

 In Praise of Computer Organization and Design: The Hardware/

 Software Interface, Fifth Edition

“Textbook selection is oft en a frustrating act of compromise—pedagogy, content

coverage, quality of exposition, level of rigor, cost. Computer Organization and

 Design is the rare book that hits all the right notes across the board, without

compromise. It is not only the premier computer organization textbook, it is a

shining example of what all computer science textbooks could and should be.”

—Michael Goldweber, Xavier University

“I have been using Computer Organization and Design for years, from the very

fi rst edition. Th

e new Fift h Edition is yet another outstanding improvement on an

already classic text. Th

e evolution from desktop computing to mobile computing

to Big Data brings new coverage of embedded processors such as the ARM, new

material on how soft ware and hardware interact to increase performance, and

cloud computing. All this without sacrifi cing the fundamentals.”

—Ed Harcourt, St. Lawrence University

“To Millennials: Computer Organization and Design is the computer architecture book you should keep on your (virtual) bookshelf. Th

e book is both old and new,

because it develops venerable principles—Moore's Law, abstraction, common case

fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates

them with contemporary designs, e.g., ARM Cortex A8 and Intel Core i7.”

—Mark D. Hill, University of Wisconsin-Madison

“Th

e new edition of Computer Organization and Design keeps pace with advances

in emerging embedded and many-core (GPU) systems, where tablets and

smartphones will are quickly becoming our new desktops. Th

is text acknowledges

these changes, but continues to provide a rich foundation of the fundamentals

in computer organization and design which will be needed for the designers of

hardware and soft ware that power this new class of devices and systems.”

—Dave Kaeli, Northeastern University

“Th

e Fift h Edition of Computer Organization and Design provides more than an

introduction to computer architecture. It prepares the reader for the changes necessary

to meet the ever-increasing performance needs of mobile systems and big data

processing at a time that diffi

culties in semiconductor scaling are making all systems

power constrained. In this new era for computing, hardware and soft ware must be co-

designed and system-level architecture is as critical as component-level optimizations.”

—Christos Kozyrakis, Stanford University

“Patterson and Hennessy brilliantly address the issues in ever-changing computer

hardware architectures, emphasizing on interactions among hardware and soft ware

components at various abstraction levels. By interspersing I/O and parallelism concepts

with a variety of mechanisms in hardware and soft ware throughout the book, the new

edition achieves an excellent holistic presentation of computer architecture for the

PostPC era. Th

is book is an essential guide to hardware and soft ware professionals

facing energy effi

ciency and parallelization challenges in Tablet PC to cloud computing.”

—Jae C. Oh, Syracuse University

This page intentionally left blank

 F

I

F

T

H

E

D

I

T

I

O

N

 Computer Organization and Design

 T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

 David A. Patterson has been teaching computer architecture at the University of California, Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair

of Computer Science. His teaching has been honored by the Distinguished Teaching

Award from the University of California, the Karlstrom Award from ACM, and the

Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson

received the IEEE Technical Achievement Award and the ACM Eckert-Mauchly Award

for contributions to RISC, and he shared the IEEE Johnson Information Storage Award

for contributions to RAID. He also shared the IEEE John von Neumann Medal and

the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of the

American Academy of Arts and Sciences, the Computer History Museum, ACM,

and IEEE, and he was elected to the National Academy of Engineering, the National

Academy of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on

the Information Technology Advisory Committee to the U.S. President, as chair of the

CS division in the Berkeley EECS department, as chair of the Computing Research

Association, and as President of ACM. Th

is record led to Distinguished Service Awards

from ACM and CRA.

At Berkeley, Patterson led the design and implementation of RISC I, likely the fi rst

VLSI reduced instruction set computer, and the foundation of the commercial

SPARC architecture. He was a leader of the Redundant Arrays of Inexpensive Disks

(RAID) project, which led to dependable storage systems from many companies.

He was also involved in the Network of Workstations (NOW) project, which led to

cluster technology used by Internet companies and later to cloud computing. Th

ese

projects earned three dissertation awards from ACM. His current research projects

are Algorithm-Machine-People and Algorithms and Specializers for Provably Optimal

Implementations with Resilience and Effi

ciency. Th

e AMP Lab is developing scalable

machine learning algorithms, warehouse-scale-computer-friendly programming

models, and crowd-sourcing tools to gain valuable insights quickly from big data in

the cloud. Th

e ASPIRE Lab uses deep hardware and soft ware co-tuning to achieve the

highest possible performance and energy effi

ciency for mobile and rack computing

systems.

 John L. Hennessy is the tenth president of Stanford University, where he has been

a member of the faculty since 1977 in the departments of electrical engineering and

computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the

National Academy of Engineering, the National Academy of Science, and the American

Philosophical Society; and a Fellow of the American Academy of Arts and Sciences.

Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to

RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000

John von Neumann Award, which he shared with David Patterson. He has also received

seven honorary doctorates.

In 1981, he started the MIPS project at Stanford with a handful of graduate students.

Aft er completing the project in 1984, he took a leave from the university to cofound

MIPS Computer Systems (now MIPS Technologies), which developed one of the fi rst

commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have

been shipped in devices ranging from video games and palmtop computers to laser printers

and network switches. Hennessy subsequently led the DASH (Director Architecture

for Shared Memory) project, which prototyped the fi rst scalable cache coherent

multiprocessor; many of the key ideas have been adopted in modern multiprocessors.

In addition to his technical activities and university responsibilities, he has continued to

work with numerous start-ups both as an early-stage advisor and an investor.

 F

I

F

T

H

E

D

I

T

I

O

N

 Computer Organization and Design

 T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

 David A. Patterson

University of California, Berkeley

 John L. Hennessy

Stanford University

With contributions by

David Kaeli

Kevin Lim

Perry Alexander

Northeastern University

Hewlett-Packard

Th

e University of Kansas

Nicole Kaiyan

John Nickolls

Peter J. Ashenden

University of Adelaide

NVIDIA

Ashenden Designs Pty Ltd

David Kirk

John Oliver

Jason D. Bakos

NVIDIA

Cal Poly, San Luis Obispo

University of South Carolina

James R. Larus

Milos Prvulovic

Javier Bruguera

School of Computer and

Georgia Tech

Universidade de Santiago de Compostela

Communications Science at EPFL

Partha Ranganathan

Jacob Leverich

Jichuan Chang

Hewlett-Packard

Hewlett-Packard

Hewlett-Packard

Matthew Farrens

University of California, Davis

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

 Acquiring Editor: Todd Green

 Development Editor: Nate McFadden

 Project Manager: Lisa Jones

 Designer: Russell Purdy

Morgan Kaufmann is an imprint of Elsevier

Th

e Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB

225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2014 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

Th

is book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this fi eld are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the publisher nor the authors, contributors, or editors, assume any liability for any injury and/

or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

 Library of Congress Cataloging-in-Publication Data

Patterson, David A.

Computer organization and design: the hardware/soft ware interface/David A. Patterson, John L. Hennessy. — 5th ed.

p. cm. — (Th

e Morgan Kaufmann series in computer architecture and design)

Rev. ed. of: Computer organization and design/John L. Hennessy, David A. Patterson. 1998.

Summary: “Presents the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining, memory hierarchies and I/O”— Provided by publisher.

ISBN 978-0-12-407726-3 (pbk.)

1. Computer organization. 2. Computer engineering. 3. Computer interfaces. I. Hennessy, John L. II. Hennessy, John L. Computer organization and design. III. Title.

 British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-407726-3

For information on all MK publications visit our

website at www.mkp.com

Printed and bound in the United States of America

13 14 15 16 10 9 8 7 6 5 4 3 2 1

 To Linda,

 who has been, is, and always will be the love of my life

 A C K N O W L E D G M E N T S

Figure 1.10.4 Courtesy of Cray Inc.

Figures 1.7, 1.8 Courtesy of iFixit (www.ifi xit.com).

Figure 1.10.5 Courtesy of Apple Computer, Inc.

Figure 1.9 Courtesy of Chipworks (www.chipworks.com).

Figure 1.10.6 Courtesy of the Computer History Museum.

Figure 1.13 Courtesy of Intel.

Figures 5.17.1, 5.17.2 Courtesy of Museum of Science, Boston.

Figures 1.10.1, 1.10.2, 4.15.2 Courtesy of the Charles Babbage

Institute, University of Minnesota Libraries, Minneapolis.

Figure 5.17.4 Courtesy of MIPS Technologies, Inc.

Figures 1.10.3, 4.15.1, 4.15.3, 5.12.3, 6.14.2 Courtesy of IBM.

Figure 6.15.1 Courtesy of NASA Ames Research Center.

Contents

Preface xv

C H A P T E R S

1

Computer Abstractions and Technology 2

1.1 Introduction 3

1.2 Eight Great Ideas in Computer Architecture 11

1.3 Below Your Program 13

1.4 Under the Covers 16

1.5 Technologies for Building Processors and Memory 24

1.6 Performance 28

1.7 Th

e Power Wall 40

1.8

Th

e Sea Change: Th

e Switch from Uniprocessors to

Multiprocessors 43

1.9 Real

Stuff : Benchmarking the Intel Core i7 46

1.10 Fallacies and Pitfalls 49

1.11 Concluding

Remarks 52

1.12 Historical Perspective and Further Reading 54

1.13 Exercises 54

2

Instructions: Language of the Computer 60

2.1 Introduction 62

2.2 Operations of the Computer Hardware 63

2.3 Operands of the Computer Hardware 66

2.4 Signed and Unsigned Numbers 73

2.5 Representing Instructions in the Computer 80

2.6 Logical

Operations 87

2.7 Instructions for Making Decisions 90

2.8 Supporting Procedures in Computer Hardware 96

2.9 Communicating with People 106

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 111

2.11 Parallelism and Instructions: Synchronization 121

2.12 Translating and Starting a Program 123

2.13 A C Sort Example to Put It All Together 132

2.14 Arrays versus Pointers 141

x Contents

2.15 Advanced Material: Compiling C and Interpreting Java 145

2.16 Real

Stuff : ARMv7 (32-bit) Instructions 145

2.17 Real

Stuff : x86 Instructions 149

2.18 Real

Stuff : ARMv8 (64-bit) Instructions 158

2.19 Fallacies and Pitfalls 159

2.20 Concluding

Remarks 161

2.21 Historical Perspective and Further Reading 163

2.22 Exercises 164

3

Arithmetic for Computers 176

3.1 Introduction 178

3.2 Addition and Subtraction 178

3.3 Multiplication 183

3.4 Division 189

3.5 Floating

Point 196

3.6 Parallelism and Computer Arithmetic: Subword Parallelism 222

3.7

Real

Stuff : Streaming SIMD Extensions and Advanced Vector

Extensions in x86 224

3.8 Going Faster: Subword Parallelism and Matrix Multiply 225

3.9 Fallacies and Pitfalls 229

3.10 Concluding

Remarks 232

3.11 Historical Perspective and Further Reading 236

3.12 Exercises 237

4

The Processor 242

4.1 Introduction 244

4.2 Logic Design Conventions 248

4.3 Building a Datapath 251

4.4 A Simple Implementation Scheme 259

4.5 An Overview of Pipelining 272

4.6 Pipelined Datapath and Control 286

4.7 Data Hazards: Forwarding versus Stalling 303

4.8 Control

Hazards 316

4.9 Exceptions 325

4.10 Parallelism via Instructions 332

4.11 Real

Stuff : Th

e ARM Cortex-A8 and Intel Core i7 Pipelines 344

4.12 Going Faster: Instruction-Level Parallelism and Matrix

Multiply 351

4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware

Design Language to Describe and Model a Pipeline and More Pipelining

Illustrations 354

Contents

xi

4.14 Fallacies and Pitfalls 355

4.15 Concluding

Remarks 356

4.16 Historical Perspective and Further Reading 357

4.17 Exercises 357

5

Large and Fast: Exploiting Memory Hierarchy 372

5.1 Introduction 374

5.2 Memory

Technologies 378

5.3 Th

e Basics of Caches 383

5.4 Measuring and Improving Cache Performance 398

5.5 Dependable Memory Hierarchy 418

5.6 Virtual

Machines 424

5.7 Virtual

Memory 427

5.8 A Common Framework for Memory Hierarchy 454

5.9 Using a Finite-State Machine to Control a Simple Cache 461

5.10 Parallelism and Memory Hierarchies: Cache Coherence 466

5.11 Parallelism and Memory Hierarchy: Redundant Arrays of

Inexpensive Disks 470

5.12 Advanced Material: Implementing Cache Controllers 470

5.13

Real

Stuff : Th

e ARM Cortex-A8 and Intel Core i7 Memory

Hierarchies 471

5.14 Going Faster: Cache Blocking and Matrix Multiply 475

5.15 Fallacies and Pitfalls 478

5.16 Concluding

Remarks 482

5.17 Historical Perspective and Further Reading 483

5.18 Exercises 483

6

Parallel Processors from Client to Cloud 500

6.1 Introduction 502

6.2 Th

e Diffi

culty of Creating Parallel Processing Programs 504

6.3 SISD, MIMD, SIMD, SPMD, and Vector 509

6.4 Hardware

Multithreading 516

6.5 Multicore and Other Shared Memory Multiprocessors 519

6.6 Introduction to Graphics Processing Units 524

6.7 Clusters, Warehouse Scale Computers, and Other

Message-Passing Multiprocessors 531

6.8 Introduction to Multiprocessor Network Topologies 536

6.9 Communicating to the Outside World: Cluster Networking 539

6.10 Multiprocessor Benchmarks and Performance Models 540

6.11

Real

Stuff : Benchmarking Intel Core i7 versus NVIDIA Tesla

GPU 550

xii Contents

6.12 Going Faster: Multiple Processors and Matrix Multiply 555

6.13 Fallacies and Pitfalls 558

6.14 Concluding

Remarks 560

6.15 Historical Perspective and Further Reading 563

6.16 Exercises 563

A P P E N D I C E S

A

Assemblers, Linkers, and the SPIM Simulator A-2

A.1 Introduction A-3

A.2 Assemblers A-10

A.3 Linkers A-18

A.4 Loading A-19

A.5 Memory

Usage A-20

A.6 Procedure Call Convention A-22

A.7 Exceptions and Interrupts A-33

A.8 Input and Output A-38

A.9 SPIM A-40

A.10 MIPS R2000 Assembly Language A-45

A.11 Concluding Remarks A-81

A.12 Exercises A-82

B

The Basics of Logic Design B-2

B.1 Introduction B-3

B.2 Gates, Truth Tables, and Logic Equations B-4

B.3 Combinational

Logic B-9

B.4 Using a Hardware Description Language B-20

B.5 Constructing a Basic Arithmetic Logic Unit B-26

B.6 Faster Addition: Carry Lookahead B-38

B.7 Clocks B-48

B.8 Memory Elements: Flip-Flops, Latches, and Registers B-50

B.9 Memory Elements: SRAMs and DRAMs B-58

B.10 Finite-State Machines B-67

B.11 Timing Methodologies B-72

B.12 Field Programmable Devices B-78

B.13 Concluding Remarks B-79

B.14 Exercises B-80

Index I-1

Contents

xiii

O N L I N E C O N T E N T

C

Graphics and Computing GPUs C-2

C.1 Introduction C-3

C.2 GPU System Architectures C-7

C.3 Programming

GPUs C-12

C.4 Multithreaded Multiprocessor Architecture C-25

C.5 Parallel Memory System C-36

C.6 Floating Point Arithmetic C-41

C.7 Real

Stuff : Th

e NVIDIA GeForce 8800 C-46

C.8 Real

Stuff : Mapping Applications to GPUs C-55

C.9 Fallacies and Pitfalls C-72

C.10 Concluding Remarks C-76

C.11 Historical Perspective and Further Reading C-77

D

Mapping Control to Hardware D-2

D.1 Introduction D-3

D.2 Implementing Combinational Control Units D-4

D.3 Implementing Finite-State Machine Control D-8

D.4 Implementing the Next-State Function with a Sequencer D-22

D.5 Translating a Microprogram to Hardware D-28

D.6 Concluding

Remarks D-32

D.7 Exercises D-33

 A Survey of RISC Architectures for Desktop, Server,

E

and Embedded Computers E-2

E.1 Introduction E-3

E.2 Addressing Modes and Instruction Formats E-5

E.3 Instructions:

Th

e MIPS Core Subset E-9

E.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs E-16

E.5 Instructions: Digital Signal-Processing Extensions of the Embedded

RISCs E-19

E.6 Instructions: Common Extensions to MIPS Core E-20

E.7 Instructions Unique to MIPS-64 E-25

E.8 Instructions Unique to Alpha E-27

E.9 Instructions Unique to SPARC v9 E-29

E.10 Instructions Unique to PowerPC E-32

E.11 Instructions Unique to PA-RISC 2.0 E-34

E.12 Instructions Unique to ARM E-36

E.13 Instructions Unique to Th

umb E-38

E.14 Instructions Unique to SuperH E-39

xiv Contents

E.15 Instructions Unique to M32R E-40

E.16 Instructions Unique to MIPS-16 E-40

E.17 Concluding Remarks E-43

Glossary G-1

Further Reading FR-1

 Preface

 Th

 e most beautiful thing we can experience is the mysterious. It is the

 source of all true art and science.

 Albert Einstein , What I Believe, 1930

 About This Book

We believe that learning in computer science and engineering should refl ect

the current state of the fi eld, as well as introduce the principles that are shaping

computing. We also feel that readers in every specialty of computing need

to appreciate the organizational paradigms that determine the capabilities,

performance, energy, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing

specialty to understand both hardware and soft ware. Th

e interaction between

hardware and soft ware at a variety of levels also off ers a framework for understanding

the fundamentals of computing. Whether your primary interest is hardware or

soft ware, computer science or electrical engineering, the central ideas in computer

organization and design are the same. Th

us, our emphasis in this book is to show

the relationship between hardware and soft ware and to focus on the concepts that

are the basis for current computers.

Th

e recent switch from uniprocessor to multicore microprocessors confi rmed

the soundness of this perspective, given since the fi rst edition. While programmers

could ignore the advice and rely on computer architects, compiler writers, and silicon

engineers to make their programs run faster or be more energy-effi

cient without

change, that era is over. For programs to run faster, they must become parallel.

While the goal of many researchers is to make it possible for programmers to be

unaware of the underlying parallel nature of the hardware they are programming,

it will take many years to realize this vision. Our view is that for at least the next

decade, most programmers are going to have to understand the hardware/soft ware

interface if they want programs to run effi

ciently on parallel computers.

Th

e audience for this book includes those with little experience in assembly

language or logic design who need to understand basic computer organization as

well as readers with backgrounds in assembly language and/or logic design who

want to learn how to design a computer or understand how a system works and

why it performs as it does.

xvi Preface

 About the Other Book

Some readers may be familiar with

 Computer Architecture: A Quantitative

 Approach , popularly known as Hennessy and Patterson. (Th

is book in turn is

oft en called Patterson and Hennessy.) Our motivation in writing the earlier book

was to describe the principles of computer architecture using solid engineering

fundamentals and quantitative cost/performance tradeoff s. We used an approach

that combined examples and measurements, based on commercial systems, to

create realistic design experiences. Our goal was to demonstrate that computer

architecture could be learned using quantitative methodologies instead of a

descriptive approach. It was intended for the serious computing professional who

wanted a detailed understanding of computers.

A majority of the readers for this book do not plan to become computer

architects. Th

e performance and energy effi

ciency of future soft ware systems will

be dramatically aff ected, however, by how well soft ware designers understand the

basic hardware techniques at work in a system. Th

us, compiler writers, operating

system designers, database programmers, and most other soft ware engineers need

a fi rm grounding in the principles presented in this book. Similarly, hardware

designers must understand clearly the eff ects of their work on soft ware applications.

Th

us, we knew that this book had to be much more than a subset of the material

in Computer Architecture , and the material was extensively revised to match the

diff erent audience. We were so happy with the result that the subsequent editions of

 Computer Architecture were revised to remove most of the introductory material;

hence, there is much less overlap today than with the fi rst editions of both books.

 Changes for the Fifth Edition

We had six major goals for the fi ft h edition of Computer Organization and Design:

demonstrate the importance of understanding hardware with a running example;

highlight major themes across the topics using margin icons that are introduced

early; update examples to refl ect changeover from PC era to PostPC era; spread the

material on I/O throughout the book rather than isolating it into a single chapter;

update the technical content to refl ect changes in the industry since the publication

of the fourth edition in 2009; and put appendices and optional sections online

instead of including a CD to lower costs and to make this edition viable as an

electronic book.

Before discussing the goals in detail, let’s look at the table on the next page. It

shows the hardware and soft ware paths through the material. Chapters 1, 4, 5, and

6 are found on both paths, no matter what the experience or the focus. Chapter 1

discusses the importance of energy and how it motivates the switch from single

core to multicore microprocessors and introduces the eight great ideas in computer

architecture. Chapter 2 is likely to be review material for the hardware-oriented,

but it is essential reading for the soft ware-oriented, especially for those readers

interested in learning more about compilers and object-oriented programming

languages. Chapter 3 is for readers interested in constructing a datapath or in

Preface

xvii

 Chapter or Appendix

 Sections

 Software focus

 Hardware focus

1. Computer Abstractions

1.1 to 1.11

and Technology

1.12 (History)

2.1 to 2.14

2. Instructions: Language

2.15 (Compilers & Java)

of the Computer

2.16 to 2.20

2.21 (History)

E. RISC Instruction-Set Architectures

E.1 to E.17

3.1 to 3.5

3.6 to 3.8 (Subword Parallelism)

3. Arithmetic for Computers

3.9 to 3.10 (Fallacies)

3.11 (History)

B. The Basics of Logic Design

B.1 to B.13

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4. The Processor

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.12 (Parallel, Real Stuff)

4.13 (Verilog Pipeline Control)

4.14 to 4.15 (Fallacies)

4.16 (History)

D. Mapping Control to Hardware

D.1 to D.6

5.1 to 5.10

5.11 (Redundant Arrays of

Inexpensive Disks)

5. Large and Fast: Exploiting

Memory Hierarchy

5.12 (Verilog Cache Controller)

5.13 to 5.16

5.17 (History)

6.1 to 6.8

6. Parallel Process from Client

6.9 (Networks)

to Cloud

6.10 to 6.14

6.15 (History)

A. Assemblers, Linkers, and

A.1 to A.11

the SPIM Simulator

C. Graphics Processor Units

C.1 to C.13

Read carefully

Read if have time

Reference

Review or read

Read for culture

xviii Preface

learning more about fl oating-point arithmetic. Some will skip parts of Chapter 3,

either because they don’t need them or because they off er a review. However, we

introduce the running example of matrix multiply in this chapter, showing how

subword parallels off ers a fourfold improvement, so don’t skip sections 3.6 to 3.8.

Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews

and Section 4.12 gives the next performance boost for matrix multiply for those with

a soft ware focus. Th

ose with a hardware focus, however, will fi nd that this chapter

presents core material; they may also, depending on their background, want to read

Appendix C on logic design fi rst. Th

e last chapter on multicores, multiprocessors,

and clusters, is mostly new content and should be read by everyone. It was

signifi cantly reorganized in this edition to make the fl ow of ideas more natural

and to include much more depth on GPUs, warehouse scale computers, and the

hardware-soft ware interface of network interface cards that are key to clusters.

Th

e fi rst of the six goals for this fi rth edition was to demonstrate the importance

of understanding modern hardware to get good performance and energy effi

ciency

with a concrete example. As mentioned above, we start with subword parallelism

in Chapter 3 to improve matrix multiply by a factor of 4. We double performance

in Chapter 4 by unrolling the loop to demonstrate the value of instruction level

parallelism. Chapter 5 doubles performance again by optimizing for caches using

blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by

using thread-level parallelism. All four optimizations in total add just 24 lines of C

code to our initial matrix multiply example.

Th

e second goal was to help readers separate the forest from the trees by

identifying eight great ideas of computer architecture early and then pointing out

all the places they occur throughout the rest of the book. We use (hopefully) easy

to remember margin icons and highlight the corresponding word in the text to

remind readers of these eight themes. Th

ere are nearly 100 citations in the book.

No chapter has less than seven examples of great ideas, and no idea is cited less than

fi ve times. Performance via parallelism, pipelining, and prediction are the three

most popular great ideas, followed closely by Moore’s Law. Th

e processor chapter

(4) is the one with the most examples, which is not a surprise since it probably

received the most attention from computer architects. Th

e one great idea found in

every chapter is performance via parallelism, which is a pleasant observation given

the recent emphasis in parallelism in the fi eld and in editions of this book.

Th

e third goal was to recognize the generation change in computing from the

PC era to the PostPC era by this edition with our examples and material. Th

us,

Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6

describes the computing infrastructure of the cloud. We also feature the ARM,

which is the instruction set of choice in the personal mobile devices of the PostPC

era, as well as the x86 instruction set that dominated the PC Era and (so far)

dominates cloud computing.

Th

e fourth goal was to spread the I/O material throughout the book rather

than have it in its own chapter, much as we spread parallelism throughout all the

chapters in the fourth edition. Hence, I/O material in this edition can be found in

Preface

xix

Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. Th

e thought is that readers (and instructors)

are more likely to cover I/O if it’s not segregated to its own chapter.

Th

is is a fast-moving fi eld, and, as is always the case for our new editions, an

important goal is to update the technical content. Th

e running example is the ARM

Cortex A8 and the Intel Core i7, refl ecting our PostPC Era. Other highlights include

an overview the new 64-bit instruction set of ARMv8, a tutorial on GPUs that

explains their unique terminology, more depth on the warehouse scale computers

that make up the cloud, and a deep dive into 10 Gigabyte Ethernet cards.

To keep the main book short and compatible with electronic books, we placed

the optional material as online appendices instead of on a companion CD as in

prior editions.

Finally, we updated all the exercises in the book.

While some elements changed, we have preserved useful book elements from

prior editions. To make the book work better as a reference, we still place defi nitions

of new terms in the margins at their fi rst occurrence. Th

e book element called

“Understanding Program Performance” sections helps readers understand the

performance of their programs and how to improve it, just as the “Hardware/Soft ware

Interface” book element helped readers understand the tradeoff s at this interface.

“Th

e Big Picture” section remains so that the reader sees the forest despite all the

trees. “Check Yourself ” sections help readers to confi rm their comprehension of the

material on the fi rst time through with answers provided at the end of each chapter.

Th

is edition still includes the green MIPS reference card, which was inspired by the

“Green Card” of the IBM System/360. Th

is card has been updated and should be a

handy reference when writing MIPS assembly language programs.

 Changes for the Fifth Edition

We have collected a great deal of material to help instructors teach courses using

this book. Solutions to exercises, fi gures from the book, lecture slides, and other

materials are available to adopters from the publisher. Check the publisher’s Web

site for more information:

 textbooks.elsevier.com/9780124077263

 Concluding Remarks

If you read the following acknowledgments section, you will see that we went to

great lengths to correct mistakes. Since a book goes through many printings, we

have the opportunity to make even more corrections. If you uncover any remaining,

resilient bugs, please contact the publisher by electronic mail at cod5bugs@mkp.

 com or by low-tech mail using the address found on the copyright page.

Th

is edition is the second break in the long-standing collaboration between

Hennessy and Patterson, which started in 1989. Th

e demands of running one of

the world’s great universities meant that President Hennessy could no longer make

the substantial commitment to create a new edition. Th

e remaining author felt

xx Preface

once again like a tightrope walker without a safety net. Hence, the people in the

acknowledgments and Berkeley colleagues played an even larger role in shaping

the contents of this book. Nevertheless, this time around there is only one author

to blame for the new material in what you are about to read.

 Acknowledgments for the Fifth Edition

With every edition of this book, we are very fortunate to receive help from many

readers, reviewers, and contributors. Each of these people has helped to make this

book better.

Chapter 6 was so extensively revised that we did a separate review for ideas and

contents, and I made changes based on the feedback from every reviewer. I’d like to

thank Christos Kozyrakis of Stanford University for suggesting using the network

interface for clusters to demonstrate the hardware-soft ware interface of I/O and

for suggestions on organizing the rest of the chapter; Mario Flagsilk of Stanford

University for providing details, diagrams, and performance measurements of the

NetFPGA NIC; and the following for suggestions on how to improve the chapter:

David Kaeli

of Northeastern University,

Partha Ranganathan

of HP Labs,

David Wood of the University of Wisconsin, and my Berkeley colleagues Siamak

Faridani , Shoaib Kamil , Yunsup Lee , Zhangxi Tan , and Andrew Waterman .

Special thanks goes to Rimas Avizenis of UC Berkeley, who developed the

various versions of matrix multiply and supplied the performance numbers as well.

As I worked with his father while I was a graduate student at UCLA, it was a nice

symmetry to work with Rimas at UCB.

I also wish to thank my longtime collaborator Randy Katz of UC Berkeley, who

helped develop the concept of great ideas in computer architecture as part of the

extensive revision of an undergraduate class that we did together.

I’d like to thank David Kirk , John Nickolls , and their colleagues at NVIDIA

(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm,

Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov)

for writing the fi rst in-depth appendix on GPUs. I’d like to express again my

appreciation to Jim Larus , recently named Dean of the School of Computer and

Communications Science at EPFL, for his willingness in contributing his expertise

on assembly language programming, as well as for welcoming readers of this book

with regard to using the simulator he developed and maintains.

I am also very grateful to Jason Bakos of the University of South Carolina,

who updated and created new exercises for this edition, working from originals

prepared for the fourth edition by Perry Alexander (Th

e University of Kansas);

Javier Bruguera (Universidade de Santiago de Compostela); Matthew Farrens

(University of California, Davis); David Kaeli (Northeastern University); Nicole

Kaiyan (University of Adelaide); John Oliver (Cal Poly, San Luis Obispo); Milos Prvulovic (Georgia Tech); and Jichuan Chang , Jacob Leverich , Kevin Lim , and Partha Ranganathan (all from Hewlett-Packard).

Additional thanks goes to Jason Bakos for developing the new lecture slides.

Preface

xxi

I am grateful to the many instructors who have answered the publisher’s surveys,

reviewed our proposals, and attended focus groups to analyze and respond to our

plans for this edition. Th

ey include the following individuals: Focus Groups in

2012: Bruce Barton (Suff olk County Community College), Jeff Braun (Montana

Tech), Ed Gehringer (North Carolina State), Michael Goldweber (Xavier University),

Ed Harcourt (St. Lawrence University), Mark Hill (University of Wisconsin,

Madison), Patrick Homer (University of Arizona), Norm Jouppi (HP Labs), Dave

Kaeli (Northeastern University), Christos Kozyrakis (Stanford University),

Zachary Kurmas (Grand Valley State University), Jae C. Oh (Syracuse University),

Lu Peng (LSU), Milos Prvulovic (Georgia Tech), Partha Ranganathan (HP

Labs), David Wood (University of Wisconsin), Craig Zilles (University of Illinois

at Urbana-Champaign). Surveys and Reviews: Mahmoud Abou-Nasr (Wayne State

University), Perry Alexander (Th

e University of Kansas), Hakan Aydin (George

Mason University), Hussein Badr (State University of New York at Stony Brook),

Mac Baker (Virginia Military Institute), Ron Barnes (George Mason University),

Douglas Blough (Georgia Institute of Technology), Kevin Bolding (Seattle Pacifi c

University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster

College), Jeff Braun (Montana Tech), Tom Briggs (Shippensburg University), Scott

Burgess (Humboldt State University), Fazli Can (Bilkent University), Warren R.

Carithers (Rochester Institute of Technology), Bruce Carlton (Mesa Community

College), Nicholas Carter (University of Illinois at Urbana-Champaign), Anthony

Cocchi (Th

e City University of New York), Don Cooley (Utah State University),

Robert D. Cupper (Allegheny College), Edward W. Davis (North Carolina State

University), Nathaniel J. Davis (Air Force Institute of Technology), Molisa Derk

(Oklahoma City University), Derek Eager (University of Saskatchewan), Ernest

Ferguson (Northwest Missouri State University), Rhonda Kay Gaede (Th

e University

of Alabama), Etienne M. Gagnon (UQAM), Costa Gerousis (Christopher Newport

University), Paul Gillard (Memorial University of Newfoundland), Michael

Goldweber (Xavier University), Georgia Grant (College of San Mateo), Merrill Hall

(Th

e Master’s College), Tyson Hall (Southern Adventist University), Ed Harcourt

(St. Lawrence University), Justin E. Harlow (University of South Florida), Paul F.

Hemler (Hampden-Sydney College), Martin Herbordt (Boston University), Steve

J. Hodges (Cabrillo College), Kenneth Hopkinson (Cornell University), Dalton

Hunkins (St. Bonaventure University), Baback Izadi (State University of New

York—New Paltz), Reza Jafari, Robert W. Johnson (Colorado Technical University),

Bharat Joshi (University of North Carolina, Charlotte), Nagarajan Kandasamy

(Drexel University), Rajiv Kapadia, Ryan Kastner (University of California,

Santa Barbara), E.J. Kim (Texas A&M University), Jihong Kim (Seoul National

University), Jim Kirk (Union University), Geoff rey S. Knauth (Lycoming College),

Manish M. Kochhal (Wayne State), Suzan Koknar-Tezel (Saint Joseph’s University),

Angkul Kongmunvattana (Columbus State University), April Kontostathis (Ursinus

College), Christos Kozyrakis (Stanford University), Danny Krizanc (Wesleyan

University), Ashok Kumar, S. Kumar (Th

e University of Texas), Zachary Kurmas

(Grand Valley State University), Robert N. Lea (University of Houston), Baoxin

xxii Preface

Li (Arizona State University), Li Liao (University of Delaware), Gary Livingston

(University of Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon Institute

of Technology), Yashwant K Malaiya (Colorado State University), Bill Mark

(University of Texas at Austin), Ananda Mondal (Clafl in University), Alvin Moser

(Seattle University), Walid Najjar (University of California, Riverside), Danial J.

Neebel (Loras College), John Nestor (Lafayette College), Jae C. Oh (Syracuse

University), Joe Oldham (Centre College), Timour Paltashev, James Parkerson

(University of Arkansas), Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted

Pedersen (University of Minnesota), Lu Peng (Louisiana State University), Gregory

D Peterson (Th

e University of Tennessee), Milos Prvulovic (Georgia Tech), Partha

Ranganathan (HP Labs), Dejan Raskovic (University of Alaska, Fairbanks) Brad

Richards (University of Puget Sound), Roman Rozanov, Louis Rubinfi eld (Villanova

University), Md Abdus Salam (Southern University), Augustine Samba (Kent State

University), Robert Schaefer (Daniel Webster College), Carolyn J. C. Schauble

(Colorado State University), Keith Schubert (CSU San Bernardino), William

L. Schultz, Kelly Shaw (University of Richmond), Shahram Shirani (McMaster

University), Scott Sigman (Drury University), Bruce Smith, David Smith, Jeff W.

Smith (University of Georgia, Athens), Mark Smotherman (Clemson University),

Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M), Timothy

D. Stanley (Brigham Young University), Dean Stevens (Morningside College),

Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander Taubin

(Boston University), Will Th

acker (Winthrop University), Mithuna Th

ottethodi

(Purdue University), Manghui Tu (Southern Utah University), Dean Tullsen

(UC San Diego), Rama Viswanathan (Beloit College), Ken Vollmar (Missouri

State University), Guoping Wang (Indiana-Purdue University), Patricia Wenner

(Bucknell University), Kent Wilken (University of California, Davis), David Wolfe

(Gustavus Adolphus College), David Wood (University of Wisconsin, Madison),

Ki Hwan Yum (University of Texas, San Antonio), Mohamed Zahran (City College

of New York), Gerald D. Zarnett (Ryerson University), Nian Zhang (South Dakota

School of Mines & Technology), Jiling Zhong (Troy University), Huiyang Zhou

(Th

e University of Central Florida), Weiyu Zhu (Illinois Wesleyan University).

A special thanks also goes to Mark Smotherman for making multiple passes to

fi nd technical and writing glitches that signifi cantly improved the quality of this

edition.

We wish to thank the extended Morgan Kaufmann family for agreeing to publish

this book again under the able leadership of Todd Green and Nate McFadden : I

certainly couldn’t have completed the book without them. We also want to extend

thanks to Lisa Jones , who managed the book production process, and Russell

Purdy , who did the cover design. Th

e new cover cleverly connects the PostPC Era

content of this edition to the cover of the fi rst edition.

Th

e contributions of the nearly 150 people we mentioned here have helped

make this fi ft h edition what I hope will be our best book yet. Enjoy!

David A. Patterson

This page intentionally left blank

1

Computer

Abstractions and

Technology

 Civilization advances

 by extending the

1.1 Introduction

3

 number of important

1.2

Eight Great Ideas in Computer

 operations which we

Architecture 11

 can perform without

1.3

Below Your Program 13

 thinking about them.

1.4

Under the Covers 16

1.5

Technologies for Building Processors and

Alfred North Whitehead,

Memory 24

 An Introduction to Mathematics, 1911

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

1.6 Performance

28

1.7

The Power Wall 40

1.8

The Sea Change: The Switch from Uniprocessors to

Multiprocessors 43

1.9

Real Stuff: Benchmarking the Intel Core i7 46

1.10

Fallacies and Pitfalls 49

1.11 Concluding

Remarks

52

1.12

Historical Perspective and Further Reading 54

1.13 Exercises

54

 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the

excitement of the world of computer systems. Th

is is not a dry and dreary fi eld,

where progress is glacial and where new ideas atrophy from neglect. No! Computers

are the product of the incredibly vibrant information technology industry, all

aspects of which are responsible for almost 10% of the gross national product of

the United States, and whose economy has become dependent in part on the rapid

improvements in information technology promised by Moore’s Law. Th

is unusual

industry embraces innovation at a breath-taking rate. In the last 30 years, there have

been a number of new computers whose introduction appeared to revolutionize

the computing industry; these revolutions were cut short only because someone

else built an even better computer.

Th

is race to innovate has led to unprecedented progress since the inception

of electronic computing in the late 1940s. Had the transportation industry kept

pace with the computer industry, for example, today we could travel from New

York to London in a second for a penny. Take just a moment to contemplate how

such an improvement would change society—living in Tahiti while working in San

Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can

appreciate the implications of such a change.

4

Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information

revolution taking its place alongside the agricultural and the industrial revolutions.

Th

e resulting multiplication of humankind’s intellectual strength and reach

naturally has aff ected our everyday lives profoundly and changed the ways in which

the search for new knowledge is carried out. Th

ere is now a new vein of scientifi c

investigation, with computational scientists joining theoretical and experimental

scientists in the exploration of new frontiers in astronomy, biology, chemistry, and

physics, among others.

Th

e computer revolution continues. Each time the cost of computing improves

by another factor of 10, the opportunities for computers multiply. Applications that

were economically infeasible suddenly become practical. In the recent past, the

following applications were “computer science fi ction.”

■ Computers in automobiles: Until microprocessors improved dramatically

in price and performance in the early 1980s, computer control of cars was

ludicrous. Today, computers reduce pollution, improve fuel effi

ciency via

engine controls, and increase safety through blind spot warnings, lane

departure warnings, moving object detection, and air bag infl ation to protect

occupants in a crash.

■ Cell phones: Who would have dreamed that advances in computer

systems would lead to more than half of the planet having mobile phones,

allowing person-to-person communication to almost anyone anywhere in

the world?

■ Human genome project: Th

e cost of computer equipment to map and analyze

human DNA sequences was hundreds of millions of dollars. It’s unlikely that

anyone would have considered this project had the computer costs been 10

to 100 times higher, as they would have been 15 to 25 years earlier. Moreover,

costs continue to drop; you will soon be able to acquire your own genome,

allowing medical care to be tailored to you.

■ World Wide Web: Not in existence at the time of the fi rst edition of this book,

the web has transformed our society. For many, the web has replaced libraries

and newspapers.

■ Search engines: As the content of the web grew in size and in value, fi nding

relevant information became increasingly important. Today, many people

rely on search engines for such a large part of their lives that it would be a

hardship to go without them.

Clearly, advances in this technology now aff ect almost every aspect of our

society. Hardware advances have allowed programmers to create wonderfully

useful soft ware, which explains why computers are omnipresent. Today’s science

fi ction suggests tomorrow’s killer applications: already on their way are glasses that

augment reality, the cashless society, and cars that can drive themselves.

1.1 Introduction

5

Classes of Computing Applications and Their

Characteristics

Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used

in computers ranging from smart home appliances to cell phones to the largest personal computer supercomputers, these diff erent applications have diff erent design requirements (PC) A computer designed for use by

and employ the core hardware technologies in diff erent ways. Broadly speaking, an individual, usually computers are used in three diff erent classes of applications.

incorporating a graphics

Personal computers (PCs) are possibly the best known form of computing, display, a keyboard, and a which readers of this book have likely used extensively. Personal computers mouse.

emphasize delivery of good performance to single users at low cost and usually

execute third-party soft ware. Th

is class of computing drove the evolution of many server A computer

used for running

computing technologies, which is only about 35 years old!

larger programs for

Servers are the modern form of what were once much larger computers, and multiple users, oft en are usually accessed only via a network. Servers are oriented to carrying large simultaneously, and workloads, which may consist of either single complex applications—usually a typically accessed only via scientifi c or engineering application—or handling many small jobs, such as would a network.

occur in building a large web server. Th

ese applications are usually based on supercomputer A class

soft ware from another source (such as a database or simulation system), but are of computers with the oft en modifi ed or customized for a particular function. Servers are built from the highest performance and same basic technology as desktop computers, but provide for greater computing, cost; they are confi gured storage, and input/output capacity. In general, servers also place a greater emphasis as servers and typically on dependability, since a crash is usually more costly than it would be on a single-cost tens to hundreds of

millions of dollars.

user PC.

Servers span the widest range in cost and capability. At the low end, a server terabyte (TB) Originally may be little more than a desktop computer without a screen or keyboard and 1,099,511,627,776

cost a thousand dollars. Th

ese low-end servers are typically used for fi le storage, (240) bytes, although

small business applications, or simple web serving (see Section 6.10). At the other communications and extreme are supercomputers, which at the present consist of tens of thousands of secondary storage processors and many terabytes of memory, and cost tens to hundreds of millions systems developers of dollars. Supercomputers are usually used for high-end scientifi c and engineering

started using the term to

mean 1,000,000,000,000

calculations, such as weather forecasting, oil exploration, protein structure (1012) bytes. To reduce determination, and other large-scale problems. Although such supercomputers confusion, we now use the represent the peak of computing capability, they represent a relatively small fraction

term tebibyte (TiB) for

of the servers and a relatively small fraction of the overall computer market in 240 bytes, defi ning terabyte terms of total revenue.

(TB) to mean 1012 bytes.

Embedded computers are the largest class of computers and span the widest Figure 1.1 shows the full range of applications and performance. Embedded computers include the range of decimal and

binary values and names.

microprocessors found in your car, the computers in a television set, and the

networks of processors that control a modern airplane or cargo ship. Embedded embedded computer computing systems are designed to run one application or one set of related A computer inside another applications that are normally integrated with the hardware and delivered as a device used for running one predetermined

single system; thus, despite the large number of embedded computers, most users application or collection of never really see that they are using a computer!

soft ware.

6

Chapter 1 Computer Abstractions and Technology

Decimal

Binary

term

Abbreviation

Value

term

Abbreviation

Value

% Larger

kilobyte

KB

103

kibibyte

KiB

210

2%

megabyte

MB

106

mebibyte

MiB

220

5%

gigabyte

GB

109

gibibyte

GiB

230

7%

terabyte

TB

1012

tebibyte

TiB

240

10%

petabyte

PB

1015

pebibyte

PiB

250

13%

exabyte

EB

1018

exbibyte

EiB

260

15%

zettabyte

ZB

1021

zebibyte

ZiB

270

18%

yottabyte

YB

1024

yobibyte

YiB

280

21%

FIGURE 1.1 The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for all the common size terms. In the last column we note how much larger the binary term is than its corresponding decimal term, which is compounded as we head down the chart. Th

ese prefi xes work for bits

as well as bytes, so gigabit (Gb) is 109 bits while gibibits (Gib) is 230 bits.

Embedded applications oft en have unique application requirements that

combine a minimum performance with stringent limitations on cost or power. For

example, consider a music player: the processor need only be as fast as necessary

to handle its limited function, and beyond that, minimizing cost and power are the

most important objectives. Despite their low cost, embedded computers oft en have

lower tolerance for failure, since the results can vary from upsetting (when your

new television crashes) to devastating (such as might occur when the computer in a

plane or cargo ship crashes). In consumer-oriented embedded applications, such as

a digital home appliance, dependability is achieved primarily through simplicity—

the emphasis is on doing one function as perfectly as possible. In large embedded

systems, techniques of redundancy from the server world are oft en employed.

Although this book focuses on general-purpose computers, most concepts apply

directly, or with slight modifi cations, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more

detail on a particular subject that may be of interest. Disinterested readers may skip

over an elaboration, since the subsequent material will never depend on the contents

of the elaboration.

Many embedded processors are designed using processor cores, a version of a

processor written in a hardware description language, such as Verilog or VHDL (see

Chapter 4). The core allows a designer to integrate other application-specifi c hardware

with the processor core for fabrication on a single chip.

Welcome to the PostPC Era

Th

e continuing march of technology brings about generational changes in

computer hardware that shake up the entire information technology industry.

Since the last edition of the book we have undergone such a change, as signifi cant

in the past as the switch starting 30 years ago to personal computers. Replacing the

1.1 Introduction

7

1400

1200

Cell phone (not

including smart phone)

1000

800

Smart phone sales

Millions

600

400

PC (not including

tablet)

200

Tablet

0

2007 2008 2009 2010 2011 2012

FIGURE 1.2 The number manufactured per year of tablets and smart phones, which

refl ect the PostPC era, versus personal computers and traditional cell phones. Smart phones represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories are relatively fl at or declining.

Personal mobile

devices (PMDs) are

small wireless devices to

connect to the Internet;

PC is the personal mobile device (PMD). PMDs are battery operated with wireless

they rely on batteries for

connectivity to the Internet and typically cost hundreds of dollars, and, like PCs, power, and soft ware is users can download soft ware (“apps”) to run on them. Unlike PCs, they no longer installed by downloading have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen apps. Conventional or even speech input. Today’s PMD is a smart phone or a tablet computer, but examples are smart

tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time phones and tablets.

of tablets and smart phones versus that of PCs and traditional cell phones.

Cloud Computing

Taking over from the traditional server is Cloud Computing, which relies upon

refers

to large collections of

giant datacenters that are now known as Warehouse Scale Computers (WSCs). servers that provide services Companies like Amazon and Google build these WSCs containing 100,000 servers over the Internet; some and then let companies rent portions of them so that they can provide soft ware providers rent dynamically services to PMDs without having to build WSCs of their own. Indeed, Soft ware as varying numbers of servers a Service (SaaS) deployed via the cloud is revolutionizing the soft ware industry just

as a utility.

as PMDs and WSCs are revolutionizing the hardware industry. Today’s soft ware

developers will oft en have a portion of their application that runs on the PMD and Soft ware as a Service (SaaS) delivers soft ware

a portion that runs in the Cloud.

and data as a service over

the Internet, usually via

What You Can Learn in This Book

a thin program such as a

browser that runs on local

Successful programmers have always been concerned about the performance of client devices, instead of their programs, because getting results to the user quickly is critical in creating binary code that must be successful soft ware. In the 1960s and 1970s, a primary constraint on computer installed, and runs wholly performance was the size of the computer’s memory. Th

us, programmers oft en on that device. Examples

include web search and

followed a simple credo: minimize memory space to make programs fast. In the social networking.

8

Chapter 1 Computer Abstractions and Technology

last decade, advances in computer design and memory technology have greatly

reduced the importance of small memory size in most applications other than

those in embedded computing systems.

Programmers interested in performance now need to understand the issues

that have replaced the simple memory model of the 1960s: the parallel nature

of processors and the hierarchical nature of memories. Moreover, as we explain

in Section 1.7, today’s programmers need to worry about energy effi

ciency of

their programs running either on the PMD or in the Cloud, which also requires

understanding what is below your code. Programmers who seek to build

competitive versions of soft ware will therefore need to increase their knowledge of

computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary

machine, unraveling the soft ware below your program and the hardware under the

covers of your computer. By the time you complete this book, we believe you will

be able to answer the following questions:

■ How are programs written in a high-level language, such as C or Java,

translated into the language of the hardware, and how does the hardware

execute the resulting program? Comprehending these concepts forms the

basis of understanding the aspects of both the hardware and soft ware that

aff ect program performance.

■ What is the interface between the soft ware and the hardware, and how does

soft ware instruct the hardware to perform needed functions? Th

ese concepts

are vital to understanding how to write many kinds of soft ware.

■ What determines the performance of a program, and how can a programmer

improve the performance? As we will see, this depends on the original

program, the soft ware translation of that program into the computer’s

language, and the eff ectiveness of the hardware in executing the program.

■ What techniques can be used by hardware designers to improve performance?

Th

is book will introduce the basic concepts of modern computer design. Th

e

interested reader will fi nd much more material on this topic in our advanced

book, Computer Architecture: A Quantitative Approach.

■ What techniques can be used by hardware designers to improve energy

effi

ciency? What can the programmer do to help or hinder energy effi

ciency?

■ What are the reasons for and the consequences of the recent switch from

multicore

sequential processing to parallel processing? Th

is book gives the motivation,

microprocessor

describes the current hardware mechanisms to support parallelism, and

A microprocessor

surveys the new generation of “multicore” microprocessors (see Chapter 6).

containing multiple

processors (“cores”) in a

■ Since the fi rst commercial computer in 1951, what great ideas did computer

single integrated circuit.

architects come up with that lay the foundation of modern computing?

1.1 Introduction

9

Without understanding the answers to these questions, improving the

performance of your program on a modern computer or evaluating what features

might make one computer better than another for a particular application will be

a complex process of trial and error, rather than a scientifi c procedure driven by

insight and analysis.

Th

is fi rst chapter lays the foundation for the rest of the book. It introduces the

basic ideas and defi nitions, places the major components of soft ware and hardware

in perspective, shows how to evaluate performance and energy, introduces

integrated circuits (the technology that fuels the computer revolution), and explains

the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words

that you may have heard but are not sure what they mean. Don’t panic! Yes, there

is a lot of special terminology used in describing modern computers, but the

terminology actually helps, since it enables us to describe precisely a function or

capability. In addition, computer designers (including your authors) love using

acronyms, which are easy to understand once you know what the letters stand for! acronym A word To help you remember and locate terms, we have included a highlighted defi nition constructed by taking the of every term in the margins the fi rst time it appears in the text. Aft er a short initial letters of a string time of working with the terminology, you will be fl uent, and your friends will of words. For example: RAM is an acronym for

be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, Random Access Memory,

PCIe, SATA, and many others.

and CPU is an acronym

To reinforce how the soft ware and hardware systems used to run a program will for Central Processing aff ect performance, we use a special section, Understanding Program Performance, Unit.

throughout the book to summarize important insights into program performance.

Th

e fi rst one appears below.

Th

e performance of a program depends on a combination of the eff ectiveness of the

Understanding

algorithms used in the program, the soft ware systems used to create and translate Program

the program into machine instructions, and the eff ectiveness of the computer in

executing those instructions, which may include input/output (I/O) operations. Performance

Th

is table summarizes how the hardware and soft ware aff ect performance.

Hardware or software

Where is this

component

How this component affects performance

topic covered?

Algorithm

Determines both the number of source-level

Other books!

statements and the number of I/O operations

executed

Programming language,

Determines the number of computer instructions

Chapters 2 and 3

compiler, and architecture

for each source-level statement

Processor and memory

Determines how fast instructions can be executed

Chapters 4, 5, and 6

system

I/O system (hardware and Determines how fast I/O operations may be

Chapters 4, 5, and 6

operating system)

executed

10

Chapter 1 Computer Abstractions and Technology

To demonstrate the impact of the ideas in this book, we improve the performance

of a C program that multiplies a matrix times a vector in a sequence of

chapters. Each step leverages understanding how the underlying hardware

really works in a modern microprocessor to improve performance by a factor

of 200!

■ In the category of data level parallelism, in Chapter 3 we use subword

 parallelism via C intrinsics to increase performance by a factor of 3.8.

■ In the category of instruction level parallelism, in Chapter 4 we use loop unrolling to exploit multiple instruction issue and out-of-order execution

 hardware to increase performance by another factor of 2.3.

■ In the category of memory hierarchy optimization, in Chapter 5 we use

 cache blocking to increase performance on large matrices by another factor

of 2.5.

■ In the category of thread level parallelism, in Chapter 6 we use parallel for loops in OpenMP to exploit multicore hardware to increase performance by

another factor of 14.

Check Check Yourself sections are designed to help readers assess whether they

comprehend the major concepts introduced in a chapter and understand the

Yourself

implications of those concepts. Some Check Yourself questions have simple answers;

others are for discussion among a group. Answers to the specifi c questions can

be found at the end of the chapter. Check Yourself questions appear only at the

end of a section, making it easy to skip them if you are sure you understand the

material.

1. Th

e number of embedded processors sold every year greatly outnumbers

the number of PC and even PostPC processors. Can you confi rm or deny

this insight based on your own experience? Try to count the number of

embedded processors in your home. How does it compare with the number

of conventional computers in your home?

2. As mentioned earlier, both the soft ware and hardware aff ect the performance

of a program. Can you think of examples where each of the following is the

right place to look for a performance bottleneck?

■ Th

e algorithm chosen

■ Th

e programming language or compiler

■ Th

e operating system

■ Th

e processor

■ Th

e I/O system and devices

1.2 Eight Great Ideas in Computer Architecture

11

 1.2

 Eight Great Ideas in Computer

Architecture

We now introduce eight great ideas that computer architects have been invented in

the last 60 years of computer design. Th

ese ideas are so powerful they have lasted

long aft er the fi rst computer that used them, with newer architects demonstrating

their admiration by imitating their predecessors. Th

ese great ideas are themes that

we will weave through this and subsequent chapters as examples arise. To point

out their infl uence, in this section we introduce icons and highlighted terms that

represent the great ideas and we use them to identify the nearly 100 sections of the

book that feature use of the great ideas.

Design for Moore’s Law

Th

e one constant for computer designers is rapid change, which is driven largely by

Moore’s Law. It states that integrated circuit resources double every 18–24 months.

Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made

by Gordon Moore, one of the founders of Intel. As computer designs can take years,

the resources available per chip can easily double or quadruple between the start

and fi nish of the project. Like a skeet shooter, computer architects must anticipate

where the technology will be when the design fi nishes rather than design for where

it starts. We use an “up and to the right” Moore’s Law graph to represent designing

for rapid change.

Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to make

themselves more productive, for otherwise design time would lengthen as

dramatically as resources grew by Moore’s Law. A major productivity technique for

hardware and soft ware is to use abstractions to represent the design at diff erent

levels of representation; lower-level details are hidden to off er a simpler model at

higher levels. We’ll use the abstract painting icon to represent this second great

idea.

Make the Common Case Fast

Making the common case fast will tend to enhance performance better than

optimizing the rare case. Ironically, the common case is oft en simpler than the

rare case and hence is oft en easier to enhance. Th

is common sense advice implies

that you know what the common case is, which is only possible with careful

experimentation and measurement (see Section 1.6). We use a sports car as the

icon for making the common case fast, as the most common trip has one or two

passengers, and it’s surely easier to make a fast sports car than a fast minivan!

12

Chapter 1 Computer Abstractions and Technology

Performance via Parallelism

Since the dawn of computing, computer architects have off ered designs that get

more performance by performing operations in parallel. We’ll see many examples

of parallelism in this book. We use multiple jet engines of a plane as our icon for

parallel performance.

Performance via Pipelining

A particular pattern of parallelism is so prevalent in computer architecture that

it merits its own name: pipelining. For example, before fi re engines, a “bucket

brigade” would respond to a fi re, which many cowboy movies show in response to

a dastardly act by the villain. Th

e townsfolk form a human chain to carry a water

source to fi re, as they could much more quickly move buckets up the chain instead

of individuals running back and forth. Our pipeline icon is a sequence of pipes,

with each section representing one stage of the pipeline.

Performance via Prediction

Following the saying that it can be better to ask for forgiveness than to ask for

permission, the fi nal great idea is prediction. In some cases it can be faster on

average to guess and start working rather than wait until you know for sure,

assuming that the mechanism to recover from a misprediction is not too expensive

and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as

our prediction icon.

Hierarchy of Memories

Programmers want memory to be fast, large, and cheap, as memory speed oft en

shapes performance, capacity limits the size of problems that can be solved, and the

cost of memory today is oft en the majority of computer cost. Architects have found

that they can address these confl icting demands with a hierarchy of memories, with

the fastest, smallest, and most expensive memory per bit at the top of the hierarchy

and the slowest, largest, and cheapest per bit at the bottom. As we shall see in

Chapter 5, caches give the programmer the illusion that main memory is nearly

as fast as the top of the hierarchy and nearly as big and cheap as the bottom of

the hierarchy. We use a layered triangle icon to represent the memory hierarchy.

Th

e shape indicates speed, cost, and size: the closer to the top, the faster and more

expensive per bit the memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy

Computers not only need to be fast; they need to be dependable. Since any physical

device can fail, we make systems dependable by including redundant components that

can take over when a failure occurs and to help detect failures. We use the tractor-trailer as our icon, since the dual tires on each side of its rear axels allow the truck to continue

driving even when one tire fails. (Presumably, the truck driver heads immediately to a

repair facility so the fl at tire can be fi xed, thereby restoring redundancy!)

1.3 Below Your Program

13

 In Paris they simply

 stared when I spoke to

 1.3

Below Your Program

 them in French; I never

 did succeed in making

 those idiots understand

A typical application, such as a word processor or a large database system, may their own language.

consist of millions of lines of code and rely on sophisticated soft ware libraries that

implement complex functions in support of the application. As we will see, the Mark Twain, Th e hardware in a computer can only execute extremely simple low-level instructions. Innocents Abroad, 1869

To go from a complex application to the simple instructions involves several layers

of soft ware that interpret or translate high-level operations into simple computer

instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of soft ware are organized primarily in a

hierarchical fashion, with applications being the outermost ring and a variety of

systems soft ware sitting between the hardware and applications soft ware.

Th

ere are many types of systems soft ware, but two types of systems soft ware

are central to every computer system today: an operating system and a compiler.

An operating system interfaces between a user’s program and the hardware

and provides a variety of services and supervisory functions. Among the most

important functions are:

systems soft ware

Soft ware that provides

■ Handling basic input and output operations

services that are

commonly useful,

■ Allocating storage and memory

including operating

systems, compilers,

■ Providing for protected sharing of the computer among multiple applications loaders, and assemblers.

using it simultaneously.

Examples of operating systems in use today are Linux, iOS, and Windows.

operating system

Supervising program that

manages the resources of

a computer for the benefi t

of the programs that run

on that computer.

Applications software

ystems software

S

Hardware

FIGURE 1.3 A simplifi ed view of hardware and software as hierarchical layers, shown as concentric circles with hardware in the center and applications software outermost. In

complex applications, there are oft en multiple layers of application soft ware as well. For example, a database system may run on top of the systems soft ware hosting an application, which in turn runs on top of the database.

14

Chapter 1 Computer Abstractions and Technology

compiler A program

Compilers perform another vital function: the translation of a program written

that translates high-level

in a high-level language, such as C, C⫹⫹, Java, or Visual Basic into instructions

language statements

that the hardware can execute. Given the sophistication of modern programming

into assembly language

languages and the simplicity of the instructions executed by the hardware, the

statements.

translation from a high-level language program to hardware instructions is

complex. We give a brief overview of the process here and then go into more depth

in Chapter 2 and in Appendix A.

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. Th

e

easiest signals for computers to understand are on and off , and so the computer

alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit

how much can be written, the two letters of the computer alphabet do not limit

what computers can do. Th

e two symbols for these two letters are the numbers 0

and 1, and we commonly think of the computer language as numbers in base 2, or

binary digit Also called

 binary numbers. We refer to each “letter” as a binary digit or bit. Computers are a bit. One of the two

slaves to our commands, which are called instructions. Instructions, which are just

numbers in base 2 (0 or 1)

collections of bits that the computer understands and obeys, can be thought of as

that are the components

numbers. For example, the bits

of information.

1000110010100000

instruction A command

that computer hardware

tell one computer to add two numbers. Chapter 2 explains why we use numbers

understands and obeys.

for instructions and data; we don’t want to steal that chapter’s thunder, but using

numbers for both instructions and data is a foundation of computing.

Th

e fi rst programmers communicated to computers in binary numbers, but this

was so tedious that they quickly invented new notations that were closer to the way

humans think. At fi rst, these notations were translated to binary by hand, but this

process was still tiresome. Using the computer to help program the computer, the

pioneers invented programs to translate from symbolic notation to binary. Th

e fi rst of

assembler A program

these programs was named an assembler. Th

is program translates a symbolic version

that translates a symbolic

of an instruction into the binary version. For example, the programmer would write

version of instructions

into the binary version.

add A,B

and the assembler would translate this notation into

1000110010100000

Th

is instruction tells the computer to add the two numbers A and B. Th

e name coined

assembly language

for this symbolic language, still used today, is assembly language. In contrast, the

A symbolic representation

binary language that the machine understands is the machine language.

of machine instructions.

Although a tremendous improvement, assembly language is still far from the

notations a scientist might like to use to simulate fl uid fl ow or that an accountant

machine language

A binary representation of

might use to balance the books. Assembly language requires the programmer

machine instructions.

to write one line for every instruction that the computer will follow, forcing the

programmer to think like the computer.

1.3 Below Your Program

15

Th

e recognition that a program could be written to translate a more powerful

language into computer instructions was one of the great breakthroughs in the

early days of computing. Programmers today owe their productivity—and their

sanity—to the creation of high-level programming languages and compilers

that translate programs in such languages into instructions. Figure 1.4 shows the relationships among these programs and languages, which are more examples of

the power of abstraction.

high-level

High-level

swap(int v[], int k)

programming

language

{int temp;

language A portable

program

temp = v[k];

language such as C, C⫹⫹,

(in C)

v[k] = v[k+1];

Java, or Visual Basic that

v[k+1] = temp;

is composed of words

}

and algebraic notation

that can be translated by

a compiler into assembly

language.

Compiler

Assembly

swap:

language

multi $2, $5,4

program

add $2, $4,$2

(for MIPS)

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Assembler

Binary machine

00000000101000100000000100011000

language

00000000100000100001000000100001

program

10001101111000100000000000000000

(for MIPS)

10001110000100100000000000000100

10101110000100100000000000000000

10101101111000100000000000000100

00000011111000000000000000001000

FIGURE 1.4 C program compiled into assembly language and then assembled into binary

machine language. Although the translation from high-level language to binary machine language is shown in two steps, some compilers cut out the middleman and produce binary machine language directly.

Th

ese languages and this program are examined in more detail in Chapter 2.

16

Chapter 1 Computer Abstractions and Technology

A compiler enables a programmer to write this high-level language expression:

A + B

Th

e compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary

instructions that tell the computer to add the two numbers A and B.

High-level programming languages off er several important benefi ts. First, they

allow the programmer to think in a more natural language, using English words

and algebraic notation, resulting in programs that look much more like text than

like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be designed according to their intended use. Hence, Fortran was designed for scientifi c

computation, Cobol for business data processing, Lisp for symbol manipulation,

and so on. Th

ere are also domain-specifi c languages for even narrower groups of

users, such as those interested in simulation of fl uids, for example.

Th

e second advantage of programming languages is improved programmer

productivity. One of the few areas of widespread agreement in soft ware development

is that it takes less time to develop programs when they are written in languages

that require fewer lines to express an idea. Conciseness is a clear advantage of high-

level languages over assembly language.

Th

e fi nal advantage is that programming languages allow programs to be

independent of the computer on which they were developed, since compilers and

assemblers can translate high-level language programs to the binary instructions of

any computer. Th

ese three advantages are so strong that today little programming

is done in assembly language.

 1.4

Under the Covers

Now that we have looked below your program to uncover the underlying soft ware,

let’s open the covers of your computer to learn about the underlying hardware. Th

e

underlying hardware in any computer performs the same basic functions: inputting

input device

data, outputting data, processing data, and storing data. How these functions are

A mechanism through

performed is the primary topic of this book, and subsequent chapters deal with

which the computer is

fed information, such as a

diff erent parts of these four tasks.

keyboard.

When we come to an important point in this book, a point so important that

we hope you will remember it forever, we emphasize it by identifying it as a Big

output device

 Picture item. We have about a dozen Big Pictures in this book, the fi rst being the

A mechanism that

fi ve components of a computer that perform the tasks of inputting, outputting,

conveys the result of a

computation to a user,

processing, and storing data.

such as a display, or to

Two key components of computers are input devices, such as the microphone,

another computer.

and output devices, such as the speaker. As the names suggest, input feeds the

1.4 Under the Covers

17

computer, and output is the result of computation sent to the user. Some devices,

such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s

take an introductory tour through the computer hardware, starting with the

external I/O devices.

Th

e fi ve classic components of a computer are input, output, memory,

datapath, and control, with the last two sometimes combined and called

the processor. Figure 1.5 shows the standard organization of a computer.

Th

is organization is independent of hardware technology: you can place

The BIG

every piece of every computer, past and present, into one of these fi ve

Picture

categories. To help you keep all this in perspective, the fi ve components of

a computer are shown on the front page of each of the following chapters,

with the portion of interest to that chapter highlighted.

FIGURE 1.5 The organization of a computer, showing the fi ve classic components. Th e

processor gets instructions and data from memory. Input writes data to memory, and output reads data from memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

18

Chapter 1 Computer Abstractions and Technology

Through the Looking Glass

Th

e most fascinating I/O device is probably the graphics display. Most personal

liquid crystal display

mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display.

A display technology

Th

e LCD is not the source of light; instead, it controls the transmission of light.

using a thin layer of liquid

A typical LCD includes rod-shaped molecules in a liquid that form a twisting

polymers that can be used

helix that bends light entering the display, from either a light source behind the

to transmit or block light

display or less oft en from refl ected light. Th

e rods straighten out when a current is

according to whether a

applied and no longer bend the light. Since the liquid crystal material is between

charge is applied.

two screens polarized at 90 degrees, the light cannot pass through unless it is bent.

active matrix display

Today, most LCD displays use an active matrix that has a tiny transistor switch at

A liquid crystal display

each pixel to precisely control current and make sharper images. A red-green-blue

using a transistor to

mask associated with each dot on the display determines the intensity of the three-

control the transmission

color components in the fi nal image; in a color active matrix LCD, there are three

of light at each individual

pixel.

transistor switches at each point.

Th

e image is composed of a matrix of picture elements, or pixels, which can

pixel Th

e smallest

be represented as a matrix of bits, called a bit map. Depending on the size of the

individual picture

screen and the resolution, the display matrix in a typical tablet ranges in size from

element. Screens are

1024 ⫻ 768 to 2048 ⫻ 1536. A color display might use 8 bits for each of the three

composed of hundreds

of thousands to millions

colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent

of pixels, organized in a

colors to be displayed.

matrix.

Th

e computer hardware support for graphics consists mainly of a raster refresh

 buff er, or frame buff er, to store the bit map. Th

e image to be represented onscreen

 Th

 rough computer

is stored in the frame buff er, and the bit pattern per pixel is read out to the graphics

 displays I have landed

display at the refresh rate. Figure 1.6 shows a frame buff er with a simplifi ed design an airplane on the

of just 4 bits per pixel.

 deck of a moving

Th

e goal of the bit map is to faithfully represent what is on the screen. Th

e

 carrier, observed a

challenges in graphics systems arise because the human eye is very good at detecting

 nuclear particle hit a

even subtle changes on the screen.

 potential well, fl own

 in a rocket at nearly

 the speed of light and

 watched a computer

Frame buffer

 reveal its innermost

 workings.

Raster scan CRT display

Ivan Sutherland, the

“father” of computer

11

0

graphics, Scientifi c

Y0

0

Y0

 American, 1984

01

1

Y1

1

Y1

X0 X1

X0 X1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the corresponding coordinate for the raster scan CRT display on the right. Pixel (X , Y) contains 0

0

the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X , Y).

1

1

1.4 Under the Covers

19

Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the PostPC era

have replaced the keyboard and mouse with touch sensitive displays, which has

the wonderful user interface advantage of users pointing directly what they are

interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets integrated circuit Also today use capacitive sensing. Since people are electrical conductors, if an insulator called a chip. A device combining dozens to

like glass is covered with a transparent conductor, touching distorts the electrostatic

millions of transistors.

fi eld of the screen, which results in a change in capacitance. Th

is technology can

allow multiple touches simultaneously, which allows gestures that can lead to central processor unit attractive user interfaces.

(CPU) Also called

processor. Th

e active part

of the computer, which

Opening the Box

contains the datapath and

Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly, control and which adds of the fi ve classic components of the computer, I/O dominates this reading device. numbers, tests numbers, signals I/O devices to

Th

e list of I/O devices includes a capacitive multitouch LCD display, front facing activate, and so on.

camera, rear facing camera, microphone, headphone jack, speakers, accelerometer,

gyroscope, Wi-Fi network, and Bluetooth network. Th

e datapath, control, and datapath Th e

memory are a tiny portion of the components.

component of the

Th

e small rectangles in Figure 1.8 contain the devices that drive our advancing processor that performs technology, called integrated circuits and nicknamed chips. Th

e A5 package seen arithmetic operations

in the middle of in Figure 1.8 contains two ARM processors that operate with a clock rate of 1 GHz. Th

e processor is the active part of the computer, following the control Th e component instructions of a program to the letter. It adds numbers, tests numbers, signals I/O of the processor that devices to activate, and so on. Occasionally, people call the processor the CPU, for commands the datapath, memory, and I/O

the more bureaucratic-sounding central processor unit.

devices according to

Descending even lower into the hardware, Figure 1.9 reveals details of a the instructions of the microprocessor. Th

e processor logically comprises two main components: datapath

program.

and control, the respective brawn and brain of the processor. Th

e datapath performs

the arithmetic operations, and control tells the datapath, memory, and I/O devices memory Th e storage what to do according to the wishes of the instructions of the program. Chapter 4 area in which programs are kept when they are

explains the datapath and control for a higher-performance design.

running and that contains

Th

e A5 package in Figure 1.8 also includes two memory chips, each with the data needed by the 2 gibibits of capacity, thereby supplying 512 MiB. Th

e memory is where the running programs.

programs are kept when they are running; it also contains the data needed by the

running programs. Th

e memory is built from DRAM chips. DRAM stands for dynamic random access

dynamic random access memory. Multiple DRAMs are used together to contain memory (DRAM) the instructions and data of a program. In contrast to sequential access memories, Memory built as an such as magnetic tapes, the RAM portion of the term DRAM means that memory integrated circuit; it provides random access to

accesses take basically the same amount of time no matter what portion of the any location. Access times memory is read.

are 50 nanoseconds and

Descending into the depths of any component of the hardware reveals insights cost per gigabyte in 2012

into the computer. Inside the processor is another type of memory—cache memory.

was $5 to $10.

20

Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Components of the Apple iPad 2 A1395. Th

e metal back of the iPad (with the reversed

Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To the far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and off ers 10 hours of battery life. To the far left is the metal frame that attaches the LCD to the back of the iPad. Th e

small components surrounding the metal back in the center are what we think of as the computer; they are oft en L-shaped to fi t compactly inside the case next to the battery. Figure 1.8 shows a close-up of the L-shaped board to the lower left of the metal case, which is the logic printed circuit board that contains the processor and the memory. Th

e tiny rectangle below the logic board contains a chip that provides wireless

communication: Wi-Fi, Bluetooth, and FM tuner. It fi ts into a small slot in the lower left corner of the logic board. Near the upper left corner of the case is another L-shaped component, which is a front-facing camera assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and accelerometer. Th

ese last two chips combine to allow the iPad to recognize 6-axis motion. Th

e tiny rectangle

next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. Th e

cable at the bottom is the connector between the logic board and the camera/volume control board. Th e

board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy iFixit, www.ifi xit.com)

FIGURE 1.8 Th

e logic board of Apple iPad 2 in Figure 1.7. Th

e photo highlights fi ve integrated circuits.

Th

e large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of the processor chip inside the A5 package. Th

e similar sized chip to the left is the 32 GB fl ash memory chip

for non-volatile storage. Th

ere is an empty space between the two chips where a second fl ash chip can be

installed to double storage capacity of the iPad. Th

e chips to the right of the A5 include power controller and

I/O controller chips. (Courtesy iFixit, www.ifi xit.com)

1.4 Under the Covers

21

cache memory A small,

fast memory that acts as a

buff er for a slower, larger

memory.

static random access

memory (SRAM) Also

memory built as an

FIGURE 1.9 Th

e processor integrated circuit inside the A5 package. Th

e size of chip is 12.1 by 10.1 mm, and

integrated circuit, but

it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or faster and less dense than

cores in the middle left of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the DRAM.

upper left quadrant. To the left and bottom side of the ARM cores are interfaces to main memory (DRAM).

(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buff er for the DRAM

memory. (Th

e nontechnical defi nition of cache is a safe place for hiding things.)

Cache is built using a diff erent memory technology, static random access memory

(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM

(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

22

Chapter 1 Computer Abstractions and Technology

As mentioned above, one of the great ideas to improve design is abstraction.

One of the most important abstractions is the interface between the hardware

and the lowest-level soft ware. Because of its importance, it is given a special

name: the instruction set architecture, or simply architecture, of a computer.

Th

e instruction set architecture includes anything programmers need to know to

make a binary machine language program work correctly, including instructions,

I/O devices, and so on. Typically, the operating system will encapsulate the

details of doing I/O, allocating memory, and other low-level system functions

so that application programmers do not need to worry about such details. Th

e

instruction set

combination of the basic instruction set and the operating system interface

architecture Also

provided for application programmers is called the application binary interface

called architecture. An

abstract interface between

(ABI).

the hardware and the

An instruction set architecture allows computer designers to talk about

lowest-level soft ware

functions independently from the hardware that performs them. For example,

that encompasses all the

we can talk about the functions of a digital clock (keeping time, displaying the

information necessary to

write a machine language

time, setting the alarm) independently from the clock hardware (quartz crystal,

program that will run

LED displays, plastic buttons). Computer designers distinguish architecture from

correctly, including

an implementation of an architecture along the same lines: an implementation is

instructions, registers,

memory access, I/O, and

hardware that obeys the architecture abstraction. Th

ese ideas bring us to another

so on.

Big Picture.

application binary

interface (ABI) Th

e user

portion of the instruction

set plus the operating

system interfaces used by

application programmers.

It defi nes a standard for

binary portability across

Both hardware and soft ware consist of hierarchical layers using abstraction,

computers.

with each lower layer hiding details from the level above. One key interface

between the levels of abstraction is the instruction set architecture—the

interface between the hardware and low-level soft ware. Th

is abstract

The BIG

interface enables many implementations of varying cost and performance

Picture

to run identical soft ware.

implementation

Hardware that obeys the

architecture abstraction.

A Safe Place for Data

volatile memory

Storage, such as DRAM,

Th

us far, we have seen how to input data, compute using the data, and display

that retains data only if it

data. If we were to lose power to the computer, however, everything would be lost

is receiving power.

because the memory inside the computer is volatile—that is, when it loses power,

it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off the

nonvolatile memory

power to the DVD player, and is thus a nonvolatile memory technology.

A form of memory that

retains data even in the

absence of a power source

and that is used to store

programs between runs.

A DVD disk is nonvolatile.

1.4 Under the Covers

23

To distinguish between the volatile memory used to hold data and programs

while they are running and this nonvolatile memory used to store data and

programs between runs, the term main memory or primary memory is used for

the former, and secondary memory for the latter. Secondary memory forms the

next lower layer of the memory hierarchy. DRAMs have dominated main memory

since 1975, but magnetic disks dominated secondary memory starting even earlier.

Because of their size and form factor, personal Mobile Devices use fl ash memory,

a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip main memory Also containing the fl ash memory of the iPad 2. While slower than DRAM, it is much called primary memory.

cheaper than DRAM in addition to being nonvolatile. Although costing more per Memory used to hold programs while they are

bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged, running; typically consists and it is more power effi

cient than disks. Hence, fl ash memory is the standard of DRAM in today’s

secondary memory for PMDs. Alas, unlike disks and DRAM, fl ash memory bits computers.

wear out aft er 100,000 to 1,000,000 writes. Th

us, fi le systems must keep track of secondary memory

the number of writes and have a strategy to avoid wearing out storage, such as by Nonvolatile memory moving popular data. Chapter 5 describes disks and fl ash memory in more detail.

used to store programs

and data between runs;

typically consists of fl ash

Communicating with Other Computers

memory in PMDs and

magnetic disks in servers.

We’ve explained how we can input, compute, display, and save data, but there is

still one missing item found in today’s computers: computer networks. Just as the

processor shown in Figure 1.5 is connected to memory and I/O devices, networks magnetic disk Also called hard disk. A form

interconnect whole computers, allowing computer users to extend the power of of nonvolatile secondary computing by including communication. Networks have become so popular that memory composed of

they are the backbone of current computer systems; a new personal mobile device rotating platters coated or server without a network interface would be ridiculed. Networked computers with a magnetic recording material. Because they

have several major advantages:

are rotating mechanical

■ Communication: Information is exchanged between computers at high devices, access times are about 5 to 20 milliseconds

speeds.

and cost per gigabyte in

2012 was $0.05 to $0.10.

■ Resource sharing: Rather than each computer having its own I/O devices,

computers on the network can share I/O devices.

fl ash memory

A nonvolatile semi-

■ Nonlocal access: By connecting computers over long distances, users need not conductor memory. It be near the computer they are using.

is cheaper and slower

than DRAM but more

Networks vary in length and performance, with the cost of communication expensive per bit and

increasing according to both the speed of communication and the distance that faster than magnetic disks.

information travels. Perhaps the most popular type of network is Ethernet. It can Access times are about 5

to 50 microseconds and

be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and

cost per gigabyte in 2012

speed make Ethernet useful to connect computers on the same fl oor of a building; was $0.75 to $1.00.

24

Chapter 1 Computer Abstractions and Technology

local area network

hence, it is an example of what is generically called a local area network. Local area

(LAN) A network

networks are interconnected with switches that can also provide routing services

designed to carry data

and security. Wide area networks cross continents and are the backbone of the

within a geographically

Internet, which supports the web. Th

ey are typically based on optical fi bers and are

confi ned area, typically

leased from telecommunication companies.

within a single building.

Networks have changed the face of computing in the last 30 years, both by

wide area network

becoming much more ubiquitous and by making dramatic increases in performance.

(WAN) A network

In the 1970s, very few individuals had access to electronic mail, the Internet and

extended over hundreds

web did not exist, and physically mailing magnetic tapes was the primary way to

of kilometers that can

transfer large amounts of data between two locations. Local area networks were

span a continent.

almost nonexistent, and the few existing wide area networks had limited capacity

and restricted access.

As networking technology improved, it became much cheaper and had a much

higher capacity. For example, the fi rst standardized local area network technology,

developed about 30 years ago, was a version of Ethernet that had a maximum capacity

(also called bandwidth) of 10 million bits per second, typically shared by tens of, if

not a hundred, computers. Today, local area network technology off ers a capacity

of from 1 to 40 gigabits per second, usually shared by at most a few computers.

Optical communications technology has allowed similar growth in the capacity of

wide area networks, from hundreds of kilobits to gigabits and from hundreds of

computers connected to a worldwide network to millions of computers connected.

Th

is combination of dramatic rise in deployment of networking combined with

increases in capacity have made network technology central to the information

revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way

computers communicate. Wireless technology is widespread, which enabled

the PostPC Era. Th

e ability to make a radio in the same low-cost semiconductor

technology (CMOS) used for memory and microprocessors enabled a signifi cant

improvement in price, leading to an explosion in deployment. Currently available

wireless technologies, called by the IEEE standard name 802.11, allow for transmission

rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit

diff erent from wire-based networks, since all users in an immediate area share the

airwaves.

Check

■ Semiconductor DRAM memory, fl ash memory, and disk storage diff er

signifi cantly. For each technology, list its volatility, approximate relative

Yourself

access time, and approximate relative cost compared to DRAM.

 1.5

 Technologies for Building Processors

and Memory

Processors and memory have improved at an incredible rate, because computer

designers have long embraced the latest in electronic technology to try to win the

race to design a better computer. Figure 1.10 shows the technologies that have

1.5 Technologies for Building Processors and Memory

25

Year

Technology used in computers

Relative performance/unit cost

1951

Vacuum tube

1

1965

Transistor

35

1975

Integrated circuit

900

1995

Very large-scale integrated circuit

2,400,000

2013

Ultra large-scale integrated circuit

250,000,000,000

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over

time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See

Section 1.12.

been used over time, with an estimate of the relative performance per unit cost for

each technology. Since this technology shapes what computers will be able to do

and how quickly they will evolve, we believe all computer professionals should be

familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. Th

e integrated transistor An on/off

 circuit (IC) combined dozens to hundreds of transistors into a single chip. When switch controlled by an Gordon Moore predicted the continuous doubling of resources, he was predicting electric signal.

the growth rate of the number of transistors per chip. To describe the tremendous very large-scale increase in the number of transistors from hundreds to millions, the adjective very integrated (VLSI) large scale is added to the term, creating the abbreviation VLSI, for very large-scale circuit A device integrated circuit.

containing hundreds of

Th

is rate of increasing integration has been remarkably stable. Figure 1.11 shows thousands to millions of the growth in DRAM capacity since 1977. For decades, the industry has consistently transistors.

quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

silicon A natural

To understand how manufacture integrated circuits, we start at the beginning. element that is a

Th

e manufacture of a chip begins with silicon, a substance found in sand. Because semiconductor.

silicon does not conduct electricity well, it is called a semiconductor. With a special

chemical process, it is possible to add materials to silicon that allow tiny areas to semiconductor transform into one of three devices:

A substance that does not

■ Excellent conductors of electricity (using either microscopic copper or conduct electricity well.

aluminum wire)

10,000,000

4G

1,000,000

2G

1G

512M

100,000

256M

16M

128M

64M

10,000

4M

1M

Kibibit capacity

1000

256K

64K

100

16K

10

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of introduction

FIGURE 1.11 Growth of capacity per DRAM chip over time. Th

e y-axis is measured in kibibits (210 bits). Th

e DRAM industry

quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two years to three years.

26

Chapter 1 Computer Abstractions and Technology

■ Excellent insulators from electricity (like plastic sheathing or glass)

■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of

combinations of conductors, insulators, and switches manufactured in a single

small package.

silicon crystal ingot

Th

e manufacturing process for integrated circuits is critical to the cost of the

A rod composed of a

chips and hence important to computer designers. Figure 1.12 shows that process.

silicon crystal that is

between 8 and 12 inches

Th

e process starts with a silicon crystal ingot, which looks like a giant sausage.

in diameter and about 12

Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot

to 24 inches long.

is fi nely sliced into wafers no more than 0.1 inches thick. Th

ese wafers then go

through a series of processing steps, during which patterns of chemicals are placed

wafer A slice from a

on each wafer, creating the transistors, conductors, and insulators discussed earlier.

silicon ingot no more than

0.1 inches thick, used to

Today’s integrated circuits contain only one layer of transistors but may have from

create chips.

two to eight levels of metal conductor, separated by layers of insulators.

Blank

Silicon ingot

wafers

20 to 40

Slicer

processing steps

Tested dies

Tested

Patterned wafers

wafer

Bond die to

Wafer

Dicer

package

tester

Packaged dies

Tested packaged dies

Part

Ship to

tester

customers

FIGURE 1.12 The chip manufacturing process. Aft er being sliced from the silicon ingot, blank wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). Th

ese patterned wafers are

then tested with a wafer tester, and a map of the good parts is made. Th

en, the wafers are diced into dies (see

Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) Th

e yield of good dies in this case was 17/20, or 85%. Th

ese good dies are then bonded into packages and

tested one more time before shipping the packaged parts to customers. One bad packaged part was found in this fi nal test.

A single microscopic fl aw in the wafer itself or in one of the dozens of patterning

defect A microscopic

steps can result in that area of the wafer failing. Th

ese defects, as they are called,

fl aw in a wafer or in

make it virtually impossible to manufacture a perfect wafer. Th

e simplest way to

patterning steps that can

result in the failure of the

cope with imperfection is to place many independent components on a single

die containing that defect.

wafer. Th

e patterned wafer is then chopped up, or diced, into these components,

1.6 Performance

27

FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). Th

e number of

dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. Th

e several dozen partially

rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the masks used to pattern the silicon. Th

is die uses a 32-nanometer technology, which means that the smallest

features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size.

called dies and more informally known as chips. Figure 1.13 shows a photograph die Th e individual of a wafer containing microprocessors before they have been diced; earlier, Figure rectangular sections that

1.9 shows an individual microprocessor die.

are cut from a wafer, more

Dicing enables you to discard only those dies that were unlucky enough to informally known as

chips.

contain the fl aws, rather than the whole wafer. Th

is concept is quantifi ed by the

yield of a process, which is defi ned as the percentage of good dies from the total

number of dies on the wafer.

yield Th

e percentage of

good dies from the total

Th

e cost of an integrated circuit rises quickly as the die size increases, due both number of dies on the to the lower yield and the smaller number of dies that fi t on a wafer. To reduce the wafer.

cost, using the next generation process shrinks a large die as it uses smaller sizes for

both transistors and wires. Th

is improves the yield and the die count per wafer. A

32-nanometer (nm) process was typical in 2012, which means essentially that the

smallest feature size on the die is 32 nm.

28

Chapter 1 Computer Abstractions and Technology

Once you’ve found good dies, they are connected to the input/output pins of a

package, using a process called bonding. Th

ese packaged parts are tested a fi nal time,

since mistakes can occur in packaging, and then they are shipped to customers.

Elaboration: The cost of an integrated circuit can be expressed in three simple

equations:

Cost per wafer

Cost per die

Dies per wafer

yield

Wafer area

Dies per waffer ⬇

Die area

1

Yield

1

(

Defects per area

(

Die area

a/2))2

The fi rst equation is straightforward to derive. The second is an approximation,

since it does not subtract the area near the border of the round wafer that cannot

accommodate the rectangular dies (see Figure 1.13). The fi nal equation is based on empirical observations of yields at integrated circuit factories, with the exponent related

to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are

generally not linear in the die area.

Check A key factor in determining the cost of an integrated circuit is volume. Which of

the following are reasons why a chip made in high volume should cost less?

Yourself

1. With high volumes, the manufacturing process can be tuned to a particular

design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. Th

e masks used to make the chip are expensive, so the cost per chip is lower

for higher volumes.

4. Engineering development costs are high and largely independent of volume;

thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and

therefore have higher yield per wafer.

 1.6 Performance

Assessing the performance of computers can be quite challenging. Th

e scale and

intricacy of modern soft ware systems, together with the wide range of performance

improvement techniques employed by hardware designers, have made performance

assessment much more diffi

cult.

When trying to choose among diff erent computers, performance is an important

attribute. Accurately measuring and comparing diff erent computers is critical to

1.6 Performance

29

purchasers and therefore to designers. Th

e people selling computers know this as

well. Oft en, salespeople would like you to see their computer in the best possible

light, whether or not this light accurately refl ects the needs of the purchaser’s

application. Hence, understanding how best to measure performance and the

limitations of performance measurements is important in selecting a computer.

Th

e rest of this section describes diff erent ways in which performance can be

determined; then, we describe the metrics for measuring performance from the

viewpoint of both a computer user and a designer. We also look at how these metrics

are related and present the classical processor performance equation, which we will

use throughout the text.

Defi ning Performance

When we say one computer has better performance than another, what do we

mean? Although this question might seem simple, an analogy with passenger

airplanes shows how subtle the question of performance can be. Figure 1.14

lists some typical passenger airplanes, together with their cruising speed, range,

and capacity. If we wanted to know which of the planes in this table had the best

performance, we would fi rst need to defi ne performance. For example, considering

diff erent measures of performance, we see that the plane with the highest cruising

speed was the Concorde (retired from service in 2003), the plane with the longest

range is the DC-8, and the plane with the largest capacity is the 747.

Passenger Cruising range Cruising speed Passenger throughput

Airplane

capacity

(miles)

(m.p.h.)

(passengers m.p.h.)

×

Boeing 777

375

4630

0610

228,750

Boeing 747

470

4150

0610

286,700

BAC/Sud Concorde

132

4000

1350

178,200

Douglas DC-8-50

146

8720

0544

79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. Th e last

column shows the rate at which the airplane transports passengers, which is the capacity times the cruising speed (ignoring range and takeoff and landing times).

Let’s suppose we defi ne performance in terms of speed. Th

is still leaves two

possible defi nitions. You could defi ne the fastest plane as the one with the highest

cruising speed, taking a single passenger from one point to another in the least time.

If you were interested in transporting 450 passengers from one point to another, response time Also however, the 747 would clearly be the fastest, as the last column of the fi gure shows. called execution time.

Similarly, we can defi ne computer performance in several diff erent ways.

Th

e total time required

If you were running a program on two diff erent desktop computers, you’d say for the computer to complete a task, including

that the faster one is the desktop computer that gets the job done fi rst. If you were disk accesses, memory running a datacenter that had several servers running jobs submitted by many accesses, I/O activities, users, you’d say that the faster computer was the one that completed the most operating system

jobs during a day. As an individual computer user, you are interested in reducing overhead, CPU execution response time—the time between the start and completion of a task—also referred

time, and so on.

30

Chapter 1 Computer Abstractions and Technology

throughput Also called

to as execution time. Datacenter managers are oft en interested in increasing

bandwidth. Another

throughput or bandwidth—the total amount of work done in a given time. Hence,

measure of performance,

in most cases, we will need diff erent performance metrics as well as diff erent sets

it is the number of tasks

of applications to benchmark personal mobile devices, which are more focused on

completed per unit time.

response time, versus servers, which are more focused on throughput.

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease

EXAMPLE

response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors

for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case

ANSWER

1, both response time and throughput are improved. In case 2, no one task gets

work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost

as large as the throughput, the system might force requests to queue up. In

this case, increasing the throughput could also improve response time, since

it would reduce the waiting time in the queue. Th

us, in many real computer

systems, changing either execution time or throughput oft en aff ects the other.

In discussing the performance of computers, we will be primarily concerned with

response time for the fi rst few chapters. To maximize performance, we want to

minimize response time or execution time for some task. Th

us, we can relate

performance and execution time for a computer X:

1

Performance ⫽

X

Execution timeX

Th

is means that for two computers X and Y, if the performance of X is greater than

the performance of Y, we have

Performance

⬎ Performance

X

Y

1

1

⬎

Execution time

Execution time

X

Y

E

Execution time ⬎ Execution time

Y

X

Th

at is, the execution time on Y is longer than that on X, if X is faster than Y.

1.6 Performance

31

In discussing a computer design, we oft en want to relate the performance of two

diff erent computers quantitatively. We will use the phrase “X is n times faster than

Y”—or equivalently “X is n times as fast as Y”—to mean

PerformanceX ⫽ n

PerformanceY

If X is n times as fast as Y, then the execution time on Y is n times as long as it is on X:

Performance

Execution time

X

Y

⫽

⫽ n

Performance

Execution time

Y

X

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same

program in 15 seconds, how much faster is A than B?

EXAMPLE

We know that A is n times as fast as B if

ANSWER

Performance

Execution time

A

B

⫽

⫽ n

Performance

Execution time

B

A

Th

us the performance ratio is

15 ⫽ 1.5

10

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than

computer A, since

PerformanceA ⫽ 1.5

PerformanceB

means that

PerformanceA ⫽ PerformanceB

1.5

32

Chapter 1 Computer Abstractions and Technology

For simplicity, we will normally use the terminology as fast as when we try to

compare computers quantitatively. Because performance and execution time are

reciprocals, increasing performance requires decreasing execution time. To avoid

the potential confusion between the terms increasing and decreasing, we usually

say “improve performance” or “improve execution time” when we mean “increase

performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the

same amount of work in the least time is the fastest. Program execution time is

measured in seconds per program. However, time can be defi ned in diff erent ways,

depending on what we count. Th

e most straightforward defi nition of time is called

 wall clock time, response time, or elapsed time. Th

ese terms mean the total time

to complete a task, including disk accesses, memory accesses, input/output (I/O)

activities, operating system overhead—everything.

Computers are oft en shared, however, and a processor may work on several

programs simultaneously. In such cases, the system may try to optimize throughput

rather than attempt to minimize the elapsed time for one program. Hence, we

oft en want to distinguish between the elapsed time and the time over which the

CPU execution

processor is working on our behalf. CPU execution time or simply CPU time,

time Also called CPU

which recognizes this distinction, is the time the CPU spends computing for this

time. Th

e actual time the

task and does not include time spent waiting for I/O or running other programs.

CPU spends computing

(Remember, though, that the response time experienced by the user will be the

for a specifi c task.

elapsed time of the program, not the CPU time.) CPU time can be further divided

user CPU time Th

e

into the CPU time spent in the program, called user CPU time, and the CPU time

CPU time spent in a

spent in the operating system performing tasks on behalf of the program, called

program itself.

system CPU time. Diff erentiating between system and user CPU time is diffi

cult to

do accurately, because it is oft en hard to assign responsibility for operating system

system CPU time Th

e

CPU time spent in

activities to one user program rather than another and because of the functionality

the operating system

diff erences among operating systems.

performing tasks on

For consistency, we maintain a distinction between performance based on

behalf of the program.

elapsed time and that based on CPU execution time. We will use the term system

 performance to refer to elapsed time on an unloaded system and CPU performance

to refer to user CPU time. We will focus on CPU performance in this chapter,

although our discussions of how to summarize performance can be applied to

either elapsed time or CPU time measurements.

Understanding Diff erent applications are sensitive to diff erent aspects of the performance of a computer system. Many applications, especially those running on servers, depend

Program as much on I/O performance, which, in turn, relies on both hardware and soft ware.

Performance

Total elapsed time measured by a wall clock is the measurement of interest. In

1.6 Performance

33

some application environments, the user may care about throughput, response

time, or a complex combination of the two (e.g., maximum throughput with a

worst-case response time). To improve the performance of a program, one must

have a clear defi nition of what performance metric matters and then proceed to

look for performance bottlenecks by measuring program execution and looking

for the likely bottlenecks. In the following chapters, we will describe how to search

for bottlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details

of a computer it’s convenient to think about performance in other metrics. In clock cycle Also called tick, clock tick, clock

particular, computer designers may want to think about a computer by using a period, clock, or cycle.

measure that relates to how fast the hardware can perform basic functions. Almost Th e time for one clock all computers are constructed using a clock that determines when events take period, usually of the place in the hardware. Th

ese discrete time intervals are called clock cycles (or processor clock, which

ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a runs at a constant rate.

clock period both as the time for a complete clock cycle (e.g., 250 picoseconds, or clock period Th e length 250 ps) and as the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the of each clock cycle.

clock period. In the next subsection, we will formalize the relationship between the

clock cycles of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both personal mobile Check

devices and the Cloud is limited by network performance. For the following Yourself

changes, state whether only the throughput improves, both response time

and throughput improve, or neither improves.

a. An extra network channel is added between the PMD and the Cloud,

increasing the total network throughput and reducing the delay to obtain

network access (since there are now two channels).

b. Th

e networking soft ware is improved, thereby reducing the network

communication delay, but not increasing throughput.

c. More memory is added to the computer.

2. Computer C’s performance is 4 times as fast as the performance of computer

B, which runs a given application in 28 seconds. How long will computer C

take to run that application?

CPU Performance and Its Factors

Users and designers oft en examine performance using diff erent metrics. If we could

relate these diff erent metrics, we could determine the eff ect of a design change

on the performance as experienced by the user. Since we are confi ning ourselves

to CPU performance at this point, the bottom-line performance measure is CPU

34

Chapter 1 Computer Abstractions and Technology

execution time. A simple formula relates the most basic metrics (clock cycles and

clock cycle time) to CPU time:

CPU execution time

CPU clock cycles

for a program

for a progrram

Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time

CPU clock cycles for a proggram

for a program

⫽

Clock rate

Th

is formula makes it clear that the hardware designer can improve performance

by reducing the number of clock cycles required for a program or the length of

the clock cycle. As we will see in later chapters, the designer oft en faces a trade-off

between the number of clock cycles needed for a program and the length of each

cycle. Many techniques that decrease the number of clock cycles may also increase

the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz

EXAMPLE

clock. We are trying to help a computer designer build a computer, B, which will

run this program in 6 seconds. Th

e designer has determined that a substantial

increase in the clock rate is possible, but this increase will aff ect the rest of the

CPU design, causing computer B to require 1.2 times as many clock cycles as

computer A for this program. What clock rate should we tell the designer to

target?

Let’s fi rst fi nd the number of clock cycles required for the program on A:

ANSWER

CPU clock cycles

CPU time

A

A

Clock rateA

CPU clock cycles

10 seconds

A

cycles

2

109 second

cycles

CPU clock cycles

10 seconds

9

9

A

2

10

20

10 cycles

second

1.6 Performance

35

CPU time for B can be found using this equation:

1.2

CPU clock cycles

CPU time

A

B

Clock rateB

1.2

20

109 cycles

6 seconds

Clock rateB

1.2

20

109 cycles

0 2

20

109 cycles

4

109

.

cycles

Clock rateB

4 GHz

6 secon

nds

second

second

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

Th

e performance equations above did not include any reference to the number of

instructions needed for the program. However, since the compiler clearly generated

instructions to execute, and the computer had to execute the instructions to run

the program, the execution time must depend on the number of instructions in a

program. One way to think about execution time is that it equals the number of

instructions executed multiplied by the average time per instruction. Th

erefore, the

number of clock cycles required for a program can be written as

Average clock ccycles

CPU clock cycles

Instructions for a program

per instruction

Th

e term clock cycles per instruction, which is the average number of clock clock cycles cycles each instruction takes to execute, is oft en abbreviated as CPI. Since diff erent per instruction instructions may take diff erent amounts of time depending on what they do, CPI is (CPI) Average number an average of all the instructions executed in the program. CPI provides one way of of clock cycles per instruction for a program

comparing two diff erent implementations of the same instruction set architecture, or program fragment.

since the number of instructions executed for a program will, of course, be the

same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture.

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program,

EXAMPLE

and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same

program. Which computer is faster for this program and by how much?

36

Chapter 1 Computer Abstractions and Technology

We know that each computer executes the same number of instructions for

ANSWER

the program; let’s call this number I. First, fi nd the number of processor clock

cycles for each computer:

CPU clock cycles ⫽ ×

A

 I

2.0

CPU clock cycles ⫽ ×

B

 I

1.2

Now we can compute the CPU time for each computer:

CPU time

CPU clock cycles

Clock cycle time

A

A

 I

2.0

250 ps

5

500

 I ps

Likewise, for B:

CPU time

 I

1.2

500 ps

600

 I ps

B

Clearly, computer A is faster. Th

e amount faster is given by the ratio of the

execution times:

CPU performance

Execution time

600

 I ps

A

B

1.2

CPU performance

Execution

B

ttime

500

 I ps

A

We can conclude that computer A is 1.2 times as fast as computer B for this

program.

The Classic CPU Performance Equation

instruction count Th

e

We can now write this basic performance equation in terms of instruction count

number of instructions

(the number of instructions executed by the program), CPI, and clock cycle time:

executed by the program.

CPU time

Instruction count

CPI

Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

Instruction count

CPI

CPU time

Clock rate

Th

ese formulas are particularly useful because they separate the three key factors

that aff ect performance. We can use these formulas to compare two diff erent

implementations or to evaluate a design alternative if we know its impact on these

three parameters.

1.6 Performance

37

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a

particular computer. Th

e hardware designers have supplied the following facts:

EXAMPLE

CPI for each instruction class

A

B

C

CPI

1

2

3

For a particular high-level language statement, the compiler writer is

considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Code sequence

A

B

C

1

2

1

2

2

4

1

1

Which code sequence executes the most instructions? Which will be faster?

What is the CPI for each sequence?

Sequence 1 executes 2 ⫹ 1 ⫹ 2 ⫽ 5 instructions. Sequence 2 executes 4 ⫹ 1 ⫹

1 ⫽ 6 instructions. Th

erefore, sequence 1 executes fewer instructions.

ANSWER

We can use the equation for CPU clock cycles based on instruction count

and CPI to fi nd the total number of clock cycles for each sequence:

 n

CPU clock cycles

C

(PI

C)

∑

 i

 i

 i 1

Th

is yields

CPU clock cycles

2

(

1)

1

(

2)

2

(

3)

2

2

6

10 cycles

1

CPU clock cycles

(4

1)

1

(

2)

1

(

3)

4

2

3

9 cycles

2

So code sequence 2 is faster, even though it executes one extra instruction. Since

code sequence 2 takes fewer overall clock cycles but has more instructions, it

must have a lower CPI. Th

e CPI values can be computed by

CPU clock cycles

CPI ⫽ Instruction count

CPU clock cycles

10

CPI ⫽

1 ⫽

⫽

1

2.0

Instruction coun 1

t

5

CPU clock cycles2

9

CP

⫽

⫽

⫽

2

I

1.5

Instructiion count2

6

38

Chapter 1 Computer Abstractions and Technology

Figure 1.15 shows the basic measurements at diff erent levels in the

computer and what is being measured in each case. We can see how these

factors are combined to yield execution time measured in seconds per

program:

Instructions

Clock cycles

Seconds

Time

Seconds/Program

Program

Instru

uction

Clock cycle

The BIG

Always bear in mind that the only complete and reliable measure of

Picture

computer performance is time. For example, changing the instruction set

to lower the instruction count may lead to an organization with a slower

clock cycle time or higher CPI that off sets the improvement in instruction

count. Similarly, because CPI depends on type of instructions executed,

the code that executes the fewest number of instructions may not be the

fastest.

Components of performance

Units of measure

CPU execution time for a program

Seconds for the program

Instruction count

Instructions executed for the program

Clock cycles per instruction (CPI)

Average number of clock cycles per instruction

Clock cycle time

Seconds per clock cycle

FIGURE 1.15 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation?

We can measure the CPU execution time by running the program, and the clock

cycle time is usually published as part of the documentation for a computer. Th

e

instruction count and CPI can be more diffi

cult to obtain. Of course, if we know

the clock rate and CPU execution time, we need only one of the instruction count

or the CPI to determine the other.

We can measure the instruction count by using soft ware tools that profi le the

execution or by using a simulator of the architecture. Alternatively, we can use

hardware counters, which are included in most processors, to record a variety of

measurements, including the number of instructions executed, the average CPI,

and oft en, the sources of performance loss. Since the instruction count depends

on the architecture, but not on the exact implementation, we can measure the

instruction count without knowing all the details of the implementation. Th

e CPI,

however, depends on a wide variety of design details in the computer, including

both the memory system and the processor structure (as we will see in Chapter 4

and Chapter 5), as well as on the mix of instruction types executed in an application.

Th

us, CPI varies by application, as well as among implementations with the same

instruction set.

1.7 The Power Wall

39

Th

e above example shows the danger of using only one factor (instruction count)

to assess performance. When comparing two computers, you must look at all three

components, which combine to form execution time. If some of the factors are

identical, like the clock rate in the above example, performance can be determined

by comparing all the nonidentical factors. Since CPI varies by instruction mix, instruction mix both instruction count and CPI must be compared, even if clock rates are identical. A measure of the dynamic Several exercises at the end of this chapter ask you to evaluate a series of computer frequency of instructions and compiler enhancements that aff ect clock rate, CPI, and instruction count. In across one or many programs.

Section 1.10, we’ll examine a common performance measurement that does not

incorporate all the terms and can thus be misleading.

Th

e performance of a program depends on the algorithm, the language, the Understanding

compiler, the architecture, and the actual hardware. Th

e following table summarizes

Program

how these components aff ect the factors in the CPU performance equation.

Performance

Hardware

or software

component

Affects what?

How?

Algorithm

Instruction count,

The algorithm determines the number of source program

possibly CPI

instructions executed and hence the number of processor

instructions executed. The algorithm may also affect the CPI,

by favoring slower or faster instructions. For example, if the

algorithm uses more divides, it will tend to have a higher CPI.

Programming

Instruction count,

The programming language certainly affects the instruction

language

CPI

count, since statements in the language are translated to

processor instructions, which determine instruction count. The

language may also affect the CPI because of its features; for

example, a language with heavy support for data abstraction

(e.g., Java) will require indirect calls, which will use higher CPI

instructions.

Compiler

Instruction count,

The effi ciency of the compiler affects both the instruction

CPI

count and average cycles per instruction, since the compiler

determines the translation of the source language instructions

into computer instructions. The compiler’s role can be very

complex and affect the CPI in complex ways.

Instruction set

Instruction count,

The instruction set architecture affects all three aspects of

architecture

clock rate, CPI

CPU performance, since it affects the instructions needed for a

function, the cost in cycles of each instruction, and the overall

clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in

Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To

refl ect that approach, some designers invert CPI to talk about IPC, or instructions per clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has an IPC of 2 and hence a CPI of 0.5.

40

Chapter 1 Computer Abstractions and Technology

Elaboration: Although clock cycle time has traditionally been fi xed, to save energy

or temporarily boost performance, today’s processors can vary their clock rates, so we

would need to use the average clock rate for a program. For example, the Intel Core i7

will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls

this Turbo mode.

Check A given application written in Java runs 15 seconds on a desktop processor. A new

Java compiler is released that requires only 0.6 as many instructions as the old

Yourself

compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the

application to run using this new compiler? Pick the right answer from the three

choices below:

15

0.6

a.

8.2 sec

1.1

b. 15

⫻ 0.6 ⫻ 1.1 ⫽ 9.9 sec

15

1.1

c.

27.5 sec

0.6

 1.7

The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel microprocessors over 30 years. Both clock rate and power increased rapidly for

decades, and then fl attened off recently. Th

e reason they grew together is that they

are correlated, and the reason for their recent slowing is that we have run into the

practical power limit for cooling commodity microprocessors.

10,000

120

3600

2667

3300

3400

2000

100

1000

103

95

Clock Rate 200

80

75.3

87

66

77

100

60

25

12.5

16

40

Power

Power (watts)

10

Clock Rate (MHz)

29.1

10.1

20

3.3

4.1

4.9

1

0

80286

(1982)

80386

(1985)

80486

(1989)

Pentium

(1993)

(2007)

Core i5

(2010)

Core i5

(2012)

Pentium

(2001)

Clarkdale

Ivy Bridge

Pro (1997)

Pentium 4

Willamette

Pentium 4

Prescott

(2004)

Core 2

Kentsfield

FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations

and 25 years. Th

e Pentium 4 made a dramatic jump in clock rate and power but less so in performance. Th

e

Prescott thermal problems led to the abandonment of the Pentium 4 line. Th

e Core 2 line reverts to a simpler

pipeline with lower clock rates and multiple processors per chip. Th

e Core i5 pipelines follow in its footsteps.

1.7 The Power Wall

41

Although power provides a limit to what we can cool, in the PostPC Era the

really critical resource is energy. Battery life can trump performance in the personal

mobile device, and the architects of warehouse scale computers try to reduce the

costs of powering and cooling 100,000 servers as the costs are high at this scale. Just

as measuring time in seconds is a safer measure of program performance than a

rate like MIPS (see Section 1.10), the energy metric joules is a better measure than

a power rate like watts, which is just joules/second.

Th

e dominant technology for integrated circuits is called CMOS (complementary

metal oxide semiconductor). For CMOS, the primary source of energy consumption

is so-called dynamic energy—that is, energy that is consumed when transistors

switch states from 0 to 1 and vice versa. Th

e dynamic energy depends on the

capacitive loading of each transistor and the voltage applied:

 Energy ∝ Capacitive load

⫻ Voltage 2

Th

is equation is the energy of a pulse during the logic transition of 0 → 1 → 0 or

1 → 0 → 1. Th

e energy of a single transition is then

 Energy ∝ 1 2

 Capacitive load

 Voltage 2

/ ⫻

⫻

Th

e power required per transistor is just the product of energy of a transition and

the frequency of transitions:

 Power ∝ 1 2 ⫻ Capacitive load ⫻ Voltage 2

/

⫻ Frequency switched

Frequency switched is a function of the clock rate. Th

e capacitive load per transistor

is a function of both the number of transistors connected to an output (called the

 fanout) and the technology, which determines the capacitance of both wires and

transistors.

With regard to Figure 1.16, how could clock rates grow by a factor of 1000

while power grew by only a factor of 30? Energy and thus power can be reduced by

lowering the voltage, which occurred with each new generation of technology, and

power is a function of the voltage squared. Typically, the voltage was reduced about

15% per generation. In 20 years, voltages have gone from 5 V to 1 V, which is why

the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive

load of the more complex older processor. Further, assume that it has adjustable

EXAMPLE

voltage so that it can reduce voltage 15% compared to processor B, which

results in a 15% shrink in frequency. What is the impact on dynamic power?

42

Chapter 1 Computer Abstractions and Technology

Power

Capacitive loa

〈

d

0 8 〉

5

〈Voltage

0 8 〉

5 2

.

.

F

〈

〉

new

rrequency switched

0.85

ANSWER

Power

2

old

Capacitive load

Voltage

Frequency switched

Th

us the power ratio is

0 854

.

⫽ 0.52

Hence, the new processor uses about half the power of the old processor.

Th

e problem today is that further lowering of the voltage appears to make the

transistors too leaky, like water faucets that cannot be completely shut off . Even

today about 40% of the power consumption in server chips is due to leakage. If

transistors started leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large

devices to increase cooling, and they turn off parts of the chip that are not used in

a given clock cycle. Although there are many more expensive ways to cool chips

and thereby raise their power to, say, 300 watts, these techniques are generally

too expensive for personal computers and even servers, not to mention personal

mobile devices.

Since computer designers slammed into a power wall, they needed a new way

forward. Th

ey chose a diff erent path from the way they designed microprocessors

for their fi rst 30 years.

Elaboration: Although dynamic energy is the primary source of energy consumption

in CMOS, static energy consumption occurs because of leakage current that fl ows even

when a transistor is off. In servers, leakage is typically responsible for 40% of the energy

consumption. Thus, increasing the number of transistors increases power dissipation,

even if the transistors are always off. A variety of design techniques and technology

innovations are being deployed to control leakage, but it’s hard to lower voltage further.

Elaboration: Power is a challenge for integrated circuits for two reasons. First, power

must be brought in and distributed around the chip; modern microprocessors use

hundreds of pins just for power and ground! Similarly, multiple levels of chip interconnect

are used solely for power and ground distribution to portions of the chip. Second, power

is dissipated as heat and must be removed. Server chips can burn more than 100 watts,

and cooling the chip and the surrounding system is a major expense in Warehouse Scale

Computers (see Chapter 6).

1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors

43

 1.8

 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

Th

e power limit has forced a dramatic change in the design of microprocessors. Up to now, most

Figure 1.17 shows the improvement in response time of programs for desktop soft ware has been like microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per music written for a year to a factor of 1.2 per year.

 solo performer; with

Rather than continuing to decrease the response time of a single program the current generation running on the single processor, as of 2006 all desktop and server companies are of chips we’re getting a shipping microprocessors with multiple processors per chip, where the benefi t is little experience with oft en more on throughput than on response time. To reduce confusion between the

 duets and quartets and

words processor and microprocessor, companies refer to processors as “cores,” and other small ensembles; such microprocessors are generically called multicore microprocessors. Hence, a but scoring a work for

“quadcore” microprocessor is a chip that contains four processors or four cores.

 large orchestra and

In the past, programmers could rely on innovations in hardware, architecture, chorus is a diff erent and compilers to double performance of their programs every 18 months without kind of challenge.

having to change a line of code. Today, for programmers to get signifi cant Brian Hayes, Computing improvement in response time, they need to rewrite their programs to take in a Parallel Universe, advantage of multiple processors. Moreover, to get the historic benefi t of running 2007.

faster on new microprocessors, programmers will have to continue to improve

performance of their code as the number of cores increases.

To reinforce how the soft ware and hardware systems work hand in hand, we use

a special section, Hardware/Soft ware Interface, throughout the book, with the fi rst

one appearing below. Th

ese elements summarize important insights at this critical

interface.

Parallelism has always been critical to performance in computing, but it was Hardware/

oft en hidden. Chapter 4 will explain pipelining, an elegant technique that runs Software programs faster by overlapping the execution of instructions. Th

is is one example of

 instruction-level parallelism, where the parallel nature of the hardware is abstracted Interface away so the programmer and compiler can think of the hardware as executing

instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly

rewrite their programs to be parallel had been the “third rail” of computer

architecture, for companies in the past that depended on such a change in behavior

failed (see Section 6.15). From this historical perspective, it’s startling that the

whole IT industry has bet its future that programmers will fi nally successfully

switch to explicitly parallel programming.

44

Chapter 1 Computer Abstractions and Technology

100,000

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0)

Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)

Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

34,967

Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

31,999

24,129

Intel Core Duo Extreme 2 cores, 3.0 GHz

21,871

19,484

Intel Core 2 Extreme 2 cores, 2.9 GHz

14,387

10,000

AMD Athlon 64, 2.8 GHz

11,865

AMD Athlon, 2.6 GHz

Intel Xeon EE 3.2 GHz

7,108

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-threading Technology)

6,043 6,681

4,195

IBM Power4, 1.3 GHz

3,016

Intel VC820 motherboard, 1.0 GHz Pentium III processor

1,779

Professional Workstation XP1000, 667 MHz 21264A

1,267

1000

Digital AlphaServer 8400 6/575, 575 MHz 21264

993

AlphaServer 4000 5/600, 600 MHz 21164

649

Digital Alphastation 5/500, 500 MHz

481

Digital Alphastation 5/300, 300 MHz

280

22%/year

Digital Alphastation 4/266, 266 MHz

183

IBM POWERstation 100, 150 MHz

117

100

Digital 3000 AXP/500, 150 MHz

80

Performance (vs. VAX-11/780)

HP 9000/750, 66 MHz

51

IBM RS6000/540, 30 MHz

24

52%/year

MIPS M2000, 25 MHz

18

MIPS M/120, 16.7 MHz

13

10

Sun-4/260, 16.7 MHz

9

VAX 8700, 22 MHz

5

AX-11/780, 5 MHz

25%/year

1.5, VAX-11/785

1

1

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

FIGURE 1.17 Growth in processor performance since the mid-1980s. Th

is chart plots performance relative to the VAX 11/780

as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-driven and averaged about 25% per year. Th

e increase in growth to about 52% since then is attributable to more advanced architectural and

organizational ideas. Th

e higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of seven higher in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency have slowed uniprocessor performance recently, to about 22% per year.

Why has it been so hard for programmers to write explicitly parallel programs?

Th

e fi rst reason is that parallel programming is by defi nition performance

programming, which increases the diffi

culty of programming. Not only does the

program need to be correct, solve an important problem, and provide a useful

interface to the people or other programs that invoke it, the program must also be

fast. Otherwise, if you don’t need performance, just write a sequential program.

Th

e second reason is that fast for parallel hardware means that the programmer

must divide an application so that each processor has roughly the same amount to

do at the same time, and that the overhead of scheduling and coordination doesn’t

fritter away the potential performance benefi ts of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters

working on the same story could potentially write a story eight times faster. To achieve

this increased speed, one would need to break up the task so that each reporter had

something to do at the same time. Th

us, we must schedule the sub-tasks. If anything

went wrong and just one reporter took longer than the seven others did, then the

benefi ts of having eight writers would be diminished. Th

us, we must balance the

1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors

45

 load evenly to get the desired speedup. Another danger would be if reporters had to

spend a lot of time talking to each other to write their sections. You would also fall

short if one part of the story, such as the conclusion, couldn’t be written until all of

the other parts were completed. Th

us, care must be taken to reduce communication

 and synchronization overhead. For both this analogy and parallel programming, the

challenges include scheduling, load balancing, time for synchronization, and overhead

for communication between the parties. As you might guess, the challenge is stiff er with

more reporters for a newspaper story and more processors for parallel programming.

To refl ect this sea change in the industry, the next fi ve chapters in this edition of the

book each have a section on the implications of the parallel revolution to that chapter:

■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually

independent parallel tasks need to coordinate at times, such as to say when

they have completed their work. Th

is chapter explains the instructions used

by multicore processors to synchronize tasks.

■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword

 Parallelism. Perhaps the simplest form of parallelism to build involves

computing on elements in parallel, such as when multiplying two vectors.

Subword parallelism takes advantage of the resources supplied by Moore’s

Law to provider wider arithmetic units that can operate on many operands

simultaneously.

■ Chapter 4, Section 4.10: Parallelism via Instructions. Given the diffi

culty of

explicitly parallel programming, tremendous eff ort was invested in the 1990s

in having the hardware and the compiler uncover implicit parallelism, initially

via pipelining. Th

is chapter describes some of these aggressive techniques,

including fetching and executing multiple instructions simultaneously and

guessing on the outcomes of decisions, and executing instructions speculatively

using prediction.

■ Chapter 5, Section 5.10: Parallelism and Memory Hierarchies: Cache

 Coherence. One way to lower the cost of communication is to have all

processors use the same address space, so that any processor can read or

write any data. Given that all processors today use caches to keep a temporary

copy of the data in faster memory near the processor, it’s easy to imagine that

parallel programming would be even more diffi

cult if the caches associated

with each processor had inconsistent values of the shared data. Th

is chapter

describes the mechanisms that keep the data in all caches consistent.

■ Chapter 5, Section 5.11: Parallelism and Memory Hierarchy: Redundant

 Arrays of Inexpensive Disks. Th

is section describes how using many disks

in conjunction can off er much higher throughput, which was the original

inspiration of Redundant Arrays of Inexpensive Disks (RAID). Th

e real

popularity of RAID proved to be to the much greater dependability off ered

by including a modest number of redundant disks. Th

e section explains the

diff erences in performance, cost, and dependability between the diff erent

RAID levels.

46

Chapter 1 Computer Abstractions and Technology

In addition to these sections, there is a full chapter on parallel processing. Chapter 6

goes into more detail on the challenges of parallel programming; presents the

two contrasting approaches to communication of shared addressing and explicit

message passing; describes a restricted model of parallelism that is easier to

program; discusses the diffi

culty of benchmarking parallel processors; introduces

a new simple performance model for multicore microprocessors; and, fi nally,

describes and evaluates four examples of multicore microprocessors using this

model.

As mentioned above, Chapters 3 to 6 use matrix vector multiply as a running

 I thought [computers]

example to show how each type of parallelism can signifi cantly increase performance.

 would be a universally

Appendix C describes an increasingly popular hardware component that

 applicable idea, like

is included with desktop computers, the graphics processing unit (GPU). Invented

 a book is. But I didn’t

to accelerate graphics, GPUs are becoming programming platforms in their

 think it would develop

own right. As you might expect, given these times, GPUs rely on parallelism.

 as fast as it did, because

Appendix C describes the NVIDIA GPU and highlights parts of its parallel

 I didn’t envision we’d

programming environment.

 be able to get as many

 parts on a chip as

 we fi nally got. Th

 e

 transistor came along

 unexpectedly. It all

 1.9

 Real Stuff: Benchmarking the

 happened much faster

Intel Core i7

 than we expected.

J. Presper Eckert,

Each chapter has a section entitled “Real Stuff ” that ties the concepts in the book

coinventor of ENIAC,

with a computer you may use every day. Th

ese sections cover the technology

speaking in 1991

underlying modern computers. For this fi rst “Real Stuff ” section, we look at

how integrated circuits are manufactured and how performance and power are

workload A set of

programs run on a

measured, with the Intel Core i7 as the example.

computer that is either

the actual collection of

SPEC CPU Benchmark

applications run by a user

or constructed from real

A computer user who runs the same programs day in and day out would be the

programs to approximate

perfect candidate to evaluate a new computer. Th

e set of programs run would form

such a mix. A typical

a workload. To evaluate two computer systems, a user would simply compare

workload specifi es both

the execution time of the workload on the two computers. Most users, however,

the programs and the

are not in this situation. Instead, they must rely on other methods that measure

relative frequencies.

the performance of a candidate computer, hoping that the methods will refl ect

how well the computer will perform with the user’s workload. Th

is alternative is

usually followed by evaluating the computer using a set of benchmarks—programs

specifi cally chosen to measure performance. Th

e benchmarks form a workload that

the user hopes will predict the performance of the actual workload. As we noted

above, to make the common case fast, you fi rst need to know accurately which case

is common, so benchmarks play a critical role in computer architecture.

benchmark A program

SPEC (System Performance Evaluation Cooperative) is an eff ort funded and

selected for use in

comparing computer

supported by a number of computer vendors to create standard sets of benchmarks

performance.

for modern computer systems. In 1989, SPEC originally created a benchmark

1.9 Real Stuff: Benchmarking the Intel Core i7

47

Execution

Reference

Instruction

Clock cycle time

T ime

T ime

9

Description

Name

Count x 10

CPI

(seconds x 10–9)

(seconds)

(seconds)

SPECratio

Interpreted string processing

perl

2252

0.60

0.376

508

9770

19.2

Block-sorting

bzip2

2390

0.70

0.376

629

9650

15.4

compression

GNU C compiler

gcc

794

1.20

0.376

358

8050

22.5

Combinatorial optimization

mcf

221

2.66

0.376

221

9120

41.2

Go game (AI)

go

1274

1.10

0.376

527

10490

19.9

Search gene sequence

hmmer

2616

0.60

0.376

590

9330

15.8

Chess game (AI)

sjeng

1948

0.80

0.376

586

12100

20.7

Quantum computer

libquantum 659

0.44

0.376

109

20720

190.0

simulation

Video compression

h264avc

3793

0.50

0.376

713

22130

31.0

Discrete event

omnetpp

367

2.10

0.376

290

6250

21.5

simulation library

Games/path finding

astar

1250

1.00

0.376

470

7020

14.9

XML parsing

xalancbmk

1045

0.70

0.376

275

6900

25.1

Geometric mean

– – – –

–

–

25.7

FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920. As the equation on page 35 explains, execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. Th e single number

quoted as SPECINTC2006 is the geometric mean of the SPECratios.

set focusing on processor performance (now called SPEC89), which has evolved

through fi ve generations. Th

e latest is SPEC CPU2006, which consists of a set of 12

integer benchmarks (CINT2006) and 17 fl oating-point benchmarks (CFP2006).

Th

e integer benchmarks vary from part of a C compiler to a chess program to a

quantum computer simulation. Th

e fl oating-point benchmarks include structured

grid codes for fi nite element modeling, particle method codes for molecular

dynamics, and sparse linear algebra codes for fl uid dynamics.

Figure 1.18 describes the SPEC integer benchmarks and their execution time

on the Intel Core i7 and shows the factors that explain execution time: instruction

count, CPI, and clock cycle time. Note that CPI varies by more than a factor of 5.

To simplify the marketing of computers, SPEC decided to report a single number

to summarize all 12 integer benchmarks. Dividing the execution time of a reference

processor by the execution time of the measured computer normalizes the execution

time measurements; this normalization yields a measure, called the SPECratio, which

has the advantage that bigger numeric results indicate faster performance. Th

at is,

the SPECratio is the inverse of execution time. A CINT2006 or CFP2006 summary

measurement is obtained by taking the geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric

mean so that it gives the same relative answer no matter what computer is used to

normalize the results. If we averaged the normalized execution time values with an

arithmetic mean, the results would vary depending on the computer we choose as the

reference.

48

Chapter 1 Computer Abstractions and Technology

The formula for the geometric mean is

 n

 n

Execution time ratio

∏

 i

 i⫽1

where Execution time ratio is the execution time, normalized to the reference computer,

 i

for the i th program of a total of n in the workload, and

 n

 a

 a

means the product

 a

∏

…

 a

 i

1

2

 n

 i

1

SPEC Power Benchmark

Given the increasing importance of energy and power, SPEC added a benchmark

to measure power. It reports power consumption of servers at diff erent workload

levels, divided into 10% increments, over a period of time. Figure 1.19 shows the results for a server using Intel Nehalem processors similar to the above.

Performance

Average Power

Target Load %

(ssj_ops)

(watts)

100%

865,618

258

90%

786,688

242

80%

698,051

224

70%

607,826

204

60%

521,391

185

50%

436,757

170

40%

345,919

157

30%

262,071

146

20%

176,061

135

10%

86,784

121

0%

0

80

Overall Sum

4,787,166

1922

∑ssj_ops / ∑power =

2490

FIGURE 1.19 SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650

with 16 GB of DRAM and one 100 GB SSD disk.

SPECpower started with another SPEC benchmark for Java business applications

(SPECJBB2005), which exercises the processors, caches, and main memory as well

as the Java virtual machine, compiler, garbage collector, and pieces of the operating

system. Performance is measured in throughput, and the units are business

operations per second. Once again, to simplify the marketing of computers, SPEC

1.10 Fallacies and Pitfalls

49

boils these numbers down to a single number, called “overall ssj_ops per watt.” Th

e

formula for this single summarizing metric is

⎛ 10

⎜

⎞⎟ ⎛ 10

⎜

⎞⎟

overall ssj_ops per watt ⫽ ⎜

ssj_ops ⎟ ⎜

power

⎜∑

⎜∑

⎟

 i ⎟

 i ⎟

⎝⎜

⎠⎟ ⎝⎜

⎠⎟

 i⫽0

 i⫽0

where ssj_ops is performance at each 10% increment and power is power

i

i

consumed at each performance level.

1.10

Fallacies and Pitfalls

Th

e purpose of a section on fallacies and pitfalls, which will be found in every Science must begin chapter, is to explain some commonly held misconceptions that you might with myths, and the

encounter. We call them fallacies. When discussing a fallacy, we try to give a criticism of myths.

counterexample. We also discuss pitfalls, or easily made mistakes. Oft en pitfalls are Sir Karl Popper, Th e generalizations of principles that are only true in a limited context. Th

e purpose Philosophy of Science,

of these sections is to help you avoid making these mistakes in the computers you 1957

may design or use. Cost/performance fallacies and pitfalls have ensnared many a

computer architect, including us. Accordingly, this section suff ers no shortage of

relevant examples. We start with a pitfall that traps many designers and reveals an

important relationship in computer design.

 Pitfall: Expecting the improvement of one aspect of a computer to increase overall

 performance by an amount proportional to the size of the improvement.

Th

e great idea of making the common case fast has a demoralizing corollary

that has plagued designers of both hardware and soft ware. It reminds us that the

opportunity for improvement is aff ected by how much time the event consumes.

A simple design problem illustrates it well. Suppose a program runs in 100

seconds on a computer, with multiply operations responsible for 80 seconds of this

time. How much do I have to improve the speed of multiplication if I want my

program to run fi ve times faster?

Th

e execution time of the program aft er making the improvement is given by Amdahl’s Law

the following simple equation known as Amdahl’s Law:

A rule stating that

the performance

Execution time after improvement

enhancement possible

Execution time affected byy improvement

with a given improvement

Execution time unaffectted

Amount of improvement

is limited by the amount

that the improved feature

For this problem:

is used. It is a quantitative

version of the law of

80 seconds

diminishing returns.

Execution time after improvement

100

(

80 second

ds)

 n

50

Chapter 1 Computer Abstractions and Technology

Since we want the performance to be fi ve times faster, the new execution time

should be 20 seconds, giving

80 seconds

20 seconds

20 seconds

 n

80 seconds

0

 n

Th

at is, there is no amount by which we can enhance-multiply to achieve a fi vefold

increase in performance, if multiply accounts for only 80% of the workload. Th

e

performance enhancement possible with a given improvement is limited by the amount

that the improved feature is used. In everyday life this concept also yields what we call

the law of diminishing returns.

We can use Amdahl’s Law to estimate performance improvements when we

know the time consumed for some function and its potential speedup. Amdahl’s

Law, together with the CPU performance equation, is a handy tool for evaluating

potential enhancements. Amdahl’s Law is explored in more detail in the exercises.

Amdahl’s Law is also used to argue for practical limits to the number of parallel

processors. We examine this argument in the Fallacies and Pitfalls section of

Chapter 6.

 Fallacy: Computers at low utilization use little power.

Power effi

ciency matters at low utilizations because server workloads vary.

Utilization of servers in Google’s warehouse scale computer, for example, is

between 10% and 50% most of the time and at 100% less than 1% of the time. Even

given fi ve years to learn how to run the SPECpower benchmark well, the specially

confi gured computer with the best results in 2012 still uses 33% of the peak power

at 10% of the load. Systems in the fi eld that are not confi gured for the SPECpower

benchmark are surely worse.

Since servers’ workloads vary but use a large fraction of peak power, Luiz

Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve

“energy-proportional computing.” If future servers used, say, 10% of peak power at

10% workload, we could reduce the electricity bill of datacenters and become good

corporate citizens in an era of increasing concern about CO emissions.

2

 Fallacy: Designing for performance and designing for energy effi

 ciency are

 unrelated goals.

Since energy is power over time, it is oft en the case that hardware or soft ware

optimizations that take less time save energy overall even if the optimization takes

a bit more energy when it is used. One reason is that all of the rest of the computer is

consuming energy while the program is running, so even if the optimized portion

uses a little more energy, the reduced time can save the energy of the whole system.

 Pitfall: Using a subset of the performance equation as a performance metric.

We have already warned about the danger of predicting performance based on

simply one of clock rate, instruction count, or CPI. Another common mistake

1.10 Fallacies and Pitfalls

51

is to use only two of the three factors to compare performance. Although using

two of the three factors may be valid in a limited context, the concept is also

easily misused. Indeed, nearly all proposed alternatives to the use of time as the

performance metric have led eventually to misleading claims, distorted results, or

incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given million instructions program, MIPS is simply

per second (MIPS)

A measurement of

Instruction count

MIPS

program execution speed

Execution time

106

based on the number of

millions of instructions.

Since MIPS is an instruction execution rate, MIPS specifi es performance inversely MIPS is computed as the to execution time; faster computers have a higher MIPS rating. Th

e good news instruction count divided

about MIPS is that it is easy to understand, and faster computers mean bigger by the product of the execution time and 106.

MIPS, which matches intuition.

Th

ere are three problems with using MIPS as a measure for comparing computers.

First, MIPS specifi es the instruction execution rate but does not take into account

the capabilities of the instructions. We cannot compare computers with diff erent

instruction sets using MIPS, since the instruction counts will certainly diff er.

Second, MIPS varies between programs on the same computer; thus, a computer

cannot have a single MIPS rating. For example, by substituting for execution time,

we see the relationship between MIPS, clock rate, and CPI:

Instruction count

C

Clock rate

MIPS

Instruction count

CPI

106

CPI

106

Clock rate

Th

e CPI varied by a factor of 5 for SPEC CPU2006 on an Intel Core i7 computer

in Figure 1.18, so MIPS does as well. Finally, and most importantly, if a new

program executes more instructions but each instruction is faster, MIPS can vary

independently from performance!

Consider the following performance measurements for a program:

Check

Yourself

Measurement

Computer A

Computer B

Instruction count

10 billion

8 billion

Clock rate

4 GHz

4 GHz

CPI

1.0

1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

52

Chapter 1 Computer Abstractions and Technology

 1.11 Concluding

Remarks

 Where … the ENIAC

Although it is diffi

cult to predict exactly what level of cost/performance computers

 is equipped with

will have in the future, it’s a safe bet that they will be much better than they are

 18,000 vacuum tubes

today. To participate in these advances, computer designers and programmers

 and weighs 30 tons,

must understand a wider variety of issues.

 computers in the

Both hardware and soft ware designers construct computer systems in hierarchical

 future may have 1,000

layers, with each lower layer hiding details from the level above. Th

is great idea

 vacuum tubes and

of abstraction is fundamental to understanding today’s computer systems, but it

 perhaps weigh just 1½

does not mean that designers can limit themselves to knowing a single abstraction.

 tons.

Perhaps the most important example of abstraction is the interface between

hardware and low-level soft ware, called the instruction set architecture. Maintaining

 Popular Mechanics,

March 1949

the instruction set architecture as a constant enables many implementations of

that architecture—presumably varying in cost and performance—to run identical

soft ware. On the downside, the architecture may preclude introducing innovations

that require the interface to change.

Th

ere is a reliable method of determining and reporting performance by using

the execution time of real programs as the metric. Th

is execution time is related to

other important measurements we can make by the following equation:

Seconds

Instructions

Clock cycles

Seconds

Program

Program

Instruction

Clock cycle

We will use this equation and its constituent factors many times. Remember,

though, that individually the factors do not determine performance: only the

product, which equals execution time, is a reliable measure of performance.

Execution time is the only valid and unimpeachable measure of

performance. Many other metrics have been proposed and found wanting.

The BIG

Sometimes these metrics are fl awed from the start by not refl ecting

execution time; other times a metric that is valid in a limited context

Picture

is extended and used beyond that context or without the additional

clarifi cation needed to make it valid.

 1.11

Concluding

Remarks

53

Th

e key hardware technology for modern processors is silicon. Equal in

importance to an understanding of integrated circuit technology is an understanding

of the expected rates of technological change, as predicted by Moore’s Law. While

silicon fuels the rapid advance of hardware, new ideas in the organization of

computers have improved price/performance. Two of the key ideas are exploiting

parallelism in the program, typically today via multiple processors, and exploiting

locality of accesses to a memory hierarchy, typically via caches.

Energy effi

ciency has replaced die area as the most critical resource of

microprocessor design. Conserving power while trying to increase performance

has forced the hardware industry to switch to multicore microprocessors, thereby

forcing the soft ware industry to switch to programming parallel hardware.

Parallelism is now required for performance.

Computer designs have always been measured by cost and performance, as well

as other important factors such as energy, dependability, cost of ownership, and

scalability. Although this chapter has focused on cost, performance, and energy,

the best designs will strike the appropriate balance for a given market among all

the factors.

Road Map for This Book

At the bottom of these abstractions are the fi ve classic components of a computer:

datapath, control, memory, input, and output (refer to Figure 1.5). Th

ese fi ve

components also serve as the framework for the rest of the chapters in this book:

■ Datapath: Chapter 3, Chapter 4, Chapter 6, and Appendix C

■ Control: Chapter 4, Chapter 6, and Appendix C

■ Memory: Chapter 5

■ Input: Chapters 5 and 6

■ Output: Chapters 5 and 6

As mentioned above, Chapter 4 describes how processors exploit implicit

parallelism, Chapter 6 describes the explicitly parallel multicore microprocessors

that are at the heart of the parallel revolution, and Appendix C describes

the highly parallel graphics processor chip. Chapter 5 describes how a memory

hierarchy exploits locality. Chapter 2 describes instruction sets—the interface

between compilers and the computer—and emphasizes the role of compilers and

programming languages in using the features of the instruction set. Appendix A

provides a reference for the instruction set of Chapter 2. Chapter 3 describes how

computers handle arithmetic data. Appendix B introduces logic design.

54

Chapter 1 Computer Abstractions and Technology

 Historical Perspective and Further

1.12

Reading

 An active fi eld of

For each chapter in the text, a section devoted to a historical perspective can be

 science is like an

found online on a site that accompanies this book. We may trace the development

 immense anthill; the

of an idea through a series of computers or describe some important projects, and

 individual almost

we provide references in case you are interested in probing further.

 vanishes into the mass

Th

e historical perspective for this chapter provides a background for some of the

 of minds tumbling over

key ideas presented in this opening chapter. Its purpose is to give you the human

 each other, carrying

story behind the technological advances and to place achievements in their historical

 information from place

context. By understanding the past, you may be better able to understand the forces

 to place, passing it

that will shape computing in the future. Each Historical Perspective section online

 around at the speed of

ends with suggestions for further reading, which are also collected separately online

 light.

under the section “Further Reading.” Th

e rest of Section 1.12 is found online.

Lewis Th

omas, “Natural

Science,” in Th

 e Lives of

 a Cell, 1974

 1.13 Exercises

Th

e relative time ratings of exercises are shown in square brackets aft er each

exercise number. On average, an exercise rated [10] will take you twice as long as

one rated [5]. Sections of the text that should be read before attempting an exercise

will be given in angled brackets; for example, <§1.4> means you should have read

Section 1.4, Under the Covers, to help you solve this exercise.

1.1 [2] <§1.1> Aside from the smart cell phones used by a billion people, list and

describe four other types of computers.

1.2 [5] <§1.2> Th

e eight great ideas in computer architecture are similar to ideas

from other fi elds. Match the eight ideas from computer architecture, “Design for

Moore’s Law”, “Use Abstraction to Simplify Design”, “Make the Common Case

Fast”, “Performance via Parallelism”, “Performance via Pipelining”, “Performance

via Prediction”, “Hierarchy of Memories”, and “Dependability via Redundancy” to

the following ideas from other fi elds:

a. Assembly lines in automobile manufacturing

b. Suspension bridge cables

c. Aircraft and marine navigation systems that incorporate wind information

d. Express elevators in buildings

1.13 Exercises

55

e. Library reserve desk

f. Increasing the gate area on a CMOS transistor to decrease its switching time

g. Adding electromagnetic aircraft catapults (which are electrically-powered

as opposed to current steam-powered models), allowed by the increased power

generation off ered by the new reactor technology

h. Building self-driving cars whose control systems partially rely on existing sensor

systems already installed into the base vehicle, such as lane departure systems and

smart cruise control systems

1.3 [2] <§1.3> Describe the steps that transform a program written in a high-level

language such as C into a representation that is directly executed by a computer

processor.

1.4 [2] <§1.4> Assume a color display using 8 bits for each of the primary colors

(red, green, blue) per pixel and a frame size of 1280 × 1024.

a. What is the minimum size in bytes of the frame buff er to store a frame?

b. How long would it take, at a minimum, for the frame to be sent over a 100

Mbit/s network?

1.5 [4] <§1.6> Consider three diff erent processors P1, P2, and P3 executing

the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a

2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI

of 2.2.

a. Which processor has the highest performance expressed in instructions per second?

b. If the processors each execute a program in 10 seconds, fi nd the number of

cycles and the number of instructions.

c. We are trying to reduce the execution time by 30% but this leads to an increase

of 20% in the CPI. What clock rate should we have to get this time reduction?

1.6 [20] <§1.6> Consider two diff erent implementations of the same instruction

set architecture. Th

e instructions can be divided into four classes according to

their CPI (class A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2, 3,

and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.

Given a program with a dynamic instruction count of 1.0E6 instructions divided

into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D,

which implementation is faster?

a. What is the global CPI for each implementation?

b. Find the clock cycles required in both cases.

56

Chapter 1 Computer Abstractions and Technology

1.7 [15] <§1.6> Compilers can have a profound impact on the performance

of an application. Assume that for a program, compiler A results in a dynamic

instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B

results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s.

a. Find the average CPI for each program given that the processor has a clock cycle

time of 1 ns.

b. Assume the compiled programs run on two diff erent processors. If the execution

times on the two processors are the same, how much faster is the clock of the

processor running compiler A’s code versus the clock of the processor running

compiler B’s code?

c. A new compiler is developed that uses only 6.0E8 instructions and has an

average CPI of 1.1. What is the speedup of using this new compiler versus using

compiler A or B on the original processor?

1.8 Th

e Pentium 4 Prescott processor, released in 2004, had a clock rate of 3.6

GHz and voltage of 1.25 V. Assume that, on average, it consumed 10 W of static

power and 90 W of dynamic power.

Th

e Core i5 Ivy Bridge, released in 2012, had a clock rate of 3.4 GHz and voltage

of 0.9 V. Assume that, on average, it consumed 30 W of static power and 40 W of

dynamic power.

1.8.1 [5] <§1.7> For each processor fi nd the average capacitive loads.

1.8.2 [5] <§1.7> Find the percentage of the total dissipated power comprised by

static power and the ratio of static power to dynamic power for each technology.

1.8.3 [15] <§1.7> If the total dissipated power is to be reduced by 10%, how much

should the voltage be reduced to maintain the same leakage current? Note: power

is defi ned as the product of voltage and current.

1.9 Assume for arithmetic, load/store, and branch instructions, a processor has

CPIs of 1, 12, and 5, respectively. Also assume that on a single processor a program

requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store

instructions, and 256 million branch instructions. Assume that each processor has

a 2 GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number

of arithmetic and load/store instructions per processor is divided by 0.7 x p (where

 p is the number of processors) but the number of branch instructions per processor

remains the same.

1.9.1 [5] <§1.7> Find the total execution time for this program on 1, 2, 4, and 8

processors, and show the relative speedup of the 2, 4, and 8 processor result relative

to the single processor result.

1.13 Exercises

57

1.9.2 [10] <§§1.6, 1.8> If the CPI of the arithmetic instructions was doubled,

what would the impact be on the execution time of the program on 1, 2, 4, or 8

processors?

1.9.3 [10] <§§1.6, 1.8> To what should the CPI of load/store instructions be

reduced in order for a single processor to match the performance of four processors

using the original CPI values?

1.10 Assume a 15 cm diameter wafer has a cost of 12, contains 84 dies, and has

0.020 defects/cm2. Assume a 20 cm diameter wafer has a cost of 15, contains 100

dies, and has 0.031 defects/cm2.

1.10.1 [10] <§1.5> Find the yield for both wafers.

1.10.2 [5] <§1.5> Find the cost per die for both wafers.

1.10.3 [5] <§1.5> If the number of dies per wafer is increased by 10% and the

defects per area unit increases by 15%, fi nd the die area and yield.

1.10.4 [5] <§1.5> Assume a fabrication process improves the yield from 0.92 to

0.95. Find the defects per area unit for each version of the technology given a die

area of 200 mm2.

1.11 Th

e results of the SPEC CPU2006 bzip2 benchmark running on an AMD

Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a

reference time of 9650 s.

1.11.1 [5] <§§1.6, 1.9> Find the CPI if the clock cycle time is 0.333 ns.

1.11.2 [5] <§1.9> Find the SPECratio.

1.11.3 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions of the benchmark is increased by 10% without aff ecting the CPI.

1.11.4 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions of the benchmark is increased by 10% and the CPI is increased by 5%.

1.11.5 [5] <§§1.6, 1.9> Find the change in the SPECratio for this change.

1.11.6 [10] <§1.6> Suppose that we are developing a new version of the AMD

Barcelona processor with a 4 GHz clock rate. We have added some additional

instructions to the instruction set in such a way that the number of instructions

has been reduced by 15%. Th

e execution time is reduced to 700 s and the new

SPECratio is 13.7. Find the new CPI.

1.11.7 [10] <§1.6> Th

is CPI value is larger than obtained in 1.11.1 as the clock

rate was increased from 3 GHz to 4 GHz. Determine whether the increase in the

CPI is similar to that of the clock rate. If they are dissimilar, why?

1.11.8 [5] <§1.6> By how much has the CPU time been reduced?

58

Chapter 1 Computer Abstractions and Technology

1.11.9 [10] <§1.6> For a second benchmark, libquantum, assume an execution

time of 960 ns, CPI of 1.61, and clock rate of 3 GHz. If the execution time is

reduced by an additional 10% without aff ecting to the CPI and with a clock rate of

4 GHz, determine the number of instructions.

1.11.10 [10] <§1.6> Determine the clock rate required to give a further 10%

reduction in CPU time while maintaining the number of instructions and with the

CPI unchanged.

1.11.11 [10] <§1.6> Determine the clock rate if the CPI is reduced by 15% and

the CPU time by 20% while the number of instructions is unchanged.

1.12 Section 1.10 cites as a pitfall the utilization of a subset of the performance

equation as a performance metric. To illustrate this, consider the following two

processors. P1 has a clock rate of 4 GHz, average CPI of 0.9, and requires the

execution of 5.0E9 instructions. P2 has a clock rate of 3 GHz, an average CPI of

0.75, and requires the execution of 1.0E9 instructions.

1.12.1 [5] <§§1.6, 1.10> One usual fallacy is to consider the computer with the

largest clock rate as having the largest performance. Check if this is true for P1 and

P2.

1.12.2 [10] <§§1.6, 1.10> Another fallacy is to consider that the processor executing the largest number of instructions will need a larger CPU time. Considering that

processor P1 is executing a sequence of 1.0E9 instructions and that the CPI of

processors P1 and P2 do not change, determine the number of instructions that P2

can execute in the same time that P1 needs to execute 1.0E9 instructions.

1.12.3 [10] <§§1.6, 1.10> A common fallacy is to use MIPS (millions of

instructions per second) to compare the performance of two diff erent processors,

and consider that the processor with the largest MIPS has the largest performance.

Check if this is true for P1 and P2.

1.12.4 [10] <§1.10> Another common performance fi gure is MFLOPS (millions

of fl oating-point operations per second), defi ned as

MFLOPS = No. FP operations / (execution time × 1E6)

but this fi gure has the same problems as MIPS. Assume that 40% of the instructions

executed on both P1 and P2 are fl oating-point instructions. Find the MFLOPS

fi gures for the programs.

1.13 Another pitfall cited in Section 1.10 is expecting to improve the overall

performance of a computer by improving only one aspect of the computer. Consider

a computer running a program that requires 250 s, with 70 s spent executing FP

instructions, 85 s executed L/S instructions, and 40 s spent executing branch

instructions.

1.13.1 [5] <§1.10> By how much is the total time reduced if the time for FP

operations is reduced by 20%?

1.13 Exercises

59

1.13.2 [5] <§1.10> By how much is the time for INT operations reduced if the

total time is reduced by 20%?

1.13.3 [5] <§1.10> Can the total time can be reduced by 20% by reducing only

the time for branch instructions?

1.14 Assume a program requires the execution of 50 × 106 FP instructions,

110 × 106 INT instructions, 80 × 106 L/S instructions, and 16 × 106 branch

instructions. Th

e CPI for each type of instruction is 1, 1, 4, and 2, respectively.

Assume that the processor has a 2 GHz clock rate.

1.14.1 [10] <§1.10> By how much must we improve the CPI of FP instructions if

we want the program to run two times faster?

1.14.2 [10] <§1.10> By how much must we improve the CPI of L/S instructions

if we want the program to run two times faster?

1.14.3 [5] <§1.10> By how much is the execution time of the program improved

if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and

Branch is reduced by 30%?

1.15 [5] <§1.8> When a program is adapted to run on multiple processors in

a multiprocessor system, the execution time on each processor is comprised of

computing time and the overhead time required for locked critical sections and/or

to send data from one processor to another.

Assume a program requires t = 100 s of execution time on one processor. When run

 p processors, each processor requires t/p s, as well as an additional 4 s of overhead,

irrespective of the number of processors. Compute the per-processor execution

time for 2, 4, 8, 16, 32, 64, and 128 processors. For each case, list the corresponding

speedup relative to a single processor and the ratio between actual speedup versus

ideal speedup (speedup if there was no overhead).

§1.1, page 10: Discussion questions: many answers are acceptable.

Answers to

§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds,

Check Yourself

and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000

to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than

DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than

DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.

§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because

high volume can make the extra investment to reduce die size by, say, 10% a good

economic decision, but it doesn’t have to be true.

§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.

§1.6, page 40: b.

§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

2

Instructions:

Language of the

Computer

 I speak Spanish

 to God, Italian to

2.1 Introduction

62

 women, French to

2.2

Operations of the Computer Hardware 63

 men, and German to

2.3

Operands of the Computer Hardware 66

 my horse.

2.4

Signed and Unsigned Numbers 73

2.5

Representing Instructions in the

Charles V, Holy Roman Emperor

Computer 80

(1500–1558)

2.6 Logical

Operations

87

2.7

Instructions for Making Decisions 90

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

2.8

Supporting Procedures in Computer Hardware 96

2.9

Communicating with People 106

2.10

MIPS Addressing for 32-Bit Immediates and Addresses 111

2.11

Parallelism and Instructions: Synchronization 121

2.12

Translating and Starting a Program 123

2.13

A C Sort Example to Put It All Together 132

2.14

Arrays versus Pointers 141

2.15

Advanced Material: Compiling C and Interpreting Java 145

2.16

Real Stuff: ARMv7 (32-bit) Instructions 145

2.17

Real Stuff: x86 Instructions 149

2.18

Real Stuff: ARMv8 (64-bit) Instructions 158

2.19

Fallacies and Pitfalls 159

2.20 Concluding

Remarks

161

2.21

Historical Perspective and Further Reading 163

2.22 Exercises

164

The Five Classic Components of a Computer

62

Chapter 2 Instructions: Language of the Computer

 2.1 Introduction

To command a computer’s hardware, you must speak its language. Th

e words of a

instruction set Th

e

computer’s language are called instructions, and its vocabulary is called an instruction vocabulary of commands

set. In this chapter, you will see the instruction set of a real computer, both in the form understood by a given

written by people and in the form read by the computer. We introduce instructions in

architecture.

a top-down fashion. Starting from a notation that looks like a restricted programming

language, we refi ne it step-by-step until you see the real language of a real computer.

Chapter 3 continues our downward descent, unveiling the hardware for arithmetic

and the representation of fl oating-point numbers.

You might think that the languages of computers would be as diverse as those of

people, but in reality computer languages are quite similar, more like regional dialects

than like independent languages. Hence, once you learn one, it is easy to pick up others.

Th

e chosen instruction set comes from MIPS Technologies, and is an elegant

example of the instruction sets designed since the 1980s. To demonstrate how

easy it is to pick up other instruction sets, we will take a quick look at three other

popular instruction sets.

1. ARMv7 is similar to MIPS. More than 9 billion chips with ARM processors

were manufactured in 2011, making it the most popular instruction set in

the world.

2. Th

e second example is the Intel x86, which powers both the PC and the

cloud of the PostPC Era.

3. Th

e third example is ARMv8, which extends the address size of the ARMv7

from 32 bits to 64 bits. Ironically, as we shall see, this 2013 instruction set is

closer to MIPS than it is to ARMv7.

Th

is similarity of instruction sets occurs because all computers are constructed

from hardware technologies based on similar underlying principles and because

there are a few basic operations that all computers must provide. Moreover,

computer designers have a common goal: to fi nd a language that makes it easy

to build the hardware and the compiler while maximizing performance and

minimizing cost and energy. Th

is goal is time honored; the following quote

was written before you could buy a computer, and it is as true today as it was in 1947:

 It is easy to see by formal-logical methods that there exist certain [instruction

 sets] that are in abstract adequate to control and cause the execution of any

 sequence of operations Th

 e really decisive considerations from the present

 point of view, in selecting an [instruction set], are more of a practical nature:

 simplicity of the equipment demanded by the [instruction set], and the clarity of

 its application to the actually important problems together with the speed of its

 handling of those problems.

Burks, Goldstine, and von Neumann, 1947

2.2 Operations of the Computer Hardware

63

Th

e “simplicity of the equipment” is as valuable a consideration for today’s

computers as it was for those of the 1950s. Th

e goal of this chapter is to teach

an instruction set that follows this advice, showing both how it is represented

in hardware and the relationship between high-level programming languages

and this more primitive one. Our examples are in the C programming language;

Section 2.15 shows how these would change for an object-oriented language

like Java.

By learning how to represent instructions, you will also discover the secret of

computing: the stored-program concept. Moreover, you will exercise your “foreign

stored-program

language” skills by writing programs in the language of the computer and running concept Th e idea that them on the simulator that comes with this book. You will also see the impact of instructions and data of programming languages and compiler optimization on performance. We conclude many types can be stored in memory as numbers,

with a look at the historical evolution of instruction sets and an overview of other leading to the stored-computer dialects.

program computer.

We reveal our fi rst instruction set a piece at a time, giving the rationale along

with the computer structures. Th

is top-down, step-by-step tutorial weaves the

components with their explanations, making the computer’s language more

palatable. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter.

 2.2

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. Th

e MIPS assembly language Th

 ere must certainly

notation

 be instructions

 for performing

add a, b, c

 the fundamental

instructs a computer to add the two variables b and c and to put their sum in a.

 arithmetic operations.

Th

is notation is rigid in that each MIPS arithmetic instruction performs only Burks, Goldstine, and one operation and must always have exactly three variables. For example, suppose von Neumann, 1947

we want to place the sum of four variables b, c, d, and e into variable a. (In this

section we are being deliberately vague about what a “variable” is; in the next

section we’ll explain in detail.)

Th

e following sequence of instructions adds the four variables:

add a, b, c # The sum of b and c is placed in a

add a, a, d # The sum of b, c, and d is now in a

add a, a, e # The sum of b, c, d, and e is now in a

Th

us, it takes three instructions to sum the four variables.

Th

e words to the right of the sharp symbol (#) on each line above are comments

for the human reader, so the computer ignores them. Note that unlike other

programming languages, each line of this language can contain at most one

64

Chapter 2 Instructions: Language of the Computer

MIPS operands

Name

Example

Comments

$s0–$s7, $t0–$t9, $zero,

Fast locations for data. In MIPS, data must be in registers to per form arithmetic,

32 registers

$a0–$a3, $v0–$v1, $gp, $fp, register $zero always equals 0, and register $at is reserved by the assembler to $sp, $ra, $at

handle large constants.

230 memor y Memor y[0], Memor y[4], . . . ,

Accessed only by data transfer instructions. MIPS uses byte addresses, so

words

Memor y[4294967292]

sequential word addresses differ by 4. Memor y holds data structures, arrays, and

spilled registers.

MIPS assembly language

Category Instruction

Example

Meaning

Comments

add

add $s1,$s2,$s3

$s1 = $s2 + $s3

Three register operands

Arithmetic

subtract

sub $s1,$s2,$s3

$s1 = $s2 – $s3

Three register operands

add immediate

addi $s1,$s2,20

$s1 = $s2 + 20

Used to add constants

load word

lw $s1,20($s2)

$s1 = Memory[$s2 + 20]

Word from memor y to register

store word

sw $s1,20($s2)

Memor y[$s2 + 20] = $s1

Word from register to memor y

load half

lh $s1,20($s2)

$s1 = Memory[$s2 + 20]

Halfword memor y to register

load half unsigned

lhu $s1,20($s2)

$s1 = Memory[$s2 + 20]

Halfword memor y to register

store half

sh $s1,20($s2)

Memor y[$s2 + 20] = $s1

Halfword register to memor y

Data

load byte

lb $s1,20($s2)

$s1 = Memory[$s2 + 20]

Byte from memor y to register

transfer

load byte unsigned

lbu $s1,20($s2)

$s1 = Memory[$s2 + 20]

Byte from memor y to register

store byte

sb $s1,20($s2)

Memor y[$s2 + 20] = $s1

Byte from register to memor y

load linked word

ll $s1,20($s2)

$s1 = Memory[$s2 + 20]

Load word as 1st half of atomic swap

store condition. word sc $s1,20($s2)

Memory[$s2+20]=$s1;$s1=0 or 1 Store word as 2nd half of atomic swap

load upper immed.

lui $s1,20

$s1 = 20 * 216

Loads constant in upper 16 bits

and

and $s1,$s2,$s3 $s1 = $s2 & $s3

Three reg. operands; bit-by-bit AND

or

or $s1,$s2,$s3 $s1 = $s2 | $s3

Three reg. operands; bit-by-bit OR

nor

nor $s1,$s2,$s3 $s1 = ~ ($s2 | $s3)

Three reg. operands; bit-by-bit NOR

Logical

and immediate

andi $s1,$s2,20

$s1 = $s2 & 20

Bit-by-bit AND reg with constant

or immediate

ori $s1,$s2,20

$s1 = $s2 | 20

Bit-by-bit OR reg with constant

shift left logical

sll $s1,$s2,10

$s1 = $s2 << 10

Shift left by constant

shift right logical

srl $s1,$s2,10

$s1 = $s2 >> 10

Shift right by constant

branch on equal

beq $s1,$s2,25

if ($s1 == $s2) go to

Equal test; PC-relative branch

PC + 4 + 100

branch on not equal

bne $s1,$s2,25

if ($s1!= $s2) go to

Not equal test; PC-relative

PC + 4 + 100

set on less than

slt $s1,$s2,$s3

if ($s2 < $s3) $s1 = 1;

Compare less than; for beq, bne

Conditional

else $s1 = 0

branch

set on less than

sltu $s1,$s2,$s3

if ($s2 < $s3) $s1 = 1;

Compare less than unsigned

unsigned

else $s1 = 0

set less than

slti $s1,$s2,20

if ($s2 < 20) $s1 = 1;

Compare less than constant

immediate

else $s1 = 0

set less than

sltiu $s1,$s2,20

if ($s2 < 20) $s1 = 1;

Compare less than constant

immediate unsigned

else $s1 = 0

unsigned

jump

j 2500

go to 10000

Jump to target address

Unconditional jump register

jr $ra

go to $ra

For switch, procedure return

jump

jump and link

jal 2500

$ra = PC + 4; go to 10000

For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter. Th

is information is also found in Column 1 of the MIPS Reference

Data Card at the front of this book.

2.2 Operations of the Computer Hardware

65

instruction. Another diff erence from C is that comments always terminate at the

end of a line.

Th

e natural number of operands for an operation like addition is three: the

two numbers being added together and a place to put the sum. Requiring every

instruction to have exactly three operands, no more and no less, conforms to the

philosophy of keeping the hardware simple: hardware for a variable number of

operands is more complicated than hardware for a fi xed number. Th

is situation

illustrates the fi rst of three underlying principles of hardware design:

 Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of programs

written in higher-level programming languages to programs in this more primitive

notation.

Compiling Two C Assignment Statements into MIPS

Th

is segment of a C program contains the fi ve variables a, b, c, d, and e. Since

Java evolved from C, this example and the next few work for either high-level

EXAMPLE

programming language:

a = b + c;

d = a – e;

Th

e translation from C to MIPS assembly language instructions is performed

by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result

in one destination operand. Hence, the two simple statements above compile

ANSWER

directly into these two MIPS assembly language instructions:

add a, b, c

sub d, a, e

Compiling a Complex C Assignment into MIPS

EXAMPLE

A somewhat complex statement contains the fi ve variables f, g, h, i, and j:

f = (g + h) – (i + j);

What might a C compiler produce?

66

Chapter 2 Instructions: Language of the Computer

Th

e compiler must break this statement into several assembly instructions,

ANSWER

since only one operation is performed per MIPS instruction. Th

e fi rst MIPS

instruction calculates the sum of g and h. We must place the result somewhere,

so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and

j before we can subtract. Th

us, the second instruction places the sum of i and

j in another temporary variable created by the compiler, called t1:

add t1,i,j # temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the fi rst and

places the diff erence in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 – t1, which is (g + h) – (i + j)

Check For a given function, which programming language likely takes the most lines of

code? Put the three representations below in order.

Yourself

1. Java

2. C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a

software interpreter. The instruction set of this interpreter is called Java bytecodes

(see

Section 2.15), which is quite different from the MIPS instruction set. To get

performance close to the equivalent C program, Java systems today typically compile

Java bytecodes into the native instruction sets like MIPS. Because this compilation is

normally done much later than for C programs, such Java compilers are often called Just

 In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers

in the start-up process, and Section 2.13 shows the performance consequences of

compiling versus interpreting Java programs.

 2.3

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions

are restricted; they must be from a limited number of special locations built directly

word Th

e natural unit

in hardware called registers. Registers are primitives used in hardware design that

of access in a computer,

are also visible to the programmer when the computer is completed, so you can

usually a group of 32 bits;

think of registers as the bricks of computer construction. Th

e size of a register in

corresponds to the size

of a register in the MIPS

the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are

architecture.

given the name word in the MIPS architecture.

2.3 Operands of the Computer Hardware

67

One major diff erence between the variables of a programming language and

registers is the limited number of registers, typically 32 on current computers,

like MIPS. (See Section 2.21 for the history of the number of registers.) Th

us,

continuing in our top-down, stepwise evolution of the symbolic representation of

the MIPS language, in this section we have added the restriction that the three

operands of MIPS arithmetic instructions must each be chosen from one of the 32

32-bit registers.

Th

e reason for the limit of 32 registers may be found in the second of our three

underlying design principles of hardware technology:

 Design Principle 2: Smaller is faster .

A very large number of registers may increase the clock cycle time simply because

it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be

faster than 32. Yet, the truth behind such observations causes computer designers

to take them seriously. In this case, the designer must balance the craving of

programs for more registers with the designer’s desire to keep the clock cycle fast.

Another reason for not using more than 32 is the number of bits it would take in

the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction;

as we shall see in this chapter, eff ective use of registers is critical to program

performance.

Although we could simply write instructions using numbers for registers, from

0 to 31, the MIPS convention is to use two-character names following a dollar sign

to represent a register. Section 2.8 will explain the reasons behind these names. For

now, we will use $s0, $s1, . . . for registers that correspond to variables in C and

Java programs and $t0, $t1, . . . for temporary registers needed to compile the

program into MIPS instructions.

Compiling a C Assignment Using Registers

EXAMPLE

It is the compiler’s job to associate program variables with registers. Take, for

instance, the assignment statement from our earlier example:

f = (g + h) – (i + j);

Th

e variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2,

$s3, and $s4, respectively. What is the compiled MIPS code?

68

Chapter 2 Instructions: Language of the Computer

Th

e compiled program is very similar to the prior example, except we replace

ANSWER

the variables with the register names mentioned above plus two temporary

registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h

add $t1,$s3,$s4 # register $t1 contains i + j

sub $s0,$t0,$t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

Memory Operands

Programming languages have simple variables that contain single data elements,

as in these examples, but they also have more complex data structures—arrays and

structures. Th

ese complex data structures can contain many more data elements

than there are registers in a computer. How can a computer represent and access

such large structures?

Recall the fi ve components of a computer introduced in Chapter 1 and repeated

on page 61. Th

e processor can keep only a small amount of data in registers, but

computer memory contains billions of data elements. Hence, data structures

(arrays and structures) are kept in memory.

data transfer

instruction A command

As explained above, arithmetic operations occur only on registers in MIPS

that moves data between

instructions; thus, MIPS must include instructions that transfer data between

memory and registers.

memory and registers. Such instructions are called data transfer instructions.

To access a word in memory, the instruction must supply the memory address.

address A value used to

Memory is just a large, single-dimensional array, with the address acting as the

delineate the location of

a specifi c data element

index to that array, starting at 0. For example, in Figure 2.2, the address of the third within a memory array.

data element is 2, and the value of Memory [2] is 10.

3

100

2

10

1

101

0

1

Address

Data

Processor

Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

Th

e data transfer instruction that copies data from memory to a register is

traditionally called load. Th

e format of the load instruction is the name of the

operation followed by the register to be loaded, then a constant and register used to

access memory. Th

e sum of the constant portion of the instruction and the contents

of the second register forms the memory address. Th

e actual MIPS name for this

instruction is lw, standing for load word.

2.3 Operands of the Computer Hardware

69

Compiling an Assignment When an Operand Is in Memory

EXAMPLE

Let’s assume that A is an array of 100 words and that the compiler has

associated the variables g and h with the registers $s1 and $s2 as before.

Let’s also assume that the starting address, or base address, of the array is in

$s3. Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of

the operands is in memory, so we must fi rst transfer A[8] to a register. Th

e

ANSWER

address of this array element is the sum of the base of the array A, found in

register $s3, plus the number to select element 8. Th

e data should be placed

in a temporary register for use in the next instruction. Based on Figure 2.2, the fi rst compiled instruction is

lw $t0,8($s3) # Temporary reg $t0 gets A[8]

(We’ll be making a slight adjustment to this instruction, but we’ll use this

simplifi ed version for now.) Th

e following instruction can operate on the value

in $t0 (which equals A[8]) since it is in a register. Th

e instruction must add

h (contained in $s2) to A[8] (contained in $t0) and put the sum in the

register corresponding to g (associated with $s1):

add $s1,$s2,$t0 # g = h + A[8]

Th

e constant in a data transfer instruction (8) is called the off set, and the

register added to form the address ($s3) is called the base register.

In addition to associating variables with registers, the compiler allocates data Hardware/

structures like arrays and structures to locations in memory. Th

e compiler can then

Software

place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, virtually all architectures today Interface address individual bytes. Th

erefore, the address of a word matches the address of

one of the 4 bytes within the word, and addresses of sequential words diff er by 4.

For example, Figure 2.3 shows the actual MIPS addresses for the words in Figure

2.2; the byte address of the third word is 8.

alignment restriction

In MIPS, words must start at addresses that are multiples of 4. Th

is requirement A requirement that data

is called an alignment restriction, and many architectures have it. (Chapter 4 be aligned in memory on suggests why alignment leads to faster data transfers.)

natural boundaries.

70

Chapter 2 Instructions: Language of the Computer

12

100

8

10

4

101

0

1

Byte Address

Data

Processor

Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.

Th

e changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word addresses are multiples of 4: there are 4 bytes in a word.

Computers divide into those that use the address of the left most or “big end” byte

as the word address versus those that use the rightmost or “little end” byte. MIPS is

in the big-endian camp. Since the order matters only if you access the identical data

both as a word and as four bytes, few need to be aware of the endianess. (Appendix

A shows the two options to number bytes in a word.)

Byte addressing also aff ects the array index. To get the proper byte address in the

code above, the off set to be added to the base register $s3 must be 4 8, or 32, so that the load address will select A[8] and not A[8/4]. (See the related pitfall on

page 160 of Section 2.19.)

Th

e instruction complementary to load is traditionally called store; it copies data

from a register to memory. Th

e format of a store is similar to that of a load: the

name of the operation, followed by the register to be stored, then off set to select

the array element, and fi nally the base register. Once again, the MIPS address is

specifi ed in part by a constant and in part by the contents of a register. Th

e actual

MIPS name is sw, standing for store word.

Hardware/

As the addresses in loads and stores are binary numbers, we can see why the

DRAM for main memory comes in binary sizes rather than in decimal sizes. Th

at

Software is, in gebibytes (230) or tebibytes (240), not in gigabytes (109) or terabytes (1012); see Interface

Figure 1.1.

2.3 Operands of the Computer Hardware

71

Compiling Using Load and Store

EXAMPLE

Assume variable h is associated with register $s2 and the base address of

the array A is in $s3. What is the MIPS assembly code for the C assignment

statement below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the

operands are in memory, so we need even more MIPS instructions. Th

e fi rst

ANSWER

two instructions are the same as in the prior example, except this time we use

the proper off set for byte addressing in the load word instruction to select

A[8], and the add instruction places the sum in $t0:

lw $t0,32($s3) # Temporary reg $t0 gets A[8]

add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[8]

Th

e fi nal instruction stores the sum into A[12], using 48 (4 12) as the off set

and register $s3 as the base register.

sw $t0,48($s3) # Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between

memory and registers in the MIPS architecture. Other brands of computers use

other instructions along with load and store to transfer data. An architecture with

such alternatives is the Intel x86, described in Section 2.17.

Many programs have more variables than computers have registers. Consequently, Hardware/

the compiler tries to keep the most frequently used variables in registers and places Software the rest in memory, using loads and stores to move variables between registers and

memory. Th

e process of putting less commonly used variables (or those needed Interface

later) into memory is called spilling registers.

Th

e hardware principle relating size and speed suggests that memory must be

slower than registers, since there are fewer registers. Th

is is indeed the case; data

accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruction

can read two registers, operate on them, and write the result. A MIPS data transfer

instruction only reads one operand or writes one operand, without operating on it.

Th

us, registers take less time to access and have higher throughput than memory,

making data in registers both faster to access and simpler to use. Accessing registers

also uses less energy than accessing memory. To achieve highest performance and

conserve energy, an instruction set architecture must have a suffi

cient number of

registers, and compilers must use registers effi

ciently.

72

Chapter 2 Instructions: Language of the Computer

Constant or Immediate Operands

Many times a program will use a constant in an operation—for example,

incrementing an index to point to the next element of an array. In fact, more than

half of the MIPS arithmetic instructions have a constant as an operand when

running the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant

from memory to use one. (Th

e constants would have been placed in memory when

the program was loaded.) For example, to add the constant 4 to register $s3, we

could use the code

lw $t0, AddrConstant4($s1) # $t0 = constant 4

add $s3,$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.

An alternative that avoids the load instruction is to off er versions of the arithmetic

instructions in which one operand is a constant. Th

is quick add instruction with

one constant operand is called add immediate or addi. To add 4 to register $s3,

we just write

addi $s3,$s3,4 # $s3 = $s3 + 4

Constant operands occur frequently, and by including constants inside

arithmetic instructions, operations are much faster and use less energy than if

constants were loaded from memory.

Th

e constant zero has another role, which is to simplify the instruction set

by off ering useful variations. For example, the move operation is just an add

instruction where one operand is zero. Hence, MIPS dedicates a register $zero

to be hard-wired to the value zero. (As you might expect, it is register number 0.)

Using frequency to justify the inclusions of constants is another example of the

great idea of making the common case fast.

Check Given the importance of registers, what is the rate of increase in the number of

registers in a chip over time?

Yourself

1. Very fast: Th

ey increase as fast as Moore’s law, which predicts doubling the

number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the

computer, there is inertia in instruction set architecture, and so the number

of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a

64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,

they are offi cially called MIPS-32 and MIPS-64. In this chapter, we use a subset of

MIPS-32.

Appendix E shows the differences between MIPS-32 and MIPS-64. Sections

2.16 and 2.18 show the much more dramatic difference between the 32-bit address

ARMv7 and its 64-bit successor, ARMv8.

2.4 Signed and Unsigned Numbers

73

Elaboration: The MIPS offset plus base register addressing is an excellent match to

structures as well as arrays, since the register can point to the beginning of the structure

and the offset can select the desired element. We’ll see such an example in Section

2.13.

Elaboration: The register in the data transfer instructions was originally invented to

hold an index of an array with the offset used for the starting address of an array. Thus,

the base register is also called the index register. Today’s memories are much larger and the software model of data allocation is more sophisticated, so the base address of

the array is normally passed in a register since it won’t fi t in the offset, as we shall see.

Elaboration: Since MIPS supports negative constants, there is no need for subtract

immediate in MIPS.

 2.4

Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught

to think in base 10, but numbers may be represented in any base. For example, 123

base 10 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic

signals, and so they are considered base 2 numbers. (Just as base 10 numbers are

called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all

information is composed of binary digits or bits. Th

is fundamental building block binary digit Also

can be one of two values, which can be thought of as several alternatives: high or called binary bit. One low, on or off , true or false, or 1 or 0.

of the two numbers

Generalizing the point, in any number base, the value of i th digit d is

in base 2, 0 or 1, that

are the components of

 d

 i

 Base

information.

where i starts at 0 and increases from right to left . Th

is representation leads to an

obvious way to number the bits in the word: simply use the power of the base for

that bit. We subscript decimal numbers with ten and binary numbers with two. For

example,

1011two

represents

(1 x 23) + (0 x 22) + (1 x 21) + (1 x 20)ten

= (1 x 8) + (0 x 4) + (1 x 2) + (1 x 1)ten

= 8 + 0 + 2 + 1ten

= 11ten

74

Chapter 2 Instructions: Language of the Computer

We number the bits 0, 1, 2, 3, . . . from right to left in a word. Th

e drawing below

shows the numbering of bits within a MIPS word and the placement of the number

1011 :

two

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

(32 bits wide)

least signifi cant bit Th

e

Since words are drawn vertically as well as horizontally, left most and rightmost

rightmost bit in a MIPS

may be unclear. Hence, the phrase least signifi cant bit is used to refer to the right-

word.

most bit (bit 0 above) and most signifi cant bit to the left most bit (bit 31).

Th

e MIPS word is 32 bits long, so we can represent 232 diff erent 32-bit patterns.

most signifi cant bit Th

e

left most bit in a MIPS

It is natural to let these combinations represent the numbers from 0 to 232 1

word.

(4,294,967,295):

ten

0000 0000 0000 0000 0000 0000 0000 0000

= 0

two

ten

0000 0000 0000 0000 0000 0000 0000 0001

= 1

two

ten

0000 0000 0000 0000 0000 0000 0000 0010

= 2

two

ten

.

.

. .

.

.

1111 1111 1111 1111 1111 1111 1111 1101

= 4,294,967,293

two

ten

1111 1111 1111 1111 1111 1111 1111 1110

= 4,294,967,294

two

ten

1111 1111 1111 1111 1111 1111 1111 1111

= 4,294,967,295

two

ten

Th

at is, 32-bit binary numbers can be represented in terms of the bit value times a

power of 2 (here xi means the i th bit of x):

(x 31

231)

(x 30

230)

(x 29

229)

(x 1

21)

(x 0

20

…

)

For reasons we will shortly see, these positive numbers are called unsigned numbers.

Hardware/

Base 2 is not natural to human beings; we have 10 fi ngers and so fi nd base 10

natural. Why didn’t computers use decimal? In fact, the fi rst commercial computer

Software did off er decimal arithmetic. Th e problem was that the computer still used on Interface

and off signals, so a decimal digit was simply represented by several binary digits.

Decimal proved so ineffi

cient that subsequent computers reverted to all binary,

converting to base 10 only for the relatively infrequent input/output events.

Keep in mind that the binary bit patterns above are simply representatives of

numbers. Numbers really have an infi nite number of digits, with almost all being

0 except for a few of the rightmost digits. We just don’t normally show leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary

bit patterns. If the number that is the proper result of such operations cannot be

represented by these rightmost hardware bits, overfl ow is said to have occurred.

2.4 Signed and Unsigned Numbers

75

It’s up to the programming language, the operating system, and the program to

determine what to do if overfl ow occurs.

Computer programs calculate both positive and negative numbers, so we need a

representation that distinguishes the positive from the negative. Th

e most obvious

solution is to add a separate sign, which conveniently can be represented in a single

bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s

not obvious where to put the sign bit. To the right? To the left ? Early computers

tried both. Second, adders for sign and magnitude may need an extra step to set

the sign because we can’t know in advance what the proper sign will be. Finally, a

separate sign bit means that sign and magnitude has both a positive and a negative

zero, which can lead to problems for inattentive programmers. As a result of these

shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what

would be the result for unsigned numbers if we tried to subtract a large number

from a small one. Th

e answer is that it would try to borrow from a string of leading

0s, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the fi nal solution was to pick

the representation that made the hardware simple: leading 0s mean positive, and

leading 1s mean negative. Th

is convention for representing signed binary numbers

is called two’s complement representation:

0000 0000 0000 0000 0000 0000 0000 0000

= 0

two

ten

0000 0000 0000 0000 0000 0000 0000 0001

= 1

two

ten

0000 0000 0000 0000 0000 0000 0000 0010

= 2

two

ten

.

.

. .

.

.

0111 1111 1111 1111 1111 1111 1111 1101

= 2,147,483,645

two

ten

0111 1111 1111 1111 1111 1111 1111 1110

= 2,147,483,646

two

ten

0111 1111 1111 1111 1111 1111 1111 1111

= 2,147,483,647

two

ten

1000 0000 0000 0000 0000 0000 0000 0000

= –2,147,483,648

two

ten

1000 0000 0000 0000 0000 0000 0000 0001

= –2,147,483,647

two

ten

1000 0000 0000 0000 0000 0000 0000 0010

= –2,147,483,646

two

ten

.

.

. .

.

.

1111 1111 1111 1111 1111 1111 1111 1101

= –3

two

ten

1111 1111 1111 1111 1111 1111 1111 1110

= –2

two

ten

1111 1111 1111 1111 1111 1111 1111 1111

= –1

two

ten

Th

e positive half of the numbers, from 0 to 2,147,483,647 (231 1), use the same

ten

representation as before. Th

e following bit pattern (1000 . . . 0000) represents the most

two

negative number 2,147,483,648 (231). It is followed by a declining set of negative

ten

numbers: 2,147,483,647 (1000 . . . 0001) down to 1 (1111 . . . 1111).

ten

two

ten

two

Two’s complement does have one negative number, 2,147,483,648 , that

ten

has no corresponding positive number. Such imbalance was also a worry to the

inattentive programmer, but sign and magnitude had problems for both the

programmer and the hardware designer. Consequently, every computer today uses

two’s complement binary representations for signed numbers.

76

Chapter 2 Instructions: Language of the Computer

Two’s complement representation has the advantage that all negative numbers

have a 1 in the most signifi cant bit. Consequently, hardware needs to test only

this bit to see if a number is positive or negative (with the number 0 considered

positive). Th

is bit is oft en called the sign bit. By recognizing the role of the sign bit,

we can represent positive and negative 32-bit numbers in terms of the bit value

times a power of 2:

(x 31

231)

(x 30

230)

(x 29

229)

(x 1

21)

(x 0

20

+

…

)

Th

e sign bit is multiplied by 231, and the rest of the bits are then multiplied by

positive versions of their respective base values.

Binary to Decimal Conversion

EXAMPLE

What is the decimal value of this 32-bit two’s complement number?

1111 1111 1111 1111 1111 1111 1111 1100two

Substituting the number’s bit values into the formula above:

ANSWER

(1

231)

(1

230)

(1

229)

… (1 21) (0 21) (0 20)

231

230

2229

2

… 2

0

0

2,147, 483,648

2,147, 483,644

ten

ten

4ten

We’ll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overfl ow the capacity of hardware

to represent the result, so can an operation on two’s complement numbers. Overfl ow

occurs when the left most retained bit of the binary bit pattern is not the same as the

infi nite number of digits to the left (the sign bit is incorrect): a 0 on the left of the bit

pattern when the number is negative or a 1 when the number is positive.

Hardware/

Signed versus unsigned applies to loads as well as to arithmetic. Th

e function of a

signed load is to copy the sign repeatedly to fi ll the rest of the register—called sign

Software extension—but its purpose is to place a correct representation of the number within Interface that register. Unsigned loads simply fi ll with 0s to the left of the data, since the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and

unsigned loads are identical. MIPS does off er two fl avors of byte loads: load byte (lb) treats the byte as a signed number and thus sign-extends to fi ll the 24 left -most bits

of the register, while load byte unsigned (lbu) works with unsigned integers. Since C

programs almost always use bytes to represent characters rather than consider bytes

as very short signed integers, lbu is used practically exclusively for byte loads.

2.4 Signed and Unsigned Numbers

77

Unlike the numbers discussed above, memory addresses naturally start at 0 Hardware/

and continue to the largest address. Put another way, negative addresses make Software

no sense. Th

us, programs want to deal sometimes with numbers that can be

positive or negative and sometimes with numbers that can be only positive. Interface

Some programming languages refl ect this distinction. C, for example, names the

former integers (declared as int in the program) and the latter unsigned integers

(unsigned int). Some C style guides even recommend declaring the former as

signed int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement

numbers. Th

e fi rst shortcut is a quick way to negate a two’s complement binary

number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result.

Th

is shortcut is based on the observation that the sum of a number and its inverted

representation must be 111 . . . 111 , which represents 1. Since x

 x

1,

two

therefore x

 x

1

0 or x

1

 x

− . (We use the notation x to mean invert

every bit in x from 0 to 1 and vice versa.)

Negation Shortcut

EXAMPLE

Negate 2 , and then check the result by negating 2 .

ten

ten

2 0000 0000 0000 0000 0000 0000 0000 0010

ten

two

ANSWER

Negating this number by inverting the bits and adding one,

1111

1111

1111

1111

1111

1111

1111

1101two

+

1two

=

1111

1111

1111

1111

1111

1111

1111

1110two

=

–2ten

Going the other direction,

1111 1111 1111 1111 1111 1111 1111 1110two

is fi rst inverted and then incremented:

0000

0000

0000

0000

0000

0000

0000

0001two

+ 1two

=

0000

0000

0000

0000

0000

0000

0000

0010two

=

2ten

78

Chapter 2 Instructions: Language of the Computer

Our next shortcut tells us how to convert a binary number represented in n bits

to a number represented with more than n bits. For example, the immediate fi eld

in the load, store, branch, add, and set on less than instructions contains a two’s

complement 16-bit number, representing 32,768 (215) to 32,767 (215 1).

ten

ten

To add the immediate fi eld to a 32-bit register, the computer must convert that 16-

bit number to its 32-bit equivalent. Th

e shortcut is to take the most signifi cant bit

from the smaller quantity—the sign bit—and replicate it to fi ll the new bits of the

larger quantity. Th

e old nonsign bits are simply copied into the right portion of the

new word. Th

is shortcut is commonly called sign extension.

Sign Extension Shortcut

EXAMPLE

Convert 16-bit binary versions of 2 and 2 to 32-bit binary numbers.

ten

ten

Th

e 16-bit binary version of the number 2 is

ANSWER

0000 0000 0000 0010

= 2

two

ten

It is converted to a 32-bit number by making 16 copies of the value in the most

signifi cant bit (0) and placing that in the left -hand half of the word. Th

e right

half gets the old value:

0000 0000 0000 0000 0000 0000 0000 0010

= 2

two

ten

Let’s negate the 16-bit version of 2 using the earlier shortcut. Th

us,

0000 0000 0000 0010two

becomes

1111

1111

1111

1101two

+

1two

= 1111

1111

1111

1110two

Creating a 32-bit version of the negative number means copying the sign bit

16 times and placing it on the left :

1111 1111 1111 1111 1111 1111 1111 1110

= –2

two

ten

Th

is trick works because positive two’s complement numbers really have an infi nite

number of 0s on the left and negative two’s complement numbers have an infi nite

number of 1s. Th

e binary bit pattern representing a number hides leading bits to fi t

the width of the hardware; sign extension simply restores some of them.

2.4 Signed and Unsigned Numbers

79

Summary

Th

e main point of this section is that we need to represent both positive and

negative integers within a computer word, and although there are pros and cons to

any option, the unanimous choice since 1965 has been two’s complement.

Elaboration: For signed decimal numbers, we used “” to represent negative

because there are no limits to the size of a decimal number. Given a fi xed word size,

binary and hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not normally use “” or “” with binary or hexadecimal notation.

What is the decimal value of this 64-bit two’s complement number?

Check

Yourself

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000two

1) –4ten

2) –8ten

3) –16ten

4) 18,446,744,073,709,551,609ten

one’s complement

A notation that represents

Elaboration: Two’s complement gets its name from the rule that the unsigned sum

the most negative value

of an n-bit number and its n-bit negative is 2 n; hence, the negation or complement of a by 10 . . . 000 and the

number x is 2 n x, or its “two’s complement.”

two

most positive value by

01 . . . 11 , leaving an

two

A third alternative representation to two’s complement and sign and magnitude is

equal number of negatives

called one’s complement. The negative of a one’s complement is found by inverting

and positives but ending

each bit, from 0 to 1 and from 1 to 0, or x. This relation helps explain its name since

up with two zeros, one

the complement of x is 2 n x 1. It was also an attempt to be a better solution positive (00 . . . 00) and

two

than sign and magnitude, and several early scientifi c computers did use the notation.

one negative (11 . . . 11).

two

This representation is similar to two’s complement except that it also has two 0s: Th

e term is also used to

00 . . . 00

is positive 0 and 11 . . . 11

is negative 0. The most negative number,

mean the inversion of

two

two

10 . . . 000

, represents 2,147,483,647 , and so the positives and negatives are

every bit in a pattern: 0 to

two

ten

balanced. One’s complement adders did need an extra step to subtract a number, and

1 and 1 to 0.

hence two’s complement dominates today.

biased notation

A fi nal notation, which we will look at when we discuss fl oating point in Chapter 3,

A notation that represents

is to represent the most negative value by 00 . . . 000

and the most positive value

two

the most negative value

by 11 . . . 11

, with 0 typically having the value 10 . . . 00

. This is called a biased

by 00 . . . 000 and the

two

two

two

notation, since it biases the number such that the number plus the bias has a non-

most positive value by 11

negative representation.

. . . 11 , with 0 typically

two

having the value 10 . . .

00 , thereby biasing

two

the number such that

the number plus the

bias has a non-negative

representation.

80

Chapter 2 Instructions: Language of the Computer

 2.5

 Representing Instructions in the Computer

We are now ready to explain the diff erence between the way humans instruct

computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic

signals and may be represented as numbers. In fact, each piece of an instruction

can be considered as an individual number, and placing these numbers side by side

forms the instruction.

Since registers are referred to in instructions, there must be a convention to

map register names into numbers. In MIPS assembly language, registers $s0 to

$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8

to 15. Hence, $s0 means register 16, $s1 means register 17, $s2 means register

18, . . . , $t0 means register 8, $t1 means register 9, and so on. We’ll describe the

convention for the rest of the 32 registers in the following sections.

Translating a MIPS Assembly Instruction into a Machine Instruction

EXAMPLE

Let’s do the next step in the refi nement of the MIPS language as an example.

We’ll show the real MIPS language version of the instruction represented

symbolically as

add $t0,$s1,$s2

fi rst as a combination of decimal numbers and then of binary numbers.

Th

e decimal representation is

ANSWER

0

17

18

8

0

32

Each of these segments of an instruction is called a fi eld. Th

e fi rst and

last fi elds (containing 0 and 32 in this case) in combination tell the MIPS

computer that this instruction performs addition. Th

e second fi eld gives the

number of the register that is the fi rst source operand of the addition operation

(17 $s1), and the third fi eld gives the other source operand for the addition

(18 $s2). Th

e fourth fi eld contains the number of the register that is to

receive the sum (8 $t0). Th

e fi ft h fi eld is unused in this instruction, so it is

set to 0. Th

us, this instruction adds register $s1 to register $s2 and places the

sum in register $t0.

Th

is instruction can also be represented as fi elds of binary numbers as

opposed to decimal:

000000

10001

10010

01000

00000

100000

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

2.5 Representing Instructions in the Computer

81

Th

is layout of the instruction is called the instruction format. As you can see instruction format from counting the number of bits, this MIPS instruction takes exactly 32 bits—the A form of representation same size as a data word. In keeping with our design principle that simplicity favors of an instruction regularity, all MIPS instructions are 32 bits long.

composed of fi elds of

binary numbers.

To distinguish it from assembly language, we call the numeric version of

instructions machine language and a sequence of such instructions machine code.

machine

It would appear that you would now be reading and writing long, tedious strings

language Binary

of binary numbers. We avoid that tedium by using a higher base than binary that representation used for converts easily into binary. Since almost all computer data sizes are multiples of communication within a computer system.

4, hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2,

we can trivially convert by replacing each group of four binary digits by a single hexadecimal Numbers hexadecimal digit, and vice versa. Figure 2.4 converts between hexadecimal and in base 16.

binary.

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary

0hex

0000two

4hex

0100two

8hex

1000two

chex

1100two

1hex

0001two

5hex

0101two

9hex

1001two

dhex

1101two

2hex

0010two

6hex

0110two

ahex

1010two

ehex

1110two

3hex

0011two

7hex

0111two

bhex

1011two

fhex

1111two

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left .

Because we frequently deal with diff erent number bases, to avoid confusion

we will subscript decimal numbers with ten, binary numbers with two, and

hexadecimal numbers with hex. (If there is no subscript, the default is base 10.) By

the way, C and Java use the notation 0x nnnn for hexadecimal numbers.

Binary to Hexadecimal and Back

EXAMPLE

Convert the following hexadecimal and binary numbers into the other base:

eca8 6420hex

0001 0011 0101 0111 1001 1011 1101 1111two

82

Chapter 2 Instructions: Language of the Computer

Using Figure 2.4, the answer is just a table lookup one way:

ANSWER

eca8

6420hex

1110

1100

1010

1000

0110

0100

0010

0000two

And then the other direction:

0001

0011 0101

0111 1001

1011

1101

1111two

1357 9bdfhex

MIPS Fields

MIPS fi elds are given names to make them easier to discuss:

op

rs

rt

rd

shamt

funct

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

Here is the meaning of each name of the fi elds in MIPS instructions:

opcode Th

e fi eld that

■ op: Basic operation of the instruction, traditionally called the opcode.

denotes the operation and

■ rs: Th

e fi rst register source operand.

format of an instruction.

■ rt: Th

e second register source operand.

■ rd: Th

e register destination operand. It gets the result of the operation.

■ shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it

will not be used until then, and hence the fi eld contains zero in this section.)

■ funct: Function. Th

is fi eld, oft en called the function code, selects the specifi c

variant of the operation in the op fi eld.

A problem occurs when an instruction needs longer fi elds than those shown

above. For example, the load word instruction must specify two registers and a

constant. If the address were to use one of the 5-bit fi elds in the format above, the

constant within the load word instruction would be limited to only 25 or 32. Th

is

constant is used to select elements from arrays or data structures, and it oft en needs

to be much larger than 32. Th

is 5-bit fi eld is too small to be useful.

Hence, we have a confl ict between the desire to keep all instructions the same

length and the desire to have a single instruction format. Th

is leads us to the fi nal

hardware design principle:

2.5 Representing Instructions in the Computer

83

 Design Principle 3: Good design demands good compromises .

Th

e compromise chosen by the MIPS designers is to keep all instructions the

same length, thereby requiring diff erent kinds of instruction formats for diff erent

kinds of instructions. For example, the format above is called R-type (for register)

or R-format. A second type of instruction format is called I-type (for immediate) or I-format and is used by the immediate and data transfer instructions. Th

e fi elds

of I-format are

op

rs

rt

constant or address

6 bits

5 bits

5 bits

16 bits

Th

e 16-bit address means a load word instruction can load any word within

a region of 215 or 32,768 bytes (213 or 8192 words) of the address in the base

register rs. Similarly, add immediate is limited to constants no larger than 215.

We see that more than 32 registers would be diffi

cult in this format, as the rs and rt

fi elds would each need another bit, making it harder to fi t everything in one word.

Let’s look at the load word instruction from page 71:

lw $t0,32($s3) # Temporary reg $t0 gets A[8]

Here, 19 (for $s3) is placed in the rs fi eld, 8 (for $t0) is placed in the rt fi eld, and

32 is placed in the address fi eld. Note that the meaning of the rt fi eld has changed

for this instruction: in a load word instruction, the rt fi eld specifi es the destination

register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complexity

by keeping the formats similar. For example, the fi rst three fi elds of the R-type and

I-type formats are the same size and have the same names; the length of the fourth

fi eld in I-type is equal to the sum of the lengths of the last three fi elds of R-type.

In case you were wondering, the formats are distinguished by the values in the

fi rst fi eld: each format is assigned a distinct set of values in the fi rst fi eld (op) so that the hardware knows whether to treat the last half of the instruction as three fi elds

(R-type) or as a single fi eld (I-type). Figure 2.5 shows the numbers used in each fi eld for the MIPS instructions covered so far.

Instruction

Format

op

rs

rt

rd

shamt

funct

address

add

R

0

reg

reg

reg

0

32ten

n.a.

sub (subtract)

R

0

reg

reg

reg

0

34ten

n.a.

add immediate

I

8ten

reg

reg

n.a.

n.a.

n.a.

constant

lw (load word)

I

35ten

reg

reg

n.a.

n.a.

n.a.

address

sw (store word)

I

43ten

reg

reg

n.a.

n.a.

n.a.

address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between 0

and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this fi eld does not appear in this format. Note that add and sub instructions have the same value in the op fi eld; the hardware uses the funct fi eld to decide the variant of the operation: add (32) or subtract (34).

84

Chapter 2 Instructions: Language of the Computer

Translating MIPS Assembly Language into Machine Language

EXAMPLE

We can now take an example all the way from what the programmer writes

to what the computer executes. If $t1 has the base of the array A and $s2

corresponds to h, the assignment statement

A[300] = h + A[300];

is compiled into

lw $t0,1200($t1) # Temporary reg $t0 gets A[300]

add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]

sw $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

For convenience, let’s fi rst represent the machine language instructions using

ANSWER

decimal numbers. From Figure 2.5, we can determine the three machine

language instructions:

address/

Op

rs

rt

rd

shamt

funct

35

9

8

1200

0

18

8

8

0

32

43

9

8

1200

Th

e lw instruction is identifi ed by 35 (see Figure 2.5) in the fi rst fi eld

(op). Th

e base register 9 ($t1) is specifi ed in the second fi eld (rs), and the

destination register 8 ($t0) is specifi ed in the third fi eld (rt). Th

e off set to

select A[300] (1200 300 4) is found in the fi nal fi eld (address).

Th

e add instruction that follows is specifi ed with 0 in the fi rst fi eld (op) and

32 in the last fi eld (funct). Th

e three register operands (18, 8, and 8) are found

in the second, third, and fourth fi elds and correspond to $s2, $t0, and $t0.

Th

e sw instruction is identifi ed with 43 in the fi rst fi eld. Th

e rest of this fi nal

instruction is identical to the lw instruction.

Since 1200 0000 0100 1011 0000 , the binary equivalent to the decimal

ten

two

form is:

100011

01001

01000

0000 0100 1011 0000

000000

10010

01000

01000

00000

100000

101011

01001

01000

0000 0100 1011 0000

2.5 Representing Instructions in the Computer

85

Note the similarity of the binary representations of the fi rst and last

instructions. Th

e only diff erence is in the third bit from the left , which is

highlighted here.

Th

e desire to keep all instructions the same size is in confl ict with the desire to Hardware/

have as many registers as possible. Any increase in the number of registers uses Software

up at least one more bit in every register fi eld of the instruction format. Given

these constraints and the design princple that smaller is faster, most instruction Interface

sets today have 16 or 32 general purpose registers.

Figure 2.6 summarizes the portions of MIPS machine language described in this section. As we shall see in Chapter 4, the similarity of the binary representations

of related instructions simplifi es hardware design. Th

ese similarities are another

example of regularity in the MIPS architecture.

MIPS machine language

Name

Format

Example

Comments

add

R

0

18

19

17

0

32

add $s1,$s2,$s3

sub

R

0

18

19

17

0

34

sub $s1,$s2,$s3

addi

I

8

18

17

100

addi $s1,$s2,100

lw

I

35

18

17

100

lw $s1,100($s2)

sw

I

43

18

17

100

sw $s1,100($s2)

Field size

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

All MIPS instructions are 32 bits long

R-format

R

op

rs

r t

rd

shamt

funct

Arithmetic instruction format

I-format

I

op

rs

r t

address

Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. Th

e two MIPS instruction formats so far are R and I. Th

e fi rst 16 bits

are the same: both contain an op fi eld, giving the base operation; an rs fi eld, giving one of the sources; and the rt fi eld, which specifi es the other source operand, except for load word, where it specifi es the destination register. R-format divides the last 16 bits into an rd fi eld, specifying the destination register; the shamt fi eld, which Section 2.6 explains; and the funct fi eld, which specifi es the specifi c operation of R-format instructions. I-format combines the last 16 bits into a single address fi eld.

86

Chapter 2 Instructions: Language of the Computer

Today’s computers are built on two key principles:

The BIG

1. Instructions are represented as numbers.

Picture

2. Programs are stored in memory to be read or written, just like

data.

Th

ese principles lead to the stored-program concept; its invention let

the computing genie out of its bottle. Figure 2.7 shows the power of the

concept; specifi cally, memory can contain the source code for an editor

program, the corresponding compiled machine code, the text that the

compiled program is using, and even the compiler that generated the

machine code.

One consequence of instructions as numbers is that programs are oft en

shipped as fi les of binary numbers. Th

e commercial implication is that

computers can inherit ready-made soft ware provided they are compatible

with an existing instruction set. Such “binary compatibility” oft en leads

industry to align around a small number of instruction set architectures.

Memory

Accounting program

(machine code)

Editor program

(machine code)

C compiler

Processor

(machine code)

Payroll data

Book text

Source code in C

for editor program

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs accounting to become, in the blink of an eye, a computer that helps an author write a book. Th

e switch

happens simply by loading memory with programs and data and then telling the computer to begin executing at a given location in memory. Treating instructions in the same way as data greatly simplifi es both the memory hardware and the soft ware of computer systems. Specifi cally, the memory technology needed for data can also be used for programs, and programs like compilers, for instance, can translate code written in a notation far more convenient for humans into code that the computer can understand.

 2.6

Logical

Operations

87

What MIPS instruction does this represent? Choose from one of the four options Check

below.

Yourself

op

rs

rt

rd

shamt

funct

0

8

9

10

0

34

1. sub $t0, $t1, $t2

2. add $t2, $t0, $t1

3. sub $t2, $t1, $t0

4. sub $t2, $t0, $t1

 2.6 Logical

Operations

 “Contrariwise,”

 continued Tweedledee,

 “if it was so, it might

Although the fi rst computers operated on full words, it soon became clear that be; and if it were so, it was useful to operate on fi elds of bits within a word or even on individual bits. it would be; but as it Examining characters within a word, each of which is stored as 8 bits, is one example

 isn’t, it ain’t. Th

 at’s

of such an operation (see Section 2.9). It follows that operations were added to logic.”

programming languages and instruction set architectures to simplify, among other

things, the packing and unpacking of bits into words. Th

ese instructions are called Lewis Carroll,

logical operations. Figure 2.8 shows logical operations in C, Java, and MIPS.

 Alice’s Adventures in

 Wonderland, 1865

Logical operations

C operators

Java operators

MIPS instructions

Shift left

<<

<<

sll

Shift right

>>

>>>

srl

Bit-by-bit AND

&

&

and, andi

Bit-by-bit OR

|

|

or, ori

Bit-by-bit NOT

~

~

nor

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS

implements NOT using a NOR with one operand being zero.

Th

e fi rst class of such operations is called shift s. Th

ey move all the bits in a word

to the left or right, fi lling the emptied bits with 0s. For example, if register $s0

contained

0000 0000 0000 0000 0000 0000 0000 1001

= 9

two

ten

and the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000

= 144

two

ten

88

Chapter 2 Instructions: Language of the Computer

Th

e dual of a shift left is a shift right. Th

e actual name of the two MIPS shift

instructions are called shift left logical (sll) and shift right logical (srl). Th e

following instruction performs the operation above, assuming that the original

value was in register $s0 and the result should go in register $t2:

sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt fi eld in the R-format. Used in shift instructions,

it stands for shift amount. Hence, the machine language version of the instruction

above is

op

rs

rt

rd

shamt

funct

0

0

16

10

4

0

Th

e encoding of sll is 0 in both the op and funct fi elds, rd contains 10 (register

$t2), rt contains 16 (register $s0), and shamt contains 4. Th

e rs fi eld is unused

and thus is set to 0.

Shift left logical provides a bonus benefi t. Shift ing left by i bits gives the same

result as multiplying by 2 i, just as shift ing a decimal number by i digits is equivalent to multiplying by 10 i. For example, the above sll shift s by 4, which gives the same

result as multiplying by 24 or 16. Th

e fi rst bit pattern above represents 9, and 9 16

144, the value of the second bit pattern.

AND A logical bit-

Another useful operation that isolates fi elds is AND. (We capitalize the word to

by-bit operation with two

avoid confusion between the operation and the English conjunction.) AND is a bit-

operands that calculates

by-bit operation that leaves a 1 in the result only if both bits of the operands are 1.

a 1 only if there is a 1 in

For example, if register $t2 contains

 both operands.

0000 0000 0000 0000 0000 1101 1100 0000two

and register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000two

then, aft er executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

0000 0000 0000 0000 0000 1100 0000 0000two

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there

is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally

called a mask, since the mask “conceals” some bits.

 2.6

Logical

Operations

89

To place a value into one of these seas of 0s, there is the dual to AND, called

OR. It is a bit-by-bit operation that places a 1 in the result if either operand bit is OR A logical bit-by-a 1. To elaborate, if the registers $t1 and $t2 are unchanged from the preceding bit operation with two example, the result of the MIPS instruction

operands that calculates

a 1 if there is a 1 in either

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

operand.

is this value in register $t0:

0000 0000 0000 0000 0011 1101 1100 0000two

Th

e fi nal logical operation is a contrarian. NOT takes one operand and places a 1 NOT A logical bit-by-in the result if one operand bit is a 0, and vice versa. Using our prior notation, it bit operation with one calculates x.

operand that inverts the

In keeping with the three-operand format, the designers of MIPS decided to bits; that is, it replaces every 1 with a 0, and

include the instruction NOR (NOT OR) instead of NOT. If one operand is zero, every 0 with a 1.

then it is equivalent to NOT: A NOR 0 NOT (A OR 0) NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3 NOR A logical bit-by-has the value 0, the result of the MIPS instruction

bit operation with two

operands that calculates

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

the NOT of the OR of the

two operands. Th

at is, it

is this value in register $t0:

calculates a 1 only if there

is a 0 in both operands.

1111 1111 1111 1111 1100 0011 1111 1111two

Figure 2.8 above shows the relationship between the C and Java operators and the MIPS instructions. Constants are useful in AND and OR logical operations as well

as in arithmetic operations, so MIPS also provides the instructions and immediate

(andi) and or immediate (ori). Constants are rare for NOR, since its main use is

to invert the bits of a single operand; thus, the MIPS instruction set architecture has

no immediate version of NOR.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which

sets the bit to 1 when two corresponding bits differ, and to 0 when they are the same. C

allows bit fi elds or fi elds to be defi ned within words, both allowing objects to be packed within a word and to match an externally enforced interface such as an I/O device. All

fi elds must fi t within a single word. Fields are unsigned integers that can be as short as

1 bit. C compilers insert and extract fi elds using logical instructions in MIPS: and, or,

sll, and srl.

Elaboration: Logical AND immediate and logical OR immediate put 0s into the upper

16 bits to form a 32-bit constant, unlike add immediate, which does sign extension.

Which operations can isolate a fi eld in a word?

Check

1. AND

Yourself

2. A

shift left followed by a shift right

90

Chapter 2 Instructions: Language of the Computer

 Th

 e utility of an

 automatic computer lies

 in the possibility of using

 2.7

Instructions for Making Decisions

 a given sequence of

 instructions repeatedly,

What distinguishes a computer from a simple calculator is its ability to make

 the number of times it is

decisions. Based on the input data and the values created during computation,

 iterated being dependent

diff erent instructions execute. Decision making is commonly represented in

 upon the results of

programming languages using the if statement, sometimes combined with go to

 the computation

statements and labels. MIPS assembly language includes two decision-making

 Th

 is choice can be

instructions, similar to an if statement with a go to. Th

e fi rst instruction is

 made to depend upon

 the sign of a number

beq register1, register2, L1

 (zero being reckoned

Th

is instruction means go to the statement labeled L1 if the value in register1

 as plus for machine

equals the value in register2. Th

e mnemonic beq stands for branch if equal.

 purposes). Consequently, Th e second instruction is

 we introduce an

 [instruction] (the

bne register1, register2, L1

 conditional transfer

 [instruction]) which

It means go to the statement labeled L1 if the value in register1 does not equal

 will, depending on the

the value in register2. Th

e mnemonic bne stands for branch if not equal. Th

ese

 sign of a given number,

two instructions are traditionally called conditional branches.

 cause the proper one

 of two routines to be

 executed.

Burks, Goldstine, and

von Neumann, 1947

Compiling if-then-else into Conditional Branches

EXAMPLE

In the following code segment, f, g, h, i, and j are variables. If the fi ve

variables f through j correspond to the fi ve registers $s0 through $s4, what

is the compiled MIPS code for this C if statement?

if (i == j) f = g + h; else f = g – h;

Figure 2.9 shows a fl owchart of what the MIPS code should do. Th

e fi rst

ANSWER

expression compares for equality, so it would seem that we would want the

branch if registers are equal instruction (beq). In general, the code will be

more effi

cient if we test for the opposite condition to branch over the code that

performs the subsequent then part of the if (the label Else is defi ned below)

and so we use the branch if registers are not equal instruction (bne):

bne $s3,$s4,Else # go to Else if i ≠ j

2.7 Instructions for Making Decisions

91

Th

e next assignment statement performs a single operation, and if all the conditional branch An operands are allocated to registers, it is just one instruction:

instruction that requires

the comparison of two

add $s0,$s1,$s2 # f = g + h (skipped if i ≠ j)

values and that allows for

a subsequent transfer of

We now need to go to the end of the if statement. Th

is example introduces control to a new address

another kind of branch, oft en called an unconditional branch. Th

is instruction in the program based

says that the processor always follows the branch. To distinguish between on the outcome of the

conditional and unconditional branches, the MIPS name for this type of comparison.

instruction is jump, abbreviated as j (the label Exit is defi ned below).

j Exit # go to Exit

Th

e assignment statement in the else portion of the if statement can again be

compiled into a single instruction. We just need to append the label Else to

this instruction. We also show the label Exit that is aft er this instruction,

showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2 # f = g – h (skipped if i = j)

Exit:

Notice that the assembler relieves the compiler and the assembly language

programmer from the tedium of calculating addresses for branches, just as it does

for calculating data addresses for loads and stores (see Section 2.12).

i = j

i ≠ j

i = = j?

Else:

f = g + h

f = g – h

Exit:

FIGURE 2.9 Illustration of the options in the if statement above. Th

e left box corresponds to

the then part of the if statement, and the right box corresponds to the else part.

92

Chapter 2 Instructions: Language of the Computer

Hardware/

Compilers frequently create branches and labels where they do not appear in

the programming language. Avoiding the burden of writing explicit labels and

Software branches is one benefi t of writing in high-level programming languages and is a Interface

reason coding is faster at that level.

Loops

Decisions are important both for choosing between two alternatives—found in if

statements—and for iterating a computation—found in loops. Th

e same assembly

instructions are the building blocks for both cases.

Compiling a while Loop in C

EXAMPLE

Here is a traditional loop in C:

while (save[i] == k)

i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the

array save is in $s6. What is the MIPS assembly code corresponding to this

C segment?

Th

e fi rst step is to load save[i] into a temporary register. Before we can load

ANSWER

save[i] into a temporary register, we need to have its address. Before we

can add i to the base of array save to form the address, we must multiply the

index i by 4 due to the byte addressing problem. Fortunately, we can use shift

left logical, since shift ing left by 2 bits multiplies by 22 or 4 (see page 88 in the

prior section). We need to add the label Loop to it so that we can branch back

to that instruction at the end of the loop:

Loop: sll $t1,$s3,2 # Temp reg $t1 = i * 4

To get the address of save[i], we need to add $t1 and the base of save in $s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw $t0,0($t1) # Temp reg $t0 = save[i]

Th

e next instruction performs the loop test, exiting if save[i] ≠ k:

bne $t0,$s5, Exit # go to Exit if save[i] ≠ k

2.7 Instructions for Making Decisions

93

Th

e next instruction adds 1 to i:

addi $s3,$s3,1 # i = i + 1

Th

e end of the loop branches back to the while test at the top of the loop. We

just add the Exit label aft er it, and we’re done:

j Loop # go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compiling

Hardware/

that they are given their own buzzword: a basic block is a sequence of instructions Software without branches, except possibly at the end, and without branch targets or branch

labels, except possibly at the beginning. One of the fi rst early phases of compilation

Interface

is breaking the program into basic blocks.

basic block A sequence

of instructions without

Th

e test for equality or inequality is probably the most popular test, but sometimes

branches (except possibly

at the end) and without

it is useful to see if a variable is less than another variable. For example, a for loop branch targets or branch may want to test to see if the index variable is less than 0. Such comparisons are labels (except possibly at accomplished in MIPS assembly language with an instruction that compares two the beginning).

registers and sets a third register to 1 if the fi rst is less than the second; otherwise,

it is set to 0. Th

e MIPS instruction is called s et on less than, or slt. For example,

slt $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value

in register $s4; otherwise, register $t0 is set to 0.

Constant operands are popular in comparisons, so there is an immediate version

of the set on less than instruction. To test if register $s2 is less than the constant

10, we can just write

slti $t0,$s2,10 # $t0 = 1 if $s2 < 10

MIPS compilers use the slt, slti, beq, bne, and the fi xed value of 0 (always Hardware/

available by reading register $zero) to create all relative conditions: equal, not Software

equal, less than, less than or equal, greater than, greater than or equal.

Interface

94

Chapter 2 Instructions: Language of the Computer

Heeding von Neumann’s warning about the simplicity of the “equipment,” the

MIPS architecture doesn’t include branch on less than because it is too complicated;

either it would stretch the clock cycle time or it would take extra clock cycles per

instruction. Two faster instructions are more useful.

Hardware/

Comparison instructions must deal with the dichotomy between signed and

unsigned numbers. Sometimes a bit pattern with a 1 in the most signifi cant bit

Software represents a negative number and, of course, is less than any positive number,

Interface

which must have a 0 in the most signifi cant bit. With unsigned integers, on the

other hand, a 1 in the most signifi cant bit represents a number that is larger than

any that begins with a 0. (We’ll soon take advantage of this dual meaning of the

most signifi cant bit to reduce the cost of the array bounds checking.)

MIPS off ers two versions of the set on less than comparison to handle these

alternatives. Set on less than (slt) and set on less than immediate (slti) work with signed integers. Unsigned integers are compared using set on less than unsigned

(sltu) and set on less than immediate unsigned (sltiu).

Signed versus Unsigned Comparison

EXAMPLE

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111two

and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001two

What are the values of registers $t0 and $t1 aft er these two instructions?

slt $t0, $s0, $s1 # signed comparison

sltu $t1, $s0, $s1 # unsigned comparison

Th

e value in register $s0 represents 1 if it is an integer and 4,294,967,295

ten

ten

ANSWER

if it is an unsigned integer. Th

e value in register $s1 represents 1 in either

ten

case. Th

en register $t0 has the value 1, since 1 1 , and register $t1 has

ten

ten

the value 0, since 4,294,967,295 1 .

ten

ten

2.7 Instructions for Making Decisions

95

Treating signed numbers as if they were unsigned gives us a low cost way of

checking if 0 	 x y, which matches the index out-of-bounds check for arrays. Th e

key is that negative integers in two’s complement notation look like large numbers

in unsigned notation; that is, the most signifi cant bit is a sign bit in the former

notation but a large part of the number in the latter. Th

us, an unsigned comparison

of x y also checks if x is negative as well as if x is less than y.

Bounds Check Shortcut

EXAMPLE

Use this shortcut to reduce an index-out-of-bounds check: jump to

IndexOutOfBounds if $s1 ≥ $t2 or if $s1 is negative.

Th

e checking code just uses u to do both checks:

ANSWER

sltu $t0,$s1,$t2 # $t0=0 if $s1>=length or $s1<0

beq $t0,$zero,IndexOutOfBounds #if bad, goto Error

Case/Switch Statement

Most programming languages have a case or switch statement that allows the

programmer to select one of many alternatives depending on a single value. Th

e

simplest way to implement switch is via a sequence of conditional tests, turning the

 switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more effi

ciently encoded as a table of

addresses of alternative instruction sequences, called a jump address table or jump address jump table, and the program needs only to index into the table and then jump to table Also called jump the appropriate sequence. Th

e jump table is then just an array of words containing table. A table of addresses

addresses that correspond to labels in the code. Th

e program loads the appropriate of alternative instruction

sequences.

entry from the jump table into a register. It then needs to jump using the address

in the register. To support such situations, computers like MIPS include a jump

 register instruction (jr), meaning an unconditional jump to the address specifi ed

in a register. Th

en it jumps to the proper address using this instruction. We’ll see an

even more popular use of jr in the next section.

96

Chapter 2 Instructions: Language of the Computer

Hardware/

Although there are many statements for decisions and loops in programming

languages like C and Java, the bedrock statement that implements them at the

Software instruction set level is the conditional branch.

Interface

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don’t worry: the MIPS assembler makes them invisible to the assembly language programmer.

Check

I. C has many statements for decisions and loops, while MIPS has few. Which

of the following do or do not explain this imbalance? Why?

Yourself

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is

responsible for execution.

3. More decision statements mean fewer lines of code, which generally

reduces coding time.

4. More decision statements mean fewer lines of code, which generally

results in the execution of fewer operations.

II. Why does C provide two sets of operators for AND (& and &&) and two sets

of operators for OR (| and ||), while MIPS doesn’t?

1. Logical operations AND and OR implement & and |, while conditional

branches implement && and ||.

2. Th

e previous statement has it backwards: && and || correspond to logical

operations, while & and | map to conditional branches.

3. Th

ey are redundant and mean the same thing: && and || are simply

inherited from the programming language B, the predecessor of C.

 2.8

 Supporting Procedures in Computer

Hardware

A procedure or function is one tool programmers use to structure programs, both

to make them easier to understand and to allow code to be reused. Procedures

allow the programmer to concentrate on just one portion of the task at a time;

parameters act as an interface between the procedure and the rest of the program

procedure A stored

and data, since they can pass values and return results. We describe the equivalent

subroutine that performs

to procedures in Java in Section 2.15, but Java needs everything from a computer

a specifi c task based

that C needs. Procedures are one way to implement abstraction in soft ware.

on the parameters with

which it is provided.

2.8 Supporting Procedures in Computer Hardware

97

You can think of a procedure like a spy who leaves with a secret plan, acquires

resources, performs the task, covers his or her tracks, and then returns to the point

of origin with the desired result. Nothing else should be perturbed once the mission

is complete. Moreover, a spy operates on only a “need to know” basis, so the spy

can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six

steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from

several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,

so we want to use them as much as possible. MIPS soft ware follows the following

convention for procedure calling in allocating its 32 registers:

■ $a0–$a3: four argument registers in which to pass parameters

■ $v0–$v1: two value registers in which to return values

■ $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an

instruction just for the procedures: it jumps to an address and simultaneously

saves the address of the following instruction in register $ra. Th

e jump-and-link jump-and-link

instruction (jal) is simply written

instruction An

instruction that jumps

jal ProcedureAddress

to an address and

simultaneously saves the

Th

e link portion of the name means that an address or link is formed that points

address of the following

to the calling site to allow the procedure to return to the proper address. Th

is “link,” instruction in a register

stored in register$ra (register 31), is called the return address. Th

e return address ($ra in MIPS).

is needed because the same procedure could be called from several parts of the return address A link to program.

the calling site that allows

To support such situations, computers like MIPS use jump register instruction a procedure to return (jr), introduced above to help with case statements, meaning an unconditional to the proper address; jump to the address specifi ed in a register:

in MIPS it is stored in

register $ra.

jr $ra

98

Chapter 2 Instructions: Language of the Computer

Th

e jump register instruction jumps to the address stored in register $ra—

caller Th

e program that

which is just what we want. Th

us, the calling program, or caller, puts the parameter

instigates a procedure and

values in $a0–$a3 and uses jal X to jump to procedure X (sometimes named

provides the necessary

the callee). Th

e callee then performs the calculations, places the results in $v0 and

parameter values.

$v1, and returns control to the caller using jr $ra.

callee A procedure that

Implicit in the stored-program idea is the need to have a register to hold the

executes a series of stored

address of the current instruction being executed. For historical reasons, this

instructions based on

register is almost always called the program counter, abbreviated PC in the MIPS

parameters provided by

architecture, although a more sensible name would have been instruction address

the caller and then returns

 register. Th

e jal instruction actually saves PC 4 in register $ra to link to the

control to the caller.

following instruction to set up the procedure return.

program counter

(PC) Th

e register

Using More Registers

containing the address

of the instruction in the

Suppose a compiler needs more registers for a procedure than the four argument

program being executed.

and two return value registers. Since we must cover our tracks aft er our mission

is complete, any registers needed by the caller must be restored to the values that

stack A data structure

they contained before the procedure was invoked. Th

is situation is an example in

for spilling registers

organized as a last-in-

which we need to spill registers to memory, as mentioned in the Hardware/Soft ware

fi rst-out queue.

 Interface section above.

Th

e ideal data structure for spilling registers is a stack—a last-in-fi rst-out

stack pointer A value

queue. A stack needs a pointer to the most recently allocated address in the stack

denoting the most

to show where the next procedure should place the registers to be spilled or where

recently allocated address

in a stack that shows

old register values are found. Th

e stack pointer is adjusted by one word for each

where registers should

register that is saved or restored. MIPS soft ware reserves register 29 for the stack

be spilled or where old

pointer, giving it the obvious name $sp. Stacks are so popular that they have their

register values can be

own buzzwords for transferring data to and from the stack: placing data onto the

found. In MIPS, it is

stack is called a push, and removing data from the stack is called a pop.

register $sp.

By historical precedent, stacks “grow” from higher addresses to lower addresses.

push Add element to

Th

is convention means that you push values onto the stack by subtracting from the

stack.

stack pointer. Adding to the stack pointer shrinks the stack, thereby popping values

off the stack.

pop Remove element

from stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

EXAMPLE

Let’s turn the example on page 65 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int i, int j)

{

int f;

f = (g + h) – (i + j);

return f;

}

What is the compiled MIPS assembly code?

2.8 Supporting Procedures in Computer Hardware

99

Th

e parameter variables g, h, i, and j correspond to the argument registers

$a0, $a1, $a2, and $a3, and f corresponds to $s0. Th

e compiled program

ANSWER

starts with the label of the procedure:

leaf_example:

Th

e next step is to save the registers used by the procedure. Th

e C assignment

statement in the procedure body is identical to the example on page 68, which

uses two temporary registers. Th

us, we need to save three registers: $s0, $t0,

and $t1. We “push” the old values onto the stack by creating space for three

words (12 bytes) on the stack and then store them:

addi $sp, $sp, –12 # adjust stack to make room for 3 items

sw $t1, 8($sp) # save register $t1 for use afterwards

sw $t0, 4($sp) # save register $t0 for use afterwards

sw $s0, 0($sp) # save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and aft er the procedure call.

Th

e next three statements correspond to the body of the procedure, which

follows the example on page 68:

add $t0,$a0,$a1 # register $t0 contains g + h

add $t1,$a2,$a3 # register $t1 contains i + j

sub $s0,$t0,$t1 # f = $t0 – $t1, which is (g + h)–(i + j)

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by

“popping” them from the stack:

lw $s0, 0($sp) # restore register $s0 for caller

lw $t0, 4($sp) # restore register $t0 for caller

lw $t1, 8($sp) # restore register $t1 for caller

addi $sp,$sp,12 # adjust stack to delete 3 items

Th

e procedure ends with a jump register using the return address:

jr $ra # jump back to calling routine

In the previous example, we used temporary registers and assumed their old

values must be saved and restored. To avoid saving and restoring a register whose

value is never used, which might happen with a temporary register, MIPS soft ware

separates 18 of the registers into two groups:

■ $t0–$t9: temporary registers that are not preserved by the callee (called

procedure) on a procedure call

■ $s0–$s7: saved registers that must be preserved on a procedure call (if

used, the callee saves and restores them)

100

Chapter 2 Instructions: Language of the Computer

High address

$sp

$sp

Contents of register $t1

Contents of register $t0

$sp

Contents of register $s0

Low address

(a)

(b)

(c)

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) after the procedure call. Th

e stack pointer always points to the “top” of the stack, or the last word in the

stack in this drawing.

Th

is simple convention reduces register spilling. In the example above, since the

caller does not expect registers $t0 and $t1 to be preserved across a procedure

call, we can drop two stores and two loads from the code. We still must save and

restore $s0, since the callee must assume that the caller needs its value.

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be simple if

all procedures were leaf procedures, but they aren’t. Just as a spy might employ other

spies as part of a mission, who in turn might use even more spies, so do procedures

invoke other procedures. Moreover, recursive procedures even invoke “clones” of

themselves. Just as we need to be careful when using registers in procedures, more

care must also be taken when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument

of 3, by placing the value 3 into register $a0 and then using jal A. Th

en suppose

that procedure A calls procedure B via jal B with an argument of 7, also placed

in $a0. Since A hasn’t fi nished its task yet, there is a confl ict over the use of register

$a0. Similarly, there is a confl ict over the return address in register $ra, since it

now has the return address for B. Unless we take steps to prevent the problem, this

confl ict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved onto

the stack, just as we did with the saved registers. Th

e caller pushes any argument

registers ($a0–$a3) or temporary registers ($t0–$t9) that are needed aft er

the call. Th

e callee pushes the return address register $ra and any saved registers

($s0–$s7) used by the callee. Th

e stack pointer $sp is adjusted to account for the

number of registers placed on the stack. Upon the return, the registers are restored

from memory and the stack pointer is readjusted.

2.8 Supporting Procedures in Computer Hardware

101

Compiling a Recursive C Procedure, Showing Nested Procedure

Linking

EXAMPLE

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)

{

if (n < 1) return (1);

else return (n * fact(n – 1));

}

What is the MIPS assembly code?

Th

e parameter variable n corresponds to the argument register $a0. Th

e

compiled program starts with the label of the procedure and then saves two

ANSWER

registers on the stack, the return address and $a0:

fact:

addi $sp, $sp, –8 # adjust stack for 2 items

sw $ra, 4($sp) # save the return address

sw $a0, 0($sp) # save the argument n

Th

e fi rst time fact is called, sw saves an address in the program that called

fact. Th

e next two instructions test whether n is less than 1, going to L1 if

n ≥ 1.

slti $t0,$a0,1 # test for n < 1

beq $t0,$zero,L1 # if n >= 1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to

0 and places that sum in $v0. It then pops the two saved values off the stack

and jumps to the return address:

addi $v0,$zero,1 # return 1

addi $sp,$sp,8 # pop 2 items off stack

jr $ra # return to caller

Before popping two items off the stack, we could have loaded $a0 and

$ra. Since $a0 and $ra don’t change when n is less than 1, we skip those

instructions.

If n is not less than 1, the argument n is decremented and then fact is

called again with the decremented value:

L1: addi $a0,$a0,–1 # n >= 1: argument gets (n – 1)

jal fact # call fact with (n –1)

102

Chapter 2 Instructions: Language of the Computer

Th

e next instruction is where fact returns. Now the old return address and

old argument are restored, along with the stack pointer:

lw $a0, 0($sp) # return from jal: restore argument n

lw $ra, 4($sp) # restore the return address

addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and

the current value of the value register. We assume a multiply instruction is

available, even though it is not covered until Chapter 3:

mul $v0,$a0,$v0 # return n * fact (n – 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

Hardware/

A C variable is generally a location in storage, and its interpretation depends both

on its type and storage class. Examples include integers and characters (see Section Software 2.9). C has two storage classes: automatic and static. Automatic variables are local to Interface

a procedure and are discarded when the procedure exits. Static variables exist across

exits from and entries to procedures. C variables declared outside all procedures

are considered static, as are any variables declared using the keyword static. Th

e

global pointer Th

e

register that is reserved to

rest are automatic. To simplify access to static data, MIPS soft ware reserves another

point to the static area.

register, called the global pointer, or $gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that

several schemes preserve the stack, guaranteeing that the caller will get the same

data back on a load from the stack as it stored onto the stack. Th

e stack above $sp

is preserved simply by making sure the callee does not write above $sp; $sp is

Preserved

Not preserved

Saved registers: $s0–$s7

Temporar y registers: $t0–$t9

Stack pointer register: $sp Argument

registers:

$a0–$a3

Return address register: $ra

Return value registers: $v0–$v1

Stack above the stack pointer

Stack below the stack pointer

FIGURE 2.11 What is and what is not preserved across a procedure call. If the soft ware relies on the frame pointer register or on the global pointer register, discussed in the following subsections, they are also preserved.

