001. Th

e general form of this is XXXXXX0000 or XXXXXX1001, 

where XXXXXX is any combination of bits, and corresponds to the 6-bit 

opcode on which this output does not depend. 
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We will show the entire contents of the ROM in two parts to make it easier to 

show. Figure D.3.7 shows the upper 16 bits of the control word; this comes directly 

from Figure D.3.6. Th

ese datapath control outputs depend only on the state inputs, 

and this set of words would be duplicated 64 times in the full ROM, as we discussed 

above. Th

e entries corresponding to input values 1010 through 1111 are not used, 

so we do not care what they contain. 

Figure D.3.8 shows the lower four bits of the control word corresponding to the 

next-state outputs. Th

e last column of the table in Figure D.3.8 corresponds to all the 

possible values of the opcode that do not match the specifi ed opcodes. In state 0, the 

next state is always state 1, since the instruction was still being fetched. Aft er state 1, 

the opcode fi eld must be valid. Th

e table indicates this by the entries marked illegal; 

we discuss how to deal with these exceptions and interrupts opcodes in Section 4.9. 

Not only is this representation as two separate tables a more compact way to 

show the ROM contents; it is also a more effi

cient way to implement the ROM. 

Th

e majority of the outputs (16 of 20 bits) depends only on 4 of the 10 inputs. Th

e 

number of bits in total when the control is implemented as two separate ROMs 

is 24 ⫻ 16 ⫹ 210 ⫻ 4 ⫽ 256 ⫹ 4096 ⫽ 4.3 Kbits, which is about one-fi ft h of the 

size of a single ROM, which requires 210 ⫻ 20 ⫽ 20 Kbits. Th

ere is some overhead 

associated with any structured-logic block, but in this case the additional overhead 

of an extra ROM would be much smaller than the savings from splitting the single 

ROM. 
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FIGURE D.3.7  The contents of the upper 16 bits of the ROM depend only on the state 

inputs.  Th

ese values are the same as those in Figure D.3.6, simply rotated 90°. Th

is set of control words 

would be duplicated 64 times for every possible value of the upper six bits of the address. 
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Although this ROM encoding of the control function is simple, it is wasteful, 

even when divided into two pieces. For example, the values of the Instruction 

register inputs are oft en not needed to determine the next state. Th

us, the next-

state ROM has many entries that are either duplicated or are don’t care. Consider 

the case when the machine is in state 0: there are 26 entries in the ROM (since the 

opcode fi eld can have any value), and these entries will all have the same contents 

(namely, the control word 0001). Th

e reason that so much of the ROM is wasted is 

that the ROM implements the complete truth table, providing the opportunity to 

have a diff erent output for every combination of the inputs. But most combinations 

of the inputs either never happen or are redundant! 

Op [5–0]

Current state

000000

000010

000100

100011

101011

Any other

S[3–0]

(R-format)

(jmp)

(beq)

(lw)

(sw)

value

0000

0001

0001

0001

0001

0001

0001

0001

0110

1001

1000
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0010
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0010

XXXX

XXXX

XXXX

0011

0101
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0011

0100

0100

0100

0100

0100
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0100

0000

0000

0000

0000

0000

Illegal

0101

0000

0000

0000

0000

0000

Illegal

0110

0111

0111

0111

0111

0111

Illegal

0111

0000

0000

0000

0000

0000

Illegal

1000

0000

0000

0000

0000

0000

Illegal

1001

0000

0000

0000

0000

0000

Illegal

FIGURE D.3.8  This table contains the lower 4 bits of the control word (the NS outputs), which depend on both the state inputs, S[3–0], and the opcode, Op[5–0], which correspond 

to the instruction opcode. Th

ese values can be determined from Figure D.3.5. Th

e opcode name is 

shown under the encoding in the heading. Th

e four bits of the control word whose address is given by the 

current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000, the output is always 0001, independent of the other inputs; when the state is 2, the next state is don’t care for three of the inputs, 3 for lw, and 5 for sw. Together with the entries in Figure D.3.7, this table specifi es the contents of the control unit ROM. For example, the word at address 1000110001 is obtained by fi nding the upper 16 bits in the table in Figure D.3.7 using only the state input bits (0001) and concatenating the lower four bits found by using the entire address (0001 to fi nd the row and 100011 to fi nd the column). Th e entry 

from Figure D.3.7 yields 0000000000011000, while the appropriate entry in the table immediately above is 0010. Th

us the control word at address 1000110001 is 00000000000110000010. Th

e column labeled “Any 

other value” applies only when the Op bits do not match one of the specifi ed opcodes. 
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A PLA Implementation

We can reduce the amount of control storage required at the cost of using more 

complex address decoding for the control inputs, which will encode only the input 

combinations that are needed. Th

e logic structure most oft en used to do this is 

a programmed logic array (PLA), which we mentioned earlier and illustrated in 

Figure D.2.5. In a PLA, each output is the logical OR of one or more minterms. 

A   minterm,  also called a  product term,  is simply a logical AND of one or more 

inputs. Th

e inputs can be thought of as the address for indexing the PLA, while 

the minterms select which of all possible address combinations are interesting. A 

minterm corresponds to a single entry in a truth table, such as those in Figure 

D.3.4, including possible don’t-care terms. Each output consists of an OR of these 

minterms, which exactly corresponds to a complete truth table. However, unlike 

a ROM, only those truth table entries that produce an active output are needed, 

and only one copy of each minterm is required, even if the minterm contains don’t 

cares. Figure D.3.9 shows the PLA that implements this control function. 

As we can see from the PLA in Figure D.3.9, there are 17 unique minterms—10 

that depend only on the current state and 7 others that depend on a combination 

of the Op fi eld and the current-state bits. Th

e total size of the PLA is proportional 

to (#inputs ⫻ #product terms) ⫹ (#outputs ⫻ #product terms), as we can see 

symbolically from the fi gure. Th

is means the total size of the PLA in Figure D.3.9 is 

proportional to (10 ⫻ 17) ⫹ (20 ⫻ 17) ⫽ 510. By comparison, the size of a single 

ROM is proportional to 20 Kb, and even the two-part ROM has a total of 4.3 Kb. 

Because the size of a PLA cell will be only slightly larger than the size of a bit in a 

ROM, a PLA will be a much more effi

cient implementation for this control unit. 

Of course, just as we split the ROM in two, we could split the PLA into two 

PLAs: one with 4 inputs and 10 minterms that generates the 16 control outputs, 

and one with 10 inputs and 7 minterms that generates the 4 next-state outputs. 

Th

e fi rst PLA would have a size proportional to (4 ⫻ 10) ⫹ (10 ⫻ 16) ⫽ 200, and 

the second PLA would have a size proportional to (10 ⫻ 7) ⫹ (4 ⫻ 7) ⫽ 98. Th

is 

would yield a total size proportional to 298 PLA cells, about 55% of the size of a 

single PLA. Th

ese two PLAs will be considerably smaller than an implementation 

using two ROMs. For more details on PLAs and their implementation, as well as 

the references for books on logic design, see Appendix B. 
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FIGURE D.3.9  This PLA implements the control function logic for the multicycle 

implementation.  Th

e inputs to the control appear on the left  and the outputs on the right. Th

e top half 

of the fi gure is the AND plane that computes all the minterms. Th

e minterms are carried to the OR plane 

on the vertical lines. Each colored dot corresponds to a signal that makes up the minterm carried on that line. Th

e sum terms are computed from these minterms, with each gray dot representing the presence of the intersecting minterm in that sum term. Each output consists of a single sum term. 
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Implementing the Next-State Function 

 D.4 

with a Sequencer

Let’s look carefully at the control unit we built in the last section. If you examine 

the ROMs that implement the control in Figures D.3.7 and D.3.8, you can see 

that much of the logic is used to specify the next-state function. In fact, for the 

implementation using two separate ROMs, 4096 out of the 4368 bits (94%) 

correspond to the next-state function! Furthermore, imagine what the control 

logic would look like if the instruction set had many more diff erent instruction 

types, some of which required many clocks to implement. Th

ere would be many 

more states in the fi nite-state machine. In some states, we might be branching to 

a large number of diff erent states depending on the instruction type (as we did in 

state 1 of the fi nite-state machine in Figure D.3.1). However, many of the states 

would proceed in a sequential fashion, just as states 3 and 4 do in Figure D.3.1. 

For example, if we included fl oating point, we would see a sequence of many 

states in a row that implement a multicycle fl oating-point instruction. Alternatively, 

consider how the control might look for a machine that can have multiple memory 

operands per instruction. It would require many more states to fetch multiple 

memory operands. Th

e result of this would be that the control logic will be 

dominated by the encoding of the next-state function. Furthermore, much of the 

logic will be devoted to sequences of states with only one path through them that 

look like states 2 through 4 in Figure D.3.1. With more instructions, these sequences 

will consist of many more sequentially numbered states than for our simple subset. 

To encode these more complex control functions effi

ciently, we can use a 

control unit that has a counter to supply the sequential next state. Th

is counter 

oft en eliminates the need to encode the next-state function explicitly in the control 

unit. As shown in Figure D.4.1, an adder is used to increment the state, essentially 

turning it into a counter. Th

e incremented state is always the state that follows 

in numerical order. However, the fi nite-state machine sometimes “branches.” For 

example, in state 1 of the fi nite-state machine (see Figure D.3.1), there are four 

possible next states, only one of which is the sequential next state. Th

us, we need 

to be able to choose between the incremented state and a new state based on the 

inputs from the Instruction register and the current state. Each control word will 

include control lines that will determine how the next state is chosen. 

It is easy to implement the control output signal portion of the control word, 

since, if we use the same state numbers, this portion of the control word will 

look exactly like the ROM contents shown in Figure D.3.7. However, the method 
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Control unit

PCWrite

PCWriteCond

IorD

MemRead

PLA or ROM

MemWrite

IRWrite

Outputs

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

AddrCtl

Input

1

State

Adder

Address select logic

Op[5–0]

Instruction register

opcode field

FIGURE D.4.1  The control unit using an explicit counter to compute the next state.  In this control unit, the next state is computed using a counter (at least in some states). By comparison, Figure D.3.2 

encodes the next state in the control logic for every state. In this control unit, the signals labeled  AddrCtl control how the next state is determined. 

for selecting the next state diff ers from the next-state function in the fi nite-state 

machine. 

With an explicit counter providing the sequential next state, the control unit 

logic need only specify how to choose the state when it is not the sequentially 

following state. Th

ere are two methods for doing this. Th

e fi rst is a method we have 

already seen: namely, the control unit explicitly encodes the next-state function. 

Th

e diff erence is that the control unit need only set the next-state lines when the 

designated next state is not the state that the counter indicates. If the number of 
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states is large and the next-state function that we need to encode is mostly empty, 

this may not be a good choice, since the resulting control unit will have lots of 

empty or redundant space. An alternative approach is to use separate external logic 

to specify the next state when the counter does not specify the state. Many control 

units, especially those that implement large instruction sets, use this approach, and 

we will focus on specifying the control externally. 

Although the nonsequential next state will come from an external table, the 

control unit needs to specify when this should occur and how to fi nd that next state. 

Th

ere are two kinds of “branching” that we must implement in the address select 

logic. First, we must be able to jump to one of a number of states based on the 

opcode portion of the Instruction register. Th

is operation, called a  dispatch, is 

usually implemented by using a set of special ROMs or PLAs included as part of the 

address selection logic. An additional set of control outputs, which we call AddrCtl, 

indicates when a dispatch should be done. Looking at the fi nite-state  diagram 

(Figure D.3.1), we see that there are two states in which we do a branch based on a 

portion of the opcode. Th

us we will need two small dispatch tables. (Alternatively, 

we could also use a single dispatch table and use the control bits that select the table 

as address bits that choose from which portion of the dispatch table to select the 

address.)

Th

e second type of branching that we must implement consists of branching 

back to state 0, which initiates the execution of the next MIPS instruction. 

Th

us there are four possible ways to choose the next state (three types of branches, 

plus incrementing the current-state number), which can be encoded in 2 bits. Let’s 

assume that the encoding is as follows:

AddrCtl value

Action

0

Set state to 0

1

Dispatch with ROM 1

2

Dispatch with ROM 2

3

Use the incremented state

If we use this encoding, the address select logic for this control unit can be 

implemented as shown in Figure D.4.2. 

To complete the control unit, we need only specify the contents of the dispatch 

ROMs and the values of the address-control lines for each state. We have already 

specifi ed the datapath control portion of the control word using the ROM contents 

of Figure D.3.7 (or the corresponding portions of the PLA in Figure D.3.9). Th

e 

next-state counter and dispatch ROMs take the place of the portion of the control 

unit that was computing the next state, which was shown in Figure D.3.8. We are 
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PLA or ROM

1

State

Adder

Mux

AddrCtl

3

2

1

0

0

Dispatch ROM 2

Dispatch ROM 1

Address select logic

Op

Instruction register

opcode field

FIGURE D.4.2  This is the address select logic for the control unit of Figure D.4.1. 

only implementing a portion of the instruction set, so the dispatch ROMs will be 

largely empty. Figure D.4.3 shows the entries that must be assigned for this subset. 

i

D

 

h

c

t

a

p

s

 

M

O

R

1

i

D p

s

t

a

h

c

M

O

R

 

2

 

Op

Opcode name

Value

Op

Opcode name

Value

000000

R-format

0110

100011

lw

0011

000010

jmp

1001

101011

sw

0101

000100

beq

1000

100011

lw

0010

101011

sw

0010

FIGURE D.4.3  The dispatch ROMs each have 26 ⫽ 64 entries that are 4 bits wide, since that is the number of bits in the state encoding.  Th

is fi gure only shows the entries in the ROM that 

are of interest for this subset. Th

e fi rst column in each table indicates the value of Op, which is the address 

used to access the dispatch ROM. Th

e second column shows the symbolic name of the opcode. Th

e third 

column indicates the value at that address in the ROM. 

Now we can determine the setting of the address selection lines (AddrCtl) in 

each control word. Th

e table in Figure D.4.4 shows how the address control must 
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State number

Address-control action

Value of AddrCtl
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FIGURE D.4.4  The values of the address-control lines are set in the control word that 

corresponds to each state.  

be set for every state. Th

is information will be used to specify the setting of the 

AddrCtl fi eld in the control word associated with that state. 

Th

e contents of the entire control ROM are shown in Figure D.4.5. Th

e total 

storage required for the control is quite small. Th

ere are 10 control words, each 18 

bits wide, for a total of 180 bits. In addition, the two dispatch tables are 4 bits wide 

and each has 64 entries, for a total of 512 additional bits. Th

is total of 692 bits beats 

the implementation that uses two ROMs with the next-state function encoded in 

the ROMs (which requires 4.3 Kbits). 

Of course, the dispatch tables are sparse and could be more effi

ciently implemented 

with two small PLAs. Th

e control ROM could also be replaced with a PLA. 