2.8 Supporting Procedures in Computer Hardware

103

itself preserved by the callee adding exactly the same amount that was subtracted

from it; and the other registers are preserved by saving them on the stack (if they

are used) and restoring them from there.

Allocating Space for New Data on the Stack

Th

e fi nal complexity is that the stack is also used to store variables that are local

to the procedure but do not fi t in registers, such as local arrays or structures. Th

e

segment of the stack containing a procedure’s saved registers and local variables is

called a procedure frame or activation record. Figure 2.12 shows the state of the procedure frame Also stack before, during, and aft er the procedure call.

called activation record.

Some MIPS soft ware uses a frame pointer ($fp) to point to the fi rst word of Th e segment of the stack the frame of a procedure. A stack pointer might change during the procedure, and containing a procedure’s so references to a local variable in memory might have diff erent off sets depending saved registers and local variables.

on where they are in the procedure, making the procedure harder to understand.

Alternatively, a frame pointer off ers a stable base register within a procedure for frame pointer A value local memory-references. Note that an activation record appears on the stack denoting the location of whether or not an explicit frame pointer is used. We’ve been avoiding using $fp by the saved registers and avoiding changes to $sp within a procedure: in our examples, the stack is adjusted local variables for a given only on entry and exit of the procedure.

procedure.

High address

$fp

$fp

$sp

$sp

$fp

Saved argument

registers (if any)

Saved return address

Saved saved

registers (if any)

Local arrays and

$sp

structures (if any)

Low address

(a)

(b)

(c)

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the procedure call. Th

e frame pointer ($fp) points to the fi rst word of the frame, oft en a saved argument

register, and the stack pointer ($sp) points to the top of the stack. Th

e stack is adjusted to make room for

all the saved registers and any memory-resident local variables. Since the stack pointer may change during program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp. Th is

information is also found in Column 4 of the MIPS Reference Data Card at the front of this book.

104

Chapter 2 Instructions: Language of the Computer

Allocating Space for New Data on the Heap

In addition to automatic variables that are local to procedures, C programmers

need space in memory for static variables and for dynamic data structures. Figure

2.13 shows the MIPS convention for allocation of memory. Th

e stack starts in the

high end of memory and grows down. Th

e fi rst part of the low end of memory is

reserved, followed by the home of the MIPS machine code, traditionally called

text segment Th

e

the text segment. Above the code is the static data segment, which is the place

segment of a UNIX object

for constants and other static variables. Although arrays tend to be a fi xed length

fi le that contains the

and thus are a good match to the static data segment, data structures like linked

machine language code

lists tend to grow and shrink during their lifetimes. Th

e segment for such data

for routines in the source

structures is traditionally called the heap, and it is placed next in memory. Note

fi le.

that this allocation allows the stack and heap to grow toward each other, thereby

allowing the effi

cient use of memory as the two segments wax and wane.

$sp

7fff fffchex

Stack

Dynamic data

$gp

1000 8000

Static data

hex

1000 0000hex

Text

pc

0040 0000hex

Reserved

0

FIGURE 2.13 The MIPS memory allocation for program and data. Th

ese addresses are only

a soft ware convention, and not part of the MIPS architecture. Th

e stack pointer is initialized to 7fff

fffc and grows down toward the data segment. At the other end, the program code (“text”) starts at hex

0040 0000 . Th

e static data starts at 1000 0000 . Dynamic data, allocated by malloc in C and by

hex

hex

new in Java, is next. It grows up toward the stack in an area called the heap. Th

e global pointer, $gp, is set to

an address to make it easy to access data. It is initialized to 1000 8000 so that it can access from 1000

hex

0000 to 1000 ffff using the positive and negative 16-bit off sets from $gp. Th

is information is also

hex

hex

found in Column 4 of the MIPS Reference Data Card at the front of this book.

C allocates and frees space on the heap with explicit functions. malloc()

allocates space on the heap and returns a pointer to it, and free() releases

space on the heap to which the pointer points. Memory allocation is controlled by

programs in C, and it is the source of many common and diffi

cult bugs. Forgetting

to free space leads to a “memory leak,” which eventually uses up so much memory

that the operating system may crash. Freeing space too early leads to “dangling

pointers,” which can cause pointers to point to things that the program never

intended. Java uses automatic memory allocation and garbage collection just to

avoid such bugs.

2.8 Supporting Procedures in Computer Hardware

105

Figure 2.14 summarizes the register conventions for the MIPS assembly

language. Th

 is convention is another example of making the common case fast:

most procedures can be satisfi ed with up to 4 arguments, 2 registers for a return

value, 8 saved registers, and 10 temporary registers without ever going to memory.

Preserved on

Name

Register number

Usage

call?

$zero

0

The constant value 0

n.a.

$v0–$v1

2–3

Values for results and expression evaluation

no

$a0–$a3

4–7

Arguments

no

$t0–$t7

5

1

–

8

s

e

i

r

a

r

o

p

m

e

T

o

n

$s0–$s7

3

2

–

6

1

Sa

d

e

v

s

e

y

$t8–$t9

5

2

–

4

2

e

r

o

M

s

e

i

r

a

r

o

p

m

e

t

o

n

$gp

8

2

a

b

o

l

G

l

r

e

t

n

i

o

p

s

e

y

$sp

9

2

S

k

c

a

t

o

p n

i

r

e

t

s

e

y

$fp

0

3

e

m

a

r

F

o

p n

i

r

e

t

s

e

y

$ra

1

3

r

u

t

e

R

n

s

e

r

d

d

a

s

s

e

y

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see Section 2.12), and registers 26–27, called $k0–$k1, are reserved for the operating system. Th

is information

is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is

to place the extra parameters on the stack just above the frame pointer. The procedure

then expects the fi rst four parameters to be in registers $a0 through $a3 and the rest

in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because all references to variables in the stack within a procedure will have the same offset.

The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame

pointer, but the C compiler from MIPS does not; it treats register 30 as another save

register ($s8).

Elaboration: Some recursive procedures can be implemented iteratively without using

recursion. Iteration can signifi cantly improve performance by removing the overhead

associated with recursive procedure calls. For example, consider a procedure used to

accumulate a sum:

int sum (int n, int acc) {

if (n >0)

return sum(n – 1, acc + n);

else

return acc;

}

Consider the procedure call sum(3,0). This will result in recursive calls to

sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four

106

Chapter 2 Instructions: Language of the Computer

times. This recursive call of sum is referred to as a tail call, and this example use of

tail recursion can be implemented very effi ciently (assume $a0 = n and $a1 = acc):

sum: slti $t0, $a0, 1

test if n <= 0

bne $t0, $zero, sum_exit # go to sum_exit if n <= 0

add$a1, $a1, $a0

add n to acc

addi$a0, $a0, –1

subtract 1 from n

j sum

go to sum

sum_exit:

add$v0, $a1, $zero

return value acc

jr $ra

return to caller

Check Which of the following statements about C and Java are generally true?

Yourself

1. C programmers manage data explicitly, while it’s automatic in Java.

2. C leads to more pointer bugs and memory leak bugs than does Java.

 !(@ | (wow open

 tab at bar is great)

Fourth line of the

 2.9

Communicating with People

keyboard poem “Hatless

Atlas,” 1991 (some

Computers were invented to crunch numbers, but as soon as they became

give names to ASCII

commercially viable they were used to process text. Most computers today off er

characters: “!” is “wow,”

8-bit bytes to represent characters, with the American Standard Code for Information

“(” is open, “|” is bar,

and so on).

 Interchange (ASCII) being the representation that nearly everyone follows. Figure

2.15 summarizes ASCII.

ASCII

Char-

ASCII

Char-

ASCII

Char-

ASCII

Char-

ASCII

Char-

ASCII

Char-

value

acter

value

acter

value

acter

value

acter

value

acter

value

acter

32

space

48

0

64

@

80

P

096

`

112

p

33

!

49

1

65

A

81

Q

097

a

113

q

34

"

50

2

66

B

82

R

098

b

114

r

35

#

51

3

67

C

83

S

099

c

115

s

36

$

52

4

68

D

84

T

100

d

116

t

37

%

53

5

69

E

85

U

101

e

117

u

38

&

54

6

70

F

86

V

102

f

118

v

39

'

55

7

71

G

87

W

103

g

119

w

40

(

56

8

72

H

88

X

104

h

120

x

41

)

57

9

73

I

89

Y

105

i

121

y

42

*

58

:

74

J

90

Z

106

j

122

z

43

+

59

;

75

K

91

[

107

k

123

{

44

,

60

<

76

L

92

\

108

l

124

|

45

-

61

=

77

M

93

]

109

m

125

}

46

.

62

>

78

N

94

^

110

n

126

~

47

/

63

?

79

O

95

_

111

o

127

DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters diff er by exactly 32; this observation can lead to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace, 9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the end of a string. Th

is information is also found in Column 3 of the MIPS Reference Data Card at the front of this book.

2.9 Communicating with People

107

ASCII versus Binary Numbers

EXAMPLE

We could represent numbers as strings of ASCII digits instead of as integers.

How much does storage increase if the number 1 billion is represented in

ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long.

Th

us the storage expansion would be (10 8)/32 or 2.5. Beyond the expansion

ANSWER

in storage, the hardware to add, subtract, multiply, and divide such decimal

numbers is diffi

cult and would consume more energy. Such diffi

culties explain

why computing professionals are raised to believe that binary is natural and

that the occasional decimal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store

word are suffi

cient for transferring bytes as well as words. Because of the popularity

of text in some programs, however, MIPS provides instructions to move bytes. Load

 byte (lb) loads a byte from memory, placing it in the rightmost 8 bits of a register.

 Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to

memory. Th

us, we copy a byte with the sequence

lb $t0,0($sp) # Read byte from source

sb $t0,0($gp) # Write byte to destination

Characters are normally combined into strings, which have a variable number

of characters. Th

ere are three choices for representing a string: (1) the fi rst position

of the string is reserved to give the length of a string, (2) an accompanying variable

has the length of the string (as in a structure), or (3) the last position of a string is

indicated by a character used to mark the end of a string. C uses the third choice,

terminating a string with a byte whose value is 0 (named null in ASCII). Th

us,

the string “Cal” is represented in C by the following 4 bytes, shown as decimal

numbers: 67, 97, 108, 0. (As we shall see, Java uses the fi rst option.)

108

Chapter 2 Instructions: Language of the Computer

Compiling a String Copy Procedure, Showing How to Use C Strings

EXAMPLE

Th

e procedure strcpy copies string y to string x using the null byte

termination convention of C:

void strcpy (char x[], char y[])

{

int i;

i = 0;

while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */

i += 1;

}

What is the MIPS assembly code?

Below is the basic MIPS assembly code segment. Assume that base addresses

ANSWER

for arrays x and y are found in $a0 and $a1, while i is in $s0. strcpy

adjusts the stack pointer and then saves the saved register $s0 on the stack:

strcpy:

addi $sp,$sp,–4

adjust stack for 1 more item

sw

$s0, 0($sp) # save $s0

To initialize i to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and

placing that sum in $s0:

add

$s0,$zero,$zero # i = 0 + 0

Th

is is the beginning of the loop. Th

e address of y[i] is fi rst formed by adding

i to y[]:

L1: add

$t1,$s0,$a1 # address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of bytes and not

of words, as in prior examples.

To load the character in y[i], we use load byte unsigned, which puts the

character into $t2:

lbu

$t2, 0($t1) # $t2 = y[i]

A similar address calculation puts the address of x[i] in $t3, and then the

character in $t2 is stored at that address.

2.9 Communicating with People

109

add

$t3,$s0,$a0 # address of x[i] in $t3

sb

$t2, 0($t3) # x[i] = y[i]

Next, we exit the loop if the character was 0. Th

at is, we exit if it is the last

character of the string:

beq

$t2,$zero,L2 # if y[i] == 0, go to L2

If not, we increment i and loop back:

addi $s0, $s0,1

i = i + 1

j

L1

go to L1

If we don’t loop back, it was the last character of the string; we restore $s0 and

the stack pointer, and then return.

L2: lw

$s0, 0($sp) # y[i] == 0: end of string.

Restore old $s0

addi $sp,$sp,4

pop 1 word off stack

jr $ra

return

String copies usually use pointers instead of arrays in C to avoid the operations

on i in the code above. See Section 2.14 for an explanation of arrays versus

pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could

allocate i to a temporary register and avoid saving and restoring $s0. Hence,

instead of thinking of the $t registers as being just for temporaries, we can think of

them as registers that the callee should use whenever convenient. When a compiler

fi nds a leaf procedure, it exhausts all temporary registers before using registers it

must save.

Characters and Strings in Java

 Unicode is a universal encoding of the alphabets of most human languages. Figure

2.16 gives a list of Unicode alphabets; there are almost as many alphabets in Unicode as there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for

characters. By default, it uses 16 bits to represent a character.

110

Chapter 2 Instructions: Language of the Computer

Latin

Malayalam

Tagbanwa

General Punctuation

Greek

Sinhala

Khmer

Spacing Modifier Letters

Cyrillic

Thai

Mongolian

Currency Symbols

Armenian

Lao

Limbu

Combining Diacritical Marks

Hebrew

Tibetan

Tai Le

Combining Marks for Symbols

Arabic

Myanmar

Kangxi Radicals

Superscripts and Subscripts

Syriac

Georgian

Hiragana

Number Forms

Thaana

Hangul Jamo

Katakana

Mathematical Operators

Devanagari

Ethiopic

Bopomofo

Mathematical Alphanumeric Symbols

Bengali

Cherokee

Kanbun

Braille Patterns

Gurmukhi

Unified Canadian

Shavian

Optical Character Recognition

Aboriginal Syllabic

Gujarati

Ogham

Osmanya

Byzantine Musical Symbols

Oriya

Runic

Cypriot Syllabary

Musical Symbols

Tamil

Tagalog

Tai Xuan Jing Symbols

Arrows

Telugu

Hanunoo

Yijing Hexagram Symbols Box Drawing

Kannada

Buhid

Aegean Numbers

Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,”

which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370 , and Cyrillic at 0400 . Th

e fi rst three columns show 48 blocks that correspond to human languages

hex

hex

in roughly Unicode numerical order. Th

e last column has 16 blocks that are multilingual and are not in order.

A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII subset as eight bits and uses 16 or 32 bits for the other characters. UTF-32 uses 32 bits per character. To learn more, see www.unicode.org.

Th

e MIPS instruction set has explicit instructions to load and store such 16-

bit quantities, called halfwords. Load half (lh) loads a halfword from memory,

placing it in the rightmost 16 bits of a register. Like load byte, load half (lh) treats

the halfword as a signed number and thus sign-extends to fi ll the 16 left most bits

of the register, while load halfword unsigned (lhu) works with unsigned integers.

Th

us, lhu is the more popular of the two. Store half (sh) takes a halfword from the

rightmost 16 bits of a register and writes it to memory. We copy a halfword with

the sequence

lhu $t0,0($sp) # Read halfword (16 bits) from source

sh $t0,0($gp) # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefi ned

methods for concatenation, comparison, and conversion. Unlike C, Java includes a

word that gives the length of the string, similar to Java arrays.

2.10 MIPS Addressing for 32-bit Immediates and Addresses

111

Elaboration: MIPS software tries to keep the stack aligned to word addresses,

allowing the program to always use lw and sw (which must be aligned) to access the

stack. This convention means that a char variable allocated on the stack occupies 4

bytes, even though it needs less. However, a C string variable or an array of bytes will

pack 4 bytes per word, and a Java string variable or array of shorts packs 2 halfwords

per word.

Elaboration: Refl ecting the international nature of the web, most web pages today

use Unicode instead of ASCII.

I. Which of the following statements about characters and strings in C and Check

Java are true?

Yourself

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of

characters in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000 takes the most

ten

memory space?

1. int in C

2. string in C

3. string in Java

 2.10 MIPS Addressing for 32-bit Immediates

and Addresses

Although keeping all MIPS instructions 32 bits long simplifi es the hardware, there

are times where it would be convenient to have a 32-bit constant or 32-bit address.

Th

is section starts with the general solution for large constants, and then shows the

optimizations for instruction addresses used in branches and jumps.

112

Chapter 2 Instructions: Language of the Computer

32-Bit Immediate Operands

Although constants are frequently short and fi t into the 16-bit fi eld, sometimes they

are bigger. Th

e MIPS instruction set includes the instruction load upper immediate

(lui) specifi cally to set the upper 16 bits of a constant in a register, allowing a

subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17

shows the operation of lui.

Loading a 32-Bit Constant

EXAMPLE

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

ANSWER

lui $s0, 61 # 61 decimal = 0000 0000 0011 1101 binary

Th

e value of register $s0 aft erward is

0000 0000 0011 1101 0000 0000 0000 0000

Th

e next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

Th

e fi nal value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

The machine language version of lui $t0, 255

$t0 is register 8:

001111

00000

01000

0000 0000 1111 1111

Contents of register $t0 after executing lui $t0, 255:

0000 0000 1111 1111

0000 0000 0000 0000

FIGURE 2.17 The effect of the lui instruction. Th

e instruction lui transfers the 16-bit immediate constant fi eld value into the

left most 16 bits of the register, fi lling the lower 16 bits with 0s.

2.10 MIPS Addressing for 32-bit Immediates and Addresses

113

Either the compiler or the assembler must break large constants into pieces and Hardware/

then reassemble them into a register. As you might expect, the immediate fi eld’s Software

size restriction may be a problem for memory addresses in loads and stores as

well as for constants in immediate instructions. If this job falls to the assembler, Interface as it does for MIPS soft ware, then the assembler must have a temporary register

available in which to create the long values. Th

is need is a reason for the register

$at (assembler temporary), which is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer

limited by the hardware, but by whatever the creator of an assembler chooses to

include (see Section 2.12). We stick close to the hardware to explain the architecture

of the computer, noting when we use the enhanced language of the assembler that

is not found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the

left-most bit of the 16-bit immediate fi eld of the instruction into the upper 16 bits of a

word. Logical or immediate from Section 2.6 loads 0s into the upper 16 bits and hence

is used by the assembler in conjunction with lui to create 32-bit constants.

Addressing in Branches and Jumps

Th

e MIPS jump instructions have the simplest addressing. Th

ey use the fi nal MIPS

instruction format, called the J-type, which consists of 6 bits for the operation fi eld

and the rest of the bits for the address fi eld. Th

us,

j 10000 # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we will

see):

2

10000

6 bits

26 bits

where the value of the jump opcode is 2 and the jump address is 10000.

Unlike the jump instruction, the conditional branch instruction must specify

two operands in addition to the branch address. Th

us,

bne $s0,$s1,Exit # go to Exit if $s0 ≠ $s1

is assembled into this instruction, leaving only 16 bits for the branch address:

5

16

17

Exit

6 bits

5 bits

5 bits

16 bits

114

Chapter 2 Instructions: Language of the Computer

If addresses of the program had to fi t in this 16-bit fi eld, it would mean that no

program could be bigger than 216, which is far too small to be a realistic option

today. An alternative would be to specify a register that would always be added

to the branch address, so that a branch instruction would calculate the following:

Program counter

Register

Branch address

Th

is sum allows the program to be as large as 232 and still be able to use

conditional branches, solving the branch address size problem. Th

en the question

is, which register?

Th

e answer comes from seeing how conditional branches are used. Conditional

branches are found in loops and in if statements, so they tend to branch to a

nearby instruction. For example, about half of all conditional branches in SPEC

benchmarks go to locations less than 16 instructions away. Since the program

 counter (PC) contains the address of the current instruction, we can branch within

215 words of the current instruction if we use the PC as the register to be added

to the address. Almost all loops and if statements are much smaller than 216 words,

so the PC is the ideal choice.

PC-relative

Th

is form of branch addressing is called PC-relative addressing. As we shall see

addressing An

in Chapter 4, it is convenient for the hardware to increment the PC early to point

addressing regime

to the next instruction. Hence, the MIPS address is actually relative to the address

in which the address

of the following instruction (PC 4) as opposed to the current instruction (PC).

is the sum of the

It is yet another example of making the common case fast, which in this case is

 program counter (PC)

addressing nearby instructions.

and a constant in the

instruction.

Like most recent computers, MIPS uses PC-relative addressing for all conditional

branches, because the destination of these instructions is likely to be close to the

branch. On the other hand, jump-and-link instructions invoke procedures that

have no reason to be near the call, so they normally use other forms of addressing.

Hence, the MIPS architecture off ers long addresses for procedure calls by using the

J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the

branch by having PC-relative addressing refer to the number of words to the next

instruction instead of the number of bytes. Th

us, the 16-bit fi eld can branch four

times as far by interpreting the fi eld as a relative word address rather than as a

relative byte address. Similarly, the 26-bit fi eld in jump instructions is also a word

address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for

jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving

the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be

careful to avoid placing a program across an address boundary of 256 MB (64 million

instructions); otherwise, a jump must be replaced by a jump register instruction preceded

by other instructions to load the full 32-bit address into a register.

2.10 MIPS Addressing for 32-bit Immediates and Addresses

115

Showing Branch Offset in Machine Language

EXAMPLE

Th

e while loop on pages 92–93 was compiled into this MIPS assembler code:

Loop:sll $t1,$s3,2 # Temp reg $t1 = 4 * i

add $t1,$t1,$s6 # $t1 = address of save[i]

lw $t0,0($t1) # Temp reg $t0 = save[i]

bne $t0,$s5, Exit # go to Exit if save[i] ≠ k

addi $s3,$s3,1 # i = i + 1

j Loop # go to Loop

Exit:

If we assume we place the loop starting at location 80000 in memory, what is

the MIPS machine code for this loop?

Th

e assembled instructions and their addresses are:

ANSWER

80000

0

0

19

9

2

0

80004

0

9

22

9

0

32

80008

35

9

8

0

80012

5

8

21

2

80016

8

19

19

1

80020

2

20000

80024

. . .

Remember that MIPS instructions have byte addresses, so addresses of

sequential words diff er by 4, the number of bytes in a word. Th

e bne instruction

on the fourth line adds 2 words or 8 bytes to the address of the following

instruction (80016), specifying the branch destination relative to that following

instruction (8 80016) instead of relative to the branch instruction (12

80012) or using the full destination address (80024). Th

e jump instruction on

the last line does use the full address (20000 4 80000), corresponding to

the label Loop.

116

Chapter 2 Instructions: Language of the Computer

Hardware/

Most conditional branches are to a nearby location, but occasionally they branch

far away, farther than can be represented in the 16 bits of the conditional branch

Software

instruction. Th

e assembler comes to the rescue just as it did with large addresses

Interface

or constants: it inserts an unconditional jump to the branch target, and inverts the

condition so that the branch decides whether to skip the jump.

Branching Far Away

EXAMPLE

Given a branch on register $s0 being equal to register $s1,

beq $s0, $s1, L1

replace it by a pair of instructions that off ers a much greater branching distance.

Th

ese instructions replace the short-address conditional branch:

ANSWER

bne $s0, $s1, L2

j L1

L2:

MIPS Addressing Mode Summary

addressing mode One

Multiple forms of addressing are generically called addressing modes. Figure 2.18

of several addressing

shows how operands are identifi ed for each addressing mode. Th

e MIPS addressing

regimes delimited by their

modes are the following:

varied use of operands

and/or addresses.

1. Immediate addressing, where the operand is a constant within the instruction

itself

2. Register addressing, where the operand is a register

3. Base or displacement addressing, where the operand is at the memory location

whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a

constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the

instruction concatenated with the upper bits of the PC

2.10 MIPS Addressing for 32-bit Immediates and Addresses

117

1. Immediate addressing

op

rs

rt

Immediate

2. Register addressing

op

rs

rt

rd

. . . funct

Registers

Register

3. Base addressing

op

rs

rt

Address

Memory

Register

+

Byte Halfword

Word

4. PC-relative addressing

op

rs

rt

Address

Memory

PC

+

Word

5. Pseudodirect addressing

op

Address

Memory

PC

Word

FIGURE 2.18 Illustration of the fi ve MIPS addressing modes. Th

e operands are shaded in color.

Th

e operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself.

Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shift ed left 2 bits to the PC and mode 5 concatenating a 26-bit address shift ed left 2 bits with the 4 upper bits of the PC. Note that a single operation can use more than one addressing mode. Add, for example, uses both immediate (addi) and register (add) addressing.

Although we show MIPS as having 32-bit addresses, nearly all microprocessors Hardware/

(including MIPS) have 64-bit address extensions (see Appendix E and Section Software 2.18). Th

ese extensions were in response to the needs of soft ware for larger

programs. Th

e process of instruction set extension allows architectures to expand in

Interface

such a way that is able to move soft ware compatibly upward to the next generation

of architecture.

118

Chapter 2 Instructions: Language of the Computer

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the

original assembly language. One example is when looking at “core dump.” Figure

2.19 shows the MIPS encoding of the fi elds for the MIPS machine language. Th is

fi gure helps when translating by hand between assembly language and machine

language.

Decoding Machine Code

EXAMPLE

What is the assembly language statement corresponding to this machine

instruction?

00af8020hex

Th

e fi rst step in converting hexadecimal to binary is to fi nd the op fi elds:

ANSWER

(Bits: 31 28 26 5 2 0)

0000 0000 1010 1111 1000 0000 0010 0000

We look at the op fi eld to determine the operation. Referring to Figure 2.19,

when bits 31–29 are 000 and bits 28–26 are 000, it is an R-format instruction.

Let’s reformat the binary instruction into R-format fi elds, listed in Figure 2.20:

op rs rt rd shamt funct

000000 00101 01111 10000 00000 100000

Th

e bottom portion of Figure 2.19 determines the operation of an R-format

instruction. In this case, bits 5–3 are 100 and bits 2–0 are 000, which means

this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the fi eld values. Th

e

decimal values are 5 for the rs fi eld, 15 for rt, and 16 for rd (shamt is unused).

Figure 2.14 shows that these numbers represent registers $a1, $t7, and $s0.

Now we can reveal the assembly instruction:

add $s0,$a1,$t7

2.10 MIPS Addressing for 32-bit Immediates and Addresses

119

op(31:26)

28–26

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

31–29

0(000)

R-format

Bltz/gez

jump

jump & link branch eq

branch

blez

bgtz

ne

1(001)

add

addiu

set less

set less

andi

ori

xori

load upper

immediate

than imm.

than imm.

immediate

unsigned

2(010)

TLB

FlPt

3(011)

4(100)

load byte

load half

lwl

load word

load byte load

lwr

unsigned

half

unsigned

5(101)

store byte

store half

swl

store word

swr

6(110)

load linked lwc1

word

7(111)

store cond. swc1

word

op(31:26)=010000 (TLB), rs(25:21)

23–21

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

25–24

0(00)

mfc0

cfc0

mtc0

ctc0

1(01)

2(10)

3(11)

op(31:26)=000000 (R-format), funct(5:0)

2–0

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

5–3

0(000)

shift left

shift right sra

sllv

srlv

srav

logical

logical

1(001)

jump register jalr

syscall

break

2(010)

mfhi

mthi

mfl o

mtlo

3(011)

mult

multu

div

divu

4(100)

add

addu

subtract

subu

and

or

xor

not or (nor)

5(101)

set l.t.

set l.t.

unsigned

6(110)

7(111)

FIGURE 2.19 MIPS instruction encoding. Th

is notation gives the value of a fi eld by row and by column. For example, the top portion

of the fi gure shows load word in row number 4 (100 for bits 31–29 of the instruction) and column number 3 (011 for bits 28–26 of the two

two

instruction), so the corresponding value of the op fi eld (bits 31–26) is 100011 . Underscore means the fi eld is used elsewhere. For example, two

R-format in row 0 and column 0 (op 000000) is defi ned in the bottom part of the fi gure. Hence, subtract in row 4 and column two

2 of the bottom section means that the funct fi eld (bits 5–0) of the instruction is 100010 and the op fi eld (bits 31–26) is 000000 . Th e

two

two

floating point value in row 2, column 1 is defi ned in Figure 3.18 in Chapter 3. Bltz/gez is the opcode for four instructions found in Appendix A: bltz, bgez, bltzal, and bgezal. Th

is chapter describes instructions given in full name using color, while Chapter 3

describes instructions given in mnemonics using color. Appendix A covers all instructions.

120

Chapter 2 Instructions: Language of the Computer

Name

Fields

Comments

Field size

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

All MIPS instructions are 32 bits long

R-format

op

rs

r t

rd

shamt

funct

Arithmetic instruction format

I-format op

rs

r t

address/immediate

Transfer, branch,imm. format

r

o

f

-

J

a

m t

p

o

r

a

t

t

e

g

ad

e

r

d

ss

Jump instruction format

FIGURE 2.20 MIPS instruction formats.

Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 64 shows the MIPS assembly language revealed in this chapter. Th

e remaining hidden portion

of MIPS instructions deals mainly with arithmetic and real numbers, which are

covered in the next chapter.

Check

I. What is the range of addresses for conditional branches in MIPS (K 1024)?

Yourself

1. Addresses between 0 and 64K 1

2. Addresses between 0 and 256K 1

3. Addresses up to about 32K before the branch to about 32K aft er

4. Addresses up to about 128K before the branch to about 128K aft er

II. What is the range of addresses for jump and jump and link in MIPS

(M 1024K)?

1. Addresses between 0 and 64M 1

2. Addresses between 0 and 256M 1

3. Addresses up to about 32M before the branch to about 32M aft er

4. Addresses up to about 128M before the branch to about 128M aft er

5. Anywhere within a block of 64M addresses where the PC supplies the

upper 6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the

upper 4 bits

III. What is the MIPS assembly language instruction corresponding to the

machine instruction with the value 0000 0000 ?

hex

1. j

2. R-format

3. addi

4. sll

5. mfc0

6. Undefi ned opcode: there is no legal instruction that corresponds to 0

2.11 Parallelism and Instructions: Synchronization

121

 2.11 Parallelism and Instructions:

Synchronization

Parallel execution is easier when tasks are independent, but oft en they need to

cooperate. Cooperation usually means some tasks are writing new values that

others must read. To know when a task is fi nished writing so that it is safe for

another to read, the tasks need to synchronize. If they don’t synchronize, there is a

danger of a data race, where the results of the program can change depending on data race Two memory how events happen to occur.

accesses form a data race

For example, recall the analogy of the eight reporters writing a story on page 44 of

if they are from diff erent

Chapter 1. Suppose one reporter needs to read all the prior sections before writing threads to same location, at least one is a write,

a conclusion. Hence, he or she must know when the other reporters have fi nished and they occur one aft er their sections, so that there is no danger of sections being changed aft erwards. Th

at another.

is, they had better synchronize the writing and reading of each section so that the

conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level

soft ware routines that rely on hardware-supplied synchronization instructions. In

this section, we focus on the implementation of lock and unlock synchronization

operations. Lock and unlock can be used straightforwardly to create regions

where only a single processor can operate, called a mutual exclusion, as well as to

implement more complex synchronization mechanisms.

Th

e critical ability we require to implement synchronization in a multiprocessor

is a set of hardware primitives with the ability to atomically read and modify a

memory location. Th

at is, nothing else can interpose itself between the read and

the write of the memory location. Without such a capability, the cost of building

basic synchronization primitives will be high and will increase unreasonably as the

processor count increases.

Th

ere are a number of alternative formulations of the basic hardware primitives,

all of which provide the ability to atomically read and modify a location, together

with some way to tell if the read and write were performed atomically. In general,

architects do not expect users to employ the basic hardware primitives, but

instead expect that the primitives will be used by system programmers to build a

synchronization library, a process that is oft en complex and tricky.

Let’s start with one such hardware primitive and show how it can be used to

build a basic synchronization primitive. One typical operation for building

synchronization operations is the atomic exchange or atomic swap, which inter-

changes a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that

we want to build a simple lock where the value 0 is used to indicate that the lock

is free and 1 is used to indicate that the lock is unavailable. A processor tries to set

the lock by doing an exchange of 1, which is in a register, with the memory address

corresponding to the lock. Th

e value returned from the exchange instruction is 1

if some other processor had already claimed access, and 0 otherwise. In the latter

122

Chapter 2 Instructions: Language of the Computer

case, the value is also changed to 1, preventing any competing exchange in another

processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange

simultaneously: this race is broken, since exactly one of the processors will perform

the exchange fi rst, returning 0, and the second processor will return 1 when it does

the exchange. Th

e key to using the exchange primitive to implement synchronization

is that the operation is atomic: the exchange is indivisible, and two simultaneous

exchanges will be ordered by the hardware. It is impossible for two processors

trying to set the synchronization variable in this manner to both think they have

simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in

the design of the processor, since it requires both a memory read and a write in a

single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction

returns a value showing whether the pair of instructions was executed as if the pair

were atomic. Th

e pair of instructions is eff ectively atomic if it appears as if all other

operations executed by any processor occurred before or aft er the pair. Th

us, when

an instruction pair is eff ectively atomic, no other processor can change the value

between the instruction pair.

In MIPS this pair of instructions includes a special load called a load linked and

a special store called a store conditional. Th

ese instructions are used in sequence:

if the contents of the memory location specifi ed by the load linked are changed

before the store conditional to the same address occurs, then the store conditional

fails. Th

e store conditional is defi ned to both store the value of a (presumably

diff erent) register in memory and to change the value of that register to a 1 if it

succeeds and to a 0 if it fails. Since the load linked returns the initial value, and the

store conditional returns 1 only if it succeeds, the following sequence implements

an atomic exchange on the memory location specifi ed by the contents of $s1:

again: addi $t0,$zero,1 ;copy locked value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,again ;branch if store fails

add $s4,$zero,$t1 ;put load value in $s4

Any time a processor intervenes and modifi es the value in memory between the

ll and sc instructions, the sc returns 0 in $t0, causing the code sequence to try

again. At the end of this sequence the contents of $s4 and the memory location

specifi ed by $s1 have been atomically exchanged.

Elaboration: Although it was presented for multiprocessor synchronization, atomic

exchange is also useful for the operating system in dealing with multiple processes

in a single processor. To make sure nothing interferes in a single processor, the store

conditional also fails if the processor does a context switch between the two instructions

(see Chapter 5).

2.12 Translating and Starting a Program

123

An advantage of the load linked/store conditional mechanism is that it can be used

to build other synchronization primitives, such as atomic compare and swap or atomic

 fetch-and-increment, which are used in some parallel programming models. These

involve more instructions between the ll and the sc, but not too many.

Since the store conditional will fail after either another attempted store to the load

linked address or any exception, care must be taken in choosing which instructions are

inserted between the two instructions. In particular, only register-register instructions

can safely be permitted; otherwise, it is possible to create deadlock situations where

the processor can never complete the sc because of repeated page faults. In addition,

the number of instructions between the load linked and the store conditional should be

small to minimize the probability that either an unrelated event or a competing processor

causes the store conditional to fail frequently.

When do you use primitives like load linked and store conditional?

Check

1. When cooperating threads of a parallel program need to synchronize to get Yourself

proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for

reading and writing shared data

 2.12 Translating and Starting a Program

Th

is section describes the four steps in transforming a C program in a fi le on disk

into a program running on a computer. Figure 2.21 shows the translation hierarchy.

Some systems combine these steps to reduce translation time, but these are the

logical four phases that programs go through. Th

is section follows this translation

hierarchy.

Compiler

Th

e compiler transforms the C program into an assembly language program, a

symbolic form of what the machine understands. High-level language programs

take many fewer lines of code than assembly language, so programmer productivity

is much higher.

In 1975, many operating systems and assemblers were written in assembly assembly language

language because memories were small and compilers were ineffi

cient. Th

e A symbolic language that

million-fold increase in memory capacity per single DRAM chip has reduced can be translated into program size concerns, and optimizing compilers today can produce assembly binary machine language.

language programs nearly as well as an assembly language expert, and sometimes

even better for large programs.

124

Chapter 2 Instructions: Language of the Computer

C program

Compiler

Assembly language program

Assembler

Object: Machine language module

Object: Library routine (machine language)

Linker

Executable: Machine language program

Loader

Memory

FIGURE 2.21 A translation hierarchy for C. A high-level language program is fi rst compiled into an assembly language program and then assembled into an object module in machine language. Th

e linker

combines multiple modules with library routines to resolve all references. Th

e loader then places the machine

code into the proper memory locations for execution by the processor. To speed up the translation process, some steps are skipped or combined. Some compilers produce object modules directly, and some systems use linking loaders that perform the last two steps. To identify the type of fi le, UNIX follows a suffi x convention

for fi les: C source fi les are named x.c, assembly fi les are x.s, object fi les are named x.o, statically linked library routines are x.a, dynamically linked library routes are x.so, and executable fi les by default are called a.out. MS-DOS uses the suffi

xes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same eff ect.

Assembler

Since assembly language is an interface to higher-level soft ware, the assembler

can also treat common variations of machine language instructions as if they

were instructions in their own right. Th

e hardware need not implement these

instructions; however, their appearance in assembly language simplifi es translation

pseudoinstruction

and programming. Such instructions are called pseudoinstructions.

A common variation

As mentioned above, the MIPS hardware makes sure that register $zero always

of assembly language

has the value 0. Th

at is, whenever register $zero is used, it supplies a 0, and the

instructions oft en treated

programmer cannot change the value of register $zero. Register $zero is used

as if it were an instruction

to create the assembly language instruction that copies the contents of one register

in its own right.

to another. Th

us the MIPS assembler accepts this instruction even though it is not

found in the MIPS architecture:

move $t0,$t1 # register $t0 gets register $t1

2.12 Translating and Starting a Program

125

Th

e assembler converts this assembly language instruction into the machine

language equivalent of the following instruction:

add $t0,$zero,$t1 # register $t0 gets 0 + register $t1

Th

e MIPS assembler also converts blt (branch on less than) into the two

instructions slt and bne mentioned in the example on page 95. Other examples

include bgt, bge, and ble. It also converts branches to faraway locations into a

branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants

to be loaded into a register despite the 16-bit limit of the immediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly language

instructions than those implemented by the hardware. Th

e only cost is reserving

one register, $at, for use by the assembler. If you are going to write assembly

programs, use pseudoinstructions to simplify your task. To understand the MIPS

architecture and be sure to get best performance, however, study the real MIPS

instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary

and decimal, they usually accept a base that is more succinct than binary yet

converts easily to a bit pattern. MIPS assemblers use hexadecimal.

Such features are convenient, but the primary task of an assembler is assembly

into machine code. Th

e assembler turns the assembly language program into an

 object fi le, which is a combination of machine language instructions, data, and

information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language

program, the assembler must determine the addresses corresponding to all labels.

Assemblers keep track of labels used in branches and data transfer instructions

in a symbol table. As you might expect, the table contains pairs of symbols and symbol table A table addresses.

that matches names of

Th

e object fi le for UNIX systems typically contains six distinct pieces:

labels to the addresses of

the memory words that

■ Th

e object fi le header describes the size and position of the other pieces of the instructions occupy.

object fi le.

■ Th

e text segment contains the machine language code.

■ Th

e static data segment contains data allocated for the life of the program.

(UNIX allows programs to use both static data, which is allocated throughout

the program, and dynamic data, which can grow or shrink as needed by the

program. See Figure 2.13.)

■ Th

e relocation information identifi es instructions and data words that depend

on absolute addresses when the program is loaded into memory.

■ Th

e symbol table contains the remaining labels that are not defi ned, such as

external references.

126

Chapter 2 Instructions: Language of the Computer

■ Th

e debugging information contains a concise description of how the modules

were compiled so that a debugger can associate machine instructions with C

source fi les and make data structures readable.

Th

e next subsection shows how to attach such routines that have already been

assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one

procedure requires compiling and assembling the whole program. Complete

retranslation is a terrible waste of computing resources. Th

is repetition is

particularly wasteful for standard library routines, because programmers would

be compiling and assembling routines that by defi nition almost never change. An

alternative is to compile and assemble each procedure independently, so that a

change to one line would require compiling and assembling only one procedure.

linker Also called

Th

is alternative requires a new systems program, called a link editor or linker,

link editor. A systems

which takes all the independently assembled machine language programs and

program that combines

“stitches” them together.

independently assembled

Th

ere are three steps for the linker:

machine language

programs and resolves all

1. Place code and data modules symbolically in memory.

undefi ned labels into an

executable fi le.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

Th

e linker uses the relocation information and symbol table in each object

module to resolve all undefi ned labels. Such references occur in branch instructions,

jump instructions, and data addresses, so the job of this program is much like that

of an editor: it fi nds the old addresses and replaces them with the new addresses.

Editing is the origin of the name “link editor,” or linker for short. Th

e reason a

linker is useful is that it is much faster to patch code than it is to recompile and

reassemble.

executable fi le

If all external references are resolved, the linker next determines the memory

A functional program in

locations each module will occupy. Recall that Figure 2.13 on page 104 shows

the format of an object

fi le that contains no

the MIPS convention for allocation of program and data to memory. Since the

unresolved references.

fi les were assembled in isolation, the assembler could not know where a module’s

It can contain symbol

instructions and data would be placed relative to other modules. When the linker

tables and debugging

places a module in memory, all absolute references, that is, memory addresses that

information. A “stripped

are not relative to a register, must be relocated to refl ect its true location.

executable” does not

Th

e linker produces an executable fi le that can be run on a computer. Typically,

contain that information.

this fi le has the same format as an object fi le, except that it contains no unresolved

Relocation information

may be included for the

references. It is possible to have partially linked fi les, such as library routines, that

loader.

still have unresolved addresses and hence result in object fi les.

2.12 Translating and Starting a Program

127

Linking Object Files

EXAMPLE

Link the two object fi les below. Show updated addresses of the fi rst few

instructions of the completed executable fi le. We show the instructions in

assembly language just to make the example understandable; in reality, the

instructions would be numbers.

Note that in the object fi les we have highlighted the addresses and symbols

that must be updated in the link process: the instructions that refer to the

addresses of procedures A and B and the instructions that refer to the addresses

of data words X and Y.

Object fi le header

Name

Procedure A

Text size

100hex

Data size

20hex

Text segment

Address

Instruction

0

lw $a0, 0($gp)

4

jal 0

…

…

Data segment

0

(X)

…

…

Relocation information

Address

Instruction type

Dependency

0

lw

X

4

jal

B

Symbol table

Label

Address

X

–

B

–

Object fi le header

Name

Procedure B

Text size

200hex

Data size

30hex

Text segment

Address

Instruction

0

sw $a1, 0($gp)

4

jal 0

…

…

Data segment

0

(Y)

…

…

Relocation information

Address

Instruction type

Dependency

0

sw

Y

4

jal

A

Symbol table

Label

Address

Y

–

A

–

128

Chapter 2 Instructions: Language of the Computer

Procedure A needs to fi nd the address for the variable labeled X to put in the

ANSWER

load instruction and to fi nd the address of procedure B to place in the jal

instruction. Procedure B needs the address of the variable labeled Y for the

store instruction and the address of procedure A for its jal instruction.

From Figure 2.13 on page 104, we know that the text segment starts

at address 40 0000 and the data segment at 1000 0000 . Th

e text of

hex

hex

procedure A is placed at the fi rst address and its data at the second. Th

e object

fi le header for procedure A says that its text is 100 bytes and its data is 20

hex

hex

bytes, so the starting address for procedure B text is 40 0100 , and its data

hex

starts at 1000 0020 .

hex

Executable fi le header

Text size

300hex

Data size

50hex

Text segment

Address

Instruction

0040 0000

lw

($gp)

hex

$a0, 8000hex

0040 0004

jal 40 0100

hex

hex

…

…

0040 0100

sw

($gp)

hex

$a1, 8020hex

0040 0104

jal 40 0000

hex

hex

…

…

Data segment

Address

1000 0000

(X)

hex

…

…

1000 0020

(Y)

hex

…

…

Figure 2.13 also shows that the text segment starts at address 40 0000

hex

and the data segment at 1000 0000 . Th

e text of procedure A is placed at the

hex

fi rst address and its data at the second. Th

e object fi le header for procedure A

says that its text is 100 bytes and its data is 20 bytes, so the starting address

hex

hex

for procedure B text is 40 0100 , and its data starts at 1000 0020 .

hex

hex

Now the linker updates the address fi elds of the instructions. It uses the

instruction type fi eld to know the format of the address to be edited. We have

two types here:

1. Th

e jals are easy because they use pseudodirect addressing. Th

e jal at

address 40 0004 gets 40 0100 (the address of procedure B) in its

hex

hex

address fi eld, and the jal at 40 0104 gets 40 0000 (the address of

hex

hex

procedure A) in its address fi eld.

2. Th

e load and store addresses are harder because they are relative to a base

register. Th

is example uses the global pointer as the base register. Figure 2.13

shows that $gp is initialized to 1000 8000 . To get the address 1000 0000

hex

hex

(the address of word X), we place 8000 in the address fi eld of lw at address

hex

40 0000 . Similarly, we place 8020 in the address fi eld of sw at address

hex

hex

40 0100 to get the address 1000 0020 (the address of word Y).

hex

hex

2.12 Translating and Starting a Program

129

Elaboration: Recall that MIPS instructions are word aligned, so jal drops the right

two bits to increase the instruction’s address range. Thus, it uses 26 bits to create a

28-bit byte address. Hence, the actual address in the lower 26 bits of the jal instruction

in this example is 10 0040

rather than 40 0100 .

hex,

hex

Loader

Now that the executable fi le is on disk, the operating system reads it to memory and

starts it. Th

e loader follows these steps in UNIX systems:

loader A systems

program that places an

1. Reads the executable fi le header to determine size of the text and data object program in main segments.

memory so that it is ready

to execute.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable fi le into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the fi rst free

location.

6. Jumps to a start-up routine that copies the parameters into the argument

registers and calls the main routine of the program. When the main routine

returns, the start-up routine terminates the program with an exit system

call.

Sections A.3 and A.4 in Appendix A describe linkers and loaders in more detail.

Dynamically Linked Libraries

Th

e fi rst part of this section describes the traditional approach to linking libraries Virtually every before the program is run. Although this static approach is the fastest way to call problem in computer library routines, it has a few disadvantages:

 science can be solved

 by another level of

■ Th

e library routines become part of the executable code. If a new version of indirection.

the library is released that fi xes bugs or supports new hardware devices, the

statically linked program keeps using the old version.

David Wheeler

■ It loads all routines in the library that are called anywhere in the executable,

even if those calls are not executed. Th

e library can be large relative to the

program; for example, the standard C library is 2.5 MB.

Th

ese disadvantages lead to dynamically linked libraries (DLLs), where the dynamically linked library routines are not linked and loaded until the program is run. Both the libraries (DLLs) Library program and library routines keep extra information on the location of nonlocal routines that are linked procedures and their names. In the initial version of DLLs, the loader ran a dynamic

to a program during

execution.

linker, using the extra information in the fi le to fi nd the appropriate libraries and to

update all external references.

130

Chapter 2 Instructions: Language of the Computer

Th

e downside of the initial version of DLLs was that it still linked all routines

of the library that might be called, versus only those that are called during the

running of the program. Th

is observation led to the lazy procedure linkage version

of DLLs, where each routine is linked only aft er it is called.

Like many innovations in our fi eld, this trick relies on a level of indirection.

Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of dummy routines at the end of the program, with one entry per nonlocal routine.

Th

ese dummy entries each contain an indirect jump.

Th

e fi rst time the library routine is called, the program calls the dummy entry

and follows the indirect jump. It points to code that puts a number in a register to

Text

Text

jal

jal

...

...

lw

lw

jr

jr

...

...

Data

Data

Text

...

li ID

j...

Text

Dynamic linker/loader

Remap DLL routine

j...

Data/Text

Text

DLL routine

DLL routine

...

...

jr

jr

(a) First call to DLL routine

(b) Subsequent calls to DLL routine

FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the fi rst time a call is made to the DLL routine. (b) Th

e steps to fi nd the routine, remap it, and link it are skipped on

subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by remapping it using virtual memory management.

2.12 Translating and Starting a Program

131

identify the desired library routine and then jumps to the dynamic linker/loader.

Th

e linker/loader fi nds the desired routine, remaps it, and changes the address in

the indirect jump location to point to that routine. It then jumps to it. When the

routine completes, it returns to the original calling site. Th

ereaft er, the call to the

library routine jumps indirectly to the routine without the extra hops.

In summary, DLLs require extra space for the information needed for dynamic

linking, but do not require that whole libraries be copied or linked. Th

ey pay a good

deal of overhead the fi rst time a routine is called, but only a single indirect jump

thereaft er. Note that the return from the library pays no extra overhead. Microsoft ’s

Windows relies extensively on dynamically linked libraries, and it is also the default

when executing programs on UNIX systems today.

Starting a Java Program

Th

e discussion above captures the traditional model of executing a program,

where the emphasis is on fast execution time for a program targeted to a specifi c

instruction set architecture, or even a specifi c implementation of that architecture.

Indeed, it is possible to execute Java programs just like C. Java was invented with

a diff erent set of goals, however. One was to run safely on any computer, even if it

might slow execution time.

Figure 2.23 shows the typical translation and execution steps for Java. Rather than compile to the assembly language of a target computer, Java is compiled fi rst

to instructions that are easy to interpret: the Java bytecode instruction set (see Java bytecode Section 2.15). Th

is instruction set is designed to be close to the Java language Instruction from an

so that this compilation step is trivial. Virtually no optimizations are performed. instruction set designed Like the C compiler, the Java compiler checks the types of data and produces the to interpret Java programs.

proper operation for each type. Java programs are distributed in the binary version

of these bytecodes.

A soft ware interpreter, called a Java Virtual Machine (JVM), can execute Java Java Virtual Machine bytecodes. An interpreter is a program that simulates an instruction set architecture.

(JVM) Th

e program that

interprets Java bytecodes.

Java program

Compiler

Class files (Java bytecodes)

Java library routines (machine language)

Just In Time

Java Virtual Machine

compiler

Compiled Java methods (machine language)

FIGURE 2.23 A translation hierarchy for Java. A Java program is fi rst compiled into a binary version of Java bytecodes, with all addresses defi ned by the compiler. Th

e Java program is now ready to run

on the interpreter, called the Java Virtual Machine (JVM). Th

e JVM links to desired methods in the Java

library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, which selectively compiles methods into the native machine language of the machine on which it is running.

132

Chapter 2 Instructions: Language of the Computer

For example, the MIPS simulator used with this book is an interpreter. Th

ere is no

need for a separate assembly step since either the translation is so simple that the

compiler fi lls in the addresses or JVM fi nds them at runtime.

Th

e upside of interpretation is portability. Th

e availability of soft ware Java virtual

machines meant that most people could write and run Java programs shortly

aft er Java was announced. Today, Java virtual machines are found in hundreds of

millions of devices, in everything from cell phones to Internet browsers.

Th

e downside of interpretation is lower performance. Th

e incredible advances in

performance of the 1980s and 1990s made interpretation viable for many important

applications, but the factor of 10 slowdown when compared to traditionally

compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java

development was compilers that translated while the program was running. Such

Just In Time compiler

Just In Time compilers (JIT) typically profi le the running program to fi nd where

(JIT) Th

e name

the “hot” methods are and then compile them into the native instruction set on

commonly given to a

which the virtual machine is running. Th

e compiled portion is saved for the next

compiler that operates at

time the program is run, so that it can run faster each time it is run. Th

is balance

runtime, translating the

of interpretation and compilation evolves over time, so that frequently run Java

interpreted code segments

programs suff er little of the overhead of interpretation.

into the native code of the

computer.

As computers get faster so that compilers can do more, and as researchers

invent betters ways to compile Java on the fl y, the performance gap between Java

and C or C is closing. Section 2.15 goes into much greater depth on the

implementation of Java, Java bytecodes, JVM, and JIT compilers.

Check Which of the advantages of an interpreter over a translator do you think was most

important for the designers of Java?

Yourself

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine

independence

 2.13 A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have no

idea what a full assembly language program looks like. In this section, we derive

the MIPS code from two procedures written in C: one to swap array elements and

one to sort them.

2.13 A C Sort Example to Put It All Together

133

void swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

FIGURE 2.24 A C procedure that swaps two locations in memory. Th

is subsection uses this

procedure in a sorting example.

The Procedure swap

Let’s start with the code for the procedure swap in Figure 2.24. Th

is procedure

simply swaps two locations in memory. When translating from C to assembly

language by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

Th

is section describes the swap procedure in these three pieces, concluding by

putting all the pieces together.

Register Allocation for swap

As mentioned on pages 98–99, the MIPS convention on parameter passing is to

use registers $a0, $a1, $a2, and $a3. Since swap has just two parameters, v and

k, they will be found in registers $a0 and $a1. Th

e only other variable is temp,

which we associate with register $t0 since swap is a leaf procedure (see page 100).

Th

is register allocation corresponds to the variable declarations in the fi rst part of

the swap procedure in Figure 2.24.

Code for the Body of the Procedure swap

Th

e remaining lines of C code in swap are

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so

words are really 4 bytes apart. Hence we need to multiply the index k by 4 before

adding it to the address. Forgetting that sequential word addresses diff er by 4 instead

134

Chapter 2 Instructions: Language of the Computer

 of by 1 is a common mistake in assembly language programming. Hence the fi rst step

is to get the address of v[k] by multiplying k by 4 via a shift left by 2:

sll $t1, $a1,2 # reg $t1 = k * 4

add $t1, $a0,$t1 # reg $t1 = v + (k * 4)

reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k + 1]

refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw $t2, 0($t1) # v[k] = reg $t2

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations

of the procedure. What is missing is the code for preserving the saved registers

used within swap. Since we are not using saved registers in this leaf procedure,

there is nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and

the return jump. To make it easier to follow, we identify in Figure 2.25 each block of code with its purpose in the procedure.

Procedure body

swap: sll

$t1, $a1, 2

reg $t1 = k * 4

add

$t1, $a0, $t1

reg $t1 = v + (k * 4)

reg $t1 has the address of v[k]

lw

$t0, 0($t1)

reg $t0 (temp) = v[k]

lw

$t2, 4($t1)

reg $t2 = v[k + 1]

refers to next element of v

sw

$t2, 0($t1)

v[k] = reg $t2

sw

$t0, 4($t1)

v[k+1] = reg $t0 (temp)

Procedure return

jr

$ra

return to calling routine

FIGURE 2.25 MIPS assembly code of the procedure swap in Figure 2.24.

2.13 A C Sort Example to Put It All Together

135

The Procedure sort

To ensure that you appreciate the rigor of programming in assembly language, we’ll

try a second, longer example. In this case, we’ll build a routine that calls the swap

procedure. Th

is program sorts an array of integers, using bubble or exchange sort,

which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C version of the program. Once again, we present this procedure in several steps, concluding

with the full procedure.

void sort (int v[], int n)

{

int i, j;

for (i = 0; i < n; i += 1) {

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j =1) {

swap(v,j);

}

}

}

FIGURE 2.26 A C procedure that performs a sort on the array v.

Register Allocation for sort

Th

e two parameters of the procedure sort, v and n, are in the parameter registers

$a0 and $a1, and we assign register $s0 to i and register $s1 to j.

Code for the Body of the Procedure sort

Th

e procedure body consists of two nested for loops and a call to swap that includes

parameters. Let’s unwrap the code from the outside to the middle.

Th

e fi rst translation step is the fi rst for loop:

for (i = 0; i <n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and iteration increment. It takes just one instruction to initialize i to 0, the fi rst part of the for

statement:

move $s0, $zero # i = 0

(Remember that move is a pseudoinstruction provided by the assembler for the

convenience of the assembly language programmer; see page 124.) It also takes just

one instruction to increment i, the last part of the for statement:

addi $s0, $s0, 1 # i += 1

136

Chapter 2 Instructions: Language of the Computer

Th

e loop should be exited if i < n is not true or, said another way, should be

exited if i ≥ n. Th

e set on less than instruction sets register $t0 to 1 if $s0 <

$a1 and to 0 otherwise. Since we want to test if $s0 ≥ $a1, we branch if register

$t0 is 0. Th

is test takes two instructions:

for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)

beq $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)

Th

e bottom of the loop just jumps back to the loop test:

j for1tst # jump to test of outer loop

exit1:

Th

e skeleton code of the fi rst for loop is then

move $s0, $zero # i = 0

for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)

beq $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)

. . .

(body of first for loop)

. . .

addi $s0, $s0, 1 # i += 1

j for1tst # jump to test of outer loop

exit1:

Voila! (Th

e exercises explore writing faster code for similar loops.)

Th

e second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

Th

e initialization portion of this loop is again one instruction:

addi $s1, $s0, –1 # j = i – 1

Th

e decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, –1 # j –= 1

Th

e loop test has two parts. We exit the loop if either condition fails, so the fi rst

test must exit the loop if it fails (j 0):

for2tst: slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

Th

is branch will skip over the second condition test. If it doesn’t skip, j ≥ 0.

2.13 A C Sort Example to Put It All Together

137

Th

e second test exits if v[j] > v[j + 1] is not true, or exits if v[j] ≤

v[j + 1]. First we create the address by multiplying j by 4 (since we need a byte

address) and add it to the base address of v:

sll $t1, $s1, 2 # reg $t1 = j * 4

add $t2, $a0, $t1 # reg $t2 = v + (j * 4)

Now we load v[j]:

lw $t3, 0($t2) # reg $t3 = v[j]

Since we know that the second element is just the following word, we add 4 to

the address in register $t2 to get v[j + 1]:

lw $t4, 4($t2) # reg $t4 = v[j + 1]

Th

e test of v[j] ≤ v[j + 1] is the same as v[j + 1] ≥ v[j], so the

two instructions of the exit test are

slt $t0, $t4, $t3 # reg $t0 = 0 if $t4 ≥ $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

Th

e bottom of the loop jumps back to the inner loop test:

j for2tst # jump to test of inner loop

Combining the pieces, the skeleton of the second for loop looks like this:

addi $s1, $s0, –1 # j = i – 1

for2tst:slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

sll $t1, $s1, 2 # reg $t1 = j * 4

add $t2, $a0, $t1 # reg $t2 = v + (j * 4)

lw $t3, 0($t2) # reg $t3 = v[j]

lw $t4, 4($t2) # reg $t4 = v[j + 1]

slt $t0, $t4, $t3 # reg $t0 = 0 if $t4 ≥ $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

. . .

(body of second for loop)

. . .

addi $s1, $s1, –1 # j –= 1

j for2tst # jump to test of inner loop

exit2:

The Procedure Call in sort

Th

e next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

jal swap

138

Chapter 2 Instructions: Language of the Computer

Passing Parameters in sort

Th

e problem comes when we want to pass parameters because the sort procedure

needs the values in registers $a0 and $a1, yet the swap procedure needs to have its

parameters placed in those same registers. One solution is to copy the parameters

for sort into other registers earlier in the procedure, making registers $a0 and

$a1 available for the call of swap. (Th

is copy is faster than saving and restoring on

the stack.) We fi rst copy $a0 and $a1 into $s2 and $s3 during the procedure:

move $s2, $a0 # copy parameter $a0 into $s2

move $s3, $a1 # copy parameter $a1 into $s3

Th

en we pass the parameters to swap with these two instructions:

move $a0, $s2 # first swap parameter is v

move $a1, $s1 # second swap parameter is j

Preserving Registers in sort

Th

e only remaining code is the saving and restoring of registers. Clearly, we must

save the return address in register $ra, since sort is a procedure and is called

itself. Th

e sort procedure also uses the saved registers $s0, $s1, $s2, and $s3,

so they must be saved. Th

e prologue of the sort procedure is then

addi $sp,$sp,–20 # make room on stack for 5 registers

sw $ra,16($sp) # save $ra on stack

sw $s3,12($sp) # save $s3 on stack

sw $s2, 8($sp) # save $s2 on stack

sw $s1, 4($sp) # save $s1 on stack

sw $s0, 0($sp) # save $s0 on stack

Th

e tail of the procedure simply reverses all these instructions, then adds a jr to

return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.27, being careful to replace references to registers $a0 and $a1 in the for loops with references to registers $s2 and $s3.

Once again, to make the code easier to follow, we identify each block of code with

its purpose in the procedure. In this example, nine lines of the sort procedure in

C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining.

Instead of passing arguments in parameters and invoking the code with a jal instruction,

the compiler would copy the code from the body of the swap procedure where the call

to swap appears in the code. Inlining would avoid four instructions in this example. The

downside of the inlining optimization is that the compiled code would be bigger if the

inlined procedure is called from several locations. Such a code expansion might turn

into lower performance if it increased the cache miss rate; see Chapter 5.

2.13 A C Sort Example to Put It All Together

139

Saving registers

sort: addi $sp,$sp, –20

make room on stack for 5 registers

sw

$ra, 16($sp)# save $ra on stack

sw

$s3,12($sp) # save $s3 on stack

sw

$s2, 8($sp)# save $s2 on stack

sw

$s1, 4($sp)# save $s1 on stack

sw

$s0, 0($sp)# save $s0 on stack

Procedure body

move

$s2, $a0

copy parameter $a0 into $s2 (save $a0)

Move parameters

move

$s3, $a1

copy parameter $a1 into $s3 (save $a1)

move

$s0, $zero# i = 0

Outer loop

for1tst:slt $t0, $s0,$s3 #reg$t0=0if$s0Š$s3(iŠn)

beq

$t0, $zero, exit1# go to exit1 if $s0 Š $s3 (i Š n)

addi

$s1, $s0, –1# j = i – 1

for2tst:slti $t0, $s1,0 #reg$t0=1if$s1<0(j<0)

bne

$t0, $zero, exit2# go to exit2 if $s1 < 0 (j < 0)

sll

$t1, $s1, 2# reg $t1 = j * 4

Inner loop

add

$t2, $s2, $t1# reg $t2 = v + (j * 4)

lw

$t3, 0($t2)# reg $t3

= v[j]

lw

$t4, 4($t2)# reg $t4

= v[j + 1]

slt

$t0, $t4, $t3 # reg $t0 = 0 if $t4 Š $t3

beq

$t0, $zero, exit2# go to exit2 if $t4 Š $t3

move

$a0, $s2

1st parameter of swap is v (old $a0)

Pass parameters

move

$a1, $s1

2nd parameter of swap is j

and call

jal

swap

swap code shown in Figure 2.25

Inner loop

addi

$s1, $s1, –1# j –= 1

j

for2tst

jump to test of inner loop

Outer loop

exit2: addi

$s0, $s0, 1

i += 1

j

for1tst

jump to test of outer loop

Restoring registers

exit1: lw

$s0, 0($sp)

restore $s0 from stack

lw

$s1, 4($sp)# restore $s1 from stack

lw

$s2, 8($sp)# restore $s2 from stack

lw

$s3,12($sp) # restore $s3 from stack

lw

$ra,16($sp) # restore $ra from stack

addi

$sp,$sp, 20 # restore stack pointer

Procedure return

jr

$ra

return to calling routine

FIGURE 2.27 MIPS assembly version of procedure sort in Figure 2.26.

140

Chapter 2 Instructions: Language of the Computer

Figure 2.28 shows the impact of compiler optimization on sort program

Understanding performance, compile time, clock cycles, instruction count, and CPI. Note that Program unoptimized code has the best CPI, and O1 optimization has the lowest instruction Performance

count, but O3 is the fastest, reminding us that time is the only accurate measure of

program performance.

Figure 2.29 compares the impact of programming languages, compilation

versus interpretation, and algorithms on performance of sorts. Th

e fourth column

shows that the unoptimized C program is 8.3 times faster than the interpreted

Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times faster than

the unoptimized C and within a factor of 1.13 of the highest optimized C code.

(Section 2.15 gives more details on interpretation versus compilation of Java and

the Java and MIPS code for Bubble Sort.) Th

e ratios aren’t as close for Quicksort

in Column 5, presumably because it is harder to amortize the cost of runtime

compilation over the shorter execution time. Th

e last column demonstrates the

impact of a better algorithm, off ering three orders of magnitude a performance

increases by when sorting 100,000 items. Even comparing interpreted Java in

Column 5 to the C compiler at highest optimization in Column 4, Quicksort beats

Bubble Sort by a factor of 50 (0.05 2468, or 123 times faster than the unoptimized

C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments

in case they need to be stored, so in reality they always decrement $sp by 16 to make

room for all four argument registers (16 bytes). One reason is that C provides a vararg

option that allows a pointer to pick, say, the third argument to a procedure. When the

compiler encounters the rare vararg, it copies the four argument registers onto the

stack into the four reserved locations.

Relative

Clock cycles

Instruction count

gcc optimization

performance

(millions)

(millions)

CPI

None

1.00

158,615

114,938 1.38

O1 (medium)

2.37

66,990

37,470

1.79

O2 (full)

2.38

66,521

39,993

1.66

O3 (procedure integration)

2.41

65,747

44,993

1.46

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler

optimization for Bubble Sort. Th

e programs sorted 100,000 words with the array initialized to random

values. Th

ese programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus

with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20.

2.14 Arrays versus Pointers

141

Bubble Sort relative Quicksort relative

Speedup Quicksort

Language

Execution method

Optimization

performance

performance

vs. Bubble Sort

C

Compiler

None

1.00

1.00

2468

Compiler

O1

2.37

1.50

1562

Compiler

O2

2.38

1.50

1555

Compiler

O3

2.41

1.91

1955

Java

Interpreter

–

0.12

0.05

1050

JIT compiler

–

2.13

0.29

338

FIGURE 2.29 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative to unoptimized C version. Th

e last column shows the advantage in performance of Quicksort over Bubble Sort for each language and execution option. Th

ese programs were run on the same system as in Figure 2.28. Th

e JVM is Sun version 1.3.1, and the JIT is Sun Hotspot

version 1.3.1.

 2.14 Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing

assembly code that uses arrays and array indices to the assembly code that uses

pointers off ers insights about pointers. Th

is section shows C and MIPS assembly

versions of two procedures to clear a sequence of words in memory: one using

array indices and one using pointers. Figure 2.30 shows the two C procedures.

Th

e purpose of this section is to show how pointers map into MIPS instructions,

and not to endorse a dated programming style. We’ll see the impact of modern

compiler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, clear1, focusing on the body of the loop and

ignoring the procedure linkage code. We assume that the two parameters array

and size are found in the registers $a0 and $a1, and that i is allocated to

register $t0.

Th

e initialization of i, the fi rst part of the for loop, is straightforward:

move $t0,$zero # i = 0 (register $t0 = 0)

To set array[i] to 0 we must fi rst get its address. Start by multiplying i by 4

to get the byte address:

loop1: sll $t1,$t0,2 # $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index

to get the address of array[i] using an add instruction:

add $t2,$a0,$t1 # $t2 = address of array[i]

142

Chapter 2 Instructions: Language of the Computer

clear1(int array[], int size)

{

int

i;

for (i = 0; i < size; i += 1)

array[i] = 0;

}

clear2(int *array, int size)

{

int

*p;

for (p = &array[0]; p < &array[size]; p = p + 1)

*p = 0;

}

FIGURE 2.30 Two C procedures for setting an array to all zeros. Clear1 uses indices, while clear2 uses pointers. Th

e second procedure needs some explanation for those unfamiliar with C.

Th

e address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. Th e

declarations declare that array and p are pointers to integers. Th

e fi rst part of the for loop in clear2

assigns the address of the fi rst element of array to the pointer p. Th

e second part of the for loop tests to see

if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS

integer. Th

e assignment in the loop places 0 in the object pointed to by p.

Finally, we can store 0 in that address:

sw $zero, 0($t2) # array[i] = 0

Th

is instruction is the end of the body of the loop, so the next step is to increment i:

addi $t0,$t0,1 # i = i + 1

Th

e loop test checks if i is less than size:

slt $t3,$t0,$a1 # $t3 = (i < size)

bne $t3,$zero,loop1 # if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the MIPS code for

clearing an array using indices:

move $t0,$zero # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

add $t2,$a0,$t1 # $t2 = address of array[i]

sw $zero, 0($t2) # array[i] = 0

addi $t0,$t0,1 # i = i + 1

slt $t3,$t0,$a1 # $t3 = (i < size)

bne $t3,$zero,loop1 # if (i < size) go to loop1

(Th

is code works as long as size is greater than 0; ANSI C requires a test of size

before the loop, but we’ll skip that legality here.)

2.14 Arrays versus Pointers

143

Pointer Version of Clear

Th

e second procedure that uses pointers allocates the two parameters array and

size to the registers $a0 and $a1 and allocates p to register $t0. Th

e code for

the second procedure starts with assigning the pointer p to the address of the fi rst

element of the array:

move $t0,$a0 # p = address of array[0]

Th

e next code is the body of the for loop, which simply stores 0 into p:

loop2: sw $zero,0($t0) # Memory[p] = 0

Th

is instruction implements the body of the loop, so the next code is the iteration

increment, which changes p to point to the next word:

addi $t0,$t0,4 # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential

object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler

increments p by 4.

Th

e loop test is next. Th

e fi rst step is calculating the address of the last element

of array. Start with multiplying size by 4 to get its byte address:

sll $t1,$a1,2 # $t1 = size * 4

and then we add the product to the starting address of the array to get the address

of the fi rst word aft er the array:

add $t2,$a0,$t1 # $t2 = address of array[size]

Th

e loop test is simply to see if p is less than the last element of array:

slt $t3,$t0,$t2 # $t3 = (p<&array[size])

bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero

an array:

move $t0,$a0 # p = address of array[0]

loop2: sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 # p = p + 4

sll $t1,$a1,2 # $t1 = size * 4

add $t2,$a0,$t1 # $t2 = address of array[size]

slt $t3,$t0,$t2 # $t3 = (p<&array[size])

bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

As in the fi rst example, this code assumes size is greater than 0.

144

Chapter 2 Instructions: Language of the Computer

Note that this program calculates the address of the end of the array in every

iteration of the loop, even though it does not change. A faster version of the code

moves this calculation outside the loop:

move $t0,$a0 # p = address of array[0]

sll $t1,$a1,2 # $t1 = size * 4

add $t2,$a0,$t1 # $t2 = address of array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 # p = p + 4

slt $t3,$t0,$t2 # $t3 = (p<&array[size])

bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the diff erence between

array indices and pointers (the changes introduced by the pointer version are

highlighted):

move $t0,$zero

i = 0

move

$t0,$a0

p = & array[0]

loop1:

sll

$t1,$t0,2

$t1 = i * 4

sll

$t1,$a1,2

$t1 = size * 4

add

$t2,$a0,$t1

$t2 = &array[i]

add

$t2,$a0,$t1

$t2 = &array[size]

sw

$zero, 0($t2) # array[i] = 0

loop2:

sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,1

i = i + 1

addi

$t0,$t0,4 #

p = p + 4

slt

$t3,$t0,$a1

$t3 = (i < size)

slt

$t3,$t0,$t2 # $t3=(p<&array[size])

bne

$t3,$zero,loop1# if () go to loop1

bne

$t3,$zero,loop2# if () go to loop2

Th

e version on the left must have the “multiply” and add inside the loop because

i is incremented and each address must be recalculated from the new index. Th

e

memory pointer version on the right increments the pointer p directly. Th

e pointer

version moves the scaling shift and the array bound addition outside the loop,

thereby reducing the instructions executed per iteration from 6 to 4. Th

is manual

optimization corresponds to the compiler optimization of strength reduction (shift

instead of multiply) and induction variable elimination (eliminating array address

calculations within loops). Section 2.15 describes these two and many other

optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that size

is greater than 0. One way would be to add a jump just before the fi rst instruction of the

loop to the slt instruction.

5.9

2.15

Advanced Material: Compiling C and

Interpreting Java

Th

is section gives a brief overview of how the C compiler works and how Java

is executed. Because the compiler will signifi cantly aff ect the performance of a

computer, understanding compiler technology today is critical to understanding

performance. Keep in mind that the subject of compiler construction is usually

taught in a one- or two-semester course, so our introduction will necessarily only

touch on the basics.

Th

e second part of this section, starting on page 2.15-15, is for readers interested

in seeing how an objected-oriented language like Java executes on the MIPS

architecture. It shows the Java bytecodes used for interpretation and the MIPS code

for the Java version of some of the C segments in prior sections, including Bubble

Sort. It covers both the Java virtual machine and just-in-time (JIT) compilers.

Compiling C

Th

is fi rst part of the section introduces the internal anatomy of a compiler. To

start, Figure 2.15.1 shows the structure of recent compilers, and we describe the

optimizations in the order of the passes of that structure.

Dependencies

Function

Language dependent;

Transform language to

Front end per

machine independent

common intermediate form

language

 Intermediate

 representation

Somewhat language dependent;

For example, loop

High-level

largely machine independent

transformations and

optimizations

procedure inlining

(also called

procedure integration)

Small language dependencies;

Including global and local

Global

machine dependencies slight

optimizations register

optimizer

(e.g., register counts/types)

allocation

Highly machine dependent;

Detailed instruction selection

Code generator

language independent

and machine-dependent

optimizations; may include

or be followed by assembler

FIGURE 2.15.1 The structure of a modern optimizing compiler consists of a number of

passes or phases. Logically, each pass can be thought of as running to completion before the next occurs.

In practice, some passes may handle one procedure at a time, essentially interleaving with another pass.

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-3

To illustrate the concepts in this part of this section, we will use the C version of

a while loop from page 92:

while (save[i] == k)

i += 1;

The Front End

Th

e function of the front end is to read in a source program; check the syntax

and semantics; and translate the source program to an intermediate form that

interprets most of the language-specifi c operation of the program. As we will see,

intermediate forms are usually simple, and some are in fact similar to the Java

bytecodes (see Figure 2.15.8).

Th

e front end is usually broken into four separate functions:

1. Scanning reads in individual characters and creates a string of tokens.

Examples of tokens are reserved words, names, operators, and punctuation

symbols. In the above example, the token sequence is while, (, save,

[, i,], ==, k,), i, +=, 1. A word like while is recognized as a reserved

word in C, but save, i, and j are recognized as names, and 1 is recognized

as a number.

2. Parsing takes the token stream, ensures the syntax is correct, and produces

an abstract syntax tree, which is a representation of the syntactic structure of

the program. Figure 2.15.2 shows what the abstract syntax tree might look

like for this program fragment.

3. Semantic analysis takes the abstract syntax tree and checks the program for

semantic correctness. Semantic checks normally ensure that variables and

types are properly declared and that the types of operators and objects match,

a step called type checking. During this process, a symbol table representing

all the named objects—classes, variables, and functions—is usually created

and used to type-check the program.

4. Generation of the intermediate representation (IR) takes the symbol table and

the abstract syntax tree and generates the intermediate representation that is

the output of the front end. Intermediate representations usually use simple

operations on a small set of primitive types, such as integers, characters, and

reals. Java bytecodes represent one type of intermediate form. In modern

compilers, the most common intermediate form looks much like the MIPS

instruction set but with an infi nite number of virtual registers; later, we describe

how to map these virtual registers to a fi nite set of real registers. Figure 2.15.3

shows how our example might be represented in such an intermediate form. We

capitalize the MIPS instructions in this section when they represent IR forms.

Th

e intermediate form specifi es the functionality of the program in a manner

independent of the original source. Aft er this front end has created the intermediate

form, the remaining passes are largely language independent.

2.15-4

2.15 Advanced Material: Compiling C and Interpreting Java

 while statement

 while

d

n

o

c

i

t

i o

n

t

s t

a

y

d

o

b

t

n

e

m

e

expression

⫹⫽ assignment

⫽⫽ comparison

left-hand side

expression

expression expression identifier factor

factor factor

l number

array access

identifier

1

a

r

r

a

y

expression

k

identifier factor

save identifier

i

FIGURE 2.15.2 An abstract syntax tree for the while example. Th

e roots of the tree consist of

the informational tokens such as numbers and names. Long chains of straight-line descendents are oft en omitted in constructing the tree.

High-Level Optimizations

High-level optimizations are transformations that are done at something close to

the source level.

Th

e most common high-level transformation is probably procedure inlining,

which replaces a call to a function by the body of the function, substituting the

loop-unrolling

caller’s arguments for the procedure’s parameters. Other high-level optimizations

A technique to get more

involve loop transformations that can reduce loop overhead, improve memory

performance from loops

access, and exploit the hardware more eff ectively. For example, in loops that

that access arrays, in

execute many iterations, such as those traditionally controlled by a for statement,

which multiple copies of

the optimization of loop-unrolling is oft en useful. Loop-unrolling involves taking

the loop body are made

a loop, replicating the body multiple times, and executing the transformed loop

and instructions from

diff erent iterations are

fewer times. Loop-unrolling reduces the loop overhead and provides opportunities

scheduled together.

for many other optimizations. Other types of high-level transformations include

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-5

comments are written like this--source code often included

while (save[i] == k)

loop:

LI R1,save

loads the starting address of save into R1

LW

R2,i

MULT R3,R2,4 # Multiply R2 by 4

ADD

R4,R3,R1

LW R5,0(R4) # load save[i]

LW

R6,k

BNE

R5,R6,endwhileloop

i += 1

LW R6, i

ADD R7,R6,1 # increment

SW

R7,i

branch loop # next iteration

endwhileloop:

FIGURE 2.15.3 The while loop example is shown using a typical intermediate representation. In practice, the names save, i, and k would be replaced by some sort of address, such as a reference to either the local stack pointer or a global pointer, and an off set, similar to the way save[i]

is accessed. Note that the format of the MIPS instructions is diff erent, because they are intermediate representations here: the operations are capitalized and the registers use RXX notation.

sophisticated loop transformations such as interchanging nested loops and

blocking loops to obtain better memory behavior; see Chapter 5 for examples.

Local and Global Optimizations

Within the pass dedicated to local and global optimization, three classes of

optimizations are performed:

1. Local optimization works within a single basic block. A local optimization

pass is oft en run as a precursor and successor to global optimization to

“clean up” the code before and aft er global optimization.

2. Global optimization works across multiple basic blocks; we will see an

example of this shortly.

3. Global register allocation allocates variables to registers for regions of the

code. Register allocation is crucial to getting good performance in modern

processors.

Several optimizations are performed both locally and globally, including common

subexpression elimination, constant propagation, copy propagation, dead store

elimination, and strength reduction. Let’s look at some simple examples of these

optimizations.

2.15-6

2.15 Advanced Material: Compiling C and Interpreting Java

 Common subexpression elimination fi nds multiple instances of the same

expression and replaces the second one by a reference to the fi rst. Consider,

for example, a code segment to add 4 to an array element:

x[i] = x[i] + 4

Th

e address calculation for x[i] occurs twice and is identical since neither the

starting address of x nor the value of i changes. Th

us, the calculation can be reused.

Let’s look at the intermediate code for this fragment, since it allows several other

optimizations to be performed. Th

e unoptimized intermediate code is on the left . On

the right is the optimized code, using common subexpression elimination to replace

the second address calculation with the fi rst. Note that the register allocation has

not yet occurred, so the compiler is using virtual register numbers like R100 here.

x[i] + 4

x[i] + 4

li R100,x

li R100,x

lw R101,i

lw R101,i

mult R102,R101,4

mult R102,R101,4

add R103,R100,R102

add R103,R100,R102

lw R104,0(R103)

lw R104,0(R103)

add R105,R104,4

value of x[i] is in R104

x[i] = li R106,x add R105,R104,4

lw R107,i

x[i] =

mult R108,R107,4

sw R105,0(R103)

add R109,R106,R107

sw R105,0(R109)

If the same optimization were possible across two basic blocks, it would then be an

instance of global common subexpression elimination.

Let’s consider some of the other optimizations:

■ Strength reduction replaces complex operations by simpler ones and can be

applied to this code segment, replacing the MULT by a shift left .

■ Constant propagation and its sibling constant folding fi nd constants in code

and propagate them, collapsing constant values whenever possible.

■ Copy propagation propagates values that are simple copies, eliminating the

need to reload values and possibly enabling other optimizations, such as

common subexpression elimination.

■ Dead store elimination fi nds stores to values that are not used again and

eliminates the store; its “cousin” is dead code elimination, which fi nds unused

code—code that cannot aff ect the result of the program—and eliminates it.

With the heavy use of macros, templates, and the similar techniques designed

to reuse code in high-level languages, dead code occurs surprisingly oft en.

Compilers must be conservative. Th

e fi rst task of a compiler is to produce correct

code; its second task is usually to produce fast code, although other factors, such as

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-7

code size, may sometimes be important as well. Code that is fast but incorrect—for

any possible combination of inputs—is simply wrong. Th

us, when we say a compiler

is “conservative,” we mean that it performs an optimization only if it knows with

100% certainty that, no matter what the inputs, the code will perform as the user

wrote it. Since most compilers translate and optimize one function or procedure

at a time, most compilers, especially at lower optimization levels, assume the worst

about function calls and about their own parameters.

Programmers concerned about performance of critical loops, especially in real-time Understanding or embedded applications, oft en fi nd themselves staring at the assembly language Program

produced by a compiler and wondering why the compiler failed to perform some

global optimization or to allocate a variable to a register throughout a loop. Th

e Performance

answer oft en lies in the dictate that the compiler be conservative. Th

e opportunity for

improving the code may seem obvious to the programmer, but then the programmer

oft en has knowledge that the compiler does not have, such as the absence of aliasing

between two pointers or the absence of side eff ects by a function call. Th

e compiler

may indeed be able to perform the transformation with a little help, which could

eliminate the worst-case behavior that it must assume. Th

is insight also illustrates

an important observation: programmers who use pointers to try to improve

performance in accessing variables, especially pointers to values on the stack that also

have names as variables or as elements of arrays, are likely to disable many compiler

optimizations. Th

e end result is that the lower-level pointer code may run no better,

or perhaps even worse, than the higher-level code optimized by the compiler.

Global Code Optimizations

Many global code optimizations have the same aims as those used in the local

case, including common subexpression elimination, constant propagation, copy

propagation, and dead store and dead code elimination.

Th

ere are two other important global optimizations: code motion and induction

variable elimination. Both are loop optimizations; that is, they are aimed at code

in loops. Code motion fi nds code that is loop invariant: a particular piece of

code computes the same value on every iteration of the loop and, hence, may be

computed once outside the loop. Induction variable elimination is a combination of

transformations that reduce overhead on indexing arrays, essentially replacing array

indexing with pointer accesses. Rather than examine induction variable elimination

in depth, we point the reader to Section 2.14, which compares the use of array

indexing and pointers; for most loops, the transformation from the more obvious

array code to the pointer code can be performed by a modern optimizing compiler.

2.15-8

2.15 Advanced Material: Compiling C and Interpreting Java

Implementing Local Optimizations

Local optimizations are implemented on basic blocks by scanning the basic block

in instruction execution order, looking for optimization opportunities. In the

assignment statement example on page 2.15-6, the duplication of the entire address

calculation is recognized by a series of sequential passes over the code. Here is how

the process might proceed, including a description of the checks that are needed:

1. Determine that the two li operations return the same result by observing

that the operand x is the same and that the value of its address has not been

changed between the two li operations.

2. Replace all uses of R106 in the basic block by R101.

3. Observe that i cannot change between the two LWs that reference it. So

replace all uses of R107 with R101.

4. Observe that the mult instructions now have the same input operands, so

that R108 may be replaced by R102.

5. Observe that now the two add instructions have identical input operands

(R100 and R102), so replace the R109 with R103.

6. Use dead store code elimination to delete the second set of li, lw, mult,

and add instructions since their results are unused.

Th

roughout this process, we need to know when two instances of an operand have

the same value. Th

is is easy to determine when they refer to virtual registers, since

our intermediate representation uses such registers only once, but the problem can

be trickier when the operands are variables in memory, even though we are only

considering references within a basic block.

It is reasonably easy for the compiler to make the common subexpression

elimination determination in a conservative fashion in this case; as we will see in

the next subsection, this is more diffi

cult when branches intervene.

Implementing Global Optimizations

To understand the challenge of implementing global optimizations, let’s consider

a few examples:

■ Consider the case of an opportunity for common subexpression elimination,

say, of an IR statement like ADD Rx, R20, R50. To determine whether two

such statements compute the same value, we must determine whether the

values of R20 and R50 are identical in the two statements. In practice, this

means that the values of R20 and R50 have not changed between the fi rst

statement and the second. For a single basic block, this is easy to decide; it is

more diffi

cult for a more complex program structure involving multiple basic

blocks and branches.

■ Consider the second LW of i into R107 within the earlier example: how do

we know whether its value is used again? If we consider only a single basic

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-9

block, and we know that all uses of R107 are within that block, it is easy to

see. As optimization proceeds, however, common subexpression elimination

and copy propagation may create other uses of a value. Determining that a

value is unused and the code is dead is more diffi

cult in the case of multiple

basic blocks.

■ Finally, consider the load of k in our loop, which is a candidate for code

motion. In this simple example, we might argue it is easy to see that k is

not changed in the loop and is, hence, loop invariant. Imagine, however, a

more complex loop with multiple nestings and if statements within the body.

Determining that the load of k is loop invariant is harder in such a case.

Th

e information we need to perform these global optimizations is similar: we

need to know where each operand in an IR statement could have been changed or

 defi ned (use-defi nition information). Th

e dual of this information is also needed:

that is, fi nding all the uses of that changed operand (defi nition-use information).

 Data fl ow analysis obtains both types of information.

Global optimizations and data fl ow analysis operate on a control fl ow graph, where

the nodes represent basic blocks and the arcs represent control fl ow between basic

blocks. Figure 2.15.4 shows the control fl ow graph for our simple loop example,

with one important transformation introduced. We describe the transformation in

the caption, but see if you can discover it, and why it was done, on your own!

8. LW R6,i

9. ADD R7,R6,1

10. SW R7,i

1. LI R1,save

2. LW R2,i

3. SLL R3,R2,2

4. ADD R4,R3,R1

5. LW R5,0(R4)

6. LW R6,k

7. BEQ R5,R6,startwhileloop

FIGURE 2.15.4 A control fl ow graph for the while loop example. Each node represents a basic block, which terminates with a branch or by sequential fall-through into another basic block that is also the target of a branch. Th

e IR statements have been numbered for ease in referring to them. Th

e important

transformation performed was to move the while test and conditional branch to the end. Th is eliminates the

unconditional branch that was formerly inside the loop and places it before the loop. Th

is transformation

is so important that many compilers do it during the generation of the IR. Th

e MULT was also replaced with

(“strength-reduced to”) an SLL.

2.15-10

2.15 Advanced Material: Compiling C and Interpreting Java

Suppose we have computed the use-defi nition information for the control

fl ow graph in Figure 2.15.4. How does this information allow us to perform code

motion? Consider IR statements number 1 and 6: in both cases, the use-defi nition

information tells us that there are no defi nitions (changes) of the operands of these

statements within the loop. Th

us, these IR statements can be moved outside the

loop. Notice that if the LI of save and the LW of k are executed once, just prior

to the loop entrance, the computational eff ect is the same, but the program now

runs faster since these two statements are outside the loop. In contrast, consider

IR statement 2, which loads the value of i. Th

e defi nitions of i that aff ect this

statement are both outside the loop, where i is initially defi ned, and inside the loop

in statement 10 where it is stored. Hence, this statement is not loop invariant.

Figure 2.15.5 shows the code aft er performing both code motion and induction

variable elimination, which simplifi es the address calculation. Th

e variable i can

still be register allocated, eliminating the need to load and store it every time, and

we will see how this is done in the next subsection.

Before we turn to register allocation, we need to mention a caveat that also

illustrates the complexity and diffi

culty of optimizers. Remember that the compiler

must be conservative. To be conservative, a compiler must consider the following

question: Is there any way that the variable k could possibly ever change in this

loop? Unfortunately, there is one way. Suppose that the variable k and the variable

i actually refer to the same memory location, which could happen if they were

accessed by pointers or reference parameters.

LI R1,save

LW R6,k

LW R2,i

SLL R3,R2,2

ADD R4,R3,R1

LW R2,i

ADD R7,R2,1

ADD R4,R4,4

SW R7,i

LW R5,0(R4)

BEQ R5,R6,startwhileloop

FIGURE 2.15.5 The control fl ow graph showing the representation of the while loop example after code motion and induction variable elimination. Th

e number of instructions in

the inner loop has been reduced from 10 to 6.

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-11

I am sure that many readers are saying, “Well, that would certainly be a stupid

piece of code!” Alas, this response is not open to the compiler, which must

translate the code as it is written. Recall too that the aliasing information must

also be conservative; thus, compilers oft en fi nd themselves negating optimization

opportunities because of a possible alias that exists in one place in the code or

because of incomplete information about aliasing.

Register Allocation

Register allocation is perhaps the most important optimization for modern

load-store architectures. Eliminating a load or a store eliminates an instruction.

Furthermore, register allocation enhances the value of other optimizations, such as

common subexpression elimination. Fortunately, the trend toward larger register

counts in modern architectures has made register allocation simpler and more

eff ective. Register allocation is done on both a local basis and a global basis, that is,

across multiple basic blocks but within a single function. Local register allocation

is usually done late in compilation, as the fi nal code is generated. Our focus here is

on the more challenging and more opportunistic global register allocation.

Modern global register allocation uses a region-based approach, where a

region (sometimes called a live range) represents a section of code during which

a particular variable could be allocated to a particular register. How is a region

selected? Th

e process is iterative:

1. Choose a defi nition (change) of a variable in a given basic block; add that

block to the region.

2. Find any uses of that defi nition, which is a data fl ow analysis problem; add

any basic blocks that contain such uses, as well as any basic block that the

value passes through to reach a use, to the region.

3. Find any other defi nitions that also can aff ect a use found in the previous

step and add the basic blocks containing those defi nitions, as well as the

blocks the defi nitions pass through to reach a use, to the region.

4. Repeat steps 2 and 3 using the defi nitions discovered in step 3 until

convergence.

Th

e set of basic blocks found by this technique has a special property: if the

designated variable is allocated to a register in all these basic blocks, then there is

no need for loading and storing the variable.

Modern global register allocators start by constructing the regions for every

virtual register in a function. Once the regions are constructed, the key question

is how to allocate a register to each region: the challenge is that certain regions

overlap and may not use the same register. Regions that do not overlap (i.e., share

no common basic blocks) can share the same register. One way to represent

2.15-12

2.15 Advanced Material: Compiling C and Interpreting Java

the interference among regions is with an interference graph, where each node

represents a region, and the arcs between nodes represent that the regions have

some basic blocks in common.

Once an interference graph has been constructed, the problem of allocating

registers is equivalent to a famous problem called graph coloring: fi nd a color for

each node in a graph such that no two adjacent nodes have the same color. If the

number of colors equals the number of registers, then coloring an interference

graph is equivalent to allocating a register for each region! Th

is insight was the

initial motivation for the allocation method now known as region-based allocation,

but originally called the graph-coloring approach. Figure 2.15.6 shows the fl ow

graph representation of the while loop example aft er register allocation.

What happens if the graph cannot be colored using the number of registers

available? Th

e allocator must spill registers until it can complete the coloring. By

doing the coloring based on a priority function that takes into account the number

of memory references saved and the cost of tying up the register, the allocator

attempts to avoid spilling for the most important candidates.

Spilling is equivalent to splitting up a region (or live range); if the region is split,

fewer other regions will interfere with the two separate nodes representing the

original region. A process of splitting regions and successive coloring is used to

allow the allocation process to complete, at which point all candidates will have

been allocated a register. Of course, whenever a region is split, loads and stores

LI $t0,save

LW $t1,k

LW $t2,i

SLL $t3,$t2,2

ADDU $t4,$t3,$t0

ADD $t2,$t2,1

ADD $t4,$t4,4

LW $t3,0($t4)

BEQ $t3,$t1,startwhileloop

FIGURE 2.15.6 The control fl ow graph showing the representation of the while loop example after code motion and induction variable elimination and register allocation,

using the MIPS register names. Th

e number of IR statements in the inner loop has now dropped to

only four from six before register allocation and ten before any global optimizations. Th

e value of i resides

in $t2 at the end of the loop and may need to be stored eventually to maintain the program semantics. If i were unused aft er the loop, not only could the store be avoided, but also the increment inside the loop could be eliminated completely!

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-13

must be introduced to get the value from memory or to store it there. Th

e location

chosen to split a region must balance the cost of the loads and stores that must be

introduced against the advantage of freeing up a register and reducing the number

of interferences.

Modern register allocators are incredibly eff ective in using the large register

counts available in modern processors. In many programs, the eff ectiveness of

register allocation is limited not by the availability of registers but by the possibilities

of aliasing that cause the compiler to be conservative in its choice of candidates.

Code Generation

Th

e fi nal steps of the compiler are code generation and assembly. Most compilers

do not use a stand-alone assembler that accepts assembly language source code;

to save time, they instead perform most of the same functions: fi lling in symbolic

values and generating the binary code as the fi nal stage of code generation.

In modern processors, code generation is reasonably straightforward, since the

simple architectures make the choice of instruction relatively obvious. For more

complex architectures, such as the x86, code generation is more complex since

multiple IR instructions may collapse into a single machine instruction. In modern

compilers, this compilation process uses pattern matching with either a tree-based

pattern matcher or a pattern matcher driven by a parser.

During code generation, the fi nal stages of machine-dependent optimization

are also performed. Th

ese include some constant folding optimizations, as well as

localized instruction scheduling (see Chapter 4).

Optimization Summary

Figure 2.15.7 gives examples of typical optimizations, and the last column indicates

where the optimization is performed in the gcc compiler. It is sometimes diffi

cult

to separate some of the simpler optimizations—local and processor-dependent

optimizations—from transformations done in the code generator, and some

optimizations are done multiple times, especially local optimizations, which may be

performed before and aft er global optimization as well as during code generation.

Today, essentially all programming for desktop and server applications is done Hardware/

in high-level languages, as is most programming for embedded applications. Software

Th

is development means that since most instructions executed are the output Interface

of a compiler, an instruction set architecture is essentially a compiler target.

With Moore’s Law comes the temptation of adding sophisticated operations

in an instruction set. Th

e challenge is that they may not exactly match what the

compiler needs to produce or may be so general that they aren’t fast. For example,

consider special loop instructions found in some computers. Suppose that instead

2.15-14

2.15 Advanced Material: Compiling C and Interpreting Java

of decrementing by one, the compiler wanted to increment by four, or instead

of branching on not equal zero, the compiler wanted to branch if the index was

less than or equal to the limit. Th

e loop instruction may be a mismatch. When

faced with such objections, the instruction set designer might then generalize the

operation, adding another operand to specify the increment and perhaps an option

on which branch condition to use. Th

en the danger is that a common case, say,

incrementing by one, will be slower than a sequence of simple operations.

Elaboration: Some more sophisticated compilers, and many research compilers, use

an analysis technique called interprocedural analysis to obtain more information about

functions and how they are called. Interprocedural analysis attempts to discover what

properties remain true across a function call. For example, we might discover that a

function call can never change any global variables, which might be useful in optimizing

a loop that calls such a function. Such information is called may-information or fl ow-insensitive information and can be obtained reasonably effi ciently, although analyzing

t

p

O

z

i

m

i

o

i

t

a

n

n

e

m

a

E

l

p

x

t

a

n

a

i n

o

c

g c

v

e

l

l

e

 i

 H gh l v

 e l

 e

 r

 a

 e

 n

 r

 o

 t

 A

 e

 c

 r

 u

 o

 s

 e

 h

 t

 l e

 v

 e

 r

 p

 ;l

 c

 o

 s

 s

 e

 r

 o n

 i

 e

 d pendent

Proc

r

u

d

e

e

t

n

i

r

g

e a

n

o

i

t

p

e

R

a

l

r

p

e

c

c

o

d

e

a

c

e

r

u

y

b

l

l

p

c

o

r

u

d

e

e

r

o

b

y

d

O3

 c

 o

 L

 l

 a

 i

 h

 ti

 W

 i

 a

 r

 t

 s

 n

 -t

 h

 g

 il

 c

 e

 n

 e

 d

 o

Common subexpression elimination

Replace two instances of the same computa i

t

y

b

n

o

y

p

o

c

e

l

g

n

i

s

O1

Constant propagation

Replace all instances of a variable that is as signed a constant with the

O1

constant

Stack height reduction

Rearrange expression tree to minimize re sources needed for ex pression evaluation

O1

 l

 G b

 o al

 o

 r

 c

 A

 a

 s

 s

 h

 c

 n

 a

 r

 b

Global common subexpression

a

S m a

e

l

s

c

o

l

a

h

t

t

u

b

,

v

s

i

r

e i

s n

o c

r

b

s

e

s

s

o

r

a

h

c

n

s

e

2

O

elimi nation

o

C

y

p p

o

r

g

a

p

i

t

a

n

o

p

e

R

a

l

l

a

e

c

l i

c

n

a

t

s

n

s

e

f

o

a

v

a

i

r b

a

e

l A that has been assigned X (i.e., A = X) with X

O2

o

C

m

e

d

t

o

n

o

i

m

e

R

c

e

v

o

d

o

t

p

o

o

l

a

m

o

r

f

e

t

a

h

o

c

p

m

t

u s

e

a

s

a

v

e

m

u

l

c

a

e

e

i

h e

t a

r ti n

o o

t

f

o

l

e

h

p

o

O2

Induction variable elimina tion

Simplify/eliminate array addressing calcula i

t n

o

h

t

i

w

s

l

n

i

o

o

s

p

O2

 Processor dependent

 Depends on processor knowledge

Strength reduction

Many examples; replace multiply by a con s a

t

t

n w

h

s

h

t

i

t

f

i s

O1

Pipeline scheduling

Reorder instructions to improve pipeline per r

o

f

a

m

c

n e

O1

B a

r

c

n

o

h

s

f

f

t

e

t

p

o

i i

m z t

a o

i n

C o

h

e

h

t

e

s

o

h

s

r

o e

t

c

n

a

r

b

t

s

i

d

h

c

a

l

p

s

m

e

n

e

h

t

t

t

a

a

e

r

c e

h

a

t

s

t

e

g

r

O1

FIGURE 2.15.7 Major types of optimizations and explanation of each class. Th

e third column shows when these occur

at diff erent levels of optimization in gcc. Th

e GNU organization calls the three optimization levels medium (O1), full (O2), and full with

integration of small procedures (O3).

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-15

a call to a function F requires analyzing all the functions that F calls, which makes

the process somewhat time consuming for large programs. A more costly property to

discover is that a function must always change some variable; such information is called

 must-information or fl ow-sensitive information. Recall the dictate to be conservative: may-information can never be used as must-information—just because a function may

change a variable does not mean that it must change it. It is conservative, however, to

use the negation of may-information, so the compiler can rely on the fact that a function

 will never change a variable in optimizations around the call site of that function.

One of the most important uses of interprocedural analysis is to obtain so-

called alias information. An alias occurs when two names may designate the same

variable. For example, it is quite helpful to know that two pointers passed to a

function may never designate the same variable. Alias information is usually fl ow-

insensitive and must be used conservatively.

Interpreting Java

Th

is second part of the section is for readers interested in seeing how an object-

object-oriented

oriented language like Java executes on a MIPS architecture. It shows the Java language bytecodes used for interpretation and the MIPS code for the Java version of some A programming language of the C segments in prior sections, including Bubble Sort.

that is oriented around

Let’s quickly review the Java lingo to make sure we are all on the same page. Th

e objects rather than

actions, or data versus

big idea of object-oriented programming is for programmers to think in terms of logic.

abstract objects, and operations are associated with each type of object. New types

can oft en be thought of as refi nements to existing types, and so some operations

for the existing types are used by the new type without change. Th

e hope is that

the programmer thinks at a higher level, and that code can be reused more readily

if the programmer implements the common operations on many diff erent types.

Th

is diff erent perspective led to a diff erent set of terms. Th

e type of an object

is a class, which is the defi nition of a new data type together with the operations

that are defi ned to work on that data type. A particular object is then an instance

of a class, and creating an object from a class is called instantiation. Th

e operations

in a class are called methods, which are similar to C procedures. Rather than call

a procedure as in C, you invoke a method in Java. Th

e other members of a class

are fi elds, which correspond to variables in C. Variables inside objects are called

 instance fi elds. Rather than access a structure with a pointer, Java uses an object

 reference to access an object. Th

e syntax for method invocation is x.y, where x is

an object reference and y is the method name.

Th

e parent–child relationship between older and newer classes is captured

by the verb “extends”: a child class extends (or sub classes) a parent class. Th

e

child class typically will redefi ne some of the methods found in the parent to match

the new data type. Some methods work fi ne, and the child class inherits those

methods.

To reduce the number of errors associated with pointers and explicit memory

deallocation, Java automatically frees unused storage, using a separate garbage

2.15-16

2.15 Advanced Material: Compiling C and Interpreting Java

collector that frees memory when it is full. Hence, new creates a new instance of a

dynamic object on the heap, but there is no free in Java. Java also requires array

bounds to be checked at runtime to catch another class of errors that can occur in

C programs.

Interpretation

As mentioned before, Java programs are distributed as Java bytecodes, and the Java

Virtual Machine (JVM) executes Java byte codes. Th

e JVM understands a binary

format called the class fi le format. A class fi le is a stream of bytes for a single class, containing a table of valid methods with their bytecodes, a pool of constants that

acts in part as a symbol table, and other information such as the parent class of this

class.

When the JVM is fi rst started, it looks for the class method main. To start any

Java class, the JVM dynamically loads, links, and initializes a class. Th

e JVM loads

a class by fi rst fi nding the binary representation of the proper class (class fi le) and

then creating a class from that binary representation. Linking combines the class

into the runtime state of the JVM so that it can be executed. Finally, it executes the

class initialization method that is included in every class.

Figure 2.15.8 shows Java bytecodes and their corresponding MIPS instructions,

illustrating fi ve major diff erences between the two:

1. To simplify compilation, Java uses a stack instead of registers for operands.

Operands are pushed on the stack, operated on, and then popped off the

stack.

2. Th

e designers of the JVM were concerned about code size, so bytecodes

vary in length between one and fi ve bytes, versus the 4-byte, fi xed-size

MIPS instructions. To save space, the JVM even has redundant instructions

of diff erent lengths whose only diff erence is size of the immediate. Th

is

decision illustrates a code size variation of our third design principle: make

the common case small.

3. Th

e JVM has safety features embedded in the architecture. For example,

array data transfer instructions check to be sure that the fi rst operand is a

reference and that the second index operand is within bounds.

4. To allow garbage collectors to fi nd all live pointers, the JVM uses diff erent

instructions to operate on addresses versus integers so that the JVM can

know what operands contain addresses. MIPS generally lumps integers and

addresses together.

5. Finally, unlike MIPS, there are Java-specifi c instructions that perform complex

operations, like allocating an array on the heap or invoking a method.

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-17

Size

MIPS

t

a

C

g

e

r

o y

p

O

a

r

e

i

t

n

o

Ja a

v

b

e

t

y

o

c

e

d

(bits)

instr.

Meaning

Ari h

t

e

m

i

t c

d

a d

i d

a d

8

add

NO

T

=

S

OS

S

O

N

+

;

p

o

p

u

s

t

b a

r

t

c

i

b

u

s

8

s b

u

NOS T

=

S

O

O

N

–

;

S o

p p

i

r

c

n

t

n

e

m

e

i

i c

n a

8

I

I

b

8

8

a

i

d

d

r

F a

[

e

m

a

8

I

=

]

r

F a

[

e

m

a

8

I

]

+

b

8

I

Data transfer

load local integer/address

iload I8/aload I8

16

lw

TOS=Frame[I8]

load local integer/address

iload_ /aload_{0,1,2,3}

8

lw

TOS=Frame[{0,1,2,3}]

store local integer/address

istore I8/astore I8

16

sw

Frame[I8]=TOS; pop

load integer/address from array

iaload/aaload

8

lw

NOS=*NOS[TOS]; pop

store integer/address into array

iastore/aastore

8

sw

*NNOS[NOS]=TOS; pop2

d

a

o

l

l

a

h f f

m

o

r

a

rr y

a

a

s l

d

a

o

8

h

l

NO

N

*

=

S

S

O

T

[

S

O]

;

p

o

p

t

s

r

o

l

a

h

e

i

f

o

t

n

a

rr y

a

sa

r

o

t

s

e

8

h

s

N

*

O

N

[

S

O

N S] T

=

S

O

p

; o 2

p

t

y

b

d

a

o

l

f

e

m

o

r

ar y

a

r

b o

l

a

d

a

8

b

l

NO

*

=

S

N

T

[

S

O

S

O]

;

p

o

p

t

s

t

y

b

e

r

o

e

o

t

n

i

r

a

r y

a

b s

a t

e

r

o

8

b

s

N

*

O

N

[

S

O

N

]

S

T

=

S

O

p

; o 2

p

load immediate

bipush I8, sipush I16

16, 24

addi

push; TOS=I8 or I16

load immediate

iconst_{–1,0,1,2,3,4,5}

8

addi

push; TOS={–1,0,1,2,3,4,5}

i

g

o

L

c l

a

d

n

a

a

i nd

8

n

a d

NO

T

=

S

OS N

& O

p

;

S

p

o

r

o

i r

o

8

r

o

NOS T

= O

N

|

S

O

;

S

p

o

p

h

s f

i

t

t

f

e

l

i

l

h

s

8

s l

l

N S

O

N

= O

S

<

<

O

T S; o

p

p

h

s

t

f

i

r

t

h

g

i

i s

u

r

h

8

srl

O

N S N

=

S

O

>

>

O

T S

; o

p p

Conditional

branch on equal

if_icompeq I16

24

beq

if TOS == NOS, go to I16; pop2

branch

branch on not equal

if_icompne I16

24

bne

if TOS != NOS, go to I16; pop2

m

o

c

r

a

p

e

f

i _

p

m

o

c

i

{ t

l l

, e g

, ,

t

}

e

g

1

I

6

24

t

l

s

f

i

O

T

S <

{ , =

<

>

,

>

,

}

= O

N

,

S

o

g o

t I

;

6

1

o

p p2

Unconditional

p

m

u

j

got

o 1

I 6

4

2

j

go t

o 1

I 6

jump

t

e

r

r

u n

r t

e

,

r

u

t

e

r

i

n

8

jr

m

u

j

s

o

t

p

r

b

u

u

o i

t e

n

j

r

s

6

1

I

4

2

j l

a

g

o

t

o

1

I

;

6 u

p

h

s

; T S

O

3

+

C

P

=

Stack

remove from stack

pop, pop2

8

pop, pop2

management

p

u

d

i

l

t

a

c

s

n

o

e

t

k

c

a

d p

u

8

u

p

;

h

s O

T S

O

N

=

S

p

a

w

s

p

o

t

o

p

2

i

s i

t o

s

n

n

o

t

s a k

c

a

w

s

p

8

T N

=

S

O

;

O

N

=

S

S

O

T

;

S

O

T

=T

Safety check

check for null reference

ifnull I16, ifnotnull I16

24

if TOS {==,!=} null, go to I16

get length of array

arraylength

8

push; TOS = length of array

check if object a type

instanceof I16

24

TOS = 1 if TOS matches type of

Const[I16]; TOS = 0 otherwise

Invocation

invoke method

invokevirtual I16

24

Invoke method in Const[I16], dispatching

on type

Allocation

create new class instance

new I16

24

Allocate object type Const[I16] on heap

create new array

newarray I16

24

Allocate array type Const[I16] on heap

FIGURE 2.15.8 Java bytecode architecture versus MIPS. Although many bytecodes are simple, those in the last half-dozen rows above are complex and specifi c to Java. Bytecodes are one to fi ve bytes in length, hence their name. Th e Java mnemonics use the prefi x i for

32-bit integer, a for reference (address), s for 16-bit integers (short), and b for 8-bit bytes. We use I8 for an 8-bit constant and I16 for a 16-bit constant. MIPS uses registers for operands, but the JVM uses a stack. Th

e compiler knows the maximum size of the operand stack for

each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column: TOS: top of stack; NOS: next position below TOS; NNOS: next position below NOS; pop: remove TOS; pop2: remove TOS and NOS; and push: add a position to the stack.

*NOS and *NNOS mean access the memory location pointed to by the address in the stack at those positions. Const[] refers to the runtime constant pool of a class created by the JVM, and Frame[] refers to the variables of the local method frame. Th e only missing MIPS instructions

from Figure 2.1 are nor, andi, ori, slti, and lui. Th

e missing bytecodes are a few arithmetic and logical operators, some tricky stack

management, compares to 0 and branch, support for branch tables, type conversions, more variations of the complex, Java-specifi c instructions plus operations on fl oating-point data, 64-bit integers (longs), and 16-bit characters.

2.15-18

2.15 Advanced Material: Compiling C and Interpreting Java

Compiling a while Loop in Java Using Bytecodes

Compile the while loop from page 92, this time using Java bytecodes:

EXAMPLE

while (save[i] == k)

i += 1;

Assume that i, k, and save are the fi rst three local variables. Show the

addresses of the bytecodes. Th

e MIPS version of the C loop in Figure

2.15.3 took six instructions and twenty-four bytes. How big is the bytecode

version?

Th

e fi rst step is to put the array reference in save on the stack:

ANSWER

0 aload_3 # Push local variable 3 (save[]) onto stack

Th

is 1-byte instruction informs the JVM that an address in local variable 3 is

being put on the stack. Th

e 0 on the left of this instruction is the byte address

of this fi rst instruction; bytecodes for each method start at 0. Th

e next step is

to put the index on the stack:

1 iload_1 # Push local variable 1 (i) onto stack

Like the prior instruction, this 1-byte instruction is a short version of a more

general instruction that takes 2 bytes to load a local variable onto the stack. Th

e

next instruction is to get the value from the array element:

2 iaload # Put array element (save[i]) onto stack

Th

is 1-byte instruction checks the prior two operands, pops them off the stack,

and then puts the value of the desired array element onto the new top of the

stack. Next, we place k on the stack:

3 iload_2 # Push local variable 2 (k) onto stack

We are now ready for the while test:

4 if_icompne, Exit # Compare and exit if not equal

Th

is 3-byte instruction compares the top two elements of the stack, pops them

off the stack, and branches if they are not equal. We are fi nally ready for the

body of the loop:

7 iinc, 1, 1 # Increment local variable 1 by 1 (i+=1)

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-19

Th

is unusual 3-byte instruction increments a local variable by 1 without using

the operand stack, an optimization that again saves space. Finally, we return to

the top of the loop with a 3-byte jump:

10 go to 0 # Go to top of Loop (byte address 0)

Th

us, the bytecode version takes seven instructions and thirteen bytes, almost

half the size of the MIPS C code. (As before, we can optimize this code to jump

less.)

Compiling for Java

Since Java is derived from C and Java has the same built-in types as C, the assignment

statement examples in Sections 2.2 to 2.6 of Chapter 2 are the same in Java as they

are in C. Th

e same is true for the if statement example in Section 2.7.

Th

e Java version of the while loop is diff erent, however. Th

e designers of C

leave it up to the programmers to be sure that their code does not exceed the array

bounds. Th

e designers of Java wanted to catch array bound bugs, and thus require

the compiler to check for such violations. To check bounds, the compiler needs to

know what they are. Java includes an extra word in every array that holds the upper

bound. Th

e lower bound is defi ned as 0.

Compiling a while Loop in Java

Modify the MIPS code for the while loop on page 94 to include the array

bounds checks that are required by Java. Assume that the length of the array is

EXAMPLE

located just before the fi rst element of the array.

Let’s assume that Java arrays reserved the fi rst two words of arrays before the

data starts. We’ll see the use of the fi rst word soon, but the second word has the

ANSWER

array length. Before we enter the loop, let’s load the length of the array into a

temporary register:

lw $t2,4($s6) # Temp reg $t2 = length of array save

Before we multiply i by 4, we must test to see if it’s less than 0 or greater than

the last element of the array. Th

e fi rst step is to check if i is less than 0:

Loop: slt $t0,$s3,$zero

Temp reg $t0 = 1 if i < 0

Register $t0 is set to 1 if i is less than 0. Hence, a branch to see if register

$t0 is not equal to zero will give us the eff ect of branching if i is less than

0. Th

is pair of instructions, slt and bne, implements branch on less than.

2.15-20

2.15 Advanced Material: Compiling C and Interpreting Java

Register $zero always contains 0, so this fi nal test is accomplished using the

bne instruction and comparing register $t0 to register $zero:

bne $t0,$zero,IndexOutOfBounds

if i<0, goto Error

Since the array starts at 0, the index of the last array element is one less than the

length of the array. Th

us, the test of the upper array bound is to be sure that i is

less than the length of the array. Th

e second step is to set a temporary register

to 1 if i is less than the array length and then branch to an error if it’s not less.

Th

at is, we branch to an error if the temporary register is equal to zero:

slt $t0,$s3,$t2

Temp reg $t0 = 0 if i >= length

beq $t0,$zero,IndexOutOfBounds #if i>=length, goto

Error

Note that these two instructions implement branch on greater than or equal to.

Th

e next two lines of the MIPS while loop are unchanged from the C version:

sll $t1,$s3,2

Temp reg $t1 = 4 * i

add $t1,$t1,$s6

$t1 = address of save[i]

We need to account for the fi rst 8 bytes that are reserved in Java. We do that by

changing the address fi eld of the load from 0 to 8:

lw $t0,8($t1)

Temp reg $t0 = save[i]

Th

e rest of the MIPS code from the C while loop is fi ne as is:

bne

$t0,$s5, Exit

go to Exit if save[i] ? k

add

$s3,$s3,1

i = i + 1

j

Loop

go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Invoking Methods in Java

Th

e compiler picks the appropriate method depending on the type of the object. In a

few cases, it is unambiguous, and the method can be invoked with no more overhead

than a C procedure. In general, however, the compiler knows only that a given variable

contains a pointer to an object that belongs to some subtype of a general class. Since

it doesn’t know at compile time which subclass the object is, and thus which method

should be invoked, the compiler will generate code that fi rst tests to be sure the pointer

isn’t null and then uses the code to load a pointer to a table with all the legal methods

for that type. Th

e fi rst word of the object has the method table address, which is why

Java arrays reserve two words. Let’s say it’s using the fi ft h method that was declared for

that class. (Th

e method order is the same for all subclasses.) Th

e compiler then takes

the fi ft h address from that table and invokes the method at that address.

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-21

Th

e cost of object orientation in general is that method invocation includes 1) a

conditional branch to be sure that the pointer to the object is valid; 2) a load to get

the address of the table of available methods; 3) another load to get the address of

the proper method; 4) placing a return address into the return register, and fi nally

5) a jump register to invoke the method. Th

e next subsection gives a concrete

example of method invocation.

A Sort Example in Java

Figure 2.15.9 shows the Java version of exchange sort. A simple diff erence is that

there is no need to pass the length of the array as a separate parameter, since Java public A Java keyword arrays include their length: v.length denotes the length of v.

that allows a method to

A more signifi cant diff erence is that Java methods are prepended with keywords be invoked by any other not found in the C procedures. Th

e sort method is declared public static method.

while swap is declared protected static. Public means that sort can be protected A Java key invoked from any other method, while protected means swap can only be called by

word that restricts

other methods within the same package and from methods within derived classes. invocation of a method A static method is another name for a class method—methods that perform to other methods in that classwide operations and do not apply to an individual object. Static methods are package.

essentially the same as C procedures.

package Basically a

Th

is straightforward translation from C into static methods means there is no directory that contains a ambiguity on method invocation, and so it can be just as effi

cient as C. It also is limited

group of related classes.

to sorting integers, which means a diff erent sort has to be written for each data type.

static method

To demonstrate the object orientation of Java, Figure 2.15.10 shows the A method that applies to new version with the changes highlighted. First, we declare v to be of the type the whole class rather to Comparable and replace v[j] > v[j + 1] with an invocation of compareTo.

an individual object. It is

By changing v to this new class, we can use this code to sort many data types.

unrelated to static in C.

public class sort {

public static void sort (int[] v) {

for (int i = 0; i < v.length; i += 1) {

for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

swap(v,

j);

}

}

protected static void swap(int[] v, int k) {

int temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}}

FIGURE 2.15.9 An initial Java procedure that performs a sort on the array v. Changes from Figures 2.24 and 2.26 are highlighted.

2.15-22

2.15 Advanced Material: Compiling C and Interpreting Java

public class sort {

public static void sort (Comparable[] v) {

for (int i = 0; i < v.length; i += 1) {

for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]);

j –= 1) {

swap(v, j);

}

}

protected static void swap(Comparable[] v, int k) {

Comparable temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}}

public class Comparable {

public int(compareTo (int x)

{ return value – x; }

public int value;

}

FIGURE 2.15.10 A revised Java procedure that sorts on the array v that can take on more types. Changes from Figure 2.15.9 are highlighted.

Th

e method compareTo compares two elements and returns a value greater than

0 if the parameter is larger than the object, 0 if it is equal, and a negative number

if it is smaller than the object. Th

ese two changes generalize the code so it can

sort integers, characters, strings, and so on, if there are subclasses of Comparable

with each of these types and if there is a version of compareTo for each type.

For pedagogic purposes, we redefi ne the class Comparable and the method

compareTo here to compare integers. Th

e actual defi nition of Comparable in the

Java library is considerably diff erent.

Starting from the MIPS code that we generated for C, we show what changes we

made to create the MIPS code for Java.

For swap, the only signifi cant diff erences are that we must check to be sure the

object reference is not null and that each array reference is within bounds. Th

e fi rst

test checks that the address in the fi rst parameter is not zero:

swap: beq $a0,$zero,NullPointer

#if $a0==0,goto Error

Next, we load the length of v into a register and check that index k is OK.

lw $t2,4($a0)

Temp reg $t2 = length of array v

slt $t0,$a1,$zero # Temp reg $t0 = 1 if k < 0

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-23

bne $t0,$zero,IndexOutOfBounds # if k < 0, goto Error

slt $t0,$a1,$t2

Temp reg $t0 = 0 if k >= length

beq $t0,$zero,IndexOutOfBounds #if k>=length,goto Error

Th

is check is followed by a check that k+1 is within bounds.

addi $t1,$a1,1

Temp reg $t1 = k+1

slt $t0,$t1,$zero

Temp reg $t0 = 1 if k+1 < 0

bne $t0,$zero,IndexOutOfBounds

if k+1 < 0, goto Error

slt $t0,$t1,$t2

Temp reg $t0 = 0 if k+1 >= length

beq $t0,$zero,IndexOutOfBounds

#if k+1>=length,goto Error

Figure 2.15.11 highlights the extra MIPS instructions in swap that a Java

compiler might produce. We again must adjust the off set in the load and store to

account for two words reserved for the method table and length.

Figure 2.15.12 shows the method body for those new instructions for sort. (We

can take the saving, restoring, and return from Figure 2.27.)

Th

e fi rst test is again to make sure the pointer to v is not null:

beq $a0,$zero,NullPointer #if $a0==0,goto Error

Next, we load the length of the array (we use register $s3 to keep it similar to the

code for the C version of swap):

1w $s3,4($aO)

#$s3 = length of array v

Bounds check

swap: beq $a0,$zero,NullPointer

#if

$a0==0,goto

Error

lw

$t2,-4($a0)

Temp reg $t2 = length of array v

slt

$t0,$a1,$zero

Temp reg $t0 = 1 if k < 0

bne

$t0,$zero,IndexOutOfBounds # if k < 0, goto Error

slt

$t0,$a1,$t2

Temp reg $t0 = 0 if k >= length

beq

$t0,$zero,IndexOutOfBounds # if k >= length, goto Error

addi $t1,$a1,1

Temp reg $t1 = k+1

slt

$t0,$t1,$zero

Temp reg $t0 = 1 if k+1 < 0

bne

$t0,$zero,IndexOutOfBounds # if k+1 < 0, goto Error

slt

$t0,$t1,$t2

Temp reg $t0 = 0 if k+1 >= length

beq

$t0,$zero,IndexOutOfBounds # if k+1 >= length, goto Error

Method body

sll

$t1, $a1, 2

reg $t1 = k * 4

add

$t1, $a0, $t1

reg $t1 = v + (k * 4)

r

#

$

g

e

e

h

t

s

a

h

1

t

d

a

s

s

e

r

d

o

]

k

[

v

f

lw

$t0,

8($t1)

reg $t0 (temp) = v[k]

lw

$t2, 12($t1)

reg $t2 = v[k + 1]

e

n

o

t

s

r

e

f

e

r

#

t

n

e

m

e

l

e

t

x

v

f

o

sw

$t2,

8($t1)

v[k] = reg $t2

sw

$t0,

12($t1)

v[k+1] = reg $t0 (temp)

Procedure return

jr

$ra

return to calling routine

FIGURE 2.15.11 MIPS assembly code of the procedure swap in Figure 2.24.

2.15-24

2.15 Advanced Material: Compiling C and Interpreting Java

Method body

Move parameters

mo e

v

,

2

s

$

0

a

$

c

#

r

a

p

y

p

o

m

a

e

t

e

$

r

s

$

o

t

n

i

0

a

(

2

a

s v

a

$

e

)

0

Test ptr null

beq

$a0,$zero,NullPointer

if $a0==0, goto Error

Get array length

l

w

,

3

s

$

)

0

a

$

(

4

$

#

=

3

s

n

e

l

t

g

f

o

h

r

r

a

y

a

v

mov

e

$

r

e

z

$

,

0

s

o

i

#

0

=

Outer loop

for1tst: slt

$t0, $s0, $s3

reg $t0 = 0 if $s0 Š $s3 (i Š n)

beq

$t0, $zero, exit1

go to exit1 if $s0 Š $s3 (i Š n)

addi

$s1, $s0, –1

j = i – 1

Inner loop start

for2tst: slti

$t0, $s1, 0

reg $t0 = 1 if $s1 < 0 (j < 0)

bne

$t0, $zero, exit2

go to exit2 if $s1 < 0 (j < 0)

slt

$t0,$s1,$s3

Temp reg $t0 = 0 if j >= length

Test if j too big

beq

$t0,$zero,IndexOutOfBounds # if j >= length, goto Error

sll

$t1, $s1, 2

reg $t1 = j * 4

Get v[j]

add

$t2, $s2, $t1

reg $t2 = v + (j * 4)

lw

$t3, 0($t2)

reg $t3 = v[j]

ad

i

d

1

,

1

s

$

,

1

t

$

T

#

m

e

t

$

g

e

r

p

=

1

j

1

+

Test if j+1 < 0

slt

$t0,$t1,$zero

Temp reg $t0 = 1 if j+1 < 0

or if j+1 too big

bne

$t0,$zero,IndexOutOfBounds # if j+1 < 0, goto Error

slt

$t0,$t1,$s3

Temp reg $t0 = 0 if j+1 >= length

beq

$t0,$zero,IndexOutOfBounds # if j+1 >= length, goto Error

Get v[j+1]

lw

$t4, 4($t2)

reg $t4 = v[j + 1]

Load method table

l

w

)

0

a

$

(

0

,

5

t

$

$

#

d

d

a

=

5

t

e

r

o

s

s

e

m

f

h

t

b

a

t

d

o

e

l

Get method addr

l

w

)

5

t

$

(

8

,

5

t

$

$

#

d

d

a

=

5

t

e

r

o

s

s

fi

f rst method

m

e

v

o

3

t

$

,

0

a

$

1

#

p

t

s

r

a

t

e

m

a

r

e

f

o

m

o

c

s

i

o

T

e

r

a

p

[

v

]

j

Pass parameters

mo e

v

4

t

$

,

1

a

$

2

#

c

f

o

.

m

a

r

a

p

d

n

m

o

r

a

p

T

e

s

i

o

1

+

j

[

v

]

Set return addr

la

L

,

a

r

$

1

l

#

e

r

d

a

o

u

t

a

n

r

d r

d

s

e s

Call indirectly

j

r

5

t

$

c

#

c

l

l

a

e

d

o

f

o

c

r

o

o

T

e

r

a

p

m

Test if should skip

L1:

slt

$t0, $zero, $v0

reg $t0 = 0 if 0 Š $v0

swap

beq

$t0, $zero, exit2

go to exit2 if $t4 Š $t3

Pass parameters

m

e

v

o

2

s

$

,

0

a

$

1

#

p

t

s

r

a

f

o

r

e

t

e

m

a

s

i

p

a

w

s

v

m v

o

e

1

s

$

,

1

a

$

2

#

a

r

a

p

d

n

e

m

r

e

t

f

o

a

w

s

s

i

p

j

and call swap

ja

l

p

a

w

s

s

#

p

a

w

s

e

d

o

c

w

o

h

i

F

n

i

n

r

u

g

2

e

4

3

.

addi

$s1, $s1, –1

j –= 1

Inner loop end

j

for2tst

j

#

p

m

u

o

t

t

s

e

o

t

f i

n

n

r

e

o

o

l

p

exit2:

addi

$s0, $s0, 1

i += 1

Outer loop

j

for1tst

j

#

p

m

u

o

t

t

s

e

o

t

f o

t

u

r

e

o

o

l

p

FIGURE 2.15.12 MIPS assembly version of the method body of the Java version of sort. Th e new code is highlighted in this

fi gure. We must still add the code to save and restore registers and the return from the MIPS code found in Figure 2.27. To keep the code similar to that fi gure, we load v.length into $s3 instead of into a temporary register. To reduce the number of lines of code, we make the simplifying assumption that compareTo is a leaf procedure and we do not need to push registers to be saved on the stack.

Now we must ensure that the index is within bounds. Since the fi rst test of the inner

loop is to test if j is negative, we can skip that initial bound test. Th

at leaves the test

for too big:

slt $t0,$s1,$s3

Temp reg $t0 = 0 if j >= length

beq $t0,$zero,IndexOutOfBounds

#if j>=length, goto Error

2.15 Advanced Material: Compiling C and Interpreting Java

2.15-25

Th

e code for testing j + 1 is quite similar to the code for checking k + 1 in swap,

so we skip it here.

Th

e key diff erence is the invocation of compareTo. We fi rst load the address of

the table of legal methods, which we assume is two words before the beginning of

the array:

lw $t5,0($a0)

$t5 = address of method table

Given the address of the method table for this object, we then get the desired

method. Let’s assume compareTo is the third method in the Comparable class. To

pick the address of the third method, we load that address into a temporary register:

lw $t5,8($t5)

$t5 = address of third method

We are now ready to call compareTo. Th

e next step is to save the necessary

registers on the stack. Fortunately, we don’t need the temporary registers or

argument registers aft er the method invocation, so there is nothing to save. Th

us,

we simply pass the parameters for compareTo:

move $a0, $t3

1st parameter of compareTo is v[j]

move $a1, $t4

2nd parameter of compareTo is v[j+1]

Since we are using a jump register to invoke compareTo, we need to pass the

return address explicitly. We use the pseudoinstruction load address (la) and label

where we want to return, and then do the indirect jump:

la $ra,L1

load return address

jr $t5

to code for compareTo

Th

e method returns, with $v0 determining which of the two elements is larger.

If $v0 > 0, then v[j] >v[j+1], and we need to swap. Th

us, to skip the swap,

we need to test if $v0 ð 0, which is the same as 0 š $v0. We also need to include

the label for the return address:

L1: slt $t0, $zero, $v0

reg $t0 = 0 if 0 š $v0

beq $t0, $zero, exit2

go to exit2 if v[j+1] š v[j]

Th

e MIPS code for compareTo is left as an exercise.

Th

e main changes for the Java versions of sort and swap are testing for null object

Hardware/

references and index out-of-bounds errors, and the extra method invocation to Software

give a more general compare. Th

is method invocation is more expensive than a

C procedure call, since it requires a load, a conditional branch, a pair of chained Interface loads, and an indirect jump. As we see in Chapter 4, dependent loads and indirect

jumps can be relatively slow on modern processors. Th

e increasing popularity

2.15-26

2.15 Advanced Material: Compiling C and Interpreting Java

of Java suggests that many programmers today are willing to leverage the high

performance of modern processors to pay for error checking and code reuse.

Elaboration: Although we test each reference to j and j ⫹ 1 to be sure that these indices are within bounds, an assembly language programmer might look at the code

and reason as follows:

1. Th

e inner for loop is only executed if j ⭐ 0 and since j ⫹ 1 ⬎ j, there is no need to test j ⫹ 1 to see if it is less than 0.

2. Since

 i takes on the values, 0, 1, 2, . . . , (data.length ⫺ 1) and since j takes on

the values i ⫺ 1, i ⫺ 2, . . . , 2, 1, 0, there is no need to test if j ⭐ data.length

since the largest value j can be is data.length ⫺ 2.

3. Following the same reasoning, there is no need to test whether j ⫹ 1 ⭐ data.

length since the largest value of j ⫹ 1 is data.length ⫺ 1.

There are coding tricks in Chapter 2 and superscalar execution in Chapter 4 that

lower the effective cost of such bounds checking, but only high optimizing compilers

can reason this way. Note that if the compiler inlined the swap method into sort, many

checks would be unnecessary.

Elaboration: Look carefully at the code for swap in Figure 2.15.11. See anything

wrong in the code, or at least in the explanation of how the code works? It implicitly

assumes that each Comparable element in v is 4 bytes long. Surely, you need much more

than 4 bytes for a complex subclass of Comparable, which could contain any number

of fi elds. Surprisingly, this code does work, because an important property of Java’s

semantics forces the use of the same, small representation for all variables, fi elds, and

array elements that belong to Comparable or its subclasses.

Java types are divided into primitive types—the predefi ned types for numbers,

characters, and Booleans—and reference types—the built-in classes like String,

user-defi ned classes, and arrays. Values of reference types are pointers (also called

 references) to anonymous objects that are themselves allocated in the heap. For the

programmer, this means that assigning one variable to another does not create a new

object, but instead makes both variables refer to the same object. Because these

objects are anonymous and programs therefore have no way to refer to them directly,

a program must use indirection through a variable to read or write any objects’ fi elds

(variables). Thus, because the data structure allocated for the array v consists entirely

of pointers, it is safe to assume they are all the same size, and the same swapping code

works for all of Comparable’s subtypes.

To write sorting and swapping functions for arrays of primitive types requires that

we write new versions of the functions, one for each type. This replication is for two

reasons. First, primitive type values do not include the references to dispatching tables

that we used on Comparables to determine at runtime how to compare values. Second,

primitive values come in different sizes: 1, 2, 4, or 8 bytes.

The pervasive use of pointers in Java is elegant in its consistency, with the penalty

being a level of indirection and a requirement that objects be allocated on the heap.

Furthermore, in any language where the lifetimes of the heap-allocated anonymous

2.21 Historical Perspective and Further Reading

2.15-27

objects are independent of the lifetimes of the named variables, fi elds, and array

elements that reference them, programmers must deal with the problem of deciding

when it is safe to deallocate heap-allocated storage. Java’s designers chose to use

garbage collection. Of course, use of garbage collection rather than explicit user memory

management also improves program safety.

C⫹⫹ provides an interesting contrast. Although programmers can write essentially

the same pointer-manipulating solution in C⫹⫹, there is another option. In C⫹⫹,

programmers can elect to forgo the level of indirection and directly manipulate an array

of objects, rather than an array of pointers to those objects. To do so, C⫹⫹ programmers

would typically use the template capability, which allows a class or function to be

parameterized by the type of data on which it acts. Templates, however, are compiled

using the equivalent of macro expansion. That is, if we declared an instance of sort

capable of sorting types X and Y, C⫹⫹ would create two copies of the code for the class:

one for sort⬍X⬎ and one for sort⬍Y⬎, each specialized accordingly. This solution

increases code size in exchange for making comparison faster (since the function calls

would not be indirect, and might even be subject to inline expansion). Of course, the

speed advantage would be canceled if swapping the objects required moving large

amounts of data instead of just single pointers. As always, the best design depends on

the details of the problem.

2.16 Real Stuff: ARMv7 (32-bit) Instructions

145

People used to be taught to use pointers in C to get greater effi

ciency than that Understanding

available with arrays: “Use pointers, even if you can’t understand the code.” Modern

Program

optimizing compilers can produce code for the array version that is just as good.

Most programmers today prefer that the compiler do the heavy lift ing.

Performance

 Advanced Material: Compiling C and

2.15

Interpreting Java

Th

is section gives a brief overview of how the C compiler works and how Java

is executed. Because the compiler will signifi cantly aff ect the performance of a

computer, understanding compiler technology today is critical to understanding

performance. Keep in mind that the subject of compiler construction is usually

taught in a one- or two-semester course, so our introduction will necessarily only

touch on the basics.

Th

e second part of this section is for readers interested in seeing how an object object oriented oriented language like Java executes on a MIPS architecture. It shows the Java language byte-codes used for interpretation and the MIPS code for the Java version of some A programming language of the C segments in prior sections, including Bubble Sort. It covers both the Java that is oriented around objects rather than

Virtual Machine and JIT compilers.

actions, or data versus

Th

e rest of Section 2.15 can be found online.

logic.

 2.16 Real Stuff: ARMv7 (32-bit) Instructions

ARM is the most popular instruction set architecture for embedded devices, with

more than 9 billion devices in 2011 using ARM, and recent growth has been 2

billion per year. Standing originally for the Acorn RISC Machine, later changed

to Advanced RISC Machine, ARM came out the same year as MIPS and followed

similar philosophies. Figure 2.31 lists the similarities. Th

e principal diff erence is

that MIPS has more registers and ARM has more addressing modes.

Th

ere is a similar core of instruction sets for arithmetic-logical and data transfer

instructions for MIPS and ARM, as Figure 2.32 shows.

Addressing Modes

Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS,

ARM does not reserve a register to contain 0. Although MIPS has just three simple

data addressing modes (see Figure 2.18), ARM has nine, including fairly complex calculations. For example, ARM has an addressing mode that can shift one register

146

Chapter 2 Instructions: Language of the Computer

ARM MIPS

Date announced

1985

1985

Instruction size (bits)

32

32

Address space (size, model)

32 bits, fl at

32 bits, fl at

Data alignment

Aligned

Aligned

Data addressing modes

9

3

Integer registers (number, model, size)

15 GPR 32 bits

31 GPR 32 bits

I/O

Memor y mapped

Memor y mapped

FIGURE 2.31 Similarities in ARM and MIPS instruction sets.

Instruction name

ARM

MIPS

d

d

A

add

addu, addiu

Add (trap if overfl ow)

adds; swivs

add

S b

u

a

r

t

t

c

sub

subu

Subtract (trap if overfl ow)

subs; swivs

sub

l

u

M

p

i

t

y

l

mul

mult, multu

D i

v

i de

—

div, divu

d

n

A

and

and

Register-register

r

O

orr

or

r

o

X

eor

xor

Load high par t register

—

lui

Shift left logical

lsl1

sllv, sll

Shift right logical

lsr1

srlv, srl

Shift right arithmetic

asr1

srav, sra

o

C

e

r

a

p

m

cmp, cmn, tst, teq

slt/i,slt/iu

Load byte signed

ldrsb

lb

Load byte unsigned

ldrb

lbu

Load halfword signed

ldrsh

lh

Load halfword unsigned

ldrh

lhu

L a

o d

d

r

o

w

ldr

lw

Data transfer

S

r

o

t e

e

t

y

b

strb

sb

Store halfword

strh

sh

S

r

o

t e

d

r

o

w

str

sw

Read, write special registers

mrs, msr

move

Atomic Exchange

swp, swpb

ll;sc

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS

core. Dashes mean the operation is not available in that architecture or not synthesized in a few instructions.

If there are several choices of instructions equivalent to the MIPS core, they are separated by commas. ARM

includes shift s as part of every data operation instruction, so the shift s with superscript 1 are just a variation of a move instruction, such as lsr1. Note that ARM has no divide instruction.

2.16 Real Stuff: ARMv7 (32-bit) Instructions

147

by any amount, add it to the other registers to form the address, and then update

one register with this new address.

Addressing mode

ARM

MIPS

Register operand

X

X

Immediate operand

X

X

Register + offset (displacement or based)

X

X

Register + register (indexed)

X

—

Register + scaled register (scaled)

X

—

Register + offset and update register

X

—

Register + register and update register

X

—

Autoincrement, autodecrement

X

—

PC-relative data

X

—

FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register

 off set addressing modes, rather than just putting 0 in the off set of the latter mode. To get greater addressing range, ARM shift s the off set left 1 or 2 bits if the data size is halfword or word.

Compare and Conditional Branch

MIPS uses the contents of registers to evaluate conditional branches. ARM uses the

traditional four condition code bits stored in the program status word: negative,

 zero, carry, and overfl ow. Th

ey can be set on any arithmetic or logical instruction;

unlike earlier architectures, this setting is optional on each instruction. An

explicit option leads to fewer problems in a pipelined implementation. ARM uses

conditional branches to test condition codes to determine all possible unsigned

and signed relations.

CMP subtracts one operand from the other and the diff erence sets the condition

codes. Compare negative (CMN) adds one operand to the other, and the sum sets

the condition codes. TST performs logical AND on the two operands to set all

condition codes but overfl ow, while TEQ uses exclusive OR to set the fi rst three

condition codes.

One unusual feature of ARM is that every instruction has the option of executing

conditionally, depending on the condition codes. Every instruction starts with a

4-bit fi eld that determines whether it will act as a no operation instruction (nop)

or as a real instruction, depending on the condition codes. Hence, conditional

branches are properly considered as conditionally executing the unconditional

branch instruction. Conditional execution allows avoiding a branch to jump over a

single instruction. It takes less code space and time to simply conditionally execute

one instruction.

Figure 2.34 shows the instruction formats for ARM and MIPS. Th

e principal

diff erences are the 4-bit conditional execution fi eld in every instruction and the

smaller register fi eld, because ARM has half the number of registers.

148

Chapter 2 Instructions: Language of the Computer

31

28 27

20 19

16 15

12 11

4 3

0

ARM

Opx4

Op8

Rs14

Rd4

Rs24

Opx8

Register-register

31

26 25

21 20

16 15

11 10

6 5

0

MIPS

Const5

Rs15

Rs25

Rd5

Opx6

Op6

31

28 27

20 19

16 15

12 11

0

ARM

Opx4

Op8

Rs14

Rd4

Const12

Data transfer

31

26 25

21 20

16 15

0

MIPS

Const16

Rs15

Rd5

Op6

31

28 27

24 23

0

ARM

Opx4

Op4

Const24

Branch

31

26 25

21 20

16 15

0

MIPS

Rs15

Opx5/Rs25

Const16

Op6

31

28 27

24 23

0

ARM

Opx4

Op4

Const24

Jump/Call

31

26 25

0

Op6

MIPS

Const26

Opcode

Register

Constant

FIGURE 2.34 Instruction formats, ARM and MIPS. Th

e diff erences result from whether the

architecture has 16 or 32 registers.

Unique Features of ARM

Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since ARM does not have a dedicated register for 0, it has separate opcodes to perform

some operations that MIPS can do with $zero. In addition, ARM has support for

multiword arithmetic.

ARM’s 12-bit immediate fi eld has a novel interpretation. Th

e eight least-

signifi cant bits are zero-extended to a 32-bit value, then rotated right the number

of bits specifi ed in the fi rst four bits of the fi eld multiplied by two. One advantage is

that this scheme can represent all powers of two in a 32-bit word. Whether this split

actually catches more immediates than a simple 12-bit fi eld would be an interesting

study.

Operand shift ing is not limited to immediates. Th

e second register of all

arithmetic and logical processing operations has the option of being shift ed before

being operated on. Th

e shift options are shift left logical, shift right logical, shift

right arithmetic, and rotate right.

2.17 Real Stuff: x86 Instructions

149

Name Defi nition

ARM

MIPS

Load immediate

Rd = Imm

mov

addi $0,

Not

Rd = ~(Rs1)

mvn

nor $0,

Move

Rd = Rs1

mov

or $0,

Rd = Rs i >> i

ror

Rotate right

Rd0. . . i–1 = Rs31–i. . . 31

And not

Rd = Rs1 & ~(Rs2)

bic

Reverse subtract

Rd = Rs2 – Rs1

rsb, rsc

Suppor t for multiword

Carr yOut, Rd = Rd + Rs1 +

adcs

—

integer add

OldCarr yOut

Suppor t for multiword

Carr yOut, Rd = Rd – Rs1 +

sbcs

—

integer sub

OldCarr yOut

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS.

ARM also has instructions to save groups of registers, called block loads and

 stores. Under control of a 16-bit mask within the instructions, any of the 16 registers

can be loaded or stored into memory in a single instruction. Th

ese instructions can

save and restore registers on procedure entry and return. Th

ese instructions can

also be used for block memory copy, and today block copies are the most important

use of such instructions.

 2.17 Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than Beauty is altogether in those found in ARM and MIPS. Th

e goal is generally to reduce the number of the eye of the beholder.

instructions executed by a program. Th

e danger is that this reduction can occur at Margaret Wolfe

the cost of simplicity, increasing the time a program takes to execute because the Hungerford, Molly instructions are slower. Th

is slowness may be the result of a slower clock cycle time Bawn, 1877

or of requiring more clock cycles than a simpler sequence.

Th

e path toward operation complexity is thus fraught with peril. Section 2.19

demonstrates the pitfalls of complexity.

Evolution of the Intel x86

ARM and MIPS were the vision of single small groups in 1985; the pieces of these

architectures fi t nicely together, and the whole architecture can be described

succinctly. Such is not the case for the x86; it is the product of several independent

groups who evolved the architecture over 35 years, adding new features to the

original instruction set as someone might add clothing to a packed bag. Here are

important x86 milestones.

150

Chapter 2 Instructions: Language of the Computer

■ 1978: Th

e Intel 8086 architecture was announced as an assembly

language–compatible extension of the then successful Intel 8080, an 8-bit

microprocessor. Th

e 8086 is a 16-bit architecture, with all internal registers

16 bits wide. Unlike MIPS, the registers have dedicated uses, and hence the

general-purpose

8086 is not considered a general-purpose register architecture.

register (GPR)

■ 1980: Th

e Intel 8087 fl oating-point coprocessor is announced. Th

is archi-

A register that can be

used for addresses or for

tecture extends the 8086 with about 60 fl oating-point instructions. Instead of

data with virtually any

using registers, it relies on a stack (see Section 2.21 and Section 3.7).

instruction.

■ 1982: Th

e 80286 extended the 8086 architecture by increasing the address

space to 24 bits, by creating an elaborate memory-mapping and protection

model (see Chapter 5), and by adding a few instructions to round out the

instruction set and to manipulate the protection model.

■ 1985: Th

e 80386 extended the 80286 architecture to 32 bits. In addition to

a 32-bit architecture with 32-bit registers and a 32-bit address space, the

80386 added new addressing modes and additional operations. Th

e added

instructions make the 80386 nearly a general-purpose register machine. Th

e

80386 also added paging support in addition to segmented addressing (see

Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs

without change.

■ 1989–95: Th

e subsequent 80486 in 1989, Pentium in 1992, and Pentium

Pro in 1995 were aimed at higher performance, with only four instructions

added to the user-visible instruction set: three to help with multiprocessing

(Chapter 6) and a conditional move instruction.

■ 1997: Aft er the Pentium and Pentium Pro were shipping, Intel announced that

it would expand the Pentium and the Pentium Pro architectures with MMX

(Multi Media Extensions). Th

is new set of 57 instructions uses the fl oating-

point stack to accelerate multimedia and communication applications. MMX

instructions typically operate on multiple short data elements at a time, in

the tradition of single instruction, multiple data (SIMD) architectures (see

Chapter 6). Pentium II did not introduce any new instructions.

■ 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD

 Extensions) as part of Pentium III. Th

e primary changes were to add eight

separate registers, double their width to 128 bits, and add a single precision

fl oating-point data type. Hence, four 32-bit fl oating-point operations can be

performed in parallel. To improve memory performance, SSE includes cache

prefetch instructions plus streaming store instructions that bypass the caches

and write directly to memory.

■ 2001: Intel added yet another 144 instructions, this time labeled SSE2. Th

e

new data type is double precision arithmetic, which allows pairs of 64-bit

fl oating-point operations in parallel. Almost all of these 144 instructions are

versions of existing MMX and SSE instructions that operate on 64 bits of data

2.17 Real Stuff: x86 Instructions

151

in parallel. Not only does this change enable more multimedia operations;

it gives the compiler a diff erent target for fl oating-point operations than

the unique stack architecture. Compilers can choose to use the eight SSE

registers as fl oating-point registers like those found in other computers. Th

is

change boosted the fl oating-point performance of the Pentium 4, the fi rst

microprocessor to include SSE2 instructions.

■ 2003: A company other than Intel enhanced the x86 architecture this time.

AMD announced a set of architectural extensions to increase the address

space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address

space in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also

increases the number of registers to 16 and increases the number of 128-

bit SSE registers to 16. Th

e primary ISA change comes from adding a new

mode called long mode that redefi nes the execution of all x86 instructions

with 64-bit addresses and data. To address the larger number of registers, it

adds a new prefi x to instructions. Depending how you count, long mode also

adds four to ten new instructions and drops 27 old ones. PC-relative data

addressing is another extension. AMD64 still has a mode that is identical

to x86 (legacy mode) plus a mode that restricts user programs to x86 but

allows operating systems to use AMD64 (compatibility mode). Th

ese modes

allow a more graceful transition to 64-bit addressing than the HP/Intel IA-64

architecture.

■ 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory

 64 Technology (EM64T). Th

e major diff erence is that Intel added a 128-bit

atomic compare and swap instruction, which probably should have been

included in AMD64. At the same time, Intel announced another generation of

media extensions. SSE3 adds 13 instructions to support complex arithmetic,

graphics operations on arrays of structures, video encoding, fl oating-point

conversion, and thread synchronization (see Section 2.11). AMD added SSE3

in subsequent chips and the missing atomic swap instruction to AMD64 to

maintain binary compatibility with Intel.

■ 2006: Intel announces 54 new instructions as part of the SSE4 instruction set

extensions. Th

ese extensions perform tweaks like sum of absolute diff erences,

dot products for arrays of structures, sign or zero extension of narrow data to

wider sizes, population count, and so on. Th

ey also added support for virtual

machines (see Chapter 5).

■ 2007: AMD announces 170 instructions as part of SSE5, including 46

instructions of the base instruction set that adds three operand instructions

like MIPS.

■ 2011: Intel ships the Advanced Vector Extension that expands the SSE

register width from 128 to 256 bits, thereby redefi ning about 250 instructions

and adding 128 new instructions.

152

Chapter 2 Instructions: Language of the Computer

Th

is history illustrates the impact of the “golden handcuff s” of compatibility on

the x86, as the existing soft ware base at each step was too important to jeopardize

with signifi cant architectural changes.

Whatever the artistic failures of the x86, keep in mind that this instruction set

largely drove the PC generation of computers and still dominates the cloud portion

of the PostPC Era. Manufacturing 350M x86 chips per year may seem small

compared to 9 billion ARMv7 chips, but many companies would love to control

such a market. Nevertheless, this checkered ancestry has led to an architecture that

is diffi

cult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section

with the care you would need to write x86 programs; the goal instead is to give you

familiarity with the strengths and weaknesses of the world’s most popular desktop

architecture.

Rather than show the entire 16-bit, 32-bit, and 64-bit instruction set, in this

section we concentrate on the 32-bit subset that originated with the 80386. We start

our explanation with the registers and addressing modes, move on to the integer

operations, and conclude with an examination of instruction encoding.

x86 Registers and Data Addressing Modes

Th

e registers of the 80386 show the evolution of the instruction set (Figure 2.36).

Th

e 80386 extended all 16-bit registers (except the segment registers) to 32 bits,

prefi xing an E to their name to indicate the 32-bit version. We’ll refer to them

generically as GPRs (general-purpose registers). Th

e 80386 contains only eight

GPRs. Th

is means MIPS programs can use four times as many and ARMv7 twice

as many.

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are two-operand instructions. Th

ere are two important diff erences here. Th

e x86

arithmetic and logical instructions must have one operand act as both a source

and a destination; ARMv7 and MIPS allow separate registers for source and

destination. Th

is restriction puts more pressure on the limited registers, since one

source register must be modifi ed. Th

e second important diff erence is that one of

the operands can be in memory. Th

us, virtually any instruction may have one

operand in memory, unlike ARMv7 and MIPS.

Data memory-addressing modes, described in detail below, off er two sizes of

addresses within the instruction. Th

ese so-called displacements can be 8 bits or 32

bits.

Although a memory operand can use any addressing mode, there are restrictions

on which registers can be used in a mode. Figure 2.38 shows the x86 addressing modes and which GPRs cannot be used with each mode, as well as how to get the

same eff ect using MIPS instructions.

x86 Integer Operations

Th

e 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. Th

e

80386 adds 32-bit addresses and data (double words) in the x86. (AMD64 adds 64-

2.17 Real Stuff: x86 Instructions

153

Name

Use

31

0

EAX

GPR 0

ECX

GPR 1

EDX

GPR 2

EBX

GPR 3

ESP

GPR 4

EBP

GPR 5

ESI

GPR 6

EDI

GPR 7

CS

Code segment pointer

SS

Stack segment pointer (top of stack)

DS

Data segment pointer 0

ES

Data segment pointer 1

FS

Data segment pointer 2

GS

Data segment pointer 3

EIP

Instruction pointer (PC)

EFLAGS

Condition codes

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended to 32 bits and could also be used as general-purpose registers.

Source/destination operand type

Second source operand

Register

Register

Register

Immediate

Register

Memor y

Memor y

Register

Memor y

Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions.

Th

e x86 allows the combinations shown. Th

e only restriction is the absence of a memory-memory mode.

Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36

(not EIP or EFLAGS).

154

Chapter 2 Instructions: Language of the Computer

Register

Mode

Description

restrictions

MIPS equivalent

Register indirect

Address is in a register.

Not ESP or EBP

lw $s0,0($s1)

Based mode with 8- or 32-bit

Address is contents of base register plus

Not ESP

lw $s0,100($s1) # <= 16-bit

displacement

displacement.

displacement

Base plus scaled index

The address is

Base: any GPR

mul

$t0,$s2,4

Base + (2Scale x Index)

Index: not ESP

add

$t0,$t0,$s1

where Scale has the value 0, 1, 2, or 3.

lw

$s0,0($t0)

Base plus scaled index with

The address is

Base: any GPR

mul

$t0,$s2,4

8- or 32-bit displacement

Base + (2Scale x Index) + displacement

Index: not ESP

add

$t0,$t0,$s1

where Scale has the value 0, 1, 2, or 3.

lw

$s0,100($t0) # <=16-bit

displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. Th e Base plus Scaled

Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address with the base register $s1. (Intel gives two diff erent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)

bit addresses and data, called quad words; we’ll stick to the 80386 in this section.)

Th

e data type distinctions apply to register operations as well as memory accesses.

Almost every operation works on both 8-bit data and on one longer data size.

Th

at size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386

architects provided a convenient way to specify each version without expanding

code size signifi cantly. Th

ey decided that either 16-bit or 32-bit data dominates

most programs, and so it made sense to be able to set a default large size. Th

is

default data size is set by a bit in the code segment register. To override the default

data size, an 8-bit prefi x is attached to the instruction to tell the machine to use the other large size for this instruction.

Th

e prefi x solution was borrowed from the 8086, which allows multiple prefi xes

to modify instruction behavior. Th

e three original prefi xes override the default

segment register, lock the bus to support synchronization (see Section 2.11), or

repeat the following instruction until the register ECX counts down to 0. Th

is last

prefi x was intended to be paired with a byte move instruction to move a variable

number of bytes. Th

e 80386 also added a prefi x to override the default address size.

Th

e x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal

arithmetic operations

3. Control fl ow, including conditional branches, unconditional jumps, calls,

and returns

4. String instructions, including string move and string compare

2.17 Real Stuff: x86 Instructions

155

Th

e fi rst two categories are unremarkable, except that the arithmetic and logic

instruction operations allow the destination to be either a register or a memory

location. Figure 2.39 shows some typical x86 instructions and their functions.

Conditional branches on the x86 are based on condition codes or fl ags, like

ARMv7. Condition codes are set as a side eff ect of an operation; most are used

to compare the value of a result to 0. Branches then test the condition codes. PC-

Instruction

Function

je name

if equal(condition code) {EIP=name};

EIP–128 <= name < EIP+128

jmp name

EIP=name

call name

SP=SP–4; M[SP]=EIP+5; EIP=name;

movw EBX,[EDI+45]

EBX=M[EDI+45]

push ESI

SP=SP–4; M[SP]=ESI

pop EDI

EDI=M[SP]; SP=SP+4

add EAX,#6765

EAX= EAX+6765

test EDX,#42

Set condition code (fl ags) with EDX and 42

movsl

M[EDI]=M[ESI];

EDI=EDI+4; ESI=ESI+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations appears in Figure 2.40. Th

e CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

relative branch addresses must be specifi ed in the number of bytes, since unlike

ARMv7 and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not commonly

executed in most programs. Th

ey are oft en slower than equivalent soft ware routines

(see the fallacy on page 159).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions are available in both byte and word formats.

x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80386 is complex, with

many diff erent instruction formats. Instructions for the 80386 may vary from 1

byte, when there are no operands, up to 15 bytes.

Figure 2.41 shows the instruction format for several of the example instructions in

Figure 2.39. Th

e opcode byte usually contains a bit saying whether the operand is 8 bits

or 32 bits. For some instructions, the opcode may include the addressing mode and

the register; this is true in many instructions that have the form “register register op

immediate.” Other instructions use a “postbyte” or extra opcode byte, labeled “mod, reg,

r/m,” which contains the addressing mode information. Th

is postbyte is used for many

156

Chapter 2 Instructions: Language of the Computer

Instruction

Meaning

Control

Conditional and unconditional branches

jnz, jz

Jump if condition to EIP + 8-bit offset; JNE (forJNZ), JE (for JZ) are

alternative names

jmp

Unconditional jump—8-bit or 16-bit offset

call

Subroutine call—16-bit offset; return address pushed onto stack

ret

Pops return address from stack and jumps to it

loop

Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0

Data transfer

Move data between registers or between register and memory

move

Move between two registers or between register and memor y

push, pop

Push source operand on stack; pop operand from stack top to a register

les

Load ES and one of the GPRs from memor y

Arithmetic, logical

Arithmetic and logical operations using the data registers and memory

add, sub

Add source to destination; subtract source from destination; register-memor y

format

cmp

Compare source and destination; register-memor y format

shl, shr, rcr

Shift left; shift logical right; rotate right with carr y condition code as fi ll

cbw

Conver t byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test

Logical AND of source and destination sets condition codes

inc, dec

Increment destination, decrement destination

or, xor

Logical OR; exclusive OR; register-memor y format

String

Move between string operands; length given by a repeat prefi x

movs

Copies from string source to destination by incrementing ESI and EDI; may be

repeated

lods

Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory format, where either the source or the destination may be memory and the other may be a register or immediate operand.

of the instructions that address memory. Th

e base plus scaled index mode uses a second

postbyte, labeled “sc, index, base.”

Figure 2.42 shows the encoding of the two postbyte address specifi ers for

both 16-bit and 32-bit mode. Unfortunately, to understand fully which registers

and which addressing modes are available, you need to see the encoding of all

addressing modes and sometimes even the encoding of the instructions.

x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant

architectures, such as the Motorola 68000, and this head start led to the selection

of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that

the x86 is more diffi

cult to build than computers like ARMv7 and MIPS, but the

large market meant in the PC Era that AMD and Intel could aff ord more resources

2.17 Real Stuff: x86 Instructions

157

a. JE EIP + displacement

4

4

8

Condi-

JE

Displacement

tion

b. CALL

8

32

CALL

Offset

c. MOV EBX, [EDI + 45]

6

1 1

8

8

r/m

MOV

d w

Displacement

Postbyte

d. PUSH ESI

5

3

PUSH

Reg

e. ADD EAX, #6765

4

3

1

32

ADD

Reg w

Immediate

f. TEST EDX, #42

7

1

8

32

TEST

w

Postbyte

Immediate

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte.

Many instructions contain the 1-bit fi eld w, which says whether the operation is a byte or a double word. Th e

d fi eld in MOV is used in instructions that may move to or from memory and shows the direction of the move.

Th

e ADD instruction requires 32 bits for the immediate fi eld, because in 32-bit mode, the immediates are either 8 bits or 32 bits. Th

e immediate fi eld in the TEST is 32 bits long because there is no 8-bit immediate for

test in 32-bit mode. Overall, instructions may vary from 1 to 15 bytes in length. Th

e long length comes from

extra 1-byte prefi xes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes, and using the scaled index mode specifi er, which adds another byte.

to help overcome the added complexity. What the x86 lacks in style, it made up for

in market size, making it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural components

are not too diffi

cult to implement, as AMD and Intel have demonstrated by rapidly

improving performance of integer programs since 1978. To get that performance,

158

Chapter 2 Instructions: Language of the Computer

reg

w = 0

w = 1

r/m

mod = 0

mod = 1

mod = 2

mod = 3

16b

32b

16b

32b

16b

32b

16b

32b

0

AL

AX

EAX

0

addr=BX+SI

=EAX

 same

 same

 same

 same

 same

1

CL

CX

ECX

1

addr=BX+DI

=ECX

 addr as

 addr as

 addr as

 addr as

 as

2

DL

DX

EDX

2

addr=BP+SI

=EDX

 mod=0

 mod=0

 mod=0

 mod=0

 reg

3

BL

BX

EBX

3

addr=BP+SI

=EBX

 + disp8

 + disp8

 + disp16

 + disp32

 fi eld

4

AH

SP

ESP

4

addr=SI

= (sib)

SI+disp8

 (sib)+disp8

SI+disp8

 (sib)+disp32

“

5

CH

BP

EBP

5

addr=DI

=disp32 DI+disp8

EBP+disp8

DI+disp16

EBP+disp32

“

6

DH

SI

ESI

6

addr=disp16

=ESI

BP+disp8

ESI+disp8

BP+disp16

ESI+disp32

“

7

BH

DI

EDI

7

addr=BX

=EDI

BX+disp8

EDI+disp8

BX+disp16

EDI+disp32

“

FIGURE 2.42 The encoding of the fi rst address specifi er of the x86: mod, reg, r/m. Th e fi rst four columns show the encoding

of the 3-bit reg fi eld, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386).

Th

e remaining columns explain the mod and r/m fi elds. Th

e meaning of the 3-bit r/m fi eld depends on the value in the 2-bit mod fi eld and the

address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod 0, with mod 1

adding an 8-bit displacement and mod 2 adding a 16-bit or 32-bit displacement, depending on the address mode. Th e exceptions are 1) r/m

 6 when mod 1 or mod 2 in 16-bit mode selects BP plus the displacement; 2) r/m 5 when mod 1 or mod 2 in 32-bit mode selects EBP plus displacement; and 3) r/m 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in

Figure 2.38. When mod 3, the r/m fi eld indicates a register, using the same encoding as the reg fi eld combined with the w bit.

compilers must avoid the portions of the architecture that are hard to implement

fast.

In the PostPC Era, however, despite considerable architectural and manufacturing

expertise, x86 has not yet been competitive in the personal mobile device.

 2.18 Real Stuff: ARMv8 (64-bit) Instructions

Of the many potential problems in an instruction set, the one that is almost impossible

to overcome is having too small a memory address. While the x86 was successfully

extended fi rst to 32-bit addresses and then later to 64-bit addresses, many of its

brethren were left behind. For example, the 16-bit address MOStek 6502 powered the

Apple II, but even given this headstart with the fi rst commercially successful personal

computer, its lack of address bits condemned it to the dustbin of history.

ARM architects could see the writing on the wall of their 32-bit address

computer, and began design of the 64-bit address version of ARM in 2007. It was

fi nally revealed in 2013. Rather than some minor cosmetic changes to make all

the registers 64 bits wide, which is basically what happened to the x86, ARM did a

complete overhaul. Th

e good news is that if you know MIPS it will be very easy to

pick up ARMv8, as the 64-bit version is called.

First, as compared to MIPS, ARM dropped virtually all of the unusual features

of v7:

■ Th

ere is no conditional execution fi eld, as there was in nearly every instruction

in v7.

2.19 Fallacies and Pitfalls

159

■ Th

e immediate fi eld is simply a 12 bit constant, rather than essentially an

input to a function that produces a constant as in v7.

■ ARM dropped Load Multiple and Store Multiple instructions.

■ Th

e PC is no longer one of the registers, which resulted in unexpected

branches if you wrote to it.

Second, ARM added missing features that are useful in MIPS

■ V8 has 32 general-purpose registers, which compiler writers surely love. Like

MIPS, one register is hardwired to 0, although in load and store instructions

it instead refers to the stack pointer.

■ Its addressing modes work for all word sizes in ARMv8, which was not the

case in ARMv7.

■ It includes a divide instruction, which was omitted from ARMv7.

■ It adds the equivalent of MIPS branch if equal and branch if not equal.

As the philosophy of the v8 instruction set is much closer to MIPS than it is to

v7, our conclusion is that the main similarity between ARMv7 and ARMv8 is the

name.

 2.19 Fallacies and Pitfalls

 Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel x86 is the prefi xes that can modify the execution of

the following instruction. One prefi x can repeat the following instruction until a

counter counts down to 0. Th

us, to move data in memory, it would seem that the

natural instruction sequence is to use move with the repeat prefi x to perform 32-bit

memory-to-memory moves.

An alternative method, which uses the standard instructions found in all

computers, is to load the data into the registers and then store the registers back to

memory. Th

is second version of this program, with the code replicated to reduce

loop overhead, copies at about 1.5 times as fast. A third version, which uses the

larger fl oating-point registers instead of the integer registers of the x86, copies at

about 2.0 times as fast than the complex move instruction.

 Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming languages produced naïve instruction

sequences; the increasing sophistication of compilers means the gap between

compiled code and code produced by hand is closing fast. In fact, to compete

with current compilers, the assembly language programmer needs to understand

the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory

hierarchy).

160

Chapter 2 Instructions: Language of the Computer

Th

is battle between compilers and assembly language coders is another situation

in which humans are losing ground. For example, C off ers the programmer a

chance to give a hint to the compiler about which variables to keep in registers

versus spilled to memory. When compilers were poor at register allocation, such

hints were vital to performance. In fact, some old C textbooks spent a fair amount

of time giving examples that eff ectively use register hints. Today’s C compilers

generally ignore such hints, because the compiler does a better job at allocation

than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly

language are the longer time spent coding and debugging, the loss in portability,

and the diffi

culty of maintaining such code. One of the few widely accepted axioms

of soft ware engineering is that coding takes longer if you write more lines, and it

clearly takes many more lines to write a program in assembly language than in C

or Java. Moreover, once it is coded, the next danger is that it will become a popular

program. Such programs always live longer than expected, meaning that someone

will have to update the code over several years and make it work with new releases

of operating systems and new models of machines. Writing in higher-level language

instead of assembly language not only allows future compilers to tailor the code

to future machines; it also makes the soft ware easier to maintain and allows the

program to run on more brands of computers.

 Fallacy: Th

 e importance of commercial binary compatibility means successful

 instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86

architecture has grown dramatically. Th

e average is more than one instruction per

month over its 35-year lifetime!

 Pitfall: Forgetting that sequential word addresses in machines with byte addressing

 do not diff er by one.

Many an assembly language programmer has toiled over errors made by assuming

that the address of the next word can be found by incrementing the address in a

register by one instead of by the word size in bytes. Forewarned is forearmed!

 Pitfall: Using a pointer to an automatic variable outside its defi ning procedure.

A common mistake in dealing with pointers is to pass a result from a procedure

that includes a pointer to an array that is local to that procedure. Following the

stack discipline in Figure 2.12, the memory that contains the local array will be reused as soon as the procedure returns. Pointers to automatic variables can lead

to chaos.

 2.20

Concluding

Remarks

161

1000

900

800

700

600

500

400

300

Number of Instructions

200

100

0

197819801982198419861988199019921994199619982000200220042006200820102012

Year

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to some of these extensions, this rapid change also increases the diffi

culty for other companies to try to build

compatible processors.

 2.20 Concluding

Remarks

Th

e two principles of the stored-program computer are the use of instructions that Less is more.

are indistinguishable from numbers and the use of alterable memory for programs. Robert Browning, Th

ese principles allow a single machine to aid environmental scientists, fi nancial Andrea del Sarto, 1855

advisers, and novelists in their specialties. Th

e selection of a set of instructions that

the machine can understand demands a delicate balance among the number of

instructions needed to execute a program, the number of clock cycles needed by an

instruction, and the speed of the clock. As illustrated in this chapter, three design

principles guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS

instruction set: keeping all instructions a single size, always requiring three

register operands in arithmetic instructions, and keeping the register fi elds

in the same place in each instruction format.

2. Smaller is faster. Th

e desire for speed is the reason that MIPS has 32 registers

rather than many more.

3. Good design demands good compromises. One MIPS example was the

compromise between providing for larger addresses and constants in

instructions and keeping all instructions the same length.

162

Chapter 2 Instructions: Language of the Computer

We also saw the great idea of making the common cast fast applied to instruction

sets as well as computer architecture. Examples of making the common MIPS

case fast include PC-relative addressing for conditional branches and immediate

addressing for larger constant operands.

Above this machine level is assembly language, a language that humans can read.

Th

e assembler translates it into the binary numbers that machines can understand,

and it even “extends” the instruction set by creating symbolic instructions that

aren’t in the hardware. For instance, constants or addresses that are too big are

broken into properly sized pieces, common variations of instructions are given

their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered MIPS instructions

Name

Format

Pseudo MIPS

Name

Format

add

add

R

move

move

R

subtract

sub

R

multiply

mult

R

add immediate

addi

I

multiply immediate

multi

I

load word

lw

I

load immediate

li

I

store word

sw

I

branch less than

blt

I

load half

lh

I

branch less than

or equal

ble

I

load half unsigned

lhu

I

store half

sh

I

branch greater than

bgt

I

load byte

lb

I

branch greater than

or equal

bge

I

load byte unsigned

lbu

I

store byte

sb

I

load linked

ll

I

store conditional

sc

I

load upper immediate

lui

I

and

and

R

or

or

R

nor

nor

R

and immediate

andi

I

or immediate

ori

I

shift left logical

sll

R

shift right logical

srl

R

branch on equal

beq

I

branch on not equal

bne

I

set less than

slt

R

set less than immediate

slti

I

set less than immediate

sltiu

I

unsigned

jump

j

J

jump register

jr

R

jump and link

jal

J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions

on the left and the pseudoinstructions on the right. Appendix A (Section A.10) describes the full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. Th e

information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of the book.

2.21 Historical Perspective and Further Reading

163

so far, both real and pseudoinstructions. Hiding details from the higher level is

another example of the great idea of abstraction.

Each category of MIPS instructions is associated with constructs that appear in

programming languages:

■ Arithmetic instructions correspond to the operations found in assignment

statements.

■ Transfer instructions are most likely to occur when dealing with data

structures like arrays or structures.

■ Conditional branches are used in if statements and in loops.

■ Unconditional jumps are used in procedure calls and returns and for case/

 switch statements.

Th

ese instructions are not born equal; the popularity of the few dominates the

many. For example, Figure 2.45 shows the popularity of each class of instructions for SPEC CPU2006. Th

e varying popularity of instructions plays an important role

in the chapters about datapath, control, and pipelining.

Frequency

Instruction class

MIPS examples

HLL correspondence

Integer

Ft. pt.

Arithmetic

add, sub, addi

Operations in assignment statement s

16%

48%

Data transfer

lw, sw, lb, lbu, lh,

References to data structures, such as arrays

35%

36%

lhu, sb, lui

Logical

and, or, nor, andi, ori,

0perations in assignment statement s

12%

4%

sll, srl

Conditional branch

beq, bne, slt, slti,

 If statements and loops

34%

8%

sltiu

Jump

j, jr, jal

Procedure calls, returns, and case/switch statements

2%

0%

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and percentage of MIPS instructions executed by category for the average integer and fl oating point SPEC CPU2006

benchmarks. Figure 3.26 in Chapter 3 shows average percentage of the individual MIPS instructions executed.

Aft er we explain computer arithmetic in Chapter 3, we reveal the rest of the

MIPS instruction set architecture.

 Historical Perspective and Further

2.21

Reading

Th

is section surveys the history of instruction set architectures (ISAs) over time,

and we give a short history of programming languages and compilers. ISAs

164

Chapter 2 Instructions: Language of the Computer

include accumulator architectures, general-purpose register architectures,

stack architectures, and a brief history of ARM and the x86. We also review the

controversial subjects of high-level-language computer architectures and reduced

instruction set computer architectures. Th

e history of programming languages

includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C, and Java,

and the history of compilers includes the key milestones and the pioneers who

achieved them. Th

e rest of Section 2.21 is found online.

 2.22 Exercises

Appendix A describes the MIPS simulator, which is helpful for these exercises.

Although the simulator accepts pseudoinstructions, try not to use pseudoinstructions

for any exercises that ask you to produce MIPS code. Your goal should be to learn

the real MIPS instruction set, and if you are asked to count instructions, your

count should refl ect the actual instructions that will be executed and not the

pseudoinstructions.

Th

ere are some cases where pseudoinstructions must be used (for example, the

la instruction when an actual value is not known at assembly time). In many cases,

they are quite convenient and result in more readable code (for example, the li

and move instructions). If you choose to use pseudoinstructions for these reasons,

please add a sentence or two to your solution stating which pseudoinstructions you

have used and why.

2.1 [5] <§2.2> For the following C statement, what is the corresponding MIPS

assembly code? Assume that the variables f, g, h, and i are given and could be

considered 32-bit integers as declared in a C program. Use a minimal number of

MIPS assembly instructions.

f = g + (h − 5);

2.2 [5] <§2.2> For the following MIPS assembly instructions above, what is a

corresponding C statement?

add f, g, h

add f, i, f

2.22 Exercises

165

2.3 [5] <§§2.2, 2.3> For the following C statement, what is the corresponding

MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to

registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address

of the arrays A and B are in registers $s6 and $s7, respectively.

B[8] = A[i−j];

2.4 [5] <§§2.2, 2.3> For the MIPS assembly instructions below, what is the

corresponding C statement? Assume that the variables f, g, h, i, and j are assigned

to registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address

of the arrays A and B are in registers $s6 and $s7, respectively.

sll $t0, $s0, 2 # $t0 = f * 4

add $t0, $s6, $t0 # $t0 = &A[f]

sll $t1, $s1, 2 # $t1 = g * 4

add $t1, $s7, $t1 # $t1 = &B[g]

lw $s0, 0($t0) # f = A[f]

addi $t2, $t0, 4

lw $t0, 0($t2)

add $t0, $t0, $s0

sw $t0, 0($t1)

2.5 [5] <§§2.2, 2.3> For the MIPS assembly instructions in Exercise 2.4, rewrite

the assembly code to minimize the number if MIPS instructions (if possible)

needed to carry out the same function.

2.6 Th

e table below shows 32-bit values of an array stored in memory.

Address

Data

24

2

38

4

32

3

36

6

40

1

166

Chapter 2 Instructions: Language of the Computer

2.6.1 [5] <§§2.2, 2.3> For the memory locations in the table above, write C

code to sort the data from lowest to highest, placing the lowest value in the

smallest memory location shown in the figure. Assume that the data shown

represents the C variable called Array, which is an array of type int, and that

the first number in the array shown is the first element in the array. Assume

that this particular machine is a byte-addressable machine and a word consists

of four bytes.

2.6.2 [5] <§§2.2, 2.3> For the memory locations in the table above, write MIPS

code to sort the data from lowest to highest, placing the lowest value in the smallest

memory location. Use a minimum number of MIPS instructions. Assume the base

address of Array is stored in register $s6.

2.7 [5] <§2.3> Show how the value 0xabcdef12 would be arranged in memory

of a little-endian and a big-endian machine. Assume the data is stored starting at

address 0.

2.8 [5] <§2.4> Translate 0xabcdef12 into decimal.

2.9 [5] <§§2.2, 2.3> Translate the following C code to MIPS. Assume that the variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4,

respectively. Assume that the base address of the arrays A and B are in registers $s6

and $s7, respectively. Assume that the elements of the arrays A and B are 4-byte

words:

B[8] = A[i] + A[j];

2.10 [5] <§§2.2, 2.3> Translate the following MIPS code to C. Assume that the

variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4,

respectively. Assume that the base address of the arrays A and B are in registers $s6

and $s7, respectively.

addi $t0, $s6, 4

add $t1, $s6, $0

sw $t1, 0($t0)

lw $t0, 0($t0)

add $s0, $t1, $t0

2.11 [5] <§§2.2, 2.5> For each MIPS instruction, show the value of the opcode

(OP), source register (RS), and target register (RT) fi elds. For the I-type instructions,

show the value of the immediate fi eld, and for the R-type instructions, show the

value of the destination register (RD) fi eld.

2.22 Exercises

167

2.12 Assume that registers $s0 and $s1 hold the values 0x80000000 and

0xD0000000, respectively.

2.12.1 [5] <§2.4> What is the value of $t0 for the following assembly code?

add $t0, $s0, $s1

2.12.2 [5] <§2.4> Is the result in $t0 the desired result, or has there been overfl ow?

2.12.3 [5] <§2.4> For the contents of registers $s0 and $s1 as specifi ed above,

what is the value of $t0 for the following assembly code?

sub $t0, $s0, $s1

2.12.4 [5] <§2.4> Is the result in $t0 the desired result, or has there been overfl ow?

2.12.5 [5] <§2.4> For the contents of registers $s0 and $s1 as specifi ed above,

what is the value of $t0 for the following assembly code?

add $t0, $s0, $s1

add $t0, $t0, $s0

2.12.6 [5] <§2.4> Is the result in $t0 the desired result, or has there been

overfl ow?

2.13 Assume that $s0 holds the value 128 .

ten

2.13.1 [5] <§2.4> For the instruction add $t0, $s0, $s1, what is the range(s) of

values for $s1 that would result in overfl ow?

2.13.2 [5] <§2.4> For the instruction sub $t0, $s0, $s1, what is the range(s) of

values for $s1 that would result in overfl ow?

2.13.3 [5] <§2.4> For the instruction sub $t0, $s1, $s0, what is the range(s) of

values for $s1 that would result in overfl ow?

2.14 [5] <§§2.2, 2.5> Provide the type and assembly language instruction for the

following binary value: 0000 0010 0001 0000 1000 0000 0010 0000two

2.15 [5] <§§2.2, 2.5> Provide the type and hexadecimal representation of

following instruction: sw $t1, 32($t2)

168

Chapter 2 Instructions: Language of the Computer

2.16 [5] <§2.5> Provide the type, assembly language instruction, and binary

representation of instruction described by the following MIPS fi elds:

op=0, rs=3, rt=2, rd=3, shamt=0, funct=34

2.17 [5] <§2.5> Provide the type, assembly language instruction, and binary

representation of instruction described by the following MIPS fi elds:

op=0x23, rs=1, rt=2, const=0x4

2.18 Assume that we would like to expand the MIPS register fi le to 128 registers

and expand the instruction set to contain four times as many instructions.

2.18.1 [5] <§2.5> How this would this aff ect the size of each of the bit fi elds in the R-type instructions?

2.18.2 [5] <§2.5> How this would this aff ect the size of each of the bit fi elds in the I-type instructions?

2.18.3 [5] <§§2.5, 2.10> How could each of the two proposed changes decrease

the size of an MIPS assembly program? On the other hand, how could the proposed

change increase the size of an MIPS assembly program?

2.19 Assume the following register contents:

$t0 = 0xAAAAAAAA, $t1 = 0x12345678

2.19.1 [5] <§2.6> For the register values shown above, what is the value of $t2

for the following sequence of instructions?

sll $t2, $t0, 44

or $t2, $t2, $t1

2.19.2 [5] <§2.6> For the register values shown above, what is the value of $t2

for the following sequence of instructions?

sll $t2, $t0, 4

andi $t2, $t2, −1

2.19.3 [5] <§2.6> For the register values shown above, what is the value of $t2

for the following sequence of instructions?

srl $t2, $t0, 3

andi $t2, $t2, 0xFFEF

2.22 Exercises

169

2.20 [5] <§2.6> Find the shortest sequence of MIPS instructions that extracts bits

16 down to 11 from register $t0 and uses the value of this fi eld to replace bits 31

down to 26 in register $t1 without changing the other 26 bits of register $t1.

2.21 [5] <§2.6> Provide a minimal set of MIPS instructions that may be used to

implement the following pseudoinstruction:

not $t1, $t2 // bit-wise invert

2.22 [5] <§2.6> For the following C statement, write a minimal sequence of MIPS

assembly instructions that does the identical operation. Assume $t1 = A, $t2 = B,

and $s1 is the base address of C.

A = C[0] << 4;

2.23 [5] <§2.7> Assume $t0 holds the value 0x00101000. What is the value of

$t2 aft er the following instructions?

slt $t2, $0, $t0

bne $t2, $0, ELSE

j DONE

ELSE: addi $t2, $t2, 2

DONE:

2.24 [5] <§2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is it

possible to use the jump (j) MIPS assembly instruction to set the PC to the address

as 0x4000 0000? Is it possible to use the branch-on-equal (beq) MIPS assembly

instruction to set the PC to this same address?

2.25 Th

e following instruction is not included in the MIPS instruction set:

rpt $t2, loop # if(R[rs]>0) R[rs]=R[rs]−1, PC=PC+4+BranchAddr

2.25.1 [5] <§2.7> If this instruction were to be implemented in the MIPS

instruction set, what is the most appropriate instruction format?

2.25.2 [5] <§2.7> What is the shortest sequence of MIPS instructions that

performs the same operation?

170

Chapter 2 Instructions: Language of the Computer

2.26 Consider the following MIPS loop:

LOOP: slt $t2, $0, $t1

beq $t2, $0, DONE

subi $t1, $t1, 1

addi $s2, $s2, 2

j LOOP

DONE:

2.26.1 [5] <§2.7> Assume that the register $t1 is initialized to the value 10. What is the value in register $s2 assuming $s2 is initially zero?

2.26.2 [5] <§2.7> For each of the loops above, write the equivalent C code

routine. Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and

temp, respectively.

2.26.3 [5] <§2.7> For the loops written in MIPS assembly above, assume that

the register $t1 is initialized to the value N. How many MIPS instructions are

executed?

2.27 [5] <§2.7> Translate the following C code to MIPS assembly code. Use a

minimum number of instructions. Assume that the values of a, b, i, and j are in

registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 holds

the base address of the array D.

for(i=0; i<a; i++)

for(j=0; j<b; j++)

D[4*j] = i + j;

2.28 [5] <§2.7> How many MIPS instructions does it take to implement the C

code from Exercise 2.27? If the variables a and b are initialized to 10 and 1 and all

elements of D are initially 0, what is the total number of MIPS instructions that is

executed to complete the loop?

2.29 [5] <§2.7> Translate the following loop into C. Assume that the C-level

integer i is held in register $t1, $s2 holds the C-level integer called result, and

$s0 holds the base address of the integer MemArray.

addi $t1, $0, $0

LOOP: lw $s1, 0($s0)

add $s2, $s2, $s1

addi $s0, $s0, 4

2.22 Exercises

171

addi $t1, $t1, 1

slti $t2, $t1, 100

bne $t2, $s0, LOOP

2.30 [5] <§2.7> Rewrite the loop from Exercise 2.29 to reduce the number of

MIPS instructions executed.

2.31 [5] <§2.8> Implement the following C code in MIPS assembly. What is the

total number of MIPS instructions needed to execute the function?

int fib(int n){

if (n==0)

return 0;

else if (n == 1)

return 1;

else

return fib(n−1) + fib(n−2);

2.32 [5] <§2.8> Functions can oft en be implemented by compilers “in-line.” An

in-line function is when the body of the function is copied into the program space,

allowing the overhead of the function call to be eliminated. Implement an “in-line”

version of the C code above in MIPS assembly. What is the reduction in the total

number of MIPS assembly instructions needed to complete the function? Assume

that the C variable n is initialized to 5.

2.33 [5] <§2.8> For each function call, show the contents of the stack aft er the

function call is made. Assume the stack pointer is originally at address 0x7ff ff ff c,

and follow the register conventions as specifi ed in Figure 2.11.

2.34 Translate function f into MIPS assembly language. If you need to use

registers $t0 through $t7, use the lower-numbered registers fi rst. Assume the

function declaration for func is “int f(int a, int b);”. Th

e code for function

f is as follows:

int f(int a, int b, int c, int d){

return func(func(a,b),c+d);

}

172

Chapter 2 Instructions: Language of the Computer

2.35 [5] <§2.8> Can we use the tail-call optimization in this function? If no,

explain why not. If yes, what is the diff erence in the number of executed instructions

in f with and without the optimization?

2.36 [5] <§2.8> Right before your function f from Exercise 2.34 returns, what do

we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that

we know what the entire function f looks like, but for function func we only know

its declaration.

2.37 [5] <§2.9> Write a program in MIPS assembly language to convert an ASCII

number string containing positive and negative integer decimal strings, to an

integer. Your program should expect register $a0 to hold the address of a null-

terminated string containing some combination of the digits 0 through 9. Your

program should compute the integer value equivalent to this string of digits, then

place the number in register $v0. If a non-digit character appears anywhere in the

string, your program should stop with the value −1 in register $v0. For example,

if register $a0 points to a sequence of three bytes 50ten, 52ten, 0ten (the null-

terminated string “24”), then when the program stops, register $v0 should contain

the value 24 .

ten

2.38 [5] <§2.9> Consider the following code:

lbu $t0, 0($t1)

sw $t0, 0($t2)

Assume that the register $t1 contains the address 0x1000 0000 and the register

$t2 contains the address 0x1000 0010. Note the MIPS architecture utilizes

big-endian addressing. Assume that the data (in hexadecimal) at address 0x1000

0000 is: 0x11223344. What value is stored at the address pointed to by register

$t2?

2.39 [5] <§2.10> Write the MIPS assembly code that creates the 32-bit constant

0010 0000 0000 0001 0100 1001 0010 0100

and stores that value to

two

register $t1.

2.40 [5] <§§2.6, 2.10> If the current value of the PC is 0x00000000, can you use

a single jump instruction to get to the PC address as shown in Exercise 2.39?

2.41 [5] <§§2.6, 2.10> If the current value of the PC is 0x00000600, can you use

a single branch instruction to get to the PC address as shown in Exercise 2.39?

2.22 Exercises

173

2.42 [5] <§§2.6, 2.10> If the current value of the PC is 0x1FFFf000, can you use

a single branch instruction to get to the PC address as shown in Exercise 2.39?

2.43 [5] <§2.11> Write the MIPS assembly code to implement the following C

code:

lock(lk);

shvar=max(shvar,x);

unlock(lk);

Assume that the address of the lk variable is in $a0, the address of the shvar

variable is in $a1, and the value of variable x is in $a2. Your critical section should

not contain any function calls. Use ll/sc instructions to implement the lock()

operation, and the unlock() operation is simply an ordinary store instruction.

2.44 [5] <§2.11> Repeat Exercise 2.43, but this time use ll/sc to perform

an atomic update of the shvar variable directly, without using lock() and

unlock(). Note that in this problem there is no variable lk.

2.45 [5] <§2.11> Using your code from Exercise 2.43 as an example, explain what

happens when two processors begin to execute this critical section at the same

time, assuming that each processor executes exactly one instruction per cycle.

2.46 Assume for a given processor the CPI of arithmetic instructions is 1,

the CPI of load/store instructions is 10, and the CPI of branch instructions is

3. Assume a program has the following instruction breakdowns: 500 million

arithmetic instructions, 300 million load/store instructions, 100 million branch

instructions.

2.46.1 [5] <§2.19> Suppose that new, more powerful arithmetic instructions are

added to the instruction set. On average, through the use of these more powerful

arithmetic instructions, we can reduce the number of arithmetic instructions

needed to execute a program by 25%, and the cost of increasing the clock cycle

time by only 10%. Is this a good design choice? Why?

2.46.2 [5] <§2.19> Suppose that we fi nd a way to double the performance of

arithmetic instructions. What is the overall speedup of our machine? What if we

fi nd a way to improve the performance of arithmetic instructions by 10 times?

2.47 Assume that for a given program 70% of the executed instructions are

arithmetic, 10% are load/store, and 20% are branch.

174

Chapter 2 Instructions: Language of the Computer

2.47.1 [5] <§2.19> Given this instruction mix and the assumption that an

arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and

a branch instruction takes 3 cycles, fi nd the average CPI.

2.47.2 [5] <§2.19> For a 25% improvement in performance, how many cycles, on

average, may an arithmetic instruction take if load/store and branch instructions

are not improved at all?

2.47.3 [5] <§2.19> For a 50% improvement in performance, how many cycles, on

average, may an arithmetic instruction take if load/store and branch instructions

are not improved at all?

Answers to §2.2, page 66: MIPS, C, Java

Check Yourself

§2.3, page 72: 2) Very slow

§2.4, page 79: 2) 8ten

§2.5, page 87: 4) sub $t2, $t0, $t1

§2.6, page 89: Both. AND with a mask pattern of 1s will leaves 0s everywhere but

the desired fi eld. Shift ing left by the correct amount removes the bits from the left

of the fi eld. Shift ing right by the appropriate amount puts the fi eld into the right-

most bits of the word, with 0s in the rest of the word. Note that AND leaves the

fi eld where it was originally, and the shift pair moves the fi eld into the rightmost

part of the word.

§2.7, page 96: I. All are true. II. 1).

§2.8, page 106: Both are true.

§2.9, page 111: I. 1) and 2) II. 3)

§2.10, page 120: I. 4) 128K. II. 6) a block of 256M. III. 4) sll

§2.11, page 123: Both are true.

§2.12, page 132: 4) Machine independence.

This page intentionally left blank

3

Arithmetic for

Computers

3.1 Introduction

178

 Numerical precision

3.2

Addition and Subtraction 178

 is the very soul of

3.3 Multiplication

183

 science.

3.4 Division

189

3.5 Floating

Point

196

Sir D’arcy Wentworth Thompson

3.6

Parallelism and Computer Arithmetic:

 On Growth and Form, 1917

Subword Parallelism 222

3.7

Real Stuff: Streaming SIMD Extensions and

Advanced Vector Extensions in x86 224

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

3.8

Going Faster: Subword Parallelism and Matrix Multiply 225

3.9

Fallacies and Pitfalls 229

3.10 Concluding

Remarks

232

3.11

Historical Perspective and Further Reading 236

3.12 Exercises

237

The Five Classic Components of a Computer

178

Chapter 3 Arithmetic for Computers

 3.1 Introduction

Computer words are composed of bits; thus, words can be represented as binary

numbers. Chapter 2 shows that integers can be represented either in decimal or

binary form, but what about the other numbers that commonly occur? For example:

■ What about fractions and other real numbers?

■ What happens if an operation creates a number bigger than can be represented?

■ And underlying these questions is a mystery: How does hardware really

multiply or divide numbers?

Th

e goal of this chapter is to unravel these mysteries including representation of

real numbers, arithmetic algorithms, hardware that follows these algorithms, and

the implications of all this for instruction sets. Th

ese insights may explain quirks

that you have already encountered with computers. Moreover, we show how to use

this knowledge to make arithmetic-intensive programs go much faster.

 Subtraction: Addition’s

 3.2

Addition and Subtraction

 Tricky Pal

No. 10, Top Ten

Addition is just what you would expect in computers. Digits are added bit by bit

Courses for Athletes at a

Football Factory, David

from right to left , with carries passed to the next digit to the left , just as you would

Letterman et al., Book of

do by hand. Subtraction uses addition: the appropriate operand is simply negated

 Top Ten Lists, 1990

before being added.

Binary Addition and Subtraction

Let’s try adding 6 to 7 in binary and then subtracting 6 from 7 in binary.

ten

ten

ten

ten

EXAMPLE

0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

+

0000 0000 0000 0000 0000 0000 0000 0110two = 6ten

=

0000 0000 0000 0000 0000 0000 0000 1101two = 13ten

Th

e 4 bits to the right have all the action; Figure 3.1 shows the sums and

carries. Th

e carries are shown in parentheses, with the arrows showing how

they are passed.

ANSWER

Subtracting 6 from 7 can be done directly:

ten

ten

3.2 Addition and Subtraction

179

 (0)

 (0)

 (1)

 (1)

 (0)

 (Carries)

. . .

0

0

0

1

1

1

. . .

0

0

0

1

1

0

. . . (0) 0

(0) 0

(0) 1

(1) 1

(1) 0

(0)

1

FIGURE 3.1 Binary addition, showing carries from right to left. Th

e rightmost bit adds 1

to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation for the second digit to the right is 0 1 1. Th

is generates a 0 for this sum bit and a carry out of 1. Th

e

third digit is the sum of 1 1 1, resulting in a carry out of 1 and a sum bit of 1. Th

e fourth bit is 1

0 0, yielding a 1 sum and no carry.

0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

–

0000 0000 0000 0000 0000 0000 0000 0110two = 6ten

=

0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

or via addition using the two’s complement representation of 6:

0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

+

1111 1111 1111 1111 1111 1111 1111 1010two = –6ten

=

0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

Recall that overfl ow occurs when the result from an operation cannot be

represented with the available hardware, in this case a 32-bit word. When can

overfl ow occur in addition? When adding operands with diff erent signs, overfl ow

cannot occur. Th

e reason is the sum must be no larger than one of the operands.

For example, 10 4 6. Since the operands fi t in 32 bits and the sum is no

larger than an operand, the sum must fi t in 32 bits as well. Th

erefore, no overfl ow

can occur when adding positive and negative operands.

Th

ere are similar restrictions to the occurrence of overfl ow during subtract, but

it’s just the opposite principle: when the signs of the operands are the same, overfl ow

cannot occur. To see this, remember that c a c (a) because we subtract by negating the second operand and then add. Th

erefore, when we subtract operands

of the same sign we end up by adding operands of diff erent signs. From the prior paragraph, we know that overfl ow cannot occur in this case either.

Knowing when overfl ow cannot occur in addition and subtraction is all well and

good, but how do we detect it when it does occur? Clearly, adding or subtracting

two 32-bit numbers can yield a result that needs 33 bits to be fully expressed.

Th

e lack of a 33rd bit means that when overfl ow occurs, the sign bit is set with

the value of the result instead of the proper sign of the result. Since we need just one

extra bit, only the sign bit can be wrong. Hence, overfl ow occurs when adding two

positive numbers and the sum is negative, or vice versa. Th

is spurious sum means

a carry out occurred into the sign bit.

Overfl ow occurs in subtraction when we subtract a negative number from a

positive number and get a negative result, or when we subtract a positive number

from a negative number and get a positive result. Such a ridiculous result means a

borrow occurred from the sign bit. Figure 3.2 shows the combination of operations, operands, and results that indicate an overfl ow.

180

Chapter 3 Arithmetic for Computers

Result

Operation

Operand A

Operand B

indicating overflow

 A + B

≥ 0

≥ 0

< 0

 A + B

< 0

< 0

≥ 0

 A – B

≥ 0

< 0

< 0

 A – B

< 0

≥ 0

≥ 0

FIGURE 3.2 Overfl ow conditions for addition and subtraction.

We have just seen how to detect overfl ow for two’s complement numbers in a

computer. What about overfl ow with unsigned integers? Unsigned integers are

commonly used for memory addresses where overfl ows are ignored.

Th

e computer designer must therefore provide a way to ignore overfl ow in

some cases and to recognize it in others. Th

e MIPS solution is to have two kinds of

arithmetic instructions to recognize the two choices:

■ Add (add), add immediate (addi), and subtract (sub) cause exceptions on

overfl ow.

■ Add unsigned (addu), add immediate unsigned (addiu), and subtract

unsigned (subu) do not cause exceptions on overfl ow.

Because C ignores overfl ows, the MIPS C compilers will always generate the

unsigned versions of the arithmetic instructions addu, addiu, and subu, no

matter what the type of the variables. Th

e MIPS Fortran compilers, however, pick

the appropriate arithmetic instructions, depending on the type of the operands.

 Appendix B describes the hardware that performs addition and subtraction,

Arithmetic Logic

which is called an Arithmetic Logic Unit or ALU.

Unit (ALU) Hardware

that performs addition,

Elaboration: A constant source of confusion for addiu is its name and what happens

subtraction, and usually

to its immediate fi eld. The u stands for unsigned, which means addition cannot cause an

logical operations such as

overfl ow exception. However, the 16-bit immediate fi eld is sign extended to 32 bits, just

AND and OR.

like addi, slti, and sltiu. Thus, the immediate fi eld is signed, even if the operation

is “unsigned.”

Th

e computer designer must decide how to handle arithmetic overfl ows. Although

Hardware/

some languages like C and Java ignore integer overfl ow, languages like Ada and

Software Fortran require that the program be notifi ed. Th e programmer or the programming Interface

environment must then decide what to do when overfl ow occurs.

MIPS detects overfl ow with an exception, also called an interrupt on many

exception Also

computers. An exception or interrupt is essentially an unscheduled procedure

called interrupt on

call. Th

e address of the instruction that overfl owed is saved in a register, and the

many computers. An

computer jumps to a predefi ned address to invoke the appropriate routine for that

unscheduled event

that disrupts program

exception. Th

e interrupted address is saved so that in some situations the program

execution; used to detect

can continue aft er corrective code is executed. (Section 4.9 covers exceptions in

overfl ow.

3.2 Addition and Subtraction

181

more detail; Chapter 5 describes other situations where exceptions and interrupts interrupt An exception occur.)

that comes from outside

MIPS includes a register called the exception program counter (EPC) to contain of the processor. (Some the address of the instruction that caused the exception. Th

e instruction move from architectures use the

term interrupt for all

 system control (mfc0) is used to copy EPC into a general-purpose register so that exceptions.) MIPS soft ware has the option of returning to the off ending instruction via a jump

register instruction.

Summary

A major point of this section is that, independent of the representation, the fi nite

word size of computers means that arithmetic operations can create results that

are too large to fi t in this fi xed word size. It’s easy to detect overfl ow in unsigned

numbers, although these are almost always ignored because programs don’t want to

detect overfl ow for address arithmetic, the most common use of natural numbers.

Two’s complement presents a greater challenge, yet some soft ware systems require

detection of overfl ow, so today all computers have a way to detect it.

Some programming languages allow two’s complement integer arithmetic

Check

on variables declared byte and half, whereas MIPS only has integer arithmetic

Yourself

operations on full words. As we recall from Chapter 2, MIPS does have data transfer

operations for bytes and halfwords. What MIPS instructions should be generated

for byte and halfword arithmetic operations?

1. Load

with

lbu, lhu; arithmetic with add, sub, mult, div; then store using

sb, sh.

2. Load

with

lb, lh; arithmetic with add, sub, mult, div; then store using

sb, sh.

3. Load

with

lb, lh; arithmetic with add, sub, mult, div, using AND to mask

result to 8 or 16 bits aft er each operation; then store using sb, sh.

Elaboration: One feature not generally found in general-purpose microprocessors is

 saturating operations. Saturation means that when a calculation overfl ows, the result

is set to the largest positive number or most negative number, rather than a modulo

calculation as in two’s complement arithmetic. Saturation is likely what you want for media

operations. For example, the volume knob on a radio set would be frustrating if, as you

turned it, the volume would get continuously louder for a while and then immediately very

soft. A knob with saturation would stop at the highest volume no matter how far you turned

it. Multimedia extensions to standard instruction sets often offer saturating arithmetic.

Elaboration: MIPS can trap on overfl ow, but unlike many other computers, there is

no conditional branch to test overfl ow. A sequence of MIPS instructions can discover

182

Chapter 3 Arithmetic for Computers

overfl ow. For signed addition, the sequence is the following (see the Elaboration on page 89 in Chapter 2 for a description of the xor instruction):

addu $t0, $t1, $t2 # $t0 = sum, but don’t trap

xor $t3, $t1, $t2 # Check if signs differ

slt $t3, $t3, $zero # $t3 = 1 if signs differ

bne $t3, $zero, No_overflow # $t1, $t2 signs ≠,

so no overflow

xor $t3, $t0, $t1 # signs =; sign of sum match too?

$t3 negative if sum sign different

slt $t3, $t3, $zero # $t3 = 1 if sum sign different

bne $t3, $zero, Overflow # All 3 signs ≠; goto overflow

For unsigned addition ($t0 = $t1 + $t2), the test is

addu $t0, $t1, $t2 # $t0 = sum

nor $t3, $t1, $zero # $t3 = NOT $t1

(2’s comp – 1: 232 – $t1 – 1)

sltu $t3, $t3, $t2 # (232 – $t1 – 1) < $t2

⇒ 232 – 1 < $t1 + $t2

bne $t3,$zero,Overflow # if(232–1<$t1+$t2) goto overflow

Elaboration: In the preceding text, we said that you copy EPC into a register via

mfc0 and then return to the interrupted code via jump register. This directive leads to

an interesting question: since you must fi rst transfer EPC to a register to use with jump

register, how can jump register return to the interrupted code and restore the original

values of all registers? Either you restore the old registers fi rst, thereby destroying your return address from EPC, which you placed in a register for use in jump register, or you

restore all registers but the one with the return address so that you can jump—meaning

an exception would result in changing that one register at any time during program

execution! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve

registers $k0 and $k1 for the operating system; these registers are not restored on

exceptions. Just as the MIPS compilers avoid using register $at so that the assembler

can use it as a temporary register (see Hardware/ Software Interface in Section 2.10), compilers also abstain from using registers $k0 and $k1 to make them available for the

operating system. Exception routines place the return address in one of these registers

and then use jump register to restore the instruction address.

Elaboration: The speed of addition is increased by determining the carry in to the

high-order bits sooner. There are a variety of schemes to anticipate the carry so that

the worst-case scenario is a function of the log of the number of bits in the adder.

2

These anticipatory signals are faster because they go through fewer gates in sequence,

but it takes many more gates to anticipate the proper carry. The most popular is carry

 lookahead, which Section B.6 in

Appendix B describes.

3.3 Multiplication

183

 3.3 Multiplication

Now that we have completed the explanation of addition and subtraction, we are Multiplication is ready to build the more vexing operation of multiplication.

 vexation, Division is

First, let’s review the multiplication of decimal numbers in longhand to remind as bad; Th

 e rule of

ourselves of the steps of multiplication and the names of the operands. For reasons three doth puzzle me, that will become clear shortly, we limit this decimal example to using only the And practice drives me digits 0 and 1. Multiplying 1000 by 1001 :

 mad.

ten

ten

Anonymous,

Multiplicand

1000ten

Elizabethan manuscript,

Multiplier

x 1001ten

1570

1000

0000

0000

1000

Product

1001000ten

Th

e fi rst operand is called the multiplicand and the second the multiplier.

Th

e fi nal result is called the product. As you may recall, the algorithm learned in

grammar school is to take the digits of the multiplier one at a time from right to

left , multiplying the multiplicand by the single digit of the multiplier, and shift ing

the intermediate product one digit to the left of the earlier intermediate products.

Th

e fi rst observation is that the number of digits in the product is considerably

larger than the number in either the multiplicand or the multiplier. In fact, if we

ignore the sign bits, the length of the multiplication of an n- bit multiplicand and an

 m- bit multiplier is a product that is n m bits long. Th

at is, n m bits are required

to represent all possible products. Hence, like add, multiply must cope with

overfl ow because we frequently want a 32-bit product as the result of multiplying

two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two

choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 multiplicand) in the proper place

if the multiplier digit is a 1, or

2. Place 0 (0 multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication

of binary numbers must always use 0 and 1, and thus always off ers only these two

choices.

Now that we have reviewed the basics of multiplication, the traditional next

step is to provide the highly optimized multiply hardware. We break with tradition

in the belief that you will gain a better understanding by seeing the evolution of

the multiply hardware and algorithm through multiple generations. For now, let’s

assume that we are multiplying only positive numbers.

184

Chapter 3 Arithmetic for Computers

Multiplicand

Shift left

64 bits

Multiplier

64-bit ALU

Shift right

32 bits

Product

Control test

Write

64 bits

FIGURE 3.3 First version of the multiplication hardware. Th

e Multiplicand register, ALU,

and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (Appendix B

describes ALUs.) Th

e 32-bit multiplicand starts in the right half of the Multiplicand register and is shift ed left

1 bit on each step. Th

e multiplier is shift ed in the opposite direction at each step. Th

e algorithm starts with

the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when to write new values into the Product register.

Sequential Version of the Multiplication Algorithm and

Hardware

Th

is design mimics the algorithm we learned in grammar school; Figure 3.3 shows the hardware. We have drawn the hardware so that data fl ows from top to bottom

to resemble more closely the paper-and-pencil method.

Let’s assume that the multiplier is in the 32-bit Multiplier register and that the 64-

bit Product register is initialized to 0. From the paper-and-pencil example above,

it’s clear that we will need to move the multiplicand left one digit each step, as it may

be added to the intermediate products. Over 32 steps, a 32-bit multiplicand would

move 32 bits to the left . Hence, we need a 64-bit Multiplicand register, initialized

with the 32-bit multiplicand in the right half and zero in the left half. Th

is register

is then shift ed left 1 bit each step to align the multiplicand with the sum being

accumulated in the 64-bit Product register.

Figure 3.4 shows the three basic steps needed for each bit. Th

e least signifi cant

bit of the multiplier (Multiplier0) determines whether the multiplicand is added to

the Product register. Th

e left shift in step 2 has the eff ect of moving the intermediate

operands to the left , just as when multiplying with paper and pencil. Th

e shift right

in step 3 gives us the next bit of the multiplier to examine in the following iteration.

Th

ese three steps are repeated 32 times to obtain the product. If each step took a

clock cycle, this algorithm would require almost 100 clock cycles to multiply two

32-bit numbers. Th

e relative importance of arithmetic operations like multiply

varies with the program, but addition and subtraction may be anywhere from 5 to

100 times more popular than multiply. Accordingly, in many applications, multiply

can take multiple clock cycles without signifi cantly aff ecting performance. Yet

Amdahl’s Law (see Section 1.10) reminds us that even a moderate frequency for a

slow operation can limit performance.

3.3 Multiplication

185

Start

Multiplier0 = 1

1. Test

Multiplier0 = 0

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Done

FIGURE 3.4 The fi rst multiplication algorithm, using the hardware shown in Figure 3.3. If the least signifi cant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step.

Shift the multiplicand left and the multiplier right in the next two steps. Th

ese three steps are repeated 32

times.

Th

is algorithm and hardware are easily refi ned to take 1 clock cycle per step.

Th

e speed-up comes from performing the operations in parallel: the multiplier

and multiplicand are shift ed while the multiplicand is added to the product if the

multiplier bit is a 1. Th

e hardware just has to ensure that it tests the right bit of

the multiplier and gets the preshift ed version of the multiplicand. Th

e hardware is

usually further optimized to halve the width of the adder and registers by noticing

where there are unused portions of registers and adders. Figure 3.5 shows the revised hardware.

186

Chapter 3 Arithmetic for Computers

Multiplicand

32 bits

32-bit ALU

Shift right

Product

Control

Write

test

64 bits

FIGURE 3.5 Refi ned version of the multiplication hardware. Compare with the fi rst version in

Figure 3.3. Th

e Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product register left at 64 bits. Now the product is shift ed right. Th

e separate Multiplier register also disappeared. Th

e

multiplier is placed instead in the right half of the Product register. Th

ese changes are highlighted in color.

(Th

e Product register should really be 65 bits to hold the carry out of the adder, but it’s shown here as 64 bits to highlight the evolution from Figure 3.3.)

Replacing arithmetic by shift s can also occur when multiplying by constants. Some

Hardware/

compilers replace multiplies by short constants with a series of shift s and adds.

Software Because one bit to the left represents a number twice as large in base 2, shift ing Interface

the bits left has the same eff ect as multiplying by a power of 2. As mentioned in

Chapter 2, almost every compiler will perform the strength reduction optimization

of substituting a left shift for a multiply by a power of 2.

A Multiply Algorithm

EXAMPLE

Using 4-bit numbers to save space, multiply 2 3 , or 0010 0011 .

ten

ten

two

two

Figure 3.6 shows the value of each register for each of the steps labeled

ANSWER

according to Figure 3.4, with the fi nal value of 0000 0110 or 6 . Color is

two

ten

used to indicate the register values that change on that step, and the bit circled

is the one examined to determine the operation of the next step.

3.3 Multiplication

187

Iteration

Step

Multiplier

Multiplicand

Product

0

Initial values

0011

0000 0010

0000 0000

1

1a: 1 ⇒ Prod = Prod + Mcand

0011

0000 0010

0000 0010

2: Shift left Multiplicand

0011

0000 0100

0000 0010

3: Shift right Multiplier

0001

0000 0100

0000 0010

2

1a: 1 ⇒ Prod = Prod + Mcand

0001

0000 0100

0000 0110

2: Shift left Multiplicand

0001

0000 1000

0000 0110

3: Shift right Multiplier

0000

0000 1000

0000 0110

3

1: 0 ⇒ No operation

0000

0000 1000

0000 0110

2: Shift left Multiplicand

0000

0001 0000

0000 0110

3: Shift right Multiplier

0000

0001 0000

0000 0110

4

1: 0 ⇒ No operation

0000

0001 0000

0000 0110

2: Shift left Multiplicand

0000

0010 0000

0000 0110

3: Shift right Multiplier

0000

0010 0000

0000 0110

FIGURE 3.6 Multiply example using algorithm in Figure 3.4. Th e bit examined to determine the

next step is circled in color.

Signed Multiplication

So far, we have dealt with positive numbers. Th

e easiest way to understand how

to deal with signed numbers is to fi rst convert the multiplier and multiplicand to

positive numbers and then remember the original signs. Th

e algorithms should

then be run for 31 iterations, leaving the signs out of the calculation. As we learned

in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided that

we remember that we are dealing with numbers that have infi nite digits, and we are

only representing them with 32 bits. Hence, the shift ing steps would need to extend

the sign of the product for signed numbers. When the algorithm completes, the

lower word would have the 32-bit product.

Faster Multiplication

Moore’s Law has provided so much more in resources that hardware designers can

now build much faster multiplication hardware. Whether the multiplicand is to be

added or not is known at the beginning of the multiplication by looking at each of

the 32 multiplier bits. Faster multiplications are possible by essentially providing

one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed

with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the

right to the inputs of adders on the left , making a stack of adders 32 high. An

alternative way to organize these 32 additions is in a parallel tree, as Figure 3.7

shows. Instead of waiting for 32 add times, we wait just the log (32) or fi ve 32-bit

2

add times.

188

Chapter 3 Arithmetic for Computers

Mplier31 • Mcand Mplier30 • Mcand

Mplier29 • Mcand Mplier28 • Mcand

Mplier3 • Mcand

Mplier2 • Mcand

Mplier1 • Mcand

Mplier0 • Mcand

. . .

32 bits

32 bits

32 bits

32 bits

32 bits

32 bits

1 bit

1 bit

. . .

. . .

. . .

1 bit

1 bit

32 bits

Product63 Product62

. . .

Product47..16

. . .

Product1 Product0

FIGURE 3.7 Fast multiplication hardware. Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 31

adders and then organizes them to minimize delay.

In fact, multiply can go even faster than fi ve add times because of the use of carry

 save adders (see Section B.6 in Appendix B) and because it is easy to pipeline such a design to be able to support many multiplies simultaneously (see Chapter 4).

Multiply in MIPS

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product,

called Hi and Lo. To produce a properly signed or unsigned product, MIPS has two

instructions: multiply (mult) and multiply unsigned (multu). To fetch the integer

32-bit product, the programmer uses move from lo (mflo). Th

e MIPS assembler

generates a pseudoinstruction for multiply that specifi es three general-purpose

registers, generating mflo and mfhi instructions to place the product into registers.

Summary

Multiplication hardware simply shift s and add, as derived from the paper-and-

pencil method learned in grammar school. Compilers even use shift instructions

for multiplications by powers of 2. With much more hardware we can do the adds

in parallel, and do them much faster.

Both MIPS multiply instructions ignore overfl ow, so it is up to the soft ware to

Hardware/

check to see if the product is too big to fi t in 32 bits. Th

ere is no overfl ow if Hi is

Software 0 for multu or the replicated sign of Lo for mult. Th e instruction move from hi Interface

(mfhi) can be used to transfer Hi to a general-purpose register to test for overfl ow.

3.4 Division

189

 3.4 Division

Th

e reciprocal operation of multiply is divide, an operation that is even less frequent

 Divide et impera.

and even more quirky. It even off ers the opportunity to perform a mathematically Latin for “Divide and invalid operation: dividing by 0.

rule,” ancient political

Let’s start with an example of long division using decimal numbers to recall the maxim cited by

names of the operands and the grammar school division algorithm. For reasons Machiavelli, 1532

similar to those in the previous section, we limit the decimal digits to just 0 or 1.

Th

e example is dividing 1,001,010 by 1000 :

ten

ten

1001ten

Quotient

Divisor 1000ten 1001010ten

Dividend

−1000

10

101

1010

−1000

10ten

Remainder

Divide’s two operands, called the dividend and divisor, and the result, called dividend A number the quotient, are accompanied by a second result, called the remainder. Here is being divided.

another way to express the relationship between the components:

divisor A number that

Dividend Quotient Divisor Remainder

the dividend is divided by.

where the remainder is smaller than the divisor. Infrequently, programs use the quotient Th e primary result of a division;

divide instruction just to get the remainder, ignoring the quotient.

a number that when

Th

e basic grammar school division algorithm tries to see how big a number multiplied by the

can be subtracted, creating a digit of the quotient on each attempt. Our carefully divisor and added to the selected decimal example uses only the numbers 0 and 1, so it’s easy to fi gure out remainder produces the how many times the divisor goes into the portion of the dividend: it’s either 0 times dividend.

or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to remainder Th e these two choices, thereby simplifying binary division.

secondary result of

Let’s assume that both the dividend and the divisor are positive and hence the a division; a number quotient and the remainder are nonnegative. Th

e division operands and both that when added to the

results are 32-bit values, and we will ignore the sign for now.

product of the quotient

and the divisor produces

A Division Algorithm and Hardware

the dividend.

Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move

the divisor to the right one digit, so we start with the divisor placed in the left half

of the 64-bit Divisor register and shift it right 1 bit each step to align it with the

dividend. Th

e Remainder register is initialized with the dividend.

190

Chapter 3 Arithmetic for Computers

Divisor

Shift right

64 bits

Quotient

64-bit ALU

Shift left

32 bits

Remainder

Control

Write

test

64 bits

FIGURE 3.8 First version of the division hardware. Th

e Divisor register, ALU, and Remainder

register are all 64 bits wide, with only the Quotient register being 32 bits. Th

e 32-bit divisor starts in the

left half of the Divisor register and is shift ed right 1 bit each iteration. Th

e remainder is initialized with the

dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value into the Remainder register.

Figure 3.9 shows three steps of the fi rst division algorithm. Unlike a human, the computer isn’t smart enough to know in advance whether the divisor is smaller

than the dividend. It must fi rst subtract the divisor in step 1; remember that this is

how we performed the comparison in the set on less than instruction. If the result

is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in

the quotient (step 2a). If the result is negative, the next step is to restore the original

value by adding the divisor back to the remainder and generate a 0 in the quotient

(step 2b). Th

e divisor is shift ed right and then we iterate again. Th

e remainder and

quotient will be found in their namesake registers aft er the iterations are complete.

A Divide Algorithm

EXAMPLE

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7 by 2 ,

ten

ten

or 0000 0111 by 0010 .

two

two

Figure 3.10 shows the value of each register for each of the steps, with the

ANSWER

quotient being 3 and the remainder 1 . Notice that the test in step 2 of whether

ten

ten

the remainder is positive or negative simply tests whether the sign bit of the

Remainder register is a 0 or 1. Th

e surprising requirement of this algorithm is

that it takes n + 1 steps to get the proper quotient and remainder.

3.4 Division

191

Start

1. Subtract the Divisor register from the

Remainder register and place the

result in the Remainder register

Remainder ≥ 0

Remainder < 0

Test Remainder

2a. Shift the Quotient register to the left,

2b. Restore the original value by adding

setting the new rightmost bit to 1

the Divisor register to the Remainder

register and placing the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

Done

FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder aft er step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds the divisor to the remainder, thereby reversing the subtraction of step 1. Th

e fi nal shift , in step 3, aligns the

divisor properly, relative to the dividend for the next iteration. Th

ese steps are repeated 33 times.

Th

is algorithm and hardware can be refi ned to be faster and cheaper. Th

e speed-

up comes from shift ing the operands and the quotient simultaneously with the

subtraction. Th

is refi nement halves the width of the adder and registers by noticing

where there are unused portions of registers and adders. Figure 3.11 shows the revised hardware.

192

Chapter 3 Arithmetic for Computers

Iteration

Step

Quotient

Divisor

Remainder

0

Initial values

0000

0010 0000

0000 0111

1: Rem = Rem – Div

0000

0010 0000

1110 0111

1

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0

0000

0010 0000

0000 0111

3: Shift Div right

0000

0001 0000

0000 0111

1: Rem = Rem – Div

0000

0001 0000

1111 0111

2

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0

0000

0001 0000

0000 0111

3: Shift Div right

0000

0000 1000

0000 0111

1: Rem = Rem – Div

0000

0000 1000

1111 1111

3

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0

0000

0000 1000

0000 0111

3: Shift Div right

0000

0000 0100

0000 0111

1: Rem = Rem – Div

0000

0000 0100

0000 0011

4

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1

0001

0000 0100

0000 0011

3: Shift Div right

0001

0000 0010

0000 0011

1: Rem = Rem – Div

0001

0000 0010

0000 0001

5

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1

0011

0000 0010

0000 0001

3: Shift Div right

0011

0000 0001

0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. Th e bit examined to determine

the next step is circled in color.

Divisor

32 bits

32-bit ALU

Shift right

Remainder

Control

Shift left

Write

test

64 bits

FIGURE 3.11 An improved version of the division hardware. Th

e Divisor register, ALU, and

Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to Figure 3.8, the ALU and Divisor registers are halved and the remainder is shift ed left . Th

is version also combines the

Quotient register with the right half of the Remainder register. (As in Figure 3.5, the Remainder register should really be 65 bits to make sure the carry out of the adder is not lost.)

Signed Division

So far, we have ignored signed numbers in division. Th

e simplest solution is to

remember the signs of the divisor and dividend and then negate the quotient if the

signs disagree.

3.4 Division

193

Elaboration: The one complication of signed division is that we must also set the sign

of the remainder. Remember that the following equation must always hold:

Dividend Quotient Divisor Remainder

To understand how to set the sign of the remainder, let’s look at the example of dividing

all the combinations of 7 by 2 . The fi rst case is easy:

ten

ten

7 2: Quotient 3, Remainder 1

Checking the results:

7 3 2 (1) 6 1

If we change the sign of the dividend, the quotient must change as well:

7 2: Quotient 3

Rewriting our basic formula to calculate the remainder:

Remainder (Dividend Quotient Divisor) 7 (3 x 2)

 7 (6) 1

So,

7 2: Quotient 3, Remainder 1

Checking the results again:

7 3 2 (1) 6 1

The reason the answer isn’t a quotient of 4 and a remainder of 1, which would also

fi t this formula, is that the absolute value of the quotient would then change depending

on the sign of the dividend and the divisor! Clearly, if

(x y) ⬆ (x) y

programming would be an even greater challenge. This anomalous behavior is avoided

by following the rule that the dividend and remainder must have the same signs, no

matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

7 2: Quotient 3, Remainder 1

7 2: Quotient 3, Remainder 1

194

Chapter 3 Arithmetic for Computers

Thus the correctly signed division algorithm negates the quotient if the signs of the

operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division

Moore’s Law applies to division hardware as well as multiplication, so we would

like to be able to speed up division by throwing hardware at it. We used many

adders to speed up multiply, but we cannot do the same trick for divide. Th

e reason

is that we need to know the sign of the diff erence before we can perform the next

step of the algorithm, whereas with multiply we could calculate the 32 partial

products immediately.

Th

ere are techniques to produce more than one bit of the quotient per step.

Th

e SRT division technique tries to predict several quotient bits per step, using a

table lookup based on the upper bits of the dividend and remainder. It relies on

subsequent steps to correct wrong predictions. A typical value today is 4 bits. Th

e

key is guessing the value to subtract. With binary division, there is only a single

choice. Th

ese algorithms use 6 bits from the remainder and 4 bits from the divisor

to index a table that determines the guess for each step.

Th

e accuracy of this fast method depends on having proper values in the lookup

table. Th

e fallacy on page 231 in Section 3.9 shows what can happen if the table is

incorrect.

Divide in MIPS

You may have already observed that the same sequential hardware can be used for

both multiply and divide in Figures 3.5 and 3.11. Th

e only requirement is a 64-bit

register that can shift left or right and a 32-bit ALU that adds or subtracts. Hence,

MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide.

As we might expect from the algorithm above, Hi contains the remainder, and

Lo contains the quotient aft er the divide instruction completes.

To handle both signed integers and unsigned integers, MIPS has two instructions:

 divide (div) and divide unsigned (divu). Th

e MIPS assembler allows divide

instructions to specify three registers, generating the mflo or mfhi instructions to

place the desired result into a general-purpose register.

Summary

Th

e common hardware support for multiply and divide allows MIPS to provide a

single pair of 32-bit registers that are used both for multiply and divide. We accelerate

division by predicting multliple quotient bits and then correcting mispredictions

later, Figure 3.12 summarizes the enhancements to the MIPS architecture for the last two sections.

3.4 Division

195

MIPS assembly language

Category Instruction

Example

Meaning

Comments

add

add $s1,$s2,$s3

$s1 = $s2 + $s3

Three operands; overflow detected

subtract

sub $s1,$s2,$s3

$s1 = $s2 – $s3

Three operands; overflow detected

add immediate

addi $s1,$s2,100

$s1 = $s2 + 100

+ constant; overflow detected

add unsigned

addu $s1,$s2,$s3

$s1 = $s2 + $s3

Three operands; overflow undetected

subtract unsigned

subu $s1,$s2,$s3

$s1 = $s2 – $s3

Three operands; overflow undetected

add immediate unsigned

addiu $s1,$s2,100

$s1 = $s2 + 100

+ constant; overflow undetected

move from coprocessor

mfc0 $s1,$epc

$s1 = $epc

Copy Exception PC + special regs

register

Arithmetic

multiply

mult $s2,$s3

Hi, Lo = $s2 × $s3

64-bit signed product in Hi, Lo

multiply unsigned

multu $s2,$s3

Hi, Lo = $s2 × $s3

64-bit unsigned product in Hi, Lo

divide

div $s2,$s3

Lo = $s2 / $s3,

Lo = quotient, Hi = remainder

Hi = $s2 mod $s3

divide unsigned

divu $s2,$s3

Lo = $s2 / $s3,

Unsigned quotient and remainder

Hi = $s2 mod $s3

move from Hi

mfhi $s1

$s1 = Hi

Used to get copy of Hi

move from Lo

mflo $s1

$s1 = Lo

Used to get copy of Lo

load word

lw $s1,20($s2)

$s1 = Memory[$s2 + 20]

Word from memory to register

store word

sw $s1,20($s2)

Memory[$s2 + 20] = $s1

Word from register to memory

load half unsigned

lhu $s1,20($s2)

$s1 = Memory[$s2 + 20]

Halfword memory to register

store half

sh $s1,20($s2)

Memory[$s2 + 20] = $s1

Halfword register to memory

Data

load byte unsigned

lbu $s1,20($s2)

$s1 = Memory[$s2 + 20]

Byte from memory to register

transfer

store byte

sb $s1,20($s2)

Memory[$s2 + 20] = $s1

Byte from register to memory

load linked word

ll $s1,20($s2)

$s1 = Memory[$s2 + 20]

Load word as 1st half of atomic swap

store conditional word

sc $s1,20($s2)

Memory[$s2+20]=$s1;$s1=0

Store word as 2nd half atomic swap

or 1

load upper immediate

lui $s1,100

$s1 = 100 * 216

Loads constant in upper 16 bits

AND

AND $s1,$s2,$s3

$s1 = $s2 & $s3

Three reg. operands; bit-by-bit AND

OR

OR $s1,$s2,$s3

$s1 = $s2 | $s3

Three reg. operands; bit-by-bit OR

NOR

NOR $s1,$s2,$s3

$s1 = ~ ($s2 |$s3)

Three reg. operands; bit-by-bit NOR

Logical

AND immediate

ANDi $s1,$s2,100

$s1 = $s2 & 100

Bit-by-bit AND with constant

OR immediate

ORi $s1,$s2,100

$s1 = $s2 | 100

Bit-by-bit OR with constant

shift left logical

sll $s1,$s2,10

$s1 = $s2 << 10

Shift left by constant

shift right logical

srl $s1,$s2,10

$s1 = $s2 >> 10

Shift right by constant

branch on equal

beq $s1,$s2,25

if ($s1 == $s2) go to PC + 4 + 100

Equal test; PC-relative branch

branch on not equal

bne $s1,$s2,25

if ($s1 != $s2) go to PC + 4 + 100

Not equal test; PC-relative

set on less than

slt $s1,$s2,$s3

if ($s2 < $s3) $s1 = 1;

Compare less than; two’s

else $s1 = 0

complement

Condi-

set less than immediate

slti $s1,$s2,100

if ($s2 < 100) $s1 = 1;

Compare < constant; two’s

tional

else $s1=0

complement

branch

set less than unsigned

sltu $s1,$s2,$s3

if ($s2 < $s3) $s1 = 1;

Compare less than; natural numbers

else $s1=0

set less than immediate

sltiu $s1,$s2,100

if ($s2 < 100) $s1 = 1;

Compare < constant; natural numbers

unsigned

else $s1 = 0

Uncondi-

jump

j 2500

go to 10000

Jump to target address

tional

jump register

jr $ra

go to $ra

For switch, procedure return

jump

jump and link

jal 2500

$ra = PC + 4; go to 10000

For procedure call

FIGURE 3.12 MIPS core architecture. Th

e memory and registers of the MIPS architecture are not included for space reasons, but this

section added the Hi and Lo registers to support multiply and divide. MIPS machine language is listed in the MIPS Reference Data Card at the front of this book.

196

Chapter 3 Arithmetic for Computers

MIPS divide instructions ignore overfl ow, so soft ware must determine whether the

Hardware/

quotient is too large. In addition to overfl ow, division can also result in an improper

Software calculation: division by 0. Some computers distinguish these two anomalous events.

Interface

MIPS soft ware must check the divisor to discover division by 0 as well as overfl ow.

Elaboration: An even faster algorithm does not immediately add the divisor back

if the remainder is negative. It simply adds the dividend to the shifted remainder in

the following step, since (r d) 2 d r 2 d 2 d r 2 d. This nonrestoring division algorithm, which takes 1 clock cycle per step, is explored further

in the exercises; the algorithm above is called restoring division. A third algorithm that doesn’t save the result of the subtract if it’s negative is called a nonperforming division algorithm. It averages one-third fewer arithmetic operations.

 3.5 Floating

Point

 Speed gets you

Going beyond signed and unsigned integers, programming languages support

 nowhere if you’re

numbers with fractions, which are called reals in mathematics. Here are some

 headed the wrong way.

examples of reals:

American proverb

3.14159265… (pi)

ten

2.71828… (e)

ten

0.000000001 or 1.0 × 10−9 (seconds in a nanosecond)

ten

ten

3,155,760,000 or 3.15576 × 109 (seconds in a typical century)

ten

ten

scientifi c notation

Notice that in the last case, the number didn’t represent a small fraction, but it

A notation that renders

was bigger than we could represent with a 32-bit signed integer. Th

e alternative

numbers with a single

notation for the last two numbers is called scientifi c notation, which has a single

digit to the left of the

digit to the left of the decimal point. A number in scientifi c notation that has no

decimal point.

leading 0s is called a normalized number, which is the usual way to write it. For

example, 1.0 109 is in normalized scientifi c notation, but 0.1 108 and

normalized A number

ten

ten

10.0 1010 are not.

in fl oating-point notation

ten

that has no leading 0s.

Just as we can show decimal numbers in scientifi c notation, we can also show

binary numbers in scientifi c notation:

1.0 21

two

To keep a binary number in normalized form, we need a base that we can increase

or decrease by exactly the number of bits the number must be shift ed to have one

nonzero digit to the left of the decimal point. Only a base of 2 fulfi lls our need. Since

the base is not 10, we also need a new name for decimal point; binary point will do fi ne.

3.5 Floating

Point

197

Computer arithmetic that supports such numbers is called fl oating point fl oating point because it represents numbers in which the binary point is not fi xed, as it is for Computer arithmetic that integers. Th

e programming language C uses the name fl oat for such numbers. Just represents numbers in as in scientifi c notation, numbers are represented as a single nonzero digit to the which the binary point is not fi xed.

left of the binary point. In binary, the form is

1. xxxxxxxxx 2 yyyy

two

(Although the computer represents the exponent in base 2 as well as the rest of the

number, to simplify the notation we show the exponent in decimal.)

A standard scientifi c notation for reals in normalized form off ers three

advantages. It simplifi es exchange of data that includes fl oating-point numbers;

it simplifi es the fl oating-point arithmetic algorithms to know that numbers will

always be in this form; and it increases the accuracy of the numbers that can be

stored in a word, since the unnecessary leading 0s are replaced by real digits to the

right of the binary point.

Floating-Point Representation

A designer of a fl oating-point representation must fi nd a compromise between the fraction Th e value, size of the fraction and the size of the exponent, because a fi xed word size means generally between 0 and you must take a bit from one to add a bit to the other. Th

is tradeoff is between 1, placed in the fraction

precision and range: increasing the size of the fraction enhances the precision fi eld. Th e fraction is also of the fraction, while increasing the size of the exponent increases the range of called the mantissa.

numbers that can be represented. As our design guideline from Chapter 2 reminds exponent In the us, good design demands good compromise.

numerical representation

Floating-point numbers are usually a multiple of the size of a word. Th

e system of fl oating-point

representation of a MIPS fl oating-point number is shown below, where s is the sign arithmetic, the value that of the fl oating-point number (1 meaning negative), exponent is the value of the is placed in the exponent fi eld.

8-bit exponent fi eld (including the sign of the exponent), and fraction is the 23-bit

number. As we recall from Chapter 2, this representation is sign and magnitude,

since the sign is a separate bit from the rest of the number.

31 30 29 28 27 26 25 24 23 22 21

20

19 18 17 16 15 14 13 12 11 10 9

8

7 6 5 4

3

2

1

0

s

exponent

fraction

1 bit

8 bits

23 bits

In general, fl oating-point numbers are of the form

(1)S F 2E

F involves the value in the fraction fi eld and E involves the value in the exponent

fi eld; the exact relationship to these fi elds will be spelled out soon. (We will shortly

see that MIPS does something slightly more sophisticated.)

198

Chapter 3 Arithmetic for Computers

Th

ese chosen sizes of exponent and fraction give MIPS computer arithmetic

an extraordinary range. Fractions almost as small as 2.0 1038 and numbers

ten

overfl ow (fl oating-

almost as large as 2.0 1038 can be represented in a computer. Alas, extraordinary

ten

point) A situation in

diff ers from infi nite, so it is still possible for numbers to be too large. Th

us, overfl ow

which a positive exponent

interrupts can occur in fl oating-point arithmetic as well as in integer arithmetic.

becomes too large to fi t in

the exponent fi eld.

Notice that overfl ow here means that the exponent is too large to be represented

in the exponent fi eld.

Floating point off ers a new kind of exceptional event as well. Just as programmers

underfl ow (fl oating-

will want to know when they have calculated a number that is too large to be

point) A situation

represented, they will want to know if the nonzero fraction they are calculating

in which a negative

has become so small that it cannot be represented; either event could result in a

exponent becomes too

program giving incorrect answers. To distinguish it from overfl ow, we call this

large to fi t in the exponent

fi eld.

event underfl ow. Th

is situation occurs when the negative exponent is too large to

fi t in the exponent fi eld.

double precision

One way to reduce chances of underfl ow or overfl ow is to off er another format

A fl oating-point value

that has a larger exponent. In C this number is called double, and operations on

represented in two 32-bit

doubles are called double precision fl oating-point arithmetic; single precision

words.

fl oating point is the name of the earlier format.

single precision

Th

e representation of a double precision fl oating-point number takes two MIPS

A fl oating-point value

words, as shown below, where s is still the sign of the number, exponent is the value represented in a single 32-of the 11-bit exponent fi eld, and fraction is the 52-bit number in the fraction fi eld.

bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

s

exponent

fraction

1 bit

11 bits

20 bits

fraction (continued)

32 bits

MIPS double precision allows numbers almost as small as 2.0 10308 and almost

ten

as large as 2.0 10308. Although double precision does increase the exponent

ten

range, its primary advantage is its greater precision because of the much larger

fraction.

Th

ese formats go beyond MIPS. Th

ey are part of the IEEE 754 fl oating-point

 standard, found in virtually every computer invented since 1980. Th

is standard has

greatly improved both the ease of porting fl oating-point programs and the quality

of computer arithmetic.

To pack even more bits into the signifi cand, IEEE 754 makes the leading 1-bit

of normalized binary numbers implicit. Hence, the number is actually 24 bits long

in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double

precision (1 52). To be precise, we use the term signifi cand to represent the 24-

or 53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or

52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so

that the hardware won’t attach a leading 1 to it.

3.5 Floating

Point

199

Single precision

Double precision

Object represented

Exponent

Fraction

Exponent

Fraction

0

0

0

0

0

0

Nonzero

0

Nonzero

± denormalized number

1–254

Anything

1–2046

Anything

± floating-point number

255

0

2047

0

± infinity

255

Nonzero

2047

Nonzero

NaN (Not a Number)

FIGURE 3.13 EEE 754 encoding of fl oating-point numbers. A separate sign bit determines the sign. Denormalized numbers are described in the Elaboration on page 222. Th

is information is also found in

Column 4 of the MIPS Reference Data Card at the front of this book.

Th

us 00 … 00 represents 0; the representation of the rest of the numbers uses

two

the form from before with the hidden 1 added:

(1)S (1 Fraction) 2E

where the bits of the fraction represent a number between 0 and 1 and E specifi es

the value in the exponent fi eld, to be given in detail shortly. If we number the bits

of the fraction from left to right s1, s2, s3, …, then the value is

(1)S (1 (s 1 21) (s 2 22) (s 3 23) (s 4 24) ...) 2E

Figure 3.13 shows the encodings of IEEE 754 fl oating-point numbers. Other

features of IEEE 754 are special symbols to represent unusual events. For example,

instead of interrupting on a divide by 0, soft ware can set the result to a bit pattern

representing ∞ or ∞; the largest exponent is reserved for these special symbols.

When the programmer prints the results, the program will print an infi nity symbol.

(For the mathematically trained, the purpose of infi nity is to form topological

closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0

or subtracting infi nity from infi nity. Th

is symbol is NaN, for Not a Number. Th

e

purpose of NaNs is to allow programmers to postpone some tests and decisions to

a later time in the program when they are convenient.

Th

e designers of IEEE 754 also wanted a fl oating-point representation that could

be easily processed by integer comparisons, especially for sorting. Th

is desire is

why the sign is in the most signifi cant bit, allowing a quick test of less than, greater

than, or equal to 0. (It’s a little more complicated than a simple integer sort, since

this notation is essentially sign and magnitude rather than two’s complement.)

Placing the exponent before the signifi cand also simplifi es the sorting of

fl oating-point numbers using integer comparison instructions, since numbers with

bigger exponents look larger than numbers with smaller exponents, as long as both

exponents have the same sign.

200

Chapter 3 Arithmetic for Computers

Negative exponents pose a challenge to simplifi ed sorting. If we use two’s

complement or any other notation in which negative exponents have a 1 in the

most signifi cant bit of the exponent fi eld, a negative exponent will look like a big

number. For example, 1.0 21 would be represented as

two

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

8

7

6

5

4

3

2

1

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.

.

.

(Remember that the leading 1 is implicit in the signifi cand.) Th

e value 1.0 21

two

would look like the smaller binary number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.

.

.

Th

e desirable notation must therefore represent the most negative exponent as

00 … 00 and the most positive as 11 … 11 . Th

is convention is called biased

two

two

 notation, with the bias being the number subtracted from the normal, unsigned

representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of 1 is

represented by the bit pattern of the value 1 127 , or 126 0111 1110 ,

ten

ten

two

and 1 is represented by 1 127, or 128 1000 0000 . Th

e exponent bias for

ten

two

double precision is 1023. Biased exponent means that the value represented by a

fl oating-point number is really

(1)S (1 Fraction) 2(Exponent Bias)

Th

e range of single precision numbers is then from as small as

1.00000000000000000000000 2126

two

to as large as

1.11111111111111111111111 2127.

two

Let’s demonstrate.

3.5 Floating

Point

201

Floating-Point Representation

EXAMPLE

Show the IEEE 754 binary representation of the number 0.75 in single and

ten

double precision.

Th

e number 0.75 is also

ten

ANSWER

3/4 or 3/22

ten

ten

It is also represented by the binary fraction

11 /22 or 0.11

two

ten

two

In scientifi c notation, the value is

 0.11 20

two

and in normalized scientifi c notation, it is

1.1 21

two

Th

e general representation for a single precision number is

(1)S (1 Fraction) 2(Exponent127)

Subtracting the bias 127 from the exponent of 1.1 21 yields

two

(1)1 (1 .1000 0000 0000 0000 0000 000) 2(126127)

two

Th

e single precision binary representation of 0.75 is then

ten

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 bit

8 bits

23 bits

Th

e double precision representation is

(1)1 (1 .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000) 2(10221023)

two

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

1

0

1

1

1

1

1

1

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 bit

11 bits

20 bits

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

32 bits

202

Chapter 3 Arithmetic for Computers

Now let’s try going the other direction.

Converting Binary to Decimal Floating Point

EXAMPLE

What decimal number is represented by this single precision fl oat?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

8

7

6

5

4

3

2

1

0

1

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.

.

.

Th

e sign bit is 1, the exponent fi eld contains 129, and the fraction fi eld contains

ANSWER

1 22 1/4, or 0.25. Using the basic equation,

(1)S (1 Fraction) 2(ExponentBias) (1)1 (1 0.25) 2(129127)

 1 1.25 22

 1.25 4

 5.0

In the next few subsections, we will give the algorithms for fl oating-point

addition and multiplication. At their core, they use the corresponding integer

operations on the signifi cands, but extra bookkeeping is necessary to handle the

exponents and normalize the result. We fi rst give an intuitive derivation of the

algorithms in decimal and then give a more detailed, binary version in the fi gures.

Elaboration: Following IEEE guidelines, the IEEE 754 committee was reformed 20

years after the standard to see what changes, if any, should be made. The revised

standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and adds a 16-bit format

(“half precision”) and a 128-bit format (“quadruple precision”). No hardware has yet been

built that supports quadruple precision, but it will surely come. The revised standard

also add decimal fl oating point arithmetic, which IBM mainframes have implemented.

Elaboration: In an attempt to increase range without removing bits from the signifi cand, some computers before the IEEE 754 standard used a base other than 2. For example,

the IBM 360 and 370 mainframe computers use base 16. Since changing the IBM

exponent by one means shifting the signifi cand by 4 bits, “normalized” base 16 numbers

can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that up to 3 bits must

be dropped from the signifi cand, which leads to surprising problems in the accuracy of

fl oating-point arithmetic. IBM mainframes now support IEEE 754 as well as the hex format.

3.5 Floating

Point

203

Floating-Point Addition

Let’s add numbers in scientifi c notation by hand to illustrate the problems in

fl oating-point addition: 9.999 101 1.610 101. Assume that we can store

ten

ten

only four decimal digits of the signifi cand and two decimal digits of the exponent.

Step 1. To be able to add these numbers properly, we must align the decimal

point of the number that has the smaller exponent. Hence, we need

a form of the smaller number, 1.610 101, that matches the

ten

larger exponent. We obtain this by observing that there are multiple

representations of an unnormalized fl oating-point number in

scientifi c notation:

1.610 101 0.1610 100 0.01610 101

ten

ten

ten

Th

e number on the right is the version we desire, since its exponent

matches the exponent of the larger number, 9.999 101. Th

us, the

ten

fi rst step shift s the signifi cand of the smaller number to the right until

its corrected exponent matches that of the larger number. But we can

represent only four decimal digits so, aft er shift ing, the number is

really

0.016

 101

Step 2. Next comes the addition of the signifi cands:

9.999ten

+

0.016ten

10.015ten

Th

e sum is 10.015 101.

ten

Step

3.

Th

is sum is not in normalized scientifi c notation, so we need to

adjust it:

10.015 101 1.0015 102

ten

ten

Th

us, aft er the addition we may have to shift the sum to put it into

normalized form, adjusting the exponent appropriately. Th

is example

shows shift ing to the right, but if one number were positive and the

other were negative, it would be possible for the sum to have many

leading 0s, requiring left shift s. Whenever the exponent is increased

or decreased, we must check for overfl ow or underfl ow—that is, we

must make sure that the exponent still fi ts in its fi eld.

Step 4. Since we assumed that the signifi cand can be only four digits long

(excluding the sign), we must round the number. In our grammar

school algorithm, the rules truncate the number if the digit to the

right of the desired point is between 0 and 4 and add 1 to the digit if

the number to the right is between 5 and 9. Th

e number

1.0015 102

ten

204

Chapter 3 Arithmetic for Computers

is rounded to four digits in the signifi cand to

1.002 102

ten

since the fourth digit to the right of the decimal point was between 5

and 9. Notice that if we have bad luck on rounding, such as adding 1

to a string of 9s, the sum may no longer be normalized and we would

need to perform step 3 again.

Figure 3.14 shows the algorithm for binary fl oating-point addition that follows this decimal example. Steps 1 and 2 are similar to the example just discussed:

adjust the signifi cand of the number with the smaller exponent and then add the

two signifi cands. Step 3 normalizes the results, forcing a check for overfl ow or

underfl ow. Th

e test for overfl ow and underfl ow in step 3 depends on the precision

of the operands. Recall that the pattern of all 0 bits in the exponent is reserved and

used for the fl oating-point representation of zero. Moreover, the pattern of all 1 bits

in the exponent is reserved for indicating values and situations outside the scope of

normal fl oating-point numbers (see the Elaboration on page 222). For the example

below, remember that for single precision, the maximum exponent is 127, and the

minimum exponent is 126.

Binary Floating-Point Addition

EXAMPLE

Try adding the numbers 0.5 and 0.4375 in binary using the algorithm in

ten

ten

Figure 3.14.

Let’s fi rst look at the binary version of the two numbers in normalized scientifi c

ANSWER

notation, assuming that we keep 4 bits of precision:

0.5 1/2

 1/21

ten

ten

ten

 0.1

 0.1 20

 1.000 21

two

two

two

0.4375 7/16 7/24

ten

ten

ten

 0.0111 0.0111 20 1.110 22

two

two

two

Now we follow the algorithm:

Step

1.

Th

e signifi cand of the number with the lesser exponent (1.11

two

 22) is shift ed right until its exponent matches the larger number:

1.110 22 0.111 21

two

two

Step 2. Add the signifi cands:

1.000 21 (0.111 21) 0.001 21

two

two

two

3.5 Floating

Point

205

Start

1. Compare the exponents of the two numbers;

shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

Overflow or

Yes

underflow?

No

Exception

4. Round the significand to the appropriate

number of bits

No

Still normalized?

Yes

Done

FIGURE 3.14 Floating-point addition. Th

e normal path is to execute steps 3 and 4 once, but if

rounding causes the sum to be unnormalized, we must repeat step 3.

206

Chapter 3 Arithmetic for Computers

Step 3. Normalize the sum, checking for overfl ow or underfl ow:

0.001 21 0.010 22 0.100 23

two

two

two

 1.000 24

two

Since

127

 4 126, there is no overfl ow or underfl ow. (Th

e

biased exponent would be 4 127, or 123, which is between 1 and

254, the smallest and largest unreserved biased exponents.)

Step 4. Round the sum:

1.000 24

two

Th

e sum already fi ts exactly in 4 bits, so there is no change to the bits

due to rounding.

Th

is sum is then

1.000

 24 0.0001000 0.0001

two

two

two

 1/24

 1/16

 0.0625

ten

ten

ten

Th

is sum is what we would expect from adding 0.5 to 0.4375 .

ten

ten

Many computers dedicate hardware to run fl oating-point operations as fast as possible.

Figure 3.15 sketches the basic organization of hardware for fl oating-point addition.

Floating-Point Multiplication

Now that we have explained fl oating-point addition, let’s try fl oating-point

multiplication. We start by multiplying decimal numbers in scientifi c notation by

hand: 1.110 1010 9.200 105. Assume that we can store only four digits

ten

ten

of the signifi cand and two digits of the exponent.

Step 1. Unlike addition, we calculate the exponent of the product by simply

adding the exponents of the operands together:

New exponent 10 (5) 5

Let’s do this with the biased exponents as well to make sure we obtain

the same result: 10 + 127 = 137, and 5 + 127 = 122, so

New exponent 137 122 259

Th

is result is too large for the 8-bit exponent fi eld, so something is

amiss! Th

e problem is with the bias because we are adding the biases

as well as the exponents:

New exponent (10 127) (5 127) (5 2 127) 259

 Accordingly, to get the correct biased sum when we add biased numbers,

 we must subtract the bias from the sum:

3.5 Floating

Point

207

Sign

Exponent

Fraction

Sign

Exponent

Fraction

Compare

Small ALU

exponents

Exponent

difference

0

1

0

1

0

1

Shift smaller

Control

Shift right

number right

Add

Big ALU

0

1

0

1

Increment or

Shift left or right

decrement

Normalize

Rounding hardware

Round

Sign

Exponent

Fraction

FIGURE 3.15 Block diagram of an arithmetic unit dedicated to fl oating-point addition. Th e steps of Figure 3.14 correspond

to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is larger and by how much. Th

is diff erence controls the three multiplexors; from left to right, they select the larger exponent, the signifi cand of the smaller number, and the signifi cand of the larger number. Th

e smaller signifi cand is shift ed right, and then the signifi cands are added together

using the big ALU. Th

e normalization step then shift s the sum left or right and increments or decrements the exponent. Rounding then creates the fi nal result, which may require normalizing again to produce the actual fi nal result.

208

Chapter 3 Arithmetic for Computers

New exponent 137 122 127 259 127 132 (5 127)

and 5 is indeed the exponent we calculated initially.

Step 2. Next comes the multiplication of the signifi cands:

1.110ten

× 9.200ten

0000

0000

2220

9990

10212000ten

Th

ere are three digits to the right of the decimal point for each

operand, so the decimal point is placed six digits from the right in the

product signifi cand:

10.212000ten

Assuming that we can keep only three digits to the right of the decimal

point, the product is 10.212 105.

Step

3.

Th

is product is unnormalized, so we need to normalize it:

10.212 105 1.0212 106

ten

ten

Th

us, aft er the multiplication, the product can be shift ed right one digit

to put it in normalized form, adding 1 to the exponent. At this point,

we can check for overfl ow and underfl ow. Underfl ow may occur if both

operands are small—that is, if both have large negative exponents.

Step 4. We assumed that the signifi cand is only four digits long (excluding the

sign), so we must round the number. Th

e number

1.0212 106

ten

is rounded to four digits in the signifi cand to

1.021 106

ten

Step

5.

Th

e sign of the product depends on the signs of the original operands.

If they are both the same, the sign is positive; otherwise, it’s negative.

Hence, the product is

1.021 106

ten

Th

e sign of the sum in the addition algorithm was determined by

addition of the signifi cands, but in multiplication, the sign of the

product is determined by the signs of the operands.

3.5 Floating

Point

209

Start

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

Overflow or

Yes

underflow?

No

Exception

4. Round the significand to the appropriate

number of bits

No

Still normalized?

Yes

5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

Done

FIGURE 3.16 Floating-point multiplication. Th

e normal path is to execute steps 3 and 4 once, but if

rounding causes the sum to be unnormalized, we must repeat step 3.

210

Chapter 3 Arithmetic for Computers

Once again, as Figure 3.16 shows, multiplication of binary fl oating-point numbers is quite similar to the steps we have just completed. We start with calculating

the new exponent of the product by adding the biased exponents, being sure to

subtract one bias to get the proper result. Next is multiplication of signifi cands,

followed by an optional normalization step. Th

e size of the exponent is checked

for overfl ow or underfl ow, and then the product is rounded. If rounding leads to

further normalization, we once again check for exponent size. Finally, set the sign

bit to 1 if the signs of the operands were diff erent (negative product) or to 0 if they

were the same (positive product).

Binary Floating-Point Multiplication

EXAMPLE

Let’s try multiplying the numbers 0.5 and 0.4375 , using the steps in

ten

ten

Figure 3.16.

In binary, the task is multiplying 1.000 21 by 1.110 22.

two

two

ANSWER

Step 1. Adding the exponents without bias:

1 (2) 3

or, using the biased representation:

(1 127) (2 127) 127 (1 2) (127 127 127)

 3 127 124

Step 2. Multiplying the signifi cands:

1.000two

 1.110two

0000

1000

1000

1000

1110000two

Th

e product is 1.110000 23, but we need to keep it to 4 bits, so it

two

is 1.110 23.

two

Step 3. Now we check the product to make sure it is normalized, and then

check the exponent for overfl ow or underfl ow. Th

e product is already

normalized and, since 127 3 126, there is no overfl ow or

underfl ow. (Using the biased representation, 254 124 1, so the

exponent fi ts.)

Step 4. Rounding the product makes no change:

1.110 23

two

3.5 Floating

Point

211

Step 5. Since the signs of the original operands diff er, make the sign of the

product negative. Hence, the product is

1.110 23

two

Converting to decimal to check our results:

1.110 23 0.001110 0.00111

two

two

two

 7/25 7/32 0.21875

ten

ten

ten

Th

e product of 0.5 and 0.4375 is indeed 0.21875 .

ten

ten

ten

Floating-Point Instructions in MIPS

MIPS supports the IEEE 754 single precision and double precision formats with

these instructions:

■ Floating-point addition, single (add.s) and addition, double (add.d)

■ Floating-point subtraction, single (sub.s) and subtraction, double (sub.d)

■ Floating-point multiplication, single (mul.s) and multiplication, double (mul.d)

■ Floating-point division, single (div.s) and division, double (div.d)

■ Floating-point comparison, single (c.x.s) and comparison, double (c.x.d),

where x may be equal (eq), not equal (neq), less than (lt), less than or equal (le), greater than (gt), or greater than or equal (ge)

■ Floating-point branch, true (bc1t) and branch, false (bc1f)

Floating-point comparison sets a bit to true or false, depending on the comparison

condition, and a fl oating-point branch then decides whether or not to branch,

depending on the condition.

Th

e MIPS designers decided to add separate fl oating-point registers—called

$f0, $f1, $f2, …—used either for single precision or double precision. Hence,

they included separate loads and stores for fl oating-point registers: lwc1 and

swc1. Th

e base registers for fl oating-point data transfers which are used for

addresses remain integer registers. Th

e MIPS code to load two single precision

numbers from memory, add them, and then store the sum might look like this:

lwc1 $f4,c($sp) # Load 32-bit F.P. number into F4

lwc1 $f6,a($sp) # Load 32-bit F.P. number into F6

add.s $f2,$f4,$f6 # F2 = F4 + F6 single precision

swc1 $f2,b($sp) # Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision registers,

using the even register number as its name. Th

us, the pair of single precision

registers $f2 and $f3 also form the double precision register named $f2.

Figure 3.17 summarizes the fl oating-point portion of the MIPS architecture revealed in this chapter, with the additions to support fl oating point shown in color. Similar to

Figure 2.19 in Chapter 2, Figure 3.18 shows the encoding of these instructions.

212

Chapter 3 Arithmetic for Computers

MIPS floating-point operands

Name

Example

Comments

32 floating-

$f0, $f1, $f2, . . . , $f31

MIPS floating-point registers are used in pairs for double precision numbers.

point registers

230 memory words

Memory[0],

Accessed only by data transfer instructions. MIPS uses byte addresses, so

Memory[4], . . . ,

sequential word addresses differ by 4. Memory holds data structures, such

Memory[4294967292]

as arrays, and spilled registers, such as those saved on procedure calls.

MIPS floating-point assembly language

Category Instruction

Example

Meaning

Comments

FP add single

add.s $f2,$f4,$f6

$f2 = $f4 + $f6

FP add (single precision)

FP subtract single

sub.s $f2,$f4,$f6

$f2 = $f4 – $f6

FP sub (single precision)

FP multiply single

mul.s $f2,$f4,$f6

$f2 = $f4 × $f6

FP multiply (single precision)

FP divide single

div.s $f2,$f4,$f6

$f2 = $f4 / $f6

FP divide (single precision)

Arithmetic

FP add double

add.d $f2,$f4,$f6

$f2 = $f4 + $f6

FP add (double precision)

FP subtract double

sub.d $f2,$f4,$f6

$f2 = $f4 – $f6

FP sub (double precision)

FP multiply double

mul.d $f2,$f4,$f6

$f2 = $f4 × $f6

FP multiply (double

precision)

FP divide double

div.d $f2,$f4,$f6

$f2 = $f4 / $f6

FP divide (double precision)

Data

load word copr. 1

lwc1 $f1,100($s2)

$f1 = Memory[$s2 + 100] 32-bit data to FP register

transfer

store word copr. 1

swc1 $f1,100($s2)

Memory[$s2 + 100] = $f1

32-bit data to memory

branch on FP true

bc1t 25

if (cond == 1) go to PC + 4

PC-relative branch if FP

+ 100

cond.

branch on FP false

bc1f 25

if (cond == 0) go to PC + 4

PC-relative branch if not

Condi-

+ 100

cond.

tional

FP compare single

c.lt.s $f2,$f4

if ($f2 < $f4)

FP compare less than

branch

(eq,ne,lt,le,gt,ge)

cond = 1; else cond = 0

single precision

FP compare double

c.lt.d $f2,$f4

if ($f2 < $f4)

FP compare less than

(eq,ne,lt,le,gt,ge)

cond = 1; else cond = 0

double precision

MIPS floating-point machine language

Name

Format

Example

Comments

add.s

R

17

16

6

4

2

0

add.s $f2,$f4,$f6

sub.s

R

17

16

6

4

2

1

sub.s $f2,$f4,$f6

mul.s

R

17

16

6

4

2

2

mul.s $f2,$f4,$f6

div.s

R

17

16

6

4

2

3

div.s $f2,$f4,$f6

add.d

R

17

17

6

4

2

0

add.d $f2,$f4,$f6

sub.d

R

17

17

6

4

2

1

sub.d $f2,$f4,$f6

mul.d

R

17

17

6

4

2

2

mul.d $f2,$f4,$f6

div.d

R

17

17

6

4

2

3

div.d $f2,$f4,$f6

lwc1

I

49

20

2

100

lwc1 $f2,100($s4)

swc1

I

57

20

2

100

swc1 $f2,100($s4)

bc1t

I

17

8

1

25

bc1t 25

bc1f

I

17

8

0

25

bc1f 25

c.lt.s

R

17

16

4

2

0

60

c.lt.s $f2,$f4

c.lt.d

R

17

17

4

2

0

60

c.lt.d $f2,$f4

Field size

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

All MIPS instructions 32 bits

FIGURE 3.17 MIPS fl oating-point architecture revealed thus far. See Appendix A, Section A.10, for more detail. Th is information

is also found in column 2 of the MIPS Reference Data Card at the front of this book.

3.5 Floating

Point

213

op(31:26):

28–26

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

31–29

0(000)

Rfmt

Bltz/gez

j

jal

beq

bne

blez

bgtz

1(001)

addi

addiu

slti

sltiu

ANDi

ORi xORi

lui

2(010)

TLB

FlPt

3(011)

4(100)

lb

lh

lwl

lw

lbu

lhu

lwr

5(101)

sb

sh

swl

sw

swr

6(110)

lwc0

lwc1

7(111)

swc0

swc1

op(31:26) = 010001 (FlPt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c = t), rs(25:21): 23–21

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

25–24

0(00)

mfc1

cfc1

mtc1

ctc1

1(01)

bc1. c

2(10)

 f = single

 f = double

3(11)

op(31:26) = 010001 (FlPt), (f above: 10000 => f = s, 10001 => f = d), funct(5:0): 2–0

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

5–3

0(000)

add. f

sub. f

mul. f

div. f

abs. f

mov. f

neg. f

1(001)

2(010)

3(011)

4(100)

cvt.s. f

cvt.d. f

cvt.w. f

5(101)

6(110)

c.f. f

c.un. f

c.eq. f

c.ueq. f

c.olt. f

c.ult. f

c.ole. f

c.ule. f

7(111)

c.sf. f

c.ngle. f

c.seq. f

c.ngl. f

c.lt. f

c.nge. f

c.le. f

c.ngt. f

FIGURE 3.18 MIPS fl oating-point instruction encoding. Th

is notation gives the value of a fi eld by row and by column. For example,

in the top portion of the fi gure, lw is found in row number 4 (100 for bits 31–29 of the instruction) and column number 3 (011 for bits two

two

28–26 of the instruction), so the corresponding value of the op fi eld (bits 31–26) is 100011 . Underscore means the fi eld is used elsewhere.

two

For example, FlPt in row 2 and column 1 (op 010001) is defi ned in the bottom part of the fi gure. Hence sub.f in row 0 and column 1 of two

the bottom section means that the funct fi eld (bits 5–0) of the instruction) is 000001 and the op fi eld (bits 31–26) is 010001 . Note that the two

two

5-bit rs fi eld, specifi ed in the middle portion of the fi gure, determines whether the operation is single precision (f s, so rs 10000) or double precision (f d, so rs 10001). Similarly, bit 16 of the instruction determines if the bc1.c instruction tests for true (bit 16 1 	bc1.t) or false (bit 16 0 	 bc1.f). Instructions in color are described in Chapter 2 or this chapter, with Appendix A covering all instructions.

Th

is information is also found in column 2 of the MIPS Reference Data Card at the front of this book.

214

Chapter 3 Arithmetic for Computers

Hardware/

One issue that architects face in supporting fl oating-point arithmetic is whether

to use the same registers used by the integer instructions or to add a special set

Software for fl oating point. Because programs normally perform integer operations and

Interface

fl oating-point operations on diff erent data, separating the registers will only

slightly increase the number of instructions needed to execute a program. Th

e

major impact is to create a separate set of data transfer instructions to move data

between fl oating-point registers and memory.

Th

e benefi ts of separate fl oating-point registers are having twice as many

registers without using up more bits in the instruction format, having twice the

register bandwidth by having separate integer and fl oating-point register sets, and

being able to customize registers to fl oating point; for example, some computers

convert all sized operands in registers into a single internal format.

Compiling a Floating-Point C Program into MIPS Assembly Code

EXAMPLE

Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)

{

return ((5.0/9.0) *(fahr – 32.0));

}

Assume that the fl oating-point argument fahr is passed in $f12 and the

result should go in $f0. (Unlike integer registers, fl oating-point register 0 can

contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three fl oating-point constants in

ANSWER

memory within easy reach of the global pointer $gp. Th

e fi rst two instruc-

tions load the constants 5.0 and 9.0 into fl oating-point registers:

f2c:

lwc1 $f16,const5($gp) # $f16 = 5.0 (5.0 in memory)

lwc1 $f18,const9($gp) # $f18 = 9.0 (9.0 in memory)

Th

ey are then divided to get the fraction 5.0/9.0:

div.s $f16, $f16, $f18 # $f16 = 5.0 / 9.0

3.5 Floating

Point

215

(Many compilers would divide 5.0 by 9.0 at compile time and save the single

constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we

load the constant 32.0 and then subtract it from fahr ($f12):

lwc1 $f18, const32($gp)# $f18 = 32.0

sub.s $f18, $f12, $f18 # $f18 = fahr – 32.0

Finally, we multiply the two intermediate results, placing the product in $f0 as

the return result, and then return

mul.s $f0, $f16, $f18 # $f0 = (5/9)*(fahr – 32.0)

jr $ra # return

Now let’s perform fl oating-point operations on matrices, code commonly

found in scientifi c programs.

Compiling Floating-Point C Procedure with Two-Dimensional

Matrices into MIPS

EXAMPLE

Most fl oating-point calculations are performed in double precision. Let’s per-

form matrix multiply of C C A * B. It is commonly called DGEMM,

for Double precision, General Matrix Multiply. We’ll see versions of DGEMM

again in Section 3.8 and subsequently in Chapters 4, 5, and 6. Let’s assume C,

A, and B are all square matrices with 32 elements in each dimension.

void mm (double c[][], double a[][], double b[][])

{

int i, j, k;

for (i = 0; i != 32; i = i + 1)

for (j = 0; j != 32; j = j + 1)

for (k = 0; k != 32; k = k + 1)

c[i][j] = c[i][j] + a[i][k] *b[k][j];

}

Th

e array starting addresses are parameters, so they are in $a0, $a1, and $a2.

Assume that the integer variables are in $s0, $s1, and $s2, respectively.

What is the MIPS assembly code for the body of the procedure?

Note that c[i][j] is used in the innermost loop above. Since the loop index

is k, the index does not aff ect c[i][j], so we can avoid loading and storing

ANSWER

c[i][j] each iteration. Instead, the compiler loads c[i][j] into a register

outside the loop, accumulates the sum of the products of a[i][k] and

216

Chapter 3 Arithmetic for Computers

b[k][j] in that same register, and then stores the sum into c[i][j] upon

termination of the innermost loop.

We keep the code simpler by using the assembly language pseudoinstructions

li (which loads a constant into a register), and l.d and s.d (which the

assembler turns into a pair of data transfer instructions, lwc1 or swc1, to a

pair of fl oating-point registers).

Th

e body of the procedure starts with saving the loop termination value of

32 in a temporary register and then initializing the three for loop variables:

mm:...

li $t1, 32 # $t1 = 32 (row size/loop end)

li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

To calculate the address of c[i][j], we need to know how a 32 32, two-

dimensional array is stored in memory. As you might expect, its layout is the

same as if there were 32 single-dimension arrays, each with 32 elements. So the

fi rst step is to skip over the i “single-dimensional arrays,” or rows, to get the

one we want. Th

us, we multiply the index in the fi rst dimension by the size of

the row, 32. Since 32 is a power of 2, we can use a shift instead:

sll $t2, $s0, 5 # $t2 = i * 25 (size of row of c)

Now we add the second index to select the jth element of the desired row:

addu $t2, $t2, $s1 # $t2 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix element

in bytes. Since each element is 8 bytes for double precision, we can instead shift

left by 3:

sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

Next we add this sum to the base address of c, giving the address of c[i][j],

and then load the double precision number c[i][j] into $f4:

addu $t2, $a0, $t2 # $t2 = byte address of c[i][j]

l.d $f4, 0($t2) # $f4 = 8 bytes of c[i][j]

Th

e following fi ve instructions are virtually identical to the last fi ve: calculate

the address and then load the double precision number b[k][j].

L3: sll $t0, $s2, 5 # $t0 = k * 25 (size of row of b)

addu $t0, $t0, $s1 # $t0 = k * size(row) + j

sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

addu $t0, $a2, $t0 # $t0 = byte address of b[k][j]

l.d $f16, 0($t0) # $f16 = 8 bytes of b[k][j]

Similarly, the next fi ve instructions are like the last fi ve: calculate the address

and then load the double precision number a[i][k].

3.5 Floating

Point

217

sll $t0, $s0, 5 # $t0 = i * 25 (size of row of a)

addu $t0, $t0, $s2 # $t0 = i * size(row) + k

sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

addu $t0, $a1, $t0 # $t0 = byte address of a[i][k]

l.d $f18, 0($t0) # $f18 = 8 bytes of a[i][k]

Now that we have loaded all the data, we are fi nally ready to do some fl oating-

point operations! We multiply elements of a and b located in registers $f18

and $f16, and then accumulate the sum in $f4.

mul.d $f16, $f18, $f16 # $f16 = a[i][k] * b[k][j]

add.d $f4, $f4, $f16 # f4 = c[i][j] + a[i][k] * b[k][j]

Th

e fi nal block increments the index k and loops back if the index is not 32.

If it is 32, and thus the end of the innermost loop, we need to store the sum

accumulated in $f4 into c[i][j].

addiu $s2, $s2, 1 # $k = k + 1

bne $s2, $t1, L3 # if (k != 32) go to L3

s.d $f4, 0($t2) # c[i][j] = $f4

Similarly, these fi nal four instructions increment the index variable of the

middle and outermost loops, looping back if the index is not 32 and exiting if

the index is 32.

addiu $s1, $s1, 1 # $j = j + 1

bne $s1, $t1, L2 # if (j != 32) go to L2

addiu $s0, $s0, 1 # $i = i + 1

bne $s0, $t1, L1 # if (i != 32) go to L1

…

Figure 3.22 below shows the x86 assembly language code for a slightly diff erent version of DGEMM in Figure 3.21.

Elaboration: The array layout discussed in the example, called row-major order, is used by C and many other programming languages. Fortran instead uses column-major

 order, whereby the array is stored column by column.

Elaboration: Only 16 of the 32 MIPS fl oating-point registers could originally be used

for double precision operations: $f0, $f2, $f4, …, $f30. Double precision is computed

using pairs of these single precision registers. The odd-numbered fl oating-point registers

were used only to load and store the right half of 64-bit fl oating-point numbers. MIPS-32

added l.d and s.d to the instruction set. MIPS-32 also added “paired single” versions of

all fl oating-point instructions, where a single instruction results in two parallel fl oating-point operations on two 32-bit operands inside 64-bit registers (see Section 3.6). For example,

add.ps $f0, $f2, $f4 is equivalent to add.s $f0, $f2, $f4 followed by add.s

$f1, $f3, $f5.

218

Chapter 3 Arithmetic for Computers

Elaboration: Another reason for separate integers and fl oating-point registers is that

microprocessors in the 1980s didn’t have enough transistors to put the fl oating-point unit

on the same chip as the integer unit. Hence, the fl oating-point unit, including the fl oating-

point registers, was optionally available as a second chip. Such optional accelerator

chips are called coprocessors, and explain the acronym for fl oating-point loads in MIPS: lwc1 means load word to coprocessor 1, the fl oating-point unit. (Coprocessor 0 deals

with virtual memory, described in Chapter 5.) Since the early 1990s, microprocessors

have integrated fl oating point (and just about everything else) on chip, and hence the term

 coprocessor joins accumulator and core memory as quaint terms that date the speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging

than multiplication. In addition to SRT, another technique to leverage a fast multiplier

is Newton’s iteration, where division is recast as fi nding the zero of a function to fi nd the reciprocal 1/ c, which is then multiplied by the other operand. Iteration techniques

 cannot be rounded properly without calculating many extra bits. A TI chip solved this

problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its defi nition of Java fl oating-point

data types and operations. Thus, the code in the fi rst example could have well been

generated for a class method that converted Fahrenheit to Celsius.

The second example above uses multiple dimensional arrays, which are not explicitly

supported in Java. Java allows arrays of arrays, but each array may have its own length,

unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version

of this second example would require a good deal of checking code for array bounds,

including a new length calculation at the end of row access. It would also need to check

that the object reference is not null.

Accurate Arithmetic

guard Th

e fi rst of two

Unlike integers, which can represent exactly every number between the smallest and

extra bits kept on the

largest number, fl oating-point numbers are normally approximations for a number

right during intermediate

they can’t really represent. Th

e reason is that an infi nite variety of real numbers

calculations of fl oating-

exists between, say, 0 and 1, but no more than 253 can be represented exactly in

point numbers; used

double precision fl oating point. Th

e best we can do is getting the fl oating-point

to improve rounding

representation close to the actual number. Th

us, IEEE 754 off ers several modes of

accuracy.

rounding to let the programmer pick the desired approximation.

round Method to

Rounding sounds simple enough, but to round accurately requires the hardware

make the intermediate

to include extra bits in the calculation. In the preceding examples, we were vague

fl oating-point result fi t

on the number of bits that an intermediate representation can occupy, but clearly,

the fl oating-point format;

if every intermediate result had to be truncated to the exact number of digits, there

the goal is typically to fi nd

would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits

the nearest number that

on the right during intermediate additions, called guard and round, respectively.

can be represented in the

format.

Let’s do a decimal example to illustrate their value.

3.5 Floating

Point

219

Rounding with Guard Digits

EXAMPLE

Add 2.56 100 to 2.34 102, assuming that we have three signifi cant

ten

ten

decimal digits. Round to the nearest decimal number with three signifi cant

decimal digits, fi rst with guard and round digits, and then without them.

First we must shift the smaller number to the right to align the exponents, so

2.56 100 becomes 0.0256 102. Since we have guard and round digits,

ANSWER

ten

ten

we are able to represent the two least signifi cant digits when we align expo-

nents. Th

e guard digit holds 5 and the round digit holds 6. Th

e sum is

2.3400ten

+ 0.0256ten

2.3656ten

Th

us the sum is 2.3656 102. Since we have two digits to round, we want

ten

values 0 to 49 to round down and 51 to 99 to round up, with 50 being the

tiebreaker. Rounding the sum up with three signifi cant digits yields 2.37 102.

ten

Doing this without guard and round digits drops two digits from the

calculation. Th

e new sum is then

2.34ten

+ 0.02ten

2.36ten

Th

e answer is 2.36 102, off by 1 in the last digit from the sum above.

ten

Since the worst case for rounding would be when the actual number is halfway units in the last place between two fl oating-point representations, accuracy in fl oating point is normally (ulp) Th e number of measured in terms of the number of bits in error in the least signifi cant bits of the bits in error in the least signifi cand; the measure is called the number of units in the last place, or ulp. If signifi cant bits of the signifi cand between

a number were off by 2 in the least signifi cant bits, it would be called off by 2 ulps. the actual number and Provided there is no overfl ow, underfl ow, or invalid operation exceptions, IEEE the number that can be 754 guarantees that the computer uses the number that is within one-half ulp.

represented.

Elaboration: Although the example above really needed just one extra digit, multiply

can need two. A binary product may have one leading 0 bit; hence, the normalizing step

must shift the product one bit left. This shifts the guard digit into the least signifi cant bit

of the product, leaving the round bit to help accurately round the product.

IEEE 754 has four rounding modes: always round up (toward +∞), always round down

(toward ∞), truncate, and round to nearest even. The fi nal mode determines what to

do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS)

always rounds 0.50 dollars up, possibly to the benefi t of the IRS. A more equitable way

would be to round up this case half the time and round down the other half. IEEE 754

says that if the least signifi cant bit retained in a halfway case would be odd, add one;

220

Chapter 3 Arithmetic for Computers

if it’s even, truncate. This method always creates a 0 in the least signifi cant bit in the

tie-breaking case, giving the rounding mode its name. This mode is the most commonly

used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results

as if the intermediate results were calculated to infi nite precision and then rounded. To

support this goal and round to the nearest even, the standard has a third bit in addition

to guard and round; it is set whenever there are nonzero bits to the right of the round

sticky bit A bit used in

bit. This sticky bit allows the computer to see the difference between 0.50 … 00 and

ten

rounding in addition to

0.50 … 01 when rounding.

ten

guard and round that is

The sticky bit may be set, for example, during addition, when the smaller number is

set whenever there are

shifted to the right. Suppose we added 5.01 101 to 2.34 102 in the example

ten

ten

nonzero bits to the right

above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of

of the round bit.

2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the

sticky bit to remember whether any 1s were shifted off, we would assume the number

is equal to 2.345000 … 00 and round to the nearest even of 2.34. With the sticky bit

to remember that the number is larger than 2.345000 … 00, we round instead to 2.35.

Elaboration: PowerPC, SPARC64, AMD SSE5, and Intel AVX architectures provide a

single instruction that does a multiply and add on three registers: a a (b c).

Obviously, this instruction allows potentially higher fl oating-point performance for this

common operation. Equally important is that instead of performing two roundings—after

fused multiply add

the multiply and then after the add—which would happen with separate instructions,

A fl oating-point

the multiply add instruction can perform a single rounding after the add. A single

instruction that performs

rounding step increases the precision of multiply add. Such operations with a single

both a multiply and an

add, but rounds only once

rounding are called fused multiply add. It was added to the IEEE 754-2008 standard

aft er the add.

(see

Section 3.11).

Summary

Th

e Big Picture that follows reinforces the stored-program concept from Chapter 2;

the meaning of the information cannot be determined just by looking at the bits, for

the same bits can represent a variety of objects. Th

is section shows that computer

arithmetic is fi nite and thus can disagree with natural arithmetic. For example, the

IEEE 754 standard fl oating-point representation

(1)5 (1 Fraction) 2(Exponent Bias)

is almost always an approximation of the real number. Computer systems must

take care to minimize this gap between computer arithmetic and arithmetic in the

real world, and programmers at times need to be aware of the implications of this

approximation.

Bit patterns have no inherent meaning. Th

ey may represent signed integers,

The BIG

unsigned integers, fl oating-point numbers, instructions, and so on. What is

Picture

represented depends on the instruction that operates on the bits in the word.

3.5 Floating

Point

221

Th

e major diff erence between computer numbers and numbers in the

real world is that computer numbers have limited size and hence limited

precision; it’s possible to calculate a number too big or too small to be

represented in a word. Programmers must remember these limits and

write programs accordingly.

C type

Java type Data transfers

Operations

addu, addiu, subu, mult, div, AND,

int

int

lw, sw, lui

ANDi, OR, ORi, NOR, slt, slti

addu, addiu, subu, multu, divu, AND,

unsigned int

—

lw, sw, lui

ANDi, OR, ORi, NOR, sltu, sltiu

add, addi, sub, mult, div AND, ANDi,

char

—

lb, sb, lui

OR, ORi, NOR, slt, slti

addu, addiu, subu, multu, divu, AND,

—

char

lh, sh, lui

ANDi, OR, ORi, NOR, sltu, sltiu

add.s, sub.s, mult.s, div.s, c.eq.s,

float

float

lwc1, swc1

c.lt.s, c.le.s

add.d, sub.d, mult.d, div.d, c.eq.d,

double

double

l.d, s.d

c.lt.d, c.le.d

In the last chapter, we presented the storage classes of the programming language C Hardware/

(see the Hardware/Soft ware Interface section in Section 2.7). Th

e table above shows Software

some of the C and Java data types, the MIPS data transfer instructions, and instructions

that operate on those types that appear in Chapter 2 and this chapter. Note that Java Interface omits unsigned integers.

Th

e revised IEEE 754-2008 standard added a 16-bit fl oating-point format with fi ve Check

exponent bits. What do you think is the likely range of numbers it could represent?

Yourself

1. 1.0000 00 20 to 1.1111 1111 11 231, 0

2. 1.0000 0000 0 214 to 1.1111 1111 1 215, 0, ∞, NaN

3. 1.0000 0000 00 214 to 1.1111 1111 11 215, 0, ∞, NaN

4. 1.0000 0000 00 215 to 1.1111 1111 11 214, 0, ∞, NaN

Elaboration: To accommodate comparisons that may include NaNs, the standard

includes ordered and unordered as options for compares. Hence, the full MIPS instruction set has many fl avors of compares to support NaNs. (Java does not support unordered

compares.)

222

Chapter 3 Arithmetic for Computers

In an attempt to squeeze every last bit of precision from a fl oating-point operation,

the standard allows some numbers to be represented in unnormalized form. Rather than

having a gap between 0 and the smallest normalized number, IEEE allows denormalized

 numbers (also known as denorms or subnormals). They have the same exponent as zero but a nonzero fraction. They allow a number to degrade in signifi cance until it

becomes 0, called gradual underfl ow. For example, the smallest positive single precision normalized number is

1.0000 0000 0000 0000 0000 000

 2126

two

but the smallest single precision denormalized number is

0.0000 0000 0000 0000 0000 001

 2126, or 1.0 2149

two

two

For double precision, the denorm gap goes from 1.0 21022 to 1.0 21074.

The possibility of an occasional unnormalized operand has given headaches to

fl oating-point designers who are trying to build fast fl oating-point units. Hence, many

computers cause an exception if an operand is denormalized, letting software complete

the operation. Although software implementations are perfectly valid, their lower

performance has lessened the popularity of denorms in portable fl oating-point software.

Moreover, if programmers do not expect denorms, their programs may surprise them.

 3.6

 Parallelism and Computer Arithmetic:

Subword Parallelism

Since every desktop microprocessor by defi nition has its own graphical displays,

as transistor budgets increased it was inevitable that support would be added for

graphics operations.

Many graphics systems originally used 8 bits to represent each of the three

primary colors plus 8 bits for a location of a pixel. Th

e addition of speakers and

microphones for teleconferencing and video games suggested support of sound as

well. Audio samples need more than 8 bits of precision, but 16 bits are suffi

cient.

Every microprocessor has special support so that bytes and halfwords take up

less space when stored in memory (see Section 2.9), but due to the infrequency of

arithmetic operations on these data sizes in typical integer programs, there was

little support beyond data transfers. Architects recognized that many graphics

and audio applications would perform the same operation on vectors of this data.

By partitioning the carry chains within a 128-bit adder, a processor could use

parallelism to perform simultaneous operations on short vectors of sixteen 8-bit

operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands. Th

e

cost of such partitioned adders was small.

Given that the parallelism occurs within a wide word, the extensions are

classifi ed as subword parallelism. It is also classifi ed under the more general name

of data level parallelism. Th

ey have been also called vector or SIMD, for single

instruction, multiple data (see Section 6.6). Th

e rising popularity of multimedia

3.6 Parallelism and Computer Arithemtic: Subword Parallelism

223

applications led to arithmetic instructions that support narrower operations that

can easily operate in parallel.

For example, ARM added more than 100 instructions in the NEON multimedia

instruction extension to support subword parallelism, which can be used either

with ARMv7 or ARMv8. It added 256 bytes of new registers for NEON that can be

viewed as 32 registers 8 bytes wide or 16 registers 16 bytes wide. NEON supports

all the subword data types you can imagine except 64-bit fl oating point numbers:

■ 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers

■ 32-bit fl oating point numbers

Figure 3.19 gives a summary of the basic NEON instructions.

Data transfer

Arithmetic

Logical/Compare

V

R

D

L

2

3

F

.

A

V

F

.

D

D

,

2

3

D

A

V

U

,

8

S

{

}

W

,

L

{

D

U

,

6

1

S

,

8

U

,

2

3

S

,

6

1

}

2

3

,

4

6

.

D

N

A

V

8

2

1

.

D

N

A

V

S

V

R

T

2

3

F

.

,

2

3

F

.

B

U

S

V

U

,

8

S

{

}

W

,

L

{

B

U

S

V

U

,

6

1

S

,

8

}

2

3

U

,

2

3

S

,

6

1

O

V

,

4

6

.

R

R

O

V R

8

2

1

.

R

VLD{1,2,3.4}.{I8,I16,I32}

VMUL.F32, VMULL{S8,U8,S16,U16,S32,U32}

VEOR.64, VEOR.128

VST{1,2,3.4}.{I8,I16,I32}

VMLA.F32, VMLAL{S8,U8,S16,U16,S32,U32}

VBIC.64, VBIC.128

VMOV.{I8,I16,I32,F32}, #imm

VMLS.F32, VMLSL{S8,U8,S16,U16,S32,U32}

VORN.64, VORN.128

VMVN.{I8,I16,I32,F32}, #imm

VMAX.{S8,U8,S16,U16,S32,U32,F32}

VCEQ.{I8,I16,I32,F32}

VMOV.{I64,I128}

VMIN.{S8,U8,S16,U16,S32,U32,F32}

VCGE.{S8,U8,S16,U16,S32,U32,F32}

V

M

V

N I

{

.

}

8

2

1

I

,

4

6

6

1

S

,

8

S

{

.

S

B

A

V

,

F

,

2

3

S

}

2

3

V

}

2

3

F

,

2

3

U

,

2

3

S

,

6

1

U

,

6

1

S

,

8

U

,

8

S

{

.

T

G

C

FIGURE 3.19 Summary of ARM NEON instructions for subword parallelism. We use the curly brackets {} to show optional variations of the basic operations: {S8,U8,8} stand for signed and unsigned 8-bit integers or 8-bit data where type doesn’t matter, of which 16

fi t in a 128-bit register; {S16,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fi t in a 128-bit register;

{S32,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fi t in a 128-bit register; {S64,U64,64} stand for signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fi t in a 128-bit register; {F32} stand for signed and unsigned 32-bit fl oating point numbers, of which 4 fi t in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON

registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged.

Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers.

Elaboration: In addition to signed and unsigned integers, ARM includes “fi xed-point”

format of four sizes called I8, I16, I32, and I64, of which 16, 8, 4, and 2 fi t in a 128-

bit register, respectively. A portion of the fi xed point is for the fraction (to the right of

the binary point) and the rest of the data is the integer portion (to the left of the binary

point). The location of the binary point is up to the software. Many ARM processors do

not have fl oating point hardware and thus fl oating point operations must be performed by

library routines. Fixed point arithmetic can be signifi cantly faster than software fl oating

point routines, but more work for the programmer.

224

Chapter 3 Arithmetic for Computers

 3.7

 Real Stuff: Streaming SIMD Extensions

and Advanced Vector Extensions in x86

Th

e original MMX (MultiMedia eXtension) and SSE (Streaming SIMD Extension)

instructions for the x86 included similar operations to those found in ARM NEON.

Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture as

part of SSE2, including double precision fl oating-point registers and operations. It

includes eight 64-bit registers that can be used for fl oating-point operands. AMD

expanded the number to 16 registers, called XMM, as part of AMD64, which

Intel relabeled EM64T for its use. Figure 3.20 summarizes the SSE and SSE2

instructions.

In addition to holding a single precision or double precision number in a

register, Intel allows multiple fl oating-point operands to be packed into a single

128-bit SSE2 register: four single precision or two double precision. Th

us, the 16

fl oating-point registers for SSE2 are actually 128 bits wide. If the operands can be

arranged in memory as 128-bit aligned data, then 128-bit data transfers can load

and store multiple operands per instruction. Th

is packed fl oating-point format is

supported by arithmetic operations that can operate simultaneously on four singles

(PS) or two doubles (PD).

Data transfer

Arithmetic

Compare

MOV{A/U}{SS/PS/SD/

ADD{SS/PS/SD/PD} xmm,mem/xmm CMP{SS/PS/SD/PD}

PD} xmm, mem/xmm

SUB{SS/PS/SD/PD} xmm,mem/xmm

MOV {H/L} {PS/PD}

MUL{SS/PS/SD/PD} xmm,mem/xmm

xmm, mem/xmm

DIV{SS/PS/SD/PD} xmm,mem/xmm

SQRT{SS/PS/SD/PD} mem/xmm

MAX {SS/PS/SD/PD} mem/xmm

MIN{SS/PS/SD/PD} mem/xmm

FIGURE 3.20 The SSE/SSE2 fl oating-point instructions of the x86. xmm means one operand is a 128-bit SSE2 register, and mem/xmm means the other operand is either in memory or it is an SSE2 register.

We use the curly brackets {} to show optional variations of the basic operations: {SS} stands for Scalar Single precision fl oating point, or one 32-bit operand in a 128-bit register; {PS} stands for Packed Single precision fl oating point, or four 32-bit operands in a 128-bit register; {SD} stands for Scalar Double precision fl oating point, or one 64-bit operand in a 128-bit register; {PD} stands for Packed Double precision fl oating point, or two 64-bit operands in a 128-bit register; {A} means the 128-bit operand is aligned in memory; {U} means the 128-bit operand is unaligned in memory; {H} means move the high half of the 128-bit operand; and {L}

means move the low half of the 128-bit operand.

 3.8

Going Faster: Subword Parallelism and Matrix Multiply

225

In 2011 Intel doubled the width of the registers again, now called YMM, with

 Advanced Vector Extensions (AVX). Th

us, a single operation can now specify eight

32-bit fl oating-point operations or four 64-bit fl oating-point operations. Th

e

legacy SSE and SSE2 instructions now operate on the lower 128 bits of the YMM

registers. Th

us, to go from 128-bit and 256-bit operations, you prepend the letter

“v” (for vector) in front of the SSE2 assembly language operations and then use the

YMM register names instead of the XMM register name. For example, the SSE2

instruction to perform two 64-bit fl oating-point multiplies

addpd %xmm0, %xmm4

It becomes

vaddpd %ymm0, %ymm4

which now produces four 64-bit fl oating-point multiplies.

Elaboration: AVX also added three address instructions to x86. For example, vaddpd

can now specify

vaddpd %ymm0, %ymm1, %ymm4 # %ymm4 = %ymm1 + %ymm2

instead of the standard two address version

addpd %xmm0, %xmm4 # %xmm4 = %xmm4 + %xmm0

(Unlike MIPS, the destination is on the right in x86.) Three addresses can reduce the

number of registers and instructions needed for a computation.

 3.8

 Going Faster: Subword Parallelism and

Matrix Multiply

To demonstrate the performance impact of subword parallelism, we’ll run the same

code on the Intel Core i7 fi rst without AVX and then with it. Figure 3.21 shows an unoptimized version of a matrix-matrix multiply written in C. As we saw in Section

3.5, this program is commonly called DGEMM, which stands for Double precision

GEneral Matrix Multiply. Starting with this edition, we have added a new section

entitled “Going Faster” to demonstrate the performance benefi t of adapting soft ware

to the underlying hardware, in this case the Sandy Bridge version of the Intel Core

i7 microprocessor. Th

is new section in Chapters 3, 4, 5, and 6 will incrementally

improve DGEMM performance using the ideas that each chapter introduces.

Figure 3.22 shows the x86 assembly language output for the inner loop of Figure

3.21. Th

e fi ve fl oating point-instructions start with a v like the AVX instructions,

but note that they use the XMM registers instead of YMM, and they include sd in

the name, which stands for scalar double precision. We’ll defi ne the subword parallel

instructions shortly.

226

Chapter 3 Arithmetic for Computers

1.

void dgemm (int n, double* A, double* B, double* C)

2. {

3.

for (int i = 0; i < n; ++i)

4.

for (int j = 0; j < n; ++j)

5.

{

6.

double cij = C[i+j*n]; /* cij = C[i][j] */

7.

for(int k = 0; k < n; k++)

8.

cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

9.

C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

FIGURE 3.21 Unoptimized C version of a double precision matrix multiply, widely known as DGEMM for Double-precision GEneral Matrix Multiply (GEMM). Because we are passing the matrix dimension as the parameter n, this version of DGEMM uses single dimensional versions of matrices C, A, and B and address arithmetic to get better performance instead of using the more intuitive two-dimensional arrays that we saw in Section 3.5. Th e comments remind

us of this more intuitive notation.

1.

vmovsd (%r10),%xmm0

Load 1 element of C into %xmm0

2. mov %rsi,%rcx

register %rcx = %rsi

3. xor %eax,%eax

register %eax = 0

4.

vmovsd (%rcx),%xmm1

Load 1 element of B into %xmm1

5. add %r9,%rcx

register %rcx = %rcx + %r9

6.

vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1, element of A

7. add $0x1,%rax

register %rax = %rax + 1

8. cmp %eax,%edi

compare %eax to %edi

9. vaddsd %xmm1,%xmm0,%xmm0

Add %xmm1, %xmm0

10. jg 30 <dgemm+0x30>

jump if %eax > %edi

11. add $0x1,%r11d

register %r11 = %r11 + 1

12. vmovsd %xmm0,(%r10)

Store %xmm0 into C element

FIGURE 3.22 The x86 assembly language for the body of the nested loops generated by compiling the

optimized C code in Figure 3.21. Although it is dealing with just 64-bits of data, the compiler uses the AVX version of the instructions instead of SSE2 presumably so that it can use three address per instruction instead of two (see the Elaboration in Section 3.7).

3.8 Going Faster: Subword Parallelism and Matrix Multiply

227

1. #include <x86intrin.h>

2. void dgemm (int n, double* A, double* B, double* C)

3. {

4. for (int i = 0; i < n; i+=4)

5. for (int j = 0; j < n; j++) {

6.

__m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

7. for(int k = 0; k < n; k++)

8.

c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9.

_mm256_mul_pd(_mm256_load_pd(A+i+k*n),

10. _mm256_broadcast_sd(B+k+j*n)));

11.

_mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12. }

13. }

FIGURE 3.23 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel instructions for the x86. Figure 3.24 shows the assembly language produced by the compiler for the inner loop.

While compiler writers may eventually be able to routinely produce high-

quality code that uses the AVX instructions of the x86, for now we must “cheat” by

using C intrinsics that more or less tell the compiler exactly how to produce good

code. Figure 3.23 shows the enhanced version of Figure 3.21 for which the Gnu C

compiler produces AVX code. Figure 3.24 shows annotated x86 code that is the

output of compiling using gcc with the –O3 level of optimization.

Th

e declaration on line 6 of Figure 3.23 uses the __m256d data type, which tells the compiler the variable will hold 4 double-precision fl oating-point values. Th

e

intrinsic _mm256_load_pd() also on line 6 uses AVX instructions to load 4

double-precision fl oating-point numbers in parallel (_pd) from the matrix C into

c0. Th

e address calculation C+i+j*n on line 6 represents element C[i+j*n].

Symmetrically, the fi nal step on line 11 uses the intrinsic _mm256_store_pd()

to store 4 double-precision fl oating-point numbers from c0 into the matrix C.

As we’re going through 4 elements each iteration, the outer for loop on line 4

increments i by 4 instead of by 1 as on line 3 of Figure 3.21.

Inside the loops, on line 9 we fi rst load 4 elements of A again using _mm256_

load_pd(). To multiply these elements by one element of B, on line 10 we fi rst

use the intrinsic _mm256_broadcast_sd(), which makes 4 identical copies

of the scalar double precision number—in this case an element of B—in one of the

YMM registers. We then use _mm256_mul_pd() on line 9 to multiply the four

double-precision results in parallel. Finally, _mm256_add_pd() on line 8 adds

the 4 products to the 4 sums in c0.

Figure 3.24 shows resulting x86 code for the body of the inner loops produced by the compiler. You can see the fi ve AVX instructions—they all start with v and

228

Chapter 3 Arithmetic for Computers

1.

vmovapd (%r11),%ymm0

Load 4 elements of C into %ymm0

2. mov %rbx,%rcx

register %rcx = %rbx

3. xor %eax,%eax

register %eax = 0

4.

vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element

5. add $0x8,%rax

register %rax = %rax + 8

6.

vmulpd (%rcx),%ymm1,%ymm1

Parallel mul %ymm1,4 A elements

7. add %r9,%rcx

register %rcx = %rcx + %r9

8. cmp %r10,%rax

compare %r10 to %rax

9.

vaddpd %ymm1,%ymm0,%ymm0

Parallel add %ymm1, %ymm0

10.

jne 50 <dgemm+0x50>

jump if not %r10 != %rax

11. add $0x1,%esi

register % esi = % esi + 1

12.

vmovapd %ymm0,(%r11)

Store %ymm0 into 4 C elements

FIGURE 3.24 The x86 assembly language for the body of the nested loops generated by compiling

the optimized C code in Figure 3.23. Note the similarities to Figure 3.22, with the primary diff erence being that the fi ve fl oating-point operations are now using YMM registers and using the pd versions of the instructions for parallel double precision instead of the sd version for scalar double precision.

four of the fi ve use pd for parallel double precision—that correspond to the C

intrinsics mentioned above. Th

e code is very similar to that in Figure 3.22 above:

both use 12 instructions, the integer instructions are nearly identical (but diff erent

registers), and the fl oating-point instruction diff erences are generally just going

from scalar double (sd) using XMM registers to parallel double (pd) with YMM

registers. Th

e one exception is line 4 of Figure 3.24. Every element of A must be

multiplied by one element of B. One solution is to place four identical copies of the

64-bit B element side-by-side into the 256-bit YMM register, which is just what the

instruction vbroadcastsd does.

For matrices of dimensions of 32 by 32, the unoptimized DGEMM in Figure 3.21

runs at 1.7 GigaFLOPS (FLoating point Operations Per Second) on one core of a

2.6 GHz Intel Core i7 (Sandy Bridge). Th

e optimized code in Figure 3.23 performs

at 6.4 GigaFLOPS. Th

e AVX version is 3.85 times as fast, which is very close to the

factor of 4.0 increase that you might hope for from performing 4 times as many

operations at a time by using subword parallelism.

Elaboration: As mentioned in the Elaboration in Section 1.6, Intel offers Turbo mode

that temporarily runs at a higher clock rate until the chip gets too hot. This Intel Core i7

(Sandy Bridge) can increase from 2.6 GHz to 3.3 GHz in Turbo mode. The results above

are with Turbo mode turned off. If we turn it on, we improve all the results by the increase

in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized DGEMM and 8.1

GFLOPS with AVX. Turbo mode works particularly well when using only a single core of

an eight-core chip, as in this case, as it lets that single core use much more than its fair

share of power since the other cores are idle.

3.9 Fallacies and Pitfalls

229

 3.9

Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the diff erence between the Th

 us mathematics

limited precision of computer arithmetic and the unlimited precision of natural may be defi ned as the arithmetic.

 subject in which we

 never know what we

 Fallacy: Just as a left shift instruction can replace an integer multiply by a are talking about, nor power of 2, a right shift is the same as an integer division by a power of 2.

 whether what we are

Recall that a binary number c, where xi means the i th bit, represents the number saying is true.

Bertrand Russell, Recent

… (x 3 23) (x 2 22) 1 (x 1 21) (x 0 20)

 Words on the Principles

 of Mathematics, 1901

Shift ing the bits of c right by n bits would seem to be the same as dividing by

2 n. And this is true for unsigned integers. Th

e problem is with signed integers. For

example, suppose we want to divide 5 by 4 ; the quotient should be 1 . Th

e

ten

ten

ten

two’s complement representation of 5 is

ten

1111 1111 1111 1111 1111 1111 1111 1011two

According to this fallacy, shift ing right by two should divide by 4 (22):

ten

0011 1111 1111 1111 1111 1111 1111 1110two

With a 0 in the sign bit, this result is clearly wrong. Th

e value created by the shift

right is actually 1,073,741,822 instead of 1 .

ten

ten

A solution would be to have an arithmetic right shift that extends the sign bit

instead of shift ing in 0s. A 2-bit arithmetic shift right of 5 produces

ten

1111 1111 1111 1111 1111 1111 1111 1110two

Th

e result is 2 instead of 1 ; close, but no cigar.

ten

ten

 Pitfall: Floating-point addition is not associative.

Associativity holds for a sequence of two’s complement integer additions, even if the

computation overfl ows. Alas, because fl oating-point numbers are approximations

of real numbers and because computer arithmetic has limited precision, it does

not hold for fl oating-point numbers. Given the great range of numbers that can be

represented in fl oating point, problems occur when adding two large numbers of

opposite signs plus a small number. For example, let’s see if c (a b) (c a)

 b. Assume c 1.5 1038, a 1.5 1038, and b 1.0, and that these are ten

ten

all single precision numbers.

230

Chapter 3 Arithmetic for Computers

c

(a

)

 b

1.5

1038

(1.5

1038

1.0)

ten

ten

1.5

1038

(1.5

38

ten

ten

10)

0.0

38

38

c

(a

 b)

(

1.5ten

10

1.5ten

10)

1.0

(0.0ten) 1.0

1.0

Since fl oating-point numbers have limited precision and result in approximations

of real results, 1.5 1038 is so much larger than 1.0 that 1.5 1038 1.0 is still

ten

ten

ten

1.5 1038. Th

at is why the sum of c, a, and b is 0.0 or 1.0, depending on the order

ten

of the fl oating-point additions, so c (a b) ⬆ (c a) b. Th erefore, fl oating-point addition is not associative.

 Fallacy: Parallel execution strategies that work for integer data types also work

 for fl oating-point data types.

Programs have typically been written fi rst to run sequentially before being rewritten

to run concurrently, so a natural question is, “Do the two versions get the same

answer?” If the answer is no, you presume there is a bug in the parallel version that

you need to track down.

Th

is approach assumes that computer arithmetic does not aff ect the results when

going from sequential to parallel. Th

at is, if you were to add a million numbers

together, you would get the same results whether you used 1 processor or 1000

processors. Th

is assumption holds for two’s complement integers, since integer

addition is associative. Alas, since fl oating-point addition is not associative, the

assumption does not hold.

A more vexing version of this fallacy occurs on a parallel computer where the

operating system scheduler may use a diff erent number of processors depending

on what other programs are running on a parallel computer. As the varying

number of processors from each run would cause the fl oating-point sums to be

calculated in diff erent orders, getting slightly diff erent answers each time despite

running identical code with identical input may fl ummox unaware parallel

programmers.

Given this quandary, programmers who write parallel code with fl oating-point

numbers need to verify whether the results are credible even if they don’t give the

same exact answer as the sequential code. Th

e fi eld that deals with such issues is

called numerical analysis, which is the subject of textbooks in its own right. Such

concerns are one reason for the popularity of numerical libraries such as LAPACK

and SCALAPAK, which have been validated in both their sequential and parallel

forms.

 Pitfall: Th

 e MIPS instruction add immediate unsigned (addiu) sign-extends

 its 16-bit immediate fi eld.

3.9 Fallacies and Pitfalls

231

Despite its name, add immediate unsigned (addiu) is used to add constants to

signed integers when we don’t care about overfl ow. MIPS has no subtract immediate

instruction, and negative numbers need sign extension, so the MIPS architects

decided to sign-extend the immediate fi eld.

 Fallacy: Only theoretical mathematicians care about fl oating-point accuracy.

Newspaper headlines of November 1994 prove this statement is a fallacy (see

Figure 3.25). Th

e following is the inside story behind the headlines.

Th

e Pentium used a standard fl oating-point divide algorithm that generates

multiple quotient bits per step, using the most signifi cant bits of divisor and

dividend to guess the next 2 bits of the quotient. Th

e guess is taken from a lookup

table containing 2, 1, 0, 1, or 2. Th

e guess is multiplied by the divisor and

subtracted from the remainder to generate a new remainder. Like nonrestoring

division, if a previous guess gets too large a remainder, the partial remainder is

adjusted in a subsequent pass.

Evidently, there were fi ve elements of the table from the 80486 that Intel

engineers thought could never be accessed, and they optimized the logic to return

0 instead of 2 in these situations on the Pentium. Intel was wrong: while the fi rst 11

FIGURE 3.25 A sampling of newspaper and magazine articles from November 1994,

including the New York Times, San Jose Mercury News, San Francisco Chronicle, and

 Infoworld. Th

e Pentium fl oating-point divide bug even made the “Top 10 List” of the David Letterman

 Late Show on television. Intel eventually took a $300 million write-off to replace the buggy chips.

232

Chapter 3 Arithmetic for Computers

bits were always correct, errors would show up occasionally in bits 12 to 52, or the

4th to 15th decimal digits.

A math professor at Lynchburg College in Virginia, Th

omas Nicely, discovered the

bug in September 1994. Aft er calling Intel technical support and getting no offi

cial

reaction, he posted his discovery on the Internet. Th

is post led to a story in a trade

magazine, which in turn caused Intel to issue a press release. It called the bug a glitch

that would aff ect only theoretical mathematicians, with the average spreadsheet

user seeing an error every 27,000 years. IBM Research soon counterclaimed that the

average spreadsheet user would see an error every 24 days. Intel soon threw in the

towel by making the following announcement on December 21:

 “We at Intel wish to sincerely apologize for our handling of the recently publicized

 Pentium processor fl aw. Th

 e Intel Inside symbol means that your computer has

 a microprocessor second to none in quality and performance. Th

 ousands of Intel

 employees work very hard to ensure that this is true. But no microprocessor is

 ever perfect. What Intel continues to believe is technically an extremely minor

 problem has taken on a life of its own. Although Intel fi rmly stands behind the

 quality of the current version of the Pentium processor, we recognize that many

 users have concerns. We want to resolve these concerns. Intel will exchange the

 current version of the Pentium processor for an updated version, in which this

 fl oating-point divide fl aw is corrected, for any owner who requests it, free of

 charge anytime during the life of their computer.”

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did not

get a Christmas bonus that year.

Th

is story brings up a few points for everyone to ponder. How much cheaper

would it have been to fi x the bug in July 1994? What was the cost to repair the

damage to Intel’s reputation? And what is the corporate responsibility in disclosing

bugs in a product so widely used and relied upon as a microprocessor?

 3.10 Concluding

Remarks

Over the decades, computer arithmetic has become largely standardized, greatly

enhancing the portability of programs. Two’s complement binary integer arithmetic is

found in every computer sold today, and if it includes fl oating point support, it off ers

the IEEE 754 binary fl oating-point arithmetic.

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the

constraints of limited precision. Th

is limit may result in invalid operations through

calculating numbers larger or smaller than the predefi ned limits. Such anomalies, called

“overfl ow” or “underfl ow,” may result in exceptions or interrupts, emergency events

similar to unplanned subroutine calls. Chapters 4 and 5 discuss exceptions in more detail.

Floating-point arithmetic has the added challenge of being an approximation

of real numbers, and care needs to be taken to ensure that the computer number

 3.10

Concluding

Remarks

233

selected is the representation closest to the actual number. Th

e challenges of

imprecision and limited representation of fl oating point are part of the inspiration

for the fi eld of numerical analysis. Th

e recent switch to parallelism shines the

searchlight on numerical analysis again, as solutions that were long considered

safe on sequential computers must be reconsidered when trying to fi nd the fastest

algorithm for parallel computers that still achieves a correct result.

Data-level parallelism, specifi cally subword parallelism, off ers a simple path to

higher performance for programs that are intensive in arithmetic operations for

either integer or fl oating-point data. We showed that we could speed up matrix

multiply nearly fourfold by using instructions that could execute four fl oating-

point operations at a time.

With the explanation of computer arithmetic in this chapter comes a description

of much more of the MIPS instruction set. One point of confusion is the instructions

covered in these chapters versus instructions executed by MIPS chips versus the

instructions accepted by MIPS assemblers. Two fi gures try to make this clear.

Figure 3.26 lists the MIPS instructions covered in this chapter and Chapter 2.

We call the set of instructions on the left -hand side of the fi gure the MIPS core. Th

e

instructions on the right we call the MIPS arithmetic core. On the left of Figure 3.27

are the instructions the MIPS processor executes that are not found in Figure 3.26.

We call the full set of hardware instructions MIPS-32. On the right of Figure 3.27

are the instructions accepted by the assembler that are not part of MIPS-32. We call

this set of instructions Pseudo MIPS.

Figure 3.28 gives the popularity of the MIPS instructions for SPEC CPU2006

integer and fl oating-point benchmarks. All instructions are listed that were

responsible for at least 0.2% of the instructions executed.

Note that although programmers and compiler writers may use MIPS-32 to

have a richer menu of options, MIPS core instructions dominate integer SPEC

CPU2006 execution, and the integer core plus arithmetic core dominate SPEC

CPU2006 fl oating point, as the table below shows.

Instruction subset

Integer

Fl. pt.

MIPS core

98%

31%

MIPS arithmetic core

2%

66%

Remaining MIPS-32

0%

3%

For the rest of the book, we concentrate on the MIPS core instructions—the integer

instruction set excluding multiply and divide—to make the explanation of computer

design easier. As you can see, the MIPS core includes the most popular MIPS

instructions; be assured that understanding a computer that runs the MIPS core

will give you suffi

cient background to understand even more ambitious computers.

No matter what the instruction set or its size—MIPS, ARM, x86—never forget that

bit patterns have no inherent meaning. Th

e same bit pattern may represent a signed

integer, unsigned integer, fl oating-point number, string, instruction, and so on. In

stored program computers, it is the operation on the bit pattern that determines its

meaning.

234

Chapter 3 Arithmetic for Computers

MIPS core instructions

Name

Format

MIPS arithmetic core

Name

Format

add

add

R

multiply

mult

R

add immediate

addi

I

multiply unsigned

multu

R

add unsigned

addu

R

divide

div

R

add immediate unsigned

addiu

I

divide unsigned

divu

R

subtract

sub

R

move from Hi

mfhi

R

subtract unsigned

subu

R

move from Lo

mflo

R

AND

AND

R

move from system control (EPC)

mfc0

R

AND immediate

ANDi

I

floating-point add single

add.s

R

OR

OR

R

floating-point add double

add.d

R

OR immediate

ORi

I

floating-point subtract single

sub.s

R

NOR

NOR

R

floating-point subtract double

sub.d

R

shift left logical

sll

R

floating-point multiply single

mul.s

R

shift right logical

srl

R

floating-point multiply double

mul.d

R

load upper immediate

lui

I

floating-point divide single

div.s

R

load word

lw

I

floating-point divide double

div.d

R

store word

sw

I

load word to floating-point single

lwc1

I

load halfword unsigned

lhu

I

store word to floating-point single

swc1

I

store halfword

sh

I

load word to floating-point double

ldc1

I

load byte unsigned

lbu

I

store word to floating-point double

sdc1

I

store byte

sb

I

branch on floating-point true

bc1t

I

load linked (atomic update)

ll

I

branch on floating-point false

bc1f

I

store cond. (atomic update)

sc

I

floating-point compare single

c.x.s

R

branch on equal

beq

I

(x = eq, neq, lt, le, gt, ge)

branch on not equal

bne

I

floating-point compare double

c.x.d

R

jump

j

J

(x = eq, neq, lt, le, gt, ge)

jump and link

jal

J

jump register

jr

R

set less than

slt

R

set less than immediate

slti

I

set less than unsigned

sltu

R

set less than immediate unsigned

sltiu

I

FIGURE 3.26 The MIPS instruction set. Th

is book concentrates on the instructions in the left column. Th

is information is also found

in columns 1 and 2 of the MIPS Reference Data Card at the front of this book.

 3.10

Concluding

Remarks

235

Remaining MIPS-32

Name

Format

Pseudo MIPS

Name

Format

exclusive or (rs ⊕ rt)

xor

R

absolute value

abs

rd,rs

exclusive or immediate

xori

I

negate (signed or unsigned)

neg s

rd,rs

shift right arithmetic

sra

R

rotate left

rol

rd,rs,rt

shift left logical variable

sllv

R

rotate right

ror

rd,rs,rt

shift right logical variable

srlv

R

multiply and don’t check oflw (signed or uns.)

mul s

rd,rs,rt

shift right arithmetic variable

srav

R

multiply and check oflw (signed or uns.)

mulo s

rd,rs,rt

move to Hi

mthi

R

divide and check overflow

div

rd,rs,rt

move to Lo

mtlo

R

divide and don’t check overflow

divu

rd,rs,rt

load halfword

lh

I

remainder (signed or unsigned)

rem s

rd,rs,rt

load byte

lb

I

load immediate

li

rd,imm

load word left (unaligned)

lwl

I

load address

la

rd,addr

load word right (unaligned)

lwr

I

load double

ld

rd,addr

store word left (unaligned)

swl

I

store double

sd

rd,addr

store word right (unaligned)

swr

I

unaligned load word

ulw

rd,addr

load linked (atomic update)

ll

I

unaligned store word

usw

rd,addr

store cond. (atomic update)

sc

I

unaligned load halfword (signed or uns.)

ulh s

rd,addr

move if zero

movz

R

unaligned store halfword

ush

rd,addr

move if not zero

movn

R

branch

b

Label

multiply and add (S or uns.)

madd s

R

branch on equal zero

beqz

rs,L

multiply and subtract (S or uns.)

msub s

I

branch on compare (signed or unsigned)

bx s

rs,rt,L

branch on ≥ zero and link

bgezal

I

(x = lt, le, gt, ge)

branch on < zero and link

bltzal

I

set equal

seq

rd,rs,rt

jump and link register

jalr

R

set not equal

sne

rd,rs,rt

branch compare to zero

bxz

I

set on compare (signed or unsigned)

sx s

rd,rs,rt

branch compare to zero likely

bxzl

I

(x = lt, le, gt, ge)

(x = lt, le, gt, ge)

load to floating point (s or d)

l. f

rd,addr

branch compare reg likely

bxl

I

store from floating point (s or d)

s. f

rd,addr

trap if compare reg

tx

R

trap if compare immediate

txi

I

(x = eq, neq, lt, le, gt, ge)

return from exception

rfe

R

system call

syscall

I

break (cause exception)

break

I

move from FP to integer

mfc1

R

move to FP from integer

mtc1

R

FP move (s or d)

mov. f

R

FP move if zero (s or d)

movz. f

R

FP move if not zero (s or d)

movn. f

R

FP square root (s or d)

sqrt. f

R

FP absolute value (s or d)

abs. f

R

FP negate (s or d)

neg. f

R

FP convert (w, s, or d)

cvt. f. f

R

FP compare un (s or d)

c.xn. f

R

FIGURE 3.27 Remaining MIPS-32 and Pseudo MIPS instruction sets. f means single (s) or double (d) precision fl oating-point instructions, and s means signed and unsigned (u) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd.f/ msub. f), ceiling (ceil. f), truncate (trunc. f), round (round. f), and reciprocal (recip. f). Th e underscore represents the letter to include to represent

that datatype.

236

Chapter 3 Arithmetic for Computers

Core MIPS

Name

Integer

Fl. pt.

Arithmetic core + MIPS-32

Name

Integer

Fl. pt.

add

add

0.0%

0.0%

FP add double

add.d

0.0%

10.6%

add immediate

addi

0.0%

0.0%

FP subtract double

sub.d

0.0%

4.9%

add unsigned

addu

5.2%

3.5%

FP multiply double

mul.d

0.0%

15.0%

add immediate unsigned

addiu

9.0%

7.2%

FP divide double

div.d

0.0%

0.2%

subtract unsigned

subu

2.2%

0.6%

FP add single

add.s

0.0%

1.5%

AND

AND

0.2%

0.1%

FP subtract single

sub.s

0.0%

1.8%

AND immediate

ANDi

0.7%

0.2%

FP multiply single

mul.s

0.0%

2.4%

OR

OR

4.0%

1.2%

FP divide single

div.s

0.0%

0.2%

OR immediate

ORi

1.0%

0.2%

load word to FP double

l.d

0.0%

17.5%

NOR

NOR

0.4%

0.2%

store word to FP double

s.d

0.0%

4.9%

shift left logical

sll

4.4%

1.9%

load word to FP single

l.s

0.0%

4.2%

shift right logical

srl

1.1%

0.5%

store word to FP single

s.s

0.0%

1.1%

load upper immediate

lui

3.3%

0.5%

branch on floating-point true

bc1t

0.0%

0.2%

load word

lw

18.6%

5.8%

branch on floating-point false

bc1f

0.0%

0.2%

store word

sw

7.6%

2.0%

floating-point compare double

c.x.d

0.0%

0.6%

load byte

lbu

3.7%

0.1%

multiply

mul

0.0%

0.2%

store byte

sb

0.6%

0.0%

shift right arithmetic

sra

0.5%

0.3%

branch on equal (zero)

beq

8.6%

2.2%

load half

lhu

1.3%

0.0%

branch on not equal (zero)

bne

8.4%

1.4%

store half

sh

0.1%

0.0%

jump and link

jal

0.7%

0.2%

jump register

jr

1.1%

0.2%

set less than

slt

9.9%

2.3%

set less than immediate

slti

3.1%

0.3%

set less than unsigned

sltu

3.4%

0.8%

set less than imm. uns.

sltiu

1.1%

0.1%

FIGURE 3.28 The frequency of the MIPS instructions for SPEC CPU2006 integer and fl oating point. All instructions that accounted for at least 0.2% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and hence do not appear here.

 Gresham’s Law (“Bad

 money drives out

 Historical Perspective and Further

 Good”) for computers

3.11

 would say, “Th

 e Fast

Reading

 drives out the Slow

 even if the Fast is

This section surveys the history of the floating point going back to von

 wrong.”

Neumann, including the surprisingly controversial IEEE standards effort, plus

W. Kahan, 1992

the rationale for the 80-bit stack architecture for floating point in the x86. See

the rest of Section 3.11 online.

3.12 Exercises

237

 3.12 Exercises

 Never give in, never

 give in, never, never,

 never—in nothing,

 great or small, large or

3.1 [5] <§3.2> What is 5ED4 07A4 when these values represent unsigned 16-

bit hexadecimal numbers? Th

e result should be written in hexadecimal. Show your petty—never give in.

work.

Winston Churchill,

address at Harrow

3.2 [5] <§3.2> What is 5ED4 07A4 when these values represent signed 16-

School, 1941

bit hexadecimal numbers stored in sign-magnitude format? Th

e result should be

written in hexadecimal. Show your work.

3.3 [10] <§3.2> Convert 5ED4 into a binary number. What makes base 16

(hexadecimal) an attractive numbering system for representing values in

computers?

3.4 [5] <§3.2> What is 4365 3412 when these values represent unsigned 12-bit

octal numbers? Th

e result should be written in octal. Show your work.

3.5 [5] <§3.2> What is 4365 3412 when these values represent signed 12-bit

octal numbers stored in sign-magnitude format? Th

e result should be written in

octal. Show your work.

3.6 [5] <§3.2> Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate

185 – 122. Is there overfl ow, underfl ow, or neither?

3.7 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in

sign-magnitude format. Calculate 185 122. Is there overfl ow, underfl ow, or

neither?

3.8 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in

sign-magnitude format. Calculate 185 122. Is there overfl ow, underfl ow, or

neither?

3.9 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in

two’s complement format. Calculate 151 214 using saturating arithmetic. Th

e

result should be written in decimal. Show your work.

3.10 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in

two’s complement format. Calculate 151 214 using saturating arithmetic. Th

e

result should be written in decimal. Show your work.

3.11 [10] <§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 151

 214 using saturating arithmetic. Th

e result should be written in decimal. Show

your work.

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the octal unsigned 6-bit integers 62 and 12 using the hardware described

in Figure 3.3. You should show the contents of each register on each step.

238

Chapter 3 Arithmetic for Computers

3.13 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware

described in Figure 3.5. You should show the contents of each register on each step.

3.14 [10] <§3.3> Calculate the time necessary to perform a multiply using the

approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step of the operation takes 4 time units. Assume that in step 1a an addition is always

performed—either the multiplicand will be added, or a zero will be. Also assume

that the registers have already been initialized (you are just counting how long it

takes to do the multiplication loop itself). If this is being done in hardware, the

shift s of the multiplicand and multiplier can be done simultaneously. If this is being

done in soft ware, they will have to be done one aft er the other. Solve for each case.

3.15 [10] <§3.3> Calculate the time necessary to perform a multiply using the

approach described in the text (31 adders stacked vertically) if an integer is 8 bits

wide and an adder takes 4 time units.

3.16 [20] <§3.3> Calculate the time necessary to perform a multiply using the

approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes 4 time units.

3.17 [20] <§3.3> As discussed in the text, one possible performance enhancement

is to do a shift and add instead of an actual multiplication. Since 9 6, for example,

can be written (2 2 2 1) 6, we can calculate 9 6 by shift ing 6 to the left 3

times and then adding 6 to that result. Show the best way to calculate 033 055

using shift s and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

3.18 [20] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 74 divided by 21 using the hardware described in Figure 3.8. You should show

the contents of each register on each step. Assume both inputs are unsigned 6-bit

integers.

3.19 [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 74 divided by 21 using the hardware described in Figure 3.11. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit

integers. Th

is algorithm requires a slightly diff erent approach than that shown in

Figure 3.9. You will want to think hard about this, do an experiment or two, or else go to the web to fi gure out how to make this work correctly. (Hint: one possible

solution involves using the fact that Figure 3.11 implies the remainder register can be shift ed either direction.)

3.20 [5] <§3.5> What decimal number does the bit pattern 0×0C000000

represent if it is a two’s complement integer? An unsigned integer?

3.21 [10] <§3.5> If the bit pattern 0×0C000000 is placed into the Instruction

Register, what MIPS instruction will be executed?

3.22 [10] <§3.5> What decimal number does the bit pattern 0×0C000000

represent if it is a fl oating point number? Use the IEEE 754 standard.

3.12 Exercises

239

3.23 [10] <§3.5> Write down the binary representation of the decimal number

63.25 assuming the IEEE 754 single precision format.

3.24 [10] <§3.5> Write down the binary representation of the decimal number

63.25 assuming the IEEE 754 double precision format.

3.25 [10] <§3.5> Write down the binary representation of the decimal number

63.25 assuming it was stored using the single precision IBM format (base 16,

instead of base 2, with 7 bits of exponent).

3.26 [20] <§3.5> Write down the binary bit pattern to represent 1.5625 101

assuming a format similar to that employed by the DEC PDP-8 (the left most 12

bits are the exponent stored as a two’s complement number, and the rightmost 24

bits are the fraction stored as a two’s complement number). No hidden 1 is used.

Comment on how the range and accuracy of this 36-bit pattern compares to the

single and double precision IEEE 754 standards.

3.27 [20] <§3.5> IEEE 754-2008 contains a half precision that is only 16 bits

wide. Th

e left most bit is still the sign bit, the exponent is 5 bits wide and has a bias

of 15, and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the

bit pattern to represent 1.5625 101 assuming a version of this format, which

uses an excess-16 format to store the exponent. Comment on how the range and

accuracy of this 16-bit fl oating point format compares to the single precision IEEE

754 standard.

3.28 [20] <§3.5> Th

e Hewlett-Packard 2114, 2115, and 2116 used a format

with the left most 16 bits being the fraction stored in two’s complement format,

followed by another 16-bit fi eld which had the left most 8 bits as an extension of the

fraction (making the fraction 24 bits long), and the rightmost 8 bits representing

the exponent. However, in an interesting twist, the exponent was stored in sign-

magnitude format with the sign bit on the far right! Write down the bit pattern to

represent 1.5625 101 assuming this format. No hidden 1 is used. Comment on

how the range and accuracy of this 32-bit pattern compares to the single precision

IEEE 754 standard.

3.29 [20] <§3.5> Calculate the sum of 2.6125 101 and 4.150390625 101

by hand, assuming A and B are stored in the 16-bit half precision described in

Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the

nearest even. Show all the steps.

3.30 [30] <§3.5> Calculate the product of –8.0546875 100 and 1.79931640625

 10–1 by hand, assuming A and B are stored in the 16-bit half precision format

described in Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round

to the nearest even. Show all the steps; however, as is done in the example in the

text, you can do the multiplication in human-readable format instead of using the

techniques described in Exercises 3.12 through 3.14. Indicate if there is overfl ow

or underfl ow. Write your answer in both the 16-bit fl oating point format described

in Exercise 3.27 and also as a decimal number. How accurate is your result? How

does it compare to the number you get if you do the multiplication on a calculator?

240

Chapter 3 Arithmetic for Computers

3.31 [30] <§3.5> Calculate by hand 8.625 101 divided by 4.875 100. Show

all the steps necessary to achieve your answer. Assume there is a guard, a round bit,

and a sticky bit, and use them if necessary. Write the fi nal answer in both the 16-bit

fl oating point format described in Exercise 3.27 and in decimal and compare the

decimal result to that which you get if you use a calculator.

3.32 [20] <§3.9> Calculate (3.984375 101 3.4375 101) 1.771 103

by hand, assuming each of the values are stored in the 16-bit half precision format

described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1

round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and

write your answer in both the 16-bit fl oating point format and in decimal.

3.33 [20] <§3.9> Calculate 3.984375 101 (3.4375 101 1.771 103)

by hand, assuming each of the values are stored in the 16-bit half precision format

described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1

round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and

write your answer in both the 16-bit fl oating point format and in decimal.

3.34 [10] <§3.9> Based on your answers to 3.32 and 3.33, does (3.984375 101

 3.4375 101) 1.771 103 = 3.984375 101 (3.4375 101 1.771

103)?

3.35 [30] <§3.9> Calculate (3.41796875 103 6.34765625 103) 1.05625

 102 by hand, assuming each of the values are stored in the 16-bit half precision

format described in Exercise 3.27 (and also described in the text). Assume 1 guard,

1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and

write your answer in both the 16-bit fl oating point format and in decimal.

3.36 [30] <§3.9> Calculate 3.41796875 103 (6.34765625 103 1.05625

 102) by hand, assuming each of the values are stored in the 16-bit half precision

format described in Exercise 3.27 (and also described in the text). Assume 1 guard,

1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and

write your answer in both the 16-bit fl oating point format and in decimal.

3.37 [10] <§3.9> Based on your answers to 3.35 and 3.36, does (3.41796875 103

 6.34765625 103) 1.05625 102 = 3.41796875 103 (6.34765625

103 1.05625 102)?

3.38 [30] <§3.9> Calculate 1.666015625 100 (1.9760 104 1.9744

104) by hand, assuming each of the values are stored in the 16-bit half precision

format described in Exercise 3.27 (and also described in the text). Assume 1 guard,

1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and

write your answer in both the 16-bit fl oating point format and in decimal.

3.39 [30] <§3.9> Calculate (1.666015625 100 1.9760 104) (1.666015625

 100 1.9744 104) by hand, assuming each of the values are stored in the

16-bit half precision format described in Exercise 3.27 (and also described in the

text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the nearest even.

Show all the steps, and write your answer in both the 16-bit fl oating point format

and in decimal.

3.12 Exercises

241

3.40 [10] <§3.9> Based on your answers to 3.38 and 3.39, does (1.666015625

100 1.9760 104) (1.666015625 100 1.9744 104) = 1.666015625

100 (1.9760 104 1.9744 104)?

3.41 [10] <§3.5> Using the IEEE 754 fl oating point format, write down the bit

pattern that would represent 1/4. Can you represent 1/4 exactly?

3.42 [10] <§3.5> What do you get if you add 1/4 to itself 4 times? What is 1/4

 4? Are they the same? What should they be?

3.43 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming

a fl oating point format that uses binary numbers in the fraction. Assume there are

24 bits, and you do not need to normalize. Is this representation exact?

3.44 [10] <§3.5> Write down the bit pattern in the fraction assuming a fl oating

point format that uses Binary Coded Decimal (base 10) numbers in the fraction

instead of base 2. Assume there are 24 bits, and you do not need to normalize. Is

this representation exact?

3.45 [10] <§3.5> Write down the bit pattern assuming that we are using base 15

numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0–9

and A–F. Base 15 numbers would use 0–9 and A–E.) Assume there are 24 bits, and

you do not need to normalize. Is this representation exact?

3.46 [20] <§3.5> Write down the bit pattern assuming that we are using base 30

numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0–9

and A–F. Base 30 numbers would use 0–9 and A–T.) Assume there are 20 bits, and

you do not need to normalize. Is this representation exact?

3.47 [45] <§§3.6, 3.7> Th

e following C code implements a four-tap FIR fi lter on

input array sig_in. Assume that all arrays are 16-bit fi xed-point values.

for (i

3;i < 128;i

)

sig_out[i]

sig_in[i- 3] * f[0]

sig_in[i-2

2] * f[1]

sig_in[i-1] * f[2]

sig_in[i] * f[3];

Assume you are to write an optimized implementation this code in assembly

language on a processor that has SIMD instructions and 128-bit registers. Without

knowing the details of the instruction set, briefl y describe how you would

implement this code, maximizing the use of sub-word operations and minimizing

the amount of data that is transferred between registers and memory. State all your

assumptions about the instructions you use.

§3.2, page 182: 2.

Answers to

§3.5, page 221: 3.

Check Yourself

4

The Processor

4.1 Introduction

244

4.2

Logic Design Conventions 248

4.3

Building a Datapath 251

 In a major matter, no

4.4

A Simple Implementation Scheme 259

 details are small.

4.5

An Overview of Pipelining 272

4.6

Pipelined Datapath and Control 286

French Proverb

4.7

Data Hazards: Forwarding versus

Stalling 303

4.8 Control

Hazards

316

4.9 Exceptions

325

4.10

Parallelism via Instructions 332

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

4.11

Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines 344

4.12

Going Faster: Instruction-Level Parallelism and Matrix

Multiply 351

4.13

Advanced Topic: An Introduction to Digital Design Using a

Hardware Design Language to Describe and Model a Pipeline

and More Pipelining Illustrations 354

4.14

Fallacies and Pitfalls 355

4.15 Concluding

Remarks

356

4.16

Historical Perspective and Further Reading 357

4.17 Exercises

357

The Five Classic Components of a Computer

244

Chapter 4 The Processor

 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key

factors: instruction count, clock cycle time, and clock cycles per instruction (CPI).

Chapter 2 explains that the compiler and the instruction set architecture determine

the instruction count required for a given program. However, the implementation

of the processor determines both the clock cycle time and the number of clock

cycles per instruction. In this chapter, we construct the datapath and control unit

for two diff erent implementations of the MIPS instruction set.

Th

is chapter contains an explanation of the principles and techniques used in

implementing a processor, starting with a highly abstract and simplifi ed overview

in this section. It is followed by a section that builds up a datapath and constructs a

simple version of a processor suffi

cient to implement an instruction set like MIPS.

Th

e bulk of the chapter covers a more realistic pipelined MIPS implementation,

followed by a section that develops the concepts necessary to implement more

complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of

instructions and its impact on program performance, this initial section and Section

4.5 present the basic concepts of pipelining. Recent trends are covered in Section

4.10, and Section 4.11 describes the recent Intel Core i7 and ARM Cortex-A8

architectures. Section 4.12 shows how to use instruction-level parallelism to more

than double the performance of the matrix multiply from Section 3.8. Th

ese sections

provide enough background to understand the pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance in

more depth, Sections 4.3, 4.4, and 4.6 will be useful. Th

ose interested in learning

how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers with

an interest in modern hardware design, Section 4.13 describes how hardware

design languages and CAD tools are used to implement hardware, and then how

to use a hardware design language to describe a pipelined implementation. It also

gives several more illustrations of how pipelining hardware executes.

A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS

instruction set:

■ Th

e memory-reference instructions load word (lw) and store word (sw)

■ Th

e arithmetic-logical instructions add, sub, AND, OR, and slt

■ Th

e instructions branch equal (beq) and jump (j), which we add last

Th

is subset does not include all the integer instructions (for example, shift ,

multiply, and divide are missing), nor does it include any fl oating-point instructions.

4.1 Introduction

245

However, it illustrates the key principles used in creating a datapath and designing

the control. Th

e implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the

instruction set architecture determines many aspects of the implementation, and

how the choice of various implementation strategies aff ects the clock rate and CPI

for the computer. Many of the key design principles introduced in Chapter 1 can

be illustrated by looking at the implementation, such as Simplicity favors regularity.

In addition, most concepts used to implement the MIPS subset in this chapter are

the same basic ideas that are used to construct a broad spectrum of computers,

from high-performance servers to general-purpose microprocessors to embedded

processors.

An Overview of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer

arithmetic-logical instructions, the memory-reference instructions, and the branch

instructions. Much of what needs to be done to implement these instructions is the

same, independent of the exact class of instruction. For every instruction, the fi rst

two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and

fetch the instruction from that memory.

2. Read one or two registers, using fi elds of the instruction to select the registers

to read. For the load word instruction, we need to read only one register, but

most other instructions require reading two registers.

Aft er these two steps, the actions required to complete the instruction depend

on the instruction class. Fortunately, for each of the three instruction classes

(memory-reference, arithmetic-logical, and branches), the actions are largely the

same, independent of the exact instruction. Th

e simplicity and regularity of the

MIPS instruction set simplifi es the implementation by making the execution of

many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit

(ALU) aft er reading the registers. Th

e memory-reference instructions use the ALU

for an address calculation, the arithmetic-logical instructions for the operation

execution, and branches for comparison. Aft er using the ALU, the actions required

to complete various instruction classes diff er. A memory-reference instruction

will need to access the memory either to read data for a load or write data for a

store. An arithmetic-logical or load instruction must write the data from the ALU

or memory back into a register. Lastly, for a branch instruction, we may need to

change the next instruction address based on the comparison; otherwise, the PC

should be incremented by 4 to get the address of the next instruction.

Figure 4.1 shows the high-level view of a MIPS implementation, focusing on

the various functional units and their interconnection. Although this fi gure shows

most of the fl ow of data through the processor, it omits two important aspects of

instruction execution.

246

Chapter 4 The Processor

First, in several places, Figure 4.1 shows data going to a particular unit as coming from two diff erent sources. For example, the value written into the PC can come

from one of two adders, the data written into the register fi le can come from either

the ALU or the data memory, and the second input to the ALU can come from

a register or the immediate fi eld of the instruction. In practice, these data lines

cannot simply be wired together; we must add a logic element that chooses from

among the multiple sources and steers one of those sources to its destination. Th

is

selection is commonly done with a device called a multiplexor, although this device

might better be called a data selector. Appendix B describes the multiplexor, which

selects from among several inputs based on the setting of its control lines. Th

e

control lines are set based primarily on information taken from the instruction

being executed.

Th

e second omission in Figure 4.1 is that several of the units must be controlled depending on the type of instruction. For example, the data memory must read

4

Add

Add

Data

Register #

PC

Address

Instruction

Registers

ALU

Address

Register #

Data

Instruction

memory

memory

Register #

Data

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the

major functional units and the major connections between them. All instructions start by using the program counter to supply the instruction address to the instruction memory. Aft er the instruction is fetched, the register operands used by an instruction are specifi ed by fi elds of that instruction. Once the register operands have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to a register. If the operation is a load or store, the ALU result is used as an address to either store a value from the registers or load a value from memory into the registers. Th

e result from the ALU or memory is written

back into the register fi le. Branches require the use of the ALU output to determine the next instruction address, which comes either from the ALU (where the PC and branch off set are summed) or from an adder that increments the current PC by 4. Th

e thick lines interconnecting the functional units represent buses,

which consist of multiple signals. Th

e arrows are used to guide the reader in knowing how information fl ows.

Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot where the lines cross.

4.1 Introduction

247

on a load and written on a store. Th

e register fi le must be written only on a load

or an arithmetic-logical instruction. And, of course, the ALU must perform one

of several operations. (Appendix B describes the detailed design of the ALU.)

Like the multiplexors, control lines that are set on the basis of various fi elds in the

instruction direct these operations.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors added, as well as control lines for the major functional units. A control unit,

which has the instruction as an input, is used to determine how to set the control

lines for the functional units and two of the multiplexors. Th

e third multiplexor,

Branch

M

u

x

4

Add

M

Add

u

x

ALU operation

Data

MemWrite

Register #

PC

Address

Instruction

Registers

ALU

Address

M

Register #

Zero

Data

Instruction

u

memory

memory

x

Register # RegWrite

Data MemRead

Control

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.

Th

e top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. Th e middle

multiplexor, whose output returns to the register fi le, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data memory (in the case of a load) for writing into the register fi le. Finally, the bottommost multiplexor is used to determine whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the off set fi eld of the instruction (for a load or store). Th

e added control lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and whether the registers should perform a write operation. Th

e control lines are shown in color to make them easier to

see.

248

Chapter 4 The Processor

which determines whether PC + 4 or the branch destination address is written

into the PC, is set based on the Zero output of the ALU, which is used to perform

the comparison of a beq instruction. Th

e regularity and simplicity of the MIPS

instruction set means that a simple decoding process can be used to determine how

to set the control lines.

In the remainder of the chapter, we refi ne this view to fi ll in the details, which

requires that we add further functional units, increase the number of connections

between units, and, of course, enhance a control unit to control what actions

are taken for diff erent instruction classes. Sections 4.3 and 4.4 describe a simple

implementation that uses a single long clock cycle for every instruction and follows

the general form of Figures 4.1 and 4.2. In this fi rst design, every instruction begins execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle

must be severely stretched to accommodate the longest instruction. Aft er designing

the control for this simple computer, we will look at pipelined implementation with

all its complexities, including exceptions.

Check How many of the fi ve classic components of a computer—shown on page 243—do

Figures 4.1 and 4.2 include?

Yourself

 4.2

Logic Design Conventions

To discuss the design of a computer, we must decide how the hardware logic

implementing the computer will operate and how the computer is clocked. Th

is

section reviews a few key ideas in digital logic that we will use extensively in this

chapter. If you have little or no background in digital logic, you will fi nd it helpful

to read Appendix B before continuing.

Th

e datapath elements in the MIPS implementation consist of two diff erent types

of logic elements: elements that operate on data values and elements that contain

combinational

state. Th

e elements that operate on data values are all combinational, which means

element An operational

that their outputs depend only on the current inputs. Given the same input, a

element, such as an AND

combinational element always produces the same output. Th

e ALU shown in Figure

gate or an ALU.

4.1 and discussed in Appendix B is an example of a combinational element. Given a set of inputs, it always produces the same output because it has no internal storage.

Other elements in the design are not combinational, but instead contain state. An

state element A memory element contains state if it has some internal storage. We call these elements state element, such as a register

elements because, if we pulled the power plug on the computer, we could restart it

or a memory.

accurately by loading the state elements with the values they contained before we

pulled the plug. Furthermore, if we saved and restored the state elements, it would

be as if the computer had never lost power. Th

us, these state elements completely

characterize the computer. In Figure 4.1, the instruction and data memories, as well as the registers, are all examples of state elements.

4.2 Logic Design Conventions

249

A state element has at least two inputs and one output. Th

e required inputs are

the data value to be written into the element and the clock, which determines when

the data value is written. Th

e output from a state element provides the value that

was written in an earlier clock cycle. For example, one of the logically simplest state

elements is a D-type fl ip-fl op (see

Appendix B), which has exactly these two

inputs (a value and a clock) and one output. In addition to fl ip-fl ops, our MIPS

implementation uses two other types of state elements: memories and registers,

both of which appear in Figure 4.1. Th

e clock is used to determine when the state

element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because their

outputs depend on both their inputs and the contents of the internal state. For

example, the output from the functional unit representing the registers depends

both on the register numbers supplied and on what was written into the registers

previously. Th

e operation of both the combinational and sequential elements and

their construction are discussed in more detail in Appendix B.

Clocking Methodology

A clocking methodology defi nes when signals can be read and when they can be clocking written. It is important to specify the timing of reads and writes, because if a signal methodology Th e is written at the same time it is read, the value of the read could correspond to the approach used to old value, the newly written value, or even some mix of the two! Computer designs determine when data is valid and stable relative to

cannot tolerate such unpredictability. A clocking methodology is designed to make the clock.

hardware predictable.

For simplicity, we will assume an edge-triggered clocking methodology. An edge-triggered edge-triggered clocking methodology means that any values stored in a sequential clocking A clocking logic element are updated only on a clock edge, which is a quick transition from scheme in which all state low to high or vice versa (see Figure 4.3). Because only state elements can store a changes occur on a clock edge.

data value, any collection of combinational logic must have its inputs come from a

set of state elements and its outputs written into a set of state elements. Th

e inputs

are values that were written in a previous clock cycle, while the outputs are values

that can be used in a following clock cycle.

State

State

element

Combinational logic

element

1

2

Clock cycle

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related.

In a synchronous digital system, the clock determines when elements with state will write values into internal storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they will not change until aft er the clock edge) before the active clock edge causes the state to be updated. All state elements in this chapter, including memory, are assumed to be positive edge-triggered; that is, they change on the rising clock edge.

250

Chapter 4 The Processor

Figure 4.3 shows the two state elements surrounding a block of combinational

logic, which operates in a single clock cycle: all signals must propagate from state

element 1, through the combinational logic, and to state element 2 in the time of

one clock cycle. Th

e time necessary for the signals to reach state element 2 defi nes

the length of the clock cycle.

control signal A signal

For simplicity, we do not show a write control signal when a state element is

used for multiplexor

written on every active clock edge. In contrast, if a state element is not updated on

selection or for directing

every clock, then an explicit write control signal is required. Both the clock signal

the operation of a

and the write control signal are inputs, and the state element is changed only when

functional unit; contrasts

the write control signal is asserted and a clock edge occurs.

with a data signal, which

We will use the word asserted to indicate a signal that is logically high and assert

contains information

that is operated on by a

to specify that a signal should be driven logically high, and deassert or deasserted

functional unit.

to represent logically low. We use the terms assert and deassert because when

we implement hardware, at times 1 represents logically high and at times it can

asserted Th

e signal is

represent logically low.

logically high or true.

An edge-triggered methodology allows us to read the contents of a register,

deasserted Th

e signal is

send the value through some combinational logic, and write that register in the

logically low or false.

same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we assume that all writes take place on the rising clock edge (from low to high) or on

the falling clock edge (from high to low), since the inputs to the combinational

logic block cannot change except on the chosen clock edge. In this book we use

the rising clock edge. With an edge-triggered timing methodology, there is no

feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In Appendix B, we briefl y discuss additional timing constraints (such as setup and

hold times) as well as other timing methodologies.

For the 32-bit MIPS architecture, nearly all of these state and logic elements will

have inputs and outputs that are 32 bits wide, since that is the width of most of the

data handled by the processor. We will make it clear whenever a unit has an input

or output that is other than 32 bits in width. Th

e fi gures will indicate buses, which

are signals wider than 1 bit, with thicker lines. At times, we will want to combine

several buses to form a wider bus; for example, we may want to obtain a 32-bit bus

by combining two 16-bit buses. In such cases, labels on the bus lines will make it

State

Combinational logic

element

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and

written in the same clock cycle without creating a race that could lead to indeterminate

data values. Of course, the clock cycle still must be long enough so that the input values are stable when the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered update of the state element. If feedback were possible, this design could not work properly. Our designs in this chapter and the next rely on the edge-triggered timing methodology and on structures like the one shown in this fi gure.

4.3 Building a Datapath

251

clear that we are concatenating buses to form a wider bus. Arrows are also added

to help clarify the direction of the fl ow of data between elements. Finally, color

indicates a control signal as opposed to a signal that carries data; this distinction

will become clearer as we proceed through this chapter.

True or false: Because the register fi le is both read and written on the same clock Check

cycle, any MIPS datapath using edge-triggered writes must have more than one Yourself

copy of the register fi le.

Elaboration: There is also a 64-bit version of the MIPS architecture, and, naturally

enough, most paths in its implementation would be 64 bits wide.

 4.3

Building a Datapath

A reasonable way to start a datapath design is to examine the major components

required to execute each class of MIPS instructions. Let’s start at the top by looking

at which datapath elements each instruction needs, and then work our way down

through the levels of abstraction. When we show the datapath elements, we will

also show their control signals. We use abstraction in this explanation, starting

from the bottom up.

Figure 4.5a shows the fi rst element we need: a memory unit to store the

instructions of a program and supply instructions given an address. Figure

4.5b also shows the program counter (PC), which as we saw in Chapter 2

is a register that holds the address of the current instruction. Lastly, we will datapath element need an adder to increment the PC to the address of the next instruction. Th

is A unit used to operate

adder, which is combinational, can be built from the ALU described in detail on or hold data within a in

Appendix B simply by wiring the control lines so that the control always processor. In the MIPS

specifi es an add operation. We will draw such an ALU with the label Add, as in implementation, the

Figure 4.5, to indicate that it has been permanently made an adder and cannot datapath elements include the instruction and data

perform the other ALU functions.

memories, the register

To execute any instruction, we must start by fetching the instruction from fi le, the ALU, and adders.

memory. To prepare for executing the next instruction, we must also increment

the program counter so that it points at the next instruction, 4 bytes later. Figure program counter

4.6 shows how to combine the three elements from Figure 4.5 to form a datapath (PC) Th e register containing the address

that fetches instructions and increments the PC to obtain the address of the next of the instruction in the sequential instruction.

program being executed.

Now let’s consider the R-format instructions (see Figure 2.20 on page 120).

Th

ey all read two registers, perform an ALU operation on the contents of the

registers, and write the result to a register. We call these instructions either R-type

 instructions or arithmetic-logical instructions (since they perform arithmetic or logical operations). Th

is instruction class includes add, sub, AND, OR, and slt,

252

Chapter 4 The Processor

Instruction

address

Instruction

PC

Add Sum

Instruction

memory

a. Instruction memory

b. Program counter

c. Adder

FIGURE 4.5 Two state elements are needed to store and access instructions, and an

adder is needed to compute the next instruction address. Th

e state elements are the instruction

memory and the program counter. Th

e instruction memory need only provide read access because the

datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational logic: the output at any time refl ects the contents of the location specifi ed by the address input, and no read control signal is needed. (We will need to write the instruction memory when we load the program; this is not hard to add, and we ignore it for simplicity.) Th

e program counter is a 32-bit register that is written at the

end of every clock cycle and thus does not need a write control signal. Th

e adder is an ALU wired to always

add its two 32-bit inputs and place the sum on its output.

which were introduced in Chapter 2. Recall that a typical instance of such an

instruction is add $t1,$t2,$t3, which reads $t2 and $t3 and writes $t1.

Th

e processor’s 32 general-purpose registers are stored in a structure called a

register fi le A state

register fi le. A register fi le is a collection of registers in which any register can be element that consists

read or written by specifying the number of the register in the fi le. Th

e register fi le

of a set of registers that

contains the register state of the computer. In addition, we will need an ALU to

can be read and written

operate on the values read from the registers.

by supplying a register

R-format instructions have three register operands, so we will need to read two

number to be accessed.

data words from the register fi le and write one data word into the register fi le for

each instruction. For each data word to be read from the registers, we need an input

to the register fi le that specifi es the register number to be read and an output from

the register fi le that will carry the value that has been read from the registers. To

write a data word, we will need two inputs: one to specify the register number to be

written and one to supply the data to be written into the register. Th

e register fi le

always outputs the contents of whatever register numbers are on the Read register

inputs. Writes, however, are controlled by the write control signal, which must be

asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we need a total of four inputs (three for register numbers and one for data) and two

outputs (both for data). Th

e register number inputs are 5 bits wide to specify one

of 32 registers (32 = 25), whereas the data input and two data output buses are each

32 bits wide.

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit result, as well as a 1-bit signal if the result is 0. Th

e 4-bit control signal of the ALU is

described in detail in Appendix B; we will review the ALU control shortly when

we need to know how to set it.

4.3 Building a Datapath

253

Add

4

Read

PC

address

Instruction

Instruction

memory

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing

the program counter. Th

e fetched instruction is used by other parts of the datapath.

5

Read

ALU operation

4

register 1

Read

Register

5

data 1

Read

numbers

register 2

Zero

Data

5

Registers

ALU ALU

Write

result

register

Read

data 2

Write

Data

Data

RegWrite

a. Registers

b. ALU

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the

register fi le and the ALU. Th

e register fi le contains all the registers and has two read ports and one write

port. Th

e design of multiported register fi les is discussed in Section B.8 of

Appendix B. Th e register fi le

always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to the register fi le are edge-triggered, our design can legally read and write the same register within a clock cycle: the read will get the value written in an earlier clock cycle, while the value written will be available to a read in a subsequent clock cycle. Th

e inputs carrying the register number to the register fi le are all 5

bits wide, whereas the lines carrying data values are 32 bits wide. Th

e operation to be performed by the

ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. Th e overfl ow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.

254

Chapter 4 The Processor

Next, consider the MIPS load word and store word instructions, which have the

general form lw $t1,offset_value($t2) or sw $t1,offset_value

($t2). Th

ese instructions compute a memory address by adding the base register,

which is $t2, to the 16-bit signed off set fi eld contained in the instruction. If the

instruction is a store, the value to be stored must also be read from the register fi le

where it resides in $t1. If the instruction is a load, the value read from memory

must be written into the register fi le in the specifi ed register, which is $t1. Th

us,

we will need both the register fi le and the ALU from Figure 4.7.

sign-extend To increase

In addition, we will need a unit to sign-extend the 16-bit off set fi eld in the

the size of a data item by

instruction to a 32-bit signed value, and a data memory unit to read from or write

replicating the high-order

to. Th

e data memory must be written on store instructions; hence, data memory

sign bit of the original

has read and write control signals, an address input, and an input for the data to be

data item in the high-

written into memory. Figure 4.8 shows these two elements.

order bits of the larger,

Th

e beq instruction has three operands, two registers that are compared for

destination data item.

equality, and a 16-bit off set used to compute the branch target address relative

branch target

to the branch instruction address. Its form is beq $t1,$t2,offset. To

address Th

e address

implement this instruction, we must compute the branch target address by adding

specifi ed in a branch,

the sign-extended off set fi eld of the instruction to the PC. Th

ere are two details in

which becomes the new

the defi nition of branch instructions (see Chapter 2) to which we must pay attention:

program counter (PC)

if the branch is taken. In

■ Th

e instruction set architecture specifi es that the base for the branch address

the MIPS architecture the

calculation is the address of the instruction following the branch. Since we

branch target is given by

compute PC + 4 (the address of the next instruction) in the instruction fetch

the sum of the off set fi eld

of the instruction and the

datapath, it is easy to use this value as the base for computing the branch

address of the instruction

target address.

following the branch.

■ Th

e architecture also states that the off set fi eld is shift ed left 2 bits so that it

is a word off set; this shift increases the eff ective range of the off set fi eld by a

factor of 4.

To deal with the latter complication, we will need to shift the off set fi eld by 2.

branch taken

As well as computing the branch target address, we must also determine whether

A branch where the

the next instruction is the instruction that follows sequentially or the instruction

branch condition is

at the branch target address. When the condition is true (i.e., the operands are

satisfi ed and the program

counter (PC) becomes

equal), the branch target address becomes the new PC, and we say that the branch

the branch target. All

is taken. If the operands are not equal, the incremented PC should replace the

unconditional jumps are

current PC (just as for any other normal instruction); in this case, we say that the

taken branches.

branch is not taken.

Th

us, the branch datapath must do two operations: compute the branch target

branch not taken or

(untaken branch)

address and compare the register contents. (Branches also aff ect the instruction

A branch where the

fetch portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the branch condition is false

structure of the datapath segment that handles branches. To compute the branch

and the program counter

target address, the branch datapath includes a sign extension unit, from Figure 4.8

(PC) becomes the address

and an adder. To perform the compare, we need to use the register fi le shown in

of the instruction that

Figure 4.7a to supply the two register operands (although we will not need to write sequentially follows the

into the register fi le). In addition, the comparison can be done using the ALU we

branch.

4.3 Building a Datapath

255

MemWrite

Read

Address

data

16

32

Sign-

Data

extend

memory

Write

data

MemRead

a. Data memory unit

b. Sign extension unit

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the

register fi le and ALU of Figure 4.7, are the data memory unit and the sign extension unit.

Th

e memory unit is a state element with inputs for the address and the write data, and a single output for the read result. Th

ere are separate read and write controls, although only one of these may be asserted on

any given clock. Th

e memory unit needs a read signal, since, unlike the register fi le, reading the value of

an invalid address can cause problems, as we will see in Chapter 5. Th

e sign extension unit has a 16-bit

input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be adapted to work with real memory chips. See Section B.8 of

Appendix B for further discussion of how

real memory chips work.

designed in Appendix B. Since that ALU provides an output signal that indicates

whether the result was 0, we can send the two register operands to the ALU with

the control set to do a subtract. If the Zero signal out of the ALU unit is asserted,

we know that the two values are equal. Although the Zero output always signals

if the result is 0, we will be using it only to implement the equal test of branches.

Later, we will show exactly how to connect the control signals of the ALU for use

in the datapath.

Th

e jump instruction operates by replacing the lower 28 bits of the PC with the

lower 26 bits of the instruction shift ed left by 2 bits. Simply concatenating 00 to the

jump off set accomplishes this shift , as described in Chapter 2.

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the branch A type of branch instruction immediately following the branch is always executed, independent of whether

where the instruction

the branch condition is true or false. When the condition is false, the execution looks

immediately following the

like a normal branch. When the condition is true, a delayed branch fi rst executes the

branch is always executed,

instruction immediately following the branch in sequential instruction order before independent of whether jumping to the specifi ed branch target address. The motivation for delayed branches

the branch condition is

arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally

true or false.

ignore delayed branches in this chapter and implement a nondelayed beq instruction.

256

Chapter 4 The Processor

PC + 4 from instruction datapath

Branch

Add Sum

target

Shift

left 2

Read

ALU operation

register 1

4

Instruction

Read

data 1

Read

register 2

To branch

Registers

ALU Zero

control logic

Write

register

Read

data 2

Write

data

RegWrite

16

32

Sign-

extend

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition and a separate adder to compute the branch target as the sum of the incremented PC and the

sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2

bits. Th

e unit labeled Shift left 2 is simply a routing of the signals between input and output that adds 00

two

to the low-order end of the sign-extended off set fi eld; no actual shift hardware is needed, since the amount of the “shift ” is constant. Since we know that the off set was sign-extended from 16 bits, the shift will throw away only “sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC, based on the Zero output of the ALU.

Creating a Single Datapath

Now that we have examined the datapath components needed for the individual

instruction classes, we can combine them into a single datapath and add the control

to complete the implementation. Th

is simplest datapath will attempt to execute all

instructions in one clock cycle. Th

is means that no datapath resource can be used

more than once per instruction, so any element needed more than once must be

duplicated. We therefore need a memory for instructions separate from one for

data. Although some of the functional units will need to be duplicated, many of the

elements can be shared by diff erent instruction fl ows.

To share a datapath element between two diff erent instruction classes, we may

need to allow multiple connections to the input of an element, using a multiplexor

and control signal to select among the multiple inputs.

4.3 Building a Datapath

257

Building a Datapath

EXAMPLE

Th

e operations of arithmetic-logical (or R-type) instructions and the memory

instructions datapath are quite similar. Th

e key diff erences are the following:

■ Th

e arithmetic-logical instructions use the ALU, with the inputs coming

from the two registers. Th

e memory instructions can also use the ALU

to do the address calculation, although the second input is the sign-

extended 16-bit off set fi eld from the instruction.

■ Th

e value stored into a destination register comes from the ALU (for an

R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-

reference and arithmetic-logical instructions that uses a single register fi le

and a single ALU to handle both types of instructions, adding any necessary

multiplexors.

To create a datapath with only a single register fi le and a single ALU, we must

support two diff erent sources for the second ALU input, as well as two diff erent

ANSWER

sources for the data stored into the register fi le. Th

us, one multiplexor is placed

at the ALU input and another at the data input to the register fi le. Figure 4.10

shows the operational portion of the combined datapath.

Now we can combine all the pieces to make a simple datapath for the core

MIPS architecture by adding the datapath for instruction fetch (Figure 4.6), the datapath from R-type and memory instructions (Figure 4.10), and the datapath

for branches (Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the separate pieces. Th

e branch instruction uses the main ALU for comparison of

the register operands, so we must keep the adder from Figure 4.9 for computing the branch target address. An additional multiplexor is required to select either the

sequentially following instruction address (PC + 4) or the branch target address to

be written into the PC.

Now that we have completed this simple datapath, we can add the control unit.

Th

e control unit must be able to take inputs and generate a write signal for each

state element, the selector control for each multiplexor, and the ALU control. Th

e

ALU control is diff erent in a number of ways, and it will be useful to design it fi rst

before we design the rest of the control unit.

I. Which of the following is correct for a load instruction? Refer to Figure 4.10.

Check

a. MemtoReg should be set to cause the data from memory to be sent to the

Yourself

register fi le.

258

Chapter 4 The Processor

Read

ALU operation

register 1

4

Read

MemWrite

data 1

Read

Zero

MemtoReg

register 2

Instruction

ALUSrc

Registers

ALU

Read

ALU

Read

Write

0

Address

1

data 2

result

data

register

M

M

u

u

x

x

Write

1

0

data

Data

Write

RegWrite

memory

data

16

32

MemRead

Sign-

extend

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. Th is example shows how a single

datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, as described in the example.

PCSrc

M

Add

u

x

ALU

4

Add result

Shift

left 2

Read

ALUSrc

ALU operation

Read

PC

register 1

4

Read

address

MemWrite

data 1

Read

Zero

MemtoReg

register 2

Instruction

Registers

ALU

Read

ALU

Read

Write

Address

data 2

result

Instruction

M

data

M

register

u

u

memory

x

x

Write

data

Write

Data

RegWrite

data

memory

16

32

MemRead

Sign-

extend

FIGURE 4.11 The simple datapath for the core MIPS architecture combines the elements required by different instruction classes. Th

e components come from Figures 4.6, 4.9, and 4.10. Th

is datapath can execute the basic instructions (load-store

word, ALU operations, and branches) in a single clock cycle. Just one additional multiplexor is needed to integrate branches. Th e support for

jumps will be added later.

4.4 A Simple Implementation Scheme

259

b. MemtoReg should be set to cause the correct register destination to be

sent to the register fi le.

c. We do not care about the setting of MemtoReg for loads.

II. Th

e single-cycle datapath conceptually described in this section must have

separate instruction and data memories, because

a. the formats of data and instructions are diff erent in MIPS, and hence

diff erent memories are needed.

b. having separate memories is less expensive.

c. the processor operates in one cycle and cannot use a single-ported

memory for two diff erent accesses within that cycle

 4.4

A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible

implementation of our MIPS subset. We build this simple implementation using

the datapath of the last section and adding a simple control function. Th

is simple

implementation covers load word (lw), store word (sw), branch equal (beq), and the arithmetic-logical instructions add, sub, AND, OR, and set on less

than. We will later enhance the design to include a jump instruction (j).

The ALU Control

Th

e MIPS ALU in Appendix B defi nes the 6 following combinations of four

control inputs:

ALU control lines

Function

0000

AND

0001

OR

0010

add

0110

subtract

0111

set on less than

1100

NOR

Depending on the instruction class, the ALU will need to perform one of these

fi rst fi ve functions. (NOR is needed for other parts of the MIPS instruction set not

found in the subset we are implementing.) For load word and store word instructions,

we use the ALU to compute the memory address by addition. For the R-type

instructions, the ALU needs to perform one of the fi ve actions (AND, OR, subtract,

add, or set on less than), depending on the value of the 6-bit funct (or function) fi eld

260

Chapter 4 The Processor

in the low-order bits of the instruction (see Chapter 2). For branch equal, the ALU

must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has

as inputs the function fi eld of the instruction and a 2-bit control fi eld, which we

call ALUOp. ALUOp indicates whether the operation to be performed should be

add (00) for loads and stores, subtract (01) for beq, or determined by the operation

encoded in the funct fi eld (10). Th

e output of the ALU control unit is a 4-bit signal

that directly controls the ALU by generating one of the 4-bit combinations shown

previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit

ALUOp control and the 6-bit function code. Later in this chapter we will see how

the ALUOp bits are generated from the main control unit.

Th

is style of using multiple levels of decoding—that is, the main control unit

generates the ALUOp bits, which then are used as input to the ALU control that

generates the actual signals to control the ALU unit—is a common implementation

technique. Using multiple levels of control can reduce the size of the main control

unit. Using several smaller control units may also potentially increase the speed of

the control unit. Such optimizations are important, since the speed of the control

unit is oft en critical to clock cycle time.

Th

ere are several diff erent ways to implement the mapping from the 2-bit

ALUOp fi eld and the 6-bit funct fi eld to the four ALU operation control bits.

Because only a small number of the 64 possible values of the function fi eld are of

interest and the function fi eld is used only when the ALUOp bits equal 10, we can

use a small piece of logic that recognizes the subset of possible values and causes

the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the

interesting combinations of the function code fi eld and the ALUOp bits, as we’ve

Instruction

Instruction

Desired

ALU control

opcode

ALUOp

operation

Funct field

ALU action

input

LW

00

load word

XXXXXX

add

0010

SW

00

store word

XXXXXX

add

0010

Branch equal

01

branch equal

XXXXXX

subtract

0110

R-type

10

add

100000

add

0010

R-type

10

subtract

100010

subtract

0110

R-type

10

AND

100100

AND

0000

R-type

10

OR

100101

OR

0001

R-type

10

set on less than

101010

set on less than

0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and

the different function codes for the R-type instruction. Th

e opcode, listed in the fi rst column,

determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the ALUOp code is 00 or 01, the desired ALU action does not depend on the function code fi eld; in this case, we say that we “don’t care” about the value of the function code, and the funct fi eld is shown as XXXXXX. When the ALUOp value is 10, then the function code is used to set the ALU control input. See

Appendix B.

4.4 A Simple Implementation Scheme

261

done in Figure 4.13; this truth table shows how the 4-bit ALU control is set truth table From logic, a depending on these two input fi elds. Since the full truth table is very large (28 = 256 representation of a logical entries) and we don’t care about the value of the ALU control for many of these input

operation by listing all the

combinations, we show only the truth table entries for which the ALU control must values of the inputs and then in each case showing

have a specifi c value. Th

roughout this chapter, we will use this practice of showing what the resulting outputs

only the truth table entries for outputs that must be asserted and not showing those should be.

that are all deasserted or don’t care. (Th

is practice has a disadvantage, which we

discuss in Section D.2 of Appendix D.)

Because in many instances we do not care about the values of some of the inputs,

and because we wish to keep the tables compact, we also include don’t-care terms. don’t-care term An A don’t-care term in this truth table (represented by an X in an input column) element of a logical indicates that the output does not depend on the value of the input corresponding function in which the to that column. For example, when the ALUOp bits are 00, as in the fi rst row of output does not depend on the values of all the

Figure 4.13, we always set the ALU control to 0010, independent of the function inputs. Don’t-care terms code. In this case, then, the function code inputs will be don’t cares in this line of may be specifi ed in the truth table. Later, we will see examples of another type of don’t-care term. If you

diff erent ways.

are unfamiliar with the concept of don’t-care terms, see Appendix B for more

information.

Once the truth table has been constructed, it can be optimized and then turned

into gates. Th

is process is completely mechanical. Th

us, rather than show the fi nal

steps here, we describe the process and the result in Section D.2 of Appendix D.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and

a 2-bit signal as its control inputs, we can return to looking at the rest of the control.

To start this process, let’s identify the fi elds of an instruction and the control lines

that are needed for the datapath we constructed in Figure 4.11. To understand how to connect the fi elds of an instruction to the datapath, it is useful to review

ALUOp

Funct field

ALUOp1

ALUOp0

F5

F4

F3

F2

F1

F0

Operation

0

0

X

X

X

X

X

X

0010

X

1

X

X

X

X

X

X

0110

1

X

X

X

0

0

0

0

0010

1

X

X

X

0

0

1

0

0110

1

X

X

X

0

1

0

0

0000

1

X

X

X

0

1

0

1

0001

1

X

X

X

1

0

1

0

0111

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). Th

e inputs are the

ALUOp and function code fi eld. Only the entries for which the ALU control is asserted are shown. Some don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. Note that when the function fi eld is used, the fi rst 2

bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX

in the truth table.

262

Chapter 4 The Processor

Field

0

rs

rt

rd

shamt

funct

Bit positions

31:26

25:21

20:16

15:11

10:6

5:0

a. R-type instruction

Field

35 or 43

rs

rt

address

Bit positions

31:26

25:21

20:16

15:0

b. Load or store instruction

Field

4

rs

rt

address

Bit positions

31:26

25:21

20:16

15:0

c. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two different instruction formats. Th

e jump instructions use another format, which we will discuss shortly.

(a) Instruction format for R-format instructions, which all have an opcode of 0. Th

ese instructions have three

register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. Th

e ALU function is

in the funct fi eld and is decoded by the ALU control design in the previous section. Th

e R-type instructions

that we implement are add, sub, AND, OR, and slt. Th

e shamt fi eld is used only for shift s; we will ignore it

in this chapter. (b) Instruction format for load (opcode = 35) and store (opcode = 43) instructions. Th e

ten

ten

register rs is the base register that is added to the 16-bit address fi eld to form the memory address. For loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should be stored into memory. (c) Instruction format for branch equal (opcode =4). Th

e registers rs and rt are the

source registers that are compared for equality. Th

e 16-bit address fi eld is sign-extended, shift ed, and added

to the PC + 4 to compute the branch target address.

the formats of the three instruction classes: the R-type, branch, and load-store

instructions. Figure 4.14 shows these formats.

Th

ere are several major observations about this instruction format that we will

rely on:

opcode Th

e fi eld that

■ Th

e op fi eld, which as we saw in Chapter 2 is called the opcode, is always

denotes the operation and

contained in bits 31:26. We will refer to this fi eld as Op[5:0].

format of an instruction.

■ Th

e two registers to be read are always specifi ed by the rs and rt fi elds, at

positions 25:21 and 20:16. Th

is is true for the R-type instructions, branch

equal, and store.

■ Th

e base register for load and store instructions is always in bit positions

25:21 (rs).

■ Th

e 16-bit off set for branch equal, load, and store is always in positions 15:0.

■ Th

e destination register is in one of two places. For a load it is in bit positions

20:16 (rt), while for an R-type instruction it is in bit positions 15:11 (rd).

Th

us, we will need to add a multiplexor to select which fi eld of the instruction

is used to indicate the register number to be written.

Th

e fi rst design principle from Chapter 2— simplicity favors regularity—pays off

here in specifying control.

4.4 A Simple Implementation Scheme

263

PCSrc

0

M

Add

u

x

ALU

4

Addresult

1

RegWrite

Shift

left 2

Instruction [25:21]

Read

Read

register 1

MemWrite

PC

address

Read

Instruction [20:16]

Read

data 1

ALUSrc

register 2

Zero

MemtoReg

Instruction

0

ALU

[31:0]

M

Write

Read

ALU

Read

0

Address

1

u

register

data 2

result

data

Instruction

M

M

Instruction [15:11] x

memory

u

u

1

x

x

Write

0

1

data Registers

Data

RegDst

Write memory

data

Instruction [15:0]

16

32

Sign-

ALU

extend

control

MemRead

Instruction [5:0]

ALUOp

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identifi ed. Th e control

lines are shown in color. Th

e ALU control block has also been added. Th

e PC does not require a write control, since it is written once at the end

of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.

Using this information, we can add the instruction labels and extra multiplexor

(for the Write register number input of the register fi le) to the simple datapath.

Figure 4.15 shows these additions plus the ALU control block, the write signals for state elements, the read signal for the data memory, and the control signals for the

multiplexors. Since all the multiplexors have two inputs, they each require a single

control line.

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control signal. We have already defi ned how the ALUOp control signal works, and it is

useful to defi ne what the seven other control signals do informally before we

determine how to set these control signals during instruction execution. Figure

4.16 describes the function of these seven control lines.

Now that we have looked at the function of each of the control signals, we can

look at how to set them. Th

e control unit can set all but one of the control signals

based solely on the opcode fi eld of the instruction. Th

e PCSrc control line is the

exception. Th

at control line should be asserted if the instruction is branch on equal

(a decision that the control unit can make) and the Zero output of the ALU, which

is used for equality comparison, is asserted. To generate the PCSrc signal, we will

need to AND together a signal from the control unit, which we call Branch, with

the Zero signal out of the ALU.

264

Chapter 4 The Processor

Signal

name

Effect when deasserted

Effect when asserted

RegDst

The register destination number for the

The register destination number for the Write

Write register comes from the rt field

register comes from the rd field (bits 15:11).

(bits 20:16).

RegWrite

None.

The register on the Write register input is

written with the value on the Write data input.

ALUSrc

The second ALU operand comes from the The second ALU operand is the sign-

second register file output (Read data 2).

extended, lower 16 bits of the instruction.

PCSrc

The PC is replaced by the output of the

The PC is replaced by the output of the adder

adder that computes the value of PC + 4.

that computes the branch target.

MemRead

None.

Data memory contents designated by the

address input are put on the Read data output.

MemWrite

None.

Data memory contents designated by the

address input are replaced by the value on

the Write data input.

MemtoReg

The value fed to the register Write data

The value fed to the register Write data input

input comes from the ALU.

comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element can create timing problems. (See

Appendix B for further discussion of this problem.)

Th

ese nine control signals (seven from Figure 4.16 and two for ALUOp) can

now be set on the basis of six input signals to the control unit, which are the opcode

bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control signals.

Before we try to write a set of equations or a truth table for the control unit, it

will be useful to try to defi ne the control function informally. Because the setting

of the control lines depends only on the opcode, we defi ne whether each control

signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18

defi nes how the control signals should be set for each opcode; this information

follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath

With the information contained in Figures 4.16 and 4.18, we can design the control unit logic, but before we do that, let’s look at how each instruction uses the datapath.

In the next few fi gures, we show the fl ow of three diff erent instruction classes

through the datapath. Th

e asserted control signals and active datapath elements

are highlighted in each of these. Note that a multiplexor whose control is 0 has

a defi nite action, even if its control line is not highlighted. Multiple-bit control

signals are highlighted if any constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such as add $t1,$t2,$t3. Although everything occurs in one clock cycle, we can

4.4 A Simple Implementation Scheme

265

0

M

Add

u

x

ALU

4

Add

1

result

Shift

RegDst

left 2

Branch

MemRead

Instruction [31–26]

MemtoReg

Control ALUOp

MemWrite

ALUSrc

RegWrite

Instruction [25–21]

Read

Read

PC

register 1 Read

address

Instruction [20–16]

data 1

Read

Zero

Instruction

register 2

0

ALU

[31–0]

M

Read

ALU

Read

Write

0

Address

1

u

data 2

result

data

Instruction

register

M

M

Instruction [15–11] x

memory

u

u

1

x

x

Write

0

1

data Registers

Write

Data

data memory

Instruction [15–0]

16

Sign-

32

ALU

extend

control

Instruction [5–0]

FIGURE 4.17 The simple datapath with the control unit. Th

e input to the control unit is the 6-bit opcode fi eld from the instruction.

Th

e outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for controlling reads and writes in the register fi le and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one coming directly from the control unit. Th

us, we drop the signal name in subsequent fi gures.

think of four steps to execute the instruction; these steps are ordered by the fl ow

of information:

1. Th

e instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register fi le; also, the main

control unit computes the setting of the control lines during this step.

3. Th

e ALU operates on the data read from the register fi le, using the function

code (bits 5:0, which is the funct fi eld, of the instruction) to generate the

ALU function.

266

Chapter 4 The Processor

Memto-

Reg-

Mem-

Mem-

Instruction

RegDst

ALUSrc

Reg

Write

Read

Write

Branch

ALUOp1

ALUOp0

R-format

1

0

0

1

0

0

0

1

0

lw

0

1

1

1

1

0

0

0

0

sw

X

1

X

0

0

1

0

0

0

beq

X

0

X

0

0

0

1

0

1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fi elds of the instruction. Th e fi rst

row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these instructions, the source register fi elds are rs and rt, and the destination register fi eld is rd; this defi nes how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register (Reg-Write = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. Th e ALUOp fi eld for R-type

instructions is set to 10 to indicate that the ALU control should be generated from the funct fi eld. Th e second and third rows of this table give the

control signal settings for lw and sw. Th

ese ALUSrc and ALUOp fi elds are set to perform the address calculation. Th

e MemRead and MemWrite

are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. Th e

branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. Th e ALUOp fi eld for branch is set for a

subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg fi eld is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on the register data write port is not used. Th us, the entry MemtoReg in the last two rows

of the table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. Th is type of don’t care must be added

by the designer, since it depends on knowledge of how the datapath works.

0

M

Add

u

x

ALU

4

Add

1

result

Shift

RegDst

left 2

Branch

MemRead

Instruction [31–26]

MemtoReg

Control ALUOp

MemWrite

ALUSrc

RegWrite

Instruction [25–21]

Read

Read

PC

register 1 Read

address

Instruction [20–16]

data 1

Read

Zero

Instruction

register 2

0

ALU

[31–0]

M

Read

ALU

Read

Write

0

Address

1

u

data 2

result

data

Instruction

register

M

M

Instruction [15–11] x

memory

u

u

1

x

x

Write

0

1

data Registers

Write

Data

data memory

Instruction [15–0]

16

Sign-

32

ALU

extend

control

Instruction [5–0]

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3. Th e control lines, datapath units,

and connections that are active are highlighted.

4.4 A Simple Implementation Scheme

267

4. Th

e result from the ALU is written into the register fi le using bits 15:11 of the

instruction to select the destination register ($t1).

Similarly, we can illustrate the execution of a load word, such as

lw $t1, offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and asserted control lines for a load. We can think of a load instruction as operating in

fi ve steps (similar to how the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is

incremented.

2. A register ($t2) value is read from the register fi le.

0

M

Add

u

x

ALU

4

Add

1

result

Shift

RegDst

left 2

Branch

MemRead

Instruction [31–26]

MemtoReg

Control ALUOp

MemWrite

ALUSrc

RegWrite

Instruction [25–21]

Read

Read

PC

register 1 Read

address

Instruction [20–16]

data 1

Read

Zero

Instruction

register 2

0

ALU

[31–0]

M

Read

ALU

Read

Write

0

Address

1

u

data 2

result

data

Instruction

register

M

M

Instruction [15–11] x

memory

u

u

1

x

x

Write

0

1

data Registers

Write

Data

data memory

Instruction [15–0]

16

Sign-

32

ALU

extend

control

Instruction [5–0]

FIGURE 4.20 The datapath in operation for a load instruction. Th

e control lines, datapath units, and connections that are active

are highlighted. A store instruction would operate very similarly. Th

e main diff erence would be that the memory control would indicate a write

rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to the register fi le would not occur.

268

Chapter 4 The Processor

3. Th

e ALU computes the sum of the value read from the register fi le and the

sign-extended, lower 16 bits of the instruction (offset).

4. Th

e sum from the ALU is used as the address for the data memory.

5. Th

e data from the memory unit is written into the register fi le; the register

destination is given by bits 20:16 of the instruction ($t1).

Finally, we can show the operation of the branch-on-equal instruction, such as

beq $t1, $t2, offset, in the same fashion. It operates much like an R-format

instruction, but the ALU output is used to determine whether the PC is written with

PC + 4 or the branch target address. Figure 4.21 shows the four steps in execution: 1. An instruction is fetched from the instruction memory, and the PC is

incremented.

0

M

Add

u

x

ALU

4

Add

1

result

Shift

RegDst

left 2

Branch

MemRead

Instruction [31–26]

MemtoReg

Control ALUOp

MemWrite

ALUSrc

RegWrite

Instruction [25–21]

Read

Read

PC

register 1 Read

address

Instruction [20–16]

data 1

Read

Zero

Instruction

register 2

0

ALU

[31–0]

M

Read

ALU

Read

Write

0

Address

1

u

data 2

result

data

Instruction

register

M

M

Instruction [15–11] x

memory

u

u

1

x

x

Write

0

1

data Registers

Write

Data

data memory

Instruction [15–0]

16

Sign-

32

ALU

extend

control

Instruction [5–0]

FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. Th

e control lines, datapath units, and connections

that are active are highlighted. Aft er using the register fi le and ALU to perform the compare, the Zero output is used to select the next program counter from between the two candidates.

4.4 A Simple Implementation Scheme

269

2. Two

registers,

$t1 and $t2, are read from the register fi le.

3. Th

e ALU performs a subtract on the data values read from the register fi le. Th

e

value of PC + 4 is added to the sign-extended, lower 16 bits of the instruction

(offset) shift ed left by two; the result is the branch target address.

4. Th

e Zero result from the ALU is used to decide which adder result to store

into the PC.

Finalizing Control

Now that we have seen how the instructions operate in steps, let’s continue with

the control implementation. Th

e control function can be precisely defi ned using

the contents of Figure 4.18. Th

e outputs are the control lines, and the input is the

6-bit opcode fi eld, Op [5:0]. Th

us, we can create a truth table for each of the outputs

based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table that combines all the outputs and that uses the opcode bits as inputs. It completely

specifi es the control function, and we can implement it directly in gates in an

automated fashion. We show this fi nal step in Section D.2 in Appendix D.

Input or output

Signal name

R-format

lw

sw

beq

Inputs

Op5

0

1

1

0

Op4

0

0

0

0

Op3

0

0

1

0

Op2

0

0

0

1

Op1

0

1

1

0

Op0

0

1

1

0

Outputs

RegDst

1

0

X

X

ALUSrc

0

1

1

0

MemtoReg

0

1

X

X

RegWrite

1

1

0

0

MemRead

0

1

0

0

MemWrite

0

0

1

0

Branch

0

0

0

1

ALUOp1

1

0

0

0

ALUOp0

0

0

0

1

FIGURE 4.22 The control function for the simple single-cycle implementation is

completely specifi ed by this truth table. Th

e top half of the table gives the combinations of input

signals that correspond to the four opcodes, one per column, that determine the control output settings.

(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op fi eld.) Th e bottom

portion of the table gives the outputs for each of the four opcodes. Th

us, the output RegWrite is asserted for

two diff erent combinations of the inputs. If we consider only the four opcodes shown in this table, then we can simplify the truth table by using don’t cares in the input portion. For example, we can detect an R-format instruction with the expression Op5

⭈ Op2

, since this is suffi

cient to distinguish the R-format instructions

from lw, sw, and beq. We do not take advantage of this simplifi cation, since the rest of the MIPS opcodes are used in a full implementation.

270

Chapter 4 The Processor

single-cycle

Now that we have a single-cycle implementation of most of the MIPS core

implementation Also

instruction set, let’s add the jump instruction to show how the basic datapath and

called single clock cycle

control can be extended to handle other instructions in the instruction set.

implementation. An

implementation in which

an instruction is executed

in one clock cycle. While

easy to understand, it is

too slow to be practical.

Implementing Jumps

EXAMPLE

Figure 4.17 shows the implementation of many of the instructions we looked at in Chapter 2. One class of instructions missing is that of the jump instruction.

Extend the datapath and control of Figure 4.17 to include the jump instruction.

Describe how to set any new control lines.

Th

e jump instruction, shown in Figure 4.23, looks somewhat like a branch

ANSWER

instruction but computes the target PC diff erently and is not conditional. Like

a branch, the low-order 2 bits of a jump address are always 00 . Th

e next

two

lower 26 bits of this 32-bit address come from the 26-bit immediate fi eld in the

instruction. Th

e upper 4 bits of the address that should replace the PC come

from the PC of the jump instruction plus 4. Th

us, we can implement a jump by

storing into the PC the concatenation of

■ the upper 4 bits of the current PC + 4 (these are bits 31:28 of the

sequentially following instruction address)

■ the 26-bit immediate fi eld of the jump instruction

■ the bits 00two

Figure 4.24 shows the addition of the control for jump added to Figure 4.17. An additional multiplexor is used to select the source for the new PC value, which

is either the incremented PC (PC + 4), the branch target PC, or the jump target

PC. One additional control signal is needed for the additional multiplexor. Th

is

control signal, called Jump, is asserted only when the instruction is a jump—

that is, when the opcode is 2.

Field

000010

address

Bit positions

31:26

25:0

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). Th

e destination

address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address fi eld in the jump instruction and adding 00 as the 2 low-order bits.

4.4 A Simple Implementation Scheme

271

Instruction [25–0]

Jump address [31–0]

Shift

left 2

26

28

0

1

PC + 4 [31–28]

M

M

Add

u

u

x

x

ALU

4

Add

1

0

result

RegDst

Shift

Jump

left 2

Branch

MemRead

Instruction [31–26]

MemtoReg

Control ALUOp

MemWrite

ALUSrc

RegWrite

Instruction [25–21]

Read

Read

PC

register 1 Read

address

Instruction [20–16]

data 1

Read

Zero

Instruction

register 2

0

ALU

[31–0]

M

Read

ALU

Read

Write

0

Address

1

u

data 2

result

data

Instruction

register

M

M

Instruction [15–11] x

memory

u

u

1

x

x

Write

0

1

data Registers

Write

Data

data memory

Instruction [15–0]

16

Sign-

32

ALU

extend

control

Instruction [5–0]

FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor (at the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. Th is

multiplexor is controlled by the jump control signal. Th

e jump target address is obtained by shift ing the lower 26 bits of the jump instruction

left 2 bits, eff ectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit address.

Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in

modern designs because it is ineffi

cient. To see why this is so, notice that the clock

cycle must have the same length for every instruction in this single-cycle design.

Of course, the longest possible path in the processor determines the clock cycle.

Th

is path is almost certainly a load instruction, which uses fi ve functional units

in series: the instruction memory, the register fi le, the ALU, the data memory, and

the register fi le. Although the CPI is 1 (see Chapter 1), the overall performance of

a single-cycle implementation is likely to be poor, since the clock cycle is too long.

Th

e penalty for using the single-cycle design with a fi xed clock cycle is signifi cant,

but might be considered acceptable for this small instruction set. Historically, early

272

Chapter 4 The Processor

computers with very simple instruction sets did use this implementation technique.

However, if we tried to implement the fl oating-point unit or an instruction set with

more complex instructions, this single-cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay

for all instructions, it’s useless to try implementation techniques that reduce the

delay of the common case but do not improve the worst-case cycle time. A single-

cycle implementation thus violates the great idea from Chapter 1 of making the

common case fast.

In next section, we’ll look at another implementation technique, called

pipelining, that uses a datapath very similar to the single-cycle datapath but is

much more effi

cient by having a much higher throughput. Pipelining improves

effi

ciency by executing multiple instructions simultaneously.

Check Look at the control signals in Figure 4.22. Can you combine any together? Can any control signal output in the fi gure be replaced by the inverse of another? (Hint: take

Yourself

into account the don’t cares.) If so, can you use one signal for the other without

adding an inverter?

 4.5

An Overview of Pipelining

 Never waste time.

Pipelining is an implementation technique in which multiple instructions are

American proverb

overlapped in execution. Today, pipelining is nearly universal.

Th

is section relies heavily on one analogy to give an overview of the pipelining

pipelining An

terms and issues. If you are interested in just the big picture, you should concentrate

implementation

on this section and then skip to Sections 4.10 and 4.11 to see an introduction to the

technique in which

advanced pipelining techniques used in recent processors such as the Intel Core i7

multiple instructions are

and ARM Cortex-A8. If you are interested in exploring the anatomy of a pipelined

overlapped in execution,

much like an assembly

computer, this section is a good introduction to Sections 4.6 through 4.9.

line.

Anyone who has done a lot of laundry has intuitively used pipelining. Th

e non-

 pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.

2. When the washer is fi nished, place the wet load in the dryer.

3. When the dryer is fi nished, place the dry load on a table and fold.

4. When folding is fi nished, ask your roommate to put the clothes away.

When your roommate is done, start over with the next dirty load.

Th

e pipelined approach takes much less time, as Figure 4.25 shows. As soon as the washer is fi nished with the fi rst load and placed in the dryer, you load the

washer with the second dirty load. When the fi rst load is dry, you place it on the

table to start folding, move the wet load to the dryer, and put the next dirty load

4.5 An Overview of Pipelining

273

into the washer. Next you have your roommate put the fi rst load away, you start

folding the second load, the dryer has the third load, and you put the fourth load

into the washer. At this point all steps—called stages in pipelining—are operating

concurrently. As long as we have separate resources for each stage, we can pipeline

the tasks.

Th

e pipelining paradox is that the time from placing a single dirty sock in the

washer until it is dried, folded, and put away is not shorter for pipelining; the reason

pipelining is faster for many loads is that everything is working in parallel, so more

loads are fi nished per hour. Pipelining improves throughput of our laundry system.

Hence, pipelining would not decrease the time to complete one load of laundry,

but when we have many loads of laundry to do, the improvement in throughput

decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work

to do, then the speed-up due to pipelining is equal to the number of stages in the

6 PM

7

8

9

10

11

12

1

2 AM

Time

Task

order

A

B

C

D

6 PM

7

8

9

10

11

12

1

2 AM

Time

Task

order

A

B

C

D

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty clothes to be washed, dried, folded, and put away. Th

e washer, dryer, “folder,” and “storer” each take 30

minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours. We show the pipeline stage of diff erent loads over time by showing copies of the four resources on this two-dimensional time line, but we really have just one of each resource.

274

Chapter 4 The Processor

pipeline, in this case four: washing, drying, folding, and putting away. Th

erefore,

pipelined laundry is potentially four times faster than nonpipelined: 20 loads would

take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20

times as long as 1 load. It’s only 2.3 times faster in Figure 4.25, because we only show 4 loads. Notice that at the beginning and end of the workload in the pipelined

version in Figure 4.25, the pipeline is not completely full; this start-up and wind-down aff ects performance when the number of tasks is not large compared to the

number of stages in the pipeline. If the number of loads is much larger than 4, then

the stages will be full most of the time and the increase in throughput will be very

close to 4.

Th

e same principles apply to processors where we pipeline instruction-execution.

MIPS instructions classically take fi ve steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. Th

e regular format of MIPS

instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has fi ve stages. Th

e following

example shows that pipelining speeds up instruction execution just as it speeds up

the laundry.

Single-Cycle versus Pipelined Performance

EXAMPLE

To make this discussion concrete, let’s create a pipeline. In this example, and in

the rest of this chapter, we limit our attention to eight instructions: load word

(lw), store word (sw), add (add), subtract (sub), AND (and), OR (or), set

less than (slt), and branch on equal (beq).

Compare the average time between instructions of a single-cycle

implementation, in which all instructions take one clock cycle, to a pipelined

implementation. Th

e operation times for the major functional units in this

example are 200 ps for memory access, 200 ps for ALU operation, and 100 ps

for register fi le read or write. In the single-cycle model, every instruction takes

exactly one clock cycle, so the clock cycle must be stretched to accommodate

the slowest instruction.

Figure 4.26 shows the time required for each of the eight instructions.

ANSWER

Th

e single-cycle design must allow for the slowest instruction—in Figure

4.26 it is lw—so the time required for every instruction is 800 ps. Similarly

4.5 An Overview of Pipelining

275

to Figure 4.25, Figure 4.27 compares nonpipelined and pipelined execution of three load word instructions. Th

us, the time between the fi rst and fourth

instructions in the nonpipelined design is 3 × 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be long

enough to accommodate the slowest operation. Just as the single-cycle design

must take the worst-case clock cycle of 800 ps, even though some instructions

can be as fast as 500 ps, the pipelined execution clock cycle must have the

worst-case clock cycle of 200 ps, even though some stages take only 100 ps.

Pipelining still off ers a fourfold performance improvement: the time between

the fi rst and fourth instructions is 3 × 200 ps or 600 ps.

We can turn the pipelining speed-up discussion above into a formula. If the

stages are perfectly balanced, then the time between instructions on the pipelined

processor—assuming ideal conditions—is equal to

Time between instructionnonpipelined

Time between

t

instruc ions

⫽

pipelined

Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up

from pipelining is approximately equal to the number of pipe stages; a fi ve-stage

pipeline is nearly fi ve times faster.

Th

e formula suggests that a fi ve-stage pipeline should off er nearly a fi vefold

improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. Th

e

example shows, however, that the stages may be imperfectly balanced. Moreover,

pipelining involves some overhead, the source of which will be clearer shortly.

Th

us, the time per instruction in the pipelined processor will exceed the minimum

possible, and speed-up will be less than the number of pipeline stages.

Instruction Register

ALU

Data

Register

Total

Instruction class

fetch

read

operation

access

write

time

Load word (lw)

200 ps

100 ps

200 ps

200 ps

100 ps

800 ps

Store word (sw)

200 ps

100 ps

200 ps

200 ps

700 ps

R-format (add, sub, AND,

200 ps

100 ps

200 ps

100 ps

600 ps

OR, slt)

Branch (beq)

200 ps

100 ps

200 ps

500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.

Th

is calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no delay.

276

Chapter 4 The Processor

Program

execution

200

400

600

800

1000

1200

1400

1600

1800

Time

order

(in instructions)

lw $1, 100($0) Instruction

Data

Reg

ALU

Reg

fetch

access

lw $2, 200($0)

Instruction

Data

800 ps

Reg

ALU

Reg

fetch

access

lw $3, 300($0)

Instruction

800 ps

fetch

800 ps

Program

execution

200

400

600

800

1000

1200

1400

Time

order

(in instructions)

Instruction

Data

lw $1, 100($0)

Reg

ALU

Reg

fetch

access

lw $2, 200($0)

Instruction

Data

Reg

ALU

Reg

200 ps

fetch

access

lw $3, 300($0)

Instruction

Data

Reg

ALU

Reg

200 ps

fetch

access

200 ps 200 ps 200 ps 200 ps 200 ps

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in

bottom. Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this fi gure to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage would set the stage time. Th

e pipeline stage times of a computer are also limited by the slowest resource,

either the ALU operation or the memory access. We assume the write to the register fi le occurs in the fi rst half of the clock cycle and the read from the register fi le occurs in the second half. We use this assumption throughout this chapter.

Moreover, even our claim of fourfold improvement for our example is not

refl ected in the total execution time for the three instructions: it’s 1400 ps versus

2400 ps. Of course, this is because the number of instructions is not large. What

would happen if we increased the number of instructions? We could extend the

previous fi gures to 1,000,003 instructions. We would add 1,000,000 instructions

in the pipelined example; each instruction adds 200 ps to the total execution time.

Th

e total execution time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400

ps. In the nonpipelined example, we would add 1,000,000 instructions, each

taking 800 ps, so total execution time would be 1,000,000 × 800 ps + 2400 ps, or

800,002,400 ps. Under these conditions, the ratio of total execution times for real

programs on nonpipelined to pipelined processors is close to the ratio of times

between instructions:

800,002, 400 ps

800 ps

 4.00

200,001, 400 ps

200 ps

4.5 An Overview of Pipelining

277

Pipelining improves performance by increasing instruction throughput, as

 opposed to decreasing the execution time of an individual instruction, but instruction

throughput is the important metric because real programs execute billions of

instructions.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design

of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. Th

is restriction makes it much

easier to fetch instructions in the fi rst pipeline stage and to decode them in the

second stage. In an instruction set like the x86, where instructions vary from 1 byte

to 15 bytes, pipelining is considerably more challenging. Recent implementations

of the x86 architecture actually translate x86 instructions into simple operations

that look like MIPS instructions and then pipeline the simple operations rather

than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fi elds

being located in the same place in each instruction. Th

is symmetry means that the

second stage can begin reading the register fi le at the same time that the hardware

is determining what type of instruction was fetched. If MIPS instruction formats

were not symmetric, we would need to split stage 2, resulting in six pipeline stages.

We will shortly see the downside of longer pipelines.

Th

ird, memory operands only appear in loads or stores in MIPS. Th

is restriction

means we can use the execute stage to calculate the memory address and then

access memory in the following stage. If we could operate on the operands in

memory, as in the x86, stages 3 and 4 would expand to an address stage, memory

stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,

we need not worry about a single data transfer instruction requiring two data

memory accesses; the requested data can be transferred between processor and

memory in a single pipeline stage.

Pipeline Hazards

Th

ere are situations in pipelining when the next instruction cannot execute in the

following clock cycle. Th

ese events are called hazards, and there are three diff erent

types.

Hazards

structural hazard When

Th

e fi rst hazard is called a structural hazard. It means that the hardware cannot a planned instruction support the combination of instructions that we want to execute in the same clock cannot execute in the cycle. A structural hazard in the laundry room would occur if we used a washer-proper clock cycle because

dryer combination instead of a separate washer and dryer, or if our roommate was the hardware does not support the combination

busy doing something else and wouldn’t put clothes away. Our carefully scheduled of instructions that are set pipeline plans would then be foiled.

to execute.

278

Chapter 4 The Processor

As we said above, the MIPS instruction set was designed to be pipelined,

making it fairly easy for designers to avoid structural hazards when designing a

pipeline. Suppose, however, that we had a single memory instead of two memories.

If the pipeline in Figure 4.27 had a fourth instruction, we would see that in the same clock cycle the fi rst instruction is accessing data from memory while the

fourth instruction is fetching an instruction from that same memory. Without two

memories, our pipeline could have a structural hazard.

Data Hazards

data hazard Also

Data hazards occur when the pipeline must be stalled because one step must wait

called a pipeline data

for another to complete. Suppose you found a sock at the folding station for which

hazard. When a planned

no match existed. One possible strategy is to run down to your room and search

instruction cannot

through your clothes bureau to see if you can fi nd the match. Obviously, while you

execute in the proper

are doing the search, loads must wait that have completed drying and are ready to

clock cycle because data

fold as well as those that have fi nished washing and are ready to dry.

that is needed to execute

the instruction is not yet

In a computer pipeline, data hazards arise from the dependence of one

available.

instruction on an earlier one that is still in the pipeline (a relationship that does not

really exist when doing laundry). For example, suppose we have an add instruction

followed immediately by a subtract instruction that uses the sum ($s0):

add $s0, $t0, $t1

sub $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. Th

e add

instruction doesn’t write its result until the fi ft h stage, meaning that we would have

forwarding Also called

to waste three clock cycles in the pipeline.

bypassing. A method of

Although we could try to rely on compilers to remove all such hazards, the

resolving a data hazard

results would not be satisfactory. Th

ese dependences happen just too oft en and the

by retrieving the missing

delay is just too long to expect the compiler to rescue us from this dilemma.

data element from

Th

e primary solution is based on the observation that we don’t need to wait for

internal buff ers rather

than waiting for it to

the instruction to complete before trying to resolve the data hazard. For the code

arrive from programmer-

sequence above, as soon as the ALU creates the sum for the add, we can supply it as

visible registers or

an input for the subtract. Adding extra hardware to retrieve the missing item early

memory.

from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

EXAMPLE

For the two instructions above, show what pipeline stages would be connected

by forwarding. Use the drawing in Figure 4.28 to represent the datapath during the fi ve stages of the pipeline. Align a copy of the datapath for each instruction,

similar to the laundry pipeline in Figure 4.25.

4.5 An Overview of Pipelining

279

200

400

600

800

1000

Time

add $s0, $t0, $t1

IF

ID

EX

MEM

WB

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with the abbreviations for pipeline stages used throughout the chapter. Th

e symbols for the fi ve stages: IF for

the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/

register fi le read stage, with the drawing showing the register fi le being read; EX for the execution stage, with the drawing representing the ALU; MEM for the memory access stage, with the box representing data memory; and WB for the write-back stage, with the drawing showing the register fi le being written. Th e

shading indicates the element is used by the instruction. Hence, MEM has a white background because add does not access the data memory. Shading on the right half of the register fi le or memory means the element is read in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is shaded in the second stage because the register fi le is read, and the left half of WB is shaded in the fi ft h stage because the register fi le is written.

Figure 4.29 shows the connection to forward the value in $s0 aft er the

execution stage of the add instruction as input to the execution stage of the

ANSWER

sub instruction.

In this graphical representation of events, forwarding paths are valid only if the

destination stage is later in time than the source stage. For example, there cannot

be a valid forwarding path from the output of the memory access stage in the fi rst

instruction to the input of the execution stage of the following, since that would

mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot

prevent all pipeline stalls, however. For example, suppose the fi rst instruction was a

load of $s0 instead of an add. As we can imagine from looking at Figure 4.29, the Program

execution

200

400

600

800

1000

order

Time

(in instructions)

add $s0, $t0, $t1

IF

ID

EX

MEM

WB

sub $t2, $s0, $t3

IF

ID

EX

MEM

WB

FIGURE 4.29 Graphical representation of forwarding. Th

e connection shows the forwarding path

from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register $s0 read in the second stage of sub.

280

Chapter 4 The Processor

Program

execution

200

400

600

800

1000

1200

1400

order

Time

(in instructions)

lw $s0, 20($t1)

IF

ID

EX

MEM

WB

bubble

bubble

bubble

bubble

bubble

sub $t2, $s0, $t3

IF

ID

EX

MEM

WB

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following a load tries to use the data. Without the stall, the path from memory access stage output to execution stage input would be going backward in time, which is impossible. Th

is fi gure is actually a simplifi cation,

since we cannot know until aft er the subtract instruction is fetched and decoded whether or not a stall will be necessary. Section 4.7 shows the details of what really happens in the case of a hazard.

load-use data hazard

desired data would be available only aft er the fourth stage of the fi rst instruction

A specifi c form of data

in the dependence, which is too late for the input of the third stage of sub. Hence,

hazard in which the data

even with forwarding, we would have to stall one stage for a load-use data hazard,

being loaded by a load

as Figure 4.30 shows. Th

is fi gure shows an important pipeline concept, offi

cially

instruction has not yet

called a pipeline stall, but oft en given the nickname bubble. We shall see stalls

become available when

elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like

it is needed by another

instruction.

these, using either hardware detection and stalls or soft ware that reorders code to

try to avoid load-use pipeline stalls, as this example illustrates.

pipeline stall Also called

bubble. A stall initiated

in order to resolve a

hazard.

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

EXAMPLE

a = b + e;

c = b + f;

Here is the generated MIPS code for this segment, assuming all variables are in

memory and are addressable as off sets from $t0:

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

4.5 An Overview of Pipelining

281

Find the hazards in the preceding code segment and reorder the instructions

to avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence

on the immediately preceding lw instruction. Notice that bypassing eliminates

ANSWER

several other potential hazards, including the dependence of the fi rst add on

the fi rst lw and any hazards for store instructions. Moving up the third lw

instruction to become the third instruction eliminates both hazards:

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will

complete in two fewer cycles than the original version.

Forwarding yields another insight into the MIPS architecture, in addition to the

four mentioned on page 277. Each MIPS instruction writes at most one result and

does this in the last stage of the pipeline. Forwarding is harder if there are multiple

results to forward per instruction or if there is a need to write a result early on in

instruction execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed

forward from an earlier instruction to a later instruction. “Bypassing” comes from

passing the result around the register fi le to the desired unit.

Control Hazards

Th

e third type of hazard is called a control hazard, arising from the need to make a control hazard Also decision based on the results of one instruction while others are executing.

called branch hazard.

Suppose our laundry crew was given the happy task of cleaning the uniforms When the proper

of a football team. Given how fi lthy the laundry is, we need to determine whether instruction cannot execute in the proper

the detergent and water temperature setting we select is strong enough to get the pipeline clock cycle uniforms clean but not so strong that the uniforms wear out sooner. In our laundry

because the instruction

pipeline, we have to wait until aft er the second stage to examine the dry uniform to that was fetched is not the see if we need to change the washer setup or not. What to do?

one that is needed; that

Here is the fi rst of two solutions to control hazards in the laundry room and its is, the fl ow of instruction computer equivalent.

addresses is not what the

pipeline expected.

 Stall: Just operate sequentially until the fi rst batch is dry and then repeat until

you have the right formula.

Th

is conservative option certainly works, but it is slow.

282

Chapter 4 The Processor

Th

e equivalent decision task in a computer is the branch instruction. Notice that

we must begin fetching the instruction following the branch on the very next clock

cycle. Nevertheless, the pipeline cannot possibly know what the next instruction

should be, since it only just received the branch instruction from memory! Just as

with laundry, one possible solution is to stall immediately aft er we fetch a branch,

waiting until the pipeline determines the outcome of the branch and knows what

instruction address to fetch from.

Let’s assume that we put in enough extra hardware so that we can test registers,

calculate the branch address, and update the PC during the second stage of the

pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline

involving conditional branches would look like Figure 4.31. Th

e lw instruction,

executed if the branch fails, is stalled one extra 200 ps clock cycle before starting.

Performance of “Stall on Branch”

EXAMPLE

Estimate the impact on the clock cycles per instruction (CPI) of stalling on

branches. Assume all other instructions have a CPI of 1.

Figure 3.27 in Chapter 3 shows that branches are 17% of the instructions

ANSWER

executed in SPECint2006. Since the other instructions run have a CPI of 1,

and branches took one extra clock cycle for the stall, then we would see a CPI

of 1.17 and hence a slowdown of 1.17 versus the ideal case.

Program

execution

200

400

600

800

1000

1200

1400

Time

order

(in instructions)

Instruction

Data

add $4, $5, $6

Reg

ALU

Reg

fetch

access

Instruction

Data

beq $1, $2, 40

Reg

ALU

Reg

fetch

access

200 ps

bubble

bubble

bubble

bubble

bubble

or $7, $8, $9

Instruction

Data

Reg

ALU

Reg

400 ps

fetch

access

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control hazards. Th

is example assumes the conditional branch is taken, and the instruction at the destination of

the branch is the OR instruction. Th

ere is a one-stage pipeline stall, or bubble, aft er the branch. In reality, the

process of creating a stall is slightly more complicated, as we will see in Section 4.8. Th

e eff ect on performance,

however, is the same as would occur if a bubble were inserted.

4.5 An Overview of Pipelining

283

If we cannot resolve the branch in the second stage, as is oft en the case for longer

pipelines, then we’d see an even larger slowdown if we stall on branches. Th

e cost of

this option is too high for most computers to use and motivates a second solution

to the control hazard using one of our great ideas from Chapter 1:

 Predict: If you’re pretty sure you have the right formula to wash uniforms, then

just predict that it will work and wash the second load while waiting for the fi rst load to dry.

Th

is option does not slow down the pipeline when you are correct. When you are

wrong, however, you need to redo the load that was washed while guessing the

decision.

Computers do indeed use prediction to handle branches. One simple approach

is to predict always that branches will be untaken. When you’re right, the pipeline

proceeds at full speed. Only when branches are taken does the pipeline stall. Figure

4.32 shows such an example.

Program

200

400

600

800

1000

1200

1400

execution

Time

order

(in instructions)

Instruction

Data

add $4, $5, $6

Reg

ALU

Reg

fetch

access

Instruction

Data

beq $1, $2, 40

Reg

ALU

Reg

fetch

access

200 ps

lw $3, 300($0)

Instruction

Data

Reg

ALU

Reg

200 ps

fetch

access

Program

200

400

600

800

1000

1200

1400

execution

Time

order

(in instructions)

Instruction

Data

Reg

ALU

add $4, $5, $6

Reg

fetch

access

Instruction

Data

beq $1, $2, 40

Reg

ALU

Reg

fetch

access

200 ps

bubble

bubble

bubble

bubble

bubble

or $7, $8, $9

Instruction

Data

Reg

ALU

Reg

400 ps

fetch

access

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. Th e

top drawing shows the pipeline when the branch is not taken. Th

e bottom drawing shows the pipeline when

the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifi es what actually happens, at least during the fi rst clock cycle immediately following the branch. Section 4.8 will reveal the details.

284

Chapter 4 The Processor

branch prediction

A more sophisticated version of branch prediction would have some branches

A method of resolving

predicted as taken and some as untaken. In our analogy, the dark or home uniforms

a branch hazard that

might take one formula while the light or road uniforms might take another. In the

assumes a given outcome

case of programming, at the bottom of loops are branches that jump back to the top

for the branch and

of the loop. Since they are likely to be taken and they branch backward, we could

proceeds from that

always predict taken for branches that jump to an earlier address.

assumption rather than

waiting to ascertain the

Such rigid approaches to branch prediction rely on stereotypical behavior

actual outcome.

and don’t account for the individuality of a specifi c branch instruction. Dynamic

hardware predictors, in stark contrast, make their guesses depending on the

behavior of each branch and may change predictions for a branch over the life of

a program. Following our analogy, in dynamic prediction a person would look at

how dirty the uniform was and guess at the formula, adjusting the next prediction

depending on the success of recent guesses.

One popular approach to dynamic prediction of branches is keeping a history

for each branch as taken or untaken, and then using the recent past behavior

to predict the future. As we will see later, the amount and type of history kept

have become extensive, with the result being that dynamic branch predictors can

correctly predict branches with more than 90% accuracy (see Section 4.8). When

the guess is wrong, the pipeline control must ensure that the instructions following

the wrongly guessed branch have no eff ect and must restart the pipeline from the

proper branch address. In our laundry analogy, we must stop taking new loads so

that we can restart the load that we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacerbate

the problem, in this case by raising the cost of misprediction. Solutions to control

hazards are described in more detail in Section 4.8.

Elaboration: There is a third approach to the control hazard, called delayed decision.

In our analogy, whenever you are going to make such a decision about laundry, just place

a load of nonfootball clothes in the washer while waiting for football uniforms to dry. As

long as you have enough dirty clothes that are not affected by the test, this solution

works fi ne.

Called the delayed branch in computers, and mentioned above, this is the solution

actually used by the MIPS architecture. The delayed branch always executes the next

sequential instruction, with the branch taking place after that one instruction delay.

It is hidden from the MIPS assembly language programmer because the assembler

can automatically arrange the instructions to get the branch behavior desired by the

programmer. MIPS software will place an instruction immediately after the delayed

branch instruction that is not affected by the branch, and a taken branch changes

the address of the instruction that follows this safe instruction. In our example, the

add instruction before the branch in Figure 4.31 does not affect the branch and can

be moved after the branch to fully hide the branch delay. Since delayed branches are

useful when the branches are short, no processor uses a delayed branch of more

than one cycle. For longer branch delays, hardware-based branch prediction is usually

used.

4.5 An Overview of Pipelining

285

Pipeline Overview Summary

Pipelining is a technique that exploits parallelism among the instructions in

a sequential instruction stream. It has the substantial advantage that, unlike

programming a multiprocessor, it is fundamentally invisible to the programmer.

In the next few sections of this chapter, we cover the concept of pipelining using

the MIPS instruction subset from the single-cycle implementation in Section 4.4

and show a simplifi ed version of its pipeline. We then look at the problems that

pipelining introduces and the performance attainable under typical situations.

If you wish to focus more on the soft ware and the performance implications of

pipelining, you now have suffi

cient background to skip to Section 4.10. Section

4.10 introduces advanced pipelining concepts, such as superscalar and dynamic

scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is

implemented and the challenges of dealing with hazards, you can proceed to

examine the design of a pipelined datapath and the basic control, explained in

Section 4.6. You can then use this understanding to explore the implementation of

forwarding and stalls in Section 4.7. You can then read Section 4.8 to learn more

about solutions to branch hazards, and then see how exceptions are handled in

Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using Check

only forwarding, or can execute without stalling or forwarding.

Yourself

Sequence 1

Sequence 2

Sequence 3

lw $t0,0($t0)

add $t1,$t0,$t0

addi $t1,$t0,#1

add $t1,$t0,$t0

addi $t2,$t0,#5

addi $t2,$t0,#2

addi $t4,$t1,#5

addi $t3,$t0,#2

addi $t3,$t0,#4

addi $t5,$t0,#5

Outside the memory system, the eff ective operation of the pipeline is usually Understanding

the most important factor in determining the CPI of the processor and hence its Program

performance. As we will see in Section 4.10, understanding the performance of a

modern multiple-issue pipelined processor is complex and requires understanding Performance

more than just the issues that arise in a simple pipelined processor. Nonetheless,

structural, data, and control hazards remain important in both simple pipelines

and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the fl oating-

point unit, which may not be fully pipelined, while control hazards are usually more

of a problem in integer programs, which tend to have higher branch frequencies

as well as less predictable branches. Data hazards can be performance bottlenecks

286

Chapter 4 The Processor

in both integer and fl oating-point programs. Oft en it is easier to deal with data

hazards in fl oating-point programs because the lower branch frequency and more

regular memory access patterns allow the compiler to try to schedule instructions

to avoid hazards. It is more diffi

cult to perform such optimizations in integer

programs that have less regular memory access, involving more use of pointers.

As we will see in Section 4.10, there are more ambitious compiler and hardware

techniques for reducing data dependences through scheduling.

The BIG

Pipelining increases the number of simultaneously executing instructions

Picture

and the rate at which instructions are started and completed. Pipelining

latency (pipeline) Th

e

does not reduce the time it takes to complete an individual instruction,

number of stages in a

also called the latency. For example, the fi ve-stage pipeline still takes 5

pipeline or the number

clock cycles for the instruction to complete. In the terms used in Chapter

of stages between two

1, pipelining improves instruction throughput rather than individual

instructions during

instruction execution time or latency.

execution.

Instruction sets can either simplify or make life harder for pipeline

designers, who must already cope with structural, control, and data hazards.

Branch prediction and forwarding help make a computer fast while still getting

the right answers.

 4.6

Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline stages identifi ed. Th

e division of an instruction into fi ve stages means a fi ve-stage

pipeline, which in turn means that up to fi ve instructions will be in execution

during any single clock cycle. Th

us, we must separate the datapath into fi ve pieces,

with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register fi le read

 Th

 ere is less in this

 than meets the eye.

3. EX: Execution or address calculation

Tallulah

4. MEM: Data memory access

Bankhead, remark

5. WB: Write back

to Alexander

Woollcott, 1922

In Figure 4.33, these fi ve components correspond roughly to the way the datapath is drawn; instructions and data move generally from left to right through the

4.6 Pipelined Datapath and Control

287

IF: Instruction fetch

ID: Instruction decode/

EX: Execute/

MEM: Memory access

WB: Write back

register file read

address calculation

Add

4

Add

ADD result

Shift

left 2

0

Read

Read

M

register 1

data 1

u

PC

Address

Zero

x

Read

ALU

1

register 2

ALU

Address

result

Instruction

Read

Registers

0

1

data

Write

M

Read

M

Data

Instruction

register

data 2

u

memory

u

memory

x

x

Write

1

0

data

Write

data

16

32

Sign-

extend

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped onto the datapath from left to right. Th

e only exceptions are the update of the PC and the write-back step, shown in color, which sends either the ALU result or the data from memory to the left to be written into the register fi le. (Normally we use color lines for control, but these are data lines.)

fi ve stages as they complete execution. Returning to our laundry analogy, clothes

get cleaner, drier, and more organized as they move through the line, and they

never move backward.

Th

ere are, however, two exceptions to this left -to-right fl ow of instructions:

■ Th

e write-back stage, which places the result back into the register fi le in the

middle of the datapath

■ Th

e selection of the next value of the PC, choosing between the incremented

PC and the branch address from the MEM stage

Data fl owing from right to left does not aff ect the current instruction; these

reverse data movements infl uence only later instructions in the pipeline. Note that

288

Chapter 4 The Processor

the fi rst right-to-left fl ow of data can lead to data hazards and the second leads to

control hazards.

One way to show what happens in pipelined execution is to pretend that each

instruction has its own datapath, and then to place these datapaths on a timeline to

show their relationship. Figure 4.34 shows the execution of the instructions in Figure

4.27 by displaying their private datapaths on a common timeline. We use a stylized version of the datapath in Figure 4.33 to show the relationships in Figure 4.34.

Figure 4.34 seems to suggest that three instructions need three datapaths.

Instead, we add registers to hold data so that portions of a single datapath can be

shared during instruction execution.

For example, as Figure 4.34 shows, the instruction memory is used during

only one of the fi ve stages of an instruction, allowing it to be shared by following

instructions during the other four stages. To retain the value of an individual

instruction for its other four stages, the value read from instruction memory must

be saved in a register. Similar arguments apply to every pipeline stage, so we must

place registers wherever there are dividing lines between stages in Figure 4.33.

Returning to our laundry analogy, we might have a basket between each pair of

stages to hold the clothes for the next step.

Time (in clock cycles)

Program

execution

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

order

(in instructions)

lw $1, 100($0)

IM

Reg

ALU

DM

Reg

lw $2, 200($0)

IM

Reg

ALU

DM

Reg

lw $3, 300($0)

IM

Reg

ALU

DM

Reg

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33, assuming pipelined execution. Similar to Figures 4.28 through 4.30, this fi gure pretends that each instruction has its own datapath, and shades each portion according to use. Unlike those fi gures, each stage is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure

4.33. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the register fi le and sign extender in the instruction decode/register fi le read stage (ID), and so on. To maintain proper time order, this stylized datapath breaks the register fi le into two logical parts: registers read during register fetch (ID) and registers written during write back (WB). Th

is dual use is represented by drawing

the unshaded left half of the register fi le using dashed lines in the ID stage, when it is not being written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the register fi le is written in the fi rst half of the clock cycle and the register fi le is read during the second half.

4.6 Pipelined Datapath and Control

289

Figure 4.35 shows the pipelined datapath with the pipeline registers high-

lighted. All instructions advance during each clock cycle from one pipeline register

to the next. Th

e registers are named for the two stages separated by that register.

For example, the pipeline register between the IF and ID stages is called IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All

instructions must update some state in the processor—the register fi le, memory, or

the PC—so a separate pipeline register is redundant to the state that is updated. For

example, a load instruction will place its result in 1 of the 32 registers, and any later

instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by

setting it to a branch destination address. Th

e PC can be thought of as a pipeline

register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline

registers in Figure 4.35, however, the PC is part of the visible architectural state; its contents must be saved when an exception occurs, while the contents of the

pipeline registers can be discarded. In the laundry analogy, you could think of the

PC as corresponding to the basket that holds the load of dirty clothes before the

wash step.

To show how the pipelining works, throughout this chapter we show sequences

of fi gures to demonstrate operation over time. Th

ese extra pages would seem to

require much more time for you to understand. Fear not; the sequences take much

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

4

Add Add

result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

1

data 1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. Th e pipeline registers, in color, separate each pipeline stage.

Th

ey are labeled by the stages that they separate; for example, the fi rst is labeled IF/ID because it separates the instruction fetch and instruction decode stages. Th

e registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC

address. We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64

bits, respectively.

290

Chapter 4 The Processor

less time than it might appear, because you can compare them to see what changes

occur in each clock cycle. Section 4.7 describes what happens when there are data

hazards between pipelined instructions; ignore them for now.

Figures 4.36 through 4.38, our fi rst sequence, show the active portions of the datapath highlighted as a load instruction goes through the fi ve stages of pipelined

execution. We show a load fi rst because it is active in all fi ve stages. As in Figures

4.28 through 4.30, we highlight the right half of registers or memory when they are being read and highlight the left half when they are being written.

We show the instruction abbreviation lw with the name of the pipe stage that is

active in each fi gure. Th

e fi ve stages are the following:

1. Instruction fetch: Th

e top portion of Figure 4.36 shows the instruction being

read from memory using the address in the PC and then being placed in the

IF/ID pipeline register. Th

e PC address is incremented by 4 and then written

back into the PC to be ready for the next clock cycle. Th

is incremented

address is also saved in the IF/ID pipeline register in case it is needed later

for an instruction, such as beq. Th

e computer cannot know which type of

instruction is being fetched, so it must prepare for any instruction, passing

potentially needed information down the pipeline.

2. Instruction decode and register fi le read: Th

e bottom portion of Figure 4.36

shows the instruction portion of the IF/ID pipeline register supplying the

16-bit immediate fi eld, which is sign-extended to 32 bits, and the register

numbers to read the two registers. All three values are stored in the ID/EX

pipeline register, along with the incremented PC address. We again transfer

everything that might be needed by any instruction during a later clock

cycle.

3. Execute or address calculation: Figure 4.37 shows that the load instruction reads the contents of register 1 and the sign-extended immediate from the

ID/EX pipeline register and adds them using the ALU. Th

at sum is placed in

the EX/MEM pipeline register.

4. Memory access: Th

e top portion of Figure 4.38 shows the load instruction

reading the data memory using the address from the EX/MEM pipeline

register and loading the data into the MEM/WB pipeline register.

5. Write-back: Th

e bottom portion of Figure 4.38 shows the fi nal step: reading

the data from the MEM/WB pipeline register and writing it into the register

fi le in the middle of the fi gure.

Th

is walk-through of the load instruction shows that any information needed

in a later pipe stage must be passed to that stage via a pipeline register. Walking

through a store instruction shows the similarity of instruction execution, as well

as passing the information for later stages. Here are the fi ve pipe stages of the store

instruction:

4.6 Pipelined Datapath and Control

291

lw

Instruction fetch

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

0

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

1

1

Write

data

16

Sign-

32

extend

lw

Instruction decode

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.36 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in

Figure 4.35 highlighted. Th

e highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2, the processor doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX

pipeline register. We don’t need all three operands, but it simplifi es control to keep all three.

292

Chapter 4 The Processor

Iw

Execution

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

4

AddAdd

result

Shift

left 2

0

M

u

PC

Address

Read

Read

x

register 1

1

data 1

Read

Zero

Instruction

Instruction

register 2

ALU ALU

Read

memory

Registers

Address

1

Write

Read

0

result

data

M

M

register

data 2

Data

u

u

x

Write

memory

x

1

0

data

Write

data

16

Sign-

32

extend

FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35

used in this pipe stage. Th

e register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.

1. Instruction fetch: Th

e instruction is read from memory using the address

in the PC and then is placed in the IF/ID pipeline register. Th

is stage occurs

before the instruction is identifi ed, so the top portion of Figure 4.36 works for store as well as load.

2. Instruction decode and register fi le read: Th

e instruction in the IF/ID pipeline

register supplies the register numbers for reading two registers and extends

the sign of the 16-bit immediate. Th

ese three 32-bit values are all stored

in the ID/EX pipeline register. Th

e bottom portion of Figure 4.36 for load

instructions also shows the operations of the second stage for stores. Th

ese

fi rst two stages are executed by all instructions, since it is too early to know

the type of the instruction.

3. Execute and address calculation: Figure 4.39 shows the third step; the eff ective address is placed in the EX/MEM pipeline register.

4. Memory access: Th

e top portion of Figure 4.40 shows the data being written

to memory. Note that the register containing the data to be stored was read in

an earlier stage and stored in ID/EX. Th

e only way to make the data available

during the MEM stage is to place the data into the EX/MEM pipeline register

in the EX stage, just as we stored the eff ective address into EX/MEM.

4.6 Pipelined Datapath and Control

293

Iw

Memory

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

0

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

1

1

Write

data

16

Sign-

32

extend

Iw

Write-back

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.38 MEM and WB: The fourth and fi fth pipe stages of a load instruction, highlighting the portions of the

datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register fi le in the middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41.

294

Chapter 4 The Processor

sw

Execution

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

4

Add Add

result

Shift

left 2

0

M

u

PC

Address

Read

Read

x

register 1

data 1

1

Read

Zero

Instruction

Instruction

register 2

ALU ALU

Read

1

memory

Registers

0

result

Address

Write

Read

data

M

M

register

data 2

Data

u

u

x

Write

memory

x

0

data

1

Write

data

16

Sign-

32

extend

FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.37, the second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to understand.

5. Write-back: Th

e bottom portion of Figure 4.40 shows the fi nal step of the

store. For this instruction, nothing happens in the write-back stage. Since

every instruction behind the store is already in progress, we have no way

to accelerate those instructions. Hence, an instruction passes through a

stage even if there is nothing to do, because later instructions are already

progressing at the maximum rate.

Th

e store instruction again illustrates that to pass something from an early pipe

stage to a later pipe stage, the information must be placed in a pipeline register;

otherwise, the information is lost when the next instruction enters that pipeline

stage. For the store instruction we needed to pass one of the registers read in the

ID stage to the MEM stage, where it is stored in memory. Th

e data was fi rst placed

in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the

datapath—such as instruction memory, register read ports, ALU, data memory,

and register write port—can be used only within a single pipeline stage. Otherwise,

we would have a structural hazard (see page 277). Hence these components, and

their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see it?

Which register is changed in the fi nal stage of the load? More specifi cally, which

4.6 Pipelined Datapath and Control

295

sw

Memory

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

0

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

1

1

Write

data

16

Sign-

32

extend

sw

Write-back

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.40 MEM and WB: The fourth and fi fth pipe stages of a store instruction. In the fourth stage, the data is written into data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline register. Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.

296

Chapter 4 The Processor

instruction supplies the write register number? Th

e instruction in the IF/ID pipeline

register supplies the write register number, yet this instruction occurs considerably

 aft er the load instruction!

Hence, we need to preserve the destination register number in the load

instruction. Just as store passed the register contents from the ID/EX to the EX/

MEM pipeline registers for use in the MEM stage, load must pass the register

number from the ID/EX through EX/MEM to the MEM/WB pipeline register for

use in the WB stage. Another way to think about the passing of the register number

is that to share the pipelined datapath, we need to preserve the instruction read

during the IF stage, so each pipeline register contains a portion of the instruction

needed for that stage and later stages.

Figure 4.41 shows the correct version of the datapath, passing the write register number fi rst to the ID/EX register, then to the EX/MEM register, and fi nally to the

MEM/WB register. Th

e register number is used during the WB stage to specify

the register to be written. Figure 4.42 is a single drawing of the corrected datapath, highlighting the hardware used in all fi ve stages of the load word instruction in

Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the branch instruction work as expected.

Graphically Representing Pipelines

Pipelining can be diffi

cult to understand, since many instructions are simultaneously

executing in a single datapath in every clock cycle. To aid understanding, there are

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. Th e write register number now

comes from the MEM/WB pipeline register along with the data. Th

e register number is passed from the ID pipe stage until it reaches the MEM/

WB pipeline register, adding fi ve more bits to the last three pipeline registers. Th

is new path is shown in color.

4.6 Pipelined Datapath and Control

297

two basic styles of pipeline fi gures: multiple-clock-cycle pipeline diagrams, such as

Figure 4.34 on page 288, and single-clock-cycle pipeline diagrams, such as Figures

4.36 through 4.40. Th

e multiple-clock-cycle diagrams are simpler but do not contain

all the details. For example, consider the following fi ve-instruction sequence:

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these

instructions. Time advances from left to right across the page in these diagrams,

and instructions advance from the top to the bottom of the page, similar to the

laundry pipeline in Figure 4.25. A representation of the pipeline stages is placed in each portion along the instruction axis, occupying the proper clock cycles.

Th

ese stylized datapaths represent the fi ve stages of our pipeline graphically, but

a rectangle naming each pipe stage works just as well. Figure 4.44 shows the more traditional version of the multiple-clock-cycle pipeline diagram. Note that Figure

4.43 shows the physical resources used at each stage, while Figure 4.44 uses the name of each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath during

a single clock cycle, and usually all fi ve instructions in the pipeline are identifi ed by

labels above their respective pipeline stages. We use this type of fi gure to show the

details of what is happening within the pipeline during each clock cycle; typically,

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Instruction

Read

Zero

Instruction

register 2

ALU

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

Data

u

u

Write

memory

x

x

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all fi ve stages of a load instruction.

298

Chapter 4 The Processor

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

Program

execution

order

(in instructions)

lw $10, 20($1)

IM

Reg

ALU

DM

Reg

sub $11, $2, $3

IM

Reg

ALU

DM

Reg

add $12, $3, $4

IM

Reg

ALU

DM

Reg

lw $13, 24($1)

IM

Reg

ALU

DM

Reg

add $14, $5, $6

IM

Reg

ALU

DM

Reg

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of fi ve instructions. Th

is style of pipeline representation shows the complete

execution of instructions in a single fi gure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move from left to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw this diagram.

the drawings appear in groups to show pipeline operation over a sequence of

clock cycles. We use multiple-clock-cycle diagrams to give overviews of pipelining

situations. (

Section 4.13 gives more illustrations of single-clock diagrams

if you would like to see more details about Figure 4.43.) A single-clock-cycle diagram represents a vertical slice through a set of multiple-clock-cycle diagrams,

showing the usage of the datapath by each of the instructions in the pipeline at

the designated clock cycle. For example, Figure 4.45 shows the single-clock-cycle diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously, the single-clock-cycle diagrams have more detail and take signifi cantly more space

to show the same number of clock cycles. Th

e exercises ask you to create such

diagrams for other code sequences.

Check A group of students were debating the effi

ciency of the fi ve-stage pipeline when

one student pointed out that not all instructions are active in every stage of the

Yourself

pipeline. Aft er deciding to ignore the eff ects of hazards, they made the following

four statements. Which ones are correct?

4.6 Pipelined Datapath and Control

299

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

Program

execution

order

(in instructions)

Instruction Instruction

Data

lw $10, 20($1)

Execution

Write-back

fetch

decode

access

Instruction Instruction

Data

sub $11, $2, $3

Execution

Write-back

fetch

decode

access

Instruction Instruction

Data

add $12, $3, $4

Execution

Write-back

fetch

decode

access

Instruction Instruction

Data

lw $13, 24($1)

Execution

Write-back

fetch

decode

access

Instruction Instruction

Data

add $14, $5, $6

Execution

Write-back

fetch

decode

access

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of fi ve instructions in Figure 4.43.

add $14, $5, $6

lw $13, 24 ($1)

add $12, $3, $4

sub $11, $2, $3

lw $10, 20($1)

Instruction fetch

Instruction decode

Execution

Memory

Write-back

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Addresult

Shift

left 2

0

M

u

PC

Address

Read

x

register 1

Read

data 1

1

Read

Zero

Instruction

register 2

ALU

Instruction

Registers

ALU

Read

memory

Read

Address

1

Write

0

result

data

data 2

M

register

M

u

u

Data

Write

x

x

memory

data

0

1

Write

data

16

Sign-

32

extend

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44.

As you can see, a single-clock-cycle fi gure is a vertical slice through a multiple-clock-cycle diagram.

1. Allowing jumps, branches, and ALU instructions to take fewer stages than

the fi ve required by the load instruction will increase pipeline performance

under all circumstances.

300

Chapter 4 The Processor

2. Trying to allow some instructions to take fewer cycles does not help, since

the throughput is determined by the clock cycle; the number of pipe stages

per instruction aff ects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-

back of the result, but branches and jumps can take fewer cycles, so there is

some opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore

making the pipeline longer, so that instructions take more cycles, but the

cycles are shorter. Th

is could improve performance.

Pipelined Control

 In the 6600 Computer,

Just as we added control to the single-cycle datapath in Section 4.3, we now add

 perhaps even more

control to the pipelined datapath. We start with a simple design that views the

 than in any previous

problem through rose-colored glasses.

 computer, the control

Th

e fi rst step is to label the control lines on the existing datapath. Figure 4.46

 system is the diff erence.

shows those lines. We borrow as much as we can from the control for the simple

datapath in Figure 4.17. In particular, we use the same ALU control logic, branch James Th

ornton, Design

 of a Computer: Th

 e

logic, destination-register-number multiplexor, and control lines. Th

ese functions

 Control Data 6600, 1970

are defi ned in Figures 4.12, 4.16, and 4.18. We reproduce the key information in

Figures 4.47 through 4.49 on a single page to make the following discussion easier to follow.

As was the case for the single-cycle implementation, we assume that the PC is

written on each clock cycle, so there is no separate write signal for the PC. By the

same argument, there are no separate write signals for the pipeline registers (IF/

ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also written

during each clock cycle.

To specify control for the pipeline, we need only set the control values during

each pipeline stage. Because each control line is associated with a component active

in only a single pipeline stage, we can divide the control lines into fi ve groups

according to the pipeline stage.

1. Instruction fetch: Th

e control signals to read instruction memory and to

write the PC are always asserted, so there is nothing special to control in this

pipeline stage.

2. Instruction decode/register fi le read: As in the previous stage, the same thing

happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: Th

e signals to be set are RegDst, ALUOp,

and ALUSrc (see Figures 4.47 and 4.48). Th

e signals select the Result register,

the ALU operation, and either Read data 2 or a sign-extended immediate

for the ALU.

4.6 Pipelined Datapath and Control

301

PCSrc

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add

result

Shift

Branch

left 2

RegWrite

0

M

u

PC

Address

Read

x

register 1

Read

MemWrite

data 1

1

MemtoReg

Read

Zero

Instruction

ALUSrc

Instruction

register 2

Add ALU

Registers

Read

memory

Address

1

Write

Read

result

0

data

M

register

data 2

M

Data

u

u

x

Write

x

memory

0

data

1

Write

data

Instruction

(15–0)

16

Sign-

32

6

ALU

extend

control

MemRead

Instruction

(20–16)

0

ALUOp

M

Instruction

u

x

(15–11)

1

RegDst

FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identifi ed. Th is datapath borrows the control

logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct fi eld (function code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6 least signifi cant bits of the immediate fi eld in the instruction, so the ID/EX pipeline register can supply them from the immediate fi eld since sign extension leaves these bits unchanged.

Instruction

Instruction

Desired

ALU control

opcode

ALUOp

operation

Function code

ALU action

input

LW

00

load word

XXXXXX

add

0010

SW

00

store word

XXXXXX

add

0010

Branch equal

01

branch equal

XXXXXX

subtract

0110

R-type

10

add

100000

add

0010

R-type

10

subtract

100010

subtract

0110

R-type

10

AND

100100

AND

0000

R-type

10

OR

100101

OR

0001

R-type

10

set on less than

101010

set on less than

0111

FIGURE 4.47 A copy of Figure 4.12. Th

is fi gure shows how the ALU control bits are set depending on the ALUOp control bits and the

diff erent function codes for the R-type instruction.

302

Chapter 4 The Processor

Signal name

Effect when deasserted (0)

Effect when asserted (1)

RegDst

The register destination number for the Write

The register destination number for the Write register comes

register comes from the rt field (bits 20:16).

from the rd field (bits 15:11).

RegWrite

None.

The register on the Write register input is written with the value

on the Write data input.

ALUSrc

The second ALU operand comes from the second

The second ALU operand is the sign-extended, lower 16 bits of

register file output (Read data 2).

the instruction.

PCSrc

The PC is replaced by the output of the adder that The PC is replaced by the output of the adder that computes computes the value of PC + 4.

the branch target.

MemRead

None.

Data memory contents designated by the address input are

put on the Read data output.

MemWrite

None.

Data memory contents designated by the address input are

replaced by the value on the Write data input.

MemtoReg

The value fed to the register Write data input

The value fed to the register Write data input comes from the

comes from the ALU.

data memory.

FIGURE 4.48 A copy of Figure 4.16. Th

e function of each of seven control signals is defi ned. Th

e ALU control lines (ALUOp) are defi ned

in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.46.

If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq instruction; otherwise, PCSrc is set to 0.

Execution/address calculation stage

Memory access stage

Write-back stage

control lines

control lines

control lines

Mem-

Mem-

Reg-

Memto-

Instruction

RegDst

ALUOp1

ALUOp0

ALUSrc

Branch

Read

Write

Write

Reg

R-format

1

1

0

0

0

0

0

1

0

lw

0

0

0

1

0

1

0

1

1

sw

X

0

0

1

0

0

1

0

X

beq

X

0

1

0

1

0

0

0

X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffl ed into three groups corresponding to the last three pipeline stages.

4. Memory access: Th

e control lines set in this stage are Branch, MemRead, and

MemWrite. Th

e branch equal, load, and store instructions set these signals,

respectively. Recall that PCSrc in Figure 4.48 selects the next sequential

address unless control asserts Branch and the ALU result was 0.

5. Write-back: Th

e two control lines are MemtoReg, which decides between

sending the ALU result or the memory value to the register fi le, and Reg-

Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged,

we can use the same control values. Figure 4.49 has the same values as in Section 4.4, but now the nine control lines are grouped by pipeline stage.

4.7 Data Hazards: Forwarding versus Stalling

303

WB

Instruction

Control

M

WB

EX

M

WB

IF/ID

ID/EX

EX/MEM

MEM/WB

FIGURE 4.50 The control lines for the fi nal three stages. Note that four of the nine control lines are used in the EX phase, with the remaining fi ve control lines passed on to the EX/MEM pipeline register extended to hold the control lines; three are used during the MEM stage, and the last two are passed to MEM/

WB for use in the WB stage.

Implementing control means setting the nine control lines to these values in

each stage for each instruction. Th

e simplest way to do this is to extend the pipeline

registers to include control information.

Since the control lines start with the EX stage, we can create the control

information during instruction decode. Figure 4.50 above shows that these control signals are then used in the appropriate pipeline stage as the instruction moves

down the pipeline, just as the destination register number for loads moves down

the pipeline in Figure 4.41. Figure 4.51 shows the full datapath with the extended pipeline registers and with the control lines connected to the proper stage.

(

Section 4.13 gives more examples of MIPS code executing on pipelined

hardware using single-clock diagrams, if you would like to see more details.)

 4.7

Data Hazards: Forwarding versus Stalling

 What do you mean,

 why’s it got to be built?

 It’s a bypass. You’ve got

Th

e examples in the previous section show the power of pipelined execution and to build bypasses.

how the hardware performs the task. It’s now time to take off the rose-colored

glasses and look at what happens with real programs. Th

e instructions in Figures Douglas Adams, Th e

 Hitchhiker’s Guide to the

4.43 through 4.45 were independent; none of them used the results calculated Galaxy, 1979

by any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to

pipelined execution.

304

Chapter 4 The Processor

PCSrc

ID/EX

WB

EX/MEM

Control

M

WB

MEM/WB

EX

M

WB

IF/ID

Add

Add

4

Addresult

Shift

Branch

left 2

ALUSrc

RegWrite

0

M

u

PC

Address

Read

x

register 1

Read

data 1

MemWrite

1

Read

Zero

MemtoReg

Instruction

Instruction

register 2

ALU ALU

Read

memory

Registers Read

Address

1

Write

0

result

data

data 2

M

register

M

u

Data

u

Write

x

memory

x

data

1

0

Write

data

Instruction

[15–0]

16

Sign-

32

6

ALU

MemRead

extend

control

Instruction

[20–16]

ALUOp

0

M

Instruction

u

[15–11]

x

1

RegDst

FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of the pipeline registers. Th

e control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX pipeline register. Th

e control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

Let’s look at a sequence with many dependences, shown in color:

sub $2, $1,$3 # Register $2 written by sub

and $12,$2,$5 # 1st operand($2) depends on sub

or $13,$6,$2 # 2nd operand($2) depends on sub

add $14,$2,$2 # 1st($2) & 2nd($2) depend on sub

sw $15,100($2) # Base ($2) depends on sub

Th

e last four instructions are all dependent on the result in register $2 of the

fi rst instruction. If register $2 had the value 10 before the subtract instruction and

−20 aft erwards, the programmer intends that −20 will be used in the following

instructions that refer to register $2.

4.7 Data Hazards: Forwarding versus Stalling

305

How would this sequence perform with our pipeline? Figure 4.52 illustrates the execution of these instructions using a multiple-clock-cycle pipeline representation.

To demonstrate the execution of this instruction sequence in our current pipeline,

the top of Figure 4.52 shows the value of register $2, which changes during the middle of clock cycle 5, when the sub instruction writes its result.

Th

e last potential hazard can be resolved by the design of the register fi le

hardware: What happens when a register is read and written in the same clock

cycle? We assume that the write is in the fi rst half of the clock cycle and the read

is in the second half, so the read delivers what is written. As is the case for many

implementations of register fi les, we have no data hazard in this case.

Figure 4.52 shows that the values read for register $2 would not be the result of the sub instruction unless the read occurred during clock cycle 5 or later. Th

us, the

instructions that would get the correct value of −20 are add and sw; the AND and

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

Value of

register $2:

10 10 10 10

10/–20

–20

–20

–20

–20

Program

execution

order

(in instructions)

sub $2, $1, $3

IM

Reg

DM

Reg

and $12, $2, $5

IM

Reg

DM

Reg

or $13, $6, $2

IM

Reg

DM

Reg

add $14, $2,$2

IM

Reg

DM

Reg

sw $15, 100($2)

IM

Reg

DM

Reg

FIGURE 4.52 Pipelined dependences in a fi ve-instruction sequence using simplifi ed datapaths to show the dependences. All the dependent actions are shown in color, and “CC 1” at the top of the fi gure means clock cycle 1. Th e fi rst instruction

writes into $2, and all the following instructions read $2. Th

is register is written in clock cycle 5, so the proper value is unavailable before clock

cycle 5. (A read of a register during a clock cycle returns the value written at the end of the fi rst half of the cycle, when such a write occurs.) Th e

colored lines from the top datapath to the lower ones show the dependences. Th

ose that must go backward in time are pipeline data hazards.

306

Chapter 4 The Processor

OR instructions would get the incorrect value 10! Using this style of drawing, such

problems become apparent when a dependence line goes backward in time.

As mentioned in Section 4.5, the desired result is available at the end of the

EX stage or clock cycle 3. When is the data actually needed by the AND and OR

instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively.

Th

us, we can execute this segment without stalls if we simply forward the data as

soon as it is available to any units that need it before it is available to read from the

register fi le.

How does forwarding work? For simplicity in the rest of this section, we consider

only the challenge of forwarding to an operation in the EX stage, which may be

either an ALU operation or an eff ective address calculation. Th

is means that when

an instruction tries to use a register in its EX stage that an earlier instruction

intends to write in its WB stage, we actually need the values as inputs to the ALU.

A notation that names the fi elds of the pipeline registers allows for a more

precise notation of dependences. For example, “ID/EX.RegisterRs” refers to the

number of one register whose value is found in the pipeline register ID/EX; that is,

the one from the fi rst read port of the register fi le. Th

e fi rst part of the name, to the

left of the period, is the name of the pipeline register; the second part is the name of

the fi eld in that register. Using this notation, the two pairs of hazard conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Th

e fi rst hazard in the sequence on page 304 is on register $2, between the

result of sub $2,$1,$3 and the fi rst read operand of and $12,$2,$5. Th

is

hazard can be detected when the and instruction is in the EX stage and the prior

instruction is in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Dependence Detection

EXAMPLE

Classify the dependences in this sequence from page 304:

sub $2, $1, $3 # Register $2 set by sub

and $12, $2, $5 # 1st operand($2) set by sub

or $13, $6, $2 # 2nd operand($2) set by sub

add $14, $2, $2 # 1st($2) & 2nd($2) set by sub

sw $15, 100($2) # Index($2) set by sub

4.7 Data Hazards: Forwarding versus Stalling

307

As mentioned above, the sub-and is a type 1a hazard. Th

e remaining hazards

are as follows:

ANSWER

■ Th

e sub-or is a type 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

■ Th

e two dependences on sub-add are not hazards because the register

fi le supplies the proper data during the ID stage of add.

■ Th

ere is no data hazard between sub and sw because sw reads $2 the

clock cycle aft er sub writes $2.

Because some instructions do not write registers, this policy is inaccurate;

sometimes it would forward when it shouldn’t. One solution is simply to check

to see if the RegWrite signal will be active: examining the WB control fi eld of the

pipeline register during the EX and MEM stages determines whether RegWrite

is asserted. Recall that MIPS requires that every use of $0 as an operand must

yield an operand value of 0. In the event that an instruction in the pipeline has

$0 as its destination (for example, sll $0, $1, 2), we want to avoid forwarding

its possibly nonzero result value. Not forwarding results destined for $0 frees the

assembly programmer and the compiler of any requirement to avoid using $0 as

a destination. Th

e conditions above thus work properly as long we add EX/MEM.

RegisterRd ≠ 0 to the fi rst hazard condition and MEM/WB.RegisterRd ≠ 0 to the

second.

Now that we can detect hazards, half of the problem is resolved—but we must

still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the inputs to the ALU for the same code sequence as in Figure 4.52. Th

e change is that the

dependence begins from a pipeline register, rather than waiting for the WB stage to

write the register fi le. Th

us, the required data exists in time for later instructions,

with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just

ID/EX, then we can forward the proper data. By adding multiplexors to the input

of the ALU, and with the proper controls, we can run the pipeline at full speed in

the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the four

R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of the ALU and pipeline register before and aft er adding forwarding. Figure 4.55

shows the values of the control lines for the ALU multiplexors that select either the

register fi le values or one of the forwarded values.

Th

is forwarding control will be in the EX stage, because the ALU forwarding

multiplexors are found in that stage. Th

us, we must pass the operand register

numbers from the ID stage via the ID/EX pipeline register to determine whether

to forward values. We already have the rt fi eld (bits 20–16). Before forwarding, the

ID/EX register had no need to include space to hold the rs fi eld. Hence, rs (bits

25–21) is added to ID/EX.

308

Chapter 4 The Processor

Time (in clock cycles)

CC

1 CC

2 CC

3 CC

4 CC

5 CC

6 CC

7 CC

8 CC

9

Value of register $2:

10

10

10

10 10/–20 –20 –20 –20 –20

Value of EX/MEM: X

X

X

–20

X

X

X

X

X

Value of MEM/WB: X

X

X

X

–20 X

X

X

X

Program

execution

order

(in instructions)

sub $2, $1, $3

IM

Reg

DM

Reg

and $12, $2, $5

IM

Reg

DM

Reg

or $13, $6, $2

IM

Reg

DM

Reg

add $14, $2 , $2

IM

Reg

DM

Reg

sw $15, 100($2)

IM

Reg

DM

Reg

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline registers. Th

e values in the pipeline registers show that the desired value is available before it is written into the register fi le. We assume that the register fi le forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the register fi le instead of a pipeline register. Register fi le “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock cycle 5 shows register $2 having the value 10 at the beginning and −20 at the end of the clock cycle. As in the rest of this section, we handle all forwarding except for the value to be stored by a store instruction.

Let’s now write both the conditions for detecting hazards and the control signals

to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

4.7 Data Hazards: Forwarding versus Stalling

309

ID/EX

EX/MEM

MEM/WB

Registers

ALU

Data

memory

M

u

x

a. No forwarding

ID/EX

EX/MEM

MEM/WB

M

u

x

Registers

ForwardA

ALU

M

Data

u

memory

M

x

u

x

ForwardB

Rs

Rt

EX/MEM.RegisterRd

Rt

M

Rd

u

x

Forwarding

MEM/WB.RegisterRd

unit

b. With forwarding

FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding unit. Th

e new hardware is shown in color. Th

is fi gure is a stylized drawing, however, leaving out details

from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt fi eld is shown twice, once to connect to the Mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding of a store value to a store instruction. Also note that this mechanism works for slt instructions as well.

310

Chapter 4 The Processor

Mux control

Source

Explanation

ForwardA = 00

ID/EX

The first ALU operand comes from the register file.

ForwardA = 10

EX/MEM

The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01

MEM/WB

The first ALU operand is forwarded from data memory or an earlier

ALU result.

ForwardB = 00

ID/EX

The second ALU operand comes from the register file.

ForwardB = 10

EX/MEM

The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01

MEM/WB

The second ALU operand is forwarded from data memory or an

earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. Th e signed

immediate that is another input to the ALU is described in the Elaboration at the end of this section.

Note that the EX/MEM.RegisterRd fi eld is the register destination for either

an ALU instruction (which comes from the Rd fi eld of the instruction) or a load

(which comes from the Rt fi eld).

Th

is case forwards the result from the previous instruction to either input of the

ALU. If the previous instruction is going to write to the register fi le, and the write

register number matches the read register number of ALU inputs A or B, provided

it is not register 0, then steer the multiplexor to pick the value instead from the

pipeline register EX/MEM.

2. MEM hazard:

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)

and (

MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)

and

(MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that

the register fi le supplies the correct result if the instruction in the ID stage reads

the same register written by the instruction in the WB stage. Such a register fi le

performs another form of forwarding, but it occurs within the register fi le.

One complication is potential data hazards between the result of the instruction

in the WB stage, the result of the instruction in the MEM stage, and the source

operand of the instruction in the ALU stage. For example, when summing a vector

of numbers in a single register, a sequence of instructions will all read and write to

the same register:

add $1,$1,$2

add $1,$1,$3

add $1,$1,$4

. . .

4.7 Data Hazards: Forwarding versus Stalling

311

In this case, the result is forwarded from the MEM stage because the result in the

MEM stage is the more recent result. Th

us, the control for the MEM hazard would

be (with the additions highlighted):

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs))

and

(MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRt))

and

(MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Figure 4.56 shows the hardware necessary to support forwarding for operations that use results during the EX stage. Note that the EX/MEM.RegisterRd fi eld is the

register destination for either an ALU instruction (which comes from the Rd fi eld

of the instruction) or a load (which comes from the Rt fi eld).

ID/EX

WB

EX/MEM

Control

M

WB

MEM/WB

IF/ID

EX

M

WB

M

u

x

Registers

ALU

M

u

Instruction

Instruction

x

PC

memory

M

Data

u

x

memory

IF/ID.RegisterRs

Rs

IF/ID.RegisterRt

Rt

IF/ID.RegisterRt

Rt

EX/MEM.RegisterRd

M

IF/ID.RegisterRd

Rd

u

x

Forwarding

MEM/WB.RegisterRd

unit

FIGURE 4.56 The datapath modifi ed to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions are the multiplexors to the inputs to the ALU. Th

is fi gure is a more stylized drawing, however, leaving out details from the full datapath, such

as the branch hardware and the sign extension hardware.

312

Chapter 4 The Processor

Section 4.13 shows two pieces of MIPS code with hazards that cause

forwarding, if you would like to see more illustrated examples using single-cycle

pipeline drawings.

Elaboration: Forwarding can also help with hazards when store instructions are

dependent on other instructions. Since they use just one data value during the MEM

stage, forwarding is easy. However, consider loads immediately followed by stores, useful

when performing memory-to-memory copies in the MIPS architecture. Since copies are

frequent, we need to add more forwarding hardware to make them run faster. If we were

to redraw Figure 4.53, replacing the sub and AND instructions with lw and sw, we would see that it is possible to avoid a stall, since the data exists in the MEM/WB register of

a load instruction in time for its use in the MEM stage of a store instruction. We would

need to add forwarding into the memory access stage for this option. We leave this

modifi cation as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores, is

missing from the datapath in Figure 4.56. Since central control decides between register and immediate, and since the forwarding unit chooses the pipeline register for a register

ID/EX

EX/MEM

MEM/WB

M

u

x

Registers

ALUSrc

ALU

M

M

Data

u

u

memory

M

x

x

u

x

M

u

x

Forwarding

unit

FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to select the signed immediate as an ALU input.

4.7 Data Hazards: Forwarding versus Stalling

313

input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses between

the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows this addition.

Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when If at fi rst you don’t an instruction tries to read a register following a load instruction that writes succeed, redefi ne the same register. Figure 4.58 illustrates the problem. Th

e data is still being read success.

from memory in clock cycle 4 while the ALU is performing the operation for the Anonymous

following instruction. Something must stall the pipeline for the combination of

load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It

operates during the ID stage so that it can insert the stall between the load and its

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

Program

execution

order

(in instructions)

lw $2, 20($1)

IM

Reg

DM

Reg

and $4, $2, $5

IM

Reg

DM

Reg

or $8, $2, $6

IM

Reg

DM

Reg

add $9, $4, $2

IM

Reg

DM

Reg

slt $1, $6, $7

IM

Reg

DM

Reg

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.

314

Chapter 4 The Processor

use. Checking for load instructions, the control for the hazard detection unit is this

single condition:

if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline

Th

e fi rst line tests to see if the instruction is a load: the only instruction that reads

data memory is a load. Th

e next two lines check to see if the destination register

fi eld of the load in the EX stage matches either source register of the instruction

in the ID stage. If the condition holds, the instruction stalls one clock cycle. Aft er

this 1-cycle stall, the forwarding logic can handle the dependence and execution

proceeds. (If there were no forwarding, then the instructions in Figure 4.58 would need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage

must also be stalled; otherwise, we would lose the fetched instruction. Preventing

these two instructions from making progress is accomplished simply by preventing

the PC register and the IF/ID pipeline register from changing. Provided these

registers are preserved, the instruction in the IF stage will continue to be read

using the same PC, and the registers in the ID stage will continue to be read using

the same instruction fi elds in the IF/ID pipeline register. Returning to our favorite

analogy, it’s as if you restart the washer with the same clothes and let the dryer

continue tumbling empty. Of course, like the dryer, the back half of the pipeline

starting with the EX stage must be doing something; what it is doing is executing

nop An instruction that

instructions that have no eff ect: nops.

does no operation to

How can we insert these nops, which act like bubbles, into the pipeline? In Figure

change state.

4.49, we see that deasserting all nine control signals (setting them to 0) in the EX, MEM, and WB stages will create a “do nothing” or nop instruction. By identifying

the hazard in the ID stage, we can insert a bubble into the pipeline by changing the

EX, MEM, and WB control fi elds of the ID/EX pipeline register to 0. Th

ese benign

control values are percolated forward at each clock cycle with the proper eff ect: no

registers or memories are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline execution slot associated with the AND instruction is turned into a nop and all instructions

beginning with the AND instruction are delayed one cycle. Like an air bubble in

a water pipe, a stall bubble delays everything behind it and proceeds down the

instruction pipe one stage each cycle until it exits at the end. In this example, the

hazard forces the AND and OR instructions to repeat in clock cycle 4 what they

did in clock cycle 3: AND reads registers and decodes, and OR is refetched from

instruction memory. Such repeated work is what a stall looks like, but its eff ect is

to stretch the time of the AND and OR instructions and delay the fetch of the add

instruction.

Figure 4.60 highlights the pipeline connections for both the hazard detection unit and the forwarding unit. As before, the forwarding unit controls the ALU

4.7 Data Hazards: Forwarding versus Stalling

315

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

CC 10

Program

execution

order

(in instructions)

lw $2, 20($1)

IM

Reg

DM

Reg

bubble

and becomes nop

IM

Reg

DM

Reg

and $4, $2, $5

IM

Reg

DM

Reg

or $8, $2, $6

IM

Reg

DM

Reg

add $9, $4, $2

IM

Reg

DM

Reg

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed until clock cycle 5 (versus the unstalled clock cycle 4 position). Aft er insertion of the bubble, all the dependences go forward in time and no further hazards occur.

multiplexors to replace the value from a general-purpose register with the value

from the proper pipeline register. Th

e hazard detection unit controls the writing

of the PC and IF/ID registers plus the multiplexor that chooses between the real

control values and all 0s. Th

e hazard detection unit stalls and deasserts the control

fi elds if the load-use hazard test above is true. Section 4.13 gives an example of

MIPS code with hazards that causes stalling, illustrated using single-clock pipeline

diagrams, if you would like to see more details.

Although the compiler generally relies upon the hardware to resolve hazards

and thereby ensure correct execution, the compiler must understand the

The BIG

pipeline to achieve the best performance. Otherwise, unexpected stalls

Picture

will reduce the performance of the compiled code.

316

Chapter 4 The Processor

Hazard

ID/EX.MemRead

detection

unit

ID/EX

WB

IF/DWrite

EX/MEM

M

Control

u

M

WB

MEM/WB

x

0

IF/ID

M

WB

EX

PCWrite

M

u

x

Registers

M

ALU

u

Instruction

Instruction

PC

M

x

memory

Data

u

memory

x

IF/ID.RegisterRs

IF/ID.RegisterRt

M

IF/ID.RegisterRt

Rt

u

IF/ID.RegisterRd

Rd

x

ID/EX.RegisterRt

Rs

Forwarding

Rt

unit

FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and the forwarding unit. Although the ID and EX stages have been simplifi ed—the sign-extended immediate and branch logic are missing—

this drawing gives the essence of the forwarding hardware requirements.

Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid

writing registers or memory: only the signals RegWrite and MemWrite need be 0, while

the other control signals can be don’t cares.

 Th

 ere are a thousand

 hacking at the

 branches of evil to one

 4.8 Control

Hazards

 who is striking at the

 root.

Th

us far, we have limited our concern to hazards involving arithmetic operations

Henry David Th

oreau,

and data transfers. However, as we saw in Section 4.5, there are also pipeline hazards

 Walden, 1854

involving branches. Figure 4.61 shows a sequence of instructions and indicates when the branch would occur in this pipeline. An instruction must be fetched at every

clock cycle to sustain the pipeline, yet in our design the decision about whether to

branch doesn’t occur until the MEM pipeline stage. As mentioned in Section 4.5,

4.8 Control

Hazards

317

Time (in clock cycles)

CC 1

CC 2

CC 3

CC 4

CC 5

CC 6

CC 7

CC 8

CC 9

Program

execution

order

(in instructions)

40 beq $1, $3, 28

IM

Reg

DM

Reg

44 and $12, $2, $5

IM

Reg

DM

Reg

48 or $13, $6, $2

IM

Reg

DM

Reg

52 add $14, $2, $2

IM

Reg

DM

Reg

72 lw $4, 50($7)

IM

Reg

DM

Reg

FIGURE 4.61 The impact of the pipeline on the branch instruction. Th

e numbers to the left of the instruction (40, 44, …)

are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those three following instructions will begin execution before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the control hazard to one clock cycle; this fi gure uses the nonoptimized datapath.)

this delay in determining the proper instruction to fetch is called a control hazard

or branch hazard, in contrast to the data hazards we have just examined.