State number

Control word bits 17–2

Control word bits 1–0
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FIGURE D.4.5  The contents of the control memory for an implementation using an explicit counter.  Th

e fi rst column shows the state, while the second shows the datapath control bits, and the last 

column shows the address-control bits in each control word. Bits 17–2 are identical to those in Figure D.3.7. 
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Optimizing the Control Implementation

We can further reduce the amount of logic in the control unit by two diff erent 

techniques. Th

e fi rst is  logic minimization, which uses the structure of the logic 

equations, including the don’t-care terms, to reduce the amount of hardware 

required. Th

e success of this process depends on how many entries exist in the 

truth table, and how those entries are related. For example, in this subset, only the 

lw and sw opcodes have an active value for the signal Op5, so we can replace the 

two truth table entries that test whether the input is lw or sw by a single test on 

this bit; similarly, we can eliminate several bits used to index the dispatch ROM 

because this single bit can be used to fi nd lw and sw in the fi rst dispatch ROM. Of 

course, if the opcode space were less sparse, opportunities for this optimization 

would be more diffi

cult to locate. However, in choosing the opcodes, the architect 

can provide additional opportunities by choosing related opcodes for instructions 

that are likely to share states in the control. 

A diff erent sort of optimization can be done by assigning the state numbers in a 

fi nite-state or microcode implementation to minimize the logic. Th

is optimization, 

called  state assignment, tries to choose the state numbers such that the resulting 

logic equations contain more redundancy and can thus be simplifi ed. Let’s consider 

the case of a fi nite-state machine with an encoded next-state control fi rst, since it 

allows states to be assigned arbitrarily. For example, notice that in the fi nite-state 

machine, the signal RegWrite is active only in states 4 and 7. If we encoded those 

states as 8 and 9, rather than 4 and 7, we could rewrite the equation for RegWrite as 

simply a test on bit S3 (which is only on for states 8 and 9). Th

is renumbering allows 

us to combine the two truth table entries in part (o) of Figure D.3.4 and replace 

them with a single entry, eliminating one term in the control unit. Of course, we 

would have to renumber the existing states 8 and 9, perhaps as 4 and 7. 

Th

e same optimization can be applied in an implementation that uses an explicit 

program counter, though we are more restricted. Because the next-state number is 

oft en computed by incrementing the current-state number, we cannot arbitrarily 

assign the states. However, if we keep the states where the incremented state is used 

as the next state in the same order, we can reassign the consecutive states as a block. 

In an implementation with an explicit next-state counter, state assignment may 

allow us to simplify the contents of the dispatch ROMs. 

If we look again at the control unit in Figure D.4.1, it looks remarkably like a 

computer in its own right. Th

e ROM or PLA can be thought of as memory supplying 

instructions for the datapath. Th

e state can be thought of as an instruction address. 

Hence the origin of the name  microcode or  microprogrammed control.  Th

e control 

words are thought of as  microinstructions that control the datapath, and the State 

register is called the  microprogram counter.  Figure D.4.6 shows a view of the control 

unit as  microcode. Th

e next section describes how we map from a microprogram 

to microcode. 
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Control unit

PCWrite

PCWriteCond

IorD

Microcode memory

MemRead

Datapath

MemWrite

IRWrite

BWrite

Outputs

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

AddrCtl

Input

1

Microprogram counter

Adder

Address select logic

Op[5–0]

Instruction register

opcode field

FIGURE D.4.6  The control unit as a microcode.  Th

e use of the word “micro” serves to distinguish between the program counter in the 

datapath and the microprogram counter, and between the microcode memory and the instruction memory. 
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Translating a Microprogram to Hardware

To translate a microprogram into actual hardware, we need to specify how each 

fi eld translates into control signals. We can implement a microprogram with either 

fi nite-state control or a microcode implementation with an explicit sequencer. If 

we choose a fi nite-state machine, we need to construct the next-state function from 
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the microprogram. Once this function is known, we can map a set of truth table 

entries for the next-state outputs. In this section, we will show how to translate the 

microprogram, assuming that the next state is specifi ed by a sequencer. From the 

truth tables we will construct, it would be straightforward to build the next-state 

function for a fi nite-state machine. 
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ALUOp = 00

Cause the ALU to add. 

ALU control

Subt

ALUOp = 01

Cause the ALU to subtract; this implements the compare for branches. 

Func code

ALUOp = 10

Use the instruction’s function code to determine ALU control. 

PC

ALUSrcA = 0

Use the PC as the fi rst ALU input. 

SRC1

A

ALUSrcA = 1

Register A is the fi rst ALU input. 

B

ALUSrcB = 00

Register B is the second ALU input. 

4

ALUSrcB = 01

Use 4 as the second ALU input. 
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Extend

ALUSrcB = 10

Use output of the sign extension unit as the second ALU input. 

Extshft
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Use the output of the shift-by-two unit as the second ALU input. 
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and putting the data into registers A and B. 

Write ALU

RegWrite, 

Write a register using the rd fi eld of the IR as the register number and the 

Register 

RegDst = 1, 

contents of ALUOut as the data. 

control

MemtoReg = 0

Write MDR

RegWrite, 

Write a register using the rt fi eld of the IR as the register number and the 

RegDst = 0, 

contents of the MDR as the data. 

MemtoReg = 1

Read PC

MemRead, 

Read memory using the PC as address; write result into IR (and the MDR). 

IorD = 0, IRWrite

Read ALU

MemRead, 

Read memory using ALUOut as address; write result into MDR. 

Memory

IorD = 1

Write ALU

MemWrite, 

Write memory using the ALUOut as address, contents of B as the data. 

IorD = 1

ALU

PCSource = 00, 

Write the output of the ALU into the PC. 

PCWrite

ALUOut-cond

PCSource = 01, 

If the Zero output of the ALU is active, write the PC with the contents of the 

PC write control

PCWriteCond 

register ALUOut. 

Jump address

PCSource = 10, 

Write the PC with the jump address from the instruction. 

PCWrite

Seq

AddrCtl = 11

Choose the next microinstruction sequentially. 

Fetch

AddrCtl = 00

Go to the fi rst microinstruction to begin a new instruction. 

Sequencing

Dispatch 1

AddrCtl = 01

Dispatch using the ROM 1. 

Dispatch 2

AddrCtl = 10

Dispatch using the ROM 2. 

FIGURE D.5.1  Each microcode fi eld translates to a set of control signals to be set.  Th ese 22 diff erent values of the fi elds specify 

all the required combinations of the 18 control lines. Control lines that are not set, which correspond to actions, are 0 by default. Multiplexor control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output is a don’t care and is not used. 
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Assuming an explicit sequencer, we need to do two additional tasks to translate 

the microprogram: assign addresses to the microinstructions and fi ll in the 

contents of the dispatch ROMs. Th

is process is essentially the same as the process 

of translating an assembly language program into machine instructions: the fi elds 

of the assembly language or microprogram instruction are translated, and labels on 

the instructions must be resolved to addresses. 

Figure D.5.1 shows the various values for each microinstruction fi eld  that 

controls the datapath and how these fi elds are encoded as control signals. If the 

fi eld corresponding to a signal that aff ects a unit with state (i.e., Memory, Memory 

register, ALU destination, or PCWriteControl) is blank, then no control signal 

should be active. If a fi eld corresponding to a multiplexor control signal or the ALU 

operation control (i.e., ALUOp, SRC1, or SRC2) is blank, the output is unused, so 

the associated signals may be set as don’t care. 

Th

e sequencing fi eld can have four values: Fetch (meaning go to the Fetch 

state), Dispatch 1, Dispatch 2, and Seq. Th

ese four values are encoded to set the 

2-bit address control just as they were in Figure D.4.4: Fetch ⫽ 0, Dispatch 1 ⫽ 1, 

Dispatch 2 ⫽ 2, Seq ⫽ 3. Finally, we need to specify the contents of the dispatch 

tables to relate the dispatch entries of the sequence fi eld to the symbolic labels in 

the microprogram. We use the same dispatch tables as we did earlier in Figure 

D.4.3. 

A microcode assembler would use the encoding of the sequencing fi eld, the 

contents of the symbolic dispatch tables in Figure D.5.2, the specifi cation in Figure 

D.5.1, and the actual microprogram to generate the microinstructions. 

Since the microprogram is an abstract representation of the control, there is a 

great deal of fl exibility in how the microprogram is translated. For example, the 

address assigned to many of the microinstructions can be chosen arbitrarily; the 

only restrictions are those imposed by the fact that certain microinstructions must 
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Opcode name

Value

Opcode fi eld

Opcode name

Value

000000

R-format

Rformat1

100011

lw

LW2

000010

jmp

JUMP1

101011

sw

SW2

000100

beq

BEQ1

100011

lw

Mem1

101011

sw

Mem1

FIGURE D.5.2  The two microcode dispatch ROMs showing the contents in symbolic form 

and using the labels in the microprogram. 
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occur in sequential order (so that incrementing the State register generates the 

address of the next instruction). Th

us the microcode assembler may reduce the 

complexity of the control by assigning the microinstructions cleverly. 

Organizing the Control to Reduce the Logic

For a machine with complex control, there may be a great deal of logic in the 

control unit. Th

e control ROM or PLA may be very costly. Although our simple 

implementation had only an 18-bit microinstruction (assuming an explicit 

sequencer), there have been machines with microinstructions that are hundreds of 

bits wide. Clearly, a designer would like to reduce the number of microinstructions 

and the width. 

Th

e ideal approach to reducing control store is to fi rst write the complete 

microprogram in a symbolic notation and then measure how control lines are set 

in each microinstruction. By taking measurements we are able to recognize control 

bits that can be encoded into a smaller fi eld. For example, if no more than one of 

eight lines is set simultaneously in the same microinstruction, then this subset of 

control lines can be encoded into a 3-bit fi eld (log  8 ⫽ 3). Th

is change saves fi ve 

2

bits in every microinstruction and does not hurt CPI, though it does mean the extra 

hardware cost of a 3-to-8 decoder needed to generate the eight control lines when 

they are required at the datapath. It may also have some small clock cycle impact, 

since the decoder is in the signal path. However, shaving fi ve bits off  control store 

width will usually overcome the cost of the decoder, and the cycle time impact will 

probably be small or nonexistent. For example, this technique can be applied to bits 

13–6 of the microinstructions in this machine, since only one of the seven bits of 

the control word is ever active (see Figure D.4.5). 

Th

is technique of reducing fi eld width is called  encoding. To further save space, 

control lines may be encoded together if they are only occasionally set in the same 

microinstruction; two microinstructions instead of one are then required when 

both must be set. As long as this doesn’t happen in critical routines, the narrower 

microinstruction may justify a few extra words of control store. 

Microinstructions can be made narrower still if they are broken into diff erent 

formats and given an opcode or  format fi eld to distinguish them. Th

e format fi eld 

gives all the unspecifi ed control lines their default values, so as not to change 

anything else in the machine, and is similar to the opcode of an instruction in a 

more powerful instruction set. For example, we could use a diff erent format for 

microinstructions that did memory accesses from those that did register-register 

ALU operations, taking advantage of the fact that the memory access control lines 

are not needed in microinstructions controlling ALU operations. 

Reducing hardware costs by using format fi elds usually has an additional 

performance cost beyond the requirement for more decoders. A microprogram 

using a single microinstruction format can specify any combination of operations 

in a datapath and can take fewer clock cycles than a microprogram made up of 

restricted microinstructions that cannot perform any combination of operations in 
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a single microinstruction. However, if the full capability of the wider microprogram 

word is not heavily used, then much of the control store will be wasted, and the 

machine could be made smaller and faster by restricting the microinstruction 

capability. 

Th

e narrow, but usually longer, approach is oft en called  vertical microcode,  while 

the wide but short approach is called  horizontal microcode.  It should be noted that 

the terms “vertical microcode” and “horizontal microcode” have no universal 

defi nition—the designers of the 8086 considered its 21-bit microinstruction to be 

more horizontal than in other single-chip computers of the time. Th

e related terms 

 maximally encoded and  minimally encoded are probably better than vertical and 

horizontal. 

 D.6 Concluding 

Remarks

We began this appendix by looking at how to translate a fi nite-state diagram to an 

implementation using a fi nite-state machine. We then looked at explicit sequencers 

that use a diff erent technique for realizing the next-state function. Although large 

microprograms are oft en targeted at implementations using this explicit next-state 

approach, we can also implement a microprogram with a fi nite-state machine. As 

we saw, both ROM and PLA implementations of the logic functions are possible. 

Th

e advantages of explicit versus encoded next state and ROM versus PLA 

implementation are summarized below. 

Independent of whether the control is represented as a fi nite-state diagram 

The BIG

or as a microprogram, translation to a hardware control implementation is 

similar. Each state or microinstruction asserts a set of control outputs and 

Picture

specifi es how to choose the next state. 

Th

e next-state function may be implemented by either encoding it in a 

fi nite-state machine or using an explicit sequencer. Th

e explicit sequencer 

is more effi

cient if the number of states is large and there are many 

sequences of consecutive states without branching. 

Th

e control logic may be implemented with either ROMs or PLAs (or 

even a mix). PLAs are more effi

cient unless the control function is very 

dense. ROMs may be appropriate if the control is stored in a separate 

memory, as opposed to within the same chip as the datapath. 
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 D.7 Exercises

D.1  [10]  ⬍§D.2⬎ Instead of using four state bits to implement the fi nite-state 

machine in Figure D.3.1, use nine state bits, each of which is a 1 only if the fi nite-

state machine is in that particular state (e.g., S1 is 1 in state 1, S2 is 1 in state 2, etc.). 

Redraw the PLA (Figure D.3.9). 

D.2  [5] ⬍§D.3⬎ We wish to add the instruction jal (jump and link). Make any 

necessary changes to the datapath or to the control signals if needed. You can 

photocopy fi gures to make it faster to show the additions. How many product terms 

are required in a PLA that implements the control for the single-cycle datapath for 

jal? 

D.3   [5] ⬍§D.3⬎ Now we wish to add the instruction addi (add immediate). 

Add any necessary changes to the datapath and to the control signals. How many 

product terms are required in a PLA that implements the control for the single-

cycle datapath for addiu? 

D.4   [10] ⬍§D.3⬎ Determine the number of product terms in a PLA that 

implements the fi nite-state machine for addi.  Th

e easiest way to do this is to 

construct the additions to the truth tables for addi. 

D.5   [20] ⬍§D.4⬎ Implement the fi nite-state machine of using an explicit counter 

to determine the next state. Fill in the new entries for the additions to Figure D.4.5. 

Also, add any entries needed to the dispatch ROMs of Figure D.5.2. 

D.6   [15] ⬍§§D.3–D.6⬎ Determine the size of the PLAs needed to implement the 

multicycle machine, assuming that the next-state function is implemented with 

a counter. Implement the dispatch tables of Figure D.5.2 using two PLAs and the 

contents of the main control unit in Figure D.4.5 using another PLA. How does the 

total size of this solution compare to the single PLA solution with the next state 

encoded? What if the main PLAs for both approaches are split into two separate 

PLAs by factoring out the next-state or address select signals? 
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 E.1 Introduction

We cover two groups of reduced instruction set computer (RISC) architectures in 

this appendix. Th

e fi rst group is the desktop and server RISCs:

■ Digital Alpha

■ Hewlett-Packard PA-RISC

■  IBM and Motorola PowerPC

■  MIPS INC MIPS-64

■  Sun Microsystems SPARC
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Th

e second group is the embedded RISCs:

■  Advanced RISC Machines ARM

■  Advanced RISC Machines Th

umb

■ Hitachi SuperH

■ Mitsubishi M32R

■  MIPS INC MIPS-16
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FIGURE E.1.1   Summary of the fi rst version of fi ve architectures for desktops and servers. Except for the number of data address modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with Figure E.17.1. Later versions of these architectures all support a fl at, 64-bit address space. 
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FIGURE E.1.2  Summary of fi ve architectures for embedded applications.  Except for number of data address modes and some instruction set details, the integer instruction sets of these architectures are similar. Con trast this with Figure E.17.1. 
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Th

ere has never been another class of computers so similar. Th

is similarity 

allows the presentation of 10 architectures in about 50 pages. Characteristics of the 

desktop and server RISCs are found in Figure E.1.1 and the embedded RISCs in 

Figure E.1.2. 