Th

is section on control hazards is shorter than the previous sections on data

hazards. Th

e reasons are that control hazards are relatively simple to understand,

they occur less frequently than data hazards, and there is nothing as eff ective

against control hazards as forwarding is against data hazards. Hence, we use

simpler schemes. We look at two schemes for resolving control hazards and one

optimization to improve these schemes.

318

Chapter 4 The Processor

Assume Branch Not Taken

As we saw in Section 4.5, stalling until the branch is complete is too slow. One

improvement over branch stalling is to predict that the branch will not be taken

and thus continue execution down the sequential instruction stream. If the branch

is taken, the instructions that are being fetched and decoded must be discarded.

Execution continues at the branch target. If branches are untaken half the time,

and if it costs little to discard the instructions, this optimization halves the cost of

control hazards.

To discard instructions, we merely change the original control values to 0s, much

as we did to stall for a load-use data hazard. Th

e diff erence is that we must also

change the three instructions in the IF, ID, and EX stages when the branch reaches

fl ush To discard

the MEM stage; for load-use stalls, we just change control to 0 in the ID stage and

instructions in a pipeline,

let them percolate through the pipeline. Discarding instructions, then, means we

usually due to an

must be able to fl ush instructions in the IF, ID, and EX stages of the pipeline.

unexpected event.

Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch.

Th

us far, we have assumed the next PC for a branch is selected in the MEM

stage, but if we move the branch execution earlier in the pipeline, then fewer

instructions need be fl ushed. Th

e MIPS architecture was designed to support fast

single-cycle branches that could be pipelined with a small branch penalty. Th

e

designers observed that many branches rely only on simple tests (equality or sign,

for example) and that such tests do not require a full ALU operation but can be

done with at most a few gates. When a more complex branch decision is required,

a separate instruction that uses an ALU to perform a comparison is required—a

situation that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing

the branch target address and evaluating the branch decision. Th

e easy part of

this change is to move up the branch address calculation. We already have the PC

value and the immediate fi eld in the IF/ID pipeline register, so we just move the

branch adder from the EX stage to the ID stage; of course, the branch target address

calculation will be performed for all instructions, but only used when needed.

Th

e harder part is the branch decision itself. For branch equal, we would compare

the two registers read during the ID stage to see if they are equal. Equality can be

tested by fi rst exclusive ORing their respective bits and then ORing all the results.

Moving the branch test to the ID stage implies additional forwarding and hazard

detection hardware, since a branch dependent on a result still in the pipeline must

still work properly with this optimization. For example, to implement branch on

equal (and its inverse), we will need to forward results to the equality test logic that

operates during ID. Th

ere are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to the

equality unit is needed, and complete the equality comparison so that if

the instruction is a branch, we can set the PC to the branch target address.

4.8 Control

Hazards

319

Forwarding for the operands of branches was formerly handled by the ALU

forwarding logic, but the introduction of the equality test unit in ID will

require new forwarding logic. Note that the bypassed source operands of a

branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may be

produced later in time, it is possible that a data hazard can occur and a stall

will be needed. For example, if an ALU instruction immediately preceding

a branch produces one of the operands for the comparison in the branch,

a stall will be required, since the EX stage for the ALU instruction will

occur aft er the ID cycle of the branch. By extension, if a load is immediately

followed by a conditional branch that is on the load result, two stall cycles

will be needed, as the result from the load appears at the end of the MEM

cycle but is needed at the beginning of ID for the branch.

Despite these diffi

culties, moving the branch execution to the ID stage is an

improvement, because it reduces the penalty of a branch to only one instruction if

the branch is taken, namely, the one currently being fetched. Th

e exercises explore

the details of implementing the forwarding path and detecting the hazard.

To fl ush instructions in the IF stage, we add a control line, called IF.Flush,

that zeros the instruction fi eld of the IF/ID pipeline register. Clearing the register

transforms the fetched instruction into a nop, an instruction that has no action

and changes no state.

Pipelined Branch

EXAMPLE

Show what happens when the branch is taken in this instruction sequence,

assuming the pipeline is optimized for branches that are not taken and that we

moved the branch execution to the ID stage:

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative branch to 40

+

4

+

7

*

4

=

72

44 and $12, $2, $5

48 or $13, $2, $6

52 add $14, $4, $2

56 slt $15, $6, $7

. . .

72 lw $4, 50($7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61, there is only one pipeline bubble on a taken branch.

ANSWER

320

Chapter 4 The Processor

and $12, $2, $5

beq $1, $3, 7

sub $10, $4, $8

before<1>

before<2>

IF.Flush

Hazard

detection

unit

ID/EX

WB

EX/MEM

M

Control

M

WB

28

u

MEM/WB

x

IF/ID

+

0

M

WB

EX

44

72

48

+

M

Shift

$4

4

left 2

$1

u

x

Registers

=

ALU

M

M

Instruction

$3

u

u

PC

$8

M

Data

x

x

72

44

memory

u

7

memory

x

Sign-

extend

10

Forwarding

unit

Clock 3

lw $4, 50($7)

 Bubble (nop)

beq $1, $3, 7

sub $10, . . .

before<1>

IF.Flush

Hazard

detection

unit

ID/EX

WB

EX/MEM

M

Control

M

WB

u

MEM/WB

x

IF/ID

+

0

M

WB

EX

72

76

+

M

Shift

$1

4

left 2

u

x

Registers

=

ALU

M

M

Instruction

u

u

PC

M

memory

Data

x 76

72

$3

x

u

memory

x

Sign-

extend

10

Forwarding

unit

Clock 4

FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC

address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s arguable whether or not the ID stage in clock 4 should be highlighted.)

4.8 Control

Hazards

321

Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case,

we predict that branches are untaken, fl ushing the pipeline when we are wrong. For

the simple fi ve-stage pipeline, such an approach, possibly coupled with compiler-

based prediction, is probably adequate. With deeper pipelines, the branch penalty

increases when measured in clock cycles. Similarly, with multiple issue (see Section

4.10), the branch penalty increases in terms of instructions lost. Th

is combination

means that in an aggressive pipeline, a simple static prediction scheme will probably

waste too much performance. As we mentioned in Section 4.5, with more hardware

it is possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch was dynamic branch taken the last time this instruction was executed, and, if so, to begin fetching new prediction Prediction of instructions from the same place as the last time. Th

is technique is called dynamic branches at runtime using

branch prediction.

runtime information.

One implementation of that approach is a branch prediction buff er or branch branch prediction history table. A branch prediction buff er is a small memory indexed by the lower buff er Also called

portion of the address of the branch instruction. Th

e memory contains a bit that branch history table.

says whether the branch was recently taken or not.

A small memory that

is indexed by the lower

Th

is is the simplest sort of buff er; we don’t know, in fact, if the prediction is portion of the address of the right one—it may have been put there by another branch that has the same the branch instruction low-order address bits. However, this doesn’t aff ect correctness. Prediction is just and that contains one a hint that we hope is correct, so fetching begins in the predicted direction. If the or more bits indicating hint turns out to be wrong, the incorrectly predicted instructions are deleted, the whether the branch was prediction bit is inverted and stored back, and the proper sequence is fetched and recently taken or not.

executed.

Th

is simple 1-bit prediction scheme has a performance shortcoming: even if a

branch is almost always taken, we can predict incorrectly twice, rather than once,

when it is not taken. Th

e following example shows this dilemma.

Loops and Prediction

EXAMPLE

Consider a loop branch that branches nine times in a row, then is not taken

once. What is the prediction accuracy for this branch, assuming the prediction

bit for this branch remains in the prediction buff er?

Th

e steady-state prediction behavior will mispredict on the fi rst and last loop

iterations. Mispredicting the last iteration is inevitable since the prediction

ANSWER

bit will indicate taken, as the branch has been taken nine times in a row at

that point. Th

e misprediction on the fi rst iteration happens because the bit is

fl ipped on prior execution of the last iteration of the loop, since the branch

was not taken on that exiting iteration. Th

us, the prediction accuracy for this

322

Chapter 4 The Processor

branch that is taken 90% of the time is only 80% (two incorrect predictions and

eight correct ones).

Ideally, the accuracy of the predictor would match the taken branch frequency for

these highly regular branches. To remedy this weakness, 2-bit prediction schemes

are oft en used. In a 2-bit scheme, a prediction must be wrong twice before it is

changed. Figure 4.63 shows the fi nite-state machine for a 2-bit prediction scheme.

A branch prediction buff er can be implemented as a small, special buff er accessed

with the instruction address during the IF pipe stage. If the instruction is predicted

as taken, fetching begins from the target as soon as the PC is known; as mentioned

on page 318, it can be as early as the ID stage. Otherwise, sequential fetching and

executing continue. If the prediction turns out to be wrong, the prediction bits are

changed as shown in Figure 4.63.

Elaboration: As we described in Section 4.5, in a fi ve-stage pipeline we can make the

control hazard a feature by redefi ning the branch. A delayed branch always executes the

branch delay slot Th

e

following instruction, but the second instruction following the branch will be affected by

slot directly aft er

the branch.

a delayed branch

instruction, which in the

Compilers and assemblers try to place an instruction that always executes after the

MIPS architecture is fi lled

branch in the branch delay slot. The job of the software is to make the successor

by an instruction that

instructions valid and useful. Figure 4.64 shows the three ways in which the branch does not aff ect the branch.

delay slot can be scheduled.

Taken

Not taken

Predict taken

Predict taken

Taken

Not taken

Taken

Not taken

Predict not taken

Predict not taken

Taken

Not taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly favors taken or not taken—as many branches do—will be mispredicted only once. Th

e 2 bits are used

to encode the four states in the system. Th

e 2-bit scheme is a general instance of a counter-based predictor,

which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of its range as the division between taken and not taken.

4.8 Control

Hazards

323

The limitations on delayed branch scheduling arise from (1) the restrictions on the

instructions that are scheduled into the delay slots and (2) our ability to predict at

compile time whether a branch is likely to be taken or not.

Delayed branching was a simple and effective solution for a fi ve-stage pipeline

issuing one instruction each clock cycle. As processors go to both longer pipelines

and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay

becomes longer, and a single delay slot is insuffi cient. Hence, delayed branching has

lost popularity compared to more expensive but more fl exible dynamic approaches.

Simultaneously, the growth in available transistors per chip has due to Moore’s Law

made dynamic prediction relatively cheaper.

a. From before

b. From target

c. From fall-through

add $s1, $s2, $s3

sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

. . .

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

Delay slot

if $s1 = 0 then

sub $t4, $t5, $t6

Delay slot

Becomes

Becomes

Becomes

add $s1, $s2, $s3

if $s2 = 0 then

if $s1 = 0 then

add $s1, $s2, $s3

add $s1, $s2, $s3

sub $t4, $t5, $t6

if $s1 = 0 then

sub $t4, $t5, $t6

FIGURE 4.64 Scheduling the branch delay slot. Th

e top box in each pair shows the code before

scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent instruction from before the branch. Th

is is the best choice. Strategies (b) and (c) are used when (a) is not

possible. In the code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add instruction (whose destination is $s1) from being moved into the branch delay slot. In (b) the branch delay slot is scheduled from the target of the branch; usually the target instruction will need to be copied because it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will still execute correctly. Th

is is the case, for example, if $t4 were an unused temporary register when the branch goes in

the unexpected direction.

324

Chapter 4 The Processor

Elaboration: A branch predictor tells us whether or not a branch is taken, but still

requires the calculation of the branch target. In the fi ve-stage pipeline, this calculation

takes one cycle, meaning that taken branches will have a 1-cycle penalty. Delayed

branches are one approach to eliminate that penalty. Another approach is to use a

branch target buff er

cache to hold the destination program counter or destination instruction using a branch

A structure that caches

target buffer.

the destination PC or

The 2-bit dynamic prediction scheme uses only information about a particular branch.

destination instruction

Researchers noticed that using information about both a local branch, and the global

for a branch. It is usually

behavior of recently executed branches together yields greater prediction accuracy for

organized as a cache with

the same number of prediction bits. Such predictors are called correlating predictors.

tags, making it more

A typical correlating predictor might have two 2-bit predictors for each branch, with the

costly than a simple

choice between predictors made based on whether the last executed branch was taken

prediction buff er.

or not taken. Thus, the global branch behavior can be thought of as adding additional

index bits for the prediction lookup.

correlating predictor

A more recent innovation in branch prediction is the use of tournament predictors. A

A branch predictor that

tournament predictor uses multiple predictors, tracking, for each branch, which predictor

combines local behavior

yields the best results. A typical tournament predictor might contain two predictions for

of a particular branch

and global information

each branch index: one based on local information and one based on global branch

about the behavior of

behavior. A selector would choose which predictor to use for any given prediction. The

some recent number of

selector can operate similarly to a 1- or 2-bit predictor, favoring whichever of the two

executed branches.

predictors has been more accurate. Some recent microprocessors use such elaborate

predictors.

tournament branch

predictor A branch

predictor with multiple

Elaboration: One way to reduce the number of conditional branches is to add

predictions for each

 conditional move instructions. Instead of changing the PC with a conditional branch, the

branch and a selection

instruction conditionally changes the destination register of the move. If the condition

mechanism that chooses

fails, the move acts as a nop. For example, one version of the MIPS instruction set

which predictor to enable

architecture has two new instructions called movn (move if not zero) and movz (move

for a given branch.

if zero). Thus, movn $8, $11, $4 copies the contents of register 11 into register 8,

provided that the value in register 4 is nonzero; otherwise, it does nothing.

The ARMv7 instruction set has a condition fi eld in most instructions. Hence, ARM

programs could have fewer conditional branches than in MIPS programs.

Pipeline Summary

We started in the laundry room, showing principles of pipelining in an everyday

setting. Using that analogy as a guide, we explained instruction pipelining

step-by-step, starting with the single-cycle datapath and then adding pipeline

registers, forwarding paths, data hazard detection, branch prediction, and fl ushing

instructions on exceptions. Figure 4.65 shows the fi nal evolved datapath and control.

We now are ready for yet another control hazard: the sticky issue of exceptions.

Check Consider three branch prediction schemes: predict not taken, predict taken, and

dynamic prediction. Assume that they all have zero penalty when they predict

Yourself

correctly and two cycles when they are wrong. Assume that the average predict

4.9 Exceptions

325

IF.Flush

Hazard

detection

unit

ID/EX

WB

MEM/WB

M

Control

u

M

WB

EX/MEM

0

x

EX

IF/ID

M

WB

+

+

4

Shift

left 2

M

u

x

=

Registers

M

Instruction

Data

u

PC

ALU

memory

memory

x

M

u

M

x

u

x

Sign-

extend

M

u

x

Fowarding

unit

FIGURE 4.65 The fi nal datapath and control for this chapter. Note that this is a stylized fi gure rather than a detailed datapath, so it’s missing the ALUsrc Mux from Figure 4.57 and the multiplexor controls from Figure 4.51.

accuracy of the dynamic predictor is 90%. Which predictor is the best choice for To make a computer the following branches?

 with automatic

 program-interruption

1. A branch that is taken with 5% frequency

 facilities behave

2. A branch that is taken with 95% frequency

 [sequentially] was

 not an easy matter,

3. A branch that is taken with 70% frequency

 because the number of

 instructions in various

 stages of processing

 when an interrupt

 4.9 Exceptions

 signal occurs may be

 large.

Control is the most challenging aspect of processor design: it is both the hardest Fred Brooks, Jr., part to get right and the hardest part to make fast. One of the hardest parts of Planning a Computer System: Project Stretch,

1962

326

Chapter 4 The Processor

exception Also

control is implementing exceptions and interrupts—events other than branches

called interrupt. An

or jumps that change the normal fl ow of instruction execution. Th

ey were initially

unscheduled event

created to handle unexpected events from within the processor, like arithmetic

that disrupts program

overfl ow. Th

e same basic mechanism was extended for I/O devices to communicate

execution; used to detect

with the processor, as we will see in Chapter 5.

overfl ow.

Many architectures and authors do not distinguish between interrupts and

interrupt An exception

exceptions, oft en using the older name interrupt to refer to both types of events.

that comes from outside

For example, the Intel x86 uses interrupt. We follow the MIPS convention, using

of the processor. (Some

the term exception to refer to any unexpected change in control fl ow without

architectures use the

distinguishing whether the cause is internal or external; we use the term interrupt

term interrupt for all

only when the event is externally caused. Here are fi ve examples showing whether

exceptions.)

the situation is internally generated by the processor or externally generated:

Type of event

From where?

MIPS terminology

I/O device request

External

Interrupt

Invoke the operating system from user program

Internal

Exception

Arithmetic overfl ow

Internal

Exception

Using an undefi ned instruction

Internal

Exception

Hardware malfunctions

Either

Exception or interrupt

Many of the requirements to support exceptions come from the specifi c

situation that causes an exception to occur. Accordingly, we will return to this

topic in Chapter 5, when we will better understand the motivation for additional

capabilities in the exception mechanism. In this section, we deal with the control

implementation for detecting two types of exceptions that arise from the portions

of the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is oft en

on the critical timing path of a processor, which determines the clock cycle time

and thus performance. Without proper attention to exceptions during design of

the control unit, attempts to add exceptions to a complicated implementation

can signifi cantly reduce performance, as well as complicate the task of getting the

design correct.

How Exceptions Are Handled in the MIPS Architecture

Th

e two types of exceptions that our current implementation can generate are

execution of an undefi ned instruction and an arithmetic overfl ow. We’ll use

arithmetic overfl ow in the instruction add $1, $2, $1 as the example exception

in the next few pages. Th

e basic action that the processor must perform when an

exception occurs is to save the address of the off ending instruction in the exception

 program counter (EPC) and then transfer control to the operating system at some

specifi ed address.

Th

e operating system can then take the appropriate action, which may involve

providing some service to the user program, taking some predefi ned action in

4.9 Exceptions

327

response to an overfl ow, or stopping the execution of the program and reporting an

error. Aft er performing whatever action is required because of the exception, the

operating system can terminate the program or may continue its execution, using

the EPC to determine where to restart the execution of the program. In Chapter 5,

we will look more closely at the issue of restarting the execution.

For the operating system to handle the exception, it must know the reason for

the exception, in addition to the instruction that caused it. Th

ere are two main

methods used to communicate the reason for an exception. Th

e method used in

the MIPS architecture is to include a status register (called the Cause register),

which holds a fi eld that indicates the reason for the exception.

A second method, is to use vectored interrupts. In a vectored interrupt, the vectored interrupt An address to which control is transferred is determined by the cause of the exception. interrupt for which For example, to accommodate the two exception types listed above, we might the address to which

defi ne the following two exception vector addresses:

control is transferred is

determined by the cause

of the exception.

Exception type

Exception vector address (in hex)

Undefi ned instruction

8000 0000hex

Arithmetic overfl ow

8000 0180hex

Th

e operating system knows the reason for the exception by the address at which

it is initiated. Th

e addresses are separated by 32 bytes or eight instructions, and the

operating system must record the reason for the exception and may perform some

limited processing in this sequence. When the exception is not vectored, a single

entry point for all exceptions can be used, and the operating system decodes the

status register to fi nd the cause.

We can perform the processing required for exceptions by adding a few extra

registers and control signals to our basic implementation and by slightly extending

control. Let’s assume that we are implementing the exception system used in the

MIPS architecture, with the single entry point being the address 8000 0180 .

hex

(Implementing vectored exceptions is no more diffi

cult.) We will need to add two

additional registers to our current MIPS implementation:

■ EPC: A 32-bit register used to hold the address of the aff ected instruction.

(Such a register is needed even when exceptions are vectored.)

■ Cause: A register used to record the cause of the exception. In the MIPS

architecture, this register is 32 bits, although some bits are currently unused.

Assume there is a fi ve-bit fi eld that encodes the two possible exception

sources mentioned above, with 10 representing an undefi ned instruction and

12 representing arithmetic overfl ow.

Exceptions in a Pipelined Implementation

A pipelined implementation treats exceptions as another form of control hazard.

For example, suppose there is an arithmetic overfl ow in an add instruction. Just as

328

Chapter 4 The Processor

we did for the taken branch in the previous section, we must fl ush the instructions

that follow the add instruction from the pipeline and begin fetching instructions

from the new address. We will use the same mechanism we used for taken branches,

but this time the exception causes the deasserting of control lines.

When we dealt with branch mispredict, we saw how to fl ush the instruction

in the IF stage by turning it into a nop. To fl ush instructions in the ID stage, we

use the multiplexor already in the ID stage that zeros control signals for stalls. A

new control signal, called ID.Flush, is ORed with the stall signal from the hazard

detection unit to fl ush during ID. To fl ush the instruction in the EX phase, we use

a new signal called EX.Flush to cause new multiplexors to zero the control lines. To

start fetching instructions from location 8000 0180 , which is the MIPS exception

hex

address, we simply add an additional input to the PC multiplexor that sends 8000

0180 to the PC. Figure 4.66 shows these changes.

hex

Th

is example points out a problem with exceptions: if we do not stop execution

in the middle of the instruction, the programmer will not be able to see the original

value of register $1 that helped cause the overfl ow because it will be clobbered as

the Destination register of the add instruction. Because of careful planning, the

overfl ow exception is detected during the EX stage; hence, we can use the EX.Flush

signal to prevent the instruction in the EX stage from writing its result in the WB

stage. Many exceptions require that we eventually complete the instruction that

caused the exception as if it executed normally. Th

e easiest way to do this is to fl ush

the instruction and restart it from the beginning aft er the exception is handled.

Th

e fi nal step is to save the address of the off ending instruction in the exception

 program counter (EPC). In reality, we save the address +4, so the exception handling

the soft ware routine must fi rst subtract 4 from the saved value. Figure 4.66 shows a stylized version of the datapath, including the branch hardware and necessary

accommodations to handle exceptions.

Exception in a Pipelined Computer

EXAMPLE

Given this instruction sequence,

40

sub $11, $2, $4

hex

44

and $12, $2, $5

hex

48

or $13, $2, $6

hex

4C

add $1, $2, $1

hex

50

slt $15, $6, $7

hex

54

lw $16, 50($7)

hex

.

.

.

4.9 Exceptions

329

EX.Flush

IF.Flush

ID.Flush

Hazard

detection

unit

M

ID/EX

u

x

WB

0

EX/MEM

M

Control

M

u

M

WB

u

MEM/WB

x

Cause

x

IF/ID

⫹

0

EX

0

M

WB

EPC

⫹

Shift

4

left 2

M

u

x

Registers

⫽

M

ALU

u

M

Instruction

80000180

PC

x

u

memory

x

M

Data

u

memory

x

Sign-

extend

M

u

x

Forwarding

unit

FIGURE 4.66 The datapath with controls to handle exceptions. Th

e key additions include a new input with the value 8000 0180

hex

in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save the address of the instruction that caused the exception. Th

e 8000 0180 input to the multiplexor is the initial address to begin fetching

hex

instructions in the event of an exception. Although not shown, the ALU overfl ow signal is an input to the control unit.

assume the instructions to be invoked on an exception begin like this:

80000180

sw $26, 1000($0)

hex

80000184

sw $27, 1004($0)

hex

.

.

.

Show what happens in the pipeline if an overfl ow exception occurs in the add

instruction.

Figure 4.67 shows the events, starting with the add instruction in the EX stage.

Th

e overfl ow is detected during that phase, and 8000 0180 is forced into the

ANSWER

hex

PC. Clock cycle 7 shows that the add and following instructions are fl ushed,

and the fi rst instruction of the exception code is fetched. Note that the address

of the instruction following the add is saved: 4C + 4 = 50 .

hex

hex

330

Chapter 4 The Processor

lw $16, 50($7)

slt $15, $6, $7

add $1, $2, $1

or $13, . . .

and $12, . . .

EX.Flush

IF.Flush

ID.Flush

Hazard

detection

unit

M

ID/EX

u

0

10

WB

x

0

EX/MEM

M

M

0

000

10

Control

M

WB

u

MEM/WB

Cause

u

IF/ID

+

x

0

50

1

0

x

EX

EPC

0

M

WB

54

58

+

M

Shift

$2

4

left 2

$6

u

x

Registers

=

12

M

M

$7

Instruction

u

80000180

u

PC

M

memory

x

x

54

$1

Data

80000180

u

memory

x

Sign-

extend

13

M

12

15

$1

u

x

Clock 6

Forwarding

unit

sw $26, 1000($0)

bubble (nop)

bubble

bubble

or $13, . . .

EX.Flush

IF.Flush

ID.Flush

Hazard

detection

unit

M

00

ID/EX

u

0

0

WB

0

x

EX/MEM

M

0

M

000

00

Control

M

WB

u

MEM/WB

u

Cause

+

x

IF/ID

0

0 EX

EPC

0

x

M

WB

58

80000180

+

M

Shift

4

left 2

u

x

Registers

=

13

ALU

M

M

Instruction

u

80000180

u

PC

M

memory

Data

x

x 80000184

u

memory

x

Sign-

extend

13

M

u

x

Clock 7

Forwarding

unit

FIGURE 4.67 The result of an exception due to arithmetic overfl ow in the add instruction. Th e overfl ow is detected during

the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 = 50). Overfl ow causes all the Flush signals to be set hex

near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted to bubbles in the pipeline plus the fetching of the fi rst instruction of the exception routine—sw $25,1000($0)—from instruction location 8000 0180 . Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown, the ALU overfl ow signal hex

is an input to the control unit.

4.9 Exceptions

331

We mentioned fi ve examples of exceptions on page 326, and we will see others

in Chapter 5. With fi ve instructions active in any clock cycle, the challenge is

to associate an exception with the appropriate instruction. Moreover, multiple

exceptions can occur simultaneously in a single clock cycle. Th

e solution is to

prioritize the exceptions so that it is easy to determine which is serviced fi rst. In

most MIPS implementations, the hardware sorts exceptions so that the earliest

instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specifi c

instruction, so the implementation has some fl exibility as to when to interrupt the

pipeline. Hence, the mechanism used for other exceptions works just fi ne.

Th

e EPC captures the address of the interrupted instructions, and the MIPS

Cause register records all possible exceptions in a clock cycle, so the exception

soft ware must match the exception to the instruction. An important clue is knowing

in which pipeline stage a type of exception can occur. For example, an undefi ned

instruction is discovered in the ID stage, and invoking the operating system

occurs in the EX stage. Exceptions are collected in the Cause register in a pending

exception fi eld so that the hardware can interrupt based on later exceptions, once

the earliest one has been serviced.

Th

e hardware and the operating system must work in conjunction so that Hardware/

exceptions behave as you would expect. Th

e hardware contract is normally to Software

stop the off ending instruction in midstream, let all prior instructions complete,

fl ush all following instructions, set a register to show the cause of the exception, Interface save the address of the off ending instruction, and then jump to a prearranged

address. Th

e operating system contract is to look at the cause of the exception and

act appropriately. For an undefi ned instruction, hardware failure, or arithmetic

overfl ow exception, the operating system normally kills the program and returns

an indicator of the reason. For an I/O device request or an operating system service

call, the operating system saves the state of the program, performs the desired task,

and, at some point in the future, restores the program to continue execution. In

the case of I/O device requests, we may oft en choose to run another task before

resuming the task that requested the I/O, since that task may oft en not be able to

proceed until the I/O is complete. Exceptions are why the ability to save and restore

the state of any task is critical. One of the most important and frequent uses of

exceptions is handling page faults and TLB exceptions; Chapter 5 describes these

exceptions and their handling in more detail.

imprecise

interrupt Also called

imprecise exception.

Interrupts or exceptions

Elaboration: The diffi culty of always associating the correct exception with the correct

in pipelined computers

instruction in pipelined computers has led some computer designers to relax this that are not associated requirement in noncritical cases. Such processors are said to have imprecise interrupts

with the exact instruction

or imprecise exceptions. In the example above, PC would normally have 58

at the start

hex

that was the cause of the

of the clock cycle after the exception is detected, even though the offending instruction

interrupt or exception.

332

Chapter 4 The Processor

precise interrupt Also

is at address 4C

. A processor with imprecise exceptions might put 58

into EPC and

hex

hex

called precise exception.

leave it up to the operating system to determine which instruction caused the problem.

An interrupt or exception

MIPS and the vast majority of computers today support precise interrupts or precise

that is always associated

exceptions. (One reason is to support virtual memory, which we shall see in Chapter 5.)

with the correct

instruction in pipelined

Elaboration: Although MIPS uses the exception entry address 8000 0180 for

computers.

hex

almost all exceptions, it uses the address 8000 0000

to improve performance of the

hex

exception handler for TLB-miss exceptions (see Chapter 5).

Check Which exception should be recognized fi rst in this sequence?

Yourself

1. add $1, $2, $1 # arithmetic overfl ow

2. XXX $1, $2, $1 # undefi ned instruction

3. sub $1, $2, $1 # hardware error

 4.10 Parallelism via Instructions

Be forewarned: this section is a brief overview of fascinating but advanced

topics. If you want to learn more details, you should consult our more advanced

book, Computer Architecture: A Quantitative Approach, fi ft h edition, where the

material covered in these 13 pages is expanded to almost 200 pages (including

appendices)!

Pipelining exploits the potential parallelism among instructions. Th

is

parallelism is called instruction-level parallelism (ILP). Th

ere are two primary

methods for increasing the potential amount of instruction-level parallelism. Th

e

fi rst is increasing the depth of the pipeline to overlap more instructions. Using our

laundry analogy and assuming that the washer cycle was longer than the others

were, we could divide our washer into three machines that perform the wash, rinse,

and spin steps of a traditional washer. We would then move from a four-stage to a

six-stage pipeline. To get the full speed-up, we need to rebalance the remaining steps

so they are the same length, in processors or in laundry. Th

e amount of parallelism

being exploited is higher, since there are more operations being overlapped.

Performance is potentially greater since the clock cycle can be shorter.

instruction-level

Another approach is to replicate the internal components of the computer so

parallelism Th

e

that it can launch multiple instructions in every pipeline stage. Th

e general name

parallelism among

for this technique is multiple issue. A multiple-issue laundry would replace our

instructions.

household washer and dryer with, say, three washers and three dryers. You would

multiple issue A scheme also have to recruit more assistants to fold and put away three times as much whereby multiple

laundry in the same amount of time. Th

e downside is the extra work to keep all the

instructions are launched

machines busy and transferring the loads to the next pipeline stage.

in one clock cycle.

4.10 Parallelism via Instructions

333

Launching multiple instructions per stage allows the instruction execution rate to

exceed the clock rate or, stated alternatively, the CPI to be less than 1. As mentioned

in Chapter 1, it is sometimes useful to fl ip the metric and use IPC, or instructions per clock cycle. Hence, a 4 GHz four-way multiple-issue microprocessor can execute

a peak rate of 16 billion instructions per second and have a best-case CPI of 0.25,

or an IPC of 4. Assuming a fi ve-stage pipeline, such a processor would have 20

instructions in execution at any given time. Today’s high-end microprocessors

attempt to issue from three to six instructions in every clock cycle. Even moderate

designs will aim at a peak IPC of 2. Th

ere are typically, however, many constraints

on what types of instructions may be executed simultaneously, and what happens static multiple issue An when dependences arise.

approach to implementing

Th

ere are two major ways to implement a multiple-issue processor, with the a multiple-issue processor major diff erence being the division of work between the compiler and the hardware.

where many decisions

Because the division of work dictates whether decisions are being made statically are made by the compiler (that is, at compile time) or dynamically (that is, during execution), the approaches before execution.

are sometimes called static multiple issue and dynamic multiple issue. As we will dynamic multiple see, both approaches have other, more commonly used names, which may be less issue An approach to precise or more restrictive.

implementing a multiple-

Th

ere are two primary and distinct responsibilities that must be dealt with in a issue processor where multiple-issue pipeline:

many decisions are made

during execution by the

1. Packaging instructions into issue slots: how does the processor determine processor.

how many instructions and which instructions can be issued in a given issue slots Th e positions clock cycle? In most static issue processors, this process is at least partially from which instructions handled by the compiler; in dynamic issue designs, it is normally dealt with could issue in a given at runtime by the processor, although the compiler will oft en have already clock cycle; by analogy, tried to help improve the issue rate by placing the instructions in a benefi cial these correspond to order.

positions at the starting

blocks for a sprint.

2. Dealing with data and control hazards: in static issue processors, the compiler

handles some or all of the consequences of data and control hazards statically.

In contrast, most dynamic issue processors attempt to alleviate at least some

classes of hazards using hardware techniques operating at execution time.

Although we describe these as distinct approaches, in reality one approach oft en

borrows techniques from the other, and neither approach can claim to be perfectly

pure.

The Concept of Speculation

One of the most important methods for fi nding and exploiting more ILP is speculation An

speculation. Based on the great idea of prediction, speculation is an approach approach whereby the compiler or processor

that allows the compiler or the processor to “guess” about the properties of an guesses the outcome of an instruction, so as to enable execution to begin for other instructions that may instruction to remove it as depend on the speculated instruction. For example, we might speculate on the a dependence in executing outcome of a branch, so that instructions aft er the branch could be executed earlier.

other instructions.

334

Chapter 4 The Processor

Another example is that we might speculate that a store that precedes a load does

not refer to the same address, which would allow the load to be executed before the

store. Th

e diffi

culty with speculation is that it may be wrong. So, any speculation

mechanism must include both a method to check if the guess was right and a

method to unroll or back out the eff ects of the instructions that were executed

speculatively. Th

e implementation of this back-out capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the

compiler can use speculation to reorder instructions, moving an instruction across

a branch or a load across a store. Th

e processor hardware can perform the same

transformation at runtime using techniques we discuss later in this section.

Th

e recovery mechanisms used for incorrect speculation are rather diff erent.

In the case of speculation in soft ware, the compiler usually inserts additional

instructions that check the accuracy of the speculation and provide a fi x-up routine

to use when the speculation is incorrect. In hardware speculation, the processor

usually buff ers the speculative results until it knows they are no longer speculative.

If the speculation is correct, the instructions are completed by allowing the

contents of the buff ers to be written to the registers or memory. If the speculation is

incorrect, the hardware fl ushes the buff ers and re-executes the correct instruction

sequence.

Speculation introduces one other possible problem: speculating on certain

instructions may introduce exceptions that were formerly not present. For

example, suppose a load instruction is moved in a speculative manner, but the

address it uses is not legal when the speculation is incorrect. Th

e result would be

an exception that should not have occurred. Th

e problem is complicated by the

fact that if the load instruction were not speculative, then the exception must

occur! In compiler-based speculation, such problems are avoided by adding

special speculation support that allows such exceptions to be ignored until it is

clear that they really should occur. In hardware-based speculation, exceptions

are simply buff ered until it is clear that the instruction causing them is no longer

speculative and is ready to complete; at that point the exception is raised, and

nor-mal exception handling proceeds.

Since speculation can improve performance when done properly and decrease

performance when done carelessly, signifi cant eff ort goes into deciding when it

is appropriate to speculate. Later in this section, we will examine both static and

dynamic techniques for speculation.

issue packet Th

e set

Static Multiple Issue

of instructions that

Static multiple-issue processors all use the compiler to assist with packaging

issues together in one

instructions and handling hazards. In a static issue processor, you can think of the

clock cycle; the packet

may be determined

set of instructions issued in a given clock cycle, which is called an issue packet, as

statically by the compiler

one large instruction with multiple operations. Th

is view is more than an analogy.

or dynamically by the

Since a static multiple-issue processor usually restricts what mix of instructions can

processor.

be initiated in a given clock cycle, it is useful to think of the issue packet as a single

4.10 Parallelism via Instructions

335

instruction allowing several operations in certain predefi ned fi elds. Th

is view led to

Very Long Instruction

the original name for this approach: Very Long Instruction Word (VLIW).

Word (VLIW)

Most static issue processors also rely on the compiler to take on some A style of instruction set responsibility for handling data and control hazards. Th

e compiler’s responsibilities

architecture that launches

many operations that are

may include static branch prediction and code scheduling to reduce or prevent all defi ned to be independent hazards. Let’s look at a simple static issue version of a MIPS processor, before we in a single wide describe the use of these techniques in more aggressive processors.

instruction, typically with

many separate opcode

An Example: Static Multiple Issue with the MIPS ISA

fi elds.

To give a fl avor of static multiple issue, we consider a simple two-issue MIPS

processor, where one of the instructions can be an integer ALU operation or

branch and the other can be a load or store. Such a design is like that used in some

embedded MIPS processors. Issuing two instructions per cycle will require fetching

and decoding 64 bits of instructions. In many static multiple-issue processors, and

essentially all VLIW processors, the layout of simultaneously issuing instructions

is restricted to simplify the decoding and instruction issue. Hence, we will require

that the instructions be paired and aligned on a 64-bit boundary, with the ALU

or branch portion appearing fi rst. Furthermore, if one instruction of the pair

cannot be used, we require that it be replaced with a nop. Th

us, the instructions

always issue in pairs, possibly with a nop in one slot. Figure 4.68 shows how the instructions look as they go into the pipeline in pairs.

Static multiple-issue processors vary in how they deal with potential data and

control hazards. In some designs, the compiler takes full responsibility for removing

 all hazards, scheduling the code and inserting no-ops so that the code executes

without any need for hazard detection or hardware-generated stalls. In others,

the hardware detects data hazards and generates stalls between two issue packets,

while requiring that the compiler avoid all dependences within an instruction pair.

Even so, a hazard generally forces the entire issue packet containing the dependent

Instruction type

Pipe stages

ALU or branch instruction

IF

ID

EX

MEM

WB

Load or store instruction

IF

ID

EX

MEM

WB

ALU or branch instruction

IF

ID

EX

MEM

WB

Load or store instruction

IF

ID

EX

MEM

WB

ALU or branch instruction

IF

ID

EX

MEM

WB

Load or store instruction

IF

ID

EX

MEM

WB

ALU or branch instruction

IF

ID

EX

MEM

WB

Load or store instruction

IF

ID

EX

MEM

WB

FIGURE 4.68 Static two-issue pipeline in operation. Th

e ALU and data transfer instructions

are issued at the same time. Here we have assumed the same fi ve-stage structure as used for the single-issue pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the register writes at the end of the pipeline simplifi es the handling of exceptions and the maintenance of a precise exception model, which become more diffi

cult in multiple-issue processors.

336

Chapter 4 The Processor

instruction to stall. Whether the soft ware must handle all hazards or only try to

reduce the fraction of hazards between separate issue packets, the appearance of

having a large single instruction with multiple operations is reinforced. We will

assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the fi rst need for

additional hardware—beyond the usual hazard detection and stall logic—is extra

ports in the register fi le (see Figure 4.69). In one clock cycle we may need to read two registers for the ALU operation and two more for a store, and also one write

port for an ALU operation and one write port for a load. Since the ALU is tied

up for the ALU operation, we also need a separate adder to calculate the eff ective

address for data transfers. Without these extra resources, our two-issue pipeline

would be hindered by structural hazards.

Clearly, this two-issue processor can improve performance by up to a factor of

two. Doing so, however, requires that twice as many instructions be overlapped

in execution, and this additional overlap increases the relative performance loss

from data and control hazards. For example, in our simple fi ve-stage pipeline,

⫹

⫹

M

u

4

x

ALU

M

Registers

u

M

Instruction

x

80000180

u

PC

memory

x

Write

data

Data

Sign-

ALU

memory

extend

Sign-

extend

Address

FIGURE 4.69 A static two-issue datapath. Th

e additions needed for double issue are highlighted: another 32 bits from instruction

memory, two more read ports and one more write port on the register fi le, and another ALU. Assume the bottom ALU handles address calculations for data transfers and the top ALU handles everything else.

4.10 Parallelism via Instructions

337

loads have a use latency of one clock cycle, which prevents one instruction from use latency Number using the result without stalling. In the two-issue, fi ve-stage pipeline the result of of clock cycles between a load instruction cannot be used on the next clock cycle. Th

is means that the next a load instruction and

 two instructions cannot use the load result without stalling. Furthermore, ALU an instruction that can use the result of the

instructions that had no use latency in the simple fi ve-stage pipeline now have a load without stalling the one-instruction use latency, since the results cannot be used in the paired load or pipeline.

store. To eff ectively exploit the parallelism available in a multiple-issue processor,

more ambitious compiler or hardware scheduling techniques are needed, and static

multiple issue requires that the compiler take on this role.

Simple Multiple-Issue Code Scheduling

EXAMPLE

How would this loop be scheduled on a static two-issue pipeline for MIPS?

Loop: lw $t0, 0($s1) # $t0=array element

addu $t0,$t0,$s2# add scalar in $s2

sw $t0, 0($s1)# store result

addi $s1,$s1,–4# decrement pointer

bne $s1,$zero,Loop# branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume

branches are predicted, so that control hazards are handled by the hardware.

Th

e fi rst three instructions have data dependences, and so do the last two.

Figure 4.70 shows the best schedule for these instructions. Notice that just

ANSWER

one pair of instructions has both issue slots used. It takes four clocks per loop

iteration; at four clocks to execute fi ve instructions, we get the disappointing

CPI of 0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice

that in computing CPI or IPC, we do not count any nops executed as useful

instructions. Doing so would improve CPI, but not performance!

ALU or branch instruction

Data transfer instruction

Clock cycle

Loop:

lw $t0,

0($s1)

1

addi $s1,$s1,–4

2

addu $t0,$t0,$s2

3

bne $s1,$zero,Loop

sw $t0,

4($s1)

4

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. Th

e empty

slots are no-ops.

338

Chapter 4 The Processor

loop unrolling

An important compiler technique to get more performance from loops

A technique to get more

is loop unrolling, where multiple copies of the loop body are made. After

performance from loops

unrolling, there is more ILP available by overlapping instructions from different

that access arrays, in

iterations.

which multiple copies of

the loop body are made

and instructions from

diff erent iterations are

scheduled together

Loop Unrolling for Multiple-Issue Pipelines

EXAMPLE

See how well loop unrolling and scheduling work in the example above. For

simplicity assume that the loop index is a multiple of four.

To schedule the loop without any delays, it turns out that we need to make

ANSWER

four copies of the loop body. Aft er unrolling and eliminating the unnecessary

loop overhead instructions, the loop will contain four copies each of lw, add,

and sw, plus one addi and one bne. Figure 4.71 shows the unrolled and

scheduled code.

register renaming Th

e

During the unrolling process, the compiler introduced additional registers

renaming of registers

($t1, $t2, $t3). Th

e goal of this process, called register renaming, is to

by the compiler or

eliminate dependences that are not true data dependences, but could either

hardware to remove

lead to potential hazards or prevent the compiler from fl exibly scheduling

antidependences.

the code. Consider how the unrolled code would look using only $t0. Th

ere

antidependence Also

would be repeated instances of lw $t0,0($$s1), addu $t0, $t0, $s2

called name

followed by sw t0,4($s1), but these sequences, despite using $t0, are

dependence. An

actually completely independent—no data values fl ow between one set of these

ordering forced by the

instructions and the next set. Th

is case is what is called an antidependence or

reuse of a name, typically

name dependence, which is an ordering forced purely by the reuse of a name,

a register, rather than by

rather than a real data dependence that is also called a true dependence.

a true dependence that

carries a value between

Renaming the registers during the unrolling process allows the compiler

two instructions.

to move these independent instructions subsequently so as to better schedule

ALU or branch instruction

Data transfer instruction

Clock cycle

Loop:

addi $s1,$s1,–16

lw

$t0,

0($s1)

1

lw $t1,12($s1)

2

addu $t0,$t0,$s2

lw

$t2,

8($s1)

3

addu $t1,$t1,$s2

lw

$t3,

4($s1)

4

addu $t2,$t2,$s2

sw

$t0,

16($s1)

5

addu $t3,$t3,$s2

sw

$t1,12($s1)

6

sw $t2,

8($s1)

7

bne $s1,$zero,Loop

sw $t3,

4($s1)

8

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static

two-issue MIPS pipeline. Th

e empty slots are no-ops. Since the fi rst instruction in the loop decrements

$s1 by 16, the addresses loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12.

4.10 Parallelism via Instructions

339

the code. Th

e renaming process eliminates the name dependences, while

preserving the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as pairs. It takes

8 clocks for 4 loop iterations, or 2 clocks per iteration, which yields a CPI of 8/14

= 0.57. Loop unrolling and scheduling with dual issue gave us an improvement

factor of almost 2, partly from reducing the loop control instructions and partly

from dual issue execution. Th

e cost of this performance improvement is using four

temporary registers rather than one, as well as a signifi cant increase in code size.

Dynamic Multiple-Issue Processors

Dynamic multiple-issue processors are also known as superscalar processors, or superscalar An simply superscalars. In the simplest superscalar processors, instructions issue in advanced pipelining order, and the processor decides whether zero, one, or more instructions can issue technique that enables the in a given clock cycle. Obviously, achieving good performance on such a processor processor to execute more than one instruction per

still requires the compiler to try to schedule instructions to move dependences clock cycle by selecting apart and thereby improve the instruction issue rate. Even with such compiler them during execution.

scheduling, there is an important diff erence between this simple superscalar

and a VLIW processor: the code, whether scheduled or not, is guaranteed by

the hardware to execute correctly. Furthermore, compiled code will always run

correctly independent of the issue rate or pipeline structure of the processor. In

some VLIW designs, this has not been the case, and recompilation was required

when moving across diff erent processor models; in other static issue processors,

code would run correctly across diff erent implementations, but oft en so poorly as

to make compilation eff ectively required.

Many superscalars extend the basic framework of dynamic issue decisions to

include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses dynamic pipeline which instructions to execute in a given clock cycle while trying to avoid hazards

scheduling Hardware

and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the

support for reordering

following code sequence:

the order of instruction

execution so as to avoid

lw $t0, 20($s2)

stalls.

addu $t1, $t0, $t2

sub $s4, $s4, $t3

slti $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw

and addu to complete fi rst, which might take many clock cycles if memory is slow.

(Chapter 5 explains cache misses, the reason that memory accesses are sometimes

very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either

fully or partially.

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly

reordering them to avoid stalls. In such processors, the pipeline is divided into

three major units: an instruction fetch and issue unit, multiple functional units

340

Chapter 4 The Processor

Instruction fetch

In-order issue

and decode unit

Reservation

Reservation

Reservation

Reservation

station

station

. . .

station

station

Functional

Floating

Load-

Integer

Integer

Out-of-order execute

units

. . .

point

store

Commit

In-order commit

unit

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. Th

e fi nal step of

updating the state is also called retirement or graduation.

commit unit Th

e unit in

(a dozen or more in high-end designs in 2013), and a commit unit. Figure 4.72

a dynamic or out-of-order

shows the model. Th

e fi rst unit fetches instructions, decodes them, and sends

execution pipeline that

each instruction to a corresponding functional unit for execution. Each functional

decides when it is safe to

unit has buff ers, called reservation stations, which hold the operands and the

release the result of an

operation. (Th

e Elaboration discusses an alternative to reservation stations used

operation to programmer-

by many recent processors.) As soon as the buff er contains all its operands and

visible registers and

memory.

the functional unit is ready to execute, the result is calculated. When the result is

completed, it is sent to any reservation stations waiting for this particular result

reservation station

as well as to the commit unit, which buff ers the result until it is safe to put the

A buff er within a

result into the register fi le or, for a store, into memory. Th

e buff er in the commit

functional unit that holds

unit, oft en called the reorder buff er, is also used to supply operands, in much the

the operands and the

operation.

same way as forwarding logic does in a statically scheduled pipeline. Once a result

is committed to the register fi le, it can be fetched directly from there, just as in a

reorder buff er Th

e

normal pipeline.

buff er that holds results in

Th

e combination of buff ering operands in the reservation stations and results

a dynamically scheduled

in the reorder buff er provides a form of register renaming, just like that used by

processor until it is safe

to store the results to

the compiler in our earlier loop-unrolling example on page 338. To see how this

memory or a register.

conceptually works, consider the following steps:

4.10 Parallelism via Instructions

341

1. When an instruction issues, it is copied to a reservation station for the

appropriate functional unit. Any operands that are available in the register

fi le or reorder buff er are also immediately copied into the reservation station.

Th

e instruction is buff ered in the reservation station until all the operands

and the functional unit are available. For the issuing instruction, the register

copy of the operand is no longer required, and if a write to that register

occurred, the value could be overwritten.

2. If an operand is not in the register fi le or reorder buff er, it must be waiting to

be produced by a functional unit. Th

e name of the functional unit that will

produce the result is tracked. When that unit eventually produces the result,

it is copied directly into the waiting reservation station from the functional

unit bypassing the registers.

Th

ese steps eff ectively use the reorder buff er and the reservation stations to

implement register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as analyzing

the data fl ow structure of a program. Th

e processor then executes the instructions

in some order that preserves the data fl ow order of the program. Th

is style of

execution is called an out-of-order execution, since the instructions can be out-of-order executed in a diff erent order than they were fetched.

execution A situation in

To make programs behave as if they were running on a simple in-order pipeline,

pipelined execution when

the instruction fetch and decode unit is required to issue instructions in order, an instruction blocked from executing does

which allows dependences to be tracked, and the commit unit is required to write not cause the following results to registers and memory in program fetch order. Th

is conservative mode is instructions to wait.

called in-order commit. Hence, if an exception occurs, the computer can point to

the last instruction executed, and the only registers updated will be those written in-order commit by instructions before the instruction causing the exception. Although the front A commit in which the results of pipelined

end (fetch and issue) and the back end (commit) of the pipeline run in order, execution are written to the functional units are free to initiate execution whenever the data they need is the programmer visible available. Today, all dynamically scheduled pipelines use in-order commit.

state in the same order

Dynamic scheduling is oft en extended by including hardware-based speculation,

that instructions are

especially for branch outcomes. By predicting the direction of a branch, a fetched.

dynamically scheduled processor can continue to fetch and execute instructions

along the predicted path. Because the instructions are committed in order, we know

whether or not the branch was correctly predicted before any instructions from the

predicted path are committed. A speculative, dynamically scheduled pipeline can

also support speculation on load addresses, allowing load-store reordering, and

using the commit unit to avoid incorrect speculation. In the next section, we will

look at the use of dynamic scheduling with speculation in the Intel Core i7 design.

342

Chapter 4 The Processor

Given that compilers can also schedule code around data dependences, you might

Understanding ask why a superscalar processor would use dynamic scheduling. Th ere are three Program major reasons. First, not all stalls are predictable. In particular, cache misses Performance

(see Chapter 5) in the memory hierarchy cause unpredictable stalls. Dynamic

scheduling allows the processor to hide some of those stalls by continuing to

execute instructions while waiting for the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch

prediction, it cannot know the exact order of instructions at compile time, since it

depends on the predicted and actual behavior of branches. Incorporating dynamic

speculation to exploit more instruction-level parallelism (ILP) without incorporating

dynamic scheduling would signifi cantly restrict the benefi ts of speculation.

Th

ird, as the pipeline latency and issue width change from one implementation

to another, the best way to compile a code sequence also changes. For example, how

to schedule a sequence of dependent instructions is aff ected by both issue width and

latency. Th

e pipeline structure aff ects both the number of times a loop must be unrolled

to avoid stalls as well as the process of compiler-based register renaming. Dynamic

scheduling allows the hardware to hide most of these details. Th

us, users and soft ware

distributors do not need to worry about having multiple versions of a program for

diff erent implementations of the same instruction set. Similarly, old legacy code will

get much of the benefi t of a new implementation without the need for recompilation.

The BIG

Picture

Both pipelining and multiple-issue execution increase peak instruction

throughput and attempt to exploit instruction-level parallelism (ILP).

Data and control dependences in programs, however, off er an upper limit

on sustained performance because the processor must sometimes wait for

a dependence to be resolved. Soft ware-centric approaches to exploiting

ILP rely on the ability of the compiler to fi nd and reduce the eff ects of such

dependences, while hardware-centric approaches rely on extensions to the

pipeline and issue mechanisms. Speculation, performed by the compiler

or the hardware, can increase the amount of ILP that can be exploited via

prediction, although care must be taken since speculating incorrectly is

likely to reduce performance.

4.10 Parallelism via Instructions

343

Modern, high-performance microprocessors are capable of issuing several instructions

Hardware/

per clock; unfortunately, sustaining that issue rate is very diffi

cult. For example, despite

Software

the existence of processors with four to six issues per clock, very few applications can

sustain more than two instructions per clock. Th

ere are two primary reasons for this.

Interface

First, within the pipeline, the major performance bottlenecks arise from

dependences that cannot be alleviated, thus reducing the parallelism among

instructions and the sustained issue rate. Although little can be done about true data

dependences, oft en the compiler or hardware does not know precisely whether a

dependence exists or not, and so must conservatively assume the dependence exists.

For example, code that makes use of pointers, particularly in ways that may lead to

aliasing, will lead to more implied potential dependences. In contrast, the greater

regularity of array accesses oft en allows a compiler to deduce that no dependences

exist. Similarly, branches that cannot be accurately predicted whether at runtime or

compile time will limit the ability to exploit ILP. Oft en, additional ILP is available, but

the ability of the compiler or the hardware to fi nd ILP that may be widely separated

(sometimes by the execution of thousands of instructions) is limited.

Second, losses in the memory hierarchy (the topic of Chapter 5) also limit the

ability to keep the pipeline full. Some memory system stalls can be hidden, but

limited amounts of ILP also limit the extent to which such stalls can be hidden.

Energy Effi ciency and Advanced Pipelining

Th

e downside to the increasing exploitation of instruction-level parallelism via

dynamic multiple issue and speculation is potential energy ineffi

ciency. Each

innovation was able to turn more transistors into performance, but they oft en did

so very ineffi

ciently. Now that we have hit the power wall, we are seeing designs

with multiple processors per chip where the processors are not as deeply pipelined

or as aggressively speculative as its predecessors.

Th

e belief is that while the simpler processors are not as fast as their sophisticated

brethren, they deliver better performance per joule, so that they can deliver more

performance per chip when designs are constrained more by energy than they are

by number of transistors.

Figure 4.73 shows the number of pipeline stages, the issue width, speculation level, clock rate, cores per chip, and power of several past and recent microprocessors. Note

the drop in pipeline stages and power as companies switch to multicore designs.

Elaboration: A commit unit controls updates to the register fi le and memory. Some dynamically scheduled processors update the register fi le immediately during execution,

using extra registers to implement the renaming function and preserving the older copy of a

register until the instruction updating the register is no longer speculative. Other processors

buffer the result, typically in a structure called a reorder buffer, and the actual update to the register fi le occurs later as part of the commit. Stores to memory must be buffered until

commit time either in a store buffer (see Chapter 5) or in the reorder buffer. The commit unit allows the store to write to memory from the buffer when the buffer has a valid address and

valid data, and when the store is no longer dependent on predicted branches.

344

Chapter 4 The Processor

Pipeline

Issue

Out-of-Order/

Cores/

Microprocessor

Year

Clock Rate

Stages

Width

Speculation

Chip

Power

Intel 486

1989

25 MHz

5

1

No

1

5

W

Intel Pentium

1993

66 MHz

5

2

No

1

10

W

Intel Pentium Pro

1997

200 MHz

10

3

Yes

1

29

W

Intel Pentium 4 Willamette

2001

2000 MHz

22

3

Yes

1

75

W

Intel Pentium 4 Prescott

2004

3600 MHz

31

3

Yes

1

103

W

Intel Core

2006

2930 MHz

14

4

Yes

2

75

W

Intel Core i5 Nehalem

2010

3300 MHz

14

4

Yes

1

87

W

Intel Core i5 Ivy Bridge

2012

3400 MHz

14

4

Yes

8

77

W

FIGURE 4.73 Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power. Th e Pentium

4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper.

Elaboration: Memory accesses benefi t from nonblocking caches, which continue

servicing cache accesses during a cache miss (see Chapter 5). Out-of-order execution

processors need the cache design to allow instructions to execute during a miss.

Check State whether the following techniques or components are associated primarily

with a soft ware- or hardware-based approach to exploiting ILP. In some cases, the

Yourself

answer may be both.

1. Branch

prediction

2. Multiple

issue

3. VLIW

4. Superscalar

5. Dynamic

scheduling

6. Out-of-order

execution

7. Speculation

8. Reorder

buff er

9. Register

renaming

 4.11 Real Stuff: The ARM Cortex-A8 and Intel

Core i7 Pipelines

Figure 4.74 describes the two microprocessors we examine in this section, whose targets are the two bookends of the PostPC Era.

4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines

345

Processor

ARM A8

Intel Core i7 920

Market

Personal Mobile Device

Server, Cloud

Thermal design power

2 Watts

130 Watts

Clock rate

1 GHz

2.66 GHz

Cores/Chip

1

4

Floating point?

No

Yes

Multiple Issue?

Dynamic

Dynamic

Peak instructions/clock cycle

2

4

Pipeline Stages

14

14

Pipeline schedule

Static In-order

Dynamic Out-of-order with Speculation

Branch prediction

2-level

2-level

1st level caches / core

32 KiB I, 32 KiB D

32 KiB I, 32 KiB D

2nd level cache / core

128 - 1024 KiB

256 KiB

3rd level cache (shared)

--

2 - 8 MiB

FIGURE 4.74 Specifi cation of the ARM Cortex-A8 and the Intel Core i7 920.

The ARM Cortex-A8

Th

e ARM Corxtex-A8 runs at 1 GHz with a 14-stage pipeline. It uses dynamic

multiple issue, with two instructions per clock cycle. It is a static in-order pipeline,

in that instructions issue, execute, and commit in order. Th

e pipeline consists of

three sections for instruction fetch, instruction decode, and execute. Figure 4.75

shows the overall pipeline.

Th

e fi rst three stages fetch two instructions at a time and try to keep a

12-instruction entry prefetch buff er full. It uses a two-level branch predictor using

both a 512-entry branch target buff er, a 4096-entry global history buff er, and an

8-entry return stack to predict future returns. When the branch prediction is

wrong, it empties the pipeline, resulting in a 13-clock cycle misprediction penalty.

Th

e fi ve stages of the decode pipeline determine if there are dependences

between a pair of instructions, which would force sequential execution, and in

which pipeline of the execution stages to send the instructions.

Th

e six stages of the instruction execution section off er one pipeline for load

and store instructions and two pipelines for arithmetic operations, although only

the fi rst of the pair can handle multiplies. Either instruction from the pair can be

issued to the load-store pipeline. Th

e execution stages have full bypassing between

the three pipelines.

Figure 4.76 shows the CPI of the A8 using small versions of programs derived

from the SPEC2000 benchmarks. While the ideal CPI is 0.5, the best case here is

1.4, the median case is 2.0, and the worst case is 5.2. For the median case, 80% of

the stalls are due to the pipelining hazards and 20% are stalls due to the memory

346

Chapter 4 The Processor

F0

F1

F2

D0

D1

D2

D3

D4

E0

E1

E2

E3

E4

E5

Branch mispredict

penalty =13 cycles

Instruction execute and load/store

Architectural register file

Instruction

ALU/MUL pipe 0

BP

fetch

update

RAM

12-entry

AGU

+

fetch

Instruction decode

BP

TLB

queue

ALU pipe 1

update

BTB

GHB

BP

RS

LS pipe 0 or 1

update

FIGURE 4.75 The A8 pipeline. Th

e fi rst three stages fetch instructions into a 12-entry instruction fetch

buff er. Th

e Address Generation Unit (AGU) uses a Branch Target Buff er (BTB), Global History Buff er (GHB), and a Return Stack (RS) to predict branches to try to keep the fetch queue full. Instruction decode is fi ve stages and instruction execution is six stages.

hierarchy. Pipeline stalls are caused by branch mispredictions, structural hazards,

and data dependencies between pairs of instructions. Given the static pipeline of the

A8, it is up to the compiler to try to avoid structural hazards and data dependences.

Elaboration: The Cortex-A8 is a confi gurable core that supports the ARMv7 instruction

set architecture. It is delivered as an IP (Intellectual Property) core. IP cores are the dominant form of technology delivery in the embedded, personal mobile device, and

related markets; billions of ARM and MIPS processors have been created from these

IP cores.

Note that IP cores are different than the cores in the Intel i7 multicore computers. An

IP core (which may itself be a multicore) is designed to be incorporated with other logic

(hence it is the “core” of a chip), including application-specifi c processors (such as an

encoder or decoder for video), I/O interfaces, and memory interfaces, and then fabricated

to yield a processor optimized for a particular application. Although the processor core is

almost identical, the resultant chips have many differences. One parameter is the size

of the L2 cache, which can vary by a factor of eight.

The Intel Core i7 920

x86 microprocessors employ sophisticated pipelining approaches, using both

dynamic multiple issue and dynamic pipeline scheduling with out-of-order

execution and speculation for its 14-stage pipeline. Th

ese processors, however,

are still faced with the challenge of implementing the complex x86 instruction

set, described in Chapter 2. Intel fetches x86 instructions and translates them into

internal MIPS-like instructions, which Intel calls micro-operations. Th

e micro-

operations are then executed by a sophisticated, dynamically scheduled, speculative

pipeline capable of sustaining an execution rate of up to six micro-operations per

clock cycle. Th

is section focuses on that micro-operation pipeline.

4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines

347

6.00

Memory hierarchy stalls

5.17

5.00

Pipeline stalls

Ideal CPI

4.00

3.20

3.00

2.41

2.00

1.85

1.95 2.01 2.07

2.11

1.63 1.69 1.70

1.41

1.00

twolf

bzip2

gzip

parser

gap

perlbmk

gcc

crafty

vpr

vortex

eon

mcf

FIGURE 4.76 CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of the SPEC2000

benchmarks. Th

ese benchmarks use the much smaller inputs to reduce running time by several orders of magnitude. Th e smaller size

signifi cantly underestimates the CPI impact of the memory hierarchy (See Chapter 5).

When we consider the design of sophisticated, dynamically scheduled processors, the

design of the functional units, the cache and register fi le, instruction issue, and overall

pipeline control become intermingled, making it diffi

cult to separate the datapath from

the pipeline. Because of this, many engineers and researchers have adopted the term

microarchitecture to refer to the detailed internal architecture of a processor.

microarchitecture Th

e

Th

e Intel Core i7 uses a scheme for resolving antidependences and incorrect organization of the

speculation that uses a reorder buff er together with register renaming. Register processor, including the renaming explicitly renames the architectural registers in a processor (16 in the case major functional units, their interconnection, and

of the 64-bit version of the x86 architecture) to a larger set of physical registers. Th

e control.

Core i7 uses register renaming to remove antidependences. Register renaming requires

the processor to maintain a map between the architectural registers and the physical architectural registers, indicating which physical register is the most current copy of an architectural

registers Th

e instruction

register. By keeping track of the renamings that have occurred, register renaming off ers set of visible registers of a processor; for example,

another approach to recovery in the event of incorrect speculation: simply undo the in MIPS, these are the 32

mappings that have occurred since the fi rst incorrectly speculated instruction. Th

is integer and 16 fl oating-

will cause the state of the processor to return to the last correctly executed instruction, point registers.

keeping the correct mapping between the architectural and physical registers.

Figure 4.77 shows the overall organization and pipeline of the Core i7. Below are the eight steps an x86 instruction goes through for execution.

1. Instruction fetch—Th

e processor uses a multilevel branch target buff er to

achieve a balance between speed and prediction accuracy. Th

ere is also a

return address stack to speed up function return. Mispredictions cause a

penalty of about 15 cycles. Using the predicted address, the instruction fetch

unit fetches 16 bytes from the instruction cache.

2. Th

e 16 bytes are placed in the predecode instruction buff er— Th

e predecode

stage transforms the 16 bytes into individual x86 instructions. Th

is predecode

348

Chapter 4 The Processor

128-Entry

32 KB Inst. cache (four-way associative)

inst. TLB

(four-way)

16-Byte pre-decode + macro-op

fusion, fetch buffer

Instruction

fetch

18-Entry instruction queue

hardware

Complex

Simple

Simple

Simple

macro-op

macro-op

macro-op

macro-op

Micro

decoder

decoder

decoder

decoder

-code

28-Entry micro-op loop stream detect buffer

Register alias table and allocator

Retirement

register file

128-Entry reorder buffer

36-Entry reservation station

ALU

ALU

Load

Store

Store

ALU

shift

shift

address

address

data

shift

SSE

SSE

SSE

shuffle

shuffle

shuffle

Memory order buffer

ALU

ALU

ALU

128-bit

128-bit

128-bit

FMUL

FMUL

Store

FMUL

FDIV

FDIV

& load

FDIV

512-Entry unified

64-Entry data TLB

32-KB dual-ported data

256 KB unified l2

L2 TLB (4-way)

(4-way associative)

cache (8-way associative)

cache (eight-way)

8 MB all core shared and inclusive L3

Uncore arbiter (handles scheduling and

cache (16-way associative)

clock/power state differences)

FIGURE 4.77 The Core i7 pipeline with memory components. Th

e total pipeline depth is 14

stages, with branch mispredictions costing 17 clock cycles. Th

is design can buff er 48 loads and 32 stores. Th

e

six independent units can begin execution of a ready RISC operation each clock cycle.

is nontrivial since the length of an x86 instruction can be from 1 to 15 bytes

and the predecoder must look through a number of bytes before it knows the

instruction length. Individual x86 instructions are placed into the 18-entry

instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-

operations (micro-ops). Th

ree of the decoders handle x86 instructions that

translate directly into one micro-op. For x86 instructions that have more complex

semantics, there is a microcode engine that is used to produce the micro-op

sequence; it can produce up to four micro-ops every cycle and continues until

the necessary micro-op sequence has been generated. Th

e micro-ops are placed

according to the order of the x86 instructions in the 28-entry micro-op buff er.

4. Th

e micro-op buff er performs loop stream detection—If there is a small

sequence of instructions (less than 28 instructions or 256 bytes in length)

that comprises a loop, the loop stream detector will fi nd the loop and directly

4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines

349

issue the micro-ops from the buff er, eliminating the need for the instruction

fetch and instruction decode stages to be activated.

5. Perform the basic instruction issue—Looking up the register location in the

register tables, renaming the registers, allocating a reorder buff er entry, and

fetching any results from the registers or reorder buff er before sending the

micro-ops to the reservation stations.

6. Th

e i7 uses a 36-entry centralized reservation station shared by six functional

units. Up to six micro-ops may be dispatched to the functional units every

clock cycle.

7. Th

e individual function units execute micro-ops and then results are sent

back to any waiting reservation station as well as to the register retirement

unit, where they will update the register state, once it is known that the

instruction is no longer speculative. Th

e entry corresponding to the

instruction in the reorder buff er is marked as complete.

8. When one or more instructions at the head of the reorder buff er have been

marked as complete, the pending writes in the register retirement unit are

executed, and the instructions are removed from the reorder buff er.

Elaboration: Hardware in the second and fourth steps can combine or fuse operations together to reduce the number of operations that must be performed. Macro-op fusion

in the second step takes x86 instruction combinations, such as compare followed by a

branch, and fuses them into a single operation. Microfusion in the fourth step combines

micro-operation pairs such as load/ALU operation and ALU operation/store and issues

them to a single reservation station (where they can still issue independently), thus

increasing the usage of the buffer. In a study of the Intel Core architecture, which also

incorporated microfusion and macrofusion, Bird et al. [2007] discovered that microfusion

had little impact on performance, while macrofusion appears to have a modest positive

impact on integer performance and little impact on fl oating-point performance.

Performance of the Intel Core i7 920

Figure 4.78 shows the CPI of the Intel Core i7 for each of the SPEC2006 benchmarks.

While the ideal CPI is 0.25, the best case here is 0.44, the median case is 0.79, and

the worst case is 2.67.

While it is diffi

cult to diff erentiate between pipeline stalls and memory stalls

in a dynamic out-of-order execution pipeline, we can show the eff ectiveness of

branch prediction and speculation. Figure 4.79 shows the percentage of branches mispredicted and the percentage of the work (measured by the numbers of micro-ops dispatched into the pipeline) that does not retire (that is, their results are

annulled) relative to all micro-op dispatches. Th

e min, median, and max of branch

mispredictions are 0%, 2%, and 10%. For wasted work, they are 1%, 18%, and 39%.

Th

e wasted work in some cases closely matches the branch misprediction rates,

such as for gobmk and astar. In several instances, such as mcf, the wasted work

seems relatively larger than the misprediction rate. Th

is divergence is likely due

350

Chapter 4 The Processor

3

Stalls, misspeculation

2.67

Ideal CPI

2.5

2.12

2

1.5

CPI

1.23

1.06

1.02

1

0.82

0.74 0.77

0.59 0.61 0.65

0.5 0.44

0

gcc

mcf

sjeng

astar

h264refhmmer lbench bzip2

gobmk

omnetpp

libquantum

per

xalancbmk

FIGURE 4.78 CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.

Branch misprediction %

Wasted work %

40%

38%

39%

35%

32%

30%

25%

25%

24%

22%

20%

15%

15%

11%

10%

10%

9%

7%

6%

6%

5%

5%

5%

5%

2%

2% 2%

2%

2%

1%

0%

1%

0%

gcc

mcf

sjeng

astar

h264ref

hmmer

lbench

bzip2

gobmk

omnetpp

libquantum

per

xalancbmk

FIGURE 4.79 Percentage of branch mispredictions and wasted work due to unfruitful

speculation of Intel Core i7 920 running SPEC2006 integer benchmarks.

4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply

351

to the memory behavior. With very high data cache miss rates, mcf will dispatch

many instructions during an incorrect speculation as long as suffi

cient reservation

stations are available for the stalled memory references. When a branch among the

many speculated instructions is fi nally mispredicted, the micro-ops corresponding

to all these instructions will be fl ushed.

Th

e Intel Core i7 combines a 14-stage pipeline and aggressive multiple issue to Understanding

achieve high performance. By keeping the latencies for back-to-back operations Program

low, the impact of data dependences is reduced. What are the most serious potential

performance bottlenecks for programs running on this processor? Th

e following Performance

list includes some potential performance problems, the last three of which can

apply in some form to any high-performance pipelined processor.

■ Th

e use of x86 instructions that do not map to a few simple micro-operations

■ Branches that are diffi

cult to predict, causing misprediction stalls and restarts

when speculation fails

■ Long dependences—typically caused by long-running instructions or the

memory hierarchy—that lead to stalls

■ Performance delays arising in accessing memory (see Chapter 5) that cause

the processor to stall

 4.12 Going Faster: Instruction-Level

Parallelism and Matrix Multiply

Returning to the DGEMM example from Chapter 3, we can see the impact of

instruction level parallelism by unrolling the loop so that the multiple issue, out-of-

order execution processor has more instructions to work with. Figure 4.80 shows the unrolled version of Figure 3.23, which contains the C intrinsics to produce the

AVX instructions.

Like the unrolling example in Figure 4.71 above, we are going to unroll the loop 4 times. (We use the constant UNROLL in the C code to control the amount of

unrolling in case we want to try other values.) Rather than manually unrolling the

loop in C by making 4 copies of each of the intrinsics in Figure 3.23, we can rely

on the gcc compiler to do the unrolling at –O3 optimization. We surround each

intrinsic with a simple for loop that 4 iterations (lines 9, 14, and 20) and replace the

scalar C0 in Figure 3.23 with a 4-element array c[] (lines 8, 10, 16, and 21).

Figure 4.81 shows the assembly language output of the unrolled code. As

expected, in Figure 4.81 there are 4 versions of each of the AVX instructions in Figure 3.24, with one exception. We only need 1 copy of the vbroadcastsd

352

Chapter 4 The Processor

1 #include <x86intrin.h>

2 #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)

5 {

6

for (int i = 0; i < n; i+=UNROLL*4)

7

for (int j = 0; j < n; j++) {

8

__m256d c[4];

9

for (int x = 0; x < UNROLL; x++)

10 c[x]

=

_mm256_load_pd(C+i+x*4+j*n);

11

12

for(int k = 0; k < n; k++)

13

{

14

__m256d b = _mm256_broadcast_sd(B+k+j*n);

15

for (int x = 0; x < UNROLL; x++)

16 c[x]

=

_mm256_add_pd(c[x],

17

_mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));

18

}

19

20

for (int x = 0; x < UNROLL; x++)

21

_mm256_store_pd(C+i+x*4+j*n, c[x]);

22

}

23

}

FIGURE 4.80 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-

parallel instructions for the x86 (Figure 3.23) and loop unrolling to create more opportunities for instruction-level parallelism. Figure 4.81 shows the assembly language produced by the compiler for the inner loop, which unrolls the three for-loop bodies to expose instruction level parallelism.

instruction, since we can use the four copies of the B element in register %ymm0

repeatedly throughout the loop. Th

us, the 5 AVX instructions in Figure 3.24

become 17 in Figure 4.81, and the 7 integer instructions appear in both, although the constants and addressing changes to account for the unrolling. Hence, despite

unrolling 4 times, the number of instructions in the body of the loop only doubles:

from 12 to 24.

Figure 4.82 shows the performance increase DGEMM for 32x32 matrices in

going from unoptimized to AVX and then to AVX with unrolling. Unrolling more

than doubles performance, going from 6.4 GFLOPS to 14.6 GFLOPS. Optimizations

for subword parallelism and instruction level parallelism result in an overall

speedup of 8.8 versus the unoptimized DGEMM in Figure 3.21.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are with

Turbo mode turned off. If we turn it on, like in Chapter 3 we improve all the results by the

temporary increase in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized

DGEMM, 8.1 GFLOPS with AVX, and 18.6 GFLOPS with unrolling and AVX. As mentioned

in Section 3.8, Turbo mode works particularly well in this case because it is using only

a single core of an eight-core chip.

4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply

353

1

vmovapd (%r11),%ymm4

Load 4 elements of C into %ymm4

2

mov %rbx,%rax

register %rax = %rbx

3

xor %ecx,%ecx

register %ecx = 0

4

vmovapd 0x20(%r11),%ymm3

Load 4 elements of C into %ymm3

5

vmovapd 0x40(%r11),%ymm2

Load 4 elements of C into %ymm2

6

vmovapd 0x60(%r11),%ymm1

Load 4 elements of C into %ymm1

7

vbroadcastsd (%rcx,%r9,1),%ymm0

Make 4 copies of B element

8

add $0x8,%rcx

register %rcx = %rcx + 8

9

vmulpd (%rax),%ymm0,%ymm5

Parallel mul %ymm1,4 A elements

10

vaddpd %ymm5,%ymm4,%ymm4

Parallel add %ymm5, %ymm4

11

vmulpd 0x20(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

12

vaddpd %ymm5,%ymm3,%ymm3

Parallel add %ymm5, %ymm3

13

vmulpd 0x40(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

14

vmulpd 0x60(%rax),%ymm0,%ymm0 # Parallel mul %ymm1,4 A elements

15

add %r8,%rax

register %rax = %rax + %r8

16

cmp %r10,%rcx

compare %r8 to %rax

17

vaddpd %ymm5,%ymm2,%ymm2

Parallel add %ymm5, %ymm2

18

vaddpd %ymm0,%ymm1,%ymm1

Parallel add %ymm0, %ymm1

19

jne 68 <dgemm+0x68>

jump if not %r8 != %rax

20

add $0x1,%esi

register % esi = % esi + 1

21

vmovapd %ymm4,(%r11)

Store %ymm4 into 4 C elements

22

vmovapd %ymm3,0x20(%r11)

Store %ymm3 into 4 C elements

23

vmovapd %ymm2,0x40(%r11)

Store %ymm2 into 4 C elements

24

vmovapd %ymm1,0x60(%r11)

Store %ymm1 into 4 C elements

FIGURE 4.81 The x86 assembly language for the body of the nested loops generated by compiling

the unrolled C code in Figure 4.80.

Elaboration: There are no pipeline stalls despite the reuse of register %ymm5 in lines

9 to 17 Figure 4.81 because the Intel Core i7 pipeline renames the registers.

Are the following statements true or false?

Check

1. Th

e Intel Core i7 uses a multiple-issue pipeline to directly execute x86

Yourself

instructions.

2. Both the A8 and the Core i7 use dynamic multiple issue.

3. Th

e Core i7 microarchitecture has many more registers than x86 requires.

4. Th

e Intel Core i7 uses less than half the pipeline stages of the earlier Intel

Pentium 4 Prescott (see Figure 4.73).

354

Chapter 4 The Processor

16.0

14.6

12.0

8.0

6.4

GFLOPS

4.0

1.7

–

unoptimized

AVX

AVX+unroll

FIGURE 4.82 Performance of three versions of DGEMM for 32x32 matrices. Subword

parallelism and instruction level parallelism has led to speedup of almost a factor of 9 over the unoptimized code in Figure 3.21.

 4.13 Advanced Topic: An Introduction to

4.13

Digital Design Using a Hardware Design

Language to Describe and Model a

Pipeline and More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern

computer-aided synthesis tools that can create detailed hardware designs from the

descriptions using both libraries and logic synthesis. Entire books are written on

such languages and their use in digital design. Th

is section, which appears online,

gives a brief introduction and shows how a hardware design language, Verilog in

this case, can be used to describe the MIPS control both behaviorally and in a

form suitable for hardware synthesis. It then provides a series of behavioral models

in Verilog of the MIPS fi ve-stage pipeline. Th

e initial model ignores hazards, and

additions to the model highlight the changes for forwarding, data hazards, and

branch hazards.

We then provide about a dozen illustrations using the single-cycle graphical

pipeline representation for readers who want to see more detail on how pipelines

work for a few sequences of MIPS instructions.

4.13-2

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

An Introduction to Digital Design Using a

Hardware Design Language to Describe

4.13

and Model a Pipeline and More Pipelining

Illustrations

Th

is CD section covers hardware decription languages and then gives a dozen

examples of pipeline diagrams, starting on page 4.13-18.

As mentioned in Appendix C, Verilog can describe processors for simulation

or with the intention that the Verilog specifi cation be synthesized. To achieve

acceptable synthesis results in size and speed, and a behavioral specifi cation

intended for synthesis must carefully delineate the highly combinational portions

of the design, such as a datapath, from the control. Th

e datapath can then be

synthesized using available libraries. A Verilog specifi cation intended for synthesis

is usually longer and more complex.

We start with a behavioral model of the 5-stage pipeline. To illustrate the

dichotomy between behavioral and synthesizeable designs, we then give two

Verilog descriptions of a multiple-cycle-per-instruction MIPS processor: one

intended solely for simulations and one suitable for synthesis.

Using Verilog for Behavioral Specifi cation with Simulation

for the 5-Stage Pipeline

Figure 4.13.1 shows a Verilog behavioral description of the pipeline that handles

ALU instructions as well as loads and stores. It does not accommodate branches

(even incorrectly!), which we postpone including until later in the chapter.

Because Verilog lacks the ability to defi ne registers with named fi elds such as

structures in C, we use several independent registers for each pipeline register. We

name these registers with a prefi x using the same convention; hence, IFIDIR is the

IR portion of the IFID pipeline register.

Th

is version is a behavioral description not intended for synthesis. Instructions

take the same number of clock cycles as our hardware design, but the control

is done in a simpler fashion by repeatedly decoding fi elds of the instruction in

each pipe stage. Because of this diff erence, the instruction register (IR) is needed

throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage.

As you read the Verilog descriptions in this chapter, remember that the actions

in the always block all occur in parallel on every clock cycle. Since there are

no blocking assignments, the order of the events within the always block is

arbitrary.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-3

module CPU (clock);

// Instruction opcodes

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0; input clock;

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // Access register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; // Access opcodes

wire [31:0] Ain, Bin; // the ALU inputs

// These assignments defi ne fi elds from the pipeline registers

assign IDEXrs = IDEXIR[25:21]; // rs fi eld

assign IDEXrt = IDEXIR[20:16]; // rt fi eld

assign EXMEMrd = EXMEMIR[15:11]; // rd fi eld

assign MEMWBrd = MEMWBIR[15:11]; //rd fi eld

assign MEMWBrt = MEMWBIR[20:16]; //rt fi eld--used for loads

assign EXMEMop = EXMEMIR[31:26]; // the opcode

assign MEMWBop = MEMWBIR[31:26]; // the opcode

assign IDEXop = IDEXIR[31:26]; // the opcode

// Inputs to the ALU come directly from the ID/EX pipeline registers

assign Ain = IDEXA;

assign Bin = IDEXB;

reg [5:0] i; //used to initialize registers

initial begin

PC = 0;

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

end

always @ (posedge clock) begin

// Remember that ALL these actions happen every pipe stage and with the use of <= they happen in parallel!

// fi rst instruction in the pipeline is being fetched

IFIDIR <= IMemory[PC>>2];

PC <= PC + 4;

end // Fetch & increment PC

// second instruction in pipeline is fetching registers

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

// third instruction is doing address calculation or ALU operation

if ((IDEXop==LW) |(IDEXop==SW)) // address calculation

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin; //add operation

default: ; //other R-type operations: subtract, SLT, etc.

endcase

FIGURE 4.13.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards. As in the design earlier in Chapter 4, we use separate instruction and data memories, which would be implemented using separate caches as we describe in Chapter 5. (continues on next page)

4.13-4

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update registers if ALU operation and destination not 0

Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) // Update registers if load and destination not 0

Regs[MEMWBrt] <= MEMWBValue;

end

endmodule

FIGURE 4.13.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards.

(Continued)

Implementing Forwarding in Verilog

To further extend the Verilog model, Figure 4.13.2 shows the addition of forwarding

logic for the case when the source and destination are ALU instructions. Neither

load stalls nor branches are handled; we will add these shortly. Th

e changes from

the earlier Verilog description are highlighted.

Check

Someone has proposed moving the write for a result from an ALU instruction

from the WB to the MEM stage, pointing out that this would reduce the maximum

Yourself

length of forwards from an ALU instruction by one cycle. Which of the following

are accurate reasons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circumstance since the

write for the ALU result must stay in the same pipe stage as the write for a

load result.

3. Moving the write for ALU instructions would create the possibility of writes

occurring from two diff erent instructions during the same clock cycle. Either

an extra write port would be required on the register fi le or a structural

hazard would be created.

4. Th

e result of an ALU instruction is not available in time to do the write

during MEM.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-5

module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0; input clock;

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin;

// declare the bypass signals

wire bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,

bypassAfromLWinWB, bypassBfromLWinWB;

assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11]; assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];

assign MEMWBrt = MEMWBIR[25:20];

assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =(IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

// The A input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

reg [5:0] i; //used to initialize registers

initial begin

PC = 0;

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

end

always @ (posedge clock) begin

// fi rst instruction in the pipeline is being fetched

IFIDIR <= IMemory[PC>>2];

PC <= PC + 4;

end // Fetch & increment PC

FIGURE 4.13.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address calculations. Th

e code added to Figure 4.13.1 to handle bypassing is highlighted. Because these bypasses only require changing where the ALU inputs come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs. (continues on next page)

4.13-6

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

// second instruction is in register fetch

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

// third instruction is doing address calculation or ALU operation

if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin; //add operation

default: ; //other R-type operations: subtract, SLT, etc.

endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

end

endmodule

FIGURE 4.13.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address calculations. (Continued)

The Behavioral Verilog with Stall Detection

If we ignore branches, stalls for data hazards in the MIPS pipeline are confi ned

to one simple case: loads whose results are currently in the WB clock stage. Th

us,

extending the Verilog to handle a load with a destination that is either an ALU

instruction or an eff ective address calculation is reasonably straightforward, and

Figure 4.13.3 shows the few additions needed.

Check

Someone has asked about the possibility of data hazards occurring through

memory, as opposed to through a register. Which of the following statements about

Yourself

such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory operations

are done in the same order as instruction execution, making such hazards

impossible in this pipeline.

2. Such hazards are possible in this pipeline; we just have not discussed them

yet.

3. No pipeline can ever have a hazard involving memory, since it is the

programmer’s job to keep the order of memory references accurate.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-7

module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0; input clock;

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin;

// declare the bypass signals

wire stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,

bypassAfromLWinWB, bypassBfromLWinWB;

assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11]; assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];

assign MEMWBrt = MEMWBIR[25:20];

assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =(IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

// The A input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

// The signal for detecting a stall based on the use of a result from LW

assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load

((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc

((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

reg [5:0] i; //used to initialize registers

initial begin

PC = 0;

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

end

always @ (posedge clock) begin

if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard

FIGURE 4.13.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation. Th

e changes from Figure 4.13.2 are highlighted. (continues on next page)

4.13-8

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

// fi rst instruction in the pipeline is being fetched

IFIDIR <= IMemory[PC>>2];

PC <= PC + 4;

IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

// second instruction is in register fetch

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

// third instruction is doing address calculation or ALU operation

if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin; //add operation

default: ; //other R-type operations: subtract, SLT, etc.

endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

end

else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

end

endmodule

FIGURE 4.13.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation. (Continued)

4. Memory hazards may be possible in some pipelines, but they cannot occur

in this particular pipeline.

5. Although the pipeline control would be obligated to maintain ordering

among memory references to avoid hazards, it is impossible to design a

pipeline where the references could be out of order.

Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for branches.

We add the code to model branch equal using a “predict not taken” strategy.

Th

e Verilog code is shown in Figure 4.13.4. It implements the branch hazard by

detecting a taken branch in ID and using that signal to squash the instruction in

IF (by setting the IR to 0, which is an eff ective no-op in MIPS-32); in addition,

the PC is assigned to the branch target. Note that to prevent an unexpected latch,

it is important that the PC is clearly assigned on every path through the always

block; hence, we assign the PC in a single if statement. Lastly, note that although

Figure 4.13.4 incorporates the basic logic for branches and control hazards, the

incorporation of branches requires additional bypassing and data hazard detection,

which we have not included.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-9

module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b0000000_0000000_0000000_0000000, ALUop = 6’b0; input clock;

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd; //hold register fi elds

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin;

// declare the bypass signals

wire takebranch, stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,

bypassAfromLWinWB, bypassBfromLWinWB;

assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];

assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];

assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =(IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

// The A input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

// The signal for detecting a stall based on the use of a result from LW

assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load

((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc

((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

FIGURE 4.13.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation. Th

e changes from Figure 4.13.2 are highlighted. (continues on next page)

4.13-10

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

// Signal for a taken branch: instruction is BEQ and registers are equal

assign takebranch = (IFIDIR[31:26]==BEQ) && (Regs[IFIDIR[25:21]]== Regs[IFIDIR[20:16]]);

reg [5:0] i; //used to initialize registers

initial begin

PC = 0;

IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t don’t cares end

always @ (posedge clock) begin

if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard

if (~takebranch) begin // fi rst instruction in the pipeline is being fetched normally

IFIDIR <= IMemory[PC>>2];

PC <= PC + 4;

end else begin // a taken branch is in ID; instruction in IF is wrong; insert a no-op and reset the PC

IFDIR <= no-op;

PC <= PC + 4 + ({{16{IFIDIR[15]}}, IFIDIR[15:0]}<<2);

end

// second instruction is in register fetch

IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

// third instruction is doing address calculation or ALU operation

IDEXIR <= IFIDIR; //pass along IR

if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

32: EXMEMALUOut <= Ain + Bin; //add operation

default: ; //other R-type operations: subtract, SLT, etc.

endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

end

else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

//Mem stage of pipeline

if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];

else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

// the WB stage

MEMWBIR <= EXMEMIR; //pass along IR

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBIR[20:16] != 0)) Regs[MEMWBIR[20:16]] <= MEMWBValue;

end

endmodule

FIGURE 4.13.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU instruction or effective address calculation. (Continued)

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-11

Using Verilog for Behavioral Specifi cation with Synthesis

To demonstate the contrasting types of Verilog, we show two descriptions of a

diff erent, nonpipelined implementation style of MIPS that uses multiple clock cycles

per instruction. (Since some instructors make a synthesizable description of the MIPS

pipe line project for a class, we chose not to include it here. It would also be long.)

Figure 4.13.5 gives a behavioral specifi cation of a multicycle implementation

of the MIPS processor. Because of the use of behavioral operations, it would be

diffi

cult to synthesize a separate datapath and control unit with any reasonable

effi

ciency. Th

is version demonstrates another approach to the control by using a

Mealy fi nite-state machine (see discussion in Section C.10 of Appendix B). Th

e

use of a Mealy machine, which allows the output to depend both on inputs and the

current state, allows us to decrease the total number of states.

Since a version of the MIPS design intended for synthesis is considerably more

complex, we have relied on a number of Verilog modules that were specifi ed in

Appendix B, including the following:

■ Th

e 4-to-1 multiplexor shown in Figure B.4.2, and the 3-to-1 multiplexor that

can be trivially derived based on the 4-to-1 multiplexor.

■ Th

e MIPS ALU shown in Figure B.5.15.

■ Th

e MIPS ALU control defi ned in Figure B.5.16.

■ Th

e MIPS register fi le defi ned in Figure B.8.11.

Now, let’s look at a Verilog version of the MIPS processor intended for synthesis.

Figure 4.13.6 shows the structural version of the MIPS datapath. Figure 4.13.7 uses

the datapath module to specify the MIPS CPU. Th

is version also demonstrates

another approach to implementing the control unit, as well as some optimizations

that rely on relationships between various control signals. Observe that the state

machine specifi cation only provides the sequencing actions.

Th

e setting of the control lines is done with a series of assign statements that

depend on the state as well as the opcode fi eld of the instruction register. If one

were to fold the setting of the control into the state specifi cation, this would look

like a Mealy-style fi nite-state control unit. Because the setting of the control lines

is specifi ed using assign statements outside of the always block, most logic

synthesis systems will generate a small implementation of a fi nite-state machine

that determines the setting of the state register and then uses external logic to

derive the control inputs to the datapath.

In writing this version of the control, we have also taken advantage of a number

of insights about the relationship between various control signals as well as

situations where we don’t care about the control signal value; some examples of

these are given in the following elaboration.

4.13-12

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ=6’b000100, J=6’d2;

input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for implementation

reg [31:0] PC, Regs[0:31], Memory [0:1023], IR, ALUOut, MDR, A, B;

reg [2:0] state; // processor state

wire [5:0] opcode; //use to get opcode easily

wire [31:0] SignExtend,PCOffset; //used to get sign-extended offset fi eld

assign opcode = IR[31:26]; //opcode is upper 6 bits

assign SignExtend = {{16{IR[15]}},IR[15:0]}; //sign extension of lower 16 bits of instruction

assign PCOffset = SignExtend << 2; //PC offset is shifted

// set the PC to 0 and start the control in state 0

initial begin PC = 0; state = 1; end

//The state machine--triggered on a rising clock

always @(posedge clock) begin

Regs[0] = 0; //make R0 0 //shortcut way to make sure R0 is always 0

case (state) //action depends on the state

1: begin // fi rst step: fetch the instruction, increment PC, go to next state

IR <= Memory[PC>>2];

PC <= PC + 4;

state = 2; //next state

end

2: begin // second step: Instruction decode, register fetch, also compute branch address

A <= Regs[IR[25:21]];

B <= Regs[IR[20:16]];

state = 3;

ALUOut <= PC + PCOffset; // compute PC-relative branch target

end

3: begin // third step: Load-store execution, ALU execution, Branch completion

state = 4; // default next state

if ((opcode==LW) |(opcode==SW)) ALUOut <= A + SignExtend; //compute effective address

else if (opcode==6’b0) case (IR[5:0]) //case for the various R-type instructions

32: ALUOut = A + B; //add operation

default: ALUOut = A; //other R-type operations: subtract, SLT, etc.

endcase

FIGURE 4.13.5 A behavioral specifi cation of the multicycle MIPS design. Th

is has the same cycle behavior as the multicycle

design, but is purely for simulation and specifi cation. It cannot be used for synthesis. (continues on next page)

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-13

else if (opcode == BEQ) begin

if (A==B) PC <= ALUOut; // branch taken--update PC

state = 1;

end

else if (opocde=J) begin

PC = {PC[31:28], IR[25:0],2’b00}; // the jump target PC

state = 1;

end //Jumps

else ; // other opcodes or exception for undefi ned instruction would go here

end

4: begin

if (opcode==6’b0) begin //ALU Operation

Regs[IR[15:11]] <= ALUOut; // write the result

state = 1;

end //R-type fi nishes

else if (opcode == LW) begin // load instruction

MDR <= Memory[ALUOut>>2]; // read the memory

state = 5; // next state

end

else if (opcode == LW) begin

Memory[ALUOut>>2] <= B; // write the memory

state = 1; // return to state 1

end //store fi nishes

else ; // other instructions go here

end

5: begin // LW is the only instruction still in execution

Regs[IR[20:16]] = MDR; // write the MDR to the register

state = 1;

end //complete an LW instruction

endcase

end

endmodule

FIGURE 4.13.5 A behavioral specifi cation of the multicycle MIPS design. (Continued)

4.13-14

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

module Datapath (ALUOp, RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,

PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock); // the control inputs + clock input [1:0] ALUOp, ALUSrcB, PCSource; // 2-bit control signals

input RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,

ALUSrcA, clock; // 1-bit control signals

output [5:0] opcode ;// opcode is needed as an output by control

reg [31:0] PC, Memory [0:1023], MDR,IR, ALUOut; // CPU state + some temporaries

wire [31:0] A,B,SignExtendOffset, PCOffset, ALUResultOut, PCValue, JumpAddr, Writedata, ALUAin,

ALUBin,MemOut; / these are signals derived from registers

wire [3:0] ALUCtl; //. the ALU control lines

wire Zero; the Zero out signal from the ALU

wire[4:0] Writereg;// the signal used to communicate the destination register

initial PC = 0; //start the PC at 0

//Combinational signals used in the datapath

// Read using word address with either ALUOut or PC as the address source

assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC)>>2]:0;

assign opcode = IR[31:26];// opcode shortcut

// Get the write register address from one of two fi elds depending on RegDst

assign Writereg = RegDst ? IR[15:11]: IR[20:16];

// Get the write register data either from the ALUOut or from the MDR

assign Writedata = MemtoReg ? MDR : ALUOut;

// Sign-extend the lower half of the IR from load/store/branch offsets

assign SignExtendOffset = {{16{IR[15]}},IR[15:0]}; //sign-extend lower 16 bits;

// The branch offset is also shifted to make it a word offset

assign PCOffset = SignExtendOffset << 2;

// The A input to the ALU is either the rs register or the PC

assign ALUAin = ALUSrcA ? A : PC; //ALU input is PC or A

// Compose the Jump address

assign JumpAddr = {PC[31:28], IR[25:0],2’b00}; //The jump address

FIGURE 4.13.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis. Th is datapath relies

on several units from Appendix B. Initial statements do not synthesize, and a version used for synthesis would have to incorporate a reset signal that had this eff ect. Also note that resetting R0 to 0 on every clock is not the best way to ensure that R0 stays 0; instead, modifying the register fi le module to produce 0 whenever R0 is read and to ignore writes to R0 would be a more effi

cient solution. (continues on next page)

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-15

// Creates an instance of the ALU control unit (see the module defi ned in Figure C.5.16 on page C-38

// Input ALUOp is control-unit set and used to describe the instruction class as in Chapter 4

// Input IR[5:0] is the function code fi eld for an ALU instruction

// Output ALUCtl are the actual ALU control bits as in Chapter 4

ALUControl alucontroller (ALUOp,IR[5:0],ALUCtl); //ALU control unit

// Creates a 3-to-1 multiplexor used to select the source of the next PC

// Inputs are ALUResultOut (the incremented PC) , ALUOut (the branch address), the jump target address

// PCSource is the selector input and PCValue is the multiplexor output

Mult3to1 PCdatasrc (ALUResultOut,ALUOut,JumpAddr, PCSource , PCValue);

// Creates a 4-to-1 multiplexor used to select the B input of the ALU

//

Inputs are register B,constant 4, sign-extended lower half of IR, sign-extended lower half of IR << 2

// ALUSrcB is the selector input

// ALUBin is the multiplexor output

Mult4to1 ALUBinput (B,32’d4,SignExtendOffset,PCOffset,ALUSrcB,ALUBin);

// Creates a MIPS ALU

// Inputs are ALUCtl (the ALU control), ALU value inputs (ALUAin, ALUBin)

// Outputs are ALUResultOut (the 32-bit output) and Zero (zero detection output)

MIPSALU ALU (ALUCtl, ALUAin, ALUBin, ALUResultOut,Zero); //the ALU

// Creates a MIPS register fi le

// Inputs are

// the rs and rt fi elds of the IR used to specify which registers to read,

// Writereg (the write register number), Writedata (the data to be written), RegWrite (indicates a write), the clock

// Outputs are A and B, the registers read

registerfi le regs (IR[25:21],IR[20:16],Writereg,Writedata,RegWrite,A,B,clock); //Register fi le

// The clock-triggered actions of the datapath

always @(posedge clock) begin if (MemWrite) Memory[ALUOut>>2] <= B; // Write memory--must be a store ALUOut <= ALUResultOut; //Save the ALU result for use on a later clock cycle

if (IRWrite) IR <= MemOut; // Write the IR if an instruction fetch

MDR <= MemOut; // Always save the memory read value

// The PC is written both conditionally (controlled by PCWrite) and unconditionally

if (PCWrite || (PCWriteCond & Zero)) PC <=PCValue;

end

endmodule

FIGURE 4.13.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis.

4.13-16

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, J = 6’d2; //constants

input clock; reg [2:0] state;

wire [1:0] ALUOp, ALUSrcB, PCSource; wire [5:0] opcode;

wire RegDst, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,

ALUSrcA, MemoryOp, IRWwrite, Mem2Reg;

// Create an instance of the MIPS datapath, the inputs are the control signals; opcode is only output Datapath MIPSDP (ALUOp,RegDst,Mem2Reg, MemRead, MemWrite, IorD, RegWrite,

IRWrite, PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock);

initial begin state = 1; end // start the state machine in state 1

// These are the defi nitions of the control signals

assign IRWrite = (state==1);

assign Mem2Reg = ~ RegDst;

assign MemoryOp = (opcode==LW)|(opcode==SW); // a memory operation

assign ALUOp = ((state==1)|(state==2)|((state==3)&MemoryOp)) ? 2’b00 : // add

((state==3)&(opcode==BEQ)) ? 2’b01 : 2’b10; // subtract or use function code

assign RegDst = ((state==4)&(opcode==0)) ? 1 : 0;

assign MemRead = (state==1) | ((state==4)&(opcode==LW));

assign MemWrite = (state==4)&(opcode==SW);

assign IorD = (state==1) ? 0 : (state==4) ? 1 : X;

assign RegWrite = (state==5) | ((state==4) &(opcode==0));

assign PCWrite = (state==1) | ((state==3)&(opcode==J));

assign PCWriteCond = (state==3)&(opcode==BEQ);

assign ALUSrcA = ((state==1)|(state==2)) ? 0 :1;

assign ALUSrcB = ((state==1) | ((state==3)&(opcode==BEQ))) ? 2’b01 : (state==2) ? 2’b11 :

((state==3)&MemoryOp) ? 2’b10 : 2’b00; // memory operation or other

assign PCSource = (state==1) ? 2’b00 : ((opcode==BEQ) ? 2’b01 : 2’b10);

// Here is the state machine, which only has to sequence states

always @(posedge clock) begin // all state updates on a positive clock edge

case (state)

1: state = 2; //unconditional next state

2: state = 3; //unconditional next state

3: // third step: jumps and branches complete

state = ((opcode==BEQ) | (opcode==J)) ? 1 : 4;// branch or jump go back else next state

4: state = (opcode==LW) ? 5 : 1; //R-type and SW fi nish

5: state = 1; // go back

endcase

end

endmodule

FIGURE 4.13.7 The MIPS CPU using the datapath from Figure 4.13.6.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-17

Elaboration: When specifying control, designers often take advantage of knowledge

of the control so as to simplify or shorten the control specifi cation. Here are a few

examples from the specifi cation in Figures 4.13.6 and 4.13.7.

1. MemtoReg is set only in two cases, and then it is always the inverse of

RegDst, so we just use the inverse of RegDst.

2. IRWrite is set only in state 1.

3. Th

e ALU does not operate in every state and, when unused, can safely do

anything.

4. RegDst is 1 in only one case and can otherwise be set to 0. In practice it

might be better to set it explicitly when needed and otherwise set it to X, as

we do for IorD. First, it allows additional logic optimization possibilities

through the exploitation of don’t-care terms (see Appendix B for further

discussion and examples). Second, it is a more precise specifi cation, and

this allows the simulation to more closely model the hardware, possibly

uncovering additional errors in the specifi cation.

More Illustrations of Instruction Execution on the

Hardware

To reduce the cost of this book, in the third edition we moved sections and fi gures

that were used by a minority of instructors online. Th

is subsection recaptures

those fi gures for readers who would like more supplemental material to better

understand pipelining. Th

ese are all single-clock-cycle pipeline diagrams, which

take many fi gures to illustrate the execution of a sequence of instructions.

Th

e three examples are respectively for code with no hazards, an example of

forwarding on the pipelined implementation, and an example of bypassing on the

pipelined implementation.

No Hazard Illustrations

On page 297, we gave the example code sequence

lw $10,

20($1)

sub

$11, $2, $3

add

$12, $3, $4

lw $13,

24($1)

add

$14, $5, $6

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams for this

two-instruction sequence executing across six clock cycles. Figures 4.13.8 through

4.13.10 show the corresponding single-clock-cycle pipeline diagrams for these two

instructions. Note that the order of the instructions diff ers between these two types

of diagrams: the newest instruction is at the bottom and to the right of the multiple-

clock-cycle pipeline diagram, and it is on the left in the single-clock-cycle pipeline

diagram.

4.13-18

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

lw $10,20($1)

Instruction fetch

0

M

u

x

1

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

4

Add

Add result

Shift

left 2

Read

register 1

PC

Address

Read

Read

data 1

Zero

Instruction

Instruction

register 2

Read

ALU ALU

0

memory

Write

Read

1

data 2

result

Address

register

M

data

M

u

Data

u

Write

x

Registers

memory

x

data

1

Write

0

data

16

32

Sign-

extend

Clock 1

sub $11,$2,$3

lw $10,20($1)

Instruction fetch

Instruction decode

0

M

u

x

1

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

Read

register 1

PC

Address

Read

Read

data 1

Zero

Instruction

Instruction

register 2

Read

ALU ALU

memory

0

Write

Read

data 2

result

Address

1

M

register

data

M

u

Data

u

x

Write

memory

x

1

Registers

data

Write

0

data

16

32

Sign-

extend

Clock 2

FIGURE 4.13.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). Th is style of

pipeline representation is a snapshot of every instruction executing during one clock cycle. Our example has but two instructions, so at most two stages are identifi ed in each clock cycle; normally, all fi ve stages are occupied. Th

e highlighted portions of the datapath are active in that

clock cycle. Th

e load is fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make the fi gures easier to understand, the other pipeline stages are empty, but normally there is an instruction in every pipeline stage.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-19

sub $11,$2,$3

lw $10,20($1)

Instruction decode

Execution

0

M

u

x

1

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

4

Add

Add result

Shift

left 2

Read

register 1

PC

Address

Read

Read

data 1

Zero

Instruction

Instruction

register 2

Read

ALU ALU

0

memory

Write

Read

1

data 2

result

Address

register

M

data

M

u

Data

u

Write

x

Registers

memory

x

data

1

Write

0

data

16

32

Sign-

extend

Clock 3

sub $11,$2,$3

lw $10,20($1)

Execution

Memory

0

M

u

x

1

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Add result

Shift

left 2

Read

register 1

PC

Address

Read

data 1

Read

Zero

Instruction

Instruction

register 2

Read

ALU ALU

memory

0

Write

Read

Address

1

data 2

result

M

register

data

M

u

Data

u

x

Write

memory

x

1

Registers

data

Write

0

data

16

32

Sign-

extend

Clock 4

FIGURE 4.13.9 Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In the third clock cycle in the top diagram, lw enters the EX stage. At the same time, sub enters ID. In the fourth clock cycle (bottom datapath), lw moves into MEM stage, reading memory using the address found in EX/MEM at the beginning of clock cycle 4. At the same time, the ALU subtracts and then places the diff erence into EX/MEM at the end of the clock cycle.

4.13-20

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

sub $11, $2, $3

lw $10, 20($1)

Memory

Write back

0

M

u

x

1

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

4

Add

Addresult

Shift

left 2

Read

PC

Address

register 1

Read

Read

data 1

Zero

Instruction

Instruction

register 2

Read

ALU ALU

0

memory

Write

Read

1

data 2

Address

register

M

result

data

M

u

Data

u

Write

x

Registers

memory

x

data

1

Write

0

data

16

32

Sign-

extend

Clock 5

sub $11, $2, $3

Write back

0

M

u

x

1

IF/ID

ID/EX

EX/MEM

MEM/WB

Add

Add

4

Addresult

Shift

left 2

Read

register 1

PC

Address

Read

Read

data 1

Zero

Instruction

Instruction

register 2

Read

ALU ALU

0

memory

Write

Read

Address

0

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

1

Registers

data

Write

1

data

16

32

Sign-

extend

Clock 6

FIGURE 4.13.10 Single-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In clock cycle 5, lw completes by writing the data in MEM/WB into register 10, and sub sends the diff erence in EX/MEM to MEM/WB. In the next clock cycle, sub writes the value in MEM/WB to register 11.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-21

ID:

EX:

MEM:

WB:

IF: lw $10,20($1)

before<1>

before<2>

before<3>

before<4>

IF/ID

ID/EX

EX/MEM

MEM/WB

0

M

00

00

u

WB

x

1

000

000

00

Control

M

WB

0

0

0

0000

00

0

EX

M

WB 0

0

0

Add

Add

4

Add result

Shift

Branch

RegWrite

left 2

Read

ALUSrc

register 1

Read

PC

Address

MemWrite

Read

data 1

register 2

Zero

Instruction

Instruction

MemtoReg

Read

Write

0

ALU ALU

memory

data 2

Read

result

Address

1

register

M

data

M

u

Data

u

Write

Registers

x

memory

x

data

1

0

Write

Instruction

data

[15–0]

Sign-

ALU

MemRead

control

Instruction extend

[20–16]

0

ALUOp

Instruction

M

[15–11]

u

x

Clock 1

1 RegDst

IF:

ID:

EX:

MEM:

WB:

sub $11,$2,$3

lw $10,20($1)

before<1>

before<2>

before<3>

0

IF/ID

ID/EX

EX/MEM

MEM/WB

M

11

00

u

WB

x

1

lw

010

000

00

Control

M

WB

0

0

0001

0

00

0

EX

M

WB

0

0

0

Add

Add

4

Add result

Shift

Branch

RegWrite

left 2

ALUSrc

1

Read

register 1

$1

PC

Address

Read

MemWrite

X

Read

data 1

Zero

Instruction

Instruction

register 2

MemtoReg

$X

Read

0

ALU ALU

memory

Write

Read

Address

1

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

Registers

1

data

0

Write

Instruction

data

20 [15–0]

Sign- 20

ALU

MemRead

extend

control

Instruction

10 [20–16]

10

0

ALUOp

Instruction

M

u

X [15–11]

X

x

Clock 2

1 RegDst

FIGURE 4.13.11 Clock cycles 1 and 2. Th

e phrase “before <i> ” means the i th instruction before lw.

Th

e lw instruction in the top datapath is in the IF stage. At the end of the clock cycle, the lw instruction is in the IF/ID pipeline registers. In the second clock cycle, seen in the bottom datapath, the lw moves to the ID stage, and sub enters in the IF stage. Note that the values of the instruction fi elds and the selected source registers are shown in the ID stage. Hence register $1 and the constant 20, the operands of lw, are written into the ID/EX pipeline register. Th

e number 10, representing the destination register number of lw, is also

placed in ID/EX. Bits 15–11 are 0, but we use X to show that a fi eld plays no role in a given instruction. Th e

top of the ID/EX pipeline register shows the control values for lw to be used in the remaining stages. Th ese

control values can be read from the lw row of the table in Figure 4.18.

IF:

ID:

EX:

MEM:

WB:

and $12,$4,$5

sub $11,$2,$3

lw $10,...

before<1>

before<2>

IF/ID

ID/EX

EX/MEM

MEM/WB

0

M

10

11

u

WB

x

1

000

010

00

Control

M

WB

0

0

0

1100

EX 00

M 0

WB

1

0

0

Add

4

Add

Addresult

Branch

Shift

RegWrite

left 2

Read

ALUSrc

2

register 1

Read $2

$1

PC

Address

MemWrite

Read

data 1

3

register 2

Zero

Instruction

Instruction

Read $3

MemtoReg

Write

0

ALU ALU

memory

data 2

register

Read

Address

1

M

result

data

u

M

Write

Data

Registers

x

u

data

1

memory

x

0

Write

Instruction

data

X [15–0]

Sign-

X

20

ALU

MemRead

extend

Instruction

control

X [20–16]

X

10

0

ALUOp

Instruction

M

u

11 [15–11]

x

11

Clock 3

1 RegDst

IF: or $13,$6,$7

ID: and $12,$4,$5

EX: sub $11,...

MEM: lw $10,...

WB: before<1>

0

IF/ID

ID/EX

EX/MEM

MEM/WB

M

10

10

u

WB

x

1

and

000

000

11

Control

M

WB

1

0

1100

0

EX 10

1

M

WB

0

0

0

Add

4

Add

Addresult

Branch

Shift

RegWrite

left 2

ALUSrc

4

Read

register 1

$4

$2

PC

Address

Read

MemWrite

5

Read

data 1

Zero

Instruction

Instruction

register 2

MemtoReg

$5

$3

Read

0

ALU ALU

memory

Write

Read

Address

1

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

Registers

1

data

0

Write

Instruction

data

X [15–0]

Sign-

X

ALU

MemRead

extend

control

Instruction

X [20–16]

X

0

ALUOp

Instruction

M

10

u

12 [15–11]

12

11

x

Clock 4

1 RegDst

FIGURE 4.13.12 Clock cycles 3 and 4. In the top diagram, lw enters the EX stage in the third clock cycle, adding $1 and 20 to form the address in the EX/MEM pipeline register. (Th

e lw instruction is

written lw $10,. . . upon reaching EX, because the identity of instruction operands is not needed by EX

or the subsequent stages. In this version of the pipeline, the actions of EX, MEM, and WB depend only on the instruction and its destination register or its target address.) At the same time, sub enters ID, reading registers $2 and $3, and the and instruction starts IF. In the fourth clock cycle (bottom datapath), lw moves into MEM stage, reading memory using the value in EX/MEM as the address. In the same clock cycle, the ALU subtracts $3 from $2 and places the diff erence into EX/MEM, reads registers $4 and $5 during ID, and the or instruction enters IF. Th

e two diagrams show the control signals being created in the ID stage and

peeled off as they are used in subsequent pipe stages.

IF:

ID:

EX:

MEM:

WB:

add $14,$8,$9

or $13,$6,$7

and $12,...

sub $11,...

lw $10,..

IF/ID

ID/EX

EX/MEM

MEM/WB

0

M

10

10

u

WB

x

1

or

000

000

10

Control

M

WB

1

0

1

1100

10

0

EX

M

WB

0

0

1

Add

4

Add

Add result

Branch

Shift

RegWrite

left 2

Read

ALUSrc

6

register 1

Read $6

$4

PC

Address

MemWrite

Read

data 1

7

register 2

Zero

Instruction

Instruction

$7

$5

MemtoReg

Read

Write

10

0

ALU ALU

memory

data 2

register

Read

Address

1

M

result

data

M

u

Write

Data

u

Registers

x

data

memory

x

1

0

Write

data

Instruction

X [15–0]

Sign-

X

ALU

MemRead

extend

Instruction

control

X [20–16]

X

0

ALUOp

Instruction

M

11

10

u

13 [15–11]

13

12

x

Clock 5

1 RegDst

IF:

ID:

EX:

MEM:

WB:

after<1>

add $14,$8,$9

or $13,...

and $12,...

sub $11,.

0

IF/ID

ID/EX

EX/MEM

MEM/WB

M

10

10

u

WB

x

1

add

000

000

10

Control

M

WB

1

0

1100

1

10

0

EX

M

WB

0

0

0

Add

4

Add

Add result

Branch

Shift

RegWrite

left 2

ALUSrc

8

Read

register 1

$8

$6

PC

Address

Read

MemWrite

9

Read

data 1

Zero

Instruction

Instruction

register 2

MemtoReg

$9

$7

11

Read

0

ALU ALU

memory

Write

Read

Address

1

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

Registers

1

data

0

Write

data

Instruction

X [15–0]

Sign-

X

ALU

MemRead

extend

control

Instruction

X [20–16]

X

0

ALUOp

Instruction

M

2

1

1

1

u

12 [15–11]

14

13

x

Clock 6

1 RegDst

FIGURE 4.13.13 Clock cycles 5 and 6. With add, the fi nal instruction in this example, entering IF in the top datapath, all instructions are engaged. By writing the data in MEM/WB into register 10, lw completes; both the data and the register number are in MEM/WB. In the same clock cycle, sub sends the diff erence in EX/MEM to MEM/WB, and the rest of the instructions move forward. In the next clock cycle, sub selects the value in MEM/WB to write to register number 11, again found in MEM/WB. Th

e remaining

instructions play follow-the-leader: the ALU calculates the OR of $6 and $7 for the or instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the add instruction. Th

e instructions aft er

add are shown as inactive just to emphasize what occurs for the fi ve instructions in the example. Th e phrase

“aft er⬍i⬎” means the i th instruction aft er add.

4.13-24

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

IF:

ID:

EX:

MEM:

WB:

after<2>

after<1>

add $14,...

or $13,...

and $12,.

IF/ID

ID/EX

EX/MEM

MEM/WB

0

M

00

10

u

WB

x

1

000

000

10

Control

M

WB

1

0

1

0000

10

0

EX

M

WB

0

0

0

Add

4

Add

Add result

Branch

Shift

RegWrite

left 2

Read

ALUSrc

register 1

Read

$8

PC

Address

MemWrite

Read

data 1

register 2

Zero

Instruction

Instruction

MemtoReg

Read

Write

$9

12

0

ALU ALU

memory

data 2

Read

Address

1

register

M

result

data

M

u

Data

u

Write

Registers

x

memory

x

data

1

0

Write

data

Instruction

[15–0]

Sign-

ALU

MemRead

control

Instruction extend

[20–16]

0

ALUOp

Instruction

M

3

1

2

1

u

[15–11]

x

14

Clock 7

1 RegDst

IF:

ID:

EX:

MEM:

WB:

after<3>

after<2>

after<1>

add $14,...

or $13,..

0

IF/ID

ID/EX

EX/MEM

MEM/WB

M

00

00

u

WB

x

1

000

000

10

Control

M

WB

0

0

0000

1

00

0

EX

M

WB

0

0

0

Add

4

Add

Add result

Branch

Shift

RegWrite

left 2

ALUSrc

Read

PC

Address

register 1

Read

MemWrite

Read

data 1

Zero

Instruction

Instruction

register 2

MemtoReg

Read

ALU ALU

memory

13

0

Write

Read

Address

1

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

Registers

1

data

0

Write

Instruction

data

[15–0]

Sign-

ALU

MemRead

extend

control

Instruction

[20–16]

0

ALUOp

Instruction

M

4

1

3

1

u

[15–11]

x

Clock 8

1 RegDst

FIGURE 4.13.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear, adding the values corresponding to registers $8 and $9 during the EX stage. Th

e result of the or instruction

is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the result of the and

instruction in MEM/WB to register $12. Note that the control signals are deasserted (set to 0) in the ID

stage, since no instruction is being executed. In the following clock cycle (lower drawing), the WB stage writes the result to register $13, thereby completing or, and the MEM stage passes the sum from the add in EX/MEM to MEM/WB. Th

e instructions aft er add are shown as inactive for pedagogical reasons.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-25

IF:

ID:

EX:

MEM:

WB:

after<4>

after<3>

after<2>

after<1>

add $14,.

0

IF/ID

ID/EX

EX/MEM

MEM/WB

M

00

00

u

WB

x

1

000

000

00

Control

M

WB

0

0

0000

1

00

0

EX

M

WB

0

0

0

Add

4

ite

Add

Add result

Branch

Shift

ite

RegWr

left 2

ALUSrc

Read

PC

Address

uction

register 1

Read

MemWr

Read

data 1

Zero

Instruction

Instr

register 2

MemtoReg

Read

ALU ALU

memory

14

0

Write

Read

Address

1

data 2

M

result

register

data

M

u

Data

u

x

Write

memory

x

Registers

1

data

0

Write

Instruction

data

[15–0]

Sign-

ALU

MemRead

extend

control

Instruction

[20–16]

0

ALUOp

Instruction

M

14

u

[15–11]

x

Clock 9

1 RegDst

FIGURE 4.13.15 Clock cycle 9. Th

e WB stage writes the sum in MEM/WB into register $14, completing add and the fi ve-instruction

sequence. Th

e instructions aft er add are shown as inactive for pedagogical reasons.

More Examples

To understand how pipeline control works, let’s consider these fi ve instructions

going through the pipeline:

lw $10,

20($1)

sub

$11, $2, $3

and

$12, $4, $5

or

$13, $6, $7

add

$14, $8, $9

Figures 4.13.11 through 4.13.15 show these instructions proceeding through the

nine clock cycles it takes them to complete execution, highlighting what is active

in a stage and identifying the instruction associated with each stage during a clock

cycle. If you examine them carefully, you may notice:

■ In Figure 4.13.13 you can see the sequence of the destination register numbers

from left to right at the bottom of the pipeline registers. Th

e numbers advance

4.13-26

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

to the right during each clock cycle, with the MEM/WB pipeline register

supplying the number of the register written during the WB stage.

■ When a stage is inactive, the values of control lines that are deasserted are

shown as 0 or X (for don’t care).

■ Sequencing of control is embedded in the pipeline structure itself.

First, all instructions take the same number of clock cycles, so there is no special

control for instruction duration. Second, all control information is computed

during instruction decode and then passed along by the pipeline registers.

Forwarding Illustrations

We can use the single-clock-cycle pipeline diagrams to show how forwarding

operates, as well as how the control activates the forwarding paths. Consider the

following code sequence in which the dependences have been highlighted:

sub

$2, $1, $3

and

$4, $2, $5

or

$4, $4, $2

add

$9, $4, $2

Figures 4.13.16 and 4.13.17 show the events in clock cycles 3–6 in the execution of

these instructions.

In clock cycle 4, the forwarding unit sees the writing by the sub instruction of

register $2 in the MEM stage, while the and instruction in the EX stage is reading

register $2. Th

e forwarding unit selects the EX/MEM pipeline register instead of

the ID/EX pipeline register as the upper input to the ALU to get the proper value

for register $2. Th

e following or instruction reads register $4, which is written by

the and instruction, and register $2, which is written by the sub instruction.

Th

us, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline register

for the upper input to the ALU and the MEM/WB pipeline register for the lower

input to the ALU. Th

e following add instruction reads both register $4, the target of

the and instruction, and register $2, which the sub instruction has already written.

Notice that the prior two instructions both write register $4, so the forwarding unit

must pick the immediately preceding one (MEM stage).

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline register,

containing the result of the or instruction, for the upper ALU input but uses the

nonforwarding register value for the lower input to the ALU.

Illustrating Pipelines with Stalls and Forwarding

We can use the single-clock-cycle pipeline diagrams to show how the control for

stalls works. Figures 4.13.18 through 4.13.20 show the single-cycle diagram for

clocks 2 through 7 for the following code sequence (dependences highlighted):

1w $2,

20($1)

and $4,

$2,$5

or $4,

$4,$2

add $9,

$4,$2

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-27

or $4,$4,$2

and $4,$2,$5

sub $2, $1, $3

before<1>

before<2>

ID/EX

10

10

WB

EX/MEM

Control

M

WB

MEM/WB

EX

M

WB

IF/ID

2

$2

$1

M

5

u

uction

x

Registers

Instruction

Instr

Data

PC

ALU

memory

memory

M

$5

$3

u

M

x

u

x

2

1

5

3

M

4

2

u

x

Forwarding

unit

Clock 3

add $9,$4,$2

or $4,$4,$2

and $4,$2,$5

sub $2,...

before<1>

ID/EX

10

10

WB

EX/MEM

10

Control

M

WB

MEM/WB

EX

IF/ID

M

WB

4

$4

$2

M

2

u

uction

x

Registers

Instruction

Instr

Data

PC

ALU

memory

memory

M

$2

$5

u

M

x

u

x

4

 2

2

5

 2

M

4

4

u

x

Forwarding

unit

Clock 4

FIGURE 4.13.16 Clock cycles 3 and 4 of the instruction sequence on page 4.13-26. Th e bold lines are those active in a clock

cycle, and the italicized register numbers in color indicate a hazard. Th

e forwarding unit is highlighted by shading it when it is forwarding data

to the ALU. Th

e instructions before sub are shown as inactive just to emphasize what occurs for the four instructions in the example. Operand names are used in EX for control of forwarding; thus they are included in the instruction label for EX. Operand names are not needed in MEM

or WB, so . . . is used. Compare this with Figures 4.13.12 through 4.13.15, which show the datapath without forwarding where ID is the last stage to need operand information.

4.13-28

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

after<1>

add $9,$4,$2

or $4,$4,$2

and $4,...

sub $2,..

ID/EX

10

10

WB

EX/MEM

10

Control

M

WB

MEM/WB

1

IF/ID

EX

M

WB

4

$4

$4

M

u

2

uction

x

Registers

Instr

2

Data

PC

Instruction

ALU

memory

memory

M

$2

$2

u

M

x

u

x

4

 4

2

 2

M

 4

 2

u

9

4

x

Forwarding

unit

Clock 5

after<2>

after<1>

add $9,$4,$2

or $4,...

and $4,..

ID/EX

10

WB

EX/MEM

10

Control

M

WB

MEM/WB

1

IF/ID

EX

M

WB

$4

M

u

uction

x

Registers

Instr

4

Data

PC

Instruction

ALU

memory

memory

M

$2

u

M

x

ux

 4

2

M

 4

4

u

9

x

Forwarding

unit

Clock 6

FIGURE 4.13.17 Clock cycles 5 and 6 of the instruction sequence on page 4.13-26. Th e forwarding unit is highlighted when

it is forwarding data to the ALU. Th

e two instructions aft er add are shown as inactive just to emphasize what occurs for the four instructions in the example. Th

e bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a hazard.

4.13 An Introduction to Digital Design Using a Hardware Design Language

4.13-29

and $4,$2,$5

lw $2,20($1)

before<1>

before<2>

before<3>

Hazard

ID/EX.MemRead

detection

1

unit

ID/EX

X

11

ite

WB

EX/MEM

Wr

M

IF/ID

Control

u

M

WB

MEM/WB

x

0

IF/ID

EX

M

WB

ite

1

$1

M

PCWr

u

X

x

uction

Registers

Instruction

Instr

Data

PC

ALU

memory

memory

$X

M

u

M

x

u

x

1

X

2

M

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 2

or $4,$4,$2

and $4,$2,$5

lw $2,20($1)

before<1>

before<2>

Hazard

ID/EX.MemRead

detection

 2

unit

ID/EX

5

00

11

ite

WB

EX/MEM

Wr

M

Control

IF/ID

u

M

WB

MEM/WB

x

0

EX

M

WB

IF/ID

2

ite

$2

$1

M

PCWr

5

u

uction

x

Registers

Instr

Instruction

Data

PC

ALU

memory

memory

M

$5

$X

u

M

x

u

x

2

1

5

X

 2

M

4

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 3

FIGURE 4.13.18 Clock cycles 2 and 3 of the instruction sequence on page 4.13-26 with a load replacing sub. Th e bold

lines are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the . . . in the place of operands means that their identity is information not needed by that stage. Th

e values of the signifi cant control lines, registers, and register numbers are labeled in

the fi gures. Th

e and instruction wants to read the value created by the lw instruction in clock cycle 3, so the hazard detection unit stalls the and and or instructions. Hence, the hazard detection unit is highlighted.

4.13-30

4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe

or $4,$4,$2

and $4,$2,$5

 Bubble

lw $2,...

before<1>

Hazard

ID/EX.MemRead

detection

2

unit

ID/EX

5

10

00

WB

EX/MEM

M

11

IF/IDWrite

Control

u

M

WB

MEM/WB

x

0

IF/ID

EX

M

WB

2

$2

$2

M

PCWrite

u

5

x

Registers

Instruction

Instruction

Data

PC

ALU

memory

memory

$5

$5

M

u

M

x

u

x

2

2

5

5

M

2

4

4

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 4

add $9,$4,$2

or $4,$4,$2

and $4,$2,$5

 Bubble

lw $2,...

Hazard

ID/EX.MemRead

detection

 2

unit

ID/EX

5

10

10

WB

EX/MEM

M

0

Control

IF/IDWrite

u

M

WB

MEM/WB

x

0

11

EX

M

WB

IF/ID

4

$4

$2

M

PCWrite

2

u

x

Registers

Instruction

2

Instruction

Data

PC

ALU

memory

memory

M

$2

$5

u

M

x

u

x

4

 2

2

5

M

 2

4

4

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 5

FIGURE 4.13.19 Clock cycles 4 and 5 of the instruction sequence on page 4.13-26 with a load replacing sub. Th e

bubble is inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. Th e forwarding unit

is highlighted in clock cycle 5 because it is forwarding data from lw to the ALU. Note that in clock cycle 4, the forwarding unit forwards the address of the lw as if it were the contents of register $2; this is rendered harmless by the insertion of the bubble. Th e bold lines are those active

in a clock cycle, and the italicized register numbers in color indicate a hazard.

 4.13 An Introduction to Digital Design Using a Hardware Design Language to Describe 4.13-31

after<1>

add $9,$4,$2

or $4,$4,$2

and $4,...

 Bubble

Hazard

ID/EX.MemRead

detection

4

unit

ID/EX

2

10

10

ite

WB

EX/MEM

Wr

M

10

IF/ID

Control

u

M

WB

MEM/WB

x

0

0

IF/ID

EX

M

WB

ite

4

$4

$4

M

PCWr

u

2

x

uction

Registers

Instruction

Instr

Data

PC

ALU

memory

memory

$2

$2

M

u

M

x

u

x

4

4

2

2

M

 4

9

4

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 6

after<2>

after<1>

add $9,$4,$2

or $4,...

and $4,...

Hazard

ID/EX.MemRead

detection

unit

ID/EX

10

10

ite

WB

EX/MEM

Wr

M

10

Control

IF/ID

u

M

WB

MEM/WB

x

0

1

EX

M

WB

IF/ID

ite

$4

M

PCWr

u

uction

x

Registers

Instr

4

Instruction

Data

PC

ALU

memory

memory

M

$2

u

M

x

u

x

 4

2

M

 4

4

9

u

x

ID/EX.RegisterRt

Forwarding

unit

Clock 7

FIGURE 4.13.20 Clock cycles 6 and 7 of the instruction sequence on page 4.13-26 with a load replacing sub. Note that unlike in Figure 4.13.17, the stall allows the lw to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register $4 for the add in the EX stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU. Th e bold lines show

ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. Th e instructions aft er add are shown as inactive

for pedagogical reasons.

4.14 Fallacies and Pitfalls

355

 4.14 Fallacies and Pitfalls

 Fallacy: Pipelining is easy.

Our books testify to the subtlety of correct pipeline execution. Our advanced book

had a pipeline bug in its fi rst edition, despite its being reviewed by more than 100

people and being class-tested at 18 universities. Th

e bug was uncovered only when

someone tried to build the computer in that book. Th

e fact that the Verilog to

describe a pipeline like that in the Intel Core i7 will be many thousands of lines is

an indication of the complexity. Beware!

 Fallacy: Pipelining ideas can be implemented independent of technology.

When the number of transistors on-chip and the speed of transistors made a

fi ve-stage pipeline the best solution, then the delayed branch (see the Elaboration

on page 255) was a simple solution to control hazards. With longer pipelines,

superscalar execution, and dynamic branch prediction, it is now redundant. In

the early 1990s, dynamic pipeline scheduling took too many resources and was

not required for high performance, but as transistor budgets continued to double

due to Moore’s Law and logic became much faster than memory, then multiple

functional units and dynamic pipelining made more sense. Today, concerns about

power are leading to less aggressive designs.

 Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the diffi

culties of pipelining arise because of instruction set complications.

Here are some examples:

■ Widely variable instruction lengths and running times can lead to imbalance

among pipeline stages and severely complicate hazard detection in a design

pipelined at the instruction set level. Th

is problem was overcome, initially

in the DEC VAX 8500 in the late 1980s, using the micro-operations and

micropipelined scheme that the Intel Core i7 employs today. Of course, the

overhead of translation and maintaining correspondence between the micro-

operations and the actual instructions remains.

■ Sophisticated addressing modes can lead to diff erent sorts of problems.

Addressing modes that update registers complicate hazard detection. Other

addressing modes that require multiple memory accesses substantially

complicate pipeline control and make it diffi

cult to keep the pipeline fl owing

smoothly.

■ Perhaps the best example is the DEC Alpha and the DEC NVAX. In

comparable technology, the newer instruction set architecture of the Alpha

allowed an implementation whose performance is more than twice as fast

as NVAX. In another example, Bhandarkar and Clark [1991] compared the

MIPS M/2000 and the DEC VAX 8700 by counting clock cycles of the SPEC

benchmarks; they concluded that although the MIPS M/2000 executes more

356

Chapter 4 The Processor

instructions, the VAX on average executes 2.7 times as many clock cycles, so

the MIPS is faster.

 Nine-tenths of wisdom

 consists of being wise

 in time.

 4.15 Concluding

Remarks

American proverb

As we have seen in this chapter, both the datapath and control for a processor can be

designed starting with the instruction set architecture and an understanding of the

basic characteristics of the technology. In Section 4.3, we saw how the datapath for

a MIPS processor could be constructed based on the architecture and the decision

to build a single-cycle implementation. Of course, the underlying technology also

aff ects many design decisions by dictating what components can be used in the

datapath, as well as whether a single-cycle implementation even makes sense.

Pipelining improves throughput but not the inherent execution time, or

instruction latency, of instructions; for some instructions, the latency is similar

in length to the single-cycle approach. Multiple instruction issue adds additional

datapath hardware to allow multiple instructions to begin every clock cycle, but at

an increase in eff ective latency. Pipelining was presented as reducing the clock cycle

time of the simple single-cycle datapath. Multiple instruction issue, in comparison,

instruction latency Th

e

clearly focuses on reducing clock cycles per instruction (CPI).

inherent execution time

Pipelining and multiple issue both attempt to exploit instruction-level

for an instruction.

parallelism. Th

e presence of data and control dependences, which can become

hazards, are the primary limitations on how much parallelism can be exploited.

Scheduling and speculation via prediction, both in hardware and in soft ware, are

the primary techniques used to reduce the performance impact of dependences.

We showed that unrolling the DGEMM loop four times exposed more

instructions that could take advantage of the out-of-order execution engine of the

Core i7 to more than double performance.

Th

e switch to longer pipelines, multiple instruction issue, and dynamic

scheduling in the mid-1990s has helped sustain the 60% per year processor

performance increase that started in the early 1980s. As mentioned in Chapter

1, these microprocessors preserved the sequential programming model, but

they eventually ran into the power wall. Th

us, the industry has been forced to

switch to multiprocessors, which exploit parallelism at much coarser levels (the

subject of Chapter 6). Th

is trend has also caused designers to reassess the energy-

performance implications of some of the inventions since the mid-1990s, resulting

in a simplifi cation of pipelines in the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel processors,

Amdahl’s law suggests that another part of the system will become the bottleneck.

Th

at bottleneck is the topic of the next chapter: the memory hierarchy.

4.17 Exercises

357

 4.16

4.16

 Historical Perspective and Further

Reading

Th

is section, which appears online, discusses the history of the fi rst pipelined

processors, the earliest superscalars, and the development of out-of-order and

speculative techniques, as well as important developments in the accompanying

compiler technology.

 4.17 Exercises

4.1 Consider the following instruction:

Instruction: AND Rd,Rs,Rt

Interpretation: Reg[Rd] = Reg[Rs] AND Reg[Rt]

4.1.1 [5] <§4.1> What are the values of control signals generated by the control in

Figure 4.2 for the above instruction?

4.1.2 [5] <§4.1> Which resources (blocks) perform a useful function for this

instruction?

4.1.3 [10] <§4.1> Which resources (blocks) produce outputs, but their outputs

are not used for this instruction? Which resources produce no outputs for this

instruction?

4.2 Th

e basic single-cycle MIPS implementation in Figure 4.2 can only implement

some instructions. New instructions can be added to an existing Instruction Set

Architecture (ISA), but the decision whether or not to do that depends, among

other things, on the cost and complexity the proposed addition introduces into the

processor datapath and control. Th

e fi rst three problems in this exercise refer to the

new instruction:

Instruction: LWI Rt,Rd(Rs)

Interpretation: Reg[Rt] = Mem[Reg[Rd]+Reg[Rs]]

4.2.1 [10] <§4.1> Which existing blocks (if any) can be used for this instruction?

4.2.2 [10] <§4.1> Which new functional blocks (if any) do we need for this

instruction?

4.2.3 [10] <§4.1> What new signals do we need (if any) from the control unit to

support this instruction?

358

Chapter 4 The Processor

4.3 When processor designers consider a possible improvement to the processor

datapath, the decision usually depends on the cost/performance trade-off . In

the following three problems, assume that we are starting with a datapath from

Figure 4.2, where I-Mem, Add, Mux, ALU, Regs, D-Mem, and Control blocks have

latencies of 400 ps, 100 ps, 30 ps, 120 ps, 200 ps, 350 ps, and 100 ps, respectively,

and costs of 1000, 30, 10, 100, 200, 2000, and 500, respectively.

Consider the addition of a multiplier to the ALU. Th

is addition will add 300 ps to the

latency of the ALU and will add a cost of 600 to the ALU. Th

e result will be 5% fewer

instructions executed since we will no longer need to emulate the MUL instruction.

4.3.1 [10] <§4.1> What is the clock cycle time with and without this improvement?

4.3.2 [10] <§4.1> What is the speedup achieved by adding this improvement?

4.3.3 [10] <§4.1> Compare the cost/performance ratio with and without this

improvement.

4.4 Problems in this exercise assume that logic blocks needed to implement a

processor’s datapath have the following latencies:

I-Mem

Add

Mux

ALU

Regs

D-Mem

Sign-Extend

Shift-Left-2

200ps

70ps

20ps

90ps

90ps

250ps

15ps

10ps

4.4.1 [10] <§4.3> If the only thing we need to do in a processor is fetch consecutive instructions (Figure 4.6), what would the cycle time be?

4.4.2 [10] <§4.3> Consider a datapath similar to the one in Figure 4.11, but for a processor that only has one type of instruction: unconditional PC-relative branch.

What would the cycle time be for this datapath?

4.4.3 [10] <§4.3> Repeat 4.4.2, but this time we need to support only conditional

PC-relative branches.

Th

e remaining three problems in this exercise refer to the datapath element Shift -

left -2:

4.4.4 [10] <§4.3> Which kinds of instructions require this resource?

4.4.5 [20] <§4.3> For which kinds of instructions (if any) is this resource on the

critical path?

4.4.6 [10] <§4.3> Assuming that we only support beq and add instructions,

discuss how changes in the given latency of this resource aff ect the cycle time of the

processor. Assume that the latencies of other resources do not change.

4.17 Exercises

359

4.5 For the problems in this exercise, assume that there are no pipeline stalls and

that the breakdown of executed instructions is as follows:

add

addi

not

beq

lw

sw

20%

20%

0%

25%

25%

10%

4.5.1 [10] <§4.3> In what fraction of all cycles is the data memory used?

4.5.2 [10] <§4.3> In what fraction of all cycles is the input of the sign-extend

circuit needed? What is this circuit doing in cycles in which its input is not needed?

4.6 When silicon chips are fabricated, defects in materials (e.g., silicon) and

manufacturing errors can result in defective circuits. A very common defect is for

one wire to aff ect the signal in another. Th

is is called a cross-talk fault. A special

class of cross-talk faults is when a signal is connected to a wire that has a constant

logical value (e.g., a power supply wire). In this case we have a stuck-at-0 or a stuck-

at-1 fault, and the aff ected signal always has a logical value of 0 or 1, respectively.

Th

e following problems refer to bit 0 of the Write Register input on the register fi le

in Figure 4.24.

4.6.1 [10] <§§4.3, 4.4> Let us assume that processor testing is done by fi lling the PC, registers, and data and instruction memories with some values (you can choose

which values), letting a single instruction execute, then reading the PC, memories,

and registers. Th

ese values are then examined to determine if a particular fault is

present. Can you design a test (values for PC, memories, and registers) that would

determine if there is a stuck-at-0 fault on this signal?

4.6.2 [10] <§§4.3, 4.4> Repeat 4.6.1 for a stuck-at-1 fault. Can you use a single

test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, explain why not.

4.6.3 [60] <§§4.3, 4.4> If we know that the processor has a stuck-at-1 fault on

this signal, is the processor still usable? To be usable, we must be able to convert

any program that executes on a normal MIPS processor into a program that works

on this processor. You can assume that there is enough free instruction memory

and data memory to let you make the program longer and store additional

data. Hint: the processor is usable if every instruction “broken” by this fault can

be replaced with a sequence of “working” instructions that achieve the same

eff ect.

4.6.4 [10] <§§4.3, 4.4> Repeat 4.6.1, but now the fault to test for is whether

the “MemRead” control signal becomes 0 if RegDst control signal is 0, no fault

otherwise.

4.6.5 [10] <§§4.3, 4.4> Repeat 4.6.4, but now the fault to test for is whether the

“Jump” control signal becomes 0 if RegDst control signal is 0, no fault otherwise.

360

Chapter 4 The Processor

4.7 In this exercise we examine in detail how an instruction is executed in a

single-cycle datapath. Problems in this exercise refer to a clock cycle in which the

processor fetches the following instruction word:

10101100011000100000000000010100.

Assume that data memory is all zeros and that the processor’s registers have the

following values at the beginning of the cycle in which the above instruction word

is fetched:

r0

r1

r2

r3

r4

r5

r6

r8

r12

r31

0

–1

2

–3

–4

10

6

8

2

–16

4.7.1 [5] <§4.4> What are the outputs of the sign-extend and the jump “Shift left

2” unit (near the top of Figure 4.24) for this instruction word?

4.7.2 [10] <§4.4> What are the values of the ALU control unit’s inputs for this

instruction?

4.7.3 [10] <§4.4> What is the new PC address aft er this instruction is executed?

Highlight the path through which this value is determined.

4.7.4 [10] <§4.4> For each Mux, show the values of its data output during the

execution of this instruction and these register values.

4.7.5 [10] <§4.4> For the ALU and the two add units, what are their data input

values?

4.7.6 [10] <§4.4> What are the values of all inputs for the “Registers” unit?

4.8 In this exercise, we examine how pipelining aff ects the clock cycle time of the

processor. Problems in this exercise assume that individual stages of the datapath

have the following latencies:

IF

ID

EX

MEM

WB

250ps

350ps

150ps

300ps

200ps

Also, assume that instructions executed by the processor are broken down as

follows:

alu

beq

lw

sw

45%

20%

20%

15%

4.8.1 [5] <§4.5> What is the clock cycle time in a pipelined and non-pipelined

processor?

4.8.2 [10] <§4.5> What is the total latency of an LW instruction in a pipelined

and non-pipelined processor?

4.17 Exercises

361

4.8.3 [10] <§4.5> If we can split one stage of the pipelined datapath into two new

stages, each with half the latency of the original stage, which stage would you split

and what is the new clock cycle time of the processor?

4.8.4 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization

of the data memory?

4.8.5 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization

of the write-register port of the “Registers” unit?

4.8.6 [30] <§4.5> Instead of a single-cycle organization, we can use a multi-cycle

organization where each instruction takes multiple cycles but one instruction

fi nishes before another is fetched. In this organization, an instruction only goes

through stages it actually needs (e.g., ST only takes 4 cycles because it does not

need the WB stage). Compare clock cycle times and execution times with single-

cycle, multi-cycle, and pipelined organization.

4.9 In this exercise, we examine how data dependences aff ect execution in the

basic 5-stage pipeline described in Section 4.5. Problems in this exercise refer to the

following sequence of instructions:

or r1,r2,r3

or r2,r1,r4

or r1,r1,r2

Also, assume the following cycle times for each of the options related to forwarding:

Without Forwarding

With Full Forwarding

With ALU-ALU Forwarding Only

250ps

300ps

290ps

4.9.1 [10] <§4.5> Indicate dependences and their type.

4.9.2 [10] <§4.5> Assume there is no forwarding in this pipelined processor.

Indicate hazards and add nop instructions to eliminate them.

4.9.3 [10] <§4.5> Assume there is full forwarding. Indicate hazards and add NOP

instructions to eliminate them.

4.9.4 [10] <§4.5> What is the total execution time of this instruction sequence

without forwarding and with full forwarding? What is the speedup achieved by

adding full forwarding to a pipeline that had no forwarding?

4.9.5 [10] <§4.5> Add nop instructions to this code to eliminate hazards if there

is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage).

4.9.6 [10] <§4.5> What is the total execution time of this instruction sequence

with only ALU-ALU forwarding? What is the speedup over a no-forwarding

pipeline?

362

Chapter 4 The Processor

4.10 In this exercise, we examine how resource hazards, control hazards, and

Instruction Set Architecture (ISA) design can aff ect pipelined execution. Problems

in this exercise refer to the following fragment of MIPS code:

sw r16,12(r6)

lw r16,8(r6)

beq r5,r4,Label # Assume r5!=r4

add r5,r1,r4

slt r5,r15,r4

Assume that individual pipeline stages have the following latencies:

IF

ID

EX

MEM

WB

200ps

120ps

150ps

190ps

100ps

4.10.1 [10] <§4.5> For this problem, assume that all branches are perfectly

predicted (this eliminates all control hazards) and that no delay slots are used. If we

only have one memory (for both instructions and data), there is a structural hazard

every time we need to fetch an instruction in the same cycle in which another

instruction accesses data. To guarantee forward progress, this hazard must always

be resolved in favor of the instruction that accesses data. What is the total execution

time of this instruction sequence in the 5-stage pipeline that only has one memory?

We have seen that data hazards can be eliminated by adding nops to the code. Can

you do the same with this structural hazard? Why?

4.10.2 [20] <§4.5> For this problem, assume that all branches are perfectly

predicted (this eliminates all control hazards) and that no delay slots are used.

If we change load/store instructions to use a register (without an off set) as the

address, these instructions no longer need to use the ALU. As a result, MEM and

EX stages can be overlapped and the pipeline has only 4 stages. Change this code to

accommodate this changed ISA. Assuming this change does not aff ect clock cycle

time, what speedup is achieved in this instruction sequence?

4.10.3 [10] <§4.5> Assuming stall-on-branch and no delay slots, what speedup is

achieved on this code if branch outcomes are determined in the ID stage, relative to

the execution where branch outcomes are determined in the EX stage?

4.10.4 [10] <§4.5> Given these pipeline stage latencies, repeat the speedup

calculation from 4.10.2, but take into account the (possible) change in clock cycle

time. When EX and MEM are done in a single stage, most of their work can be

done in parallel. As a result, the resulting EX/MEM stage has a latency that is the

larger of the original two, plus 20 ps needed for the work that could not be done

in parallel.

4.10.5 [10] <§4.5> Given these pipeline stage latencies, repeat the speedup

calculation from 4.10.3, taking into account the (possible) change in clock cycle

time. Assume that the latency ID stage increases by 50% and the latency of the EX

stage decreases by 10ps when branch outcome resolution is moved from EX to ID.

4.17 Exercises

363

4.10.6 [10] <§4.5> Assuming stall-on-branch and no delay slots, what is the new

clock cycle time and execution time of this instruction sequence if beq address

computation is moved to the MEM stage? What is the speedup from this change?

Assume that the latency of the EX stage is reduced by 20 ps and the latency of the

MEM stage is unchanged when branch outcome resolution is moved from EX to

MEM.

4.11 Consider the following loop.

loop:lw r1,0(r1)

and r1,r1,r2

lw r1,0(r1)

lw r1,0(r1)

beq r1,r0,loop

Assume that perfect branch prediction is used (no stalls due to control hazards),

that there are no delay slots, and that the pipeline has full forwarding support. Also

assume that many iterations of this loop are executed before the loop exits.

4.11.1 [10] <§4.6> Show a pipeline execution diagram for the third iteration of

this loop, from the cycle in which we fetch the fi rst instruction of that iteration up

to (but not including) the cycle in which we can fetch the fi rst instruction of the

next iteration. Show all instructions that are in the pipeline during these cycles (not

just those from the third iteration).

4.11.2 [10] <§4.6> How oft en (as a percentage of all cycles) do we have a cycle in which all fi ve pipeline stages are doing useful work?

4.12 Th

is exercise is intended to help you understand the cost/complexity/

performance trade-off s of forwarding in a pipelined processor. Problems in this

exercise refer to pipelined datapaths from Figure 4.45. Th

ese problems assume

that, of all the instructions executed in a processor, the following fraction of these

instructions have a particular type of RAW data dependence. Th

e type of RAW

data dependence is identifi ed by the stage that produces the result (EX or MEM)

and the instruction that consumes the result (1st instruction that follows the one

that produces the result, 2nd instruction that follows, or both). We assume that the

register write is done in the fi rst half of the clock cycle and that register reads are

done in the second half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences

are not counted because they cannot result in data hazards. Also, assume that the

CPI of the processor is 1 if there are no data hazards.

EX to 1st

EX to 1st

MEM to 1st

EX to 2nd

MEM to 2nd

and MEM

Other RAW

Only

Only

Only

Only

to 2nd

Dependences

5%

20%

5%

10%

10%

10%

364

Chapter 4 The Processor

Assume the following latencies for individual pipeline stages. For the EX stage,

latencies are given separately for a processor without forwarding and for a processor

with diff erent kinds of forwarding.

EX (FW

EX

EX

EX (FW from

from MEM/

IF ID

(no FW)

(full FW)

EX/MEM only)

WB only)

MEM

WB

150 ps

100 ps

120 ps

150 ps

140 ps

130 ps

120 ps

100 ps

4.12.1 [10] <§4.7> If we use no forwarding, what fraction of cycles are we stalling due to data hazards?

4.12.2 [5] <§4.7> If we use full forwarding (forward all results that can be

forwarded), what fraction of cycles are we staling due to data hazards?

4.12.3 [10] <§4.7> Let us assume that we cannot aff ord to have three-input Muxes

that are needed for full forwarding. We have to decide if it is better to forward

only from the EX/MEM pipeline register (next-cycle forwarding) or only from

the MEM/WB pipeline register (two-cycle forwarding). Which of the two options

results in fewer data stall cycles?

4.12.4 [10] <§4.7> For the given hazard probabilities and pipeline stage latencies, what is the speedup achieved by adding full forwarding to a pipeline that had no

forwarding?

4.12.5 [10] <§4.7> What would be the additional speedup (relative to a processor

with forwarding) if we added time-travel forwarding that eliminates all data

hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100 ps to

the latency of the full-forwarding EX stage.

4.12.6 [20] <§4.7> Repeat 4.12.3 but this time determine which of the two

options results in shorter time per instruction.

4.13 Th

is exercise is intended to help you understand the relationship between

forwarding, hazard detection, and ISA design. Problems in this exercise refer to

the following sequence of instructions, and assume that it is executed on a 5-stage

pipelined datapath:

add r5,r2,r1

lw r3,4(r5)

lw r2,0(r2)

or r3,r5,r3

sw r3,0(r5)

4.13.1 [5] <§4.7> If there is no forwarding or hazard detection, insert nops to

ensure correct execution.

4.17 Exercises

365

4.13.2 [10] <§4.7> Repeat 4.13.1 but now use nops only when a hazard cannot be

avoided by changing or rearranging these instructions. You can assume register R7

can be used to hold temporary values in your modifi ed code.

4.13.3 [10] <§4.7> If the processor has forwarding, but we forgot to implement

the hazard detection unit, what happens when this code executes?

4.13.4 [20] <§4.7> If there is forwarding, for the fi rst fi ve cycles during the

execution of this code, specify which signals are asserted in each cycle by hazard

detection and forwarding units in Figure 4.60.

4.13.5 [10] <§4.7> If there is no forwarding, what new inputs and output signals

do we need for the hazard detection unit in Figure 4.60? Using this instruction sequence as an example, explain why each signal is needed.

4.13.6 [20] <§4.7> For the new hazard detection unit from 4.13.5, specify which

output signals it asserts in each of the fi rst fi ve cycles during the execution of this

code.

4.14 Th

is exercise is intended to help you understand the relationship between

delay slots, control hazards, and branch execution in a pipelined processor. In

this exercise, we assume that the following MIPS code is executed on a pipelined

processor with a 5-stage pipeline, full forwarding, and a predict-taken branch

predictor:

lw r2,0(r1)

label1: beq r2,r0,label2 # not taken once, then taken

lw r3,0(r2)

beq r3,r0,label1 # taken

add r1,r3,r1

label2: sw r1,0(r2)

4.14.1 [10] <§4.8> Draw the pipeline execution diagram for this code, assuming

there are no delay slots and that branches execute in the EX stage.

4.14.2 [10] <§4.8> Repeat 4.14.1, but assume that delay slots are used. In the

given code, the instruction that follows the branch is now the delay slot instruction

for that branch.

4.14.3 [20] <§4.8> One way to move the branch resolution one stage earlier is to

not need an ALU operation in conditional branches. Th

e branch instructions would

be “bez rd,label” and “bnez rd,label”, and it would branch if the register has

and does not have a zero value, respectively. Change this code to use these branch

instructions instead of beq. You can assume that register R8 is available for you

to use as a temporary register, and that an seq (set if equal) R-type instruction can

be used.

366

Chapter 4 The Processor

Section 4.8 describes how the severity of control hazards can be reduced by moving

branch execution into the ID stage. Th

is approach involves a dedicated comparator

in the ID stage, as shown in Figure 4.62. However, this approach potentially adds to the latency of the ID stage, and requires additional forwarding logic and hazard

detection.

4.14.4 [10] <§4.8> Using the fi rst branch instruction in the given code as an

example, describe the hazard detection logic needed to support branch execution

in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed to detect?

4.14.5 [10] <§4.8> For the given code, what is the speedup achieved by moving

branch execution into the ID stage? Explain your answer. In your speedup

calculation, assume that the additional comparison in the ID stage does not aff ect

clock cycle time.

4.14.6 [10] <§4.8> Using the fi rst branch instruction in the given code as an

example, describe the forwarding support that must be added to support branch

execution in the ID stage. Compare the complexity of this new forwarding unit to

the complexity of the existing forwarding unit in Figure 4.62.

4.15 Th

e importance of having a good branch predictor depends on how oft en

conditional branches are executed. Together with branch predictor accuracy, this

will determine how much time is spent stalling due to mispredicted branches. In

this exercise, assume that the breakdown of dynamic instructions into various

instruction categories is as follows:

R-Type

BEQ

JMP

LW

SW

40%

25%

5%

25%

5%

Also, assume the following branch predictor accuracies:

Always-Taken

Always-Not-Taken

2-Bit

45%

55%

85%

4.15.1 [10] <§4.8> Stall cycles due to mispredicted branches increase the

CPI. What is the extra CPI due to mispredicted branches with the always-taken

predictor? Assume that branch outcomes are determined in the EX stage, that there

are no data hazards, and that no delay slots are used.

4.15.2 [10] <§4.8> Repeat 4.15.1 for the “always-not-taken” predictor.

4.15.3 [10] <§4.8> Repeat 4.15.1 for for the 2-bit predictor.

4.15.4 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if

we could convert half of the branch instructions in a way that replaces a branch

instruction with an ALU instruction? Assume that correctly and incorrectly

predicted instructions have the same chance of being replaced.

4.17 Exercises

367

4.15.5 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if

we could convert half of the branch instructions in a way that replaced each branch

instruction with two ALU instructions? Assume that correctly and incorrectly

predicted instructions have the same chance of being replaced.

4.15.6 [10] <§4.8> Some branch instructions are much more predictable than

others. If we know that 80% of all executed branch instructions are easy-to-predict

loop-back branches that are always predicted correctly, what is the accuracy of the

2-bit predictor on the remaining 20% of the branch instructions?

4.16 Th

is exercise examines the accuracy of various branch predictors for the

following repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT

4.16.1 [5] <§4.8> What is the accuracy of always-taken and always-not-taken

predictors for this sequence of branch outcomes?

4.16.2 [5] <§4.8> What is the accuracy of the two-bit predictor for the fi rst 4

branches in this pattern, assuming that the predictor starts off in the bottom left

state from Figure 4.63 (predict not taken)?

4.16.3 [10] <§4.8> What is the accuracy of the two-bit predictor if this pattern is repeated forever?

4.16.4 [30] <§4.8> Design a predictor that would achieve a perfect accuracy if

this pattern is repeated forever. You predictor should be a sequential circuit with

one output that provides a prediction (1 for taken, 0 for not taken) and no inputs

other than the clock and the control signal that indicates that the instruction is a

conditional branch.

4.16.5 [10] <§4.8> What is the accuracy of your predictor from 4.16.4 if it is

given a repeating pattern that is the exact opposite of this one?

4.16.6 [20] <§4.8> Repeat 4.16.4, but now your predictor should be able to

eventually (aft er a warm-up period during which it can make wrong predictions)

start perfectly predicting both this pattern and its opposite. Your predictor should

have an input that tells it what the real outcome was. Hint: this input lets your

predictor determine which of the two repeating patterns it is given.

4.17 Th

is exercise explores how exception handling aff ects pipeline design. Th

e

fi rst three problems in this exercise refer to the following two instructions:

Instruction 1

Instruction 2

BNE R1, R2, Label

LW R1, 0(R1)

4.17.1 [5] <§4.9> Which exceptions can each of these instructions trigger? For

each of these exceptions, specify the pipeline stage in which it is detected.

368

Chapter 4 The Processor

4.17.2 [10] <§4.9> If there is a separate handler address for each exception, show

how the pipeline organization must be changed to be able to handle this exception.

You can assume that the addresses of these handlers are known when the processor

is designed.

4.17.3 [10] <§4.9> If the second instruction is fetched right aft er the fi rst

instruction, describe what happens in the pipeline when the fi rst instruction causes

the fi rst exception you listed in 4.17.1. Show the pipeline execution diagram from

the time the fi rst instruction is fetched until the time the fi rst instruction of the

exception handler is completed.

4.17.4 [20] <§4.9> In vectored exception handling, the table of exception handler

addresses is in data memory at a known (fi xed) address. Change the pipeline to

implement this exception handling mechanism. Repeat 4.17.3 using this modifi ed

pipeline and vectored exception handling.

4.17.5 [15] <§4.9> We want to emulate vectored exception handling (described

in 4.17.4) on a machine that has only one fi xed handler address. Write the code

that should be at that fi xed address. Hint: this code should identify the exception,

get the right address from the exception vector table, and transfer execution to that

handler.

4.18 In this exercise we compare the performance of 1-issue and 2-issue

processors, taking into account program transformations that can be made to

optimize for 2-issue execution. Problems in this exercise refer to the following loop

(written in C):

for(i=0;i!=j;i+=2)

b[i]=a[i]–a[i+1];

When writing MIPS code, assume that variables are kept in registers as follows, and

that all registers except those indicated as Free are used to keep various variables,

so they cannot be used for anything else.

i

j

a

b

c

Free

R5

R6

R1

R2

R3

R10, R11, R12

4.18.1 [10] <§4.10> Translate this C code into MIPS instructions. Your translation

should be direct, without rearranging instructions to achieve better performance.

4.18.2 [10] <§4.10> If the loop exits aft er executing only two iterations, draw a

pipeline diagram for your MIPS code from 4.18.1 executed on a 2-issue processor

shown in Figure 4.69. Assume the processor has perfect branch prediction and can fetch any two instructions (not just consecutive instructions) in the same cycle.

4.18.3 [10] <§4.10> Rearrange your code from 4.18.1 to achieve better

performance on a 2-issue statically scheduled processor from Figure 4.69.

4.17 Exercises

369

4.18.4 [10] <§4.10> Repeat 4.18.2, but this time use your MIPS code from 4.18.3.

4.18.5 [10] <§4.10> What is the speedup of going from a 1-issue processor to

a 2-issue processor from Figure 4.69? Use your code from 4.18.1 for both 1-issue and 2-issue, and assume that 1,000,000 iterations of the loop are executed. As in

4.18.2, assume that the processor has perfect branch predictions, and that a 2-issue

processor can fetch any two instructions in the same cycle.

4.18.6 [10] <§4.10> Repeat 4.18.5, but this time assume that in the 2-issue

processor one of the instructions to be executed in a cycle can be of any kind, and

the other must be a non-memory instruction.

4.19 Th

is exercise explores energy effi

ciency and its relationship with performance.

Problems in this exercise assume the following energy consumption for activity in

Instruction memory, Registers, and Data memory. You can assume that the other

components of the datapath spend a negligible amount of energy.

I-Mem

1 Register Read

Register Write

D-Mem Read

D-Mem Write

140pJ

70pJ

60pJ

140pJ

120pJ

Assume that components in the datapath have the following latencies. You can

assume that the other components of the datapath have negligible latencies.

I-Mem

Control

Register Read or Write

ALU

D-Mem Read or Write

200ps

150ps

90ps

90ps

250ps

4.19.1 [10] <§§4.3, 4.6, 4.14> How much energy is spent to execute an ADD

instruction in a single-cycle design and in the 5-stage pipelined design?

4.19.2 [10] <§§4.6, 4.14> What is the worst-case MIPS instruction in terms of

energy consumption, and what is the energy spent to execute it?

4.19.3 [10] <§§4.6, 4.14> If energy reduction is paramount, how would you

change the pipelined design? What is the percentage reduction in the energy spent

by an LW instruction aft er this change?

4.19.4 [10] <§§4.6, 4.14> What is the performance impact of your changes from

4.19.3?

4.19.5 [10] <§§4.6, 4.14> We can eliminate the MemRead control signal and have

the data memory be read in every cycle, i.e., we can permanently have MemRead=1.

Explain why the processor still functions correctly aft er this change. What is the

eff ect of this change on clock frequency and energy consumption?

4.19.6 [10] <§§4.6, 4.14> If an idle unit spends 10% of the power it would spend

if it were active, what is the energy spent by the instruction memory in each cycle?

What percentage of the overall energy spent by the instruction memory does this

idle energy represent?

370

Chapter 4 The Processor

Answers to §4.1, page 248: 3 of 5: Control, Datapath, Memory. Input and Output are missing.

§4.2, page 251: false. Edge-triggered state elements make simultaneous reading and

Check Yourself

writing both possible and unambiguous.

§4.3, page 257: I. a. II. c.

§4.4, page 272: Yes, Branch and ALUOp0 are identical. In addition, MemtoReg and

RegDst are inverses of one another. You don’t need an inverter; simply use the other

signal and fl ip the order of the inputs to the multiplexor!

§4.5, page 285: I. Stall on the lw result. 2. Bypass the fi rst add result written into

$t1. 3. No stall or bypass required.

§4.6, page 298: Statements 2 and 4 are correct; the rest are incorrect.

§4.8, page 324: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.

§4.9, page 332: Th

e fi rst instruction, since it is logically executed before the others.

§4.10, page 344: 1. Both. 2. Both. 3. Soft ware. 4. Hardware. 5. Hardware. 6.

Hardware. 7. Both. 8. Hardware. 9. Both.

§4.11, page 353: First two are false and the last two are true.

This page intentionally left blank

5

 Ideally one would desire an

Large and Fast:

 indefi nitely large memory

 capacity such that any

Exploiting Memory

 particular … word would be

 immediately available. … We

Hierarchy

 are … forced to recognize the

 possibility of constructing a

5.1 Introduction

374

 hierarchy of memories, each

5.2 Memory

Technologies

378

 of which has greater capacity

5.3

The Basics of Caches 383

 than the preceding but which

5.4

Measuring and Improving Cache

 is less quickly accessible.

Performance 398

5.5

Dependable Memory Hierarchy 418

A. W. Burks, H. H. Goldstine, and

J. von Neumann

5.6 Virtual

Machines

424

 Preliminary Discussion of the Logical Design of an

5.7 Virtual

Memory

427

 Electronic Computing Instrument, 1946

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

5.8

A Common Framework for Memory Hierarchy 454

5.9

Using a Finite-State Machine to Control a Simple Cache 461

5.10

Parallelism and Memory Hierarchies: Cache Coherence 466

5.11

Parallelism and Memory Hierarchy: Redundant Arrays of

Inexpensive Disks 470

5.12

Advanced Material: Implementing Cache Controllers 470

5.13

Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory

Hierarchies 471

5.14

Going Faster: Cache Blocking and Matrix Multiply 475

5.15

Fallacies and Pitfalls 478

5.16 Concluding

Remarks

482

5.17

Historical Perspective and Further Reading 483

5.18 Exercises

483

The Five Classic Components of a Computer

374

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited

amounts of fast memory. Th

e topics in this chapter aid programmers by creating

that illusion. Before we look at creating the illusion, let’s consider a simple analogy

that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical

developments in computer hardware. You are sitting at a desk in a library with

a collection of books that you have pulled from the shelves and are examining.

You fi nd that several of the important computers that you need to write about are

described in the books you have, but there is nothing about the EDSAC. Th

erefore,

you go back to the shelves and look for an additional book. You fi nd a book on

early British computers that covers the EDSAC. Once you have a good selection of

books on the desk in front of you, there is a good probability that many of the topics

you need can be found in them, and you may spend most of your time just using

the books on the desk without going back to the shelves. Having several books on

the desk in front of you saves time compared to having only one book there and

constantly having to go back to the shelves to return it and take out another.

Th

e same principle allows us to create the illusion of a large memory that we

can access as fast as a very small memory. Just as you did not need to access all the

books in the library at once with equal probability, a program does not access all of

its code or data at once with equal probability. Otherwise, it would be impossible

to make most memory accesses fast and still have large memory in computers, just

as it would be impossible for you to fi t all the library books on your desk and still

fi nd what you wanted quickly.

Th

is principle of locality underlies both the way in which you did your work in

the library and the way that programs operate. Th

e principle of locality states that

programs access a relatively small portion of their address space at any instant of

time, just as you accessed a very small portion of the library’s collection. Th

ere are

two diff erent types of locality:

temporal locality Th

e

■ Temporal locality (locality in time): if an item is referenced, it will tend to be

principle stating that if a

referenced again soon. If you recently brought a book to your desk to look at,

data location is referenced

you will probably need to look at it again soon.

then it will tend to be

referenced again soon.

■ Spatial locality (locality in space): if an item is referenced, items whose

addresses are close by will tend to be referenced soon. For example, when

spatial locality Th

e

you brought out the book on early English computers to fi nd out about the

locality principle stating

EDSAC, you also noticed that there was another book shelved next to it about

that if a data location is

early mechanical computers, so you also brought back that book and, later

referenced, data locations

on, found something useful in that book. Libraries put books on the same

with nearby addresses

topic together on the same shelves to increase spatial locality. We’ll see how

will tend to be referenced

soon.

memory hierarchies use spatial locality a little later in this chapter.

5.1 Introduction

375

Current

Speed

Processor

Size

Cost ($/bit)

technology

Fastest

Memory

Smallest

Highest

SRAM

Memory

DRAM

Slowest

Memory

Biggest

Lowest

Magnetic disk

FIGURE 5.1

The basic structure of a memory hierarchy. By implementing the memory system as

a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see Section 5.2.

Just as accesses to books on the desk naturally exhibit locality, locality in

programs arises from simple and natural program structures. For example,

most programs contain loops, so instructions and data are likely to be accessed

repeatedly, showing high amounts of temporal locality. Since instructions are

normally accessed sequentially, programs also show high spatial locality. Accesses

to data also exhibit a natural spatial locality. For example, sequential accesses to

elements of an array or a record will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory

of a computer as a memory hierarchy. A memory hierarchy consists of multiple memory hierarchy levels of memory with diff erent speeds and sizes. Th

e faster memories are more A structure that uses

expensive per bit than the slower memories and thus are smaller.

multiple levels of

Figure 5.1 shows the faster memory is close to the processor and the slower, memories; as the distance from the processor

less expensive memory is below it. Th

e goal is to present the user with as much increases, the size of the

memory as is available in the cheapest technology, while providing access at the memories and the access speed off ered by the fastest memory.

time both increase.

Th

e data is similarly hierarchical: a level closer to the processor is generally a

subset of any level further away, and all the data is stored at the lowest level. By

analogy, the books on your desk form a subset of the library you are working in,

which is in turn a subset of all the libraries on campus. Furthermore, as we move

away from the processor, the levels take progressively longer to access, just as we

might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between

only two adjacent levels at a time, so we can focus our attention on just two levels.

376

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Processor

Data is transferred

block (or line) Th

e

FIGURE 5.2

Every pair of levels in the memory hierarchy can be thought of as having an

upper and lower level. Within each level, the unit of information that is present or not is called a block or minimum unit of

a line. Usually we transfer an entire block when we copy something between levels.

information that can

be either present or not

present in a cache.

Th

e upper level—the one closer to the processor—is smaller and faster than the lower

level, since the upper level uses technology that is more expensive. Figure 5.2 shows hit rate Th

e fraction of that the minimum unit of information that can be either present or not present in

memory accesses found the two-level hierarchy is called a block or a line; in our library analogy, a block of in a level of the memory information is one book.

hierarchy.

If the data requested by the processor appears in some block in the upper level,

this is called a hit (analogous to your fi nding the information in one of the books

miss rate Th

e fraction

of memory accesses not

on your desk). If the data is not found in the upper level, the request is called a miss.

found in a level of the

Th

e lower level in the hierarchy is then accessed to retrieve the block containing the

memory hierarchy.

requested data. (Continuing our analogy, you go from your desk to the shelves to

fi nd the desired book.) Th

e hit rate, or hit ratio, is the fraction of memory accesses

hit time Th

e time

found in the upper level; it is oft en used as a measure of the performance of the

required to access a level

memory hierarchy. Th

e miss rate (1−hit rate) is the fraction of memory accesses

of the memory hierarchy,

not found in the upper level.

including the time needed

Since performance is the major reason for having a memory hierarchy, the time

to determine whether the

to service hits and misses is important. Hit time is the time to access the upper level

access is a hit or a miss.

of the memory hierarchy, which includes the time needed to determine whether

the access is a hit or a miss (that is, the time needed to look through the books on

miss penalty Th

e time

the desk). Th

e miss penalty is the time to replace a block in the upper level with

required to fetch a block

into a level of the memory

the corresponding block from the lower level, plus the time to deliver this block to

hierarchy from the lower

the processor (or the time to get another book from the shelves and place it on the

level, including the time

desk). Because the upper level is smaller and built using faster memory parts, the

to access the block,

hit time will be much smaller than the time to access the next level in the hierarchy,

transmit it from one level

which is the major component of the miss penalty. (Th

e time to examine the books

to the other, insert it in

on the desk is much smaller than the time to get up and get a new book from the

the level that experienced

shelves.)

the miss, and then pass

the block to the requestor.

5.1 Introduction

377

As we will see in this chapter, the concepts used to build memory systems aff ect

many other aspects of a computer, including how the operating system manages

memory and I/O, how compilers generate code, and even how applications use

the computer. Of course, because all programs spend much of their time accessing

memory, the memory system is necessarily a major factor in determining

performance. Th

e reliance on memory hierarchies to achieve performance

has meant that programmers, who used to be able to think of memory as a fl at,

random access storage device, now need to understand that memory is a hierarchy

to get good performance. We show how important this understanding is in later

examples, such as Figure 5.18 on page 408, and Section 5.14, which shows how to double matrix multiply performance.

Since memory systems are critical to performance, computer designers devote a

great deal of attention to these systems and develop sophisticated mechanisms for

improving the performance of the memory system. In this chapter, we discuss the

major conceptual ideas, although we use many simplifi cations and abstractions to

keep the material manageable in length and complexity.

Programs exhibit both temporal locality, the tendency to reuse recently

accessed data items, and spatial locality, the tendency to reference data

The BIG

items that are close to other recently accessed items. Memory hierarchies

Picture

take advantage of temporal locality by keeping more recently accessed

data items closer to the processor. Memory hierarchies take advantage of

spatial locality by moving blocks consisting of multiple contiguous words

in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster

memory technologies close to the processor. Th

us, accesses that hit in the

highest level of the hierarchy can be processed quickly. Accesses that miss

go to lower levels of the hierarchy, which are larger but slower. If the hit

rate is high enough, the memory hierarchy has an eff ective access time

close to that of the highest (and fastest) level and a size equal to that of the

lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data

cannot be present in level i unless it is also present in level i ⫹ 1.

Which of the following statements are generally true?

Check

Yourself

1. Memory hierarchies take advantage of temporal locality.

2. On a read, the value returned depends on which blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.

4. Most of the capacity of the memory hierarchy is at the lowest level.

378

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

CPU

Increasing distance

Level 1

from the CPU in

access time

Levels in the

Level 2

memory hierarchy

Level n

Size of the memory at each level

FIGURE 5.3

This diagram shows the structure of a memory hierarchy: as the distance

from the processor increases, so does the size. Th

is structure, with the appropriate operating

mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the hierarchy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.

Although the local disk is normally the bottom of the hierarchy, some systems use tape or a fi le server over a local area network as the next levels of the hierarchy.

 5.2 Memory

Technologies

Th

ere are four primary technologies used today in memory hierarchies. Main

memory is implemented from DRAM (dynamic random access memory), while

levels closer to the processor (caches) use SRAM (static random access memory).

DRAM is less costly per bit than SRAM, although it is substantially slower. Th

e

price diff erence arises because DRAM uses signifi cantly less area per bit of memory,

and DRAMs thus have larger capacity for the same amount of silicon; the speed

diff erence arises from several factors described in Section B.9 of Appendix B.

Th

e third technology is fl ash memory. Th

is nonvolatile memory is the secondary

memory in Personal Mobile Devices. Th

e fourth technology, used to implement

the largest and slowest level in the hierarchy in servers, is magnetic disk. Th

e access

time and price per bit vary widely among these technologies, as the table below

shows, using typical values for 2012:

Memory technology

Typical access time

$ per GiB in 2012

SRAM semiconductor memory

0.5–2.5 ns

$500–$1000

DRAM semiconductor memory

50–70 ns

$10–$20

Flash semiconductor memory

5,000–50,000 ns

$0.75–$1.00

Magnetic disk

5,000,000–20,000,000 ns

$0.05–$0.10

We describe each memory technology in the remainder of this section.

 5.2

Memory

Technologies

379

SRAM Technology

SRAMs are simply integrated circuits that are memory arrays with (usually) a

single access port that can provide either a read or a write. SRAMs have a fi xed

access time to any datum, though the read and write access times may diff er.

SRAMs don’t need to refresh and so the access time is very close to the cycle

time. SRAMs typically use six to eight transistors per bit to prevent the information

from being disturbed when read. SRAM needs only minimal power to retain the

charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either

their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all

levels of caches are integrated onto the processor chip, so the market for separate

SRAM chips has nearly evaporated.

DRAM Technology

In a SRAM, as long as power is applied, the value can be kept indefi nitely. In a

dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor.

A single transistor is then used to access this stored charge, either to read the

value or to overwrite the charge stored there. Because DRAMs use only a single

transistor per bit of storage, they are much denser and cheaper per bit than SRAM.

As DRAMs store the charge on a capacitor, it cannot be kept indefi nitely and must

periodically be refreshed. Th

at is why this memory structure is called dynamic, as

opposed to the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th

e charge

can be kept for several milliseconds. If every bit had to be read out of the DRAM

and then written back individually, we would constantly be refreshing the DRAM,

leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding

structure, and this allows us to refresh an entire row (which shares a word line)

with a read cycle followed immediately by a write cycle.

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows how the density, cost, and access time of DRAMs have changed over the years.

Th

e row organization that helps with refresh also helps with performance. To

improve performance, DRAMs buff er rows for repeated access. Th

e buff er acts

like an SRAM; by changing the address, random bits can be accessed in the buff er

until the next row access. Th

is capability improves the access time signifi cantly,

since the access time to bits in the row is much lower. Making the chip wider also

improves the memory bandwidth of the chip. When the row is in the buff er, it

can be transferred by successive addresses at whatever the width of the DRAM is

(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address

within the buff er.

To further improve the interface to processors, DRAMs added clocks and are

properly called Synchronous DRAMs or SDRAMs. Th

e advantage of SDRAMs

is that the use of a clock eliminates the time for the memory and processor to

synchronize. Th

e speed advantage of synchronous DRAMs comes from the ability

to transfer the bits in the burst without having to specify additional address bits.

380

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Bank

Column

Rd/Wr

Act

Pre

Row

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closes a bank. A row address is sent with an Act (activate), which causes the row to transfer to a buff er. When the row is in the buff er, it can be transferred by successive column addresses at whatever the width of the DRAM is (typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command, as well as block transfers, is synchronized with a clock.

Average column

Total access time to

access time to

Year introduced

Chip size

$ per GiB

a new row/column

existing row

1980

64 Kibibit

$1,500,000

250 ns

150 ns

1983

256 Kibibit

$500,000

185 ns

100 ns

1985

1 Mebibit

$200,000

135 ns

40 ns

1989

4 Mebibit

$50,000

110 ns

40 ns

1992

16 Mebibit

$15,000

90 ns

30 ns

1996

64 Mebibit

$10,000

60 ns

12 ns

1998

128 Mebibit

$4,000

60 ns

10 ns

2000

256 Mebibit

$1,000

55 ns

7 ns

2004

512 Mebibit

$250

50 ns

5 ns

2007

1 Gibibit

$50

45 ns

1.25 ns

2010

2 Gibibit

$30

40 ns

1 ns

2012

4 Gibibit

$1

35 ns

0.8 ns

FIGURE 5.5

DRAM size increased by multiples of four approximately once every three

years until 1996, and thereafter considerably slower. Th

e improvements in access time have been

slower but continuous, and cost roughly tracks density improvements, although cost is oft en aff ected by other issues, such as availability and demand. Th

e cost per gibibyte is not adjusted for infl ation.

Instead, the clock transfers the successive bits in a burst. Th

e fastest version is called

 Double Data Rate (DDR) SDRAM. Th

e name means data transfers on both the

rising and falling edge of the clock, thereby getting twice as much bandwidth as you

might expect based on the clock rate and the data width. Th

e latest version of this

technology is called DDR4. A DDR4-3200 DRAM can do 3200 million transfers

per second, which means it has a 1600 MHz clock.

Sustaining that much bandwidth requires clever organization inside the DRAM.

Instead of just a faster row buff er, the DRAM can be internally organized to read or

 5.2

Memory

Technologies

381

write from multiple banks, with each having its own row buff er. Sending an address

to several banks permits them all to read or write simultaneously. For example,

with four banks, there is just one access time and then accesses rotate between

the four banks to supply four times the bandwidth. Th

is rotating access scheme is

called address interleaving.

Although Personal Mobile Devices like the iPad (see Chapter 1) use individual

DRAMs, memory for servers are commonly sold on small boards called dual inline

 memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are

normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-

3200 SDRAMs could transfer at 8 ⫻ 3200 ⫽ 25,600 megabytes per second. Such

DIMMs are named aft er their bandwidth: PC25600. Since a DIMM can have so

many DRAM chips that only a portion of them are used for a particular transfer, we

need a term to refer to the subset of chips in a DIMM that share common address

lines. To avoid confusion with the internal DRAM names of row and banks, we use

the term memory rank for such a subset of chips in a DIMM.

Elaboration: One way to measure the performance of the memory system behind the

caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of

long vector operations. They have no temporal locality and they access arrays that are

larger than the cache of the computer being tested.

Flash Memory

Flash memory is a type of electrically erasable programmable read-only memory

(EEPROM).

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out

fl ash memory bits. To cope with such limits, most fl ash products include a controller

to spread the writes by remapping blocks that have been written many times to less

trodden blocks. Th

is technique is called wear leveling. With wear leveling, personal

mobile devices are very unlikely to exceed the write limits in the fl ash. Such wear

leveling lowers the potential performance of fl ash, but it is needed unless higher-

level soft ware monitors block wear. Flash controllers that perform wear leveling can

also improve yield by mapping out memory cells that were manufactured incorrectly.

Disk Memory

As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which rotate on a spindle at 5400 to 15,000 revolutions per minute. Th

e metal platters are

covered with magnetic recording material on both sides, similar to the material found

on a cassette or videotape. To read and write information on a hard disk, a movable arm

containing a small electromagnetic coil called a read-write head is located just above

each surface. Th

e entire drive is permanently sealed to control the environment inside track One of thousands the drive, which, in turn, allows the disk heads to be much closer to the drive surface.

of concentric circles that

Each disk surface is divided into concentric circles, called tracks. Th

ere are makes up the surface of a

magnetic disk.

typically tens of thousands of tracks per surface. Each track is in turn divided into

382

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

sector One of the

sectors that contain the information; each track may have thousands of sectors.

segments that make up a

Sectors are typically 512 to 4096 bytes in size. Th

e sequence recorded on the

track on a magnetic disk;

magnetic media is a sector number, a gap, the information for that sector including

a sector is the smallest

error correction code (see Section 5.5), a gap, the sector number of the next sector,

amount of information

and so on.

that is read or written on

Th

e disk heads for each surface are connected together and move in conjunction,

a disk.

so that every head is over the same track of every surface. Th

e term cylinder is used

to refer to all the tracks under the heads at a given point on all surfaces.

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. Th

e diameter of

today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

To access data, the operating system must direct the disk through a three-stage

process. Th

e fi rst step is to position the head over the proper track. Th

is operation is

seek Th

e process of

called a seek, and the time to move the head to the desired track is called the seek time.

positioning a read/write

Disk manufacturers report minimum seek time, maximum seek time, and average

head over the proper

seek time in their manuals. Th

e fi rst two are easy to measure, but the average is open to

track on a disk.

wide interpretation because it depends on the seek distance. Th

e industry calculates

average seek time as the sum of the time for all possible seeks divided by the number

of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but,

depending on the application and scheduling of disk requests, the actual average seek

time may be only 25% to 33% of the advertised number because of locality of disk

5.3 The Basics of Caches

383

references. Th

is locality arises both because of successive accesses to the same fi le and

because the operating system tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sector

to rotate under the read/write head. Th

is time is called the rotational latency or rotational latency Also

rotational delay. Th

e average latency to the desired information is halfway around called rotational delay.

the disk. Disks rotate at 5400 RPM to 15,000 RPM. Th

e average rotational latency Th e time required for

at 5400 RPM is

the desired sector of a

disk to rotate under the

0.5 rotation

0.5 rotatio

on

read/write head; usually

Average rotational latency ⫽

⫽

assumed to be half the

5400 RPM

⎛ seconds⎞

5400 RPM/ 60

⎜

⎟

rotation time.

⎝⎜

⎟

minute ⎠⎟

⫽ 0.0056 seconds ⫽ 5.6 ms

Th

e last component of a disk access, transfer time, is the time to transfer a block

of bits. Th

e transfer time is a function of the sector size, the rotation speed, and the

recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec.

One complication is that most disk controllers have a built-in cache that stores

sectors as they are passed over; transfer rates from the cache are typically higher,

and were up to 750 MB/sec (6 Gbit/sec) in 2012.

Alas, where block numbers are located is no longer intuitive. Th

e assumptions of

the sector-track-cylinder model above are that nearby blocks are on the same track,

blocks in the same cylinder take less time to access since there is no seek time,

and some tracks are closer than others. Th

e reason for the change was the raising

of the level of the disk interfaces. To speed-up sequential transfers, these higher-

level interfaces organize disks more like tapes than like random access devices.

Th

e logical blocks are ordered in serpentine fashion across a single surface, trying

to capture all the sectors that are recorded at the same bit density to try to get best

performance. Hence, sequential blocks may be on diff erent tracks.

In summary, the two primary diff erences between magnetic disks and

semiconductor memory technologies are that disks have a slower access time because

they are mechanical devices—fl ash is 1000 times as fast and DRAM is 100,000 times

as fast—yet they are cheaper per bit because they have very high storage capacity at a

modest cost—disk is 10 to 100 time cheaper. Magnetic disks are nonvolatile like fl ash,

but unlike fl ash there is no write wear-out problem. However, fl ash is much more

rugged and hence a better match to the jostling inherent in personal mobile devices.

 5.3

The Basics of Caches

 Cache: a safe place

 for hiding or storing

 things.

In our library example, the desk acted as a cache—a safe place to store things Webster’s New World (books) that we needed to examine. Cache was the name chosen to represent the Dictionary of the level of the memory hierarchy between the processor and main memory in the fi rst American Language, commercial computer to have this extra level. Th

e memories in the datapath in Th ird College Edition,

Chapter 4 are simply replaced by caches. Today, although this remains the dominant

1988

384

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

use of the word cache, the term is also used to refer to any storage managed to take

advantage of locality of access. Caches fi rst appeared in research computers in the

early 1960s and in production computers later in that same decade; every general-

purpose computer built today, from servers to low-power embedded processors,

includes caches.

In this section, we begin by looking at a very simple cache in which the processor

requests are each one word and the blocks also consist of a single word. (Readers

already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows such a simple cache, before and aft er requesting a data item that is not initially in

the cache. Before the request, the cache contains a collection of recent references

X , X , …, X

, and the processor requests a word X that is not in the cache. Th

is

1

2

 n⫺1

 n

request results in a miss, and the word X is brought from memory into the cache.

 n

In looking at the scenario in Figure 5.7, there are two questions to answer: How do we know if a data item is in the cache? Moreover, if it is, how do we fi nd it? Th

e

answers are related. If each word can go in exactly one place in the cache, then it

is straightforward to fi nd the word if it is in the cache. Th

e simplest way to assign

a location in the cache for each word in memory is to assign the cache location

direct-mapped cache

based on the address of the word in memory. Th

is cache structure is called direct

A cache structure in

mapped, since each memory location is mapped directly to exactly one location in

which each memory

the cache. Th

e typical mapping between addresses and cache locations for a direct-

location is mapped to

mapped cache is usually simple. For example, almost all direct-mapped caches use

exactly one location in the

this mapping to fi nd a block:

cache.

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be

computed simply by using the low-order log (cache size in blocks) bits of the

2

address. Th

us, an 8-block cache uses the three lowest bits (8 ⫽ 23) of the block

address. For example, Figure 5.8 shows how the memory addresses between 1

ten

(00001) and 29 (11101) map to locations 1 (001) and 5 (101) in a

two

ten

two

ten

two

ten

two

direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of diff erent

memory locations, how do we know whether the data in the cache corresponds

to a requested word? Th

at is, how do we know whether a requested word is in the

cache or not? We answer this question by adding a set of tags to the cache. Th

e

tag A fi eld in a table used

for a memory hierarchy

tags contain the address information required to identify whether a word in the

that contains the address

cache corresponds to the requested word. Th

e tag needs only to contain the upper

information required

portion of the address, corresponding to the bits that are not used as an index into

to identify whether the

the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address associated block in the

bits in the tag, since the lower 3-bit index fi eld of the address selects the block.

hierarchy corresponds to

Architects omit the index bits because they are redundant, since by defi nition the

a requested word.

index fi eld of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid

information. For instance, when a processor starts up, the cache does not have good

data, and the tag fi elds will be meaningless. Even aft er executing many instructions,

5.3 The Basics of Caches

385

X4

X4

X1

X1

X n – 2

X n – 2

X n – 1

X n – 1

X2

X2

X n

X3

X3

a. Before the reference to X n

b. After the reference to X n

FIGURE 5.7

The cache just before and just after a reference to a word X that is not

 n

initially in the cache. Th

is reference causes a miss that forces the cache to fetch X from memory and

 n

insert it into the cache.

Cache

000

001

010

011

100

101

110

111

00001

00101

01001

01101

10001

10101

11001

11101

Memory

FIGURE 5.8

A direct-mapped cache with eight entries showing the addresses of memory

words between 0 and 31 that map to the same cache locations. Because there are eight

words in the cache, an address X maps to the direct-mapped cache word X modulo 8. Th

at is, the low-order

log (8) ⫽ 3 bits are used as the cache index. Th

us, addresses 00001 , 01001 , 10001 , and 11001 all map

2

two

two

two

two

to entry 001 of the cache, while addresses 00101 , 01101 , 10101 , and 11101 all map to entry 101

two

two

two

two

two

two

of the cache.

386

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

some of the cache entries may still be empty, as in Figure 5.7. Th

us, we need to

know that the tag should be ignored for such entries. Th

e most common method is

valid bit A fi eld in

to add a valid bit to indicate whether an entry contains a valid address. If the bit is

the tables of a memory

not set, there cannot be a match for this block.

hierarchy that indicates

For the rest of this section, we will focus on explaining how a cache deals with

that the associated block

reads. In general, handling reads is a little simpler than handling writes, since reads

in the hierarchy contains

do not have to change the contents of the cache. Aft er seeing the basics of how

valid data.

reads work and how cache misses can be handled, we’ll examine the cache designs

for real computers and detail how these caches handle writes.

The BIG

Caching is perhaps the most important example of the big idea of

Picture

prediction. It relies on the principle of locality to try to fi nd the

desired data in the higher levels of the memory hierarchy, and provides

mechanisms to ensure that when the prediction is wrong it fi nds and

uses the proper data from the lower levels of the memory hierarchy. Th

e

hit rates of the cache prediction on modern computers are oft en higher

than 95% (see Figure 5.47).

Accessing a Cache

Below is a sequence of nine memory references to an empty eight-block cache,

including the action for each reference. Figure 5.9 shows how the contents of the cache change on each miss. Since there are eight blocks in the cache, the low-order

three bits of an address give the block number:

Decimal address

Binary address

Hit or miss

Assigned cache block

of reference

of reference

in cache

(where found or placed)

22

10110

mod 8) = 110

two

miss (5.6b)

(10110two

two

26

11010

mod 8) = 010

two

miss (5.6c)

(11010two

two

22

10110

mod 8) = 110

two

hit

(10110two

two

26

11010

mod 8) = 010

two

hit

(11010two

two

16

10000

mod 8) = 000

two

miss (5.6d)

(10000two

two

3

00011

mod 8) = 011

two

miss (5.6e)

(00011two

two

16

10000

mod 8) = 000

two

hit

(10000two

two

18

10010

mod 8) = 010

two

miss (5.6f)

(10010two

two

16

10000

mod 8) = 000

two

hit

(10000two

two

Since the cache is empty, several of the fi rst references are misses; the caption of

Figure 5.9 describes the actions for each memory reference. On the eighth reference

5.3 The Basics of Caches

387

Index

V

Tag

Data

Index

V

Tag

Data

000

N

000

N

001

N

001

N

010

N

010

N

011

N

011

N

100

N

100

N

101

N

101

N

110

N

110

Y

10two

Memory (10110two)

111

N

111

N

a. The initial state of the cache after power-on

b. After handling a miss of address (10110two)

Index

V

Tag

Data

Index

V

Tag

Data

000

N

000

Y

10two

Memory (10000two)

001

N

001

N

010

Y

11two

Memory (11010two)

010

Y

11two

Memory (11010two)

011

N

011

N

100

N

100

N

101

N

101

N

110

Y

10two

Memory (10110two)

110

Y

10two

Memory (10110two)

111

N

111

N

c. After handling a miss of address (11010two)

d. After handling a miss of address (10000two)

Index

V

Tag

Data

Index

V

Tag

Data

000

Y

10two

Memory (10000two)

000

Y

10two

Memory (10000two)

001

N

001

N

010

Y

11

Memory (11010

two

two)

010

Y

10two

Memory (10010two)

011

Y

00two

Memory (00011two)

011

Y

00two

Memory (00011two)

100

N

100

N

101

N

101

N

110

Y

10two

Memory (10110two)

110

Y

10two

Memory (10110two)

111

N

111

N

e. After handling a miss of address (00011two)

f. After handling a miss of address (10010two)

FIGURE 5.9

The cache contents are shown after each reference request that misses, with the index and tag fi elds shown in binary for the sequence of addresses on page 386. Th

e cache is initially empty, with all valid bits (V entry in cache)

turned off (N). Th

e processor requests the following addresses: 10110 (miss), 11010 (miss), 10110 (hit), 11010 (hit), 10000 (miss), two

two

two

two

two

00011 (miss), 10000 (hit), 10010 (miss), and 10000 (hit). Th

e fi gures show the cache contents aft er each miss in the sequence has been

two

two

two

two

handled. When address 10010 (18) is referenced, the entry for address 11010 (26) must be replaced, and a reference to 11010 will cause a two

two

two

subsequent miss. Th

e tag fi eld will contain only the upper portion of the address. Th

e full address of a word contained in cache block i with tag

fi eld j for this cache is j ⫻ 8 ⫹ i, or equivalently the concatenation of the tag fi eld j and the index i. For example, in cache f above, index 010

two

has tag 10 and corresponds to address 10010 .

two

two

388

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

we have confl icting demands for a block. Th

e word at address 18 (10010) should

two

be brought into cache block 2 (010). Hence, it must replace the word at address

two

26 (11010), which is already in cache block 2 (010). Th

is behavior allows a

two

two

cache to take advantage of temporal locality: recently referenced words replace less

recently referenced words.

Th

is situation is directly analogous to needing a book from the shelves and

having no more space on your desk—some book already on your desk must be

returned to the shelves. In a direct-mapped cache, there is only one place to put the

newly requested item and hence only one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits

of an address can be used to fi nd the unique cache entry to which the address could

map. Figure 5.10 shows how a referenced address is divided into

■ A t ag fi eld, which is used to compare with the value of the tag fi eld of the

cache

■ A cache index, which is used to select the block

Th

e index of a cache block, together with the tag contents of that block, uniquely

specifi es the memory address of the word contained in the cache block. Because

the index fi eld is used as an address to reference the cache, and because an n-bit

fi eld has 2 n values, the total number of entries in a direct-mapped cache must be a

power of 2. In the MIPS architecture, since words are aligned to multiples of four

bytes, the least signifi cant two bits of every address specify a byte within a word.

Hence, the least signifi cant two bits are ignored when selecting a word in the block.

Th

e total number of bits needed for a cache is a function of the cache size and

the address size, because the cache includes both the storage for the data and the

tags. Th

e size of the block above was one word, but normally it is several. For the

following situation:

■ 32-bit addresses

■ A direct-mapped cache

■ Th

e cache size is 2 n blocks, so n bits are used for the index

■ Th

e block size is 2 m words (2 m+2 bytes), so m bits are used for the word within the block, and two bits are used for the byte part of the address

the size of the tag fi eld is

32 ⫺ (n ⫹ m ⫹ 2).

Th

e total number of bits in a direct-mapped cache is

2 n ⫻ (block size ⫹ tag size ⫹ valid fi eld size).

5.3 The Basics of Caches

389

Address (showing bit positions)

31 30

13 12 11

2 1 0

Byte

offset

Hit

20

10

Tag

Data

Index

Index

Valid Tag

Data

0

1

2

1021

1022

1023

20

32

=

FIGURE 5.10

For this cache, the lower portion of the address is used to select a cache

entry consisting of a data word and a tag. Th

is cache holds 1024 words or 4 KiB. We assume 32-bit

addresses in this chapter. Th

e tag from the cache is compared against the upper portion of the address to

determine whether the entry in the cache corresponds to the requested address. Because the cache has 210 (or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 −10 − 2 = 20 bits to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs.

Since the block size is 2 m words (2 m⫹5 bits), and we need 1 bit for the valid fi eld, the number of bits in such a cache is

2 n ⫻ (2 m ⫻ 32 ⫹ (32 ⫺ n ⫺ m ⫺ 2) ⫹ 1) ⫽ 2 n ⫻ (2 m ⫻ 32 ⫹ 31 ⫺ n ⫺ m).

Although this is the actual size in bits, the naming convention is to exclude the size

of the tag and valid fi eld and to count only the size of the data. Th

us, the cache in

Figure 5.10 is called a 4 KiB cache.

390

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of

EXAMPLE

data and 4-word blocks, assuming a 32-bit address?

We know that 16 KiB is 4096 (212) words. With a block size of 4 words (22),

ANSWER

there are 1024 (210) blocks. Each block has 4 ⫻ 32 or 128 bits of data plus a

tag, which is 32 ⫺ 10 ⫺ 2 ⫺ 2 bits, plus a valid bit. Th

us, the total cache size is

210 ⫻ (4 ⫻ 32 ⫹ (32 ⫺ 10 ⫺ 2 ⫺ 2) ⫹ 1) ⫽ 210 ⫻ 147 ⫽ 147 Kibibits

or 18.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the

cache is about 1.15 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block

EXAMPLE

number does byte address 1200 map?

We saw the formula on page 384. Th

e block is given by

ANSWER

(Block address) modulo (Number of blocks in the cache)

where the address of the block is

Byte address

Bytes per block

Notice that this block address is the block containing all addresses between

⎡ Byte address ⎤

⎢

⎥

Bytes per block

⎢Bytes per block

⎣

⎦⎥ ⫻

5.3 The Basics of Caches

391

and

⎡ Byte address ⎤

⎢

⎥

Bytes per block

(Bytes

⎢Bytes per block

⎣

⎦⎥

per block

1)

Th

us, with 16 bytes per block, byte address 1200 is block address

⎡1200⎤

⎢

⎥ ⫽ 75

⎣⎢ 6 ⎦⎥

which maps to cache block number (75 modulo 64) ⫽ 11. In fact, this block

maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.11 shows, increasing the block size usually decreases the miss rate. Th

e miss rate may go up

eventually if the block size becomes a signifi cant fraction of the cache size, because

the number of blocks that can be held in the cache will become small, and there will

be a great deal of competition for those blocks. As a result, a block will be bumped

out of the cache before many of its words are accessed. Stated alternatively, spatial

locality among the words in a block decreases with a very large block; consequently,

the benefi ts in the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the

cost of a miss increases. Th

e miss penalty is determined by the time required to fetch

10%

4K

Miss 5%

rate

16K

64K

0%

256K

16

32

64

128

256

Block size

FIGURE 5.11

Miss rate versus block size. Note that the miss rate actually goes up if the block size

is too large relative to the cache size. Each line represents a cache of diff erent size. (Th

is fi gure is independent

of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were included, so this data is based on SPEC92.

392

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

the block from the next lower level of the hierarchy and load it into the cache. Th

e

time to fetch the block has two parts: the latency to the fi rst word and the transfer

time for the rest of the block. Clearly, unless we change the memory system, the

transfer time—and hence the miss penalty—will likely increase as the block size

increases. Furthermore, the improvement in the miss rate starts to decrease as the

blocks become larger. Th

e result is that the increase in the miss penalty overwhelms

the decrease in the miss rate for blocks that are too large, and cache performance

thus decreases. Of course, if we design the memory to transfer larger blocks more

effi

ciently, we can increase the block size and obtain further improvements in cache

performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component of

the miss penalty for large blocks, we may be able to hide some of the transfer time so

that the miss penalty is effectively smaller. The simplest method for doing this, called

 early restart, is simply to resume execution as soon as the requested word of the block

is returned, rather than wait for the entire block. Many processors use this technique

for instruction access, where it works best. Instruction accesses are largely sequential,

so if the memory system can deliver a word every clock cycle, the processor may be

able to restart operation when the requested word is returned, with the memory system

delivering new instruction words just in time. This technique is usually less effective for

data caches because it is likely that the words will be requested from the block in a

less predictable way, and the probability that the processor will need another word from

a different cache block before the transfer completes is high. If the processor cannot

access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested

word is transferred from the memory to the cache fi rst. The remainder of the block

is then transferred, starting with the address after the requested word and wrapping

around to the beginning of the block. This technique, called requested word fi rst or

 critical word fi rst, can be slightly faster than early restart, but it is limited by the same properties that limit early restart.

Handling Cache Misses

Before we look at the cache of a real system, let’s see how the control unit deals with

cache miss A request for

cache misses. (We describe a cache controller in detail in Section 5.9). Th

e control

data from the cache that

unit must detect a miss and process the miss by fetching the requested data from

cannot be fi lled because

memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the

the data is not present in

computer continues using the data as if nothing happened.

the cache.

Modifying the control of a processor to handle a hit is trivial; misses, however,

require some extra work. Th

e cache miss handling is done in collaboration with

the processor control unit and with a separate controller that initiates the memory

access and refi lls the cache. Th

e processing of a cache miss creates a pipeline stall

(Chapter 4) as opposed to an interrupt, which would require saving the state of all

registers. For a cache miss, we can stall the entire processor, essentially freezing

the contents of the temporary and programmer-visible registers, while we wait

5.3 The Basics of Caches

393

for memory. More sophisticated out-of-order processors can allow execution of

instructions while waiting for a cache miss, but we’ll assume in-order processors

that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same

approach can be easily extended to handle data misses. If an instruction access

results in a miss, then the content of the Instruction register is invalid. To get the

proper instruction into the cache, we must be able to instruct the lower level in the

memory hierarchy to perform a read. Since the program counter is incremented in

the fi rst clock cycle of execution, the address of the instruction that generates an

instruction cache miss is equal to the value of the program counter minus 4. Once

we have the address, we need to instruct the main memory to perform a read. We

wait for the memory to respond (since the access will take multiple clock cycles),

and then write the words containing the desired instruction into the cache.

We can now defi ne the steps to be taken on an instruction cache miss:

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to

complete its access.

3. Write the cache entry, putting the data from memory in the data portion of

the entry, writing the upper bits of the address (from the ALU) into the tag

fi eld, and turning the valid bit on.

4. Restart the instruction execution at the fi rst step, which will refetch the

instruction, this time fi nding it in the cache.

Th

e control of the cache on a data access is essentially identical: on a miss, we

simply stall the processor until the memory responds with the data.

Handling Writes

Writes work somewhat diff erently. Suppose on a store instruction, we wrote the

data into only the data cache (without changing main memory); then, aft er the

write into the cache, memory would have a diff erent value from that in the cache.

In such a case, the cache and memory are said to be inconsistent. Th

e simplest way

to keep the main memory and the cache consistent is always to write the data into

both the memory and the cache. Th

is scheme is called write-through.

write-through

Th

e other key aspect of writes is what occurs on a write miss. We fi rst fetch the A scheme in which writes words of the block from memory. Aft er the block is fetched and placed into the always update both the cache and the next lower

cache, we can overwrite the word that caused the miss into the cache block. We also level of the memory write the word to main memory using the full address.

hierarchy, ensuring that

Although this design handles writes very simply, it would not provide very data is always consistent good performance. With a write-through scheme, every write causes the data between the two.

to be written to main memory. Th

ese writes will take a long time, likely at least

100 processor clock cycles, and could slow down the processor considerably. For

example, suppose 10% of the instructions are stores. If the CPI without cache

394

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of

1.0 ⫹ 100 ⫻ 10% ⫽ 11, reducing performance by more than a factor of 10.

write buff er A queue

One solution to this problem is to use a write buff er. A write buff er stores the

that holds data while

data while it is waiting to be written to memory. Aft er writing the data into the

the data is waiting to be

cache and into the write buff er, the processor can continue execution. When a write

written to memory.

to main memory completes, the entry in the write buff er is freed. If the write buff er

is full when the processor reaches a write, the processor must stall until there is an

empty position in the write buff er. Of course, if the rate at which the memory can

complete writes is less than the rate at which the processor is generating writes, no

amount of buff ering can help, because writes are being generated faster than the

memory system can accept them.

Th

e rate at which writes are generated may also be less than the rate at which the

memory can accept them, and yet stalls may still occur. Th

is can happen when the

writes occur in bursts. To reduce the occurrence of such stalls, processors usually

increase the depth of the write buff er beyond a single entry.

write-back A scheme

Th

e alternative to a write-through scheme is a scheme called write-back. In a

that handles writes by

write-back scheme, when a write occurs, the new value is written only to the block

updating values only to

in the cache. Th

e modifi ed block is written to the lower level of the hierarchy when

the block in the cache,

it is replaced. Write-back schemes can improve performance, especially when

then writing the modifi ed

processors can generate writes as fast or faster than the writes can be handled by

block to the lower level

main memory; a write-back scheme is, however, more complex to implement than

of the hierarchy when the

write-through.

block is replaced.

In the rest of this section, we describe caches from real processors, and we

examine how they handle both reads and writes. In Section 5.8, we will describe

the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present

for reads. Here we discuss two of them: the policy on write misses and effi cient

implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate a

block in the cache, called write allocate. The block is fetched from memory and then the

appropriate portion of the block is overwritten. An alternative strategy is to update the portion of the block in memory but not put it in the cache, called no write allocate. The motivation is that sometimes programs write entire blocks of data, such as when the operating system

zeros a page of memory. In such cases, the fetch associated with the initial write miss may

be unnecessary. Some computers allow the write allocation policy to be changed on a per

page basis.

Actually implementing stores effi ciently in a cache that uses a write-back strategy is

more complex than in a write-through cache. A write-through cache can write the data

into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the

cache is write-through, the overwriting of the block in the cache is not catastrophic, since

memory has the correct value. In a write-back cache, we must fi rst write the block back

to memory if the data in the cache is modifi ed and we have a cache miss. If we simply

overwrote the block on a store instruction before we knew whether the store had hit in

the cache (as we could for a write-through cache), we would destroy the contents of the

block, which is not backed up in the next lower level of the memory hierarchy.

5.3 The Basics of Caches

395

In a write-back cache, because we cannot overwrite the block, stores either require

two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or

require a write buffer to hold that data—effectively allowing the store to take only one

cycle by pipelining it. When a store buffer is used, the processor does the cache lookup

and places the data in the store buffer during the normal cache access cycle. Assuming

a cache hit, the new data is written from the store buffer into the cache on the next

unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle.

We read the tag and write the data portion of the selected block. If the tag matches

the address of the block being written, the processor can continue normally, since the

correct block has been updated. If the tag does not match, the processor generates a

write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss

penalty when a miss replaces a modifi ed block. In such a case, the modifi ed block is

moved to a write-back buffer associated with the cache while the requested block is read

from memory. The write-back buffer is later written back to memory. Assuming another

miss does not occur immediately, this technique halves the miss penalty when a dirty

block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor

Th

e Intrinsity FastMATH is an embedded microprocessor that uses the MIPS

architecture and a simple cache implementation. Near the end of the chapter, we

will examine the more complex cache designs of ARM and Intel microprocessors,

but we start with this simple, yet real, example for pedagogical reasons. Figure 5.12

shows the organization of the Intrinsity FastMATH data cache.

Th

is processor has a 12-stage pipeline. When operating at peak speed, the

processor can request both an instruction word and a data word on every clock.

To satisfy the demands of the pipeline without stalling, separate instruction

and data caches are used. Each cache is 16 KiB, or 4096 words, with 16-word

blocks.

Read requests for the cache are straightforward. Because there are separate

data and instruction caches, we need separate control signals to read and write

each cache. (Remember that we need to update the instruction cache when a miss

occurs.) Th

us, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. Th

e address comes either from

the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.

Since there are 16 words in the desired block, we need to select the right one.

A block index fi eld is used to control the multiplexor (shown at the bottom

of the fi gure), which selects the requested word from the 16 words in the

indexed block.

396

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Address (showing bit positions)

31

14 13

6 5

2 1 0

18

8

4

Byte

Data

Hit

Tag

offset

Index

Block offset

18 bits

512 bits

V

Tag

Data

256

entries

18

32

32

32

=

Mux

32

FIGURE 5.12

The 16 KiB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. Th e tag

fi eld is 18 bits wide and the index fi eld is 8 bits wide, while a 4-bit fi eld (bits 5–2) is used to index the block and select the word from the block using a 16-to-1 multiplexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags, with the block off set supplying the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16

times as many words as blocks in the cache.

3. If the cache signals miss, we send the address to the main memory. When

the memory returns with the data, we write it into the cache and then read it

to fulfi ll the request.

For writes, the Intrinsity FastMATH off ers both write-through and write-back,

leaving it up to the operating system to decide which strategy to use for an

application. It has a one-entry write buff er.

What cache miss rates are attained with a cache structure like that used by the

Intrinsity FastMATH? Figure 5.13 shows the miss rates for the instruction and data caches. Th

e combined miss rate is the eff ective miss rate per reference for

each program aft er accounting for the diff ering frequency of instruction and data

accesses.

5.3 The Basics of Caches

397

Instruction miss rate

Data miss rate

Effective combined miss rate

0.4%

11.4%

3.2%

FIGURE 5.13

Approximate instruction and data miss rates for the Intrinsity FastMATH

processor for SPEC CPU2000 benchmarks. Th

e combined miss rate is the eff ective miss rate seen

for the combination of the 16 KiB instruction cache and 16 KiB data cache. It is obtained by weighting the instruction and data individual miss rates by the frequency of instruction and data references.

Although miss rate is an important characteristic of cache designs, the ultimate

measure will be the eff ect of the memory system on program execution time; we’ll

see how miss rate and execution time are related shortly.

Elaboration: A combined cache with a total size equal to the sum of the two split split cache A scheme caches will usually have a better hit rate. This higher rate occurs because the combined

in which a level of the

cache does not rigidly divide the number of entries that may be used by instructions

memory hierarchy

from those that may be used by data. Nonetheless, almost all processors today use

is composed of two

split instruction and data caches to increase cache bandwidth to match what modern

independent caches that

pipelines expect. (There may also be fewer confl ict misses; see Section 5.8.)

operate in parallel with

Here are miss rates for caches the size of those found in the Intrinsity FastMATH

each other, with one

processor, and for a combined cache whose size is equal to the sum of the two caches:

handling instructions and

one handling data.

■ Total cache size: 32 KiB

■ Split cache effective miss rate: 3.24%

■ Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.

The advantage of doubling the cache bandwidth, by supporting both an instruction

and data access simultaneously, easily overcomes the disadvantage of a slightly

increased miss rate. This observation cautions us that we cannot use miss rate as the

sole measure of cache performance, as Section 5.4 shows.

Summary

We began the previous section by examining the simplest of caches: a direct-mapped

cache with a one-word block. In such a cache, both hits and misses are simple, since

a word can go in exactly one location and there is a separate tag for every word. To

keep the cache and memory consistent, a write-through scheme can be used, so

that every write into the cache also causes memory to be updated. Th

e alternative

to write-through is a write-back scheme that copies a block back to memory when

it is replaced; we’ll discuss this scheme further in upcoming sections.

398

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

To take advantage of spatial locality, a cache must have a block size larger than

one word. Th

e use of a larger block decreases the miss rate and improves the

effi

ciency of the cache by reducing the amount of tag storage relative to the amount

of data storage in the cache. Although a larger block size decreases the miss rate, it

can also increase the miss penalty. If the miss penalty increased linearly with the

block size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to

transfer cache blocks more effi

ciently. Common methods for increasing bandwidth

external to the DRAM are making the memory wider and interleaving. DRAM

designers have steadily improved the interface between the processor and memory

to increase the bandwidth of burst mode transfers to reduce the cost of larger cache

block sizes.

Check Th

e speed of the memory system aff ects the designer’s decision on the size of

the cache block. Which of the following cache designer guidelines are generally

Yourself

valid?

1. Th

e shorter the memory latency, the smaller the cache block

2. Th

e shorter the memory latency, the larger the cache block

3. Th

e higher the memory bandwidth, the smaller the cache block

4. Th

e higher the memory bandwidth, the larger the cache block

 5.4

 Measuring and Improving Cache

Performance

In this section, we begin by examining ways to measure and analyze cache

performance. We then explore two diff erent techniques for improving cache

performance. One focuses on reducing the miss rate by reducing the probability

that two diff erent memory blocks will contend for the same cache location. Th

e

second technique reduces the miss penalty by adding an additional level to the

hierarchy. Th

is technique, called multilevel caching, fi rst appeared in high-end

computers selling for more than $100,000 in 1990; since then it has become

common on personal mobile devices selling for a few hundred dollars!

5.4 Measuring and Improving Cache Performance

399

CPU time can be divided into the clock cycles that the CPU spends executing

the program and the clock cycles that the CPU spends waiting for the memory

system. Normally, we assume that the costs of cache accesses that are hits are part

of the normal CPU execution cycles. Th

us,

CPU time ⫽ (CPU execution clock cycles ⫹ Memory-stall clock cycles)

⫻ Clock cycle time

Th

e memory-stall clock cycles come primarily from cache misses, and we make

that assumption here. We also restrict the discussion to a simplifi ed model of the

memory system. In real processors, the stalls generated by reads and writes can be

quite complex, and accurate performance prediction usually requires very detailed

simulations of the processor and memory system.

Memory-stall clock cycles can be defi ned as the sum of the stall cycles coming

from reads plus those coming from writes:

Memory-stall clock cycles ⫽ (Read-stall cycles ⫹ Write-stall cycles)

Th

e read-stall cycles can be defi ned in terms of the number of read accesses per

program, the miss penalty in clock cycles for a read, and the read miss rate:

Reads

Re ad-stall cycles

Read miss rate

Read miss pen

nalty

Program

Writes are more complicated. For a write-through scheme, we have two sources of

stalls: write misses, which usually require that we fetch the block before continuing

the write (see the Elaboration on page 394 for more details on dealing with writes),

and write buff er stalls, which occur when the write buff er is full when a write

occurs. Th

us, the cycles stalled for writes equals the sum of these two:

⎛ Writes

⎞⎟

Write-stall cycles

⎜⎜

Write miss rate

Write miss penalty⎟

⎝⎜

⎟

Program

⎠⎟

Write buffer stalls

Because the write buff er stalls depend on the proximity of writes, and not just

the frequency, it is not possible to give a simple equation to compute such stalls.

Fortunately, in systems with a reasonable write buff er depth (e.g., four or more

words) and a memory capable of accepting writes at a rate that signifi cantly exceeds

the average write frequency in programs (e.g., by a factor of 2), the write buff er

stalls will be small, and we can safely ignore them. If a system did not meet these

criteria, it would not be well designed; instead, the designer should have used either

a deeper write buff er or a write-back organization.

400

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Write-back schemes also have potential additional stalls arising from the need

to write a cache block back to memory when the block is replaced. We will discuss

this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are

the same (the time to fetch the block from memory). If we assume that the write

buff er stalls are negligible, we can combine the reads and writes by using a single

miss rate and the miss penalty:

Memory accesses

Memory-stall clock cycles

Miss rate

Miss penalty

Program

We can also factor this as

Instructions

Misses

Memory-stall clock cycles

Miss penalty

Program

Instrucction

Let’s consider a simple example to help us understand the impact of cache

performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data

EXAMPLE

cache is 4%. If a processor has a CPI of 2 without any memory stalls and the

miss penalty is 100 cycles for all misses, determine how much faster a processor

would run with a perfect cache that never missed. Assume the frequency of all

loads and stores is 36%.

Th

e number of memory miss cycles for instructions in terms of the Instruction

ANSWER

count (I) is

Instruction miss cycles ⫽ I ⫻ 2% ⫻ 100 ⫽ 2.00 ⫻ I

As the frequency of all loads and stores is 36%, we can fi nd the number of

memory miss cycles for data references:

Data miss cycles ⫽ I ⫻ 36% ⫻ 4% ⫻ 100 ⫽ 1.44 ⫻ I

5.4 Measuring and Improving Cache Performance

401

Th

e total number of memory-stall cycles is 2.00 I ⫹ 1.44 I ⫽ 3.44 I. Th

is is

more than three cycles of memory stall per instruction. Accordingly, the total

CPI including memory stalls is 2 ⫹ 3.44 ⫽ 5.44. Since there is no change in

instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls

I

CPIstall

Clock cycle

CPU time with perfect cache

I

CPI

Clock cycle

perfect

CPI

5

stall

.44

CPIperfect

2

5.44

Th

e performance with the perfect cache is better by

⫽ 2.72.

2

What happens if the processor is made faster, but the memory system is not? Th

e

amount of time spent on memory stalls will take up an increasing fraction of the

execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of

this fact. A few simple examples show how serious this problem can be. Suppose

we speed-up the computer in the previous example by reducing its CPI from 2 to 1

without changing the clock rate, which might be done with an improved pipeline.

Th

e system with cache misses would then have a CPI of 1 ⫹ 3.44 ⫽ 4.44, and the

system with the perfect cache would be

4.44 ⫽ 4.44 times as fast.

1

Th

e amount of execution time spent on memory stalls would have risen from

3.44 ⫽ 63%

5.44

to

3.44 ⫽ 77%

4.44

Similarly, increasing the clock rate without changing the memory system also

increases the performance lost due to cache misses.

Th

e previous examples and equations assume that the hit time is not a factor in

determining cache performance. Clearly, if the hit time increases, the total time to

access a word from the memory system will increase, possibly causing an increase in

the processor cycle time. Although we will see additional examples of what can increase

402

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

hit time shortly, one example is increasing the cache size. A larger cache could clearly

have a longer access time, just as, if your desk in the library was very large (say, 3 square

meters), it would take longer to locate a book on the desk. An increase in hit time

likely adds another stage to the pipeline, since it may take multiple cycles for a cache

hit. Although it is more complex to calculate the performance impact of a deeper

pipeline, at some point the increase in hit time for a larger cache could dominate the

improvement in hit rate, leading to a decrease in processor performance.

To capture the fact that the time to access data for both hits and misses aff ects

performance, designers sometime use average memory access time (AMAT) as

a way to examine alternative cache designs. Average memory access time is the

average time to access memory considering both hits and misses and the frequency

of diff erent accesses; it is equal to the following:

AMAT ⫽ Time for a hit ⫹ Miss rate ⫻ Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of

EXAMPLE

20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access

time (including hit detection) of 1 clock cycle. Assume that the read and write

miss penalties are the same and ignore other write stalls.

Th

e average memory access time per instruction is

ANSWER

AMAT

Time for a hit

Miss rate

Miss penalty

1

0.05

20

2 clocck cycles

or 2 ns.

Th

e next subsection discusses alternative cache organizations that decrease

miss rate but may sometimes increase hit time; additional examples appear in

Section 5.15, Fallacies and Pitfalls.

Reducing Cache Misses by More Flexible Placement

of Blocks

So far, when we place a block in the cache, we have used a simple placement scheme:

A block can go in exactly one place in the cache. As mentioned earlier, it is called

 direct mapped because there is a direct mapping from any block address in memory

to a single location in the upper level of the hierarchy. However, there is actually a

whole range of schemes for placing blocks. Direct mapped, where a block can be

placed in exactly one location, is at one extreme.

5.4 Measuring and Improving Cache Performance

403

At the other extreme is a scheme where a block can be placed in any location

in the cache. Such a scheme is called fully associative, because a block in memory fully associative may be associated with any entry in the cache. To fi nd a given block in a fully cache A cache structure associative cache, all the entries in the cache must be searched because a block in which a block can be can be placed in any one. To make the search practical, it is done in parallel with placed in any location in the cache.

a comparator associated with each cache entry. Th

ese comparators signifi cantly

increase the hardware cost, eff ectively making fully associative placement practical

only for caches with small numbers of blocks.

Th

e middle range of designs between direct mapped and fully associative

is called set associative. In a set-associative cache, there are a fi xed number of set-associative cache locations where each block can be placed. A set-associative cache with n locations A cache that has a fi xed for a block is called an n-way set-associative cache. An n-way set-associative cache number of locations (at consists of a number of sets, each of which consists of n blocks. Each block in the least two) where each block can be placed.

memory maps to a unique set in the cache given by the index fi eld, and a block can

be placed in any element of that set. Th

us, a set-associative placement combines

direct-mapped placement and fully associative placement: a block is directly

mapped into a set, and then all the blocks in the set are searched for a match. For

example, Figure 5.14 shows where block 12 may be placed in a cache with eight blocks total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is

given by

(Block number) modulo (Number of blocks in the cache)

Direct mapped

Set associative

Fully associative

Block # 0 1 2 3 4 5 6 7

Set #

0

1

2

3

Data

Data

Data

1

1

1

Tag

Tag

Tag

2

2

2

Search

Search

Search

FIGURE 5.14

The location of a memory block whose address is 12 in a cache with eight

blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-mapped placement, there is only one cache block where memory block 12 can be found, and that block is given by (12 modulo 8) ⫽ 4. In a two-way set-associative cache, there would be four sets, and memory block 12 must be in set (12 mod 4) ⫽ 0; the memory block could be in either element of the set. In a fully associative placement, the memory block for block address 12 can appear in any of the eight cache blocks.

404

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements

 of the set must be searched. In a fully associative cache, the block can go anywhere,

and all tags of all the blocks in the cache must be searched.

We can also think of all block placement strategies as a variation on set

associativity. Figure 5.15 shows the possible associativity structures for an eight-block cache. A direct-mapped cache is simply a one-way set-associative cache:

each cache entry holds one block and each set has one element. A fully associative

cache with m entries is simply an m-way set-associative cache; it has one set with m blocks, and an entry can reside in any block within that set.

Th

e advantage of increasing the degree of associativity is that it usually decreases

the miss rate, as the next example shows. Th

e main disadvantage, which we discuss

in more detail shortly, is a potential increase in the hit time.

One-way set associative

(direct mapped)

Block

Tag Data

0

Two-way set associative

1

Set

Tag Data Tag Data

2

0

3

1

4

2

5

3

6

7

Four-way set associative

Set

Tag Data Tag Data Tag Data Tag Data

0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

FIGURE 5.15

An eight-block cache confi gured as direct mapped, two-way set associative,

four-way set associative, and fully associative. Th

e total size of the cache in blocks is equal to the

number of sets times the associativity. Th

us, for a fi xed cache size, increasing the associativity decreases

the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-associative cache is the same as a fully associative cache.

5.4 Measuring and Improving Cache Performance

405

Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks.

One cache is fully associative, a second is two-way set-associative, and the

EXAMPLE

third is direct-mapped. Find the number of misses for each cache organization

given the following sequence of block addresses: 0, 8, 0, 6, and 8.

Th

e direct-mapped case is easiest. First, let’s determine to which cache block

each block address maps:

ANSWER

Block address

Cache block

0

(0 modulo 4) ⫽ 0

6

(6 modulo 4) ⫽ 2

8

(8 modulo 4) ⫽ 0

Now we can fi ll in the cache contents aft er each reference, using a blank entry to

mean that the block is invalid, colored text to show a new entry added to the cache

for the associated reference, and plain text to show an old entry in the cache:

Contents of cache blocks after reference

Address of memory

Hit

block accessed

or miss

0

1

2

3

0

miss

Memory[0]

8

miss

Memory[8]

0

miss

Memory[0]

6

miss

Memory[0]

Memory[6]

8

miss

Memory[8]

Memory[6]

Th

e direct-mapped cache generates fi ve misses for the fi ve accesses.

Th

e set-associative cache has two sets (with indices 0 and 1) with two

elements per set. Let’s fi rst determine to which set each block address maps:

Block address

Cache set

0

(0 modulo 2) ⫽ 0

6

(6 modulo 2) ⫽ 0

8

(8 modulo 2) ⫽ 0

Because we have a choice of which entry in a set to replace on a miss, we need

a replacement rule. Set-associative caches usually replace the least recently

used block within a set; that is, the block that was used furthest in the past

406

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

is replaced. (We will discuss other replacement rules in more detail shortly.)

Using this replacement rule, the contents of the set-associative cache aft er each

reference looks like this:

Contents of cache blocks after reference

Address of memory

Hit

block accessed

or miss

Set 0

Set 0

Set 1

Set 1

0

miss

Memory[0]

8

miss

Memory[0]

Memory[8]

0

hit

Memory[0]

Memory[8]

6

miss

Memory[0]

Memory[6]

8

miss

Memory[8]

Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has

been less recently referenced than block 0. Th

e two-way set-associative cache

has four misses, one less than the direct-mapped cache.

Th

e fully associative cache has four cache blocks (in a single set); any

memory block can be stored in any cache block. Th

e fully associative cache has

the best performance, with only three misses:

Contents of cache blocks after reference

Address of memory

Hit

block accessed

or miss

Block 0

Block 1

Block 2

Block 3

0

miss

Memory[0]

8

miss

Memory[0]

Memory[8]

0

hit

Memory[0]

Memory[8]

6

miss

Memory[0]

Memory[8]

Memory[6]

8

hit

Memory[0]

Memory[8]

Memory[6]

For this series of references, three misses is the best we can do, because three

unique block addresses are accessed. Notice that if we had eight blocks in the

cache, there would be no replacements in the two-way set-associative cache

(check this for yourself), and it would have the same number of misses as the

fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have

the same number of misses. Even this trivial example shows that cache size and

associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity?

Figure 5.16 shows the improvement for a 64 KiB data cache with a 16-word block, and associativity ranging from direct mapped to eight-way. Going from one-way

to two-way associativity decreases the miss rate by about 15%, but there is little

further improvement in going to higher associativity.

5.4 Measuring and Improving Cache Performance

407

Associativity

Data miss rate

1

10.3%

2

8.6%

4

8.3%

8

8.1%

FIGURE 5.16

The data cache miss rates for an organization like the Intrinsity FastMATH

processor for SPEC CPU2000 benchmarks with associativity varying from one-way to

eight-way. Th

ese results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003).

Tag

Index

Block offset

FIGURE 5.17

The three portions of an address in a set-associative or direct-mapped

cache. Th

e index is used to select the set, then the tag is used to choose the block by comparison with the blocks in the selected set. Th

e block off set is the address of the desired data within the block.

Locating a Block in the Cache

Now, let’s consider the task of fi nding a block in a cache that is set associative.

Just as in a direct-mapped cache, each block in a set-associative cache includes

an address tag that gives the block address. Th

e tag of every cache block within

the appropriate set is checked to see if it matches the block address from the

processor. Figure 5.17 decomposes the address. Th

e index value is used to select

the set containing the address of interest, and the tags of all the blocks in the set

must be searched. Because speed is of the essence, all the tags in the selected set are

searched in parallel. As in a fully associative cache, a sequential search would make

the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity increases the

number of blocks per set, which is the number of simultaneous compares needed

to perform the search in parallel: each increase by a factor of 2 in associativity

doubles the number of blocks per set and halves the number of sets. Accordingly,

each factor-of-2 increase in associativity decreases the size of the index by 1 bit and

increases the size of the tag by 1 bit. In a fully associative cache, there is eff ectively

only one set, and all the blocks must be checked in parallel. Th

us, there is no index,

and the entire address, excluding the block off set, is compared against the tag of

every block. In other words, we search the entire cache without any indexing.

In a direct-mapped cache, only a single comparator is needed, because the entry can

be in only one block, and we access the cache simply by indexing. Figure 5.18 shows that in a four-way set-associative cache, four comparators are needed, together with

a 4-to-1 multiplexor to choose among the four potential members of the selected set.

Th

e cache access consists of indexing the appropriate set and then searching the tags

of the set. Th

e costs of an associative cache are the extra comparators and any delay

imposed by having to do the compare and select from among the elements of the set.

408

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Address

31 30

12 11 10 9 8

3 2 1 0

22

8

Tag

Index

Index

V Tag

Data

V Tag

Data

V Tag

Data

V Tag

Data

012

253

254

255

22

32

=

=

=

=

4-to-1 multiplexor

Hit

Data

FIGURE 5.18

The implementation of a four-way set-associative cache requires four

comparators and a 4-to-1 multiplexor. Th

e comparators determine which element of the selected set

(if any) matches the tag. Th

e output of the comparators is used to select the data from one of the four blocks

of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the output. Th

e Output enable signal comes from the comparators, causing the element that matches to drive the

data outputs. Th

is organization eliminates the need for the multiplexor.

Th

e choice among direct-mapped, set-associative, or fully associative mapping

in any memory hierarchy will depend on the cost of a miss versus the cost of

implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory (CAM) is a circuit that combines

comparison and storage in a single device. Instead of supplying an address and reading

a word like a RAM, you supply the data and the CAM looks to see if it has a copy and

returns the index of the matching row. CAMs mean that cache designers can afford to

implement much higher set associativity than if they needed to build the hardware out

of SRAMs and comparators. In 2013, the greater size and power of CAM generally leads

to 2-way and 4-way set associativity being built from standard SRAMs and comparators,

with 8-way and above built using CAMs.

5.4 Measuring and Improving Cache Performance

409

Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in

exactly one position, and the block occupying that position must be replaced. In

an associative cache, we have a choice of where to place the requested block, and

hence a choice of which block to replace. In a fully associative cache, all blocks are

candidates for replacement. In a set-associative cache, we must choose among the

blocks in the selected set.

least recently used

(LRU)

Th

e most commonly used scheme is least recently used (LRU), which we used

A replacement

scheme in which the

in the previous example. In an LRU scheme, the block replaced is the one that has block replaced is the one been unused for the longest time. Th

e set associative example on page 405 uses that has been unused for

LRU, which is why we replaced Memory(0) instead of Memory(6).

the longest time.

LRU replacement is implemented by keeping track of when each element in a

set was used relative to the other elements in the set. For a two-way set-associative

cache, tracking when the two elements were used can be implemented by keeping

a single bit in each set and setting the bit to indicate an element whenever that

element is referenced. As associativity increases, implementing LRU gets harder; in

Section 5.8, we will see an alternative scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per

cache block. Assuming a cache of 4096 blocks, a 4-word block size, and a

EXAMPLE

32-bit address, fi nd the total number of sets and the total number of tag bits

for caches that are direct mapped, two-way and four-way set associative, and

fully associative.

Since there are 16 (⫽ 24) bytes per block, a 32-bit address yields 32⫺4 ⫽ 28 bits

to be used for index and tag. Th

e direct-mapped cache has the same number

ANSWER

of sets as blocks, and hence 12 bits of index, since log (4096) ⫽ 12; hence, the

2

total number is (28⫺12) ⫻ 4096 ⫽ 16 ⫻ 4096 ⫽ 66 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and

thus decreases the number of bits used to index the cache by 1 and increases

the number of bits in the tag by 1. Th

us, for a two-way set-associative cache,

there are 2048 sets, and the total number of tag bits is (28⫺11) ⫻ 2 ⫻ 2048 ⫽

34 ⫻ 2048 ⫽ 70 Kbits. For a four-way set-associative cache, the total number

of sets is 1024, and the total number is (28⫺10) ⫻ 4 ⫻ 1024 ⫽ 72 ⫻ 1024 ⫽

74 K tag bits.

For a fully associative cache, there is only one set with 4096 blocks, and the

tag is 28 bits, leading to 28 ⫻ 4096 ⫻ 1 ⫽ 115 K tag bits.

410

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Reducing the Miss Penalty Using Multilevel Caches

All modern computers make use of caches. To close the gap further between the

fast clock rates of modern processors and the increasingly long time required to

access DRAMs, most microprocessors support an additional level of caching. Th

is

second-level cache is normally on the same chip and is accessed whenever a miss

occurs in the primary cache. If the second-level cache contains the desired data,

the miss penalty for the fi rst-level cache will be essentially the access time of the

second-level cache, which will be much less than the access time of main memory.

If neither the primary nor the secondary cache contains the data, a main memory

access is required, and a larger miss penalty is incurred.

How signifi cant is the performance improvement from the use of a secondary

cache? Th

e next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references

EXAMPLE

hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory

access time of 100 ns, including all the miss handling. Suppose the miss rate

per instruction at the primary cache is 2%. How much faster will the processor

be if we add a secondary cache that has a 5 ns access time for either a hit or

a miss and is large enough to reduce the miss rate to main memory to 0.5%?

Th

e miss penalty to main memory is

ANSWER

100 ns

⫽ 400 clock cycles

ns

0.25 clock cycle

Th

e eff ective CPI with one level of caching is given by

Total CPI ⫽ Base CPI ⫹ Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI ⫽ 1.0 ⫹ Memory-stall cycles per instruction ⫽ 1.0 ⫹ 2% ⫻ 400 ⫽ 9

With two levels of caching, a miss in the primary (or fi rst-level) cache can be

satisfi ed either by the secondary cache or by main memory. Th

e miss penalty

for an access to the second-level cache is

5 ns

⫽ 20 clock cycles

ns

0.25 clock cycle

5.4 Measuring and Improving Cache Performance

411

If the miss is satisfi ed in the secondary cache, then this is the entire miss

penalty. If the miss needs to go to main memory, then the total miss penalty is

the sum of the secondary cache access time and the main memory access time.

Th

us, for a two-level cache, total CPI is the sum of the stall cycles from both

levels of cache and the base CPI:

Total CPI

1

Primary stalls per instruction

Secondary stalls per instruction

1

2%

20

0.5%

400

1

0.4

2.0

3.4

Th

us, the processor with the secondary cache is faster by

9.0 ⫽ 2.6

3.4

Alternatively, we could have computed the stall cycles by summing the stall

cycles of those references that hit in the secondary cache ((2%⫺0.5%) ⫻

20 ⫽ 0.3). Th

ose references that go to main memory, which must include the

cost to access the secondary cache as well as the main memory access time, are

(0.5% ⫻ (20 ⫹ 400) ⫽ 2.1). Th

e sum, 1.0 ⫹ 0.3 ⫹ 2.1, is again 3.4.

Th

e design considerations for a primary and secondary cache are signifi cantly

diff erent, because the presence of the other cache changes the best choice versus

a single-level cache. In particular, a two-level cache structure allows the primary

cache to focus on minimizing hit time to yield a shorter clock cycle or fewer

pipeline stages, while allowing the secondary cache to focus on miss rate to reduce

the penalty of long memory access times.

Th

e eff ect of these changes on the two caches can be seen by comparing each

cache to the optimal design for a single level of cache. In comparison to a single-

level cache, the primary cache of a multilevel cache is oft en smaller. Furthermore, multilevel cache the primary cache may use a smaller block size, to go with the smaller cache size and

A memory hierarchy with

also to reduce the miss penalty. In comparison, the secondary cache will be much multiple levels of caches, larger than in a single-level cache, since the access time of the secondary cache is rather than just a cache and main memory.

less critical. With a larger total size, the secondary cache may use a larger block size

than appropriate with a single-level cache. It oft en uses higher associativity than

the primary cache given the focus of reducing miss rates.

Sorting has been exhaustively analyzed to fi nd better algorithms: Bubble Sort, Understanding

Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by Program item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix

Sort has an algorithmic advantage over Quicksort in terms of number of operations.

Performance

Figure 5.19(b) shows time per key instead of instructions executed. We see that the lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line

412

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

1200

Radix Sort

1000

800

/item

600

uctions

400

Instr

Quicksort

200

0

4

8

16

32

64

128

256

512 1024 2048 4096

a.

Size (K items to sort)

2000

Radix Sort

1600

/item 1200

k cycles

800

Cloc

400

Quicksort

0

4

8

16

32

64

128

256

512 1024 2048 4096

Size (K items to sort)

b.

5

Radix Sort

4

/item 3

2

Cache misses 1 Quicksort

0

4

8

16

32

64

128

256

512 1024 2048 4096

Size (K items to sort)

c.

FIGURE 5.19

Comparing Quicksort and Radix Sort by (a) instructions executed per item

sorted, (b) time per item sorted, and (c) cache misses per item sorted. Th

is data is from a

paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). Th e basic

idea of cache optimizations is to use all the data in a block repeatedly before it is replaced on a miss.

5.4 Measuring and Improving Cache Performance

413

diverges as the data to sort increases. What is going on? Figure 5.19(c) answers by looking at the cache misses per item sorted: Quicksort consistently has many fewer

misses per item to be sorted.

Alas, standard algorithmic analysis oft en ignores the impact of the memory

hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all of

the performance out of a stream of instructions, using the memory hierarchy well

is critical to high performance. As we said in the introduction, understanding the

behavior of the memory hierarchy is critical to understanding the performance of

programs on today’s computers.

Software Optimization via Blocking

Given the importance of the memory hierarchy to program performance, not

surprisingly many soft ware optimizations were invented that can dramatically

improve performance by reusing data within the cache and hence lower miss rates

due to improved temporal locality.

When dealing with arrays, we can get good performance from the memory

system if we store the array in memory so that accesses to the array are sequential

in memory. Suppose that we are dealing with multiple arrays, however, with some

arrays accessed by rows and some by columns. Storing the arrays row-by-row

(called row major order) or column-by-column (column major order) does not

solve the problem because both rows and columns are used in every loop iteration.

Instead of operating on entire rows or columns of an array, blocked algorithms

operate on submatrices or blocks. Th

e goal is to maximize accesses to the data

loaded into the cache before the data are replaced; that is, improve temporal locality

to reduce cache misses.

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.21 in

Chapter 3) are

for (int j = 0; j < n; ++j)

{

double cij = C[i+j*n]; /* cij = C[i][j] */

for(int k = 0; k < n; k++)

cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

C[i+j*n] = cij; /* C[i][j] = cij */

}

}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to

one row of A repeatedly, and writes what corresponds to one row of N elements of

C. (Th

e comments make the rows and columns of the matrices easier to identify.)

Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade indicates a recent access, a light shade indicates an older access, and white means

not yet accessed.

414

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

j

k

j

x

y

z

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

0

0

1

1

1

2

2

2

i

i

k

3

3

3

4

4

4

5

5

5

FIGURE 5.20 A snapshot of the three arrays C, A, and B when N ⴝ 6 and i ⴝ 1. Th e age of

accesses to the array elements is indicated by shade: white means not yet touched, light means older accesses, and dark means newer accesses. Compared to Figure 5.21, elements of A and B are read repeatedly to calculate new elements of x. Th

e variables i, j, and k are shown along the rows or columns used to access the arrays.

Th

e number of capacity misses clearly depends on N and the size of the cache. If

it can hold all three N-by-N matrices, then all is well, provided there are no cache

confl icts. We purposely picked the matrix size to be 32 by 32 in DGEMM for

Chapters 3 and 4 so that this would be the case. Each matrix is 32 ⫻ 32 ⫽ 1024

elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which

comfortably fi t in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge).

If the cache can hold one N-by-N matrix and one row of N, then at least the ith

row of A and the array B may stay in the cache. Less than that and misses may

occur for both B and C. In the worst case, there would be 2 N3 ⫹ N2 memory words

accessed for N3 operations.

To ensure that the elements being accessed can fi t in the cache, the original code

is changed to compute on a submatrix. Hence, we essentially invoke the version of

DGEMM from Figure 4.80 in Chapter 4 repeatedly on matrices of size BLOCKSIZE

by BLOCKSIZE. BLOCKSIZE is called the blocking factor.

Figure 5.21 shows the blocked version of DGEMM. Th

e function do_block is

DGEMM from Figure 3.21 with three new parameters si, sj, and sk to specify

the starting position of each submatrix of of A, B, and C. Th

e two inner loops of the

do_block now compute in steps of size BLOCKSIZE rather than the full length

of B and C. Th

e gcc optimizer removes any function call overhead by “inlining” the

function; that is, it inserts the code directly to avoid the conventional parameter

passing and return address bookkeeping instructions.

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking only at capacity misses, the total number of memory words accessed is 2 N3/

BLOCKSIZE ⫹ N2. Th

is total is an improvement by about a factor of BLOCKSIZE.

Hence, blocking exploits a combination of spatial and temporal locality, since A

benefi ts from spatial locality and B benefi ts from temporal locality.

5.4 Measuring and Improving Cache Performance

415

1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double

3 *B, double *C)

4 {

5

for (int i = si; i < si+BLOCKSIZE; ++i)

6

for (int j = sj; j < sj+BLOCKSIZE; ++j)

7

{

8

double

cij

=

C[i+j*n];/* cij = C[i][j] */

9

for(int k = sk; k < sk+BLOCKSIZE; k++)

10

cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11

C[i+j*n]

=

cij;/* C[i][j] = cij */

12

}

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16

for (int sj = 0; sj < n; sj += BLOCKSIZE)

17

for (int si = 0; si < n; si += BLOCKSIZE)

18

for (int sk = 0; sk < n; sk += BLOCKSIZE)

19

do_block(n, si, sj, sk, A, B, C);

20 }

FIGURE 5.21

Cache blocked version of DGEMM in Figure 3.21. Assume C is initialized to zero. Th

e do_block

function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the submatrices of BLOCKSIZE. Th

e gcc optimizer can remove the function overhead instructions by inlining the do_block function.

j

k

j

x

y

z

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

0

0

1

1

1

2

2

2

i

i

k

3

3

3

4

4

4

5

5

5

FIGURE 5.22

The age of accesses to the arrays C, A, and B when BLOCKSIZE ⴝ 3. Note that, in contrast to Figure 5.20, fewer elements are accessed.

Although we have aimed at reducing cache misses, blocking can also be used to

help register allocation. By taking a small blocking size such that the block can be

held in registers, we can minimize the number of loads and stores in the program,

which also improves performance.

416

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

32x32

160x160

480x480

960x960

1.8

1.7

1.7

1.6

1.6

1.5

1.5

1.5

1.3

1.2

0.9

0.8

GFLOPS

0.6

0.3

–

Unoptimized

Blocked

FIGURE 5.23

Performance of unoptimized DGEMM (Figure 3.21) versus cache blocked

DGEMM (Figure 5.21) as the matrix dimension varies from 32x32 (where all three matrices fi t in the cache) to 960x960.

Figure 5.23 shows the impact of cache blocking on the performance of the

unoptimized DGEMM as we increase the matrix size beyond where all three

matrices fi t in the cache. Th

e unoptimized performance is halved for the largest

matrix. Th

e cache-blocked version is less than 10% slower even at matrices that are

960x960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4.

Elaboration: Multilevel caches create several complications. First, there are now

several different types of misses and corresponding miss rates. In the example on

global miss rate Th

e

pages 410–411, we saw the primary cache miss rate and the global miss rate—the

fraction of references

fraction of references that missed in all cache levels. There is also a miss rate for the

that miss in all levels of a

secondary cache, which is the ratio of all misses in the secondary cache divided by the

multilevel cache.

number of accesses to it. This miss rate is called the local miss rate of the secondary

cache. Because the primary cache fi lters accesses, especially those with good spatial

local miss rate Th

e

and temporal locality, the local miss rate of the secondary cache is much higher than the

fraction of references to

global miss rate. For the example on pages 410–411, we can compute the local miss

one level of a cache that

rate of the secondary cache as 0.5%/2% ⫽ 25%! Luckily, the global miss rate dictates

miss; used in multilevel

how often we must access the main memory.

hierarchies.

Elaboration: With out-of-order processors (see Chapter 4), performance is more

complex, since they execute instructions during the miss penalty. Instead of instruction

miss rates and data miss rates, we use misses per instruction, and this formula:

Memory

stall cycles

Misses

(Total miss latency

Overlapped miss latency)

Instruction

Instruction

5.4 Measuring and Improving Cache Performance

417

There is no general way to calculate overlapped miss latency, so evaluations of

memory hierarchies for out-of-order processors inevitably require simulation of the

processor and the memory hierarchy. Only by seeing the execution of the processor

during each miss can we see if the processor stalls waiting for data or simply fi nds other

work to do. A guideline is that the processor often hides the miss penalty for an L1

cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy

varies between different implementations of the same architecture in cache size,

associativity, block size, and number of caches. To cope with such variability, some

recent numerical libraries parameterize their algorithms and then search the parameter

space at runtime to fi nd the best combination for a particular computer. This approach

is called autotuning.

Which of the following is generally true about a design with multiple levels of Check

caches?

Yourself

1. First-level caches are more concerned about hit time, and second-level

caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level

caches are more concerned about hit time.

Summary

In this section, we focused on four topics: cache performance, using associativity to

reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties,

and soft ware optimizations to improve eff ectiveness of caches.

Th

e memory system has a signifi cant eff ect on program execution time. Th

e

number of memory-stall cycles depends on both the miss rate and the miss penalty.

Th

e challenge, as we will see in Section 5.8, is to reduce one of these factors without

signifi cantly aff ecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes.

Such schemes can reduce the miss rate of a cache by allowing more fl exible

placement of blocks within the cache. Fully associative schemes allow blocks to be

placed anywhere, but also require that every block in the cache be searched to satisfy

a request. Th

e higher costs make large fully associative caches impractical. Set-

associative caches are a practical alternative, since we need only search among the

elements of a unique set that is chosen by indexing. Set-associative caches have higher

miss rates but are faster to access. Th

e amount of associativity that yields the best

performance depends on both the technology and the details of the implementation.

We looked at multilevel caches as a technique to reduce the miss penalty by

allowing a larger secondary cache to handle misses to the primary cache. Second-

level caches have become commonplace as designers fi nd that limited silicon and

the goals of high clock rates prevent primary caches from becoming large. Th

e

secondary cache, which is oft en ten or more times larger than the primary cache,

handles many accesses that miss in the primary cache. In such cases, the miss

penalty is that of the access time to the secondary cache (typically < 10 processor

418

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

cycles) versus the access time to memory (typically > 100 processor cycles). As with

associativity, the design tradeoff s between the size of the secondary cache and its

access time depend on a number of aspects of the implementation.

Finally, given the importance of the memory hierarchy in performance, we

looked at how to change algorithms to improve cache behavior, with blocking

being an important technique when dealing with large arrays.

 5.5

Dependable Memory Hierarchy

Implicit in all the prior discussion is that the memory hierarchy doesn’t forget. Fast

but undependable is not very attractive. As we learned in Chapter 1, the one great

idea for dependability is redundancy. In this section we’ll fi rst go over the terms to

defi ne terms and measures associated with failure, and then show how redundancy

can make nearly unforgettable memories.

Defi ning Failure

We start with an assumption that you have a specifi cation of proper service. Users

can then see a system alternating between two states of delivered service with

respect to the service specifi cation:

1. Service

 accomplishment, where the service is delivered as specifi ed

2. Service interruption, where the delivered service is diff erent from the

specifi ed service

Transitions from state 1 to state 2 are caused by failures, and transitions from state

2 to state 1 are called restorations. Failures can be permanent or intermittent. Th

e

latter is the more diffi

cult case; it is harder to diagnose the problem when a system

oscillates between the two states. Permanent failures are far easier to diagnose.

Th

is defi nition leads to two related terms: reliability and availability.

 Reliability is a measure of the continuous service accomplishment—or, equivalently,

of the time to failure—from a reference point. Hence, mean time to failure (MTTF)

is a reliability measure. A related term is annual failure rate (AFR), which is just the

percentage of devices that would be expected to fail in a year for a given MTTF.

When MTTF gets large it can be misleading, while AFR leads to better intuition.

MTTF vs. AFR of Disks

Some disks today are quoted to have a 1,000,000-hour MTTF. As 1,000,000

EXAMPLE

hours is 1,000,000/(365 ⫻ 24) ⫽ 114 years, it would seem like they practically

never fail. Warehouse scale computers that run Internet services such as

Search might have 50,000 servers. Assume each server has 2 disks. Use AFR to

calculate how many disks we would expect to fail per year.

5.5 Dependable Memory Hierarchy

419

One year is 365 ⫻ 24 ⫽ 8760 hours. A 1,000,000-hour MTTF means an AFR

of 8760/1,000,000 ⫽ 0.876%. With 100,000 disks, we would expect 876 disks to

ANSWER

fail per year, or on average more than 2 disk failures per day!

Service interruption is measured as mean time to repair (MTTR). Mean time

 between failures (MTBF) is simply the sum of MTTF + MTTR. Although MTBF

is widely used, MTTF is oft en the more appropriate term. Availability is then a

measure of service accomplishment with respect to the alternation between the two

states of accomplishment and interruption. Availability is statistically quantifi ed as

MTTF

Availability

(MTTF

MTTR)

Note that reliability and availability are actually quantifi able measures, rather than

just synonyms for dependability. Shrinking MTTR can help availability as much as

increasing MTTF. For example, tools for fault detection, diagnosis, and repair can

help reduce the time to repair faults and thereby improve availability.

We want availability to be very high. One shorthand is to quote the number of

“nines of availability” per year. For example, a very good Internet service today

off ers 4 or 5 nines of availability. Given 365 days per year, which is 365 ⫻ 24 ⫻

60 ⫽ 526,000 minutes, then the shorthand is decoded as follows:

One nine:

90%

=> 36.5 days of repair/year

Two nines:

99%

=> 3.65 days of repair/year

Th

ree nines:

99.9%

=> 526 minutes of repair/year

Four nines:

99.99%

=> 52.6 minutes of repair/year

Five nines:

99.999% => 5.26 minutes of repair/year

and so on.

To increase MTTF, you can improve the quality of the components or design

systems to continue operation in the presence of components that have failed.

Hence, failure needs to be defi ned with respect to a context, as failure of a component

may not lead to a failure of the system. To make this distinction clear, the term fault

is used to mean failure of a component. Here are three ways to improve MTTF:

1. Fault

 avoidanc e : Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the

service specifi cation despite faults occurring.

3. Fault forecasting: Predicting the presence and creation of faults, allowing

the component to be replaced before it fails.

420

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The Hamming Single Error Correcting, Double Error

Detecting Code (SEC/DED)

Richard Hamming invented a popular redundancy scheme for memory, for which

he received the Turing Award in 1968. To invent redundant codes, it is helpful

to talk about how “close” correct bit patterns can be. What we call the Hamming

 distance is just the minimum number of bits that are diff erent between any two

correct bit patterns. For example, the distance between 011011 and 001111 is two.

What happens if the minimum distance between members of a codes is two, and

we get a one-bit error? It will turn a valid pattern in a code to an invalid one. Th

us,

if we can detect whether members of a code are valid or not, we can detect single

error detection

bit errors, and can say we have a single bit error detection code.

code A code that

Hamming used a parity code for error detection. In a parity code, the number

enables the detection of

of 1s in a word is counted; the word has odd parity if the number of 1s is odd and

an error in data, but not

even otherwise. When a word is written into memory, the parity bit is also written

the precise location and,

(1 for odd, 0 for even). Th

at is, the parity of the N+1 bit word should always be even.

hence, correction of the

Th

en, when the word is read out, the parity bit is read and checked. If the parity of the

error.

memory word and the stored parity bit do not match, an error has occurred.

Calculate the parity of a byte with the value 31 and show the pattern stored to

ten

EXAMPLE

memory. Assume the parity bit is on the right. Suppose the most signifi cant bit

was inverted in memory, and then you read it back. Did you detect the error?

What happens if the two most signifi cant bits are inverted?

31 is 00011111 , which has fi ve 1s. To make parity even, we need to write a 1

ten

two

ANSWER

in the parity bit, or 000111111 . If the most signifi cant bit is inverted when we

two

read it back, we would see 100111111 which has seven 1s. Since we expect

two

even parity and calculated odd parity, we would signal an error. If the two most

signifi cant bits are inverted, we would see 110111111 which has eight 1s or

two

even parity and we would not signal an error.

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors,

since the parity will match the data with two errors. (Actually, a 1-bit parity scheme

can detect any odd number of errors; however, the probability of having 3 errors is

much lower than the probability of having two, so, in practice, a 1-bit parity code is

limited to detecting a single bit of error.)

Of course, a parity code cannot correct errors, which Hamming wanted to do

as well as detect them. If we used a code that had a minimum distance of 3, then

any single bit error would be closer to the correct pattern than to any other valid

pattern. He came up with an easy to understand mapping of data into a distance 3

code that we call Hamming Error Correction Code (ECC) in his honor. We use extra

5.5 Dependable Memory Hierarchy

421

parity bits to allow the position identifi cation of a single error. Here are the steps to

calculate Hamming ECC

1. Start numbering bits from 1 on the left , as opposed to the traditional

numbering of the rightmost bit being 0.

2. Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8,

16, …) .

3. All other bit positions are used for data bits (positions 3, 5, 6, 7, 9, 10, 11, 12,

13, 14, 15, …).

4. Th

e position of parity bit determines sequence of data bits that it checks

(Figure 5.24 shows this coverage graphically) is:

■ Bit 1 (0001) checks bits (1,3,5,7,9,11,...), which are bits where rightmost

two

bit of address is 1 (0001 , 0011 , 0101 , 0111 , 1001 , 1011 ,…).

two

two

two

two

two

two

■ Bit 2 (0010) checks bits (2,3,6,7,10,11,14,15,…), which are the bits

two

where the second bit to the right in the address is 1.

■ Bit 4 (0100) checks bits (4–7, 12–15, 20–23,...) , which are the bits where

two

the third bit to the right in the address is 1.

■ Bit 8 (1000) checks bits (8–15, 24–31, 40–47,...), which are the bits

two

where the fourth bit to the right in the address is 1.

Note that each data bit is covered by two or more parity bits.

5. Set parity bits to create even parity for each group.

Bit position

1

2

3

4

5

6

7

8

9

10

11

12

Encoded data bits

p1

p2

d1

p4

d2

d3

d4

p8

d5

d6

d7

d8

p1

X

X

X

X

X

X

Parity

p2

X

X

X

X

X

X

bit

coverage

p4

X

X

X

X

X

p8

X

X

X

X

X

FIGURE 5.24

Parity bits, data bits, and fi eld coverage in a Hamming ECC code for

eight data bits.

In what seems like a magic trick, you can then determine whether bits are

incorrect by looking at the parity bits. Using the 12 bit code in Figure 5.24, if the value of the four parity calculations (p8,p4,p2,p1) was 0000, then there was no

error. However, if the pattern was, say, 1010, which is 10 , then Hamming ECC

ten

tells us that bit 10 (d6) is an error. Since the number is binary, we can correct the

error just by inverting the value of bit 10.

422

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Assume one byte data value is 10011010 . First show the Hamming ECC code

two

EXAMPLE

for that byte, and then invert bit 10 and show that the ECC code fi nds and

corrects the single bit error.

Leaving spaces for the parity bits, the 12 bit pattern is _ _ 1 _ 0 0 1 _ 1 0 1 0.

ANSWER

Position 1 checks bits 1,3,5,7,9, and11, which we highlight: __ 1 _ 0 0 1 _ 1 0 1

0. To make the group even parity, we should set bit 1 to 0.

Position 2 checks bits 2,3,6,7,10,11, which is 0 _ 1 _ 0 0 1 _ 1 0 1 0 or odd parity, so we set position 2 to a 1.

Position 4 checks bits 4,5,6,7,12, which is 0 1 1 _ 0 0 1 _ 1 0 1, so we set it to a 1.

Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1 _ 1 0 1 0, so we set it to a 0.

Th

e fi nal code word is 011100101010. Inverting bit 10 changes it to

011100101110.

Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK).

Parity bit 2 is 1 (011100101110 is fi ve 1s, so odd parity; there is an error somewhere).

Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK).

Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error

somewhere).

Parity bits 2 and 10 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence,

we can correct the error by inverting bit 10: 011100101010. Voila!

Hamming did not stop at single bit error correction code. At the cost of one more

bit, we can make the minimum Hamming distance in a code be 4. Th

is means

we can correct single bit errors and detect double bit errors. Th

e idea is to add a

parity bit that is calculated over the whole word. Let’s use a four-bit data word as

an example, which would only need 7 bits for single bit error detection. Hamming

parity bits H (p1 p2 p3) are computed (even parity as usual) plus the even parity

over the entire word, p4:

1 2 3 4 5 6 7 8

p p d p d d d p

1

2

1

3

2

3

4

4

Th

en the algorithm to correct one error and detect two is just to calculate parity

over the ECC groups (H) as before plus one more over the whole group (p). Th

ere

4

are four cases:

1. H is even and p is even, so no error occurred.

4

2. H is odd and p is odd, so a correctable single error occurred. (p should

4

4

calculate odd parity if one error occurred.)

3. H is even and p is odd, a single error occurred in p bit, not in the rest of the

4

4

word, so correct the p bit.

4

5.5 Dependable Memory Hierarchy

423

4. H is odd and p is even, a double error occurred. (p should calculate even

4

4

parity if two errors occurred.)

Single Error Correcting / Double Error Detecting (SEC/DED) is common in

memory for servers today. Conveniently, eight byte data blocks can get SEC/DED

with just one more byte, which is why many DIMMs are 72 bits wide.

Elaboration: To calculate how many bits are needed for SEC, let p be total number of parity bits and d number of data bits in p ⫹ d bit word. If p error correction bits are to point to error bit (p + d cases) plus one case to indicate that no error exists, we need: 2 p ⱖ p ⫹ d ⫹ 1 bits, and thus p ⱖ log(p ⫹ d ⫹ 1).

For example, for 8 bits data means d ⫽ 8 and 2p ⱖ p ⫹ 8 ⫹ 1, so p ⫽ 4. Similarly, p ⫽ 5 for 16 bits of data, 6 for 32 bits, 7 for 64 bits, and so on.

Elaboration: In very large systems, the possibility of multiple errors as well as

complete failure of a single wide memory chip becomes signifi cant. IBM introduced

 chipkill to solve this problem, and many very large systems use this technology. (Intel

calls their version SDDC.) Similar in nature to the RAID approach used for disks (see

Section 5.11), Chipkill distributes the data and ECC information, so that the complete

failure of a single memory chip can be handled by supporting the reconstruction of the

missing data from the remaining memory chips. Assuming a 10,000-processor cluster

with 4 GiB per processor, IBM calculated the following rates of unrecoverable memory

errors in three years of operation:

■ Parity only—about 90,000, or one unrecoverable (or undetected) failure every 17

minutes.

■ SEC/DED only—about 3500, or about one undetected or unrecoverable failure

every 7.5 hours.

■ Chipkill—6, or about one undetected or unrecoverable failure every 2 months.

Hence, Chipkill is a requirement for warehouse-scale computers.

Elaboration: While single or double bit errors are typical for memory systems, networks

can have bursts of bit errors. One solution is called Cyclic Redundancy Check. For a

block of k bits, a transmitter generates an n-k bit frame check sequence. It transmits n bits exactly divisible by some number. The receiver divides frame by that number. If

there is no remainder, it assumes there is no error. If there is, the receiver rejects the

message, and asks the transmitter to send again. As you might guess from Chapter 3,

it is easy to calculate division for some binary numbers with a shift register, which made

CRC codes popular even when hardware was more precious. Going even further, Reed-

Solomon codes use Galois fi elds to correct multibit transmission errors, but now data is considered coeffi cients of a polynomials and the code space is values of a polynomial.

The Reed-Solomon calculation is considerably more complicated than binary division!

424

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.6 Virtual

Machines

 Virtual Machines (VM) were fi rst developed in the mid-1960s, and they have

remained an important part of mainframe computing over the years. Although

largely ignored in the single user PC era in the 1980s and 1990s, they have recently

gained popularity due to

■ Th

e increasing importance of isolation and security in modern systems

■ Th

e failures in security and reliability of standard operating systems

■ Th

e sharing of a single computer among many unrelated users, in particular

for cloud computing

■ Th

e dramatic increases in raw speed of processors over the decades, which

makes the overhead of VMs more acceptable

Th

e broadest defi nition of VMs includes basically all emulation methods that

provide a standard soft ware interface, such as the Java VM. In this section, we are

interested in VMs that provide a complete system-level environment at the binary

 instruction set architecture (ISA) level. Although some VMs run diff erent ISAs in

the VM from the native hardware, we assume they always match the hardware. Such

VMs are called (Operating) System Virtual Machines. IBM VM/370, VirtualBox,

VMware ESX Server, and Xen are examples.

System virtual machines present the illusion that the users have an entire

computer to themselves, including a copy of the operating system. A single

computer runs multiple VMs and can support a number of diff erent operating

 systems (OSes). On a conventional platform, a single OS “owns” all the hardware

resources, but with a VM, multiple OSes all share the hardware resources.

Th

e soft ware that supports VMs is called a virtual machine monitor (VMM) or

 hypervisor; the VMM is the heart of virtual machine technology. Th

e underlying

hardware platform is called the host, and its resources are shared among the guest

VMs. Th

e VMM determines how to map virtual resources to physical resources: a

physical resource may be time-shared, partitioned, or even emulated in soft ware.

Th

e VMM is much smaller than a traditional OS; the isolation portion of a VMM

is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide

two other benefi ts that are commercially signifi cant:

1. Managing soft ware. VMs provide an abstraction that can run the complete

soft ware stack, even including old operating systems like DOS. A typical

deployment might be some VMs running legacy OSes, many running the

current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each

application running with the compatible version of the operating system

on separate computers, as this separation can improve dependability. VMs

 5.6

Virtual

Machines

425

allow these separate soft ware stacks to run independently yet share hardware,

thereby consolidating the number of servers. Another example is that some

VMMs support migration of a running VM to a diff erent computer, either

to balance load or to evacuate from failing hardware.

 Amazon Web Services (AWS) uses the virtual machines in its cloud computing Hardware/

off ering EC2 for fi ve reasons:

Software

1. It allows AWS to protect users from each other while sharing the same server.

Interface

2. It simplifi es soft ware distribution within a warehouse scale computer. A

customer installs a virtual machine image confi gured with the appropriate

soft ware, and AWS distributes it to all the instances a customer wants to use.

3. Customers (and AWS) can reliably “kill” a VM to control resource usage

when customers complete their work.

4. Virtual machines hide the identity of the hardware on which the customer is

running, which means AWS can keep using old servers and introduce new,

more effi

cient servers. Th

e customer expects performance for instances to

match their ratings in “EC2 Compute Units,” which AWS defi nes: to “provide

the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007

Intel Xeon processor.” Th

anks to Moore’s Law, newer servers clearly off er

more EC2 Compute Units than older ones, but AWS can keep renting old

servers as long as they are economical.

5. Virtual Machine Monitors can control the rate that a VM uses the processor,

the network, and disk space, which allows AWS to off er many price points

of instances of diff erent types running on the same underlying servers.

For example, in 2012 AWS off ered 14 instance types, from small standard

instances at $0.08 per hour to high I/O quadruple extra large instances at

$3.10 per hour.

In general, the cost of processor virtualization depends on the workload. User-

level processor-bound programs have zero virtualization overhead, because the

OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads

are generally also OS-intensive, executing many system calls and privileged

instructions that can result in high virtualization overhead. On the other hand, if

the I/O-intensive workload is also I/O-bound, the cost of processor virtualization

can be completely hidden, since the processor is oft en idle waiting for I/O.

Th

e overhead is determined by both the number of instructions that must be

emulated by the VMM and by how much time each takes to emulate them. Hence,

when the guest VMs run the same ISA as the host, as we assume here, the goal

426

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

of the architecture and the VMM is to run almost all instructions directly on the

native hardware.

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a soft ware interface to guest soft ware, it

must isolate the state of guests from each other, and it must protect itself from guest

soft ware (including guest OSes). Th

e qualitative requirements are:

■ Guest soft ware should behave on a VM exactly as if it were running on the

native hardware, except for performance-related behavior or limitations of

fi xed resources shared by multiple VMs.

■ Guest soft ware should not be able to change allocation of real system resources

directly.

To “virtualize” the processor, the VMM must control just about everything—access

to privileged state, I/O, exceptions, and interrupts—even though the guest VM and

OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the

currently running guest VM, save its state, handle the interrupt, determine which

guest VM to run next, and then load its state. Guest VMs that rely on a timer

interrupt are provided with a virtual timer and an emulated timer interrupt by the

VMM.

To be in charge, the VMM must be at a higher privilege level than the guest

VM, which generally runs in user mode; this also ensures that the execution of

any privileged instruction will be handled by the VMM. Th

e basic requirements of

system virtual:

■ At least two processor modes, system and user.

■ A privileged subset of instructions that is available only in system mode,

resulting in a trap if executed in user mode; all system resources must be

controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for Virtual

Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to reduce

both the number of instructions that must be executed by a VMM and improve

their emulation speed. An architecture that allows the VM to execute directly on

the hardware earns the title virtualizable, and the IBM 370 architecture proudly

bears that label.

Alas, since VMs have been considered for PC and server applications only fairly

recently, most instruction sets were created without virtualization in mind. Th

ese

culprits include x86 and most RISC architectures, including ARMv7 and MIPS.

5.7 Virtual

Memory

427

Because the VMM must ensure that the guest system only interacts with virtual

resources, a conventional guest OS runs as a user mode program on top of the

VMM. Th

en, if a guest OS attempts to access or modify information related to

hardware resources via a privileged instruction—for example, reading or writing

a status bit that enables interrupts—it will trap to the VMM. Th

e VMM can then

eff ect the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information

traps when executed in user mode, the VMM can intercept it and support a virtual

version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must

take special precautions to locate all problematic instructions and ensure that they

behave correctly when executed by a guest OS, thereby increasing the complexity

of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture

Protection is a joint eff ort of architecture and operating systems, but architects

had to modify some awkward details of existing instruction set architectures when

virtual memory became popular.

For example, the x86 instruction POPF loads the fl ag registers from the top of

the stack in memory. One of the fl ags is the Interrupt Enable (IE) fl ag. If you run

the POPF instruction in user mode, rather than trap it, it simply changes all the

fl ags except IE. In system mode, it does change the IE. Since a guest OS runs in user

mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve

performance of virtual machines:

1. Reduce the cost of processor virtualization.

2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without

invoking VMM.

AMD and Intel tried to address the fi rst point in 2006 by reducing the cost of

processor virtualization. It will be interesting to see how many generations of … a system has architecture and VMM modifi cations it will take to address all three points, and been devised to how long before virtual machines of the 21st century will be as effi

cient as the IBM make the core drum

mainframes and VMMs of the 1970s.

 combination appear

 to the programmer

 as a single level

 5.7

 store, the requisite

 Virtual

Memory

 transfers taking place

 automatically.

In earlier sections, we saw how caches provided fast access to recently used portions

Kilburn et al., One-level

of a program’s code and data. Similarly, the main memory can act as a “cache” for storage system, 1962

428

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

the secondary storage, usually implemented with magnetic disks. Th

is technique is

virtual memory

called virtual memory. Historically, there were two major motivations for virtual

A technique that uses

memory: to allow effi

cient and safe sharing of memory among multiple programs,

main memory as a “cache”

such as for the memory needed by multiple virtual machines for cloud computing,

for secondary storage.

and to remove the programming burdens of a small, limited amount of main

memory. Five decades aft er its invention, it’s the former reason that reigns today.

Of course, to allow multiple virtual machines to share the same memory, we

must be able to protect the virtual machines from each other, ensuring that a

program can only read and write the portions of main memory that have been

assigned to it. Main memory need contain only the active portions of the many

virtual machines, just as a cache contains only the active portion of one program.

Th

us, the principle of locality enables virtual memory as well as caches, and virtual

memory allows us to effi

ciently share the processor as well as the main memory.

We cannot know which virtual machines will share the memory with other

virtual machines when we compile them. In fact, the virtual machines sharing

the memory change dynamically while the virtual machines are running. Because

of this dynamic interaction, we would like to compile each program into its

physical address

own address space—a separate range of memory locations accessible only to this

An address in main

program. Virtual memory implements the translation of a program’s address space

memory.

to physical addresses. Th

is translation process enforces protection of a program’s

protection A set

address space from other virtual machines.

of mechanisms for

Th

e second motivation for virtual memory is to allow a single user program

ensuring that multiple

to exceed the size of primary memory. Formerly, if a program became too large

processes sharing the

processor, memory,

for memory, it was up to the programmer to make it fi t. Programmers divided

or I/O devices cannot

programs into pieces and then identifi ed the pieces that were mutually exclusive.

interfere, intentionally

Th

ese overlays were loaded or unloaded under user program control during

or unintentionally, with

execution, with the programmer ensuring that the program never tried to access

one another by reading or

an overlay that was not loaded and that the overlays loaded never exceeded the

writing each other’s data.

total size of the memory. Overlays were traditionally organized as modules, each

Th

ese mechanisms also

containing both code and data. Calls between procedures in diff erent modules

isolate the operating system

from a user process.

would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on

page fault An event that

programmers. Virtual memory, which was invented to relieve programmers of

occurs when an accessed

this diffi

culty, automatically manages the two levels of the memory hierarchy

page is not present in

represented by main memory (sometimes called physical memory to distinguish it

main memory.

from virtual memory) and secondary storage.

virtual address

Although the concepts at work in virtual memory and in caches are the same,

An address that

their diff ering historical roots have led to the use of diff erent terminology. A virtual

corresponds to a location

memory block is called a page, and a virtual memory miss is called a page fault.

in virtual space and is

With virtual memory, the processor produces a virtual address, which is translated

translated by address

mapping to a physical

by a combination of hardware and soft ware to a physical address, which in turn can

address when memory is

be used to access main memory. Figure 5.25 shows the virtually addressed memory accessed.

with pages mapped to main memory. Th

is process is called address mapping or

5.7 Virtual

Memory

429

address translation. Today, the two memory hierarchy levels controlled by virtual address translation memory are usually DRAMs and fl ash memory in personal mobile devices and Also called address DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library mapping. Th e process by analogy, we can think of a virtual address as the title of a book and a physical which a virtual address is mapped to an address

address as the location of that book in the library, such as might be given by the used to access memory.

Library of Congress call number.

Virtual memory also simplifi es loading the program for execution by providing

 relocation. Relocation maps the virtual addresses used by a program to diff erent

physical addresses before the addresses are used to access memory. Th

is relocation

allows us to load the program anywhere in main memory. Furthermore, all virtual

memory systems in use today relocate the program as a set of fi xed-size blocks

(pages), thereby eliminating the need to fi nd a contiguous block of memory to

allocate to a program; instead, the operating system need only fi nd a suffi

cient

number of pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page

 off set. Figure 5.26 shows the translation of the virtual page number to a physical page number. Th

e physical page number constitutes the upper portion of the

physical address, while the page off set, which is not changed, constitutes the lower

portion. Th

e number of bits in the page off set fi eld determines the page size. Th

e

number of pages addressable with the virtual address need not match the number

of pages addressable with the physical address. Having a larger number of virtual

pages than physical pages is the basis for the illusion of an essentially unbounded

amount of virtual memory.

Virtual addresses

Physical addresses

Address translation

Disk addresses

FIGURE 5.25

In virtual memory, blocks of memory (called pages) are mapped from one

set of addresses (called virtual addresses) to another set (called physical addresses).

Th

e processor generates virtual addresses while the memory is accessed using physical addresses. Both the virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual addresses point to the same physical address. Th

is capability is used to allow two diff erent programs to share

data or code.

430

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Virtual address

31 30 29 28 27

15 14 13 12 11 10 9 8

3 2 1 0

Virtual page number

Page offset

Translation

29 28 27

15 14 13 12 11 10 9 8

3 2 1 0

Physical page number

Page offset

Physical address

FIGURE 5.26

Mapping from a virtual to a physical address. Th

e page size is 212 ⫽ 4 KiB. Th

e

number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Th us,

main memory can have at most 1 GiB, while the virtual address space is 4 GiB.

Many design choices in virtual memory systems are motivated by the high cost

of a page fault. A page fault to disk will take millions of clock cycles to process.

(Th

e table on page 378 shows that main memory latency is about 100,000 times

quicker than disk.) Th

is enormous miss penalty, dominated by the time to get the

fi rst word for typical page sizes, leads to several key decisions in designing virtual

memory systems:

■ Pages should be large enough to try to amortize the high access time. Sizes

from 4 KiB to 16 KiB are typical today. New desktop and server systems are

being developed to support 32 KiB and 64 KiB pages, but new embedded

systems are going in the other direction, to 1 KiB pages.

■ Organizations that reduce the page fault rate are attractive. Th

e primary

technique used here is to allow fully associative placement of pages in

memory.

■ Page faults can be handled in soft ware because the overhead will be small

compared to the disk access time. In addition, soft ware can aff ord to use clever

algorithms for choosing how to place pages because even small reductions in

the miss rate will pay for the cost of such algorithms.

■ Write-through will not work for virtual memory, since writes take too long.

Instead, virtual memory systems use write-back.

5.7 Virtual

Memory

431

Th

e next few subsections address these factors in virtual memory design.

Elaboration: We present the motivation for virtual memory as many virtual machines

sharing the same memory, but virtual memory was originally invented so that many

programs could share a computer as part of a timesharing system. Since many readers

today have no experience with time-sharing systems, we use virtual machines to motivate

this section.

Elaboration: For servers and even PCs, 32-bit address processors are problematic.

Although we normally think of virtual addresses as much larger than physical addresses,

the opposite can occur when the processor address size is small relative to the state

of the memory technology. No single program or virtual machine can benefi t, but a

collection of programs or virtual machines running at the same time can benefi t from

not having to be swapped to memory or by running on parallel processors.

Elaboration: The discussion of virtual memory in this book focuses on paging,

which uses fi xed-size blocks. There is also a variable-size block scheme called

segmentation. In segmentation, an address consists of two parts: a segment number

segmentation

and a segment offset. The segment number is mapped to a physical address, and

A variable-size address

the offset is added to fi nd the actual physical address. Because the segment can

mapping scheme in which

vary in size, a bounds check is also needed to make sure that the offset is within

an address consists of two

the segment. The major use of segmentation is to support more powerful methods

parts: a segment number,

of protection and sharing in an address space. Most operating system textbooks

which is mapped to a

contain extensive discussions of segmentation compared to paging and of the use

physical address, and a

of segmentation to logically share the address space. The major disadvantage of

segment off set.

segmentation is that it splits the address space into logically separate pieces that

must be manipulated as a two-part address: the segment number and the offset.

Paging, in contrast, makes the boundary between page number and offset invisible

to programmers and compilers.

Segments have also been used as a method to extend the address space without

changing the word size of the computer. Such attempts have been unsuccessful because

of the awkwardness and performance penalties inherent in a two-part address, of which

programmers and compilers must be aware.

Many architectures divide the address space into large fi xed-size blocks that simplify

protection between the operating system and user programs and increase the effi ciency

of implementing paging. Although these divisions are often called “segments,” this

mechanism is much simpler than variable block size segmentation and is not visible to

user programs; we discuss it in more detail shortly.

Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault, designers reduce page fault

frequency by optimizing page placement. If we allow a virtual page to be mapped

to any physical page, the operating system can then choose to replace any page

it wants when a page fault occurs. For example, the operating system can use a

432

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

sophisticated algorithm and complex data structures that track page usage to try

to choose a page that will not be needed for a long time. Th

e ability to use a clever

and fl exible replacement scheme reduces the page fault rate and simplifi es the use

of fully associative placement of pages.

As mentioned in Section 5.4, the diffi

culty in using fully associative placement

is in locating an entry, since it can be anywhere in the upper level of the hierarchy.

page table Th

e table

A full search is impractical. In virtual memory systems, we locate pages by using a

containing the virtual

table that indexes the memory; this structure is called a page table, and it resides

to physical address

in memory. A page table is indexed with the page number from the virtual address

translations in a virtual

memory system. Th

e

to discover the corresponding physical page number. Each program has its own

table, which is stored

page table, which maps the virtual address space of that program to main memory.

in memory, is typically

In our library analogy, the page table corresponds to a mapping between book

indexed by the virtual

titles and library locations. Just as the card catalog may contain entries for books

page number; each entry

in another library on campus rather than the local branch library, we will see that

in the table contains the

the page table may contain entries for pages not present in memory. To indicate the

physical page number

location of the page table in memory, the hardware includes a register that points to

for that virtual page if

the page is currently in

the start of the page table; we call this the page table register. Assume for now that

memory.

the page table is in a fi xed and contiguous area of memory.

Hardware/ Th e page table, together with the program counter and the registers, specifi es the state of a virtual machine. If we want to allow another virtual machine to use

Software the processor, we must save this state. Later, aft er restoring this state, the virtual Interface

machine can continue execution. We oft en refer to this state as a process. Th

e

process is considered active when it is in possession of the processor; otherwise, it

is considered inactive. Th

e operating system can make a process active by loading

the process’s state, including the program counter, which will initiate execution at

the value of the saved program counter.

Th

e process’s address space, and hence all the data it can access in memory, is

defi ned by its page table, which resides in memory. Rather than save the entire page

table, the operating system simply loads the page table register to point to the page

table of the process it wants to make active. Each process has its own page table,

since diff erent processes use the same virtual addresses. Th

e operating system is

responsible for allocating the physical memory and updating the page tables, so

that the virtual address spaces of diff erent processes do not collide. As we will see

shortly, the use of separate page tables also provides protection of one process from

another.

5.7 Virtual

Memory

433

Figure 5.27 uses the page table register, the virtual address, and the indicated page table to show how the hardware can form a physical address. A valid bit is used

in each page table entry, just as we did in a cache. If the bit is off , the page is not

present in main memory and a page fault occurs. If the bit is on, the page is in

memory and the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no

tags are required. In cache terminology, the index that is used to access the page

table consists of the full block address, which is the virtual page number.

Page table register

Virtual address

3 1 3 0 2 9 2 8 2 7

1 5 1 4 1 3 1 2 1 1 1 0 9 8

3 2 1 0

Virtual page number

Page offset

20

12

Valid

Physical page number

Page table

18

If 0 then page is not

present in memory

2 9 2 8 2 7

1 5 1 4 1 3 1 2 1 1 1 0 9 8

3 2 1 0

Physical page number

Page offset

Physical address

FIGURE 5.27

The page table is indexed with the virtual page number to obtain the

corresponding portion of the physical address. We assume a 32-bit address. Th

e page table pointer

gives the starting address of the page table. In this fi gure, the page size is 212 bytes, or 4 KiB. Th e virtual

address space is 232 bytes, or 4 GiB, and the physical address space is 230 bytes, which allows main memory of up to 1 GiB. Th

e number of entries in the page table is 220, or 1 million entries. Th

e valid bit for each entry

indicates whether the mapping is legal. If it is off , then the page is not present in memory. Although the page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of indexing. Th

e extra bits would be used to store additional information that needs to be kept on a per-page

basis, such as protection.

434

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Page Faults

If the valid bit for a virtual page is off , a page fault occurs. Th

e operating system

must be given control. Th

is transfer is done with the exception mechanism, which

we saw in Chapter 4 and will discuss again later in this section. Once the operating

system gets control, it must fi nd the page in the next level of the hierarchy (usually

fl ash memory or magnetic disk) and decide where to place the requested page in

main memory.

Th

e virtual address alone does not immediately tell us where the page is on disk.

Returning to our library analogy, we cannot fi nd the location of a library book on

the shelves just by knowing its title. Instead, we go to the catalog and look up the

book, obtaining an address for the location on the shelves, such as the Library of

Congress call number. Likewise, in a virtual memory system, we must keep track

of the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced,

the operating system usually creates the space on fl ash memory or disk for all the

swap space Th

e space on

pages of a process when it creates the process. Th

is space is called the swap space.

the disk reserved for the

At that time, it also creates a data structure to record where each virtual page is

full virtual memory space

stored on disk. Th

is data structure may be part of the page table or may be an

of a process.

auxiliary data structure indexed in the same way as the page table. Figure 5.28

shows the organization when a single table holds either the physical page number

or the disk address.

Th

e operating system also creates a data structure that tracks which processes

and which virtual addresses use each physical page. When a page fault occurs,

if all the pages in main memory are in use, the operating system must choose a

page to replace. Because we want to minimize the number of page faults, most

operating systems try to choose a page that they hypothesize will not be needed

in the near future. Using the past to predict the future, operating systems follow

the least recently used (LRU) replacement scheme, which we mentioned in Section

5.4. Th

e operating system searches for the least recently used page, assuming that

a page that has not been used in a long time is less likely to be needed than a more

recently accessed page. Th

e replaced pages are written to swap space on the disk.

In case you are wondering, the operating system is just another process, and these

tables controlling memory are in memory; the details of this seeming contradiction

will be explained shortly.

5.7 Virtual

Memory

435

Virtual page

number

Page table

Physical page or

Physical memory

Valid disk address

11

1

1

0

1101

Disk storage

1

0

1

FIGURE 5.28

The page table maps each page in virtual memory to either a page in main

memory or a page stored on disk, which is the next level in the hierarchy. Th

e virtual page

number is used to index the page table. If the valid bit is on, the page table supplies the physical page number (i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off , the page currently resides only on disk, at a specifi ed disk address. In many systems, the table of physical page addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual tables are justifi ed in part because we must keep the disk addresses of all the pages, even if they are currently in main memory. Remember that the pages in main memory and the pages on disk are the same size.

Implementing a completely accurate LRU scheme is too expensive, since it requires

Hardware/

updating a data structure on every memory reference. Instead, most operating Software systems approximate LRU by keeping track of which pages have and which pages

have not been recently used. To help the operating system estimate the LRU pages, Interface

some computers provide a reference bit or use bit, which is set whenever a page reference bit Also called is accessed. Th

e operating system periodically clears the reference bits and later use bit. A fi eld that is records them so it can determine which pages were touched during a particular set whenever a page time period. With this usage information, the operating system can select a page is accessed and that is that is among the least recently referenced (detected by having its reference bit off). used to implement LRU

or other replacement

If this bit is not provided by the hardware, the operating system must fi nd another schemes.

way to estimate which pages have been accessed.

436

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table

entry, we can compute the total page table size:

232

Number of page table entries

220

⫽

⫽

212

bytes

Size of page table

220 page table entries

22

4 MiB

page table

e entry

That is, we would need to use 4 MiB of memory for each program in execution at any

time. This amount is not so bad for a single process. What if there are hundreds of

processes running, each with their own page table? And how should we handle 64-bit

addresses, which by this calculation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page

table. The fi ve techniques below aim at reducing the total maximum storage required as

well as minimizing the main memory dedicated to page tables:

1.

The simplest technique is to keep a limit register that restricts the size of the

page table for a given process. If the virtual page number becomes larger than

the contents of the limit register, entries must be added to the page table. This

technique allows the page table to grow as a process consumes more space.

Thus, the page table will only be large if the process is using many pages of

virtual address space. This technique requires that the address space expand in

only one direction.

2.

Allowing growth in only one direction is not suffi cient, since most languages require

two areas whose size is expandable: one area holds the stack and the other area

holds the heap. Because of this duality, it is convenient to divide the page table

and let it grow from the highest address down, as well as from the lowest address

up. This means that there will be two separate page tables and two separate

limits. The use of two page tables breaks the address space into two segments.

The high-order bit of an address usually determines which segment and thus which

page table to use for that address. Since the high-order address bit specifi es the

segment, each segment can be as large as one-half of the address space. A

limit register for each segment specifi es the current size of the segment, which

grows in units of pages. This type of segmentation is used by many architectures,

including MIPS. Unlike the type of segmentation discussed in the third elaboration

on page 431, this form of segmentation is invisible to the application program,

although not to the operating system. The major disadvantage of this scheme is

that it does not work well when the address space is used in a sparse fashion

rather than as a contiguous set of virtual addresses.

3.

Another approach to reducing the page table size is to apply a hashing function

to the virtual address so that the page table need be only the size of the number

of physical pages in main memory. Such a structure is called an inverted page

 table. Of course, the lookup process is slightly more complex with an inverted

page table, because we can no longer just index the page table.

4.

Multiple levels of page tables can also be used to reduce the total amount of

page table storage. The fi rst level maps large fi xed-size blocks of virtual address

space, perhaps 64 to 256 pages in total. These large blocks are sometimes

called segments, and this fi rst-level mapping table is sometimes called a

5.7 Virtual

Memory

437

segment table, though the segments are again invisible to the user. Each entry

in the segment table indicates whether any pages in that segment are allocated

and, if so, points to a page table for that segment. Address translation happens

by fi rst looking in the segment table, using the highest-order bits of the address.

If the segment address is valid, the next set of high-order bits is used to index

the page table indicated by the segment table entry. This scheme allows the

address space to be used in a sparse fashion (multiple noncontiguous segments

can be active) without having to allocate the entire page table. Such schemes

are particularly useful with very large address spaces and in software systems

that require noncontiguous allocation. The primary disadvantage of this two-level

mapping is the more complex process for address translation.

5.

To reduce the actual main memory tied up in page tables, most modern systems

also allow the page tables to be paged. Although this sounds tricky, it works

by using the same basic ideas of virtual memory and simply allowing the page

tables to reside in the virtual address space. In addition, there are some small

but critical problems, such as a never-ending series of page faults, which must

be avoided. How these problems are overcome is both very detailed and typically

highly processor specifi c. In brief, these problems are avoided by placing all the

page tables in the address space of the operating system and placing at least

some of the page tables for the operating system in a portion of main memory

that is physically addressed and is always present and thus never on disk.

What about Writes?

Th

e diff erence between the access time to the cache and main memory is tens to

hundreds of cycles, and write-through schemes can be used, although we need a

write buff er to hide the latency of the write from the processor. In a virtual memory

system, writes to the next level of the hierarchy (disk) can take millions of processor

clock cycles; therefore, building a write buff er to allow the system to write-through

to disk would be completely impractical. Instead, virtual memory systems must use

write-back, performing the individual writes into the page in memory, and copying

the page back to disk when it is replaced in the memory.

A write-back scheme has another major advantage in a virtual memory system. Hardware/

Because the disk transfer time is small compared with its access time, copying back Software

an entire page is much more effi

cient than writing individual words back to the disk.

A write-back operation, although more effi

cient than transferring individual words, is Interface

still costly. Th

us, we would like to know whether a page needs to be copied back when

we choose to replace it. To track whether a page has been written since it was read into

the memory, a dirty bit is added to the page table. Th

e dirty bit is set when any word

in a page is written. If the operating system chooses to replace the page, the dirty bit

indicates whether the page needs to be written out before its location in memory can be

given to another page. Hence, a modifi ed page is oft en called a dirty page.

438

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Making Address Translation Fast: the TLB

Since the page tables are stored in main memory, every memory access by a program

can take at least twice as long: one memory access to obtain the physical address

and a second access to get the data. Th

e key to improving access performance is to

rely on locality of reference to the page table. When a translation for a virtual page

number is used, it will probably be needed again in the near future, because the

references to the words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of recently

used translations. Th

is special address translation cache is traditionally referred to as

translation-lookaside

a translation-lookaside buff er (TLB), although it would be more accurate to call it

buff er (TLB) A cache

a translation cache. Th

e TLB corresponds to that little piece of paper we typically use

that keeps track of

to record the location of a set of books we look up in the card catalog; rather than

recently used address

continually searching the entire catalog, we record the location of several books and

mappings to try to avoid

use the scrap of paper as a cache of Library of Congress call numbers.

an access to the page

table.

Figure 5.29 shows that each tag entry in the TLB holds a portion of the virtual page number, and each data entry of the TLB holds a physical page number.

TLB

Virtual page

Physical page

number Valid Dirty Ref

Tag

address

1 0 1

1 1 1

Physical memory

1 1 1

1 0 1

0 0 0

1 0 1

Page table

Physical page

Valid Dirty Ref or disk address

1 0 1

1 0 0

Disk storage

1 0 0

1 0 1

0 0 0

1 0 1

1 0 1

0 0 0

1 1 1

1 1 1

0 0 0

1 1 1

FIGURE 5.29

The TLB acts as a cache of the page table for the entries that map to

physical pages only. Th

e TLB contains a subset of the virtual-to-physical page mappings that are in the

page table. Th

e TLB mappings are shown in color. Because the TLB is a cache, it must have a tag fi eld. If there is no matching entry in the TLB for a page, the page table must be examined. Th

e page table either supplies a

physical page number for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no tag fi eld is needed; in other words, unlike a TLB, a page table is not a cache.

5.7 Virtual

Memory

439

Because we access the TLB instead of the page table on every reference, the TLB

will need to include other status bits, such as the dirty and the reference bits.

On every reference, we look up the virtual page number in the TLB. If we get a

hit, the physical page number is used to form the address, and the corresponding

reference bit is turned on. If the processor is performing a write, the dirty bit is also

turned on. If a miss in the TLB occurs, we must determine whether it is a page fault

or merely a TLB miss. If the page exists in memory, then the TLB miss indicates

only that the translation is missing. In such cases, the processor can handle the TLB

miss by loading the translation from the page table into the TLB and then trying the

reference again. If the page is not present in memory, then the TLB miss indicates

a true page fault. In this case, the processor invokes the operating system using an

exception. Because the TLB has many fewer entries than the number of pages in

main memory, TLB misses will be much more frequent than true page faults.

TLB misses can be handled either in hardware or in soft ware. In practice, with

care there can be little performance diff erence between the two approaches, because

the basic operations are the same in either case.

Aft er a TLB miss occurs and the missing translation has been retrieved from the

page table, we will need to select a TLB entry to replace. Because the reference and

dirty bits are contained in the TLB entry, we need to copy these bits back to the page

table entry when we replace an entry. Th

ese bits are the only portion of the TLB

entry that can be changed. Using write-back—that is, copying these entries back at

miss time rather than when they are written—is very effi

cient, since we expect the

TLB miss rate to be small. Some systems use other techniques to approximate the

reference and dirty bits, eliminating the need to write into the TLB except to load

a new table entry on a miss.

Some typical values for a TLB might be

■ TLB size: 16–512 entries

■ Block size: 1–2 page table entries (typically 4–8 bytes each)

■ Hit time: 0.5–1 clock cycle

■ Miss penalty: 10–100 clock cycles

■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use

small, fully associative TLBs because a fully associative mapping has a lower miss

rate; furthermore, since the TLB is small, the cost of a fully associative mapping is

not too high. Other systems use large TLBs, oft en with small associativity. With

a fully associative mapping, choosing the entry to replace becomes tricky since

implementing a hardware LRU scheme is too expensive. Furthermore, since TLB

misses are much more frequent than page faults and thus must be handled more

cheaply, we cannot aff ord an expensive soft ware algorithm, as we can for page faults.

As a result, many systems provide some support for randomly choosing an entry

to replace. We’ll examine replacement schemes in a little more detail in Section 5.8.

440

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The Intrinsity FastMATH TLB

To see these ideas in a real processor, let’s take a closer look at the TLB of the

Intrinsity FastMATH. Th

e memory system uses 4 KiB pages and a 32-bit address

space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.30.

Th

e physical address is the same size as the virtual address. Th

e TLB contains 16

entries, it is fully associative, and it is shared between the instruction and data

references. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual

page number for that TLB entry), the corresponding physical page number (also 20

bits), a valid bit, a dirty bit, and other bookkeeping bits. Like most MIPS systems,

it uses soft ware to handle TLB misses.

Figure 5.30 shows the TLB and one of the caches, while Figure 5.31 shows the steps in processing a read or write request. When a TLB miss occurs, the MIPS

hardware saves the page number of the reference in a special register and generates

an exception. Th

e exception invokes the operating system, which handles the miss

in soft ware. To fi nd the physical address for the missing page, the TLB miss routine

indexes the page table using the page number of the virtual address and the page

table register, which indicates the starting address of the active process page table.

Using a special set of system instructions that can update the TLB, the operating

system places the physical address from the page table into the TLB. A TLB miss

takes about 13 clock cycles, assuming the code and the page table entry are in the

instruction cache and data cache, respectively. (We will see the MIPS TLB code

on page 449.) A true page fault occurs if the page table entry does not have a valid

physical address. Th

e hardware maintains an index that indicates the recommended

entry to replace; the recommended entry is chosen randomly.

Th

ere is an extra complication for write requests: namely, the write access bit in

the TLB must be checked. Th

is bit prevents the program from writing into pages

for which it has only read access. If the program attempts a write and the write

access bit is off , an exception is generated. Th

e write access bit forms part of the

protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data

cannot be in the cache unless it is present in main memory. Th

e operating system

helps maintain this hierarchy by fl ushing the contents of any page from the cache

when it decides to migrate that page to disk. At the same time, the OS modifi es the

page tables and TLB, so that an attempt to access any data on the migrated page

will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and

sent to the cache where the appropriate data is found, retrieved, and sent back to

the processor. In the worst case, a reference can miss in all three components of the

memory hierarchy: the TLB, the page table, and the cache. Th

e following example

illustrates these interactions in more detail.

5.7 Virtual

Memory

441

Virtual address

31 30 29

14 13 12 11 10 9

3 2 1 0

Virtual page number

Page offset

20

12

Valid Dirty

Tag

Physical page number

=

TLB

=

TLB hit

=

=

=

=

20

Physical page number

Page offset

Physical address

Block

Byte

Physical address tag

Cache index

offset

offset

18

8

4

2

8

12

Data

Valid

Tag

Cache

=

Cache hit

32

Data

FIGURE 5.30

The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity FastMATH. Th

is fi gure shows the organization of the TLB and the data cache, assuming a 4 KiB page size. Th

is diagram focuses on a read;

Figure 5.31 describes how to handle writes. Note that unlike Figure 5.12, the tag and data RAMs are split. By addressing the long but narrow data RAM with the cache index concatenated with the block off set, we select the desired word in the block without a 16:1 multiplexor. While the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the Elaboration on page 408.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from the page off set form the index that is used to access the cache.

442

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Virtual address

TLB access

No

Yes

TLB miss

TLB hit?

exception

Physical address

No

Yes

Write?

Try to read data

from cache

No

Yes

Write access

bit on?

Write protection

Try to write data

No

Yes

exception

Cache miss stall

to cache

Cache hit?

while read block

Deliver data

to the CPU

No

Yes

Cache miss stall

Cache hit?

while read block

Write data into cache,

update the dirty bit, and

put the data and the

address into the write buffer

FIGURE 5.31

Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to the write buff er if we assume write-through. A write miss is just like a read miss except that the block is modifi ed aft er it is read from memory.

Write-back requires writes to set a dirty bit for the cache block, and a write buff er is loaded with the whole block only on a read miss or write miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur aft er a TLB

hit occurs, which means that the data must be present in memory. Th

e relationship between TLB misses and cache misses is examined further

in the following example and the exercises at the end of this chapter.

5.7 Virtual

Memory

443

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.30, which includes a TLB and a

cache organized as shown, a memory reference can encounter three diff erent

EXAMPLE

types of misses: a TLB miss, a page fault, and a cache miss. Consider all

the combinations of these three events with one or more occurring (seven

possibilities). For each possibility, state whether this event can actually occur

and under what circumstances.

Figure 5.32 shows all combinations and whether each is possible in practice.

ANSWER

Elaboration: Figure 5.32 assumes that all memory addresses are translated to physical addresses before the cache is accessed. In this organization, the cache is

 physically indexed and physically tagged (both the cache index and tag are physical, rather than virtual, addresses). In such a system, the amount of time to access memory,

assuming a cache hit, must accommodate both a TLB access and a cache access; of

course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely

or partially virtual. This is called a virtually addressed cache, and it uses tags that

are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In virtually addressed

such caches, the address translation hardware (TLB) is unused during the normal cache

cache A cache that is

access, since the cache is accessed with a virtual address that has not been translated

accessed with a virtual

to a physical address. This takes the TLB out of the critical path, reducing cache latency.

address rather than a

When a cache miss occurs, however, the processor needs to translate the address to a

physical address.

physical address so that it can fetch the cache block from main memory.

Page

TLB

table

Cache

Possible? If so, under what circumstance?

Hit

Hit

Miss

Possible, although the page table is never really checked if TLB hits.

Miss

Hit

Hit

TLB misses, but entry found in page table; after retry, data is found in cache.

Miss

Hit

Miss

TLB misses, but entry found in page table; after retry, data misses in cache.

Miss

Miss

Miss

TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit

Miss

Miss

Impossible: cannot have a translation in TLB if page is not present in memory.

Hit

Miss

Hit

Impossible: cannot have a translation in TLB if page is not present in memory.

Miss

Miss

Hit

Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.32

The possible combinations of events in the TLB, virtual memory system,

and cache. Th

ree of these combinations are impossible, and one is possible (TLB hit, virtual memory hit,

cache miss) but never detected.

444

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

When the cache is accessed with a virtual address and pages are shared between

processes (which may access them with different virtual addresses), there is the

aliasing A situation

possibility of aliasing. Aliasing occurs when the same object has two names—in this

in which two addresses

case, two virtual addresses for the same page. This ambiguity creates a problem, because

access the same object;

a word on such a page may be cached in two different locations, each corresponding

it can occur in virtual

to different virtual addresses. This ambiguity would allow one program to write the data

memory when there are

without the other program being aware that the data had changed. Completely virtually

two virtual addresses for

addressed caches either introduce design limitations on the cache and TLB to reduce

the same physical page.

aliases or require the operating system, and possibly the user, to take steps to ensure

that aliases do not occur.

A common compromise between these two design points is caches that are virtually

indexed—sometimes using just the page-offset portion of the address, which is really

a physical address since it is not translated—but use physical tags. These designs,

which are virtually indexed but physically tagged, attempt to achieve the performance

advantages of virtually indexed caches with the architecturally simpler advantages of a

physically addressed

physically addressed cache. For example, there is no alias problem in this case. Figure

cache A cache that is

5.30 assumed a 4 KiB page size, but it’s really 16 KiB, so the Intrinsity FastMATH can addressed by a physical

use this trick. To pull it off, there must be careful coordination between the minimum

address.

page size, the cache size, and associativity.

Implementing Protection with Virtual Memory

Perhaps the most important function of virtual memory today is to allow sharing of

a single main memory by multiple processes, while providing memory protection

among these processes and the operating system. Th

e protection mechanism must

ensure that although multiple processes are sharing the same main memory, one

renegade process cannot write into the address space of another user process or into

the operating system either intentionally or unintentionally. Th

e write access bit in

the TLB can protect a page from being written. Without this level of protection,

computer viruses would be even more widespread.

Hardware/ To enable the operating system to implement protection in the virtual memory

system, the hardware must provide at least the three basic capabilities summarized

Software below. Note that the fi rst two are the same requirements as needed for virtual

Interface

machines (Section 5.6).

1. Support at least two modes that indicate whether the running process is a

supervisor mode Also

user process or an operating system process, variously called a supervisor

called kernel mode. A

process, a kernel process, or an executive process.

mode indicating that a

running process is an

2. Provide a portion of the processor state that a user process can read but not

operating system process.

write. Th

is includes the user/supervisor mode bit, which dictates whether

the processor is in user or supervisor mode, the page table pointer, and the

5.7 Virtual

Memory

445

TLB. To write these elements, the operating system uses special instructions

that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to

supervisor mode and vice versa. Th

e fi rst direction is typically accomplished

by a system call exception, implemented as a special instruction (syscall in system call A special the MIPS instruction set) that transfers control to a dedicated location in instruction that transfers supervisor code space. As with any other exception, the program counter control from user mode

from the point of the system call is saved in the exception PC (EPC), and to a dedicated location in supervisor code space,

the processor is placed in supervisor mode. To return to user mode from the invoking the exception exception, use the return from exception (ERET) instruction, which resets to mechanism in the process.

user mode and jumps to the address in EPC.

By using these mechanisms and storing the page tables in the operating system’s

address space, the operating system can change the page tables while preventing a

user process from changing them, ensuring that a user process can access only the

storage provided to it by the operating system.

We also want to prevent a process from reading the data of another process. For

example, we wouldn’t want a student program to read the grades while they were

in the processor’s memory. Once we begin sharing main memory, we must provide

the ability for a process to protect its data from both reading and writing by another

process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Th

us, if the

operating system keeps the page tables organized so that the independent virtual

pages map to disjoint physical pages, one process will not be able to access another’s

data. Of course, this also requires that a user process be unable to change the page

table mapping. Th

e operating system can assure safety if it prevents the user process

from modifying its own page tables. However, the operating system must be able

to modify the page tables. Placing the page tables in the protected address space of

the operating system satisfi es both requirements.

When processes want to share information in a limited way, the operating system

must assist them, since accessing the information of another process requires

changing the page table of the accessing process. Th

e write access bit can be used

to restrict the sharing to just read sharing, and, like the rest of the page table, this

bit can be changed only by the operating system. To allow another process, say, P1,

to read a page owned by process P2, P2 would ask the operating system to create

a page table entry for a virtual page in P1’s address space that points to the same

physical page that P2 wants to share. Th

e operating system could use the write

protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits

that determine the access rights for a page must be included in both the page table

and the TLB, because the page table is accessed only on a TLB miss.

446

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: When the operating system decides to change from running process

context switch

P1 to running process P2 (called a context switch or process switch), it must ensure A changing of the internal

that P2 cannot get access to the page tables of P1 because that would compromise

state of the processor to

protection. If there is no TLB, it suffi ces to change the page table register to point to P2’s

allow a diff erent process

page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to

to use the processor

P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the

that includes saving the

process switch rate were high, this could be quite ineffi cient. For example, P2 might load

state needed to return to

only a few TLB entries before the operating system switched back to P1. Unfortunately,

the currently executing

P1 would then fi nd that all its TLB entries were gone and would have to pay TLB misses

process.

to reload them. This problem arises because the virtual addresses used by P1 and P2

are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process

 identifi er or task identifi er. The Intrinsity FastMATH has an 8-bit address space ID (ASID) fi eld for this purpose. This small fi eld identifi es the currently running process; it is kept

in a register loaded by the operating system when it switches processes. The process

identifi er is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if

both the page number and the process identifi er match. This combination eliminates the

need to clear the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch the cache will

contain data from the running process. These problems arise in different ways for

physically addressed and virtually addressed caches, and a variety of different solutions,

such as process identifi ers, are used to ensure that a process gets its own data.

Handling TLB Misses and Page Faults

Although the translation of virtual to physical addresses with a TLB is

straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and

page faults is more complex. A TLB miss occurs when no entry in the TLB matches

a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. Th

e page is present in memory, and we need only create the missing TLB

entry.

2. Th

e page is not present in memory, and we need to transfer control to the

operating system to deal with a page fault.

MIPS traditionally handles a TLB miss in soft ware. It brings in the page table

entry from memory and then re-executes the instruction that caused the TLB miss.

Upon re-executing, it will get a TLB hit. If the page table entry indicates the page is

not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism

to interrupt the active process, transferring control to the operating system, and

later resuming execution of the interrupted process. A page fault will be recognized

sometime during the clock cycle used to access memory. To restart the instruction

aft er the page fault is handled, the program counter of the instruction that caused

the page fault must be saved. Just as in Chapter 4, the exception program counter

(EPC) is used to hold this value.

5.7 Virtual

Memory

447

In addition, a TLB miss or page fault exception must be asserted by the end

of the same clock cycle that the memory access occurs, so that the next clock

cycle will begin exception processing rather than continue normal instruction

execution. If the page fault was not recognized in this clock cycle, a load instruction

could overwrite a register, and this could be disastrous when we try to restart the

instruction. For example, consider the instruction lw $1,0($1): the computer

must be able to prevent the write pipeline stage from occurring; otherwise, it could

not properly restart the instruction, since the contents of $1 would have been

destroyed. A similar complication arises on stores. We must prevent the write into

memory from actually completing when there is a page fault; this is usually done

by deasserting the write control line to the memory.

Between the time we begin executing the exception handler in the operating Hardware/

system and the time that the operating system has saved all the state of the process, Software the operating system is particularly vulnerable. For example, if another exception

occurred when we were processing the fi rst exception in the operating system, the Interface

control unit would overwrite the exception program counter, making it impossible

to return to the instruction that caused the page fault! We can avoid this disaster

by providing the ability to disable and enable exceptions. When an exception fi rst exception enable Also occurs, the processor sets a bit that disables all other exceptions; this could happen called interrupt enable.

at the same time the processor sets the supervisor mode bit. Th

e operating system A signal or action that

will then save just enough state to allow it to recover if another exception occurs—

controls whether the

process responds to

namely, the exception program counter (EPC) and Cause registers. EPC and Cause an exception or not; are two of the special control registers that help with exceptions, TLB misses, and necessary for preventing page faults; Figure 5.33 shows the rest. Th

e operating system can then re-enable the occurrence of

exceptions. Th

ese steps make sure that exceptions will not cause the processor exceptions during

to lose any state and thereby be unable to restart execution of the interrupting intervals before the instruction.

processor has safely saved

the state needed to restart.

Once the operating system knows the virtual address that caused the page fault, it

must complete three steps:

1. Look up the page table entry using the virtual address and fi nd the location

of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be

written out to disk before we can bring a new virtual page into this physical

page.

3. Start a read to bring the referenced page from disk into the chosen physical

page.

448

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Register

CP0 register number

Description

EPC

14

Where to restart after exception

Cause

13

Cause of exception

BadVAddr

8

Address that caused exception

Index

0

Location in TLB to be read or written

Random

1

Pseudorandom location in TLB

EntryLo

2

Physical page address and flags

EntryHi

10

Virtual page address

Context

4

Page table address and page number

FIGURE 5.33

MIPS control registers. Th

ese are considered to be in coprocessor 0, and hence are

read using mfc0 and written using mtc0.

Of course, this last step will take millions of processor clock cycles (so will the

second if the replaced page is dirty); accordingly, the operating system will usually

select another process to execute in the processor until the disk access completes.

Because the operating system has saved the state of the process, it can freely give

control of the processor to another process.

When the read of the page from disk is complete, the operating system can

restore the state of the process that originally caused the page fault and execute

the instruction that returns from the exception. Th

is instruction will reset the

processor from kernel to user mode, as well as restore the program counter. Th

e

user process then re-executes the instruction that faulted, accesses the requested

page successfully, and continues execution.

Page fault exceptions for data accesses are diffi

cult to implement properly in a

processor because of a combination of three characteristics:

1. Th

ey occur in the middle of instructions, unlike instruction page faults.

restartable

2. Th

e instruction cannot be completed before handling the exception.

instruction An

3. Aft er handling the exception, the instruction must be restarted as if nothing

instruction that can

resume execution aft er

had occurred.

an exception is resolved

Making instructions restartable, so that the exception can be handled and the

without the exception’s

instruction later continued, is relatively easy in an architecture like the MIPS.

aff ecting the result of the

instruction.

Because each instruction writes only one data item and this write occurs at the end

of the instruction cycle, we can simply prevent the instruction from completing (by

not writing) and restart the instruction at the beginning.

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware

saves the page number of the reference in a special register called BadVAddr and

generates an exception.

5.7 Virtual

Memory

449

Th

e exception invokes the operating system, which handles the miss in soft ware.

Control is transferred to address 8000 0000 , the location of the TLB miss handler.

hex

handler Name of a

To fi nd the physical address for the missing page, the TLB miss routine indexes the soft ware routine invoked page table using the page number of the virtual address and the page table register, to “handle” an exception which indicates the starting address of the active process page table. To make this or interrupt.

indexing fast, MIPS hardware places everything you need in the special Context

register: the upper 12 bits have the address of the base of the page table, and the

next 18 bits have the virtual address of the missing page. Each page table entry is

one word, so the last 2 bits are 0. Th

us, the fi rst two instructions copy the Context

register into the kernel temporary register $k1 and then load the page table entry

from that address into $k1. Recall that $k0 and $k1 are reserved for the operating

system to use without saving; a major reason for this convention is to make the TLB

miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:

mfc0 $k1,Context

copy address of PTE into temp $k1

lw

$k1,0($k1)

put PTE into temp $k1

mtc0 $k1,EntryLo #

put PTE into special register EntryLo

tlbwr

put EntryLo into TLB entry at Random

eret

return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the

TLB. Th

e instruction tlbwr copies from control register EntryLo into the TLB

entry selected by the control register Random. Random implements random

replacement, so it is basically a free-running counter. A TLB miss takes about a

dozen clock cycles.

Note that the TLB miss handler does not check to see if the page table entry is

valid. Because the exception for TLB entry missing is much more frequent than

a page fault, the operating system loads the TLB from the page table without

examining the entry and restarts the instruction. If the entry is invalid, another

and diff erent exception occurs, and the operating system recognizes the page fault.

Th

is method makes the frequent case of a TLB miss fast, at a slight performance

penalty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers

control to 8000 0180 , a diff erent address than the TLB miss handler. Th

is is

hex

the general address for exception; TLB miss has a special entry point to lower the

penalty for a TLB miss. Th

e operating system uses the exception Cause register

to diagnose the cause of the exception. Because the exception is a page fault, the

operating system knows that extensive processing will be required. Th

us, unlike a

TLB miss, it saves the entire state of the active process. Th

is state includes all the

general-purpose and fl oating-point registers, the page table address register, the

EPC, and the exception Cause register. Since exception handlers do not usually use

the fl oating-point registers, the general entry point does not save them, leaving that

to the few handlers that need them.

450

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Figure 5.34 sketches the MIPS code of an exception handler. Note that we

save and restore the state in MIPS code, taking care when we enable and disable

exceptions, but we invoke C code to handle the particular exception.

Th

e virtual address that caused the fault depends on whether the fault was an

instruction or data fault. Th

e address of the instruction that generated the fault is

in the EPC. If it was an instruction page fault, the EPC contains the virtual address

of the faulting page; otherwise, the faulting virtual address can be computed by

examining the instruction (whose address is in the EPC) to fi nd the base register

and off set fi eld.

Elaboration: This simplifi ed version assumes that the stack pointer (sp) is valid. To avoid the problem of a page fault during this low-level exception code, MIPS sets aside

unmapped A portion

a portion of its address space that cannot have page faults, called unmapped. The

of the address space that

operating system places the exception entry point code and the exception stack in

cannot have page faults.

unmapped memory. MIPS hardware translates virtual addresses 8000 0000

to BFFF

hex

FFFF

to physical addresses simply by ignoring the upper bits of the virtual address,

hex

thereby placing these addresses in the low part of physical memory. Thus, the operating

system places exception entry points and exception stacks in unmapped memory.

Elaboration: The code in Figure 5.34 shows the MIPS-32 exception return sequence.

The older MIPS-I architecture uses rfe and jr instead of eret.

Elaboration: For processors with more complex instructions that can touch many

memory locations and write many data items, making instructions restartable is much

harder. Processing one instruction may generate a number of page faults in the middle

of the instruction. For example, x86 processors have block move instructions that touch

thousands of data words. In such processors, instructions often cannot be restarted

from the beginning, as we do for MIPS instructions. Instead, the instruction must be

interrupted and later continued midstream in its execution. Resuming an instruction in

the middle of its execution usually requires saving some special state, processing the

exception, and restoring that special state. Making this work properly requires careful

and detailed coordination between the exception-handling code in the operating system

and the hardware.

Elaboration: Rather than pay an extra level of indirection on every memory access, the

VMM maintains a shadow page table that maps directly from the guest virtual address

space to the physical address space of the hardware. By detecting all modifi cations to

the guest’s page table, the VMM can ensure the shadow page table entries being used

by the hardware for translations correspond to those of the guest OS environment, with

the exception of the correct physical pages substituted for the real pages in the guest

tables. Hence, the VMM must trap any attempt by the guest OS to change its page table

or to access the page table pointer. This is commonly done by write protecting the guest

page tables and trapping any access to the page table pointer by a guest OS. As noted

above, the latter happens naturally if accessing the page table pointer is a privileged

operation.

5.7 Virtual

Memory

451

Save state

Save GPR

addi

$k1,$sp, -XCPSIZE # save space on stack for state

sw

$sp, XCT_SP($k1)

save $sp on stack

sw

$v0, XCT_V0($k1)

save $v0 on stack

...

save $v1, $ai, $si, $ti,... on stack

sw

$ra, XCT_RA($k1)

save $ra on stack

Save hi, lo

mfhi

$v0

copy Hi

mflo $v1

copy

Lo

sw

$v0, XCT_HI($k1)

save Hi value on stack

sw

$v1, XCT_LO($k1)

save Lo value on stack

Save exception

mfc0

$a0, $cr

copy cause register

registers

sw

$a0, XCT_CR($k1)

save $cr value on stack

...

save

$v1,....

mfc0

$a3,

$sr

copy status register

sw

$a3, XCT_SR($k1)

save $sr on stack

Set sp

move

$sp, $k1

sp = sp - XCPSIZE

Enable nested exceptions

andi

$v0, $a3, MASK1

$v0 = $sr & MASK1, enable exceptions

mtc0

$v0,

$sr

$sr = value that enables exceptions

Call C exception handler

Set $gp

move

$gp, GPINIT

set $gp to point to heap area

move

$a0,

$sp

arg1 = pointer to exception stack

Call C code

jal

xcpt_deliver

call C code to handle exception

Restoring state

Restore most

move

$at,

$sp

temporary value of $sp

GPR, hi, lo

lw

$ra, XCT_RA($at)

restore $ra from stack

...

restore

$t0,....,

$a1

lw

$a0, XCT_A0($k1)

restore $a0 from stack

Restore status

lw

$v0, XCT_SR($at)

load old $sr from stack

register

li

$v1, MASK2

mask to disable exceptions

and

$v0, $v0, $v1

$v0 = $sr & MASK2, disable exceptions

mtc0

$v0,

$sr

set status register

Exception return

Restore $sp

lw

$sp, XCT_SP($at)

restore $sp from stack

and rest of

lw

$v0, XCT_V0($at)

restore $v0 from stack

GPR used as

temporary

lw

$v1, XCT_V1($at)

restore $v1 from stack

registers

lw

$k1, XCT_EPC($at) # copy old $epc from stack

lw

$at, XCT_AT($at)

restore $at from stack

Restore ERC

mtc0

$k1, $epc

restore $epc

and return

eret

$ra

return to interrupted instruction

FIGURE 5.34

MIPS code to save and restore state on an exception.

452

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: The fi nal portion of the architecture to virtualize is I/O. This is by far

the most diffi cult part of system virtualization because of the increasing number of

I/O devices attached to the computer and the increasing diversity of I/O device types.

Another diffi culty is the sharing of a real device among multiple VMs, and yet another

comes from supporting the myriad of device drivers that are required, especially if

different guest OSes are supported on the same VM system. The VM illusion can be

maintained by giving each VM generic versions of each type of I/O device driver, and then

leaving it to the VMM to handle real I/O.

Elaboration: In addition to virtualizing the instruction set for a virtual machine,

another challenge is virtualization of virtual memory, as each guest OS in every virtual

machine manages its own set of page tables. To make this work, the VMM separates

the notions of real and physical memory (which are often treated synonymously), and makes real memory a separate, intermediate level between virtual memory and physical

memory. (Some use the terms virtual memory, physical memory, and machine memory

to name the same three levels.) The guest OS maps virtual memory to real memory

via its page tables, and the VMM page tables map the guest’s real memory to physical

memory. The virtual memory architecture is specifi ed either via page tables, as in IBM

VM/370 and the x86, or via the TLB structure, as in MIPS.

Summary

Virtual memory is the name for the level of memory hierarchy that manages

caching between the main memory and secondary memory. Virtual memory

allows a single program to expand its address space beyond the limits of main

memory. More importantly, virtual memory supports sharing of the main memory

among multiple, simultaneously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging

because of the high cost of page faults. Several techniques are used to reduce the

miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the

miss rate.

2. Th

e mapping between virtual addresses and physical addresses, which is

implemented with a page table, is made fully associative so that a virtual

page can be placed anywhere in main memory.

3. Th

e operating system uses techniques, such as LRU and a reference bit, to

choose which pages to replace.

5.7 Virtual

Memory

453

Writes to secondary memory are expensive, so virtual memory uses a write-back

scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid

writing unchanged pages.

Th

e virtual memory mechanism provides address translation from a virtual

address used by the program to the physical address space used for accessing

memory. Th

is address translation allows protected sharing of the main memory

and provides several additional benefi ts, such as simplifying memory allocation.

Ensuring that processes are protected from each other requires that only the

operating system can change the address translations, which is implemented by

preventing user programs from changing the page tables. Controlled sharing of

pages among processes can be implemented with the help of the operating system

and access bits in the page table that indicate whether the user program has read or

write access to a page.

If a processor had to access a page table resident in memory to translate every

access, virtual memory would be too expensive, as caches would be pointless!

Instead, a TLB acts as a cache for translations from the page table. Addresses are

then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and

policies. Th

e next section discusses this common framework.

Although virtual memory was invented to enable a small memory to act as a large Understanding one, the performance diff erence between secondary memory and main memory Program

means that if a program routinely accesses more virtual memory than it has

physical memory, it will run very slowly. Such a program would be continuously Performance

swapping pages between memory and disk, called thrashing. Th

rashing is a disaster

if it occurs, but it is rare. If your program thrashes, the easiest solution is to run it on

a computer with more memory or buy more memory for your computer. A more

complex choice is to re-examine your algorithm and data structures to see if you

can change the locality and thereby reduce the number of pages that your program

uses simultaneously. Th

is set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might

handle only 32–64 page entries at a time, a program could easily see a high TLB

miss rate, as the processor may access less than a quarter mebibyte directly: 64

⫻ 4 KiB ⫽ 0.25 MiB. For example, TLB misses are oft en a challenge for Radix

Sort. To try to alleviate this problem, most computer architectures now support

variable page sizes. For example, in addition to the standard 4 KiB page, MIPS

hardware supports 16 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 64 MiB, and

256 MiB pages. Hence, if a program uses large page sizes, it can access more

memory directly without TLB misses.

Th

e practical challenge is getting the operating system to allow programs to

select these larger page sizes. Once again, the more complex solution to reducing

454

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

TLB misses is to re-examine the algorithm and data structures to reduce the

working set of pages; given the importance of memory accesses to performance

and the frequency of TLB misses, some programs with large working sets have

been redesigned with that goal.

Check Match the defi nitions in the right column to the terms in the left column.

Yourself

1. L1 cache

a. A cache for a cache

2. L2 cache

b. A cache for disks

3. Main memory

c. A cache for a main memory

4. TLB

d. A cache for page table entries

 5.8

 A Common Framework for Memory

Hierarchy

By now, you’ve recognized that the diff erent types of memory hierarchies have a

great deal in common. Although many of the aspects of memory hierarchies diff er

quantitatively, many of the policies and features that determine how a hierarchy

functions are similar qualitatively. Figure 5.35 shows how some of the quantitative characteristics of memory hierarchies can diff er. In the rest of this section, we will

discuss the common operational alternatives for memory hierarchies, and how

these determine their behavior. We will examine these policies as a series of four

questions that apply between any two levels of a memory hierarchy, although for

simplicity we will primarily use terminology for caches.

Typical values

Typical values

Typical values for

Typical values

Feature

for L1 caches

for L2 caches

paged memory

for a TLB

Total size in blocks

250–2000

2,500–25,000

16,000–250,000

40–1024

Total size in kilobytes

16–64

125–2000

1,000,000–1,000,000,000

0.25–16

Block size in bytes

16–64

64–128

4000–64,000

4–32

Miss penalty in clocks

10–25

100–1000

10,000,000–100,000,000

10–1000

Miss rates (global for L2)

2%–5%

0.1%–2%

0.00001%–0.0001%

0.01%–2%

FIGURE 5.35

The key quantitative design parameters that characterize the major elements of memory hierarchy in a computer. Th

ese are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values that have shift ed over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches lower the L2 miss penalty to 30 to 40 clock cycles.

5.8 A Common Framework for Memory Hierarchy

455

Question 1: Where Can a Block Be Placed?

We have seen that block placement in the upper level of the hierarchy can use a range

of schemes, from direct mapped to set associative to fully associative. As mentioned

above, this entire range of schemes can be thought of as variations on a set-associative

scheme where the number of sets and the number of blocks per set varies:

Scheme name

Number of sets

Blocks per set

Direct mapped

Number of blocks in cache

1

Number of blocks in the cache

Set associative

Associativity (typically 2–16)

Associativity

Fully associative

1

Number of blocks in the cache

Th

e advantage of increasing the degree of associativity is that it usually decreases

the miss rate. Th

e improvement in miss rate comes from reducing misses that

compete for the same location. We will examine these in more detail shortly. First,

let’s look at how much improvement is gained. Figure 5.36 shows the miss rates for several cache sizes as associativity varies from direct mapped to eight-way set

associative. Th

e largest gains are obtained in going from direct mapped to two-way

set associative, which yields between a 20% and 30% reduction in the miss rate.

As cache sizes grow, the relative improvement from associativity increases only

15%

1 KiB

12%

2 KiB

9%

ate

4 KiB

Miss r

6%

8 KiB

3%

16 KiB

32 KiB

64 KiB

128 KiB

0

One-way

Two-way

Four-way

Eight-way

Associativity

FIGURE 5.36

The data cache miss rates for each of eight cache sizes improve as the

associativity increases. While the benefi t of going from one-way (direct mapped) to two-way set associative is signifi cant, the benefi ts of further associativity are smaller (e.g., 1%–10% improvement going from two-way to four-way versus 20%–30% improvement going from one-way to two-way). Th

ere is even

less improvement in going from four-way to eight-way set associative, which, in turn, comes very close to the miss rates of a fully associative cache. Smaller caches obtain a signifi cantly larger absolute benefi t from associativity because the base miss rate of a small cache is larger. Figure 5.16 explains how this data was collected.

456

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

slightly; since the overall miss rate of a larger cache is lower, the opportunity for

improving the miss rate decreases and the absolute improvement in the miss rate

from associativity shrinks signifi cantly. Th

e potential disadvantages of associativity,

as we mentioned earlier, are increased cost and slower access time.

Question 2: How Is a Block Found?

Th

e choice of how we locate a block depends on the block placement scheme, since

that dictates the number of possible locations. We can summarize the schemes as

follows:

Associativity

Location method

Comparisons required

Direct mapped

Index

1

Set associative

Index the set, search among elements

Degree of associativity

Search all cache entries

Size of the cache

Full

Separate lookup table

0

Th

e choice among direct-mapped, set-associative, or fully associative mapping

in any memory hierarchy will depend on the cost of a miss versus the cost of

implementing associativity, both in time and in extra hardware. Including the

L2 cache on the chip enables much higher associativity, because the hit times are

not as critical and the designer does not have to rely on standard SRAM chips as

the building blocks. Fully associative caches are prohibitive except for small sizes,

where the cost of the comparators is not overwhelming and where the absolute

miss rate improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept

to index the memory. In addition to the storage required for the table, using an

index table requires an extra memory access. Th

e choice of full associativity for

page placement and the extra table is motivated by these facts:

1. Full associativity is benefi cial, since misses are very expensive.

2. Full associativity allows soft ware to use sophisticated replacement schemes

that are designed to reduce the miss rate.

3. Th

e full map can be easily indexed with no extra hardware and no searching

required.

Th

erefore, virtual memory systems almost always use fully associative placement.

Set-associative placement is oft en used for caches and TLBs, where the access

combines indexing and the search of a small set. A few systems have used direct-

mapped caches because of their advantage in access time and simplicity. Th

e

advantage in access time occurs because fi nding the requested block does not

depend on a comparison. Such design choices depend on many details of the

5.8 A Common Framework for Memory Hierarchy

457

implementation, such as whether the cache is on-chip, the technology used for

implementing the cache, and the critical role of cache access time in determining

the processor cycle time.

Question 3: Which Block Should Be Replaced on

a Cache Miss?

When a miss occurs in an associative cache, we must decide which block to replace.

In a fully associative cache, all blocks are candidates for replacement. If the cache is

set associative, we must choose among the blocks in the set. Of course, replacement

is easy in a direct-mapped cache because there is only one candidate.

Th

ere are the two primary strategies for replacement in set-associative or fully

associative caches:

■ Random: Candidate blocks are randomly selected, possibly using some hardware

assistance. For example, MIPS supports random replacement for TLB misses.

■ Least recently used (LRU): Th

e block replaced is the one that has been unused

for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a small

degree of associativity (two to four, typically), since tracking the usage information

is costly. Even for four-way set associativity, LRU is oft en approximated—for

example, by keeping track of which pair of blocks is LRU (which requires 1 bit),

and then tracking which block in each pair is LRU (which requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is

used. In caches, the replacement algorithm is in hardware, which means that the

scheme should be easy to implement. Random replacement is simple to build in

hardware, and for a two-way set-associative cache, random replacement has a miss

rate about 1.1 times higher than LRU replacement. As the caches become larger, the

miss rate for both replacement strategies falls, and the absolute diff erence becomes

small. In fact, random replacement can sometimes be better than the simple LRU

approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny

reduction in the miss rate can be important when the cost of a miss is enormous.

Reference bits or equivalent functionality are oft en provided to make it easier for

the operating system to track a set of less recently used pages. Because misses are

so expensive and relatively infrequent, approximating this information primarily

in soft ware is acceptable.

Question 4: What Happens on a Write?

A key characteristic of any memory hierarchy is how it deals with writes. We have

already seen the two basic options:

■ Write-through: Th

e information is written to both the block in the cache and

the block in the lower level of the memory hierarchy (main memory for a

cache). Th

e caches in Section 5.3 used this scheme.

458

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Write-back: Th

e information is written only to the block in the cache. Th

e

modifi ed block is written to the lower level of the hierarchy only when it

is replaced. Virtual memory systems always use write-back, for the reasons

discussed in Section 5.7.

Both write-back and write-through have their advantages. Th

e key advantages of

write-back are the following:

■ Individual words can be written by the processor at the rate that the cache,

rather than the memory, can accept them.

■ Multiple writes within a block require only one write to the lower level in the

hierarchy.

■ When blocks are written back, the system can make eff ective use of a high-

bandwidth transfer, since the entire block is written.

Write-through has these advantages:

■ Misses are simpler and cheaper because they never require a block to be

written back to the lower level.

■ Write-through is easier to implement than write-back, although to be

practical, a write-through cache will still need to use a write buff er.

Caches, TLBs, and virtual memory may initially look very diff erent, but

they rely on the same two principles of locality, and they can be understood

by their answers to four questions:

Question 1:

Where can a block be placed?

Answer:

One place (direct mapped), a few places (set associative),

or any place (fully associative).

Question 2:

How is a block found?

The BIG

Answer:

Th

ere are four methods: indexing (as in a direct-mapped

Picture

cache), limited search (as in a set-associative cache), full

search (as in a fully associative cache), and a separate

lookup table (as in a page table).

Question 3:

What block is replaced on a miss?

Answer:

Typically, either the least recently used or a random block.

Question 4:

How are writes handled?

Answer:

Each level in the hierarchy can use either write-through

or write-back.

5.8 A Common Framework for Memory Hierarchy

459

In virtual memory systems, only a write-back policy is practical because of the long

latency of a write to the lower level of the hierarchy. Th

e rate at which writes are

generated by a processor generally exceeds the rate at which the memory system can

process them, even allowing for physically and logically wider memories and burst

modes for DRAM. Consequently, today lowest-level caches typically use write-back.

The Three Cs: An Intuitive Model for Understanding the

Behavior of Memory Hierarchies

In this subsection, we look at a model that provides insight into the sources of three Cs model A cache misses in a memory hierarchy and how the misses will be aff ected by changes model in which all cache in the hierarchy. We will explain the ideas in terms of caches, although the ideas misses are classifi ed into carry over directly to any other level in the hierarchy. In this model, all misses are one of three categories: compulsory misses,

classifi ed into one of three categories (the three Cs):

capacity misses, and

■ Compulsory misses: Th

ese are cache misses caused by the fi rst access to confl ict misses.

a block that has never been in the cache. Th

ese are also called cold-start compulsory miss Also

misses.

called cold-start miss.

A cache miss caused by

■ Capacity misses: Th

ese are cache misses caused when the cache cannot the fi rst access to a block

contain all the blocks needed during execution of a program. Capacity misses

that has never been in the

occur when blocks are replaced and then later retrieved.

cache.

■ Confl ict misses: Th

ese are cache misses that occur in set-associative or capacity miss A cache

direct-mapped caches when multiple blocks compete for the same set. miss that occurs because

Confl ict misses are those misses in a direct-mapped or set-associative cache the cache, even with that are eliminated in a fully associative cache of the same size. Th

ese cache full associativity, cannot

misses are also called collision misses.

contain all the blocks

needed to satisfy the

Figure 5.37 shows how the miss rate divides into the three sources. Th

ese sources of

request.

misses can be directly attacked by changing some aspect of the cache design. Since confl ict miss Also called confl ict misses arise directly from contention for the same cache block, increasing collision miss. A cache associativity reduces confl ict misses. Associativity, however, may slow access time, miss that occurs in a leading to lower overall performance.

set-associative or direct-

Capacity misses can easily be reduced by enlarging the cache; indeed, second-

mapped cache when

level caches have been growing steadily larger for many years. Of course, when we multiple blocks compete make the cache larger, we must also be careful about increasing the access time, for the same set and that which could lead to lower overall performance. Th

us, fi rst-level caches have been are eliminated in a fully

associative cache of the

growing slowly, if at all.

same size.

Because compulsory misses are generated by the fi rst reference to a block, the

primary way for the cache system to reduce the number of compulsory misses is

to increase the block size. Th

is will reduce the number of references required to

touch each block of the program once, because the program will consist of fewer

460

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

10%

9%

8%

One-way

7%

Two-way

6%

Miss rate 5%

Four-way

per type

4%

3%

2%

Capacity

1%

0% 4

8

16

32

64

128

256

512

1024

Cache size (KiB)

FIGURE 5.37

The miss rate can be broken into three sources of misses. Th

is graph shows

the total miss rate and its components for a range of cache sizes. Th

is data is for the SPEC CPU2000 integer

and fl oating-point benchmarks and is from the same source as the data in Figure 5.36 Th

e compulsory

miss component is 0.006% and cannot be seen in this graph. Th

e next component is the capacity miss rate,

which depends on cache size. Th

e confl ict portion, which depends both on associativity and on cache size, is

shown for a range of associativities from one-way to eight-way. In each case, the labeled section corresponds to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to the labeled degree of associativity. For example, the section labeled two-way indicates the additional misses arising when the cache has associativity of two rather than four. Th

us, the diff erence in the miss rate incurred

by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections marked four-way, two-way, and one-way. Th

e diff erence between eight-way and four-way is so small that it

is diffi

cult to see on this graph.

Th

e challenge in designing memory hierarchies is that every change

The BIG

that potentially improves the miss rate can also negatively aff ect overall

performance, as Figure 5.38 summarizes. Th

is combination of positive

Picture

and negative eff ects is what makes the design of a memory hierarchy

interesting.

5.9 Using a Finite-State Machine to Control a Simple Cache

461

Possible negative

Design change

Effect on miss rate

performance effect

Increases cache size

Decreases capacity misses

May increase access time

Increases associativity

Decreases miss rate due to conflict

May increase access time

misses

Increases block size

Decreases miss rate for a wide range of

Increases miss penalty. Very large

block sizes due to spatial locality

block could increase miss rate

FIGURE 5.38

Memory hierarchy design challenges.

cache blocks. As mentioned above, increasing the block size too much can have a

negative eff ect on performance because of the increase in the miss penalty.

Th

e decomposition of misses into the three Cs is a useful qualitative model. In

real cache designs, many of the design choices interact, and changing one cache

characteristic will oft en aff ect several components of the miss rate. Despite such

shortcomings, this model is a useful way to gain insight into the performance of

cache designs.

Which of the following statements (if any) are generally true?

Check

1. Th

ere is no way to reduce compulsory misses.

Yourself

2. Fully associative caches have no confl ict misses.

3. In reducing misses, associativity is more important than capacity.

 5.9

 Using a Finite-State Machine to Control a

Simple Cache

We can now implement control for a cache, just as we implemented control for

the single-cycle and pipelined datapaths in Chapter 4. Th

is section starts with a

defi nition of a simple cache and then a description of fi nite-state machines (FSMs).

It fi nishes with the FSM of a controller for this simple cache. Section 5.12 goes

into more depth, showing the cache and controller in a new hardware description

language.

A Simple Cache

We’re going to design a controller for a simple cache. Here are the key characteristics

of the cache:

■ Direct-mapped cache

462

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Write-back using write allocate

■ Block size is 4 words (16 bytes or 128 bits)

■ Cache size is 16 KiB, so it holds 1024 blocks

■ 32-byte addresses

■ Th

e cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fi elds of an address for the cache:

■ Cache index is 10 bits

■ Block off set is 4 bits

■ Tag size is 32 ⫺ (10 ⫹ 4) or 18 bits

Th

e signals between the processor to the cache are

■ 1-bit Read or Write signal

■ 1-bit Valid signal, saying whether there is a cache operation or not

■ 32-bit address

■ 32-bit data from processor to cache

■ 32-bit data from cache to processor

■ 1-bit Ready signal, saying the cache operation is complete

Th

e interface between the memory and the cache has the same fi elds as between

the processor and the cache, except that the data fi elds are now 128 bits wide. Th

e

extra memory width is generally found in microprocessors today, which deal with

either 32-bit or 64-bit words in the processor while the DRAM controller is oft en

128 bits. Making the cache block match the width of the DRAM simplifi ed the

design. Here are the signals:

■ 1-bit Read or Write signal

■ 1-bit Valid signal, saying whether there is a memory operation or not

■ 32-bit address

■ 128-bit data from cache to memory

■ 128-bit data from memory to cache

■ 1-bit Ready signal, saying the memory operation is complete

Note that the interface to memory is not a fi xed number of cycles. We assume a

memory controller that will notify the cache via the Ready signal when the memory

read or write is fi nished.

Before describing the cache controller, we need to review fi nite-state machines,

which allow us to control an operation that can take multiple clock cycles.

5.9 Using a Finite-State Machine to Control a Simple Cache

463

Finite-State Machines

To design the control unit for the single-cycle datapath, we used a set of truth tables

that specifi ed the setting of the control signals based on the instruction class. For a

cache, the control is more complex because the operation can be a series of steps.

Th

e control for a cache must specify both the signals to be set in any step and the

next step in the sequence.

Th

e most common multistep control method is based on fi nite-state machines, fi nite-state machine which are usually represented graphically. A fi nite-state machine consists of a set A sequential logic of states and directions on how to change states. Th

e directions are defi ned by a function consisting of a

next-state function, which maps the current state and the inputs to a new state. set of inputs and outputs, a next-state function that

When we use a fi nite-state machine for control, each state also specifi es a set of maps the current state and outputs that are asserted when the machine is in that state. Th

e implementation the inputs to a new state,

of a fi nite-state machine usually assumes that all outputs that are not explicitly and an output function asserted are deasserted. Similarly, the correct operation of the datapath depends on

that maps the current

the fact that a signal that is not explicitly asserted is deasserted, rather than acting state and possibly the as a don’t care.

inputs to a set of asserted

Multiplexor controls are slightly diff erent, since they select one of the inputs outputs.

whether they are 0 or 1. Th

us, in the fi nite-state machine, we always specify the

setting of all the multiplexor controls that we care about. When we implement next-state function the fi nite-state machine with logic, setting a control to 0 may be the default and A combinational function thus may not require any gates. A simple example of a fi nite-state machine appears that, given the inputs in Appendix B, and if you are unfamiliar with the concept of a fi nite-state machine, and the current state, determines the next state

you may want to examine Appendix B before proceeding.

of a fi nite-state machine.

A fi nite-state machine can be implemented with a temporary register that holds

the current state and a block of combinational logic that determines both the

data-path signals to be asserted and the next state. Figure 5.39 shows how such an implementation might look. Appendix D describes in detail how the fi nite-state

machine is implemented using this structure. In Section B.3, the combinational

control logic for a fi nite-state machine is implemented both with either a ROM

(read-only memory) or a PLA (programmable logic array). (Also see Appendix B

for a description of these logic elements.)

Elaboration: Note that this simple design is called a blocking cache, in that the

processor must wait until the cache has fi nished the request.

Section 5.12 describes

the alternative, which is called a nonblocking cache.

Elaboration: The style of fi nite-state machine in this book is called a Moore machine,

after Edward Moore. Its identifying characteristic is that the output depends only on the

current state. For a Moore machine, the box labeled combinational control logic can be

split into two pieces. One piece has the control output and only the state input, while the

other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The

Mealy machine allows both the input and the current state to be used to determine the

output. Moore machines have potential implementation advantages in speed and size

of the control unit. The speed advantages arise because the control outputs, which are

464

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Combinational

control logic

Datapath control outputs

Outputs

Inputs

Next state

State register

Inputs from cache

datapath

FIGURE 5.39

Finite-state machine controllers are typically implemented using a block of

combinational logic and a register to hold the current state. Th

e outputs of the combinational

logic are the next-state number and the control signals to be asserted for the current state. Th

e inputs to the

combinational logic are the current state and any inputs used to determine the next state. Notice that in the fi nite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs. Th e

 Elaboration explains this in more detail.

needed early in the clock cycle, do not depend on the inputs, but only on the current

state. In Appendix B, when the implementation of this fi nite-state machine is taken down

to logic gates, the size advantage can be clearly seen. The potential disadvantage of a

Moore machine is that it may require additional states. For example, in situations where

there is a one-state difference between two sequences of states, the Mealy machine

may unify the states by making the outputs depend on the inputs.

FSM for a Simple Cache Controller

Figure 5.40 shows the four states of our simple cache controller:

■ Idle: Th

is state waits for a valid read or write request from the processor,

which moves the FSM to the Compare Tag state.

■ Compare Tag: As the name suggests, this state tests to see if the requested read

or write is a hit or a miss. Th

e index portion of the address selects the tag to

be compared. If the data in the cache block referred to by the index portion

of the address is valid, and the tag portion of the address matches the tag,

then it is a hit. Either the data is read from the selected word if it is a load or

written to the selected word if it is a store. Th

e Cache Ready signal is then

5.9 Using a Finite-State Machine to Control a Simple Cache

465

Cache Hit

Idle

Compare Tag

Mark Cache Ready

If Valid && Hit ,

Set Valid, SetTag,

Valid CPU request

if Write Set Dirty

Cache

Cache

Miss

Miss

and

and

Old Block

Old Block

is Clean

is Dirty

Memory Ready

Write-Back

Allocate

Memory Ready

Write Old

Read new block

Block to

from Memory

Memory

Memory

Memory

not

not

Ready

Ready

FIGURE 5.40

Four states of the simple controller.

set. If it is a write, the dirty bit is set to 1. Note that a write hit also sets the

valid bit and the tag fi eld; while it seems unnecessary, it is included because

the tag is a single memory, so to change the dirty bit we also need to change

the valid and tag fi elds. If it is a hit and the block is valid, the FSM returns to

the idle state. A miss fi rst updates the cache tag and then goes either to the

Write-Back state, if the block at this location has dirty bit value of 1, or to the

Allocate state if it is 0.

■ Write-Back: Th

is state writes the 128-bit block to memory using the address

composed from the tag and cache index. We remain in this state waiting for

the Ready signal from memory. When the memory write is complete, the

FSM goes to the Allocate state.

■ Allocate: Th

e new block is fetched from memory. We remain in this state

waiting for the Ready signal from memory. When the memory read is

complete, the FSM goes to the Compare Tag state. Although we could

have gone to a new state to complete the operation instead of reusing the

Compare Tag state, there is a good deal of overlap, including the update of the

appropriate word in the block if the access was a write.

466

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Th

is simple model could easily be extended with more states to try to improve

performance. For example, the Compare Tag state does both the compare and the

read or write of the cache data in a single clock cycle. Oft en the compare and cache

access are done in separate states to try to improve the clock cycle time. Another

optimization would be to add a write buff er so that we could save the dirty block

and then read the new block fi rst so that the processor doesn’t have to wait for two

memory accesses on a dirty miss. Th

e cache would then write the dirty block from

the write buff er while the processor is operating on the requested data.

Section 5.12, goes into more detail about the FSM, showing the full controller

in a hardware description language and a block diagram of this simple cache.

 5.10 Parallelism and Memory Hierarchy:

Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single chip,

these processors very likely share a common physical address space. Caching shared

data introduces a new problem, because the view of memory held by two diff erent

processors is through their individual caches, which, without any additional

precautions, could end up seeing two diff erent values. Figure 5.41 illustrates the problem and shows how two diff erent processors can have two diff erent values

for the same location. Th

is diffi

culty is generally referred to as the cache coherence

 problem.

Informally, we could say that a memory system is coherent if any read of a data

item returns the most recently written value of that data item. Th

is defi nition,

although intuitively appealing, is vague and simplistic; the reality is much more

complex. Th

is simple defi nition contains two diff erent aspects of memory system

behavior, both of which are critical to writing correct shared memory programs.

Th

e fi rst aspect, called coherence, defi nes what values can be returned by a read. Th e

second aspect, called consistency, determines when a written value will be returned by a read.

Let’s look at coherence fi rst. A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X, with no

writes of X by another processor occurring between the write and the read

by P, always returns the value written by P. Th

us, in Figure 5.41, if CPU A

were to read X aft er time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another processor

to X returns the written value if the read and write are suffi

ciently separated

in time and no other writes to X occur between the two accesses. Th

us, in

Figure 5.41, we need a mechanism so that the value 0 in the cache of CPU B

is replaced by the value 1 aft er CPU A stores 1 into memory at address X in

time step 3.

5.10 Parallelism and Memory Hierarchy: Cache Coherence

467

3. Writes to the same location are serialized; that is, two writes to the same

location by any two processors are seen in the same order by all processors.

For example, if CPU B stores 2 into memory at address X aft er time step 3,

processors can never read the value at location X as 2 and then later read

it as 1.

Th

e fi rst property simply preserves program order—we certainly expect this

property to be true in uniprocessors, for example. Th

e second property defi nes

the notion of what it means to have a coherent view of memory: if a processor

could continuously read an old data value, we would clearly say that memory was

incoherent.

Th

e need for write serialization is more subtle, but equally important. Suppose

we did not serialize writes, and processor P1 writes location X followed by P2

writing location X. Serializing the writes ensures that every processor will see the

write done by P2 at some point. If we did not serialize the writes, it might be the

case that some processor could see the write of P2 fi rst and then see the write of P1,

maintaining the value written by P1 indefi nitely. Th

e simplest way to avoid such

diffi

culties is to ensure that all writes to the same location are seen in the same

order, which we call write serialization.

Basic Schemes for Enforcing Coherence

In a cache coherent multiprocessor, the caches provide both migration and

 replication of shared data items:

■ Migration: A data item can be moved to a local cache and used there in a

transparent fashion. Migration reduces both the latency to access a shared

data item that is allocated remotely and the bandwidth demand on the shared

memory.

Memory

Time

Cache contents for

Cache contents

contents for

step

Event

CPU A

for CPU B

location X

0

0

1

CPU A reads X

0

0

2

CPU B reads X

0

0

0

3

CPU A stores 1 into X

1

0

1

FIGURE 5.41

The cache coherence problem for a single memory location (X), read and

written by two processors (A and B). We initially assume that neither cache contains the variable and that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but similar complications. Aft er the value of X has been written by A, A’s cache and the memory both contain the new value, but B’s cache does not, and if B reads the value of X, it will receive 0!

468

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Replication: When shared data are being simultaneously read, the caches

make a copy of the data item in the local cache. Replication reduces both

latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing

shared data, so many multiprocessors introduce a hardware protocol to maintain

coherent caches. Th

e protocols to maintain coherence for multiple processors are

called cache coherence protocols. Key to implementing a cache coherence protocol

is tracking the state of any sharing of a data block.

Th

e most popular cache coherence protocol is snooping. Every cache that has a

copy of the data from a block of physical memory also has a copy of the sharing

status of the block, but no centralized state is kept. Th

e caches are all accessible via

some broadcast medium (a bus or network), and all cache controllers monitor or

 snoop on the medium to determine whether or not they have a copy of a block that

is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as

implemented with a shared bus, but any communication medium that broadcasts

cache misses to all processors can be used to implement a snooping-based

coherence scheme. Th

is broadcasting to all caches makes snooping protocols

simple to implement but also limits their scalability.

Snooping Protocols

One method of enforcing coherence is to ensure that a processor has exclusive

access to a data item before it writes that item. Th

is style of protocol is called a write

 invalidate protocol because it invalidates copies in other caches on a write. Exclusive

access ensures that no other readable or writable copies of an item exist when the

write occurs: all other cached copies of the item are invalidated.

Figure 5.42 shows an example of an invalidation protocol for a snooping bus

with write-back caches in action. To see how this protocol ensures coherence,

consider a write followed by a read by another processor: since the write requires

exclusive access, any copy held by the reading processor must be invalidated (hence

the protocol name). Th

us, when the read occurs, it misses in the cache, and the

cache is forced to fetch a new copy of the data. For a write, we require that the

writing processor have exclusive access, preventing any other processor from being

able to write simultaneously. If two processors do attempt to write the same data

simultaneously, one of them wins the race, causing the other processor’s copy to be

invalidated. For the other processor to complete its write, it must obtain a new copy

of the data, which must now contain the updated value. Th

erefore, this protocol

also enforces write serialization.

5.10 Parallelism and Memory Hierarchy: Cache Coherence

469

Contents of

Contents of

Contents of

memory

Processor activity

Bus activity

CPU A’s cache

CPU B’s cache

location X

0

U

P

C

A

s

d

a

e

r

X

a

C

e

h

c

s

s

i

m

r

o

f

X

0

0

CPU B reads X

Cache miss for X

0

0

0

P

C U A

r

w

e

t

i

s a 1 o

t X

n

o

i

t

a

d

i

l

a

v

n

I

r

o

f

X

1

0

CPU B reads X

Cache miss for X

1

1

1

FIGURE 5.42

An example of an invalidation protocol working on a snooping bus for a

single cache block (X) with write-back caches. We assume that neither cache initially holds X

and that the value of X in memory is 0. Th

e CPU and memory contents show the value aft er the processor

and bus activity have both completed. A blank indicates no activity or no copy cached. When the second miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both the contents of B’s cache and the memory contents of X are updated. Th

is update of memory, which occurs

when a block becomes shared, simplifi es the protocol, but it is possible to track the ownership and force the write-back only if the block is replaced. Th

is requires the introduction of an additional state called “owner,”

which indicates that a block may be shared, but the owning processor is responsible for updating any other processors and memory when it changes the block or replaces it.

One insight is that block size plays an important role in cache coherency. For Hardware/

example, take the case of snooping on a cache with a block size of eight words, Software

with a single word alternatively written and read by two processors. Most protocols

exchange full blocks between processors, thereby increasing coherency bandwidth Interface

demands.

Large blocks can also cause what is called false sharing: when two unrelated false sharing When two shared variables are located in the same cache block, the full block is exchanged unrelated shared variables between processors even though the processors are accessing diff erent variables. are located in the same cache block and the

Programmers and compilers should lay out data carefully to avoid false sharing.

full block is exchanged

between processors even

though the processors

are accessing diff erent

Elaboration: Although the three properties on pages 466 and 467 are suffi cient to variables.

ensure coherence, the question of when a written value will be seen is also important. To

see why, observe that we cannot require that a read of X in Figure 5.41 instantaneously sees the value written for X by some other processor. If, for example, a write of X on one

processor precedes a read of X on another processor very shortly beforehand, it may be

impossible to ensure that the read returns the value of the data written, since the written

data may not even have left the processor at that point. The issue of exactly when a

written value must be seen by a reader is defi ned by a memory consistency model.

470

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

We make the following two assumptions. First, a write does not complete (and allow

the next write to occur) until all processors have seen the effect of that write. Second,

the processor does not change the order of any write with respect to any other memory

access. These two conditions mean that if a processor writes location X followed by

location Y, any processor that sees the new value of Y must also see the new value of

X. These restrictions allow the processor to reorder reads, but forces the processor to

fi nish a write in program order.

Elaboration: Since input can change memory behind the caches and since output

could need the latest value in a write back cache, there is also a cache coherency

problem for I/O with the caches of a single processor as well as just between caches

of multiple processors. The cache coherence problem for multiprocessors and I/O

(see Chapter 6), although similar in origin, has different characteristics that affect the

appropriate solution. Unlike I/O, where multiple data copies are a rare event—one to

be avoided whenever possible—a program running on multiple processors will normally

have copies of the same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status

of shared blocks is distributed, a directory-based cache coherence protocol keeps the

sharing status of a block of physical memory in just one location, called the directory.

Directory-based coherence has slightly higher implementation overhead than snooping,

but it can reduce traffi c between caches and thus scale to larger processor counts.

5.11 Parallelism and Memory Hierarchy:

Redundant Arrays of Inexpensive Disks

Th

is online section describes how using many disks in conjunction can off er much

higher throughput, which was the orginal inspiration of Redundant Arrays of

 Inexpensive Disks (RAID). Th

e real popularlity of RAID, however, was due more to

the much greater dependability off ered by including a modest number of redundant

disks. Th

e section explains the diff erences in performance, cost, and dependability

between the diff erent RAID levels.

5.12 Advanced Material: Implementing Cache

Controllers

Th

is online section shows how to implement control for a cache, just as we

implemented control for the single-cycle and pipelined datapaths in Chapter 4.

Th

is section starts with a description of fi nite-state machines and the implemention

of a cache controller for a simple data cache, including a description of the cache

controller in a hardware description language. It then goes into details of an example

cache coherence protocol and the diffi

culties in implementing such a protocol.

Parallelism and the Memory Hierarchy:

5.11

Redundant Arrays of Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolution

is foolhardy. A simple example demonstrates this.

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of

EXAMPLE

which 90 seconds is CPU time and the rest is I/O time. Suppose the number

of processors doubles every two years, but the processors remain at the same

speed, and I/O time doesn’t improve. How much faster will our program run

at the end of six years?

We know that

ANSWER

Elapsed time ⫽ CPU time ⫹ I/O time

100 ⫽ 90 ⫹ I/O time

I/O time ⫽ 10 seeconds

Th

e new CPU times and the resulting elapsed times are computed in the

following table.

After n years

CPU time

I/O time

Elapsed time

% I/O time

0 years

90 seconds

10 seconds

100 seconds

10%

2 years

10 seconds

55 seconds

18%

90 ⫽ 45 seconds

2

4 years

10 seconds

33 seconds

31%

45 ⫽ 23 seconds

2

6 years

10 seconds

21 seconds

47%

23 ⫽ 11 seconds

2

Th

e improvement in CPU performance aft er six years is

90 ⫽ 8

11

5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

5.11-3

However, the improvement in elapsed time is only

100 ⫽ 4.7

21

and the I/O time has increased from 10% to 47% of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or

the eff ort spent in parallelizing could be squandered whenever programs do I/O,

which they all must do.

Accelerating I/O performance was the original motivation of disk arrays. In

the late 1980s, the high performance storage of choice was large, expensive disks.

Th

e argument was that by replacing a few large disks with many small disks,

performance would improve because there would be more read heads. Th

is shift is

a good match for multiple processors as well, since many read/write heads mean

the storage system could support many more independent accesses as well as large

transfers spread across many disks. Th

at is, you could get both high I/Os per second

and high data transfer rates. In addition to higher performance, there could be

advantages in cost, power, and fl oor space, since smaller disks are generally more

effi

cient per gigabyte than larger disks.

Th

e fl aw in the argument was that disk arrays could make reliability much

worse. Th

ese smaller, inexpensive drives had lower MTTF ratings than the large

drives, but more importantly, by replacing a single drive with, say, 50 small drives,

the failure rate would go up by at least a factor of 50.

Th

e solution was to add redundancy so that the system could cope with disk

failures without losing information. By having many small disks, the cost of extra

redundancy to improve dependability is small, relative to the solutions for a few

large disks. Th

us, dependability was more aff ordable if you constructed a redundant

array of inexpensive disks. Th

is observation led to its name: redundant arrays of redundant arrays of

inexpensive disks, abbreviated RAID.

inexpensive disks

In retrospect, although its invention was motivated by performance, (RAID) An organization of disks that uses an array

dependability was the key reason for the widespread popularity of RAID. Th

e of small and inexpensive

parallel revolution has resurfaced the original performance side of the argument disks so as to increase for RAID. Th

e rest of this section surveys the options for dependability and their both performance and

impacts on cost and performance.

reliability.

How much redundancy do you need? Do you need extra information to fi nd the

faults? Does it matter how you organize the data and the extra check information

on these disks? Th

e paper that coined the term gave an evolutionary answer to

these questions, starting with the simplest but most expensive solution. Figure

5.11.1 shows the evolution and example cost in number of extra check disks. To

keep track of the evolution, the authors numbered the stages of RAID, and they are

still used today.

5.11-4

5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

Data disks

Redundant check disks

RAID 0

(No redundancy)

Widely used

RAID 1

(Mirroring)

EMC, HP(Tandem), IBM

RAID 2

(Error detection and

correction code) Unused

RAID 3

(Bit-interleaved parity)

Storage concepts

RAID 4

(Block-interleaving parity)

Network appliance

RAID 5

(Distributed block-

interleaved parity)

Widely used

RAID 6

(P + Q redundancy)

Recently popular

FIGURE 5.11.1 RAID for an example of four data disks showing extra check disks per

RAID level and companies that use each level. Figures 5.11.2 and 5.11.3 explain the diff erence between RAID 3, RAID 4, and RAID 5.

No Redundancy (RAID 0)

striping Allocation of

Simply spreading data over multiple disks, called striping, automatically forces

logically sequential blocks

accesses to several disks. Striping across a set of disks makes the collection appear

to separate disks to allow

to soft ware as a single large disk, which simplifi es storage management. It also

higher performance than

improves performance for large accesses, since many disks can operate at once.

a single disk can deliver.

Video-editing systems, for example, oft en stripe their data and may not worry

about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID

levels are oft en left to the operator to set when creating a storage system, and RAID

0 is oft en listed as one of the options. Hence, the term RAID 0 has become widely

used.

5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

5.11-5

Mirroring (RAID 1)

Th

is traditional scheme for tolerating disk failure, called mirroring or shadowing, mirroring Writing uses twice as many disks as does RAID 0. Whenever data is written to one disk, identical data to multiple that data is also written to a redundant disk, so that there are always two copies disks to increase data of the information. If a disk fails, the system just goes to the “mirror” and reads availability.

its contents to get the desired information. Mirroring is the most expensive RAID

solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)

RAID 2 borrows an error detection and correction scheme most oft en used for

memories (see Section 5.5). Since RAID 2 has fallen into disuse, we’ll not describe

it here.

Bit-Interleaved Parity (RAID 3)

Th

e cost of higher availability can be reduced to 1/ n, where n is the number of

disks in a protection group. Rather than have a complete copy of the original data protection group Th e for each disk, we need only add enough redundant information to restore the lost group of data disks information on a failure. Reads or writes go to all disks in the group, with one extra or blocks that share a disk to hold the check information in case there is a failure. RAID 3 is popular in common check disk or block.

applications with large data sets, such as multimedia and some scientifi c codes.

 Parity is one such scheme. Readers unfamiliar with parity can think of the

redundant disk as having the sum of all the data in the other disks. When a disk fails,

then you subtract all the data in the good disks from the parity disk; the remaining

information must be the missing information. Parity is simply the sum modulo two.

Unlike RAID 1, many disks must be read to determine the missing data. Th

e

assumption behind this technique is that taking longer to recover from failure but

spending less on redundant storage is a good tradeoff .

Block-Interleaved Parity (RAID 4)

RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they

access data diff erently. Th

e parity is stored as blocks and associated with a set of

data blocks.

In RAID 3, every access went to all disks. However, some applications prefer

smaller accesses, allowing independent accesses to occur in parallel. Th

at is the

purpose of the RAID levels 4 to 7. Since error detection information in each sector

is checked on reads to see if the data is correct, such “small reads” to each disk can

occur independently as long as the minimum access is one sector. In the RAID

context, a small access goes to just one disk in a protection group while a large

access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand

that all other disks be accessed to read the rest of the information needed to

recalculate the new parity, as in the left in Figure 5.11.2. A “small write” would

5.11-6

5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

New Data

1. Read 2. Read 3. Read

New Data1. Read

2. Read

D0′

D0

D1

D2

D3

P

D0′

D0

D1

D2

D3

P

+ XOR

+ XOR

+ XOR

D0′

D1

D2

D3

P′

D0′

D1

D2

D3

P′

4. Write

5. Write

3. Write

4. Write

FIGURE 5.11.2 Small write update on RAID 4. Th

is optimization for small writes reduces the

number of disk accesses as well as the number of disks occupied. Th

is fi gure assumes we have four blocks

of data and one block of parity. Th

e naive RAID 4 parity calculation in the left of the fi gure reads blocks D1,

D2, and D3 before adding block D0? to calculate the new parity P?. (In case you were wondering, the new data D0? comes directly from the CPU, so disks are not involved in reading it.) Th

e RAID 4 shortcut on the

right reads the old value D0 and compares it to the new value D0? to see which bits will change. You then read the old parity P and then change the corresponding bits to form P?. Th

e logical function exclusive OR

does exactly what we want. Th

is example replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?)

involving all the disks for two disk reads (D0, P) and two disk writes (D0?, P?), which involve just two disks.

Increasing the size of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut.

require reading the old data and old parity, adding the new information, and then

writing the new parity to the parity disk and the new data to the data disk.

Th

e key insight to reduce this overhead is that parity is simply a sum of

information; by watching which bits change when we write the new information,

we need only change the corresponding bits on the parity disk. Th

e right of Figure

5.11.2 shows the shortcut. We must read the old data from the disk being written,

compare old data to the new data to see which bits change, read the old parity,

change the corresponding bits, and then write the new data and new parity. Th

us,

the small write involves four disk accesses to two disks instead of accessing all

disks. Th

is organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)

RAID 4 effi

ciently supports a mixture of large reads, large writes, and small reads,

plus it allows small writes. One drawback to the system is that the parity disk must be

updated on every write, so the parity disk is the bottleneck for back-to-back writes.

To fi x the parity-write bottleneck, the parity information can be spread

throughout all the disks so that there is no single bottleneck for writes. Th

e

distributed parity organization is RAID 5.

Figure 5.11.3 shows how data is distributed in RAID 4 versus RAID 5. As the

organization on the right shows, in RAID 5 the parity associated with each row of

data blocks is no longer restricted to a single disk. Th

is organization allows multiple

writes to occur simultaneously as long as the parity blocks are not located on the

same disk. For example, a write to block 8 on the right must also access its parity

5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

5.11-7

0

1

2

3

P0

0

1

2

3

P0

4

5

6

7

P1

4

5

6

P1

7

8

9

10

11

P2

8

9

P2

10

11

12

13

14

15

P3

12

P3

13

14

15

16

17

18

19

P4

P4

16

17

18

19

20

21

22

23

P5

20

21

22

23

P5

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

RAID 4

RAID 5

FIGURE 5.11.3 Block-interleaved parity (RAID 4) versus distributed block-interleaved

parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed in parallel.

block P2, thereby occupying the fi rst and third disks. A second write to block 5 on

the right, implying an update to its parity block P1, accesses the second and fourth

disks and thus could occur concurrently with the write to block 8. Th

ose same

writes to the organization on the left result in changes to blocks P1 and P2, both on

the fi ft h disk, which is a bottleneck.

P ⴙ Q Redundancy (RAID 6)

Parity-based schemes protect against a single self-identifying failure. When a

single failure correction is not suffi

cient, parity can be generalized to have a second

calculation over the data and another check disk of information. Th

is second check

block allows recovery from a second failure. Th

us, the storage overhead is twice

that of RAID 5. Th

e small write shortcut of Figure 5.11.2 works as well, except now

there are six disk accesses instead of four to update both P and Q information.

RAID Summary

RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in

servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data

unavailable during repair, the array must be designed to allow the failed disks to be

replaced without having to turn off the system. RAIDs have enough redundancy

to allow continuous operation, but hot-swapping disks place demands on the hot-swapping Replacing physical and electrical design of the array and the disk interfaces. Second, another a hardware component failure could occur during repair, so the repair time aff ects the chances of losing while the system is data: the longer the repair time, the greater the chances of another failure that will running.

5.11-8

5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

lose data. Rather than having to wait for the operator to bring in a good disk, some

standby spares Reserve

systems include standby spares so that the data can be reconstructed immediately

hardware resources that

upon discovery of the failure. Th

e operator can then replace the failed disks in a

can immediately take

more leisurely fashion. Note that a human operator ultimately determines which

the place of a failed

disks to remove. Operators are only human, so they occasionally remove the good

component.

disk instead of the broken disk, leading to an unrecoverable disk failure.

In addition to designing the RAID system for repair, there are questions about

how disk technology changes over time. Although disk manufacturers quote very

high MTTF for their products, those numbers are under nominal conditions.

If a particular disk array has been subject to temperature cycles due to, say, the

failure of the air conditioning system, or to shaking due to a poor rack design,

construction, or installation, the failure rates can be three to six times higher (see

the fallacy on page 479). Th

e calculation of RAID reliability assumes independence

between disk failures, but disk failures could be correlated, because such damage

due to the environment would likely happen to all the disks in the array. Another

concern is that since disk bandwidth is growing more slowly than disk capacity, the

time to repair a disk in a RAID system is increasing, which in turn increases the

chances of a second failure. For example, a 3 TB disk could take almost nine hours

to read sequentially, assuming no interference. Given that the damaged RAID is

likely to continue to serve data, reconstruction could be stretched considerably.

Besides increasing that time, another concern is that reading much more data

during reconstruction means increasing the chance of an uncorrectable read

media failure, which would result in data loss. Other arguments for concern about

simultaneous multiple failures are the increasing number of disks in arrays and the

use of higher capacity disks.

Hence, these trends have led to a growing interest in protecting against more

than one failure, and so RAID 6 is increasingly being off ered as an option and being

used in the fi eld.

Check Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

Yourself

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Elaboration: One issue is how mirroring interacts with striping. Suppose you had,

say, four disks’ worth of data to store and eight physical disks to use. Would you create

four pairs of disks—each organized as RAID 1—and then stripe data across the four

RAID 1 pairs? Alternatively, would you create two sets of four disks—each organized as

RAID 0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved

to call the former RAID 1 ⫹ 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 ⫹ 1

or RAID 01 (“mirrored stripes”).

5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory Hierarchies

471

 5.13 Real Stuff: The ARM Cortex-A8 and Intel

Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors

described in Chapter 4: the ARM Cortex-A8 and Intel Core i7. Th

is section is based

on Section 2.6 of Computer Architecture: A Quantitative Approach, 5th edition.

Figure 5.43 summarizes the address sizes and TLBs of the two processors. Note that the A8 has two TLBs with a 32-bit virtual address space and a 32-bit physical

address space. Th

e Core i7 has three TLBs with a 48-bit virtual address and a 44-bit

physical address. Although the 64-bit registers of the Core i7 could hold a larger

virtual address, there was no soft ware need for such a large space and 48-bit virtual

addresses shrinks both the page table memory footprint and the TLB hardware.

Figure 5.44 shows their caches. Keep in mind that the A8 has just one processor or core while the Core i7 has four. Both have identically organized 32 KiB, 4-way

set associative, L1 instruction caches (per core) with 64 byte blocks. Th

e A8 uses the

same design for data cache, while the Core i7 keeps everything the same except the

associativity, which it increases to 8-way. Both use an 8-way set associative unifi ed

L2 cache (per core) with 64 byte blocks, although the A8 varies in size from 128 KiB

to 1 MiB while the Core i7 is fi xed at 256 KiB. As the Core i7 is used for servers, it

Characteristic

ARM Cortex-A8

Intel Core i7

Virtual address

32 bits

48 bits

Physical address

32 bits

44 bits

Page size

Variable: 4, 16, 64 KiB, 1, 16 MiB

Variable: 4 KiB, 2/4 MiB

TLB organization

1 TLB for instructions and 1 TLB

1 TLB for instructions and 1 TLB for

for data

data per core

Both TLBs are fully associative,

Both L1 TLBs are four-way set

with 32 entries, round robin

associative, LRU replacement

replacement

L1 I-TLB has 128 entries for small

TLB misses handled in hardware

pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small

pages, 32 for large pages

The L2 TLB is four-way set associative,

LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware

FIGURE 5.43

Address translation and TLB hardware for the ARM Cortex-A8 and Intel

Core i7 920. Both processors provide support for large pages, which are used for things like the operating system or mapping a frame buff er. Th

e large-page scheme avoids using a large number of entries to map a

single object that is always present.

472

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Characteristic

ARM Cortex-A8

Intel Nehalem

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

32 KiB each for instructions/data

32 KiB each for instructions/data

per core

L1 cache associativityy 4-way (I), 4-way (D) set associative

4-way (I), 8-way (D) set associative

L1 replacement

Random

Approximated LRU

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate(?)

Write-back, No-write-allocate

L1 hit time (load-use))

1 clock cycle

4 clock cycles, pipelined

L2 cache organization

Unified (instruction and data)

Unified (instruction and data) per core

L2 cache size

128 KiB to 1 MiB

256 KiB (0.25 MiB)

L2 cache associativity 8-way set associative

8-way set associative

L2 replacement

Random(?)

Approximated LRU

L2 block size

64 bytes

64 bytes

L2 write policy

Write-back, Write-allocate (?)

Write-back, Write-allocate

L2 hit time

11 clock cycles

10 clock cycles

L3 cache organization

--

Unified (instruction and data)

L3 cache size

--

8 MiB, shared

L3 cache associativity

--

16-way set associative

L3 replacement

--

Approximated LRU

L3 block size

--

64 bytes

L3 write policy

--

Write-back, Write-allocate

L3 hit time

--

35 clock cycles

FIGURE 5.44 Caches in the ARM Cortex-A8 and Intel Core i7 920.

also off ers an L3 cache shared by all the cores on the chip. Its size varies depending

on the number of cores. With four cores, as in this case, the size is 8 MiB.

A signifi cant challenge facing cache designers is to support processors like the

A8 and the Core i7 that can execute more than one memory instruction per clock

cycle. A popular technique is to break the cache into banks and allow multiple,

independent, parallel accesses, provided the accesses are to diff erent banks. Th

e

technique is similar to interleaved DRAM banks (see Section 5.2).

Th

e Core i7 has additional optimizations that allow them to reduce the miss

penalty. Th

e fi rst of these is the return of the requested word fi rst on a miss. It also

continues to execute instructions that access the data cache during a cache miss.

Designers who are attempting to hide the cache miss latency commonly use this

nonblocking cache

technique, called a nonblocking cache, when building out-of-order processors.

A cache that allows

Th

ey implement two fl avors of nonblocking. Hit under miss allows additional cache

the processor to make

hits during a miss, while miss under miss allows multiple outstanding cache misses.

references to the cache

Th

e aim of the fi rst of these two is hiding some miss latency with other work, while

while the cache is

the aim of the second is overlapping the latency of two diff erent misses.

handling an earlier miss.

Overlapping a large fraction of miss times for multiple outstanding misses

requires a high-bandwidth memory system capable of handling multiple misses in

parallel. In a personal mobile device, the memory may only be able to take limited

5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory Hierarchies

473

advantage of this capability, but large servers and multiprocessors oft en have

memory systems capable of handling more than one outstanding miss in parallel.

Th

e Core i7 has a prefetch mechanism for data accesses. It looks at a pattern

of data misses and use this information to try to predict the next address to start

fetching the data before the miss occurs. Such techniques generally work best when

accessing arrays in loops.

Th

e sophisticated memory hierarchies of these chips and the large fraction of

the dies dedicated to caches and TLBs show the signifi cant design eff ort expended

to try to close the gap between processor cycle times and memory latency.

Performance of the A8 and Core i7 Memory Hierarchies

Th

e memory hierarchy of the Cortex-A8 was simulated with a 1 MiB eight-way

set associative L2 cache using the integer Minnespec benchmarks. As mentioned

in Chapter 4, Minnespec is a set of benchmarks consisting of the SPEC2000

benchmarks but with diff erent inputs that reduce the running times by several

orders of magnitude. Although the use of smaller inputs does not change the

instruction mix, it does aff ect the cache behavior. For example, on mcf, the most

memory-intensive SPEC2000 integer benchmark, Minnespec has a miss rate for a

32 KiB cache that is only 65% of the miss rate for the full SPEC2000 version. For

a 1 MiB cache the diff erence is a factor of six! For this reason, one cannot compare

the Minnespec benchmarks against the SPEC2000 benchmarks, much less the even

larger SPEC2006 benchmarks used for the Core i7 in Figure 5.47. Instead, the data are useful for looking at the relative impact of L1 and L2 misses and on overall CPI,

which we used in Chapter 4.

Th

e A8 instruction cache miss rates for these benchmarks (and also for the

full SPEC2000 versions on which Minnespec is based) are very small even for

just the L1: close to zero for most and under 1% for all of them. Th

is low rate

probably results from the computationally intensive nature of the SPEC programs

and the four-way set associative cache that eliminates most confl ict misses. Figure

5.45 shows the data cache results for the A8, which have signifi cant L1 and L2

miss rates. Th

e L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while

the L2 miss penalty is assumed to be 60 clock cycles. Using these miss penalties,

Figure 5.46 shows the average miss penalty per data access.

Figure 5.47 shows the miss rates for the caches of the Core i7 using the SPEC2006

benchmarks. Th

e L1 instruction cache miss rate varies from 0.1% to 1.8%,

averaging just over 0.4%. Th

is rate is in keeping with other studies of instruction

cache behavior for the SPECCPU2006 benchmarks, which show low instruction

cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes

higher, the importance of the L2 and L3 caches should be obvious. Since the cost

for a miss to memory is over 100 cycles and the average data miss rate in L2 is 4%,

L3 is obviously critical. Assuming about half the instructions are loads or stores,

without L3 the L2 cache misses could add two cycles per instruction to the CPI! In

comparison, the average L3 data miss rate of 1% is still signifi cant but four times

lower than the L2 miss rate and six times less than the L1 miss rate.

25.0%

20.0%

15.0%

Miss Rate

L1 Data Miss Rate

10.0%

L2 Data Miss Rate

5.0%

0.0%

olf

tw

gap

afty vpr

rtex con

mcf

bzip2 gzip

lbmk gcc

parser

cr

vo

per

FIGURE 5.45 Data cache miss rates for ARM Cortex-A8 when running Minnespec, a small

version of SPEC2000. Applications with larger memory footprints tend to have higher miss rates in both L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references, including those that hit in L1. (See Elaboration in Section 5.4.) Mcf is known as a cache buster. Note that this fi gure is for the same systems and benchmarks as Figure 4.76 in Chapter 4.

5

4.5

L2 data average memory penalty

L1 data average memory penalty

4

3.5

3

2.5

2

Miss penalty per data reference 1.5

1

0.5

0

gzip

vpr

gcc

mcf

crafty parser eon perlbmk gap vortex bzip2

FIGURE 5.46

The average memory access penalty in clock cycles per data memory

reference coming from L1 and L2 is shown for the ARM processor when running Minnespec.

Although the miss rates for L1 are signifi cantly higher, the L2 miss penalty, which is more than fi ve times higher, means that the L2 misses can contribute signifi cantly.

5.14 Going Faster: Cache Blocking and Matrix Multiply

475

25%

L1 Data Miss Rate

L2 Data Miss Rate

20%

L3 Data Miss Rate

15%

10%

5%

0%

gcc

mcf

sjeng gpbml astar

h264ref

lbench bzip2

hummer

omnetpp

libquantum

per

xalancbmk

FIGURE 5.47

The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running

the full integer SPECCPU2006 benchmarks.

Elaboration: Because speculation may sometimes be wrong (see Chapter 4), there

are references to the L1 data cache that do not correspond to loads or stores that

eventually complete execution. The data in Figure 5.45 is measured against all data requests including some that are cancelled. The miss rate when measured against only

completed data accesses is 1.6 times higher (an average of 9.5% versus 5.9% for L1

Dcache misses)

 5.14

Going Faster: Cache Blocking and Matrix

Multiply

Our next step in the continuing saga of improving performance of DGEMM by

tailoring it to the underlying hardware is to add cache blocking to the subword

parallelism and instruction level parallelism optimizations of Chapters 3 and 4.

Figure 5.48 shows the blocked version of DGEMM from Figure 4.80. Th

e changes

are the same as was made earlier in going from unoptimized DGEMM in Figure

3.21 to blocked DGEMM in Figure 5.21 above. Th

is time we taking the unrolled

version of DGEMM from Chapter 4 and invoke it many times on the submatrices

476

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

1 #include <x86intrin.h>

2 #define UNROLL (4)

3 #define BLOCKSIZE 32

4 void do_block (int n, int si, int sj, int sk,

5 double *A, double *B, double *C)

6 {

7 for (int i = si; i < si+BLOCKSIZE; i+=UNROLL*4)

8 for (int j = sj; j < sj+BLOCKSIZE; j++) {

9 __m256d c[4];

10 for (int x = 0; x < UNROLL; x++)

11 c[x] = _mm256_load_pd(C+i+x*4+j*n);

12 /* c[x] = C[i][j] */

13 for(int k = sk; k < sk+BLOCKSIZE; k++)

14 {

15 __m256d b = _mm256_broadcast_sd(B+k+j*n);

16 /* b = B[k][j] */

17 for (int x = 0; x < UNROLL; x++)

18 c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */

19 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));

20 }

21

22

23 for (int x = 0; x < UNROLL; x++)

24 _mm256_store_pd(C+i+x*4+j*n, c[x]);

/* C[i][j] = c[x] */

25 }

26 }

27

28 void dgemm (int n, double* A, double* B, double* C)

29 {

30 for (int sj = 0; sj < n; sj += BLOCKSIZE)

31 for (int si = 0; si < n; si += BLOCKSIZE)

32 for (int sk = 0; sk < n; sk += BLOCKSIZE)

33 do_block(n, si, sj, sk, A, B, C);

34 }

FIGURE 5.48

Optimized C version of DGEMM from Figure 4.80 using cache blocking. Th

ese changes

are the same ones found in Figure 5.21. Th

e assembly language produced by the compiler for the do_block function

is nearly identical to Figure 4.81. Once again, there is no overhead to call the do_block because the compiler inlines the function call.

5.14 Going Faster: Cache Blocking and Matrix Multiply

477

of A, B, and C. Indeed, lines 28 – 34 and lines 7 – 8 in Figure 5.48 are identical to lines 14 – 20 and lines 5 – 6 in Figure 5.21, with the exception of incrementing the for loop in line 7 by the amount unrolled.

Unlike the earlier chapters, we do not show the resulting x86 code because the

inner loop code is nearly identical to Figure 4.81, as the blocking does not aff ect the

computation, just the order that it accesses data in memory. What does change is

the bookkeeping integer instructions to implement the for loops. It expands from

14 instructions before the inner loop and 8 aft er the loop for Figure 4.80 to 40 and

28 instructions respectively for the bookkeeping code generated for Figure 5.48.

Nevertheless, the extra instructions executed pale in comparison to the performance

improvement of reducing cache misses. Figure 5.49 compares unoptimzed to

optimizations for subword parallelism, instruction level parallelism, and caches.

Blocking improves performance over unrolled AVX code by factors of 2 to 2.5 for

the larger matrices. When we compare unoptimized code to the code with all three

optimizations, the performance improvement is factors of 8 to 15, with the largest

increase for the largest matrix.

32x32

160x160

480x480

960x960

16.0

14.6

13.612.7 12.0

12.0

11.7

8.0

6.4

6.6

GFLOPS

4.7 5.1

4.0

3.5

2.3 2.5

1.7 1.5 1.3 0.8

–

Unoptimized

AVX

AVX + unroll

AVX + unroll +

blocked

FIGURE 5.49

Performance of four versions of DGEMM from matrix dimensions 32x32 to

960x960. Th

e fully optimized code for largest matrix is almost 15 times as fast the unoptimized version in

Figure 3.21 in Chapter 3.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are

with Turbo mode turned off. As in Chapters 3 and 4, when we turn it on we improve all

the results by the temporary increase in the clock rate of 3.3/2.6 ⫽ 1.27. Turbo mode

works particularly well in this case because it is using only a single core of an eight-

core chip. However, if we want to run fast we should use all cores, which we’ll see in

Chapter 6.

478

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.15 Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the

memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not

only have there been many fallacies propagated and pitfalls encountered, but some

have led to major negative outcomes. We start with a pitfall that oft en traps students

in exercises and exams.

 Pitfall: Ignoring memory system behavior when writing programs or when

 generating code in a compiler.

Th

is could easily be rewritten as a fallacy: “Programmers can ignore memory

hierarchies in writing code.” Th

e evaluation of sort in Figure 5.19 and of cache blocking

in Section 5.14 demonstrate that programmers can easily double performance if they

factor the behavior of the memory system into the design of their algorithms.

 Pitfall: Forgetting to account for byte addressing or the cache block size in simulating

 a cache.

When simulating a cache (by hand or by computer), we need to make sure we

account for the eff ect of byte addressing and multiword blocks in determining into

which cache block a given address maps. For example, if we have a 32-byte direct-

mapped cache with a block size of 4 bytes, the byte address 36 maps into block 1

of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1. On the

other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4.

Make sure the problem clearly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache with

256 bytes and a block size of 32 bytes. Into which block does the byte address 300

fall? If we break the address 300 into fi elds, we can see the answer:

31

30

29

. . .

. . .

. . .

11

10

9

8

7

6

5

4

3

2

1

0

0

0

0

. . .

. . .

. . .

0

0

0

1

0

0

1

0

1

1

0

0

Cache block

Block offset

number

Block address

Byte address 300 is block address

⎡300⎤

⎢

⎥ ⫽ 9

⎣⎢ 32 ⎦⎥

Th

e number of blocks in the cache is

⎡256⎤

⎢

⎥ ⫽ 8

⎣⎢ 32 ⎦⎥

Block number 9 falls into cache block number (9 modulo 8) ⫽ 1.

5.15 Fallacies and Pitfalls

479

Th

is mistake catches many people, including the authors (in earlier draft s) and

instructors who forget whether they intended the addresses to be in words, bytes,

or block numbers. Remember this pitfall when you tackle the exercises.

 Pitfall: Having less set associativity for a shared cache than the number of cores or

 threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can

easily allocate data structures to addresses that would map to the same set of a

shared L2 cache. If the cache is at least 2n-way associative, then these accidental

confl icts are hidden by the hardware from the program. If not, programmers could

face apparently mysterious performance bugs—actually due to L2 confl ict misses—

when migrating from, say, a 16-core design to 32-core design if both use 16-way

associative L2 caches.

 Pitfall: Using average memory access time to evaluate the memory hierarchy of an

 out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the

memory-stall time and the processor execution time, and hence evaluate the memory

hierarchy independently using average memory access time (see page 399).

If the processor continues to execute instructions, and may even sustain more

cache misses during a cache miss, then the only accurate assessment of the memory

hierarchy is to simulate the out-of-order processor along with the memory hierarchy.

 Pitfall: Extending an address space by adding segments on top of an unsegmented

 address space.

During the 1970s, many programs grew so large that not all the code and data could

be addressed with just a 16-bit address. Computers were then revised to off er 32-

bit addresses, either through an unsegmented 32-bit address space (also called a fl at

 address space) or by adding 16 bits of segment to the existing 16-bit address. From

a marketing point of view, adding segments that were programmer-visible and that

forced the programmer and compiler to decompose programs into segments could

solve the addressing problem. Unfortunately, there is trouble any time a programming

language wants an address that is larger than one segment, such as indices for large

arrays, unrestricted pointers, or reference parameters. Moreover, adding segments

can turn every address into two words—one for the segment number and one for the

segment off set—causing problems in the use of addresses in registers.

 Fallacy: Disk failure rates in the fi eld match their specifi cations.

Two recent studies evaluated large collections of disks to check the relationship

between results in the fi eld compared to specifi cations. One study was of almost

100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of

0.6% to 0.8%. Th

ey found AFRs of 2% to 4% to be common, oft en three to fi ve

times higher than the specifi ed rates [Schroeder and Gibson, 2007]. A second study

of more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw

failure rates of 1.7% for drives in their fi rst year rise to 8.6% for drives in their third

year, or about fi ve to six times the specifi ed rate [Pinheiro, Weber, and Barroso,

2007].

480

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 Fallacy: Operating systems are the best place to schedule disk accesses.

As mentioned in Section 5.2, higher-level disk interfaces off er logical block

addresses to the host operating system. Given this high-level abstraction, the best

an OS can do to try to help performance is to sort the logical block addresses into

increasing order. However, since the disk knows the actual mapping of the logical

addresses onto the physical geometry of sectors, tracks, and surfaces, it can reduce

the rotational and seek latencies by rescheduling.

For example, suppose the workload is four reads [Anderson, 2003]:

Operation

Starting LBA

Length

Read

724

8

Read

100

 16

Read

9987

1

Read

26

128

Th

e host might reorder the four reads into logical block order:

Operation

Starting LBA

Length

Read

26

128

Read

100

16

Read

724

8

Read

9987

1

Depending on the relative location of the data on the disk, reordering could

make it worse, as Figure 5.50 shows. Th

e disk-scheduled reads complete in three-

quarters of a disk revolution, but the OS-scheduled reads take three revolutions.

100

724

26

Host-ordered queue

Drive-ordered queue

9987

FIGURE 5.50 Example showing OS versus disk schedule accesses, labeled host-ordered

versus drive-ordered. Th

e former takes three revolutions to complete the four reads, while the latter

completes them in just three-fourths of a revolution (from Anderson [2003]).

5.15 Fallacies and Pitfalls

481

Problem category

Problem x86 instructions

Access sensitive registers without

Store global descriptor table register (SGDT)

trapping when running in user mode

Store local descriptor table register (SLDT)

Store interrupt descriptor table register (SIDT)

Store machine status word (SMSW)

Push flags (PUSHF, PUSHFD)

Pop flags (POPF, POPFD)

When accessing virtual memory

Load access rights from segment descriptor (LAR)

mechanisms in user mode, instructions Load segment limit from segment descriptor (LSL)

fail the x86 protection checks

Verify if segment descriptor is readable (VERR)

Verify if segment descriptor is writable (VERW)

Pop to segment register (POP CS, POP SS, . . .)

Push segment register (PUSH CS, PUSH SS, . . .)

Far call to different privilege level (CALL)

Far return to different privilege level (RET)

Far jump to different privilege level (JMP)

Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

FIGURE 5.51

Summary of 18 x86 instructions that cause problems for virtualization

[Robin and Irvine, 2000]. Th

e fi rst fi ve instructions in the top group allow a program in user mode to

read a control register, such as descriptor table registers, without causing a trap. Th

e pop fl ags instruction

modifi es a control register with sensitive information but fails silently when in user mode. Th

e protection

checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these instructions checks the privilege level implicitly as part of instruction execution when reading a control register. Th

e checking assumes that the OS must be at the highest privilege level, which is not the case for

guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it as well.

 Pitfall: Implementing a virtual machine monitor on an instruction set architecture

 that wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all

instructions reading or writing information related to hardware resource

information were privileged. Th

is laissez-faire attitude causes problems for VMMs

for all of these architectures, including the x86, which we use here as an example.

Figure 5.51 describes the 18 instructions that cause problems for virtualization

[Robin and Irvine, 2000]. Th

e two broad classes are instructions that

■ Read control registers in user mode that reveals that the guest operating

system is running in a virtual machine (such as POPF, mentioned earlier)

■ Check protection as required by the segmented architecture but assume that

the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have

proposed extensions to the architecture via a new mode. Intel’s VT-x provides

a new execution mode for running VMs, an architected defi nition of the VM

482

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

state, instructions to swap VMs rapidly, and a large set of parameters to select the

circumstances where a VMM must be invoked. Altogether, VT-x adds 11 new

instructions for the x86. AMD’s Pacifi ca makes similar proposals.

An alternative to modifying the hardware is to make small modifi cations to the

operating system to avoid using the troublesome pieces of the architecture. Th

is

technique is called paravirtualization, and the open source Xen VMM is a good

example. Th

e Xen VMM provides a guest OS with a virtual machine abstraction

that uses only the easy-to-virtualize parts of the physical x86 hardware on which

the VMM runs.

 5.16 Concluding

Remarks

Th

e diffi

culty of building a memory system to keep pace with faster processors

is underscored by the fact that the raw material for main memory, DRAMs, is

essentially the same in the fastest computers as it is in the slowest and cheapest.

It is the principle of locality that gives us a chance to overcome the long latency of

memory access—and the soundness of this strategy is demonstrated at all levels of

the memory hierarchy. Although these levels of the hierarchy look quite diff erent

in quantitative terms, they follow similar strategies in their operation and exploit

the same properties of locality.

Multilevel caches make it possible to use more cache optimizations more easily

for two reasons. First, the design parameters of a lower-level cache are diff erent

from a fi rst-level cache. For example, because a lower-level cache will be much

larger, it is possible to use larger block sizes. Second, a lower-level cache is not

constantly being used by the processor, as a fi rst-level cache is. Th

is allows us to

consider having the lower-level cache do something when it is idle that may be

useful in preventing future misses.

Another trend is to seek soft ware help. Effi

ciently managing the memory

hierarchy using a variety of program transformations and hardware facilities is a

major focus of compiler enhancements. Two diff erent ideas are being explored.

One idea is to reorganize the program to enhance its spatial and temporal locality.

Th

is approach focuses on loop-oriented programs that use large arrays as the

major data structure; large linear algebra problems are a typical example, such as

DGEMM. By restructuring the loops that access the arrays, substantially improved

locality—and, therefore, cache performance—can be obtained.

prefetching

Another approach is prefetching. In prefetching, a block of data is brought into

A technique in which

the cache before it is actually referenced. Many microprocessors use hardware

data blocks needed in the

prefetching to try to predict accesses that may be diffi

cult for soft ware to notice.

future are brought into

A third approach is special cache-aware instructions that optimize memory

the cache early by the use

transfer. For example, the microprocessors in Section 6.10 in Chapter 6 use

of special instructions that

an optimization that does not fetch the contents of a block from memory on a

specify the address of the

block.

write miss because the program is going to write the full block. Th

is optimization

signifi cantly reduces memory traffi

c for one kernel.

5.18 Exercises

483

As we will see in Chapter 6, memory systems are a central design issue for parallel

processors. Th

e growing importance of the memory hierarchy in determining

system performance means that this important area will continue to be a focus for

both designers and researchers for some years to come.

5.17 Historical Perspective and Further

Reading

Th

is section, which appears online, gives an overview of memory technologies,

from mercury delay lines to DRAM, the invention of the memory hierarchy,

protection mechanisms, and virtual machines, and concludes with a brief history

of operating systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS,

Windows, and Linux.

 5.18 Exercises

5.1 In this exercise we look at memory locality properties of matrix computation.

Th

e following code is written in C, where elements within the same row are stored

contiguously. Assume each word is a 32-bit integer.

for (I=0; I<8; I++)

for (J=0; J<8000; J++)

A[I][J]=B[I][0]+A[J][I];

5.1.1 [5] <§5.1> How many 32-bit integers can be stored in a 16-byte cache block?

5.1.2 [5] <§5.1> References to which variables exhibit temporal locality?

5.1.3 [5] <§5.1> References to which variables exhibit spatial locality?

Locality is aff ected by both the reference order and data layout. Th

e same computation

can also be written below in Matlab, which diff ers from C by storing matrix elements

within the same column contiguously in memory.

for I=1:8

for J=1:8000

A(I,J)=B(I,0)+A(J,I);

end

end

484

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.1.4 [10] <§5.1> How many 16-byte cache blocks are needed to store all 32-bit

matrix elements being referenced?

5.1.5 [5] <§5.1> References to which variables exhibit temporal locality?

5.1.6 [5] <§5.1> References to which variables exhibit spatial locality?

5.2 Caches are important to providing a high-performance memory hierarchy

to processors. Below is a list of 32-bit memory address references, given as word

addresses.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

5.2.1 [10] <§5.3> For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also list if each

reference is a hit or a miss, assuming the cache is initially empty.

5.2.2 [10] <§5.3> For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with two-word blocks and a total size of 8

blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given

references. Th

ere are three direct-mapped cache designs possible, all with a total of 8

words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks.

In terms of miss rate, which cache design is the best? If the miss stall time is 25 cycles,

and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is

the best cache design?

Th

ere are many diff erent design parameters that are important to a cache’s overall

performance. Below are listed parameters for diff erent direct-mapped cache designs.

Cache Data Size: 32 KiB

Cache Block Size: 2 words

Cache Access Time: 1 cycle

5.2.4 [15] <§5.3> Calculate the total number of bits required for the cache listed

above, assuming a 32-bit address. Given that total size, fi nd the total size of the closest

direct-mapped cache with 16-word blocks of equal size or greater. Explain why the

second cache, despite its larger data size, might provide slower performance than the

fi rst cache.

5.2.5 [20] <§§5.3, 5.4> Generate a series of read requests that have a lower miss rate on a 2 KiB 2-way set associative cache than the cache listed above. Identify one possible

solution that would make the cache listed have an equal or lower miss rate than the 2

KiB cache. Discuss the advantages and disadvantages of such a solution.

5.2.6 [15] <§5.3> Th

e formula shown in Section 5.3 shows the typical method to

index a direct-mapped cache, specifi cally (Block address) modulo (Number of blocks in

the cache). Assuming a 32-bit address and 1024 blocks in the cache, consider a diff erent

5.18 Exercises

485

indexing function, specifi cally (Block address[31:27] XOR Block address[26:22]). Is it

possible to use this to index a direct-mapped cache? If so, explain why and discuss any

changes that might need to be made to the cache. If it is not possible, explain why.

5.3 For a direct-mapped cache design with a 32-bit address, the following bits of the

address are used to access the cache.

 Tag

Index

Offset

31–10

9–5

4–0

5.3.1 [5] <§5.3> What is the cache block size (in words)?

5.3.2 [5] <§5.3> How many entries does the cache have?

5.3.3 [5] <§5.3> What is the ratio between total bits required for such a cache

implementation over the data storage bits?

Starting from power on, the following byte-addressed cache references are recorded.

Address

0

4

16

132

232

160

1024

30

140

3100

180

2180

5.3.4 [10] <§5.3> How many blocks are replaced?

5.3.5 [10] <§5.3> What is the hit ratio?

5.3.6 [20] <§5.3> List the fi nal state of the cache, with each valid entry represented as a record of <index, tag, data>.

5.4 Recall that we have two write policies and write allocation policies, and their

combinations can be implemented either in L1 or L2 cache. Assume the following

choices for L1 and L2 caches:

L1

L2

Write through, non-write allocate

Write back, write allocate

5.4.1 [5] <§§5.3, 5.8> Buff ers are employed between diff erent levels of memory

hierarchy to reduce access latency. For this given confi guration, list the possible buff ers

needed between L1 and L2 caches, as well as L2 cache and memory.

5.4.2 [20] <§§5.3, 5.8> Describe the procedure of handling an L1 write-miss,

considering the component involved and the possibility of replacing a dirty block.

5.4.3 [20] <§§5.3, 5.8> For a multilevel exclusive cache (a block can only reside in one of the L1 and L2 caches), confi guration, describe the procedure of handling an L1

write-miss, considering the component involved and the possibility of replacing a dirty

block.

486

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Consider the following program and cache behaviors.

Data Reads per

Data Writes per

Instruction Cache

Data Cache

Block Size

1000 Instructions

1000 Instructions

Miss Rate

Miss Rate

(byte)

250

100

0.30%

2%

64

5.4.4 [5] <§§5.3, 5.8> For a write-through, write-allocate cache, what are the minimum read and write bandwidths (measured by byte per cycle) needed to achieve a CPI of 2?

5.4.5 [5] <§§5.3, 5.8> For a write-back, write-allocate cache, assuming 30% of

replaced data cache blocks are dirty, what are the minimal read and write bandwidths

needed for a CPI of 2?

5.4.6 [5] <§§5.3, 5.8> What are the minimal bandwidths needed to achieve the

performance of CPI=1.5?

5.5 Media applications that play audio or video fi les are part of a class of workloads

called “streaming” workloads; i.e., they bring in large amounts of data but do not reuse

much of it. Consider a video streaming workload that accesses a 512 KiB working set

sequentially with the following address stream:

0, 2, 4, 6, 8, 10, 12, 14, 16, …

5.5.1 [5] <§§5.4, 5.8> Assume a 64 KiB direct-mapped cache with a 32-byte block.

What is the miss rate for the address stream above? How is this miss rate sensitive to

the size of the cache or the working set? How would you categorize the misses this

workload is experiencing, based on the 3C model?

5.5.2 [5] <§§5.1, 5.8> Re-compute the miss rate when the cache block size is 16 bytes, 64 bytes, and 128 bytes. What kind of locality is this workload exploiting?

5.5.3 [10] <§5.13>“Prefetching” is a technique that leverages predictable address

patterns to speculatively bring in additional cache blocks when a particular cache block

is accessed. One example of prefetching is a stream buff er that prefetches sequentially

adjacent cache blocks into a separate buff er when a particular cache block is brought

in. If the data is found in the prefetch buff er, it is considered as a hit and moved into

the cache and the next cache block is prefetched. Assume a two-entry stream buff er

and assume that the cache latency is such that a cache block can be loaded before the

computation on the previous cache block is completed. What is the miss rate for the

address stream above?

Cache block size (B) can aff ect both miss rate and miss latency. Assuming a 1-CPI

machine with an average of 1.35 references (both instruction and data) per instruction,

help fi nd the optimal block size given the following miss rates for various block sizes.

8: 4%

16: 3%

32: 2%

64: 1.5%

128: 1%

5.5.4 [10] <§5.3> What is the optimal block size for a miss latency of 20×B cycles?

5.5.5 [10] <§5.3> What is the optimal block size for a miss latency of 24+B cycles?

5.5.6 [10] <§5.3> For constant miss latency, what is the optimal block size?

5.18 Exercises

487

5.6 In this exercise, we will look at the diff erent ways capacity aff ects overall

performance. In general, cache access time is proportional to capacity. Assume that

main memory accesses take 70 ns and that memory accesses are 36% of all instructions.

Th

e following table shows data for L1 caches attached to each of two processors, P1 and

P2.

L1 Size

L1 Miss Rate

L1 Hit Time

P1

2 KiB

8.0%

0.66 ns

P2

4 KiB

6.0%

0.90 ns

5.6.1 [5] <§5.4> Assuming that the L1 hit time determines the cycle times for P1 and P2, what are their respective clock rates?

5.6.2 [5] <§5.4> What is the Average Memory Access Time for P1 and P2?

5.6.3 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is the

total CPI for P1 and P2? Which processor is faster?

For the next three problems, we will consider the addition of an L2 cache to P1 to

presumably make up for its limited L1 cache capacity. Use the L1 cache capacities

and hit times from the previous table when solving these problems. Th

e L2 miss rate

indicated is its local miss rate.

L2 Size

L2 Miss Rate

L2 Hit Time

1 MiB

95%

5.62 ns

5.6.4 [10] <§5.4> What is the AMAT for P1 with the addition of an L2 cache? Is the

AMAT better or worse with the L2 cache?

5.6.5 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is the

total CPI for P1 with the addition of an L2 cache?

5.6.6 [10] <§5.4> Which processor is faster, now that P1 has an L2 cache? If P1 is

faster, what miss rate would P2 need in its L1 cache to match P1’s performance? If P2 is

faster, what miss rate would P1 need in its L1 cache to match P2’s performance?

5.7 Th

is exercise examines the impact of diff erent cache designs, specifi cally

comparing associative caches to the direct-mapped caches from Section 5.4. For these

exercises, refer to the address stream shown in Exercise 5.2.

5.7.1 [10] <§5.4> Using the sequence of references from Exercise 5.2, show the fi nal cache contents for a three-way set associative cache with two-word blocks and a total

size of 24 words. Use LRU replacement. For each reference identify the index bits, the

tag bits, the block off set bits, and if it is a hit or a miss.

5.7.2 [10] <§5.4> Using the references from Exercise 5.2, show the fi nal cache

contents for a fully associative cache with one-word blocks and a total size of 8 words.

Use LRU replacement. For each reference identify the index bits, the tag bits, and if it

is a hit or a miss.

488

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.7.3 [15] <§5.4> Using the references from Exercise 5.2, what is the miss rate for

a fully associative cache with two-word blocks and a total size of 8 words, using LRU

replacement? What is the miss rate using MRU (most recently used) replacement?

Finally what is the best possible miss rate for this cache, given any replacement policy?

Multilevel caching is an important technique to overcome the limited amount of

space that a fi rst level cache can provide while still maintaining its speed. Consider a

processor with the following parameters:

y

uction

vel

y Set a

y Access

y Set

vel Cache,

vel Cache,

vel Cache,

a

 No Memor

ime

vel Cache

Stalls

T

 Eight-W

st Le

Associative

ir

Direct-Mapped

Eight-W

Processor Speed

F

Associative Speed

Global Miss Rate

with Second Le

Base CPI,

Main Memor

Second Le

Direct-Mapped Speed

Global Miss Rate with

Second Le

Second Le

Cache,

MissRate per Instr

1.5

2 GHz

100 ns

7%

12 cycles

3.5%

28 cycles

1.5%

5.7.4 [10] <§5.4> Calculate the CPI for the processor in the table using: 1) only a

fi rst level cache, 2) a second level direct-mapped cache, and 3) a second level eight-way

set associative cache. How do these numbers change if main memory access time is

doubled? If it is cut in half?

5.7.5 [10] <§5.4> It is possible to have an even greater cache hierarchy than two

levels. Given the processor above with a second level, direct-mapped cache, a designer

wants to add a third level cache that takes 50 cycles to access and will reduce the global

miss rate to 1.3%. Would this provide better performance? In general, what are the

advantages and disadvantages of adding a third level cache?

5.7.6 [20] <§5.4> In older processors such as the Intel Pentium or Alpha 21264, the

second level of cache was external (located on a diff erent chip) from the main processor

and the fi rst level cache. While this allowed for large second level caches, the latency to

access the cache was much higher, and the bandwidth was typically lower because the

second level cache ran at a lower frequency. Assume a 512 KiB off -chip second level

cache has a global miss rate of 4%. If each additional 512 KiB of cache lowered global

miss rates by 0.7%, and the cache had a total access time of 50 cycles, how big would

the cache have to be to match the performance of the second level direct-mapped cache

listed above? Of the eight-way set associative cache?

5.8 Mean Time Between Failures (MTBF), Mean Time To Replacement (MTTR), and

Mean Time To Failure (MTTF) are useful metrics for evaluating the reliability and

availability of a storage resource. Explore these concepts by answering the questions

about devices with the following metrics.

MTTF

MTTR

3 Years

1 Day

5.18 Exercises

489

5.8.1 [5] <§5.5> Calculate the MTBF for each of the devices in the table.

5.8.2 [5] <§5.5> Calculate the availability for each of the devices in the table.

5.8.3 [5] <§5.5> What happens to availability as the MTTR approaches 0? Is this a

realistic situation?

5.8.4 [5] <§5.5> What happens to availability as the MTTR gets very high, i.e., a

device is diffi

cult to repair? Does this imply the device has low availability?

5.9 Th

is Exercise examines the single error correcting, double error detecting (SEC/

DED) Hamming code.

5.9.1 [5] <§5.5> What is the minimum number of parity bits required to protect a

128-bit word using the SEC/DED code?

5.9.2 [5] <§5.5> Section 5.5 states that modern server memory modules (DIMMs)

employ SEC/DED ECC to protect each 64 bits with 8 parity bits. Compute the cost/

performance ratio of this code to the code from 5.9.1. In this case, cost is the relative

number of parity bits needed while performance is the relative number of errors that

can be corrected. Which is better?

5.9.3 Consider a SEC code that protects 8 bit words with 4 parity bits. If we read the

value 0x375, is there an error? If so, correct the error.

5.10 For a high-performance system such as a B-tree index for a database, the page

size is determined mainly by the data size and disk performance. Assume that on

average a B-tree index page is 70% full with fi x-sized entries. Th

e utility of a page is

its B-tree depth, calculated as log (entries). Th

e following table shows that for 16-byte

2

entries, and a 10-year-old disk with a 10 ms latency and 10 MB/s transfer rate, the

optimal page size is 16K.

Page Utility or B-Tree

Index Page

Depth (Number of Disk

Access

Page Size (KiB)

Accesses Saved)

Cost (ms)

Utility/Cost

2

6.49 (or log (2048/16×0.7))

10.2

0.64

2

4

7.49

10.4

0.72

8

8.49

10.8

0.79

16

9.49

11.6

0.82

32

10.49

13.2

0.79

64

11.49

16.4

0.70

128

12.49

22.8

0.55

256

13.49

35.6

0.38

5.10.1 [10] <§5.7> What is the best page size if entries now become 128 bytes?

5.10.2 [10] <§5.7> Based on 5.10.1, what is the best page size if pages are half full?

5.10.3 [20] <§5.7> Based on 5.10.2, what is the best page size if using a modern disk with a 3 ms latency and 100 MB/s transfer rate? Explain why future servers are likely

to have larger pages.

490

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but how

do we determine the exact meaning of “frequently used” for a given system? Data

engineers use the cost ratio between DRAM and disk access to quantify the reuse time

threshold for hot pages. Th

e cost of a disk access is $Disk/accesses_per_sec, while the

cost to keep a page in DRAM is $DRAM_MiB/page_size. Th

e typical DRAM and disk

costs and typical database page sizes at several time points are listed below:

DRAM Cost

Page Size

Disk Cost

Disk Access Rate

Year

($/MiB)

(KiB)

($/disk)

(access/sec)

1987

5000

1

15,000

15

1997

15

8

2000

64

2007

0.05

64

80

83

5.10.4 [10] <§§5.1, 5.7> What are the reuse time thresholds for these three

technology generations?

5.10.5 [10] <§5.7> What are the reuse time thresholds if we keep using the same 4K

page size? What’s the trend here?

5.10.6 [20] <§5.7> What other factors can be changed to keep using the same page

size (thus avoiding soft ware rewrite)? Discuss their likeliness with current technology

and cost trends.

5.11 As described in Section 5.7, virtual memory uses a page table to track the

mapping of virtual addresses to physical addresses. Th

is exercise shows how this table

must be updated as addresses are accessed. Th

e following data constitutes a stream of

virtual addresses as seen on a system. Assume 4 KiB pages, a 4-entry fully associative

TLB, and true LRU replacement. If pages must be brought in from disk, increment the

next largest page number.

4669, 2227, 13916, 34587, 48870, 12608, 49225

TLB

Physical Page

Valid

Tag

Number

1

11

12

1

7

4

1

3

6

0

4

9

5.18 Exercises

491

Page table

Valid

Physical Page or in Disk

1

5

0

Disk

0

Disk

1

6

1

9

1

11

0

Disk

1

4

0

Disk

0

Disk

1

3

1

12

5.11.1 [10] <§5.7> Given the address stream shown, and the initial TLB and page

table states provided above, show the fi nal state of the system. Also list for each reference

if it is a hit in the TLB, a hit in the page table, or a page fault.

5.11.2 [15] <§5.7> Repeat 5.11.1, but this time use 16 KiB pages instead of 4 KiB

pages. What would be some of the advantages of having a larger page size? What are

some of the disadvantages?

5.11.3 [15] <§§5.4, 5.7> Show the fi nal contents of the TLB if it is 2-way set

associative. Also show the contents of the TLB if it is direct mapped. Discuss the

importance of having a TLB to high performance. How would virtual memory

accesses be handled if there were no TLB?

Th

ere are several parameters that impact the overall size of the page table. Listed below

are key page table parameters.

Virtual Address Size

Page Size

Page Table Entry Size

32 bits

8 KiB

4 bytes

5.11.4 [5] <§5.7> Given the parameters shown above, calculate the total page table

size for a system running 5 applications that utilize half of the memory available.

5.11.5 [10] <§5.7> Given the parameters shown above, calculate the total page table

size for a system running 5 applications that utilize half of the memory available, given

a two level page table approach with 256 entries. Assume each entry of the main page

table is 6 bytes. Calculate the minimum and maximum amount of memory required.

5.11.6 [10] <§5.7> A cache designer wants to increase the size of a 4 KiB virtually

indexed, physically tagged cache. Given the page size shown above, is it possible to

make a 16 KiB direct-mapped cache, assuming 2 words per block? How would the

designer increase the data size of the cache?

492

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.12 In this exercise, we will examine space/time optimizations for page tables. Th

e

following list provides parameters of a virtual memory system.

Physical DRAM

Virtual Address (bits)

Installed

Page Size

PTE Size (byte)

43

16 GiB

4 KiB

4

5.12.1 [10] <§5.7> For a single-level page table, how many page table entries (PTEs) are needed? How much physical memory is needed for storing the page table?

5.12.2 [10] <§5.7> Using a multilevel page table can reduce the physical memory

consumption of page tables, by only keeping active PTEs in physical memory. How

many levels of page tables will be needed in this case? And how many memory

references are needed for address translation if missing in TLB?

5.12.3 [15] <§5.7> An inverted page table can be used to further optimize space

and time. How many PTEs are needed to store the page table? Assuming a hash table

implementation, what are the common case and worst case numbers of memory

references needed for servicing a TLB miss?

Th

e following table shows the contents of a 4-entry TLB.

Entry-ID

Valid

VA Page

Modifi ed

Protection

PA Page

1

1

140

1

RW

30

2

0

40

0

RX

34

3

1

200

1

RO

32

4

1

280

0

RW

31

5.12.4 [5] <§5.7> Under what scenarios would entry 2’s valid bit be set to zero?

5.12.5 [5] <§5.7> What happens when an instruction writes to VA page 30? When

would a soft ware managed TLB be faster than a hardware managed TLB?

5.12.6 [5] <§5.7> What happens when an instruction writes to VA page 200?

5.13 In this exercise, we will examine how replacement policies impact miss rate.

Assume a 2-way set associative cache with 4 blocks. To solve the problems in this

exercise, you may fi nd it helpful to draw a table like the one below, as demonstrated for

the address sequence “0, 1, 2, 3, 4.”

Address of

Contents of Cache Blocks After Reference

Memory

Evicted

Block Accessed

Hit or Miss

Block

Set 0

Set 0

Set 1

Set 1

0

Miss

Mem[0]

1

Miss

Mem[0]

Mem[1]

2

Miss

Mem[0]

Mem[2]

Mem[1]

3

Miss

Mem[0]

Mem[2]

Mem[1]

Mem[3]

4

Miss

0

Mem[4]

Mem[2]

Mem[1]

Mem[3]

…

5.18 Exercises

493

Consider the following address sequence: 0, 2, 4, 8, 10, 12, 14, 16, 0

5.13.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, how many hits does

this address sequence exhibit?

5.13.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement policy,

how many hits does this address sequence exhibit?

5.13.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by fl ipping a coin. For example, “heads” means to evict the fi rst block in a set and “tails” means to evict the

second block in a set. How many hits does this address sequence exhibit?

5.13.4 [10] <§§5.4, 5.8> Which address should be evicted at each replacement to

maximize the number of hits? How many hits does this address sequence exhibit if you

follow this “optimal” policy?

5.13.5 [10] <§§5.4, 5.8> Describe why it is diffi

cult to implement a cache replacement

policy that is optimal for all address sequences.

5.13.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory

reference whether or not you want the requested address to be cached. What impact

could this have on miss rate?

5.14 To support multiple virtual machines, two levels of memory virtualization are

needed. Each virtual machine still controls the mapping of virtual address (VA) to

physical address (PA), while the hypervisor maps the physical address (PA) of each

virtual machine to the actual machine address (MA). To accelerate such mappings,

a soft ware approach called “shadow paging” duplicates each virtual machine’s page

tables in the hypervisor, and intercepts VA to PA mapping changes to keep both copies

consistent. To remove the complexity of shadow page tables, a hardware approach

called nested page table (NPT) explicitly supports two classes of page tables (VA ⇒ PA

and PA ⇒ MA) and can walk such tables purely in hardware.

Consider the following sequence of operations: (1) Create process; (2) TLB miss;

(3) page fault; (4) context switch;

5.14.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence for

shadow page table and nested page table, respectively?

5.14.2 [10] <§§5.6, 5.7> Assuming an x86-based 4-level page table in both guest and

nested page table, how many memory references are needed to service a TLB miss for

native vs. nested page table?

5.14.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate, and page fault handler latency, which metrics are more important for shadow page table?

Which are important for nested page table?

494

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Assume the following parameters for a shadow paging system.

TLB Misses per

NPT TLB Miss

Page Faults per

Shadowing Page

1000 Instructions

Latency

1000 Instructions

Fault Overhead

0.2

200 cycles

0.001

30,000 cycles

5.14.4 [10] <§5.6> For a benchmark with native execution CPI of 1, what are the CPI

numbers if using shadow page tables vs. NPT (assuming only page table virtualization

overhead)?

5.14.5 [10] <§5.6> What techniques can be used to reduce page table shadowing

induced overhead?

5.14.6 [10] <§5.6> What techniques can be used to reduce NPT induced overhead?

5.15 One of the biggest impediments to widespread use of virtual machines is the

performance overhead incurred by running a virtual machine. Listed below are various

performance parameters and application behavior.

Priviliged

O/S

Performance

I/O Access Time

Accesses

Impact to

Performance

I/O Access

(Includes Time

per 10,000

Trap to the

Impact to Trap

per 10,000

to Trap to Guest

Base CPI Instructions

Guest O/S

to VMM

Instructions

O/S)

1.5

120

15 cycles

175 cycles

30

1100 cycles

5.15.1 [10] <§5.6> Calculate the CPI for the system listed above assuming that there are no accesses to I/O. What is the CPI if the VMM performance impact doubles? If it is

cut in half? If a virtual machine soft ware company wishes to obtain a 10% performance

degradation, what is the longest possible penalty to trap to the VMM?

5.15.2 [10] <§5.6> I/O accesses oft en have a large impact on overall system

performance. Calculate the CPI of a machine using the performance characteristics

above, assuming a non-virtualized system. Calculate the CPI again, this time using a

virtualized system. How do these CPIs change if the system has half the I/O accesses?

Explain why I/O bound applications have a smaller impact from virtualization.

5.15.3 [30] <§§5.6, 5.7> Compare and contrast the ideas of virtual memory and

virtual machines. How do the goals of each compare? What are the pros and cons of

each? List a few cases where virtual memory is desired, and a few cases where virtual

machines are desired.

5.15.4 [20] <§5.6> Section 5.6 discusses virtualization under the assumption that

the virtualized system is running the same ISA as the underlying hardware. However,

one possible use of virtualization is to emulate non-native ISAs. An example of this is

QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC. What

are some of the diffi

culties involved in this kind of virtualization? Is it possible for an

emulated system to run faster than on its native ISA?

5.18 Exercises

495

5.16 In this exercise, we will explore the control unit for a cache controller for a

processor with a write buff er. Use the fi nite state machine found in Figure 5.40 as a

starting point for designing your own fi nite state machines. Assume that the cache

controller is for the simple direct-mapped cache described on page 465 (Figure 5.40 in Section 5.9), but you will add a write buff er with a capacity of one block.

Recall that the purpose of a write buff er is to serve as temporary storage so that the

processor doesn’t have to wait for two memory accesses on a dirty miss. Rather than

writing back the dirty block before reading the new block, it buff ers the dirty block and

immediately begins reading the new block. Th

e dirty block can then be written to main

memory while the processor is working.

5.16.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request that

 hits in the cache while a block is being written back to main memory from the write

buff er?

5.16.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request that

 misses in the cache while a block is being written back to main memory from the write

buff er?

5.16.3 [30] <§§5.8, 5.9> Design a fi nite state machine to enable the use of a write buff er.

5.17 Cache coherence concerns the views of multiple processors on a given cache

block. Th

e following data shows two processors and their read/write operations on two

diff erent words of a cache block X (initially X[0] = X[1] = 0). Assume the size of integers is

32 bits.

P1

P2

X[0] ++; X[1] = 3;

X[0] = 5; X[1] +=2;

5.17.1 [15] <§5.10> List the possible values of the given cache block for a correct

cache coherence protocol implementation. List at least one more possible value of the

block if the protocol doesn’t ensure cache coherency.

5.17.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on each processor/cache to fi nish the above read/write operations.

5.17.3 [10] <§5.10> What are the best-case and worst-case numbers of cache misses

needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. Th

e following data

shows two processors and their read/write operations on diff erent cache blocks (A and

B initially 0).

P1

P2

A = 1; B = 2; A+=2; B++;

C = B; D = A;

496

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.17.4 [15] <§5.10> List the possible values of C and D for an implementation that

ensures both consistency assumptions on page 470.

5.17.5 [15] <§5.10> List at least one more possible pair of values for C and D if such assumptions are not maintained.

5.17.6 [15] <§§5.3, 5.10> For various combinations of write policies and write

allocation policies, which combinations make the protocol implementation simpler?

5.18 Chip multiprocessors (CMPs) have multiple cores and their caches on a single

chip. CMP on-chip L2 cache design has interesting trade-off s. Th

e following table

shows the miss rates and hit latencies for two benchmarks with private vs. shared L2

cache designs. Assume L1 cache misses once every 32 instructions.

Private

Shared

Benchmark A misses-per-instruction

0.30%

0.12%

Benchmark B misses-per-instruction

0.06%

0.03%

Assume the following hit latencies:

Private Cache

Shared Cache

Memory

5

20

180

5.18.1 [15] <§5.13> Which cache design is better for each of these benchmarks? Use

data to support your conclusion.

5.18.2 [15] <§5.13> Shared cache latency increases with the CMP size. Choose

the best design if the shared cache latency doubles. Off -chip bandwidth becomes the

bottleneck as the number of CMP cores increases. Choose the best design if off -chip

memory latency doubles.

5.18.3 [10] <§5.13> Discuss the pros and cons of shared vs. private L2 caches for both single-threaded, multi-threaded, and multiprogrammed workloads, and reconsider

them if having on-chip L3 caches.

5.18.4 [15] <§5.13> Assume both benchmarks have a base CPI of 1 (ideal L2 cache).

If having non-blocking cache improves the average number of concurrent L2 misses

from 1 to 2, how much performance improvement does this provide over a shared L2

cache? How much improvement can be achieved over private L2?

5.18.5 [10] <§5.13> Assume new generations of processors double the number of

cores every 18 months. To maintain the same level of per-core performance, how much

more off -chip memory bandwidth is needed for a processor released in three years?

5.18.6 [15] <§5.13> Consider the entire memory hierarchy. What kinds of

optimizations can improve the number of concurrent misses?

5.18 Exercises

497

5.19 In this exercise we show the defi nition of a web server log and examine code

optimizations to improve log processing speed. Th

e data structure for the log is defi ned

as follows:

struct entry {

int srcIP; // remote IP address

char URL[128]; // request URL (e.g., “GET index.html”)

long long refTime; // reference time

int status; // connection status

char browser[64]; // client browser name

} log [NUM_ENTRIES];

Assume the following processing function for the log:

topK_sourceIP (int hour);

5.19.1 [5] <§5.15> Which fi elds in a log entry will be accessed for the given log

processing function? Assuming 64-byte cache blocks and no prefetching, how many

cache misses per entry does the given function incur on average?

5.19.2 [10] <§5.15> How can you reorganize the data structure to improve cache

utilization and access locality? Show your structure defi nition code.

5.19.3 [10] <§5.15> Give an example of another log processing function that would

prefer a diff erent data structure layout. If both functions are important, how would you

rewrite the program to improve the overall performance? Supplement the discussion

with code snippet and data.

For the problems below, use data from “Cache Performance for SPEC CPU2000

Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for the pairs of benchmarks shown in the following table.

a.

Mesa / gcc

b.

mcf / swim

5.19.4 [10] <§5.15> For 64 KiB data caches with varying set associativities, what are the miss rates broken down by miss types (cold, capacity, and confl ict misses) for each

benchmark?

5.19.5 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data cache shared by both benchmarks. If the L1 cache has to be directly mapped, select the set

associativity for the 1 MiB L2 cache.

5.19.6 [20] <§5.15> Give an example in the miss rate table where higher set

associativity actually increases miss rate. Construct a cache confi guration and reference

stream to demonstrate this.

498

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Answers to §5.1, page 377: 1 and 4. (3 is false because the cost of the memory hierarchy varies per computer, but in 2013 the highest cost is usually the DRAM.)

Check Yourself

§5.3, page 398: 1 and 4: A lower miss penalty can enable smaller blocks, since you

don’t have that much latency to amortize, yet higher memory bandwidth usually

leads to larger blocks, since the miss penalty is only slightly larger.

§5.4, page 417: 1.

§5.7, page 454: 1-a, 2-c, 3-b, 4-d.

§5.8, page 461: 2. (Both large block sizes and prefetching may reduce compulsory

misses, so 1 is false.)

This page intentionally left blank

6

Parallel Processors

from Client to Cloud

6.1 Introduction

502

 “I swing big, with

6.2 The

Diffi culty of Creating Parallel Processing

 everything I’ve got.

Programs 504

 I hit big or I miss big.

6.3

SISD, MIMD, SIMD, SPMD, and Vector 509

 I like to live as big as

6.4 Hardware

Multithreading

516

 I can.”

6.5

Multicore and Other Shared Memory

Multiprocessors 519

Babe Ruth

 American baseball player

6.6

Introduction to Graphics Processing

Units 524

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

6.7

Clusters, Warehouse Scale Computers, and Other Message-

Passing Multiprocessors 531

6.8

Introduction to Multiprocessor Network Topologies 536

6.9

Communicating to the Outside World: Cluster Networking 539

6.10

Multiprocessor Benchmarks and Performance Models 540

6.11

Real Stuff: Benchmarking Intel Core i7 versus NVIDIA

Tesla GPU 550

6.12

Going Faster: Multiple Processors and Matrix Multiply 555

6.13

Fallacies and Pitfalls 558

6.14 Concluding

Remarks

560

6.15

Historical Perspective and Further Reading 563

6.16 Exercises

563

Multiprocessor or Cluster Organization

Computer

Computer

Network

Computer

Computer

502

Chapter 6 Parallel Processors from Client to Cloud

 6.1 Introduction

 Over the Mountains Of Computer architects have long sought the “Th

e City of Gold” (El Dorado) of

 the Moon, Down the

computer design: to create powerful computers simply by connecting many existing

 Valley of the Shadow,

smaller ones. Th

is golden vision is the fountainhead of multiprocessors. Ideally,

 Ride, boldly ride the

customers order as many processors as they can aff ord and receive a commensurate

 shade replied— If you

amount of performance. Th

us, multiprocessor soft ware must be designed to work

 seek for El Dorado!

with a variable number of processors. As mentioned in Chapter 1, energy has

become the overriding issue for both microprocessors and datacenters. Replacing

Edgar Allan Poe,

large ineffi

cient processors with many smaller, effi

cient processors can deliver

“El Dorado,”

stanza 4, 1849

better performance per joule both in the large and in the small, if soft ware can

effi

ciently use them. Th

us, improved energy effi

ciency joins scalable performance

in the case for multiprocessors.

multiprocessor

Since multiprocessor soft ware should scale, some designs support operation

A computer system with at

in the presence of broken hardware; that is, if a single processor fails in a

least two processors. Th

is

multiprocessor with n processors, these system would continue to provide service

computer is in contrast to

with n – 1 processors. Hence, multiprocessors can also improve availability (see

a uniprocessor, which has

one, and is increasingly

Chapter 5).

hard to fi nd today.

High performance can mean high throughput for independent tasks, called

task-level parallelism or process-level parallelism. Th

ese tasks are independent

single-threaded applications, and they are an important and popular use of

multiple processors. Th

is approach is in contrast to running a single job on

multiple processors. We use the term parallel processing program to refer to a

single program that runs on multiple processors simultaneously.

Th

ere have long been scientifi c problems that have needed much faster

computers, and this class of problems has been used to justify many novel parallel

computers over the decades. Some of these problems can be handled simply today,

task-level parallelism

using a cluster composed of microprocessors housed in many independent servers

or process-level

(see Section 6.7). In addition, clusters can serve equally demanding applications

parallelism Utilizing

outside the sciences, such as search engines, Web servers, email servers, and

multiple processors by

databases.

running independent

As described in Chapter 1, multiprocessors have been shoved into the spotlight

programs simultaneously.

because the energy problem means that future increases in performance will

parallel processing

primarily come from explicit hardware parallelism rather than much higher

program A single

clock rates or vastly improved CPI. As we said in Chapter 1, they are called

program that runs on

multiple processors

simultaneously.

cluster A set of

computers connected over

a local area network that

function as a single large

multiprocessor.

6.1 Introduction

503

multicore microprocessors instead of multiprocessor microprocessors, multicore

presumably to avoid redundancy in naming. Hence, processors are oft en called microprocessor

 cores in a multicore chip. Th

e number of cores is expected to increase with A microprocessor

Moore’s Law. Th

ese multicores are almost always Shared Memory Processors containing multiple

processors (“cores”)

(SMPs), as they usually share a single physical address space. We’ll see SMPs in a single integrated more in Section 6.5.

circuit. Virtually all

Th

e state of technology today means that programmers who care about microprocessors today in

performance must become parallel programmers, for sequential code now means desktops and servers are slow code.

multicore.

Th

e tall challenge facing the industry is to create hardware and soft ware that shared memory

will make it easy to write correct parallel processing programs that will execute multiprocessor effi

ciently in performance and energy as the number of cores per chip scales.

(SMP) A parallel

Th

is abrupt shift in microprocessor design caught many off guard, so there is a processor with a single great deal of confusion about the terminology and what it means. Figure 6.1 tries to physical address space.

clarify the terms serial, parallel, sequential, and concurrent. Th

e columns of this fi gure

represent the soft ware, which is either inherently sequential or concurrent. Th

e rows

of the fi gure represent the hardware, which is either serial or parallel. For example, the

programmers of compilers think of them as sequential programs: the steps include

parsing, code generation, optimization, and so on. In contrast, the programmers

of operating systems normally think of them as concurrent programs: cooperating

processes handling I/O events due to independent jobs running on a computer.

Th

e point of these two axes of Figure 6.1 is that concurrent soft ware can run on serial hardware, such as operating systems for the Intel Pentium 4 uniprocessor,

or on parallel hardware, such as an OS on the more recent Intel Core i7. Th

e same

is true for sequential soft ware. For example, the MATLAB programmer writes

a matrix multiply thinking about it sequentially, but it could run serially on the

Pentium 4 or in parallel on the Intel Core i7.

You might guess that the only challenge of the parallel revolution is fi guring out how

to make naturally sequential soft ware have high performance on parallel hardware, but

it is also to make concurrent programs have high performance on multiprocessors as the

number of processors increases. With this distinction made, in the rest of this chapter

we will use parallel processing program or parallel soft ware to mean either sequential or concurrent soft ware running on parallel hardware. Th

e next section of this chapter

describes why it is hard to create effi

cient parallel processing programs.

Software

Sequential

Concurrent

Matrix Multiply written in MatLab

Windows Vista Operating System

Serial

running on an Intel Pentium 4

running on an Intel Pentium 4

Hardware

Matrix Multiply written in MATLAB

Windows Vista Operating System

Parallel

running on an Intel Core i7

running on an Intel Core i7

FIGURE 6.1 Hardware/software categorization and examples of application perspective

on concurrency versus hardware perspective on parallelism.

504

Chapter 6 Parallel Processors from Client to Cloud

Before proceeding further down the path to parallelism, donಬt forget our initial

incursions from the earlier chapters:

■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword

Parallelism

■ Chapter 4, Section 4.10: Parallelism via Instructions

■ Chapter 5, Section 5.10: Parallelism and Memory Hierarchy: Cache Coherence

Check

Yourself

True or false: To benefi t from a multiprocessor, an application must be concurrent.

 6.2 The

Diffi culty of Creating Parallel

Processing Programs

Th

e diffi

culty with parallelism is not the hardware; it is that too few important

application programs have been rewritten to complete tasks sooner on multiprocessors.

It is diffi

cult to write soft ware that uses multiple processors to complete one task

faster, and the problem gets worse as the number of processors increases.

Why has this been so? Why have parallel processing programs been so much

harder to develop than sequential programs?

Th

e fi rst reason is that you must get better performance or better energy

effi

ciency from a parallel processing program on a multiprocessor; otherwise, you

would just use a sequential program on a uniprocessor, as sequential programming

is simpler. In fact, uniprocessor design techniques such as superscalar and out-of-

order execution take advantage of instruction-level parallelism (see Chapter 4),

normally without the involvement of the programmer. Such innovations reduced

the demand for rewriting programs for multiprocessors, since programmers

could do nothing and yet their sequential programs would run faster on new

computers.

Why is it diffi

cult to write parallel processing programs that are fast, especially

as the number of processors increases? In Chapter 1, we used the analogy of

eight reporters trying to write a single story in hopes of doing the work eight

times faster. To succeed, the task must be broken into eight equal-sized pieces,

because otherwise some reporters would be idle while waiting for the ones with

larger pieces to fi nish. Another speed-up obstacle could be that the reporters

would spend too much time communicating with each other instead of writing

their pieces of the story. For both this analogy and parallel programming,

the challenges include scheduling, partitioning the work into parallel pieces,

balancing the load evenly between the workers, time to synchronize, and

 6.2

The

Diffi culty of Creating Parallel Processing Programs

505

overhead for communication between the parties. Th

e challenge is stiff er with the

more reporters for a newspaper story and with the more processors for parallel

programming.

Our discussion in Chapter 1 reveals another obstacle, namely Amdahlಬs Law. It

reminds us that even small parts of a program must be parallelized if the program

is to make good use of many cores.

Speed-up Challenge

EXAMPLE

Suppose you want to achieve a speed-up of 90 times faster with 100 processors.

What percentage of the original computation can be sequential?

Amdahlಬs Law (Chapter 1) says

ANSWER

Execution time after improvement =

Execution time affected by improvement + Execution time unaffectted

Amount of improvement

We can reformulate Amdahlಬs Law in terms of speed-up versus the original

execution time:

Execution time before

Speed-up =

Execution time affected

(Execution time before − Executtion time affected) + Amount of improovement

Th

is formula is usually rewritten assuming that the execution time before is

1 for some unit of time, and the execution time aff ected by improvement is

considered the fraction of the original execution time:

1

Speed-up =

Fraction time affecte

(1 − Fraction time affected) +

d

Amount of improvement

Substituting 90 for speed-up and 100 for amount of improvement into the

formula above:

1

90 =

Fraction time affected

(1 − Fraction time affected) +

100

506

Chapter 6 Parallel Processors from Client to Cloud

Th

en simplifying the formula and solving for fraction time aff ected:

90 × (1 − 0.99 × Fraction time affected) = 1

90 − (90 × 0.99 × Fraction tiime affected) = 1

90 − 1 = 90 × 0.99 × Fraction time affected

Fraction time affected = 89/89.1 = 0.999

Th

us, to achieve a speed-up of 90 from 100 processors, the sequential

percentage can only be 0.1%.

Yet, there are applications with plenty of parallelism, as we shall see next.

Speed-up Challenge: Bigger Problem

EXAMPLE

Suppose you want to perform two sums: one is a sum of 10 scalar variables, and

one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10.

For now let’s assume only the matrix sum is parallelizable; we’ll see soon how to

parallelize scalar sums. What speed-up do you get with 10 versus 40 processors?

Next, calculate the speed-ups assuming the matrices grow to 20 by 20.

If we assume performance is a function of the time for an addition, t, then

ANSWER

there are 10 additions that do not benefi t from parallel processors and 100

additions that do. If the time for a single processor is 110 t, the execution time

for 10 processors is

Execution time after improvement =

Execution time affected by improvement + Execution time unaffectted

Amount of improvement

100 t

Execution time after improvement =

+ t

10 =

 t

20

10

so the speed-up with 10 processors is 110 t/20 t = 5.5. Th

e execution time for

40 processors is

100 t

Execution time after improvement =

+ t

10 = 12. t

5

40

so the speed-up with 40 processors is 110 t/12.5 t = 8.8. Th

us, for this problem

size, we get about 55% of the potential speed-up with 10 processors, but only

22% with 40.

 6.2

The

Diffi culty of Creating Parallel Processing Programs

507

Look what happens when we increase the matrix. Th

e sequential program now

takes 10 t + 400 t = 410t. Th

e execution time for 10 processors is

400 t

Execution time after improvement =

+ t

10 =

 t

50

10

so the speed-up with 10 processors is 410 t/50 t = 8.2. Th

e execution time for

40 processors is

400 t

Execution time after improvement =

+ t

10 =

 t

20

40

so the speed-up with 40 processors is 410 t/20 t = 20.5. Th

us, for this larger problem

size, we get 82% of the potential speed-up with 10 processors and 51% with 40.

Th

ese examples show that getting good speed-up on a multiprocessor while

keeping the problem size fi xed is harder than getting good speed-up by increasing

the size of the problem. Th

is insight allows us to introduce two terms that describe

ways to scale up.

Strong scaling means measuring speed-up while keeping the problem size fi xed. strong scaling Speed-Weak scaling means that the problem size grows proportionally to the increase in up achieved on a the number of processors. Let’s assume that the size of the problem, M, is the working

multiprocessor without

set in main memory, and we have P processors. Th

en the memory per processor for increasing the size of the

problem.

strong scaling is approximately M/P, and for weak scaling, it is approximately M.

Note that the memory hierarchy can interfere with the conventional wisdom weak scaling Speed-about weak scaling being easier than strong scaling. For example, if the weakly up achieved on a scaled dataset no longer fi ts in the last level cache of a multicore microprocessor, multiprocessor while increasing the size of the

the resulting performance could be much worse than by using strong scaling.

problem proportionally

Depending on the application, you can argue for either scaling approach. For to the increase in the example, the TPC-C debit-credit database benchmark requires that you scale up number of processors.

the number of customer accounts in proportion to the higher transactions per

minute. Th

e argument is that itಬs nonsensical to think that a given customer base

is suddenly going to start using ATMs 100 times a day just because the bank gets a

faster computer. Instead, if youಬre going to demonstrate a system that can perform

100 times the numbers of transactions per minute, you should run the experiment

with 100 times as many customers. Bigger problems oft en need more data, which

is an argument for weak scaling.

Th

is fi nal example shows the importance of load balancing.

Speed-up Challenge: Balancing Load

To achieve the speed-up of 20.5 on the previous larger problem with 40

EXAMPLE

processors, we assumed the load was perfectly balanced. Th

at is, each of the 40

508

Chapter 6 Parallel Processors from Client to Cloud

processors had 2.5% of the work to do. Instead, show the impact on speed-up if

one processorಬs load is higher than all the rest. Calculate at twice the load (5%)

and fi ve times the load (12.5%) for that hardest working processor. How well

utilized are the rest of the processors?

If one processor has 5% of the parallel load, then it must do 5% × 400 or 20

ANSWER

additions, and the other 39 will share the remaining 380. Since they are operating

simultaneously, we can just calculate the execution time as a maximum

⎛380 t 20 t ⎞

Execution time after improvement = Max⎜

,

⎟

=

⎝⎜

⎟ + 110 t

30 t

39

1 ⎠

Th

e speed-up drops from 20.5 to 410 t/30 t = 14. Th

e remaining 39 processors

are utilized less than half the time: while waiting 20t for hardest working

processor to fi nish, they only compute for 380 t/39 = 9.7 t.

If one processor has 12.5% of the load, it must perform 50 additions. Th

e

formula is:

⎛350 t 50 t ⎞

Execution time after improvement = Max⎜

,

⎟

=

⎝⎜

⎟ + 110 t

60 t

39

1 ⎠

Th

e speed-up drops even further to 410 t/60 t = 7. Th

e rest of the processors

are utilized less than 20% of the time (9 t/50 t). Th

is example demonstrates the

importance of balancing load, for just a single processor with twice the load

of the others cuts speed-up by a third, and fi ve times the load on just one

processor reduces speed-up by almost a factor of three.

Now that we better understand the goals and challenges of parallel processing,

we give an overview of the rest of the chapter. Th

e next Section (6.3) describes

a much older classifi cation scheme than in Figure 6.1. In addition, it describes two styles of instruction set architectures that support running of sequential

applications on parallel hardware, namely SIMD and vector. Section 6.4 then

describes multithreading, a term oft en confused with multiprocessing, in part

because it relies upon similar concurrency in programs. Section 6.5 describes the

fi rst the two alternatives of a fundamental parallel hardware characteristic, which is

whether or not all the processors in the systems rely upon a single physical address

space. As mentioned above, the two popular versions of these alternatives are called

 shared memory multiprocessors (SMPs) and clusters, and this section covers the

former. Section 6.6 describes a relatively new style of computer from the graphics

hardware community, called a graphics-processing unit (GPU) that also assumes

a single physical address. (Appendix C describes GPUs in even more detail.)

Section 6.7 describes clusters, a popular example of a computer with multiple

physical address spaces. Section 6.8 shows typical topologies used to connect many

processors together, either server nodes in a cluster or cores in a microprocessor.

Section 6.9 describes the hardware and soft ware for communicating between

6.3 SISD, MIMD, SIMD, SPMD, and Vector

509

nodes in a cluster using Ethernet. It shows how to optimize its performance using

custom soft ware and hardware. We next discuss the diffi

culty of fi nding parallel

benchmarks in Section 6.10. Th

is section also includes a simple, yet insightful

performance model that helps in the design of applications as well as architectures.

We use this model as well as parallel benchmarks in Section 6.11 to compare a

multicore computer to a GPU. Section 6.12 divulges the fi nal and largest step in

our journey of accelerating matrix multiply. For matrices that don’t fi t in the cache,

parallel processing uses 16 cores to improve performance by a factor of 14. We

close with fallacies and pitfalls and our conclusions for parallelism.

In the next section, we introduce acronyms that you probably have already seen

to identify diff erent types of parallel computers.

Check

True or false: Strong scaling is not bound by Amdahlಬs Law.

Yourself

 6.3

SISD, MIMD, SIMD, SPMD, and Vector

One categorization of parallel hardware proposed in the 1960s is still used today. It SISD or Single was based on the number of instruction streams and the number of data streams. Instruction stream,

Figure 6.2 shows the categories. Th

us, a conventional uniprocessor has a single Single Data stream.

A uniprocessor.

instruction stream and single data stream, and a conventional multiprocessor has

multiple instruction streams and multiple data streams. Th

ese two categories are MIMD or Multiple

abbreviated SISD and MIMD, respectively.

Instruction streams,

While it is possible to write separate programs that run on diff erent processors Multiple Data streams.

on a MIMD computer and yet work together for a grander, coordinated goal, A multiprocessor.

programmers normally write a single program that runs on all processors of an

MIMD computer, relying on conditional statements when diff erent processors

should execute diff erent sections of code. Th

is style is called Single Program SPMD Single Program,

Multiple Data (SPMD), but it is just the normal way to program a MIMD computer.

Multiple Data streams.

Th

e closest we can come to multiple instruction streams and single data stream Th e conventional MIMD

(MISD) processor might be a “stream processor” that would perform a series of programming model, where a single program

computations on a single data stream in a pipelined fashion: parse the input from runs across all processors.

the network, decrypt the data, decompress it, search for match, and so on. Th

e

inverse of MISD is much more popular. SIMD computers operate on vectors of SIMD or Single Instruction stream,

Multiple Data streams.

Th

e same instruction

Data Streams

is applied to many data

streams, as in a vector

Single

Multiple

processor.

Single

SISD: Intel Pentium 4

SIMD: SSE instructions of x86

Instruction

Streams

Multiple

MISD: No examples today

MIMD: Intel Core i7

FIGURE 6.2 Hardware categorization and examples based on number of instruction

streams and data streams: SISD, SIMD, MISD, and MIMD.

510

Chapter 6 Parallel Processors from Client to Cloud

data. For example, a single SIMD instruction might add 64 numbers by sending 64

data streams to 64 ALUs to form 64 sums within a single clock cycle. Th

e subword

parallel instructions that we saw in Sections 3.6 and 3.7 are another example of

SIMD; indeed, the middle letter of Intel’s SSE acronym stands for SIMD.

Th

e virtues of SIMD are that all the parallel execution units are synchronized and

they all respond to a single instruction that emanates from a single program counter

(PC). From a programmerಬs perspective, this is close to the already familiar SISD.

Although every unit will be executing the same instruction, each execution unit has

its own address registers, and so each unit can have diff erent data addresses. Th

us,

in terms of Figure 6.1, a sequential application might be compiled to run on serial hardware organized as a SISD or in parallel hardware that was organized as a SIMD.

Th

e original motivation behind SIMD was to amortize the cost of the control

unit over dozens of execution units. Another advantage is the reduced instruction

bandwidth and spaceಧSIMD needs only one copy of the code that is being

simultaneously executed, while message-passing MIMDs may need a copy in every

processor, and shared memory MIMD will need multiple instruction caches.

SIMD works best when dealing with arrays in for loops. Hence, for parallelism

to work in SIMD, there must be a great deal of identically structured data, which

data-level

is called data-level parallelism. SIMD is at its weakest in case or switch

parallelism Parallelism

statements, where each execution unit must perform a diff erent operation on its

achieved by performing

data, depending on what data it has. Execution units with the wrong data must be

the same operation on

disabled so that units with proper data may continue. If there are n cases, in these

independent data.

situations SIMD processors essentially run at 1/ n th of peak performance.

Th

e so-called array processors that inspired the SIMD category have faded

into history (see Section 6.15 online), but two current interpretations of SIMD

remain active today.

SIMD in x86: Multimedia Extensions

As described in Chapter 3, subword parallelism for narrow integer data was the

original inspiration of the Multimedia Extension (MMX) instructions of the x86

in 1996. As Moore’s Law continued, more instructions were added, leading fi rst

to Streaming SIMD Extensions (SSE) and now Advanced Vector Extensions (AVX).

AVX supports the simultaneous execution of four 64-bit fl oating-point numbers.

Th

e width of the operation and the registers is encoded in the opcode of these

multimedia instructions. As the data width of the registers and operations grew,

the number of opcodes for multimedia instructions exploded, and now there are

hundreds of SSE and AVX instructions (see Chapter 3).

Vector

An older and, as we shall see, more elegant interpretation of SIMD is called a vector

 architecture, which has been closely identifi ed with computers designed by Seymour

Cray starting in the 1970s. It is also a great match to problems with lots of data-level

parallelism. Rather than having 64 ALUs perform 64 additions simultaneously, like

the old array processors, the vector architectures pipelined the ALU to get good

performance at lower cost. Th

e basic philosophy of vector architecture is to collect

6.3 SISD, MIMD, SIMD, SPMD, and Vector

511

data elements from memory, put them in order into a large set of registers, operate

on them sequentially in registers using pipelined execution units, and then write

the results back to memory. A key feature of vector architectures is then a set of

vector registers. Th

us, a vector architecture might have 32 vector registers, each

with 64 64-bit elements.

Comparing Vector to Conventional Code

Suppose we extend the MIPS instruction set architecture with vector

instructions and vector registers. Vector operations use the same names as

EXAMPLE

MIPS operations, but with the letter ಯVರ appended. For example, addv.d

adds two double-precision vectors. Th

e vector instructions take as their input

either a pair of vector registers (addv.d) or a vector register and a scalar

register (addvs.d). In the latter case, the value in the scalar register is used

as the input for all operationsಧthe operation addvs.d will add the contents

of a scalar register to each element in a vector register. Th

e names lv and sv

denote vector load and vector store, and they load or store an entire vector

of double-precision data. One operand is the vector register to be loaded or

stored; the other operand, which is a MIPS general-purpose register, is the

starting address of the vector in memory. Given this short description, show

the conventional MIPS code versus the vector MIPS code for

 Y = a × X + Y

where X and Y are vectors of 64 double precision fl oating-point numbers,

initially resident in memory, and a is a scalar double precision variable. (Th

is

example is the so-called DAXPY loop that forms the inner loop of the Linpack

benchmark; DAXPY stands for double precision a × X plus Y.). Assume that the starting addresses of X and Y are in $s0 and $s1, respectively.

Here is the conventional MIPS code for DAXPY:

ANSWER

l.d

$f0,a($sp)

:load scalar a

addiu

$t0,$s0,#512

:upper bound of what to load

loop: l.d

$f2,0($s0)

:load x(i)

mul.d

$f2,$f2,$f0

:a x x(i)

l.d $f4,0($s1)

:load

y(i)

add.d

$f4,$f4,$f2

:a x x(i) + y(i)

s.d

$f4,0($s1)

:store into y(i)

addiu

$s0,$s0,#8

:increment index to x

addiu

$s1,$s1,#8

:increment index to y

subu $t1,$t0,$s0 :compute

bound

bne

$t1,$zero,loop

:check if done

Here is the vector MIPS code for DAXPY:

512

Chapter 6 Parallel Processors from Client to Cloud

l.d

$f0,a($sp)

:load scalar a

lv

$v1,0($s0)

:load vector x

mulvs.d

$v2,$v1,$f0 :vector-scalar

multiply

lv

$v3,0($s1)

:load vector y

addv.d $v4,$v2,$v3

:add y to product

sv

$v4,0($s1)

:store the result

Th

ere are some interesting comparisons between the two code segments in

this example. Th

e most dramatic is that the vector processor greatly reduces the

dynamic instruction bandwidth, executing only 6 instructions versus almost 600

for the traditional MIPS architecture. Th

is reduction occurs both because the vector

operations work on 64 elements at a time and because the overhead instructions

that constitute nearly half the loop on MIPS are not present in the vector code. As

you might expect, this reduction in instructions fetched and executed saves energy.

Another important diff erence is the frequency of pipeline hazards (Chapter 4).

In the straightforward MIPS code, every add.d must wait for a mul.d, every

s.d must wait for the add.d and every add.d and mul.d must wait on l.d.

On the vector processor, each vector instruction will only stall for the fi rst element

in each vector, and then subsequent elements will fl ow smoothly down the pipeline.

Th

us, pipeline stalls are required only once per vector operation, rather than once

per vector element. In this example, the pipeline stall frequency on MIPS will be

about 64 times higher than it is on the vector version of MIPS. Th

e pipeline stalls

can be reduced on MIPS by using loop unrolling (see Chapter 4). However, the

large diff erence in instruction bandwidth cannot be reduced.

Since the vector elements are independent, they can be operated on in parallel,

much like subword parallelism for AVX instructions. All modern vector computers

have vector functional units with multiple parallel pipelines (called vector lanes; see

Figures 6.2 and 6.3) that can produce two or more results per clock cycle.

Elaboration: The loop in the example above exactly matched the vector length. When

loops are shorter, vector architectures use a register that reduces the length of vector

operations. When loops are larger, we add bookkeeping code to iterate full-length vector

operations and to handle the leftovers. This latter process is called strip mining.

Vector versus Scalar

Vector instructions have several important properties compared to conventional

instruction set architectures, which are called scalar architectures in this context:

■ A single vector instruction specifi es a great deal of workಧit is equivalent

to executing an entire loop. Th

e instruction fetch and decode bandwidth

needed is dramatically reduced.

■ By using a vector instruction, the compiler or programmer indicates that the

computation of each result in the vector is independent of the computation of

other results in the same vector, so hardware does not have to check for data

hazards within a vector instruction.

■ Vector architectures and compilers have a reputation of making it much

easier than when using MIMD multiprocessors to write effi

cient applications

when they contain data-level parallelism.

6.3 SISD, MIMD, SIMD, SPMD, and Vector

513

■ Hardware need only check for data hazards between two vector instructions

once per vector operand, not once for every element within the vectors.

Reduced checking can save energy as well as time.

■ Vector instructions that access memory have a known access pattern. If

the vectorಬs elements are all adjacent, then fetching the vector from a set

of heavily interleaved memory banks works very well. Th

us, the cost of the

latency to main memory is seen only once for the entire vector, rather than

once for each word of the vector.

■ Because an entire loop is replaced by a vector instruction whose behavior

is predetermined, control hazards that would normally arise from the loop

branch are nonexistent.

■ Th

e savings in instruction bandwidth and hazard checking plus the effi

cient

use of memory bandwidth give vector architectures advantages in power and

energy versus scalar architectures.

For these reasons, vector operations can be made faster than a sequence of

scalar operations on the same number of data items, and designers are motivated

to include vector units if the application domain can oft en use them.

Vector versus Multimedia Extensions

Like multimedia extensions found in the x86 AVX instructions, a vector instruction

specifi es multiple operations. However, multimedia extensions typically specify a

few operations while vector specifi es dozens of operations. Unlike multimedia

extensions, the number of elements in a vector operation is not in the opcode but in a

separate register. Th

is distinction means diff erent versions of the vector architecture

can be implemented with a diff erent number of elements just by changing the

contents of that register and hence retain binary compatibility. In contrast, a new

large set of opcodes is added each time the ಯvectorರ length changes in the multimedia

extension architecture of the x86: MMX, SSE, SSE2, AVX, AVX2, … .

Also unlike multimedia extensions, the data transfers need not be contiguous.

Vectors support both strided accesses, where the hardware loads every n th data

element in memory, and indexed accesses, where hardware fi nds the addresses of

the items to be loaded in a vector register. Indexed accesses are also called gather-

 scatter, in that indexed loads gather elements from main memory into contiguous

vector elements and indexed stores scatter vector elements across main memory.

Like multimedia extensions, vector architectures easily capture the fl exibility

in data widths, so it is easy to make a vector operation work on 32 64-bit data

elements or 64 32-bit data elements or 128 16-bit data elements or 256 8-bit data

elements. Th

e parallel semantics of a vector instruction allows an implementation

to execute these operations using a deeply pipelined functional unit, an array of

parallel functional units, or a combination of parallel and pipelined functional

units. Figure 6.3 illustrates how to improve vector performance by using parallel pipelines to execute a vector add instruction.

Vector arithmetic instructions usually only allow element N of one vector

register to take part in operations with element N from other vector registers. Th

is

514

Chapter 6 Parallel Processors from Client to Cloud

A[9]

B[9]

A[8]

B[8]

A[7]

B[7]

A[6]

B[6]

A[5]

B[5]

A[4]

B[4]

A[3]

B[3]

A[2]

B[2]

A[8]

B[8]

A[9]

B[9]

A[1]

B[1]

A[4]

B[4]

A[5]

B[5]

A[6]

B[6]

A[7]

B[7]

+

+

+

+

+

C[0]

C[0]

C[1]

C[2]

C[3]

Element group

(a)

(b)

FIGURE 6.3 Using multiple functional units to improve the performance of a single vector add instruction, C = A + B. Th

e vector processor (a) on the left has a single add pipeline and can complete

one addition per cycle. Th

e vector processor (b) on the right has four add pipelines or lanes and can complete

four additions per cycle. Th

e elements within a single vector add instruction are interleaved across the four

vector lane One or

lanes.

more vector functional

units and a portion of

dramatically simplifi es the construction of a highly parallel vector unit, which can

the vector register fi le.

be structured as multiple parallel vector lanes. As with a traffi

c highway, we can

Inspired by lanes on

increase the peak throughput of a vector unit by adding more lanes. Figure 6.4

highways that increase

shows the structure of a four-lane vector unit. Th

us, going to four lanes from one

traffi

c speed, multiple

lanes execute vector

lane reduces the number of clocks per vector instruction by roughly a factor of four.

operations

For multiple lanes to be advantageous, both the applications and the architecture

simultaneously.

must support long vectors. Otherwise, they will execute so quickly that you’ll run

out of instructions, requiring instruction level parallel techniques like those in

Chapter 4 to supply enough vector instructions.

Generally, vector architectures are a very effi

cient way to execute data parallel

processing programs; they are better matches to compiler technology than

multimedia extensions; and they are easier to evolve over time than the multimedia

extensions to the x86 architecture.

Given these classic categories, we next see how to exploit parallel streams of

instructions to improve the performance of a single processor, which we will reuse

with multiple processors.

Check True or false: As exemplifi ed in the x86, multimedia extensions can be thought of

as a vector architecture with short vectors that supports only contiguous vector

Yourself

data transfers.

6.3 SISD, MIMD, SIMD, SPMD, and Vector

515

Lane 0

Lane 1

Lane 2

Lane 3

FP add

FP add

FP add

FP add

pipe 0

pipe 1

pipe 2

pipe 3

Vector

Vector

Vector

Vector

registers:

registers:

registers:

registers:

elements

elements

elements

elements

0,4,8,...

1,5,9,...

2,6,10,...

3,7,11,...

FP mul

FP mul

FP mul

FP mul

pipe 0

pipe 1

pipe 2

pipe 3

Vector load store unit

FIGURE 6.4 Structure of a vector unit containing four lanes. Th

e vector-register storage is

divided across the lanes, with each lane holding every fourth element of each vector register. Th e fi gure

shows three vector functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector arithmetic units contains four execution pipelines, one per lane, which acts in concert to complete a single vector instruction. Note how each section of the vector-register fi le only needs to provide enough read and write ports (see Chapter 4) for functional units local to its lane.

Elaboration: Given the advantages of vector, why aren’t they more popular outside

high-performance computing? There were concerns about the larger state for vector

registers increasing context switch time and the diffi culty of handling page faults in

vector loads and stores, and SIMD instructions achieved some of the benefi ts of vector

instructions. In addition, as long as advances in instruction level parallelism could

deliver on the performance promise of Moore’s Law, there was little reason to take the

chance of changing architecture styles.

Elaboration: Another advantage of vector and multimedia extensions is that it is

relatively easy to extend a scalar instruction set architecture with these instructions to

improve performance of data parallel operations.

Elaboration: The Haswell-generation x86 processors from Intel support AVX2, which

has a gather operation but not a scatter operation.