Notice that the embedded RISCs tend to have 8 to 16 general-purpose registers 

while the desktop/server RISCs have 32, and that the length of instructions is 16 to 

32 bits in embedded RISCs but always 32 bits in desktop/server RISCs. 

Although shown as separate embedded instruction set architectures, Th

umb 

and MIPS-16 are really optional modes of ARM and MIPS invoked by call 

instructions. When in this mode, they execute a subset of the native architecture 

using 16-bit-long instructions. Th

ese 16-bit instruction sets are not intended to be 

full architectures, but they are enough to encode most procedures. Both machines 

expect procedures to be homogeneous, with all instructions in either 16-bit mode 

or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or 

in 32-bit mode for performance. 

One complication of this description is that some of the older RISCs have been 

extended over the years. We have decided to describe the latest versions of the 

architectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for 

the desktop/server; ARM version 4, Th

umb version 1, Hitachi SuperH SH-3, M32R 

version 1, and MIPS-16 version 1 for the embedded ones. 

Th

e remaining sections proceed as follows: aft er discussing the addressing 

modes and instruction formats of our RISC architectures, we present the survey of 

the instructions in fi ve steps:

■  Instructions found in the MIPS core, which is defi ned in Chapters 2 and 3 of 

the main text

■  Multimedia extensions of the desktop/server RISCs

■  Digital signal-processing extensions of the embedded RISCs

■  Instructions not found in the MIPS core but found in two or more architectures

■  Th

e unique instructions and characteristics of each of the ten architectures

We give the evolution of the instruction sets in the fi nal section and conclude with 

speculation about future directions for RISCs. 

Addressing Modes and Instruction 

 E.2 

Formats

Figure E.2.1 shows the data addressing modes supported by the desktop 

architectures. Since all have one register that always has the value 0 when used in 

address modes, the absolute address mode with limited range can be synthesized 

using zero as the base in displacement addressing. (Th

is register can be changed 
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by ALU operations in PowerPC; it is always 0 in the other machines.) Similarly, 

register indirect addressing is synthesized by using displacement addressing with 

an off set of 0. Simplifi ed addressing modes is one distinguishing feature of RISC 

architectures. 

Figure E.2.2 shows the data addressing modes supported by the embedded 

architectures. Unlike the desktop RISCs, these embedded machines do not reserve 

a register to contain 0. Although most have two to three simple addressing modes, 

ARM and SuperH have several, including fairly complex calculations. ARM has 

an addressing mode that can shift  one register by any amount, add it to the other 

registers to form the address, and then update one register with this new address. 

References to code are normally PC-relative, although jump register indirect 

is supported for returning from procedures, for  case statements, and for pointer 

function calls. One variation is that PC-relative branch addresses are shift ed left  

two bits before being added to the PC for the desktop RISCs, thereby increasing the 

branch distance. Th

is works because the length of all instructions for the desktop 

RISCs is 32 bits, and instructions must be aligned on 32-bit words in memory. 

Embedded architectures with 16-bit-long instructions usually shift  the PC-relative 

address by 1 for similar reasons. 

Addressing mode 

Alpha 

MIPS-64 

PA-RISC 2.0 

PowerPC 

SPARCv9

Register + offset (displacement or based) 

X 

X 

X 

X

X 

R

s

i

g

e

e

t

r



+



r

i

g

e s e

t r i

(



e

d

n

x



)

d

e



F

(



X



)

P

X

d

a

o

L

(





)

s



X



X

Register + scaled register (scaled) 





X 



Register + offset and update register 





X 

X 



Register + register and update register 





X 

X 



FIGURE E.2.1   Summary of data addressing modes supported by the desktop architectures.  PA RISC also has short address versions of the off set addressing modes. MIPS-64 has indexed addressing for fl oating-point loads and stores. (Th ese addressing modes are 

described in Figure 2.18.)
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FIGURE E.2.2  Summary of data addressing modes supported by the embedded architectures.  SuperH and M32R have separate register indirect and register ⫹ off set addressing modes rather than just putting 0 in the off set of the latter mode. Th is increases the 

use of 16-bit instructions in the M32R, and it gives a wider set of address modes to diff erent data transfer instructions in SuperH. To get greater addressing range, ARM and Th

umb shift  the off set left  one or two bits if the data size is halfword or word. (Th

ese addressing modes 

are described in Figure 2.18.)
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Figure E.2.3 shows the format of the desktop RISC instructions, which include 

the size of the address. Each instruction set architecture uses these four primary 

instruction formats. Figure E.2.4 shows the six formats for the embedded RISC 

machines. Th

e desire to have smaller code size via 16-bit instructions leads to more 

instruction formats. 
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FIGURE E.2.3   Instruction formats for desktop/server RISC architectures.   Th

ese four 

formats are found in all fi ve architectures. (Th

e superscrift  notation in this fi gure means the width of a 

fi eld in bits.) Although the register fi elds are located in similar pieces of the instruction, be aware that the destination and two source fi elds are scrambled. Op ⫽ the main opcode, Opx ⫽ an opcode extension, Rd ⫽ 

the destination register, Rs1 ⫽ source register 1, Rs2 ⫽ source register 2, and Const ⫽ a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a format for immediates in arithmetic and logical operations that is diff erent from the data transfer format shown here. It provides an 8-bit immediate in bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension. 
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FIGURE E.2.4   Instruction formats for embedded RISC architectures.  Th

ese six formats are 

found in all fi ve architectures. Th

e notation is the same as in Figure E.2.3. Note the similarities in branch, 

jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats. 

Th

e diff erences result from whether the architecture has 8 or 16 registers, whether it is a 2- or 3-operand format, and whether the instruction length is 16 or 32 bits. 
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Format: instruction category 
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FIGURE E.2.5   Summary of constant extension for desktop RISCs.  Th

e constants in the jump and call instructions of MIPS 

are not sign-extended, since they only replace the lower 28 bits of PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate instructions. 

Format: instruction category 

Armv4 

Thumb 

SuperH 

M32R 

MIPS-16 

a

r

B

n h

c

a



: ll 

n

g

i

S



i

S



n

g

i

S



n

g

n

g

i

S



i

S



n

g

m

u

J

p/ a

c ll a



: ll 

S n

g

i



S

/

n

g

i

r

e

Z



o

i

S g  

n

n

g

i

S





—

Register-immediate: data transfer

Zero 

Zero 

Zero 

Sign 

Zero 

Register-immediate: arithmetic

Zero 

Zero 

Sign 

Sign 

Zero/Sign 

R

i

g

e

t

s

-

r

e m

i

e

m

i

d a



:

e

t

l

i

g

o

l

a

c

r

e

Z



o



—

Z

o

r

e



r

e

Z



o



—

FIGURE E.2.6  Summary of constant extension for embedded RISCs.   Th

e 16-bit-length instructions have much shorter 

immediates than those of the desktop RISCs, typically only fi ve to eight bits. Most embedded RISCs, however, have a way to get a long address for procedure calls from two sequencial halfwords. Th

e constants in the jump and call instructions of MIPS are not sign-extended, since they 

only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged. Th

e 8-bit immediates in ARM can be rotated right an even number 

of bits between 2 and 30, yielding a large range of immediate values. For example, all powers of two are immediates in ARM. 

Figures E.2.5 and E.2.6 show the variations in extending constant fi elds to the 

full width of the registers. In this subtle point, the RISCs are similar but not 

identical. 
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Instructions: the MIPS Core Subset

Th

e similarities of each architecture allow simultaneous descriptions, starting with 

the operations equivalent to the MIPS core. 

MIPS Core Instructions

Almost every instruction found in the MIPS core is found in the other 

architectures, as Figures E.3.1 through E.3.5 show. (For reference, defi nitions of the 

MIPS instructions are found in the MIPS Reference Data Card at the beginning 

of the book.) Instructions are listed under four categories: data transfer (Figure 

E.3.1); arithmetic/logical (Figure E.3.2); control (Figure E.3.3); and fl oating point 

(Figure E.3.4). A fi ft h category (Figure E.3.5) shows conventions for register 
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Data transfer 

R-I 

R-I 

R-I, R-R 

R-I, R-R 

R-I, R-R 

(instruction formats) 

Instruction name 

Alpha 

MIPS-64 

PA-RISC 2.0 

PowerPC 

SPARCv9 

Load byte signed 

LDBU; SEXTB  LB 

LDB; EXTRW,S 31,8 

LBZ; EXTSB 

LDSB 

Load byte unsigned 

LDBU 

LBU 

LDB, LDBX, LDBS 

LBZ 

LDUB 

Load halfword signed 

LDWU; SEXTW  LH 

LDH; EXTRW,S 31,16  LHA 

LDSH 

Load halfword unsigned 

LDWU 

LHU 

LDH, LDHX, LDHS 

LHZ 

LDUH 

Load word 

LDLS 

LW 

LDW, LDWX, LDWS 

LW 

LD 

Load SP fl oat 

LDS*

LWC1 

FLDWX, FLDWS 

LFS 

LDF 

Load DP fl oat 

LDT 

LDC1 

FLDDX, FLDDS 

LFD 

LDDF 

Store byte 

STB 

SB 

STB, STBX, STBS 

STB 

STB 

Store halfword 

STW 

SH 

STH, STHX, STHS 

STH 

STH 

Store word 

STL 

SW 

STW, STWX, STWS 

STW 

ST 

Store SP fl oat 

STS 

SWC1 

FSTWX, FSTWS 

STFS 

STF 

Store DP fl oat 

STT 

SDC1 

FSTDX, FSTDS 

STFD 

STDF 

Read, write special registers  MF_, MT_ 

MF, MT_ 

MFCTL, MTCTL 

MFSPR, MF_,  RD, WR, RDPR, WRPR, 

MTSPR, MT_ 

LDXFSR, STXFSR 

Move integer to FP register 

ITOFS 

MFC1/DMFC1  STW; FLDWX 

STW; LDFS 

ST; LDF 

Move FP to integer register 

FTTOIS 

MTC1/DMTC1  FSTWX; LDW 

STFS; LW 

STF; LD 

FIGURE E.3.1  Desktop RISC data transfer instructions equivalent to MIPS core.  A sequence of instructions to synthesize a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. For this fi gure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single precision fl oating point to double precision and loads the entire 64-bit register. 

usage and pseudoinstructions on each architecture. If a MIPS core instruction 

requires a short sequence of instructions in other architectures, these instructions 

are separated by semicolons in Figures E.3.1 through E.3.5. (To avoid confusion, 

the destination register will always be the left most operand in this appendix, 

independent of the notation normally used with each architecture.) Figures E.3.6 

through E.3.9 show the equivalent listing for embedded RISCs. Note that fl oating 

point is generally not defi ned for the embedded RISCs. 

Every architecture must have a scheme for compare and conditional branch, but 

despite all the similarities, each of these architectures has found a diff erent way to 

perform the operation. 

Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program status 

word:  negative, zero, carry,  and  overfl ow. Th

ey can be set on any arithmetic or logical 

instruction; unlike earlier architectures, this setting is optional on each instruction. 

An explicit option leads to fewer problems in pipelined implementation. Although 

condition codes can be set as a side eff ect of an operation, explicit compares are 

synthesized with a subtract using r0 as the destination. SPARC conditional branches 
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Arithmetic/logical  

R-R, R-I 

R-R, R-I 

R-R, R-I 

R-R, R-I 

R-R, R-I 

(instruction formats) 

Instruction name 

Alpha 

MIPS-64 

PA-RISC 2.0 

PowerPC 

SPARCv9 

Add 

ADDL 

ADDU, ADDU

ADDL, LD0, ADDI, 

ADD, ADDI

ADD

UADDCM

Add (trap if overfl ow) 

ADDLV

ADD, ADDI

ADDO, ADDIO

ADDO; MCRXR; BC

ADDcc; TVS

Sub 

SUBL

SUBU

SUB, SUBI

SUBF

SUB

Sub (trap if overfl ow) 

SUBLV

SUB

SUBTO, SUBIO

SUBF/oe

SUBcc; TVS

Multiply 

MULL

MULT, MULTU

SHiADD;...; (i=1,2,3)

MULLW, MULLI

MULX

Multiply (trap if overfl ow) 

MULLV

—

SHiADDO;...; 

—

—

Divide —

DIV, DIVU

DS;...; DS

DIVW

DIVX

Divide (trap if overfl



)

w

o



—

—

—

—

—

And 

AND

AND,  N

A

I

D

A D

N

D

N

A

, ANDI

AND

Or 

BIS

OR, O I

R

OR

, 

R

O

ORI

OR

Xor 

XOR

XOR,  O

X

I

R

X R

O

R

O

X

, XORI 

XOR

Load high part register 

LDAH 

LUI 

LDIL 

ADDIS 

SETHI 

(B fmt.)

Shift left logical 

SLL

SLLV, SLL

DEPW, Z 31-i,32-i 

RLWINM

SLL

Shift right logical 

SRL

SRLV, SRL

EXTRW, U 31, 32-i

RLWINM 32-i

SRL 

Shift right arithmetic 

SRA 

SRAV, SRA 

EXTRW, S 31, 32-i

SRAW

SRA

Compare 

CMPEQ, CMPLT,  SLT/U, S

I

T

L

/U

O

C

B

M

I

(

P

M

C

L

C

)

R

B

U

S

c

c  r0,... 

CMPLE

FIGURE E.3.2   Desktop RISC arithmetic/logical instructions equivalent to MIPS core.  Dashes mean the operation is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category, all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC off ers immediate versions of these instructions but uses a single mnemonic. (Of course these are separate opcodes!)

Control 

B, J/C 

B, J/C 

B, J/C 

B, J/C 

B, J/C

(instruction formats) 

Instruction name 

Alpha 

MIPS-64 

PA-RISC 2.0 

PowerPC 

SPARCv9 

Branch on integer compare

B_ (<, >, <=, 

BEQ, BNE, B_Z  COMB, COMIB 

BC 

BR_Z, BPcc (<, 

>=, =, not=)

(<, >, <=, >=) 

>, <=, >=, =, 

not=) 

Branch on fl oating-point 

FB_(<, >, <=,  BC1T, BC1F

FSTWX f0; 

BC 

FBPfcc (<, >, 

compare

>=, =, not=)

LDW t; BB t 

<=, >=, =,...) 

Jump, jump register 

BR, JMP 

J, JR 

BL r0, BLR r0  B, BCLR, BCCTR  BA, JMPL r0,... 

Call, call register 

BSR 

JAL, JALR 

BL, BLE 

BL, BLA, 

CALL, JMPL 

BCLRL, BCCTRL

Trap 

CALL_PAL 

BREAK 

BREAK 

TW, TWI 

Ticc, SIR 

GENTRAP 

Return from interrupt 

CALL_PAL REI

JR; ERET 

RFI, RFIR 

RFI 

DONE, RETRY, 

RETURN

FIGURE E.3.3  Desktop RISC control instructions equivalent to MIPS core.  If there are several choices of instructions equivalent to MIPS core, they are separated by commas. 
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Floating point  

(instruction formats) 

R-R 

R-R 

R-R 

R-R 

R-R 

Instruction 

name Alpha 

MIPS-64 PA-RISC 

2.0 

PowerPC 

SPARCv9

Add single, double 

ADDS, ADDT 

ADD.S, ADD.D

FADD FADD/dbl 

FADDS, FADD 

FADDS, FADDD 

Subtract single, double 

SUBS, SUBT 

SUB.S, SUB.D 

FSUB FSUB/dbl 

FSUBS, FSUB

FSUBS, FSUBD 

Multiply single, double 

MULS, MULT 

MUL.S, MUL.D 

FMPY FMPY/dbl

FMULS, FMUL

FMULS, FMULD 

Divide single, double 

DIVS, DIVT 

DIV.S, DIV.D 

FDIV, FDIV/dbl

FDIVS, FDIV 

FDIVS, FDIVD 

Compare 

CMPT_ (=, <, 

C_.S, C_.D (<, >,  FCMP, FCMP/dbl  FCMP 

FCMPS, FCMPD 

<=, 

<=, >=, =,...) 

(<, =, >) 

UN)

Move R-R 

ADDT Fd, F31, Fs

MOV.S, MOV.D 

FCPY 

FMV 

FMOVS/D/Q 

Convert (single, double, 

CVTST, CVTTS, 

CVT.S.D, CVT. 

FCNVFF,s,d 

—, FRSP, —,  FSTOD, FDTOS, 

integer) to (single, 

CVTTQ, CVTQS, 

D.S, CVT.S.W, 

FCNVFF,d,s 

FCTIW,—, —  FSTOI, FDTOI, 

CVTQT 

CVT.D.W, CVT. 

FCNVXF,s,s 

FITOS, FITOD 

double, integer)

W.S, CVT.W.D

FCNVXF,d,d 

FCNVFX,s,s 

FCNVFX,d,s

FIGURE E.3.4   Desktop RISC fl oating-point instructions equivalent to MIPS core.  Dashes mean the operation is not available in that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. 

Conventions Alpha  MIPS-64 

PA-RISC 

2.0 

PowerPC 

SPARCv9

Register with value 0 

r31 (source) 

r0 

r0 

r0 (addressing)  r0 

Return address register  (any) 

r31 

r2, r31 

link (special) 

r31 

No-op 

LDQ_U r31,... 

SLL r0, r0, r0

OR r0, r0, r0 

ORI r0, r0, #0 

SETHI r0, 0 

Move R-R integer 

BIS..., r31,...  ADD..., r0,... 

OR..., r0,... 

OR rx, ry, ry 

OR..., r0,... 

Operand order 

OP Rs1, Rs2, Rd

OP Rd, Rs1, Rs2

OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2

OP Rs1, Rs2, Rd 

FIGURE E.3.5  Conventions of desktop RISC architectures equivalent to MIPS core. 

test condition codes to determine all possible unsigned and signed relations. 

Floating point uses separate condition codes to encode the IEEE 754 conditions, 

requiring a fl oating-point compare instruction. Version 9 expanded SPARC 

branches in four ways: a separate set of condition codes for 64-bit operations; a 

branch that tests the contents of a register and branches if the value is ⫽, not⫽, ⬍, 

⬍⫽, ⬎⫽, or ⬍⫽ 0 (see MIPS below); three more sets of fl oating-point condition 

codes; and branch instructions that encode static branch prediction. 

PowerPC also uses four condition codes— less than, greater than, equal,  and 

 summary overfl ow—but it has eight copies of them. Th

is redundancy allows the 

PowerPC instructions to use diff erent condition codes without confl ict, essentially 

giving PowerPC eight extra 4-bit registers. Any of these eight condition codes can 

be the target of a compare instruction, and any can be the source of a conditional 

branch. Th

e integer instructions have an option bit that behaves as if the integer op 
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Instruction name 

ARMv4  

Thumb 

SuperH 

M32R 

MIPS-16 

Data transfer  (instruction formats) 

DT 

DT 

DT 

DT 

DT 

Load byte signed 

LDRSB 

LDRSB 

MOV.B 

LDB 

LB 

Load byte unsigned 

LDRB 

LDRB 

MOV.B; EXTU.B 

LDUB 

LBU 

Load halfword signed 

LDRSH 

LDRSH 

MOV.W 

LDH 

LH 

Load halfword unsigned 

LDRH 

LDRH 

MOV.W; EXTU.W 

LDUH 

LHU 

Load word 

LDR 

LDR 

MOV.L 

LD 

LW 

Store byte 

STRB 

STRB 

MOV.B 

STB 

SB 

Store halfword 

STRH 

STRH 

MOV.W 

STH 

SH 

Store word 

STR 

STR 

MOV.L 

ST 

SW 

Read, write special registers 

MRS, MSR 

—1 

LDC, STC 

MVFC, MVTC 

MOVE 

FIGURE E.3.6  Embedded RISC data transfer instructions equivalent to MIPS core.  A sequence of instructions to synthesize a MIPS instruction is shown separated by semicolons. Note that fl oating point is generally not defi ned for the embedded RISCs. Th umb and 

MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th

umb or MIPS-16. 

is followed by a compare to zero that sets the fi rst condition “register.” PowerPC 

also lets the second “register” be optionally set by fl oating-point  instructions. 

PowerPC provides logical operations among these eight 4-bit condition code 

registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more 

complex conditions to be tested by a single branch. 

MIPS uses the contents of registers to evaluate conditional branches. Any two 

registers can be compared for equality (BEQ) or inequality (BNE), and then the 

branch is taken if the condition holds. Th

e set on less than instructions (SLT, SLTI, 

SLTU, SLTIU) compare two operands and then set the destination register to 1 

if less and to 0 otherwise. Th

ese instructions are enough to synthesize the full set 

of relations. Because of the popularity of comparisons to 0, MIPS includes special 

compare and branch instructions for all such comparisons: greater than or equal to 

zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less 

than zero (BLTZ). Of course, equal and not equal to zero can be synthesized using 

r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for fl oating point 

with separate fl oating-point compare and branch instructions; MIPS IV expanded 

this to eight fl oating-point condition codes, with the fl oating point comparisons 

and branch instructions specifying the condition to set or test. 

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers 

and set a third to 1 if the condition is true and to 0 otherwise. Floating-point 

compares (CMTEQ,  CMTLT,  CMTLE,  CMTUN) set the result to 2.0 if the condition 

holds and to 0 otherwise. Th

e branch instructions compare one register to 0 (BEQ, 

BGE, BGT, BLE, BLT, BNE) or its least signifi cant bit to 0 (BLBC, BLBS) and 

then branch if the condition holds. 
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Arithmetic/logical 

R-R, R-I 

R-R, R-I 

R-R, R-I 

R-R, R-I 

R-R, R-I 

(instruction formats) 

Instruction name 

ARMv4  

Thumb 

SuperH 

M32R 

MIPS-16 

Add 

ADD 

ADD 

ADD 

ADD, ADDI, ADD3 

ADDU, ADDIU 

Add (trap if overfl ow) 

ADDS; SWIVS  ADD; BVC .+4; SWI

ADDV 

ADDV, ADDV3 

—1 

Subtract 

SUB 

SUB 

SUB 

SUB 

SUBU 

Subtract (trap if overfl ow) 

SUBS; SWIVS  SUB; BVC .+1; SWI 

SUBV 

SUBV 

—1 

Multiply 

MUL 

MUL 

MUL 

MUL 

MULT, MULTU 

Multiply (trap if overfl ow) 

—

Divide —

—

DIV1, DIVoS,  DIV, DIVU 

DIV, DIVU 

DIVoU 

Divide (trap if overfl



)

w

o



—

—

—

And 

AND 

AND 

AND 

AND, AND3 

AND 

Or 

ORR 

ORR 

OR 

OR, OR3 

OR 

Xor 

EOR 

EOR 

XOR 

XOR, XOR3 

XOR 

Load high part register 

—

—

SETH 

—1 

Shift left logical 

LSL3

LSL2

SHLL, SHLLn 

SLL, SLLI, SLL3 

SLLV, SLL 

Shift right logical 

LSR3

LSR2

SHRL, SHRLn 

SRL, SRLI, SRL3 

SRLV, SRL 

Shift right arithmetic 

ASR3

ASR2

SHRA, SHAD 

SRA, SRAI, SRA3 

SRAV, SRA 

Compare 

CMP,CMN, 

CMP, CMN, TST

CMP/cond, 

CMP/I, CMPU/I 

CMP/I2, SLT/I, 

TST,TEQ 

TST 

SLT/IU 

FIGURE E.3.7   Embedded RISC arithmetic/logical instructions equivalent to MIPS core.  Dashes mean the operation is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Th umb and MIPS-16 are just 16-bit instruction 

subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th

umb or MIPS-16. Th

e superscript 2 shows new instructions found only in 16-bit 

mode of Th

umb or MIPS-16, such as CMP/I2. ARM includes shift s as part of every data operation instruction, so the shift s with superscript 3 

are just a variation of a move instruction, such as LSR3 . 

PA-RISC has many branch options, which we’ll see in Section E.11. Th

e most 

straightforward is a compare and branch instruction (COMB), which compares two 

registers, branches depending on the standard relations, and then tests the least 

signifi cant bit of the result of the comparison. 

ARM is similar to SPARC, in that it provides four traditional condition codes 

that are optionally set. CMP subtracts one operand from the other and the diff erence 

sets the condition codes. Compare negative (CMN) adds one operand to the other, 

and the sum sets the condition codes. TST performs logical AND on the two 

operands to set all condition codes but overfl ow, while TEQ uses exclusive OR to 

set the fi rst three condition codes. Like SPARC, the conditional version of the ARM 

branch instruction tests condition codes to determine all possible unsigned and 

signed relations. 
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Control (instruction formats) 

B, J, C 

B, J, C 

B, J, C 

B, J, C 

B, J, C 

Instruction name 

ARMv4   

Thumb 

SuperH 

M32R 

MIPS-16 

Branch on integer compare 

B/cond 

B/cond 

BF, BT 

BEQ, BNE, BC, BNC, B__Z  BEQZ2, BNEZ2, BTEQZ2, 

BTNEZ2

Jump, jump register 

MOV pc, ri 

MOV pc, ri 

BRA, JMP 

BRA, JMP 

B2, JR 

Call, call register 

BL 

BL 

BSR, JSR 

BL, JL 

JAL, JALR, JALX2

r

T a  

p

W

S



I

S



I

W

R

T A



A

P

A

R

T



P

R

B

K

A

E



Return from interrupt 

MOVS pc, r14

—1



S

T

R

E

T

R



—1

FIGURE E.3.8   Embedded RISC control instructions equivalent to MIPS core.  Th

umb and MIPS-16 are just 16-bit instruction 

subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th

umb or MIPS-16. Th

e superscript 2 shows new instructions found only in 16-bit 

mode of Th

umb or MIPS-16, such as BTEQZ2. 

Conventions 

ARMv4   

Thumb 

SuperH 

M32R 

MIPS-16 

Return address reg. 

R14 

R14 

PR (special) 

R14 

RA (special) 

No-op 

MOV r0, r0 

MOV r0, r0 

NOP 

NOP 

SLL r0, r0 

Operands, order 

OP Rd, Rs1, Rs2 

OP Rd, Rs1 

OP Rs1, Rd 

OP Rd, Rs1 

OP Rd, Rs1, Rs2 

FIGURE E.3.9  Conventions of embedded RISC instructions equivalent to MIPS core. 

As we shall see in Section E.12, one unusual feature of ARM is that every 

instruction has the option of executing conditionally depending on the condition 

codes. (Th

is bears similarities to the annulling option of PA-RISC, seen in 

Section E.11.)

Not surprisingly, Th

umb follows ARM. Th

e diff erences are that setting condition 

codes are not optional, the TEQ instruction is dropped, and there is no conditional 

execution of instructions. 

Th

e Hitachi SuperH uses a single T-bit condition that is set by compare 

instructions. Two branch instructions decide to branch if either the T bit is 1 

(BT) or the T bit is 0 (BF). Th

e two fl avors of branches allow fewer comparison 

instructions. 

Mitsubishi M32R also off ers a single condition code bit (C) used for signed and 

unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less 

than the other or not, similar to the MIPS set on less than instructions. Two branch 

instructions test to see if the C bit is 1 or 0: BC and BNC. Th

e M32R also includes 

instructions to branch on equality or inequality of registers (BEQ and BNE) and all 

relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike 

BC and BNC, these last instructions are all 32 bits wide. 

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU), 

but instead of putting the result in one of the eight registers, it is placed in a special 

register named T. MIPS-16 is always implemented in machines that also have the 

full 32-bit MIPS instructions and registers; hence, register T is really register 24 in 

the full MIPS architecture. Th

e MIPS-16 branch instructions test to see if a register 

is or is not equal to zero (BEQZ and BNEZ). Th

ere are also instructions that branch 
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Alpha MIPS-64 

PA-RISC 

2.0 

PowerPC  SPARCv9 

Number of condition code bits  0 

8 FP 

8 FP 

8 × 4 both 

2 × 4 integer, 4 × 2 FP 

(integer and FP)

Basic compare instructions 

1 integer, 1 FP

1 integer, 1 FP 

4 integer, 2 FP 

4 integer, 2 FP 

1 FP 

(integer and FP) 

Basic branch instructions 

1 

2 integer, 1 FP 

7 integer 

1 both 

3 integer, 1 FP 

(integer and FP) 

Compare register with 

— 

=, not= 

=, not=, <, <=, >, >=,  — — 

register/const and branch 

even, odd

Compare register to zero and 

=, not=, <, <=, >,  =, not=, <, <=, 

=, not=, <, <=, >, >=,  — 

=, not=, <, <=, >, >= 

branch

>=, even, odd 

>, >= 

even, odd 

FIGURE E.3.10  Summary of fi ve desktop RISC approaches to conditional branches.  Floating-point branch on PA-RISC is accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination. 

ARMv4   

Thumb 

SuperH 

M32R 

MIPS-16 

Number of condition code bits 

4 

4 

1 

1 

1 

Basic compare instructions 

4 

3 

2 

2 

2 

Basic branch instructions 

1 

1 

2 

3 

2 

Compare register with register/const 

— 

— 

=, >, >= 

=, not= 

— 

and branch

Compare register to zero and branch 

— 

—

=, >, >= 

=, not=, <, <=, >, >= 

=, not= 

FIGURE E.3.11  Summary of fi ve embedded RISC approaches to conditional branches

if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two registers are 

equal, MIPS added compare instructions (CMP, CMPI) that compute the exclusive 

OR of two registers and place the result in register T. Compare was added since 

MIPS-16 left  out instructions to compare and branch if registers are equal or not 

(BEQ and BNE). 

Figures E.3.10 and E.3.11 summarize the schemes used for conditional branches. 

Instructions: Multimedia Extensions of 

 E.4 

the Desktop/Server RISCs

Since every desktop microprocessor by defi nition has its own graphical displays, 

as transistor budgets increased it was inevitable that support would be added for 

graphics operations. Many graphics systems use eight bits to represent each of the 

three primary colors plus eight bits for the location of a pixel. 
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Th

e addition of speakers and microphones for teleconferencing and video 

games suggested support of sound as well. Audio samples need more than eight 

bits of precision, but 16 bits are suffi

cient. 