516

Chapter 6 Parallel Processors from Client to Cloud

hardware

multithreading

Increasing utilization of a

 6.4 Hardware

Multithreading

processor by switching to

another thread when one

thread is stalled.

A related concept to MIMD, especially from the programmer’s perspective, is

hardware multithreading. While MIMD relies on multiple processes or threads

thread A thread includes

to try to keep multiple processors busy, hardware multithreading allows multiple

the program counter, the

register state, and the

threads to share the functional units of a single processor in an overlapping fashion

stack. It is a lightweight

to try to utilize the hardware resources effi

ciently. To permit this sharing, the

process; whereas threads

processor must duplicate the independent state of each thread. For example, each

commonly share a single

thread would have a separate copy of the register fi le and the program counter.

address space, processes

Th

e memory itself can be shared through the virtual memory mechanisms, which

don’t.

already support multi-programming. In addition, the hardware must support the

process A process

ability to change to a diff erent thread relatively quickly. In particular, a thread

includes one or more

switch should be much more effi

cient than a process switch, which typically

threads, the address space,

requires hundreds to thousands of processor cycles while a thread switch can be

and the operating system

instantaneous.

state. Hence, a process

Th

ere are two main approaches to hardware multithreading. Fine-grained

switch usually invokes the

operating system, but not

multithreading switches between threads on each instruction, resulting in

a thread switch.

interleaved execution of multiple threads. Th

is interleaving is oft en done in a

round-robin fashion, skipping any threads that are stalled at that clock cycle. To

fi ne-grained

make fi ne-grained multithreading practical, the processor must be able to switch

multithreading

threads on every clock cycle. One advantage of fi ne-grained multithreading is

A version of hardware

that it can hide the throughput losses that arise from both short and long stalls,

multithreading that

implies switching between

since instructions from other threads can be executed when one thread stalls. Th

e

threads aft er every

primary disadvantage of fi ne-grained multithreading is that it slows down the

instruction.

execution of the individual threads, since a thread that is ready to execute without

stalls will be delayed by instructions from other threads.

coarse-grained

Coarse-grained multithreading was invented as an alternative to fi ne-grained

multithreading

multithreading. Coarse-grained multithreading switches threads only on costly

A version of hardware

multithreading that

stalls, such as last-level cache misses. Th

is change relieves the need to have thread

implies switching between

switching be extremely fast and is much less likely to slow down the execution of an

threads only aft er

individual thread, since instructions from other threads will only be issued when

signifi cant events, such as

a thread encounters a costly stall. Coarse-grained multithreading suff ers, however,

a last-level cache miss.

from a major drawback: it is limited in its ability to overcome throughput losses,

especially from shorter stalls. Th

is limitation arises from the pipeline start-up

costs of coarse-grained multithreading. Because a processor with coarse-grained

multithreading issues instructions from a single thread, when a stall occurs, the

pipeline must be emptied or frozen. Th

e new thread that begins executing aft er

the stall must fi ll the pipeline before instructions will be able to complete. Due

to this start-up overhead, coarse-grained multithreading is much more useful for

reducing the penalty of high-cost stalls, where pipeline refi ll is negligible compared

to the stall time.

 6.4

Hardware

Multithreading

517

Simultaneous multithreading (SMT) is a variation on hardware multithreading

that uses the resources of a multiple-issue, dynamically scheduled pipelined

processor to exploit thread-level parallelism at the same time it exploits instruction-

level parallelism (see Chapter 4). Th

e key insight that motivates SMT is that

multiple-issue processors oft en have more functional unit parallelism available

than most single threads can eff ectively use. Furthermore, with register renaming

and dynamic scheduling (see Chapter 4), multiple instructions from independent

threads can be issued without regard to the dependences among them; the resolution

of the dependences can be handled by the dynamic scheduling capability.

Since SMT relies on the existing dynamic mechanisms, it does not switch simultaneous

resources every cycle. Instead, SMT is always executing instructions from multiple multithreading threads, leaving it up to the hardware to associate instruction slots and renamed (SMT) A version registers with their proper threads.

of multithreading

that lowers the cost

Figure 6.5 conceptually illustrates the diff erences in a processorಬs ability to exploit of multithreading by superscalar resources for the following processor confi gurations. Th

e top portion shows

utilizing the resources

needed for multiple issue,

dynamically scheduled

Issue slots

microarchitecture.

Thread A

Thread B

Thread C

Thread D

Time

Issue slots

Coarse MT

Fine MT

SMT

Time

FIGURE 6.5 How four threads use the issue slots of a superscalar processor in different approaches. Th

e four threads at the top show how each would execute running alone on a standard

superscalar processor without multithreading support. Th

e three examples at the bottom show how they

would execute running together in three multithreading options. Th

e horizontal dimension represents the

instruction issue capability in each clock cycle. Th

e vertical dimension represents a sequence of clock cycles.

An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. Th e shades of

gray and color correspond to four diff erent threads in the multithreading processors. Th

e additional pipeline

start-up eff ects for coarse multithreading, which are not illustrated in this fi gure, would lead to further loss in throughput for coarse multithreading.

518

Chapter 6 Parallel Processors from Client to Cloud

how four threads would execute independently on a superscalar with no multithreading

support. Th

e bottom portion shows how the four threads could be combined to execute

on the processor more effi

ciently using three multithreading options:

■ A superscalar with coarse-grained multithreading

■ A superscalar with fi ne-grained multithreading

■ A superscalar with simultaneous multithreading

In the superscalar without hardware multithreading support, the use of issue

slots is limited by a lack of instruction-level parallelism. In addition, a major stall,

such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially

hidden by switching to another thread that uses the resources of the processor.

Although this reduces the number of completely idle clock cycles, the pipeline

start-up overhead still leads to idle cycles, and limitations to ILP means all issue

slots will not be used. In the fi ne-grained case, the interleaving of threads mostly

eliminates idle clock cycles. Because only a single thread issues instructions in a

given clock cycle, however, limitations in instruction-level parallelism still lead to

idle slots within some clock cycles.

2.00

Speedup

Energy efficiency

1.75

1.50

1.25

1.00

i7 SMT performance and energy efficiency ratio

0.75

Ferret

Vips ×264

BodytrackCannealFacesim

Raytrace Swaptions

Blackscholes

FluidanimateStreamcluster

FIGURE 6.6 The speed-up from using multithreading on one core on an i7 processor

averages 1.31 for the PARSEC benchmarks (see

Section 6.9) and the energy effi ciency

improvement is 1.07. Th

is data was collected and analyzed by Esmaeilzadeh et. al. [2011].

6.5 Multicore and Other Shared Memory Multiprocessors

519

In the SMT case, thread-level parallelism and instruction-level parallelism are

both exploited, with multiple threads using the issue slots in a single clock cycle.

Ideally, the issue slot usage is limited by imbalances in the resource needs and

resource availability over multiple threads. In practice, other factors can restrict

how many slots are used. Although Figure 6.5 greatly simplifi es the real operation of these processors, it does illustrate the potential performance advantages of

multithreading in general and SMT in particular.

Figure 6.6 plots the performance and energy benefi ts of multithreading on a

single processors of the Intel Core i7 960, which has hardware support for two

threads. Th

e average speed-up is 1.31, which is not bad given the modest extra

resources for hardware multithreading. Th

e average improvement in energy

effi

ciency is 1.07, which is excellent. In general, you’d be happy with a performance

speed-up being energy neutral.

Now that we have seen how multiple threads can utilize the resources of a single

processor more eff ectively, we next show how to use them to exploit multiple

processors.

1. True or false: Both multithreading and multicore rely on parallelism to get Check

more effi

ciency from a chip.

Yourself

2. True or false: Simultaneous multithreading (SMT) uses threads to improve

resource utilization of a dynamically scheduled, out-of-order processor.

 6.5

Multicore and Other Shared Memory

Multiprocessors

While hardware multithreading improved the effi

ciency of processors at modest

cost, the big challenge of the last decade has been to deliver on the performance

potential of Moore’s Law by effi

ciently programming the increasing number of

processors per chip.

Given the diffi

culty of rewriting old programs to run well on parallel hardware,

a natural question is: what can computer designers do to simplify the task? One

answer was to provide a single physical address space that all processors can share,

so that programs need not concern themselves with where their data is, merely that

programs may be executed in parallel. In this approach, all variables of a program

can be made available at any time to any processor. Th

e alternative is to have a

separate address space per processor that requires that sharing must be explicit;

weಬll describe this option in the Section 6.7. When the physical address space is

commonthen the hardware typically provides cache coherence to give a consistent

view of the shared memory (see Section 5.8).

As mentioned above, a shared memory multiprocessor (SMP) is one that off ers

the programmer a single physical address space across all processorsಧwhich is

520

Chapter 6 Parallel Processors from Client to Cloud

nearly always the case for multicore chipsಧalthough a more accurate term would

uniform memory access

have been shared- address multiprocessor. Processors communicate through shared

(UMA) A multiprocessor variables in memory, with all processors capable of accessing any memory location in which latency to any

word in main memory is

via loads and stores. Figure 6.7 shows the classic organization of an SMP. Note that about the same no matter

such systems can still run independent jobs in their own virtual address spaces,

which processor requests

even if they all share a physical address space.

the access.

Single address space multiprocessors come in two styles. In the fi rst style, the

latency to a word in memory does not depend on which processor asks for it.

nonuniform memory

Such machines are called uniform memory access (UMA) multiprocessors. In the

access (NUMA) A type

of single address space

second style, some memory accesses are much faster than others, depending on

multiprocessor in which

which processor asks for which word, typically because main memory is divided

some memory accesses

and attached to diff erent microprocessors or to diff erent memory controllers on

are much faster than

the same chip. Such machines are called nonuniform memory access (NUMA)

others depending on

multiprocessors. As you might expect, the programming challenges are harder for

which processor asks for

a NUMA multiprocessor than for a UMA multiprocessor, but NUMA machines

which word.

can scale to larger sizes and NUMAs can have lower latency to nearby memory.

synchronization Th

e

As processors operating in parallel will normally share data, they also need to

process of coordinating

coordinate when operating on shared data; otherwise, one processor could start

the behavior of two or

working on data before another is fi nished with it. Th

is coordination is called

more processes, which

synchronization, which we saw in Chapter 2. When sharing is supported with a

may be running on

single address space, there must be a separate mechanism for synchronization. One

diff erent processors.

approach uses a lock for a shared variable. Only one processor at a time can acquire

lock A synchronization

the lock, and other processors interested in shared data must wait until the original

device that allows access

processor unlocks the variable. Section 2.11 of Chapter 2 describes the instructions

to data to only one

for locking in the MIPS instruction set.

processor at a time.

Processor

Processor

. . .

Processor

Cache

Cache

. . .

Cache

Interconnection Network

Memory

I/O

FIGURE 6.7 Classic organization of a shared memory multiprocessor.

6.5 Multicore and Other Shared Memory Multiprocessors

521

A Simple Parallel Processing Program for a Shared Address Space

EXAMPLE

Suppose we want to sum 64,000 numbers on a shared memory multiprocessor

computer with uniform memory access time. Letಬs assume we have 64

processors.

Th

e fi rst step is to ensure a balanced load per processor, so we split the set

of numbers into subsets of the same size. We do not allocate the subsets to a

ANSWER

diff erent memory space, since there is a single memory space for this machine;

we just give diff erent starting addresses to each processor. Pn is the number that

identifi es the processor, between 0 and 63. All processors start the program by

running a loop that sums their subset of numbers:

sum[Pn] = 0;

for (i = 1000*Pn; i < 1000*(Pn+1); i += 1)

sum[Pn] += A[i]; /*sum the assigned areas*/

(Note the C code i += 1 is just a shorter way to say i = i + 1.)

Th

e next step is to add these 64 partial sums. Th

is step is called a reduction, reduction A function

where we divide to conquer. Half of the processors add pairs of partial sums, that processes a data and then a quarter add pairs of the new partial sums, and so on until we structure and returns a have the single, fi nal sum. Figure 6.8 illustrates the hierarchical nature of this single value.

reduction.

In this example, the two processors must synchronize before the ಯconsumerರ

processor tries to read the result from the memory location written by the

ಯproducerರ processor; otherwise, the consumer may read the old value of

0

(half = 1) 0 1

(half = 2) 0 1 2 3

(half = 4) 0 1 2 3 4 5 6 7

FIGURE 6.8 The last four levels of a reduction that sums results from each processor,

from bottom to top. For all processors whose number i is less than half, add the sum produced by processor number (i + half) to its sum.

522

Chapter 6 Parallel Processors from Client to Cloud

the data. We want each processor to have its own version of the loop counter

variable i, so we must indicate that it is a ಯprivateರ variable. Here is the code

(half is private also):

half = 64; /*64 processors in multiprocessor*/

do

synch(); /*wait for partial sum completion*/

if (half%2 != 0 && Pn == 0)

sum[0] += sum[half–1];

/*Conditional sum needed when half is

odd; Processor0 gets missing element */

half = half/2; /*dividing line on who sums */

if (Pn < half) sum[Pn] += sum[Pn+half];

while (half > 1); /*exit with final sum in Sum[0] */

Hardware/

Given the long-term interest in parallel programming, there have been hundreds

of attempts to build parallel programming systems. A limited but popular example

Software is OpenMP. It is just an Application Programmer Interface (API) along with a set of Interface

compiler directives, environment variables, and runtime library routines that can

extend standard programming languages. It off ers a portable, scalable, and simple

OpenMP An API

programming model for shared memory multiprocessors. Its primary goal is to

for shared memory

multiprocessing in C,

parallelize loops and to perform reductions.

C++, or Fortran that runs

Most C compilers already have support for OpenMP. Th

e command to uses the

on UNIX and Microsoft

OpenMP API with the UNIX C compiler is just:

platforms. It includes

compiler directives, a

cc –fopenmp foo.c

library, and runtime

directives.

OpenMP extends C using pragmas, which are just commands to the C macro

preprocessor like #define and #include. To set the number of processors we

want to use to be 64, as we wanted in the example above, we just use the command

#define P 64 /* define a constant that we’ll use a few times */

#pragma omp parallel num_threads(P)

Th

at is, the runtime libraries should use 64 parallel threads.

To turn the sequential for loop into a parallel for loop that divides the work

equally between all the threads that we told it to use, we just write (assuming sum

is initialized to 0)

#pragma omp parallel for

for (Pn = 0; Pn < P; Pn += 1)

for (i = 0; 1000*Pn; i < 1000*(Pn+1); i += 1)

sum[Pn] += A[i]; /*sum the assigned areas*/

6.5 Multicore and Other Shared Memory Multiprocessors

523

To perform the reduction, we can use another command that tells OpenMP

what the reduction operator is and what variable you need to use to place the result

of the reduction.

#pragma omp parallel for reduction(+ : FinalSum)

for (i = 0; i < P; i += 1)

FinalSum += sum[i]; /* Reduce to a single number */

Note that it is now up to the OpenMP library to fi nd effi

cient code to sum 64

numbers effi

ciently using 64 processors.

While OpenMP makes it easy to write simple parallel code, it is not very helpful

with debugging, so many parallel programmers use more sophisticated parallel

programming systems than OpenMP, just as many programmers today use more

productive languages than C.

Given this tour of classic MIMD hardware and soft ware, our next path is a more

exotic tour of a type of MIMD architecture with a diff erent heritage and thus a very

diff erent perspective on the parallel programming challenge.

True or false: Shared memory multiprocessors cannot take advantage of task-level Check

parallelism.

Yourself

Elaboration: Some writers repurposed the acronym SMP to mean symmetric

 multiprocessor, to indicate that the latency from processor to memory was about the

same for all processors. This shift was done to contrast them from large-scale NUMA

multiprocessors, as both classes used a single address space. As clusters proved much

more popular than large-scale NUMA multiprocessors, in this book we restore SMP to

its original meaning, and use it to contrast against that use multiple address spaces,

such as clusters.

Elaboration: An alternative to sharing the physical address space would be to have

separate physical address spaces but share a common virtual address space, leaving

it up to the operating system to handle communication. This approach has been tried,

but it has too high an overhead to offer a practical shared memory abstraction to the

performance-oriented programmer.

524

Chapter 6 Parallel Processors from Client to Cloud

 6.6

Introduction to Graphics Processing Units

Th

e original justifi cation for adding SIMD instructions to existing architectures

was that many microprocessors were connected to graphics displays in PCs and

workstations, so an increasing fraction of processing time was used for graphics.

As Moore’s Law increased the number of transistors available to microprocessors,

it therefore made sense to improve graphics processing.

A major driving force for improving graphics processing was the computer game

industry, both on PCs and in dedicated game consoles such as the Sony PlayStation.

Th

e rapidly growing game market encouraged many companies to make increasing

investments in developing faster graphics hardware, and this positive feedback loop

led graphics processing to improve at a faster rate than general-purpose processing

in mainstream microprocessors.

Given that the graphics and game community had diff erent goals than the

microprocessor development community, it evolved its own style of processing and

terminology. As the graphics processors increased in power, they earned the name

 Graphics Processing Units or GPUs to distinguish themselves from CPUs.

For a few hundred dollars, anyone can buy a GPU today with hundreds of

parallel fl oating-point units, which makes high-performance computing more

accessible. Th

e interest in GPU computing blossomed when this potential was

combined with a programming language that made GPUs easier to program.

Hence, many programmers of scientifi c and multimedia applications today are

pondering whether to use GPUs or CPUs.

(Th

is section concentrates on using GPUs for computing. To see how GPU

computing combines with the traditional role of graphics acceleration, see

Appendix C.)

Here are some of the key characteristics as to how GPUs vary from CPUs:

■ GPUs are accelerators that supplement a CPU, so they do not need be able

to perform all the tasks of a CPU. Th

is role allows them to dedicate all their

resources to graphics. Itಬs fi ne for GPUs to perform some tasks poorly or not

at all, given that in a system with both a CPU and a GPU, the CPU can do

them if needed.

■ Th

e GPU problems sizes are typically hundreds of megabytes to gigabytes,

but not hundreds of gigabytes to terabytes.

Th

ese diff erences led to diff erent styles of architecture:

■ Perhaps the biggest diff erence is that GPUs do not rely on multilevel caches

to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on

hardware multithreading (Section 6.4) to hide the latency to memory. Th

at is,

between the time of a memory request and the time that data arrives, the GPU

executes hundreds or thousands of threads that are independent of that request.

6.6 Introduction to Graphics Processing Units

525

■ Th

e GPU memory is thus oriented toward bandwidth rather than latency.

Th

ere are even special graphics DRAM chips for GPUs that are wider and

have higher bandwidth than DRAM chips for CPUs. In addition, GPU

memories have traditionally had smaller main memories than conventional

microprocessors. In 2013, GPUs typically have 4 to 6 GiB or less, while

CPUs have 32 to 256 GiB. Finally, keep in mind that for general-purpose

computation, you must include the time to transfer the data between CPU

memory and GPU memory, since the GPU is a coprocessor.

■ Given the reliance on many threads to deliver good memory bandwidth,

GPUs can accommodate many parallel processors (MIMD) as well as many

threads. Hence, each GPU processor is more highly multithreaded than a

typical CPU, plus they have more processors.

Although GPUs were designed for a narrower set of applications, some programmers

Hardware/

wondered if they could specify their applications in a form that would let them Software

tap the high potential performance of GPUs. Aft er tiring of trying to specify their

problems using the graphics APIs and languages, they developed C-inspired Interface

programming languages to allow them to write programs directly for the GPUs.

An example is NVIDIAಬs CUDA (Compute Unifi ed Device Architecture), which

enables the programmer to write C programs to execute on GPUs, albeit with some

restrictions.

Appendix C gives examples of CUDA code. (OpenCL is a multi-

company initiative to develop a portable programming language that provides

many of the benefi ts of CUDA.)

NVIDIA decided that the unifying theme of all these forms of parallelism is

the CUDA Th

 read. Using this lowest level of parallelism as the programming

primitive, the compiler and the hardware can gang thousands of CUDA Th

reads

together to utilize the various styles of parallelism within a GPU: multithreading,

MIMD, SIMD, and instruction-level parallelism. Th

ese threads are blocked

together and executed in groups of 32 at a time. A multithreaded processor inside

a GPU executes these blocks of threads, and a GPU consists of 8 to 32 of these

multithreaded processors .

An Introduction to the NVIDIA GPU Architecture

We use NVIDIA systems as our example as they are representative of GPU

architectures. Specifi cally, we follow the terminology of the CUDA parallel

programming language and use the Fermi architecture as the example.

Like vector architectures, GPUs work well only with data-level parallel problems.

Both styles have gather-scatter data transfers, and GPU processors have even more

526

Chapter 6 Parallel Processors from Client to Cloud

registers than do vector processors. Unlike most vector architectures, GPUs also

rely on hardware multithreading within a single multi-threaded SIMD processor

to hide memory latency (see Section 6.4).

A multithreaded SIMD processor is similar to a Vector Processor, but the former

has many parallel functional units instead of just a few that are deeply pipelined,

as does the latter.

As mentioned above, a GPU contains a collection of multithreaded SIMD

processors; that is, a GPU is a MIMD composed of multithreaded SIMD processors.

For example, NVIDIA has four implementations of the Fermi architecture at

diff erent price points with 7, 11, 14, or 15 multithreaded SIMD processors. To

provide transparent scalability across models of GPUs with diff ering number of

multithreaded SIMD processors, the Th

read Block Scheduler hardware assigns

blocks of threads to multithreaded SIMD processors. Figure 6.9 shows a simplifi ed block diagram of a multithreaded SIMD processor.

Dropping down one more level of detail, the machine object that the hardware

creates, manages, schedules, and executes is a thread of SIMD instructions, which

we will also call a SIMD thread. It is a traditional thread, but it contains exclusively

SIMD instructions. Th

ese SIMD threads have their own program counters and

they run on a multithreaded SIMD processor. Th

e SIMD Th

 read Scheduler includes

a controller that lets it know which threads of SIMD instructions are ready to

run, and then it sends them off to a dispatch unit to be run on the multithreaded

Instruction register

SIMD Lanes

(Thread

Processors)

Regi-

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

sters

1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32 1K × 32

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

store

store

store

store

store

store

store

store

store

store

store

store

store

store

store

store

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

Address coalescing unit

Interconnection network

To Global

Local Memory

Memory

64 KiB

FIGURE 6.9 Simplifi ed block diagram of the datapath of a multithreaded SIMD Processor.

It has 16 SIMD lanes. Th

e SIMD Th

read Scheduler has many independent SIMD threads that it chooses from

to run on this processor.

6.6 Introduction to Graphics Processing Units

527

SIMD processor. It is identical to a hardware thread scheduler in a traditional

multithreaded processor (see Section 6.4), except that it is scheduling threads of

SIMD instructions. Th

us, GPU hardware has two levels of hardware schedulers:

1. Th

e Th

 read Block Scheduler that assigns blocks of threads to multithreaded

SIMD processors, and

2. the SIMD Th

read Scheduler within a SIMD processor, which schedules

when SIMD threads should run.

Th

e SIMD instructions of these threads are 32 wide, so each thread of SIMD

instructions would compute 32 of the elements of the computation. Since the

thread consists of SIMD instructions, the SIMD processor must have parallel

functional units to perform the operation. We call them SIMD Lanes, and they are

quite similar to the Vector Lanes in Section 6.3.

Elaboration: The number of lanes per SIMD processor varies across GPU generations.

With Fermi, each 32-wide thread of SIMD instructions is mapped to 16 SIMD Lanes,

so each SIMD instruction in a thread of SIMD instructions takes two clock cycles to

complete. Each thread of SIMD instructions is executed in lock step. Staying with the

analogy of a SIMD processor as a vector processor, you could say that it has 16 lanes,

and the vector length would be 32. This wide but shallow nature is why we use the term

SIMD processor instead of vector processor, as it is more intuitive.

Since by defi nition the threads of SIMD instructions are independent, the SIMD

Thread Scheduler can pick whatever thread of SIMD instructions is ready, and need not

stick with the next SIMD instruction in the sequence within a single thread. Thus, using

the terminology of Section 6.4, it uses fi ne-grained multithreading.

To hold these memory elements, a Fermi SIMD processor has an impressive 32,768

32-bit registers. Just like a vector processor, these registers are divided logically across

the vector lanes or, in this case, SIMD Lanes. Each SIMD Thread is limited to no more than

64 registers, so you might think of a SIMD Thread as having up to 64 vector registers,

with each vector register having 32 elements and each element being 32 bits wide.

Since Fermi has 16 SIMD Lanes, each contains 2048 registers. Each CUDA Thread

gets one element of each of the vector registers. Note that a CUDA thread is just a

vertical cut of a thread of SIMD instructions, corresponding to one element executed by

one SIMD Lane. Beware that CUDA Threads are very different from POSIX threads; you

canಬt make arbitrary system calls or synchronize arbitrarily in a CUDA Thread.

NVIDIA GPU Memory Structures

Figure 6.10 shows the memory structures of an NVIDIA GPU. We call the on-

chip memory that is local to each multithreaded SIMD processor Local Memory.

It is shared by the SIMD Lanes within a multithreaded SIMD processor, but this

memory is not shared between multithreaded SIMD processors. We call the off -

chip DRAM shared by the whole GPU and all thread blocks GPU Memory.

Rather than rely on large caches to contain the whole working sets of an

application, GPUs traditionally use smaller streaming caches and rely on extensive

multithreading of threads of SIMD instructions to hide the long latency to DRAM,

528

Chapter 6 Parallel Processors from Client to Cloud

CUDA Thread

Per-CUDA Thread Private Memory

Thread block

Per-Block

Local Memory

Grid 0

Sequence

. . .

Inter-Grid Synchronization

GPU Memory

Grid 1

. . .

FIGURE 6.10 GPU Memory structures. GPU Memory is shared by the vectorized loops. All threads of SIMD instructions within a thread block share Local Memory.

since their working sets can be hundreds of megabytes. Th

us, they will not fi t

in the last level cache of a multicore microprocessor. Given the use of hardware

multithreading to hide DRAM latency, the chip area used for caches in system

processors is spent instead on computing resources and on the large number of

registers to hold the state of the many threads of SIMD instructions.

Elaboration: While hiding memory latency is the underlying philosophy, note that the

latest GPUs and vector processors have added caches. For example, the recent Fermi

architecture has added caches, but they are thought of as either bandwidth fi lters to

reduce demands on GPU Memory or as accelerators for the few variables whose latency

cannot be hidden by multithreading. Local memory for stack frames, function calls,

and register spilling is a good match to caches, since latency matters when calling a

function. Caches can also save energy, since on-chip cache accesses take much less

energy than accesses to multiple, external DRAM chips.

6.6 Introduction to Graphics Processing Units

529

Putting GPUs into Perspective

At a high level, multicore computers with SIMD instruction extensions do share

similarities with GPUs. Figure 6.11 summarizes the similarities and diff erences.

Both are MIMDs whose processors use multiple SIMD lanes, although GPUs

have more processors and many more lanes. Both use hardware multithreading

to improve processor utilization, although GPUs have hardware support for many

more threads. Both use caches, although GPUs use smaller streaming caches and

multicore computers use large multilevel caches that try to contain whole working

sets completely. Both use a 64-bit address space, although the physical main

memory is much smaller in GPUs. While GPUs support memory protection at the

page level, they do not yet support demand paging.

SIMD processors are also similar to vector processors. Th

e multiple SIMD

processors in GPUs act as independent MIMD cores, just as many vector computers

have multiple vector processors. Th

is view would consider the Fermi GTX 580 as

a 16-core machine with hardware support for multithreading, where each core has

16 lanes. Th

e biggest diff erence is multithreading, which is fundamental to GPUs

and missing from most vector processors.

GPUs and CPUs do not go back in computer architecture genealogy to a

common ancestor; there is no Missing Link that explains both. As a result of this

uncommon heritage, GPUs have not used the terms common in the computer

architecture community, which has led to confusion about what GPUs are and

how they work. To help resolve the confusion, Figure 6.12 (from left to right) lists the more descriptive term used in this section, the closest term from mainstream

computing, the offi

cial NVIDIA GPU term in case you are interested, and then

a short description of the term. Th

is “GPU Rosetta Stone” may help relate this

section and ideas to more conventional GPU descriptions, such as those found in

Appendix C.

While GPUs are moving toward mainstream computing, they canಬt abandon

their responsibility to continue to excel at graphics. Th

us, the design of GPUs may

Feature

Multicore with SIMD

GPU

SIMD processors

4 to 8

8 to 16

SIMD lanes/processor

2 to 4

8 to 16

Multithreading hardware support for SIMD threads

2 to 4

16 to 32

Largest cache size

8 MiB

0.75 MiB

Size of memory address

64-bit

64-bit

Size of main memory

8 GiB to 256 GiB

4 GiB to 6 GiB

Memory protection at level of page

Yes

Yes

Demand paging

Yes

No

Cache coherent

Yes

No

FIGURE 6.11 Similarities and differences between multicore with Multimedia SIMD

extensions and recent GPUs.

530

Chapter 6 Parallel Processors from Client to Cloud

More descriptive

Closest old term

Official CUDA/

Type

Book definition

name

outside of GPUs

NVIDIA GPU term

Vectorizable

Vectorizable Loop

Grid

A vectorizable loop, executed on the GPU, made

Loop

up of one or more Thread Blocks (bodies of

vectorized loop) that can execute in parallel.

Body of

Body of a

Thread Block

A vectorized loop executed on a multithreaded

Vectorized Loop

(Strip-Mined)

SIMD Processor, made up of one or more threads

Vectorized Loop

of SIMD instructions. They can communicate via

Local Memory.

Sequence of

One iteration of

CUDA Thread

A vertical cut of a thread of SIMD instructions

Program abstractions

SIMD Lane

a Scalar Loop

corresponding to one element executed by one

Operations

SIMD Lane. Result is stored depending on mask

and predicate register.

A Thread of

Thread of Vector

Warp

A traditional thread, but it contains just SIMD

SIMD

Instructions

instructions that are executed on a multithreaded

Instructions

SIMD Processor. Results stored depending on a

per-element mask.

SIMD

Vector Instruction

PTX Instruction

A single SIMD instruction executed across SIMD

Machine object

Instruction

Lanes.

Multithreaded

(Multithreaded)

Streaming

A multithreaded SIMD Processor executes

SIMD

Vector Processor

Multiprocessor

threads of SIMD instructions, independent of

Processor

other SIMD Processors.

Thread Block

Scalar Processor

Giga Thread

Assigns multiple Thread Blocks (bodies of

Scheduler

Engine

vectorized loop) to multithreaded SIMD

Processors.

SIMD Thread

Thread scheduler

Warp Scheduler

Hardware unit that schedules and issues threads

Scheduler

in a Multithreaded

of SIMD instructions when they are ready to

CPU

execute; includes a scoreboard to track SIMD

Thread execution.

Processing hardware

SIMD Lane

Vector lane

Thread Processor

A SIMD Lane executes the operations in a thread

of SIMD instructions on a single element. Results

stored depending on mask.

GPU Memory

Main Memory

Global Memory

DRAM memory accessible by all multithreaded

SIMD Processors in a GPU.

Local Memory

Local Memory

Shared Memory

Fast local SRAM for one multithreaded SIMD

Processor, unavailable to other SIMD Processors.

Memory hardware

SIMD Lane

Vector Lane

Thread Processor

Registers in a single SIMD Lane allocated across

Registers

Registers

Registers

a full thread block (body of vectorized loop).

FIGURE 6.12 Quick guide to GPU terms. We use the fi rst column for hardware terms. Four groups cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware, and Memory Hardware.

make more sense when architects ask, given the hardware invested to do graphics

well, how can we supplement it to improve the performance of a wider range of

applications?

Having covered two diff erent styles of MIMD that have a shared address

space, we next introduce parallel processors where each processor has its

own private address space, which makes it much easier to build much larger

systems. Th

e Internet services that you use every day depend on these large scale

systems.

 6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing Multiprocessors 531

Elaboration: While the GPU was introduced as having a separate memory from the

CPU, both AMD and Intel have announced “fused” products that combine GPUs and

CPUs to share a single memory. The challenge will be to maintain the high bandwidth

memory in a fused architecture that has been a foundation of GPUs.

True or false: GPUs rely on graphics DRAM chips to reduce memory latency and Check

thereby increase performance on graphics applications.

Yourself

Clusters, Warehouse Scale Computers,

6.7

and Other Message-Passing

Multiprocessors

Th

e alternative approach to sharing an address space is for the processors to message passing

each have their own private physical address space. Figure 6.13 shows the classic Communicating between organization of a multiprocessor with multiple private address spaces. Th

is multiple processors by

alternative multiprocessor must communicate via explicit message passing, explicitly sending and receiving information.

which traditionally is the name of such style of computers. Provided the system

has routines to send and receive messages, coordination is built in with message send message routine passing, since one processor knows when a message is sent, and the receiving A routine used by a processor knows when a message arrives. If the sender needs confi rmation that the processor in machines message has arrived, the receiving processor can then send an acknowledgment with private memories to pass a message to another

message back to the sender.

processor.

Th

ere have been several attempts to build large-scale computers based on

high-performance message-passing networks, and they do off er better absolute receive message routine A routine used by a

processor in machines

with private memories

to accept a message from

another processor.

Processor

Processor

. . .

Processor

Cache

Cache

. . .

Cache

Memory

Memory

. . .

Memory

Interconnection Network

FIGURE 6.13 Classic organization of a multiprocessor with multiple private address

spaces, traditionally called a message-passing multiprocessor. Note that unlike the SMP in

Figure 6.7, the interconnection network is not between the caches and memory but is instead between processor-memory nodes.

532

Chapter 6 Parallel Processors from Client to Cloud

communication performance than clusters built using local area networks. Indeed,

many supercomputers today use custom networks. Th

e problem is that they are

much more expensive than local area networks like Ethernet. Few applications today

outside of high performance computing can justify the higher communication

performance, given the much higher costs.

Hardware/

Computers that rely on message passing for communication rather than cache

coherent shared memory are much easier for hardware designers to build (see

Software Section 5.8). Th ere is an advantage for programmers as well, in that communication Interface

is explicit, which means there are fewer performance surprises than with the implicit

communication in cache-coherent shared memory computers. Th

e downside

for programmers is that itಬs harder to port a sequential program to a message-

passing computer, since every communication must be identifi ed in advance or

the program doesnಬt work. Cache-coherent shared memory allows the hardware to

fi gure out what data needs to be communicated, which makes porting easier. Th

ere

are diff erences of opinion as to which is the shortest path to high performance,

given the pros and cons of implicit communication, but there is no confusion in the

marketplace today. Multicore microprocessors use shared physical memory and

nodes of a cluster communicate with each other using message passing.

Some concurrent applications run well on parallel hardware, independent of

whether it off ers shared addresses or message passing. In particular, task-level

parallelism and applications with little communicationಧlike Web search, mail

servers, and fi le serversಧdo not require shared addressing to run well. As a result,

clusters Collections of

clusters have become the most widespread example today of the message-passing

computers connected

parallel computer. Given the separate memories, each node of a cluster runs a

via I/O over standard

distinct copy of the operating system. In contrast, the cores inside a microprocessor

network switches to

are connected using a high-speed network inside the chip, and a multichip shared-

form a message-passing

memory system uses the memory interconnect for communication. Th

e memory

multiprocessor.

interconnect has higher bandwidth and lower latency, allowing much better

communication performance for shared memory multiprocessors.

Th

e weakness of separate memories for user memory from a parallel programming

perspective turns into a strength in system dependability (see Section 5.5). Since a

cluster consists of independent computers connected through a local area network, it

is much easier to replace a computer without bringing down the system in a cluster

than in an shared memory multiprocessor. Fundamentally, the shared address means

that it is diffi

cult to isolate a processor and replace it without heroic work by the

operating system and in the physical design of the server. It is also easy for clusters

to scale down gracefully when a server fails, thereby improving dependability. Since

the cluster soft ware is a layer that runs on top of the local operating systems running

on each computer, it is much easier to disconnect and replace a broken computer.

 6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing Multiprocessors 533

Given that clusters are constructed from whole computers and independent,

scalable networks, this isolation also makes it easier to expand the system without

bringing down the application that runs on top of the cluster.

Th

eir lower cost, higher availability, and rapid, incremental expandability make

clusters attractive to service Internet providers, despite their poorer communication

performance when compared to large-scale shared memory multiprocessors. Th

e

search engines that hundreds of millions of us use every day depend upon this

technology. Amazon, Facebook, Google, Microsoft , and others all have multiple

datacenters each with clusters of tens of thousands of servers. Clearly, the use of

multiple processors in Internet service companies has been hugely successful.

Warehouse-Scale Computers

Internet services, such as those described above, necessitated the construction Anyone can build a fast of new buildings to house, power, and cool 100,000 servers. Although they may CPU. Th e trick is to build a be classifi ed as just large clusters, their architecture and operation are more fast system.

sophisticated. Th

ey act as one giant computer and cost on the order of $150M Seymour Cray, considered

for the building, the electrical and cooling infrastructure, the servers, and the the father of the networking equipment that connects and houses 50,000 to 100,000 servers. We supercomputer.

consider them a new class of computer, called Warehouse-Scale Computers (WSC).

Th

e most popular framework for batch processing in a WSC is MapReduce [Dean, Hardware/

2008] and its open-source twin Hadoop. Inspired by the Lisp functions of the same

Software

name, Map fi rst applies a programmer-supplied function to each logical input

record. Map runs on thousands of servers to produce an intermediate result of key-

Interface

value pairs. Reduce collects the output of those distributed tasks and collapses them

using another programmer-defi ned function. With appropriate soft ware support,

both are highly parallel yet easy to understand and to use. Within 30 minutes, a

novice programmer can run a MapReduce task on thousands of servers.

For example, one MapReduce program calculates the number of occurrences of

every English word in a large collection of documents. Below is a simplifi ed version

of that program, which shows just the inner loop and assumes just one occurrence

of all English words found in a document:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, “1”); // Produce list of all words reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v); // get integer from key-value pair

Emit(AsString(result));

534

Chapter 6 Parallel Processors from Client to Cloud

Th

e function EmitIntermediate used in the Map function emits each

word in the document and the value one. Th

en the Reduce function sums all the

values per word for each document using ParseInt() to get the number of

occurrences per word in all documents. Th

e MapReduce runtime environment

schedules map tasks and reduce tasks to the servers of a WSC.

At this extreme scale, which requires innovation in power distribution, cooling,

monitoring, and operations, the WSC is a modern descendant of the 1970s

supercomputers—making Seymour Cray the godfather of today’s WSC architects.

His extreme computers handled computations that could be done nowhere else, but

were so expensive that only a few companies could aff ord them. Th

is time the target

is providing information technology for the world instead of high performance

computing for scientists and engineers. Hence, WSCs surely play a more important

societal role today than Cray’s supercomputers did in the past.

While they share some common goals with servers, WSCs have three major

distinctions:

1. Ample, easy parallelism: A concern for a server architect is whether the

applications in the targeted marketplace have enough parallelism to justify

the amount of parallel hardware and whether the cost is too high for suffi

cient

communication hardware to exploit this parallelism. A WSC architect has

no such concern. First, batch applications like MapReduce benefi t from the

soft ware as a service

(SaaS) Rather than

large number of independent data sets that need independent processing,

selling soft ware that

such as billions of Web pages from a Web crawl. Second, interactive Internet

is installed and run

service applications, also known as Soft ware as a Service (SaaS), can benefi t

on customers’ own

from millions of independent users of interactive Internet services. Reads

computers, soft ware is run

and writes are rarely dependent in SaaS, so SaaS rarely needs to synchronize.

at a remote site and made

For example, search uses a read-only index and email is normally reading

available over the Internet

and writing independent information. We call this type of easy parallelism

typically via a Web

interface to customers.

 Request-Level Parallelism, as many independent eff orts can proceed in

SaaS customers are

parallel naturally with little need for communication or synchronization.

charged based on use

2. Operational Costs Count: Traditionally, server architects design their systems

versus on ownership.

for peak performance within a cost budget and worry about energy only to

make sure they don’t exceed the cooling capacity of their enclosure. Th

ey

usually ignored operational costs of a server, assuming that they pale in

comparison to purchase costs. WSC have longer lifetimes—the building and

electrical and cooling infrastructure are oft en amortized over 10 or more

years—so the operational costs add up: energy, power distribution, and

cooling represent more than 30% of the costs of a WSC over 10 years.

3. Scale and the Opportunities/Problems Associated with Scale: To construct a

single WSC, you must purchase 100,000 servers along with the supporting

infrastructure, which means volume discounts. Hence, WSCs are so massive

 6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing Multiprocessors 535

internally that you get economy of scale even if there are not many WSCs.

Th

ese economies of scale led to cloud computing, as the lower per unit costs

of a WSC meant that cloud companies could rent servers at a profi table rate

and still be below what it costs outsiders to do it themselves. Th

e fl ip side

of the economic opportunity of scale is the need to cope with the failure

frequency of scale. Even if a server had a Mean Time To Failure of an amazing

25 years (200,000 hours), the WSC architect would need to design for 5

server failures every day. Section 5.15 mentioned annualized disk failure rate

(AFR) was measured at Google at 2% to 4%. If there were 4 disks per server

and their annual failure rate was 2%, the WSC architect should expect to see

one disk fail every hour. Th

us, fault tolerance is even more important for the

WSC architect than the server architect.

Th

e economies of scale uncovered by WSC have realized the long dreamed of

goal of computing as a utility. Cloud computing means anyone anywhere with good

ideas, a business model, and a credit card can tap thousands of servers to deliver

their vision almost instantly around the world. Of course, there are important

obstacles that could limit the growth of cloud computing—such as security,

privacy, standards, and the rate of growth of Internet bandwidth—but we foresee

them being addressed so that WSCs and cloud computing can fl ourish.

To put the growth rate of cloud computing into perspective, in 2012 Amazon

Web Services announced that it adds enough new server capacity every day to

support all of Amazon’s global infrastructure as of 2003, when Amazon was a

$5.2Bn annual revenue enterprise with 6000 employees.

Now that we understand the importance of message-passing multiprocessors,

especially for cloud computing, we next cover ways to connect the nodes of a WSC

together. Th

anks to Moore’s Law and the increasing number of cores per chip, we

now need networks inside a chip as well, so these topologies are important in the

small as well as in the large.

Elaboration: The MapReduce framework shuffl es and sorts the key-value pairs at the

end of the Map phase to produce groups that all share the same key. These groups are

then passed to the Reduce phase.

Elaboration: Another form of large scale computing is grid computing, where the

computers are spread across large areas, and then the programs that run across them

must communicate via long haul networks. The most popular and unique form of grid

computing was pioneered by the SETI@home project. As millions of PCs are idle at

any one time doing nothing useful, they could be harvested and put to good uses if

someone developed software that could run on those computers and then gave each PC

an independent piece of the problem to work on. The fi rst example was the Search for

 ExtraTerrestrial Intelligence (SETI), which was launched at UC Berkeley in 1999. Over 5

million computer users in more than 200 countries have signed up for SETI@home, with

more than 50% outside the US. By the end of 2011, the average performance of the

SETI@home grid was 3.5 PetaFLOPS.

536

Chapter 6 Parallel Processors from Client to Cloud

Check

1. True or false: Like SMPs, message-passing computers rely on locks for

synchronization.

Yourself

2. True or false: Clusters have separate memories and thus need many copies of

the operating system.

 6.8

Introduction to Multiprocessor Network

Topologies

Multicore chips require on-chip networks to connect cores together, and clusters

require local area networks to connect servers together. Th

is section reviews the

pros and cons of diff erent interconnection network topologies.

Network costs include the number of switches, the number of links on a switch

to connect to the network, the width (number of bits) per link, and length of the

links when the network is mapped into silicon. For example, some cores or servers

may be adjacent and others may be on the other side of the chip or the other side of

the datacenter. Network performance is multifaceted as well. It includes the latency

on an unloaded network to send and receive a message, the throughput in terms of

the maximum number of messages that can be transmitted in a given time period,

delays caused by contention for a portion of the network, and variable performance

depending on the pattern of communication. Another obligation of the network

may be fault tolerance, since systems may be required to operate in the presence

of broken components. Finally, in this era of energy-limited systems, the energy

effi

ciency of diff erent organizations may trump other concerns.

Networks are normally drawn as graphs, with each edge of the graph representing

a link of the communication network. In the fi gures in this section, the processor-

memory node is shown as a black square and the switch is shown as a colored

circle. We assume here that all links are bidirectional; that is, information can fl ow

in either direction. All networks consist of switches whose links go to processor-

memory nodes and to other switches. Th

e fi rst network connects a sequence of

nodes together:

Th

is topology is called a ring. Since some nodes are not directly connected, some

messages will have to hop along intermediate nodes until they arrive at the fi nal

destination.

Unlike a bus—a shared set of wires that allows broadcasting to all connected

devices—a ring is capable of many simultaneous transfers.

6.8 Introduction to Multiprocessor Network Topologies

537

Because there are numerous topologies to choose from, performance metrics

are needed to distinguish these designs. Two are popular. Th

e fi rst is total network network

bandwidth, which is the bandwidth of each link multiplied by the number of links. bandwidth Informally, Th

is represents the peak bandwidth. For the ring network above, with P processors,

the peak transfer rate of a

the total network bandwidth would be P times the bandwidth of one link; the total network; can refer to the network bandwidth of a bus is just the bandwidth of that bus.

speed of a single link or

the collective transfer rate

To balance this best bandwidth case, we include another metric that is closer to of all links in the network.

the worst case: the bisection bandwidth. Th

is metric is calculated by dividing the

machine into two halves. Th

en you sum the bandwidth of the links that cross that bisection

imaginary dividing line. Th

e bisection bandwidth of a ring is two times the link bandwidth Th e

bandwidth between

bandwidth. It is one times the link bandwidth for the bus. If a single link is as fast two equal parts of as the bus, the ring is only twice as fast as a bus in the worst case, but it is P times a multiprocessor.

faster in the best case.

Th

is measure is for a

Since some network topologies are not symmetric, the question arises worst case split of the

of where to draw the imaginary line when bisecting the machine. Bisection multiprocessor.

bandwidth is a worst-case metric, so the answer is to choose the division that

yields the most pessimistic network performance. Stated alternatively, calculate

all possible bisection bandwidths and pick the smallest. We take this pessimistic

view because parallel programs are oft en limited by the weakest link in the

communication chain.

At the other extreme from a ring is a fully connected network, where every fully connected processor has a bidirectional link to every other processor. For fully connected network A network networks, the total network bandwidth is P ×(P – 1)/2, and the bisection bandwidth that connects processor-is (P/2)2.

memory nodes by

supplying a dedicated

Th

e tremendous improvement in performance of fully connected networks is communication link

off set by the tremendous increase in cost. Th

is consequence inspires engineers between every node.

to invent new topologies that are between the cost of rings and the performance

of fully connected networks. Th

e evaluation of success depends in large part on

the nature of the communication in the workload of parallel programs run on the

computer.

Th

e number of diff erent topologies that have been discussed in publications

would be diffi

cult to count, but only a few have been used in commercial parallel

processors. Figure 6.14 illustrates two of the popular topologies.

An alternative to placing a processor at every node in a network is to leave only multistage network the switch at some of these nodes. Th

e switches are smaller than processor-memory-

A network that supplies a

switch nodes, and thus may be packed more densely, thereby lessening distance and

small switch at each node.

increasing performance. Such networks are frequently called multistage networks

to refl ect the multiple steps that a message may travel. Types of multistage networks crossbar network A network that allows

are as numerous as single-stage networks; Figure 6.15 illustrates two of the popular any node to communicate multistage organizations. A fully connected or crossbar network allows any with any other node in node to communicate with any other node in one pass through the network. An one pass through the Omega network uses less hardware than the crossbar network (2 n log n versus n 2 network.

2

switches), but contention can occur between messages, depending on the pattern

538

Chapter 6 Parallel Processors from Client to Cloud

a. 2-D grid or mesh of 16 nodes

b. n-cube tree of 8 nodes (8 = 23 so n = 3)

FIGURE 6.14 Network topologies that have appeared in commercial parallel processors.

Th

e colored circles represent switches and the black squares represent processor-memory nodes. Even though a switch has many links, generally only one goes to the processor. Th

e Boolean n-cube topology is

an n-dimensional interconnect with 2n nodes, requiring n links per switch (plus one for the processor) and thus n nearest-neighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to improve performance and reliability.

of communication. For example, the Omega network in Figure 6.15 cannot send a message from P to P at the same time that it sends a message from P to P

0

6

1

4.

Implementing Network Topologies

Th

is simple analysis of all the networks in this section ignores important practical

considerations in the construction of a network. Th

e distance of each link aff ects

the cost of communicating at a high clock rateಧgenerally, the longer the distance,

the more expensive it is to run at a high clock rate. Shorter distances also make

it easier to assign more wires to the link, as the power to drive many wires is less

if the wires are short. Shorter wires are also cheaper than longer wires. Another

practical limitation is that the three-dimensional drawings must be mapped onto

chips that are essentially two-dimensional media. Th

e fi nal concern is energy.

Energy concerns may force multicore chips to rely on simple grid topologies, for

example. Th

e bottom line is that topologies that appear elegant when sketched on

the blackboard may be impractical when constructed in silicon or in a datacenter.

Now that we understand the importance of clusters and have seen topologies

that we can follow to connect them together, we next look at the hardware and

soft ware of the interface of the network to the processor.

Check True or false: For a ring with P nodes, the ratio of the total network bandwidth to the bisection bandwidth is P/2.

Yourself

6.9 Communicating to the Outside World: Cluster Networking

539

P0

P1

P2

P0

P3

P1

P4

P2

P5

P3

P6

P4

P7

P5

P6

P7

a. Crossbar

b. Omega network

A

C

B

D

c. Omega network switch box

FIGURE 6.15 Popular multistage network topologies for eight nodes. Th

e switches in these

drawings are simpler than in earlier drawings because the links are unidirectional; data comes in at the left and exits out the right link. Th

e switch box in c can pass A to C and B to D or B to C and A to D. Th

e crossbar

uses n2 switches, where n is the number of processors, while the Omega network uses 2n log n of the large 2

switch boxes, each of which is logically composed of four of the smaller switches. In this case, the crossbar uses 64 switches versus 12 switch boxes, or 48 switches, in the Omega network. Th

e crossbar, however, can

support any combination of messages between processors, while the Omega network cannot.

 5.9 Communicating to the Outside World:

6.9

Cluster Networking

Th

is online section describes the networking hardware and soft ware used to

connect the nodes of a cluster together. Th

e example is 10 gigabit/second Ethernet

connected to the computer using Peripheral Component Interconnect Express

(PCIe). It shows both soft ware and hardware optimizations how to improve

network performance, including zero copy messaging, user space communication,

using polling instead of I/O interrupts, and hardware calculation of checksums.

While the example is networking, the techniques in this section apply to storage

controllers and other I/O devices as well.

Communicating to the Outside World:

5.9

6.9

Cluster Networking

Th

is online section describes the networking hardware and soft ware used to

connect the nodes of cluster together. As there are whole books and courses just on

networking, this section only introduces the main terms and concepts. While our

example is networking, the techniques we describe apply to storage controllers and

other I/O devices as well.

Ethernet has dominated local area networks for decades, so it is not surprising

that clusters primarily rely on Ethernet as the cluster interconnect. It became

commercially popular at 10 Megabits per second link speed in the 1980s, but

today 1 Gigabit per second Ethernet is standard and 10 Gigabit per second is being

deployed in datacenters. Figure 6.9.1 shows a network interface card (NIC) for 10

Gigabit Ethernet.

Computers off er high-speed links to plug in fast I/O devices like this NIC. While

there used to be separate chips to connect the microprocessor to the memory and

high-speed I/O devices, thanks to Moore’s Law these functions have been absorbed

into the main chip in recent off erings like Intel’s Sandy Bridge. A popular high-

speed link today is PCIe, which stands for Peripheral Component Interconnect

Express. It is called a link in that the basic building block, called a serial lane, consists of just four wires: two for receiving data and two for transmitting data.

Th

is small number contrasts with an earlier version of PCI that consisted of 64

FIGURE 6.9.1 The NetFPGA 10-Gigabit Ethernet card (see http://netfpga.org/), which connects up to four 10-Gigabit/sec Ethernet links. It is an FPGA-based open platform for

network research and classroom experimentation. Th

e DMA engine and the four “MAC chips”

in Figure 6.9.2 are just portions of the Xilinx Virtex FPGA in the middle of the board. Th

e four PHY chips

in Figure 6.9.2 are the four black squares just to the right of the four white rectangles on the left edge of the board, which is where the Ethernet cables are plugged in.

6.9 Communicating to the Outside World: Cluster Networking

6.9-3

wires, which was called a parallel bus. PCIe allows anywhere from 1 to 32 lanes to

be used to connect to I/O devices, depending on its needs. Th

is NIC uses PCI 1.1,

so each lane transfers at 2 Gigabits/second.

Th

e NIC in Figure 6.9.1 connects to the host computer over an 8-lane PCIe link,

which off ers 16 Gigabits/second in both directions. To communicate, a NIC must

both send or transmit messages and receive them, oft en abbreviated as TX and

RX, respectively. For this NIC, each 10G link uses separate transmit and receive

queues, each of which can store two full-length Ethernet packets, used between

the Ethernet links and the NIC. Figure 6.9.2 is a block diagram of the NIC showing

the TX and RX queues. Th

e NIC also has two 32-entry queues for transmitting and

receiving between the host computer and the NIC.

To give a command to the NIC, the processor must be able to address the device

and to supply one or more command words. In memory-mapped I/O, portions of memory-mapped the address space are assigned to I/O devices. During initialization (at boot time), I/O An I/O scheme in PCIe devices can request to be assigned an address region of a specifi ed length. which portions of the All subsequent processor reads and writes to that address region are forwarded address space are assigned to I/O devices, and reads

over PCIe to that device. Reads and writes to those addresses are interpreted as and writes to those commands to the I/O device.

addresses are interpreted

For example, a write operation can be used to send data to the network interface as commands to the I/O

where the data will be interpreted as a command. When the processor issues the device.

address and data, the memory system ignores the operation because the address

indicates a portion of the memory space used for I/O. Th

e NIC, however, sees the

operation and records the data. User programs are prevented from issuing I/O

operations directly, because the OS does not provide access to the address space

assigned to the I/O devices, and thus the addresses are protected by the address

translation. Memory-mapped I/O can also be used to transmit data by writing or

reading to select addresses. Th

e device uses the address to determine the type of

command, and the data may be provided by a write or obtained by a read. In any

event, the address encodes both the device identity and the type of transmission

between processor and device.

Control

Data

PCIe

MAC

PHY

Port 0

TX

MAC

PHY

Port 1

DMA

MAC

PHY

Port 2

RX

MAC

PHY

Port 3

FIGURE 6.9.2 Block diagram of the NetFPGA Ethernet card in Figure 6.9.1 showing the

control paths and the data paths. Th

e control path allows the DMA engine to read the status of the

queues, such as empty vs. on-empty, and the content of the next available queue entry. Th

e DMA engine also

controls port multiplexing. Th

e data path simply passes through the DMA block to the TX/RX queues or

to main memory. Th

e “MAC chips” are described below. Th

e PHY chips, which refer to the physical layer,

connect the “MAC chips” to physical networking medium, such as copper wire or optical fi ber.

6.9-4

6.9 Communicating to the Outside World: Cluster Networking

While the processor could transfer the data from the user space into the I/O

space by itself, the overhead for transferring data from or to a high-speed network

could be intolerable, since it could consume a large fraction of the processor. Th

us,

computer designers long ago invented a mechanism for offl

oading the processor and

direct memory access

having the device controller transfer data directly to or from the memory without

(DMA) A mechanism

involving the processor. Th

is mechanism is called direct memory access (DMA).

that provides a device

DMA is implemented with a specialized controller that transfers data between

controller with the ability

the network interface and memory independent of the processor, and in this case

to transfer data directly

the DMA engine is inside the NIC.

to or from the memory

without involving the

To notify the operating system (and eventually the application that will receive

processor.

the packet) that a transfer is complete, the DMA sends an I/O interrupt.

interrupt-driven

An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5, with two

I/O An I/O scheme that

important distinctions:

employs interrupts to

indicate to the processor

1. An I/O interrupt is asynchronous with respect to the instruction execution.

that an I/O device needs

Th

at is, the interrupt is not associated with any instruction and does not

attention.

prevent the instruction completion, so it is very diff erent from either page fault

exceptions or exceptions such as arithmetic overfl ow. Our control unit needs

only check for a pending I/O interrupt at the time it starts a new instruction.

2. In addition to the fact that an I/O interrupt has occurred, we would like to

convey further information, such as the identity of the device generating

the interrupt. Furthermore, the interrupts represent devices that may have

diff erent priorities and whose interrupt requests have diff erent urgencies

associated with them.

To communicate information to the processor, such as the identity of the device

raising the interrupt, a system can use either vectored interrupts or an exception

identifi cation register, called the Cause register in MIPS (see Section 4.9). When

the processor recognizes the interrupt, the device can send either the vector

address or a status fi eld to place in the Cause register. As a result, when the OS

gets control, it knows the identity of the device that caused the interrupt and can

immediately interrogate the device. An interrupt mechanism eliminates the need

for the processor to keep checking the device and instead allows the processor to

focus on executing programs.

The Role of the Operating System in Networking

Th

e operating system acts as the interface between the hardware and the program

that requests I/O. Th

e network responsibilities of the operating system arise from

three characteristics of networks:

1. Multiple programs using the processor share the network.

2. Networks oft en use interrupts to communicate information about the

operations. Because interrupts cause a transfer to kernel or supervisor mode,

they must be handled by the operating system (OS).

6.9 Communicating to the Outside World: Cluster Networking

6.9-5

3. Th

e low-level control of an network is complex, because it requires managing

a set of concurrent events and because the requirements for correct device

control are oft en very detailed.

Th

ese three characteristics of networks specifi cally and I/O systems in general lead Hardware/

to several diff erent functions the OS must provide:

Software

■ Th

e OS guarantees that a user’s program accesses only the portions of an I/O Interface

device to which the user has rights. For example, the OS must not allow a

program to read or write a fi le on disk if the owner of the fi le has not granted

access to this program. In a system with shared I/O devices, protection could

not be provided if user programs could perform I/O directly.

■ Th

e OS provides abstractions for accessing devices by supplying routines

that handle low-level device operations.

■ Th

e OS handles the interrupts generated by I/O devices, just as it handles the

exceptions generated by a program.

■ Th

e OS tries to provide equitable access to the shared I/O resources, as well

as schedule accesses to enhance system throughput.

Th

e soft ware inside the operating system that interfaces to a specifi c I/O device

like this NIC is called a device driver. Th

e driver for this NIC follows fi ve steps device driver A program

when transmitting or receiving a message. Figure 6.9.3 shows the relationship of that controls an I/O device these steps as an Ethernet packet is sent from one node of the cluster and received that is attached to the by another node in the cluster.

computer.

First, the transmit steps:

1. Th

e driver fi rst prepares a packet buff er in host memory. It copies a packet

from the user address space into a buff er that it allocates in the operating

system address space.

2. Next, it “talks” to the NIC. Th

e driver writes an I/O descriptor to the

appropriate NIC register that gives the address of the buff er and its length.

3. Th

e DMA in the NIC next copies the outgoing Ethernet packet from the host

buff er over PCIe.

4. When the transmission is complete, the DMA interrupts the processor to

notify the processor that the packet has been successfully transmitted.

5. Finally, the driver de-allocates the transmit buff er.

6.9-6

6.9 Communicating to the Outside World: Cluster Networking

Source

Step 1

RAM

Step 5

CPU

Step 2

PCIe

Step 4

NIC

Step 3

Ethernet

Step 3

NIC

Step 2

Step 4

PCIe

CPU

Step 1

RAM

Step 5

Destination

FIGURE 6.9.3 Relationship of the fi ve steps of the driver when transmitting an Ethernet packet from one node and receiving that packet on another node.

Next, the receive steps:

1. First, the driver prepares a packet buff er in host memory, allocating a new

buff er in which to place the received packet.

2. Next, it “talks” to the NIC. Th

e driver writes an I/O descriptor to the

appropriate NIC register that gives the address of the buff er and its length.

3. Th

e DMA in the NIC next copies the incoming Ethernet packet over PCIe

into the allocated host buff er.

4. When the transmission is complete, the DMA interrupts the processor to

notify the host of the newly received packet and its size.

5. Finally, the driver copies the received packet into the user address space.

As you can see in Figure 6.9.3, the fi rst three steps are time critical when transmitting

a packet (since the last two occur aft er the packet is sent), and the last three steps

are time critical when receiving a packet (since the fi rst two occur before a packet

arrives). However, these non-critical steps must be completed before individual

nodes run out of resources, such as memory space. Failure to do so negatively

aff ects network performance.

6.9 Communicating to the Outside World: Cluster Networking

6.9-7

Improving Network Performance

Th

e importance of networking in clusters means it is certainly worthwhile to try to

improve performance. We show both soft ware and hardware techniques.

Starting with soft ware optimizations, one performance target is reducing the

number of times the packet is copied, which you may have noticed happening

repeatedly in the fi ve steps of the driver above. Th

e zero-copy optimization allows

the DMA engine to get the message directly from the user program data space

during transmission and be placed where the user wants it when the message is

received, rather than go through intermediary buff ers in the operating system

along the way.

A second soft ware optimization is to cut out the operating system almost entirely

by moving the communication into the user address space. By not invoking the

operating system and not causing a context switch, we can reduce the soft ware

overhead considerably.

In this more radical scenario, a third step would be to drop interrupts. One

reason is that modern processors normally go into lower power mode while

waiting for an interrupt, and it takes time to come out of low power to service the

interrupt as well for the disruption to the pipeline, which increases latency. Th

e

alternative to interrupts is for the processor to periodically check status bits to see

if I/O operation is complete, which is called polling. Hence, we can require the user

polling Th

e process of

program to poll the NIC continuously to see when the DMA unit has delivered a periodically checking the message, and as a side eff ect the processor does not go into low power mode.

status of an I/O device

Looking at hardware optimizations, one potential target for improvement is to determine the need to service the device.

in calculating the values of the fi elds of the Ethernet packet. Th

e 48-bit Ethernet

address, called the Media Access Control address or MAC address, is a unique

number assigned to each Ethernet NIC. To improve performance, the “MAC

chip”—actually just a portion of the FPGA on this NIC—calculates the value for

the preamble fi elds and the CRC fi eld (see Section 5.5). Th

e driver is left with

placing the MAC destination address, MAC source address, message type, the

data payload, and padding if needed. (Ethernet requires that the minimum packet,

including the header and CRC fi elds but not the preamble, be 64 bytes.) Note that

even the least expensive Ethernet NICs do CRC calculation in hardware today.

A second hardware optimization, available on the most recent Intel processors

such as Ivy Bridge, improves the performance of the NIC with respect to the memory

hierarchy. Direct Data IO (DDIO) allowing up to 10% of the last level cache is used

as a fast scratchpad for the DMA engine. Data is copied directly into the last level

cache rather than to DRAM by the DMA, and only written to DRAM upon eviction

from the cache. Th

is optimization helps with latency, but also with bandwidth; some

memory regions used for control might be written by the NIC repeatedly, and these

writes no longer need to go to DRAM. Th

us, DDIO off ers benefi ts similar to those of

a write back cache versus a write through cache (Chapter 5).

Let’s look at an object store that follows a client-server architecture and uses most

of the optimizations above: zero copy messaging, user space communication, polling

instead of interrupts, and hardware calculation of preamble and CRC. Th

e driver

6.9-8

6.9 Communicating to the Outside World: Cluster Networking

14

12

)

10

condse

8

rosc

Driver RX

 (mi

NIC RX

6

Time of Flight

NIC TX

tencya

Driver TX

L

4

2

0

0

64

128

192

256

320

384

448

512

576

640

704

768

832

896

960

1024

1088

1152

1216

1280

1344

1408

Object Size (B)

FIGURE 6.9.4 Time to send an object broken into transmit driver and NIC hardware time

vs. receive driver and NIC hardware time. NIC transmit time is much larger than the NIC receive time because transmit requires more PCIe round-trips. Th

e NIC does PCIe reads to read the descriptor and

data, but on receive the NIC does PCIe writes of data, length of data, and interrupt. PCIe reads incur a round trip latency because NIC waits for the reply, but PCIe writes require no response because PCIe is reliable, so PCIe writes can be sent back-to-back.

operates in user address space as a library that the application invokes. It grants this

application exclusive and direct access to the NIC. All of the I/O register space on the

NIC is mapped into the application, and all of the driver state is kept in the application.

Th

e OS kernel doesn’t even see the NIC as such, which avoids the overheads of context

switching, the standard kernel network soft ware stack, and interrupts.

Figure 6.9.4 shows the time to send an object from one node to another. It varies

from about 9.5 to 12.5 microseconds, depending on the size of the object. Here is

the time for each step in microseconds:

 0.7 – for the client “driver” (library) to make the request (Driver TX in Figure 6.9.4).

 6.4 to 8.7 – for the NIC hardware to transmit the client’s request over the PCIe bus

 to the Ethernet, depending on the size of the object (NIC TX).

 0.02 – to send object over the 10 G Ethernet (Time of Flight). Th

 e time of fl ight

 is limited by speed of light to 5 ns per meter. Th

 e three-meter cables used in this

 measurement mean the time of fl ight is 15 ns, which is too small to be clearly

 visible in the fi gure.

6.9 Communicating to the Outside World: Cluster Networking

6.9-9

 1.8 to 2.5 – for the NIC hardware to receive the object, depending on its size (NIC

 RX).

 0.6 – for the server “driver” to transmit the message with the requested object to

 the app (Driver RX).

Now that we have seen how to measure the performance of network at a low

level of detail, let’s raise the perspective to see how to benchmark multiprocessors

of all kinds with much higher level programs.

Elaboration: There are three versions of PCIe. This NIC uses PCIe 1.1, which transfers

at 2 gigabits per second per lane, so this NIC transfers at up to 16 gigabits per second

in each direction. PCIe 2.0, which is found on most PC motherboards today, doubles

the lane bandwidth to 4 gigabits per second. PCIe 3.0 doubles again to 8 gigabits per

second, and it is starting to be found on some motherboards. We applaud the standard

committee’s logical rate of bandwidth improvement, which has been about 2version number

gigabits/second. The limitations of the Virtex 5 FPGA prevented the NIC from using

faster versions of PCIe.

Elaboration: While Ethernet is the foundation of cluster communication, clusters

commonly use higher-level protocols for reliable communication. Transmission Control

Protocol and Internet Protocol (TCP/IP), although invented for planet-wide communication,

is often used inside a warehouse scale computer, due in part to its dependability. While

IP makes no deliver guarantees in the protocol, TCP does. The sender keeps the packet

sent until it gets the acknowledgment message back that it was received correctly from

the receiver. The receiver knows that the message was not corrupted along the way, by

double-checking the contents with the TCP CRC fi eld. To ensure that IP delivers to the right

destination, the IP header includes a checksum to make sure the destination number

remains unchanged. The success of the Internet is due in large part to the elegance

and popularity of TCP/IP, which allows independent local area networks to communicate

dependably. Given its importance in the Internet and in clusters, many have accelerated

TCP/IP, using techniques like those listed in this section [Regnier, 2004].

Elaboration: Adding DMA is another path to the memory system—one that does not

go through the address translation mechanism or the cache hierarchy. This difference

generates some problems both in virtual memory and in caches. These problems are

usually solved with a combination of hardware techniques and software support. The

diffi culties in having DMA in a virtual memory system arise because pages have both

a physical and a virtual address. DMA also creates problems for systems with caches,

because there can be two copies of a data item: one in the cache and one in memory.

Because the DMA issues memory requests directly to the memory rather than through

the processor cache, the value of a memory location seen by the DMA unit and the

processor may differ. Consider a read from a NIC that the DMA unit places directly

into memory. If some of the locations into which the DMA writes are in the cache, the

processor will receive the old value when it does a read. Similarly, if the cache is write-

back, the DMA may read a value directly from memory when a newer value is in the

6.9-10

6.9 Communicating to the Outside World: Cluster Networking

cache, and the value has not been written back. This is called the stale data problem or

coherence problem (see Chapter 5). Similar solutions for coherence are used with DMA.

Elaboration: Virtual Machine support clearly can negatively impact networking

performance. As a result, microprocessor designers have been adding hardware

to reduce the performance overhead of virtual machines for networking in particular

and I/O in general. Intel offers Virtualization Technology for Directed I/O (VT-d) to help virtualize I/O. It is an I/O memory management unit that enables guest virtual machines

to directly use I/O devices, such as Ethernet. It supports DMA remapping, which allows

the DMA to read or write the data directly in the I/O buffers of the guest virtual machine,

rather than into the host I/O buffers and then copy them into the guest I/O buffers. It

also supports interrupt remapping, which lets the virtual machine monitor route interrupt requests directly to the proper virtual machine.

Check Two options for networking are using interrupts or polling, and using DMA or

using the processor via load and store instructions.

Yourself

1. If we want the lowest latency for small packets, which combination is likely

best?

2. If we want the lowest latency for large packets, which combination is likely

best?

540

Chapter 6 Parallel Processors from Client to Cloud

Aft er covering the performance of network at a low level of detail in this online

section, the next section shows how to benchmark multiprocessors of all kinds

with much higher-level programs.

 6.10 Multiprocessor Benchmarks and

Performance Models

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because

it is a highly visible way to try to determine which system is better. Th

e results aff ect

not only the sales of commercial systems, but also the reputation of the designers

of those systems. Hence, all participants want to win the competition, but they also

want to be sure that if someone else wins, they deserve to win because they have

a genuinely better system. Th

is desire leads to rules to ensure that the benchmark

results are not simply engineering tricks for that benchmark, but are instead

advances that improve performance of real applications.

To avoid possible tricks, a typical rule is that you canಬt change the benchmark.

Th

e source code and data sets are fi xed, and there is a single proper answer. Any

deviation from those rules makes the results invalid.

Many multiprocessor benchmarks follow these traditions. A common exception

is to be able to increase the size of the problem so that you can run the benchmark

on systems with a widely diff erent number of processors. Th

at is, many benchmarks

allow weak scaling rather than require strong scaling, even though you must take

care when comparing results for programs running diff erent problem sizes.

Figure 6.16 gives a summary of several parallel benchmarks, also described below:

■ Linpack is a collection of linear algebra routines, and the routines for

performing Gaussian elimination constitute what is known as the Linpack

benchmark. Th

e DGEMM routine in the example on page 215 represents a

small fraction of the source code of the Linpack benchmark, but it accounts

for most of the execution time for the benchmark. It allows weak scaling,

letting the user pick any size problem. Moreover, it allows the user to rewrite

Linpack in almost any form and in any language, as long as it computes the

proper result and performs the same number of fl oating point operations

for a given problem size. Twice a year, the 500 computers with the fastest

Linpack performance are published at www.top500.org. Th

e fi rst on this list

is considered by the press to be the worldಬs fastest computer.

■ SPECrate is a throughput metric based on the SPEC CPU benchmarks,

such as SPEC CPU 2006 (see Chapter 1). Rather than report performance

of the individual programs, SPECrate runs many copies of the program

simultaneously. Th

us, it measures task-level parallelism, as there is no

6.10 Multiprocessor Benchmarks and Performance Models

541

Benchmark

Scaling?

Reprogram?

Description

Linpack

Weak

Yes

Dense matrix linear algebra [Dongarra, 1979]

SPECrate

Weak

No

Independent job parallelism [Henning, 2007]

Complex 1D FFT

Blocked LU Decomposition

Blocked Sparse Cholesky Factorization

Integer Radix Sort

Stanford Parallel

Strong

Barnes-Hut

Applications for

(although

Adaptive Fast Multipole

Shared Memory

offers

No

Ocean Simulation

SPLASH 2 [Woo

two problem

et al., 1995]

sizes)

Hierarchical Radiosity

Ray Tracer

Volume Renderer

Water Simulation with Spatial Data Structure

Water Simulation without Spatial Data Structure

EP: embarrassingly parallel

NAS Parallel

Yes

MG: simplified multigrid

Benchmarks

Weak

(C or

CG: unstructured grid for a conjugate gradient method

[Bailey et al.,

Fortran only)

FT: 3-D partial differential equation solution using FFTs

1991]

IS: large integer sort

Blackscholes—Option pricing with Black-Scholes PDE

Bodytrack—Body tracking of a person

Canneal—Simulated cache-aware annealing to optimize routing

Dedup—Next-generation compression with data deduplication

Facesim—Simulates the motions of a human face

PARSEC

Benchmark Suite

Ferret—Content similarity search server

Weak

No

[Bienia et al.,

Fluidanimate—Fluid dynamics for animation with SPH method

2008]

Freqmine—Frequent itemset mining

Streamcluster—Online clustering of an input stream

Swaptions—Pricing of a portfolio of swaptions

Vips—Image processing

x264—H.264 video encoding

Finite-State Machine

Combinational Logic

Graph Traversal

Structured Grid

Dense Matrix

Berkeley

Sparse Matrix

Design

Strong or

Patterns

Yes

Spectral Methods (FFT)

Weak

[Asanovic et al.,

Dynamic Programming

2006]

N-Body

MapReduce

Backtrack/Branch and Bound

Graphical Model Inference

Unstructured Grid

FIGURE 6.16 Examples of parallel benchmarks.

communication between the tasks. You can run as many copies of the

programs as you want, so this is again a form of weak scaling.

■ SPLASH and SPLASH 2 (Stanford Parallel Applications for Shared Memory)

were eff orts by researchers at Stanford University in the 1990s to put together

a parallel benchmark suite similar in goals to the SPEC CPU benchmark

suite. It includes both kernels and applications, including many from the

high-performance computing community. Th

is benchmark requires strong

scaling, although it comes with two data sets.

542

Chapter 6 Parallel Processors from Client to Cloud

■ Th

e NAS (NASA Advanced Supercomputing) parallel benchmarks were

another attempt from the 1990s to benchmark multiprocessors. Taken from

computational fl uid dynamics, they consist of fi ve kernels. Th

ey allow weak

scaling by defi ning a few data sets. Like Linpack, these benchmarks can be

rewritten, but the rules require that the programming language can only be C

or Fortran.

■ Th

e recent PARSEC (Princeton Application Repository for Shared Memory

 Computers) benchmark suite consists of multithreaded programs that use

Pthreads A UNIX

Pthreads (POSIX threads) and OpenMP (Open MultiProcessing; see

API for creating and

Section 6.5). Th

ey focus on emerging computational domains and consist of

manipulating threads. It is

nine applications and three kernels. Eight rely on data parallelism, three rely

structured as a library.

on pipelined parallelism, and one on unstructured parallelism.

■ On the cloud front, the goal of the Yahoo! Cloud Serving Benchmark (YCSB)

is to compare performance of cloud data services. It off ers a framework that

makes it easy for a client to benchmark new data services, using Cassandra

and HBase as representative examples. [Cooper, 2010]

Th

e downside of such traditional restrictions to benchmarks is that innovation is

chiefl y limited to the architecture and compiler. Better data structures, algorithms,

programming languages, and so on oft en cannot be used, since that would give a

misleading result. Th

e system could win because of, say, the algorithm, and not

because of the hardware or the compiler.

While these guidelines are understandable when the foundations of computing

are relatively stableಧas they were in the 1990s and the fi rst half of this decadeಧ

they are undesirable during a programming revolution. For this revolution to

succeed, we need to encourage innovation at all levels.

Researchers at the University of California at Berkeley have advocated one

approach. Th

ey identifi ed 13 design patterns that they claim will be part of

applications of the future. Frameworks or kernels implement these design

patterns. Examples are sparse matrices, structured grids, fi nite-state machines,

map reduce, and graph traversal. By keeping the defi nitions at a high level, they

hope to encourage innovations at any level of the system. Th

us, the system with the

fastest sparse matrix solver is welcome to use any data structure, algorithm, and

programming language, in addition to novel architectures and compilers.

Performance Models

A topic related to benchmarks is performance models. As we have seen with the

increasing architectural diversity in this chapter—multithreading, SIMD, GPUs—

it would be especially helpful if we had a simple model that off ered insights into the

performance of diff erent architectures. It need not be perfect, just insightful.

Th

e 3Cs for cache performance from Chapter 5 is an example performance

model. It is not a perfect performance model, since it ignores potentially important

6.10 Multiprocessor Benchmarks and Performance Models

543

factors like block size, block allocation policy, and block replacement policy.

Moreover, it has quirks. For example, a miss can be ascribed due to capacity in one

design and to a confl ict miss in another cache of the same size. Yet 3Cs model has

been popular for 25 years, because it off ers insight into the behavior of programs,

helping both architects and programmers improve their creations based on insights

from that model.

To fi nd such a model for parallel computers, letಬs start with small kernels,

like those from the 13 Berkeley design patterns in Figure 6.16. While there are versions with diff erent data types for these kernels, fl oating point is popular in

several implementations. Hence, peak fl oating-point performance is a limit on the

speed of such kernels on a given computer. For multicore chips, peak fl oating-point

performance is the collective peak performance of all the cores on the chip. If there

were multiple microprocessors in the system, you would multiply the peak per chip

by the total number of chips.

Th

e demands on the memory system can be estimated by dividing this peak

fl oating-point performance by the average number of fl oating-point operations per

byte accessed:

Floating-Point Operations/Sec

= Bytes/Sec

Floating-Point Operations/Bytte

Th

e ratio of fl oating-point operations per byte of memory accessed is called the

arithmetic intensity. It can be calculated by taking the total number of fl oating-

arithmetic intensity

point operations for a program divided by the total number of data bytes transferred

Th

e ratio of fl oating-

to main memory during program execution. Figure 6.17 shows the arithmetic point operations in a intensity of several of the Berkeley design patterns from Figure 6.16.

program to the number

of data bytes accessed by

a program from main

O(1)

O(N)

memory.

O(log(N))

A r i t h m e t i c I n t e n s i t y

Sparse

Spectral

Dense

Matrix

Methods

N-body

Matrix

(SpMV)

(FFTs)

(Particle

(BLAS3)

Methods)

Structured Structured

Grids

Grids

(Stencils, (Lattice

PDEs)

Methods)

FIGURE 6.17 Arithmetic intensity, specifi ed as the number of fl oat-point operations to run the program divided by the number of bytes accessed in main memory [Williams,

Waterman, and Patterson 2009]. Some kernels have an arithmetic intensity that scales with problem size, such as Dense Matrix, but there are many kernels with arithmetic intensities independent of problem size. For kernels in this former case, weak scaling can lead to diff erent results, since it puts much less demand on the memory system.

544

Chapter 6 Parallel Processors from Client to Cloud

The Roofl ine Model

Th

is simple model ties fl oating-point performance, arithmetic intensity, and memory

performance together in a two-dimensional graph [Williams, Waterman, and

Patterson 2009]. Peak fl oating-point performance can be found using the hardware

specifi cations mentioned above. Th

e working sets of the kernels we consider here

do not fi t in on-chip caches, so peak memory performance may be defi ned by the

memory system behind the caches. One way to fi nd the peak memory performance

is the Stream benchmark. (See the Elaboration on page 381 in Chapter 5).

Figure 6.18 shows the model, which is done once for a computer, not for each

kernel. Th

e vertical Y-axis is achievable fl oating-point performance from 0.5 to

64.0 GFLOPs/second. Th

e horizontal X-axis is arithmetic intensity, varying from

1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the

graph is a log-log scale.

For a given kernel, we can fi nd a point on the X-axis based on its arithmetic

intensity. If we draw a vertical line through that point, the performance of the kernel

on that computer must lie somewhere along that line. We can plot a horizontal line

showing peak fl oating-point performance of the computer. Obviously, the actual

fl oating-point performance can be no higher than the horizontal line, since that is

a hardware limit.

64.0

32.0

peak floating-point performance

16.0

8.0

4.0

peak memory BW (stream)

2.0

Kernel 1

Kernel 2

Attainable GFLOPs/second

(Memory

(Computation

1.0

Bandwidth

limited)

limited)

0.51/

1

1

8

/4

/2

1

2

4

8

16

Arithmetic Intensity: FLOPs/Byte Ratio

FIGURE 6.18 Roofl ine Model [Williams, Waterman, and Patterson 2009]. Th

is example has a

peak fl oating-point performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the Stream benchmark. (Since Stream is actually four measurements, this line is the average of the four.) Th e

dotted vertical line in color on the left represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/

byte. It is limited by memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. Th

e dotted

vertical line to the right represents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited only computationally to 16 GFLOPS/s. (Th

is data is based on the AMD Opteron X2 (Revision F) using dual

cores running at 2 GHz in a dual socket system.)

6.10 Multiprocessor Benchmarks and Performance Models

545

How could we plot the peak memory performance, which is measured in bytes/

second? Since the X-axis is FLOPs/byte and the Y-axis FLOPs/second, bytes/second

is just a diagonal line at a 45-degree angle in this fi gure. Hence, we can plot a third

line that gives the maximum fl oating-point performance that the memory system

of that computer can support for a given arithmetic intensity. We can express the

limits as a formula to plot the line in the graph in Figure 6.18:

Attainable GFLOPs/sec = Min (Peak Memory BW × Arithmetic Inten

nsity, Peak

Floating-Point Performance)

Th

e horizontal and diagonal lines give this simple model its name and indicate its

value. Th

e ಯroofl ineರ sets an upper bound on performance of a kernel depending on

its arithmetic intensity. Given a roofl ine of a computer, you can apply it repeatedly,

since it doesnಬt vary by kernel.

If we think of arithmetic intensity as a pole that hits the roof, either it hits

the slanted part of the roof, which means performance is ultimately limited by

memory bandwidth, or it hits the fl at part of the roof, which means performance is

computationally limited. In Figure 6.18, kernel 1 is an example of the former, and kernel 2 is an example of the latter.

Note that the ಯridge point,ರ where the diagonal and horizontal roofs meet, off ers

an interesting insight into the computer. If it is far to the right, then only kernels

with very high arithmetic intensity can achieve the maximum performance of

that computer. If it is far to the left , then almost any kernel can potentially hit the

maximum performance.

Comparing Two Generations of Opterons

Th

e AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron

X2 with two cores. To simplify board design, they use the same socket. Hence, they

have the same DRAM channels and thus the same peak memory bandwidth. In

addition to doubling the number of cores, the Opteron X4 also has twice the peak

fl oating-point performance per core: Opteron X4 cores can issue two fl oating-point

SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one. As the

two systems weಬre comparing have similar clock ratesಧ2.2 GHz for Opteron X2

versus 2.3 GHz for Opteron X4ಧthe Opteron X4 has about four times the peak

fl oating-point performance of the Opteron X2 with the same DRAM bandwidth.

Th

e Opteron X4 also has a 2MiB L3 cache, which is not found in the Opteron X2.

In Figure 6.19 the roofl ine models for both systems are compared. As we would expect, the ridge point moves to the right, from 1 in the Opteron X2 to 5 in the

Opteron X4. Hence, to see a performance gain in the next generation, kernels need

an arithmetic intensity higher than 1, or their working sets must fi t in the caches

of the Opteron X4.

Th

e roofl ine model gives an upper bound to performance. Suppose your

program is far below that bound. What optimizations should you perform, and in

what order?

546

Chapter 6 Parallel Processors from Client to Cloud

128.0

Opteron X4 (Barcelona)

64.0

32.0

16.0

8.0

4.0

Opteron X2

Attainable GFLOP/s

2.0

1.0

0.51/ 1 1 1 2 4 8 16

8

/4 /2

Actual FLOPbyte ratio

FIGURE 6.19 Roofl ine models of two generations of Opterons. Th

e Opteron X2 roofl ine, which

is the same as in Figure 6.18, is in black, and the Opteron X4 roofl ine is in color. Th e bigger ridge point of

Opteron X4 means that kernels that were computationally bound on the Opteron X2 could be memory-

performance bound on the Opteron X4.

To reduce computational bottlenecks, the following two optimizations can help

almost any kernel:

1. Floating-point operation mix. Peak fl oating-point performance for a computer

typically requires an equal number of nearly simultaneous additions and

multiplications. Th

at balance is necessary either because the computer

supports a fused multiply-add instruction (see the Elaboration on page 220

in Chapter 3) or because the fl oating-point unit has an equal number of

fl oating-point adders and fl oating-point multipliers. Th

e best performance

also requires that a signifi cant fraction of the instruction mix is fl oating-

point operations and not integer instructions.

2. Improve instruction-level parallelism and apply SIMD. For modern archi-

tectures, the highest performance comes when fetching, executing, and

committing three to four instructions per clock cycle (see Section 4.10). Th

e

goal for this step is to improve the code from the compiler to increase ILP. One

way is by unrolling loops, as we saw in Section 4.12. For the x86 architectures,

a single AVX instruction can operate on four double precision operands, so

they should be used whenever possible (see Sections 3.7 and 3.8).

To reduce memory bottlenecks, the following two optimizations can help:

1. Soft ware prefetching. Usually the highest performance requires keeping many

memory operations in fl ight, which is easier to do by performing predicting

accesses via soft ware prefetch instructions rather than waiting until the data

is required by the computation.

6.10 Multiprocessor Benchmarks and Performance Models

547

2. Memory affi

 nity. Microprocessors today include a memory controller on

the same chip with the microprocessor, which improves performance of the

memory hierarchy. If the system has multiple chips, this means that some

addresses go to the DRAM that is local to one chip, and the rest require

accesses over the chip interconnect to access the DRAM that is local to

another chip. Th

is split results in non-uniform memory accesses, which we

described in Section 6.5. Accessing memory through another chip lowers

performance. Th

is second optimization tries to allocate data and the threads

tasked to operate on that data to the same memory-processor pair, so that

the processors rarely have to access the memory of the other chips.

Th

e roofl ine model can help decide which of these two optimizations to

perform and the order in which to perform them. We can think of each of these

optimizations as a ಯceilingರ below the appropriate roofl ine, meaning that you

cannot break through a ceiling without performing the associated optimization.

Th

e computational roofl ine can be found from the manuals, and the memory

roofl ine can be found from running the Stream benchmark. Th

e computational

ceilings, such as fl oating-point balance, can also come from the manuals for

that computer. A memory ceiling, such as memory affi

nity, requires running

experiments on each computer to determine the gap between them. Th

e good

news is that this process only need be done once per computer, for once someone

characterizes a computerಬs ceilings, everyone can use the results to prioritize their

optimizations for that computer.

Figure 6.20 adds ceilings to the roofl ine model in Figure 6.18, showing the computational ceilings in the top graph and the memory bandwidth ceilings on the

bottom graph. Although the higher ceilings are not labeled with both optimizations,

they are implied in this fi gure; to break through the highest ceiling, you need to

have already broken through all the ones below.

Th

e width of the gap between the ceiling and the next higher limit is the reward

for trying that optimization. Th

us, Figure 6.20 suggests that optimization 2, which

improves ILP, has a large benefi t for improving computation on that computer, and

optimization 4, which improves memory affi

nity, has a large benefi t for improving

memory bandwidth on that computer.

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. Th e

arithmetic intensity of a kernel determines the optimization region, which in turn

suggests which optimizations to try. Note that the computational optimizations

and the memory bandwidth optimizations overlap for much of the arithmetic

intensity. Th

ree regions are shaded diff erently in Figure 6.21 to indicate the diff erent optimization strategies. For example, Kernel 2 falls in the blue trapezoid on the

right, which suggests working only on the computational optimizations. Kernel 1

falls in the blue-gray parallelogram in the middle, which suggests trying both types

of optimizations. Moreover, it suggests starting with optimizations 2 and 4. Note

that the Kernel 1 vertical lines fall below the fl oating-point imbalance optimization,

so optimization 1 may be unnecessary. If a kernel fell in the gray triangle on the

lower left , it would suggest trying just memory optimizations.

548

Chapter 6 Parallel Processors from Client to Cloud

AMD Opteron

64.0

32.0

peak floating-point performance

16.0

1. Fl. Pt. imbalance

8.0

4.0

peak memory BW (stream)

2. Without ILP or SIMD

2.0

Attainable GFLOPs/second

1.0

0.5 1/8 1/4 1/2 1

2

4

8

16

Arithmetic Intensity: FLOPs/Byte Ratio

AMD Opteron

64.0

32.0

peak floating-point performance

16.0

8.0

4.0

peak memory BW (stream)

2.0

3. w/out SW prefetching

Attainable GFLOPs/second

4. w/out Memory Affinity

1.0

0.5 1/8 1/4 1/2 1

2

4

8

16

Arithmetic Intensity: FLOPs/Byte Ratio

FIGURE 6.20 Roofl ine model with ceilings. Th

e top graph shows the computational “ceilings” of

8 GFLOPs/sec if the fl oating-point operation mix is imbalanced and 2 GFLOPs/sec if the optimizations to increase ILP and SIMD are also missing. Th

e bottom graph shows the memory bandwidth ceilings of 11 GB/

sec without soft ware prefetching and 4.8 GB/sec if memory affi

nity optimizations are also missing.

6.10 Multiprocessor Benchmarks and Performance Models

549

64.0

32.0

peak floating-point performance

16.0

1. Fl. Pt. imbalance

8.0

4.0

peak memory BW (stream)

3. w/out SW prefetching 2. Without ILP or SIMD

2.0

Attainable GFLOPs/second

Kernel 1

4. w/out Memory Affinity

Kernel 2

1.0

0.5 1/8 1/4 1/2 1 2 4 8 16

Arithmetic Intensity: FLOPs/Byte Ratio

FIGURE 6.21 Roofl ine model with ceilings, overlapping areas shaded, and the two kernels

from Figure 6.18. Kernels whose arithmetic intensity land in the blue trapezoid on the right should focus on computation optimizations, and kernels whose arithmetic intensity land in the gray triangle in the lower left should focus on memory bandwidth optimizations. Th

ose that land in the blue-gray parallelogram in

the middle need to worry about both. As Kernel 1 falls in the parallelogram in the middle, try optimizing ILP and SIMD, memory affi

nity, and soft ware prefetching. Kernel 2 falls in the trapezoid on the right, so try

optimizing ILP and SIMD and the balance of fl oating-point operations.

Th

us far, we have been assuming that the arithmetic intensity is fi xed, but that is

not really the case. First, there are kernels where the arithmetic intensity increases

with problem size, such as for Dense Matrix and N-body problems (see Figure 6.17).

Indeed, this can be a reason that programmers have more success with weak scaling

than with strong scaling. Second, the eff ectiveness of the memory hierarchy

aff ects the number of accesses that go to memory, so optimizations that improve

cache performance also improve arithmetic intensity. One example is improving

temporal locality by unrolling loops and then grouping together statements with

similar addresses. Many computers have special cache instructions that allocate

data in a cache but do not fi rst fi ll the data from memory at that address, since it

will soon be over-written. Both these optimizations reduce memory traffi

c, thereby

moving the arithmetic intensity pole to the right by a factor of, say, 1.5. Th

is shift

right could put the kernel in a diff erent optimization region.

While the examples above show how to help programmers improve performance,

architects can also use the model to decide where they should optimize hardware to

improve performance of the kernels that they think will be important.

Th

e next section uses the roofl ine model to demonstrate the performance

diff erence between a multicore microprocessor and a GPU and to see whether

these diff erences refl ect performance of real programs.

550

Chapter 6 Parallel Processors from Client to Cloud

Elaboration: The ceilings are ordered so that lower ceilings are easier to optimize.

Clearly, a programmer can optimize in any order, but following this sequence reduces the

chances of wasting effort on an optimization that has no benefi t due to other constraints.

Like the 3Cs model, as long as the roofl ine model delivers on insights, a model can

have assumptions that may prove optimistic. For example, roofl ine assumes the load is

balanced between all processors.

Elaboration: An alternative to the Stream benchmark is to use the raw DRAM

bandwidth as the roofl ine. While the raw bandwidth defi nitely is a hard upper bound,

actual memory performance is often so far from that boundary that itಬs not that useful.

That is, no program can go close to that bound. The downside to using Stream is that

very careful programming may exceed the Stream results, so the memory roofl ine may

not be as hard a limit as the computational roofl ine. We stick with Stream because few

programmers will be able to deliver more memory bandwidth than Stream discovers.

Elaboration: Although the roofl ine model shown is for multicore processors, it clearly

would work for a uniprocessor as well.

Check True or false: Th

e main drawback with conventional approaches to benchmarks

for parallel computers is that the rules that ensure fairness also slow soft ware

Yourself

innovation.

Real Stuff: Benchmarking and Roofl ines

6.11

of the Intel Core i7 960 and the NVIDIA

Tesla GPU

A group of Intel researchers published a paper [Lee et al., 2010] comparing a

quad-core Intel Core i7 960 with multimedia SIMD extensions to the previous

generation GPU, the NVIDIA Tesla GTX 280. Figure 6.22 lists the characteristics of the two systems. Both products were purchased in Fall 2009. Th

e Core i7 is

in Intelಬs 45-nanometer semiconductor technology while the GPU is in TSMCಬs

65-nanometer technology. Although it might have been fairer to have a comparison

by a neutral party or by both interested parties, the purpose of this section is not to

determine how much faster one product is than another, but to try to understand

the relative value of features of these two contrasting architecture styles.

Th

e roofl ines of the Core i7 960 and GTX 280 in Figure 6.23 illustrate the

diff erences in the computers. Not only does the GTX 280 have much higher

memory bandwidth and double-precision fl oating-point performance, but also its

double-precision ridge point is considerably to the left . Th

e double-precision ridge

point is 0.6 for the GTX 280 versus 3.1 for the Core i7. As mentioned above, it is

much easier to hit peak computational performance the further the ridge point of

 6.11 Real Stuff: Benchmarking and Roofl ines of the Intel Core i7 960 and the NVIDIA Tesla GPU

551

Core i7-

Ratio

Ratio

960

GTX 280

GTX 480

280/i7

480/i7

Number of processing elements (cores or SMs)

4

30

15

7.5

3.8

Clock frequency (GHz)

3.2

1.3

1.4

0.41

0.44

Die size

263

576

520

2.2

2.0

Technology

Intel 45 nm

TSMC 65 nm

TSMC 40 nm

1.6

1.0

Power (chip, not module)

130

130

167

1.0

1.3

Transistors

700 M

1400 M

3030 M

2.0

4.4

Memory brandwith (GBytes/sec)

32

141

177

4.4

5.5

Single-precision SIMD width

4

8

32

2.0

8.0

Double-precision SIMD width

2

1

16

0.5

8.0

Peak Single-precision scalar FLOPS (GFLOP/sec)

26

117

63

4.6

2.5

Peak Single-precision SIMD FLOPS (GFLOP/Sec)

102

311 to 933

515 or 1344

3.0–9.1

6.6–13.1

(SP 1 add or multiply)

N.A.

(311)

(515)

(3.0)

(6.6)

(SP 1 instruction fused multiply-adds)

N.A.

(622)

(1344)

(6.1)

(13.1)

(Rare SP dual issue fused multiply-add and multiply)

N.A.

(933)

N.A.

(9.1)

–

Peal double-precision SIMD FLOPS (GFLOP/sec)

51

78

515

1.5

10.1

FIGURE 6.22 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifi cations. Th

e rightmost columns show the ratios of the

Tesla GTX 280 and the Fermi GTX 480 to Core i7. Although the case study is between the Tesla 280 and i7, we include the Fermi 480 to show its relationship to the Tesla 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 6.23 because these are DRAM pin bandwidths and those in Figure 6.23 are at the processors as measured by a benchmark program. (From Table 2 in Lee et al. [2010].)

the roofl ine is to the left . For single-precision performance, the ridge point moves

far to the right for both computers, so itಬs much harder to hit the roof of single-

precision performance. Note that the arithmetic intensity of the kernel is based on

the bytes that go to main memory, not the bytes that go to cache memory. Th

us,

as mentioned above, caching can change the arithmetic intensity of a kernel on a

particular computer, if most references really go to the cache. Note also that this

bandwidth is for unit-stride accesses in both architectures. Real gather-scatter

addresses can be slower on the GTX 280 and on the Core i7, as we shall see.

Th

e researchers selected the benchmark programs by analyzing the computational

and memory characteristics of four recently proposed benchmark suites and then

ಯformulated the set of throughput computing kernels that capture these characteristics.ರ

Figure 6.24 shows the performance results, with larger numbers meaning faster. Th e

Roofl ines help explain the relative performance in this case study.

Given that the raw performance specifi cations of the GTX 280 vary from 2.5 ×

slower (clock rate) to 7.5 × faster (cores per chip) while the performance varies

552

Chapter 6 Parallel Processors from Client to Cloud

Core i7 960

128

128

NVIDIA GTX280

(Nehalem)

51.2 GF/s

64

Double Precision

64

GB/s

Peak = 78 GF/s

=127

Double Precision

32

32

Stream

16

16

GFlop/s

8

GFlop/s

8

Stream = 16.4 GB/s

4

4

2

2

1

1

1/8

1/4

1/2

1

2

4

8

16

32

1/8

1/4

1/2

1

2

4

8

16

32

Arithmetic intensity

Arithmetic intensity

Core i7 960

1024

NVIDIA GTX280

(Nehalem)

1024

512

512

624 GF/s

Single Precision

256

256

102.4 GF/s

128

Single Precision

128

GB/s

78 GF/s

Double Precision

=127

64

64

m

51.2 GF/s

GFlop/s

Strea

GFlop/s

32

Double Precision

32

16

16

8

Stream = 16.4 GB/s

8

4

4

1/8

1/4

1/2

1

2

4

8

16

32

1/8

1/4

1/2

1

2

4

8

16

32

Arithmetic intensity

Arithmetic intensity

FIGURE 6.23 Roofl ine model [Williams, Waterman, and Patterson 2009]. Th

ese roofl ines show double-precision fl oating-point

performance in the top row and single-precision performance in the bottom row. (Th

e DP FP performance ceiling is also in the bottom row

to give perspective.) Th

e Core i7 960 on the left has a peak DP FP performance of 51.2 GFLOP/sec, a SP FP peak of 102.4 GFLOP/sec, and a peak memory bandwidth of 16.4 GBytes/sec. Th

e NVIDIA GTX 280 has a DP FP peak of 78 GFLOP/sec, SP FP peak of 624 GFLOP/sec, and

127 GBytes/sec of memory bandwidth. Th

e dashed vertical line on the left represents an arithmetic intensity of 0.5 FLOP/byte. It is limited by memory bandwidth to no more than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. Th

e dashed vertical line to the right has an arithmetic

intensity of 4 FLOP/byte. It is limited only computationally to 51.2 DP GFLOP/sec and 102.4 SP GFLOP/sec on the Core i7 and 78 DP GFLOP/

sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7 you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need to use fused multiply-add instructions on all multithreaded SIMD

processors.

 6.11 Real Stuff: Benchmarking and Roofl ines of the Intel Core i7 960 and the NVIDIA Tesla GPU

553

GTX 280/

Kernel

Units

Core i7-960

GTX 280

i7-960

SGEMM

GFLOP/sec

94

364

3.9

MC

Billion paths/sec

0.8

1.4

1.8

Conv

Million pixels/sec

1250

3500

2.8

FFT

GFLOP/sec

71.4

213

3.0

SAXPY

GBytes/sec

16.8

88.8

5.3

LBM

Million lookups/sec

85

426

5.0

Solv

Frames/sec

103

52

0.5

SpMV

GFLOP/sec

4.9

9.1

1.9

GJK

Frames/sec

67

1020

15.2

Sort

Million elements/sec

250

198

0.8

RC

Frames/sec

5

8.1

1.6

Search

Million queries/sec

50

90

1.8

Hist

Million pixels/sec

1517

2583

1.7

Bilat

Million pixels/sec

83

475

5.7

FIGURE 6.24 Raw and relative performance measured for the two platforms. In this study, SAXPY is just used as a measure of memory bandwidth, so the right unit is GBytes/sec and not GFLOP/sec.

(Based on Table 3 in [Lee et al., 2010].)

from 2.0 × slower (Solv) to 15.2 × faster (GJK), the Intel researchers decided to

fi nd the reasons for the diff erences:

■ Memory bandwidth. Th

e GPU has 4.4 ×the memory bandwidth, which helps

explain why LBM and SAXPY run 5.0 and 5.3 × faster; their working sets are

hundreds of megabytes and hence donಬt fi t into the Core i7 cache. (So as to

access memory intensively, they purposely did not use cache blocking as in

Chapter 5.) Hence, the slope of the roofl ines explains their performance. SpMV

also has a large working set, but it only runs 1.9 × faster because the double-

precision fl oating point of the GTX 280 is only 1.5 × as faster as the Core i7.

■ Compute bandwidth. Five of the remaining kernels are compute bound:

SGEMM, Conv, FFT, MC, and Bilat. Th

e GTX is faster by 3.9, 2.8, 3.0, 1.8, and

5.7 ×, respectively. Th e fi rst three of these use single-precision fl oating-point

arithmetic, and GTX 280 single precision is 3 to 6 ×faster. MC uses double

precision, which explains why itಬs only 1.8 × faster since DP performance

is only 1.5 × faster. Bilat uses transcendental functions, which the GTX

280 supports directly. Th

e Core i7 spends two-thirds of its time calculating

transcendental functions for Bilat, so the GTX 280 is 5.7 × faster. Th

is

observation helps point out the value of hardware support for operations that

occur in your workload: double-precision fl oating point and perhaps even

transcendentals.

554

Chapter 6 Parallel Processors from Client to Cloud

■ Cache benefi ts. Ray casting (RC) is only 1.6 × faster on the GTX because

cache blocking with the Core i7 caches prevents it from becoming memory

bandwidth bound (see Sections 5.4 and 5.14), as it is on GPUs. Cache

blocking can help Search, too. If the index trees are small so that they fi t in

the cache, the Core i7 is twice as fast. Larger index trees make them memory

bandwidth bound. Overall, the GTX 280 runs search 1.8 × faster. Cache

blocking also helps Sort. While most programmers wouldnಬt run Sort on

a SIMD processor, it can be written with a 1-bit Sort primitive called split.

However, the split algorithm executes many more instructions than a scalar

sort does. As a result, the Core i7 runs 1.25 × as fast as the GTX 280. Note

that caches also help other kernels on the Core i7, since cache blocking allows

SGEMM, FFT, and SpMV to become compute bound. Th

is observation re-

emphasizes the importance of cache blocking optimizations in Chapter 5.

■ Gather-Scatter. Th

e multimedia SIMD extensions are of little help if the data are

scattered throughout main memory; optimal performance comes only when

accesses are to data are aligned on 16-byte boundaries. Th

us, GJK gets little benefi t

from SIMD on the Core i7. As mentioned above, GPUs off er gather-scatter

addressing that is found in a vector architecture but omitted from most SIMD

extensions. Th

e memory controller even batches accesses to the same DRAM

page together (see Section 5.2). Th

is combination means the GTX 280 runs GJK

a startling 15.2 ×as fast as the Core i7, which is larger than any single physical

parameter in Figure 6.22. Th

is observation reinforces the importance of gather-

scatter to vector and GPU architectures that is missing from SIMD extensions.

■ Synchronization. Th

e performance of synchronization is limited by atomic

updates, which are responsible for 28% of the total runtime on the Core i7

despite its having a hardware fetch-and-increment instruction. Th

us, Hist is only

1.7 ×faster on the GTX 280. Solv solves a batch of independent constraints in

a small amount of computation followed by barrier synchronization. Th

e Core

i7 benefi ts from the atomic instructions and a memory consistency model that

ensures the right results even if not all previous accesses to memory hierarchy

have completed. Without the memory consistency model, the GTX 280

version launches some batches from the system processor, which leads to the

GTX 280 running 0.5 × as fast as the Core i7. Th

is observation points out how

synchronization performance can be important for some data parallel problems.

It is striking how oft en weaknesses in the Tesla GTX 280 that were uncovered by

kernels selected by Intel researchers were already being addressed in the successor

architecture to Tesla: Fermi has faster double-precision fl oating-point performance,

faster atomic operations, and caches. It was also interesting that the gather-scatter

support of vector architectures that predate the SIMD instructions by decades was

so important to the eff ective usefulness of these SIMD extensions, which some had

predicted before the comparison. Th

e Intel researchers noted that 6 of the 14 kernels

would exploit SIMD better with more effi

cient gather-scatter support on the Core

i7. Th

is study certainly establishes the importance of cache blocking as well.

6.12 Going Faster: Multiple Processors and Matrix Multiply

555

Now that we seen a wide range of results of benchmarking diff erent

multiprocessors, let’s return to our DGEMM example to see in detail how much we

have to change the C code to exploit multiple processors.

 6.12 Going Faster: Multiple Processors and

Matrix Multiply

Th

is section is the fi nal and largest step in our incremental performance journey of

adapting DGEMM to the underlying hardware of the Intel Core i7 (Sandy Bridge).

Each Core i7 has 8 cores, and the computer we have been using has 2 Core i7s.

Th

us, we have 16 cores on which to run DGEMM.

Figure 6.25 shows the OpenMP version of DGEMM that utilizes those cores.

Note that line 30 is the single line added to Figure 5.48 to make this code run on

multiple processors: an OpenMP pragma that tells the compiler to use multiple

threads in the outermost for loop. It tells the computer to spread the work of the

outermost loop across all the threads.

Figure 6.26 plots a classic multiprocessor speedup graph, showing the

performance improvement versus a single thread as the number of threads increase.

Th

is graph makes it easy to see the challenges of strong scaling versus weak scaling.

When everything fi ts in the fi rst level data cache, as is the case for 32 × 32 matrices,

adding threads actually hurts performance. Th

e 16-threaded version of DGEMM

is almost half as fast as the single-threaded version in this case. In contrast, the two

largest matrices get a 14 × speedup from 16 threads, and hence the classic two “up

and to the right” lines in Figure 6.26.

Figure 6.27 shows the absolute performance increase as we increase the number of threads from 1 to 16. DGEMM operates now operates at 174 GLOPS for 960 × 960

matrices. As our unoptimized C version of DGEMM in Figure 3.21 ran this code at

just 0.8 GFOPS, the optimizations in Chapters 3 to 6 that tailor the code to the

underlying hardware result in a speedup of over 200 times!

Next up is our warnings of the fallacies and pitfalls of multiprocessing. Th

e

computer architecture graveyard is fi lled with parallel processing projects that have

ignored them.

Elaboration: These results are with Turbo mode turned off. We are using a dual chip

system in this system, so not surprisingly, we can get the full Turbo speedup (3.3/2.6

= 1.27) with either 1 thread (only 1 core on one of the chips) or 2 threads (1 core per

chip). As we increase the number of threads and hence the number of active cores, the

benefi t of Turbo mode decreases, as there is less of the power budget to spend on the

active cores. For 4 threads the average Turbo speedup is 1.23, for 8 it is 1.13, and for

16 it is 1.11.

556

Chapter 6 Parallel Processors from Client to Cloud

1 #include <x86intrin.h>

2 #define UNROLL (4)

3 #define BLOCKSIZE 32

4 void do_block (int n, int si, int sj, int sk,

5 double *A, double *B, double *C)

6 {

7 for (int i = si; i < si+BLOCKSIZE; i+=UNROLL*4)

8 for (int j = sj; j < sj+BLOCKSIZE; j++) {

9 __m256d c[4];

10 for (int x = 0; x < UNROLL; x++)

11 c[x] = _mm256_load_pd(C+i+x*4+j*n);

12 /* c[x] = C[i][j] */

13 for(int k = sk; k < sk+BLOCKSIZE; k++)

14 {

15 __m256d b = _mm256_broadcast_sd(B+k+j*n);

16 /* b = B[k][j] */

17 for (int x = 0; x < UNROLL; x++)

18 c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */

19 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));

20 }

21

22 for (int x = 0; x < UNROLL; x++)

23 _mm256_store_pd(C+i+x*4+j*n, c[x]);

24 /* C[i][j] = c[x] */

25 }

26 }

27

28 void dgemm (int n, double* A, double* B, double* C)

29 {

30 #pragma omp parallel for

31 for (int sj = 0; sj < n; sj += BLOCKSIZE)

32 for (int si = 0; si < n; si += BLOCKSIZE)

33 for (int sk = 0; sk < n; sk += BLOCKSIZE)

34 do_block(n, si, sj, sk, A, B, C);

35 }

FIGURE 6.25 OpenMP version of DGEMM from Figure 5.48. Line 30 is the only OpenMP code, making the outermost for loop operate in parallel. Th

is line is the only diff erence from Figure 5.48.

Elaboration: Although the Sandy Bridge supports two hardware threads per core, we

do not get more performance from 32 threads. The reason is that a single AVX hardware

is shared between the two threads multiplexed onto one core, so assigning two threads

per core actually hurts performance due to the multiplexing overhead.

6.12 Going Faster: Multiple Processors and Matrix Multiply

557

14

13

12

11

10

9

8

960 X 960

7

480 X 480

6

160 X 160

5

Speedup relative to 1 core

32 X 32

4

3

2

1

–

0

4

8

12

16

Threads

FIGURE 6.26 Performance improvements relative to a single thread as the number of

threads increase. Th

e most honest way to present such graphs is to make performance relative to the best

version of a single processor program, which we did. Th

is plot is relative to the performance of the code in

Figure 5.48 without including OpenMP pragmas.

32x32

160x160

480x480

960x960

200

174

169

150

100

85 87

GFLOPS

61

60

50

43 44

31

20 22 23

14 13 12 12

12

11

11

8

-

1

2

4

8

16

Threads

FIGURE 6.27 DGEMM performance versus the number of threads for four matrix sizes.

Th

e performance improvement compared unoptimized code in Figure 3.21 for the 960 × 960 matrix with 16

threads is an astounding 212 times faster!

558

Chapter 6 Parallel Processors from Client to Cloud

 6.13 Fallacies and Pitfalls

 For over a decade

Th

e many assaults on parallel processing have uncovered numerous fallacies and

 prophets have voiced

pitfalls. We cover four here.

 the contention that the

 Fallacy: Amdahl’s Law doesn’t apply to parallel computers.

 organization of a single In 1987, the head of a research organization claimed that a multiprocessor machine computer has reached

had broken Amdahl’s Law. To try to understand the basis of the media reports, letಬs

 its limits and that truly

see the quote that gave us Amdahlಬs Law [1967, p. 483]:

 signifi cant advances

 can be made only

 A fairly obvious conclusion which can be drawn at this point is that the eff ort

 by interconnection

 expended on achieving high parallel processing rates is wasted unless it is

 of a multiplicity of

 accompanied by achievements in sequential processing rates of very nearly the

 computers in such a

 same magnitude.

 manner as to permit

Th

is statement must still be true; the neglected portion of the program must limit

 cooperative solution.

performance. One interpretation of the law leads to the following lemma: portions

 …Demonstration is

of every program must be sequential, so there must be an economic upper bound

 made of the continued

to the number of processorsಧsay, 100. By showing linear speed-up with 1000

 validity of the single

processors, this lemma is disproved; hence the claim that Amdahlಬs Law was broken.

 processor approach …

Th

e approach of the researchers was just to use weak scaling: rather than going

Gene Amdahl, “Validity

1000 times faster on the same data set, they computed 1000 times more work in

of the single processor

comparable time. For their algorithm, the sequential portion of the program was

approach to achieving

constant, independent of the size of the input, and the rest was fully parallelಧ

large scale computing

hence, linear speed-up with 1000 processors.

capabilities,” Spring Joint

Amdahlಬs Law obviously applies to parallel processors. What this research does

Computer Conference,

point out is that one of the main uses of faster computers is to run larger problems.

1967

Just be sure that users really care about those problems versus being a justifi cation

to buying an expensive computer by fi nding a problem that just keeps lots of

processors busy.

 Fallacy: Peak performance tracks observed performance.

Th

e supercomputer industry once used this metric in marketing, and the fallacy

is exacerbated with parallel machines. Not only are marketers using the nearly

unattainable peak performance of a uniprocessor node, but also they are then

multiplying it by the total number of processors, assuming perfect speed-up!

Amdahlಬs Law suggests how diffi

cult it is to reach either peak; multiplying the two

together multiplies the sins. Th

e roofl ine model helps put peak performance in

perspective.

 Pitfall: Not developing the soft ware to take advantage of, or optimize for, a

 multiprocessor architecture.

Th

ere is a long history of parallel soft ware lagging behind on parallel hardware,

possibly because the soft ware problems are much harder. We give one example to

show the subtlety of the issues, but there are many examples we could choose!

6.13 Fallacies and Pitfalls

559

One frequently encountered problem occurs when soft ware designed for a

uniprocessor is adapted to a multiprocessor environment. For example, the Silicon

Graphics operating system originally protected the page table with a single lock,

assuming that page allocation is infrequent. In a uniprocessor, this does not

represent a performance problem. In a multiprocessor, it can become a major

performance bottleneck for some programs. Consider a program that uses a large

number of pages that are initialized at start-up, which UNIX does for statically

allocated pages. Suppose the program is parallelized so that multiple processes

allocate the pages. Because page allocation requires the use of the page table, which

is locked whenever it is in use, even an OS kernel that allows multiple threads in the

OS will be serialized if the processes all try to allocate their pages at once (which is

exactly what we might expect at initialization time!).

Th

is page table serialization eliminates parallelism in initialization and has

signifi cant impact on overall parallel performance. Th

is performance bottleneck

persists even for task-level parallelism. For example, suppose we split the parallel

processing program apart into separate jobs and run them, one job per processor,

so that there is no sharing between the jobs. (Th

is is exactly what one user did,

since he reasonably believed that the performance problem was due to unintended

sharing or interference in his application.) Unfortunately, the lock still serializes all

the jobsಧso even the independent job performance is poor.

Th

is pitfall indicates the kind of subtle but signifi cant performance bugs

that can arise when soft ware runs on multiprocessors. Like many other key

soft ware components, the OS algorithms and data structures must be rethought

in a multiprocessor context. Placing locks on smaller portions of the page table

eff ectively eliminated the problem.

 Fallacy: You can get good vector performance without providing memory

 bandwidth.

As we saw with the Roofl ine model, memory bandwidth is quite important to

all architectures. DAXPY requires 1.5 memory references per fl oating-point

operation, and this ratio is typical of many scientifi c codes. Even if the fl oating-point

operations took no time, a Cray-1 could not increase the DAXPY performance of

the vector sequence used, since it was memory limited. Th

e Cray-1 performance on

Linpack jumped when the compiler used blocking to change the computation so

that values could be kept in the vector registers. Th

is approach lowered the number

of memory references per FLOP and improved the performance by nearly a factor

of two! Th

us, the memory bandwidth on the Cray-1 became suffi

cient for a loop

that formerly required more bandwidth, which is just what the Roofl ine model

would predict.

560

Chapter 6 Parallel Processors from Client to Cloud

 6.14 Concluding

Remarks

 We are dedicating

Th

e dream of building computers by simply aggregating processors has been

 all of our future

around since the earliest days of computing. Progress in building and using eff ective

 product development

and effi

cient parallel processors, however, has been slow. Th

is rate of progress has

 to multicore designs.

been limited by diffi

cult soft ware problems as well as by a long process of evolving

 We believe this is a

the architecture of multiprocessors to enhance usability and improve effi

ciency.

 key infl ection point

We have discussed many of the soft ware challenges in this chapter, including the

 for the industry. …

diffi

culty of writing programs that obtain good speed-up due to Amdahlಬs Law. Th

e

 Th

 is is not a race.

wide variety of diff erent architectural approaches and the limited success and short

 Th

 is is a sea change in

life of many of the parallel architectures of the past have compounded the soft ware

 computing…”

diffi

culties. We discuss the history of the development of these multiprocessors

in online Section 6.15. To go into even greater depth on topics in this chapter,

Paul Otellini, Intel

see Chapter 4 of Computer Architecture: A Quantitative Approach, Fift h Edition for

President, Intel

Developers Forum, 2004

more on GPUs and comparisons between GPUs and CPUs and Chapter 6 for more

on WSCs.

As we said in Chapter 1, despite this long and checkered past, the information

technology industry has now tied its future to parallel computing. Although it is

easy to make the case that this eff ort will fail like many in the past, there are reasons

to be hopeful:

■ Clearly, soft ware as a service (SaaS) is growing in importance, and clusters

have proven to be a very successful way to deliver such services. By providing

redundancy at a higher-level, including geographically distributed datacenters,

such services have delivered 24 ×7 × 365 availability for customers around

the world.

■ We believe that Warehouse-Scale Computers are changing the goals and

principles of server design, just as the needs of mobile clients are changing the

goals and principles of microprocessor design. Both are revolutionizing the

soft ware industry as well. Performance per dollar and performance per joule

drive both mobile client hardware and the WSC hardware, and parallelism is

the key to delivering on those sets of goals.

■ SIMD and vector operations are a good match to multimedia applications,

which are playing a larger role in the PostPC Era. Th

ey share the advantage of

being easier for the programmer than classic parallel MIMD programming

and being more energy effi

cient than MIMD. To put into perspective the

importance of SIMD versus MIMD, Figure 6.28 plots the number of cores

for MIMD versus the number of 32-bit and 64-bit operations per clock cycle

in SIMD mode for x86 computers over time. For x86 computers, we expect

to see two additional cores per chip about every two years and the SIMD

width to double about every four years. Given these assumptions, over the

next decade the potential speed-up from SIMD parallelism is twice that of

 6.14

Concluding

Remarks

561

1000

MIMD*SIMD (32 b)

MIMD*SIMD (64 b)

SIMD (32 b)

SIMD (64 b)

MIMD

100

allel speedup

otential par

10

P

1

2003

2007

2011

2015

2019

2023

FIGURE 6.28 Potential speed-up via parallelism from MIMD, SIMD, and both MIMD and

SIMD over time for x86 computers. Th

is fi gure assumes that two cores per chip for MIMD will be

added every two years and the number of operations for SIMD will double every four years.

MIMD parallelism. Given the eff ectiveness of SIMD for multimedia and its

increasing importance in the PostPC Era, that emphasis may be appropriate.

Hence, it’s as least as important to understand SIMD parallelism as MIMD

parallelism, even though the latter has received much more attention.

■ Th

e use of parallel processing in domains such as scientifi c and engineering

computation is popular. Th

is application domain has an almost limitless

thirst for more computation. It also has many applications that have lots of

natural concurrency. Once again, clusters dominate this application area. For

example, using the 2012 Top 500 report, clusters are responsible for more

than 80% of the 500 fastest Linpack results.

■ All desktop and server microprocessor manufacturers are building

multiprocessors to achieve higher performance, so, unlike in the past, there

is no easy path to higher performance for sequential applications. As we said

earlier, sequential programs are now slow programs. Hence, programmers

who need higher performance must parallelize their codes or write new

parallel processing programs.

562

Chapter 6 Parallel Processors from Client to Cloud

■ In the past, microprocessors and multiprocessors were subject to

diff erent defi nitions of success. When scaling uniprocessor performance,

microprocessor architects were happy if single thread performance went up

by the square root of the increased silicon area. Th

us, they were happy with

sublinear performance in terms of resources. Multiprocessor success used

to be defi ned as linear speed-up as a function of the number of processors,

assuming that the cost of purchase or cost of administration of n processors

was n times as much as one processor. Now that parallelism is happening on-

chip via multicore, we can use the traditional microprocessor metric of being

successful with sublinear performance improvement.

■ Th

e success of just-in-time runtime compilation and autotuning makes it

feasible to think of soft ware adapting itself to take advantage of the increasing

number of cores per chip, which provides fl exibility that is not available when

limited to static compilers.

■ Unlike in the past, the open source movement has become a critical portion

of the soft ware industry. Th

is movement is a meritocracy, where better

engineering solutions can win the mind share of the developers over legacy

concerns. It also embraces innovation, inviting change to old soft ware and

welcoming new languages and soft ware products. Such an open culture could

be extremely helpful in this time of rapid change.

To motivate readers to embrace this revolution, we demonstrated the potential

of parallelism concretely for matrix multiply on the Intel Core i7 (Sandy Bridge) in

the Going Faster sections of Chapters 3 to 6:

■ Data-level parallelism in Chapter 3 improved performance by a factor of 3.85

by executing four 64-bit fl oating-point operations in parallel using the 256-

bit operands of the AVX instructions, demonstrating the value of SIMD.

■ Instruction-level parallelism in Chapter 4 pushed performance up by another

factor of 2.3 by unrolling loops 4 times to give the out-of-order execution

hardware more instructions to schedule.

■ Cache optimizations in Chapter 5 improved performance of matrices that

didn’t fi t into the L1 data cache by another factor of 2.0 to 2.5 by using cache

blocking to reduce cache misses.

■ Th

read-level parallelism in this chapter improved performance of matrices

that don’t fi t into a single L1 data cache by another factor of 4 to 14 by utilizing

all 16 cores of our multicore chips, demonstrating the value of MIMD. We

did this by adding a single line using an OpenMP pragma.

Using the ideas in this book and tailoring the soft ware to this computer added

24 lines of code to DGEMM. For the matrix sizes of 32x32, 160x160, 480x480, and

960x960, the overall performance speedup from these ideas realized in those two-

dozen lines of code is factors of 8, 39, 129, and 212!

6.16 Exercises

563

Th

is parallel revolution in the hardware/soft ware interface is perhaps the

greatest challenge facing the fi eld in the last 60 years. You can also think of it as

the greatest opportunity, as our Going Faster sections demonstrate. Th

is revolution

will provide many new research and business prospects inside and outside the IT

fi eld, and the companies that dominate the multicore era may not be the same

ones that dominated the uniprocessor era. Aft er understanding the underlying

hardware trends and learning to adapt soft ware to them, perhaps you will be one

of the innovators who will seize the opportunities that are certain to appear in the

uncertain times ahead. We look forward to benefi ting from your inventions!

 5.9 Historical Perspective and Further

6.15

Reading

Th

is section online gives the rich and oft en disastrous history of multiprocessors

over the last 50 years.

References

G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell,

L. Cline, and A. Foong. TCP onloading for data center servers. IEEE Computer,

37(11):48–58, 2004.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears. Benchmarking

cloud serving systems with YCSB, In: Proceedings of the 1st ACM Symposium

on Cloud computing, June 10–11, 2010, Indianapolis, Indiana, USA,

doi:10.1145/1807128.1807152.

 6.16 Exercises

6.1 First, write down a list of your daily activities that you typically do on a

weekday. For instance, you might get out of bed, take a shower, get dressed, eat

breakfast, dry your hair, brush your teeth. Make sure to break down your list so you

have a minimum of 10 activities.

6.1.1 [5] <§6.2> Now consider which of these activities is already exploiting some

form of parallelism (e.g., brushing multiple teeth at the same time, versus one at

a time, carrying one book at a time to school, versus loading them all into your

564

Chapter 6 Parallel Processors from Client to Cloud

backpack and then carry them “in parallel”). For each of your activities, discuss if

they are already working in parallel, but if not, why they are not.

6.1.2 [5] <§6.2> Next, consider which of the activities could be carried out

concurrently (e.g., eating breakfast and listening to the news). For each of your

activities, describe which other activity could be paired with this activity.

6.1.3 [5] <§6.2> For 6.1.2, what could we change about current systems (e.g.,

showers, clothes, TVs, cars) so that we could perform more tasks in parallel?

6.1.4 [5] <§6.2> Estimate how much shorter time it would take to carry out these

activities if you tried to carry out as many tasks in parallel as possible.

6.2 You are trying to bake 3 blueberry pound cakes. Cake ingredients are as

follows:

1 cup butter, soft ened

1 cup sugar

4 large eggs

1 teaspoon vanilla extract

1/2 teaspoon salt

1/4 teaspoon nutmeg

1 1/2 cups fl our

1 cup blueberries

Th

e recipe for a single cake is as follows:

Step 1: Preheat oven to 325°F (160°C). Grease and fl our your cake pan.

Step 2: In large bowl, beat together with a mixer butter and sugar at medium

speed until light and fl uff y. Add eggs, vanilla, salt and nutmeg. Beat until

thoroughly blended. Reduce mixer speed to low and add fl our, 1/2 cup at a time,

beating just until blended.

Step 3: Gently fold in blueberries. Spread evenly in prepared baking pan. Bake

for 60 minutes.

6.2.1 [5] <§6.2> Your job is to cook 3 cakes as effi

ciently as possible. Assuming

that you only have one oven large enough to hold one cake, one large bowl, one

cake pan, and one mixer, come up with a schedule to make three cakes as quickly

as possible. Identify the bottlenecks in completing this task.

6.2.2 [5] <§6.2> Assume now that you have three bowls, 3 cake pans and 3 mixers.

How much faster is the process now that you have additional resources?

6.16 Exercises

565

6.2.3 [5] <§6.2> Assume now that you have two friends that will help you cook,

and that you have a large oven that can accommodate all three cakes. How will this

change the schedule you arrived at in Exercise 6.2.1 above?

6.2.4 [5] <§6.2> Compare the cake-making task to computing 3 iterations

of a loop on a parallel computer. Identify data-level parallelism and task-level

parallelism in the cake-making loop.

6.3 Many computer applications involve searching through a set of data and

sorting the data. A number of effi

cient searching and sorting algorithms have been

devised in order to reduce the runtime of these tedious tasks. In this problem we

will consider how best to parallelize these tasks.

6.3.1 [10] <§6.2> Consider the following binary search algorithm (a classic divide

and conquer algorithm) that searches for a value X in a sorted N-element array A

and returns the index of matched entry:

BinarySearch(A[0..N−1], X) {

low = 0

high = N −1

while (low <= high) {

mid = (low + high) / 2

if (A[mid] >X)

high = mid −1

else if (A[mid] <X)

low = mid + 1

else

return mid // found

}

return −1 // not found

}

Assume that you have Y cores on a multi-core processor to run BinarySearch.

Assuming that Y is much smaller than N, express the speedup factor you might

expect to obtain for values of Y and N. Plot these on a graph.

6.3.2 [5] <§6.2> Next, assume that Y is equal to N. How would this aff ect your

conclusions in your previous answer? If you were tasked with obtaining the best

speedup factor possible (i.e., strong scaling), explain how you might change this

code to obtain it.

6.4 Consider the following piece of C code:

for (j=2;j<1000;j++)

D[j] = D[j−1]+D[j−2];

566

Chapter 6 Parallel Processors from Client to Cloud

Th

e MIPS code corresponding to the above fragment is:

addiu $s2,$zero,7992

addiu $s1,$zero,16

loop: l.d $f0, ⫺16($s1)

l.d $f2, ⫺8($s1)

add.d $f4, $f0, $f2

s.d $f4, 0($s1)

addiu $s1, $s1, 8

bne $s1, $s2, loop

Instructions have the following associated latencies (in cycles):

add.d

l.d

s.d

addiu

4

6

1

2

6.4.1 [10] <§6.2> How many cycles does it take for all instructions in a single

iteration of the above loop to execute?

6.4.2 [10] <§6.2> When an instruction in a later iteration of a loop depends upon

a data value produced in an earlier iteration of the same loop, we say that there is

a loop carried dependence between iterations of the loop. Identify the loop-carried

dependences in the above code. Identify the dependent program variable and

assembly-level registers. You can ignore the loop induction variable j.

6.4.3 [10] <§6.2> Loop unrolling was described in Chapter 4. Apply loop

unrolling to this loop and then consider running this code on a 2-node distributed

memory message passing system. Assume that we are going to use message passing

as described in Section 6.7, where we introduce a new operation send (x, y) that

sends to node x the value y, and an operation receive() that waits for the value being

sent to it. Assume that send operations take a cycle to issue (i.e., later instructions

on the same node can proceed on the next cycle), but take 10 cycles be received

on the receiving node. Receive instructions stall execution on the node where they

are executed until they receive a message. Produce a schedule for the two nodes

assuming an unroll factor of 4 for the loop body (i.e., the loop body will appear

4 times). Compute the number of cycles it will take for the loop to run on the

message passing system.

6.4.4 [10] <§6.2> Th

e latency of the interconnect network plays a large role in

the effi

ciency of message passing systems. How fast does the interconnect need to

be in order to obtain any speedup from using the distributed system described in

Exercise 6.4.3?

6.5 Consider the following recursive mergesort algorithm (another classic divide

and conquer algorithm). Mergesort was fi rst described by John Von Neumann in

1945. Th

e basic idea is to divide an unsorted list x of m elements into two sublists

of about half the size of the original list. Repeat this operation on each sublist, and

6.16 Exercises

567

continue until we have lists of size 1 in length. Th

en starting with sublists of length

1, “merge” the two sublists into a single sorted list.

Mergesort(m)

var list left, right, result

if length(m) ≤ 1

return m

else

var middle = length(m) / 2

for each x in m up to middle

add x to left

for each x in m after middle

add x to right

left = Mergesort(left)

right = Mergesort(right)

result = Merge(left, right)

return result

Th

e merge step is carried out by the following code:

Merge(left,right)

var list result

while length(left) >0 and length(right) > 0

if first(left) ≤ first(right)

append first(left) to result

left = rest(left)

else

append first(right) to result

right = rest(right)

if length(left) >0

append rest(left) to result

if length(right) >0

append rest(right) to result

return result

6.5.1 [10] <§6.2> Assume that you have Y cores on a multicore processor to run

MergeSort. Assuming that Y is much smaller than length(m), express the speedup

factor you might expect to obtain for values of Y and length(m). Plot these on a

graph.

6.5.2 [10] <§6.2> Next, assume that Y is equal to length (m). How would this

aff ect your conclusions your previous answer? If you were tasked with obtaining

the best speedup factor possible (i.e., strong scaling), explain how you might

change this code to obtain it.

568

Chapter 6 Parallel Processors from Client to Cloud

6.6 Matrix multiplication plays an important role in a number of applications.

Two matrices can only be multiplied if the number of columns of the fi rst matrix is

equal to the number of rows in the second.

Let’s assume we have an m × n matrix A and we want to multiply it by an n × p matrix B. We can express their product as an m × p matrix denoted by AB (or A ⋅ B).

If we assign C = AB, and c denotes the entry in C at position (i, j), then for each i,j

element i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Now we want to see if we can parallelize the computation of C. Assume that matrices are laid out in memory sequentially as

follows: a , a , a , a , …, etc.

1,1

2,1

3,1

4,1

6.6.1 [10] <§6.5> Assume that we are going to compute C on both a single core shared memory machine and a 4-core shared-memory machine. Compute the

speedup we would expect to obtain on the 4-core machine, ignoring any memory

issues.

6.6.2 [10] <§6.5> Repeat Exercise 6.6.1, assuming that updates to C incur a cache miss due to false sharing when consecutive elements are in a row (i.e., index i) are

updated.

6.6.3 [10] <§6.5> How would you fi x the false sharing issue that can occur?

6.7 Consider the following portions of two diff erent programs running at the

same time on four processors in a symmetric multicore processor (SMP). Assume

that before this code is run, both x and y are 0.

Core 1: x = 2;

Core 2: y = 2;

Core 3: w = x + y + 1;

Core 4: z = x + y;

6.7.1 [10] <§6.5> What are all the possible resulting values of w, x, y, and z? For each possible outcome, explain how we might arrive at those values. You will need

to examine all possible interleavings of instructions.

6.7.2 [5] <§6.5> How could you make the execution more deterministic so that

only one set of values is possible?

6.8 Th

e dining philosopher’s problem is a classic problem of synchronization and

concurrency. Th

e general problem is stated as philosophers sitting at a round table

doing one of two things: eating or thinking. When they are eating, they are not

thinking, and when they are thinking, they are not eating. Th

ere is a bowl of pasta

in the center. A fork is placed in between each philosopher. Th

e result is that each

philosopher has one fork to her left and one fork to her right. Given the nature of

eating pasta, the philosopher needs two forks to eat, and can only use the forks on

her immediate left and right. Th

e philosophers do not speak to one another.

6.16 Exercises

569

6.8.1 [10] <§6.7> Describe the scenario where none of philosophers ever eats (i.e., starvation). What is the sequence of events that happen that lead up to this problem?

6.8.2 [10] <§6.7> Describe how we can solve this problem by introducing the

concept of a priority? But can we guarantee that we will treat all the philosophers

fairly? Explain.

Now assume we hire a waiter who is in charge of assigning forks to philosophers.

Nobody can pick up a fork until the waiter says they can. Th

e waiter has global

knowledge of all forks. Further, if we impose the policy that philosophers will

always request to pick up their left fork before requesting to pick up their right

fork, then we can guarantee to avoid deadlock.

6.8.3 [10] <§6.7> We can implement requests to the waiter as either a queue of

requests or as a periodic retry of a request. With a queue, requests are handled in

the order they are received. Th

e problem with using the queue is that we may not

always be able to service the philosopher whose request is at the head of the queue

(due to the unavailability of resources). Describe a scenario with 5 philosophers

where a queue is provided, but service is not granted even though there are forks

available for another philosopher (whose request is deeper in the queue) to eat.

6.8.4 [10] <§6.7> If we implement requests to the waiter by periodically repeating

our request until the resources become available, will this solve the problem

described in Exercise 6.8.3? Explain.

6.9 Consider the following three CPU organizations:

CPU SS: A 2-core superscalar microprocessor that provides out-of-order issue

capabilities on 2 function units (FUs). Only a single thread can run on each core

at a time.

CPU MT: A fi ne-grained multithreaded processor that allows instructions from 2

threads to be run concurrently (i.e., there are two functional units), though only

instructions from a single thread can be issued on any cycle.

CPU SMT: An SMT processor that allows instructions from 2 threads to be run

concurrently (i.e., there are two functional units), and instructions from either or

both threads can be issued to run on any cycle.

Assume we have two threads X and Y to run on these CPUs that include the

following operations:

Thread X

Thread Y

A1 – takes 3 cycles to execute

B1 – take 2 cycles to execute

A2 – no dependences

B2 – confl icts for a functional unit with B1

A3 – confl icts for a functional unit with A1

B3 – depends on the result of B2

A4 – depends on the result of A3

B4 – no dependences and takes 2 cycles to execute

570

Chapter 6 Parallel Processors from Client to Cloud

Assume all instructions take a single cycle to execute unless noted otherwise or

they encounter a hazard.

6.9.1 [10] <§6.4> Assume that you have 1 SS CPU. How many cycles will it take to

execute these two threads? How many issue slots are wasted due to hazards?

6.9.2 [10] <§6.4> Now assume you have 2 SS CPUs. How many cycles will it take

to execute these two threads? How many issue slots are wasted due to hazards?

6.9.3 [10] <§6.4> Assume that you have 1 MT CPU. How many cycles will it take

to execute these two threads? How many issue slots are wasted due to hazards?

6.10 Virtualization soft ware is being aggressively deployed to reduce the costs of

managing today’s high performance servers. Companies like VMWare, Microsoft

and IBM have all developed a range of virtualization products. Th

e general concept,

described in Chapter 5, is that a hypervisor layer can be introduced between the

hardware and the operating system to allow multiple operating systems to share

the same physical hardware. Th

e hypervisor layer is then responsible for allocating

CPU and memory resources, as well as handling services typically handled by the

operating system (e.g., I/O).

Virtualization provides an abstract view of the underlying hardware to the hosted

operating system and application soft ware. Th

is will require us to rethink how

multi-core and multiprocessor systems will be designed in the future to support

the sharing of CPUs and memories by a number of operating systems concurrently.

6.10.1 [30] <§6.4> Select two hypervisors on the market today, and compare

and contrast how they virtualize and manage the underlying hardware (CPUs and

memory).

6.10.2 [15] <§6.4> Discuss what changes may be necessary in future multi-core

CPU platforms in order to better match the resource demands placed on these

systems. For instance, can multithreading play an eff ective role in alleviating the

competition for computing resources?

6.11 We would like to execute the loop below as effi

ciently as possible. We have

two diff erent machines, a MIMD machine and a SIMD machine.

for (i=0; i < 2000; i++)

for (j=0; j<3000; j++)

X_array[i][j] = Y_array[j][i] + 200;

6.11.1 [10] <§6.3> For a 4 CPU MIMD machine, show the sequence of MIPS

instructions that you would execute on each CPU. What is the speedup for this

MIMD machine?

6.11.2 [20] <§6.3> For an 8-wide SIMD machine (i.e., 8 parallel SIMD functional

units), write an assembly program in using your own SIMD extensions to MIPS

to execute the loop. Compare the number of instructions executed on the SIMD

machine to the MIMD machine.

6.16 Exercises

571

6.12 A systolic array is an example of an MISD machine. A systolic array is a

pipeline network or “wavefront” of data processing elements. Each of these elements

does not need a program counter since execution is triggered by the arrival of data.

Clocked systolic arrays compute in “lock-step” with each processor undertaking

alternate compute and communication phases.

6.12.1 [10] <§6.3> Consider proposed implementations of a systolic array (you

can fi nd these in on the Internet or in technical publications). Th

en attempt to

program the loop provided in Exercise 6.11 using this MISD model. Discuss any

diffi

culties you encounter.

6.12.2 [10] <§6.3> Discuss the similarities and diff erences between an MISD and

SIMD machine. Answer this question in terms of data-level parallelism.

6.13 Assume we want to execute the DAXPY loop show on page 511 in MIPS

assembly on the NVIDIA 8800 GTX GPU described in this chapter. In this problem,

we will assume that all math operations are performed on single-precision fl oating-

point numbers (we will rename the loop SAXPY). Assume that instructions take

the following number of cycles to execute.

Loads

Stores

Add.S

Mult.S

5

2

3

4

6.13.1 [20] <§6.6> Describe how you will constructs warps for the SAXPY loop

to exploit the 8 cores provided in a single multiprocessor.

6.14 Download the CUDA Toolkit and SDK from http://www.nvidia.com/object/

cuda_get.html. Make sure to use the “emurelease” (Emulation Mode) version of the code (you will not need actual NVIDIA hardware for this assignment). Build the

example programs provided in the SDK, and confi rm that they run on the emulator.

6.14.1 [90] <§6.6> Using the “template” SDK sample as a starting point, write a

CUDA program to perform the following vector operations:

1) a − b (vector-vector subtraction)

2) a ⋅ b (vector dot product)

Th

e dot product of two vectors a = [a , a , … , a] and b = [b , b , … , b] is defi ned as: 1

2

 n

1

2

 n

 n

…

a ⋅ b

∑ a b a b a b

 a b

 i i

1 1

2 2

 n n

 i 1

Submit code for each program that demonstrates each operation and verifi es the

correctness of the results.

6.14.2 [90] <§6.6> If you have GPU hardware available, complete a performance

analysis your program, examining the computation time for the GPU and a CPU

version of your program for a range of vector sizes. Explain any results you see.

572

Chapter 6 Parallel Processors from Client to Cloud

6.15 AMD has recently announced that they will be integrating a graphics

processing unit with their x86 cores in a single package, though with diff erent

clocks for each of the cores. Th

is is an example of a heterogeneous multiprocessor

system which we expect to see produced commericially in the near future. One

of the key design points will be to allow for fast data communication between

the CPU and the GPU. Presently communications must be performed between

discrete CPU and GPU chips. But this is changing in AMDs Fusion architecture.

Presently the plan is to use multiple (at least 16) PCI express channels for facilitate

intercommunication. Intel is also jumping into this arena with their Larrabee chip.

Intel is considering to use their QuickPath interconnect technology.

6.15.1 [25] <§6.6> Compare the bandwidth and latency associated with these

two interconnect technologies.

6.16 Refer to Figure 6.14b, which shows an n-cube interconnect topology of order 3 that interconnects 8 nodes. One attractive feature of an n-cube interconnection

network topology is its ability to sustain broken links and still provide connectivity.

6.16.1 [10] <§6.8> Develop an equation that computes how many links in the

n-cube (where n is the order of the cube) can fail and we can still guarantee an

unbroken link will exist to connect any node in the n-cube.

6.16.2 [10] <§6.8> Compare the resiliency to failure of n-cube to a fully-

connected interconnection network. Plot a comparison of reliability as a function

of the added number of links for the two topologies.

6.17 Benchmarking is fi eld of study that involves identifying representative

workloads to run on specifi c computing platforms in order to be able to objectively

compare performance of one system to another. In this exercise we will compare

two classes of benchmarks: the Whetstone CPU benchmark and the PARSEC

Benchmark suite. Select one program from PARSEC. All programs should be freely

available on the Internet. Consider running multiple copies of Whetstone versus

running the PARSEC Benchmark on any of systems described in Section 6.11.

6.17.1 [60] <§6.10> What is inherently diff erent between these two classes of

workload when run on these multi-core systems?

6.17.2 [60] <§6.10> In terms of the Roofl ine Model, how dependent will the

results you obtain when running these benchmarks be on the amount of sharing

and synchronization present in the workload used?

6.18 When performing computations on sparse matrices, latency in the memory

hierarchy becomes much more of a factor. Sparse matrices lack the spatial locality

in the data stream typically found in matrix operations. As a result, new matrix

representations have been proposed.

One the earliest sparse matrix representations is the Yale Sparse Matrix Format. It

stores an initial sparse m × n matrix, M in row form using three one-dimensional

6.16 Exercises

573

arrays. Let R be the number of nonzero entries in M. We construct an array A

of length R that contains all nonzero entries of M (in left -to-right top-to-bottom order). We also construct a second array IA of length m + 1 (i.e., one entry per row, plus one). IA(i) contains the index in A of the fi rst nonzero element of row i. Row i of the original matrix extends from A(IA(i)) to A(IA(i+1)−1). Th e third array, JA,

contains the column index of each element of A, so it also is of length R.

6.18.1 [15] <§6.10> Consider the sparse matrix X below and write C code that would store this code in Yale Sparse Matrix Format.

Row 1 [1, 2, 0, 0, 0, 0]

Row 2 [0, 0, 1, 1, 0, 0]

Row 3 [0, 0, 0, 0, 9, 0]

Row 4 [2, 0, 0, 0, 0, 2]

Row 5 [0, 0, 3, 3, 0, 7]

Row 6 [1, 3, 0, 0, 0, 1]

6.18.2 [10] <§6.10> In terms of storage space, assuming that each element in

matrix X is single precision fl oating point, compute the amount of storage used to

store the Matrix above in Yale Sparse Matrix Format.

6.18.3 [15] <§6.10> Perform matrix multiplication of Matrix X by Matrix Y

shown below.

[2, 4, 1, 99, 7, 2]

Put this computation in a loop, and time its execution. Make sure to increase

the number of times this loop is executed to get good resolution in your timing

measurement. Compare the runtime of using a naïve representation of the matrix,

and the Yale Sparse Matrix Format.

6.18.4 [15] <§6.10> Can you fi nd a more effi

cient sparse matrix representation

(in terms of space and computational overhead)?

6.19 In future systems, we expect to see heterogeneous computing platforms

constructed out of heterogeneous CPUs. We have begun to see some appear in the

embedded processing market in systems that contain both fl oating point DSPs and

a microcontroller CPUs in a multichip module package.

Assume that you have three classes of CPU:

CPU A—A moderate speed multi-core CPU (with a fl oating point unit) that can

execute multiple instructions per cycle.

CPU B—A fast single-core integer CPU (i.e., no fl oating point unit) that can

execute a single instruction per cycle.

CPU C—A slow vector CPU (with fl oating point capability) that can execute

multiple copies of the same instruction per cycle.

574

Chapter 6 Parallel Processors from Client to Cloud

Assume that our processors run at the following frequencies:

CPU A

CPU B

CPU C

1 GHz

3 GHz

250 MHz

CPU A can execute 2 instructions per cycle, CPU B can execute 1 instruction per

cycle, and CPU C can execute 8 instructions (though the same instruction) per

cycle. Assume all operations can complete execution in a single cycle of latency

without any hazards.

All three CPUs have the ability to perform integer arithmetic, though CPU B cannot

perform fl oating point arithmetic. CPU A and B have an instruction set similar

to a MIPS processor. CPU C can only perform fl oating point add and subtract

operations, as well as memory loads and stores. Assume all CPUs have access to

shared memory and that synchronization has zero cost.

Th

e task at hand is to compare two matrices X and Y that each contain 1024 × 1024

fl oating point elements. Th

e output should be a count of the number indices where

the value in X was larger or equal to the value in Y.

6.19.1 [10] <§6.11> Describe how you would partition the problem on the 3

diff erent CPUs to obtain the best performance.

6.19.2 [10] <§6.11> What kind of instruction would you add to the vector CPU

C to obtain better performance?

6.20 Assume a quad-core computer system can process database queries at a

steady state rate of requests per second. Also assume that each transaction takes,

on average, a fi xed amount of time to process. Th

e following table shows pairs of

transaction latency and processing rate.

Average Transaction Latency

Maximum transaction processing rate

1 ms

5000/sec

2 ms

5000/sec

1 ms

10,000/sec

2 ms

10,000/sec

For each of the pairs in the table, answer the following questions:

6.20.1 [10] <§6.11> On average, how many requests are being processed at any

given instant?

6.20.2 [10] <§6.11> If move to an 8-core system, ideally, what will happen to the

system throughput (i.e., how many queries/second will the computer process)?

6.20.3 [10] <§6.11> Discuss why we rarely obtain this kind of speedup by simply

increasing the number of cores.

6.16 Exercises

575

§6.1, page 504: False. Task-level parallelism can help sequential applications and Answers to sequential applications can be made to run on parallel hardware, although it is Check Yourself more challenging.

§6.2, page 509: False. Weak scaling can compensate for a serial portion of the

program that would otherwise limit scalability, but not so for strong scaling.

§6.3, page 514: True, but they are missing useful vector features like gather-scatter

and vector length registers that improve the effi

ciency of vector architectures.

(As an elaboration in this section mentions, the AVX2 SIMD extensions off ers

indexed loads via a gather operation but not scatter for indexed stores. Th

e Haswell

generation x86 microprocessor is the fi rst to support AVX2.)

§6.4, page 519: 1. True. 2. True.

§6.5, page 523: False. Since the shared address is a physical address, multiple

tasks each in their own virtual address spaces can run well on a shared memory

multiprocessor.

§6.6, page 531: False. Graphics DRAM chips are prized for their higher bandwidth.

§6.7, page 536: 1. False. Sending and receiving a message is an implicit

synchronization, as well as a way to share data. 2. True.

§6.8, page 538: True.

§6.10, page 550: True. We likely need innovation at all levels of the hardware and

soft ware stack for parallel computing to succeed.

A

A

P

P

E

N

D

I

X

Assemblers, Linkers,

and the SPIM

Simulator

 Fear of serious injury

 cannot alone justify

 James R. Larus

 suppression of free

Microsoft Research

 speech and assembly.

Microsoft

Louis Brandeis

 Whitney v. California, 1927

A.1 Introduction

A-3

A.2 Assemblers

A-10

A.3 Linkers

A-18

A.4 Loading

A-19

A.5 Memory

Usage

A-20

A.6

Procedure Call Convention A-22

A.7

Exceptions and Interrupts A-33

A.8

Input and Output A-38

A.9 SPIM

A-40

A.10

MIPS R2000 Assembly Language A-45

A.11 Concluding

Remarks

A-81

A.12 Exercises

A-82

 A.1 Introduction

Encoding instructions as binary numbers is natural and effi

cient for computers.

Humans, however, have a great deal of diffi

culty understanding and manipulating

these numbers. People read and write symbols (words) much better than long

sequences of digits. Chapter 2 showed that we need not choose between numbers

and words, because computer instructions can be represented in many ways.

Humans can write and read symbols, and computers can execute the equivalent

binary numbers. Th

is appendix describes the process by which a human-readable

program is translated into a form that a computer can execute, provides a few hints

about writing assembly programs, and explains how to run these programs on

SPIM, a simulator that executes MIPS programs. UNIX, Windows, and Mac OS X

versions of the SPIM simulator are available on the CD.

 Assembly language is the symbolic representation of a computer’s binary machine language encoding—the machine language. Assembly language is more readable than Binary representation machine language, because it uses symbols instead of bits. Th

e symbols in assembly

used for communication

language name commonly occurr in bit patterns, such as opcodes and register within a computer

specifi ers, so people can read and remember them. In addition, assembly language system.

A-4

Appendix A Assemblers, Linkers, and the SPIM Simulator

Source

Object

file

Assembler

file

Source

Object

Executable

Assembler

Linker

file

file

file

Source

Object

Program

Assembler

file

file

library

FIGURE A.1.1 The process that produces an executable fi le. An assembler translates a fi le of assembly language into an object fi le, which is linked with other fi les and libraries into an executable fi le.

assembler A program

permits programmers to use labels to identify and name particular memory words

that translates a symbolic

that hold instructions or data.

version of instruction into

A tool called an assembler translates assembly language into binary instructions.

the binary ver sion.

Assemblers provide a friendlier representation than a computer’s 0s and 1s, which

macro A pattern-

sim plifi es writing and reading programs. Symbolic names for operations and loca-

matching and replacement

tions are one facet of this representation. Another facet is programming facilities

facility that pro vides a

that increase a program’s clarity. For example, macros, discussed in Section A.2,

simple mechanism to name

enable a programmer to extend the assembly language by defi ning new operations.

a frequently used sequence

An assembler reads a single assembly language source fi le and produces an

of instructions.

 object fi le containing machine instructions and bookkeeping information that

unresolved reference

helps combine several object fi les into a program. Figure A.1.1 illustrates how a A reference that requires

program is built. Most programs consist of several fi les—also called modules—

more information from

that are written, compiled, and assembled independently. A program may also use

an outside source to be

prewritten routines supplied in a program library. A module typically contains ref-

complete.

 erences to subroutines and data defi ned in other modules and in libraries. Th

e code

linker Also called

in a module cannot be executed when it contains unresolved references to labels

link editor. A systems

in other object fi les or libraries. Another tool, called a linker, combines a collection

program that combines

of object and library fi les into an executable fi le, which a computer can run.

independently assembled

machine language

To see the advantage of assembly language, consider the following sequence of

programs and resolves all

fi gures, all of which contain a short subroutine that computes and prints the sum of

undefi ned labels into an

the squares of integers from 0 to 100. Figure A.1.2 shows the machine language that executable fi le.

a MIPS computer executes. With considerable eff ort, you could use the opcode and

instruction format tables in Chapter 2 to translate the instructions into a symbolic

program similar to that shown in Figure A.1.3. Th

is form of the routine is much

easier to read, because operations and operands are written with symbols rather

A.1 Introduction

A-5

00100111101111011111111111100000

10101111101111110000000000010100

10101111101001000000000000100000

10101111101001010000000000100100

10101111101000000000000000011000

10101111101000000000000000011100

10001111101011100000000000011100

10001111101110000000000000011000

00000001110011100000000000011001

00100101110010000000000000000001

00101001000000010000000001100101

10101111101010000000000000011100

00000000000000000111100000010010

00000011000011111100100000100001

00010100001000001111111111110111

10101111101110010000000000011000

00111100000001000001000000000000

10001111101001010000000000011000

00001100000100000000000011101100

00100100100001000000010000110000

10001111101111110000000000010100

00100111101111010000000000100000

00000011111000000000000000001000

00000000000000000001000000100001

FIGURE A.1.2 MIPS machine language code for a routine to compute and print the sum

of the squares of integers between 0 and 100.

than with bit patterns. However, this assembly language is still diffi

cult to follow,

because memory locations are named by their address rather than by a symbolic

label.

Figure A.1.4 shows assembly language that labels memory addresses with mne-

monic names. Most programmers prefer to read and write this form. Names that

begin with a period, for example .data and .globl, are assembler directives assembler directive that tell the assembler how to translate a program but do not produce machine An operation that tells the instructions. Names followed by a colon, such as str: or main:, are labels that assembler how to translate name the next memory location. Th

is program is as readable as most assembly a program but does not

produce machine instruc-

language programs (except for a glaring lack of comments), but it is still diffi

cult tions; always begins with

to follow, because many simple operations are required to accomplish simple tasks a period.

and because assembly language’s lack of control fl ow constructs provides few hints

about the program’s operation.

By contrast, the C routine in Figure A.1.5 is both shorter and clearer, since variables have mnemonic names and the loop is explicit rather than constructed with

branches. In fact, the C routine is the only one that we wrote. Th

e other forms of

the program were produced by a C compiler and assembler.

In general, assembly language plays two roles (see Figure A.1.6). Th

e fi rst role

is the output language of compilers. A compiler translates a program written in a

 high-level language (such as C or Pascal) into an equivalent program in machine or

A-6

Appendix A Assemblers, Linkers, and the SPIM Simulator

addiu

$29, $29, -32

sw $31,

20($29)

sw $4,

32($29)

sw $5,

36($29)

sw $0,

24($29)

sw $0,

28($29)

lw $14,

28($29)

lw $24,

24($29)

multu $14,

$14

addiu

$8, $14, 1

slti

$1, $8, 101

sw $8,

28($29)

mflo $15

addu

$25, $24, $15

bne

$1, $0, -9

sw $25,

24($29)

lui $4,

4096

lw $5,

24($29)

jal 1048812

addiu

$4, $4, 1072

lw $31,

20($29)

addiu

$29, $29, 32

jr $31

move $2,

$0

FIGURE A.1.3 The same routine as in Figure A.1.2 written in assembly language. However,

the code for the routine does not label registers or memory locations or include comments.

source language Th

e

assembly language. Th

e high-level language is called the source language, and the

high-level language

compiler’s output is its target language.

in which a pro gram is

Assembly language’s other role is as a language in which to write programs. Th

is

originally written.

role used to be the dominant one. Today, however, because of larger main memo-

ries and better compilers, most programmers write in a high-level language and

rarely, if ever, see the instructions that a computer executes. Nevertheless, assembly

language is still important to write programs in which speed or size is critical or to

exploit hardware features that have no analogues in high-level languages.

Although this appendix focuses on MIPS assembly language, assembly pro-

gramming on most other machines is very similar. Th

e additional instructions and

address modes in CISC machines, such as the VAX, can make assembly pro grams

shorter but do not change the process of assembling a program or provide assembly

language with the advantages of high-level languages, such as type-checking and

structured control fl ow.

A.1 Introduction

A-7

FIGURE A.1.4 The same routine as in Figure A.1.2 written in assembly language with

labels, but no com ments. Th

e commands that start with periods are assembler directives (see pages

A-47–49). .text indicates that succeeding lines contain instructions. .data indicates that they contain data. .align n indicates that the items on the succeeding lines should be aligned on a 2 n byte boundary.

Hence, .align 2 means the next item should be on a word boundary. .globl main declares that main is a global symbol that should be visible to code stored in other fi les. Finally, .asciiz stores a null-terminated string in memory.

When to Use Assembly Language

Th

e primary reason to program in assembly language, as opposed to an available

high-level language, is that the speed or size of a program is critically important.

For example, consider a computer that controls a piece of machinery, such as a

car’s brakes. A computer that is incorporated in another device, such as a car, is

called an embedded computer. Th

is type of computer needs to respond rapidly

and predictably to events in the outside world. Because a compiler introduces

A-8

Appendix A Assemblers, Linkers, and the SPIM Simulator

#include <stdio.h>

int

main (int argc, char *argv[])

{

int i;

int sum = 0;

for (i = 0; i <= 100; i = i + 1) sum = sum + i * i;

printf (“The sum from 0 .. 100 is %d\n”, sum);

}

FIGURE A.1.5 The routine in Figure A.1.2 written in the C programming language.

High-level language program

Program

Compiler

Assembler

Linker

Computer

Assembly language program

FIGURE A.1.6 Assembly language either is written by a programmer or is the output of

a compiler.

uncertainty about the time cost of operations, programmers may fi nd it diffi

cult

to ensure that a high-level language program responds within a defi nite time

interval—say, 1 millisecond aft er a sensor detects that a tire is skidding. An

assembly language programmer, on the other hand, has tight control over which

instruc tions execute. In addition, in embedded applications, reducing a program’s

size, so that it fi ts in fewer memory chips, reduces the cost of the embedded

computer.

A hybrid approach, in which most of a program is written in a high-level lan-

guage and time-critical sections are written in assembly language, builds on the

strengths of both languages. Programs typically spend most of their time execut ing

a small fraction of the program’s source code. Th

is observation is just the prin ciple

of locality that underlies caches (see Section 5.1 in Chapter 5).

Program profi ling measures where a program spends its time and can fi nd the

time-critical parts of a program. In many cases, this portion of the program can

be made faster with better data structures or algorithms. Sometimes, however, sig-

nifi cant performance improvements only come from recoding a critical portion of

a program in assembly language.

A.1 Introduction

A-9

Th

is improvement is not necessarily an indication that the high-level language’s

compiler has failed. Compilers typically are better than programmers at produc-

ing uniformly high-quality machine code across an entire program. Pro grammers,

however, understand a program’s algorithms and behavior at a deeper level than

a compiler and can expend considerable eff ort and ingenuity improving small

sections of the program. In particular, programmers oft en consider several proce-

dures simultaneously while writing their code. Compilers typically compile each

procedure in isolation and must follow strict conventions governing the use of

registers at procedure boundaries. By retaining commonly used values in regis-

ters, even across procedure boundaries, programmers can make a program run

faster.

Another major advantage of assembly language is the ability to exploit special-

ized instructions—for example, string copy or pattern-matching instructions.

Compilers, in most cases, cannot determine that a program loop can be replaced

by a single instruction. However, the programmer who wrote the loop can replace

it easily with a single instruction.

Currently, a programmer’s advantage over a compiler has become diffi

cult to

maintain as compilation techniques improve and machines’ pipelines increase in

complexity (Chapter 4).

Th

e fi nal reason to use assembly language is that no high-level language is

available on a particular computer. Many older or specialized computers do not

have a compiler, so a programmer’s only alternative is assembly language.

Drawbacks of Assembly Language

Assembly language has many disadvantages that strongly argue against its wide-

spread use. Perhaps its major disadvantage is that programs written in assembly

language are inherently machine-specifi c and must be totally rewritten to run on

another computer architecture. Th

e rapid evolution of computers discussed in

Chapter 1 means that architectures become obsolete. An assembly language pro-

gram remains tightly bound to its original archi tecture, even aft er the computer is

eclipsed by new, faster, and more cost-eff ective machines.

Another disadvantage is that assembly language programs are longer than the

equivalent programs written in a high-level language. For example, the C program

in Figure A.1.5 is 11 lines long, while the assembly program in Figure A.1.4 is 31 lines long. In more complex programs, the ratio of assembly to high-level language (its expansion factor) can be much larger than the factor of three in this

exam ple. Unfortunately, empirical studies have shown that programmers write

roughly the same number of lines of code per day in assembly as in high-level

languages. Th

is means that programmers are roughly x times more productive in a

high-level language, where x is the assembly language expansion factor.

A-10

Appendix A Assemblers, Linkers, and the SPIM Simulator

To compound the problem, longer programs are more diffi

cult to read and

understand, and they contain more bugs. Assembly language exacerbates the prob-

lem because of its complete lack of structure. Common programming idioms,

such as if-then statements and loops, must be built from branches and jumps. Th

e

resulting programs are hard to read, because the reader must reconstruct every

higher-level construct from its pieces and each instance of a statement may be

slightly diff erent. For example, look at Figure A.1.4 and answer these questions: What type of loop is used? What are its lower and upper bounds?

Elaboration: Compilers can produce machine language directly instead of relying on

an assembler. These compilers typically execute much faster than those that invoke

an assembler as part of compilation. However, a compiler that generates machine lan-

guage must perform many tasks that an assembler normally handles, such as resolv-

ing addresses and encoding instructions as binary numbers. The tradeoff is between

compilation speed and compiler simplicity.

Elaboration: Despite these considerations, some embedded applications are writ-

ten in a high-level language. Many of these applications are large and complex pro-

grams that must be extremely reliable. Assembly language programs are longer and

more diffi cult to write and read than high-level language programs. This greatly increases

the cost of writing an assembly language program and makes it extremely dif fi cult to

verify the correctness of this type of program. In fact, these considerations led the US

Department of Defense, which pays for many complex embedded systems, to develop

Ada, a new high-level language for writing embedded systems.

 A.2 Assemblers

An assembler translates a fi le of assembly language statements into a fi le of binary

machine instructions and binary data. Th

e translation process has two major

parts. Th

e fi rst step is to fi nd memory locations with labels so that the relationship

between symbolic names and addresses is known when instructions are trans lated.

Th

e second step is to translate each assembly statement by combining the numeric

external label Also called

equivalents of opcodes, register specifi ers, and labels into a legal instruc tion. As

global label. A label

shown in Figure A.1.1, the assembler produces an output fi le, called an object fi le, referring to an object that

which contains the machine instructions, data, and bookkeeping infor mation.

can be referenced from

fi les other than the one in

An object fi le typically cannot be executed, because it references procedures or

which it is defi ned.

data in other fi les. A label is external (also called global) if the labeled object can

A.2 Assemblers

A-11

be referenced from fi les other than the one in which it is defi ned. A label is local

if the object can be used only within the fi le in which it is defi ned. In most assem-

blers, labels are local by default and must be explicitly declared global. Subrou tines

and global variables require external labels since they are referenced from many local label A label fi les in a program. Local labels hide names that should not be visible to other referring to an object that modules—for example, static functions in C, which can only be called by other can be used only within functions in the same fi le. In addition, compiler-generated names—for example, a the fi le in which it is name for the instruction at the beginning of a loop—are local so that the compiler defi ned.

need not produce unique names in every fi le.

Local and Global Labels

Consider the program in Figure A.1.4. Th

e subroutine has an external (global)

label main. It also contains two local labels—loop and str—that are only

EXAMPLE

visible with this assembly language fi le. Finally, the routine also contains an

unresolved reference to an external label printf, which is the library routine

that prints values. Which labels in Figure A.1.4 could be referenced from

another fi le?

Only global labels are visible outside a fi le, so the only label that could be

referenced from another fi le is main.

ANSWER

Since the assembler processes each fi le in a program individually and in isola tion,

it only knows the addresses of local labels. Th

e assembler depends on another tool,

the linker, to combine a collection of object fi les and libraries into an executable

fi le by resolving external labels. Th

e assembler assists the linker by pro viding lists

of labels and unresolved references.

However, even local labels present an interesting challenge to an assembler.

Unlike names in most high-level languages, assembly labels may be used before

they are defi ned. In the example in Figure A.1.4, the label str is used by the la instruction before it is defi ned. Th

e possibility of a forward reference, like this one, forward reference

forces an assembler to translate a program in two steps: fi rst fi nd all labels and then A label that is used produce instructions. In the example, when the assembler sees the la instruction, before it is defi ned.

it does not know where the word labeled str is located or even whether str labels

an instruction or datum.

A-12

Appendix A Assemblers, Linkers, and the SPIM Simulator

An assembler’s fi rst pass reads each line of an assembly fi le and breaks it into its

component pieces. Th

ese pieces, which are called lexemes, are individual words,

numbers, and punctuation characters. For example, the line

ble

$t0, 100, loop

contains six lexemes: the opcode ble, the register specifi er $t0, a comma, the

number 100, a comma, and the symbol loop.

symbol table A table

If a line begins with a label, the assembler records in its symbol table the name

that matches names of

of the label and the address of the memory word that the instruction occupies.

labels to the addresses of

Th

e assembler then calculates how many words of memory the instruction on the

the memory words that

current line will occupy. By keeping track of the instructions’ sizes, the assembler

instructions occupy.

can determine where the next instruction goes. To compute the size of a variable-

length instruction, like those on the VAX, an assembler has to examine it in detail.

However, fi xed-length instructions, like those on MIPS, require only a cursory

examination. Th

e assembler performs a similar calculation to compute the space

required for data statements. When the assembler reaches the end of an assembly

fi le, the symbol table records the location of each label defi ned in the fi le.

Th

e assembler uses the information in the symbol table during a second pass

over the fi le, which actually produces machine code. Th

e assembler again exam-

ines each line in the fi le. If the line contains an instruction, the assembler com-

bines the binary representations of its opcode and operands (register specifi ers or

memory address) into a legal instruction. Th

e process is similar to the one used in

Section 2.5 in Chapter 2. Instructions and data words that reference an external

symbol defi ned in another fi le cannot be completely assembled (they are unre-

solved), since the symbol’s address is not in the symbol table. An assembler does

not complain about unresolved references, since the corresponding label is likely

to be defi ned in another fi le.

Assembly language is a programming language. Its principal diff erence

The BIG

from high-level languages such as BASIC, Java, and C is that assembly lan-

Picture

guage provides only a few, simple types of data and control fl ow. Assembly

language programs do not specify the type of value held in a variable.

Instead, a programmer must apply the appropriate operations (e.g., integer

or fl oating-point addition) to a value. In addition, in assem bly language,

programs must implement all control fl ow with go to s. Both factors make

assembly language programming for any machine—MIPS or x86—more

diffi

cult and error-prone than writing in a high-level language.

A.2 Assemblers

A-13

Elaboration: If an assembler’s speed is important, this two-step process can be done

in one pass over the assembly fi le with a technique known as backpatching. In its

backpatching

pass over the fi le, the assembler builds a (possibly incomplete) binary representation

A method for translating

of every instruction. If the instruction references a label that has not yet been defi ned,

from assembly lan guage

the assembler records the label and instruction in a table. When a label is defi ned, the

to machine instructions

assembler consults this table to fi nd all instructions that contain a forward reference to

in which the assembler

the label. The assembler goes back and corrects their binary representation to incorpo-

builds a (possibly

rate the address of the label. Backpatching speeds assembly because the assembler

incomplete) binary

only reads its input once. However, it requires an assembler to hold the entire binary rep-

representation of every

instruc tion in one pass

resentation of a program in memory so instructions can be backpatched. This require-

over a program and then

ment can limit the size of programs that can be assembled. The process is com plicated

returns to fi ll in previ-

by machines with several types of branches that span different ranges of instructions.

ously undefi ned labels.

When the assembler fi rst sees an unresolved label in a branch instruction, it must either

use the largest possible branch or risk having to go back and readjust many instructions

to make room for a larger branch.

Object File Format

Assemblers produce object fi les. An object fi le on UNIX contains six distinct

sections (see Figure A.2.1):

■ Th

e object fi le header describes the size and position of the other pieces of

the fi le.

text segment Th

e

segment of a UNIX

■ Th

e text segment contains the machine language code for routines in the object fi le that contains source fi le. Th

ese routines may be unexecutable because of unresolved the machine language

references.

code for rou tines in the

source fi le.

■ Th

e data segment contains a binary representation of the data in the source

fi le. Th

e data also may be incomplete because of unresolved references to data segment Th e

labels in other fi les.

segment of a UNIX

object or executable fi le

■ Th

e relocation information identifi es instructions and data words that that contains a binary depend on absolute addresses. Th

ese references must change if portions of represen tation of the

the program are moved in memory.

initialized data used by

the program.

■ Th

e symbol table associates addresses with external labels in the source fi le relocation information and lists unresolved references.

Th

e segment of a UNIX

■ Th

e debugging information contains a concise description of the way the object fi le that identifi es program was compiled, so a debugger can fi nd which instruction addresses instructions and data

words that depend on

correspond to lines in a source fi le and print the data structures in readable absolute addresses.

form.

absolute address

Th

e assembler produces an object fi le that contains a binary representation of A variable’s or routine’s the program and data and additional information to help link pieces of a program. actual address in memory.

A-14

Appendix A Assemblers, Linkers, and the SPIM Simulator

Object file

Text

Data

Relocation

Symbol

Debugging

header

segment

segment

information

table

information

FIGURE A.2.1 Object fi le. A UNIX assembler produces an object fi le with six distinct sections.

Th

is relocation information is necessary because the assembler does not know

which memory locations a procedure or piece of data will occupy aft er it is linked

with the rest of the program. Procedures and data from a fi le are stored in a con-

tiguous piece of memory, but the assembler does not know where this mem ory will

be located. Th

e assembler also passes some symbol table entries to the linker. In

particular, the assembler must record which external symbols are defi ned in a fi le

and what unresolved references occur in a fi le.

Elaboration: For convenience, assemblers assume each fi le starts at the same

address (for example, location 0) with the expectation that the linker will relocate the code and data when they are assigned locations in memory. The assembler produces relocation

 information, which contains an entry describing each instruction or data word in the fi le that references an absolute address. On MIPS, only the subroutine call, load, and store

instructions reference absolute addresses. Instructions that use PC- relative addressing,

such as branches, need not be relocated.

Additional Facilities

Assemblers provide a variety of convenience features that help make assembler

programs shorter and easier to write, but do not fundamentally change assembly

language. For example, data layout directives allow a programmer to describe data

in a more concise and natural manner than its binary representation.

In Figure A.1.4, the directive

.asciiz “The sum from 0 .. 100 is %d\n”

stores characters from the string in memory. Contrast this line with the alternative

of writing each character as its ASCII value (Figure 2.15 in Chapter 2 describes the

ASCII encoding for characters):

.byte 84, 104, 101, 32, 115, 117, 109, 32

.byte 102, 114, 111, 109, 32, 48, 32, 46

.byte 46, 32, 49, 48, 48, 32, 105, 115

.byte 32, 37, 100, 10, 0

Th

e .asciiz directive is easier to read because it represents characters as letters,

not binary numbers. An assembler can translate characters to their binary repre-

sentation much faster and more accurately than a human can. Data layout directives

A.2 Assemblers

A-15

specify data in a human-readable form that the assembler translates to binary. Other

layout directives are described in Section A.10.

String Directive

Defi ne the sequence of bytes produced by this directive:

EXAMPLE

.asciiz “The quick brown fox jumps over the lazy dog”

.byte 84, 104, 101, 32, 113, 117, 105, 99

.byte 107, 32, 98, 114,

111, 119, 110, 32

ANSWER

.byte 102, 111, 120, 32, 106, 117, 109, 112

.byte 115, 32, 111, 118, 101, 114,

32, 116

.byte 104, 101, 32, 108,

97, 122, 121, 32

.byte 100, 111, 103, 0

 Macro is a pattern-matching and replacement facility that provides a simple

mechanism to name a frequently used sequence of instructions. Instead of repeat-

edly typing the same instructions every time they are used, a programmer invokes

the macro and the assembler replaces the macro call with the corresponding

sequence of instructions. Macros, like subroutines, permit a programmer to create

and name a new abstraction for a common operation. Unlike subroutines, how-

ever, macros do not cause a subroutine call and return when the program runs,

since a macro call is replaced by the macro’s body when the program is assembled.

Aft er this replacement, the resulting assembly is indistinguishable from the equiv-

alent program written without macros.

Macros

As an example, suppose that a programmer needs to print many numbers. Th

e

library routine printf accepts a format string and one or more values to print

EXAMPLE

as its arguments. A programmer could print the integer in register $7 with the

following instructions:

.data

int_str: .asciiz“%d”

.text

la

$a0, int_str # Load string address

into first arg

A-16

Appendix A Assemblers, Linkers, and the SPIM Simulator

mov

$a1, $7 # Load value into

second arg

jal

printf

Call the printf routine

Th

e .data directive tells the assembler to store the string in the program’s data

segment, and the .text directive tells the assembler to store the instruc tions

in its text segment.

However, printing many numbers in this fashion is tedious and produces a

verbose program that is diffi

cult to understand. An alternative is to introduce

a macro, print_int, to print an integer:

.data

int_str:.asciiz “%d”

.text

.macro

print_int($arg)

la $a0, int_str # Load string address into

first arg

mov $a1, $arg

Load macro’s parameter

($arg) into second arg

jal printf

Call the printf routine

.end_macro

print_int($7)

formal parameter

Th

e macro has a formal parameter, $arg, that names the argument to the

A variable that is the

macro. When the macro is expanded, the argument from a call is substituted

argument to a proce dure

for the formal parameter throughout the macro’s body. Th

en the assembler

or macro; it is replaced by

replaces the call with the macro’s newly expanded body. In the fi rst call on

that argument once the

print_int, the argument is $7, so the macro expands to the code

macro is expanded.

la $a0, int_str

mov $a1, $7

jal printf

In a second call on print_int, say, print_int($t0), the argument is $t0,

so the macro expands to

la $a0, int_str

mov $a1, $t0

jal printf

What does the call print_int($a0) expand to?

A.2 Assemblers

A-17

la $a0, int_str

mov $a1, $a0

ANSWER

jal printf

Th

is example illustrates a drawback of macros. A programmer who uses

this macro must be aware that print_int uses register $a0 and so cannot

correctly print the value in that register.

Some assemblers also implement pseudoinstructions, which are instructions pro-

Hardware/

vided by an assembler but not implemented in hardware. Chapter 2 contains Software

many examples of how the MIPS assembler synthesizes pseudoinstructions

and addressing modes from the spartan MIPS hardware instruction set. For Interface

example, Section 2.7 in Chapter 2 describes how the assembler synthesizes the

blt instruc tion from two other instructions: slt and bne. By extending the

instruction set, the MIPS assembler makes assembly language programming

easier without complicating the hardware. Many pseudoinstructions could also

be simulated with macros, but the MIPS assembler can generate better code for

these instructions because it can use a dedicated register ($at) and is able to

optimize the generated code.

Elaboration: Assemblers conditionally assemble pieces of code, which permits a

programmer to include or exclude groups of instructions when a program is assembled.

This feature is particularly useful when several versions of a program differ by a small

amount. Rather than keep these programs in separate fi les—which greatly complicates

fi xing bugs in the common code—programmers typically merge the versions into a sin-

gle fi le. Code particular to one version is conditionally assembled, so it can be excluded

when other versions of the program are assembled.

If macros and conditional assembly are useful, why do assemblers for UNIX systems

rarely, if ever, provide them? One reason is that most programmers on these systems

write programs in higher-level languages like C. Most of the assembly code is produced

by compilers, which fi nd it more convenient to repeat code rather than defi ne macros.

Another reason is that other tools on UNIX—such as cpp, the C preprocessor, or m4, a

general macro processor—can provide macros and conditional assembly for assembly

language programs.

A-18

Appendix A Assemblers, Linkers, and the SPIM Simulator

 A.3 Linkers

separate compilation

Separate compilation permits a program to be split into pieces that are stored in

Split ting a program across

diff erent fi les. Each fi le contains a logically related collection of subroutines and

many fi les, each of which

data structures that form a module in a larger program. A fi le can be compiled

can be com piled without

and assembled independently of other fi les, so changes to one module do not

knowledge of what is in

require recompiling the entire program. As we discussed above, separate compila-

the other fi les.

tion necessitates the additional step of linking to combine object fi les from separate

modules and fi xing their unresolved references.

Th

e tool that merges these fi les is the linker (see Figure A.3.1). It performs three tasks:

■ Searches the program libraries to fi nd library routines used by the program

■ Determines the memory locations that code from each module will occupy

and relocates its instructions by adjusting absolute references

■ Resolves references among fi les

A linker’s fi rst task is to ensure that a program contains no undefi ned labels. Th

e

linker matches the external symbols and unresolved references from a pro gram’s

fi les. An external symbol in one fi le resolves a reference from another fi le if both

refer to a label with the same name. Unmatched references mean a symbol was

used but not defi ned anywhere in the program.

Unresolved references at this stage in the linking process do not necessarily

mean a programmer made a mistake. Th

e program could have referenced a library

routine whose code was not in the object fi les passed to the linker. Aft er matching

symbols in the program, the linker searches the system’s program librar ies to

fi nd predefi ned subroutines and data structures that the program references. Th

e

basic libraries contain routines that read and write data, allocate and deallo cate

memory, and perform numeric operations. Other libraries contain routines to

access a database or manipulate terminal windows. A program that references an

unresolved symbol that is not in any library is erroneous and cannot be linked.

When the program uses a library routine, the linker extracts the routine’s code

from the library and incorporates it into the program text segment. Th

is new rou-

tine, in turn, may depend on other library routines, so the linker continues to

fetch other library routines until no external references are unresolved or a rou tine

cannot be found.

If all external references are resolved, the linker next determines the memory

locations that each module will occupy. Since the fi les were assembled in isolation,

A.4 Loading

A-19

FIGURE A.3.1 The linker searches a collection of object fi les and program libraries to

fi nd nonlocal routines used in a program, combines them into a single executable fi le, and

resolves references between routines in different fi les.

the assembler could not know where a module’s instructions or data would be

placed relative to other modules. When the linker places a module in memory, all

abso lute references must be relocated to refl ect its true location. Since the linker

has relocation information that identifi es all relocatable references, it can effi

ciently

fi nd and backpatch these references.

Th

e linker produces an executable fi le that can run on a computer. Typically,

this fi le has the same format as an object fi le, except that it contains no unresolved

references or relocation information.

 A.4 Loading

A program that links without an error can be run. Before being run, the program

resides in a fi le on secondary storage, such as a disk. On UNIX systems, the operating

A-20

Appendix A Assemblers, Linkers, and the SPIM Simulator

system kernel brings a program into memory and starts it running. To start a program,

the operating system performs the following steps:

1. It reads the executable fi le’s header to determine the size of the text and data

segments.

2. It creates a new address space for the program. Th

is address space is large

enough to hold the text and data segments, along with a stack segment (see

Section A.5).

3. It copies instructions and data from the executable fi le into the new address

space.

4. It copies arguments passed to the program onto the stack.

5. It initializes the machine registers. In general, most registers are cleared, but

the stack pointer must be assigned the address of the fi rst free stack location

(see Section A.5).

6. It jumps to a start-up routine that copies the program’s arguments from the

stack to registers and calls the program’s main routine. If the main routine

returns, the start-up routine terminates the program with the exit system call.

 A.5 Memory

Usage

Th

e next few sections elaborate the description of the MIPS architecture presented

earlier in the book. Earlier chapters focused primarily on hardware and its relationship

with low-level soft ware. Th

ese sections focus primarily on how assembly language

programmers use MIPS hardware. Th

ese sections describe a set of conventions

followed on many MIPS systems. For the most part, the hardware does not impose

these conventions. Instead, they represent an agreement among programmers to

follow the same set of rules so that soft ware written by diff erent people can work

together and make eff ective use of MIPS hardware.

Systems based on MIPS processors typically divide memory into three parts

(see Figure A.5.1). Th

e fi rst part, near the bottom of the address space (starting

at address 400000hex), is the text segment, which holds the program’s instructions.

Th

e second part, above the text segment, is the data segment, which is further

static data Th

e portion

divided into two parts. Static data (starting at address 10000000hex) contains

of memory that contains

objects whose size is known to the compiler and whose lifetime—the interval

data whose size is known

dur ing which a program can access them—is the program’s entire execution. For

to the com piler and whose

example, in C, global variables are statically allocated, since they can be referenced

lifetime is the program’s

entire execution.

A.5 Memory

Usage

A-21

7fffffffhex

Stack segment

Dynamic data

Data segment

Static data

10000000hex

Text segment

400000hex

Reserved

FIGURE A.5.1 Layout of memory.

anytime during a program’s execution. Th

e linker both assigns static objects to

locations in the data segment and resolves references to these objects.

Immediately above static data is dynamic data. Th

is data, as its name implies, is

allocated by the program as it executes. In C programs, the malloc library rou tine

Because the data segment begins far above the program at address 10000000hex, Hardware/

load and store instructions cannot directly reference data objects with their 16-bit Software off set fi elds (see Section 2.5 in Chapter 2). For example, to load the word in the

data segment at address 10010020

Interface

hex into register $v0 requires two instructions:

lui $s0, 0x1001 # 0x1001 means 1001 base 16

lw

$v0, 0x0020($s0) # 0x10010000 + 0x0020 = 0x10010020

(Th

e 0x before a number means that it is a hexadecimal value. For example, 0x8000

is 8000hex or 32,768ten.)

To avoid repeating the lui instruction at every load and store, MIPS systems

typically dedicate a register ($gp) as a global pointer to the static data segment. Th

is

register contains address 10008000hex, so load and store instructions can use their

signed 16-bit off set fi elds to access the fi rst 64 KB of the static data segment. With

this global pointer, we can rewrite the example as a single instruction:

lw $v0, 0x8020($gp)

Of course, a global pointer register makes addressing locations 10000000hex–

10010000hex faster than other heap locations. Th e MIPS compiler usually stores

 global variables in this area, because these variables have fi xed locations and fi t better than other global data, such as arrays.

A-22

Appendix A Assemblers, Linkers, and the SPIM Simulator

fi nds and returns a new block of memory. Since a compiler cannot predict how

much memory a program will allocate, the operating system expands the dynamic

data area to meet demand. As the upward arrow in the fi gure indicates, malloc

expands the dynamic area with the sbrk system call, which causes the operating

system to add more pages to the program’s virtual address space (see Section 5.7 in

Chapter 5) immediately above the dynamic data segment.

stack segment Th

e

Th

e third part, the program stack segment, resides at the top of the virtual

portion of memory used

address space (starting at address 7ff ff ff fhex). Like dynamic data, the maximum size

by a program to hold

of a program’s stack is not known in advance. As the program pushes values on to

procedure call frames.

the stack, the operating system expands the stack segment down toward the data

segment.

Th

is three-part division of memory is not the only possible one. However, it has

two important characteristics: the two dynamically expandable segments are as far

apart as possible, and they can grow to use a program’s entire address space.

 A.6

Procedure Call Convention

Conventions governing the use of registers are necessary when procedures in a

program are compiled separately. To compile a particular procedure, a compiler

must know which registers it may use and which registers are reserved for other

register use convention

procedures. Rules for using registers are called register use or procedure call

Also called procedure

conventions. As the name implies, these rules are, for the most part, conventions

call convention.

fol lowed by soft ware rather than rules enforced by hardware. However, most com-

A soft ware proto col

pilers and programmers try very hard to follow these conventions because violat-

governing the use of

ing them causes insidious bugs.

registers by procedures.

Th

e calling convention described in this section is the one used by the gcc com-

piler. Th

e native MIPS compiler uses a more complex convention that is slightly

faster.

Th

e MIPS CPU contains 32 general-purpose registers that are numbered 0–31.

Register $0 always contains the hardwired value 0.

■ Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler and

operating system and should not be used by user programs or compilers.

■ Registers $a0–$a3 (4–7) are used to pass the fi rst four arguments to rou tines

(remaining arguments are passed on the stack). Registers $v0 and $v1 (2, 3)

are used to return values from functions.

A.6 Procedure Call Convention

A-23

■ Registers $t0–$t9 (8–15, 24, 25) are caller-saved registers that are used caller-saved register to hold temporary quantities that need not be preserved across calls (see A regis ter saved by the Section 2.8 in Chapter 2).

routine being called.

■ Registers $s0–$s7 (16–23) are callee-saved registers that hold long-lived callee-saved register values that should be preserved across calls.

A regis ter saved by

the routine making a

■ Register $gp (28) is a global pointer that points to the middle of a 64K block procedure call.

of memory in the static data segment.

■ Register $sp (29) is the stack pointer, which points to the last location on

the stack. Register $fp (30) is the frame pointer. Th

e jal instruction writes

register $ra (31), the return address from a procedure call. Th

ese two regis-

ters are explained in the next section.

Th

e two-letter abbreviations and names for these registers—for example $sp

for the stack pointer—refl ect the registers’ intended uses in the procedure call

convention. In describing this convention, we will use the names instead of regis ter

numbers. Figure A.6.1 lists the registers and describes their intended uses.

Procedure Calls

Th

is section describes the steps that occur when one procedure (the caller) invokes

another procedure (the callee). Programmers who write in a high-level language

(like C or Pascal) never see the details of how one procedure calls another, because

the compiler takes care of this low-level bookkeeping. However, assembly language

programmers must explicitly implement every procedure call and return.

Most of the bookkeeping associated with a call is centered around a block

of memory called a procedure call frame. Th

is memory is used for a variety of procedure call frame

purposes:

A block of memory that

is used to hold values

■ To hold values passed to a procedure as arguments

passed to a procedure

as arguments, to save

■ To save registers that a procedure may modify, but which the procedure’s registers that a procedure caller does not want changed

may modify but that the

procedure’s caller does not

■ To provide space for variables local to a procedure

want changed, and to pro-

In most programming languages, procedure calls and returns follow a strict vide space for variables last-in, fi rst-out (LIFO) order, so this memory can be allocated and deallocated on local to a procedure.

a stack, which is why these blocks of memory are sometimes called stack frames.

Figure A.6.2 shows a typical stack frame. Th

e frame consists of the memory

between the frame pointer ($fp), which points to the fi rst word of the frame,

and the stack pointer ($sp), which points to the last word of the frame. Th

e stack

grows down from higher memory addresses, so the frame pointer points above the

A-24

Appendix A Assemblers, Linkers, and the SPIM Simulator

 Register name

Number

Usage

$zero

0

constant 0

$at

1

reserved for assembler

$v0

2

expression evaluation and results of a function

$v1

3

expression evaluation and results of a function

$a0

4

argument 1

$a1

5

argument 2

$a2

6

argument 3

$a3

7

argument 4

$t0

8

temporary (not preserved across call)

$t1

9

temporary (not preserved across call)

$t2

10

temporary (not preserved across call)

$t3

11

temporary (not preserved across call)

$t4

12

temporary (not preserved across call)

$t5

13

temporary (not preserved across call)

$t6

14

temporary (not preserved across call)

$t7

15

temporary (not preserved across call)

$s0

16

saved temporary (preserved across call)

$s1

17

saved temporary (preserved across call)

$s2

18

saved temporary (preserved across call)

$s3

19

saved temporary (preserved across call)

$s4

20

saved temporary (preserved across call)

$s5

21

saved temporary (preserved across call)

$s6

22

saved temporary (preserved across call)

$s7

23

saved temporary (preserved across call)

$t8

24

temporary (not preserved across call)

$t9

25

temporary (not preserved across call)

$k0

26

reserved for OS kernel

$k1

27

reserved for OS kernel

$gp

28

pointer to global area

$sp

29

stack pointer

$fp

30

frame pointer

$ra

31

return address (used by function call)

FIGURE A.6.1 MIPS registers and usage convention.

stack pointer. Th

e executing procedure uses the frame pointer to quickly access

values in its stack frame. For example, an argument in the stack frame can be

loaded into register $v0 with the instruction

lw $v0, 0($fp)

A.6 Procedure Call Convention

A-25

Higher memory addresses

Argument 6

Argument 5

$fp

Saved registers

Stack

grows

Local variables

$sp

Lower memory addresses

FIGURE A.6.2 Layout of a stack frame. Th

e frame pointer ($fp) points to the fi rst word in the

currently executing procedure’s stack frame. Th

e stack pointer ($sp) points to the last word of the frame. Th

e

fi rst four arguments are passed in registers, so the fi ft h argument is the fi rst one stored on the stack.

A stack frame may be built in many diff erent ways; however, the caller and

callee must agree on the sequence of steps. Th

e steps below describe the calling

convention used on most MIPS machines. Th

is convention comes into play at three

points during a procedure call: immediately before the caller invokes the callee,

just as the callee starts executing, and immediately before the callee returns to the

caller. In the fi rst part, the caller puts the procedure call arguments in stan dard

places and invokes the callee to do the following:

1. Pass arguments. By convention, the fi rst four arguments are passed in regis-

ters $a0–$a3. Any remaining arguments are pushed on the stack and appear

at the beginning of the called procedure’s stack frame.

2. Save caller-saved registers. Th

e called procedure can use these registers

($a0–$a3 and $t0–$t9) without fi rst saving their value. If the caller expects

to use one of these registers aft er a call, it must save its value before the call.

3. Execute

a

jal instruction (see Section 2.8 of Chapter 2), which jumps to the

callee’s fi rst instruction and saves the return address in register $ra.

A-26

Appendix A Assemblers, Linkers, and the SPIM Simulator

Before a called routine starts running, it must take the following steps to set up

its stack frame:

1. Allocate memory for the frame by subtracting the frame’s size from the stack

pointer.

2. Save callee-saved registers in the frame. A callee must save the values in

these registers ($s0–$s7, $fp, and $ra) before altering them, since the

caller expects to fi nd these registers unchanged aft er the call. Register $fp is

saved by every procedure that allocates a new stack frame. However, register

$ra only needs to be saved if the callee itself makes a call. Th

e other callee-

saved registers that are used also must be saved.

3. Establish the frame pointer by adding the stack frame’s size minus 4 to $sp

and storing the sum in register $fp.

Th

e MIPS register use convention provides callee- and caller-saved registers,

Hardware/

because both types of registers are advantageous in diff erent circumstances. Callee-

Software

saved registers are better used to hold long-lived values, such as variables from a

Interface

user’s program. Th

ese registers are only saved during a procedure call if the callee

expects to use the register. On the other hand, caller-saved registers are bet ter used

to hold short-lived quantities that do not persist across a call, such as immediate

values in an address calculation. During a call, the callee can also use these registers

for short-lived temporaries.

Finally, the callee returns to the caller by executing the following steps:

1. If the callee is a function that returns a value, place the returned value in

register $v0.

2. Restore all callee-saved registers that were saved upon procedure entry.

3. Pop the stack frame by adding the frame size to $sp.

4. Return by jumping to the address in register $ra.

recursive procedures

Elaboration: A programming language that does not permit recursive procedures—

Procedures that call

procedures that call themselves either directly or indirectly through a chain of calls—need

themselves either directly

not allocate frames on a stack. In a nonrecursive language, each procedure’s frame

or indirectly through a

may be statically allocated, since only one invocation of a procedure can be active at a

chain of calls.

time. Older versions of Fortran prohibited recursion, because statically allocated frames

produced faster code on some older machines. However, on load store architec tures like

MIPS, stack frames may be just as fast, because a frame pointer register points directly

A.6 Procedure Call Convention

A-27

to the active stack frame, which permits a single load or store instruc tion to access

values in the frame. In addition, recursion is a valuable programming technique.

Procedure Call Example

As an example, consider the C routine

main ()

{

printf (“The factorial of 10 is %d\n”, fact (10));

}

int fact (int n)

{

if (n < 1)

return

(1);

else

return (n * fact (n - 1));

}

which computes and prints 10! (the factorial of 10, 10! = 10 × 9 × . . . × 1). fact is

a recursive routine that computes n! by multiplying n times (n - 1)!. Th

e assembly

code for this routine illustrates how programs manipulate stack frames.

Upon entry, the routine main creates its stack frame and saves the two callee-

saved registers it will modify: $fp and $ra. Th

e frame is larger than required for

these two register because the calling convention requires the minimum size of a

stack frame to be 24 bytes. Th

is minimum frame can hold four argument registers

($a0–$a3) and the return address $ra, padded to a double-word boundary

(24 bytes). Since main also needs to save $fp, its stack frame must be two words

larger (remember: the stack pointer is kept doubleword aligned).

.text

.globl

main

main:

subu $sp,$sp,32

Stack frame is 32 bytes long

sw

$ra,20($sp)

Save return address

sw

$fp,16($sp)

Save old frame pointer

addiu $fp,$sp,28

Set up frame pointer

Th

e routine main then calls the factorial routine and passes it the single argument

10. Aft er fact returns, main calls the library routine printf and passes it both

a format string and the result returned from fact:

A-28

Appendix A Assemblers, Linkers, and the SPIM Simulator

li

$a0,10

Put argument (10) in $a0

jal

fact

Call factorial function

la

$a0,$LC

Put format string in $a0

move

$a1,$v0

Move fact result to $a1

jal

printf

Call the print function

Finally, aft er printing the factorial, main returns. But fi rst, it must restore the

registers it saved and pop its stack frame:

lw

$ra,20($sp) # Restore return address

lw

$fp,16($sp) # Restore frame pointer

addiu

$sp,$sp,32

Pop stack frame

jr

$ra

Return to caller

.rdata

$LC:

.ascii

“The factorial of 10 is %d\n\000”

Th

e factorial routine is similar in structure to main. First, it creates a stack frame

and saves the callee-saved registers it will use. In addition to saving $ra and $fp,

fact also saves its argument ($a0), which it will use for the recursive call:

.text

fact:

subu

$sp,$sp,32

Stack frame is 32 bytes long

sw

$ra,20($sp)

Save return address

sw

$fp,16($sp)

Save frame pointer

addiu

$fp,$sp,28

Set up frame pointer

sw

$a0,0($fp)

Save argument (n)

Th

e heart of the fact routine performs the computation from the C program.

It tests whether the argument is greater than 0. If not, the routine returns the

value 1. If the argument is greater than 0, the routine recursively calls itself to

compute fact(n–1) and multiplies that value times n:

lw

$v0,0($fp)

Load n

bgtz

$v0,$L2

Branch if n > 0

li

$v0,1

Return 1

jr

$L1

Jump to code to return

$L2:

lw

$v1,0($fp)

Load n

subu

$v0,$v1,1

Compute n - 1

move

$a0,$v0

Move value to $a0

A.6 Procedure Call Convention

A-29

jal

fact

Call factorial function

lw

$v1,0($fp)

Load n

mul

$v0,$v0,$v1

Compute fact(n-1) * n

Finally, the factorial routine restores the callee-saved registers and returns the

value in register $v0:

$L1:

Result is in $v0

lw

$ra, 20($sp) # Restore $ra

lw

$fp, 16($sp) # Restore $fp

addiu

$sp, $sp, 32 # Pop stack

jr

$ra

Return to caller

Stack in Recursive Procedure

Figure A.6.3 shows the stack at the call fact(7). main runs fi rst, so its frame is deepest on the stack. main calls fact(10), whose stack frame is next on the

EXAMPLE

stack. Each invocation recursively invokes fact to compute the next-lowest

factorial. Th

e stack frames parallel the LIFO order of these calls. What does the

stack look like when the call to fact(10) returns?

Stack

Old $ra

Old $fp

main

Old $a0

Old $ra

fact (10)

Old $fp

Old $a0

Old $ra

fact (9)

Old $fp

Old $a0

Old $ra

fact (8)

Old $fp

Old $a0

Stack grows

Old $ra

fact (7)

Old $fp

FIGURE A.6.3 Stack frames during the call of fact(7).

A-30

Appendix A Assemblers, Linkers, and the SPIM Simulator

Stack

ANSWER

Old $ra

main

Stack grows

Old $fp

Elaboration: The difference between the MIPS compiler and the gcc compiler is that

the MIPS compiler usually does not use a frame pointer, so this register is available as

another callee-saved register, $s8. This change saves a couple of instructions in the

procedure call and return sequence. However, it complicates code generation, because

a procedure must access its stack frame with $sp, whose value can change during a

procedure’s execution if values are pushed on the stack.

Another Procedure Call Example

As another example, consider the following routine that computes the tak func-

tion, which is a widely used benchmark created by Ikuo Takeuchi. Th

is function

does not compute anything useful, but is a heavily recursive program that illustrates

the MIPS calling convention.

int tak (int x, int y, int z)

{

if (y < x)

return 1+ tak (tak (x - 1, y, z),

tak (y - 1, z, x),

tak (z - 1, x, y));

else

return

z;

}

int main ()

{

tak(18, 12, 6);

}

Th

e assembly code for this program is shown below. Th

e tak function fi rst saves

its return address in its stack frame and its arguments in callee-saved regis ters,

since the routine may make calls that need to use registers $a0–$a2 and $ra. Th

e

function uses callee-saved registers, since they hold values that persist over the

A.6 Procedure Call Convention

A-31

lifetime of the function, which includes several calls that could potentially modify

registers.

.text

.globl

tak

tak:

subu

$sp, $sp, 40

sw

$ra,

32($sp)

sw

$s0, 16($sp)

x

move $s0,

$a0

sw

$s1, 20($sp)

y

move $s1,

$a1

sw

$s2, 24($sp)

z

move $s2,

$a2

sw

$s3, 28($sp)

temporary

Th

e routine then begins execution by testing if y < x. If not, it branches to label

L1, which is shown below.

bge

$s1, $s0, L1

if (y < x)

If y < x, then it executes the body of the routine, which contains four recursive

calls. Th

e fi rst call uses almost the same arguments as its parent:

addiu

$a0, $s0, -1

move $a1,

$s1

move $a2,

$s2

jal

tak

tak (x - 1, y, z)

move $s3,

$v0

Note that the result from the fi rst recursive call is saved in register $s3, so that it

can be used later.

Th

e function now prepares arguments for the second recursive call.

addiu

$a0, $s1, -1

move $a1,

$s2

move $a2,

$s0

jal

tak

tak (y - 1, z, x)

In the instructions below, the result from this recursive call is saved in register

$s0. But fi rst we need to read, for the last time, the saved value of the fi rst argu-

ment from this register.

A-32

Appendix A Assemblers, Linkers, and the SPIM Simulator

addiu

$a0, $s2, -1

move

$a1,

$s0

move

$a2,

$s1

move

$s0,

$v0

jal

tak

tak (z - 1, x, y)

Aft er the three inner recursive calls, we are ready for the fi nal recursive call. Aft er

the call, the function’s result is in $v0 and control jumps to the function’s epilogue.

move $a0,

$s3

move $a1,

$s0

move $a2,

$v0

jal tak

tak (tak(...), tak(...), tak(...))

addiu

$v0, $v0, 1

j L2

Th

is code at label L1 is the consequent of the if-then-else statement. It just moves

the value of argument z into the return register and falls into the function epilogue.

L1:

move $v0,

$s2

Th

e code below is the function epilogue, which restores the saved registers and

returns the function’s result to its caller.

L2:

lw

$ra,

32($sp)

lw

$s0,

16($sp)

lw

$s1,

20($sp)

lw

$s2,

24($sp)

lw

$s3,

28($sp)

addiu

$sp, $sp, 40

jr

$ra

Th

e main routine calls the tak function with its initial arguments, then takes the

computed result (7) and prints it using SPIM’s system call for printing integers.

.globl main

main:

subu

$sp, $sp, 24

sw

$ra,

16($sp)

li

$a0,

18

li

$a1,

12

A.7 Exceptions and Interrupts

A-33

li

$a2,

6

jal

tak

tak(18, 12, 6)

move $a0,

$v0

li

$v0, 1

print_int syscall

syscall

lw

$ra,

16($sp)

addiu

$sp, $sp, 24

jr

$ra

 A.7

Exceptions and Interrupts

Section 4.9 of Chapter 4 describes the MIPS exception facility, which responds both

to exceptions caused by errors during an instruction’s execution and to external

interrupts caused by I/O devices. Th

is section describes exception and interrupt interrupt handler

handling in more detail.1 In MIPS processors, a part of the CPU called coprocessor 0 A piece of code that is run records the information the soft ware needs to handle excep tions and interrupts. as a result of an exception Th

e MIPS simulator SPIM does not implement all of copro cessor 0’s registers, since

or an interrupt.

many are not useful in a simulator or are part of the memory system, which SPIM

does not implement. However, SPIM does provide the following coprocessor 0

registers:

Register

Register

name

number

Usage

BadVAddr

8

memory address at which an offending memory reference occurred

Count 9

timer

Compare

11

value compared against timer that causes interrupt when they match

Status

12

interrupt mask and enable bits

Cause

13

exception type and pending interrupt bits

EPC

14

address of instruction that caused exception

Confi g

16

confi guration of machine

1. Th

is section discusses exceptions in the MIPS-32 architecture, which is what SPIM imple ments

in Version 7.0 and later. Earlier versions of SPIM implemented the MIPS-1 architecture, which

handled exceptions slightly diff erently. Converting programs from these versions to run on

MIPS-32 should not be diffi

cult, as the changes are limited to the Status and Cause register fi elds

and the replacement of the rfe instruction by the eret instruction.

A-34

Appendix A Assemblers, Linkers, and the SPIM Simulator

Th

ese seven registers are part of coprocessor 0’s register set. Th

ey are accessed

by the mfc0 and mtc0 instructions. Aft er an exception, register EPC contains the

address of the instruction that was executing when the exception occurred. If the

exception was caused by an external interrupt, then the instruction will not have

started executing. All other exceptions are caused by the execution of the instruc-

tion at EPC, except when the off ending instruction is in the delay slot of a branch

or jump. In that case, EPC points to the branch or jump instruction and the BD bit

is set in the Cause register. When that bit is set, the exception handler must look

at EPC + 4 for the off ending instruction. However, in either case, an excep tion

handler properly resumes the program by returning to the instruction at EPC.

If the instruction that caused the exception made a memory access, register

BadVAddr contains the referenced memory location’s address.

Th

e Count register is a timer that increments at a fi xed rate (by default, every

10 milliseconds) while SPIM is running. When the value in the Count register

equals the value in the Compare register, a hardware interrupt at priority level 5

occurs.

Figure A.7.1 shows the subset of the Status register fi elds implemented by the MIPS simulator SPIM. Th

e interrupt mask fi eld contains a bit for each of the

six hardware and two soft ware interrupt levels. A mask bit that is 1 allows inter-

rupts at that level to interrupt the processor. A mask bit that is 0 disables inter-

rupts at that level. When an interrupt arrives, it sets its interrupt pending bit in the

Cause register, even if the mask bit is disabled. When an interrupt is pending, it will

interrupt the processor when its mask bit is subsequently enabled.

Th

e user mode bit is 0 if the processor is running in kernel mode and 1 if it is

running in user mode. On SPIM, this bit is fi xed at 1, since the SPIM processor

does not implement kernel mode. Th

e exception level bit is normally 0, but is set to

1 aft er an exception occurs. When this bit is 1, interrupts are disabled and the EPC

is not updated if another exception occurs. Th

is bit prevents an exception handler

from being disturbed by an interrupt or exception, but it should be reset when the

handler fi nishes. If the interrupt enable bit is 1, interrupts are allowed. If it is

0, they are disabled.

Figure A.7.2 shows the subset of Cause register fi elds that SPIM implements.

Th

e branch delay bit is 1 if the last exception occurred in an instruction executed in

the delay slot of a branch. Th

e interrupt pending bits become 1 when an inter rupt

A.7 Exceptions and Interrupts

A-35

upt le

vel

User mode Exception le Interr enab

15

8

4

1 0

Interrupt

mask

FIGURE A.7.1 The Status register.

31

15

8

6

2

Branch

Pending

Exception

delay

interrupts

code

FIGURE A.7.2 The Cause register.

is raised at a given hardware or soft ware level. Th

e exception code register describes

the cause of an exception through the following codes:

Number

Name

Cause of exception

0

Int

interrupt (hardware)

4

AdEL

address error exception (load or instruction fetch)

5

AdES

address error exception (store)

6

IBE

bus error on instruction fetch

7

DBE

bus error on data load or store

8

Sys

syscall exception

9

Bp

breakpoint exception

10

RI

reserved instruction exception

11

CpU

coprocessor unimplemented

12

Ov

arithmetic overfl ow exception

13

Tr

trap

15

FPE

fl oating point

Exceptions and interrupts cause a MIPS processor to jump to a piece of code,

at address 80000180hex (in the kernel, not user address space), called an exception

 handler. Th

is code examines the exception’s cause and jumps to an appropriate point

in the operating system. Th

e operating system responds to an exception either by

terminating the process that caused the exception or by performing some action.

A process that causes an error, such as executing an unimplemented instruction, is

killed by the operating system. On the other hand, other exceptions such as page

A-36

Appendix A Assemblers, Linkers, and the SPIM Simulator

faults are requests from a process to the operating system to perform a service,

such as bringing in a page from disk. Th

e operating system processes these requests

and resumes the process. Th

e fi nal type of exceptions are interrupts from external

devices. Th

ese generally cause the operating system to move data to or from an I/O

device and resume the interrupted process.

Th

e code in the example below is a simple exception handler, which invokes

a routine to print a message at each exception (but not interrupts). Th

is code is

similar to the exception handler (exceptions.s) used by the SPIM simulator.

Exception Handler

Th

e exception handler fi rst saves register $at, which is used in pseudo-

EXAMPLE

instructions in the handler code, then saves $a0 and $a1, which it later uses to

pass arguments. Th

e exception handler cannot store the old values from these

registers on the stack, as would an ordinary routine, because the cause of the

exception might have been a memory reference that used a bad value (such

as 0) in the stack pointer. Instead, the exception handler stores these registers

in an exception handler register ($k1, since it can’t access memory without

using $at) and two memory locations (save0 and save1). If the exception

routine itself could be interrupted, two locations would not be enough since

the second exception would overwrite values saved during the fi rst exception.

However, this simple exception handler fi nishes running before it enables

interrupts, so the problem does not arise.

.ktext 0x80000180

mov $k1, $at # Save $at register

sw $a0, save0 # Handler is not re-entrant and can’t use

sw $a1, save1 # stack to save $a0, $a1

Don’t need to save $k0/$k1

Th

e exception handler then moves the Cause and EPC registers into CPU

registers. Th

e Cause and EPC registers are not part of the CPU register set.

In stead, they are registers in coprocessor 0, which is the part of the CPU that

han dles exceptions. Th

e instruction mfc0 $k0, $13 moves coprocessor 0’s

register 13 (the Cause register) into CPU register $k0. Note that the exception

handler need not save registers $k0 and $k1, because user programs are not

supposed to use these registers. Th

e exception handler uses the value from the

Cause reg ister to test whether the exception was caused by an interrupt (see

the preceding ta ble). If so, the exception is ignored. If the exception was not an

interrupt, the handler calls print_excp to print a message.

A.7 Exceptions and Interrupts

A-37

mfc0 $k0, $13 # Move Cause into $k0

srl

$a0, $k0, 2 # Extract ExcCode field

andi $a0, $a0, Oxf

bgtz $a0, done # Branch if ExcCode is Int (0)

mov

$a0, $k0 # Move Cause into $a0

mfco $a1, $14 # Move EPC into $a1

jal

print_excp # Print exception error message

Before returning, the exception handler clears the Cause register; resets

the Status register to enable interrupts and clear the EXL bit, which allows

subse quent exceptions to change the EPC register; and restores registers $a0,

$a1, and $at. It then executes the eret (exception return) instruction, which

returns to the instruction pointed to by EPC. Th

is exception handler returns

to the instruction following the one that caused the exception, so as to not

re-execute the faulting instruction and cause the same exception again.

done: mfc0 $k0, $14 # Bump EPC

addiu $k0, $k0, 4 # Do not re-execute

faulting instruction

mtc0 $k0, $14 # EPC

mtc0 $0, $13 # Clear Cause register

mfc0 $k0, $12 # Fix Status register

andi $k0, Oxfffd # Clear EXL bit

ori $k0, Ox1 # Enable interrupts

mtc0 $k0, $12

lw $a0, save0 # Restore registers

lw $a1, save1

mov $at, $k1

eret # Return to EPC

.kdata

save0: .word 0

save1: .word 0

A-38

Appendix A Assemblers, Linkers, and the SPIM Simulator

Elaboration: On real MIPS processors, the return from an exception handler is more

complex. The exception handler cannot always jump to the instruction following EPC. For

example, if the instruction that caused the exception was in a branch instruction’s delay

slot (see Chapter 4), the next instruction to execute may not be the following instruction

in memory.

 A.8

Input and Output

SPIM simulates one I/O device: a memory-mapped console on which a program

can read and write characters. When a program is running, SPIM connects its

own terminal (or a separate console window in the X-window version xspim or

the Windows version PCSpim) to the processor. A MIPS program running on

SPIM can read the characters that you type. In addition, if the MIPS program

writes characters to the terminal, they appear on SPIM’s terminal or console win-

dow. One exception to this rule is control-C: this character is not passed to the

program, but instead causes SPIM to stop and return to command mode. When

the program stops running (for example, because you typed control-C or because

the program hit a breakpoint), the terminal is reconnected to SPIM so you can type

SPIM commands.

To use memory-mapped I/O (see below), spim or xspim must be started

with the -mapped_io fl ag. PCSpim can enable memory-mapped I/O through a

command line fl ag or the “Settings” dialog.

Th

e terminal device consists of two independent units: a receiver and a trans-

 mitter. Th

e receiver reads characters from the keyboard. Th

e transmitter displays

characters on the console. Th

e two units are completely independent. Th

is means,

for example, that characters typed at the keyboard are not automatically echoed on

the display. Instead, a program echoes a character by reading it from the receiver

and writing it to the transmitter.

A program controls the terminal with four memory-mapped device registers,

as shown in Figure A.8.1. “Memory-mapped’’ means that each register appears as a special memory location. Th

e Receiver Control register is at location ff ff 0000hex.

Only two of its bits are actually used. Bit 0 is called “ready’’: if it is 1, it means

that a character has arrived from the keyboard but has not yet been read from the

Receiver Data register. Th

e ready bit is read-only: writes to it are ignored. Th

e ready

bit changes from 0 to 1 when a character is typed at the keyboard, and it changes

from 1 to 0 when the character is read from the Receiver Data register.

A.8 Input and Output

A-39

Unused

1

1

Receiver control

(0xffff0000)

Interrupt

Ready

enable

Unused

8

Receiver data

(0xffff0004)

Received byte

Unused

1

1

Transmitter control

(0xffff0008)

Interrupt

Ready

enable

8

Unused

Transmitter data

(0xffff000c)

Transmitted byte

FIGURE A.8.1 The terminal is controlled by four device registers, each of which appears

as a memory location at the given address. Only a few bits of these registers are actually used. Th e

others always read as 0s and are ignored on writes.

Bit 1 of the Receiver Control register is the keyboard “interrupt enable.” Th

is

bit may be both read and written by a program. Th

e interrupt enable is initially 0.

If it is set to 1 by a program, the terminal requests an interrupt at hardware level 1

whenever a character is typed, and the ready bit becomes 1. However, for the inter-

rupt to aff ect the processor, interrupts must also be enabled in the Status register

(see Section A.7). All other bits of the Receiver Control register are unused.

Th

e second terminal device register is the Receiver Data register (at address

ff ff 0004hex). Th e low-order eight bits of this register contain the last character typed

at the keyboard. All other bits contain 0s. Th

is register is read-only and changes

only when a new character is typed at the keyboard. Reading the Receiver Data

register resets the ready bit in the Receiver Control register to 0. Th

e value in this

register is undefi ned if the Receiver Control register is 0.

Th

e third terminal device register is the Transmitter Control register (at address

ff ff 0008hex). Only the low-order two bits of this register are used. Th ey behave much

like the corresponding bits of the Receiver Control register. Bit 0 is called “ready’’

A-40

Appendix A Assemblers, Linkers, and the SPIM Simulator

and is read-only. If this bit is 1, the transmitter is ready to accept a new character

for output. If it is 0, the transmitter is still busy writing the previous character.

Bit 1 is “interrupt enable’’ and is readable and writable. If this bit is set to 1, then

the terminal requests an interrupt at hardware level 0 whenever the transmitter is

ready for a new character, and the ready bit becomes 1.

Th

e fi nal device register is the Transmitter Data register (at address ff ff 000chex).

When a value is written into this location, its low-order eight bits (i.e., an ASCII

character as in Figure 2.15 in Chapter 2) are sent to the console. When the Trans-

mitter Data register is written, the ready bit in the Transmitter Control register is

reset to 0. Th

is bit stays 0 until enough time has elapsed to transmit the character

to the terminal; then the ready bit becomes 1 again. Th

e Trans mitter Data register

should only be written when the ready bit of the Transmitter Control register is 1.

If the transmitter is not ready, writes to the Transmitter Data register are ignored

(the write appears to succeed but the character is not output).

Real computers require time to send characters to a console or terminal. Th

ese

time lags are simulated by SPIM. For example, aft er the transmitter starts to write a

character, the transmitter’s ready bit becomes 0 for a while. SPIM measures time in

instructions executed, not in real clock time. Th

is means that the transmitter does

not become ready again until the processor executes a fi xed number of instructions.

If you stop the machine and look at the ready bit, it will not change. However, if you

let the machine run, the bit eventually changes back to 1.

 A.9 SPIM

SPIM is a soft ware simulator that runs assembly language programs written for

processors that implement the MIPS-32 architecture, specifi cally Release 1 of this

architecture with a fi xed memory mapping, no caches, and only coprocessors 0

and 1.2 SPIM’s name is just MIPS spelled backwards. SPIM can read and immedi-

ately execute assembly language fi les. SPIM is a self-contained system for running

2. Earlier versions of SPIM (before 7.0) implemented the MIPS-1 architecture used in the origi nal MIPS R2000 processors. Th

is architecture is almost a proper subset of the MIPS-32 architec ture,

with the diff erence being the manner in which exceptions are handled. MIPS-32 also introduced

approximately 60 new instructions, which are supported by SPIM. Programs that ran on the

earlier versions of SPIM and did not use exceptions should run unmodifi ed on newer ver sions of

SPIM. Programs that used exceptions will require minor changes.

A.9 SPIM

A-41

MIPS programs. It contains a debugger and provides a few operating system-like

services. SPIM is much slower than a real computer (100 or more times). How ever,

its low cost and wide availability cannot be matched by real hardware!

An obvious question is, “Why use a simulator when most people have PCs that

contain processors that run signifi cantly faster than SPIM?” One reason is that

the processors in PCs are Intel 80×86s, whose architecture is far less regular and

far more complex to understand and program than MIPS processors. Th

e MIPS

architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for assembly pro-

gramming than an actual machine because they can detect more errors and provide

a better interface than can an actual computer.

Finally, simulators are useful tools in studying computers and the programs that

run on them. Because they are implemented in soft ware, not silicon, simulators can

be examined and easily modifi ed to add new instructions, build new systems such

as multiprocessors, or simply collect data.

Simulation of a Virtual Machine

Th

e basic MIPS architecture is diffi

cult to program directly because of delayed

branches, delayed loads, and restricted address modes. Th

is diffi

culty is tolerable

since these computers were designed to be programmed in high-level languages

and present an interface designed for compilers rather than assembly language

programmers. A good part of the programming complexity results from delayed

instructions. A delayed branch requires two cycles to execute (see the Elabora tions

on pages 284 and 322 of Chapter 4). In the second cycle, the instruction imme-

diately following the branch executes. Th

is instruction can perform useful work

that normally would have been done before the branch. It can also be a nop (no

operation) that does nothing. Similarly, delayed loads require two cycles to bring

a value from memory, so the instruction immediately following a load cannot use

the value (see Section 4.2 of Chapter 4).

MIPS wisely chose to hide this complexity by having its assembler implement

a virtual machine. Th

is virtual computer appears to have nondelayed branches virtual machine

and loads and a richer instruction set than the actual hardware. Th

e assembler A virtual computer

 reorga nizes (rearranges) instructions to fi ll the delay slots. Th

e virtual computer that appears to have

also provides pseudoinstructions, which appear as real instructions in assembly nondelayed branches and loads and a richer

lan guage programs. Th

e hardware, however, knows nothing about pseudoinstruc-

instruction set than the

tions, so the assembler must translate them into equivalent sequences of actual actual hardware.

machine instructions. For example, the MIPS hardware only provides instructions

to branch when a register is equal to or not equal to 0. Other conditional branches,

such as one that branches when one register is greater than another, are synthesized

by comparing the two registers and branching when the result of the comparison

is true (nonzero).

A-42

Appendix A Assemblers, Linkers, and the SPIM Simulator

By default, SPIM simulates the richer virtual machine, since this is the machine

that most programmers will fi nd useful. However, SPIM can also simulate the

delayed branches and loads in the actual hardware. Below, we describe the virtual

machine and only mention in passing features that do not belong to the actual

hardware. In doing so, we follow the convention of MIPS assembly language pro-

grammers (and compilers), who routinely use the extended machine as if it was

implemented in silicon.

Getting Started with SPIM

Th

e rest of this appendix introduces SPIM and the MIPS R2000 Assembly lan-

guage. Many details should never concern you; however, the sheer volume of

information can sometimes obscure the fact that SPIM is a simple, easy-to-use

program. Th

is section starts with a quick tutorial on using SPIM, which should

enable you to load, debug, and run simple MIPS programs.

SPIM comes in diff erent versions for diff erent types of computer systems. Th

e

one constant is the simplest version, called spim, which is a command-line-driven

pro gram that runs in a console window. It operates like most programs of this type:

you type a line of text, hit the return key, and spim executes your command.

Despite its lack of a fancy interface, spim can do everything that its fancy cousins

can do.

Th

ere are two fancy cousins to spim. Th

e version that runs in the X-windows

environment of a UNIX or Linux system is called xspim. xspim is an easier pro-

gram to learn and use than spim, because its commands are always visible on the

screen and because it continually displays the machine’s registers and memory.

Th

e other fancy version is called PCspim and runs on Microsoft Windows. Th

e

UNIX and Windows versions of SPIM

are available online at the publisher’s

companion Web site for this book. Tutorials on xspim, pcSpim, spim, and SPIM

command-line options are also online.

If you are going to run SPIM on a PC running Microsoft Windows, you should

fi rst look at the tutorial on PCSpim on the companion Web site. If you are going

to run SPIM on a computer running UNIX or Linux, you should read the tutorial

on xspim .

Surprising Features

Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator, and

certain things are not identical to an actual computer. Th

e most obvious diff er-

ences are that instruction timing and the memory systems are not identical.

SPIM does not simulate caches or memory latency, nor does it accurately refl ect

fl oating-point operation or multiply and divide instruction delays. In addition,

the fl oating-point instructions do not detect many error conditions, which would

cause exceptions on a real machine.

A.9 SPIM

A-43

Another surprise (which occurs on the real machine as well) is that a pseudo-

instruction expands to several machine instructions. When you single-step or

exam ine memory, the instructions that you see are diff erent from the source

program. Th

e correspondence between the two sets of instructions is fairly simple,

since SPIM does not reorganize instructions to fi ll slots.

Byte Order

Processors can number bytes within a word so the byte with the lowest number is

either the left most or rightmost one. Th

e convention used by a machine is called

its byte order. MIPS processors can operate with either big-endian or little-endian byte order. For example, in a big-endian machine, the directive .byte 0, 1, 2, 3

would result in a memory word containing

Byte #

0

1

2

3

while in a little-endian machine, the word would contain

Byte #

3

2

1

0

SPIM operates with both byte orders. SPIM’s byte order is the same as the byte

order of the underlying machine that runs the simulator. For example, on an Intel

80x86, SPIM is little-endian, while on a Macintosh or Sun SPARC, SPIM is big-

endian.

System Calls

SPIM provides a small set of operating system–like services through the system

call (syscall) instruction. To request a service, a program loads the system call

code (see Figure A.9.1) into register $v0 and arguments into registers $a0–$a3

(or $f12 for fl oating-point values). System calls that return values put their results

in register $v0 (or $f0 for fl oating-point results). For example, the follow ing code

prints "the answer = 5":

.data

str:

.asciiz “the answer = ”

.text

A-44

Appendix A Assemblers, Linkers, and the SPIM Simulator

Service

System call code

Arguments

Result

print_int

1

$a0 = integer

print_float

2

$f12 = fl oat

print_double

3

$f12 = double

print_string

4

$a0 = string

read_int

5

integer (in $v0)

read_float

6

fl oat (in $f0)

read_double

7

double (in $f0)

read_string

8

$a0 = buffer, $a1 = length

sbrk

9

$a0 = amount

address (in $v0)

exit

10

print_char

11

$a0 = char

read_char

12

char (in $v0)

open

$a0 = fi lename (string),

fi le descriptor (in $a0)

13

$a1 = fl ags, $a2 = mode

read

$a0 = fi le descriptor,

num chars read (in

14

$a1 = buffer, $a2 = length

$a0)

write

$a0 = fi le descriptor,

num chars written (in

15

$a1 = buffer, $a2 = length

$a0)

close

16

$a0 = fi le descriptor

exit2

17

$a0 = result

FIGURE A.9.1 System services.

li

$v0, 4 # system call code for print_str

la

$a0, str # address of string to print

syscall

print the string

li

$v0, 1 # system call code for print_int

li

$a0, 5 # integer to print

syscall

print it

Th

e print_int system call is passed an integer and prints it on the console.

print_float prints a single fl oating-point number; print_double prints

a double precision number; and print_string is passed a pointer to a null-

terminated string, which it writes to the console.

Th

e system calls read_int, read_float, and read_double to read an entire

line of input up to and including the newline. Characters following the number

are ignored. read_string has the same semantics as the UNIX library routine

fgets. It reads up to n − 1 characters into a buff er and terminates the string with

a null byte. If fewer than n − 1 characters are on the current line, read_string

reads up to and including the newline and again null-terminates the string.

A.10 MIPS R2000 Assembly Language

A-45

 Warning: Programs that use these syscalls to read from the terminal should not use

memory-mapped I/O (see Section A.8).

sbrk returns a pointer to a block of memory containing n additional bytes.

exit stops the program SPIM is running. exit2 terminates the SPIM pro gram,

and the argument to exit2 becomes the value returned when the SPIM simulator

itself terminates.

print_char and read_char write and read a single character. open, read,

write, and close are the standard UNIX library calls.

 A.10 MIPS R2000 Assembly Language

A MIPS processor consists of an integer processing unit (the CPU) and a collec-

tion of coprocessors that perform ancillary tasks or operate on other types of data,

such as fl oating-point numbers (see Figure A.10.1). SPIM simulates two coprocessors. Coprocessor 0 handles exceptions and interrupts. Coprocessor 1 is the

fl oating-point unit. SPIM simulates most aspects of this unit.

Addressing Modes

MIPS is a load store architecture, which means that only load and store instruc tions

access memory. Computation instructions operate only on values in regis ters. Th

e

bare machine provides only one memory-addressing mode: c(rx), which uses

the sum of the immediate c and register rx as the address. Th

e virtual machine

provides the following addressing modes for load and store instructions:

Format

Address computation

(register)

contents of register

imm

immediate

imm (register)

immediate + contents of register

label

address of label

label ± imm

address of label + or – immediate

label ± imm (register)

address of label + or – (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is

 aligned if its memory address is a multiple of its size in bytes. Th

erefore, a half word

A-46

Appendix A Assemblers, Linkers, and the SPIM Simulator

Memory

CPU

Coprocessor 1 (FPU)

Registers

Registers

$0

$0

$31

$31

Arithmetic

Multiply

unit

divide

Arithmetic

Lo

Hi

unit

Coprocessor 0 (traps and memory)

Registers

BadVAddr

Cause

Status

EPC

FIGURE A.10.1 MIPS R2000 CPU and FPU.

object must be stored at even addresses, and a full word object must be stored at

addresses that are a multiple of four. However, MIPS provides some instructions to

manipulate unaligned data (lwl, lwr, swl, and swr).