Every microprocessor has special support so that bytes and halfwords take 

up less space when stored in memory, but due to the infrequency of arithmetic 

operations on these data sizes in typical integer programs, there is little support 

beyond data transfers. Th

e architects of the Intel i860, which was justifi ed as a 

graphical accelerator within the company, recognized that many graphics and 

audio applications would perform the same operation on vectors of this data. 

Although a vector unit was beyond the transistor budget of the i860 in 1989, by 

partitioning the carry chains within a 64-bit ALU, it could perform simultaneous 

operations on short vectors of eight 8-bit operands, four 16-bit operands, or two 

32-bit operands. Th

e cost of such partitioned ALUs was small. Applications that 

lend themselves to such support include MPEG (video), games like DOOM (3-D 

graphics), Adobe Photoshop (digital photography), and teleconferencing (audio 

and image processing). 

Like a virus, over time such multimedia support has spread to nearly every 

desktop microprocessor. HP was the fi rst successful desktop RISC to include such 

support. As we shall see, this virus spread unevenly. Th

e PowerPC is the only 

holdout, and rumors are that it is “running a fever.” 

Th

ese extensions have been called subword parallelism, vector, or SIMD (single-

instruction, multiple data) (see Chapter 6). Since Intel marketing uses SIMD to 

describe the MMX extension of the 8086, that has become the popular name. 

Figure E.4.1 summarizes the support by architecture. 

From Figure E.4.1, you can see that in general, MIPS MDMX works on eight 

bytes or four halfwords per instruction, HP PA-RISC MAX2 works on four half-

words, SPARC VIS works on four halfwords or two words, and Alpha doesn’t do 

much. Th

e Alpha MAX operations are just byte versions of compare, min, max, and 

absolute diff erence, leaving it up to soft ware to isolate fi elds and perform parallel 

adds, subtracts, and multiplies on bytes and halfwords. MIPS also added operations 

to work on two 32-bit fl oating-point operands per cycle, but they are considered 

part of MIPS V and not simply multimedia extensions (see Section E.7). 

One feature not generally found in general-purpose microprocessors is 

saturating operations. Saturation means that when a calculation overfl ows,  the 

result is set to the largest positive number or most negative number, rather than a 

modulo calculation as in two’s complement arithmetic. Commonly found in digital 

signal processors (see the next section), these saturating operations are helpful in 

routines for fi ltering. 

Th

ese machines largely used existing register sets to hold operands: integer 

registers for Alpha and HP PA-RISC and fl oating-point registers for MIPS and Sun. 

Hence data transfers are accomplished with standard load and store instructions. 

MIPS also added a 192-bit (3*64) wide register to act as an accumulator for some 

operations. By having three times the native data width, it can be partitioned to 

accumulate either eight bytes with 24 bits per fi eld or four halfwords with 48 bits 
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FIGURE E.4.1  Summary of multimedia support for desktop RISCs.  B stands for byte (8 bits), H for half word (16 bits), and W 

for word (32 bits). Th

us 8B means an operation on eight bytes in a single instruction. Pack and unpack use the notation 2*2W to mean two operands each with two words. Note that MDMX has vector/scalar operations, where the scalar is specifi ed as an element of one of the vector registers. Th

is table is a simplifi cation of the full multimedia architectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between two operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to set registers to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS. 

per fi eld. Th

is wide accumulator can be used for add, subtract, and multiply/ add 

instructions. MIPS claims performance advantages of two to four times for the 

accumulator. 

Perhaps the surprising conclusion of this table is the lack of consistency. Th

e 

only operations found on all four are the logical operations (AND, OR, XOR), 

which do not need a partitioned ALU. If we leave out the frugal Alpha, then the 

only other common operations are parallel adds and subtracts on four halfwords. 

Each manufacturer states that these are instructions intended to be used in 

hand-optimized subroutine libraries, an intention likely to be followed, as a 

compiler that works well with multimedia extensions of all desktop RISCs would 

be challenging. 
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Instructions: Digital Signal-Processing 

 E.5 

Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) architecture is support 

for integer multiply-accumulate. Th

e multiplies tend to be on shorter words than 

regular integers, such as 16 bits, and the accumulator tends to be on longer words, 

such as 64 bits. Th

e reason for multiply-accumulate is to effi

ciently  implement 

digital fi lters, common in DSP applications. Since Th

umb and MIPS-16 are subset 

architectures, they do not provide such support. Instead, programmers should use 

the DSP or multimedia extensions found in the 32-bit mode instructions of ARM 

and MIPS-64. 

Figure E.5.1 shows the size of the multiply, the size of the accumulator, and 

the operations and instruction names for the embedded RISCs. Machines with 

accumulator sizes greater than 32 and less than 64 bits will force the upper bits 

to remain as the sign bits, thereby “saturating” the add to set to maximum and 

minimum fi xed-point values if the operations overfl ow. 
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64B accumulate, 
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memory); 64B product 

round, move

+ 64B/48B accumulate 

(operands in memory); clear 

MAC 

Corresponding 

MLA, SMLAL, UMLAL

— 

MAC, MACS, MAC.L, MAC.LS,  MACHI/MACLO, 

— 

instruction names

CLRMAC

MACWHI/MACWLO, 

RAC, RACH, MVFACHI/

MVFACLO, MVTACHI/

MVTACLO 

FIGURE E.5.1  Summary of fi ve embedded RISC approaches to multiply-accumulate. 
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Instructions: Common Extensions to 

 E.6 

MIPS Core

Figures E.6.1 through E.6.7 list instructions not found in Figures E.3.5 through 

E.3.11 in the same four categories. Instructions are put in these lists if they appear 

in more than one of the standard architectures. Th

e instructions are defi ned using 

the hardware description language defi ned in Figure E.6.8. 

Although most of the categories are self-explanatory, a few bear comment:

■  Th

e “atomic swap” row means a primitive that can exchange a register with 

memory without interruption. Th

is is useful for operating system semaphores 

in a uniprocessor as well as for multiprocessor synchronization (see Section 

2.11 in Chapter 2). 

■  Th

e 64-bit data transfer and operation rows show how MIPS, PowerPC, 

and SPARC defi ne 64-bit addressing and integer operations. SPARC simply 

defi nes all register and addressing operations to be 64 bits, adding only 

Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9 

Atomic swap R/M 

Temp<---Rd;  Rd<–Mem[x];  LDL/Q_L; 

LL; SC

— (see D.8)

LWARX; 

CASA, CASX

(for locks and 

Mem[x]<---Temp

STL/Q_C 

STWCX 

semaphores) 

Load 64-bit integer

Rd<–64 Mem[x] 

LDQ LD 

LDD

LD  LDX

Store 64-bit integer

Mem[x]<---64 Rd 

STQ SD 

STD 

STD STX

Load 32-bit integer 

Rd32..63<–32 Mem[x]; 

LDL; EXTLL  LWU 

LDW

LWZ 

LDUW

unsigned 

Rd0..31<–32 0 

Load 32-bit integer 

Rd32..63<–32 Mem[x]; 32 

LDL

LW LDW; 

EXTRD,S 

LWA LDSW

signed 

Rd0..31<–32 Mem[x]0 

63, 8 

Prefetch Cache[x]<– hint 

FETCH, 

PREF, PREFX LDD, r0 

DCBT, 

PRE-FETCH 

FETCH_M*

LDW, r0 

DCBTST 

Load coprocessor 

Coprocessor<– Mem[x] 

—  

LWCi CLDWX, 

CLDWS

—  

— 

Store coprocessor 

Mem[x]<– Coprocessor 

—  

SWCi CSTWX, 

CSTWS

— — 

Endian

(Big/little endian?) 

Either

Either

Either

Either Either

Cache fl ush

(Flush cache block at this  ECB

CP0op

FDC, FIC

DCBF

FLUSH

address)

Shared memory 

(All prior data transfers 

WMB

SYNC

SYNC

SYNC

MEMBAR

synchronization

complete before next data 

transfer may start)

FIGURE E.6.1  Data transfer instructions not found in MIPS core but found in two or more of the fi ve  desktop architectures.  Th

e load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing data to be read from memory, modifi ed, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see Chapter 2). Prefetching in the Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, and LD_Y A. F31 is used in the Alpha 21164 (see Bhandarkar [1995], p. 190). 
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Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9 

64-bit integer 

Rd<–64Rs1 op64 Rs2

ADD, 

DADD, DSUB  ADD, SUB, 

ADD, SUBF, 

ADD, SUB, 

arithmetic ops

SUB, MUL

DMULT, DDIV SHLADD, DS

MULLD, DIVD

MULX, 

S/UDIVX 

64-bit integer 

Rd<–64Rs1 op64 Rs2 

AND, OR,  AND, OR, 

AND, OR, XOR

AND, OR, XOR AND, OR, 

logical ops

XOR

XOR

XOR

64-bit shifts 

Rd<–64Rs1 op64 Rs2

SLL, 

DSLL/V, 

DEPD,Z 

SLD, SRAD, 

SLLX, SRAX, 

SRA, SRL

DSRA/V, 

EXTRD,S 

SRLD

SRLX 

DSRL/V

EXTRD,U

Conditional move 

if (cond) Rd<–Rs 

CMOV_ 

MOVN/Z 

SUBc, n; ADD

— MOVcc, 

MOVr 

Support for 

CarryOut, Rd <– Rs1 + 

— ADU; 

SLTU; 

ADDC ADDC, 

ADDE 

ADDcc 

multiword integer 

Rs2 + OldCarryOut

ADDU, DADU; 

add

SLTU; DADDU

Support for 

CarryOut, Rd <– Rs1 

— SUBU; 

SLTU; 

SUBB 

SUBFC, SUBFE  SUBcc  

multiword integer 

Rs2 + OldCarryOut

SUBU, 

sub 

DSUBU; 

SLTU; DSUBU 

And not 

Rd <– Rs1 & ~(Rs2) 

BIC

—

ANDCM ANDC 

ANDN 

Or not

Rd <– Rs1 | ~(Rs2)

ORNOT

—

—

ORC

ORN

Add high immediate  Rd0..15<–Rs10..15 + 

—

—

ADDIL (R-I) 

ADDIS (R-I)

— 

(Const<<16); 

Coprocessor 

(Defi ned by coprocessor)

—

COPi COPR,i

—

IMPDEPi 

operations

FIGURE E.6.2  Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve desktop architectures. 

Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9 

Optimized delayed 

(Branch not always 

— 

BEQL, BNEL, 

COMBT, n, 

— BPcc, 

A, 

branches

delayed) 

B_ZL (<, >, 

COMBF, n

FPBcc, A 

<=, >=)

Conditional trap 

if (COND) {R31<---PC; PC 

— 

T_,,T_I (=,  SUBc, n; BREAK

TW, TD, TWI, 

Tcc 

<–0..0#i} 

not=, <, >, 

TDI 

<=, >=)

No. control 

Misc. regs (virtual 

6

equiv. 12

32

33

29

registers 

memory, interrupts, . . .)

FIGURE E.6.3  Control instructions not found in MIPS core but found in two or more of the fi ve desktop architectures. 

special instructions for 64-bit shift s, data transfers, and branches. MIPS 

includes the same extensions, plus it adds separate 64-bit signed arithmetic 

instructions. PowerPC adds 64-bit right shift , load, store, divide, and compare 

and has a separate mode determining whether instructions are interpreted as 

32- or 64-bit operations; 64-bit operations will not work in a machine that 
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Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9 

Multiply and add 

Fd <– ( Fs1 × Fs2) 

— 

MADD.S/D 

FMPYFADD sgl/dbl FMADD/S 

+ Fs3 

Multiply and sub 

Fd <– ( Fs1 × Fs2) 

— 

MSUB.S/D 

FMSUB/S 

– Fs3 

Neg mult and add  Fd <– -(( Fs1 × Fs2)  — 

NMADD.S/D 

FMPYFNEG sgl/dbl FNMADD/S 

+ Fs3) 

Neg mult and sub  Fd <– -(( Fs1 × Fs2)  — 

U

S

M

N

D

/

S

. 

B

M

N

F

S

/

B

U

S



– Fs3) 

Square root 

Fd <– SQRT(Fs) 

SQRT_ 

SQRT.S/D 

FSQRT sgl/dbl 

FSQRT/S

FSQRTS/D

Conditional move 

if (cond) Fd<–Fs 

FCMOV_ 

MOVF/T, 

FTESTFCPY 

— 

FMOVcc 

MOVF/T.S/D 

Negate 

Fd <– Fs ^ 

CPYSN 

NEG.S/D 

FNEG sgl/dbl 

FNEG 

FNEGS/D/Q 

x80000000 

Absolute value 

Fd <– Fs & 

— 

ABS.S/D 

FABS/dbl 

FABS 

FABSS/D/Q 

x7FFFFFFF 

FIGURE E.6.4   Floating-point instructions not found in MIPS core but found in two or more of the fi ve  desktop architectures. 

Name Defi nition 

ARMv4   

Thumb 

SuperH 

M32R 

MIPS-16 

Atomic swap R/M (for 

Temp<–Rd; Rd<–Mem[x]; 

SWP, SWPB 

—1

(see TAS) 

LOCK; UNLOCK

—1 

semaphores)

Mem[x]<–Temp

Memory management unit

Paged address translation  Via coprocessor 

—1

LDTLB 

—1

instructions

Endian (Big/little 

endian?) 

Either 

Either 

Either 

Big 

Either 

FIGURE E.6.5  Data transfer instructions not found in MIPS core but found in two or more of the fi ve  embedded architectures.  We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th umb or MIPS-16. 

only supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and 

operations in version 2.0. 

■  Th

e “prefetch” instruction supplies an address and hint to the implementation 

about the data. Hints include whether the data is likely to be read or written 

soon, likely to be read or written only once, or likely to be read or written 

many times. Prefetch does not cause exceptions. MIPS has a version that 

adds two registers to get the address for fl oating-point programs, unlike 

nonfl oating-point MIPS programs. 

■ In the “Endian” row, “Big/little” means there is a bit in the program 

status register that allows the processor to act either as big endian or little 

endian (see Appendix B). Th

is can be accomplished by simply complementing 

some of the least signifi cant bits of the address in data transfer instructions. 
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■  Th

e “shared memory synchronization” helps with cache-coherent multi-

processors: all loads and stores executed before the instruction must complete 

before loads and stores aft er it can start. (See Chapter 2.)

■  Th

e “coprocessor operations” row lists several categories that allow for the 

processor to be extended with special-purpose hardware. 

Name Defi nition 

ARMv4   

Thumb 

SuperH 

M32R 

MIPS-16 

Load immediate 

Rd<---Imm

MOV 

MOV 

MOV, MOVA  LDI, LD24 

LI 

Support for multiword integer add

CarryOut, Rd <--- Rd + Rs1 + 

ADCS 

ADC 

ADDC 

ADDX

—1 

OldCarryOut

Support for multiword integer sub

CarryOut, Rd <--- Rd – Rs1 + 

SBCS 

SBC 

SUBC 

SUBX 

—1 

OldCarryOut
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MOV 
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MV 

MOVE 
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FIGURE E.6.6  Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve embedded architectures.  We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Th umb or MIPS-16. Th

e superscript 

2 shows new instructions found only in 16-bit mode of Th

umb or MIPS-16, such as NEG2. 