Elaboration: The MIPS assembler (and SPIM) synthesizes the more complex address-

ing modes by producing one or more instructions before the load or store to compute a

complex address. For example, suppose that the label table referred to memory loca-

tion 0x10000004 and a program contained the instruction

ld $a0, table + 4($a1)

The assembler would translate this instruction into the instructions

A.10 MIPS R2000 Assembly Language

A-47

lui $at, 4096

addu $at, $at, $a1

lw $a0, 8($at)

The fi rst instruction loads the upper bits of the label’s address into register $at, which

is the register that the assembler reserves for its own use. The second instruction adds

the contents of register $a1 to the label’s partial address. Finally, the load instruction

uses the hardware address mode to add the sum of the lower bits of the label’s address

and the offset from the original instruction to the value in register $at.

Assembler Syntax

Comments in assembler fi les begin with a sharp sign (#). Everything from the

sharp sign to the end of the line is ignored.

Identifi ers are a sequence of alphanumeric characters, underbars (_), and dots

(.) that do not begin with a number. Instruction opcodes are reserved words that

 cannot be used as identifi ers. Labels are declared by putting them at the beginning

of a line followed by a colon, for example:

.data

item: .word 1

.text

.globl main

Must be global

main: lw

$t0, item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted

as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in double quotes (”). Special characters in strings follow the

C convention:

■ newline \n

■ tab

\t

■ quote

\”

SPIM supports a subset of the MIPS assembler directives:

.align n

Align the next datum on a 2 n byte boundary. For

example, .align 2 aligns the next value on a word

boundary. .align 0 turns off automatic alignment

of .half, .word, .float, and .double directives

until the next .data or .kdata directive.

.ascii str

Store the string str in memory, but do not null-

terminate it.

A-48

Appendix A Assemblers, Linkers, and the SPIM Simulator

.asciiz str

Store the string str in memory and null- terminate it.

.byte b1,..., bn

Store

the

 n values in successive bytes of memory.

.data <addr>

Subsequent items are stored in the data segment.

If the optional argument addr is present, subse-

quent items are stored starting at address addr.

.double d1,..., dn Store the n fl

oating-point double preci-

sion num-bers in successive memory locations.

.extern sym size

Declare that the datum stored at sym is size bytes

large and is a global label. Th

is directive enables

the assembler to store the datum in a portion of

the data segment that is effi

ciently accessed via

register $gp.

.float f1,..., fn

Store

the

 n fl oating-point single precision num-

bers in successive memory locations.

.globl sym

Declare that label sym is global and can be refer-

enced from other fi les.

.half h1,..., hn

Store the n 16-bit quantities in successive mem ory

halfwords.

.kdata <addr>

Subsequent data items are stored in the kernel

data segment. If the optional argument addr is

present, subsequent items are stored starting at

address addr.

.ktext <addr>

Subsequent items are put in the kernel text seg-

ment. In SPIM, these items may only be instruc-

tions or words (see the .word directive below). If

the optional argument addr is present, subse quent

items are stored starting at address addr.

.set noat and .set at Th

e fi rst directive prevents SPIM from complain-

ing about subsequent instructions that use regis ter

$at. Th

e second directive re-enables the warning.

Since pseudoinstructions expand into code that

uses register $at, programmers must be very care-

ful about leaving values in this register.

.space n Allocates

 n bytes of space in the current segment

(which must be the data segment in SPIM).

A.10 MIPS R2000 Assembly Language

A-49

.text <addr>

Subsequent items are put in the user text seg ment.

In SPIM, these items may only be instruc tions

or words (see the .word directive below). If the

optional argument addr is present, subse quent

items are stored starting at address addr.

.word w1,..., wn

Store

the

 n 32-bit quantities in successive mem ory

words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and

.sdata).

Encoding MIPS Instructions

Figure A.10.2 explains how a MIPS instruction is encoded in a binary number.

Each column contains instruction encodings for a fi eld (a contiguous group of

bits) from an instruction. Th

e numbers at the left margin are values for a fi eld.

For example, the j opcode has a value of 2 in the opcode fi eld. Th

e text at the top

of a column names a fi eld and specifi es which bits it occupies in an instruction.

For example, the op fi eld is contained in bits 26–31 of an instruction. Th

is fi eld

encodes most instructions. However, some groups of instructions use additional

fi elds to distinguish related instructions. For example, the diff erent fl oating-point

instructions are specifi ed by bits 0–5. Th

e arrows from the fi rst column show which

opcodes use these additional fi elds.

Instruction Format

Th

e rest of this appendix describes both the instructions implemented by actual

MIPS hardware and the pseudoinstructions provided by the MIPS assembler. Th

e

two types of instructions are easily distinguished. Actual instructions depict the

fi elds in their binary representation. For example, in

Addition (with overfl ow)

0

rs

rt

rd

0

0x20

add rd, rs, rt

6

5

5

5

5

6

the add instruction consists of six fi elds. Each fi eld’s size in bits is the small num ber

below the fi eld. Th

is instruction begins with six bits of 0s. Register specifi ers begin

with an r, so the next fi eld is a 5-bit register specifi er called rs. Th

is is the same

register that is the second argument in the symbolic assembly at the left of this

line. Another common fi eld is imm16, which is a 16-bit immediate number.

A-50

Appendix A Assemblers, Linkers, and the SPIM Simulator

 (16:16)

 (16:16)

0 movf

0 movf. f

1 movt

1 movt. f

 10

 16 op(31:26)

 10

 funct(5:0)

 10

 funct(5:0)

 funct(5:0)

0

00

0

sll

0 add. f

madd

1

01

1

1 sub. f

maddu

2

02 j

2

srl

2 mul. f

mul

3

03 jal

3

sra

3 div. f

4

04 beq

4

sllv

4 sqrt. f

msub

5

05 bne

5

5 abs. f

msubu

6

06 blez

6

srlv

6 mov. f

7

07 bgtz

7

srav

7 neg. f

8

08 addi

8

jr

8

9

09 addiu

9

jalr

9

10

0a slti

10

movz

10

11

0b sltiu

11

movn

11

12

0c andi

12

syscall

12 round. w. f

13

0d ori

13

break

13 trunc. w. f

14

0e xori

14

14 cell. w. f

15

0 f lui

15

sync

15 floor. w. f

16

10 z = 0

16

mfhi

16

17

11 z = 1

17

mthi

17

18

12 z = 2

18

mflo

18 movz. f

19

13

19

mtlo

19 movn. f

20

14 beql

20

20

21

15 bnel

21

21

22

16 blezl

22

22

23

17 bgtzl

23

23

24

18

24

mult

24

25

19

25

multu

25

26

1a

26

div

26

27

1b

27

divu

27

28

1c

28

28

29

1d

29

29

30

if z = 1 or z = 2

1e

 rs

 funct

 rt

30

30

31

1 f

 (25:21)

 (17:16)

 (4:0)

 (20:16)

31

31

32

20 lb

0

mfc z

0 bc z f

0

0

bltz

32

add

32 cvt.s. f

clz

33

21 lh

1

1 bc z t

1

tlbr

1

bgez

33

addu

33 cvt.d. f

clo

34

22 lwl

2

cfc z

2 bc z fl

2

tlbwi

2

bltzl

34

sub

34

35

23 lw

3

3 bc z tl

3

3

bgezl

35

subu

35

36

24 lbu

4

mtc z

4

4

36

and

36 cvt.w. f

37

25 lhu

5

5

5

37

or

37

38

26 lwr

6

ctc z

6

tlbwr

6

38

xor

38

39

27

7

7

7

39

nor

39

40

28 sb

8

8

tlbp

8

tgei

40

40

41

29 sh

9

9

9

tgeiu

41

41

42

2a swl

10

10

10

tlti

42

slt

42

43

2b sw

11

11

11

tltiu

43

sltu

43

44

2c

12

12

12

tegi

44

44

45

2d

13

13

13

45

45

46

2e swr

14

if z = 0

14

14

tnei

46

46

47

2 f cache

15

15

15

47

47

48

30 ll

16

cop z

16

16

bltzal

48

tge

48 c.f. f

49

31 lwc1

17

cop z

17

17

bgezal

49

tgeu

49 c.un. f

50

32 lwc2

18

if z = 1,if z = 1,

18

18

bltzall

50

tlt

50 c.eq. f

51

33 pref

19

 f = d

 f = s

19

19

bgczall

51

tltu

51 c.ueq. f

52

34

20

20

20

52

teq

52 c.olt. f

53

35 ldc1

21

21

21

53

53 c.ult. f

54

36 ldc2

22

22

22

54

tne

54 c.ole. f

55

37

23

23

23

55

55 c.ule. f

56

38 sc

24

24

eret

24

56

56 c.sf. f

57

39 swc1

25

25

25

57

57 c.ngle. f

58

3a swc2

26

26

26

58

58 c.seq. f

59

3b

27

27

27

59

59 c.ngl. f

60

3c

28

28

28

60

60 c.lt. f

61

3d sdc1

29

29

29

61

61 c.nge. f

62

3e sdc2

30

30

30

62

62 c.le. f

63

3 f

31

31

deret

31

63

63 c.ngt. f

FIGURE A.10.2 MIPS opcode map. Th

e values of each fi eld are shown to its left . Th

e fi rst column shows the values in base 10, and the

second shows base 16 for the op fi eld (bits 31 to 26) in the third column. Th

is op fi eld completely specifi es the MIPS operation except for six

op values: 0, 1, 16, 17, 18, and 19. Th

ese operations are determined by other fi elds, identifi ed by pointers. Th

e last fi eld (funct) uses “f ” to

mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. Th

e second fi eld (rs) uses “z” to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19, respectively. If rs = 16, the operation is specifi ed elsewhere: if z = 0, the operations are specifi ed in the fourth fi eld (bits 4 to 0); if z = 1, then the operations are in the last fi eld with f = s. If rs = 17 and z = 1, then the operations are in the last fi eld with f = d.

A.10 MIPS R2000 Assembly Language

A-51

Pseudoinstructions follow roughly the same conventions, but omit instruction

encoding information. For example:

Multiply (without overfl ow)

mul rdest, rsrc1, src2

 pseudoinstruction

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a regis-

ter or an immediate value. In general, the assembler and SPIM translate a more

general form of an instruction (e.g., add $v1, $a0, 0x55) to a specialized form

(e.g., addi $v1, $a0, 0x55).

Arithmetic and Logical Instructions

Absolute value

abs rdest, rsrc

 pseudoinstruction

Put the absolute value of register rsrc in register rdest.

Addition (with overfl ow)

0

rs

rt

rd

0

0x20

add rd, rs, rt

6

5

5

5

5

6

Addition (without overfl ow)

0

rs

rt

rd

0

0x21

addu rd, rs, rt

6

5

5

5

5

6

Put the sum of registers rs and rt into register rd.

Addition immediate (with overfl ow)

8

rs

rt

imm

addi rt, rs, imm

6

5

5

16

Addition immediate (without overfl ow)

9

rs

rt

imm

addiu rt, rs, imm

6

5

5

16

Put the sum of register rs and the sign-extended immediate into register rt.

A-52

Appendix A Assemblers, Linkers, and the SPIM Simulator

AND

0

rs

rt

rd

0

0x24

and rd, rs, rt

6

5

5

5

5

6

Put the logical AND of registers rs and rt into register rd.

AND immediate

0xc

rs

rt

imm

andi rt, rs, imm

6

5

5

16

Put the logical AND of register rs and the zero-extended immediate into reg-

ister rt.

Count leading ones

0x1c

rs

0

rd

0

0x21

clo rd, rs

6

5

5

5

5

6

Count leading zeros

0x1c

rs

0

rd

0

0x20

clz rd, rs

6

5

5

5

5

6

Count the number of leading ones (zeros) in the word in register rs and put

the result into register rd. If a word is all ones (zeros), the result is 32.

Divide (with overfl ow)

0

rs

rt

0

0x1a

div rs, rt

6

5

5

10

6

Divide (without overfl ow)

0

rs

rt

0

0x1b

divu rs, rt

6

5

5

10

6

Divide register rs by register rt. Leave the quotient in register lo and the remain-

der in register hi. Note that if an operand is negative, the remainder is unspecifi ed

by the MIPS architecture and depends on the convention of the machine on which

SPIM is run.

A.10 MIPS R2000 Assembly Language

A-53

Divide (with overfl ow)

div rdest, rsrc1, src2

 pseudoinstruction

Divide (without overfl ow)

divu rdest, rsrc1, src2

 pseudoinstruction

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

0

rs

rt

0

0x18

mult rs, rt

6

5

5

10

6

Unsigned multiply

0

rs

rt

0

0x19

multu rs, rt

6

5

5

10

6

Multiply registers rs and rt. Leave the low-order word of the product in register

lo and the high-order word in register hi.

Multiply (without overfl ow)

0x1c

rs

rt

rd

0

2

mul rd, rs, rt

6

5

5

5

5

6

Put the low-order 32 bits of the product of rs and rt into register rd.

Multiply (with overfl ow)

mulo rdest, rsrc1, src2

 pseudoinstruction

Unsigned multiply (with overfl ow)

mulou rdest, rsrc1, src2

 pseudoinstruction

Put the low-order 32 bits of the product of register rsrc1 and src2 into register

rdest.

A-54

Appendix A Assemblers, Linkers, and the SPIM Simulator

Multiply add

0x1c

rs

rt

0

0

madd rs, rt

6

5

5

10

6

Unsigned multiply add

0x1c

rs

rt

0

1

maddu rs, rt

6

5

5

10

6

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit

value in the concatenated registers lo and hi.

Multiply subtract

0x1c

rs

rt

0

4

msub rs, rt

6

5

5

10

6

Unsigned multiply subtract

0x1c

rs

rt

0

5

msub rs, rt

6

5

5

10

6

Multiply registers rs and rt and subtract the resulting 64-bit product from the 64-

bit value in the concatenated registers lo and hi.

Negate value (with overfl ow)

neg rdest, rsrc

 pseudoinstruction

Negate value (without overfl ow)

negu rdest, rsrc

 pseudoinstruction

Put the negative of register rsrc into register rdest.

NOR

0

rs

rt

rd

0

0x27

nor rd, rs, rt

6

5

5

5

5

6

Put the logical NOR of registers rs and rt into register rd.

A.10 MIPS R2000 Assembly Language

A-55

NOT

not rdest, rsrc

 pseudoinstruction

Put the bitwise logical negation of register rsrc into register rdest.

OR

0

rs

rt

rd

0

0x25

or rd, rs, rt

6

5

5

5

5

6

Put the logical OR of registers rs and rt into register rd.

OR immediate

0xd

rs

rt

imm

ori rt, rs, imm

6

5

5

16

Put the logical OR of register rs and the zero-extended immediate into register rt.

Remainder

rem rdest, rsrc1, rsrc2

 pseudoinstruction

Unsigned remainder

remu rdest, rsrc1, rsrc2

 pseudoinstruction

Put the remainder of register rsrc1 divided by register rsrc2 into register rdest.

Note that if an operand is negative, the remainder is unspecifi ed by the MIPS

architecture and depends on the convention of the machine on which SPIM is run.

Shift left logical

0

rs

rt

rd

shamt

0

sll rd, rt, shamt

6

5

5

5

5

6

Shift left logical variable

0

rs

rt

rd

0

4

sllv rd, rt, rs

6

5

5

5

5

6

A-56

Appendix A Assemblers, Linkers, and the SPIM Simulator

Shift right arithmetic

0

rs

rt

rd

shamt

3

sra rd, rt, shamt

6

5

5

5

5

6

Shift right arithmetic variable

0

rs

rt

rd

0

7

srav rd, rt, rs

6

5

5

5

5

6

Shift right logical

0

rs

rt

rd

shamt

2

srl rd, rt, shamt

6

5

5

5

5

6

Shift right logical variable

0

rs

rt

rd

0

6

srlv rd, rt, rs

6

5

5

5

5

6

Shift register rt left (right) by the distance indicated by immediate shamt or the

register rs and put the result in register rd. Note that argument rs is ignored for

sll, sra, and srl.

Rotate left

rol rdest, rsrc1, rsrc2

 pseudoinstruction

Rotate right

ror rdest, rsrc1, rsrc2

 pseudoinstruction

Rotate register rsrc1 left (right) by the distance indicated by rsrc2 and put the

result in register rdest.

Subtract (with overfl ow)

0

rs

rt

rd

0

0x22

sub rd, rs, rt

6

5

5

5

5

6

A.10 MIPS R2000 Assembly Language

A-57

Subtract (without overfl ow)

0

rs

rt

rd

0

0x23

subu rd, rs, rt

6

5

5

5

5

6

Put the diff erence of registers rs and rt into register rd.

Exclusive OR

0

rs

rt

rd

0

0x26

xor rd, rs, rt

6

5

5

5

5

6

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

0xe

rs

rt

Imm

xori rt, rs, imm

6

5

5

16

Put the logical XOR of register rs and the zero-extended immediate into reg-

ister rt.

Constant-Manipulating Instructions

Load upper immediate

0xf

O

rt

imm

lui rt, imm

6

5

5

16

Load the lower halfword of the immediate imm into the upper halfword of reg-

ister rt. Th

e lower bits of the register are set to 0.

Load immediate

li rdest, imm

 pseudoinstruction

Move the immediate imm into register rdest.

Comparison Instructions

Set less than

0

rs

rt

rd

0

0x2a

slt rd, rs, rt

6

5

5

5

5

6

A-58

Appendix A Assemblers, Linkers, and the SPIM Simulator

Set less than unsigned

0

rs

rt

rd

0

0x2b

sltu rd, rs, rt

6

5

5

5

5

6

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

0xa

rs

rt

imm

slti rt, rs, imm

6

5

5

16

Set less than unsigned immediate

0xb

rs

rt

imm

sltiu rt, rs, imm

6

5

5

16

Set register rt to 1 if register rs is less than the sign-extended immediate, and to

0 otherwise.

Set equal

seq rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set greater than equal

sge rdest, rsrc1, rsrc2

 pseudoinstruction

Set greater than equal unsigned

sgeu rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and to

0 otherwise.

Set greater than

sgt rdest, rsrc1, rsrc2

 pseudoinstruction

A.10 MIPS R2000 Assembly Language

A-59

Set greater than unsigned

sgtu rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise.

Set less than equal

sle rdest, rsrc1, rsrc2

 pseudoinstruction

Set less than equal unsigned

sleu rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0

otherwise.

Set not equal

sne rdest, rsrc1, rsrc2

 pseudoinstruction

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 otherwise.

Branch Instructions

Branch instructions use a signed 16-bit instruction off set fi eld; hence, they can

jump 215 − 1 instructions (not bytes) forward or 215 instructions backward. Th

e

 jump instruction contains a 26-bit address fi eld. In actual MIPS processors, branch

instructions are delayed branches, which do not transfer control until the instruction

following the branch (its “delay slot”) has executed (see Chapter 4). Delayed branches

aff ect the off set calculation, since it must be computed relative to the address of the

delay slot instruction (PC + 4), which is when the branch occurs. SPIM does not

simulate this delay slot, unless the -bare or -delayed_branch fl ags are specifi ed.

In assembly code, off sets are not usually specifi ed as numbers. Instead, an

instructions branch to a label, and the assembler computes the distance between

the branch and the target instructions.

In MIPS-32, all actual (not pseudo) conditional branch instructions have a

“likely” variant (for example, beq’s likely variant is beql), which does not execute

the instruction in the branch’s delay slot if the branch is not taken. Do not use

A-60

Appendix A Assemblers, Linkers, and the SPIM Simulator

these instructions; they may be removed in subsequent versions of the architec ture.

SPIM implements these instructions, but they are not described further.

Branch instruction

b label

 pseudoinstruction

Unconditionally branch to the instruction at the label.

Branch coprocessor false

0x11

8

 cc

0

Offset

bclf cc label

6

5

3

2

16

Branch coprocessor true

0x11

8

 cc

1

Offset

bclt cc label

6

5

3

2

16

Conditionally branch the number of instructions specifi ed by the off set if the

fl oating-point coprocessor’s condition fl ag numbered cc is false (true). If cc is omitted from the instruction, condition code fl ag 0 is assumed.

Branch on equal

4

rs

rt

Offset

beq rs, rt, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs equals rt.

Branch on greater than equal zero

1

rs

1

Offset

bgez rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is greater than or equal to 0.

A.10 MIPS R2000 Assembly Language

A-61

Branch on greater than equal zero and link

1

rs

0x11

Offset

bgezal rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is greater than or equal to 0. Save the address of the next instruction in reg-

ister 31.

Branch on greater than zero

7

rs

0

Offset

bgtz rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is greater than 0.

Branch on less than equal zero

6

rs

0

Offset

blez rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is less than or equal to 0.

Branch on less than and link

1

rs

0x10

Offset

bltzal rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

1

rs

0

Offset

bltz rs, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is less than 0.

A-62

Appendix A Assemblers, Linkers, and the SPIM Simulator

Branch on not equal

5

rs

rt

Offset

bne rs, rt, label

6

5

5

16

Conditionally branch the number of instructions specifi ed by the off set if register

rs is not equal to rt.

Branch on equal zero

beqz rsrc, label

 pseudoinstruction

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

bge rsrc1, rsrc2, label

 pseudoinstruction

Branch on greater than equal unsigned

bgeu rsrc1, rsrc2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than

or equal to rsrc2.

Branch on greater than

bgt rsrc1, src2, label

 pseudoinstruction

Branch on greater than unsigned

bgtu rsrc1, src2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than

src2.

Branch on less than equal

ble rsrc1, src2, label

 pseudoinstruction

A.10 MIPS R2000 Assembly Language

A-63

Branch on less than equal unsigned

bleu rsrc1, src2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than or

equal to src2.

Branch on less than

blt rsrc1, rsrc2, label

 pseudoinstruction

Branch on less than unsigned

bltu rsrc1, rsrc2, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than

rsrc2.

Branch on not equal zero

bnez rsrc, label

 pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc is not equal to 0.

Jump Instructions

Jump

2

target

j target

6

26

Unconditionally jump to the instruction at target.

Jump and link

3

target

jal target

6

26

Unconditionally jump to the instruction at target. Save the address of the next

instruction in register $ra.

A-64

Appendix A Assemblers, Linkers, and the SPIM Simulator

Jump and link register

0

rs

0

rd

0

9

jalr rs, rd

6

5

5

5

5

6

Unconditionally jump to the instruction whose address is in register rs. Save the

address of the next instruction in register rd (which defaults to 31).

Jump register

0

rs

0

8

jr rs

6

5

15

6

Unconditionally jump to the instruction whose address is in register rs.

Trap Instructions

Trap if equal

0

rs

rt

0

0x34

teq rs, rt

6

5

5

10

6

If register rs is equal to register rt, raise a Trap exception.

Trap if equal immediate

1

rs

0xc

imm

teqi rs, imm

6

5

5

16

If register rs is equal to the sign-extended value imm, raise a Trap exception.

Trap if not equal

0

rs

rt

0

0x36

teq rs, rt

6

5

5

10

6

If register rs is not equal to register rt, raise a Trap exception.

Trap if not equal immediate

1

rs

0xe

imm

teqi rs, imm

6

5

5

16

If register rs is not equal to the sign-extended value imm, raise a Trap exception.

A.10 MIPS R2000 Assembly Language

A-65

Trap if greater equal

0

rs

rt

0

0x30

tge rs, rt

6

5

5

10

6

Unsigned trap if greater equal

0

rs

rt

0

0x31

tgeu rs, rt

6

5

5

10

6

If register rs is greater than or equal to register rt, raise a Trap exception.

Trap if greater equal immediate

1

rs

8

imm

tgei rs, imm

6

5

5

16

Unsigned trap if greater equal immediate

1

rs

9

imm

tgeiu rs, imm

6

5

5

16

If register rs is greater than or equal to the sign-extended value imm, raise a Trap

exception.

Trap if less than

0

rs

rt

0

0x32

tlt rs, rt

6

5

5

10

6

Unsigned trap if less than

0

rs

rt

0

0x33

tltu rs, rt

6

5

5

10

6

If register rs is less than register rt, raise a Trap exception.

Trap if less than immediate

1

rs

a

imm

tlti rs, imm

6

5

5

16

A-66

Appendix A Assemblers, Linkers, and the SPIM Simulator

Unsigned trap if less than immediate

1

rs

b

imm

tltiu rs, imm

6

5

5

16

If register rs is less than the sign-extended value imm, raise a Trap exception.

Load Instructions

Load address

la rdest, address

 pseudoinstruction

Load computed address—not the contents of the location—into register rdest.

Load byte

0x20

rs

rt

Offset

lb rt, address

6

5

5

16

Load unsigned byte

0x24

rs

rt

Offset

lbu rt, address

6

5

5

16

Load the byte at address into register rt. Th

e byte is sign-extended by lb, but not

by lbu.

Load halfword

0x21

rs

rt

Offset

lh rt, address

6

5

5

16

Load unsigned halfword

0x25

rs

rt

Offset

lhu rt, address

6

5

5

16

Load the 16-bit quantity (halfword) at address into register rt. Th

e halfword is

sign-extended by lh, but not by lhu.

A.10 MIPS R2000 Assembly Language

A-67

Load word

0x23

rs

rt

Offset

lw rt, address

6

5

5

16

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor 1

0x31

rs

rt

Offset

lwcl ft, address

6

5

5

16

Load the word at address into register ft in the fl oating-point unit.

Load word left

0x22

rs

rt

Offset

lwl rt, address

6

5

5

16

Load word right

0x26

rs

rt

Offset

lwr rt, address

6

5

5

16

Load the left (right) bytes from the word at the possibly unaligned address into

register rt.

Load doubleword

ld rdest, address

 pseudoinstruction

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

ulh rdest, address

 pseudoinstruction

A-68

Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned load halfword unsigned

ulhu rdest, address

 pseudoinstruction

Load the 16-bit quantity (halfword) at the possibly unaligned address into register

rdest. Th

e halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

ulw rdest, address

 pseudoinstruction

Load the 32-bit quantity (word) at the possibly unaligned address into register

rdest.

Load linked

0x30

rs

rt

Offset

ll rt, address

6

5

5

16

Load the 32-bit quantity (word) at address into register rt and start an atomic

read-modify-write operation. Th

is operation is completed by a store conditional

(sc) instruction, which will fail if another processor writes into the block contain-

ing the loaded word. Since SPIM does not simulate multiple processors, the store

conditional operation always succeeds.

Store Instructions

Store byte

0x28

rs

rt

Offset

sb rt, address

6

5

5

16

Store the low byte from register rt at address.

Store halfword

0x29

rs

rt

Offset

sh rt, address

6

5

5

16

Store the low halfword from register rt at address.

A.10 MIPS R2000 Assembly Language

A-69

Store word

0x2b

rs

rt

Offset

sw rt, address

6

5

5

16

Store the word from register rt at address.

Store word coprocessor 1

0x31

rs

ft

Offset

swcl ft, address

6

5

5

16

Store the fl oating-point value in register ft of fl oating-point coprocessor at address.

Store double coprocessor 1

0x3d

rs

ft

Offset

sdcl ft, address

6

5

5

16

Store the doubleword fl oating-point value in registers ft and ft + l of fl oating-

point coprocessor at address. Register ft must be even numbered.

Store word left

0x2a

rs

rt

Offset

swl rt, address

6

5

5

16

Store word right

0x2e

rs

rt

Offset

swr rt, address

6

5

5

16

Store the left (right) bytes from register rt at the possibly unaligned address.

Store doubleword

sd rsrc, address

 pseudoinstruction

Store the 64-bit quantity in registers rsrc and rsrc + 1 at address.

A-70

Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned store halfword

ush rsrc, address

 pseudoinstruction

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

usw rsrc, address

 pseudoinstruction

Store the word from register rsrc at the possibly unaligned address.

Store conditional

0x38

rs

rt

Offset

sc rt, address

6

5

5

16

Store the 32-bit quantity (word) in register rt into memory at address and com plete

an atomic read-modify-write operation. If this atomic operation is success ful, the

memory word is modifi ed and register rt is set to 1. If the atomic operation fails

because another processor wrote to a location in the block contain ing the addressed

word, this instruction does not modify memory and writes 0 into register rt. Since

SPIM does not simulate multiple processors, the instruc tion always succeeds.

Data Movement Instructions

Move

move rdest, rsrc

 pseudoinstruction

Move register rsrc to rdest.

Move from hi

0

0

rd

0

0x10

mfhi rd

6

10

5

5

6

A.10 MIPS R2000 Assembly Language

A-71

Move from lo

0

0

rd

0

0x12

mflo rd

6

10

5

5

6

Th

e multiply and divide unit produces its result in two additional registers, hi

and lo. Th

ese instructions move values to and from these registers. Th

e multiply,

divide, and remainder pseudoinstructions that make this unit appear to operate on

the general registers move the result aft er the computation fi nishes.

Move the hi (lo) register to register rd.

Move to hi

0

rs

0

0x11

mthi rs

6

5

15

6

Move to lo

0

rs

0

0x13

mtlo rs

6

5

15

6

Move register rs to the hi (lo) register.

Move from coprocessor 0

0x10

0

rt

rd

0

mfc0 rt, rd

6

5

5

5

11

Move from coprocessor 1

0x11

0

rt

fs

0

mfcl rt, fs

6

5

5

5

11

Coprocessors have their own register sets. Th

ese instructions move values between

these registers and the CPU’s registers.

Move register rd in a coprocessor (register fs in the FPU) to CPU register rt. Th

e

fl oating-point unit is coprocessor 1.

A-72

Appendix A Assemblers, Linkers, and the SPIM Simulator

Move double from coprocessor 1

mfc1.d rdest, frsrc1

 pseudoinstruction

Move fl oating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest

and rdest + 1.

Move to coprocessor 0

0x10

4

rt

rd

0

mtc0 rd, rt

6

5

5

5

11

Move to coprocessor 1

0x11

4

rt

fs

0

mtc1 rd, fs

6

5

5

5

11

Move CPU register rt to register rd in a coprocessor (register fs in the FPU).

Move conditional not zero

0

rs

rt

rd

0xb

movn rd, rs, rt

6

5

5

5

11

Move register rs to register rd if register rt is not 0.

Move conditional zero

0

rs

rt

rd

0xa

movz rd, rs, rt

6

5

5

5

11

Move register rs to register rd if register rt is 0.

Move conditional on FP false

0

rs

 cc

0

rd

0

1

movf rd, rs, cc

6

5

3

2

5

5

6

Move CPU register rs to register rd if FPU condition code fl ag number cc is 0. If

 cc is omitted from the instruction, condition code fl ag 0 is assumed.

A.10 MIPS R2000 Assembly Language

A-73

Move conditional on FP true

0

rs

 cc

1

rd

0

1

movt rd, rs, cc

6

5

3

2

5

5

6

Move CPU register rs to register rd if FPU condition code fl ag number cc is 1. If

 cc is omitted from the instruction, condition code bit 0 is assumed.

Floating-Point Instructions

Th

e MIPS has a fl oating-point coprocessor (numbered 1) that operates on single

precision (32-bit) and double precision (64-bit) fl oating-point numbers. Th

is

coprocessor has its own registers, which are numbered $f0–$f31. Because these

registers are only 32 bits wide, two of them are required to hold doubles, so only

fl oating-point registers with even numbers can hold double precision values. Th

e

fl oating-point coprocessor also has eight condition code (cc) fl ags, numbered 0–7,

which are set by compare instructions and tested by branch (bclf or bclt) and

conditional move instructions.

Values are moved in or out of these registers one word (32 bits) at a time by

lwc1, swc1, mtc1, and mfc1 instructions or one double (64 bits) at a time by ldcl

and sdcl, described above, or by the l.s, l.d, s.s, and s.d pseudoinstructions

described below.

In the actual instructions below, bits 21–26 are 0 for single precision and 1

for double precision. In the pseudoinstructions below, fdest is a fl oating-point

register (e.g., $f2).

Floating-point absolute value double

0x11

1

0

fs

fd

5

abs.d fd, fs

6

5

5

5

5

6

Floating-point absolute value single

0x11

0

0

fs

fd

5

abs.s fd, fs

Compute the absolute value of the fl oating-point double (single) in register fs and

put it in register fd.

Floating-point addition double

0x11

0x11

ft

fs

fd

0

add.d fd, fs, ft

6

5

5

5

5

6

A-74

Appendix A Assemblers, Linkers, and the SPIM Simulator

Floating-point addition single

0x11

0x10

ft

fs

fd

0

add.s fd, fs, ft

6

5

5

5

5

6

Compute the sum of the fl oating-point doubles (singles) in registers fs and ft and

put it in register fd.

Floating-point ceiling to word

0x11

0x11

0

fs

fd

0xe

ceil.w.d fd, fs

6

5

5

5

5

6

0x11

0x10

0

fs

fd

0xe

ceil.w.s fd, fs

Compute the ceiling of the fl oating-point double (single) in register fs, convert to

a 32-bit fi xed-point value, and put the resulting word in register fd.

Compare equal double

0x11

0x11

ft

fs

 cc

0

FC

2

c.eq.d cc fs, ft

6

5

5

5

3

2

2

4

Compare equal single

0x11

0x10

ft

fs

 cc

0

FC

2

c.eq.s cc fs, ft

6

5

5

5

3

2

2

4

Compare the fl oating-point double (single) in register fs against the one in ft

and set the fl oating-point condition fl ag cc to 1 if they are equal. If cc is omitted, condition code fl ag 0 is assumed.

Compare less than equal double

0x11

0x11

ft

fs

 cc

0

FC

0xe

c.le.d cc fs, ft

6

5

5

5

3

2

2

4

Compare less than equal single

0x11

0x10

ft

fs

 cc

0

FC

0xe

c.le.s cc fs, ft

6

5

5

5

3

2

2

4

A.10 MIPS R2000 Assembly Language

A-75

Compare the fl oating-point double (single) in register fs against the one in ft and

set the fl oating-point condition fl ag cc to 1 if the fi rst is less than or equal to the second. If cc is omitted, condition code fl ag 0 is assumed.

Compare less than double

0x11

0x11

ft

fs

 cc

0

FC

0xc

c.lt.d cc fs, ft

6

5

5

5

3

2

2

4

Compare less than single

0x11

0x10

ft

fs

 cc

0

FC

0xc

c.lt.s cc fs, ft

6

5

5

5

3

2

2

4

Compare the fl oating-point double (single) in register fs against the one in ft

and set the condition fl ag cc to 1 if the fi rst is less than the second. If cc is omitted, condition code fl ag 0 is assumed.

Convert single to double

0x11

0x10

0

fs

fd

0x21

cvt.d.s fd, fs

6

5

5

5

5

6

Convert integer to double

0x11

0x14

0

fs

fd

0x21

cvt.d.w fd, fs

6

5

5

5

5

6

Convert the single precision fl oating-point number or integer in register fs to a

double (single) precision number and put it in register fd.

Convert double to single

0x11

0x11

0

fs

fd

0x20

cvt.s.d fd, fs

6

5

5

5

5

6

Convert integer to single

0x11

0x14

0

fs

fd

0x20

cvt.s.w fd, fs

6

5

5

5

5

6

Convert the double precision fl oating-point number or integer in register fs to a

single precision number and put it in register fd.

A-76

Appendix A Assemblers, Linkers, and the SPIM Simulator

Convert double to integer

0x11

0x11

0

fs

fd

0x24

cvt.w.d fd, fs

6

5

5

5

5

6

Convert single to integer

0x11

0x10

0

fs

fd

0x24

cvt.w.s fd, fs

6

5

5

5

5

6

Convert the double or single precision fl oating-point number in register fs to an

integer and put it in register fd.

Floating-point divide double

0x11

0x11

ft

fs

fd

3

div.d fd, fs, ft

6

5

5

5

5

6

Floating-point divide single

0x11

0x10

ft

fs

fd

3

div.s fd, fs, ft

6

5

5

5

5

6

Compute the quotient of the fl oating-point doubles (singles) in registers fs and ft

and put it in register fd.

Floating-point fl oor to word

0x11

0x11

0

fs

fd

0xf

floor.w.d fd, fs

6

5

5

5

5

6

0x11

0x10

0

fs

fd

0xf

floor.w.s fd, fs

Compute the fl oor of the fl oating-point double (single) in register fs and put the

resulting word in register fd.

Load fl oating-point double

l.d fdest, address

 pseudoinstruction

A.10 MIPS R2000 Assembly Language

A-77

Load fl oating-point single

l.s fdest, address

 pseudoinstruction

Load the fl oating-point double (single) at address into register fdest.

Move fl oating-point double

0x11

0x11

0

fs

fd

6

mov.d fd, fs

6

5

5

5

5

6

Move fl oating-point single

0x11

0x10

0

fs

fd

6

mov.s fd, fs

6

5

5

5

5

6

Move the fl oating-point double (single) from register fs to register fd.

Move conditional fl oating-point double false

0x11

0x11

 cc

0

fs

fd

0x11

movf.d fd, fs, cc

6

5

3

2

5

5

6

Move conditional fl oating-point single false

0x11

0x10

 cc

0

fs

fd

0x11

movf.s fd, fs, cc

6

5

3

2

5

5

6

Move the fl oating-point double (single) from register fs to register fd if condi tion

code fl ag cc is 0. If cc is omitted, condition code fl ag 0 is assumed.

Move conditional fl oating-point double true

0x11

0x11

 cc

1

fs

fd

0x11

movt.d fd, fs, cc

6

5

3

2

5

5

6

Move conditional fl oating-point single true

0x11

0x10

 cc

1

fs

fd

0x11

movt.s fd, fs, cc

6

5

3

2

5

5

6

A-78

Appendix A Assemblers, Linkers, and the SPIM Simulator

Move the fl oating-point double (single) from register fs to register fd if condi tion

code fl ag cc is 1. If cc is omitted, condition code fl ag 0 is assumed.

Move conditional fl oating-point double not zero

0x11

0x11

rt

fs

fd

0x13

movn.d fd, fs, rt

6

5

5

5

5

6

Move conditional fl oating-point single not zero

0x11

0x10

rt

fs

fd

0x13

movn.s fd, fs, rt

6

5

5

5

5

6

Move the fl oating-point double (single) from register fs to register fd if proces sor

register rt is not 0.

Move conditional fl oating-point double zero

0x11

0x11

rt

fs

fd

0x12

movz.d fd, fs, rt

6

5

5

5

5

6

Move conditional fl oating-point single zero

0x11

0x10

rt

fs

fd

0x12

movz.s fd, fs, rt

6

5

5

5

5

6

Move the fl oating-point double (single) from register fs to register fd if proces sor

register rt is 0.

Floating-point multiply double

0x11

0x11

ft

fs

fd

2

mul.d fd, fs, ft

6

5

5

5

5

6

Floating-point multiply single

0x11

0x10

ft

fs

fd

2

mul.s fd, fs, ft

6

5

5

5

5

6

Compute the product of the fl oating-point doubles (singles) in registers fs and ft

and put it in register fd.

Negate double

0x11

0x11

0

fs

fd

7

neg.d fd, fs

6

5

5

5

5

6

A.10 MIPS R2000 Assembly Language

A-79

Negate single

0x11

0x10

0

fs

fd

7

neg.s fd, fs

6

5

5

5

5

6

Negate the fl oating-point double (single) in register fs and put it in register fd.

Floating-point round to word

0x11

0x11

0

fs

fd

0xc

round.w.d fd, fs

6

5

5

5

5

6

round.w.s fd, fs

0x11

0x10

0

fs

fd

0xc

Round the fl oating-point double (single) value in register fs, convert to a 32-bit

fi xed-point value, and put the resulting word in register fd.

Square root double

0x11

0x11

0

fs

fd

4

sqrt.d fd, fs

6

5

5

5

5

6

Square root single

0x11

0x10

0

fs

fd

4

sqrt.s fd, fs

6

5

5

5

5

6

Compute the square root of the fl oating-point double (single) in register fs and

put it in register fd.

Store fl oating-point double

s.d fdest, address

 pseudoinstruction

Store fl oating-point single

s.s fdest, address

 pseudoinstruction

Store the fl oating-point double (single) in register fdest at address.

Floating-point subtract double

0x11

0x11

ft

fs

fd

1

sub.d fd, fs, ft

6

5

5

5

5

6

A-80

Appendix A Assemblers, Linkers, and the SPIM Simulator

Floating-point subtract single

0x11

0x10

ft

fs

fd

1

sub.s fd, fs, ft

6

5

5

5

5

6

Compute the diff erence of the fl oating-point doubles (singles) in registers fs and

ft and put it in register fd.

Floating-point truncate to word

0x11

0x11

0

fs

fd

0xd

trunc.w.d fd, fs

6

5

5

5

5

6

trunc.w.s fd, fs

0x11

0x10

0

fs

fd

0xd

Truncate the fl oating-point double (single) value in register fs, convert to a 32-bit

fi xed-point value, and put the resulting word in register fd.

Exception and Interrupt Instructions

Exception return

0x10

1

0

0x18

eret

6

1

19

6

Set the EXL bit in coprocessor 0’s Status register to 0 and return to the instruction

pointed to by coprocessor 0’s EPC register.

System call

0

0

0xc

syscall

6

20

6

Register $v0 contains the number of the system call (see Figure A.9.1) provided

by SPIM.

Break

0

code

0xd

break code

6

20

6

Cause exception code. Exception 1 is reserved for the debugger.

No operation

0

0

0

0

0

0

nop

6

5

5

5

5

6

Do nothing.

 A.11

Concluding

Remarks

A-81

 A.11 Concluding

Remarks

Programming in assembly language requires a programmer to trade helpful fea-

tures of high-level languages—such as data structures, type checking, and control

constructs—for complete control over the instructions that a computer executes.

External constraints on some applications, such as response time or program size,

require a programmer to pay close attention to every instruction. However, the

cost of this level of attention is assembly language programs that are longer, more

time-consuming to write, and more diffi

cult to maintain than high-level language

programs.

Moreover, three trends are reducing the need to write programs in assembly

language. Th

e fi rst trend is toward the improvement of compilers. Modern com-

pilers produce code that is typically comparable to the best handwritten code—

and is sometimes better. Th

e second trend is the introduction of new processors

that are not only faster, but in the case of processors that execute multiple instruc-

tions simultaneously, also more diffi

cult to program by hand. In addition, the rapid

evolution of the modern computer favors high-level language programs that are

not tied to a single architecture. Finally, we witness a trend toward increasingly

complex applications, characterized by complex graphic interfaces and many more

features than their predecessors had. Large applications are written by teams of

programmers and require the modularity and semantic checking features pro vided

by high-level languages.

Further Reading

Aho, A., R. Sethi, and J. Ullman [1985]. Compilers: Principles, Techniques, and Tools, Reading, MA: Addison-

Wesley.

 Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers.

Sweetman, D. [1999]. See MIPS Run, San Francisco, CA: Morgan Kaufmann Publishers.

 A complete, detailed, and engaging introduction to the MIPS instruction set and assembly language programming on these machines.

Detailed documentation on the MIPS-32 architecture is available on the Web:

MIPS32™ Architecture for Programmers Volume I: Introduction to the MIPS32™ Architecture

 (http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/

 ArchitectureProgrammingPublicationsforMIPS32/MD00082-2B-MIPS32INT-AFP-02.00.pdf/

 getDownload)

MIPS32™ Architecture for Programmers Volume II: Th

e MIPS32™ Instruction Set

 (http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/

 ArchitectureProgrammingPublicationsforMIPS32/MD00086-2B-MIPS32BIS-AFP-02.00.pdf/getDownload)

MIPS32™ Architecture for Programmers Volume III: Th

e MIPS32™ Privileged Resource Architecture

 (http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/

 ArchitectureProgrammingPublicationsforMIPS32/MD00090-2B-MIPS32PRA-AFP-02.00.pdf/getDownload)

A-82

Appendix A Assemblers, Linkers, and the SPIM Simulator

 A.12 Exercises

A.1 [5] <§A.5> Section A.5 described how memory is partitioned on most MIPS

systems. Propose another way of dividing memory that meets the same goals.

A.2 [20] <§A.6> Rewrite the code for fact to use fewer instructions.

A.3 [5] <§A.7> Is it ever safe for a user program to use registers $k0 or $k1?

A.4 [25] <§A.7> Section A.7 contains code for a very simple exception handler.

One serious problem with this handler is that it disables interrupts for a long

time. Th

is means that interrupts from a fast I/O device may be lost. Write a better

exception handler that is interruptable and enables interrupts as quickly as possible.

A.5 [15] <§A.7> Th

e simple exception handler always jumps back to the instruc-

tion following the exception. Th

is works fi ne unless the instruction that causes the

exception is in the delay slot of a branch. In that case, the next instruction is the

target of the branch. Write a better handler that uses the EPC register to determine

which instruction should be executed aft er the exception.

A.6 [5] <§A.9> Using SPIM, write and test an adding machine program that

repeatedly reads in integers and adds them into a running sum. Th

e program

should stop when it gets an input that is 0, printing out the sum at that point. Use

the SPIM system calls described on pages A-43 and A-45.

A.7 [5] <§A.9> Using SPIM, write and test a program that reads in three integers

and prints out the sum of the largest two of the three. Use the SPIM system calls

described on pages A-43 and A-45. You can break ties arbitrarily.

A.8 [5] <§A.9> Using SPIM, write and test a program that reads in a positive inte-

ger using the SPIM system calls. If the integer is not positive, the program should

terminate with the message “Invalid Entry”; otherwise the program should print

out the names of the digits of the integers, delimited by exactly one space. For

example, if the user entered “728,” the output would be “Seven Two Eight.”

A.9 [25] <§A.9> Write and test a MIPS assembly language program to compute

and print the fi rst 100 prime numbers. A number n is prime if no numbers except

1 and n divide it evenly. You should implement two routines:

■ test_prime (n) Return 1 if n is prime and 0 if n is not prime.

■ main () Iterate over the integers, testing if each is prime. Print the fi rst

100 numbers that are prime.

Test your programs by running them on SPIM.

A.12 Exercises

A-83

A.10 [10] <§§A.6, A.9> Using SPIM, write and test a recursive program for solv ing

the classic mathematical recreation, the Towers of Hanoi puzzle. (Th

is will require

the use of stack frames to support recursion.) Th

e puzzle consists of three pegs

(1, 2, and 3) and n disks (the number n can vary; typical values might be in the range from 1 to 8). Disk 1 is smaller than disk 2, which is in turn smaller than disk

3, and so forth, with disk n being the largest. Initially, all the disks are on peg 1,

starting with disk n on the bottom, disk n − 1 on top of that, and so forth, up to disk 1 on the top. Th

e goal is to move all the disks to peg 2. You may only move one

disk at a time, that is, the top disk from any of the three pegs onto the top of either

of the other two pegs. Moreover, there is a constraint: You must not place a larger

disk on top of a smaller disk.

Th

e C program below can be used to help write your assembly language program.

/* move n smallest disks from start to finish using

extra */

void hanoi(int n, int start, int finish, int extra){

if(n != 0){

hanoi(n-1, start, extra, finish);

print_string(“Move

disk”);

print_int(n);

print_string(“from

peg”);

print_int(start);

print_string(“to

peg”);

print_int(finish);

print_string(“.\n”);

hanoi(n-1, extra, finish, start);

}

}

main(){

int

n;

print_string(“Enter number of disks>“);

n = read_int();

hanoi(n, 1, 2, 3);

return

0;

}

B

A

P

P

E

N

D

I

X

The Basics of Logic

Design

B.1 Introduction

B-3

 I always loved that

B.2

Gates, Truth Tables, and Logic

 word, Boolean.

Equations B-4

B.3 Combinational

Logic

B-9

Claude Shannon

 IEEE Spectrum, April 1992

B.4

Using a Hardware Description

(Shannon’s master’s thesis showed

Language B-20

that the algebra invented by George

Boole in the 1800s could represent the

B.5

Constructing a Basic Arithmetic Logic

workings of electrical switches.)

Unit B-26

B.6

Faster Addition: Carry Lookahead B-38

B.7 Clocks

B-48

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

B.8

Memory Elements: Flip-Flops, Latches, and Registers B-50

B.9

Memory Elements: SRAMs and DRAMs B-58

B.10 Finite-State

Machines

B-67

B.11 Timing

Methodologies

B-72

B.12

Field Programmable Devices B-78

B.13 Concluding

Remarks

B-79

B.14 Exercises

B-80

 B.1 Introduction

Th

is appendix provides a brief discussion of the basics of logic design. It does not

replace a course in logic design, nor will it enable you to design signifi cant working

logic systems. If you have little or no exposure to logic design, however, this

appendix will provide suffi

cient background to understand all the material in this

book. In addition, if you are looking to understand some of the motivation behind

how computers are implemented, this material will serve as a useful introduction.

If your curiosity is aroused but not sated by this appendix, the references at the end

provide several additional sources of information.

Section B.2 introduces the basic building blocks of logic, namely, gates. Section

B.3 uses these building blocks to construct simple combinational logic systems,

which contain no memory. If you have had some exposure to logic or digital

systems, you will probably be familiar with the material in these fi rst two sections.

Section B.5 shows how to use the concepts of Sections B.2 and B.3 to design an

ALU for the MIPS processor. Section B.6 shows how to make a fast adder, and

B-4

Appendix B The Basics of Logic Design

may be safely skipped if you are not interested in this topic. Section B.7 is a short

introduction to the topic of clocking, which is necessary to discuss how memory

elements work. Section B.8 introduces memory elements, and Section B.9 extends

it to focus on random access memories; it describes both the characteristics that

are important to understanding how they are used, as discussed in Chapter 4, and

the background that motivates many of the aspects of memory hierarchy design

discussed in Chapter 5. Section B.10 describes the design and use of fi nite-state

machines, which are sequential logic blocks. If you intend to read Appendix D,

you should thoroughly understand the material in Sections B.2 through B.10. If

you intend to read only the material on control in Chapter 4, you can skim the

appendices; however, you should have some familiarity with all the material except

Section B.11. Section B.11 is intended for those who want a deeper understanding

of clocking methodologies and timing. It explains the basics of how edge-triggered

clocking works, introduces another clocking scheme, and briefl y describes the

problem of synchronizing asynchronous inputs.

Th

roughout this appendix, where it is appropriate, we also include segments

to demonstrate how logic can be represented in Verilog, which we introduce in

Section B.4. A more extensive and complete Verilog tutorial appears elsewhere on

the CD.

 B.2

Gates, Truth Tables, and Logic Equations

Th

e electronics inside a modern computer are digital. Digital electronics operate

with only two voltage levels of interest: a high voltage and a low voltage. All other

voltage values are temporary and occur while transitioning between the values.

(As we discuss later in this section, a possible pitfall in digital design is sampling

a signal when it not clearly either high or low.) Th

e fact that computers are digital

is also a key reason they use binary numbers, since a binary system matches the

underlying abstraction inherent in the electronics. In various logic families, the

values and relationships between the two voltage values diff er. Th

us, rather than

refer to the voltage levels, we talk about signals that are (logically) true, or 1, or are

asserted signal A signal

asserted; or signals that are (logically) false, or 0, or are deasserted. Th

e values 0

that is (logically) true,

and 1 are called complements or inverses of one another.

or 1.

Logic blocks are categorized as one of two types, depending on whether they

contain memory. Blocks without memory are called combinational; the output of

deasserted signal

A signal that is (logically)

a combinational block depends only on the current input. In blocks with memory,

false, or 0.

the outputs can depend on both the inputs and the value stored in memory, which

is called the state of the logic block. In this section and the next, we will focus

B.2 Gates, Truth Tables, and Logical Equations

B-5

only on combinational logic. Aft er introducing diff erent memory elements in combinational logic Section B.8, we will describe how sequential logic, which is logic including state, A logic system whose is designed.

blocks do not contain

memory and hence

compute the same output

Truth Tables

given the same input.

Because a combinational logic block contains no memory, it can be completely sequential logic specifi ed by defi ning the values of the outputs for each possible set of input values. A group of logic elements Such a description is normally given as a truth table. For a logic block with n that contain memory inputs, there are 2 n entries in the truth table, since there are that many possible and hence whose value depends on the inputs

combinations of input values. Each entry specifi es the value of all the outputs for as well as the current that particular input combination.

contents of the memory.

Truth Tables

EXAMPLE

Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. Th

e function is defi ned as follows: D is true if at least one input is true,

 E is true if exactly two inputs are true, and F is true only if all three inputs are true. Show the truth table for this function.

Th

e truth table will contain 23 ⫽ 8 entries. Here it is:

Inpu

ANSWER

Inputs

Outputs

A

B

C

D

E

F

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1

0

0

1

0

1

1

1

0

1

1

0

1

1

0

1

1

1

1

0

1

Truth tables can completely describe any combinational logic function; however,

they grow in size quickly and may not be easy to understand. Sometimes we want

to construct a logic function that will be 0 for many input combinations, and we

use a shorthand of specifying only the truth table entries for the nonzero outputs.

Th

is approach is used in Chapter 4 and Appendix D.

B-6

Appendix B The Basics of Logic Design

Boolean Algebra

Another approach is to express the logic function with logic equations. Th

is

is done with the use of Boolean algebra (named aft er Boole, a 19th-century

mathematician). In Boolean algebra, all the variables have the values 0 or 1 and, in

typical formulations, there are three operators:

■ Th

e OR operator is written as ⫹, as in A ⫹ B. Th

e result of an OR operator is

1 if either of the variables is 1. Th

e OR operation is also called a logical sum,

since its result is 1 if either operand is 1.

■ Th

e AND operator is written as ⭈ , as in A ⭈ B. Th

e result of an AND operator

is 1 only if both inputs are 1. Th

e AND operator is also called logical product,

since its result is 1 only if both operands are 1.

■ Th

e unary operator NOT is written as A. Th

e result of a NOT operator is 1 only if

the input is 0. Applying the operator NOT to a logical value results in an inversion

or negation of the value (i.e., if the input is 0 the output is 1, and vice versa).

Th

ere are several laws of Boolean algebra that are helpful in manipulating logic

equations.

■ Identity law: A ⫹ 0 ⫽ A and A ⭈ 1 ⫽ A

■ Zero and One laws: A ⫹ 1 ⫽ 1 and A ⭈ 0 ⫽ 0

■ Inverse laws: A

 A

1 and A A

0

■ Commutative laws: A ⫹ B ⫽ B ⫹ A and A ⭈ B ⫽ B ⭈ A

■ Associative laws: A ⫹ (B ⫹ C) ⫽ (A ⫹ B) ⫹ C and A ⭈ (B ⭈ C) ⫽ (A ⭈ B) ⭈ C

■ Distributive laws: A ⭈ (B ⫹ C) ⫽ (A ⭈ B) ⫹ (A ⭈ C) and A ⫹ (B ⭈ C) ⫽ (A ⫹ B) ⭈ (A ⫹ C)

In addition, there are two other useful theorems, called DeMorgan’s laws, that are

discussed in more depth in the exercises.

Any set of logic functions can be written as a series of equations with an output

on the left -hand side of each equation and a formula consisting of variables and the

three operators above on the right-hand side.

B.2 Gates, Truth Tables, and Logical Equations

B-7

Logic Equations

Show the logic equations for the logic functions, D, E, and F, described in the previous example.

EXAMPLE

Here’s the equation for D:

ANSWER

 D

 A

 B

 C

 F is equally simple:

 F

 A B C

 E is a little tricky. Th

ink of it in two parts: what must be true for E to be true

(two of the three inputs must be true), and what cannot be true (all three

cannot be true). Th

us we can write E as

 E

((A B)

(A C)

(B C)) (A B C)

We can also derive E by realizing that E is true only if exactly two of the inputs are true. Th

en we can write E as an OR of the three possible terms that have

two true inputs and one false input:

 E

(A B C)

(A C B)

(B C A)

Proving that these two expressions are equivalent is explored in the exercises.

In Verilog, we describe combinational logic whenever possible using the assign

statement, which is described beginning on page B-23. We can write a defi nition

for E using the Verilog exclusive-OR operator as assign E ⫽ (A ^ B ^ C) *

(A + B + C) * (A * B * C), which is yet another way to describe this function.

 D and F have even simpler representations, which are just like the corresponding C

code: D ⫽ A | B | C and F ⫽ A & B & C.

B-8

Appendix B The Basics of Logic Design

Gates

gate A device that

Logic blocks are built from gates that implement basic logic functions. For example,

implements basic logic

an AND gate implements the AND function, and an OR gate implements the OR

functions, such as AND

function. Since both AND and OR are commutative and associative, an AND or an

or OR.

OR gate can have multiple inputs, with the output equal to the AND or OR of all

the inputs. Th

e logical function NOT is implemented with an inverter that always

has a single input. Th

e standard representation of these three logic building blocks

is shown in Figure B.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles”

to the inputs or outputs of a gate to cause the logic value on that input line or

output line to be inverted. For example, Figure B.2.2 shows the logic diagram for the function A ⫹ B , using explicit inverters on the left and bubbled inputs and outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and

inversion; several of the exercises give you the opportunity to try implementing

some common logic functions with gates. In the next section, we’ll see how an

implementation of any logic function can be constructed using this knowledge.

In fact, all logic functions can be constructed with only a single gate type, if that

NOR gate An inverted

gate is inverting. Th

e two common inverting gates are called NOR and NAND and

OR gate.

correspond to inverted OR and AND gates, respectively. NOR and NAND gates are

NAND gate An inverted

called universal, since any logic function can be built using this one gate type. Th

e

AND gate.

exercises explore this concept further.

Check Are the following two logical expressions equivalent? If not, fi nd a setting of the variables to show they are not:

Yourself

■ (A B C)

(A C B)

(B C

)

 A

■ B (A C

 C A)

FIGURE B.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from

left to right. Th

e signals to the left of each symbol are the inputs, while the output appears on the right. Th

e

AND and OR gates both have two inputs. Inverters have a single input.

A

A

B

B

FIGURE B.2.2 Logic gate implementation of A ⴙ B using explicit inverts on the left and bubbled inputs and outputs on the right. Th

is logic function can be simplifi ed to A B

⭈ or in Verilog,

A & ~ B.

 B.3

Combinational

Logic

B-9

 B.3 Combinational

Logic

In this section, we look at a couple of larger logic building blocks that we use

heavily, and we discuss the design of structured logic that can be automatically

implemented from a logic equation or truth table by a translation program. Last,

we discuss the notion of an array of logic blocks.

Decoders

One logic block that we will use in building larger components is a decoder. Th

e decoder A logic block

most common type of decoder has an n-bit input and 2 n outputs, where only one that has an n-bit input output is asserted for each input combination. Th

is decoder translates the n-bit and 2 n outputs, where

input into a signal that corresponds to the binary value of the n-bit input. Th

e only one output is

asserted for each input

outputs are thus usually numbered, say, Out0, Out1, … , Out2 n ⫺ 1. If the value of combination.

the input is i, then Out i will be true and all other outputs will be false. Figure B.3.1

shows a 3-bit decoder and the truth table. Th

is decoder is called a 3-to-8 decoder

since there are 3 inputs and 8 (23) outputs. Th

ere is also a logic element called

an encoder that performs the inverse function of a decoder, taking 2 n inputs and

producing an n-bit output.

s

t

u

p

n

I

t

u

p

t

u

O

s

Out0

12

11

10

Out7

Out6

Out5

Out4

Out3

Out2

Out1

Out0

Out1

0

0

0

0

0

0

0

0

0

0

1

Out2

0

0

1

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

3

Out3

Decoder

0

1

1

0

0

0

0

1

0

0

0

Out4

1

0

0

0

0

0

1

0

0

0

0

Out5

1

0

1

0

0

1

0

0

0

0

0

Out6

1

1

0

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

Out7

a. A 3-bit decoder

b. The truth table for a 3-bit decoder

FIGURE B.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the output corresponding to the binary value of the input is true, as shown in the truth table. Th

e label 3 on the input to the decoder says that the

input signal is 3 bits wide.

B-10

Appendix B The Basics of Logic Design

A

A

0

M

u

C

C

x

B

1

B

S

S

FIGURE B.3.2 A two-input multiplexor on the left and its implementation with gates on

the right. Th

e multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input (S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when they are wider than two inputs. We show how to do this beginning on page B-23.

Multiplexors

One basic logic function that we use quite oft en in Chapter 4 is the multiplexor.

A multiplexor might more properly be called a selector, since its output is one of

the inputs that is selected by a control. Consider the two-input multiplexor. Th

e

left side of Figure B.3.2 shows this multiplexor has three inputs: two data values selector value Also

and a selector (or control) value. Th

e selector value determines which of the

called control value. Th

e

inputs becomes the output. We can represent the logic function computed by a

control signal that is used

two-input multiplexor, shown in gate form on the right side of Figure B.3.2, as

to select one of the input

 C

(A S)

(B S) .

values of a multiplexor

Multiplexors can be created with an arbitrary number of data inputs. When

as the output of the

there are only two inputs, the selector is a single signal that selects one of the inputs

multiplexor.

if it is true (1) and the other if it is false (0). If there are n data inputs, there will need to be ⎡log n

⎢

⎤

2 ⎥ selector inputs. In this case, the multiplexor basically consists

of three parts:

1. A decoder that generates n signals, each indicating a diff erent input value

2. An array of n AND gates, each combining one of the inputs with a signal

from the decoder

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we oft en label the data inputs numerically

(i.e., 0, 1, 2, 3, …, n ⫺ 1) and interpret the data selector inputs as a binary number.

Sometimes, we make use of a multiplexor with undecoded selector signals.

Multiplexors are easily represented combinationally in Verilog by using if

expressions. For larger multiplexors, case statements are more convenient, but care

must be taken to synthesize combinational logic.

 B.3

Combinational

Logic

B-11

Two-Level Logic and PLAs

As pointed out in the previous section, any logic function can be implemented with

only AND, OR, and NOT functions. In fact, a much stronger result is true. Any logic

function can be written in a canonical form, where every input is either a true or

complemented variable and there are only two levels of gates—one being AND and

the other OR—with a possible inversion on the fi nal output. Such a representation

is called a two-level representation, and there are two forms, called sum of products sum of products A form and product of sums. A sum-of-products representation is a logical sum (OR) of of logical representation products (terms using the AND operator); a product of sums is just the opposite. that employs a logical sum In our earlier example, we had two equations for the output E:

(OR) of products (terms

joined using the AND

operator).

 E

((A B)

(A C)

(B C)) (A B C)

and

 E

(A B C)

(A C B) (B C A)

Th

is second equation is in a sum-of-products form: it has two levels of logic and the

only inversions are on individual variables. Th

e fi rst equation has three levels of logic.

Elaboration: We can also write E as a product of sums:

 E

(A

 B

 C) (A

 C

 B)

 B

(

 C

 A)

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the

exercises.

In this text, we use the sum-of-products form. It is easy to see that any logic

function can be represented as a sum of products by constructing such a

representation from the truth table for the function. Each truth table entry for

which the function is true corresponds to a product term. Th

e product term

consists of a logical product of all the inputs or the complements of the inputs,

depending on whether the entry in the truth table has a 0 or 1 corresponding to

this variable. Th

e logic function is the logical sum of the product terms where the

function is true. Th

is is more easily seen with an example.

B-12

Appendix B The Basics of Logic Design

Sum of Products

Show the sum-of-products representation for the following truth table for D.

EXAMPLE

Inputs

Outputs

A

B

C

D

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

0

1

1

1

1

Th

ere are four product terms, since the function is true (1) for four diff erent

ANSWER

input combinations. Th

ese are:

 A ⭈ B ⭈ C

 A ⭈ B ⭈ C

 A ⭈ B ⭈ C

 A ⭈ B ⭈ C

programmable logic

array (PLA)

A structured-logic

Th

us, we can write the function for D as the sum of these terms:

element composed

of a set of inputs and

 D

(A B C)(A B C)(A B C)(A B C)

corresponding input

complements and two

Note that only those truth table entries for which the function is true generate

stages of logic: the fi rst

terms in the equation.

generates product terms

of the inputs and input

complements, and the

We can use this relationship between a truth table and a two-level representation

second generates sum

to generate a gate-level implementation of any set of logic functions. A set of logic

terms of the product

functions corresponds to a truth table with multiple output columns, as we saw in

terms. Hence, PLAs

the example on page B-5. Each output column represents a diff erent logic function,

implement logic functions

which may be directly constructed from the truth table.

as a sum of products.

Th

e sum-of-products representation corresponds to a common structured-logic

minterms Also called

implementation called a programmable logic array (PLA). A PLA has a set of

product terms. A set

inputs and corresponding input complements (which can be implemented with a

of logic inputs joined

set of inverters), and two stages of logic. Th

e fi rst stage is an array of AND gates that

by conjunction (AND

form a set of product terms (sometimes called minterms); each product term can

operations); the product

consist of any of the inputs or their complements. Th

e second stage is an array of

terms form the fi rst logic

stage of the programmable

OR gates, each of which forms a logical sum of any number of the product terms.

 logic array (PLA).

Figure B.3.3 shows the basic form of a PLA.

 B.3

Combinational

Logic

B-13

Inputs

AND gates

Product terms

OR gates

Outputs

FIGURE B.3.3 The basic form of a PLA consists of an array of AND gates followed by an

array of OR gates. Each entry in the AND gate array is a product term consisting of any number of inputs or inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms.

A PLA can directly implement the truth table of a set of logic functions with

multiple inputs and outputs. Since each entry where the output is true requires

a product term, there will be a corresponding row in the PLA. Each output

corresponds to a potential row of OR gates in the second stage. Th

e number of OR

gates corresponds to the number of truth table entries for which the output is true.

Th

e total size of a PLA, such as that shown in Figure B.3.3, is equal to the sum of the size of the AND gate array (called the AND plane) and the size of the OR gate array

(called the OR plane). Looking at Figure B.3.3, we can see that the size of the AND

gate array is equal to the number of inputs times the number of diff erent product

terms, and the size of the OR gate array is the number of outputs times the number

of product terms.

A PLA has two characteristics that help make it an effi

cient way to implement a

set of logic functions. First, only the truth table entries that produce a true value for

at least one output have any logic gates associated with them. Second, each diff erent

product term will have only one entry in the PLA, even if the product term is used

in multiple outputs. Let’s look at an example.

PLAs

Consider the set of logic functions defi ned in the example on page B-5. Show

a PLA implementation of this example for D, E, and F.

EXAMPLE

B-14

Appendix B The Basics of Logic Design

Here is the truth table we constructed earlier:

ANSWER

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1

0

0

1

0

1

1

1

0

1

1

0

1

1

0

1

1

1

1

0

1

Since there are seven unique product terms with at least one true value in the

output section, there will be seven columns in the AND plane. Th

e number of

rows in the AND plane is three (since there are three inputs), and there are also

three rows in the OR plane (since there are three outputs). Figure B.3.4 shows the resulting PLA, with the product terms corresponding to the truth table

entries from top to bottom.

read-only memory

Rather than drawing all the gates, as we do in Figure B.3.4, designers oft en show (ROM) A memory

just the position of AND gates and OR gates. Dots are used on the intersection of a

whose contents are

product term signal line and an input line or an output line when a corresponding

designated at creation

AND gate or OR gate is required. Figure B.3.5 shows how the PLA of Figure B.3.4

time, aft er which the

contents can only be read.

would look when drawn in this way. Th

e contents of a PLA are fi xed when the PLA

ROM is used as structured

is created, although there are also forms of PLA-like structures, called PALs, that

logic to implement a

can be programmed electronically when a designer is ready to use them.

set of logic functions by

using the terms in the

ROMs

logic functions as address

inputs and the outputs as

Another form of structured logic that can be used to implement a set of logic

bits in each word of the

functions is a read-only memory (ROM). A ROM is called a memory because it

memory.

has a set of locations that can be read; however, the contents of these locations are

programmable ROM

fi xed, usually at the time the ROM is manufactured. Th

ere are also programmable

(PROM) A form of

ROMs (PROMs) that can be programmed electronically, when a designer knows

read-only memory that

their contents. Th

ere are also erasable PROMs; these devices require a slow erasure

can be pro grammed

process using ultraviolet light, and thus are used as read-only memories, except

when a designer knows its

during the design and debugging process.

contents.

A ROM has a set of input address lines and a set of outputs. Th

e number of

addressable entries in the ROM determines the number of address lines: if the

 B.3

Combinational

Logic

B-15

ROM contains 2 m addressable entries, called the height, then there are m input lines. Th

e number of bits in each addressable entry is equal to the number of output

bits and is sometimes called the width of the ROM. Th

e total number of bits in the

ROM is equal to the height times the width. Th

e height and width are sometimes

collectively referred to as the shape of the ROM.

Inputs

A

B

C

Outputs

D

E

F

FIGURE B.3.4 The PLA for implementing the logic function described in the example.

A ROM can encode a collection of logic functions directly from the truth table.

For example, if there are n functions with m inputs, we need a ROM with m address lines (and 2 m entries), with each entry being n bits wide. Th

e entries in the input

portion of the truth table represent the addresses of the entries in the ROM, while

the contents of the output portion of the truth table constitute the contents of the

ROM. If the truth table is organized so that the sequence of entries in the input

portion constitutes a sequence of binary numbers (as have all the truth tables

we have shown so far), then the output portion gives the ROM contents in order

as well. In the example starting on page B-13, there were three inputs and three

outputs. Th

is leads to a ROM with 23 ⫽ 8 entries, each 3 bits wide. Th

e contents of

those entries in increasing order by address are directly given by the output portion

of the truth table that appears on page B-14.

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full

output word for every possible input combination. A PLA is only partially decoded.

Th

is means that a ROM will always contain more entries. For the earlier truth table

on page B-14, the ROM contains entries for all eight possible inputs, whereas the

PLA contains only the seven active product terms. As the number of inputs grows,

B-16

Appendix B The Basics of Logic Design

Inputs

A

B

AND plane

C

Outputs

D

OR plane

E

F

FIGURE B.3.5 A PLA drawn using dots to indicate the components of the product terms

and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding product term appears in the corresponding output.

the number of entries in the ROM grows exponentially. In contrast, for most real

logic functions, the number of product terms grows much more slowly (see the

examples in Appendix D). Th

is diff erence makes PLAs generally more effi

cient

for implementing combinational logic functions. ROMs have the advantage of

being able to implement any logic function with the matching number of inputs

and outputs. Th

is advantage makes it easier to change the ROM contents if the logic

function changes, since the size of the ROM need not change.

In addition to ROMs and PLAs, modern logic synthesis systems will also

translate small blocks of combinational logic into a collection of gates that can

be placed and wired automatically. Although some small collections of gates are

usually not area effi

cient, for small logic functions they have less overhead than the

rigid structure of a ROM and PLA and so are preferred.

For designing logic outside of a custom or semicustom integrated circuit, a common

choice is a fi eld programming device; we describe these devices in Section B.12.

 B.3

Combinational

Logic

B-17

Don’t Cares

Oft en in implementing some combinational logic, there are situations where we do

not care what the value of some output is, either because another output is true or

because a subset of the input combinations determines the values of the outputs.

Such situations are referred to as don’t cares. Don’t cares are important because they

make it easier to optimize the implementation of a logic function.

Th

ere are two types of don’t cares: output don’t cares and input don’t cares, both

of which can be represented in a truth table. Output don’t cares arise when we don’t

care about the value of an output for some input combination. Th

ey appear as Xs in

the output portion of a truth table. When an output is a don’t care for some input

combination, the designer or logic optimization program is free to make the output

true or false for that input combination. Input don’t cares arise when an output

depends on only some of the inputs, and they are also shown as Xs, though in the

input portion of the truth table.

Don’t Cares

Consider a logic function with inputs A, B, and C defi ned as follows:

EXAMPLE

■ If A or C is true, then output D is true, whatever the value of B.

■ If A or B is true, then output E is true, whatever the value of C.

■ Output F is true if exactly one of the inputs is true, although we don’t care

about the value of F, whenever D and E are both true.

Show the full truth table for this function and the truth table using don’t cares.

How many product terms are required in a PLA for each of these?

Here’s the full truth table, without don’t cares:

ANSWER

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

1

0

1

0

0

1

1

1

1

0

1

1

1

0

1

1

0

1

1

0

1

1

1

1

1

0

B-18

Appendix B The Basics of Logic Design

Th

is requires seven product terms without optimization. Th

e truth table

written with output don’t cares looks like this:

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

1

X

1

0

0

1

1

X

1

0

1

1

1

X

1

1

0

1

1

X

1

1

1

1

1

X

If we also use the input don’t cares, this truth table can be further simplifi ed

to yield the following:

Inputs

Outputs

 A

 B

 C

 D

 E

 F

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

X

1

1

1

1

X

1

X

X

1

1

X

Th

is simplifi ed truth table requires a PLA with four minterms, or it can be

implemented in discrete gates with one two-input AND gate and three OR gates

(two with three inputs and one with two inputs). Th

is compares to the original

truth table that had seven minterms and would have required four AND gates.

Logic minimization is critical to achieving effi

cient implementations. One tool

useful for hand minimization of random logic is Karnaugh maps. Karnaugh maps

represent the truth table graphically, so that product terms that may be combined

are easily seen. Nevertheless, hand optimization of signifi cant logic functions

using Karnaugh maps is impractical, both because of the size of the maps and their

complexity. Fortunately, the process of logic minimization is highly mechanical and

can be performed by design tools. In the process of minimization, the tools take

advantage of the don’t cares, so specifying them is important. Th

e text book references

at the end of this appendix provide further discussion on logic minimization,

Karnaugh maps, and the theory behind such minimization algorithms.

Arrays of Logic Elements

Many of the combinational operations to be performed on data have to be done

to an entire word (32 bits) of data. Th

us we oft en want to build an array of logic

B.4 Using a Hardware Description Language

B-19

elements, which we can represent simply by showing that a given operation will

happen to an entire collection of inputs. Inside a machine, much of the time we

want to select between a pair of buses. A bus is a collection of data lines that is bus In logic design, a treated together as a single logical signal. (Th

e term bus is also used to indicate a collection of data lines

shared collection of lines with multiple sources and uses.)

that is treated together

For example, in the MIPS instruction set, the result of an instruction that is written

as a single logical signal;

also, a shared collection

into a register can come from one of two sources. A multiplexor is used to choose of lines with multiple which of the two buses (each 32 bits wide) will be written into the Result register. sources and uses.

Th

e 1-bit multiplexor, which we showed earlier, will need to be replicated 32 times.

We indicate that a signal is a bus rather than a single 1-bit line by showing it with

a thicker line in a fi gure. Most buses are 32 bits wide; those that are not are explicitly

labeled with their width. When we show a logic unit whose inputs and outputs are

buses, this means that the unit must be replicated a suffi

cient number of times to

accommodate the width of the input. Figure B.3.6 shows how we draw a multiplexor that selects between a pair of 32-bit buses and how this expands in terms of 1-bit-wide multiplexors. Sometimes we need to construct an array of logic elements

where the inputs for some elements in the array are outputs from earlier elements.

For example, this is how a multibit-wide ALU is constructed. In such cases, we must

explicitly show how to create wider arrays, since the individual elements of the array

are no longer independent, as they are in the case of a 32-bit-wide multiplexor.

Select

Select

32

A

A31

M

M

u

32

C

u

C31

32

x

x

B

B31

A30

M

u

C30

x

.

B30

..

...

A0

M

u

C0

x

B0

a. A 32-bit wide 2-to-1 multiplexor

b. The 32-bit wide multiplexor is actually

an array of 32 1-bit multiplexors

FIGURE B.3.6 A multiplexor is arrayed 32 times to perform a selection between two 32-

bit inputs. Note that there is still only one data selection signal used for all 32 1-bit multiplexors.

B-20

Appendix B The Basics of Logic Design

Check Parity is a function in which the output depends on the number of 1s in the input.

For an even parity function, the output is 1 if the input has an even number of ones.

Yourself

Suppose a ROM is used to implement an even parity function with a 4-bit input.

Which of A, B, C, or D represents the contents of the ROM?

Address

A

B

C

D

0

0

1

0

1

1

0

1

1

0

2

0

1

0

1

3

0

1

1

0

4

0

1

0

1

5

0

1

1

0

6

0

1

0

1

7

0

1

1

0

8

1

0

0

1

9

1

0

1

0

10

1

0

0

1

11

1

0

1

0

12

1

0

0

1

13

1

0

1

0

14

1

0

0

1

15

1

0

1

0

 B.4

Using a Hardware Description Language

Today most digital design of processors and related hardware systems is done

hardware description

using a hardware description language. Such a language serves two purposes.

language

First, it provides an abstract description of the hardware to simulate and debug the

A programming language

design. Second, with the use of logic synthesis and hardware compilation tools, this

for describing hardware,

description can be compiled into the hardware implementation.

used for generating

In this section, we introduce the hardware description language Verilog and

simulations of a hardware

show how it can be used for combinational design. In the rest of the appendix,

design and also as input

to synthesis tools that can

we expand the use of Verilog to include design of sequential logic. In the optional

generate actual hardware.

sections of Chapter 4 that appear online, we use Verilog to describe processor

implementations. In the optional section from Chapter 5 that appears online, we

Verilog One of the two

use system Verilog to describe cache controller implementations. System Verilog

most common hardware

adds structures and some other useful features to Verilog.

description languages.

Verilog is one of the two primary hardware description languages; the other

VHDL One of the two

is VHDL. Verilog is somewhat more heavily used in industry and is based on C,

most common hardware

as opposed to VHDL, which is based on Ada. Th

e reader generally familiar with

description languages.

C will fi nd the basics of Verilog, which we use in this appendix, easy to follow.

B.4 Using a Hardware Description Language

B-21

Readers already familiar with VHDL should fi nd the concepts simple, provided

they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural defi nition of a digital

system. A behavioral specifi cation describes how a digital system functionally behavioral operates. A structural specifi cation describes the detailed organization of a digital specifi cation Describes system, usually using a hierarchical description. A structural specifi cation can be how a digital system used to describe a hardware system in terms of a hierarchy of basic elements such operates functionally.

as gates and switches. Th

us, we could use Verilog to describe the exact contents of structural

the truth tables and datapath of the last section.

specifi cation Describes

With the arrival of hardware synthesis tools, most designers now use Verilog how a digital system is or VHDL to structurally describe only the datapath, relying on logic synthesis to organized in terms of a generate the control from a behavioral description. In addition, most CAD systems

hierarchical connection of

provide extensive libraries of standardized parts, such as ALUs, multiplexors, elements.

register fi les, memories, and programmable logic blocks, as well as basic gates.

hardware synthesis

Obtaining an acceptable result using libraries and logic synthesis requires that tools Computer-aided the specifi cation be written with an eye toward the eventual synthesis and the design soft ware that desired outcome. For our simple designs, this primarily means making clear what can generate a gate-we expect to be implemented in combinational logic and what we expect to require level design based on behavioral descriptions of

sequential logic. In most of the examples we use in this section and the remainder a digital system.

of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog

Th

ere are two primary datatypes in Verilog:

1. A

wire specifi es a combinational signal.

wire In Verilog, specifi es

a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not

necessarily correspond to an actual register in an implementation, although reg In Verilog, a register.

it oft en will.

A register or wire, named X, that is 32 bits wide is declared as an array: reg

[31:0] X or wire [31:0] X, which also sets the index of 0 to designate the

least signifi cant bit of the register. Because we oft en want to access a subfi eld of a

register or wire, we can refer to a contiguous set of bits of a register or wire with the

notation [starting bit: ending bit], where both indices must be constant

values.

An array of registers is used for a structure like a register fi le or memory. Th

us,

the declaration

reg [31:0] registerfile[0:31]

specifi es a variable registerfi le that is equivalent to a MIPS registerfi le, where

register 0 is the fi rst. When accessing an array, we can refer to a single element, as

in C, using the notation registerfile[regnum].

B-22

Appendix B The Basics of Logic Design

Th

e possible values for a register or wire in Verilog are

■ 0 or 1, representing logical false or true

■ X, representing unknown, the initial value given to all registers and to any

wire not connected to something

■ Z, representing the high-impedance state for tristate gates, which we will not

discuss in this appendix

Constant values can be specifi ed as decimal numbers as well as binary, octal, or

hexadecimal. We oft en want to say exactly how large a constant fi eld is in bits. Th

is

is done by prefi xing the value with a decimal number specifying its size in bits. For

example:

■ 4’b0100 specifi es a 4-bit binary constant with the value 4, as does 4’d4.

■ - 8 ‘h4 specifi es an 8-bit constant with the value ⫺4 (in two’s complement

representation)

Values can also be concatenated by placing them within { } separated by commas.

Th

e notation {x{bit field}} replicates bit field x times. For example:

■ {16{2’b01}} creates a 32-bit value with the pattern 0101 … 01.

■ {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A

and whose lower 16 bits come from B.

Verilog provides the full set of unary and binary operators from C, including the

arithmetic operators (⫹, ⫺, *. /), the logical operators (&, |, ⬃), the comparison

operators (⫽ ⫽, !⫽, ⬎, ⬍, ⬍ ⫽, ⬎ ⫽), the shift operators (⬍⬍, ⬎⬎), and C’s

conditional operator (?, which is used in the form condition ? expr1 :expr2

and returns expr1 if the condition is true and expr2 if it is false). Verilog adds

a set of unary logic reduction operators (&, |, ^) that yield a single bit by applying

the logical operator to all the bits of an operand. For example, &A returns the value

obtained by ANDing all the bits of A together, and ^A returns the reduction obtained

by using exclusive OR on all the bits of A.

Check Which of the following defi ne exactly the same value?

Yourself

l. 8’bimoooo

2. 8’hF0

3. 8’d240

4. {{4{1’b1}},{4{1’b0}}}

5. {4’b1,4’b0)

B.4 Using a Hardware Description Language

B-23

Structure of a Verilog Program

A Verilog program is structured as a set of modules, which may represent anything

from a collection of logic gates to a complete system. Modules are similar to classes

in C⫹⫹, although not nearly as powerful. A module specifi es its input and output

ports, which describe the incoming and outgoing connections of a module. A

module may also declare additional variables. Th

e body of a module consists of:

■ initial constructs, which can initialize reg variables

■ Continuous assignments, which defi ne only combinational logic

■ always constructs, which can defi ne either sequential or combinational

logic

■ Instances of other modules, which are used to implement the module being

defi ned

Representing Complex Combinational Logic in Verilog

A continuous assignment, which is indicated with the keyword assign, acts like

a combinational logic function: the output is continuously assigned the value, and

a change in the input values is refl ected immediately in the output value. Wires

may only be assigned values with continuous assignments. Using continuous

assignments, we can defi ne a module that implements a half-adder, as Figure B.4.1

shows.

Assign statements are one sure way to write Verilog that generates combinational

logic. For more complex structures, however, assign statements may be awkward or

tedious to use. It is also possible to use the always block of a module to describe

a combinational logic element, although care must be taken. Using an always

block allows the inclusion of Verilog control constructs, such as if-then-else, case

statements, for statements, and repeat statements, to be used. Th

ese statements are

similar to those in C with small changes.

An always block specifi es an optional list of signals on which the block is

sensitive (in a list starting with @). Th

e always block is re-evaluated if any of the

FIGURE B.4.1 A Verilog module that defi nes a half-adder using continuous assignments.

B-24

Appendix B The Basics of Logic Design

listed signals changes value; if the list is omitted, the always block is constantly re-

sensitivity list Th

e list of

evaluated. When an always block is specifying combinational logic, the sensitivity

signals that specifi es when

list should include all the input signals. If there are multiple Verilog statements to

an always block should

be executed in an always block, they are surrounded by the keywords begin and

be re-evaluated.

end, which take the place of the { and } in C. An always block thus looks like this:

always @(list of signals that cause reevaluation) begin

Verilog statements including assignments and other

control statements end

Reg variables may only be assigned inside an always block, using a procedural

assignment statement (as distinguished from continuous assignment we saw

earlier). Th

ere are, however, two diff erent types of procedural assignments. Th

e

assignment operator ⫽ executes as it does in C; the right-hand side is evaluated,

and the left -hand side is assigned the value. Furthermore, it executes like the

normal C assignment statement: that is, it is completed before the next statement is

blocking assignment

executed. Hence, the assignment operator ⫽ has the name blocking assignment.

In Verilog, an assignment

Th

is blocking can be useful in the generation of sequential logic, and we will return

that completes before

to it shortly. Th

e other form of assignment (nonblocking) is indicated by <=. In

the execution of the next

nonblocking assignment, all right-hand sides of the assignments in an always

statement.

group are evaluated and the assignments are done simultaneously. As a fi rst

nonblocking

example of combinational logic implemented using an always block, Figure B.4.2

assignment An

shows the implementation of a 4-to-1 multiplexor, which uses a case construct to

assignment that continues

make it easy to write. Th

e case construct looks like a C switch statement. Figure

aft er evaluating the right-

B.4.3 shows a defi nition of a MIPS ALU, which also uses a case statement.

hand side, assigning the

Since only reg variables may be assigned inside always blocks, when we want to

left -hand side the value

describe combinational logic using an always block, care must be taken to ensure

only aft er all right-hand

sides are evaluated.

that the reg does not synthesize into a register. A variety of pitfalls are described in

the elaboration below.

Elaboration: Continuous assignment statements always yield combinational logic,

but other Verilog structures, even when in always blocks, can yield unexpected results

during logic synthesis. The most common problem is creating sequential logic by

implying the existence of a latch or register, which results in an implementation that is

both slower and more costly than perhaps intended. To ensure that the logic that you

intend to be combinational is synthesized that way, make sure you do the following:

1. Place all combinational logic in a continuous assignment or an always block.

2. Make sure that all the signals used as inputs appear in the sensitivity list of an

always block.

3. Ensure that every path through an always block assigns a value to the exact

same set of bits.

The last of these is the easiest to overlook; read through the example in Figure

B.5.15 to convince yourself that this property is adhered to.

B.5 Constructing a Basic Arithmetic Logic Unit

B-25

FIGURE B.4.2 A Verilog defi nition of a 4-to-1 multiplexor with 32-bit inputs, using a case statement. Th

e case statement acts like a C switch statement, except that in Verilog only the code

associated with the selected case is executed (as if each case state had a break at the end) and there is no fall-through to the next statement.

FIGURE B.4.3 A Verilog behavioral defi nition of a MIPS ALU. Th

is could be synthesized using a module library containing basic

arithmetic and logical operations.

B-26

Appendix B The Basics of Logic Design

Check Assuming all values are initially zero, what are the values of A and B aft er executing this Verilog code inside an always block?

Yourself

C=1;

A <= C;

B = C;

 B.5

Constructing a Basic Arithmetic Logic

Unit

 ALU n. [A rthritic

Th

e arithmetic logic unit (ALU) is the brawn of the computer, the device that per-

L ogic U nit or (rare)

forms the arithmetic operations like addition and subtraction or logical operations

A rithmetic L ogic U nit]

like AND and OR. Th

is section constructs an ALU from four hardware building

 A random-number

blocks (AND and OR gates, inverters, and multiplexors) and illustrates how

 generator supplied

combinational logic works. In the next section, we will see how addition can be

 as standard with all

sped up through more clever designs.

 computer systems.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s assume

that we will connect 32 1-bit ALUs to create the desired ALU. We’ll therefore start

Stan Kelly-Bootle, Th

 e

by constructing a 1-bit ALU.

 Devil’s DP Dictionary,

1981

A 1-Bit ALU

Th

e logical operations are easiest, because they map directly onto the hardware

components in Figure B.2.1.

Th

e 1-bit logical unit for AND and OR looks like Figure B.5.1. Th

e multiplexor

on the right then selects a AND b or a OR b, depending on whether the value of Operation is 0 or 1. Th

e line that controls the multiplexor is shown in color

to distinguish it from the lines containing data. Notice that we have renamed the

control and output lines of the multiplexor to give them names that refl ect the

function of the ALU.

Th

e next function to include is addition. An adder must have two inputs for the

operands and a single-bit output for the sum. Th

ere must be a second output to

pass on the carry, called CarryOut. Since the CarryOut from the neighbor adder

must be included as an input, we need a third input. Th

is input is called CarryIn.

Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what addition is supposed to do, we can specify the outputs of this “black box” based on

its inputs, as Figure B.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations,

and these equations can in turn be implemented with logic gates. Let’s do CarryOut.

Figure B.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

CarryOut

(b CarryIn)

a

(

CarryIn)

a

(

b)

a

(

b CarryIn)

B.1 Introduction

B-27

Operation

a

0

Result

1

b

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

CarryIn

a

+

Sum

b

CarryOut

FIGURE B.5.2 A 1-bit adder. Th

is adder is called a full adder; it is also called a (3,2) adder because it has

3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

In

s

t

u

p

u

O

s

t

u

p

t

a

b

CarryIn

CarryOut

Sum

Comments

0

0

0

0

0

0 + 0 + 0 = 00two

0

0

1

0

1

0 + 0 + 1 = 01two

0

1

0

0

1

0 + 1 + 0 = 01two

0

1

1

1

0

0 + 1 + 1 = 10two

1

0

0

0

1

1 + 0 + 0 = 01two

1

0

1

1

0

1 + 0 + 1 = 10two

1

1

0

1

0

1 + 1 + 0 = 10two

1

1

1

1

1

1 + 1 + 1 = 11two

FIGURE B.5.3 Input and output specifi cation for a 1-bit adder.

B-28

Appendix B The Basics of Logic Design

If a ⭈ b ⭈ CarryIn is true, then all of the other three terms must also be true, so we

can leave out this last term corresponding to the fourth line of the table. We can

thus simplify the equation to

CarryOut

(b CarryIn)

a

(

CarryIn)

a

(

b)

Figure B.5.5 shows that the hardware within the adder black box for CarryOut

consists of three AND gates and one OR gate. Th

e three AND gates correspond

exactly to the three parenthesized terms of the formula above for CarryOut, and

the OR gate sums the three terms.

Inputs

a

b

CarryIn

0

1

1

1

0

1

1

1

0

1

1

1

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

CarryIn

a

b

CarryOut

FIGURE B.5.5 Adder hardware for the CarryOut signal. Th

e rest of the adder hardware is the logic

for the Sum output given in the equation on this page.

Th

e Sum bit is set when exactly one input is 1 or when all three inputs are 1. Th

e

Sum results in a complex Boolean equation (recall that a means NOT a):

Sum

a

(

b CarryIn)

(a b CarryIn)

(a b CarryIn)

a

(

b CarryIn)

Th

e drawing of the logic for the Sum bit in the adder black box is left as an exercise

for the reader.

B.5 Constructing a Basic Arithmetic Logic Unit

B-29

Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier components. Sometimes designers also want the ALU to perform a few more

simple operations, such as generating 0. Th

e easiest way to add an operation is to

expand the multiplexor controlled by the Operation line and, for this example, to

connect 0 directly to the new input of that expanded multiplexor.

Operation

CarryIn

a

0

1

Result

⫹

2

b

CarryOut

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).

A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by

connecting adjacent “black boxes.” Using xi to mean the i th bit of x, Figure B.5.7

shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores

of a quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all

the way through the adder, causing a carry out of the most signifi cant bit (Result31).

Hence, the adder created by directly linking the carries of 1-bit adders is called a

 ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on

page B-38.

Subtraction is the same as adding the negative version of an operand, and this

is how adders perform subtraction. Recall that the shortcut for negating a two’s

complement number is to invert each bit (sometimes called the one’s complement)

and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses

between b and b, as Figure B.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. Th

e added

multiplexor gives the option of b or its inverted value, depending on Binvert, but

B-30

Appendix B The Basics of Logic Design

Operation

CarryIn

a0

CarryIn

ALU0

Result0

b0

CarryOut

a1

CarryIn

ALU1

Result1

b1

CarryOut

a2

CarryIn

ALU2

Result2

b2

CarryOut

.

.

.

.

.

.

.

.

.

a31

CarryIn

ALU31

Result31

b31

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit is connected to the CarryIn of the more signifi cant bit. Th

is organization is called ripple carry.

this is only one step in negating a two’s complement number. Notice that the least

signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.

What happens if we set this CarryIn to 1 instead of 0? Th

e adder will then calculate

a ⫹ b ⫹ 1. By selecting the inverted version of b, we get exactly what we want:

a

b

1

a

(b

1)

a

(b)

a

b

Th

e simplicity of the hardware design of a two’s complement adder helps explain

why two’s complement representation has become the universal standard for

integer computer arithmetic.

B.5 Constructing a Basic Arithmetic Logic Unit

B-31

Binvert

Operation

CarryIn

a

0

1

Result

b

0

⫹

2

1

CarryOut

FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By selecting b (Binvert ⫽ 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s complement subtraction of b from a instead of addition of b to a.

A MIPS ALU also needs a NOR function. Instead of adding a separate gate

for NOR, we can reuse much of the hardware already in the ALU, like we did for

subtract. Th

e insight comes from the following truth about NOR:

(a

)

b

a b

Th

at is, NOT (a OR b) is equivalent to NOT a AND NOT b. Th

is fact is called

DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure

B.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS

Th

ese four operations—add, subtract, AND, OR—are found in the ALU of almost

every computer, and the operations of most MIPS instructions can be performed

by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt).

Recall that the operation produces 1 if rs ⬍ rt, and 0 otherwise. Consequently, slt

will set all but the least signifi cant bit to 0, with the least signifi cant bit set according to the comparison. For the ALU to perform slt, we fi rst need to expand the three-input

B-32

Appendix B The Basics of Logic Design

Ainvert

Operation

Binvert

CarryIn

a

0

0

1

1

Result

b

0

⫹

2

1

CarryOut

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By selecting a (Ainvert ⫽ 1) and b (Binvert ⫽ 1), we get a NOR b instead of a AND b.

multiplexor in Figure B.5.8 to add an input for the slt result. We call that new input Less and use it only for slt.

Th

e top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded

multiplexor. From the description of slt above, we must connect 0 to the Less

input for the upper 31 bits of the ALU, since those bits are always set to 0. What

remains to consider is how to compare and set the least signifi cant bit for set on less

than instructions.

What happens if we subtract b from a? If the diff erence is negative, then a ⬍ b

since

(a

)

b

0 ⇒ ((a

)

b

)

b

(0

)

b

⇒ a

b

We want the least signifi cant bit of a set on less than operation to be a 1 if a ⬍ b;

that is, a 1 if a ⫺ b is negative and a 0 if it’s positive. Th

is desired result corresponds

exactly to the sign bit values: 1 means negative and 0 means positive. Following this

line of argument, we need only connect the sign bit from the adder output to the

least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of

Figure B.5.10 for the slt operation is not the output of the adder; the ALU output for the slt operation is obviously the input value Less.

Operation

Ainvert

Binvert

CarryIn

a

0

0

1

1

Result

b

0

⫹

2

1

Less

3

CarryOut

Operation

Ainvert

Binvert

CarryIn

a

0

0

1

1

Result

b

0

⫹

2

1

Less

3

Set

Overflow

Overflow

detection

FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b , and (bottom) a 1-bit ALU for the most signifi cant bit. Th

e top drawing includes a direct input that is

connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output from the adder for the less than comparison called Set. (See Exercise B.24 at the end of this appendix to see how to calculate overfl ow with fewer inputs.)

B-34

Appendix B The Basics of Logic Design

Binvert

Operation

Ainvert

CarryIn

a0

CarryIn

Result0

b0

ALU0

Less

CarryOut

a1

CarryIn

Result1

b1

ALU1

0

Less

CarryOut

a2

CarryIn

Result2

b2

ALU2

0

Less

CarryOut

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

CarryIn

.

a31

CarryIn

Result31

b31

ALU31

Set

0

Less

Overflow

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top

of Figure B.5.10 and one 1-bit ALU in the bottom of that fi gure. Th e Less inputs are connected

to 0 except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU performs a ⫺ b and we select the input 3 in the multiplexor in Figure B.5.10, then Result ⫽ 0 … 001 if a ⬍ b, and Result ⫽ 0 … 000 otherwise.

Th

us, we need a new 1-bit ALU for the most signifi cant bit that has an extra

output bit: the adder output. Th

e bottom drawing of Figure B.5.10 shows the

design, with this new adder output line called Set, and used only for slt. As long

as we need a special ALU for the most signifi cant bit, we added the overfl ow detec-

tion logic since it is also associated with that bit.

B.1 Introduction

B-35

Alas, the test of less than is a little more complicated than just described because

of overfl ow, as we explore in the exercises. Figure B.5.11 shows the 32-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and

Binvert to 1. For adds or logical operations, we want both control lines to be 0. We

can therefore simplify control of the ALU by combining the CarryIn and Binvert to

a single control line called Bnegate.

To further tailor the ALU to the MIPS instruction set, we must support

conditional branch instructions. Th

ese instructions branch either if two registers

are equal or if they are unequal. Th

e easiest way to test equality with the ALU is to

subtract b from a and then test to see if the result is 0, since

(a

b

)

0 ⇒ a

b

Th

us, if we add hardware to test if the result is 0, we can test for equality. Th

e

simplest way is to OR all the outputs together and then send that signal through

an inverter:

Zero

Re

(

sult31

Result30

… Result2 Result1 Result)

0

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination of the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-bit

control lines for the ALU, telling it to perform add, subtract, AND, OR, or set on

less than. Figure B.5.13 shows the ALU control lines and the corresponding ALU

operation.

Finally, now that we have seen what is inside a 32-bit ALU, we will use the

universal symbol for a complete ALU, as shown in Figure B.5.14.

Defi ning the MIPS ALU in Verilog

Figure B.5.15 shows how a combinational MIPS ALU might be specifi ed in Verilog; such a specifi cation would probably be compiled using a standard parts library that

provided an adder, which could be instantiated. For completeness, we show the

ALU control for MIPS in Figure B.5.16, which is used in Chapter 4, where we build a Verilog version of the MIPS datapath.

Th

e next question is, “How quickly can this ALU add two 32-bit operands?”

We can determine the a and b inputs, but the CarryIn input depends on the

operation in the adjacent 1-bit adder. If we trace all the way through the chain of

dependencies, we connect the most signifi cant bit to the least signifi cant bit, so

the most signifi cant bit of the sum must wait for the sequential evaluation of all 32

1-bit adders. Th

is sequential chain reaction is too slow to be used in time-critical

hardware. Th

e next section explores how to speed-up addition. Th

is topic is not

crucial to understanding the rest of the appendix and may be skipped.

B-36

Appendix B The Basics of Logic Design

Bnegate

Operation

Ainvert

a0

CarryIn

Result0

b0

ALU0

Less

CarryOut

a1

CarryIn

Result1

b1

ALU1

0

Less

Zero

CarryOut

...

a2

CarryIn

Result2

b2

ALU2

0

Less

CarryOut

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CarryIn

Result31

a31

CarryIn

b31

ALU31

Set

0

Less

Overflow

FIGURE B.5.12 The fi nal 32-bit ALU. Th

is adds a Zero detector to Figure B.5.11.

ALU control lines

Function

0000

AND

0001

OR

0010

add

0110

subtract

0111

set on less than

1100

NOR

FIGURE B.5.13 The values of the three ALU control lines, Bnegate, and Operation, and the corresponding ALU operations.

B.5 Constructing a Basic Arithmetic Logic Unit

B-37

ALU operation

a

Zero

ALU

Result

Overflow

b

CarryOut

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure

B.5.12. Th

is symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

FIGURE B.5.15 A Verilog behavioral defi nition of a MIPS ALU.

B-38

Appendix B The Basics of Logic Design

FIGURE B.5.16 The MIPS ALU control: a simple piece of combinational control logic.

Check Suppose you wanted to add the operation NOT (a AND b), called NAND. How

could the ALU change to support it?

Yourself

1. No change. You can calculate NAND quickly using the current ALU since

(a

)

 b

 a

 b and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add

new logic to calculate NAND.

 B.6

Faster Addition: Carry Lookahead

Th

e key to speeding up addition is determining the carry in to the high-order bits

sooner. Th

ere are a variety of schemes to anticipate the carry so that the worst-

case scenario is a function of the log of the number of bits in the adder. Th

ese

2

anticipatory signals are faster because they go through fewer gates in sequence, but

it takes many more gates to anticipate the proper carry.

A key to understanding fast-carry schemes is to remember that, unlike soft

ware, hardware executes in parallel whenever inputs change.

Fast Carry Using “Infi nite” Hardware

As we mentioned earlier, any equation can be represented in two levels of logic.

Since the only external inputs are the two operands and the CarryIn to the least

B.6 Faster Addition: Carry Lookahead

B-39

signifi cant bit of the adder, in theory we could calculate the CarryIn values to all

the remaining bits of the adder in just two levels of logic.

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1,

so the formula is

CarryIn2

(b1 CarryIn1)

a

(1 CarryIn1)

a

(1 b1)

Similarly, CarryIn1 is defi ned as

CarryIn1

(b0 CarryIn0)

a

(0 CarryIn0)

a

(0 b0)

Using the shorter and more traditional abbreviation of c i for CarryIn i, we can

rewrite the formulas as

c2

(b1 c1)

a

(1 c1)

a

(1 b1)

c1

(b0 c0)

a

(0 c0)

a

(0 b0)

Substituting the defi nition of c1 for the fi rst equation results in this formula:

c2

a

(1 a0 b0)

a

(1 a0 c0) a

(1 b0 c0)

(b1 a0 b0)

(b1 a0 c0)

(b1 b0 c)

0

(a1 b)

1

You can imagine how the equation expands as we get to higher bits in the adder;

it grows rapidly with the number of bits. Th

is complexity is refl ected in the cost of

the hardware for fast carry, making this simple scheme prohibitively expensive for

wide adders.

Fast Carry Using the First Level of Abstraction: Propagate

and Generate

Most fast-carry schemes limit the complexity of the equations to simplify the

hardware, while still making substantial speed improvements over ripple carry.

One such scheme is a carry-lookahead adder. In Chapter 1, we said computer

systems cope with complexity by using levels of abstraction. A carry-lookahead

adder relies on levels of abstraction in its implementation.

Let’s factor our original equation as a fi rst step:

c i

1

(b i c i)

a

(i c i)

a

(i b i)

= a

(i b i)

a

(i

b i) c i

If we were to rewrite the equation for c2 using this formula, we would see some

repeated patterns:

c2

a

(1 b1)

a

(1 b1) (a

(0 b0)

a

(0

b0) c0)

Note the repeated appearance of (a i ⭈ b i) and (a i ⫹ b i) in the formula above. Th ese

two important factors are traditionally called generate (g i) and propagate (p i):

B-40

Appendix B The Basics of Logic Design

g i

a i b i

p i

a i

b i

Using them to defi ne c i ⫹ 1, we get

c i

1

g i

p i c i

To see where the signals get their names, suppose g i is 1. Th

en

c i

1

g i

p i c i

1

p i c i

1

Th

at is, the adder generates a CarryOut (c i ⫹ 1) independent of the value of CarryIn (c i). Now suppose that g i is 0 and p i is 1. Th

en

c i

1

g i

p i c i

0

1 c i

c i

Th

at is, the adder propagate s CarryIn to a CarryOut. Putting the two together,

CarryIn i ⫹ 1 is a 1 if either g i is 1 or both p i is 1 and CarryIn i is 1.

As an analogy, imagine a row of dominoes set on edge. Th

e end domino can be

tipped over by pushing one far away, provided there are no gaps between the two.

Similarly, a carry out can be made true by a generate far away, provided all the

propagates between them are true.

Relying on the defi nitions of propagate and generate as our fi rst level of

abstraction, we can express the CarryIn signals more economically. Let’s show it

for 4 bits:

c1

g0

(p0 c0)

c2

g1

(p1 g0)

(p1 p0 c0)

c3

g2

(p2 g1)

(p2 p1 g0)

(p2 p1 p0 c0)

c4

g3

(p3 g2)

(p3 p2 g1)

(p3 p2 p1 g0)

(p

p3 p2 p1 p0 c0)

Th

ese equations just represent common sense: CarryIn i is a 1 if some earlier adder

generates a carry and all intermediary adders propagate a carry. Figure B.6.1 uses plumbing to try to explain carry lookahead.

Even this simplifi ed form leads to large equations and, hence, considerable logic

even for a 16-bit adder. Let’s try moving to two levels of abstraction.

Fast Carry Using the Second Level of Abstraction

First, we consider this 4-bit adder with its carry-lookahead logic as a single building

block. If we connect them in ripple carry fashion to form a 16-bit adder, the add

will be faster than the original with a little more hardware.

B.6 Faster Addition: Carry Lookahead

B-41

To go faster, we’ll need carry lookahead at a higher level. To perform carry look

ahead for 4-bit adders, we need to propagate and generate signals at this higher

level. Here they are for the four 4-bit adder blocks:

P0

p3 p2 p1 p0

P1

p7 p6 p5 p4

P2

p11 p10 p9 p8

P3

p15 p14 p13 p12

Th

at is, the “super” propagate signal for the 4-bit abstraction (P i) is true only if each

of the bits in the group will propagate a carry.

For the “super” generate signal (G i), we care only if there is a carry out of the

most signifi cant bit of the 4-bit group. Th

is obviously occurs if generate is true

for that most signifi cant bit; it also occurs if an earlier generate is true and all the intermediate propagates, including that of the most signifi cant bit, are also true:

G0

g3

(p3 g2)

(p3 p2 g1)

(p3 p2 p1 g0)

G1

g7

(p7 g6)

(p7 p6 g5)

(p7 p6 p5 g4)

G2

g11

(p11 g10)

(p11 p10 g9)

(p11 p10 p9 g8)

G3

g15

(p15 g14)

(p15 p14 g13)

(p15 p14 p13 g12)

Figure B.6.2 updates our plumbing analogy to show P0 and G0.

Th

en the equations at this higher level of abstraction for the carry in for each

4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure B.6.3) are very similar to the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page B-40:

C1

G0

P

(0 c0)

C2

G1

P

(1 G0)

P

(1 P0 c0)

C3

G2

P

(2 G1)

P

(2 P1 G0)

P

(2 P1 P0 c0)

C4

G3

P

(3 G2)

P

(3 P2 G1)

P

(3 P2 P1 G0)

(P3 P2 P1 P0 c)

0

Figure B.6.3 shows 4-bit adders connected with such a carry-lookahead unit.

Th

e exercises explore the speed diff erences between these carry schemes, diff erent

notations for multibit propagate and generate signals, and the design of a 64-bit

adder.

B-42

Appendix B The Basics of Logic Design

c0

g0

p0

c1

c0

g0

c0

p0

g0

g1

p0

p1

g1

c2

p1

g2

p2

g3

p3

c4

FIGURE B.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using water pipes and valves. Th

e wrenches are turned to open and close valves. Water is shown in color. Th

e

output of the pipe (c i ⫹ 1) will be full if either the nearest generate value (g i) is turned on or if the i propagate value (p i) is on and there is water further upstream, either from an earlier generate or a propagate with water behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of all propagates.

B.6 Faster Addition: Carry Lookahead

B-43

p0

p1

g0

p2

p3

g1

P0

p1

g2

p2

g3

p3

G0

FIGURE B.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0.

P0 is open only if all four propagates (p i) are open, while water fl ows in G0 only if at least one generate (g i) is open and all the propagates downstream from that generate are open.

B-44

Appendix B The Basics of Logic Design

Both Levels of the Propagate and Generate

Determine the g i, p i, P i, and G i values of these two 16-bit numbers: EXAMPLE

a: 0001 1010 0011 0011two

b: 1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate g i (a i ⭈ b i) and ANSWER

propagate p i (a i ⫹ b i):

a: 0001 1010 0011 0011

b: 1110 0101 1110 1011

g i: 0000 0000 0010 0011

p i: 1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”

propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P3

1 1 1 1

1

P2

1 1 1 1

1

P1

1 1 1 1

1

P0

1 0 1 1

0

Th

e “super” generates are more complex, so use the following equations:

G0

g3

(p3 g2)

(p3 p2 g1)

(p3 p2 p1 g0)

= 0

1

(0)

1

(0 1)

1

(0 1 1)

0

0

0

0

0

1

G

g7

(7

p

g6)

(7

p

6

p

g5)

(7

p

6

p

5

p

g4)

0

(1)

0

(1 1)

1

(1 1 1)

0

0

0

1

0

1

G2

1

g 1

(1

p 1 1

g)

0

(1

p 1

1

p 0 g9)

(11

p

10

p

9

p

g8)

0

1

(0)

1

(1 0)

1

(1 1 0)

0

0

0

0

0

G3

g15

(p15 g14)

(p15 p14 g13)

(p15 p14 p13 g12)

0

1

(0)

(1 1)

0

(1 1 1)

0

0

0

0

0

0

Finally, CarryOut15 is

C4

G3

P

(3 G2)

P

(3 P2 G1)

P

(3 P2 P1 G0)

P

(3 P2 P1 P0 c0)

0

(1)

0

(1 1)

1

(1 1 1)

0

(1 1 1 0

)

0

0

0

1

0

0

1

Hence, there is a carry out when adding these two 16-bit numbers.

B.6 Faster Addition: Carry Lookahead

B-45

CarryIn

a0

CarryIn

b0

Result0–3

a1

b1

a2

ALU0

b2

P0

p i

a3

G0

g i

b3

C1

Carry-lookahead unit

c i + 1

a4

CarryIn

b4

Result4–7

a5

b5

a6

ALU1

b6

P1

p i + 1

a7

G1

g i + 1

b7

C2

c i + 2

a8

CarryIn

b8

Result8–11

a9

b9

a10

ALU2

b10

P2

p i + 2

a11

G2

g i + 2

b11

C3

c i + 3

a12

CarryIn

b12

Result12–15

a13

b13

a14

ALU3

b14

P3

p i + 3

a15

G3

g i + 3

b15

C4

c i + 4

CarryOut

FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the carries come from the carry-lookahead unit, not from the 4-bit ALUs.

B-46

Appendix B The Basics of Logic Design

Th

e reason carry lookahead can make carries faster is that all logic begins

evaluating the moment the clock cycle begins, and the result will not change once

the output of each gate stops changing. By taking the shortcut of going through

fewer gates to send the carry in signal, the output of the gates will stop changing

sooner, and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the

relative performance between it and ripple carry adders.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate

EXAMPLE

takes the same time for a signal to pass through it. Time is estimated by simply

counting the number of gates along the path through a piece of logic. Compare

the number of gate delays for paths of two 16-bit adders, one using ripple carry

and one using two-level carry lookahead.

Figure B.5.5 on page B-28 shows that the carry out signal takes two gate

ANSWER

delays per bit. Th

en the number of gate delays between a carry in to the least

signifi cant bit and the carry out of the most signifi cant is 16 ⫻ 2 ⫽ 32.

For carry lookahead, the carry out of the most signifi cant bit is just C4,

defi ned in the example. It takes two levels of logic to specify C4 in terms of

P i and G i (the OR of several AND terms). P i is specifi ed in one level of logic (AND) using p i, and G i is specifi ed in two levels using p i and g i, so the worst case for this next level of abstraction is two levels of logic. p i and g i are each one level of logic, defi ned in terms of a i and b i. If we assume one gate delay

for each level of logic in these equations, the worst case is 2 ⫹ 2 ⫹ 1 ⫽ 5 gate

delays.

Hence, for the path from carry in to carry out, the 16-bit addition by a

carry-lookahead adder is six times faster, using this very simple estimate of

hardware speed.

Summary

Carry lookahead off ers a faster path than waiting for the carries to ripple through

all 32 1-bit adders. Th

is faster path is paved by two signals, generate and propagate.

B.6 Faster Addition: Carry Lookahead

B-47

Th

e former creates a carry regardless of the carry input, and the latter passes a carry

along. Carry lookahead also gives another example of how abstraction is important

in computer design to cope with complexity.

Using the simple estimate of hardware speed above with gate delays, what is the Check

relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-

Yourself

lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate

delays and 64-bit adds are 7 gate delays.

2. Th

ey are about the same speed, since 64-bit adds need more levels of logic in

the 16-bit adder.

3. 8-bit adds are faster than 64 bits, even with carry lookahead.

Elaboration: We have now accounted for all but one of the arithmetic and logical

operations for the core MIPS instruction set: the ALU in Figure B.5.14 omits support of shift instructions. It would be possible to widen the ALU multiplexor to include a left shift

by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit called a

 barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to add two 32-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page B-28 can

be expressed more simply by using a more powerful gate than AND and OR. An exclusive

 OR gate is true if the two operands disagree; that is,

x ≠ y ⇒ 1 and x ⫽⫽ y ⇒ 0

In some technologies, exclusive OR is more effi cient than two levels of AND and OR

gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Sum ⫽ a ⊕ b ⊕ CarryIn

Also, we have drawn the ALU the traditional way, using gates. Computers are designed

today in CMOS transistors, which are basically switches. CMOS ALU and barrel shifters

take advantage of these switches and have many fewer multiplexors than shown in our

designs, but the design principles are similar.

Elaboration: Using lowercase and uppercase to distinguish the hierarchy of generate

and propagate symbols breaks down when you have more than two levels. An alternate

notation that scales is g and p for the generate and propagate signals for bits i to j.

 i..j

 i..j

Thus, g

is generated for bit 1, g

is for bits 4 to 1, and g

is for bits 16 to 1.

1..1

4..1

16..1

B-48

Appendix B The Basics of Logic Design

 B.7 Clocks

Before we discuss memory elements and sequential logic, it is useful to discuss

briefl y the topic of clocks. Th

is short section introduces the topic and is similar

to the discussion found in Section 4.2. More details on clocking and timing

methodologies are presented in Section B.11.

 Clocks are needed in sequential logic to decide when an element that contains

state should be updated. A clock is simply a free-running signal with a fi xed cycle

 time; the clock frequency is simply the inverse of the cycle time. As shown in Figure

B.7.1, the clock cycle time or clock period is divided into two portions: when the edge-triggered

clock is high and when the clock is low. In this text, we use only edge-triggered

clocking A clocking

clocking. Th

is means that all state changes occur on a clock edge. We use an edge-

scheme in which all state

triggered methodology because it is simpler to explain. Depending on the tech-

changes occur on a clock

nology, it may or may not be the best choice for a clocking methodology.

edge.

clocking methodology

Th

e approach used to

Falling edge

determine when data is

valid and stable relative to

the clock.

Clock period

Rising edge

FIGURE B.7.1 A clock signal oscillates between high and low values. Th

e clock period is the

time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and causes state to be changed.

In an edge-triggered methodology, either the rising edge or the falling edge of

the clock is active and causes state changes to occur. As we will see in the next

state element

section, the state elements in an edge-triggered design are implemented so that the

A memory element.

contents of the state elements only change on the active clock edge. Th

e choice of

which edge is active is infl uenced by the implementation technology and does not

aff ect the concepts involved in designing the logic.

synchronous system

Th

e clock edge acts as a sampling signal, causing the value of the data input to a

A memory system that

state element to be sampled and stored in the state element. Using an edge trigger

employs clocks and where

means that the sampling process is essentially instantaneous, eliminating problems

data signals are read only

that could occur if signals were sampled at slightly diff erent times.

when the clock indicates

that the signal values are

Th

e major constraint in a clocked system, also called a synchronous system, is

stable.

that the signals that are written into state elements must be valid when the active

B.7 Clocks

B-49

clock edge occurs. A signal is valid if it is stable (i.e., not changing), and the value

will not change again until the inputs change. Since combinational circuits cannot

have feedback, if the inputs to a combinational logic unit are not changed, the

outputs will eventually become valid.

Figure B.7.2 shows the relationship among the state elements and the

combinational logic blocks in a synchronous, sequential logic design. Th

e state

elements, whose outputs change only aft er the clock edge, provide valid inputs

to the combinational logic block. To ensure that the values written into the state

elements on the active clock edge are valid, the clock must have a long enough

period so that all the signals in the combinational logic block stabilize, and then the

clock edge samples those values for storage in the state elements. Th

is constraint

sets a lower bound on the length of the clock period, which must be long enough

for all state element inputs to be valid.

In the rest of this appendix, as well as in Chapter 4, we usually omit the clock

signal, since we are assuming that all state elements are updated on the same clock

edge. Some state elements will be written on every clock edge, while others will be

written only under certain conditions (such as a register being updated). In such

cases, we will have an explicit write signal for that state element. Th

e write signal

must still be gated with the clock so that the update occurs only on the clock edge if

the write signal is active. We will see how this is done and used in the next section.

One other advantage of an edge-triggered methodology is that it is possible

to have a state element that is used as both an input and output to the same

combinational logic block, as shown in Figure B.7.3. In practice, care must be taken to prevent races in such situations and to ensure that the clock period is long

enough; this topic is discussed further in Section B.11.

Now that we have discussed how clocking is used to update state elements, we

can discuss how to construct the state elements.

State

State

element

Combinational logic

element

1

2

Clock cycle

FIGURE B.7.2 The inputs to a combinational logic block come from a state element, and

the outputs are written into a state element. Th

e clock edge determines when the contents of the

state elements are updated.

B-50

Appendix B The Basics of Logic Design

State

Combinational logic

element

FIGURE B.7.3 An edge-triggered methodology allows a state element to be read and

written in the same clock cycle without creating a race that could lead to undetermined

data values. Of course, the clock cycle must still be long enough so that the input values are stable when the active clock edge occurs.

Elaboration: Occasionally, designers fi nd it useful to have a small number of state

elements that change on the opposite clock edge from the majority of the state elements.

Doing so requires extreme care, because such an approach has effects on both the

inputs and the outputs of the state element. Why then would designers ever do this?

Consider the case where the amount of combinational logic before and after a state

element is small enough so that each could operate in one-half clock cycle, rather than

register fi le A state

the more usual full clock cycle. Then the state element can be written on the clock edge

element that consists

corresponding to a half clock cycle, since the inputs and outputs will both be usable

of a set of registers that

can be read and written

after one-half clock cycle. One common place where this technique is used is in register

by supplying a register

fi les, where simply reading or writing the register fi le can often be done in half the normal number to be accessed.

clock cycle. Chapter 4 makes use of this idea to reduce the pipelining overhead.

 B.8

Memory Elements: Flip-Flops, Latches,

and Registers

In this section and the next, we discuss the basic principles behind memory

elements, starting with fl ip-fl ops and latches, moving on to register fi les, and

fi nishing with memories. All memory elements store state: the output from any

memory element depends both on the inputs and on the value that has been stored

inside the memory element. Th

us all logic blocks containing a memory element

contain state and are sequential.

R

Q

Q

S

FIGURE B.8.1 A pair of cross-coupled NOR gates can store an internal value. Th

e value

stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or Q is asserted, Q will be deasserted and vice versa.

B.8 Memory Elements: Flip-Flops, Latches, and Registers

B-51

Th

e simplest type of memory elements are unclocked; that is, they do not

have any clock input. Although we only use clocked memory elements in this

text, an unclocked latch is the simplest memory element, so let’s look at this

circuit fi rst. Figure B.8.1 shows an S-R latch (set-reset latch), built from a pair of NOR gates (OR gates with inverted outputs). Th

e outputs Q and Q represent the

value of the stored state and its complement. When neither S nor R are asserted,

the cross-coupled NOR gates act as inverters and store the previous values of

 Q and Q.

For example, if the output, Q, is true, then the bottom inverter produces a false

output (which is Q), which becomes the input to the top inverter, which produces

a true output, which is Q, and so on. If S is asserted, then the output Q will be asserted and Q will be deasserted, while if R is asserted, then the output Q will be asserted and Q will be deasserted. When S and R are both deasserted, the last values of Q and Q will continue to be stored in the cross-coupled structure. Asserting S

and R simultaneously can lead to incorrect operation: depending on how S and R

are deasserted, the latch may oscillate or become metastable (this is described in

more detail in Section B.11).

Th

is cross-coupled structure is the basis for more complex memory elements

that allow us to store data signals. Th

ese elements contain additional gates used to

store signal values and to cause the state to be updated only in conjunction with a

clock. Th

e next section shows how these elements are built.

Flip-Flops and Latches

fl ip-fl op A memory

Flip-fl ops and latches are the simplest memory elements. In both fl ip-fl ops and element for which the output is equal to the

latches, the output is equal to the value of the stored state inside the element. value of the stored state Furthermore, unlike the S-R latch described above, all the latches and fl ip-fl ops we inside the element and for will use from this point on are clocked, which means that they have a clock input which the internal state is and the change of state is triggered by that clock. Th

e diff erence between a fl ip-

changed only on a clock

fl op and a latch is the point at which the clock causes the state to actually change. edge.

In a clocked latch, the state is changed whenever the appropriate inputs change latch A memory element and the clock is asserted, whereas in a fl ip-fl op, the state is changed only on a clock

in which the output is

edge. Since throughout this text we use an edge-triggered timing methodology equal to the value of the where state is only updated on clock edges, we need only use fl ip-fl ops. Flip-fl ops stored state inside the are oft en built from latches, so we start by describing the operation of a simple element and the state is clocked latch and then discuss the operation of a fl ip-fl op constructed from that changed whenever the latch.

appropriate inputs change

and the clock is asserted.

For computer applications, the function of both fl ip-fl ops and latches is to

store a signal. A D latch or D fl ip-fl op stores the value of its data input signal in D fl ip-fl op A fl ip-fl op the internal memory. Although there are many other types of latch and fl ip-fl op, with one data input the D type is the only basic building block that we will need. A D latch has two that stores the value of inputs and two outputs. Th

e inputs are the data value to be stored (called D) and that input signal in the

internal memory when

a clock signal (called C) that indicates when the latch should read the value on the clock edge occurs.

the D input and store it. Th

e outputs are simply the value of the internal state (Q)

B-52

Appendix B The Basics of Logic Design

and its complement (Q). When the clock input C is asserted, the latch is said to

be open, and the value of the output (Q) becomes the value of the input D. When the clock input C is deasserted, the latch is said to be closed, and the value of the output (Q) is whatever value was stored the last time the latch was open.

Figure B.8.2 shows how a D latch can be implemented with two additional gates added to the cross-coupled NOR gates. Since when the latch is open the value of Q

changes as D changes, this structure is sometimes called a transparent latch. Figure

B.8.3 shows how this D latch works, assuming that the output Q is initially false and that D changes fi rst.

As mentioned earlier, we use fl ip-fl ops as the basic building block, rather than

latches. Flip-fl ops are not transparent: their outputs change only on the clock edge.

A fl ip-fl op can be built so that it triggers on either the rising (positive) or falling

(negative) clock edge; for our designs we can use either type. Figure B.8.4 shows how a falling-edge D fl ip-fl op is constructed from a pair of D latches. In a D fl ip-fl op, the output is stored when the clock edge occurs. Figure B.8.5 shows how this fl ip-fl op operates.

 C

 Q

 Q

 D

FIGURE B.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other input is 0. Th

us, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is asserted, in which case the value of input D replaces the value of Q and is stored. Th e value of input D must

be stable when the clock signal C changes from asserted to deasserted.

 D

 C

 Q

FIGURE B.8.3 Operation of a D latch, assuming the output is initially deasserted. When the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input.

B.8 Memory Elements: Flip-Flops, Latches, and Registers

B-53

 D

 D

 Q

 D

 Q

D

D

 Q

latch

latch

 Q

 C

 C

 Q

 C

FIGURE B.8.4 A D fl ip-fl op with a falling-edge trigger. Th

e fi rst latch, called the master, is open

and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the fi rst latch is closed, but the second latch, called the slave, is open and gets its input from the output of the master latch.

 D

 C

 Q

FIGURE B.8.5 Operation of a D fl ip-fl op with a falling-edge trigger, assuming the output is initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure B.8.3. In a clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when C transitions.

Here is a Verilog description of a module for a rising-edge D fl ip-fl op, assuming

that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar);

input clock, D;

output reg Q; // Q is a reg since it is assigned in an

always block

output Qbar;

assign Qbar = ~ Q; // Qbar is always just the inverse

of Q

always @(posedge clock) // perform actions whenever the

clock rises

Q = D;

endmodule

setup time Th

e

minimum time that the

Because the D input is sampled on the clock edge, it must be valid for a period input to a memory device of time immediately before and immediately aft er the clock edge. Th

e minimum must be valid before the

time that the input must be valid before the clock edge is called the setup time; the clock edge.

B-54

Appendix B The Basics of Logic Design

 D

Setup time

Hold time

 C

FIGURE B.8.6 Setup and hold time requirements for a D fl ip-fl op with a falling-edge trigger.

Th

e input must be stable for a period of time before the clock edge, as well as aft er the clock edge. Th e

minimum time the signal must be stable before the clock edge is called the setup time, while the minimum time the signal must be stable aft er the clock edge is called the hold time. Failure to meet these minimum requirements can result in a situation where the output of the fl ip-fl op may not be predictable, as described in Section B.11. Hold times are usually either 0 or very small and thus not a cause of worry.

hold time Th

e minimum minimum time during which it must be valid aft er the clock edge is called the hold time during which the

time. Th

us the inputs to any fl ip-fl op (or anything built using fl ip-fl ops) must be valid

input must be valid aft er

during a window that begins at time t

before the clock edge and ends at t

aft er

setup

hold

the clock edge.

the clock edge, as shown in Figure B.8.6. Section B.11 talks about clocking and timing constraints, including the propagation delay through a fl ip-fl op, in more detail.

We can use an array of D fl ip-fl ops to build a register that can hold a multibit

datum, such as a byte or word. We used registers throughout our datapaths in

Chapter 4.

Register Files

One structure that is central to our datapath is a register fi le. A register fi le consists of a set of registers that can be read and written by supplying a register number

to be accessed. A register fi le can be implemented with a decoder for each read

or write port and an array of registers built from D fl ip-fl ops. Because reading a

register does not change any state, we need only supply a register number as an

input, and the only output will be the data contained in that register. For writing a

register we will need three inputs: a register number, the data to write, and a clock

that controls the writing into the register. In Chapter 4, we used a register fi le that

has two read ports and one write port. Th

is register fi le is drawn as shown in Figure

B.8.7. Th

e read ports can be implemented with a pair of multiplexors, each of which

is as wide as the number of bits in each register of the register fi le. Figure B.8.8

shows the implementation of two register read ports for a 32-bit-wide register fi le.

Implementing the write port is slightly more complex, since we can only change

the contents of the designated register. We can do this by using a decoder to generate

a signal that can be used to determine which register to write. Figure B.8.9 shows how to implement the write port for a register fi le. It is important to remember that

the fl ip-fl op changes state only on the clock edge. In Chapter 4, we hooked up write

signals for the register fi le explicitly and assumed the clock shown in Figure B.8.9

is attached implicitly.

What happens if the same register is read and written during a clock cycle?

Because the write of the register fi le occurs on the clock edge, the register will be

B.8 Memory Elements: Flip-Flops, Latches, and Registers

B-55

Read register

number 1

Read

data 1

Read register

number 2

Register file

Write

Read

register

data 2

Write

data

Write

FIGURE B.8.7 A register fi le with two read ports and one write port has fi ve inputs and two outputs. Th

e control input Write is shown in color.

Read register

number 1

Register 0

Register 1

M

. . .

u

Read data 1

x

Register n – 2

Register n – 1

Read register

number 2

M

u

Read data 2

x

FIGURE B.8.8 The implementation of two read ports for a register fi le with n registers can be done with a pair of n-to-1 multiplexors, each 32 bits wide. Th

e register read number

signal is used as the multiplexor selector signal. Figure B.8.9 shows how the write port is implemented.

B-56

Appendix B The Basics of Logic Design

Write

 C

0

1

Register 0

 n-to-2 n

 D

.

Register number

.

decoder

.

 C

Register 1

 n – 2

 D

 n – 1

...

 C

Register n – 2

 D

 C

Register n – 1

Register data

 D

FIGURE B.8.9 The write port for a register fi le is implemented with a decoder that is used with the write signal to generate the C input to the registers. All three inputs (the register number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct data is written into the register fi le.

valid during the time it is read, as we saw earlier in Figure B.7.2. Th

e value returned

will be the value written in an earlier clock cycle. If we want a read to return the

value currently being written, additional logic in the register fi le or outside of it is

needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog

To specify sequential logic in Verilog, we must understand how to generate a

clock, how to describe when a value is written into a register, and how to specify

sequential control. Let us start by specifying a clock. A clock is not a predefi ned

object in Verilog; instead, we generate a clock by using the Verilog notation #n

before a statement; this causes a delay of n simulation time steps before the execu-

tion of the statement. In most Verilog simulators, it is also possible to generate

a clock as an external input, allowing the user to specify at simulation time the

number of clock cycles during which to run a simulation.

Th

e code in Figure B.8.10 implements a simple clock that is high or low for one simulation unit and then switches state. We use the delay capability and blocking

assignment to implement the clock.

B.8 Memory Elements: Flip-Flops, Latches, and Registers

B-57

FIGURE B.8.10 A specifi cation of a clock.

Next, we must be able to specify the operation of an edge-triggered register. In

Verilog, this is done by using the sensitivity list on an always block and specifying

as a trigger either the positive or negative edge of a binary variable with the

notation posedge or negedge, respectively. Hence, the following Verilog code

causes register A to be written with the value b at the positive edge clock:

FIGURE B.8.11 A MIPS register fi le written in behavioral Verilog. Th

is register fi le writes on

the rising clock edge.

Th

roughout this chapter and the Verilog sections of Chapter 4, we will assume

a positive edge-triggered design. Figure B.8.11 shows a Verilog specifi cation of a MIPS register fi le that assumes two reads and one write, with only the write being

clocked.

B-58

Appendix B The Basics of Logic Design

Check In the Verilog for the register fi le in Figure B.8.11, the output ports corresponding to the registers being read are assigned using a continuous assignment, but the register

Yourself

being written is assigned in an always block. Which of the following is the reason?

a. Th

ere is no special reason. It was simply convenient.

b. Because Data1 and Data2 are output ports and WriteData is an input port.

c. Because reading is a combinational event, while writing is a sequential event.

 B.9

Memory Elements: SRAMs and DRAMs

Registers and register fi les provide the basic building blocks for small memories,

static random access

but larger amounts of memory are built using either SRAMs (static random

memory (SRAM)

access memories) or DRAMs (dynamic random access memories). We fi rst discuss

A memory where data

SRAMs, which are somewhat simpler, and then turn to DRAMs.

is stored statically (as

in fl ip-fl ops) rather

than dynamically (as

SRAMs

in DRAM). SRAMs are

SRAMs are simply integrated circuits that are memory arrays with (usually) a single

faster than DRAMs,

access port that can provide either a read or a write. SRAMs have a fi xed access

but less dense and more

time to any datum, though the read and write access characteristics oft en diff er.

expensive per bit.

An SRAM chip has a specifi c confi guration in terms of the number of addressable

locations, as well as the width of each addressable location. For example, a 4M ⫻ 8

SRAM provides 4M entries, each of which is 8 bits wide. Th

us it will have 22 address

lines (since 4M ⫽ 222), an 8-bit data output line, and an 8-bit single data input line.

As with ROMs, the number of addressable locations is oft en called the height, with

the number of bits per unit called the width. For a variety of technical reasons, the

newest and fastest SRAMs are typically available in narrow confi gurations: ⫻ 1 and

⫻ 4. Figure B.9.1 shows the input and output signals for a 2M ⫻ 16 SRAM.

21

Address

Chip select

SRAM

16

Output enable

Dout[15–0]

2M ⫻ 16

Write enable

16

Din[15–0]

FIGURE B.9.1 A 32K ⴛ 8 SRAM showing the 21 address lines (32K ⴝ 215) and 16 data inputs, the 3 control lines, and the 16 data outputs.

B.9 Memory Elements: SRAMs and DRAMs

B-59

To initiate a read or write access, the Chip select signal must be made active.

For reads, we must also activate the Output enable signal that controls whether or

not the datum selected by the address is actually driven on the pins. Th

e Output

enable is useful for connecting multiple memories to a single-output bus and using

Output enable to determine which memory drives the bus. Th

e SRAM read access

time is usually specifi ed as the delay from the time that Output enable is true and

the address lines are valid until the time that the data is on the output lines. Typical

read access times for SRAMs in 2004 varied from about 2–4 ns for the fastest CMOS

parts, which tend to be somewhat smaller and narrower, to 8–20 ns for the typical

largest parts, which in 2004 had more than 32 million bits of data. Th

e demand for

low-power SRAMs for consumer products and digital appliances has grown greatly

in the past fi ve years; these SRAMs have much lower stand-by and access power,

but usually are 5–10 times slower. Most recently, synchronous SRAMs—similar to

the synchronous DRAMs, which we discuss in the next section—have also been

developed.

For writes, we must supply the data to be written and the address, as well as

signals to cause the write to occur. When both the Write enable and Chip select are

true, the data on the data input lines is written into the cell specifi ed by the address.

Th

ere are setup-time and hold-time requirements for the address and data lines,

just as there were for D fl ip-fl ops and latches. In addition, the Write enable signal

is not a clock edge but a pulse with a minimum width requirement. Th

e time to

complete a write is specifi ed by the combination of the setup times, the hold times,

and the Write enable pulse width.

Large SRAMs cannot be built in the same way we build a register fi le because,

unlike a register fi le where a 32-to-1 multiplexor might be practical, the 64K-to-

1 multiplexor that would be needed for a 64K ⫻ 1 SRAM is totally impractical.

Rather than use a giant multiplexor, large memories are implemented with a shared

output line, called a bit line, which multiple memory cells in the memory array can

assert. To allow multiple sources to drive a single line, a three-state buff er (or tristate buff er) is used. A three-state buff er has two inputs—a data signal and an Output

enable—and a single output, which is in one of three states: asserted, deasserted,

or high impedance. Th

e output of a tristate buff er is equal to the data input signal,

either asserted or deasserted, if the Output enable is asserted, and is otherwise in a

 high-impedance state that allows another three-state buff er whose Output enable is

asserted to determine the value of a shared output.

Figure B.9.2 shows a set of three-state buff ers wired to form a multiplexor with a decoded input. It is critical that the Output enable of at most one of the three-state

buff ers be asserted; otherwise, the three-state buff ers may try to set the output line

diff erently. By using three-state buff ers in the individual cells of the SRAM, each

cell that corresponds to a particular output can share the same output line. Th

e use

of a set of distributed three-state buff ers is a more effi

cient implementation than a

large centralized multiplexor. Th

e three-state buff ers are incorporated into the fl ip-

fl ops that form the basic cells of the SRAM. Figure B.9.3 shows how a small 4 ⫻ 2

SRAM might be built, using D latches with an input called Enable that controls the

three-state output.

B-60

Appendix B The Basics of Logic Design

Select 0

Enable

In

Out

Data 0

Select 1

Enable

In

Out

Data 1

Select 2

Enable

Output

In

Out

Data 2

Select 3

Enable

In

Out

Data 3

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four Select inputs can be asserted. A three-state buff er with a deasserted Output enable has a high-impedance output that allows a three-state buff er whose Output enable is asserted to drive the shared output line.

Th

e design in Figure B.9.3 eliminates the need for an enormous multiplexor;

however, it still requires a very large decoder and a correspondingly large number

of word lines. For example, in a 4M ⫻ 8 SRAM, we would need a 22-to-4M decoder

and 4M word lines (which are the lines used to enable the individual fl ip-fl ops)!

To circumvent this problem, large memories are organized as rectangular arrays

and use a two-step decoding process. Figure B.9.4 shows how a 4M ⫻ 8 SRAM

might be organized internally using a two-step decode. As we will see, the two-level

decoding process is quite important in understanding how DRAMs operate.

Recently we have seen the development of both synchronous SRAMs (SSRAMs)

and synchronous DRAMs (SDRAMs). Th

e key capability provided by synchronous

RAMs is the ability to transfer a burst of data from a series of sequential addresses

within an array or row. Th

e burst is defi ned by a starting address, supplied in the

usual fashion, and a burst length. Th

e speed advantage of synchronous RAMs

comes from the ability to transfer the bits in the burst without having to specify

additional address bits. Instead, a clock is used to transfer the successive bits in the

burst. Th

e elimination of the need to specify the address for the transfers within

the burst signifi cantly improves the rate for transferring the block of data. Because

of this capability, synchronous SRAMs and DRAMs are rapidly becoming the

RAMs of choice for building memory systems in computers. We discuss the use of

synchronous DRAMs in a memory system in more detail in the next section and

in Chapter 5.

B.9 Memory Elements: SRAMs and DRAMs

B-61

Din[1]

Din[1]

 D

D

 D

D

 C

latch

 Q

 C

latch

 Q

Write enable

Enable

Enable

0

2-to-4

 D

D

 D

D

decoder

 C

latch

 Q

 C

latch

 Q

Enable

Enable

1

 D

D

 D

D

Address

 C

latch

 Q

 C

latch

 Q

Enable

Enable

2

 D

D

 D

D

 C

latch

 Q

 C

latch

 Q

Enable

Enable

3

Dout[1]

Dout[0]

FIGURE B.9.3 The basic structure of a 4 ⴛ 2 SRAM consists of a decoder that selects which pair of cells to activate.

Th

e activated cells use a three-state output connected to the vertical bit lines that supply the requested data. Th e address that selects the cell is

sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip select signals have been omitted, but they could easily be added with a few AND gates.

B-62

Appendix B The Basics of Logic Design

e h

his

asier

f t

⫻

tes t

h e

4K

1024

Mux

uc

SRAM

Dout0

enera

RAM o

n S

der g

⫻

is is a m der

4K

1024

SRAM

Mux

Dout1

y. Th

, a mo

fi rst deco

rra

tice

e

⫻

Th

rac

4K

1024

s.

SRAM

Mux

Dout2

y

it-wide a

n p

ra

r. Io

lex

⫻

h 1024-b

ltip

4K

1024

ac

u

SRAM

Mux

Dout3

 1024 arⴛ m ero tic mn

⫻

it f

4K

1024

SRAM

Mux

Dout4

y of 4K

t 1 b

r a giga

.

ra

elec

der o

o s

⫻

ed t

at smaller

4K

1024

h

SRAM

Mux

Dout5

us deco

w

me

rs is us

rmo

o

o

⫻

lex

enon ach s

4K

1024

SRAM

Mux

Dout6

 8 SRAM as an arⴛ ltipu er ath cks, e

f m

lo

f b

⫻

1024

et o

4K

1024

er o

SRAM

Mux

Dout7

b

en a s

uld need ei

h

o

um

ys; t

at wh rger n

rra

4096

de t

ven la

1024 a

n e

⫻

vel deco

e a

12

to

4096

ypical organization of a 4M

decoder

T

t 4K

ly us

h

gle-le

b

r eig

roba

o

an a sin

es f

h

uld po

[9–0]

ess

Address

[21–10]

Address

FIGURE B.9.4

addr

design t

size w

B.9 Memory Elements: SRAMs and DRAMs

B-63

DRAMs

In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting gates,

and as long as power is applied, the value can be kept indefi nitely. In a dynamic

RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. A single

transistor is then used to access this stored charge, either to read the value or to

overwrite the charge stored there. Because DRAMs use only a single transistor per

bit of storage, they are much denser and cheaper per bit. By comparison, SRAMs

require four to six transistors per bit. Because DRAMs store the charge on a

capacitor, it cannot be kept indefi nitely and must periodically be refreshed. Th

at is

why this memory structure is called dynamic, as opposed to the static storage in a

SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th

e charge can

be kept for several milliseconds, which might correspond to close to a million clock

cycles. Today, single-chip memory controllers oft en handle the refresh function

independently of the processor. If every bit had to be read out of the DRAM and

then written back individually, with large DRAMs containing multiple megabytes,

we would constantly be refreshing the DRAM, leaving no time for accessing it.

Fortunately, DRAMs also use a two-level decoding structure, and this allows us

to refresh an entire row (which shares a word line) with a read cycle followed

immediately by a write cycle. Typically, refresh operations consume 1% to 2% of

the active cycles of the DRAM, leaving the remaining 98% to 99% of the cycles

available for reading and writing data.

Elaboration: How does a DRAM read and write the signal stored in a cell? The

transistor inside the cell is a switch, called a pass transistor, that allows the value stored on the capacitor to be accessed for either reading or writing. Figure B.9.5 shows how the single-transistor cell looks. The pass transistor acts like a switch: when the signal

on the word line is asserted, the switch is closed, connecting the capacitor to the bit

line. If the operation is a write, then the value to be written is placed on the bit line. If

the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will

be discharged. Reading is slightly more complex, since the DRAM must detect a very

small charge stored in the capacitor. Before activating the word line for a read, the bit

line is charged to the voltage that is halfway between the low and high voltage. Then, by

activating the word line, the charge on the capacitor is read out onto the bit line. This

causes the bit line to move slightly toward the high or low direction, and this change is

detected with a sense amplifi er, which can detect small changes in voltage.

B-64

Appendix B The Basics of Logic Design

Word line

Pass transistor

Capacitor

Bit line

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell

contents and a transistor used to access the cell.

Row

2048 ⫻ 2048

decoder

array

11-to-2048

Address[10–0]

Column latches

Mux

Dout

FIGURE B.9.6 A 4M ⴛ 1 DRAM is built with a 2048 ⫻ 2048 array. Th

e row access uses 11 bits to

select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048

latches. Th

e RAS and CAS signals control whether the address lines are sent to the row decoder or column

multiplexor.

B.9 Memory Elements: SRAMs and DRAMs

B-65

DRAMs use a two-level decoder consisting of a row access followed by a column

 access, as shown in Figure B.9.6. Th

e row access chooses one of a number of rows

and activates the corresponding word line. Th

e contents of all the columns in the

active row are then stored in a set of latches. Th

e column access then selects the

data from the column latches. To save pins and reduce the package cost, the same

address lines are used for both the row and column address; a pair of signals called

RAS (Row Access Strobe) and CAS (Column Access Strobe) are used to signal the

DRAM that either a row or column address is being supplied. Refresh is performed

by simply reading the columns into the column latches and then writing the same

values back. Th

us, an entire row is refreshed in one cycle. Th

e two-level addressing

scheme, combined with the internal circuitry, makes DRAM access times much

longer (by a factor of 5–10) than SRAM access times. In 2004, typical DRAM access

times ranged from 45 to 65 ns; 256 Mbit DRAMs are in full production, and the

fi rst customer samples of 1 GB DRAMs became available in the fi rst quarter of

2004. Th

e much lower cost per bit makes DRAM the choice for main memory,

while the faster access time makes SRAM the choice for caches.

You might observe that a 64M ⫻ 4 DRAM actually accesses 8K bits on every

row access and then throws away all but 4 of those during a column access. DRAM

designers have used the internal structure of the DRAM as a way to provide

higher bandwidth out of a DRAM. Th

is is done by allowing the column address to

change without changing the row address, resulting in an access to other bits in the

column latches. To make this process faster and more precise, the address inputs

were clocked, leading to the dominant form of DRAM in use today: synchronous

DRAM or SDRAM.

Since about 1999, SDRAMs have been the memory chip of choice for most

cache-based main memory systems. SDRAMs provide fast access to a series of bits

within a row by sequentially transferring all the bits in a burst under the control

of a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called

double data rate because they transfer data on both the rising and falling edge of

an externally supplied clock, were the most heavily used form of SDRAMs. As we

discuss in Chapter 5, these high-speed transfers can be used to boost the bandwidth

available out of main memory to match the needs of the processor and caches.

Error Correction

Because of the potential for data corruption in large memories, most computer

systems use some sort of error-checking code to detect possible corruption of data.

One simple code that is heavily used is a parity code. In a parity code the number

of 1s in a word is counted; the word has odd parity if the number of 1s is odd and

B-66

Appendix B The Basics of Logic Design

even otherwise. When a word is written into memory, the parity bit is also written

(1 for odd, 0 for even). Th

en, when the word is read out, the parity bit is read and

checked. If the parity of the memory word and the stored parity bit do not match,

an error has occurred.

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there

are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since the

parity will match the data with two errors. (Actually, a 1-bit parity scheme can

detect any odd number of errors; however, the probability of having three errors is

much lower than the probability of having two, so, in practice, a 1-bit parity code is

limited to detecting a single bit of error.) Of course, a parity code cannot tell which

bit in a data item is in error.

error detection code

A 1-bit parity scheme is an error detection code; there are also error correction

A code that enables the

 codes (ECC) that will detect and allow correction of an error. For large main

detection of an error in

memories, many systems use a code that allows the detection of up to 2 bits of error

data, but not the precise

and the correction of a single bit of error. Th

ese codes work by using more bits to

location and, hence,

encode the data; for example, the typical codes used for main memories require 7

correction of the error.

or 8 bits for every 128 bits of data.

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look at the data plus the parity bit, no 1-bit change is suffi cient to generate another legal

combination of the data plus parity. For example, if we change a bit in the data, the parity

will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data

bit and the parity bit), the parity will match the data and the error cannot be detected.

Hence, there is a distance of two between legal combinations of parity and data.

To detect more than one error or correct an error, we need a distance-3 code, which

has the property that any legal combination of the bits in the error correction code and

the data has at least 3 bits differing from any other combination. Suppose we have such

a code and we have one error in the data. In that case, the code plus data will be one bit

away from a legal combination, and we can correct the data to that legal combination.

If we have two errors, we can recognize that there is an error, but we cannot correct

the errors. Let’s look at an example. Here are the data words and a distance-3 error

correction code for a 4-bit data item.

Data Word

Code bits

Data

Code bits

0000

000

1000

111

0001

011

1001

100

0010

101

1010

010

0011

110

1011

001

0100

110

1100

001

0101

101

1101

010

0110

011

1110

100

0111

000

1111

111

 B.10

Finite-State

Machines

B-67

To see how this works, let’s choose a data word, say 0110, whose error correction

code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100,

and 0111. Now look at the data item with the same code (011), which is the entry with

the value 0001. If the error correction decoder received one of the four possible data

words with an error, it would have to choose between correcting to 0110 or 0001. While

these four words with error have only one bit changed from the correct pattern of 0110,

they each have two bits that are different from the alternate correction of 0001. Hence,

the error correction mechanism can easily choose to correct to 0110, since a single

error is a much higher probability. To see that two errors can be detected, simply notice

that all the combinations with two bits changed have a different code. The one reuse of

the same code is with three bits different, but if we correct a 2-bit error, we will correct

to the wrong value, since the decoder will assume that only a single error has occurred.

If we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit errors, we

need a distance-4 code.

Although we distinguished between the code and data in our explanation, in truth,

an error correction code treats the combination of code and data as a single word in

a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the

same fashion as errors in the data bits.

While the above example requires n ⫺ 1 bits for n bits of data, the number of bits required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a

128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming,

who described a method for creating such codes.

 B.10 Finite-State

Machines

fi nite-state machine

As we saw earlier, digital logic systems can be classifi ed as combinational or A sequential logic sequential. Sequential systems contain state stored in memory elements internal to function consisting of a the system. Th

eir behavior depends both on the set of inputs supplied and on the set of inputs and out puts,

contents of the internal memory, or state of the system. Th

us, a sequential system a next-state function that

cannot be described with a truth table. Instead, a sequential system is described as maps the current state and a fi nite-state machine (or oft en just state machine). A fi nite-state machine has a set the inputs to a new state, and an output function

of states and two functions, called the next-state function and the output function. that maps the current Th

e set of states corresponds to all the possible values of the internal storage. state and possibly the Th

us, if there are n bits of storage, there are 2 n states. Th

e next-state function is a inputs to a set of asserted

combinational function that, given the inputs and the current state, determines the outputs.

next state of the system. Th

e output function produces a set of outputs from the next-state function

current state and the inputs. Figure B.10.1 shows this diagrammatically.

A combinational function

Th

e state machines we discuss here and in Chapter 4 are synchronous. Th

is means that, given the inputs

that the state changes together with the clock cycle, and a new state is computed and the current state, once every clock. Th

us, the state elements are updated only on the clock edge. We determines the next state

use this methodology in this section and throughout Chapter 4, and we do not of a fi nite-state machine.

B-68

Appendix B The Basics of Logic Design

Next

state

Next-state

Current state

function

Clock

Inputs

Output

Outputs

function

FIGURE B.10.1 A state machine consists of internal storage that contains the state and two combinational functions: the next-state function and the output function. Oft en, the output function is restricted to take only the current state as its input; this does not change the capability of a sequential machine, but does aff ect its internals.

usually show the clock explicitly. We use state machines throughout Chapter 4 to

control the execution of the processor and the actions of the datapath.

To illustrate how a fi nite-state machine operates and is designed, let’s look at a

simple and classic example: controlling a traffi

c light. (Chapters 4 and 5 contain more

detailed examples of using fi nite-state machines to control processor execution.) When

a fi nite-state machine is used as a controller, the output function is oft en restricted to

depend on just the current state. Such a fi nite-state machine is called a Moore machine.

Th

is is the type of fi nite-state machine we use throughout this book. If the output

function can depend on both the current state and the current input, the machine

is called a Mealy machine. Th

ese two machines are equivalent in their capabilities,

and one can be turned into the other mechanically. Th

e basic advantage of a Moore

machine is that it can be faster, while a Mealy machine may be smaller, since it may

need fewer states than a Moore machine. In Chapter 5, we discuss the diff erences in

more detail and show a Verilog version of fi nite-state control using a Mealy machine.

Our example concerns the control of a traffi

c light at an intersection of a north-

south route and an east-west route. For simplicity, we will consider only the green

and red lights; adding the yellow light is left for an exercise. We want the lights to

cycle no faster than 30 seconds in each direction, so we will use a 0.033 Hz clock

so that the machine cycles between states at no faster than once every 30 seconds.

Th

ere are two output signals:

 B.10

Finite-State

Machines

B-69

■ NSlite: When this signal is asserted, the light on the north-south road is

green; when this signal is deasserted, the light on the north-south road is red.

■ EWlite: When this signal is asserted, the light on the east-west road is green;

when this signal is deasserted, the light on the east-west road is red.

In addition, there are two inputs:

■ NScar: Indicates that a car is over the detector placed in the roadbed in front

of the light on the north-south road (going north or south).

■ EWcar: Indicates that a car is over the detector placed in the roadbed in front

of the light on the east-west road (going east or west).

Th

e traffi

c light should change from one direction to the other only if a car is

waiting to go in the other direction; otherwise, the light should continue to show

green in the same direction as the last car that crossed the intersection.

To implement this simple traffi

c light we need two states:

■ NSgreen: Th

e traffi

c light is green in the north-south direction.

■ EWgreen: Th

e traffi

c light is green in the east-west direction.

We also need to create the next-state function, which can be specifi ed with a table:

Inputs

NScar

EWcar

Next state

NSgreen

0

0

NSgreen

NSgreen

0

1

EWgreen

NSgreen

1

0

NSgreen

NSgreen

1

1

EWgreen

EWgreen

0

0

EWgreen

EWgreen

0

1

EWgreen

EWgreen

1

0

NSgreen

EWgreen

1

1

NSgreen

Notice that we didn’t specify in the algorithm what happens when a car

approaches from both directions. In this case, the next-state function given above

changes the state to ensure that a steady stream of cars from one direction cannot

lock out a car in the other direction.

Th

e fi nite-state machine is completed by specifying the output function.

Before we examine how to implement this fi nite-state machine, let’s look at a

graphical representation, which is oft en used for fi nite-state machines. In this

representation, nodes are used to indicate states. Inside the node we place a list of

the outputs that are active for that state. Directed arcs are used to show the next-state

B-70

Appendix B The Basics of Logic Design

w

Outputs

NSlite

EWlite

NSgreen

1

0

EWgreen

0

1

function, with labels on the arcs specifying the input condition as logic functions.

Figure B.10.2 shows the graphical representation for this fi nite-state machine.

EWcar

NSgreen

EWgreen

NScar

NSlite

EWlite

EWcar

NScar

FIGURE B.10.2 The graphical representation of the two-state traffi c light controller. We simplifi ed the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen in the next-state table is (NScar EWcar)

(NScar EWcar), which is equivalent to EWcar.

A fi nite-state machine can be implemented with a register to hold the current

state and a block of combinational logic that computes the next-state function and

the output function. Figure B.10.3 shows how a fi nite-state machine with 4 bits of state, and thus up to 16 states, might look. To implement the fi nite-state machine

in this way, we must fi rst assign state numbers to the states. Th

is process is called

 state assignment. For example, we could assign NSgreen to state 0 and EWgreen to

state 1. Th

e state register would contain a single bit. Th

e next-state function would

be given as

NextState

C

(urrentState EWcar)

Current

(

State NScar)

 B.11

Timing

Methodologies

B-71

where CurrentState is the contents of the state register (0 or 1) and NextState is the

output of the next-state function that will be written into the state register at the

end of the clock cycle. Th

e output function is also simple:

NSlite ⫽ CurrentState

EWlite ⫽ CurrentState

Th

e combinational logic block is oft en implemented using structured logic,

such as a PLA. A PLA can be constructed automatically from the next-state and

output function tables. In fact, there are computer-aided design (CAD) programs

Outputs

Combinational logic

Next state

State register

Inputs

FIGURE B.10.3 A fi nite-state machine is implemented with a state register that holds

the current state and a combinational logic block to compute the next state and output

functions. Th

e latter two functions are oft en split apart and implemented with two separate blocks of logic,

which may require fewer gates.

that take either a graphical or textual representation of a fi nite-state machine and

produce an optimized implementation automatically. In Chapters 4 and 5, fi nite-

state machines were used to control processor execution. Appendix D discusses

the detailed implementation of these controllers with both PLAs and ROMs.

To show how we might write the control in Verilog, Figure B.10.4 shows a

Verilog version designed for synthesis. Note that for this simple control function,

a Mealy machine is not useful, but this style of specifi cation is used in Chapter 5 to

implement a control function that is a Mealy machine and has fewer states than the

Moore machine controller.

B-72

Appendix B The Basics of Logic Design

FIGURE B.10.4 A Verilog version of the traffi c light controller.

Check What is the smallest number of states in a Moore machine for which a Mealy

machine could have fewer states?

Yourself

a. Two, since there could be a one-state Mealy machine that might do the same

thing.

b. Th

ree, since there could be a simple Moore machine that went to one of two

diff erent states and always returned to the original state aft er that. For such a

simple machine, a two-state Mealy machine is possible.

c. You need at least four states to exploit the advantages of a Mealy machine

over a Moore machine.

 B.11 Timing

Methodologies

Th

roughout this appendix and in the rest of the text, we use an edge-triggered

timing methodology. Th

is timing methodology has an advantage in that it is

simpler to explain and understand than a level-triggered methodology. In this

section, we explain this timing methodology in a little more detail and also

introduce level-sensitive clocking. We conclude this section by briefl y discussing

 B.11

Timing

Methodologies

B-73

the issue of asynchronous signals and synchronizers, an important problem for

digital designers.

Th

e purpose of this section is to introduce the major concepts in clocking

methodology. Th

e section makes some important simplifying assumptions; if you

are interested in understanding timing methodology in more detail, consult one of

the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to explain

and has fewer rules required for correctness. In particular, if we assume that all

clocks arrive at the same time, we are guaranteed that a system with edge-triggered

registers between blocks of combinational logic can operate correctly without races

if we simply make the clock long enough. A race occurs when the contents of a

state element depend on the relative speed of diff erent logic elements. In an edge-

triggered design, the clock cycle must be long enough to accommodate the path

from one fl ip-fl op through the combinational logic to another fl ip-fl op where it

must satisfy the setup-time requirement. Figure B.11.1 shows this requirement for a system using rising edge-triggered fl ip-fl ops. In such a system the clock period

(or cycle time) must be at least as large as

 t

⫹ t

⫹ t

prop

combinational

setup

for the worst-case values of these three delays, which are defi ned as follows:

■ t

is the time for a signal to propagate through a fl ip-fl op; it is also sometimes

prop

called clock-to- Q.

■ t

is the longest delay for any combinational logic (which by defi nition

combinational

is surrounded by two fl ip-fl ops).

■ t

is the time before the rising clock edge that the input to a fl ip-fl op must

setup

be valid.

 D

 Q

 D

 Q

Combinational

Flip-flop

Flip-flop

logic block

 C

 C

 t prop

 t combinational

 t setup

FIGURE B.11.1 In an edge-triggered design, the clock must be long enough to allow

signals to be valid for the required setup time before the next clock edge. Th

e time for a

fl ip-fl op input to propagate to the fl ip-fl ip outputs is t

; the signal then takes t

to travel through the

prop

combinational

combinational logic and must be valid t

before the next clock edge.

setup

B-74

Appendix B The Basics of Logic Design

We make one simplifying assumption: the hold-time requirements are satisfi ed,

which is almost never an issue with modern logic.

One additional complication that must be considered in edge-triggered designs

clock skew Th

e

is clock skew. Clock skew is the diff erence in absolute time between when two state

diff erence in absolute time

elements see a clock edge. Clock skew arises because the clock signal will oft en

between the times when

use two diff erent paths, with slightly diff erent delays, to reach two diff erent state

two state elements see a

elements. If the clock skew is large enough, it may be possible for a state element to

clock edge.

change and cause the input to another fl ip-fl op to change before the clock edge is

seen by the second fl ip-fl op.

Figure B.11.2 illustrates this problem, ignoring setup time and fl ip-fl op

propagation delay. To avoid incorrect operation, the clock period is increased to

allow for the maximum clock skew. Th

us, the clock period must be longer than

 t

⫹ t

⫹ t

⫹ t

prop

combinational

setup

skew

With this constraint on the clock period, the two clocks can also arrive in the

opposite order, with the second clock arriving t

earlier, and the circuit will work

skew

 D

 Q

 D

 Q

Combinational

Flip-flop

Flip-flop

logic block with

Clock arrives

Clock arrives

 C

delay time of

at time t

Δ

 C

after t + Δ

FIGURE B.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the diff erence in when the two fl ip-fl ops see the clock, the signal that is stored into the fi rst fl ip-fl op can race forward and change the input to the second fl ip-fl op before the clock arrives at the second fl ip-fl op.

correctly. Designers reduce clock-skew problems by carefully routing the clock

signal to minimize the diff erence in arrival times. In addition, smart designers also

provide some margin by making the clock a little longer than the minimum; this

allows for variation in components as well as in the power supply. Since clock skew

can also aff ect the hold-time requirements, minimizing the size of the clock skew

level-sensitive

is important.

clocking A timing

Edge-triggered designs have two drawbacks: they require extra logic and they

methodology in which

may sometimes be slower. Just looking at the D fl ip-fl op versus the level-sensitive

state changes occur

latch that we used to construct the fl ip-fl op shows that edge-triggered design

at either high or low

requires more logic. An alternative is to use level-sensitive clocking. Because state

clock levels but are not

changes in a level-sensitive methodology are not instantaneous, a level-sensitive

instantaneous as such

changes are in edge-

scheme is slightly more complex and requires additional care to make it operate

triggered designs.

correctly.

 B.11

Timing

Methodologies

B-75

Level-Sensitive Timing

In level-sensitive timing, the state changes occur at either high or low levels, but

they are not instantaneous as they are in an edge-triggered methodology. Because of

the noninstantaneous change in state, races can easily occur. To ensure that a level-

sensitive design will also work correctly if the clock is slow enough, designers use two-

 phase clocking. Two-phase clocking is a scheme that makes use of two nonoverlapping

clock signals. Since the two clocks, typically called φ and φ , are nonoverlapping, at

1

2

most one of the clock signals is high at any given time, as Figure B.11.3 shows. We can use these two clocks to build a system that contains level-sensitive latches but is

free from any race conditions, just as the edge-triggered designs were.

Φ1

Φ2

Nonoverlapping

periods

FIGURE B.11.3 A two-phase clocking scheme showing the cycle of each clock and the

nonoverlapping periods.

 D

 Q

 D

 Q

 D

Combinational

Combinational

Latch

Latch

Latch

logic block

Φ

logic block

Φ

Φ

1

 C

2

 C

1

 C

FIGURE B.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock phases. Th

e output of a latch is stable on the opposite phase from its C input. Th

us, the fi rst block of combinational inputs has a stable input

during φ , and its output is latched by φ . Th

e second (rightmost) combinational block operates in just the opposite fashion, with stable inputs 2

2

during φ . Th

us, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. Th e

1

size of the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block.

One simple way to design such a system is to alternate the use of latches that are

open on φ with latches that are open on φ . Because both clocks are not asserted

1

2

at the same time, a race cannot occur. If the input to a combinational block is a φ

1

clock, then its output is latched by a φ clock, which is open only during φ when

2

2

the input latch is closed and hence has a valid output. Figure B.11.4 shows how a system with two-phase timing and alternating latches operates. As in an edge-triggered design, we must pay attention to clock skew, particularly between the two

B-76

Appendix B The Basics of Logic Design

clock phases. By increasing the amount of nonoverlap between the two phases, we

can reduce the potential margin of error. Th

us, the system is guaranteed to operate

correctly if each phase is long enough and if there is large enough nonoverlap

between the phases.

Asynchronous Inputs and Synchronizers

By using a single clock or a two-phase clock, we can eliminate race conditions

if clock-skew problems are avoided. Unfortunately, it is impractical to make an

entire system function with a single clock and still keep the clock skew small.

While the CPU may use a single clock, I/O devices will probably have their own

clock. An asynchronous device may communicate with the CPU through a series

of handshaking steps. To translate the asynchronous input to a synchronous signal

that can be used to change the state of a system, we need to use a synchronizer,

whose inputs are the asynchronous signal and a clock and whose output is a signal

synchronous with the input clock.

Our fi rst attempt to build a synchronizer uses an edge-triggered D fl ip-fl op,

whose D input is the asynchronous signal, as Figure B.11.5 shows. Because we communicate with a handshaking protocol, it does not matter whether we detect

the asserted state of the asynchronous signal on one clock or the next, since the

signal will be held asserted until it is acknowledged. Th

us, you might think that this

simple structure is enough to sample the signal accurately, which would be the case

except for one small problem.

Asynchronous input

 D

 Q

Synchronous output

Flip-flop

Clock

 C

FIGURE B.11.5 A synchronizer built from a D fl ip-fl op is used to sample an asynchronous signal to produce an output that is synchronous with the clock. Th

is “synchronizer” will not

work properly!

metastability

A situation that occurs if

a signal is sampled when

Th

e problem is a situation called metastability. Suppose the asynchronous

it is not stable for the

signal is transitioning between high and low when the clock edge arrives. Clearly,

required setup and hold

it is not possible to know whether the signal will be latched as high or low. Th

at

times, possibly causing

problem we could live with. Unfortunately, the situation is worse: when the signal

the sampled value to

that is sampled is not stable for the required setup and hold times, the fl ip-fl op may

fall in the indeterminate

go into a metastable state. In such a state, the output will not have a legitimate high

region between a high and

low value.

or low value, but will be in the indeterminate region between them. Furthermore,

 B.13

Concluding

Remarks

B-77

the fl ip-fl op is not guaranteed to exit this state in any bounded amount of time.

Some logic blocks that look at the output of the fl ip-fl op may see its output as 0,

while others may see it as 1. Th

is situation is called a synchronizer failure.

synchronizer failure

In a purely synchronous system, synchronizer failure can be avoided by ensuring A situation in which that the setup and hold times for a fl ip-fl op or latch are always met, but this is a fl ip-fl op enters a impossible when the input is asynchronous. Instead, the only solution possible is to metastable state and where some logic blocks

wait long enough before looking at the output of the fl ip-fl op to ensure that its output

reading the output of the

is stable, and that it has exited the metastable state, if it ever entered it. How long is fl ip-fl op see a 0 while long enough? Well, the probability that the fl ip-fl op will stay in the metastable state others see a 1.

decreases exponentially, so aft er a very short time the probability that the fl ip-fl op

is in the metastable state is very low; however, the probability never reaches 0! So

designers wait long enough such that the probability of a synchronizer failure is very

low, and the time between such failures will be years or even thousands of years.

For most fl ip-fl op designs, waiting for a period that is several times longer than

the setup time makes the probability of synchronization failure very low. If the

clock rate is longer than the potential metastability period (which is likely), then a

safe synchronizer can be built with two D fl ip-fl ops, as Figure B.11.6 shows. If you are interested in reading more about these problems, look into the references.

 D

 Q

 D

 Q

Asynchronous input

Synchronous output

Flip-flop

Flip-flop

Clock

 C

 C

FIGURE B.11.6 This synchronizer will work correctly if the period of metastability that we wish to guard against is less than the clock period. Although the output of the fi rst fl ip-fl op may be metastable, it will not be seen by any other logic element until the second clock, when the second D

fl ip-fl op samples the signal, which by that time should no longer be in a metastable state.

Suppose we have a design with very large clock skew—longer than the register Check

propagation time. Is it always possible for such a design to slow the clock down Yourself enough to guarantee that the logic operates properly?

a. Yes, if the clock is slow enough the signals can always propagate and the propagation time Th e design will work, even if the skew is very large.

time required for an input

b. No, since it is possible that two registers see the same clock edge far enough to a fl ip-fl op to propagate apart that a register is triggered, and its outputs propagated and seen by a to the outputs of the fl ip-fl op.

second register with the same clock edge.

B-78

Appendix B The Basics of Logic Design

 B.12 Field Programmable Devices

fi eld programmable

devices (FPD)

Within a custom or semicustom chip, designers can make use of the fl exibility of the

An integrated circuit

underlying structure to easily implement combinational or sequential logic. How

containing combinational

can a designer who does not want to use a custom or semicustom IC implement

logic, and possibly

a complex piece of logic taking advantage of the very high levels of integration

memory devices, that are

available? Th

e most popular component used for sequential and combinational

confi gurable by the end

logic design outside of a custom or semicustom IC is a fi eld programmable

user.

device (FPD). An FPD is an integrated circuit containing combinational logic, and

programmable logic

possibly memory devices, that are confi gurable by the end user.

device (PLD)

FPDs generally fall into two camps: programmable logic devices (PLDs),

An integrated circuit

which are purely combinational, and fi eld programmable gate arrays (FPGAs),

containing combinational

which provide both combinational logic and fl ip-fl ops. PLDs consist of two forms:

logic whose function is

confi gured by the end

simple PLDs (SPLDs), which are usually either a PLA or a programmable array

user.

logic (PAL), and complex PLDs, which allow more than one logic block as well as

confi gurable interconnections among blocks. When we speak of a PLA in a PLD,

fi eld programmable

we mean a PLA with user programmable and-plane and or-plane. A PAL is like a

gate array (FPGA)

PLA, except that the or-plane is fi xed.

A confi gurable integrated

circuit containing both

Before we discuss FPGAs, it is useful to talk about how FPDs are confi gured.

combinational logic

Confi guration is essentially a question of where to make or break connections.

blocks and fl ip-fl ops.

Gate and register structures are static, but the connections can be confi gured.

Notice that by confi guring the connections, a user determines what logic functions

simple programmable

are implemented. Consider a confi gurable PLA: by determining where the

logic device

connections are in the and-plane and the or-plane, the user dictates what logical

(SPLD) Programmable

logic device, usually

functions are computed in the PLA. Connections in FPDs are either permanent

containing either a single

or reconfi gurable. Permanent connections involve the creation or destruction of

PAL or PLA.

a connection between two wires. Current FPLDs all use an antifuse technology,

which allows a connection to be built at programming time that is then permanent.

programmable array

Th

e other way to confi gure CMOS FPLDs is through a SRAM. Th

e SRAM is

logic (PAL) Contains a

programmable and-plane

downloaded at power-on, and the contents control the setting of switches, which

followed by a fi xed or-

in turn determines which metal lines are connected. Th

e use of SRAM control

plane.

has the advantage in that the FPD can be reconfi gured by changing the contents

of the SRAM. Th

e disadvantages of the SRAM-based control are two fold: the

antifuse A structure in

confi guration is volatile and must be reloaded on power-on, and the use of active

an integrated circuit that

transistors for switches slightly increases the resistance of such connections.

when programmed makes

a permanent connection

FPGAs include both logic and memory devices, usually structured in a two-

between two wires.

dimensional array with the corridors dividing the rows and columns used for

B.14 Exercises

B-79

global interconnect between the cells of the array. Each cell is a combination of

gates and fl ip-fl ops that can be programmed to perform some specifi c function.

Because they are basically small, programmable RAMs, they are also called lookup

lookup tables (LUTs)

tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as In a fi eld programmable pieces of adders and RAM blocks that can be used to build register fi les. A few large

device, the name given

FPGAs even contain 32-bit RISC cores!

to the cells because they

consist of a small amount

In addition to programming each cell to perform a specifi c function, the of logic and RAM.

interconnections between cells are also programmable, allowing modern FPGAs

with hundreds of blocks and hundreds of thousands of gates to be used for complex

logic functions. Interconnect is a major challenge in custom chips, and this is even

more true for FPGAs, because cells do not represent natural units of decomposition

for structured design. In many FPGAs, 90% of the area is reserved for interconnect

and only 10% is for logic and memory blocks.

Just as you cannot design a custom or semicustom chip without CAD tools, you

also need them for FPDs. Logic synthesis tools have been developed that target

FPGAs, allowing the generation of a system using FPGAs from structural and

behavioral Verilog.

 B.13 Concluding

Remarks

Th

is appendix introduces the basics of logic design. If you have digested the

material in this appendix, you are ready to tackle the material in Chapters 4 and 5,

both of which use the concepts discussed in this appendix extensively.

Further Reading

Th

ere are a number of good texts on logic design. Here are some you might like to

look into.

Ciletti, M. D. [2002]. Advanced Digital Design with the Verilog HDL, Englewood

Cliff s, NJ: Prentice Hall.

 A thorough book on logic design using Verilog.

Katz, R. H. [2004]. Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley.

 A general text on logic design.

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, 3rd ed., Englewood

Cliff s, NJ: Prentice Hall.

 A general text on logic design.

B-80

Appendix B The Basics of Logic Design

 B.14 Exercises

B.1 [10] ⬍§B.2⬎ In addition to the basic laws we discussed in this section, there

are two important theorems, called DeMorgan’s theorems:

A

B

A B and A B

A

B

Prove DeMorgan’s theorems with a truth table of the form

A

B

A

B

A + B

A ˙ B

A ˙ B

A + B

0

0

1

1

1

1

1

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

0

0

0

0

B.2 [15] ⬍§B.2⬎ Prove that the two equations for E in the example starting on

page B-7 are equivalent by using DeMorgan’s theorems and the axioms shown on

page B-7.

B.3 [10] ⬍§B.2⬎ Show that there are 2 n entries in a truth table for a function with n inputs.

B.4 [10] ⬍§B.2⬎ One logic function that is used for a variety of purposes

(including within adders and to compute parity) is exclusive OR. Th

e output of a

two-input exclusive OR function is true only if exactly one of the inputs is true.

Show the truth table for a two-input exclusive OR function and implement this

function using AND gates, OR gates, and inverters.

B.5 [15] ⬍§B.2⬎ Prove that the NOR gate is universal by showing how to build

the AND, OR, and NOT functions using a two-input NOR gate.

B.6 [15] ⬍§B.2⬎ Prove that the NAND gate is universal by showing how to build

the AND, OR, and NOT functions using a two-input NAND gate.

B.7 [10] ⬍§§B.2, B.3⬎ Construct the truth table for a four-input odd-parity

function (see page B-65 for a description of parity).

B.8 [10] ⬍§§B.2, B.3⬎ Implement the four-input odd-parity function with AND

and OR gates using bubbled inputs and outputs.

B.9 [10] ⬍§§B.2, B.3⬎ Implement the four-input odd-parity function with a PLA.

B.14 Exercises

B-81

B.10 [15] ⬍§§B.2, B.3⬎ Prove that a two-input multiplexor is also universal by

showing how to build the NAND (or NOR) gate using a multiplexor.

B.11 [5] ⬍§§4.2, B.2, B.3⬎ Assume that X consists of 3 bits, x2 x1 x0. Write four

logic functions that are true if and only if

■ X contains only one 0

■ X contains an even number of 0s

■ X when interpreted as an unsigned binary number is less than 4

■ X when interpreted as a signed (two’s complement) number is negative

B.12 [5] ⬍§§4.2, B.2, B.3⬎ Implement the four functions described in Exercise

B.11 using a PLA.

B.13 [5] ⬍§§4.2, B.2, B.3⬎ Assume that X consists of 3 bits, x2 x1 x0, and Y

consists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X ⬍ Y, where X and Y are thought of as unsigned binary numbers

■ X ⬍ Y, where X and Y are thought of as signed (two’s complement) numbers

■ X ⫽ Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show

how can you extend it to 6-bit comparison.

B.14 [5] ⬍§§B.2, B.3⬎ Implement a switching network that has two data inputs

(A and B), two data outputs (C and D), and a control input (S). If S equals 1, the network is in pass-through mode, and C should equal A, and D should equal B. If S equals 0, the network is in crossing mode, and C should equal B, and D should equal A.

B.15 [15] ⬍§§B.2, B.3⬎ Derive the product-of-sums representation for E shown

on page B-11 starting with the sum-of-products representation. You will need to

use DeMorgan’s theorems.

B.16 [30] ⬍§§B.2, B.3⬎ Give an algorithm for constructing the sum-of- products

representation for an arbitrary logic equation consisting of AND, OR, and NOT.

Th

e algorithm should be recursive and should not construct the truth table in the

process.

B.17 [5] ⬍§§B.2, B.3⬎ Show a truth table for a multiplexor (inputs A, B, and S; output C), using don’t cares to simplify the table where possible.

B-82

Appendix B The Basics of Logic Design

B.18 [5] ⬍§B.3⬎ What is the function implemented by the following Verilog

modules:

module FUNC1 (I0, I1, S, out);

input I0, I1;

input

S;

output

out;

out = S? I1: I0;

endmodule

module FUNC2 (out,ctl,clk,reset);

output [7:0] out;

input ctl, clk, reset;

reg [7:0] out;

always @(posedge clk)

if (reset) begin

out <= 8’b0 ;

end

else if (ctl) begin

out <= out + 1;

end

else

begin

out <= out - 1;

end

endmodule

B.19 [5] ⬍§B.4⬎ Th

e Verilog code on page B-53 is for a D fl ip-fl op. Show the

Verilog code for a D latch.

B.20 [10] ⬍§§B.3, B.4⬎ Write down a Verilog module implementation of a 2-to-4

decoder (and/or encoder).

B.21 [10] ⬍§§B.3, B.4⬎ Given the following logic diagram for an accumulator,

write down the Verilog module implementation of it. Assume a positive edge-

triggered register and asynchronous Rst.

B.14 Exercises

B-83

In

⫹

Adder

16

16

Load

Out

Clk

Rst

Register

Load

B.22 [20] ⬍§§B3, B.4, B.5⬎ Section 3.3 presents basic operation and possible

implementations of multipliers. A basic unit of such implementations is a shift -

and-add unit. Show a Verilog implementation for this unit. Show how can you use

this unit to build a 32-bit multiplier.

B.23 [20] ⬍§§B3, B.4, B.5⬎ Repeat Exercise B.22, but for an unsigned divider

rather than a multiplier.

B.24 [15] ⬍§B.5⬎ Th

e ALU supported set on less than (slt) using just the sign

bit of the adder. Let’s try a set on less than operation using the values ⫺7 and 6 .

ten

ten

To make it simpler to follow the example, let’s limit the binary representations to 4

bits: 1001 and 0110 .

two

two

1001

– 0110

= 1001

+ 1010

= 0011

two

two

two

two

two

Th

is result would suggest that ⫺7 ⬎ 6, which is clearly wrong. Hence, we must

factor in overfl ow in the decision. Modify the 1-bit ALU in Figure B.5.10 on page B-33 to handle slt correctly. Make your changes on a photocopy of this fi gure to

save time.

B.25 [20] ⬍§B.6⬎ A simple check for overfl ow during addition is to see if the

CarryIn to the most signifi cant bit is not the same as the CarryOut of the most

signifi cant bit. Prove that this check is the same as in Figure 3.2.

B.26 [5] ⬍§B.6⬎ Rewrite the equations on page B-44 for a carry-lookahead logic

for a 16-bit adder using a new notation. First, use the names for the CarryIn signals

of the individual bits of the adder. Th

at is, use c4, c8, c12, … instead of C1, C2,

C3, …. In addition, let P i, j; mean a propagate signal for bits i to j, and G i, j; mean a generate signal for bits i to j. For example, the equation

C2

G1

P

(1 G0)

P

(1 P0 c0)

B-84

Appendix B The Basics of Logic Design

can be rewritten as

c8

G

P

(

G

)

P

(

P

c0)

7,4

7,4

3,0

7,4

3,0

Th

is more general notation is useful in creating wider adders.

B.27 [15] ⬍§B.6⬎ Write the equations for the carry-lookahead logic for a 64-

bit adder using the new notation from Exercise B.26 and using 16-bit adders as

building blocks. Include a drawing similar to Figure B.6.3 in your solution.

B.28 [10] ⬍§B.6⬎ Now calculate the relative performance of adders. Assume that

hardware corresponding to any equation containing only OR or AND terms, such

as the equations for p i and g i on page B-40, takes one time unit T. Equations that consist of the OR of several AND terms, such as the equations for c1, c2, c3, and

c4 on page B-40, would thus take two time units, 2T. Th

e reason is it would take T

to produce the AND terms and then an additional T to produce the result of the

OR. Calculate the numbers and performance ratio for 4-bit adders for both ripple

carry and carry lookahead. If the terms in equations are further defi ned by other

equations, then add the appropriate delays for those intermediate equations, and

continue recursively until the actual input bits of the adder are used in an equation.

Include a drawing of each adder labeled with the calculated delays and the path of

the worst-case delay highlighted.

B.29 [15] ⬍§B.6⬎ Th

is exercise is similar to Exercise B.28, but this time calculate

the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit

groups that use carry lookahead, and the carry-lookahead scheme on page B-39.

B.30 [15] ⬍§B.6⬎ Th

is exercise is similar to Exercises B.28 and B.29, but this

time calculate the relative speeds of a 64-bit adder using ripple carry only, ripple

carry of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use

carry lookahead, and the carry-lookahead scheme from Exercise B.27.

B.31 [10] ⬍§B.6⬎ Instead of thinking of an adder as a device that adds two

numbers and then links the carries together, we can think of the adder as a hardware

device that can add three inputs together (a i, b i, c i) and produce two outputs (s, ci ⫹ 1). When adding two numbers together, there is little we can do with this

observation. When we are adding more than two operands, it is possible to reduce

the cost of the carry. Th

e idea is to form two independent sums, called S⬘ (sum bits)

and C⬘ (carry bits). At the end of the process, we need to add C⬘ and S⬘ together

using a normal adder. Th

is technique of delaying carry propagation until the end

of a sum of numbers is called carry save addition. Th

e block drawing on the lower

right of Figure B.14.1 (see below) shows the organization, with two levels of carry save adders connected by a single normal adder.

Calculate the delays to add four 16-bit numbers using full carry-lookahead adders

versus carry save with a carry-lookahead adder forming the fi nal sum. (Th

e time

unit T in Exercise B.28 is the same.)

B.14 Exercises

B-85

a3 b3

a2 b2

a1 b1

a0 b0

A

B

E

F

⫹

⫹

⫹

⫹

Traditional adder

e3

e2

e1

e0

⫹

⫹

⫹

⫹

Traditional adder

f3

f2

f1

f0

Traditional adder

⫹

⫹

⫹

⫹

⫹

S

s5

s4

s3

s2

s1

s0

b3 e3 f3 b2 e2 f2 b1 e1 f1 b0 e0 f0

A

B

E

F

⫹

⫹

⫹

⫹

Carry save adder

a3

a2

a1

a0

Carry save adder

⫹

⫹

⫹

⫹

C'

S'

s'4 c'3

s'3 c'2

s'2 c'1

s'1 c'0

s'0

Traditional adder

⫹

⫹

⫹

⫹

S

s5

s4

s3

s2

s1

s0

FIGURE B.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. Th e

details are shown on the left , with the individual signals in lowercase, and the corresponding higher-level blocks are on the right, with collective signals in upper case. Note that the sum of four n-bit numbers can take n + 2 bits.

B.32 [20] ⬍§B.6⬎ Perhaps the most likely case of adding many numbers at once

in a computer would be when trying to multiply more quickly by using many

adders to add many numbers in a single clock cycle. Compared to the multiply

algorithm in Chapter 3, a carry save scheme with many adders could multiply more

than 10 times faster. Th

is exercise estimates the cost and speed of a combinational

multiplier to multiply two positive 16-bit numbers. Assume that you have 16

intermediate terms M15, M14, …, M0, called partial products, that contain the

multiplicand ANDed with multiplier bits m15, m14, …, m0. Th

e idea is to use

carry save adders to reduce the n operands into 2 n/3 in parallel groups of three, and do this repeatedly until you get two large numbers to add together with a

traditional adder.

B-86

Appendix B The Basics of Logic Design

First, show the block organization of the 16-bit carry save adders to add these 16

terms, as shown on the right in Figure B.14.1. Th

en calculate the delays to add these

16 numbers. Compare this time to the iterative multiplication scheme in Chapter

3 but only assume 16 iterations using a 16-bit adder that has full carry lookahead

whose speed was calculated in Exercise B.29.

B.33 [10] ⬍§B.6⬎ Th

ere are times when we want to add a collection of numbers

together. Suppose you wanted to add four 4-bit numbers (A, B, E, F) using 1-bit

full adders. Let’s ignore carry lookahead for now. You would likely connect the

1-bit adders in the organization at the top of Figure B.14.1. Below the traditional organization is a novel organization of full adders. Try adding four numbers using

both organizations to convince yourself that you get the same answer.

B.34 [5] ⬍§B.6⬎ First, show the block organization of the 16-bit carry save

adders to add these 16 terms, as shown in Figure B.14.1. Assume that the time delay through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to

the organization at the top versus the organization at the bottom of Figure B.14.1.

B.35 [5] ⬍§B.8⬎ Quite oft en, you would expect that given a timing diagram

containing a description of changes that take place on a data input D and a clock

input C (as in Figures B.8.3 and B.8.6 on pages B-52 and B-54, respectively), there would be diff erences between the output waveforms (Q) for a D latch and a D fl ip-fl op. In a sentence or two, describe the circumstances (e.g., the nature of the inputs)

for which there would not be any diff erence between the two output waveforms.

B.36 [5] ⬍§B.8⬎ Figure B.8.8 on page B-55 illustrates the implementation of the register fi le for the MIPS datapath. Pretend that a new register fi le is to be built,

but that there are only two registers and only one read port, and that each register

has only 2 bits of data. Redraw Figure B.8.8 so that every wire in your diagram corresponds to only 1 bit of data (unlike the diagram in Figure B.8.8, in which some wires are 5 bits and some wires are 32 bits). Redraw the registers using D fl ip-fl ops. You do not need to show how to implement a D fl ip-fl op or a multiplexor.

B.37 [10] ⬍§B.10⬎ A friend would like you to build an “electronic eye” for use

as a fake security device. Th

e device consists of three lights lined up in a row,

controlled by the outputs Left , Middle, and Right, which, if asserted, indicate that

a light should be on. Only one light is on at a time, and the light “moves” from

left to right and then from right to left , thus scaring away thieves who believe that

the device is monitoring their activity. Draw the graphical representation for the

fi nite-state machine used to specify the electronic eye. Note that the rate of the eye’s

movement will be controlled by the clock speed (which should not be too great)

and that there are essentially no inputs.

B.38 [10] ⬍§B.10⬎ Assign state numbers to the states of the fi nite-state machine

you constructed for Exercise B.37 and write a set of logic equations for each of the

outputs, including the next-state bits.

B.14 Exercises

B-87

B.39 [15] ⬍§§B.2, B.8, B.10⬎ Construct a 3-bit counter using three D fl ip-

fl ops and a selection of gates. Th

e inputs should consist of a signal that resets the

counter to 0, called reset, and a signal to increment the counter, called inc. Th e

outputs should be the value of the counter. When the counter has value 7 and is

incremented, it should wrap around and become 0.

B.40 [20] ⬍§B.10⬎ A Gray code is a sequence of binary numbers with the property

that no more than 1 bit changes in going from one element of the sequence to

another. For example, here is a 3-bit binary Gray code: 000, 001, 011, 010, 110,

111, 101, and 100. Using three D fl ip-fl ops and a PLA, construct a 3-bit Gray code

counter that has two inputs: reset, which sets the counter to 000, and inc, which makes the counter go to the next value in the sequence. Note that the code is cyclic,

so that the value aft er 100 in the sequence is 000.

B.41 [25] ⬍§B.10⬎ We wish to add a yellow light to our traffi

c light example on

page B-68. We will do this by changing the clock to run at 0.25 Hz (a 4-second clock

cycle time), which is the duration of a yellow light. To prevent the green and red lights

from cycling too fast, we add a 30-second timer. Th

e timer has a single input, called

 TimerReset, which restarts the timer, and a single output, called TimerSignal, which indicates that the 30-second period has expired. Also, we must redefi ne the traffi

c

signals to include yellow. We do this by defi ning two out put signals for each light:

green and yellow. If the output NSgreen is asserted, the green light is on; if the output

NSyellow is asserted, the yellow light is on. If both signals are off , the red light is on. Do

 not assert both the green and yellow signals at the same time, since American drivers

will certainly be confused, even if European drivers understand what this means! Draw

the graphical representation for the fi nite-state machine for this improved controller.

Choose names for the states that are diff erent from the names of the outputs.

B.42 [15] ⬍§B.10⬎ Write down the next-state and output-function tables for the

traffi

c light controller described in Exercise B.41.

B.43 [15] ⬍§§B.2, B.10⬎ Assign state numbers to the states in the traf-fi c light

example of Exercise B.41 and use the tables of Exercise B.42 to write a set of logic

equations for each of the outputs, including the next-state outputs.

B.44 [15] ⬍§§B.3, B.10⬎ Implement the logic equations of Exercise B.43 as a

PLA.

§B.2, page B-8: No. If A ⫽ 1, C ⫽ 1, B ⫽ 0, the fi rst is true, but the second is false.

Answers to

§B.3, page B-20: C.

Check Yourself

§B.4, page B-22: Th

ey are all exactly the same.

§B.4, page B-26: A ⫽ 0, B ⫽ 1.

§B.5, page B-38: 2.

§B.6, page B-47: 1.

§B.8, page B-58: c.

§B.10, page B-72: b.

§B.11, page B-77: b.

C

A

P

P

E

N

D

I

X

Graphics and

Computing GPUs

 John Nickolls

 Imagination is more

Director of Architecture

 important than

NVIDIA

 knowledge.

 David Kirk

Chief Scientist

Albert Einstein

 On Science, 1930s

NVIDIA

C.1 Introduction

C-3

C.2

GPU System Architectures C-7

C.3 Programming

GPUs

C-12

C.4

Multithreaded Multiprocessor Architecture C-24

C.5

Parallel Memory System C-36

C.6 Floating-point

Arithmetic

C-41

C.7

Real Stuff: The NVIDIA GeForce 8800 C-45

C.8

Real Stuff: Mapping Applications to GPUs C-54

C.9

Fallacies and Pitfalls C-70

C.10 Concluding

Remarks

C-74

C.11

Historical Perspective and Further Reading C-75

 C.1 Introduction

Th

is appendix focuses on the GPU—the ubiquitous graphics processing unit graphics processing in every PC, laptop, desktop computer, and workstation. In its most basic form, unit (GPU) A processor the GPU generates 2D and 3D graphics, images, and video that enable window-optimized for 2D and 3D

based operating systems, graphical user interfaces, video games, visual imaging graphics, video, visual computing, and display.

applications, and video. Th

e modern GPU that we describe here is a highly parallel,

highly multithreaded multiprocessor optimized for visual computing. To provide visual computing real-time visual interaction with computed objects via graphics, images, and video,

A mix of graphics

the GPU has a unifi ed graphics and computing architecture that serves as both a processing and computing programmable graphics processor and a scalable parallel computing platform. PCs that lets you visually interact with computed

and game consoles combine a GPU with a CPU to form heterogeneous systems.

objects via graphics,

images, and video.

A Brief History of GPU Evolution

heterogeneous

Fift een years ago, there was no such thing as a GPU. Graphics on a PC were system A system performed by a video graphics array (VGA) controller. A VGA controller was combining diff erent simply a memory controller and display generator connected to some DRAM. In processor types. A PC is a the 1990s, semiconductor technology advanced suffi

ciently that more functions heterogeneous CPU–GPU

system.

could be added to the VGA controller. By 1997, VGA controllers were beginning

to incorporate some three-dimensional (3D) acceleration functions, including

C-4

Appendix C Graphics and Computing GPUs

hardware for triangle setup and rasterization (dicing triangles into individual

pixels) and texture mapping and shading (applying “decals” or patterns to pixels

and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail of

the traditional high-end workstation graphics pipeline and, therefore, deserved a

new name beyond VGA controller. Th

e term GPU was coined to denote that the

graphics device had become a processor.

Over time, GPUs became more programmable, as programmable processors

replaced fi xed function dedicated logic while maintaining the basic 3D graphics

pipeline organization. In addition, computations became more precise over time,

progressing from indexed arithmetic, to integer and fi xed point, to single precision

fl oating-point, and recently to double precision fl oating-point. GPUs have become

massively parallel programmable processors with hundreds of cores and thousands

of threads.

Recently, processor instructions and memory hardware were added to support

general purpose programming languages, and a programming environment was

created to allow GPUs to be programmed using familiar languages, including C

and C. Th

is innovation makes a GPU a fully general-purpose, programmable,

manycore processor, albeit still with some special benefi ts and limitations.

GPU Graphics Trends

GPUs and their associated drivers implement the OpenGL and DirectX

models of graphics processing. OpenGL is an open standard for 3D graphics

programming available for most computers. DirectX is a series of Microsoft

multimedia programming interfaces, including Direct3D for 3D graphics. Since

application

these application programming interfaces (APIs) have well-defi ned behavior,

programming interface

it is possible to build eff ective hardware acceleration of the graphics processing

(API) A set of function

functions defi ned by the APIs. Th

is is one of the reasons (in addition to increasing

and data structure

device density) why new GPUs are being developed every 12 to 18 months that

defi nitions providing an

double the performance of the previous generation on existing applications.

interface to a library of

Frequent doubling of GPU performance enables new applications that were

functions.

not previously possible. Th

e intersection of graphics processing and parallel

computing invites a new paradigm for graphics, known as visual computing. It

replaces large sections of the traditional sequential hardware graphics pipeline

model with programmable elements for geometry, vertex, and pixel programs.

Visual computing in a modern GPU combines graphics processing and parallel

computing in novel ways that permit new graphics algorithms to be implemented,

and opens the door to entirely new parallel processing applications on pervasive

high-performance GPUs.

Heterogeneous System

Although the GPU is arguably the most parallel and most powerful processor in

a typical PC, it is certainly not the only processor. Th

e CPU, now multicore and

C.1 Introduction

C-5

soon to be manycore, is a complementary, primarily serial processor companion

to the massively parallel manycore GPU. Together, these two types of processors

comprise a heterogeneous multiprocessor system.

Th

e best performance for many applications comes from using both the CPU

and the GPU. Th

is appendix will help you understand how and when to best split

the work between these two increasingly parallel processors.

GPU Evolves into Scalable Parallel Processor

GPUs have evolved functionally from hardwired, limited capability VGA controllers

to programmable parallel processors. Th

is evolution has proceeded by changing

the logical (API-based) graphics pipeline to incorporate programmable elements

and also by making the underlying hardware pipeline stages less specialized and

more programmable. Eventually, it made sense to merge disparate programmable

pipeline elements into one unifi ed array of many programmable processors.

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel

processing all run on the same type of processor. Th

is unifi cation allows for

dramatic scalability. More programmable processor cores increase the total system

throughput. Unifying the processors also delivers very eff ective load balancing,

since any processing function can use the whole processor array. At the other end

of the spectrum, a processor array can now be built with very few processors, since

all of the functions can be run on the same processors.

Why CUDA and GPU Computing?

Th

is uniform and scalable array of processors invites a new model of programming

for the GPU. Th

e large amount of fl oating-point processing power in the GPU

processor array is very attractive for solving nongraphics problems. Given the large GPU computing Using degree of parallelism and the range of scalability of the processor array for graphics

a GPU for computing via

applications, the programming model for more general computing must express a parallel programming the massive parallelism directly, but allow for scalable execution.

language and API.

GPU computing is the term coined for using the GPU for computing via a

parallel programming language and API, without using the traditional graphics

API and graphics pipeline model. Th

is is in contrast to the earlier General Purpose

GPGPU Using a GPU

computation on GPU (GPGPU) approach, which involves programming the GPU

for general-purpose

using a graphics API and graphics pipeline to perform nongraphics tasks.

computation via a

Compute Unifed Device Architecture (CUDA) is a scalable parallel programming

traditional graphics API

and graphics pipeline.

model and soft ware platform for the GPU and other parallel processors that allows

the programmer to bypass the graphics API and graphics interfaces of the GPU

and simply program in C or C. Th

e CUDA programming model has an SPMD CUDA A scalable

(single-program multiple data) soft ware style, in which a programmer writes a parallel programming program for one thread that is instanced and executed by many threads in parallel model and language based on C/C. It is a parallel

on the multiple processors of the GPU. In fact, CUDA also provides a facility for programming platform programming multiple CPU cores as well, so CUDA is an environment for writing for GPUs and multicore parallel programs for the entire heterogeneous computer system.

CPUs.

C-6

Appendix C Graphics and Computing GPUs

GPU Unifes Graphics and Computing

With the addition of CUDA and GPU computing to the capabilities of the GPU,

it is now possible to use the GPU as both a graphics processor and a computing

processor at the same time, and to combine these uses in visual computing

applications. Th

e underlying processor architecture of the GPU is exposed in two

ways: fi rst, as implementing the programmable graphics APIs, and second, as a

massively parallel processor array programmable in C/C with CUDA.

Although the underlying processors of the GPU are unifi ed, it is not necessary

that all of the SPMD thread programs are the same. Th

e GPU can run graphics

shader programs for the graphics aspect of the GPU, processing geometry, vertices,

and pixels, and also run thread programs in CUDA.

Th

e GPU is truly a versatile multiprocessor architecture, supporting a variety of

processing tasks. GPUs are excellent at graphics and visual computing as they were

specifi cally designed for these applications. GPUs are also excellent at many general-

purpose throughput applications that are “fi rst cousins” of graphics, in that they

perform a lot of parallel work, as well as having a lot of regular problem structure.

In general, they are a good match to data-parallel problems (see Chapter 6),

particularly large problems, but less so for less regular, smaller problems.

GPU Visual Computing Applications

Visual computing includes the traditional types of graphics applications plus many

new applications. Th

e original purview of a GPU was “anything with pixels,” but it

now includes many problems without pixels but with regular computation and/or

data structure. GPUs are eff ective at 2D and 3D graphics, since that is the purpose

for which they are designed. Failure to deliver this application performance would

be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the

processing power of the GPU through the graphics APIs, OpenGL™, and DirectX™.

Games are built on the 3D graphics processing capability.

Beyond 2D and 3D graphics, image processing and video are important

applications for GPUs. Th

ese can be implemented using the graphics APIs or as

computational programs, using CUDA to program the GPU in computing mode.

Using CUDA, image processing is simply another data-parallel array program. To

the extent that the data access is regular and there is good locality, the program

will be effi

cient. In practice, image processing is a very good application for GPUs.

Video processing, especially encode and decode (compression and decompression

according to some standard algorithms), is quite effi

cient.

Th

e greatest opportunity for visual computing applications on GPUs is to “break

the graphics pipeline.” Early GPUs implemented only specifi c graphics APIs, albeit

at very high performance. Th

is was wonderful if the API supported the operations

that you wanted to do. If not, the GPU could not accelerate your task, because early

GPU functionality was immutable. Now, with the advent of GPU computing and

CUDA, these GPUs can be programmed to implement a diff erent virtual pipeline

by simply writing a CUDA program to describe the computation and data fl ow that

C.2 GPU System Architectures

C-7

is desired. So, all applications are now possible, which will stimulate new visual

computing approaches.

 C.2

GPU System Architectures

In this section, we survey GPU system architectures in common use today. We

discuss system confi gurations, GPU functions and services, standard programming

interfaces, and a basic GPU internal architecture.

Heterogeneous CPU–GPU System Architecture

A heterogeneous computer system architecture using a GPU and a CPU can be

described at a high level by two primary characteristics: fi rst, how many functional

subsystems and/or chips are used and what are their interconnection technologies

and topology; and second, what memory subsystems are available to these

functional subsystems. See Chapter 6 for background on the PC I/O systems and

chip sets.

The Historical PC (circa 1990)

Figure C.2.1 shows a high-level block diagram of a legacy PC, circa 1990. Th

e north

bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU,

memory, and PCI bus. Th

e south bridge contains legacy interfaces and devices:

ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In

this system, the display was driven by a simple framebuff er subsystem known

CPU

Front Side Bus

North

Memory

Bridge

PCI Bus

South

VGA

Framebuffer

Bridge

Controller

Memory

VGA

LAN

UART

Display

FIGURE C.2.1 Historical PC. VGA controller drives graphics display from framebuff er memory.

C-8

Appendix C Graphics and Computing GPUs

as a VGA (video graphics array) which was attached to the PCI bus. Graphics

subsystems with built-in processing elements (GPUs) did not exist in the PC

PCI-Express (PCIe)

landscape of 1990.

A standard system I/O

Figure C.2.2 illustrates two confgurations in common use today. Th

ese are

interconnect that uses

characterized by a separate GPU (discrete GPU) and CPU with respective memory

point-to-point links.

subsystems. In Figure C.2.2a, with an Intel CPU, we see the GPU attached via a

Links have a confi gurable

number of lanes and

16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate, (peak of 8

bandwidth.

GB/s in each direction). Similarly, in Figure C.2.2b, with an AMD CPU, the GPU

Intel

CPU

Front Side Bus

x16 PCI-Express Link

North

DDR2

GPU

Bridge

Memory

display

x4 PCI-Express Link

128-bit

derivative

667 MT/s

GPU

South

Memory

Bridge

(a)

AMD

CPU

CPU

core

128-bit

internal bus

667 MT/s

North

DDR2

Memory

Bridge

x16 PCI-Express Link

HyperTransport 1.03

GPU

Chipset

display

GPU

Memory

(b)

FIGURE C.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of the components and interconnects in this fi gure.

C.2 GPU System Architectures

C-9

is attached to the chipset, also via PCI-Express with the same available bandwidth.

In both cases, the GPUs and CPUs may access each other’s memory, albeit with less

available bandwidth than their access to the more directly attached memories. In

the case of the AMD system, the north bridge or memory controller is integrated

into the same die as the CPU.

A low-cost variation on these systems, a unifi ed memory architecture unifi ed memory

(UMA) system, uses only CPU system memory, omitting GPU memory from architecture (UMA) the system. Th

ese systems have relatively low performance GPUs, since their A system architecture in

achieved performance is limited by the available system memory bandwidth and which the CPU and GPU

share a common system

increased latency of memory access, whereas dedicated GPU memory provides memory.

high bandwidth and low latency.

A high performance system variation uses multiple attached GPUs, typically

two to four working in parallel, with their displays daisy-chained. An example is

the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for high

performance gaming and workstations.

Th

e next system category integrates the GPU with the north bridge (Intel) or

chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space.

With CPUs and GPUs, there are multiple address spaces. GPUs can access their

own physical local memory and the CPU system’s physical memory using virtual

addresses that are translated by an MMU on the GPU. Th

e operating system kernel

manages the GPU’s page tables. A system physical page can be accessed using either

coherent or noncoherent PCI-Express transactions, determined by an attribute in

the GPU’s page table. Th

e CPU can access GPU’s local memory through an address

range (also called aperture) in the PCI-Express address space.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360

resemble the PC system architectures previously described. Console systems are

designed to be shipped with identical performance and functionality over a lifespan

that can last fi ve years or more. During this time, a system may be reimplemented

many times to exploit more advanced silicon manufacturing processes and thereby

to provide constant capability at ever lower costs. Console systems do not need

to have their subsystems expanded and upgraded the way PC systems do, so the

major internal system buses tend to be customized rather than standardized.

AGP An extended

version of the original PCI

I/O bus, which provided

GPU Interfaces and Drivers

up to eight times the

In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations bandwidth of the original PCI bus to a single card

used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D

slot. Its primary purpose

[Microsoft DirectX Specifcation] API functions that use the GPU as a coprocessor. was to connect graphics Th

e APIs send commands, programs, and data to the GPU via a graphics device subsystems into PC

driver optimized for the particular GPU.

systems.

C-10

Appendix C Graphics and Computing GPUs

Graphics Logical Pipeline

Th

e graphics logical pipeline is described in Section C.3. Figure C.2.3 illustrates

the major processing stages, and highlights the important programmable stages

(vertex, geometry, and pixel shader stages).

Input

Vertex

Geometry

Setup &

Pixel

Raster Operations/

Assembler

Shader

Shader

Rasterizer

Shader

Output Merger

FIGURE C.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fi xed-function blocks are white.

Mapping Graphics Pipeline to Unifi ed GPU Processors

Figure C.2.4 shows how the logical pipeline comprising separate independent

programmable stages is mapped onto a physical distributed array of processors.

Basic Unifed GPU Architecture

Unifi ed GPU architectures are based on a parallel array of many programmable

processors. Th

ey unify vertex, geometry, and pixel shader processing and parallel

computing on the same processors, unlike earlier GPUs which had separate

processors dedicated to each processing type. Th

e programmable processor array is

tightly integrated with fi xed function processors for texture fi ltering, rasterization,

raster operations, anti-aliasing, compression, decompression, display, video

decoding, and high-defi nition video processing. Although the fi xed-function

processors signifi cantly outperform more general programmable processors in

terms of absolute performance constrained by an area, cost, or power budget, we

will focus on the programmable processors here.

Compared with multicore CPUs, manycore GPUs have a diff erent architectural

design point, one focused on executing many parallel threads effi

ciently on many

Input

Vertex

Assembler

Shader

Geometry

Shader

Setup &

Pixel

Raster Operations/

Rasterizer

Shader

Output Merger

Unified Processor

Array

FIGURE C.2.4 Logical pipeline mapped to physical processors. Th

e programmable shader

stages execute on the array of unifi ed processors, and the logical graphics pipeline datafl ow recirculates through the processors.

C.2 GPU System Architectures

C-11

processor cores. By using many simpler cores and optimizing for data-parallel

behavior among groups of threads, more of the per-chip transistor budget is

devoted to computation, and less to on-chip caches and overhead.

Processor Array

A unifi ed GPU processor array contains many processor cores, typically organized

into multithreaded multiprocessors. Figure C.2.5 shows a GPU with an array

of 112 streaming processor (SP) cores, organized as 14 multithreaded streaming

 multiprocessors (SMs). Each SP core is highly multithreaded, managing 96

concurrent threads and their state in hardware. Th

e processors connect with

four 64-bit-wide DRAM partitions via an interconnection network. Each SM

has eight SP cores, two special function units (SFUs), instruction and constant

caches, a multithreaded instruction unit, and a shared memory. Th

is is the basic

Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unifi ed

architecture in which the traditional graphics programs for vertex, geometry, and

pixel shading run on the unifi ed SMs and their SP cores, and computing programs

run on the same processors.

Host CPU

Bridge

System Memory

GPU

Host Interface

Viewport/Clip/

SM

High-Definition

Setup/Raster/

Input Assembler

Video Processors

ZCull

I-Cache

Vertex Work

Pixel Work

Compute Work

MT Issue

Distribution

Distribution

Distribution

C-Cache

TPC

TPC

TPC

TPC

TPC

TPC

TPC

SP

SP

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SP

SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP

SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP

SP

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

SFU SFU

Interconnection Network

Shared

Memory

ROP

L2

ROP

L2

ROP

L2

ROP

L2

Display Interface

DRAM

DRAM

DRAM

DRAM

Display

FIGURE C.2.5 Basic unifi ed GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. Th e processors

connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory.

C-12

Appendix C Graphics and Computing GPUs

Th

e processor array architecture is scalable to smaller and larger GPU

confi gurations by scaling the number of multiprocessors and the number of

memory partitions. Figure C.2.5 shows seven clusters of two SMs sharing a texture

unit and a texture L1 cache. Th

e texture unit delivers fi ltered results to the SM

given a set of coordinates into a texture map. Because fi lter regions of support

oft en overlap for successive texture requests, a small streaming L1 texture cache is

eff ective to reduce the number of requests to the memory system. Th

e processor

array connects with raster operation processors (ROPs), L2 texture caches, external DRAM memories, and system memory via a GPU-wide interconnection network.

Th

e number of processors and number of memories can scale to design balanced

GPU systems for diff erent performance and market segments.

 C.3 Programming

GPUs

Programming multiprocessor GPUs is qualitatively diff erent than programming

other multiprocessors like multicore CPUs. GPUs provide two to three orders of

magnitude more thread and data parallelism than CPUs, scaling to hundreds of

processor cores and tens of thousands of concurrent threads. GPUs continue

to increase their parallelism, doubling it about every 12 to 18 months, enabled

by Moore’s law [1965] of increasing integrated circuit density and by improving

architectural effi

ciency. To span the wide price and performance range of diff erent

market segments, diff erent GPU products implement widely varying numbers of

processors and threads. Yet users expect games, graphics, imaging, and computing

applications to work on any GPU, regardless of how many parallel threads it

executes or how many parallel processor cores it has, and they expect more

expensive GPUs (with more threads and cores) to run applications faster. As a

result, GPU programming models and application programs are designed to scale

transparently to a wide range of parallelism.

Th

e driving force behind the large number of parallel threads and cores in a

GPU is real-time graphics performance—the need to render complex 3D scenes

with high resolution at interactive frame rates, at least 60 frames per second.

Correspondingly, the scalable programming models of graphics shading languages

such as Cg (C for graphics) and HLSL (high-level shading language) are designed

to exploit large degrees of parallelism via many independent parallel threads and to

scale to any number of processor cores. Th

e CUDA scalable parallel programming

model similarly enables general parallel computing applications to leverage large

numbers of parallel threads and scale to any number of parallel processor cores,

transparently to the application.

In these scalable programming models, the programmer writes code for a single

thread, and the GPU runs myriad thread instances in parallel. Programs thus scale

transparently over a wide range of hardware parallelism. Th

is simple paradigm

arose from graphics APIs and shading languages that describe how to shade one

 C.3

Programming

GPUs

C-13

vertex or one pixel. It has remained an eff ective paradigm as GPUs have rapidly

increased their parallelism and performance since the late 1990s.

Th

is section briefl y describes programming GPUs for real-time graphics

applications using graphics APIs and programming languages. It then describes

programming GPUs for visual computing and general parallel computing

applications using the C language and the CUDA programming model.

Programming Real-Time Graphics

APIs have played an important role in the rapid, successful development of GPUs

and processors. Th

ere are two primary standard graphics APIs: OpenGL and OpenGL An open-

Direct3D, one of the Microsoft DirectX multimedia programming interfaces. standard graphics API.

OpenGL, an open standard, was originally proposed and defi ned by Silicon Direct3D A graphics Graphics Incorporated. Th

e ongoing development and extension of the OpenGL API defi ned by Microsoft

standard [Segal and Akeley, 2006], [Kessenich, 2006] is managed by Khronos, and partners.

an industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defi ned

and evolved forward by Microsoft and partners. OpenGL and Direct3D are

similarly structured, and continue to evolve rapidly with GPU hardware advances.

Th

ey defi ne a logical graphics processing pipeline that is mapped onto the GPU

hardware and processors, along with programming models and languages for the

programmable pipeline stages.

Logical Graphics Pipeline

Figure C.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a

similar graphics pipeline structure. Th

e API and logical pipeline provide a streaming

datafl ow infrastructure and plumbing for the programmable shader stages, shown in

blue. Th

e 3D application sends the GPU a sequence of vertices grouped into geometric

primitives—points, lines, triangles, and polygons. Th

e input assembler collects

vertices and primitives. Th

e vertex shader program executes per-vertex processing,

Input

Vertex

Geometry

Setup &

Pixel

Raster Operations/

Assembler

Shader

Shader

Rasterizer

Shader

Output Merger

Sampler

Sampler

Stream

Sampler

Out

GPU

Vertex

Texture

Texture

Stream

Texture

Depth

Render

Buffer

Buffer

Z-Buffer

Target

Index Buffer

Constant

Constant

Constant

Stencil

Memory

FIGURE C.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor. Programmable shader stages are blue, fi xed-function blocks are white, and memory objects are gray. Each stage processes a vertex, geometric primitive, or pixel in a streaming datafl ow fashion.

C-14

Appendix C Graphics and Computing GPUs

including transforming the vertex 3D position into a screen position and lighting the

vertex to determine its color. Th

e geometry shader program executes per-primitive

processing and can add or drop primitives. Th

e setup and rasterizer unit generates

pixel fragments (fragments are potential contributions to pixels) that are covered by

a geometric primitive. Th

e pixel shader program performs per-fragment processing,

including interpolating per-fragment parameters, texturing, and coloring. Pixel

shaders make extensive use of sampled and fi ltered lookups into large 1D, 2D, or

texture A 1D, 2D, or

3D arrays called textures, using interpolated fl oating-point coordinates. Shaders use

3D array that supports

texture accesses for maps, functions, decals, images, and data. Th

e raster operations

sampled and fi ltered

processing (or output merger) stage performs Z-buff er depth testing and stencil

lookups with interpolated

testing, which may discard a hidden pixel fragment or replace the pixel’s depth with

coordinates.

the fragment’s depth, and performs a color blending operation that combines the

fragment color with the pixel color and writes the pixel with the blended color.

Th

e graphics API and graphics pipeline provide input, output, memory objects,

and infrastructure for the shader programs that process each vertex, primitive, and

pixel fragment.

Graphics Shader Programs

shader A program that

Real-time graphics applications use many diff erent shader programs to model

operates on graphics data

how light interacts with diff erent materials and to render complex lighting and

such as a vertex or a pixel

shadows. Shading languages are based on a datafl ow or streaming programming

fragment.

model that corresponds with the logical graphics pipeline. Vertex shader programs

map the position of triangle vertices onto the screen, altering their position, color,

shading language

or orientation. Typically a vertex shader thread inputs a fl oating-point (x, y, z, w)

A graphics rendering

vertex position and computes a fl oating-point (x, y, z) screen position. Geometry

language, usually having

shader programs operate on geometric primitives (such as lines and triangles)

a datafl ow or streaming

defi ned by multiple vertices, changing them or generating additional primitives.

programming model.

Pixel fragment shaders each “shade” one pixel, computing a fl oating-point red,

green, blue, alpha (RGBA) color contribution to the rendered image at its pixel

sample (x, y) image position. Shaders (and GPUs) use fl oating-point arithmetic

for all pixel color calculations to eliminate visible artifacts while computing the

extreme range of pixel contribution values encountered while rendering scenes with

complex lighting, shadows, and high dynamic range. For all three types of graphics

shaders, many program instances can be run in parallel, as independent parallel

threads, because each works on independent data, produces independent results,

and has no side eff ects. Independent vertices, primitives, and pixels further enable

the same graphics program to run on diff erently sized GPUs that process diff erent

numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale

transparently to GPUs with diff erent amounts of parallelism and performance.

Users program all three logical graphics threads with a common targeted high-

level language. HLSL (high-level shading language) and Cg (C for graphics) are

commonly used. Th

ey have C-like syntax and a rich set of library functions for

matrix operations, trigonometry, interpolation, and texture access and fi ltering,

but are far from general computing languages: they currently lack general memory

 C.3

Programming

GPUs

C-15

access, pointers, fi le I/O, and recursion. HLSL and Cg assume that programs live

within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel

fragment shader may expect the geometric normal and multiple texture coordinates

to have been interpolated from vertex values by upstream fi xed-function stages and

can simply assign a value to the COLOR output parameter to pass it downstream to

be blended with a pixel at an implied (x, y) position.

Th

e GPU hardware creates a new independent thread to execute a vertex,

geometry, or pixel shader program for every vertex, every primitive, and every

pixel fragment. In video games, the bulk of threads execute pixel shader programs,

as there are typically 10 to 20 times or more pixel fragments than vertices, and

complex lighting and shadows require even larger ratios of pixel to vertex shader

threads. Th

e graphics shader programming model drove the GPU architecture to

effi

ciently execute thousands of independent fi ne-grained threads on many parallel

processor cores.

Pixel Shader Example

Consider the following Cg pixel shader program that implements the “environment

mapping” rendering technique. For each pixel thread, this shader is passed fi ve

parameters, including 2D fl oating-point texture image coordinates needed to

sample the surface color, and a 3D fl oating-point vector giving the refection of

the view direction off the surface. Th

e other three “uniform” parameters do not

vary from one pixel instance (thread) to the next. Th

e shader looks up color in

two texture images: a 2D texture access for the surface color, and a 3D texture

access into a cube map (six images corresponding to the faces of a cube) to obtain

the external world color corresponding to the refection direction. Th

en the fi nal

four-component (red, green, blue, alpha) fl oating-point color is computed using a

weighted average called a “lerp” or linear interpolation function.

void refection(

float2

texCoord

:

TEXCOORD0,

float3

refection_dir :

TEXCOORD1,

out float4

color

: COLOR,

uniform

float

shiny,

uniform

sampler2D

surfaceMap,

uniform

samplerCUBE envMap)

{

// Fetch the surface color from a texture

float4 surfaceColor = tex2D(surfaceMap, texCoord);

// Fetch reflected color by sampling a cube map

float4 reflectedColor = texCUBE(environmentMap, refection_dir);

// Output is weighted average of the two colors

color = lerp(surfaceColor, refectedColor, shiny);

}

C-16

Appendix C Graphics and Computing GPUs

Although this shader program is only three lines long, it activates a lot of GPU

hardware. For each texture fetch, the GPU texture subsystem makes multiple

memory accesses to sample image colors in the vicinity of the sampling coordinates,

and then interpolates the fi nal result with fl oating-point fi ltering arithmetic. Th

e

multithreaded GPU executes thousands of these lightweight Cg pixel shader threads

in parallel, deeply interleaving them to hide texture fetch and memory latency.

Cg focuses the programmer’s view to a single vertex or primitive or pixel,

which the GPU implements as a single thread; the shader program transparently

scales to exploit thread parallelism on the available processors. Being application-

specifi c, Cg provides a rich set of useful data types, library functions, and language

constructs to express diverse rendering techniques.

Figure C.3.2 shows skin rendered by a fragment pixel shader. Real skin appears

quite diff erent from fl esh-color paint because light bounces around a lot before

re-emerging. In this complex shader, three separate skin layers, each with unique

subsurface scattering behavior, are modeled to give the skin a visual depth and

translucency. Scattering can be modeled by a blurring convolution in a fattened

“texture” space, with red being blurred more than green, and blue blurred less. Th

e

FIGURE C.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400

instructions to render the red, green, blue, and alpha color components of each skin pixel fragment.

 C.3

Programming

GPUs

C-17

compiled Cg shader executes 1400 instructions to compute the color of one skin

pixel.

As GPUs have evolved superior fl oating-point performance and very high

streaming memory bandwidth for real-time graphics, they have attracted highly

parallel applications beyond traditional graphics. At fi rst, access to this power

was available only by couching an application as a graphics-rendering algorithm,

but this GPGPU approach was oft en awkward and limiting. More recently, the

CUDA programming model has provided a far easier way to exploit the scalable

high-performance fl oating-point and memory bandwidth of GPUs with the C

programming language.

Programming Parallel Computing Applications

CUDA, Brook, and CAL are programming interfaces for GPUs that are focused

on data parallel computation rather than on graphics. CAL (Compute Abstraction

Layer) is a low-level assembler language interface for AMD GPUs. Brook is a

streaming language adapted for GPUs by Buck et al. [2004]. CUDA, developed

by NVIDIA [2007], is an extension to the C and C languages for scalable

parallel programming of manycore GPUs and multicore CPUs. Th

e CUDA

programming model is described below, adapted from an article by Nickolls et al.

[2008].

With the new model the GPU excels in data parallel and throughput computing,

executing high performance computing applications as well as graphics applications.

Data Parallel Problem Decomposition

To map large computing problems eff ectively to a highly parallel processing

architecture, the programmer or compiler decomposes the problem into many

small problems that can be solved in parallel. For example, the programmer

partitions a large result data array into blocks and further partitions each block into

elements, such that the result blocks can be computed independently in parallel,

and the elements within each block are computed in parallel. Figure C.3.3 shows

a decomposition of a result data array into a 3 2 grid of blocks, where each

block is further decomposed into a 5 3 array of elements. Th

e two-level parallel

decomposition maps naturally to the GPU architecture: parallel multiprocessors

compute result blocks, and parallel threads compute result elements.

Th

e programmer writes a program that computes a sequence of result data

grids, partitioning each result grid into coarse-grained result blocks that can be

computed independently in parallel. Th

e program computes each result block with

an array of fi ne-grained parallel threads, partitioning the work among threads so

that each computes one or more result elements.

Scalable Parallel Programming with CUDA

Th

e CUDA scalable parallel programming model extends the C and C

languages to exploit large degrees of parallelism for general applications on highly

parallel multiprocessors, particularly GPUs. Early experience with CUDA shows

C-18

Appendix C Graphics and Computing GPUs

 Sequence

 Step 1:

Result Data Grid 1

Block

Block

Block

(0, 0)

(1, 0)

(2, 0)

Block

Block

Block

(0, 1)

(1, 1)

(2, 1)

 Step 2:

Result Data Grid 2

Block (1, 1)

Elem Elem Elem Elem Elem

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

Elem Elem Elem Elem Elem

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

Elem Elem Elem Elem Elem

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

FIGURE C.3.3 Decomposing result data into a grid of blocks of elements to be computed

in parallel.

that many sophisticated programs can be readily expressed with a few easily

understood abstractions. Since NVIDIA released CUDA in 2007, developers have

rapidly developed scalable parallel programs for a wide range of applications,

including seismic data processing, computational chemistry, linear algebra, sparse

matrix solvers, sorting, searching, physics models, and visual computing. Th

ese

applications scale transparently to hundreds of processor cores and thousands of

concurrent threads. NVIDIA GPUs with the Tesla unifi ed graphics and computing

architecture (described in Sections C.4 and C.7) run CUDA C programs, and are

widely available in laptops, PCs, workstations, and servers. Th

e CUDA model is

also applicable to other shared memory parallel processing architectures, including

multicore CPUs.

CUDA provides three key abstractions—a hierarchy of thread groups, shared

 memories, and barrier synchronization—that provide a clear parallel structure to

conventional C code for one thread of the hierarchy. Multiple levels of threads,

memory, and synchronization provide fi ne-grained data parallelism and thread

parallelism, nested within coarse-grained data parallelism and task parallelism. Th

e

abstractions guide the programmer to partition the problem into coarse subproblems

that can be solved independently in parallel, and then into fi ner pieces that can be

solved in parallel. Th

e programming model scales transparently to large numbers of

processor cores: a compiled CUDA program executes on any number of processors,

and only the runtime system needs to know the physical processor count.

 C.3

Programming

GPUs

C-19

The CUDA Paradigm

CUDA is a minimal extension of the C and C programming languages. Th

e

programmer writes a serial program that calls parallel kernels, which may be simple

kernel A program or

functions or full programs. A kernel executes in parallel across a set of parallel function for one thread, threads. Th

e programmer organizes these threads into a hierarchy of thread blocks designed to be executed

and grids of thread blocks. A thread block is a set of concurrent threads that can by many threads.

cooperate among themselves through barrier synchronization and through shared

access to a memory space private to the block. A grid is a set of thread blocks that thread block A set may each be executed independently and thus may execute in parallel.

of concurrent threads

When invoking a kernel, the programmer specifi es the number of threads per that execute the same thread program and may

block and the number of blocks comprising the grid. Each thread is given a unique cooperate to compute a thread ID number threadIdx within its thread block, numbered 0, 1, 2, ..., result.

blockDim-1, and each thread block is given a unique block ID number blockIdx

within its grid. CUDA supports thread blocks containing up to 512 threads. For grid A set of thread convenience, thread blocks and grids may have 1, 2, or 3 dimensions, accessed via blocks that execute the

.x, .y, and .z index fi elds.

same kernel program.

As a very simple example of parallel programming, suppose that we are given

two vectors x and y of n fl oating-point numbers each and that we wish to compute the result of y ax y for some scalar value a. Th

is is the so-called SAXPY kernel

defi ned by the BLAS linear algebra library. Figure C.3.4 shows C code for performing

this computation on both a serial processor and in parallel using CUDA.

Th

e __global__ declaration specifi er indicates that the procedure is a kernel

entry point. CUDA programs launch parallel kernels with the extended function

call syntax:

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

where dimGrid and dimBlock are three-element vectors of type dim3 that specify

the dimensions of the grid in blocks and the dimensions of the blocks in threads,

respectively. Unspecifi ed dimensions default to one.

In Figure C.3.4, we launch a grid of n threads that assigns one thread to each

element of the vectors and puts 256 threads in each block. Each individual thread

computes an element index from its thread and block IDs and then performs the

desired calculation on the corresponding vector elements. Comparing the serial and

parallel versions of this code, we see that they are strikingly similar. Th

is represents

a fairly common pattern. Th

e serial code consists of a loop where each iteration is

independent of all the others. Such loops can be mechanically transformed into

parallel kernels: each loop iteration becomes an independent thread. By assigning

a single thread to each output element, we avoid the need for any synchronization

among threads when writing results to memory.

Th

e text of a CUDA kernel is simply a C function for one sequential thread.

Th

us, it is generally straightforward to write and is typically simpler than writing

parallel code for vector operations. Parallelism is determined clearly and explicitly

by specifying the dimensions of a grid and its thread blocks when launching a

kernel.

C-20

Appendix C Graphics and Computing GPUs

 Computing y = ax + y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)

{

for(int i = 0; i<n; ++i)

y[i] = alpha*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

 Computing y = ax + y in parallel using CUDA:

__global__

void saxpy_parallel(int n, float alpha, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if(i<n) y[i] = alpha*x[i] + y[i];

}

// Invoke parallel SAXPY kernel (256 threads per block)

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIGURE C.3.4 Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY

(see Chapter 6). CUDA parallel threads replace the C serial loop—each thread computes the same result as one loop iteration. Th

e parallel code computes n results with n threads organized in blocks of 256 threads.