Name Defi nition 

ARMv4   

Thumb 

SuperH 

M32R 

MIPS-16 

No. control registers 

Misc. registers 

21

29

9

5

36 

FIGURE E.6.7  Control information in the fi ve embedded architectures. 

One diff erence that needs a longer explanation is the optimized branches. Figure 

E.6.9 shows the options. Th

e Alpha and PowerPC off er branches that take eff ect 

immediately, like branches on earlier architectures. To accelerate branches, these 

machines use branch prediction (see Chapter 4). All the rest of the desktop RISCs 

off er delayed branches (see Appendix A). Th

e embedded RISCs generally do not 

support delayed branch, with the exception of SuperH, which has it as an option. 

Th

e other three desktop RISCs provide a version of delayed branch that makes it 

easier to fi ll the delay slot. Th

e SPARC “annulling” branch executes the instruction 

in the delay slot only if the branch is taken; otherwise the instruction is annulled. 

Th

is means the instruction at the target of the branch can safely be copied into the 

delay slot, since it will only be executed if the branch is taken. Th

e restrictions are 

that the target is not another branch and that the target is known at compile time. 

(SPARC also off ers a nondelayed jump because an unconditional branch with the 

annul bit set does not execute the following instruction.) Later versions of the MIPS 
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x

e
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a

e

M
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g

n

<- -

Data transfer. Length of transfer is given by 

Regs[R1]<--Regs[R2]; 

Transfer contents of R2 to R1. 

the destination’s length; the length is specifi ed 

Registers have a fi xed length, so 

when not clear. 

transfers shorter than the register 

size must indicate which bits are 

used. 

M 

Array of memory accessed in bytes. The 

Regs[R1]<--M[x]; 

Place contents of memory location x 

starting address for a transfer is indicated as 

into R1. If a transfer starts at M[i] 

the index to the memory array. 

and requires 4 bytes, the transferred 

bytes are M[i], M[i+1], M[i+2], 

and M[i+3]. 

<- -n Transfer 

an 

 n-bit  fi eld, used whenever length 

M[y]<--16M[x]; 

Transfer 16 bits starting at memory 

of transfer is not clear. 

location x to memory location y. The 

length of the two sides should match. 

Xn 

Subscript selects a bit. 

Regs[R1]0<--0; 

Change sign bit of R1 to 0. (Bits are 

numbered from MSB starting at 0.) 

Xm..n 

Subscript selects a fi eld. 

Regs[R3]24..31<--M[x]; 

Moves contents of memory location x 

into low-order byte of R3. 

Xn 

Superscript replicates a bit fi eld. 

Regs[R3]0..23<--024; 

Sets high-order three bytes of R3 to 0. 

## 

Concatenates two fi elds. 

Regs[R3]<--240## M[x]; 

Moves contents of location x into low 

F2##F3<--64M[x]; 

byte of R3; clears upper three bytes. 

Moves 64 bits from memory starting 

at location x; 1st 32 bits go into F2, 

2nd 32 into F3. 

*, & 

Dereference a pointer; get the address of a 

p*<--&x; 

Assign to object pointed to by p the 

variable. 

address of the variable x. 

<<, >> 

C logical shifts (left, right). 

Regs[R1] << 5 Shift 

R1 left 5 bits. 

==, !=, >, <, 

C relational operators; equal, not equal, 

(Regs[R1]== Regs[R2]) &  True if contents of R1 equal the 

>=, <= 

greater, less, greater or equal, less or equal. 

(Regs[R3]!=Regs[R4])

contents of R2 and contents of R3 do 

not equal the contents of R4. 

&, |, ^, ! 

C bitwise logical operations: AND, OR, 

(Regs[R1] & (Regs[R2]| 

Bitwise AND of R1 and bitwise OR of 

exclusive OR, and complement. 

Regs[R3])) 

R2 and R3. 

FIGURE E.6.8  Hardware description notation (and some standard C operators). 

(Plain) branch 

Delayed branch 

Annulling delayed branch 

Found in architectures

Alpha, PowerPC, ARM, Thumb,  MIPS-64, PA-RISC, 

MIPS-64, SPARC

PA-RISC 

SuperH, M32R, MIPS-16

SPARC, SuperH

Execute following instruction

Only if branch  not taken 

Always 

Only if branch 

If forward branch  not 

taken

taken or backward 

branch taken 

FIGURE E.6.9  When the instruction following the branch is executed for three types of branches. 
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architecture have added a branch likely instruction that also annuls the following 

instruction if the branch is not taken. PA-RISC allows almost any instruction to 

annul the next instruction, including branches. Its “nullifying” branch option will 

execute the next instruction depending on the direction of the branch and whether 

it is taken (i.e., if a forward branch is not taken or a backward branch is taken). 

Presumably this choice was made to optimize loops, allowing the instructions 

following the exit branch and the looping branch to exe cute in the common case. 

Now that we have covered the similarities, we will focus on the unique features 

of each architecture. We fi rst cover the desktop/server RISCs, ordering them by 

length of description of the unique features from shortest to longest, and then the 

embedded RISCs. 

 E.7 

Instructions Unique to MIPS-64

MIPS has gone through fi ve generations of instruction sets, and this evolution has 

generally added features found in other architectures. Here are the salient unique 

features of MIPS, the fi rst several of which were found in the original instruction set. 

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A rare event 

in most programs, it is included for supporting 16-bit minicomputer applications 

and for doing memcpy and strcpy faster. Although most RISCs trap if you try to 

load a word or store a word to a misaligned address, on all architectures misaligned 

words can be accessed without traps by using four load byte instructions and then 

assembling the result using shift s and logical ORs. Th

e MIPS load and store word 

left  and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just 

two instructions: LWL loads the left  portion of the register and LWR loads the right 

portion of the register. SWL and SWR do the corresponding stores. Figure E.7.1 

shows how they work. Th

ere are also 64-bit versions of these instructions. 

Remaining Instructions

Below is a list of the remaining unique details of the MIPS-64 architecture:

■   NOR—Th

is logical instruction calculates ⬃(Rs1 | Rs2). 

■   Constant shift  amount—Nonvariable shift s use the 5-bit constant fi eld shown 

in the register-register format in Figure E.2.3. 

■   SYSCALL—Th

is special trap instruction is used to invoke the operating 

system. 
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Case 1

Case 2

Before

Before

M[100]

D

A

V

M[200]

D

100 101 102 103

200 201 202 203

M[104]

E

M[204]

A

V

E

104 105 106 107

204 205 206 207

R2

J

O

H

N

R4

J

O

H

N

After

LWL R2, 101:

After

LWL R4, 203:

R2

D

A

V

N

R4

D

O

H

N

After

LWR R2, 104:

After

LWR R4, 206:

R2

D

A

V

E

R4

D

A

V

E

FIGURE E.7.1  MIPS instructions for unaligned word reads.   Th

is fi gure assumes operation in 

big-endian mode. Case 1 fi rst loads the three bytes 101, 102, and 103 into the left  of R2, leaving the least signifi cant byte undisturbed. Th

e following LWR simply loads byte 104 into the least signifi cant byte of 

R2, leaving the other bytes of the register unchanged using LWL. Case 2 fi rst loads byte 203 into the most signifi cant byte of R4, and the following LWR loads the other three bytes of R4 from memory bytes 204, 205, and 206. LWL reads the word with the fi rst byte from memory, shift s to the left  to discard the unneeded byte(s), and changes only those bytes in Rd. Th

e byte(s) transferred are from the fi rst byte to the lowest-order 

byte of the word. Th

e following LWR addresses the last byte, right-shift s to discard the unneeded byte(s), and 

fi nally changes only those bytes of Rd. Th

e byte(s) transferred are from the last byte up to the highest-order 

byte of the word. Store word left  (SWL) is simply the inverse of LWL, and store word right (SWR) is the inverse of LWR. Changing to little-endian mode fl ips which bytes are selected and discarded. (If big-little, left -right, load-store seem confusing, don’t worry; they work!)

■   Move to/from control registers—CTCi and CFCi move between the integer 

registers and control registers. 

■   Jump/call not PC-relative—Th

e 26-bit address of jumps and calls is not added 

to the PC. It is shift ed left  two bits and replaces the lower 28 bits of the PC. 

Th

is would only make a diff erence if the program were located near a 256 MB 

boundary. 

■   TLB instructions—Translation-lookaside buff er (TLB) misses were handled 

in soft ware in MIPS I, so the instruction set also had instructions for 

manipulating the registers of the TLB (see Chapter 5 for more on TLBs). 

Th

ese registers are considered part of the “system coprocessor.” Since MIPS I 
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the instructions diff er among versions of the architecture; they are more part 

of the implementations than part of the instruction set architecture. 

■   Reciprocal and reciprocal square root—Th

ese instructions, which do not 

follow IEEE 754 guidelines of proper rounding, are included apparently for 

applications that value speed of divide and square root more than they value 

accuracy. 

■   Conditional procedure call instructions—BGEZAL saves the return address and 

branches if the content of Rs1 is greater than or equal to zero, and BLTZAL 

does the same for less than zero. Th

e purpose of these instructions is to get a 

PC-relative call. (Th

ere are “likely” versions of these instructions as well.)

■   Parallel single precision fl oating-point  operations—As well as extending 

the architecture with parallel integer operations in MDMX, MIPS-64 also 

supports two parallel 32-bit fl oating-point operations on 64-bit registers 

in a single instruction. “Paired single” operations include add (ADD.PS), 

subtract (SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL, 

CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS, 

MOVF.PS,  MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and 

multiply-subtract (MSUB.PS). 

Th

ere is no specifi c provision in the MIPS architecture for fl oating-point execution 

to proceed in parallel with integer execution, but the MIPS implementations of 

fl oating point allow this to happen by checking to see if arithmetic interrupts are 

possible early in the cycle. Normally, exception detection would force serialization 

of execution of integer and fl oating-point operations. 

 E.8 

Instructions Unique to Alpha

Th

e Alpha was intended to be an architecture that made it easy to build high-

performance implementations. Toward that goal, the architects originally made 

two controversial decisions: imprecise fl oating-point exceptions and no byte or 

halfword data transfers. 

To simplify pipelined execution, Alpha does not require that an exception 

should act as if no instructions past a certain point are executed and that all before 

that point have been executed. It supplies the TRAPB instruction, which stalls until 

all prior arithmetic instructions are guaranteed to complete without incurring 

arithmetic exceptions. In the most conservative mode, placing one TRAPB per 

exception-causing instruction slows execution by roughly fi ve times but provides 

precise exceptions (see Darcy and Gay [1996]). 
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Code that does not include TRAPB does not obey the IEEE 754 fl oating-point 

standard. Th

e reason is that parts of the standard (NaNs, infi nities, and denormals) 

are implemented in soft ware on Alpha, as they are on many other microprocessors. 

To implement these operations in soft ware, however, programs must fi nd  the 

off ending instruction and operand values, which cannot be done with imprecise 

interrupts! 

When the architecture was developed, it was believed by the architects that byte 

loads and stores would slow down data transfers. Byte loads require an extra shift er 

in the data transfer path, and byte stores require that the memory system perform 

a read-modify-write for memory systems with error correction codes, since the 

new ECC value must be recalculated. Th

is omission meant that byte stores required 

the sequence load word, replaced the desired byte, and then stored the word. 

(Inconsistently, fl oating-point loads go through considerable byte swapping to 

convert the obtuse VAX fl oating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes 

an elaborate set of byte manipulation instructions: extract fi eld and zero rest of a 

register (EXTxx), insert fi eld (INSxx), mask rest of a register (MSKxx), zero fi elds 

of a register (ZAP), and compare multiple bytes (CMPGE). 

Apparently, the implementors were not as bothered by load and store byte as 

were the original architects. Beginning with the shrink of the second version of the 

Alpha chip (21164A), the architecture does include loads and stores for bytes and 

halfwords. 

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture:

■   PAL code—To provide the operations that the VAX performed in microcode, 

Alpha provides a mode that runs with all privileges enabled, interrupts 

disabled, and virtual memory mapping turned off  for instructions. PAL 

(privileged architecture library) code is used for TLB management, atomic 

memory operations, and some operating system primitives. PAL code is 

called via the CALL_PAL instruction. 

■   No divide—Integer divide is not supported in hardware. 

■   “Unaligned”  load-store—LDQ_U and STQ_U load and store 64-bit data using 

addresses that ignore the least signifi cant three bits. Extract instructions 

then select the desired unaligned word using the lower address bits. Th

ese 

instructions are similar to LWL/R, SWL/R in MIPS. 

■   Floating-point single precision represented as double precision—Single precision 

data is kept as conventional 32-bit formats in memory but is converted to 64-

bit double precision format in registers. 

■   Floating-point register F31 is fi xed at zero—To simplify comparisons to zero. 
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■   VAX fl oating-point  formats—To maintain compatibility with the VAX 

architecture, in addition to the IEEE 754 single and double precision formats 

called S and T, Alpha supports the VAX single and double precision formats 

called F and G, but not VAX format D. (D had too narrow an exponent fi eld 

to be useful for double precision and was replaced by G in VAX code.)

■   Bit count instructions—Version 3 of the architecture added instructions to 

count the number of leading zeros (CTLZ), count the number of trailing zeros 

(CTTZ), and count the number of ones in a word (CTPOP). Originally found 

on Cray computers, these instructions help with decryption. 

 E.9 

Instructions Unique to SPARC v9

Several features are unique to SPARC. 

Register Windows

Th

e primary unique feature of SPARC is register windows, an optimization for 

reducing register traffi

c on procedure calls. Several banks of registers are used, with 

a new one allocated on each procedure call. Although this could limit the depth of 

procedure calls, the limitation is avoided by operating the banks as a circular buff er, 

providing unlimited depth. Th

e knee of the cost/performance curve seems to be six 

to eight banks. 

SPARC can have between 2 and 32 windows, typically using 8 registers each 

for the globals, locals, incoming parameters, and outgoing parameters. (Given that 

each window has 16 unique registers, an implementation of SPARC can have as 

few as 40 physical registers and as many as 520, although most have 128 to 136, so 

far.) Rather than tie window changes with call and return instructions, SPARC has 

the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s 

window by pointing to the next window of registers in addition to performing an 

add instruction. Th

e trick is that the source registers are from the caller’s window 

of the addition operation, while the destination register is in the callee’s window. 

SPARC compilers typically use this instruction for changing the stack pointer to 

allocate local variables in a new stack frame. RESTORE is the inverse of SAVE, 

bringing back the caller’s window while acting as an add instruction, with the 

source registers from the callee’s window and the destination register in the caller’s 

window. Th

is automatically deallocates the stack frame. Compilers can also make 

use of it for generating the callee’s fi nal return value. 

Th

e danger of register windows is that the larger number of registers could slow 

down the clock rate. Th

is was not the case for early implementations. Th

e SPARC 

architecture (with register windows) and the MIPS R2000 architecture (without) 
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have been built in several technologies since 1987. For several generations, the 

SPARC clock rate has not been slower than the MIPS clock rate for implementations 

in similar technologies, probably because cache access times dominate register 

access times in these implementations. Th

e current-generation machines took 

diff erent implementation strategies—in order versus out of order—and it’s unlikely 

that the number of registers by themselves determined the clock rate in either 

machine. Recently, other architectures have included register windows: Tensilica 

and IA-64. 

Another data transfer feature is alternate space option for loads and stores. 

Th

is simply allows the memory system to identify memory accesses to input/ 

output devices, or to control registers for devices such as the cache and memory 

management unit. 

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level 

of traps to at least four levels, allowing the window overfl ow and underfl ow trap 

handlers to be interrupted. Th

e extra levels mean the handler does not need to 

check for page faults or misaligned stack pointers explicitly in the code, thereby 

making the handler faster. Two new instructions were added to return from this 

multilevel handler: RETRY (which retries the interrupted instruction) and DONE 

(which does not). To support user-level traps, the instruction RETURN will return 

from the trap in nonprivileged mode. 

Support for LISP and Smalltalk

Th

e primary remaining arithmetic feature is tagged addition and subtraction. 

Th

e designers of SPARC spent some time thinking about languages like LISP and 

Smalltalk, and this infl uenced some of the features of SPARC already discussed: 

register windows, conditional trap instructions, calls with 32-bit instruction 

addresses, and multiword arithmetic (see Taylor, et al. [1986] and Ungar, et al. 

[1984]). A small amount of support is off ered for tagged data types with operations 

for addition, subtraction, and, hence, comparison. Th

e two least signifi cant bits 

indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc 

set the overfl ow bit if either operand is not tagged as an integer or if the result is 

too large. A subsequent conditional branch or trap instruction can decide what to 

do. (If the operands are not integers, soft ware recovers the operands, checks the 

types of the operands, and invokes the correct operation based on those types.) It 

turns out that the misaligned memory access trap can also be put to use for tagged 

data, since loading from a pointer with the wrong tag can be an invalid access. 

Figure E.9.1 shows both types of tag support. 

 

E.9  Instructions Unique to SPARC v9 

E-31

a.  Add, sub, or

00

(R5)

compare integers

(coded as 00)

00

(R6)

TADDcc r7, r5, r6

00

(R7)

b.  Loading via

11

(R4)

valid pointer

(coded as 11)

–

3

LD rD, r4, –3

00

(Word

address)

FIGURE E.9.1  SPARC uses the two least signifi cant bits to encode different data types for the tagged arithmetic instructions.  a. Integer arithmetic takes a single cycle as long as the operands and the result are integers. b. Th

e misaligned trap can be used to catch invalid memory accesses, such as 

trying to use an integer as a pointer. For languages with paired data like LISP, an off set of –3 can be used to access the even word of a pair (CAR) and ⫹1 can be used for the odd word of a pair (CDR). 

Overlapped Integer and Floating-Point Operations

SPARC allows fl oating-point instructions to overlap execution with integer 

instructions. To recover from an interrupt during such a situation, SPARC has a 

queue of pending fl oating-point instructions and their addresses. RDPR allows the 

processor to empty the queue. Th

e second fl oating-point feature is the inclusion of 

fl oating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ. 

Remaining Instructions

Th

e remaining unique features of SPARC are as follows:

■  JMPL uses Rd to specify the return address register, so specifying r31 makes 

it similar to JALR in MIPS and specifying r0 makes it like JR. 

■  LDSTUB loads the value of the byte into Rd and then stores FF16 into 

the addressed byte. Th

is version 8 instruction can be used to implement 

synchronization (see Chapter 2). 

■ CASA ( CASXA) atomically compares a value in a processor register to a 

32-bit (64-bit) value in memory; if and only if they are equal, it swaps the 

value in memory with the value in a second processor register. Th

is version 9 
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instruction can be used to construct wait-free synchronization algorithms 

that do not require the use of locks. 

■  XNOR calculates the exclusive OR with the complement of the second operand. 

■  BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler 

can give hints to the machine about whether a branch is likely to be taken or not. 

■  ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how 

this is used for proper execution of aggregate returning procedures in C. 

■  POPC counts the number of bits set to one in an operand, also found in the 

third version of the Alpha architecture. 

■   Nonfaulting loads allow compilers to move load instructions ahead of 

conditional control structures that control their use. Hence, nonfaulting 

loads will be executed speculatively. 

■   Quadruple precision fl oating-point arithmetic and data transfer allow the 

fl oating-point registers to act as eight 128-bit registers for fl oating-point 

operations and data transfers. 

■   Multiple precision fl oating-point results for multiply mean that two single 

precision operands can result in a double precision product and two double 

precision operands can result in a quadruple precision product. Th

ese 

instructions can be useful in complex arithmetic and some models of fl oating-

point calculations. 

 E.10  Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC machines— 

IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800. 

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return 

address on procedure call, PowerPC puts the address into a special register called 

the   link register. Since many procedures will return without calling another 

procedure, the link doesn’t always have to be saved. Making the return address 

a special register makes the return jump faster, since the hardware need not go 

through the register read pipeline stage for return jumps. 

In a similar vein, PowerPC has a  count register to be used in  for loops where the program iterates a fi xed number of times. By using a special register, the branch 
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hardware can determine quickly whether a branch based on the count register is 

likely to branch, since the value of the register is known early in the execution cycle. 

Tests of the value of the count register in a branch instruction will automatically 

decrement the count register. 

Given that the count register and link register are already located with the 

hardware that controls branches, and that one of the problems in branch prediction 

is getting the target address early in the pipeline (see Appendix A), the PowerPC 

architects decided to make a second use of these registers. Either register can hold 

a target address of a conditional branch. Th

us, PowerPC supplements its basic 

conditional branch with two instructions that get the target address from these 

registers (BCLR, BCCTR). 

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It 

cannot be used as a base register—that is, it generates a 0 in this case—but in base 

⫹ index addressing it can be used as the index. Th

e other unique features of the 

PowerPC are as follows:

■   Load multiple and store multiple save or restore up to 32 registers in a single 

instruction. 

■  LSW and STSW permit fetching and storing of fi xed- and variable-length 

strings that have arbitrary alignment. 

■   Rotate with mask instructions support bit fi eld extraction and insertion. One 

version rotates the data and then per forms logical AND with a mask of ones, 

thereby extracting a fi eld. Th

e other version rotates the data but only places 

the bits into the destination register where there is a corresponding 1 bit in 

the mask, thereby inserting a fi eld. 

■   Algebraic right shift  sets the carry bit (CA) if the operand is negative and any 

1 bits are shift ed out. Th

us, a signed divide by any constant power of two that 

rounds toward 0 can be accomplished with an SRAWI followed by ADDZE, 

which adds CA to the register. 

■   CBTLZ will count leading zeros. 

■   SUBFIC computes (immediate - RA), which can be used to develop a one’s or 

two’s complement. 

■   Logical shift ed immediate instructions shift  the 16-bit immediate to the left  16 

bits before performing AND, OR, or XOR. 
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 E.11  Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi cantly 

in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual 

features of any desktop RISC machine. For example, it has the most addressing 

modes and instruction formats, and, as we shall see, several instructions that are 

really the combination of two simpler instructions. 

Nullifi cation

As shown in Figure E.6.9, several RISC machines can choose not to execute the 

instruction following a delayed branch to improve utilization of the branch slot. 

Th

is is called  nullifi cation in PA-RISC, and it has been generalized to apply to any 

arithmetic/logical instruction as well as to all branches. Th

us, an add instruction 

can add two operands, store the sum, and cause the following instruction to be 

skipped if the sum is zero. Like conditional move instructions, nullifi cation allows 

PA-RISC to avoid branches in cases where there is just one instruction in the  then 

part of an  if statement. 

A Cornucopia of Conditional Branches

Given nullifi cation, PA-RISC did not need to have separate conditional branch 

instructions. Th

e inventors could have recommended that nullifying instructions 

precede unconditional branches, thereby simplifying the instruction set. Instead, 

PA-RISC has the largest number of conditional branches of any RISC machine. 

Figure E.11.1 shows the conditional branches of PA-RISC. As you can see, several 

are really combinations of two instructions. 

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthesized 

in soft ware. Instructions that shift  one operand 1, 2, or 3 bits and then add, trapping 

or not on overfl ow, are useful in multiplies. (Alpha also includes instructions that 

multiply the second operand of adds and subtracts by 4 or by 8: S4ADD, S8ADD, 

S4SUB, and S8SUB.) Th

e divide step performs the critical step of nonrestoring 

divide, adding or subtracting depending on the sign of the prior result. Magen-

heimer, et al. [1988] measured the size of operands in multiplies and divides to 

show how well the multiply step would work. Using this data for C programs, 

Muchnick [1988] found that by making special cases, the average multiply by a 

constant takes 6 clock cycles and the multiply of variables takes 24 clock cycles. 

PA- RISC has ten instructions for these operations. 
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and branch 

MOVB 

Move and branch 

Rs2 <-- Rs1, if (cond(Rs1,0)) 

{PC <-- PC + offset12} 

MOVIB  Move immediate 

Rs2 <-- imm5, if (cond(imm5,0)) 

{PC <-- PC + offset12} 

and branch 

ADDB 

Add and branch 

Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0)) 

{PC <-- PC + offset12} 

ADDIB  Add immediate 

Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0))  {PC <-- PC + offset12} 

and branch 

BB 
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FIGURE E.11.1  The PA-RISC conditional branch instructions.  Th

e 12-bit off set is called offset12 in this table, and the 5-bit 

immediate is called imm5. Th

e 16 conditions are ⫽, ⬍, ⬍ ⫽, odd, signed overfl ow, unsigned no overfl ow, zero or no overfl ow unsigned, never, and their respective complements. Th

e BB instruction selects one of the 32 bits of the register and branches depending on whether its value is 0 or 1. Th

e BVB selects the bit to branch using the shift  amount register, a special-purpose register. Th

e subscript notation specifi es a 

bit fi eld. 

Th

e original SPARC architecture used similar optimizations, but with increasing 

numbers of transistors the instruction set was expanded to include full multiply 

and divide operations. PA-RISC gives some support along these lines by putting 

a full 32-bit integer multiply in the fl oating-point unit; however, the integer data 

must fi rst be moved to fl oating-point registers. 

Decimal Operations

COBOL programs will compute on decimal values, stored as four bits per digit, 

rather than converting back and forth between binary and decimal. PA-RISC has 

instructions that will convert the sum from a normal 32-bit add into proper decimal 

digits. It also provides logical and arithmetic operations that set the condition codes 

to test for carries of digits, bytes, or halfwords. Th

ese operations also test whether 

bytes or halfwords are zero. Th

ese operations would be useful in arithmetic on 8-bit 

ASCII characters. Five PA-RISC instructions provide decimal support. 

Remaining Instructions

Here are some remaining PA-RISC instructions:

■   Branch vectored shift s an index register left  three bits, adds it to a base register, and then branches to the calculated address. It is used for  case statements. 

■   Extract and  deposit instructions allow arbitrary bit fi elds to be selected from or inserted into registers. Variations include whether the extracted fi eld is 

sign-extended, whether the bit fi eld is specifi ed directly in the instruction or 

indirectly in another register, and whether the rest of the register is set to zero 

or left  unchanged. PA-RISC has 12 such instructions. 

E-36 

Appendix E  A Survey of RISC Architectures

■  To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which 

adds a left -adjusted 21-bit constant to a register and places the result in 

register 1. Th

e following data transfer instruction uses off set addressing to 

add the lower 11 bits of the address to register 1. Th

is pair of instructions 

allows PA-RISC to add a 32-bit constant to a base register, at the cost of 

changing register 1. 

■  PA-RISC has nine debug instructions that can set breakpoints on instruction 

or data addresses and return the trapped addresses. 

■   Load and  clear instructions provide a semaphore or lock that reads a value 

from memory and then writes zero. 

■   Store bytes short optimizes unaligned data moves, moving either the left most 

or the rightmost bytes in a word to the eff ective address, depending on the 

instruction options and condition code bits. 

■  Loads and stores work well with caches by having options that give hints 

about whether to load data into the cache if it’s not already in the cache. For 

example, a load with a destination of register 0 is defi ned to be a soft ware-

controlled cache prefetch. 

■ PA-RISC 2.0 extended cache hints to stores to indicate block copies, 

recommending that the processor not load data into the cache if it’s not 

already in the cache. It also can suggest that on loads and stores, there is 

spatial locality to prepare the cache for subsequent sequential accesses. 

■  PA-RISC 2.0 also provides an optional branch target stack to predict indirect 

jumps used on subroutine returns. Soft ware can suggest which addresses get 

placed on and removed from the branch target stack, but hardware controls 

whether or not these are valid. 

■   Multiply/add and  multiply/subtract are fl oating-point operations that can 

launch two independent fl oating-point operations in a single instruction in 

addition to the fused multiply/add and fused multiply/negate/add introduced 

in version 2.0 of PA-RISC. 

 E.12  Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is the conditional 

execution of instructions. Every instruction starts with a 4-bit fi eld that determines 

whether it will act as a nop or as a real instruction, depending on the condition 

codes. Hence, conditional branches are properly considered as conditionally 

executing the unconditional branch instruction. Conditional execution allows 
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avoiding a branch to jump over a single instruction. It takes less code space and 

time to simply conditionally execute one instruction. 

Th

e 12-bit immediate fi eld has a novel interpretation. Th

e eight least signifi cant 

bits are zero-extended to a 32-bit value, then rotated right the number of bits specifi ed 

in the fi rst four bits of the fi eld multiplied by two. Whether this split actually catches 

more immediates than a simple 12-bit fi eld would be an interesting study. One 

advantage is that this scheme can represent all powers of two in a 32-bit word. 

Operand shift ing is not limited to immediates. Th

e second register of all 

arithmetic and logical processing operations has the option of being shift ed before 

being operated on. Th

e shift  options are shift  left  logical, shift  right logical, shift  

right arithmetic, and rotate right. Once again, it would be interesting to see how 

oft en operations like rotate-and-add, shift -right-and-test, and so on occur in ARM 

programs. 

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture:

■   Block loads and stores—Under control of a 16-bit mask within the 

instructions, any of the 16 registers can be loaded or stored into memory 

in a single instruction. Th

ese instructions can save and restore registers on 

procedure entry and return. Th

ese instructions can also be used for block 

memory copy—off ering up to four times the bandwidth of a single register 

load-store—and today, block copies are the most important use. 

■   Reverse subtract—RSB allows the fi rst register to be subtracted from the 

immediate or shift ed register. RSC does the same thing, but includes the 

carry when calculating the diff erence. 

■   Long multiplies—Similarly to MIPS, Hi and Lo registers get the 64-bit signed 

product (SMULL) or the 64-bit unsigned prod uct (UMULL). 

■   No divide—Like the Alpha, integer divide is not supported in hardware. 

■   Conditional trap—A common extension to the MIPS core found in desktop 

RISCs (Figures E.6.1 through E.6.4), it comes for free in the conditional 

execution of all ARM instructions, including SWI. 

■   Coprocessor interface—Like many of the desktop RISCs, ARM defi nes  a 

full set of coprocessor instructions: data transfer, moves between general- 

purpose and coprocessor registers, and coprocessor operations. 

■   Floating-point architecture—Using the coprocessor interface, a fl oating-point 

architecture has been defi ned for ARM. It was implemented as the FPA10 

coprocessor. 

■   Branch and exchange instruction sets—Th

e BX instruction is the transition 

between ARM and Th

umb, using the lower 31 bits of the register to set the PC 

and the most signifi cant bit to determine if the mode is ARM (1) or Th

umb (0). 
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 E.13  Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM 

instructions to get maximum performance, with the less frequently executed ones 

using Th

umb to reduce the overall code size of the program. Since typically only a 

few procedures dominate execution time, the hope is that this hybrid gets the best 

of both worlds. 

Although Th

umb instructions are translated by the hardware into conventional 

ARM instructions for execution, there are several restrictions. First, conditional 

execution is dropped from almost all instructions. Second, only the fi rst  eight 

registers are easily available in all instructions, with the stack pointer, link register, 

and program counter used implicitly in some instructions. Th

ird, Th

umb uses a two-

operand format to save space. Fourth, the unique shift ed immediates and shift ed 

second operands have disappeared and are replaced by separate shift  instructions. 

Fift h, the addressing modes are simplifi ed. Finally, putting all instructions into 16 

bits forces many more instruction formats. 

In many ways, the simplifi ed  Th

umb architecture is more conventional than 

ARM. Here are additional changes made from ARM in going to Th

umb:

■   Drop of immediate logical instructions—Logical immediates are gone. 

■   Condition codes implicit—Rather than have condition codes set optionally, 

they are defi ned by the opcode. All ALU instructions and none of the data 

transfers set the condition codes. 

■   Hi/Lo register access—Th

e 16 ARM registers are halved into Lo registers 

and Hi registers, with the eight Hi registers including the stack pointer (SP), 

link register, and PC. Th

e Lo registers are available in all ALU operations. 

Variations of ADD, BX, CMP, and MOV also work with all combinations 

of Lo and Hi registers. SP and PC registers are also available in variations of 

data transfers and add immediates. Any other operations on the Hi registers 

require one MOV to put the value into a Lo register, perform the operation 

there, and then transfer the data back to the Hi register. 

■   Branch/call distance—Since instructions are 16 bits wide, the 8-bit conditional 

branch address is shift ed by 1 instead of by 2. Branch with link is specifi ed 

in two instructions, concatenating 11 bits from each instruction and shift ing 

them left  to form a 23-bit address to load into PC. 

■   Distance for data transfer off sets—Th

e off set is now fi ve bits for the general-

purpose registers and eight bits for SP and PC. 
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 E.14  Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to 

another register to form an address in indirect indexed addressing and PC-relative 

addressing. R0 is used to load constants to give a larger addressing range than can 

easily be fi t into the 16-bit instructions of the SuperH. R0 is also the only register 

that can be an operand for immediate versions of AND, CMP, OR, and XOR. Below 

is a list of the remaining unique details of the SuperH architecture:

■   Decrement and test—DT decrements a register and sets the T bit to 1 if the 

result is 0. 

■   Optional delayed branch—Although the other embedded RISC machines 

generally do not use delayed branches (see Appendix B), SuperH off ers 

optional delayed branch execution for BT and BF. 

■   Many multiplies—Depending on whether the operation is signed or unsigned, 

if the operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the 

proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. Th

e 

product is found in the MACL and MACH registers. 

■   Zero and sign extension—Byte or halfwords are either zero-extended (EXTU) 

or sign-extended (EXTS) within a 32-bit register. 

■   One-bit shift  amounts—Perhaps in an attempt to make them fi t within the 

16-bit instructions, shift  instructions only shift  a single bit at a time. 

■   Dynamic shift  amount—Th

ese variable shift s test the sign of the amount in a 

register to determine whether they shift  left  (positive) or shift  right (negative). 

Both logical (SHLD) and arithmetic (SHAD) instructions are supported. Th

ese 

instructions help off set the 1-bit constant shift  amounts of standard shift s. 

■   Rotate—SuperH off ers rotations by 1 bit left  (ROTL) and right (ROTR), which 

set the T bit with the value rotated, and also have variations that include the 

T bit in the rotations (ROTCL and ROTCR). 

■   SWAP—Th

is instruction swaps either the high and low bytes of a 32-bit word 

or the two bytes of the rightmost 16 bits. 

■   Extract word (XTRCT)—Th

e middle 32 bits from a pair of 32-bit registers are 

placed in another register. 

■   Negate with carry—Like SUBC (Figure E.6.6), except the fi rst operand is 0. 

■   Cache prefetch—Like many of the desktop RISCs (Figures E.6.1 through 

E.6.4), SuperH has an instruction (PREF) to prefetch data into the cache. 
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■   Test-and-set—SuperH uses the older test-and-set (TAS) instruction to 

perform atomic locks or semaphores (see Chapter 2). TAS fi rst loads a byte 

from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not 

0. Finally, it sets the most signifi cant bit of the byte to 1 and writes the result 

back to memory. 

 E.15  Instructions Unique to M32R

Th

e most unusual feature of the M32R is a slight VLIW approach to the pairs of 

16-bit instructions. A bit is reserved in the fi rst instruction of the pair to say whether 

this instruction can be executed in parallel with the next instruction— that is, the 

two instructions are independent—or if these two must be executed sequentially. 

(An earlier machine that off ered a similar option was the Intel i860.) Th

is feature is 

included for future implementations of the architecture. 

One surprise is that all branch displacements are shift ed left  2 bits before being 

added to the PC, and the lower 2 bits of the PC are set to 0. Since some instructions 

are only 16 bits long, this shift  means that a branch cannot go to any instruction 

in the program: it can only branch to instructions on word boundaries. A similar 

restriction is placed on the return address for the branch-and-link and jump-and-

link instructions: they can only return to a word boundary. Th

us, for a slightly 

larger branch distance, soft ware must ensure that all branch addresses and all 

return addresses are aligned to a word boundary. Th

e M32R code space is probably 

slightly larger, and it probably executes more nop instructions than it would if the 

branch address was only shift ed left  1 bit. 

However, the VLIW feature above means that a nop can execute in parallel with 

another 16-bit instruction so that the padding doesn’t take more clock cycles. Th

e 

code size expansion depends on the ability of the compiler to schedule code and to 

pair successive 16-bit instructions; Mitsubishi claims that code size overall is only 

7% larger than that for the Motorola 6800 architecture. 

Th

e last remaining novel feature is that the result of the divide operation is the 

remainder instead of the quotient. 

 E.16  Instructions Unique to MIPS-16

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full 

32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS 

architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). Th

e ISA 

mode bit determines the width of instructions: 0 means 32-bit-wide instructions 
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and 1 means 16-bit-wide instructions. Th

e new JALX instruction toggles the ISA 

mode bit to switch to the other ISA. JR and JALR have been redefi ned to set the ISA 

mode bit from the most signifi cant bit of the register containing the branch address, 

and this bit is not considered part of the address. All jump-and-link instructions 

save the current mode bit as the most signifi cant bit of the return address. 

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit 

instructions, but it does not support mixing the two lengths together in a single 

procedure. Th

e one exception is the JAL and JALX: these two instructions need 

32 bits even in the 16-bit mode, presumably to get a large enough address to branch 

to far procedures. 

In picking this subset, MIPS decided to include opcodes for some three-operand 

instructions and to keep 16 opcodes for 64-bit operations. Th

e combination of this 

many opcodes and operands in 16 bits led the architects to provide only eight easy-

to-use registers—just like Th

umb—whereas the other embedded RISCs off er about 

16 registers. Since the hardware must include the full 32 registers of the 32-bit 

ISA mode, MIPS-16 includes move instructions to copy values between the eight 

MIPS-16 registers and the remaining 24 registers of the full MIPS architecture. 

To reduce pressure on the eight visible registers, the stack pointer is considered 

a separate register. MIPS-16 includes a variety of separate opcodes to do data 

transfers using SP as a base register and to increment SP: LWSP, LDSP, SWSP, 

SDSP, ADJSP, DADJSP, ADDIUSPD, and DADDIUSP. 

To fi t within the 16-bit limit, immediate fi elds have generally been shortened to 

fi ve to eight bits. MIPS-16 provides a way to extend its shorter immediates into the 

full width of immediates in the 32-bit mode. Borrowing a trick from the Intel 8086, 

the EXTEND instruction is really a 16-bit prefi x that can be prepended to any MIPS-

16 instruction with an address or immediate fi eld. Th

e prefi x supplies enough bits 

to turn the 5-bit fi eld of data transfers and 5- to 8-bit fi elds of arithmetic immediates 

into 16-bit constants. Alas, there are two exceptions. ADDIU and DADDIU start with 

4-bit immediate fi elds, but since EXTEND can only supply 11 more bits, the wider 

immediate is limited to 15 bits. EXTEND also extends the 3-bit shift  fi elds into 5-bit 

fi elds for shift s. (In case you were wondering, the EXTEND prefi x does  not need to 

start on a 32-bit boundary.)

To further address the supply of constants, MIPS-16 added a new addressing 

mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shift s 

an 8-bit immediate fi eld by two or three bits, respectively, adding it to the PC with 

the lower two or three bits cleared. Th

e constant word or doubleword is then loaded 

into a register. Th

us 32-bit or 64-bit constants can be included with MIPS-16 code, 

despite the loss of LIU to set the upper register bits. Given the new addressing 

mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and 

place it in a register. 

MIPS-16 diff ers from the other embedded RISCs in that it can subset a 64-bit 

address architecture. As a result it has 16-bit instruction-length versions of 64-bit 
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data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU, 

DSUBU, DMULT/U, DDIV/U), and shift s (DSLL/V, DSRA/V, DSRL/V). 

Since MIPS plays such a prominent role in this book, we show all the additional 

changes made from the MIPS core instructions in going to MIPS-16:

■   Drop of signed arithmetic instructions—Arithmetic instructions that can trap were 

dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB. 

■   Drop of immediate logical instructions—Logical immediates are gone too: 

ANDI, ORI, XORI. 

■   Branch instructions pared down—Comparing two registers and then branching 

did not fi t, nor did all the other comparisons of a register to zero. Hence these 

instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and 

BLTZ. As mentioned in Section E.3, to help compensate MIPS-16 includes 

compare instructions to test if two registers are equal. Since compare and set 

on less than set the new T register, branches were added to test the T register. 

■   Branch distance—Since instructions are 16 bits wide, the branch address is 

shift ed by one instead of by two. 

■   Delayed branches disappear—Th

e branches take eff ect before the next 

instruction. Jumps still have a one-slot delay. 

■   Extension and distance for data transfer off sets—Th

e 5-bit and 8-bit fi elds 

are zero-extended instead of sign-extended in 32-bit mode. To get greater 

range, the immediate fi elds are shift ed left  one, two, or three bits depending 

on whether the data is halfword, word, or doubleword. If the EXTEND prefi x 

is prepended to these instructions, they use the conventional signed 16-bit 

immediate of the 32-bit mode. 

■   Extension of arithmetic immediates—Th

e 5-bit and 8-bit fi elds are zero-

extended for set on less than and compare instructions, for forming a PC-

relative address, and for adding to SP and placing the result in a register 

(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefi x is prepended to 

these instructions, they use the conventional signed 16-bit immediate of the 

32-bit mode. Th


ey are still sign-extended for general adds and for adding to 

SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density 

and orthogonality are strange bedfellows in MIPS-16! 

■   Redefi ning shift  amount of 0—MIPS-16 defi nes the value 0 in the 3-bit shift  

fi eld to mean a shift  of 8 bits. 

■   New instructions added due to loss of register 0 as zero—Load immediate, 

negate, and not were added, since these operations could no longer be 

synthesized from other instructions using r0 as a source. 

 E.17 

Concluding 

Remarks 
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 E.17 Concluding 

Remarks

Th

is appendix covers the addressing modes, instruction formats, and all instructions 

found in ten RISC architectures. Although the later sections of the appendix 

concentrate on the diff erences, it would not be possible to cover ten architectures in 

these few pages if there were not so many similarities. In fact, we would guess that 

more than 90% of the instructions executed for any of these architectures would 

be found in Figures E.3.5 through E.3.11. To contrast this homogeneity, Figure 

E.17.1 gives a summary for four architectures from the 1970s in a format similar 

to that shown in Figure E.1.1. (Imagine trying to write a single chapter in this style 

for those architectures!) In the history of computing, there has never been such 

widespread agreement on computer architecture. 

IBM 360/370 

Intel 8086 

Motorola 68000 

DEC VAX 

Date announced 

1964/1970 

1978 

1980 

1977 

Instruction size(s) (bits) 

16, 32, 48 

8, 16, 24, 32, 40, 48 

16, 32, 48, 64, 80 

8, 16, 24, 32, . . . ,  432 
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24 bits, fl at/31 bits, 
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IEEE 754 single, 
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FIGURE E.17.1  Summary of four 1970s architectures.  Unlike the architectures in Figure E.1.1, there is little agreement between these architectures in any category. 

Th

is style of architecture cannot remain static, however. Like people, instruction 

sets tend to get bigger as they get older. Figure E.17.2 shows the genealogy of these 

instruction sets, and Figure E.17.3 shows which features were added to or deleted 

from generations of desktop RISCs over time. 

As you can see, all the desktop RISC machines have evolved to 64-bit address 

architectures, and they have done so fairly painlessly. 
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1960

CDC 6600

1963

1965

1970

IBM ASC 1968

1975

IBM 801

Cray-1

1975

1976

1980

Berkeley RISC-1 Stanford MIPS

1981

1982

America

ARM1

1985

1985

1985

MIPS I

PA-RISC

RT/PC

1986

1986

1986

ARM2

SPARCv8

1987

1987

MIPS II Digital PRISM

1989

1988

1990

ARM3

PA-RISC 1.1

Power1

SuperH

1990

MIPS III

Alpha

1990

1990

1992

1992

1992

SPARCv9

MIPS IV

1995

Thumb ARMv4

Power2 PowerPC

1994

1994

1993

1993

M32R 1995

1995

MIPS-16

MIPS V

Alphav3

PA-RISC 2.0

1997

1996

1996

1996

1996

2000

2002

MIPS-32

MIPS-64

2002

2002

FIGURE E.17.2  The lineage of RISC instruction sets.  Commercial machines are shown in plain text and research machines in bold. Th

e CDC 6600 and Cray-1 were load-store machines with register 0 fi xed at 0, and with separate integer and fl oating-point registers. 

Instructions could not cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801 

leading to the unsuccessful RT/PC and America leading to the successful Power architecture. Some people who worked on the 801 later joined Hewlett-Packard to work on the PA-RISC. Th

e two university projects were the basis of MIPS and SPARC machines. According to 

Furber [1996], the Berkeley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips. (Th ere are no ARMv4 and 

ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC microprocessor in 1988 but did not introduce it. 

Instead, DEC shipped workstations using MIPS microprocessors for three years before they brought out their own RISC instruction set, Alpha 21064, which is very similar to MIPS III and PRISM. Th

e Alpha architecture has had small extensions, but they have not been formalized with 

version numbers; we used version 3 because that is the version of the reference manual. Th

e Alpha 21164A chip added byte and halfword loads 

and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Digital names chips aft er the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264). “EV” stands for “extended VAX.” 
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per-block shared memory, C-58

for memory instructions, 256

memory hierarchy, challenges, 460

plus-reduction implementation, C-63

for MIPS architecture, 257

pipelining instruction sets, 277

programs, C-6, C-24

in operation for branch-on-equal 
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defi ned, C-5
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Instruction fetch stage

comparison, A-57–59

thread, C-30–31

control line, 300

conditional branch, 90

Th

umb, E-38

load instruction, 289

conditional move, 324

trap, A-64–66

store instruction, 294

constant-manipulating, A-57
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defi ned, 22, 52
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