Parallel execution and thread management is automatic. All thread creation,

scheduling, and termination is handled for the programmer by the underlying

system. Indeed, a Tesla architecture GPU performs all thread management directly

in hardware. Th

e threads of a block execute concurrently and may synchronize

synchronization

at a synchronization barrier by calling the __syncthreads() intrinsic. Th

is

barrier Th

reads wait at

guarantees that no thread in the block can proceed until all threads in the block

a synchronization barrier

have reached the barrier. Aft er passing the barrier, these threads are also guaranteed

until all threads in the

to see all writes to memory performed by threads in the block before the barrier.

thread block arrive at the

Th

us, threads in a block may communicate with each other by writing and reading

barrier.

per-block shared memory at a synchronization barrier.

Since threads in a block may share memory and synchronize via barriers, they

will reside together on the same physical processor or multiprocessor. Th

e number

of thread blocks can, however, greatly exceed the number of processors. Th

e CUDA

thread programming model virtualizes the processors and gives the programmer the

fl exibility to parallelize at whatever granularity is most convenient. Virtualization

 C.3

Programming

GPUs

C-21

into threads and thread blocks allows intuitive problem decompositions, as the

number of blocks can be dictated by the size of the data being processed rather than

by the number of processors in the system. It also allows the same CUDA program

to scale to widely varying numbers of processor cores.

To manage this processing element virtualization and provide scalability, CUDA

requires that thread blocks be able to execute independently. It must be possible to

execute blocks in any order, in parallel or in series. Diff erent blocks have no means of

direct communication, although they may coordinate their activities using atomic atomic memory memory operations on the global memory visible to all threads—by atomically operation A memory incrementing queue pointers, for example. Th

is independence requirement allows read, modify, write

thread blocks to be scheduled in any order across any number of cores, making operation sequence that the CUDA model scalable across an arbitrary number of cores as well as across a completes without any intervening access.

variety of parallel architectures. It also helps to avoid the possibility of deadlock.

An application may execute multiple grids either independently or dependently.

Independent grids may execute concurrently, given suffi

cient hardware resources.

Dependent grids execute sequentially, with an implicit interkernel barrier between

them, thus guaranteeing that all blocks of the fi rst grid complete before any block

of the second, dependent grid begins.

Th

reads may access data from multiple memory spaces during their execution.

Each thread has a private local memory. CUDA uses local memory for thread-

local memory Per-

private variables that do not fi t in the thread’s registers, as well as for stack frames thread local memory and register spilling. Each thread block has a shared memory, visible to all threads private to the thread.

of the block, which has the same lifetime as the block. Finally, all threads have shared memory Per-access to the same global memory. Programs declare variables in shared and block memory shared by global memory with the __shared__ and __device__ type qualifers. On a all threads of the block.

Tesla architecture GPU, these memory spaces correspond to physically separate

memories: per-block shared memory is a low-latency on-chip RAM, while global global memory Per-application memory

memory resides in the fast DRAM on the graphics board.

shared by all threads.

Shared memory is expected to be a low-latency memory near each processor,

much like an L1 cache. It can therefore provide high-performance communication

and data sharing among the threads of a thread block. Since it has the same lifetime

as its corresponding thread block, kernel code will typically initialize data in shared

variables, compute using shared variables, and copy shared memory results to

global memory. Th

read blocks of sequentially dependent grids communicate via

global memory, using it to read input and write results.

Figure C.3.5 shows diagrams of the nested levels of threads, thread blocks,

and grids of thread blocks. It further shows the corresponding levels of memory

sharing: local, shared, and global memories for per-thread, per-thread-block, and

per-application data sharing.

A program manages the global memory space visible to kernels through calls

to the CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may

execute on a physically separate device, as is the case when running kernels on

the GPU. Consequently, the application must use cudaMemcpy() to copy data

between the allocated space and the host system memory.

C-22

Appendix C Graphics and Computing GPUs

Thread

per-Thread Local Memory

Thread Block

per-Block

Shared Memory

Grid 0

Sequence

. . .

Inter-Grid Synchronization

Global Memory

Grid 1

. . .

FIGURE C.3.5 Nested granularity levels—thread, thread block, and grid—have

corresponding memory sharing levels—local, shared, and global. Per-thread local memory is private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global memory is shared by all threads.

single-program

Th

e CUDA programming model is similar in style to the familiar single-

multiple data

program multiple data (SPMD) model—it expresses parallelism explicitly, and

(SPMD) A style of

each kernel executes on a fi xed number of threads. However, CUDA is more fl exible

parallel programming

than most realizations of SPMD, because each kernel call dynamically creates a

model in which all

new grid with the right number of thread blocks and threads for that application

threads execute the same

step. Th

e programmer can use a convenient degree of parallelism for each kernel,

program. SPMD threads

typically coordinate with

rather than having to design all phases of the computation to use the same number

barrier synchronization.

of threads. Figure C.3.6 shows an example of an SPMD-like CUDA code sequence.

It fi rst instantiates kernelF on a 2D grid of 3 2 blocks where each 2D thread

block consists of 5 3 threads. It then instantiates kernelG on a 1D grid of four

1D thread blocks with six threads each. Because kernelG depends on the results

of kernelF, they are separated by an interkernel synchronization barrier.

Th

e concurrent threads of a thread block express fi ne-grained data parallelism

and thread parallelism. Th

e independent thread blocks of a grid express coarse-

 C.3

Programming

GPUs

C-23

Sequence

kernelF 2D Grid is 3 2 thread blocks; each block is 5 3 threads

Block 0, 0

Block 1, 0

Block 2, 0

kernelF<<<(3, 2), (5, 3)>>>(params);

Block 0, 1

Block 1, 1

Block 2, 1

Block 1, 1

Thread 0, 0

Thread 1, 0

Thread 2, 0

Thread 3, 0

Thread 4, 0

Thread 0, 1

Thread 1, 1

Thread 2, 1

Thread 3, 1

Thread 4, 1

Thread 0, 2

Thread 1, 2

Thread 2, 2

Thread 3, 2

Thread 4, 2

Interkernel Synchronization Barrier

kernelG 1D Grid is 4 thread blocks; each block is 6 threads

Block 0

Block 1

Block 2

Block 3

kernelG<<<4, 6>>>(params);

Block 2

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

FIGURE C.3.6 Sequence of kernel F instantiated on a 2D grid of 2D thread blocks, an interkernel synchronization barrier, followed by kernel G on a 1D grid of 1D thread blocks.

grained data parallelism. Independent grids express coarse-grained task parallelism.

A kernel is simply C code for one thread of the hierarchy.

Restrictions

For effi

ciency, and to simplify its implementation, the CUDA programming model

has some restrictions. Th

reads and thread blocks may only be created by invoking

a parallel kernel, not from within a parallel kernel. Together with the required

independence of thread blocks, this makes it possible to execute CUDA programs

C-24

Appendix C Graphics and Computing GPUs

with a simple scheduler that introduces minimal runtime overhead. In fact, the

Tesla GPU architecture implements hardware management and scheduling of

threads and thread blocks.

Task parallelism can be expressed at the thread block level but is diffi

cult to

express within a thread block because thread synchronization barriers operate on

all the threads of the block. To enable CUDA programs to run on any number of

processors, dependencies among thread blocks within the same kernel grid are not

allowed—blocks must execute independently. Since CUDA requires that thread

blocks be independent and allows blocks to be executed in any order, combining

results generated by multiple blocks must in general be done by launching a second

kernel on a new grid of thread blocks (although thread blocks may coordinate their

activities using atomic memory operations on the global memory visible to all

threads—by atomically incrementing queue pointers, for example).

Recursive function calls are not currently allowed in CUDA kernels. Recursion

is unattractive in a massively parallel kernel, because providing stack space for the

tens of thousands of threads that may be active would require substantial amounts

of memory. Serial algorithms that are normally expressed using recursion, such as

quicksort, are typically best implemented using nested data parallelism rather than

explicit recursion.

To support a heterogeneous system architecture combining a CPU and a

GPU, each with its own memory system, CUDA programs must copy data and

results between host memory and device memory. Th

e overhead of CPU–GPU

interaction and data transfers is minimized by using DMA block transfer engines

and fast interconnects. Compute-intensive problems large enough to need a GPU

performance boost amortize the overhead better than small problems.

Implications for Architecture

Th

e parallel programming models for graphics and computing have driven

GPU architecture to be diff erent than CPU architecture. Th

e key aspects of GPU

programs driving GPU processor architecture are:

■ Extensive use of fi ne-grained data parallelism: Shader programs describe how

to process a single pixel or vertex, and CUDA programs describe how to

compute an individual result.

■ Highly threaded programming model: A shader thread program processes a

single pixel or vertex, and a CUDA thread program may generate a single

result. A GPU must create and execute millions of such thread programs per

frame, at 60 frames per second.

■ Scalability: A program must automatically increase its performance when

provided with additional processors, without recompiling.

■ Intensive fl oating-point (or integer) computation.

■ Support of high throughput computations.

C.4 Multithreaded Multiprocessor Architecture

C-25

 C.4 Multithreaded

Multiprocessor

Architecture

To address diff erent market segments, GPUs implement scalable numbers of multi-

processors—in fact, GPUs are multiprocessors composed of multiprocessors.

Furthermore, each multiprocessor is highly multithreaded to execute many fi ne-

grained vertex and pixel shader threads effi

ciently. A quality basic GPU has two to

four multiprocessors, while a gaming enthusiast’s GPU or computing platform has

dozens of them. Th

is section looks at the architecture of one such multithreaded

multiprocessor, a simplifi ed version of the NVIDIA Tesla streaming multiprocessor

(SM) described in Section C.7.

Why use a multiprocessor, rather than several independent processors? Th

e

parallelism within each multiprocessor provides localized high performance and

supports extensive multithreading for the fi ne-grained parallel programming

models described in Section C.3. Th

e individual threads of a thread block execute

together within a multiprocessor to share data. Th

e multithreaded multiprocessor

design we describe here has eight scalar processor cores in a tightly coupled

architecture, and executes up to 512 threads (the SM described in Section C.7

executes up to 768 threads). For area and power effi

ciency, the multiprocessor shares

large complex units among the eight processor cores, including the instruction

cache, the multithreaded instruction unit, and the shared memory RAM.

Massive Multithreading

GPU processors are highly multithreaded to achieve several goals:

■ Cover the latency of memory loads and texture fetches from DRAM

■ Support fi ne-grained parallel graphics shader programming models

■ Support fi ne-grained parallel computing programming models

■ Virtualize the physical processors as threads and thread blocks to provide

transparent scalability

■ Simplify the parallel programming model to writing a serial program for one

thread

Memory and texture fetch latency can require hundreds of processor clocks,

because GPUs typically have small streaming caches rather than large working-set

caches like CPUs. A fetch request generally requires a full DRAM access latency

plus interconnect and buff ering latency. Multithreading helps cover the latency with

useful computing—while one thread is waiting for a load or texture fetch to complete,

the processor can execute another thread. Th

e fi ne-grained parallel programming

models provide literally thousands of independent threads that can keep many

processors busy despite the long memory latency seen by individual threads.

C-26

Appendix C Graphics and Computing GPUs

A graphics vertex or pixel shader program is a program for a single thread that

processes a vertex or a pixel. Similarly, a CUDA program is a C program for a

single thread that computes a result. Graphics and computing programs instantiate

many parallel threads to render complex images and compute large result arrays.

To dynamically balance shift ing vertex and pixel shader thread workloads, each

multiprocessor concurrently executes multiple diff erent thread programs and

diff erent types of shader programs.

To support the independent vertex, primitive, and pixel programming model of

graphics shading languages and the single-thread programming model of CUDA

C/C, each GPU thread has its own private registers, private per-thread memory,

program counter, and thread execution state, and can execute an independent code

path. To effi

ciently execute hundreds of concurrent lightweight threads, the GPU

multiprocessor is hardware multithreaded—it manages and executes hundreds

of concurrent threads in hardware without scheduling overhead. Concurrent

threads within thread blocks can synchronize at a barrier with a single instruction.

Lightweight thread creation, zero-overhead thread scheduling, and fast barrier

synchronization effi

ciently support very fi ne-grained parallelism.

Multiprocessor Architecture

A unifi ed graphics and computing multiprocessor executes vertex, geometry, and

pixel fragment shader programs, and parallel computing programs. As Figure C.4.1

shows, the example multiprocessor consists of eight scalar processor (SP) cores each

with a large multithreaded register fi le (RF), two special function units (SFUs), a multithreaded instruction unit, an instruction cache, a read-only constant cache,

and a shared memory.

Th

e 16 KB shared memory holds graphics data buff ers and shared computing

data. CUDA variables declared as __shared__ reside in the shared memory. To

map the logical graphics pipeline workload through the multiprocessor multiple

times, as shown in Section C.2, vertex, geometry, and pixel threads have independent

input and output buff ers, and workloads arrive and depart independently of thread

execution.

Each SP core contains scalar integer and fl oating-point arithmetic units that

execute most instructions. Th

e SP is hardware multithreaded, supporting up to

64 threads. Each pipelined SP core executes one scalar instruction per thread per

clock, which ranges from 1.2 GHz to 1.6 GHz in diff erent GPU products. Each SP

core has a large RF of 1024 general-purpose 32-bit registers, partitioned among its

assigned threads. Programs declare their register demand, typically 16 to 64 scalar

32-bit registers per thread. Th

e SP can concurrently run many threads that use

a few registers or fewer threads that use more registers. Th

e compiler optimizes

register allocation to balance the cost of spilling registers versus the cost of fewer

threads. Pixel shader programs oft en use 16 or fewer registers, enabling each SP to

run up to 64 pixel shader threads to cover long-latency texture fetches. Compiled

CUDA programs oft en need 32 registers per thread, limiting each SP to 32 threads,

which limits such a kernel program to 256 threads per thread block on this example

multiprocessor, rather than its maximum of 512 threads.

C.4 Multithreaded Multiprocessor Architecture

C-27

Multithreaded Multiprocessor

Instruction Cache

Multithreaded Instruction Unit

Multiprocessor

Controller

Constant Cache

Work Interface

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SFU

RF

RF

RF

RF

RF

RF

RF

RF

Input

Interface

Interconnection Network

Output

Interface

Texture

Shared Memory

Interface

Memory

Interface

FIGURE C.4.1 Multithreaded multiprocessor with eight scalar processor (SP) cores. Th e

eight SP cores each have a large multithreaded register fi le (RF) and share an instruction cache, multithreaded instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a multibank shared memory.

Th

e pipelined SFUs execute thread instructions that compute special functions

and interpolate pixel attributes from primitive vertex attributes. Th

ese instructions

can execute concurrently with instructions on the SPs. Th

e SFU is described later.

Th

e multiprocessor executes texture fetch instructions on the texture unit via the

texture interface, and uses the memory interface for external memory load, store,

and atomic access instructions. Th

ese instructions can execute concurrently with

instructions on the SPs. Shared memory access uses a low-latency interconnection

network between the SP processors and the shared memory banks.

single-instruction

multiple-thread

Single-Instruction Multiple-Thread (SIMT)

(SIMT) A processor

architecture that applies

To manage and execute hundreds of threads running several diff erent programs one instruction to effi

ciently, the multiprocessor employs a single-instruction multiple-thread multiple independent (SIMT) architecture. It creates, manages, schedules, and executes concurrent threads

threads in parallel.

in groups of parallel threads called warps. Th

e term warp originates from weaving, warp Th e set of parallel

the fi rst parallel thread technology. Th

e photograph in Figure C.4.2 shows a warp of threads that execute the

parallel threads emerging from a loom. Th

is example multiprocessor uses a SIMT same instruction together

warp size of 32 threads, executing four threads in each of the eight SP cores over four in a SIMT architecture.

C-28

Appendix C Graphics and Computing GPUs

Photo: Judy Schoonmaker

SIMT multithreaded

instruction scheduler

time

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

warp 3 instruction 96

warp 1 instruction 43

FIGURE C.4.2 SIMT multithreaded warp scheduling. Th

e scheduler selects a ready warp and issues

an instruction synchronously to the parallel threads composing the warp. Because warps are independent, the scheduler may select a diff erent warp each time.

clocks. Th

e Tesla SM multiprocessor described in Section C.7 also uses a warp size

of 32 parallel threads, executing four threads per SP core for effi

ciency on plentiful

pixel threads and computing threads. Th

read blocks consist of one or more warps.

Th

is example SIMT multiprocessor manages a pool of 16 warps, a total of 512

threads. Individual parallel threads composing a warp are the same type and start

together at the same program address, but are otherwise free to branch and execute

independently. At each instruction issue time, the SIMT multithreaded instruction

unit selects a warp that is ready to execute its next instruction, and then issues that

instruction to the active threads of that warp. A SIMT instruction is broadcast

synchronously to the active parallel threads of a warp; individual threads may be

inactive due to independent branching or predication. In this multiprocessor, each

SP scalar processor core executes an instruction for four individual threads of a

warp using four clocks, refl ecting the 4:1 ratio of warp threads to cores.

SIMT processor architecture is akin to single-instruction multiple data (SIMD)

design, which applies one instruction to multiple data lanes, but diff ers in that

SIMT applies one instruction to multiple independent threads in parallel, not just

C.4 Multithreaded Multiprocessor Architecture

C-29

to multiple data lanes. An instruction for a SIMD processor controls a vector of

multiple data lanes together, whereas an instruction for a SIMT processor controls

an individual thread, and the SIMT instruction unit issues an instruction to a warp

of independent parallel threads for effi

ciency. Th

e SIMT processor fi nds data-level

parallelism among threads at runtime, analogous to the way a superscalar processor

fi nds instruction-level parallelism among instructions at runtime.

A SIMT processor realizes full effi

ciency and performance when all threads

of a warp take the same execution path. If threads of a warp diverge via a data-

dependent conditional branch, execution serializes for each branch path taken, and

when all paths complete, the threads converge to the same execution path. For equal

length paths, a divergent if-else code block is 50% effi

cient. Th

e multiprocessor

uses a branch synchronization stack to manage independent threads that diverge

and converge. Diff erent warps execute independently at full speed regardless of

whether they are executing common or disjoint code paths. As a result, SIMT

GPUs are dramatically more effi

cient and fl exible on branching code than earlier

GPUs, as their warps are much narrower than the SIMD width of prior GPUs.

In contrast with SIMD vector architectures, SIMT enables programmers

to write thread-level parallel code for individual independent threads, as well

as data-parallel code for many coordinated threads. For program correctness,

the programmer can essentially ignore the SIMT execution attributes of warps;

however, substantial performance improvements can be realized by taking care that

the code seldom requires threads in a warp to diverge. In practice, this is analogous

to the role of cache lines in traditional codes: cache line size can be safely ignored

when designing for correctness but must be considered in the code structure when

designing for peak performance.

SIMT Warp Execution and Divergence

Th

e SIMT approach of scheduling independent warps is more fl exible than the

scheduling of previous GPU architectures. A warp comprises parallel threads of

the same type: vertex, geometry, pixel, or compute. Th

e basic unit of pixel fragment

shader processing is the 2-by-2 pixel quad implemented as four pixel shader threads.

Th

e multiprocessor controller packs the pixel quads into a warp. It similarly groups

vertices and primitives into warps, and packs computing threads into a warp. A

thread block comprises one or more warps. Th

e SIMT design shares the instruction

fetch and issue unit effi

ciently across parallel threads of a warp, but requires a full

warp of active threads to get full performance effi

ciency.

Th

is unifi ed multiprocessor schedules and executes multiple warp types

concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp

scheduler operates at less than the processor clock rate, because there are four thread

lanes per processor core. During each scheduling cycle, it selects a warp to execute

a SIMT warp instruction, as shown in Figure C.4.2. An issued warp-instruction

executes as four sets of eight threads over four processor cycles of throughput. Th

e

processor pipeline uses several clocks of latency to complete each instruction. If the

number of active warps times the clocks per warp exceeds the pipeline latency, the

C-30

Appendix C Graphics and Computing GPUs

programmer can ignore the pipeline latency. For this multiprocessor, a round-robin

schedule of eight warps has a period of 32 cycles between successive instructions

for the same warp. If the program can keep 256 threads active per multiprocessor,

instruction latencies up to 32 cycles can be hidden from an individual sequential

thread. However, with few active warps, the processor pipeline depth becomes

visible and may cause processors to stall.

A challenging design problem is implementing zero-overhead warp scheduling

for a dynamic mix of diff erent warp programs and program types. Th

e instruction

scheduler must select a warp every four clocks to issue one instruction per clock

per thread, equivalent to an IPC of 1.0 per processor core. Because warps are

independent, the only dependences are among sequential instructions from the

same warp. Th

e scheduler uses a register dependency scoreboard to qualify warps

whose active threads are ready to execute an instruction. It prioritizes all such ready

warps and selects the highest priority one for issue. Prioritization must consider

warp type, instruction type, and the desire to be fair to all active warps.

Managing Threads and Thread Blocks

Th

e multiprocessor controller and instruction unit manage threads and thread

blocks. Th

e controller accepts work requests and input data and arbitrates access

to shared resources, including the texture unit, memory access path, and I/O

paths. For graphics workloads, it creates and manages three types of graphics

threads concurrently: vertex, geometry, and pixel. Each of the graphics work

types has independent input and output paths. It accumulates and packs each of

these input work types into SIMT warps of parallel threads executing the same

thread program. It allocates a free warp, allocates registers for the warp threads,

and starts warp execution in the multiprocessor. Every program declares its per-

thread register demand; the controller starts a warp only when it can allocate the

requested register count for the warp threads. When all the threads of the warp

exit, the controller unpacks the results and frees the warp registers and resources.

cooperative thread

Th

e controller creates cooperative thread arrays (CTAs) which implement

array (CTA) A set

CUDA thread blocks as one or more warps of parallel threads. It creates a CTA

of concurrent threads

when it can create all CTA warps and allocate all CTA resources. In addition to

that executes the same

threads and registers, a CTA requires allocating shared memory and barriers.

thread program and may

Th

e program declares the required capacities, and the controller waits until it can

cooperate to compute

allocate those amounts before launching the CTA. Th

en it creates CTA warps at the

a result. A GPU CTA

implements a CUDA

warp scheduling rate, so that a CTA program starts executing immediately at full

thread block.

multiprocessor performance. Th

e controller monitors when all threads of a CTA

have exited, and frees the CTA shared resources and its warp resources.

Thread Instructions

Th

e SP thread processors execute scalar instructions for individual threads, unlike

earlier GPU vector instruction architectures, which executed four-component

vector instructions for each vertex or pixel shader program. Vertex programs

C.4 Multithreaded Multiprocessor Architecture

C-31

generally compute (x, y, z, w) position vectors, while pixel shader programs

compute (red, green, blue, alpha) color vectors. However, shader programs are

becoming longer and more scalar, and it is increasingly diffi

cult to fully occupy

even two components of a legacy GPU four-component vector architecture. In

eff ect, the SIMT architecture parallelizes across 32 independent pixel threads,

rather than parallelizing the four vector components within a pixel. CUDA C/C

programs have predominantly scalar code per thread. Previous GPUs employed

vector packing (e.g., combining subvectors of work to gain effi

ciency) but that

complicated the scheduling hardware as well as the compiler. Scalar instructions

are simpler and compiler friendly. Texture instructions remain vector based, taking

a source coordinate vector and returning a fi ltered color vector.

To support multiple GPUs with diff erent binary microinstruction formats, high-

level graphics and computing language compilers generate intermediate assembler-

level instructions (e.g., Direct3D vector instructions or PTX scalar instructions),

which are then optimized and translated to binary GPU microinstructions.

Th

e NVIDIA PTX (parallel thread execution) instruction set defi nition [2007]

provides a stable target ISA for compilers, and provides compatibility over several

generations of GPUs with evolving binary microinstruction-set architectures. Th

e

optimizer readily expands Direct3D vector instructions to multiple scalar binary

microinstructions. PTX scalar instructions translate nearly one to one with scalar

binary microinstructions, although some PTX instructions expand to multiple

binary microinstructions, and multiple PTX instructions may fold into one binary

microinstruction. Because the intermediate assembler-level instructions use virtual

registers, the optimizer analyzes data dependencies and allocates real registers. Th

e

optimizer eliminates dead code, folds instructions together when feasible, and

optimizes SIMT branch diverge and converge points.

Instruction Set Architecture (ISA)

Th

e thread ISA described here is a simplifi ed version of the Tesla architecture

PTX ISA, a register-based scalar instruction set comprising fl oating-point, integer,

logical, conversion, special functions, fl ow control, memory access, and texture

operations. Figure C.4.3 lists the basic PTX GPU thread instructions; see the

NVIDIA PTX specifi cation [2007] for details. Th

e instruction format is:

opcode.type d, a, b, c;

where d is the destination operand, a, b, c are source operands, and .type is

one of:

Type

.type Specifer

Untyped bits 8, 16, 32, and 64 bits

.b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits

.u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits

.s8, .s16, .s32, .s64

Floating-point 16, 32, and 64 bits

.f16, .f32, .f64

C-32

Appendix C Graphics and Computing GPUs

Basic PTX GPU Thread Instructions

Group

Instruction

Example

Meaning

Comments

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64

add .type

add.f32 d, a, b

d = a + b;

sub. type

sub.f32 d, a, b

d = a – b;

mul. type

mul.f32 d, a, b

d = a * b;

mad. type

mad.f32 d, a, b, c

d = a * b + c;

multiply-add

div. type

div.f32 d, a, b

d = a / b;

multiple microinstructions

rem. type

rem.u32 d, a, b

d = a % b;

integer remainder

abs. type

abs.f32 d, a

d = |a|;

Arithmetic

neg .type

neg.f32 d, a

d = 0 - a;

min. type

min.f32 d, a, b

d = (a < b)? a:b;

floating selects non-NaN

max. type

max.f32 d, a, b

d = (a > b)? a:b;

floating selects non-NaN

setp. cmp. type

setp.lt.f32 p, a, b

p = (a < b);

compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan mov. type

mov.b32 d, a

d = a;

move

selp .type

selp.f32 d, a, b, p

d = p? a: b;

select with predicate

cvt.dtype.atype

cvt.f32.s32 d, a

d = convert(a);

convert atype to dtype

special . type = .f32 (some .f64)

rcp .type

rcp.f32 d, a

d = 1/a;

reciprocal

sqrt .type

sqrt.f32 d, a

d = sqrt(a);

square root

Special

rsqrt .type

rsqrt.f32 d, a

d = 1/sqrt(a);

reciprocal square root

Function

sin .type

sin.f32 d, a

d = sin(a);

sine

cos .type

cos.f32 d, a

d = cos(a);

cosine

lg2 .type

lg2.f32 d, a

d = log(a)/log(2)

binary logarithm

ex2 .type

ex2.f32 d, a

d = 2 ** a;

binary exponential

logic . type = .pred, .b32, .b64

and. type

and.b32 d, a, b

d = a & b;

or. type

or.b32 d, a, b

d = a | b;

xor. type

xor.b32 d, a, b

d = a ^ b;

Logical

not. type

not.b32 d, a, b

d = ~a;

one’s complement

cnot. type

cnot.b32 d, a, b

d = (a==0)? 1:0;

C logical not

shl. type

shl.b32 d, a, b

d = a << b;

shift left

shr. type

shr.s32 d, a, b

d = a >> b;

shift right

memory .space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64

ld. space.type

ld.global.b32 d, [a+off]

d = *(a+off);

load from memory space

st. space.type

st.shared.b32 [d+off], a

*(d+off) = a;

store to memory space

Memory

tex. nd. dtyp. btype

tex.2d.v4.f32.f32 d, a, b

d = tex2d(a, b);

texture lookup

Access

atom. spc. op. type

atom.global.add.u32 d,[a], b

atomic { d = *a;

atomic read-modify-write

atom.global.cas.b32 d,[a], b, c

*a = op(*a, b); }

operation

atom .op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

branch

@p bra target

if (p) goto

conditional branch

target;

Control

call

call (ret), func, (params)

ret = func(params); call function

Flow

ret

ret

return;

return from function call

bar.sync

bar.sync d

wait for threads

barrier synchronization

exit

exit

exit;

terminate thread execution

FIGURE C.4.3 Basic PTX GPU thread instructions.

C.4 Multithreaded Multiprocessor Architecture

C-33

Source operands are scalar 32-bit or 64-bit values in registers, an immediate

value, or a constant; predicate operands are 1-bit Boolean values. Destinations are

registers, except for store to memory. Instructions are predicated by prefi xing them

with @p or @!p, where p is a predicate register. Memory and texture instructions

transfer scalars or vectors of two to four components, up to 128 bits in total. PTX

instructions specify the behavior of one thread.

Th

e PTX arithmetic instructions operate on 32-bit and 64-bit fl oating-point,

signed integer, and unsigned integer types. Recent GPUs support 64-bit double

precision fl oating-point; see Section C.6. On current GPUs, PTX 64-bit integer

and logical instructions are translated to two or more binary microinstructions

that perform 32-bit operations. Th

e GPU special function instructions are limited

to 32-bit fl oating-point. Th

e thread control fl ow instructions are conditional

branch, function call and return, thread exit, and bar.sync (barrier

synchronization). Th

e conditional branch instruction @p bra target uses a

predicate register p (or !p) previously set by a compare and set predicate setp

instruction to determine whether the thread takes the branch or not. Other

instructions can also be predicated on a predicate register being true or false.

Memory Access Instructions

Th

e tex instruction fetches and fi lters texture samples from 1D, 2D, and 3D

texture arrays in memory via the texture subsystem. Texture fetches generally use

interpolated fl oating-point coordinates to address a texture. Once a graphics pixel

shader thread computes its pixel fragment color, the raster operations processor

blends it with the pixel color at its assigned (x, y) pixel position and writes the fi nal

color to memory.

To support computing and C/C language needs, the Tesla PTX ISA

implements memory load/store instructions. It uses integer byte addressing with

register plus off set address arithmetic to facilitate conventional compiler code

optimizations. Memory load/store instructions are common in processors, but are

a signifi cant new capability in the Tesla architecture GPUs, as prior GPUs provided

only the texture and pixel accesses required by the graphics APIs.

For computing, the load/store instructions access three read/write memory

spaces that implement the corresponding CUDA memory spaces in Section C.3:

■ Local memory for per-thread private addressable temporary data

(implemented in external DRAM)

■ Shared memory for low-latency access to data shared by cooperating threads

in the same CTA/thread block (implemented in on-chip SRAM)

■ Global memory for large data sets shared by all threads of a computing

application (implemented in external DRAM)

Th

e memory load/store instructions ld.global, st.global, ld.shared,

st.shared, ld.local, and st.local access the global, shared, and local

memory spaces. Computing programs use the fast barrier synchronization

instruction bar.sync to synchronize threads within a CTA/thread block that

communicate with each other via shared and global memory.

C-34

Appendix C Graphics and Computing GPUs

To improve memory bandwidth and reduce overhead, the local and global load/

store instructions coalesce individual parallel thread requests from the same SIMT

warp together into a single memory block request when the addresses fall in the

same block and meet alignment criteria. Coalescing memory requests provides a

signifi cant performance boost over separate requests from individual threads. Th

e

multiprocessor’s large thread count, together with support for many outstanding

load requests, helps cover load-to-use latency for local and global memory

implemented in external DRAM.

Th

e latest Tesla architecture GPUs also provide effi

cient atomic memory operations

on memory with the atom. op.u32 instructions, including integer operations add,

min, max, and, or, xor, exchange, and cas (compare-and-swap) operations,

facilitating parallel reductions and parallel data structure management.

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently

via shared memory and global memory by simply calling __syncthreads(); as

part of each interthread communication step. Th

e synchronization intrinsic function

generates a single bar.sync instruction. However, implementing fast barrier

synchronization among up to 512 threads per CUDA thread block is a challenge.

Grouping threads into SIMT warps of 32 threads reduces the synchronization

diffi

culty by a factor of 32. Th

reads wait at a barrier in the SIMT thread scheduler so

they do not consume any processor cycles while waiting. When a thread executes

a bar.sync instruction, it increments the barrier’s thread arrival counter and the

scheduler marks the thread as waiting at the barrier. Once all the CTA threads

arrive, the barrier counter matches the expected terminal count, and the scheduler

releases all the threads waiting at the barrier and resumes executing threads.

Streaming Processor (SP)

Th

e multithreaded streaming processor (SP) core is the primary thread instruction

processor in the multiprocessor. Its register fi le (RF) provides 1024 scalar 32-

bit registers for up to 64 threads. It executes all the fundamental fl oating-point

operations, including add.f32, mul.f32, mad.f32 (fl oating multiply-add), min.

f32, max.f32, and setp.f32 (fl oating compare and set predicate). Th

e fl oating-

point add and multiply operations are compatible with the IEEE 754 standard

for single precision FP numbers, including not-a-number (NaN) and infi nity

values. Th

e SP core also implements all of the 32-bit and 64-bit integer arithmetic,

comparison, conversion, and logical PTX instructions shown in Figure C.4.3.

Th

e fl oating-point add and mul operations employ IEEE round-to-nearest-even

as the default rounding mode. Th

e mad.f32 fl oating-point multiply-add operation

performs a multiplication with truncation, followed by an addition with round-

to-nearest-even. Th

e SP fl ushes input denormal operands to sign-preserved-zero.

Results that underfl ow the target output exponent range are fl ushed to sign-

preserved-zero aft er rounding.

C.4 Multithreaded Multiprocessor Architecture

C-35

Special Function Unit (SFU)

Certain thread instructions can execute on the SFUs, concurrently with other

thread instructions executing on the SPs. Th

e SFU implements the special function

instructions of Figure C.4.3, which compute 32-bit fl oating-point approximations

to reciprocal, reciprocal square root, and key transcendental functions. It also

implements 32-bit fl oating-point planar attribute interpolation for pixel shaders,

providing accurate interpolation of attributes such as color, depth, and texture

coordinates.

Each pipelined SFU generates one 32-bit fl oating-point special function result

per cycle; the two SFUs per multiprocessor execute special function instructions

at a quarter the simple instruction rate of the eight SPs. Th

e SFUs also execute the

mul.f32 multiply instruction concurrently with the eight SPs, increasing the peak

computation rate up to 50% for threads with a suitable instruction mixture.

For functional evaluation, the Tesla architecture SFU employs quadratic

interpolation based on enhanced minimax approximations for approximating the

reciprocal, reciprocal square-root, log x, 2 x, and sin/cos functions. Th

e accuracy of

2

the function estimates ranges from 22 to 24 mantissa bits. See Section C.6 for more

details on SFU arithmetic.

Comparing with Other Multiprocessors

Compared with SIMD vector architectures such as x86 SSE, the SIMT multiprocessor

can execute individual threads independently, rather than always executing them

together in synchronous groups. SIMT hardware fi nds data parallelism among

independent threads, whereas SIMD hardware requires the soft ware to express

data parallelism explicitly in each vector instruction. A SIMT machine executes a

warp of 32 threads synchronously when the threads take the same execution path,

yet can execute each thread independently when they diverge. Th

e advantage is

signifi cant because SIMT programs and instructions simply describe the behavior

of a single independent thread, rather than a SIMD data vector of four or more

data lanes. Yet the SIMT multiprocessor has SIMD-like effi

ciency, spreading the

area and cost of one instruction unit across the 32 threads of a warp and across the

eight streaming processor cores. SIMT provides the performance of SIMD together

with the productivity of multithreading, avoiding the need to explicitly code SIMD

vectors for edge conditions and partial divergence.

Th

e SIMT multiprocessor imposes little overhead because it is hardware

multithreaded with hardware barrier synchronization. Th

at allows graphics

shaders and CUDA threads to express very fi ne-grained parallelism. Graphics and

CUDA programs use threads to express fi ne-grained data parallelism in a per-

thread program, rather than forcing the programmer to express it as SIMD vector

instructions. It is simpler and more productive to develop scalar single-thread code

than vector code, and the SIMT multiprocessor executes the code with SIMD-like

effi

ciency.

C-36

Appendix C Graphics and Computing GPUs

Coupling eight streaming processor cores together closely into a multiprocessor

and then implementing a scalable number of such multiprocessors makes a two-

level multiprocessor composed of multiprocessors. Th

e CUDA programming model

exploits the two-level hierarchy by providing individual threads for fi ne-grained

parallel computations, and by providing grids of thread blocks for coarse-grained

parallel operations. Th

e same thread program can provide both fi ne-grained and

coarse-grained operations. In contrast, CPUs with SIMD vector instructions must

use two diff erent programming models to provide fi ne-grained and coarse-grained

operations: coarse-grained parallel threads on diff erent cores, and SIMD vector

instructions for fi ne-grained data parallelism.

Multithreaded Multiprocessor Conclusion

Th

e example GPU multiprocessor based on the Tesla architecture is highly

multithreaded, executing a total of up to 512 lightweight threads concurrently to

support fi ne-grained pixel shaders and CUDA threads. It uses a variation on SIMD

architecture and multithreading called SIMT (single-instruction multiple-thread)

to effi

ciently broadcast one instruction to a warp of 32 parallel threads, while

permitting each thread to branch and execute independently. Each thread executes

its instruction stream on one of the eight streaming processor (SP) cores, which are

multithreaded up to 64 threads.

Th

e PTX ISA is a register-based load/store scalar ISA that describes the execution

of a single thread. Because PTX instructions are optimized and translated to binary

microinstructions for a specifi c GPU, the hardware instructions can evolve rapidly

without disrupting compilers and soft ware tools that generate PTX instructions.

 C.5

Parallel Memory System

Outside of the GPU itself, the memory subsystem is the most important

determiner of the performance of a graphics system. Graphics workloads demand

very high transfer rates to and from memory. Pixel write and blend (read-modify-

write) operations, depth buff er reads and writes, and texture map reads, as well

as command and object vertex and attribute data reads, comprise the majority of

memory traffi

c.

Modern GPUs are highly parallel, as shown in Figure C.2.5. For example, the

GeForce 8800 can process 32 pixels per clock, at 600 MHz. Each pixel typically

requires a color read and write and a depth read and write of a 4-byte pixel. Usually

an average of two or three texels of four bytes each are read to generate the pixel’s

color. So for a typical case, there is a demand of 28 bytes times 32 pixels 896 bytes

per clock. Clearly the bandwidth demand on the memory system is enormous.

C.5 Parallel Memory System

C-37

To supply these requirements, GPU memory systems have the following

characteristics:

■ Th

ey are wide, meaning there are a large number of pins to convey data

between the GPU and its memory devices, and the memory array itself

comprises many DRAM chips to provide the full total data bus width.

■ Th

ey are fast, meaning aggressive signaling techniques are used to maximize

the data rate (bits/second) per pin.

■ GPUs seek to use every available cycle to transfer data to or from the memory

array. To achieve this, GPUs specifi cally do not aim to minimize latency to the

memory system. High throughput (utilization effi

ciency) and short latency

are fundamentally in confl ict.

■ Compression techniques are used, both lossy, of which the programmer must

be aware, and lossless, which is invisible to the application and opportunistic.

■ Caches and work coalescing structures are used to reduce the amount of off -

chip traffi

c needed and to ensure that cycles spent moving data are used as

fully as possible.

DRAM Considerations

GPUs must take into account the unique characteristics of DRAM. DRAM chips

are internally arranged as multiple (typically four to eight) banks, where each bank

includes a power-of-2 number of rows (typically around 16,384), and each row

contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of

timing requirements on their controlling processor. For example, dozens of cycles

are required to activate one row, but once activated, the bits within that row are

randomly accessible with a new column address every four clocks. Double-data

rate (DDR) synchronous DRAMs transfer data on both rising and falling edges

of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers

data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 32

bidirectional data pins, so eight bytes can be read or written from the DRAM per

clock.

GPUs internally have a large number of generators of memory traffi

c. Diff erent

stages of the logical graphics pipeline each have their own request streams:

command and vertex attribute fetch, shader texture fetch and load/store, and

pixel depth and color read-write. At each logical stage, there are oft en multiple

independent units to deliver the parallel throughput. Th

ese are each independent

memory requestors. When viewed at the memory system, there are an enormous

number of uncorrelated requests in fl ight. Th

is is a natural mismatch to the reference

pattern preferred by the DRAMs. A solution is for the GPU’s memory controller to

maintain separate heaps of traffi

c bound for diff erent DRAM banks, and wait until

C-38

Appendix C Graphics and Computing GPUs

enough traffi

c for a particular DRAM row is pending before activating that row

and transferring all the traffi

c at once. Note that accumulating pending requests,

while good for DRAM row locality and thus effi

cient use of the data bus, leads to

longer average latency as seen by the requestors whose requests spend time waiting

for others. Th

e design must take care that no particular request waits too long,

otherwise some processing units can starve waiting for data and ultimately cause

neighboring processors to become idle.

GPU memory subsystems are arranged as multiple memory partitions, each of

which comprises a fully independent memory controller and one or two DRAM

devices that are fully and exclusively owned by that partition. To achieve the best

load balance and therefore approach the theoretical performance of n partitions,

addresses are fi nely interleaved evenly across all memory partitions. Th

e partition

interleaving stride is typically a block of a few hundred bytes. Th

e number of

memory partitions is designed to balance the number of processors and other

memory requesters.

Caches

GPU workloads typically have very large working sets—on the order of hundreds

of megabytes to generate a single graphics frame. Unlike with CPUs, it is not

practical to construct caches on chips large enough to hold anything close to the

full working set of a graphics application. Whereas CPUs can assume very high

cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must

therefore cope with many misses in fl ight. While a CPU can reasonably be designed

to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and

hits intermingled. We call this a streaming cache architecture.

GPU caches must deliver very high-bandwidth to their clients. Consider the case

of a texture cache. A typical texture unit may evaluate two bilinear interpolations for

each of four pixels per clock cycle, and a GPU may have many such texture units all

operating independently. Each bilinear interpolation requires four separate texels,

and each texel might be a 64-bit value. Four 16-bit components are typical. Th

us,

total bandwidth is 2 4 4 64 2048 bits per clock. Each separate 64-bit texel

is independently addressed, so the cache needs to handle 32 unique addresses per

clock. Th

is naturally favors a multibank and/or multiport arrangement of SRAM

arrays.

MMU

Modern GPUs are capable of translating virtual addresses to physical addresses.

On the GeForce 8800, all processing units generate memory addresses in a

40-bit virtual address space. For computing, load and store thread instructions use

32-bit byte addresses, which are extended to a 40-bit virtual address by adding a

40-bit off set. A memory management unit performs virtual to physical address

C.5 Parallel Memory System

C-39

translation; hardware reads the page tables from local memory to respond to

misses on behalf of a hierarchy of translation lookaside buff ers spread out among

the processors and rendering engines. In addition to physical page bits, GPU page

table entries specify the compression algorithm for each page. Page sizes range

from 4 to 128 kilobytes.

Memory Spaces

As introduced in Section C.3, CUDA exposes diff erent memory spaces to allow the

programmer to store data values in the most performance-optimal way. For the

following discussion, NVIDIA Tesla architecture GPUs are assumed.

Global memory

Global memory is stored in external DRAM; it is not local to any one physical

 streaming multiprocessor (SM) because it is meant for communication among

diff erent CTAs (thread blocks) in diff erent grids. In fact, the many CTAs that

reference a location in global memory may not be executing in the GPU at the

same time; by design, in CUDA a programmer does not know the relative order

in which CTAs are executed. Because the address space is evenly distributed

among all memory partitions, there must be a read/write path from any streaming

multiprocessor to any DRAM partition.

Access to global memory by diff erent threads (and diff erent processors) is not

guaranteed to have sequential consistency. Th

read programs see a relaxed memory

ordering model. Within a thread, the order of memory reads and writes to the same

address is preserved, but the order of accesses to diff erent addresses may not be

preserved. Memory reads and writes requested by diff erent threads are unordered.

Within a CTA, the barrier synchronization instruction bar.sync can be used

to obtain strict memory ordering among the threads of the CTA. Th

e membar

thread instruction provides a memory barrier/fence operation that commits prior

memory accesses and makes them visible to other threads before proceeding.

Th

reads can also use the atomic memory operations described in Section C.4 to

coordinate work on memory they share.

Shared memory

Per-CTA shared memory is only visible to the threads that belong to that CTA,

and shared memory only occupies storage from the time a CTA is created to the

time it terminates. Shared memory can therefore reside on-chip. Th

is approach has

many benefi ts. First, shared memory traff c does not need to compete with limited

off -chip bandwidth needed for global memory references. Second, it is practical to

build very high-bandwidth memory structures on-chip to support the read/write

demands of each streaming multiprocessor. In fact, the shared memory is closely

coupled to the streaming multiprocessor.

C-40

Appendix C Graphics and Computing GPUs

Each streaming multiprocessor contains eight physical thread processors. During

one shared memory clock cycle, each thread processor can process two threads’

worth of instructions, so 16 threads’ worth of shared memory requests must be

handled in each clock. Because each thread can generate its own addresses, and the

addresses are typically unique, the shared memory is built using 16 independently

addressable SRAM banks. For common access patterns, 16 banks are suffi

cient

to maintain throughput, but pathological cases are possible; for example, all 16

threads might happen to access a diff erent address on one SRAM bank. It must be

possible to route a request from any thread lane to any bank of SRAM, so a 16-by-

16 interconnection network is required.

Local Memory

Per-thread local memory is private memory visible only to a single thread. Local

memory is architecturally larger than the thread’s register fi le, and a program

can compute addresses into local memory. To support large allocations of local

memory (recall the total allocation is the per-thread allocation times the number

of active threads), local memory is allocated in external DRAM.

Although global and per-thread local memory reside off -chip, they are well-

suited to being cached on-chip.

Constant Memory

Constant memory is read-only to a program running on the SM (it can be written

via commands to the GPU). It is stored in external DRAM and cached in the SM.

Because commonly most or all threads in a SIMT warp read from the same address

in constant memory, a single address lookup per clock is suffi

cient. Th

e constant

cache is designed to broadcast scalar values to threads in each warp.

Texture Memory

Texture memory holds large read-only arrays of data. Textures for computing have

the same attributes and capabilities as textures used with 3D graphics. Although

textures are commonly two-dimensional images (2D arrays of pixel values), 1D

(linear) and 3D (volume) textures are also available.

A compute program references a texture using a tex instruction. Operands

include an identifi er to name the texture, and 1, 2, or 3 coordinates based on the

texture dimensionality. Th

e fl oating-point coordinates include a fractional portion

that specifi es a sample location, oft en in between texel locations. Noninteger

coordinates invoke a bilinear weighted interpolation of the four closest values (for

a 2D texture) before the result is returned to the program.

Texture fetches are cached in a streaming cache hierarchy designed to optimize

throughput of texture fetches from thousands of concurrent threads. Some

programs use texture fetches as a way to cache global memory.

 C.6

Floating-point

Arithmetic

C-41

Surfaces

 Surface is a generic term for a one-dimensional, two-dimensional, or three-

dimensional array of pixel values and an associated format. A variety of formats

are defi ned; for example, a pixel may be defi ned as four 8-bit RGBA integer

components, or four 16-bit fl oating-point components. A program kernel does

not need to know the surface type. A tex instruction recasts its result values as

fl oating-point, depending on the surface format.

Load/Store Access

Load/store instructions with integer byte addressing enable the writing and

compiling of programs in conventional languages like C and C. CUDA

programs use load/store instructions to access memory.

To improve memory bandwidth and reduce overhead, the local and global load/

store instructions coalesce individual parallel thread requests from the same warp

together into a single memory block request when the addresses fall in the same

block and meet alignment criteria. Coalescing individual small memory requests

into large block requests provides a signifi cant performance boost over separate

requests. Th

e large thread count, together with support for many outstanding load

requests, helps cover load-to-use latency for local and global memory implemented

in external DRAM.

ROP

As shown in Figure C.2.5, NVIDIA Tesla architecture GPUs comprise a scalable

streaming processor array (SPA), which performs all of the GPU’s programmable

calculations, and a scalable memory system, which comprises external DRAM

control and fi xed function Raster Operation Processors (ROPs) that perform color

and depth framebuff er operations directly on memory. Each ROP unit is paired

with a specifi c memory partition. ROP partitions are fed from the SMs via an

interconnection network. Each ROP is responsible for depth and stencil tests and

updates, as well as color blending. Th

e ROP and memory controllers cooperate

to implement lossless color and depth compression (up to 8:1) to reduce external

bandwidth demand. ROP units also perform atomic operations on memory.

 C.6 Floating-point

Arithmetic

GPUs today perform most arithmetic operations in the programmable processor

cores using IEEE 754-compatible single precision 32-bit fl oating-point operations

(see Chapter 3). Th

e fi xed-point arithmetic of early GPUs was succeeded by 16-

bit, 24-bit, and 32-bit fl oating-point, then IEEE 754-compatible 32-bit fl oating-

C-42

Appendix C Graphics and Computing GPUs

point. Some fi xed-function logic within a GPU, such as texture-fi ltering hardware,

continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754-

compatible double precision 64-bit fl oating-point instructions.

Supported Formats

Th

e IEEE 754 standard for fl oating-point arithmetic specifi es basic and storage

formats. GPUs use two of the basic formats for computation, 32-bit and 64-bit

binary fl oating-point, commonly called single precision and double precision. Th

e

half precision A 16-bit

standard also specifi es a 16-bit binary storage fl oating-point format, half precision.

binary fl oating-point

GPUs and the Cg shading language employ the narrow 16-bit half data format for

format, with 1 sign bit,

effi

cient data storage and movement, while maintaining high dynamic range. GPUs

5-bit exponent, 10-bit

perform many texture fi ltering and pixel blending computations at half precision

fraction, and an implied

within the texture fi ltering unit and the raster operations unit. Th

e OpenEXR high

integer bit.

dynamic-range image fi le format developed by Industrial Light and Magic [2003]

uses the identical half format for color component values in computer imaging and

motion picture applications.

Basic Arithmetic

Common single precision fl oating-point operations in GPU programmable cores

multiply-add (MAD)

include addition, multiplication, multiply-add, minimum, maximum, compare,

A single fl oating-point

set predicate, and conversions between integer and fl oating-point numbers.

instruction that performs

Floating-point instructions oft en provide source operand modifi ers for negation

a compound operation:

and absolute value.

multiplication followed by

Th

e fl oating-point addition and multiplication operations of most GPUs today are

addition.

compatible with the IEEE 754 standard for single precision FP numbers, including not-

a-number (NaN) and infi nity values. Th

e FP addition and multiplication operations

use IEEE round-to-nearest-even as the default rounding mode. To increase fl oating-

point instruction throughput, GPUs oft en use a compound multiply-add instruction

(mad). Th

e multiply-add operation performs FP multiplication with truncation,

followed by FP addition with round-to-nearest-even. It provides two fl oating-point

operations in one issuing cycle, without requiring the instruction scheduler to

dispatch two separate instructions, but the computation is not fused and truncates

the product before the addition. Th

is makes it diff erent from the fused multiply-add

instruction discussed in Chapter 3 and later in this section. GPUs typically fl ush

denormalized source operands to sign-preserved zero, and they fl ush results that

underfl ow the target output exponent range to sign-preserved zero aft er rounding.

Specialized Arithmetic

GPUs provide hardware to accelerate special function computation, attribute

interpolation, and texture fi ltering. Special function instructions include cosine,

 C.6

Floating-point

Arithmetic

C-43

sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root.

Attribute interpolation instructions provide effi

cient generation of pixel attributes,

derived from plane equation evaluation. Th

e special function unit (SFU) special function unit

introduced in Section C.4 computes special functions and interpolates planar (SFU) A hardware unit attributes [Oberman and Siu, 2005].

that computes special

Several methods exist for evaluating special functions in hardware. It has been functions and interpolates planar attributes.

shown that quadratic interpolation based on Enhanced Minimax Approximations

is a very effi

cient method for approximating functions in hardware, including

reciprocal, reciprocal square-root, log x, 2 x, sin, and cos.

2

We can summarize the method of SFU quadratic interpolation. For a binary

input operand X with n-bit signifi cand, the signifi cand is divided into two parts:

X is the upper part containing m bits, and X is the lower part containing n-m bits.

u

l

Th

e upper m bits X are used to consult a set of three lookup tables to return three

u

fi nite-word coeffi

cients C , C , and C . Each function to be approximated requires

0

1

2

a unique set of tables. Th

ese coeffi

cients are used to approximate a given function

f(X) in the range X X X 2m by evaluating the expression:

u

u

f(X)

C

C X

C X 2

0

1

1

2

1

Th

e accuracy of each of the function estimates ranges from 22 to 24 signifi cand

bits. Example function statistics are shown in Figure C.6.1.

Th

e IEEE 754 standard specifi es exact-rounding requirements for division

and square root; however, for many GPU applications, exact compliance is not

required. Rather, for those applications, higher computational throughput is more

important than last-bit accuracy. For the SFU special functions, the CUDA math

library provides both a full accuracy function and a fast function with the SFU

instruction accuracy.

Another specialized arithmetic operation in a GPU is attribute interpolation.

Key attributes are usually specifi ed for vertices of primitives that make up a scene

to be rendered. Example attributes are color, depth, and texture coordinates. Th

ese

attributes must be interpolated in the (x,y) screen space as needed to determine the

Input

Accuracy

ULP*

% exactly

Function

interval

(good bits)

error

rounded

Monotonic

1/ x

[1, 2)

24.02

0.98

87

Yes

1/sqrt(x)

[1, 4)

23.40

1.52

78

Yes

2 x

[0, 1)

22.51

1.41

74

Yes

log x

[1, 2)

22.57

N/A**

N/A

Yes

2

sin/cos

[0, /2)

22.47

N/A

N/A

No

*ULP: unit in the last place. **N/A: not applicable.

FIGURE C.6.1 Special function approximation statistics. For the NVIDIA GeForce 8800 special function unit (SFU).

C-44

Appendix C Graphics and Computing GPUs

values of the attributes at each pixel location. Th

e value of a given attribute U in an

(x, y) plane can be expressed using plane equations of the form:

U(x, y)

A x

B y

C

u

u

u

where A, B, and C are interpolation parameters associated with each attribute U.

Th

e interpolation parameters A, B, and C are all represented as single precision fl oating-point numbers.

Given the need for both a function evaluator and an attribute interpolator in a

pixel shader processor, a single SFU that performs both functions for effi

ciency can

be designed. Both functions use a sum of products operation to interpolate results,

and the number of terms to be summed in both functions is very similar.

Texture Operations

Texture mapping and fi ltering is another key set of specialized fl oating-point

arithmetic operations in a GPU. Th

e operations used for texture mapping include:

1. Receive texture address (s, t) for the current screen pixel (x, y), where s and

t are single precision fl oating-point numbers.

MIP-map A Latin

2. Compute the level of detail to identify the correct texture MIP-map level.

phrase multum in parvo,

or much in a small space.

3. Compute the trilinear interpolation fraction.

A MIP-map contains

4. Scale texture address (s, t) for the selected MIP-map level.

precalculated images of

diff erent resolutions, used

5. Access memory and retrieve desired texels (texture elements).

to increase rendering

speed and reduce

6. Perform fi ltering operation on texels.

artifacts.

Texture mapping requires a signifi cant amount of fl oating-point computation

for full-speed operation, much of which is done at 16-bit half precision. As an

example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format

fl oating-point computation for texture mapping instructions, in addition to its

conventional IEEE single precision fl oating-point instructions. For more details on

texture mapping and fi ltering, see Foley and van Dam [1995].

Performance

Th

e fl oating-point addition and multiplication arithmetic hardware is fully

pipelined, and latency is optimized to balance delay and area. While pipelined,

the throughput of the special functions is less than the fl oating-point addition

and multiplication operations. Quarter-speed throughput for the special functions

is typical performance in modern GPUs, with one SFU shared by four SP cores.

In contrast, CPUs typically have signifi cantly lower throughput for similar

functions, such as division and square root, albeit with more accurate results. Th

e

attribute interpolation hardware is typically fully pipelined to enable full-speed

pixel shaders.

 C.6

Floating-point

Arithmetic

C-45

Double precision

Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double precision

operations in hardware. Standard fl oating-point arithmetic operations in double

precision include addition, multiplication, and conversions between diff erent

fl oating-point and integer formats. Th

e 2008 IEEE 754 fl oating-point standard

includes specifi cation for the fused-multiply-add (FMA) operation, as discussed

in Chapter 3. Th

e FMA operation performs a fl oating-point multiplication

followed by an addition, with a single rounding. Th

e fused multiplication and

addition operations retain full accuracy in intermediate calculations. Th

is behavior

enables more accurate fl oating-point computations involving the accumulation

of products, including dot products, matrix multiplication, and polynomial

evaluation. Th

e FMA instruction also enables effi

cient soft ware implementations

of exactly rounded division and square root, removing the need for a hardware

division or square root unit.

A double precision hardware FMA unit implements 64-bit addition,

multiplication, conversions, and the FMA operation itself. Th

e architecture of a

64

64

64

A

B

C

53

53

53

Inversion

Multiplier Array

53 x 53

Alignment

Exp

shifter

Diff

Sum

Carry

Shifted 161

C

3-2 CSA 161 bits

Sum

Carry

Carry Propagate Adder

Complementer

Normalizer

Rounder

FIGURE C.6.2 Double precision fused-multiply-add (FMA) unit. Hardware to implement fl oating-point A B C for double precision.

C-46

Appendix C Graphics and Computing GPUs

double precision FMA unit enables full-speed denormalized number support on

both inputs and outputs. Figure C.6.2 shows a block diagram of an FMA unit.

As shown in Figure C.6.2, the signifi cands of A and B are multiplied to form a 106-

bit product, with the results left in carry-save form. In parallel, the 53-bit addend C is

conditionally inverted and aligned to the 106-bit product. Th

e sum and carry results

of the 106-bit product are summed with the aligned addend through a 161-bit-

wide carry-save adder (CSA). Th

e carry-save output is then summed together in

a carry-propagate adder to produce an unrounded result in nonredundant, two’s

complement form. Th

e result is conditionally recomplemented, so as to return a

result in sign-magnitude form. Th

e complemented result is normalized, and then

it is rounded to fi t within the target format.

 C.7

Real Stuff: The NVIDIA GeForce 8800

Th

e NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unifi ed vertex

and pixel processor design that also supports parallel computing applications written

in C using the CUDA parallel programming model. It is the fi rst implementation

of the Tesla unifi ed graphics and computing architecture described in Section C.4

and in Lindholm et al. [2008]. A family of Tesla architecture GPUs addresses the

diff erent needs of laptops, desktops, workstations, and servers.

Streaming Processor Array (SPA)

Th

e GeForce 8800 GPU shown in Figure C.7.1 contains 128 streaming processor

(SP) cores organized as 16 streaming multiprocessors (SMs). Two SMs share a texture

unit in each texture/processor cluster (TPC). An array of eight TPCs makes up the

 streaming processor array (SPA), which executes all graphics shader programs and

computing programs.

Th

e host interface unit communicates with the host CPU via the PCI-Express

bus, checks command consistency, and performs context switching. Th

e input

assembler collects geometric primitives (points, lines, triangles). Th

e work

distribution blocks dispatch vertices, pixels, and compute thread arrays to the

TPCs in the SPA. Th

e TPCs execute vertex and geometry shader programs and

computing programs. Output geometric data is sent to the viewport/clip/setup/

raster/zcull block to be rasterized into pixel fragments that are then redistributed

back into the SPA to execute pixel shader programs. Shaded pixels are sent across

the interconnection network for processing by the ROP units. Th

e network also

routes texture memory read requests from the SPA to DRAM and reads data from

DRAM through a level-2 cache back to the SPA.

C.7 Real Stuff: The NVIDIA GeForce 8800

C-47

Host CPU

Bridge

System Memory

GPU

Host Interface

Viewport/Clip/

High-Definition

Setup/Raster/

Input Assembler

Video Processors

ZCull

Vertex Work

Pixel Work

Compute Work

SPA

Distribution

Distribution

Distribution

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

Tex L1

Interconnection Network

ROP

L2

ROP

L2

ROP

L2

ROP

L2

ROP

L2

ROP

L2

Interface

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Display

FIGURE C.7.1 NVIDIA Tesla unifi ed graphics and computing GPU architecture. Th

is GeForce 8800 has 128 streaming processor

(SP) cores in 16 streaming multiprocessors (SMs), arranged in eight texture/processor clusters (TPCs). Th e processors connect with six 64-bit-wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs, DRAM partitions, and other units.

Texture/Processor Cluster (TPC)

Each TPC contains a geometry controller, an SMC, two SMs, and a texture unit as

shown in Figure C.7.2.

Th

e geometry controller maps the logical graphics vertex pipeline into recir-

culation on the physical SMs by directing all primitive and vertex attribute and

topology fl ow in the TPC.

Th

e SMC controls multiple SMs, arbitrating the shared texture unit, load/store

path, and I/O path. Th

e SMC serves three graphics workloads simultaneously:

vertex, geometry, and pixel.

Th

e texture unit processes a texture instruction for one vertex, geometry, or pixel

quad, or four compute threads per cycle. Texture instruction sources are texture

coordinates, and the outputs are weighted samples, typically a four-component

(RGBA) fl oating-point color. Th

e texture unit is deeply pipelined. Although it

contains a streaming cache to capture fi ltering locality, it streams hits mixed with

misses without stalling.

C-48

Appendix C Graphics and Computing GPUs

TPC

SM

Geometry Controller

I-Cache

SMC

MT Issue

SM

SM

I-Cache

I-Cache

C-Cache

MT Issue

MT Issue

C-Cache

C-Cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SFU

SFU

SFU

Shared

Shared

Memory

Memory

SFU

SFU

Texture Unit

Shared

Tex L1

Memory

FIGURE C.7.2 Texture/processor cluster (TPC) and a streaming multiprocessor (SM). Each SM has eight streaming processor (SP) cores, two SFUs, and a shared memory.

Streaming Multiprocessor (SM)

Th

e SM is a unifi ed graphics and computing multiprocessor that executes vertex,

geometry, and pixel-fragment shader programs and parallel computing programs.

Th

e SM consists of eight SP thread processor cores, two SFUs, a multithreaded

instruction fetch and issue unit (MT issue), an instruction cache, a read-

only constant cache, and a 16 KB read/write shared memory. It executes scalar

instructions for individual threads.

Th

e GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GHz, for a peak of

36 GFLOPS per SM. To optimize power and area effi

ciency, some SM nondatapath

units operate at half the SP clock rate.

C.7 Real Stuff: The NVIDIA GeForce 8800

C-49

To effi

ciently execute hundreds of parallel threads while running several diff erent

programs, the SM is hardware multithreaded. It manages and executes up to 768

concurrent threads in hardware with zero scheduling overhead. Each thread has its

own thread execution state and can execute an independent code path.

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel,

or compute. Th

e SIMT design, previously described in Section C.4, shares the SM

instruction fetch and issue unit effi

ciently across 32 threads but requires a full warp

of active threads for full performance effi

ciency.

Th

e SM schedules and executes multiple warp types concurrently. Each issue

cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction.

An issued warp instruction executes as four sets of 8 threads over four processor

cycles. Th

e SP and SFU units execute instructions independently, and by issuing

instructions between them on alternate cycles, the scheduler can keep both fully

occupied. A scoreboard qualifi es each warp for issue each cycle. Th

e instruction

scheduler prioritizes all ready warps and selects the one with highest priority for

issue. Prioritization considers warp type, instruction type, and “fairness” to all

warps executing in the SM.

Th

e SM executes cooperative thread arrays (CTAs) as multiple concurrent warps

which access a shared memory region allocated dynamically for the CTA.

Instruction Set

Th

reads execute scalar instructions, unlike previous GPU vector instruction

architectures. Scalar instructions are simpler and compiler friendly. Texture

instructions remain vector based, taking a source coordinate vector and returning

a fi ltered color vector.

Th

e register-based instruction set includes all the fl oating-point and integer

arithmetic, transcendental, logical, fl ow control, memory load/store, and texture

instructions listed in the PTX instruction table of Figure C.4.3. Memory load/store

instructions use integer byte addressing with register-plus-off set address arithmetic.

For computing, the load/store instructions access three read-write memory spaces:

local memory for per-thread, private, temporary data; shared memory for low-

latency per-CTA data shared by the threads of the CTA; and global memory for data

shared by all threads. Computing programs use the fast barrier synchronization

bar.sync instruction to synchronize threads within a CTA that communicate

with each other via shared and global memory. Th

e latest Tesla architecture GPUs

implement PTX atomic memory operations, which facilitate parallel reductions

and parallel data structure management.

Streaming Processor (SP)

Th

e multithreaded SP core is the primary thread processor, as introduced in

Section C.4. Its register fi le provides 1024 scalar 32-bit registers for up to 96 threads

(more threads than in the example SP of Section C.4). Its fl oating-point add and

C-50

Appendix C Graphics and Computing GPUs

multiply operations are compatible with the IEEE 754 standard for single precision

FP numbers, including not-a-number (NaN) and infi nity. Th

e add and multiply

operations use IEEE round-to-nearest-even as the default rounding mode. Th

e SP

core also implements all of the 32-bit and 64-bit integer arithmetic, comparison,

conversion, and logical PTX instructions in Figure C.4.3. Th

e processor is fully

pipelined, and latency is optimized to balance delay and area.

Special Function Unit (SFU)

Th

e SFU supports computation of both transcendental functions and planar

attribute interpolation. As described in Section C.6, it uses quadratic interpolation

based on enhanced minimax approximations to approximate the reciprocal,

reciprocal square root, log x, 2 x, and sin/cos functions at one result per cycle. Th e

2

SFU also supports pixel attribute interpolation such as color, depth, and texture

coordinates at four samples per cycle.

Rasterization

Geometry primitives from the SMs go in their original round-robin input order

to the viewport/clip/setup/raster/zcull block. Th

e viewport and clip units clip

the primitives to the view frustum and to any enabled user clip planes, and then

transform the vertices into screen (pixel) space.

Surviving primitives then go to the setup unit, which generates edge equations

for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at

least partially inside the primitive. Th

e zcull unit maintains a hierarchical z surface,

rejecting pixel tiles if they are conservatively known to be occluded by previously

drawn pixels. Th

e rejection rate is up to 256 pixels per clock. Pixels that survive zcull

then go to a fi ne-rasterization stage that generates detailed coverage information

and depth values.

Th

e depth test and update can be performed ahead of the fragment shader, or

aft er, depending on current state. Th

e SMC assembles surviving pixels into warps

to be processed by an SM running the current pixel shader. Th

e SMC then sends

surviving pixel and associated data to the ROP.

Raster Operations Processor (ROP) and Memory System

Each ROP is paired with a specifi c memory partition. For each pixel fragment

emitted by a pixel shader program, ROPs perform depth and stencil testing and

updates, and in parallel, color blending and updates. Lossless color compression

(up to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth.

Each ROP has a peak rate of four pixels per clock and supports 16-bit fl oating-

point and 32-bit fl oating-point HDR formats. ROPs support double-rate-depth

processing when color writes are disabled.

C.7 Real Stuff: The NVIDIA GeForce 8800

C-51

Antialiasing support includes up to 16 multisampling and supersampling. Th

e

coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean

coverage at up to 16 samples and compresses redundant color, depth, and stencil

information into the memory footprint and a bandwidth of four or eight samples

for improved performance.

Th

e DRAM memory data bus width is 384 pins, arranged in six independent

partitions of 64 pins each. Each partition supports double-data-rate DDR2 and

graphics-oriented GDDR3 protocols at up to 1.0 GHz, yielding a bandwidth of

about 16 GB/s per partition, or 96 GB/s.

Th

e memory controllers support a wide range of DRAM clock rates, protocols,

device densities, and data bus widths. Texture and load/store requests can occur

between any TPC and any memory partition, so an interconnection network routes

requests and responses.

Scalability

Th

e Tesla unifi ed architecture is designed for scalability. Varying the number of

SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for

diff erent performance and cost targets in GPU market segments. Scalable link

interconnect (SLI) connects multiple GPUs, providing further scalability.

Performance

Th

e GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz,

for a theoretical operation peak of 576 GFLOPS. Th

e GeForce 8800 GTX has a 1.35

GHz processor clock and a corresponding peak of 518 GFLOPS.

Th

e following three sections compare the performance of a GeForce 8800 GPU

with a multicore CPU on three diff erent applications—dense linear algebra, fast

Fourier transforms, and sorting. Th

e GPU programs and libraries are compiled

CUDA C code. Th

e CPU code uses the single precision multithreaded Intel MKL

10.0 library to leverage SSE instructions and multiple cores.

Dense Linear Algebra Performance

Dense linear algebra computations are fundamental in many applications. Volkov

and Demmel [2008] present GPU and CPU performance results for single precision

dense matrix-matrix multiplication (the SGEMM routine) and LU, QR, and

Cholesky matrix factorizations. Figure C.7.3 compares GFLOPS rates on SGEMM

dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a quad-

core CPU. Figure C.7.4 compares GFLOPS rates on matrix factorization for a GPU

with a quad-core CPU.

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the

bulk of the work in matrix factorization, their performance sets an upper bound on

factorization rate. As the matrix order increases beyond 200 to 400, the factorization

C-52

Appendix C Graphics and Computing GPUs

A:NN, B:NN

A:N64, B:64N

210

GeForce 8800 GTX

180

150

120

GFLOPS

90

60

Core2 Quad

30

0

64

128

256

512

1024

2048

4096

8192

N

FIGURE C.7.3 SGEMM dense matrix-matrix multiplication performance rates. Th

e graph

shows single precision GFLOPS rates achieved in multiplying square NN matrices (solid lines) and thin N64 and 64N matrices (dashed lines). Adapted from Figure 6 of Volkov and Demmel [2008]. Th

e black

lines are a 1.35 GHz GeForce 8800 GTX using Volkov’s SGEMM code (now in NVIDIA CUBLAS 2.0) on

matrices in GPU memory. Th

e blue lines are a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux,

Intel MKL 10.0 on matrices in CPU memory.

LU

Cholesky

QR

210

180

150

120

GFLOPS

90

orce 8800 GTX + Core2 Duo

60

Core2 Quad

GeF

30

0

64

128

256

512

1024

2048

4096

8192

16,384

Order of Matrix

FIGURE C.7.4 Dense matrix factorization performance rates. Th

e graph shows GFLOPS rates

achieved in matrix factorizations using the GPU and using the CPU alone. Adapted from Figure 7 of Volkov and Demmel [2008]. Th

e black lines are for a 1.35 GHz NVIDIA GeForce 8800 GTX, CUDA 1.1, Windows

XP attached to a 2.67 GHz Intel Core2 Duo E6700 Windows XP, including all CPU–GPU data transfer times.

Th

e blue lines are for a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, Intel MKL 10.0.

C.7 Real Stuff: The NVIDIA GeForce 8800

C-53

problem becomes large enough that SGEMM can leverage the GPU parallelism and

overcome the CPU–GPU system and copy overhead. Volkov’s SGEMM matrix-

matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX peak

multiply-add rate, while the QR factorization reached 192 GFLOPS, about 4.3

times the quad-core CPU.

FFT Performance

Fast Fourier Transforms are used in many applications. Large transforms and

multidimensional transforms are partitioned into batches of smaller 1D transforms.

Figure C.7.5 compares the in-place 1D complex single precision FFT

performance of a 1.35 GHz GeForce 8800 GTX (dating from late 2006) with a 2.8

GHz quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating from

late 2007). CPU performance was measured using the Intel Math Kernel Library

(MKL) 10.0 FFT with four threads. GPU performance was measured using the

NVIDIA CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency

FFTs. Both CPU and GPU throughput performance was measured using batched

FFTs; batch size was 224/ n, where n is the transform size. Th

us, the workload for

every transform size was 128 MB. To determine GFLOPS rate, the number of

operations per transform was taken as 5 n log n.

2

GeForce 8800GTX

Xeon 5462

80

70

60

50

40

GFLOPS 30

20

10

0

128

256

512 1024 2048 4096 8192

288

16,38432,76865,536

131,072

262,144

524, 1,048,576

2,097,152

4,194,304

Number of Elements in One Transform

FIGURE C.7.5 Fast Fourier Transform throughput performance. Th

e graph compares the

performance of batched one-dimensional in-place complex FFTs on a 1.35 GHz GeForce 8800 GTX with a quad-core 2.8 GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 1600

FSB, Red Hat Linux, Intel MKL 10.0.

C-54

Appendix C Graphics and Computing GPUs

Sorting Performance

In contrast to the applications just discussed, sort requires far more substantial

coordination among parallel threads, and parallel scaling is correspondingly

harder to obtain. Nevertheless, a variety of well-known sorting algorithms can

be effi

ciently parallelized to run well on the GPU. Satish et al. [2008] detail the

design of sorting algorithms in CUDA, and the results they report for radix sort

are summarized below.

Figure C.7.6 compares the parallel sorting performance of a GeForce 8800 Ultra

with an 8-core Intel Clovertown system, both of which date to early 2007. Th

e

CPU cores are distributed between two physical sockets. Each socket contains a

multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All

sorting routines were designed to sort key-value pairs where both keys and values

are 32-bit integers. Th

e primary algorithm being studied is radix sort, although

the quicksort-based parallel_sort() procedure provided by Intel’s Th

reading

Building Blocks is also included for comparison. Of the two CPU-based radix sort

codes, one was implemented using only the scalar instruction set and the other

utilizes carefully hand-tuned assembly language routines that take advantage of the

SSE2 SIMD vector instructions.

Th

e graph itself shows the achieved sorting rate—defi ned as the number of

elements sorted divided by the time to sort—for a range of sequence sizes. It is

CPU quick sort

CPU radix sort (scalar)

GPU radix sort

CPU radix sort (SIMD)

80

Millions 70

60

50

40

30

Sorting Rate (pairs/sec)

20

10

0

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

Sequence Size

FIGURE C.7.6 Parallel sorting performance. Th

is graph compares sorting rates for parallel radix

sort implementations on a 1.5 GHz GeForce 8800 Ultra and an 8-core 2.33 GHz Intel Core2 Xeon E5345

system.

C.8 Real Stuff: Mapping Applications to GPUs

C-55

apparent from this graph that the GPU radix sort achieved the highest sorting

rate for all sequences of 8K-elements and larger. In this range, it is on average 2.6

times faster than the quicksort-based routine and roughly 2 times faster than the

radix sort routines, all of which were using the eight available CPU cores. Th

e CPU

radix sort performance varies widely, likely due to poor cache locality of its global

permutations.

 C.8

Real Stuff: Mapping Applications to GPUs

Th

e advent of multicore CPUs and manycore GPUs means that mainstream

processor chips are now parallel systems. Furthermore, their parallelism continues

to scale with Moore’s law. Th

e challenge is to develop mainstream visual computing

and high-performance computing applications that transparently scale their

parallelism to leverage the increasing number of processor cores, much as 3D

graphics applications transparently scale their parallelism to GPUs with widely

varying numbers of cores.

Th

is section presents examples of mapping scalable parallel computing

applications to the GPU using CUDA.

Sparse Matrices

A wide variety of parallel algorithms can be written in CUDA in a fairly

straightforward manner, even when the data structures involved are not simple

regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of an

important numerical building block that can be parallelized quite directly using the

abstractions provided by CUDA. Th

e kernels we discuss below, when combined

with the provided CUBLAS vector routines, make writing iterative solvers such as

the conjugate gradient method straightforward.

A sparse n n matrix is one in which the number of nonzero entries m is only a small fraction of the total. Sparse matrix representations seek to store only the

nonzero elements of a matrix. Since it is fairly typical that a sparse n n matrix will contain only m O(n) nonzero elements, this represents a substantial saving in storage space and processing time.

One of the most common representations for general unstructured sparse

matrices is the compressed sparse row (CSR) representation. Th

e m nonzero

elements of the matrix A are stored in row-major order in an array Av. A second

array Aj records the corresponding column index for each entry of Av. Finally, an

array Ap of n 1 elements records the extent of each row in the previous arrays; the

entries for row i in Aj and Av extend from index Ap[i] up to, but not including,

index Ap[i + 1]. Th

is implies that Ap[0] will always be 0 and Ap[n] will always

be the number of nonzero elements in the matrix. Figure C.8.1 shows an example

of the CSR representation of a simple matrix.

C-56

Appendix C Graphics and Computing GPUs

Row 0

Row 2

Row 3

3 0 1 0

Av[7] = { 3

1

2

4

1

1

1 }

0 0 0 0

Aj[7] = { 0

2

1

2

3

0

3 }

 A = 0 2 4 1

1 0 0 1

Ap[5] = { 0

2

2

5

7

}

a. Sample matrix A

b. CSR representation of matrix

FIGURE C.8.1 Compressed sparse row (CSR) matrix.

float multiply_row(unsigned int rowsize,

unsigned int *Aj, // column indices for row

float *Av, // nonzero entries for row

float *x) // the RHS vector

{

float sum = 0;

for(unsigned int column=0; column<rowsize; ++column)

sum += Av[column] * x[Aj[column]];

return sum;

}

FIGURE C.8.2 Serial C code for a single row of sparse matrix-vector multiply.

Given a matrix A in CSR form and a vector x, we can compute a single row of

the product y Ax using the multiply_row() procedure shown in Figure C.8.2.

Computing the full product is then simply a matter of looping over all rows and

computing the result for that row using multiply_row(), as in the serial C code

shown in Figure C.8.3.

Th

is algorithm can be translated into a parallel CUDA kernel quite easily. We

simply spread the loop in csrmul_serial() over many parallel threads. Each

thread will compute exactly one row of the output vector y. Th

e code for this kernel

is shown in Figure C.8.4. Note that it looks extremely similar to the serial loop

used in the csrmul_serial() procedure. Th

ere are really only two points of

diff erence. First, the row index for each thread is computed from the block and

thread indices assigned to each thread, eliminating the for-loop. Second, we have a

conditional that only evaluates a row product if the row index is within the bounds

of the matrix (this is necessary since the number of rows n need not be a multiple

of the block size used in launching the kernel).

C.8 Real Stuff: Mapping Applications to GPUs

C-57

void csrmul_serial(unsigned int *Ap, unsigned int *Aj,

float *Av, unsigned int num_rows,

float *x, float *y)

{

for(unsigned int row=0; row<num_rows; ++row)

{

unsigned int row_begin = Ap[row];

unsigned int row_end = Ap[row+1];

y[row] = multiply_row(row_end-row_begin, Aj+row_begin,

Av+row_begin, x);

}

}

FIGURE C.8.3 Serial code for sparse matrix-vector multiply.

__global__

void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,

float *Av, unsigned int num_rows,

float *x, float *y)

{

unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

if(row<num_rows)

{

unsigned int row_begin = Ap[row];

unsigned int row_end = Ap[row+1];

y[row] = multiply_row(row_end-row_begin, Aj+row_begin,

Av+row_begin, x);

}

}

FIGURE C.8.4 CUDA version of sparse matrix-vector multiply.

Assuming that the matrix data structures have already been copied to the GPU

device memory, launching this kernel will look like:

unsigned int blocksize = 128; // or any size up to 512

unsigned int nblocks

=

(num_rows + blocksize - 1) / blocksize;

csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);

C-58

Appendix C Graphics and Computing GPUs

Th

e pattern that we see here is a very common one. Th

e original serial

algorithm is a loop whose iterations are independent of each other. Such loops

can be parallelized quite easily by simply assigning one or more iterations of the

loop to each parallel thread. Th

e programming model provided by CUDA makes

expressing this type of parallelism particularly straightforward.

Th

is general strategy of decomposing computations into blocks of independent

work, and more specifi cally breaking up independent loop iterations, is not unique

to CUDA. Th

is is a common approach used in one form or another by various

parallel programming systems, including OpenMP and Intel’s Th

reading Building

Blocks.

Caching in Shared memory

Th

e SpMV algorithms outlined above are fairly simplistic. Th

ere are a number of

optimizations that can be made in both the CPU and GPU codes that can improve

performance, including loop unrolling, matrix reordering, and register blocking.

Th

e parallel kernels can also be reimplemented in terms of data parallel scan

operations presented by Sengupta, et al. [2007].

One of the important architectural features exposed by CUDA is the presence of

the per-block shared memory, a small on-chip memory with very low latency. Taking

advantage of this memory can deliver substantial performance improvements. One

common way of doing this is to use shared memory as a soft ware-managed cache

to hold frequently reused data. Modifcations using shared memory are shown in

Figure C.8.5.

In the context of sparse matrix multiplication, we observe that several rows of A

may use a particular array element x[i]. In many common cases, and particularly

when the matrix has been reordered, the rows using x[i] will be rows near row i.

We can therefore implement a simple caching scheme and expect to achieve some

performance benefi t. Th

e block of threads processing rows i through j will load

x[i] through x[j] into its shared memory. We will unroll the multiply_row()

loop and fetch elements of x from the cache whenever possible. Th

e resulting

code is shown in Figure C.8.5. Shared memory can also be used to make other

optimizations, such as fetching Ap[row+1] from an adjacent thread rather than

refetching it from memory.

Because the Tesla architecture provides an explicitly managed on-chip shared

memory, rather than an implicitly active hardware cache, it is fairly common to add

this sort of optimization. Although this can impose some additional development

burden on the programmer, it is relatively minor, and the potential performance

benefi ts can be substantial. In the example shown above, even this fairly simple

use of shared memory returns a roughly 20% performance improvement on

representative matrices derived from 3D surface meshes. Th

e availability of an

explicitly managed memory in lieu of an implicit cache also has the advantage

that caching and prefetching policies can be specifi cally tailored to the application

needs.

C.8 Real Stuff: Mapping Applications to GPUs

C-59

__global__

void csrmul_cached(unsigned int *Ap, unsigned int *Aj,

float *Av, unsigned int num_rows,

const float *x, float *y)

{

// Cache the rows of x[] corresponding to this block.

__shared__ float cache[blocksize];

unsigned int block_begin = blockIdx.x * blockDim.x;

unsigned int block_end = block_begin + blockDim.x;

unsigned int row = block_begin + threadIdx.x;

// Fetch and cache our window of x[].

if(row<num_rows) cache[threadIdx.x] = x[row];

__syncthreads();

if(row<num_rows)

{

unsigned int row_begin = Ap[row];

unsigned int row_end = Ap[row+1];

float sum = 0, x_j;

for(unsigned int col=row_begin; col<row_end; ++col)

{

unsigned int j = Aj[col];

// Fetch x_j from our cache when possible

if(j>=block_begin && j<block_end)

x_j = cache[j-block_begin];

else

x_j = x[j];

sum += Av[col] * x_j;

}

y[row] = sum;

}

}

FIGURE C.8.5 Shared memory version of sparse matrix-vector multiply.

C-60

Appendix C Graphics and Computing GPUs

Th

ese are fairly simple kernels whose purpose is to illustrate basic techniques

in writing CUDA programs, rather than how to achieve maximal performance.

Numerous possible avenues for optimization are available, several of which are

explored by Williams, et al. [2007] on a handful of diff erent multicore architectures.

Nevertheless, it is still instructive to examine the comparative performance of even

these simplistic kernels. On a 2 GHz Intel Core2 Xeon E5335 processor, the csrmul_

serial() kernel runs at roughly 202 million nonzeros processed per second, for

a collection of Laplacian matrices derived from 3D triangulated surface meshes.

Parallelizing this kernel with the parallel_for construct provided by Intel’s

Th

reading Building Blocks produces parallel speed-ups of 2.0, 2.1, and 2.3 running

on two, four, and eight cores of the machine, respectively. On a GeForce 8800 Ultra,

the csrmul_kernel() and csrmul_cached() kernels achieve processing rates

of roughly 772 and 920 million nonzeros per second, corresponding to parallel

speed-ups of 3.8 and 4.6 times over the serial performance of a single CPU core.

Scan and Reduction

Parallel scan, also known as parallel prefi x sum, is one of the most important building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence a

of n elements:

[a , a ,…, a

]

0

1

 n 1

and a binary associative operator ⊕, the scan function computes the sequence:

scan(a,)

⊕

[a ,(a ⊕ a),…,(a ⊕ a ⊕ … ⊕ a

)]

0

0

1

0

1

 n 1

As an example, if we take ⊕ to be the usual addition operator, then applying scan

to the input array

 a [3 1 7 0 4 1 6]

3

will produce the sequence of partial sums:

scan(a,)

[3 4 11 11 15 16 22

]

25

Th

is scan operator is an inclusive scan, in the sense that element i of the output

sequence incorporates element a of the input. Incorporating only previous elements

i

would yield an exclusive scan operator, also known as a prefi x-sum operation.

Th

e serial implementation of this operation is extremely simple. It is simply a

loop that iterates once over the entire sequence, as shown in Figure C.8.6.

At fi rst glance, it might appear that this operation is inherently serial. However,

it can actually be implemented in parallel effi

ciently. Th

e key observation is that

C.8 Real Stuff: Mapping Applications to GPUs

C-61

template<class T>

__host__ T plus_scan(T *x, unsigned int n)

{

for(unsigned int i=1; i<n; ++i)

x[i] = x[i-1] + x[i];

}

FIGURE C.8.6 Template for serial plus-scan.

template<class T>

__device__ T plus_scan(T *x)

{

unsigned int i = threadIdx.x;

unsigned int n = blockDim.x;

for(unsigned int offset=1; offset<n; offset *= 2)

{

T t;

if(i>=offset) t = x[i-offset];

__syncthreads();

if(i>=offset) x[i] = t + x[i];

__syncthreads();

}

return x[i];

}

FIGURE C.8.7 CUDA template for parallel plus-scan.

because addition is associative, we are free to change the order in which elements

are added together. For instance, we can imagine adding pairs of consecutive

elements in parallel, and then adding these partial sums, and so on.

One simple scheme for doing this is from Hillis and Steele [1989]. An

implementation of their algorithm in CUDA is shown in Figure C.8.7. It assumes

that the input array x[] contains exactly one element per thread of the thread

block. It performs log n iterations of a loop collecting partial sums together.

2

To understand the action of this loop, consider Figure C.8.8, which illustrates

the simple case for n 8 threads and elements. Each level of the diagram represents

one step of the loop. Th

e lines indicate the location from which the data is being

fetched. For each element of the output (i.e., the fi nal row of the diagram) we are

building a summation tree over the input elements. Th

e edges highlighted in blue

show the form of this summation tree for the fi nal element. Th

e leaves of this tree

are all the initial elements. Tracing back from any output element shows that it

incorporates all input values up to and including itself.

C-62

Appendix C Graphics and Computing GPUs

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x [i] + = x [i – 1] ;

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x [i] + = x [i – 2] ;

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x [i] + = x [i – 4] ;

FIGURE C.8.8 Tree-based parallel scan data references.

While simple, this algorithm is not as effi

cient as we would like. Examining

the serial implementation, we see that it performs O(n) additions. Th

e parallel

implementation, in contrast, performs O(n log n) additions. For this reason, it

is not work effi

 cient, since it does more work than the serial implementation to

compute the same result. Fortunately, there are other techniques for implementing

scan that are work effi

cient. Details on more effi

cient implementation techniques

and the extension of this per-block procedure to multiblock arrays are provided by

Sengupta, et al. [2007].

In some instances, we may only be interested in computing the sum of all

elements in an array, rather than the sequence of all prefi x sums returned by scan.

Th

is is the parallel reduction problem. We could simply use a scan algorithm to

perform this computation, but reduction can generally be implemented more

effi

ciently than scan.

Figure C.8.9 shows the code for computing a reduction using addition. In this

example, each thread simply loads one element of the input sequence (i.e., it initially

sums a subsequence of length 1). At the end of the reduction, we want thread 0 to

hold the sum of all elements initially loaded by the threads of its block. Th

e loop in

this kernel implicitly builds a summation tree over the input elements, much like

the scan algorithm above.

At the end of this loop, thread 0 holds the sum of all the values loaded by this block.

If we want the fi nal value of the location pointed to by total to contain the total of all

elements in the array, we must combine the partial sums of all the blocks in the grid.

One strategy to do this would be to have each block write its partial sum into a second

array and then launch the reduction kernel again, repeating the process until we had

reduced the sequence to a single value. A more attractive alternative supported by

the Tesla GPU architecture is to use the atomicAdd() primitive, an effi

cient atomic

C.8 Real Stuff: Mapping Applications to GPUs

C-63

__global__

void plus_reduce(int *input, unsigned int N, int *total)

{

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

// Each block loads its elements into shared memory, padding

// with 0 if N is not a multiple of blocksize

__shared__ int x[blocksize];

x[tid] = (i<N) ? input[i] : 0;

__syncthreads();

// Every thread now holds 1 input value in x[]

//

// Build summation tree over elements.

for(int s=blockDim.x/2; s>0; s=s/2)

{

if(tid < s) x[tid] += x[tid + s];

__syncthreads();

}

// Thread 0 now holds the sum of all input values

// to this block. Have it add that sum to the running total

if(tid == 0) atomicAdd(total, x[tid]);

}

FIGURE C.8.9 CUDA implementation of plus-reduction.

read-modify-write primitive supported by the memory subsystem. Th

is eliminates

the need for additional temporary arrays and repeated kernel launches.

Parallel reduction is an essential primitive for parallel programming and

highlights the importance of per-block shared memory and low-cost barriers in

making cooperation among threads effi

cient. Th

is degree of data shuffl

ing among

threads would be prohibitively expensive if done in off -chip global memory.

Radix Sort

One important application of scan primitives is in the implementation of sorting

routines. Th

e code in Figure C.8.10 implements a radix sort of integers across a

single thread block. It accepts as input an array values containing one 32-bit

integer for each thread of the block. For effi

ciency, this array should be stored in

per-block shared memory, but this is not required for the sort to behave correctly.

Th

is is a fairly simple implementation of radix sort. It assumes the availability of

a procedure partition_by_bit() that will partition the given array such that

C-64

Appendix C Graphics and Computing GPUs

__device__ void radix_sort(unsigned int *values)

{

for(int bit=0; bit<32; ++bit)

{

partition_by_bit(values, bit);

__syncthreads();

}

}

FIGURE C.8.10 CUDA code for radix sort.

__device__ void partition_by_bit(unsigned int *values,

unsigned int bit)

{

unsigned int i = threadIdx.x;

unsigned int size = blockDim.x;

unsigned int x_i = values[i];

unsigned int p_i = (x_i >> bit) & 1;

values[i] = p_i;

__syncthreads();

// Compute number of T bits up to and including p_i.

// Record the total number of F bits as well.

unsigned int T_before = plus_scan(values);

unsigned int T_total = values[size-1];

unsigned int F_total = size - T_total;

__syncthreads();

// Write every x_i to its proper place

if(p_i)

values[T_before-1 + F_total] = x_i;

else

values[i - T_before] = x_i;

}

FIGURE C.8.11 CUDA code to partition data on a bit-by-bit basis, as part of radix sort.

all values with a 0 in the designated bit will come before all values with a 1 in that

bit. To produce the correct output, this partitioning must be stable.

Implementing the partitioning procedure is a simple application of scan. Th

read

 i holds the value x and must calculate the correct output index at which to write i

this value. To do so, it needs to calculate (1) the number of threads j i for which the designated bit is 1 and (2) the total number of bits for which the designated bit

is 0. Th

e CUDA code for partition_by_bit() is shown in Figure C.8.11.

C.8 Real Stuff: Mapping Applications to GPUs

C-65

A similar strategy can be applied for implementing a radix sort kernel that sorts

an array of large length, rather than just a one-block array. Th

e fundamental step

remains the scan procedure, although when the computation is partitioned across

multiple kernels, we must double-buff er the array of values rather than doing the

partitioning in place. Details on performing radix sorts on large arrays effi

ciently

are provided by Satish et al. [2008].

N-Body Applications on a GPU1

Nyland, et al. [2007] describe a simple yet useful computational kernel with

excellent GPU performance—the all-pairs N-body algorithm. It is a time-consuming

component of many scientifi c applications. N-body simulations calculate the

evolution of a system of bodies in which each body continuously interacts with

every other body. One example is an astrophysical simulation in which each body

represents an individual star, and the bodies gravitationally attract each other.

Other examples are protein folding, where N-body simulation is used to calculate

electrostatic and van der Waals forces; turbulent fl uid fl ow simulation; and global

illumination in computer graphics.

Th

e all-pairs N-body algorithm calculates the total force on each body in the

system by computing each pair-wise force in the system, summing for each body.

Many scientists consider this method to be the most accurate, with the only loss of

precision coming from the fl oating-point hardware operations. Th

e drawback is its

O(n 2) computational complexity, which is far too large for systems with more than

10 bodies. To overcome this high cost, several simplifi cations have been proposed

to yield O(n log n) and O(n) algorithms; examples are the Barnes-Hut algorithm, the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the fast

methods still rely on the all-pairs method as a kernel for accurate computation of

short-range forces; thus it continues to be important.

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary

physics. Between two bodies indexed by i and j, the 3D force vector is:

 i

 m mj

 ij

r

f

×

 ij

 G ||r ||2 ||r

 ij

 ij ||

Th

e force magnitude is calculated in the left term, while the direction is computed

in the right (unit vector pointing from one body to the other).

Given a list of interacting bodies (an entire system or a subset), the calculation is

simple: for all pairs of interactions, compute the force and sum for each body. Once

the total forces are calculated, they are used to update each body’s position and

velocity, based on the previous position and velocity. Th

e calculation of the forces

has complexity O(n 2), while the update is O(n).

1 Adapted from Nyland et al. [2007], “Fast N-Body Simulation with CUDA,” Chapter 31 of

 GPU Gems 3.

C-66

Appendix C Graphics and Computing GPUs

Th

e serial force-calculation code uses two nested for-loops iterating over pairs of

bodies. Th

e outer loop selects the body for which the total force is being calculated,

and the inner loop iterates over all the bodies. Th

e inner loop calls a function that

computes the pair-wise force, then adds the force into a running sum.

To compute the forces in parallel, we assign one thread to each body, since the

calculation of force on each body is independent of the calculation on all other

bodies. Once all of the forces are computed, the positions and velocities of the

bodies can be updated.

Th

e code for the serial and parallel versions is shown in Figure C.8.12 and Figure

C.8.13. Th

e serial version has two nested for-loops. Th

e conversion to CUDA,

like many other examples, converts the serial outer loop to a per-thread kernel

where each thread computes the total force on a single body. Th

e CUDA kernel

computes a global thread ID for each thread, replacing the iterator variable of the

serial outer loop. Both kernels fi nish by storing the total acceleration in a global

array used to compute the new position and velocity values in a subsequent step.

void accel_on_all_bodies()

{

int i, j;

float3 acc(0.0f, 0.0f, 0.0f);

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

acc = body_body_interaction(acc, body[i], body[j]);

}

accel[i] = acc;

}

}

FIGURE C.8.12 Serial code to compute all pair-wise forces on N bodies.

__global__ void accel_on_one_body()

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

int

j;

float3 acc(0.0f, 0.0f, 0.0f);

for (j = 0; j < N; j++) {

acc = body_body_interaction(acc, body[i], body[j]);

}

accel[i] = acc;

}

FIGURE C.8.13 CUDA thread code to compute the total force on a single body.

C.8 Real Stuff: Mapping Applications to GPUs

C-67

Th

e outer loop is replaced by a CUDA kernel grid that launches N threads, one

for each body.

Optimization for GPU Execution

Th

e CUDA code shown is functionally correct, but is not effi

cient, as it ignores

key architectural features. Better performance can be achieved with three main

optimizations. First, shared memory can be used to avoid identical memory reads

between threads. Second, using multiple threads per body improves performance

for small values of N. Th

ird, loop unrolling reduces loop overhead.

Using Shared memory

Shared memory can hold a subset of body positions, much like a cache, eliminating

redundant global memory requests between threads. We optimize the code shown

above to have each of p threads in a thread-block load one position into shared

memory (for a total of p positions). Once all the threads have loaded a value into

shared memory, ensured by __syncthreads(), each thread can then perform

 p interactions (using the data in shared memory). Th

is is repeated N/ p times to

complete the force calculation for each body, which reduces the number of requests

to memory by a factor of p (typically in the range 32–128).

Th

e function called accel_on_one_body() requires a few changes to support

this optimization. Th

e modifi ed code is shown in Figure C.8.14.

__shared__ float4 shPosition[256];

…

__global__ void accel_on_one_body()

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

int j, k;

int p = blockDim.x;

float3 acc(0.0f, 0.0f, 0.0f);

float4 myBody = body[i];

for (j = 0; j < N; j += p) { // Outer loops jumps by p each time

shPosition[threadIdx.x] = body[j+threadIdx.x];

__syncthreads();

for (k = 0; k < p; k++) { // Inner loop accesses p positions

acc = body_body_interaction(acc, myBody, shPosition[k]);

}

__syncthreads();

}

accel[i] = acc;

}

FIGURE C.8.14 CUDA code to compute the total force on each body, using shared memory to improve performance.

C-68

Appendix C Graphics and Computing GPUs

N-Body Performance on GPUs

250

200

150

1 thread, 8800

2 threads, 8800

GFLOPS 100

4 threads, 8800

1 thread, 9600

50

2 threads, 9600

4 threads, 9600

0

512

768

1024

1536

2048

3072

4096

6144

8192

12,288

16,384

24,576

32,768

Number of Bodies

FIGURE C.8.15 Performance measurements of the N-body application on a GeForce 8800

GTX and a GeForce 9600. Th

e 8800 has 128 stream processors at 1.35 GHz, while the 9600 has 64 at 0.80

GHz (about 30% of the 8800). Th

e peak performance is 242 GFLOPS. For a GPU with more processors, the

problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the 8800

doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can signifi cantly improve performance, but eventually incurs a performance penalty as N grows.

Th

e loop that formerly iterated over all bodies now jumps by the block dimension

 p. Each iteration of the outer loop loads p successive positions into shared memory (one position per thread). Th

e threads synchronize, and then p force calculations

are computed by each thread. A second synchronization is required to ensure that

new values are not loaded into shared memory prior to all threads completing the

force calculations with the current data.

Using shared memory reduces the memory bandwidth required to less than

10% of the total bandwidth that the GPU can sustain (using less than 5 GB/s).

Th

is optimization keeps the application busy performing computation rather than

waiting on memory accesses, as it would have done without the use of shared

memory. Th

e performance for varying values of N is shown in Figure C.8.15.

Using Multiple Threads per Body

Figure C.8.15 shows performance degradation for problems with small values of N

(N 4096) on the GeForce 8800 GTX. Many research eff orts that rely on N-body

calculations focus on small N (for long simulation times), making it a target of

our optimization eff orts. Our presumption to explain the lower performance was

that there was simply not enough work to keep the GPU busy when N is small.

Th

e solution is to allocate more threads per body. We change the thread-block

dimensions from (p, 1, 1) to (p, q, 1), where q threads divide the work of a single body into equal parts. By allocating the additional threads within the same thread block,

partial results can be stored in shared memory. When all the force calculations are

C.8 Real Stuff: Mapping Applications to GPUs

C-69

done, the q partial results can be collected and summed to compute the fi nal result.

Using two or four threads per body leads to large improvements for small N.

As an example, the performance on the 8800 GTX jumps by 110% when N

 1024 (one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS).

Performance degrades slightly on large N, so we only use this optimization for N

smaller than 4096. Th

e performance increases are shown in Figure C.8.15 for a

GPU with 128 processors and a smaller GPU with 64 processors clocked at two-

thirds the speed.

Performance Comparison

Th

e performance of the N-body code is shown in Figure C.8.15 and Figure C.8.16.

In Figure C.8.15, performance of high- and medium-performance GPUs is shown,

along with the performance improvements achieved by using multiple threads per

body. Th

e performance on the faster GPU ranges from 90 to just under 250 GFLOPS.

Figure C.8.16 shows nearly identical code (C versus CUDA) running on

Intel Core2 CPUs. Th

e CPU performance is about 1% of the GPU, in the range of

0.2 to 2 GFLOPS, remaining nearly constant over the wide range of problem sizes.

N-Body Performance on Intel CPUs

2

1.8

1.6

1.4

1.2

1

GFLOPS

0.8

T2400

0.6

E8200

0.4

X9775

0.2

X9775-Cuda

0

512

768

1024

1536

2048

3072

4096

6144

8192

12,288

16,384

24,576

32,768

Number of Bodies

FIGURE C.8.16 Performance measurements on the N-body code on a CPU. Th

e graph shows

single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note the dramatic reduction in GFLOPS performance (shown in GFLOPS on the y-axis), demonstrating how much faster the GPU is compared to the CPU. Th

e performance on the CPU is generally independent of

problem size, except for an anomalously low performance when N16,384 on the X9775 CPU. Th

e graph

also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler)

on a single CPU core, where it outperforms the C code by 24%. As a programming language, CUDA

exposes parallelism and locality that a compiler can exploit. Th

e Intel CPUs are a 3.2 GHz Extreme X9775

(code named “Penryn”), a 2.66 GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a 1.83 GHz T2400 (code named “Yonah”), a 2007 laptop CPU. Th

e Penryn version of the Core 2 architecture

is particularly interesting for N-body calculations with its 4-bit divider, allowing division and square root operations to execute four times faster than previous Intel CPUs.

C-70

Appendix C Graphics and Computing GPUs

Th

e graph also shows the results of compiling the CUDA version of the code

for a CPU, where the performance improves by 24%. CUDA, as a programming

language, exposes parallelism, allowing the compiler to make better use of the SSE

vector unit on a single core. Th

e CUDA version of the N-body code naturally maps

to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect

scaling on an eight-core system with N 4096 (ratios of 2.0, 3.97, and 7.94 on two,

four, and eight cores, respectively).

Results

With a modest eff ort, we developed a computational kernel that improves GPU

performance over multicore CPUs by a factor of up to 157. Execution time for

the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz,

single core) took more than 3 seconds per frame to run the same code that runs at a

44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires

6–16 seconds, and on older Core2 processors and Pentium IV processor, the time

is about 25 seconds. We must divide the apparent increase in performance in half,

as the CPU requires only half as many calculations to compute the same result

(using the optimization that the forces on a pair of bodies are equal in strength and

opposite in direction).

How can the GPU speed up the code by such a large amount? Th

e answer

requires inspecting architectural details. Th

e pair-wise force calculation requires

20 fl oating-point operations, comprised mostly of addition and multiplication

instructions (some of which can be combined using a multiply-add instruction),

but there are also division and square root instructions for vector normalization.

Intel CPUs take many cycles for single precision division and square root

instructions,2 although this has improved in the latest Penryn CPU family with its

faster 4-bit divider.3 Additionally, the limitations in register capacity lead to many

MOV instructions in the x86 code (presumably to/from L1 cache). In contrast, the

GeForce 8800 executes a reciprocal square-root thread instruction in four clocks;

see Section C.6 for special function accuracy. It has a larger register fi le (per thread)

and shared memory that can be accessed as an instruction operand. Finally, the

CUDA compiler emits 15 instructions for one iteration of the loop, compared

with more than 40 instructions from a variety of x86 CPU compilers. Greater

parallelism, faster execution of complex instructions, more register space, and an

effi

cient compiler all combine to explain the dramatic performance improvement

of the N-body code between the CPU and the GPU.

2 Th

e x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were

not considered, as their accuracy is too low to be comparable.

3 Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual.

November 2007. Order Number: 248966-016. Also available at www3.intel.com/design/

processor/manuals/248966.pdf.

C.8 Real Stuff: Mapping Applications to GPUs

C-71

On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240

GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential

processors. Compiling and executing the CUDA version of the code on a CPU

demonstrates that the problem scales well to multicore CPUs, but is still signifi cantly

slower than a single GPU.

We coupled the GPU N-body simulation with a graphical display of the motion,

and can interactively display 16K bodies interacting at 44 frames per second.

Th

is allows astrophysical and biophysical events to be displayed and navigated at

interactive rates. Additionally, we can parameterize many settings, such as noise

reduction, damping, and integration techniques, immediately displaying their

eff ects on the dynamics of the system. Th

is provides scientists with stunning visual

imagery, boosting their insights on otherwise invisible systems (too large or small,

too fast or too slow), allowing them to create better models of physical phenomena.

Figure C.8.17 shows a time-series display of an astrophysical simulation

of 16K bodies, with each body acting as a galaxy. Th

e initial confi guration is a

FIGURE C.8.17 12 images captured during the evolution of an N-body system with 16,384 bodies.

C-72

Appendix C Graphics and Computing GPUs

spherical shell of bodies rotating about the z-axis. One phenomenon of interest to

astrophysicists is the clustering that occurs, along with the merging of galaxies over

time. For the interested reader, the CUDA code for this application is available in

the CUDA SDK from www.nvidia.com/CUDA.

 C.9

Fallacies and Pitfalls

GPUs have evolved and changed so rapidly that many fallacies and pitfalls have

arisen. We cover a few here.

Fallacy: GPUs are just SIMD vector multiprocessors. It is easy to draw the false

conclusion that GPUs are simply SIMD vector multiprocessors. GPUs do have

a SPMD-style programming model, in that a programmer can write a single

program that is executed in multiple thread instances with multiple data. Th

e

execution of these threads is not purely SIMD or vector, however; it is single-

 instruction multiple-thread (SIMT), described in Section C.4. Each GPU thread

has its own scalar registers, thread private memory, thread execution state, thread

ID, independent execution and branch path, and eff ective program counter, and

can address memory independently. Although a group of threads (e.g., a warp of 32

threads) executes more effi

ciently when the PCs for the threads are the same, this is

not necessary. So, the multiprocessors are not purely SIMD. Th

e thread execution

model is MIMD with barrier synchronization and SIMT optimizations. Execution

is more effi

cient if individual thread load/store memory accesses can be coalesced

into block accesses, as well. However, this is not strictly necessary. In a purely

SIMD vector architecture, memory/register accesses for diff erent threads must be

aligned in a regular vector pattern. A GPU has no such restriction for register or

memory accesses; however, execution is more effi

cient if warps of threads access

local blocks of data.

In a further departure from a pure SIMD model, an SIMT GPU can execute

more than one warp of threads concurrently. In graphics applications, there may

be multiple groups of vertex programs, pixel programs, and geometry programs

running in the multiprocessor array concurrently. Computing programs may also

execute diff erent programs concurrently in diff erent warps.

Fallacy: GPU performance cannot grow faster than Moore’s law. Moore’s law

is simply a rate. It is not a “speed of light” limit for any other rate. Moore’s law

describes an expectation that, over time, as semiconductor technology advances

and transistors become smaller, the manufacturing cost per transistor will decline

C.9 Fallacies and Pitfalls

C-73

exponentially. Put another way, given a constant manufacturing cost, the number

of transistors will increase exponentially. Gordon Moore [1965] predicted that this

progression would provide roughly two times the number of transistors for the

same manufacturing cost every year, and later revised it to doubling every two

years. Although Moore made the initial prediction in 1965 when there were just

50 components per integrated circuit, it has proved remarkably consistent. Th

e

reduction of transistor size has historically had other benefi ts, such as lower power

per transistor and faster clock speeds at constant power.

Th

is increasing bounty of transistors is used by chip architects to build processors,

memory, and other components. For some time, CPU designers have used the

extra transistors to increase processor performance at a rate similar to Moore’s law,

so much so that many people think that processor performance growth of two

times every 18–24 months is Moore’s law. In fact, it is not.

Microprocessor designers spend some of the new transistors on processor cores,

improving the architecture and design, and pipelining for more clock speed. Th

e

rest of the new transistors are used for providing more cache, to make memory

access faster. In contrast, GPU designers use almost none of the new transistors to

provide more cache; most of the transistors are used for improving the processor

cores and adding more processor cores.

GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law

bounty directly by applying exponentially more transistors to building more parallel,

and thus faster, processors. Second, GPU designers can improve on the architecture

over time, increasing the effi

ciency of the processing. Th

ird, Moore’s law assumes

constant cost, so the Moore’s law rate can clearly be exceeded by spending more for

larger chips with more transistors. Fourth, GPU memory systems have increased their

eff ective bandwidth at a pace nearly comparable to the processing rate, by using faster

memories, wider memories, data compression, and better caches. Th

e combination of

these four approaches has historically allowed GPU performance to double regularly,

roughly every 12 to 18 months. Th

is rate, exceeding the rate of Moore’s law, has been

demonstrated on graphics applications for approximately ten years and shows no

sign of signifi cant slowdown. Th

e most challenging rate limiter appears to be the

memory system, but competitive innovation is advancing that rapidly too.

Fallacy: GPUs only render 3D graphics; they can’t do general computation. GPUs

are built to render 3D graphics as well as 2D graphics and video. To meet the demands

of graphics soft ware developers as expressed in the interfaces and performance/

feature requirements of the graphics APIs, GPUs have become massively parallel

programmable fl oating-point processors. In the graphics domain, these processors

are programmed through the graphics APIs and with arcane graphics programming

languages (GLSL, Cg, and HLSL, in OpenGL and Direct3D). However, there is

C-74

Appendix C Graphics and Computing GPUs

nothing preventing GPU architects from exposing the parallel processor cores to

programmers without the graphics API or the arcane graphics languages.

In fact, the Tesla architecture family of GPUs exposes the processors through

a soft ware environment known as CUDA, which allows programmers to develop

general application programs using the C language and soon C. GPUs are

Turing-complete processors, so they can run any program that a CPU can run,

although perhaps less well. And perhaps faster.

Fallacy: GPUs cannot run double precision fl oating-point programs fast. In the

past, GPUs could not run double precision fl oating-point programs at all, except

through soft ware emulation. And that’s not very fast at all. GPUs have made the

progression from indexed arithmetic representation (lookup tables for colors) to

8-bit integers per color component, to fi xed-point arithmetic, to single precision

fl oating-point, and recently added double precision. Modern GPUs perform

virtually all calculations in single precision IEEE fl oating-point arithmetic, and are

beginning to use double precision in addition.

For a small additional cost, a GPU can support double precision fl oating-point

as well as single precision fl oating-point. Today, double precision runs more slowly

than the single precision speed, about fi ve to ten times slower. For incremental

additional cost, double precision performance can be increased relative to single

precision in stages, as more applications demand it.

Fallacy: GPUs don’t do fl oating-point correctly. GPUs, at least in the Tesla

architecture family of processors, perform single precision fl oating-point

processing at a level prescribed by the IEEE 754 fl oating-point standard. So, in

terms of accuracy, GPUs are the equal of any other IEEE 754-compliant processors.

Today, GPUs do not implement some of the specifi c features described in the

standard, such as handling denormalized numbers and providing precise fl oating-

point exceptions. However, the recently introduced Tesla T10P GPU provides full

IEEE rounding, fused-multiply-add, and denormalized number support for double

precision.

Pitfall: Just use more threads to cover longer memory latencies. CPU cores are

typically designed to run a single thread at full speed. To run at full speed, every

instruction and its data need to be available when it is time for that instruction to

run. If the next instruction is not ready or the data required for that instruction is

not available, the instruction cannot run and the processor stalls. External memory

is distant from the processor, so it takes many cycles of wasted execution to fetch

data from memory. Consequently, CPUs require large local caches to keep running

C.9 Fallacies and Pitfalls

C-75

without stalling. Memory latency is long, so it is avoided by striving to run in the

cache. At some point, program working set demands may be larger than any cache.

Some CPUs have used multithreading to tolerate latency, but the number of threads

per core has generally been limited to a small number.

Th

e GPU strategy is diff erent. GPU cores are designed to run many threads

concurrently, but only one instruction from any thread at a time. Another way to

say this is that a GPU runs each thread slowly, but in aggregate runs the threads

effi

ciently. Each thread can tolerate some amount of memory latency, because

other threads can run.

Th

e downside of this is that multiple—many multiple threads—are required to

cover the memory latency. In addition, if memory accesses are scattered or not

correlated among threads, the memory system will get progressively slower in

responding to each individual request. Eventually, even the multiple threads will

not be able to cover the latency. So, the pitfall is that for the “just use more threads”

strategy to work for covering latency, you have to have enough threads, and the

threads have to be well-behaved in terms of locality of memory access.

Fallacy: O(n) algorithms are diffi

 cult to speed up. No matter how fast the GPU is

at processing data, the steps of transferring data to and from the device may limit

the performance of algorithms with O(n) complexity (with a small amount of work

per datum). Th

e highest transfer rate over the PCIe bus is approximately 48 GB/

second when DMA transfers are used, and slightly less for nonDMA transfers. Th

e

CPU, in contrast, has typical access speeds of 8–12 GB/second to system memory.

Example problems, such as vector addition, will be limited by the transfer of the

inputs to the GPU and the returning output from the computation.

Th

ere are three ways to overcome the cost of transferring data. First, try to leave

the data on the GPU for as long as possible, instead of moving the data back and

forth for diff erent steps of a complicated algorithm. CUDA deliberately leaves data

alone in the GPU between launches to support this.

Second, the GPU supports the concurrent operations of copy-in, copy-out and

computation, so data can be streamed in and out of the device while it is computing.

Th

is model is useful for any data stream that can be processed as it arrives. Examples

are video processing, network routing, data compression/decompression, and even

simpler computations such as large vector mathematics.

Th

e third suggestion is to use the CPU and GPU together, improving performance

by assigning a subset of the work to each, treating the system as a heterogeneous

computing platform. Th

e CUDA programming model supports allocation of work

to one or more GPUs along with continued use of the CPU without the use of

threads (via asynchronous GPU functions), so it is relatively simple to keep all

GPUs and a CPU working concurrently to solve problems even faster.

C-76

Appendix C Graphics and Computing GPUs

 C.10 Concluding

Remarks

GPUs are massively parallel processors and have become widely used, not only

for 3D graphics, but also for many other applications. Th

is wide application was

made possible by the evolution of graphics devices into programmable processors.

Th

e graphics application programming model for GPUs is usually an API such

as DirectX™ or OpenGL™. For more general-purpose computing, the CUDA

programming model uses an SPMD (single-program multiple data) style, executing

a program with many parallel threads.

GPU parallelism will continue to scale with Moore’s law, mainly by increasing

the number of processors. Only the parallel programming models that can readily

scale to hundreds of processor cores and thousands of threads will be successful

in supporting manycore GPUs and CPUs. Also, only those applications that have

many largely independent parallel tasks will be accelerated by massively parallel

manycore architectures.

Parallel programming models for GPUs are becoming more fl exible, for both

graphics and parallel computing. For example, CUDA is evolving rapidly in the

direction of full C/C functionality. Graphics APIs and programming models

will likely adapt parallel computing capabilities and models from CUDA. Its

SPMD-style threading model is scalable, and is a convenient, succinct, and easily

learned model for expressing large amounts of parallelism.

Driven by these changes in the programming models, GPU architecture is in

turn becoming more fl exible and more programmable. GPU fi xed-function units

are becoming accessible from general programs, along the lines of how CUDA

programs already use texture intrinsic functions to perform texture lookups using

the GPU texture instruction and texture unit.

GPU architecture will continue to adapt to the usage patterns of both graphics

and other application programmers. GPUs will continue to expand to include

more processing power through additional processor cores, as well as increasing

the thread and memory bandwidth available for programs. In addition, the

programming models must evolve to include programming heterogeneous

manycore systems including both GPUs and CPUs.

Acknowledgments

Th

is appendix is the work of several authors at NVIDIA. We gratefully acknowledge

the signifi cant contributions of Michael Garland, John Montrym, Doug Voorhies,

Lars Nyland, Erik Lindholm, Paulius Micikevicius, Massimiliano Fatica, Stuart

Oberman, and Vasily Volkov.

C.11 Historical Perspective and Further Reading

C-77

 C.11 Historical Perspective and Further

Reading

Graphics Pipeline Evolution

3D graphics pipeline hardware evolved from the large expensive systems of the

early 1980s to small workstations and then to PC accelerators in the mid- to late

1990s. During this period, three major transitions occurred:

■ Performance-leading graphics subsystems declined in price from $50,000 to

$200.

■ Performance increased from 50 million pixels per second to 1 billion pixels per

second and from 100,000 vertices per second to 10 million vertices per second.

■ Native hardware capabilities evolved from wireframe (polygon outlines) to

fl at shaded (constant color) fi lled polygons, to smooth shaded (interpolated

color) fi lled polygons, to full-scene anti-aliasing with texture mapping and

rudimentary multitexturing.

Fixed-Function Graphics Pipelines

Th

roughout this period, graphics hardware was confi gurable, but not programmable

by the application developer. With each generation, incremental improvements

were off ered. But developers were growing more sophisticated and asking for

more new features than could be reasonably off ered as built-in fi xed functions. Th

e

NVIDIA GeForce 3, described by Lindholm et al. [2001], took the fi rst step toward

true general shader programmability. It exposed to the application developer what

had been the private internal instruction set of the fl oating-point vertex engine.

Th

is coincided with the release of Microsoft ’s DirectX 8 and OpenGL’s vertex shader

extensions. Later GPUs, at the time of DirectX 9, extended general programmability

and fl oating point capability to the pixel fragment stage, and made texture

available at the vertex stage. Th

e ATI Radeon 9700, introduced in 2002, featured

a programmable 24-bit fl oating-point pixel fragment processor programmed

with DirectX 9 and OpenGL. Th

e GeForce FX added 32-bit fl oating-point pixel

processors. Th

is was part of a general trend toward unifying the functionality of

the diff erent stages, at least as far as the application programmer was concerned.

NVIDIA’s GeForce 6800 and 7800 series were built with separate processor designs

and separate hardware dedicated to the vertex and to the fragment processing. Th

e

XBox 360 introduced an early unifi ed processor GPU in 2005, allowing vertex and

pixel shaders to execute on the same processor.

C-78

Appendix C Graphics and Computing GPUs

Evolution of Programmable Real-Time Graphics

During the last 30 years, graphics architecture has evolved from a simple pipeline for

drawing wireframe diagrams to a highly parallel design consisting of several deep

parallel pipelines capable of rendering complex interactive imagery that appears

three-dimensional. Concurrently, many of the calculations involved became far

more sophisticated and user programmable.

In these graphics pipelines, certain stages do a great deal of fl oating-point

arithmetic on completely independent data, such as transforming the position

of triangle vertexes or generating pixel colors. Th

is data independence is a key

diff erence between GPUs and CPUs. A single frame, rendered in 1/60th of a

second, might have 1 million triangles and 6 million pixels. Th

e opportunity to use

hardware parallelism to exploit this data independence is tremendous.

Th

e specifi c functions executed at a few graphics pipeline stages vary with

rendering algorithms and have evolved to be programmable. Vertex programs

map the position of triangle vertices on to the screen, altering their position, color,

or orientation. Typically a vertex shader thread inputs a fl oating-point (x, y, z, w)

vertex position and computes a fl oating-point (x, y, z) screen position. Geometry

programs operate on primitives defi ned by multiple vertices, changing them or

generating additional primitives. Pixel fragment shaders each “shade” one pixel,

computing a fl oating-point red, green, blue, alpha (RGBA) color contribution to

the rendered image at its pixel sample (x, y) image position. For all three types of

graphics shaders, program instances can be run in parallel, because each works on

independent data, produces independent results, and has no side eff ects.

Between these programmable graphics pipeline stages are dozens of fi xed-function

stages which perform well-defi ned tasks far more effi

ciently than a programmable

processor could and which would benefi t far less from programmability. For

example, between the geometry processing stage and the pixel processing stage is

a “rasterizer,” a complex state machine that determines exactly which pixels (and

portions thereof) lie within each geometric primitive’s boundaries. Together, the

mix of programmable and fi xed-function stages is engineered to balance extreme

performance with user control over the rendering algorithms.

Common rendering algorithms perform a single pass over input primitives and

access other memory resources in a highly coherent manner; these algorithms

provide excellent bandwidth utilization and are largely insensitive to memory

latency. Combined with a pixel shader workload that is usually compute-limited,

these characteristics have guided GPUs along a diff erent evolutionary path than

CPUs. Whereas CPU die area is dominated by cache memory, GPUs are dominated

by fl oating-point datapath and fi xed-function logic. GPU memory interfaces

emphasize bandwidth over latency (since latency can be readily hidden by a high

thread count); indeed, bandwidth is typically many times higher than a CPU,

exceeding 100 GB/second in some cases. Th

e far-higher number of fi ne-grained

lightweight threads eff ectively exploits the rich parallelism available.

C.11 Historical Perspective and Further Reading

C-79

Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable

graphics stages are mapped to an array of unifi ed processors; the logical graphics

pipeline is physically a recirculating path that visits these processors three times,

with much fi xed-function graphics logic between visits. Since diff erent rendering

algorithms present wildly diff erent loads among the three programmable stages,

this unifi cation provides processor load balancing.

Unifi ed Graphics and Computing Processors

By the DirectX 10 generation, the functionality of vertex and pixel fragment

shaders was to be made identical to the programmer, and in fact a new logical

stage was introduced, the geometry shader, to process all the vertices of a primitive

rather than vertices in isolation. Th

e GeForce 8800 was designed with DirectX 10

in mind. Developers were coming up with more sophisticated shading algorithms,

and this motivated a sharp increase in the available shader operation rate,

particularly fl oating-point operations. NVIDIA chose to pursue a processor design

with higher operating frequency than standard-cell methodologies had allowed,

to deliver the desired operation throughput as area-effi

ciently as possible. High-

clock-speed design requires substantially more engineering eff ort, and this favored

designing one processor, rather than two (or three, given the new geometry stage).

It became worthwhile to take on the engineering challenges of a unifi ed processor

(load balancing and recirculation of a logical pipeline onto threads of the processor

array) to get the benefi ts of one processor design.

GPGPU: an Intermediate Step

As DirectX 9-capable GPUs became available, some researchers took notice of the

raw performance growth path of GPUs and began to explore the use of GPUs to

solve complex parallel problems. DirectX 9 GPUs had been designed only to match

the features required by the graphics API. To access the computational resources, a

programmer had to cast their problem into native graphics operations. For example,

to run many simultaneous instances of a pixel shader, a triangle had to be issued to

the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did

not have the means to perform arbitrary scatter operations to memory. Th

e only

way to write a result to memory was to emit it as a pixel color value, and confi gure

the framebuff er operation stage to write (or blend, if desired) the result to a two-

dimensional framebuff er. Furthermore, the only way to get a result from one pass

of computation to the next was to write all parallel results to a pixel framebuff er,

then use that framebuff er as a texture map as input to the pixel fragment shader of

the next stage of the computation. Mapping general computations to a GPU in this

era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful

of useful applications with painstaking eff orts. Th

is fi eld was called “GPGPU” for

general purpose computing on GPUs.

C-80

Appendix C Graphics and Computing GPUs

GPU Computing

While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its

potential usefulness would be much greater if programmers could think of the GPU

as a processor. NVIDIA selected a programming approach in which programmers

would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a high-

effi

ciency fl oating-point and integer processor that could run a variety of

simultaneous workloads to support the logical graphics pipeline. Th

is processor

was designed to take advantage of the common case of groups of threads executing

the same code path. NVIDIA added memory load and store instructions with

integer byte addressing to support the requirements of compiled C programs. It

introduced the thread block (cooperative thread array), grid of thread blocks, and

barrier synchronization to dispatch and manage highly parallel computing work.

Atomic memory operations were added. NVIDIA developed the CUDA C/C

compiler, libraries, and runtime soft ware to enable programmers to readily access

the new data-parallel computation model and develop applications.

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the beginning.

Workstation graphics systems gave customers a choice in pixel horsepower by

varying the number of pixel processor circuit boards installed. Prior to the mid-

1990s PC graphics scaling was almost nonexistent. Th

ere was one option—the

VGA controller. As 3D-capable accelerators appeared, the market had room for a

range of off erings. 3dfx introduced multiboard scaling with the original SLI (Scan

Line Interleave) on their Voodoo2, which held the performance crown for its time

(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single

architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), fi rst

by speed binning and packaging, then with separate chip designs (GeForce 2 GTS &

GeForce 2 MX). At present, for a given architecture generation, four or fi ve separate

GPU chip designs are needed to cover the range of desktop PC performance and

price points. In addition, there are separate segments in notebook and workstation

systems. Aft er acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in

2004, starting with GeForce 6800—providing multi-GPU scalability transparently

to the programmer and to the user. Functional behavior is identical across the

scaling range; one application will run unchanged on any implementation of an

architectural family.

CPUs are scaling to higher transistor counts by increasing the number of

constant-performance cores on a die, rather than increasing the performance of

a single core. At this writing the industry is transitioning from dual-core to quad-

core, with eight-core not far behind. Programmers are forced to fi nd fourfold to

eightfold task parallelism to fully utilize these processors, and applications using

task parallelism must be rewritten frequently to target each successive doubling of

C.11 Historical Perspective and Further Reading

C-81

core count. In contrast, the highly multithreaded GPU encourages the use of many-

fold data parallelism and thread parallelism, which readily scales to thousands of

parallel threads on many processors. Th

e GPU scalable parallel programming

model for graphics and parallel computing is designed for transparent and

portable scalability. A graphics program or CUDA program is written once and

runs on a GPU with any number of processors. As shown in Section C.1, a CUDA

programmer explicitly states both fi ne-grained and coarse-grained parallelism in

a thread program by decomposing the problem into grids of thread blocks—the

same program will run effi

ciently on GPUs or CPUs of any size in current and

future generations as well.

Recent Developments

Academic and industrial work on applications using CUDA has produced

hundreds of examples of successful CUDA programs. Many of these programs run

the application tens or hundreds of times faster than multicore CPUs are capable

of running them. Examples include n-body simulation, molecular modeling,

computational fi nance, and oil and gas exploration data processing. Although

many of these use single precision fl oating-point arithmetic, some problems require

double precision. Th

e recent arrival of double precision fl oating point in GPUs

enables an even broader range of applications to benefi t from GPU acceleration.

For a comprehensive list and examples of current developments in applications

that are accelerated by GPUs, visit CUDAZone: www.nvidia.com/CUDA.

Future Trends

Naturally, the number of processor cores will continue to increase in proportion to

increases in available transistors as silicon processes improve. In addition, GPUs

will continue to enjoy vigorous architectural evolution. Despite their demonstrated

high performance on data-parallel applications, GPU core processors are still of

relatively simple design. More aggressive techniques will be introduced with each

successive architecture to increase the actual utilization of the calculating units.

Because scalable parallel computing on GPUs is a new fi eld, novel applications

are rapidly being created. By studying them, GPU designers will discover and

implement new machine optimizations.

Further Reading

Akeley, K. and T. Jermoluk [1988]. “High-Performance Polygon Rendering,” Proc. SIGGRAPH 1988 (August), 239–46.

Akeley, K. [1993]. “RealityEngine Graphics.” Proc. SIGGRAPH 1993 (August), 109–16.

Blelloch, G. B. [1990]. “Prefi x Sums and Th

eir Applications.” In John H. Reif (Ed.), Synthesis of Parallel

 Algorithms, Morgan Kaufmann Publishers, San Francisco.

Blythe, D. [2006]. “Th

e Direct3D 10 System,” ACM Trans. Graphics, Vol. 25, no. 3 (July), 724–34.

C-82

Appendix C Graphics and Computing GPUs

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahlian, M. Houston, and P. Hanrahan [2004]. “Brook for GPUs: Stream Computing on Graphics Hardware.” Proc. SIGGRAPH 2004, 777–86, August. http://doi.acm.

org/10.1145/1186562.1015800

Elder, G. [2002] “Radeon 9700.” Eurographics/SIGGRAPH Workshop on Graphics Hardware, Hot3D

Session, www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt

Fernando, R. and M. J. Kilgard [2003]. Th

 e Cg Tutorial: Th

 e Defi nitive Guide to Programmable Real-Time

 Graphics, Addison-Wesley, Reading, MA.

Fernando, R. ed. [2004]. GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, Addison-Wesley, Reading, MA. http://developer.nvidia.com/object/gpu_gems_home.html.

Foley, J., A. van Dam, S. Feiner, and J. Hughes [1995]. Computer Graphics: Principles and Practice, second edition in C, Addison-Wesley, Reading, MA.

Hillis, W. D. and G. L. Steele [1986]. “Data parallel algorithms.” Commun. ACM 29, 12 (Dec.), 1170–83.

http:// doi.acm.org/10.1145/7902.7903.

IEEE Std 754-2008 [2008]. IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8, STD95802, http://ieeexplore.ieee.org/servlet/opac?punumber4610933 (Aug. 29).

Industrial Light and Magic [2003]. OpenEXR, www.openexr.com.

Intel Corporation [2007]. Intel 64 and IA-32 Architectures Optimization Reference Manual. November. Order Number: 248966-016. Also: www3.intel.com/design/processor/manuals/248966.pdf.

Kessenich, J. [2006]. Th

 e OpenGL Shading Language, Language Version 1.20, Sept. 2006. www.opengl.org/

documentation/specs/.

Kirk, D. and D. Voorhies [1990]. “Th

e Rendering Architecture of the DN10000VS.” Proc. SIGGRAPH 1990

(August), 299–307.

Lindholm E., M. J. Kilgard, and H. Moreton [2001]. “A User- Programmable Vertex Engine.” Proc. SIGGRAPH

 2001 (August), 149–58.

Lindholm E., J. Nickolls, S. Oberman, and J. Montrym [2008]. “NVIDIA Tesla: A Unifi ed Graphics and Computing Architecture.” IEEE Micro, Vol. 28, no. 2 (March–April), 39–55.

Microsoft Corporation. Microsoft DirectX Specifi cation, http://msdn.microsoft .com/directx/

Microsoft Corporation. [2003]. Microsoft DirectX 9 Programmable Graphics Pipeline, Microsoft Press, Redmond, WA.

Montrym, J., D. Baum, D. Dignam, and C. Migdal [1997]. “Infi niteReality: A Real-Time Graphics System.”

 Proc. SIGGRAPH 1997 (August), 293–301 .

Montrym, J. and H. Moreton [2005]. “Th

e GeForce 6800,” IEEE Micro, Vol. 25, no. 2 (March–April), 41–51.

Moore, G. E. [1965]. “Cramming more components onto integrated circuits,” Electronics, Vol. 38, no. 8 (April 19).

Nguyen, H., ed. [2008]. GPU Gems 3, Addison-Wesley, Reading, MA.

C.11 Historical Perspective and Further Reading

C-83

Nickolls, J., I. Buck, M. Garland, and K. Skadron [2008]. “Scalable Parallel Programming with CUDA,” ACM

 Queue, Vol. 6, no. 2 (March–April) 40–53.

NVIDIA [2007]. CUDA Zone. www.nvidia.com/CUDA.

NVIDIA [2007]. CUDA Programming Guide 1.1. http://developer.download.nvidia.com/compute/cuda/1_1/

NVIDIA_CUDA_Programming_Guide_1.1.pdf.

NVIDIA [2007]. PTX: Parallel Th

 read Execution ISA version 1.1. www.nvidia.com/object/io_1195170102263.

html.

Nyland, L., M. Harris, and J. Prins [2007]. “Fast N-Body Simulation with CUDA.” In GPU Gems 3, H. Nguyen (Ed.), Addison-Wesley, Reading, MA.

Oberman, S. F. and M. Y. Siu [2005]. “A High-Performance Area- Effi

cient Multifunction Interpolator,” Proc.

 Seventeenth IEEE Symp. Computer Arithmetic, 272–79.

Patterson, D. A. and J. L. Hennessy [2004]. Computer Organization and Design: Th

 e Hardware/Soft ware Inter

 face, third edition, Morgan Kaufmann Publishers, San Francisco.

Pharr, M. ed. [2005]. GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation, Addison-Wesley, Reading, MA.

Satish, N., M. Harris, and M. Garland [2008]. “Designing Effi

cient Sorting Algorithms for Manycore GPUs,”

NVIDIA Technical Report NVR-2008-001.

Segal, M. and K. Akeley [2006]. Th

 e OpenGL Graphics System: A Specifi cation, Version 2.1, Dec. 1, 2006. www.

opengl.org/documentation/specs/.

Sengupta, S., M. Harris, Y. Zhang, and J. D. Owens [2007]. “Scan Primitives for GPU Computing.” In Proc. of Graphics Hardware 2007 (August), 97–106.

Volkov, V. and J. Demmel [2008]. “LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs,”

Technical Report No. UCB/EECS-2008-49, 1–11. www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

49.html.

Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007]. “Optimization of sparse matrix-vector multiplication on emerging multicore platforms,” In Proc. Supercomputing 2007, November.

D

A

P

P

E

N

D

I

X

Mapping Control

 A custom format such

to Hardware

 as this is slave to the

 architecture of the

 hardware and the

D.1 Introduction

D-3

 instruction set it serves.

D.2

Implementing Combinational Control

Units D-4

 Th

 e format must strike

D.3

Implementing Finite-State Machine

 a proper compromise

Control D-8

 between ROM size,

D.4

Implementing the Next-State Function with a

 ROM-output decoding,

Sequencer D-22

 circuitry size, and

 machine execution rate.

Jim McKevit, et al.

8086 design report, 1997

D.5

Translating a Microprogram to Hardware D-28

D.6 Concluding

Remarks

D-32

D.7 Exercises

D-33

 D.1 Introduction

Control typically has two parts: a combinational part that lacks state and a sequential

control unit that handles sequencing and the main control in a multicycle design.

Combinational control units are oft en used to handle part of the decode and

control process. Th

e ALU control in Chapter 4 is such an example. A single-cycle

implementation like that in Chapter 4 can also use a combinational controller,

since it does not require multiple states. Section D.2 examines the implementation

of these two combinational units from the truth tables of Chapter 4.

Since sequential control units are larger and oft en more complex, there are a wider

variety of techniques for implementing a sequential control unit. Th

e usefulness of

these techniques depends on the complexity of the control, characteristics such

as the average number of next states for any given state, and the implementation

technology.

Th

e most straightforward way to implement a sequential control function is with

a block of logic that takes as inputs the current state and the opcode fi eld of the

Instruction register and produces as outputs the datapath control signals and the

value of the next state. Th

e initial representation may be either a fi nite-state diagram

or a microprogram. In the latter case, each microinstruction represents a state.

D-4

Appendix D Mapping Control to Hardware

In an implementation using a fi nite-state controller, the next-state function will

be computed with logic. Section D.3 constructs such an implementation both for

a ROM and a PLA.

An alternative method of implementation computes the next-state function by

using a counter that increments the current state to determine the next state. When

the next state doesn’t follow sequentially, other logic is used to determine the state.

Section D.4 explores this type of implementation and shows how it can be used to

implement fi nite-state control.

In Section D.5, we show how a microprogram representation of sequential

control is translated to control logic.

Implementing Combinational

 D.2

Control Units

In this section, we show how the ALU control unit and main control unit for the

single clock design are mapped down to the gate level. With modern computer-

 aided design (CAD) systems, this process is completely mechanical. Th

e examples

illustrate how a CAD system takes advantage of the structure of the control

function, including the presence of don’t-care terms.

Mapping the ALU Control Function to Gates

Figure D.2.1 shows the truth table for the ALU control function that was developed

in Section 4.4. A logic block that implements this ALU control function will have

four distinct outputs (called Operation3, Operation2, Operation1, and Operation0),

each corresponding to one of the four bits of the ALU control in the last column

of Figure D.2.1. Th

e logic function for each output is constructed by combining all

the truth table entries that set that particular output. For example, the low-order

bit of the ALU control (Operation0) is set by the last two entries of the truth table

in Figure D.2.1. Th

us, the truth table for Operation0 will have these two entries.

Figure D.2.2 shows the truth tables for each of the four ALU control bits.

We have taken advantage of the common structure in each truth table to

incorporate additional don’t cares. For example, the fi ve lines in the truth table of

Figure D.2.1 that set Operation1 are reduced to just two entries in Figure D.2.2. A

logic minimization program will use the don’t-care terms to reduce the number of

gates and the number of inputs to each gate in a logic gate realization of these truth

tables.

A confusing aspect of Figure D.2.2 is that there is no logic function for Opera-

tion3. Th

at is because this control line is only used for the NOR operation, which is

not needed for the MIPS subset in Figure 4.12.

From the simplifi ed truth table in Figure D.2.2, we can generate the logic shown

in Figure D.2.3, which we call the ALU control block. Th

is process is straightforward

D.2 Implementing Combinational Control Units

D-5

ALUOp

Funct field

Operation

ALUOp1

ALUOp0

F5

F4

F3

F2

F1

F0

0

0

X

X

X

X

X

X

0010

X

1

X

X

X

X

X

X

0110

1

X

X

X

0

0

0

0

0010

1

X

X

X

0

0

1

0

0110

1

X

X

X

0

1

0

0

0000

1

X

X

X

0

1

0

1

0001

1

X

X

X

1

0

1

0

0111

FIGURE D.2.1 The truth table for the 4 ALU control bits (called Operation) as a function of the ALUOp and function code fi eld. Th

is table is the same as that shown in Figure 4.13.

A

p

O

U

L

u

F

n

o

i

t

c

n

d

o

c

fi

e elds

ALUOp1

ALUOp0

F5

F4

F3

F2

F1

F0

0

1

X

X

X

X

X

X

1

X

X

X

X

X

1

X

a. The truth table for Operation2 = 1 (this table corresponds to the second to left bit of the Operation fi eld in Figure D.2.1)

A

p

O

U

L

u

F

n

o

i

t

c

n

d

o

c

fi

e elds

ALUOp1

ALUOp0

F5

F4

F3

F2

F1

F0

0

X

X

X

X

X

X

X

X

X

X

X

X

0

X

X

b. The truth table for Operation1 = 1

A

p

O

U

L

u

F

n

o

i

t

c

n

d

o

c

fi

e elds

ALUOp1

ALUOp0

F5

F4

F3

F2

F1

F0

1

X

X

X

X

X

X

1

1

X

X

X

1

X

X

X

c. The truth table for Operation0 = 1

FIGURE D.2.2 The truth tables for three ALU control lines. Only the entries for which the output is 1 are shown. Th

e bits in each fi eld are numbered from right to left starting with 0; thus F5 is the most

signifi cant bit of the function fi eld, and F0 is the least signifi cant bit. Similarly, the names of the signals corresponding to the 4-bit operation code supplied to the ALU are Operation3, Operation2, Operation1, and Operation0 (with the last being the least signifi cant bit). Th

us the truth table above shows the input

combinations for which the ALU control should be 0010, 0001, 0110, or 0111 (the other combinations are not used). Th

e ALUOp bits are named ALUOp1 and ALUOp0. Th

e three output values depend on the 2-bit

ALUOp fi eld and, when that fi eld is equal to 10, the 6-bit function code in the instruction. Accordingly, when the ALUOp fi eld is not equal to 10, we don’t care about the function code value (it is represented by an X).

Th

ere is no truth table for when Operation3⫽1 because it is always set to 0 in Figure D.2.1. See Appendix B

for more background on don’t cares.

D-6

Appendix D Mapping Control to Hardware

ALUOp

ALU control block

ALUOp0

ALUOp1

Operation3

Operation2

F3

Operation

F2

Operation1

F (5–0)

F1

Operation0

F0

FIGURE D.2.3 The ALU control block generates the four ALU control bits, based on the

function code and ALUOp bits. Th

is logic is generated directly from the truth table in Figure D.2.2. Only

four of the six bits in the function code are actually needed as inputs, since the upper two bits are always don’t cares. Let’s examine how this logic relates to the truth table of Figure D.2.2. Consider the Operation2 output, which is generated by two lines in the truth table for Operation2. Th

e second line is the AND of two terms

(F1 ⫽ 1 and ALUOp1 ⫽ 1); the top two-input AND gate corresponds to this term. Th

e other term that causes

Operation2 to be asserted is simply ALUOp0. Th

ese two terms are combined with an OR gate whose output

is Operation2. Th

e outputs Operation0 and Operation1 are derived in similar fashion from the truth table.

Since Operation3 is always 0, we connect a signal and its complement as inputs to an AND gate to generate 0.

and can be done with a CAD program. An example of how the logic gates can be

derived from the truth tables is given in the legend to Figure D.2.3.

Th

is ALU control logic is simple because there are only three outputs, and only a

few of the possible input combinations need to be recognized. If a large number of

possible ALU function codes had to be transformed into ALU control signals, this

simple method would not be effi

cient. Instead, you could use a decoder, a memory,

or a structured array of logic gates. Th

ese techniques are described in Appendix B,

and we will see examples when we examine the implementation of the multicycle

controller in Section D.3.

Elaboration: In general, a logic equation and truth table representation of a logic

function are equivalent. (We discuss this in further detail in Appendix B. However, when a

truth table only specifi es the entries that result in nonzero outputs, it may not completely

describe the logic function. A full truth table completely indicates all don’t-care entries.

For example, the encoding 11 for ALUOp always generates a don’t care in the output.

Thus a complete truth table would have XXX in the output portion for all entries with 11

in the ALUOp fi eld. These don’t-care entries allow us to replace the ALUOp fi eld 10 and

D.2 Implementing Combinational Control Units

D-7

01 with 1X and X1, respectively. Incorporating the don’t-care terms and minimizing the

logic is both complex and error-prone and, thus, is better left to a program.

Mapping the Main Control Function to Gates

Implementing the main control function with an unstructured collection of gates,

as we did for the ALU control, is reasonable because the control function is neither

complex nor large, as we can see from the truth table shown in Figure D.2.4.

However, if most of the 64 possible opcodes were used and there were many more

control lines, the number of gates would be much larger and each gate could have

many more inputs.

Since any function can be computed in two levels of logic, another way to

implement a logic function is with a structured two-level logic array. Figure D.2.5

shows such an implementation. It uses an array of AND gates followed by an array

of OR gates. Th

is structure is called a programmable logic array (PLA). A PLA is one

of the most common ways to implement a control function. We will return to the

topic of using structured logic elements to implement control when we implement

the fi nite-state controller in the next section.

Control

Signal name

R-format

lw

sw

beq

Op5

0

1

1

0

Op4

0

0

0

0

Op3

0

0

1

0

Inputs

Op2

0

0

0

1

Op1

0

1

1

0

Op0

0

1

1

0

RegDst

1

0

X

X

ALUSrc

0

1

1

0

MemtoReg

0

1

X

X

RegWrite

1

1

0

0

Outputs

MemRead

0

1

0

0

MemWrite

0

0

1

0

Branch

0

0

0

1

ALUOp1

1

0

0

0

ALUOp0

0

0

0

1

FIGURE D.2.4 The control function for the simple one-clock implementation is completely specifi ed by this truth table. Th

is table is the same as that shown in Figure 4.22.

D-8

Appendix D Mapping Control to Hardware

Inputs

Op5

Op4

Op3

Op2

Op1

Op0

Outputs

R-format

Iw

sw

beq

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

FIGURE D.2.5 The structured implementation of the control function as described by the truth table in Figure D.2.4. Th

e structure, called a programmable logic array (PLA), uses an array of

AND gates followed by an array of OR gates. Th

e inputs to the AND gates are the function inputs and their

inverses (bubbles indicate inversion of a signal). Th

e inputs to the OR gates are the outputs of the AND gates

(or, as a degenerate case, the function inputs and inverses). Th

e output of the OR gates is the function outputs.

 D.3

Implementing Finite-State Machine

Control

To implement the control as a fi nite-state machine, we must fi rst assign a number to

each of the 10 states; any state could use any number, but we will use the sequential

numbering for simplicity. Figure D.3.1 shows the fi nite-state diagram. With 10

states, we will need 4 bits to encode the state number, and we call these state bits S3,

S2, S1, and S0. Th

e current-state number will be stored in a state register, as shown

in Figure D.3.2. If the states are assigned sequentially, state i is encoded using the

D.3 Implementing Finite-State Machine Control

D-9

Instruction decode/

Instruction fetch

register fetch

0

MemRead

1

ALUSrcA = 0

IorD = 0

ALUSrcA = 0

IRWrite

Start

ALUSrcB = 11

ALUSrcB = 01

ALUOp = 00

ALUOp = 00

PCWrite

PCSource = 00

Memory address

(Op = R-type)

Branch

Jump

computation

(Op = 'BEQ')

(Op = 'J')

Execution

completion

completion

2

(Op = 'LW') or (Op = 'SW')

6

8

9

ALUSrcA = 1

ALUSrcA = 1

ALUSrcB = 00

ALUSrcA = 1

PCWrite

ALUSrcB = 10

ALUOp = 01

ALUSrcB = 00

PCSource = 10

ALUOp = 00

PCWriteCond

ALUOp = 10

PCSource = 01

(Op = 'SW')

Memory

Memory

(Op = 'LW')

access

access

R-type completion

3

5

7

RegDst = 1

MemRead

MemWrite

RegWrite

IorD = 1

IorD = 1

MemtoReg = 0

Write-back step

4

RegDst = 0

RegWrite

MemtoReg = 1

FIGURE D.3.1 The fi nite-state diagram for multicycle control.

D-10

Appendix D Mapping Control to Hardware

PCWrite

PCWriteCond

IorD

MemRead

MemWrite

IRWrite

Control logic

MemtoReg

PCSource

ALUOp

Outputs

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

Inputs

NS0

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

Instruction register

State register

opcode field

FIGURE D.3.2 The control unit for MIPS will consist of some control logic and a register to hold the state. Th

e state register is written at the active clock edge and is stable during the clock

cycle

state bits as the binary number i. For example, state 6 is encoded as 0110 or S3 ⫽

two

0, S2 ⫽ 1, S1 ⫽ 1, S0 ⫽ 0, which can also be written as

S3 · S2 · S1 · S0

Th

e control unit has outputs that specify the next state. Th

ese are written into

the state register on the clock edge and become the new state at the beginning of

the next clock cycle following the active clock edge. We name these outputs NS3,

NS2, NS1, and NS0. Once we have determined the number of inputs, states, and

outputs, we know what the basic outline of the control unit will look like, as we

show in Figure D.3.2.

D.3 Implementing Finite-State Machine Control

D-11

Th

e block labeled “control logic” in Figure D.3.2 is combinational logic. We can

think of it as a big table giving the value of the outputs in terms of the inputs. Th

e

logic in this block implements the two diff erent parts of the fi nite-state machine.

One part is the logic that determines the setting of the datapath control outputs,

which depend only on the state bits. Th

e other part of the control logic implements

the next-state function; these equations determine the values of the next-state bits

based on the current-state bits and the other inputs (the 6-bit opcode).

Figure D.3.3 shows the logic equations: the top portion shows the outputs, and

the bottom portion shows the next-state function. Th

e values in this table were

Ou

u

p

t

t

u

C r e

r

t

n

e

t

a

t

s

s

Op

PCWrite

state0 + state9

PCWriteCond

state8

IorD

state3 + state5

MemRead

state0 + state3

MemWrite

state5

IRWrite

state0

MemtoReg

state4

PCSource1

state9

PCSource0

state8

ALUOp1

state6

ALUOp0

state8

ALUSrcB1

state1 +state2

ALUSrcB0

state0 + state1

ALUSrcA

state2 + state6 + state8

RegWrite

state4 + state7

RegDst

state7

NextState0

state4 + state5 + state7 + state8 + state9

NextState1

state0

NextState2

state1

(Op = 'lw') + (Op = 'sw')

NextState3

state2

(Op = 'lw')

NextState4

state3

NextState5

state2

(Op = 'sw')

NextState6

state1

(Op = 'R-type')

NextState7

state6

NextState8

state1

(Op = 'beq')

NextState9

state1

(Op = 'jmp')

FIGURE D.3.3 The logic equations for the control unit shown in a shorthand form. Remember that “⫹” stands for OR in logic equations. Th

e state inputs and NextState outputs must be expanded by using

the state encoding. Any blank entry is a don’t care.

D-12

Appendix D Mapping Control to Hardware

determined from the state diagram in Figure D.3.1. Whenever a control line is

active in a state, that state is entered in the second column of the table. Likewise, the

next-state entries are made whenever one state is a successor to another.

In Figure D.3.3, we use the abbreviation state N to stand for current state N. Th

us,

state N is replaced by the term that encodes the state number N. We use NextState N

to stand for the setting of the next-state outputs to N. Th

is output is implemented

using the next-state outputs (NS). When NextState N is active, the bits NS[3–0] are

set corresponding to the binary version of the value N. Of course, since a given

next-state bit is activated in multiple next states, the equation for each state bit will

be the OR of the terms that activate that signal. Likewise, when we use a term such

as (Op ⫽ ‘lw’), this corresponds to an AND of the opcode inputs that specifi es the

encoding of the opcode lw in 6 bits, just as we did for the simple control unit in the

previous section of this chapter. Translating the entries in Figure D.3.3 into logic

equations for the outputs is straightforward.

Logic Equations for Next-State Outputs

EXAMPLE

Give the logic equation for the low-order next-state bit, NS0.

Th

e next-state bit NS0 should be active whenever the next state has NS0 ⫽ 1

ANSWER

in the state encoding. Th

is is true for NextState1, NextState3, NextState5,

NextState7, and NextState9. Th

e entries for these states in Figure D.3.3 supply

the conditions when these next-state values should be active. Th

e equation for

each of these next states is given below. Th

e fi rst equation states that the next

state is 1 if the current state is 0; the current state is 0 if each of the state input

bits is 0, which is what the rightmost product term indicates.

NextState1 ⫽ State0 ⫽ S3 · S2 · S1 · S0

NextState3 ⫽ State2 · (Op[5-0]⫽1w)

⫽ S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1 · Op0

D.3 Implementing Finite-State Machine Control

D-13

NextState5 ⫽ State2 · (Op[5-0]⫽sw)

⫽ S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1 · Op0

NextState7 ⫽ State6 ⫽ S3 · S2 · S1 · S0

NextState9 ⫽ State1 · (Op[5-0]⫽jmp)

⫽ S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1 · Op0

NS0 is the logical sum of all these terms.

As we have seen, the control function can be expressed as a logic equation for each

output. Th

is set of logic equations can be implemented in two ways: corresponding

to a complete truth table, or corresponding to a two-level logic structure that allows

a sparse encoding of the truth table. Before we look at these implementations, let’s

look at the truth table for the complete control function.

It is simplest if we break the control function defi ned in Figure D.3.3 into two

parts: the next-state outputs, which may depend on all the inputs, and the control

signal outputs, which depend only on the current-state bits. Figure D.3.4 shows

the truth tables for all the datapath control signals. Because these signals actually

depend only on the state bits (and not the opcode), each of the entries in a table

in Figure D.3.4 actually represents 64 (⫽ 26) entries, with the 6 bits named Op

having all possible values; that is, the Op bits are don’t-care bits in determining

the data path control outputs. Figure D.3.5 shows the truth table for the next-state

bits NS[3–0], which depend on the state input bits and the instruction bits, which

supply the opcode.

Elaboration: There are many opportunities to simplify the control function by

observing similarities among two or more control signals and by using the semantics of

the implementation. For example, the signals PCWriteCond, PCSource0, and ALUOp0 are

all asserted in exactly one state, state 8. These three control signals can be replaced

by a single signal.

D-14

Appendix D Mapping Control to Hardware

s3

s2

s1

s0

s3

s2

s1

s0

s3

s2

s1

s0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

1

0

1

0

1

a. r

T t

u h t

l

b

a e o

f r C

P

t

i

r

W

e

.

b

r

T t

u h

e

l

b

a

t

r

o

f

C

P

r

W i C

e

t

n

o d

c. Truth table for IorD

s3

s2

s1

s0

s3

s2

s1

s0

s3

s2

s1

s0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

d. Truth table for MemRead

e. Truth table for MemWrite

f. Truth table for IRWrite

s3

s2

s1

s0

s3

s2

s1

s0

s3

s2

s1

s0

0

1

0

0

1

0

0

1

1

0

0

0

g. Truth table for MemtoReg

h. Truth table for PCSource1

i. Truth table for PCSource0

s3

s2

s1

s0

s3

s2

s1

s0

s3

s2

s1

s0

0

1

1

0

1

0

0

0

0

0

0

1

0

0

1

0

j. r

T

h

t

u

t

l

b

a e

r

o

f

A

O

U

L

p1

.

k

r

T

h

t

u

t

l

b

a e o

f r

U

L

A

O 0

p

.

l

r

T

h

t

u

e

l

b

a

t

r

o

f

A

1

B

c

r

S

U

L

s3

s2

s1

s0

s3

s2

s1

s0

s3

s2

s1

s0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

m. Truth table for ALUSrcB0

n. Truth table for ALUSrcA

o. Truth table for RegWrite

s3

s2

s1

s0

0

1

1

1

p. Truth table for RegDst

FIGURE D.3.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the six Op bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case of PCWriteCond, PCSource0, and ALUOp0, these signals are active only in state 8 (see b, i, and k). Th

ese three signals could be replaced by one signal. Th

ere are other

opportunities for reducing the logic needed to implement the control function by taking advantage of further similarities in the truth tables.

D.3 Implementing Finite-State Machine Control

D-15

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

0

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when the current state is 1.

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

1

0

0

1

0

X

X

X

X

X

X

0

0

1

1

X

X

X

X

X

X

0

1

1

0

b. The truth table for the NS2 output, which is active when the next state is 4, 5, 6, or 7. This situation occurs when the current state is one of 1, 2, 3, or 6.

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

0

1

0

1

1

0

0

0

1

1

0

0

0

1

1

0

0

1

0

X

X

X

X

X

X

0

1

1

0

c. The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state is one of 2, 3, 6, or 7 only if the current state is one of 1, 2, or 6.

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

X

X

X

X

X

X

0

0

0

0

1

0

0

0

1

1

0

0

1

0

1

0

1

0

1

1

0

0

1

0

X

X

X

X

X

X

0

1

1

0

0

0

0

0

1

0

0

0

0

1

d. The truth table for the NS0 output, which is active when the next state is 1, 3, 5, 7, or 9. This happens only if the current state is one of 0, 1, 2, or 6.

FIGURE D.3.5 The four truth tables for the four next-state output bits (NS[3–0]). Th e next-state outputs depend on the value of Op[5-0], which is the opcode fi eld, and the current state, given by S[3–

0]. Th

e entries with X are don’t-care terms. Each entry with a don’t-care term corresponds to two entries, one with that input at 0 and one with that input at 1. Th

us an entry with n don’t-care terms actually corresponds

to 2n truth table entries.

A ROM Implementation

Probably the simplest way to implement the control function is to encode the truth

tables in a read-only memory (ROM). Th

e number of entries in the memory for the

truth tables of Figures D.3.4 and D.3.5 is equal to all possible values of the inputs

(the 6 opcode bits plus the 4 state bits), which is 2# inputs ⫽ 210 ⫽ 1024. Th

e inputs

D-16

Appendix D Mapping Control to Hardware

to the control unit become the address lines for the ROM, which implements

the control logic block that was shown in Figure D.3.2. Th

e width of each entry

(or word in the memory) is 20 bits, since there are 16 datapath control outputs and

4 next-state bits. Th

is means the total size of the ROM is 210 ⫻ 20 ⫽ 20 Kbits.

Th

e setting of the bits in a word in the ROM depends on which outputs are active

in that word. Before we look at the control words, we need to order the bits within

the control input (the address) and output words (the contents), respectively. We

will number the bits using the order in Figure D.3.2, with the next-state bits being

the low-order bits of the control word and the current-state input bits being the

low-order bits of the address. Th

is means that the PCWrite output will be the high-

order bit (bit 19) of each memory word, and NS0 will be the low-order bit. Th

e

high-order address bit will be given by Op5, which is the high-order bit of the

instruction, and the low-order address bit will be given by S0.

We can construct the ROM contents by building the entire truth table in a form

where each row corresponds to one of the 2 n unique input combinations, and a

set of columns indicates which outputs are active for that input combination. We

don’t have the space here to show all 1024 entries in the truth table. However, by

separating the datapath control and next-state outputs, we do, since the datapath

control outputs depend only on the current state. Th

e truth table for the datapath

control outputs is shown in Figure D.3.6. We include only the encodings of the state

inputs that are in use (that is, values 0 through 9 corresponding to the 10 states of

the state machine).

Th

e truth table in Figure D.3.6 directly gives the contents of the upper 16 bits of

each word in the ROM. Th

e 4-bit input fi eld gives the low-order 4 address bits of

each word, and the column gives the contents of the word at that address.

If we did show a full truth table for the datapath control bits with both

the state number and the opcode bits as inputs, the opcode inputs would all

be don’t cares. When we construct the ROM, we cannot have any don’t cares,

since the addresses into the ROM must be complete. Th

us, the same datapath

control outputs will occur many times in the ROM, since this part of the ROM

is the same whenever the state bits are identical, independent of the value of the

opcode inputs.

Control ROM Entries

For what ROM addresses will the bit corresponding to PCWrite, the high bit

EXAMPLE

of the control word, be 1?

D.3 Implementing Finite-State Machine Control

D-17

u

O

u

p

t

s

t

I

u

p

n

u

l

a

v

t

s

e

3

[

S

(

]

0

–

)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

PCWrite

1

0

0

0

0

0

0

0

0

1

PCWriteCond

0

0

0

0

0

0

0

0

1

0

IorD

0

0

0

1

0

1

0

0

0

0

MemRead

1

0

0

1

0

0

0

0

0

0

MemWrite

0

0

0

0

0

1

0

0

0

0

IRWrite

1

0

0

0

0

0

0

0

0

0

MemtoReg

0

0

0

0

1

0

0

0

0

0

PCSource1

0

0

0

0

0

0

0

0

0

1

PCSource0

0

0

0

0

0

0

0

0

1

0

ALUOp1

0

0

0

0

0

0

1

0

0

0

ALUOp0

0

0

0

0

0

0

0

0

1

0

ALUSrcB1

0

1

1

0

0

0

0

0

0

0

ALUSrcB0

1

1

0

0

0

0

0

0

0

0

ALUSrcA

0

0

1

0

0

0

1

0

1

0

RegWrite

0

0

0

0

1

0

0

1

0

0

RegDst

0

0

0

0

0

0

0

1

0

0

FIGURE D.3.6 The truth table for the 16 datapath control outputs, which depend only on the state inputs. Th

e values are determined from Figure D.3.4. Although there are 16 possible values

for the 4-bit state fi eld, only ten of these are used and are shown here. Th

e ten possible values are shown at

the top; each column shows the setting of the datapath control outputs for the state input value that appears at the top of the column. For example, when the state inputs are 0011 (state 3), the active datapath control outputs are IorD or MemRead.

PCWrite is high in states 0 and 9; this corresponds to addresses with the 4

low-order bits being either 0000 or 1001. Th

e bit will be high in the memory

ANSWER

word independent of the inputs Op[5–0], so the addresses with the bit high

are 000000000, 0000001001, 0000010000, 0000011001, . . . , 1111110000,

1111111001. Th

e general form of this is XXXXXX0000 or XXXXXX1001,

where XXXXXX is any combination of bits, and corresponds to the 6-bit

opcode on which this output does not depend.

D-18

Appendix D Mapping Control to Hardware

We will show the entire contents of the ROM in two parts to make it easier to

show. Figure D.3.7 shows the upper 16 bits of the control word; this comes directly

from Figure D.3.6. Th

ese datapath control outputs depend only on the state inputs,

and this set of words would be duplicated 64 times in the full ROM, as we discussed

above. Th

e entries corresponding to input values 1010 through 1111 are not used,

so we do not care what they contain.

Figure D.3.8 shows the lower four bits of the control word corresponding to the

next-state outputs. Th

e last column of the table in Figure D.3.8 corresponds to all the

possible values of the opcode that do not match the specifi ed opcodes. In state 0, the

next state is always state 1, since the instruction was still being fetched. Aft er state 1,

the opcode fi eld must be valid. Th

e table indicates this by the entries marked illegal;

we discuss how to deal with these exceptions and interrupts opcodes in Section 4.9.

Not only is this representation as two separate tables a more compact way to

show the ROM contents; it is also a more effi

cient way to implement the ROM.

Th

e majority of the outputs (16 of 20 bits) depends only on 4 of the 10 inputs. Th

e

number of bits in total when the control is implemented as two separate ROMs

is 24 ⫻ 16 ⫹ 210 ⫻ 4 ⫽ 256 ⫹ 4096 ⫽ 4.3 Kbits, which is about one-fi ft h of the

size of a single ROM, which requires 210 ⫻ 20 ⫽ 20 Kbits. Th

ere is some overhead

associated with any structured-logic block, but in this case the additional overhead

of an extra ROM would be much smaller than the savings from splitting the single

ROM.

Lower 4 bits of the address

Bits 19–4 of the word

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

1

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

01 1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

FIGURE D.3.7 The contents of the upper 16 bits of the ROM depend only on the state

inputs. Th

ese values are the same as those in Figure D.3.6, simply rotated 90°. Th

is set of control words

would be duplicated 64 times for every possible value of the upper six bits of the address.

D.3 Implementing Finite-State Machine Control

D-19

Although this ROM encoding of the control function is simple, it is wasteful,

even when divided into two pieces. For example, the values of the Instruction

register inputs are oft en not needed to determine the next state. Th

us, the next-

state ROM has many entries that are either duplicated or are don’t care. Consider

the case when the machine is in state 0: there are 26 entries in the ROM (since the

opcode fi eld can have any value), and these entries will all have the same contents

(namely, the control word 0001). Th

e reason that so much of the ROM is wasted is

that the ROM implements the complete truth table, providing the opportunity to

have a diff erent output for every combination of the inputs. But most combinations

of the inputs either never happen or are redundant!

Op [5–0]

Current state

000000

000010

000100

100011

101011

Any other

S[3–0]

(R-format)

(jmp)

(beq)

(lw)

(sw)

value

0000

0001

0001

0001

0001

0001

0001

0001

0110

1001

1000

0010

0010

Illegal

0010

XXXX

XXXX

XXXX

0011

0101

Illegal

0011

0100

0100

0100

0100

0100

Illegal

0100

0000

0000

0000

0000

0000

Illegal

0101

0000

0000

0000

0000

0000

Illegal

0110

0111

0111

0111

0111

0111

Illegal

0111

0000

0000

0000

0000

0000

Illegal

1000

0000

0000

0000

0000

0000

Illegal

1001

0000

0000

0000

0000

0000

Illegal

FIGURE D.3.8 This table contains the lower 4 bits of the control word (the NS outputs), which depend on both the state inputs, S[3–0], and the opcode, Op[5–0], which correspond

to the instruction opcode. Th

ese values can be determined from Figure D.3.5. Th

e opcode name is

shown under the encoding in the heading. Th

e four bits of the control word whose address is given by the

current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000, the output is always 0001, independent of the other inputs; when the state is 2, the next state is don’t care for three of the inputs, 3 for lw, and 5 for sw. Together with the entries in Figure D.3.7, this table specifi es the contents of the control unit ROM. For example, the word at address 1000110001 is obtained by fi nding the upper 16 bits in the table in Figure D.3.7 using only the state input bits (0001) and concatenating the lower four bits found by using the entire address (0001 to fi nd the row and 100011 to fi nd the column). Th e entry

from Figure D.3.7 yields 0000000000011000, while the appropriate entry in the table immediately above is 0010. Th

us the control word at address 1000110001 is 00000000000110000010. Th

e column labeled “Any

other value” applies only when the Op bits do not match one of the specifi ed opcodes.

D-20

Appendix D Mapping Control to Hardware

A PLA Implementation

We can reduce the amount of control storage required at the cost of using more

complex address decoding for the control inputs, which will encode only the input

combinations that are needed. Th

e logic structure most oft en used to do this is

a programmed logic array (PLA), which we mentioned earlier and illustrated in

Figure D.2.5. In a PLA, each output is the logical OR of one or more minterms.

A minterm, also called a product term, is simply a logical AND of one or more

inputs. Th

e inputs can be thought of as the address for indexing the PLA, while

the minterms select which of all possible address combinations are interesting. A

minterm corresponds to a single entry in a truth table, such as those in Figure

D.3.4, including possible don’t-care terms. Each output consists of an OR of these

minterms, which exactly corresponds to a complete truth table. However, unlike

a ROM, only those truth table entries that produce an active output are needed,

and only one copy of each minterm is required, even if the minterm contains don’t

cares. Figure D.3.9 shows the PLA that implements this control function.

As we can see from the PLA in Figure D.3.9, there are 17 unique minterms—10

that depend only on the current state and 7 others that depend on a combination

of the Op fi eld and the current-state bits. Th

e total size of the PLA is proportional

to (#inputs ⫻ #product terms) ⫹ (#outputs ⫻ #product terms), as we can see

symbolically from the fi gure. Th

is means the total size of the PLA in Figure D.3.9 is

proportional to (10 ⫻ 17) ⫹ (20 ⫻ 17) ⫽ 510. By comparison, the size of a single

ROM is proportional to 20 Kb, and even the two-part ROM has a total of 4.3 Kb.

Because the size of a PLA cell will be only slightly larger than the size of a bit in a

ROM, a PLA will be a much more effi

cient implementation for this control unit.

Of course, just as we split the ROM in two, we could split the PLA into two

PLAs: one with 4 inputs and 10 minterms that generates the 16 control outputs,

and one with 10 inputs and 7 minterms that generates the 4 next-state outputs.

Th

e fi rst PLA would have a size proportional to (4 ⫻ 10) ⫹ (10 ⫻ 16) ⫽ 200, and

the second PLA would have a size proportional to (10 ⫻ 7) ⫹ (4 ⫻ 7) ⫽ 98. Th

is

would yield a total size proportional to 298 PLA cells, about 55% of the size of a

single PLA. Th

ese two PLAs will be considerably smaller than an implementation

using two ROMs. For more details on PLAs and their implementation, as well as

the references for books on logic design, see Appendix B.

D.3 Implementing Finite-State Machine Control

D-21

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

PCWrite

PCWriteCond

IorD

MemRead

MemWrite

IRWrite

MemtoReg

PCSource1

PCSource0

ALUOp1

ALUOp0

ALUSrcB1

ALUSrcB0

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

NS0

FIGURE D.3.9 This PLA implements the control function logic for the multicycle

implementation. Th

e inputs to the control appear on the left and the outputs on the right. Th

e top half

of the fi gure is the AND plane that computes all the minterms. Th

e minterms are carried to the OR plane

on the vertical lines. Each colored dot corresponds to a signal that makes up the minterm carried on that line. Th

e sum terms are computed from these minterms, with each gray dot representing the presence of the intersecting minterm in that sum term. Each output consists of a single sum term.

D-22

Appendix D Mapping Control to Hardware

Implementing the Next-State Function

 D.4

with a Sequencer

Let’s look carefully at the control unit we built in the last section. If you examine

the ROMs that implement the control in Figures D.3.7 and D.3.8, you can see

that much of the logic is used to specify the next-state function. In fact, for the

implementation using two separate ROMs, 4096 out of the 4368 bits (94%)

correspond to the next-state function! Furthermore, imagine what the control

logic would look like if the instruction set had many more diff erent instruction

types, some of which required many clocks to implement. Th

ere would be many

more states in the fi nite-state machine. In some states, we might be branching to

a large number of diff erent states depending on the instruction type (as we did in

state 1 of the fi nite-state machine in Figure D.3.1). However, many of the states

would proceed in a sequential fashion, just as states 3 and 4 do in Figure D.3.1.

For example, if we included fl oating point, we would see a sequence of many

states in a row that implement a multicycle fl oating-point instruction. Alternatively,

consider how the control might look for a machine that can have multiple memory

operands per instruction. It would require many more states to fetch multiple

memory operands. Th

e result of this would be that the control logic will be

dominated by the encoding of the next-state function. Furthermore, much of the

logic will be devoted to sequences of states with only one path through them that

look like states 2 through 4 in Figure D.3.1. With more instructions, these sequences

will consist of many more sequentially numbered states than for our simple subset.

To encode these more complex control functions effi

ciently, we can use a

control unit that has a counter to supply the sequential next state. Th

is counter

oft en eliminates the need to encode the next-state function explicitly in the control

unit. As shown in Figure D.4.1, an adder is used to increment the state, essentially

turning it into a counter. Th

e incremented state is always the state that follows

in numerical order. However, the fi nite-state machine sometimes “branches.” For

example, in state 1 of the fi nite-state machine (see Figure D.3.1), there are four

possible next states, only one of which is the sequential next state. Th

us, we need

to be able to choose between the incremented state and a new state based on the

inputs from the Instruction register and the current state. Each control word will

include control lines that will determine how the next state is chosen.

It is easy to implement the control output signal portion of the control word,

since, if we use the same state numbers, this portion of the control word will

look exactly like the ROM contents shown in Figure D.3.7. However, the method

D.4 Implementing the Next-State Function with a Sequencer

D-23

Control unit

PCWrite

PCWriteCond

IorD

MemRead

PLA or ROM

MemWrite

IRWrite

Outputs

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

AddrCtl

Input

1

State

Adder

Address select logic

Op[5–0]

Instruction register

opcode field

FIGURE D.4.1 The control unit using an explicit counter to compute the next state. In this control unit, the next state is computed using a counter (at least in some states). By comparison, Figure D.3.2

encodes the next state in the control logic for every state. In this control unit, the signals labeled AddrCtl control how the next state is determined.

for selecting the next state diff ers from the next-state function in the fi nite-state

machine.

With an explicit counter providing the sequential next state, the control unit

logic need only specify how to choose the state when it is not the sequentially

following state. Th

ere are two methods for doing this. Th

e fi rst is a method we have

already seen: namely, the control unit explicitly encodes the next-state function.

Th

e diff erence is that the control unit need only set the next-state lines when the

designated next state is not the state that the counter indicates. If the number of

D-24

Appendix D Mapping Control to Hardware

states is large and the next-state function that we need to encode is mostly empty,

this may not be a good choice, since the resulting control unit will have lots of

empty or redundant space. An alternative approach is to use separate external logic

to specify the next state when the counter does not specify the state. Many control

units, especially those that implement large instruction sets, use this approach, and

we will focus on specifying the control externally.

Although the nonsequential next state will come from an external table, the

control unit needs to specify when this should occur and how to fi nd that next state.

Th

ere are two kinds of “branching” that we must implement in the address select

logic. First, we must be able to jump to one of a number of states based on the

opcode portion of the Instruction register. Th

is operation, called a dispatch, is

usually implemented by using a set of special ROMs or PLAs included as part of the

address selection logic. An additional set of control outputs, which we call AddrCtl,

indicates when a dispatch should be done. Looking at the fi nite-state diagram

(Figure D.3.1), we see that there are two states in which we do a branch based on a

portion of the opcode. Th

us we will need two small dispatch tables. (Alternatively,

we could also use a single dispatch table and use the control bits that select the table

as address bits that choose from which portion of the dispatch table to select the

address.)

Th

e second type of branching that we must implement consists of branching

back to state 0, which initiates the execution of the next MIPS instruction.

Th

us there are four possible ways to choose the next state (three types of branches,

plus incrementing the current-state number), which can be encoded in 2 bits. Let’s

assume that the encoding is as follows:

AddrCtl value

Action

0

Set state to 0

1

Dispatch with ROM 1

2

Dispatch with ROM 2

3

Use the incremented state

If we use this encoding, the address select logic for this control unit can be

implemented as shown in Figure D.4.2.

To complete the control unit, we need only specify the contents of the dispatch

ROMs and the values of the address-control lines for each state. We have already

specifi ed the datapath control portion of the control word using the ROM contents

of Figure D.3.7 (or the corresponding portions of the PLA in Figure D.3.9). Th

e

next-state counter and dispatch ROMs take the place of the portion of the control

unit that was computing the next state, which was shown in Figure D.3.8. We are

D.4 Implementing the Next-State Function with a Sequencer

D-25

PLA or ROM

1

State

Adder

Mux

AddrCtl

3

2

1

0

0

Dispatch ROM 2

Dispatch ROM 1

Address select logic

Op

Instruction register

opcode field

FIGURE D.4.2 This is the address select logic for the control unit of Figure D.4.1.

only implementing a portion of the instruction set, so the dispatch ROMs will be

largely empty. Figure D.4.3 shows the entries that must be assigned for this subset.

i

D

h

c

t

a

p

s

M

O

R

1

i

D p

s

t

a

h

c

M

O

R

2

Op

Opcode name

Value

Op

Opcode name

Value

000000

R-format

0110

100011

lw

0011

000010

jmp

1001

101011

sw

0101

000100

beq

1000

100011

lw

0010

101011

sw

0010

FIGURE D.4.3 The dispatch ROMs each have 26 ⫽ 64 entries that are 4 bits wide, since that is the number of bits in the state encoding. Th

is fi gure only shows the entries in the ROM that

are of interest for this subset. Th

e fi rst column in each table indicates the value of Op, which is the address

used to access the dispatch ROM. Th

e second column shows the symbolic name of the opcode. Th

e third

column indicates the value at that address in the ROM.

Now we can determine the setting of the address selection lines (AddrCtl) in

each control word. Th

e table in Figure D.4.4 shows how the address control must

D-26

Appendix D Mapping Control to Hardware

State number

Address-control action

Value of AddrCtl

0

e

s

U

n

i

r

c

e

m

e

d

e

t

n

a

t

s

e

t

3

1

e

s

U

p

s

i

d

c

t

a

M

O

R

h

1

1

2

U

d

e

s

a

p

s

i

c

t

h

M

O

R

2

2

3

U

i

e

s

r

c

n

m

e

e

t

n

e

a

t

s

d

e

t

3

4

p

e

R

e

c

a

l

a

t

s

t

u

n

e

r

e

b

m

0

y

b

0

5

e

R

c

a

l

p

t

a

t

s

e

u

n

e

e

b

m

0

y

b

r

0

6

s

U

c

n

i

e

e

r

n

e

m

d

e

t

a

t

s

e

t

3

7

e

R

a

l

p

s

e

c

a

t t n

e u b

m e

0

y

b

r

0

8

p

e

R

e

c

a

l

t

a

t

s

e nu

e

b

m

0

y

b

r

0

9

e

R

a

l

p

t

a

t

s

e

c

n

e

b

m

u

0

y

b

r

e

0

FIGURE D.4.4 The values of the address-control lines are set in the control word that

corresponds to each state.

be set for every state. Th

is information will be used to specify the setting of the

AddrCtl fi eld in the control word associated with that state.

Th

e contents of the entire control ROM are shown in Figure D.4.5. Th

e total

storage required for the control is quite small. Th

ere are 10 control words, each 18

bits wide, for a total of 180 bits. In addition, the two dispatch tables are 4 bits wide

and each has 64 entries, for a total of 512 additional bits. Th

is total of 692 bits beats

the implementation that uses two ROMs with the next-state function encoded in

the ROMs (which requires 4.3 Kbits).

Of course, the dispatch tables are sparse and could be more effi

ciently implemented

with two small PLAs. Th

e control ROM could also be replaced with a PLA.

State number

Control word bits 17–2

Control word bits 1–0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

0

2

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

3

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

4

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

5

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

6

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

7

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

8

0

1

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

9

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

FIGURE D.4.5 The contents of the control memory for an implementation using an explicit counter. Th

e fi rst column shows the state, while the second shows the datapath control bits, and the last

column shows the address-control bits in each control word. Bits 17–2 are identical to those in Figure D.3.7.

D.4 Implementing the Next-State Function with a Sequencer

D-27

Optimizing the Control Implementation

We can further reduce the amount of logic in the control unit by two diff erent

techniques. Th

e fi rst is logic minimization, which uses the structure of the logic

equations, including the don’t-care terms, to reduce the amount of hardware

required. Th

e success of this process depends on how many entries exist in the

truth table, and how those entries are related. For example, in this subset, only the

lw and sw opcodes have an active value for the signal Op5, so we can replace the

two truth table entries that test whether the input is lw or sw by a single test on

this bit; similarly, we can eliminate several bits used to index the dispatch ROM

because this single bit can be used to fi nd lw and sw in the fi rst dispatch ROM. Of

course, if the opcode space were less sparse, opportunities for this optimization

would be more diffi

cult to locate. However, in choosing the opcodes, the architect

can provide additional opportunities by choosing related opcodes for instructions

that are likely to share states in the control.

A diff erent sort of optimization can be done by assigning the state numbers in a

fi nite-state or microcode implementation to minimize the logic. Th

is optimization,

called state assignment, tries to choose the state numbers such that the resulting

logic equations contain more redundancy and can thus be simplifi ed. Let’s consider

the case of a fi nite-state machine with an encoded next-state control fi rst, since it

allows states to be assigned arbitrarily. For example, notice that in the fi nite-state

machine, the signal RegWrite is active only in states 4 and 7. If we encoded those

states as 8 and 9, rather than 4 and 7, we could rewrite the equation for RegWrite as

simply a test on bit S3 (which is only on for states 8 and 9). Th

is renumbering allows

us to combine the two truth table entries in part (o) of Figure D.3.4 and replace

them with a single entry, eliminating one term in the control unit. Of course, we

would have to renumber the existing states 8 and 9, perhaps as 4 and 7.

Th

e same optimization can be applied in an implementation that uses an explicit

program counter, though we are more restricted. Because the next-state number is

oft en computed by incrementing the current-state number, we cannot arbitrarily

assign the states. However, if we keep the states where the incremented state is used

as the next state in the same order, we can reassign the consecutive states as a block.

In an implementation with an explicit next-state counter, state assignment may

allow us to simplify the contents of the dispatch ROMs.

If we look again at the control unit in Figure D.4.1, it looks remarkably like a

computer in its own right. Th

e ROM or PLA can be thought of as memory supplying

instructions for the datapath. Th

e state can be thought of as an instruction address.

Hence the origin of the name microcode or microprogrammed control. Th

e control

words are thought of as microinstructions that control the datapath, and the State

register is called the microprogram counter. Figure D.4.6 shows a view of the control

unit as microcode. Th

e next section describes how we map from a microprogram

to microcode.

D-28

Appendix D Mapping Control to Hardware

Control unit

PCWrite

PCWriteCond

IorD

Microcode memory

MemRead

Datapath

MemWrite

IRWrite

BWrite

Outputs

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

AddrCtl

Input

1

Microprogram counter

Adder

Address select logic

Op[5–0]

Instruction register

opcode field

FIGURE D.4.6 The control unit as a microcode. Th

e use of the word “micro” serves to distinguish between the program counter in the

datapath and the microprogram counter, and between the microcode memory and the instruction memory.

 D.5

Translating a Microprogram to Hardware

To translate a microprogram into actual hardware, we need to specify how each

fi eld translates into control signals. We can implement a microprogram with either

fi nite-state control or a microcode implementation with an explicit sequencer. If

we choose a fi nite-state machine, we need to construct the next-state function from

D.5 Translating a Microprogram to Hardware

D-29

the microprogram. Once this function is known, we can map a set of truth table

entries for the next-state outputs. In this section, we will show how to translate the

microprogram, assuming that the next state is specifi ed by a sequencer. From the

truth tables we will construct, it would be straightforward to build the next-state

function for a fi nite-state machine.

Fie

e

m

a

n

d

l

u

l

a

V

e

S g

i

s

l

a

n

a

i

t

c

e

v

C

m

m

o

t

n

e

Add

ALUOp = 00

Cause the ALU to add.

ALU control

Subt

ALUOp = 01

Cause the ALU to subtract; this implements the compare for branches.

Func code

ALUOp = 10

Use the instruction’s function code to determine ALU control.

PC

ALUSrcA = 0

Use the PC as the fi rst ALU input.

SRC1

A

ALUSrcA = 1

Register A is the fi rst ALU input.

B

ALUSrcB = 00

Register B is the second ALU input.

4

ALUSrcB = 01

Use 4 as the second ALU input.

SRC2

Extend

ALUSrcB = 10

Use output of the sign extension unit as the second ALU input.

Extshft

ALUSrcB = 11

Use the output of the shift-by-two unit as the second ALU input.

d

a

e

R

a

e

R

o

w

t

d

i

g

e

r

t

s r

e

u

s

i

s

t

g

n

e

h r

r

d

n

a

s

l

e

fi

t

o

s

d

e

h

t

f

R

I

h

t

s

a

e

r

e

t

s

i

g

m

u

n

r

e

e

b rs

and putting the data into registers A and B.

Write ALU

RegWrite,

Write a register using the rd fi eld of the IR as the register number and the

Register

RegDst = 1,

contents of ALUOut as the data.

control

MemtoReg = 0

Write MDR

RegWrite,

Write a register using the rt fi eld of the IR as the register number and the

RegDst = 0,

contents of the MDR as the data.

MemtoReg = 1

Read PC

MemRead,

Read memory using the PC as address; write result into IR (and the MDR).

IorD = 0, IRWrite

Read ALU

MemRead,

Read memory using ALUOut as address; write result into MDR.

Memory

IorD = 1

Write ALU

MemWrite,

Write memory using the ALUOut as address, contents of B as the data.

IorD = 1

ALU

PCSource = 00,

Write the output of the ALU into the PC.

PCWrite

ALUOut-cond

PCSource = 01,

If the Zero output of the ALU is active, write the PC with the contents of the

PC write control

PCWriteCond

register ALUOut.

Jump address

PCSource = 10,

Write the PC with the jump address from the instruction.

PCWrite

Seq

AddrCtl = 11

Choose the next microinstruction sequentially.

Fetch

AddrCtl = 00

Go to the fi rst microinstruction to begin a new instruction.

Sequencing

Dispatch 1

AddrCtl = 01

Dispatch using the ROM 1.

Dispatch 2

AddrCtl = 10

Dispatch using the ROM 2.

FIGURE D.5.1 Each microcode fi eld translates to a set of control signals to be set. Th ese 22 diff erent values of the fi elds specify

all the required combinations of the 18 control lines. Control lines that are not set, which correspond to actions, are 0 by default. Multiplexor control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output is a don’t care and is not used.

D-30

Appendix D Mapping Control to Hardware

Assuming an explicit sequencer, we need to do two additional tasks to translate

the microprogram: assign addresses to the microinstructions and fi ll in the

contents of the dispatch ROMs. Th

is process is essentially the same as the process

of translating an assembly language program into machine instructions: the fi elds

of the assembly language or microprogram instruction are translated, and labels on

the instructions must be resolved to addresses.

Figure D.5.1 shows the various values for each microinstruction fi eld that

controls the datapath and how these fi elds are encoded as control signals. If the

fi eld corresponding to a signal that aff ects a unit with state (i.e., Memory, Memory

register, ALU destination, or PCWriteControl) is blank, then no control signal

should be active. If a fi eld corresponding to a multiplexor control signal or the ALU

operation control (i.e., ALUOp, SRC1, or SRC2) is blank, the output is unused, so

the associated signals may be set as don’t care.

Th

e sequencing fi eld can have four values: Fetch (meaning go to the Fetch

state), Dispatch 1, Dispatch 2, and Seq. Th

ese four values are encoded to set the

2-bit address control just as they were in Figure D.4.4: Fetch ⫽ 0, Dispatch 1 ⫽ 1,

Dispatch 2 ⫽ 2, Seq ⫽ 3. Finally, we need to specify the contents of the dispatch

tables to relate the dispatch entries of the sequence fi eld to the symbolic labels in

the microprogram. We use the same dispatch tables as we did earlier in Figure

D.4.3.

A microcode assembler would use the encoding of the sequencing fi eld, the

contents of the symbolic dispatch tables in Figure D.5.2, the specifi cation in Figure

D.5.1, and the actual microprogram to generate the microinstructions.

Since the microprogram is an abstract representation of the control, there is a

great deal of fl exibility in how the microprogram is translated. For example, the

address assigned to many of the microinstructions can be chosen arbitrarily; the

only restrictions are those imposed by the fact that certain microinstructions must

d

a

p

s

i

h

c

t

b

a

t

1

e

l

M r

c

i

d

e

d

o

c

o

a

p

s

i

2

e

l

b

a

t

h

c

t

Opcode fi eld

Opcode name

Value

Opcode fi eld

Opcode name

Value

000000

R-format

Rformat1

100011

lw

LW2

000010

jmp

JUMP1

101011

sw

SW2

000100

beq

BEQ1

100011

lw

Mem1

101011

sw

Mem1

FIGURE D.5.2 The two microcode dispatch ROMs showing the contents in symbolic form

and using the labels in the microprogram.

D.5 Translating a Microprogram to Hardware

D-31

occur in sequential order (so that incrementing the State register generates the

address of the next instruction). Th

us the microcode assembler may reduce the

complexity of the control by assigning the microinstructions cleverly.

Organizing the Control to Reduce the Logic

For a machine with complex control, there may be a great deal of logic in the

control unit. Th

e control ROM or PLA may be very costly. Although our simple

implementation had only an 18-bit microinstruction (assuming an explicit

sequencer), there have been machines with microinstructions that are hundreds of

bits wide. Clearly, a designer would like to reduce the number of microinstructions

and the width.

Th

e ideal approach to reducing control store is to fi rst write the complete

microprogram in a symbolic notation and then measure how control lines are set

in each microinstruction. By taking measurements we are able to recognize control

bits that can be encoded into a smaller fi eld. For example, if no more than one of

eight lines is set simultaneously in the same microinstruction, then this subset of

control lines can be encoded into a 3-bit fi eld (log 8 ⫽ 3). Th

is change saves fi ve

2

bits in every microinstruction and does not hurt CPI, though it does mean the extra

hardware cost of a 3-to-8 decoder needed to generate the eight control lines when

they are required at the datapath. It may also have some small clock cycle impact,

since the decoder is in the signal path. However, shaving fi ve bits off control store

width will usually overcome the cost of the decoder, and the cycle time impact will

probably be small or nonexistent. For example, this technique can be applied to bits

13–6 of the microinstructions in this machine, since only one of the seven bits of

the control word is ever active (see Figure D.4.5).

Th

is technique of reducing fi eld width is called encoding. To further save space,

control lines may be encoded together if they are only occasionally set in the same

microinstruction; two microinstructions instead of one are then required when

both must be set. As long as this doesn’t happen in critical routines, the narrower

microinstruction may justify a few extra words of control store.

Microinstructions can be made narrower still if they are broken into diff erent

formats and given an opcode or format fi eld to distinguish them. Th

e format fi eld

gives all the unspecifi ed control lines their default values, so as not to change

anything else in the machine, and is similar to the opcode of an instruction in a

more powerful instruction set. For example, we could use a diff erent format for

microinstructions that did memory accesses from those that did register-register

ALU operations, taking advantage of the fact that the memory access control lines

are not needed in microinstructions controlling ALU operations.

Reducing hardware costs by using format fi elds usually has an additional

performance cost beyond the requirement for more decoders. A microprogram

using a single microinstruction format can specify any combination of operations

in a datapath and can take fewer clock cycles than a microprogram made up of

restricted microinstructions that cannot perform any combination of operations in

D-32

Appendix D Mapping Control to Hardware

a single microinstruction. However, if the full capability of the wider microprogram

word is not heavily used, then much of the control store will be wasted, and the

machine could be made smaller and faster by restricting the microinstruction

capability.

Th

e narrow, but usually longer, approach is oft en called vertical microcode, while

the wide but short approach is called horizontal microcode. It should be noted that

the terms “vertical microcode” and “horizontal microcode” have no universal

defi nition—the designers of the 8086 considered its 21-bit microinstruction to be

more horizontal than in other single-chip computers of the time. Th

e related terms

 maximally encoded and minimally encoded are probably better than vertical and

horizontal.

 D.6 Concluding

Remarks

We began this appendix by looking at how to translate a fi nite-state diagram to an

implementation using a fi nite-state machine. We then looked at explicit sequencers

that use a diff erent technique for realizing the next-state function. Although large

microprograms are oft en targeted at implementations using this explicit next-state

approach, we can also implement a microprogram with a fi nite-state machine. As

we saw, both ROM and PLA implementations of the logic functions are possible.

Th

e advantages of explicit versus encoded next state and ROM versus PLA

implementation are summarized below.

Independent of whether the control is represented as a fi nite-state diagram

The BIG

or as a microprogram, translation to a hardware control implementation is

similar. Each state or microinstruction asserts a set of control outputs and

Picture

specifi es how to choose the next state.

Th

e next-state function may be implemented by either encoding it in a

fi nite-state machine or using an explicit sequencer. Th

e explicit sequencer

is more effi

cient if the number of states is large and there are many

sequences of consecutive states without branching.

Th

e control logic may be implemented with either ROMs or PLAs (or

even a mix). PLAs are more effi

cient unless the control function is very

dense. ROMs may be appropriate if the control is stored in a separate

memory, as opposed to within the same chip as the datapath.

D.5 Exercises

D-33

 D.7 Exercises

D.1 [10] ⬍§D.2⬎ Instead of using four state bits to implement the fi nite-state

machine in Figure D.3.1, use nine state bits, each of which is a 1 only if the fi nite-

state machine is in that particular state (e.g., S1 is 1 in state 1, S2 is 1 in state 2, etc.).

Redraw the PLA (Figure D.3.9).

D.2 [5] ⬍§D.3⬎ We wish to add the instruction jal (jump and link). Make any

necessary changes to the datapath or to the control signals if needed. You can

photocopy fi gures to make it faster to show the additions. How many product terms

are required in a PLA that implements the control for the single-cycle datapath for

jal?

D.3 [5] ⬍§D.3⬎ Now we wish to add the instruction addi (add immediate).

Add any necessary changes to the datapath and to the control signals. How many

product terms are required in a PLA that implements the control for the single-

cycle datapath for addiu?

D.4 [10] ⬍§D.3⬎ Determine the number of product terms in a PLA that

implements the fi nite-state machine for addi. Th

e easiest way to do this is to

construct the additions to the truth tables for addi.

D.5 [20] ⬍§D.4⬎ Implement the fi nite-state machine of using an explicit counter

to determine the next state. Fill in the new entries for the additions to Figure D.4.5.

Also, add any entries needed to the dispatch ROMs of Figure D.5.2.

D.6 [15] ⬍§§D.3–D.6⬎ Determine the size of the PLAs needed to implement the

multicycle machine, assuming that the next-state function is implemented with

a counter. Implement the dispatch tables of Figure D.5.2 using two PLAs and the

contents of the main control unit in Figure D.4.5 using another PLA. How does the

total size of this solution compare to the single PLA solution with the next state

encoded? What if the main PLAs for both approaches are split into two separate

PLAs by factoring out the next-state or address select signals?

E

A

P

P

E

N

D

I

X

A Survey of RISC

Architectures for

Desktop, Server, and

 RISC: any computer

 announced aft er 1985.

Embedded Computers

 Steven Przybylskic

A Designer of the Stanford MIPS

Computer Organization and Design. DOI: http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1

© 2013 E

2013 lsevier Inc. All rights reserved.

E.1 Introduction

E-3

E.2

Addressing Modes and Instruction Formats E-5

E.3

Instructions: The MIPS Core Subset E-9

E.4

Instructions: Multimedia Extensions of the Desktop/Server

RISCs E-16

E.5

Instructions: Digital Signal-Processing Extensions of the

Embedded RISCs E-19

E.6

Instructions: Common Extensions to MIPS Core E-20

E.7

Instructions Unique to MIPS-64 E-25

E.8

Instructions Unique to Alpha E-27

E.9

Instructions Unique to SPARC v9 E-29

E.10

Instructions Unique to PowerPC E-32

E.11

Instructions Unique to PA-RISC 2.0 E-34

E.12

Instructions Unique to ARM E-36

E.13

Instructions Unique to Thumb E-38

E.14

Instructions Unique to SuperH E-39

E.15

Instructions Unique to M32R E-40

E.16

Instructions Unique to MIPS-16 E-40

E.17 Concluding

Remarks

E-43

 E.1 Introduction

We cover two groups of reduced instruction set computer (RISC) architectures in

this appendix. Th

e fi rst group is the desktop and server RISCs:

■ Digital Alpha

■ Hewlett-Packard PA-RISC

■ IBM and Motorola PowerPC

■ MIPS INC MIPS-64

■ Sun Microsystems SPARC

E-4

Appendix E A Survey of RISC Architectures

Th

e second group is the embedded RISCs:

■ Advanced RISC Machines ARM

■ Advanced RISC Machines Th

umb

■ Hitachi SuperH

■ Mitsubishi M32R

■ MIPS INC MIPS-16

Alpha

MIPS I

PA-RISC 1.1

PowerPC

SPARCv8

Date announced

1992

1986

1986

1993

1987

Instruction size (bits)

32

32

32

32

32

Address space (size, model)

64 bits, fl at

32 bits, fl at

48 bits,

32 bits, fl at

32 bits, fl at

segmented

i

l

a

a

t

a

D

m

n

g

t

n

e

i

l

A

d

e

n

g

l

A

d

e

n

g

i

l

A

n

g

i

d

e

n

U

l

a

e

n

g

i

d

l

A

d

e

n

g

i

Data addressing modes

1

1

5

4

2

o

r

P

e

t

o

i

t

c

n

e

g

a

P

a

P

e

g

a

P

e

g

e

g

a

P

e

g

a

P

Minimum page size

8 KB

4 KB

4 KB

4 KB

8 KB

O

/

I

m

e

M

r

o

a

m

y

d

e

p

p

o

m

e

M

ry m

a

d

e

p

p

e

M m r

o

a

m

y

p

p

d

e

M

o

m

e

r

p

a

m

y

d

e

p

e

M

o

m r

d

e

p

p

a

m

y

Integer registers (number, model, size)

31 GPR × 64 bits 31 GPR × 32 bits 31 GPR × 32 bits 32 GPR × 32 bits 31 GPR × 32 bits

Separate fl oating-point registers

31 × 32 or

16 × 32 or

56 × 32 or

32 × 32 or

32 × 32 or

31 × 64 bits

16 × 64 bits

28 × 64 bits

32 × 64 bits

32 × 64 bits

Floating-point format

IEEE 754 single,

IEEE 754 single,

IEEE 754 single,

IEEE 754 single,

IEEE 754 single,

double

double

double

double

double

FIGURE E.1.1 Summary of the fi rst version of fi ve architectures for desktops and servers. Except for the number of data address modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with Figure E.17.1. Later versions of these architectures all support a fl at, 64-bit address space.

ARM Thumb

SuperH M32R

MIPS-16

Da e

t a

n o

n u c

n

d

e

1

5

8

9

5

9

9

1

2

9

9

1

7

9

9

1

6

9

9

1

Instruction size (bits)

32

16

16

16/32

16/32

Address space (size, model)

32 bits, fl at

32 bits, fl at

32 bits, fl at

32 bits, fl at

32/64 bits, fl at

a

D

a

t a

li n

g

e

m n

t

Al

d

e

n

g

i

l

A

e

n

g

i

d

l

A

e

n

g

i

d

i

l

A

d

e

n

g

l

A

d

e

n

g

i

Data addressing modes

6

6

4

3

2

Integer registers (number, model, size)

15 GPR x 32 bits 8 GPR + SP,

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP,

LR x 32 bits

RA x 32/64 bits

I

O

/

o

m

e

M

r

y

p

a

m

p d

e

e

M

r

o

m

m

y

e

p

p

a

d M

o

m

e

r m

y

e

p

p

a

d

M m

e

r

o y m

p

p

a

d

e

r

o

m

e

M

m

y

p

p

a

d

e

FIGURE E.1.2 Summary of fi ve architectures for embedded applications. Except for number of data address modes and some instruction set details, the integer instruction sets of these architectures are similar. Con trast this with Figure E.17.1.

E.2 Addressing Modes and Instruction Formats

E-5

Th

ere has never been another class of computers so similar. Th

is similarity

allows the presentation of 10 architectures in about 50 pages. Characteristics of the

desktop and server RISCs are found in Figure E.1.1 and the embedded RISCs in

Figure E.1.2.

Notice that the embedded RISCs tend to have 8 to 16 general-purpose registers

while the desktop/server RISCs have 32, and that the length of instructions is 16 to

32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set architectures, Th

umb

and MIPS-16 are really optional modes of ARM and MIPS invoked by call

instructions. When in this mode, they execute a subset of the native architecture

using 16-bit-long instructions. Th

ese 16-bit instruction sets are not intended to be

full architectures, but they are enough to encode most procedures. Both machines

expect procedures to be homogeneous, with all instructions in either 16-bit mode

or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or

in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have been

extended over the years. We have decided to describe the latest versions of the

architectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for

the desktop/server; ARM version 4, Th

umb version 1, Hitachi SuperH SH-3, M32R

version 1, and MIPS-16 version 1 for the embedded ones.

Th

e remaining sections proceed as follows: aft er discussing the addressing

modes and instruction formats of our RISC architectures, we present the survey of

the instructions in fi ve steps:

■ Instructions found in the MIPS core, which is defi ned in Chapters 2 and 3 of

the main text

■ Multimedia extensions of the desktop/server RISCs

■ Digital signal-processing extensions of the embedded RISCs

■ Instructions not found in the MIPS core but found in two or more architectures

■ Th

e unique instructions and characteristics of each of the ten architectures

We give the evolution of the instruction sets in the fi nal section and conclude with

speculation about future directions for RISCs.

Addressing Modes and Instruction

 E.2

Formats

Figure E.2.1 shows the data addressing modes supported by the desktop

architectures. Since all have one register that always has the value 0 when used in

address modes, the absolute address mode with limited range can be synthesized

using zero as the base in displacement addressing. (Th

is register can be changed

E-6

Appendix E A Survey of RISC Architectures

by ALU operations in PowerPC; it is always 0 in the other machines.) Similarly,

register indirect addressing is synthesized by using displacement addressing with

an off set of 0. Simplifi ed addressing modes is one distinguishing feature of RISC

architectures.

Figure E.2.2 shows the data addressing modes supported by the embedded

architectures. Unlike the desktop RISCs, these embedded machines do not reserve

a register to contain 0. Although most have two to three simple addressing modes,

ARM and SuperH have several, including fairly complex calculations. ARM has

an addressing mode that can shift one register by any amount, add it to the other

registers to form the address, and then update one register with this new address.

References to code are normally PC-relative, although jump register indirect

is supported for returning from procedures, for case statements, and for pointer

function calls. One variation is that PC-relative branch addresses are shift ed left

two bits before being added to the PC for the desktop RISCs, thereby increasing the

branch distance. Th

is works because the length of all instructions for the desktop

RISCs is 32 bits, and instructions must be aligned on 32-bit words in memory.

Embedded architectures with 16-bit-long instructions usually shift the PC-relative

address by 1 for similar reasons.

Addressing mode

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Register + offset (displacement or based)

X

X

X

X

X

R

s

i

g

e

e

t

r

+

r

i

g

e s e

t r i

(

e

d

n

x

)

d

e

F

(

X

)

P

X

d

a

o

L

(

)

s

X

X

Register + scaled register (scaled)

X

Register + offset and update register

X

X

Register + register and update register

X

X

FIGURE E.2.1 Summary of data addressing modes supported by the desktop architectures. PA RISC also has short address versions of the off set addressing modes. MIPS-64 has indexed addressing for fl oating-point loads and stores. (Th ese addressing modes are

described in Figure 2.18.)

Addressing mode

ARMv4

Thumb

SuperH

M32R

MIPS-16

Register + offset (displacement or based)

X

X

X

X

X

Register + register (indexed)

X

X

X

R

s

i

g

e

t

s

+

r

e

a

c

d

e

l

i

g

e

r

t

s

a

c

s

(

r

e

l

)

d

e

X

Register + offset and update register

X

Register + register and update register

X

e

t

s

i

g

e

R

r

r

i

d

n

i

e

t

c

X

X

Autoincrement, autodecrement

X

X

X

X

P

e

r

-

C

t

a

l

d

e

v

i

t

a

a

X

l

(

X

)

s

d

a

o

X

a

o

l

(

X

)

s

d

FIGURE E.2.2 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R have separate register indirect and register ⫹ off set addressing modes rather than just putting 0 in the off set of the latter mode. Th is increases the

use of 16-bit instructions in the M32R, and it gives a wider set of address modes to diff erent data transfer instructions in SuperH. To get greater addressing range, ARM and Th

umb shift the off set left one or two bits if the data size is halfword or word. (Th

ese addressing modes

are described in Figure 2.18.)

E.2 Addressing Modes and Instruction Formats

E-7

Figure E.2.3 shows the format of the desktop RISC instructions, which include

the size of the address. Each instruction set architecture uses these four primary

instruction formats. Figure E.2.4 shows the six formats for the embedded RISC

machines. Th

e desire to have smaller code size via 16-bit instructions leads to more

instruction formats.

31

25

20

15

10

4

0

Alpha

Op6

Rs15

Rs25

Opx11

Rd5

MIPS

Op6

Rs15

Rs25

Rd5

Const5

Opx6

Register-register

PowerPC

Op6

Rd5

Rs15

Rs25

Opx11

PA-RISC

Op6

Rs15

Rs25

Opx11

Rd5

SPARC

Op2

Rd5

Opx6

Rs15

0

Opx8

Rs25

31 29

24

18

13 12

4

0

1

3

5

2

20

15

0

Alpha

Op6

Rd5

Rs15

Const16

MIPS

Op6

Rs15

Rd5

Const16

Register-immediate PowerPC

Op6

Rd5

Rs15

Const16

PA-RISC

Op6

Rs25

Rd5

Const16

SPARC

Op2

Rd5

Opx6

Rs15

1

Const13

31 29

24

18

13 12

0

31

25

20

5

1

0

Alpha

Op6

Rs15

Const21

MIPS

Op6

Rs15

Opx5/Rs25

Const16

Branch

PowerPC

Op6

Opx6

Rs15

Const14

Opx2

PA-RISC

Op6

Rs25

Rs15

Opx3

Const11

O C

SPARC

Op2

Opx11

Const19

31 29

18

12

1 0

31

25

20

0

Alpha

Op6

Rs15

Const21

MIPS

Op6

Const26

Jump/call

PowerPC

Op6

Const24

Opx2

PA-RISC

Op6

Const21

O1 C1

SPARC

Op2

Const30

31 29

20

15

12

1 0

Opcode

Register

Constant

FIGURE E.2.3 Instruction formats for desktop/server RISC architectures. Th

ese four

formats are found in all fi ve architectures. (Th

e superscrift notation in this fi gure means the width of a

fi eld in bits.) Although the register fi elds are located in similar pieces of the instruction, be aware that the destination and two source fi elds are scrambled. Op ⫽ the main opcode, Opx ⫽ an opcode extension, Rd ⫽

the destination register, Rs1 ⫽ source register 1, Rs2 ⫽ source register 2, and Const ⫽ a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a format for immediates in arithmetic and logical operations that is diff erent from the data transfer format shown here. It provides an 8-bit immediate in bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension.

E-8

Appendix E A Survey of RISC Architectures

31

27

19

15

11

3

0

ARM

Opx4

Opx4

Rs14

Rd4

Opx8

Rs24

Thumb

Op6

Opx4

Rd3

Rs3

Register-register

SuperH

Op4

Rd4

Rs14

Opx4

M32R

Op4

Rd4

Opx4

Rs4

MIPS-16

Op5

Rd3

Rs13 Rs23

Opx2

15

10

7

4

1 0

31

27

19

15

11

0

ARM

Opx4

Op3

Rs14

Rd4

Const12

Thumb

Op5

Rd3

Const8

Register-immediate SuperH

Op4

Rd4

Const8

M32R

Op4

Rd4

Opx4

Rs4

Const16

MIPS-16

Op5

Rd3

Rs3

Const5

15

10

7

4

0

31

27

19

15

11

0

ARM

Opx4

Op3

Rs14

Rd4

Const12

Thumb

Op5

Const5

Rs3

Rd3

Data transfer

SuperH

Op4

Rd4

Rs4

Const4

M32R

Op4

Rd4

Opx4

Rs4

Const16

MIPS-16

Op5

Rd3

Rs3

Const5

15

10

7

4

0

1

3

27

23

0

ARM

Opx4

Op4

Const24

Thumb

Op4

Opx4

Const8

Branch

SuperH

Op8

Const8

M32R

Op4

Rd4

Opx4

Rs4

Const16

MIPS-16

Op5

Rd3

Const8

15

10

7

0

1

3

27

23

0

ARM

Opx4

Op4

Const24

Thumb

Op5

Const11

Jump

SuperH

Op4

Const12

M32R

Op4

Opx4

Const8

MIPS-16

Op5

Const11

15

10

0

1

3

27

23

0

ARM

Opx4

Op4

Const24

Thumb

Op5

Const11

Opx5

Const11

Call

SuperH

Op4

Const12

M32R

Op8

Const24

MIPS-16

Op6

Const26

5

1

5

2

0

Opcode

Register

Constant

FIGURE E.2.4 Instruction formats for embedded RISC architectures. Th

ese six formats are

found in all fi ve architectures. Th

e notation is the same as in Figure E.2.3. Note the similarities in branch,

jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats.

Th

e diff erences result from whether the architecture has 8 or 16 registers, whether it is a 2- or 3-operand format, and whether the instruction length is 16 or 32 bits.

E.3 Instructions: the MIPS Core Subset

E-9

Format: instruction category

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

a

r

B n h

c : l

a l

i

S n

g

i

S n

g

i

S n

g

n

g

i

S

i

S n

g

u

J m /

p

a

c ll: all

i

S n

g

—

n

g

i

S

i

S n

g

n

g

i

S

Register-immediate: data transfer

Sign

Sign

Sign

Sign

Sign

Register-immediate: arithmetic

Zero

Sign

Sign

Sign

Sign

R

i

g

e

t

s e i

-

r m e

m di t

a :

e lo i

g a

c l

e

Z o

r

e

Z

o

r

—

r

e

Z o

S n

g

i

FIGURE E.2.5 Summary of constant extension for desktop RISCs. Th

e constants in the jump and call instructions of MIPS

are not sign-extended, since they only replace the lower 28 bits of PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate instructions.

Format: instruction category

Armv4

Thumb

SuperH

M32R

MIPS-16

a

r

B

n h

c

a

: ll

n

g

i

S

i

S

n

g

i

S

n

g

n

g

i

S

i

S

n

g

m

u

J

p/ a

c ll a

: ll

S n

g

i

S

/

n

g

i

r

e

Z

o

i

S g

n

n

g

i

S

—

Register-immediate: data transfer

Zero

Zero

Zero

Sign

Zero

Register-immediate: arithmetic

Zero

Zero

Sign

Sign

Zero/Sign

R

i

g

e

t

s

-

r

e m

i

e

m

i

d a

:

e

t

l

i

g

o

l

a

c

r

e

Z

o

—

Z

o

r

e

r

e

Z

o

—

FIGURE E.2.6 Summary of constant extension for embedded RISCs. Th

e 16-bit-length instructions have much shorter

immediates than those of the desktop RISCs, typically only fi ve to eight bits. Most embedded RISCs, however, have a way to get a long address for procedure calls from two sequencial halfwords. Th

e constants in the jump and call instructions of MIPS are not sign-extended, since they

only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged. Th

e 8-bit immediates in ARM can be rotated right an even number

of bits between 2 and 30, yielding a large range of immediate values. For example, all powers of two are immediates in ARM.

Figures E.2.5 and E.2.6 show the variations in extending constant fi elds to the

full width of the registers. In this subtle point, the RISCs are similar but not

identical.

 E.3

Instructions: the MIPS Core Subset

Th

e similarities of each architecture allow simultaneous descriptions, starting with

the operations equivalent to the MIPS core.

MIPS Core Instructions

Almost every instruction found in the MIPS core is found in the other

architectures, as Figures E.3.1 through E.3.5 show. (For reference, defi nitions of the

MIPS instructions are found in the MIPS Reference Data Card at the beginning

of the book.) Instructions are listed under four categories: data transfer (Figure

E.3.1); arithmetic/logical (Figure E.3.2); control (Figure E.3.3); and fl oating point

(Figure E.3.4). A fi ft h category (Figure E.3.5) shows conventions for register

E-10

Appendix E A Survey of RISC Architectures

Data transfer

R-I

R-I

R-I, R-R

R-I, R-R

R-I, R-R

(instruction formats)

Instruction name

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Load byte signed

LDBU; SEXTB LB

LDB; EXTRW,S 31,8

LBZ; EXTSB

LDSB

Load byte unsigned

LDBU

LBU

LDB, LDBX, LDBS

LBZ

LDUB

Load halfword signed

LDWU; SEXTW LH

LDH; EXTRW,S 31,16 LHA

LDSH

Load halfword unsigned

LDWU

LHU

LDH, LDHX, LDHS

LHZ

LDUH

Load word

LDLS

LW

LDW, LDWX, LDWS

LW

LD

Load SP fl oat

LDS*

LWC1

FLDWX, FLDWS

LFS

LDF

Load DP fl oat

LDT

LDC1

FLDDX, FLDDS

LFD

LDDF

Store byte

STB

SB

STB, STBX, STBS

STB

STB

Store halfword

STW

SH

STH, STHX, STHS

STH

STH

Store word

STL

SW

STW, STWX, STWS

STW

ST

Store SP fl oat

STS

SWC1

FSTWX, FSTWS

STFS

STF

Store DP fl oat

STT

SDC1

FSTDX, FSTDS

STFD

STDF

Read, write special registers MF_, MT_

MF, MT_

MFCTL, MTCTL

MFSPR, MF_, RD, WR, RDPR, WRPR,

MTSPR, MT_

LDXFSR, STXFSR

Move integer to FP register

ITOFS

MFC1/DMFC1 STW; FLDWX

STW; LDFS

ST; LDF

Move FP to integer register

FTTOIS

MTC1/DMTC1 FSTWX; LDW

STFS; LW

STF; LD

FIGURE E.3.1 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. For this fi gure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single precision fl oating point to double precision and loads the entire 64-bit register.

usage and pseudoinstructions on each architecture. If a MIPS core instruction

requires a short sequence of instructions in other architectures, these instructions

are separated by semicolons in Figures E.3.1 through E.3.5. (To avoid confusion,

the destination register will always be the left most operand in this appendix,

independent of the notation normally used with each architecture.) Figures E.3.6

through E.3.9 show the equivalent listing for embedded RISCs. Note that fl oating

point is generally not defi ned for the embedded RISCs.

Every architecture must have a scheme for compare and conditional branch, but

despite all the similarities, each of these architectures has found a diff erent way to

perform the operation.

Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program status

word: negative, zero, carry, and overfl ow. Th

ey can be set on any arithmetic or logical

instruction; unlike earlier architectures, this setting is optional on each instruction.

An explicit option leads to fewer problems in pipelined implementation. Although

condition codes can be set as a side eff ect of an operation, explicit compares are

synthesized with a subtract using r0 as the destination. SPARC conditional branches

E.3 Instructions: the MIPS Core Subset

E-11

Arithmetic/logical

R-R, R-I

R-R, R-I

R-R, R-I

R-R, R-I

R-R, R-I

(instruction formats)

Instruction name

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Add

ADDL

ADDU, ADDU

ADDL, LD0, ADDI,

ADD, ADDI

ADD

UADDCM

Add (trap if overfl ow)

ADDLV

ADD, ADDI

ADDO, ADDIO

ADDO; MCRXR; BC

ADDcc; TVS

Sub

SUBL

SUBU

SUB, SUBI

SUBF

SUB

Sub (trap if overfl ow)

SUBLV

SUB

SUBTO, SUBIO

SUBF/oe

SUBcc; TVS

Multiply

MULL

MULT, MULTU

SHiADD;...; (i=1,2,3)

MULLW, MULLI

MULX

Multiply (trap if overfl ow)

MULLV

—

SHiADDO;...;

—

—

Divide —

DIV, DIVU

DS;...; DS

DIVW

DIVX

Divide (trap if overfl

)

w

o

—

—

—

—

—

And

AND

AND, N

A

I

D

A D

N

D

N

A

, ANDI

AND

Or

BIS

OR, O I

R

OR

,

R

O

ORI

OR

Xor

XOR

XOR, O

X

I

R

X R

O

R

O

X

, XORI

XOR

Load high part register

LDAH

LUI

LDIL

ADDIS

SETHI

(B fmt.)

Shift left logical

SLL

SLLV, SLL

DEPW, Z 31-i,32-i

RLWINM

SLL

Shift right logical

SRL

SRLV, SRL

EXTRW, U 31, 32-i

RLWINM 32-i

SRL

Shift right arithmetic

SRA

SRAV, SRA

EXTRW, S 31, 32-i

SRAW

SRA

Compare

CMPEQ, CMPLT, SLT/U, S

I

T

L

/U

O

C

B

M

I

(

P

M

C

L

C

)

R

B

U

S

c

c r0,...

CMPLE

FIGURE E.3.2 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category, all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC off ers immediate versions of these instructions but uses a single mnemonic. (Of course these are separate opcodes!)

Control

B, J/C

B, J/C

B, J/C

B, J/C

B, J/C

(instruction formats)

Instruction name

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Branch on integer compare

B_ (<, >, <=,

BEQ, BNE, B_Z COMB, COMIB

BC

BR_Z, BPcc (<,

>=, =, not=)

(<, >, <=, >=)

>, <=, >=, =,

not=)

Branch on fl oating-point

FB_(<, >, <=, BC1T, BC1F

FSTWX f0;

BC

FBPfcc (<, >,

compare

>=, =, not=)

LDW t; BB t

<=, >=, =,...)

Jump, jump register

BR, JMP

J, JR

BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...

Call, call register

BSR

JAL, JALR

BL, BLE

BL, BLA,

CALL, JMPL

BCLRL, BCCTRL

Trap

CALL_PAL

BREAK

BREAK

TW, TWI

Ticc, SIR

GENTRAP

Return from interrupt

CALL_PAL REI

JR; ERET

RFI, RFIR

RFI

DONE, RETRY,

RETURN

FIGURE E.3.3 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions equivalent to MIPS core, they are separated by commas.

E-12

Appendix E A Survey of RISC Architectures

Floating point

(instruction formats)

R-R

R-R

R-R

R-R

R-R

Instruction

name Alpha

MIPS-64 PA-RISC

2.0

PowerPC

SPARCv9

Add single, double

ADDS, ADDT

ADD.S, ADD.D

FADD FADD/dbl

FADDS, FADD

FADDS, FADDD

Subtract single, double

SUBS, SUBT

SUB.S, SUB.D

FSUB FSUB/dbl

FSUBS, FSUB

FSUBS, FSUBD

Multiply single, double

MULS, MULT

MUL.S, MUL.D

FMPY FMPY/dbl

FMULS, FMUL

FMULS, FMULD

Divide single, double

DIVS, DIVT

DIV.S, DIV.D

FDIV, FDIV/dbl

FDIVS, FDIV

FDIVS, FDIVD

Compare

CMPT_ (=, <,

C_.S, C_.D (<, >, FCMP, FCMP/dbl FCMP

FCMPS, FCMPD

<=,

<=, >=, =,...)

(<, =, >)

UN)

Move R-R

ADDT Fd, F31, Fs

MOV.S, MOV.D

FCPY

FMV

FMOVS/D/Q

Convert (single, double,

CVTST, CVTTS,

CVT.S.D, CVT.

FCNVFF,s,d

—, FRSP, —, FSTOD, FDTOS,

integer) to (single,

CVTTQ, CVTQS,

D.S, CVT.S.W,

FCNVFF,d,s

FCTIW,—, — FSTOI, FDTOI,

CVTQT

CVT.D.W, CVT.

FCNVXF,s,s

FITOS, FITOD

double, integer)

W.S, CVT.W.D

FCNVXF,d,d

FCNVFX,s,s

FCNVFX,d,s

FIGURE E.3.4 Desktop RISC fl oating-point instructions equivalent to MIPS core. Dashes mean the operation is not available in that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are separated by commas.

Conventions Alpha MIPS-64

PA-RISC

2.0

PowerPC

SPARCv9

Register with value 0

r31 (source)

r0

r0

r0 (addressing) r0

Return address register (any)

r31

r2, r31

link (special)

r31

No-op

LDQ_U r31,...

SLL r0, r0, r0

OR r0, r0, r0

ORI r0, r0, #0

SETHI r0, 0

Move R-R integer

BIS..., r31,... ADD..., r0,...

OR..., r0,...

OR rx, ry, ry

OR..., r0,...

Operand order

OP Rs1, Rs2, Rd

OP Rd, Rs1, Rs2

OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2

OP Rs1, Rs2, Rd

FIGURE E.3.5 Conventions of desktop RISC architectures equivalent to MIPS core.

test condition codes to determine all possible unsigned and signed relations.

Floating point uses separate condition codes to encode the IEEE 754 conditions,

requiring a fl oating-point compare instruction. Version 9 expanded SPARC

branches in four ways: a separate set of condition codes for 64-bit operations; a

branch that tests the contents of a register and branches if the value is ⫽, not⫽, ⬍,

⬍⫽, ⬎⫽, or ⬍⫽ 0 (see MIPS below); three more sets of fl oating-point condition

codes; and branch instructions that encode static branch prediction.

PowerPC also uses four condition codes— less than, greater than, equal, and

 summary overfl ow—but it has eight copies of them. Th

is redundancy allows the

PowerPC instructions to use diff erent condition codes without confl ict, essentially

giving PowerPC eight extra 4-bit registers. Any of these eight condition codes can

be the target of a compare instruction, and any can be the source of a conditional

branch. Th

e integer instructions have an option bit that behaves as if the integer op

E.3 Instructions: the MIPS Core Subset

E-13

Instruction name

ARMv4

Thumb

SuperH

M32R

MIPS-16

Data transfer (instruction formats)

DT

DT

DT

DT

DT

Load byte signed

LDRSB

LDRSB

MOV.B

LDB

LB

Load byte unsigned

LDRB

LDRB

MOV.B; EXTU.B

LDUB

LBU

Load halfword signed

LDRSH

LDRSH

MOV.W

LDH

LH

Load halfword unsigned

LDRH

LDRH

MOV.W; EXTU.W

LDUH

LHU

Load word

LDR

LDR

MOV.L

LD

LW

Store byte

STRB

STRB

MOV.B

STB

SB

Store halfword

STRH

STRH

MOV.W

STH

SH

Store word

STR

STR

MOV.L

ST

SW

Read, write special registers

MRS, MSR

—1

LDC, STC

MVFC, MVTC

MOVE

FIGURE E.3.6 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize a MIPS instruction is shown separated by semicolons. Note that fl oating point is generally not defi ned for the embedded RISCs. Th umb and

MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th

umb or MIPS-16.

is followed by a compare to zero that sets the fi rst condition “register.” PowerPC

also lets the second “register” be optionally set by fl oating-point instructions.

PowerPC provides logical operations among these eight 4-bit condition code

registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more

complex conditions to be tested by a single branch.

MIPS uses the contents of registers to evaluate conditional branches. Any two

registers can be compared for equality (BEQ) or inequality (BNE), and then the

branch is taken if the condition holds. Th

e set on less than instructions (SLT, SLTI,

SLTU, SLTIU) compare two operands and then set the destination register to 1

if less and to 0 otherwise. Th

ese instructions are enough to synthesize the full set

of relations. Because of the popularity of comparisons to 0, MIPS includes special

compare and branch instructions for all such comparisons: greater than or equal to

zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less

than zero (BLTZ). Of course, equal and not equal to zero can be synthesized using

r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for fl oating point

with separate fl oating-point compare and branch instructions; MIPS IV expanded

this to eight fl oating-point condition codes, with the fl oating point comparisons

and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers

and set a third to 1 if the condition is true and to 0 otherwise. Floating-point

compares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition

holds and to 0 otherwise. Th

e branch instructions compare one register to 0 (BEQ,

BGE, BGT, BLE, BLT, BNE) or its least signifi cant bit to 0 (BLBC, BLBS) and

then branch if the condition holds.

E-14

Appendix E A Survey of RISC Architectures

Arithmetic/logical

R-R, R-I

R-R, R-I

R-R, R-I

R-R, R-I

R-R, R-I

(instruction formats)

Instruction name

ARMv4

Thumb

SuperH

M32R

MIPS-16

Add

ADD

ADD

ADD

ADD, ADDI, ADD3

ADDU, ADDIU

Add (trap if overfl ow)

ADDS; SWIVS ADD; BVC .+4; SWI

ADDV

ADDV, ADDV3

—1

Subtract

SUB

SUB

SUB

SUB

SUBU

Subtract (trap if overfl ow)

SUBS; SWIVS SUB; BVC .+1; SWI

SUBV

SUBV

—1

Multiply

MUL

MUL

MUL

MUL

MULT, MULTU

Multiply (trap if overfl ow)

—

Divide —

—

DIV1, DIVoS, DIV, DIVU

DIV, DIVU

DIVoU

Divide (trap if overfl

)

w

o

—

—

—

And

AND

AND

AND

AND, AND3

AND

Or

ORR

ORR

OR

OR, OR3

OR

Xor

EOR

EOR

XOR

XOR, XOR3

XOR

Load high part register

—

—

SETH

—1

Shift left logical

LSL3

LSL2

SHLL, SHLLn

SLL, SLLI, SLL3

SLLV, SLL

Shift right logical

LSR3

LSR2

SHRL, SHRLn

SRL, SRLI, SRL3

SRLV, SRL

Shift right arithmetic

ASR3

ASR2

SHRA, SHAD

SRA, SRAI, SRA3

SRAV, SRA

Compare

CMP,CMN,

CMP, CMN, TST

CMP/cond,

CMP/I, CMPU/I

CMP/I2, SLT/I,

TST,TEQ

TST

SLT/IU

FIGURE E.3.7 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Th umb and MIPS-16 are just 16-bit instruction

subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th

umb or MIPS-16. Th

e superscript 2 shows new instructions found only in 16-bit

mode of Th

umb or MIPS-16, such as CMP/I2. ARM includes shift s as part of every data operation instruction, so the shift s with superscript 3

are just a variation of a move instruction, such as LSR3 .

PA-RISC has many branch options, which we’ll see in Section E.11. Th

e most

straightforward is a compare and branch instruction (COMB), which compares two

registers, branches depending on the standard relations, and then tests the least

signifi cant bit of the result of the comparison.

ARM is similar to SPARC, in that it provides four traditional condition codes

that are optionally set. CMP subtracts one operand from the other and the diff erence

sets the condition codes. Compare negative (CMN) adds one operand to the other,

and the sum sets the condition codes. TST performs logical AND on the two

operands to set all condition codes but overfl ow, while TEQ uses exclusive OR to

set the fi rst three condition codes. Like SPARC, the conditional version of the ARM

branch instruction tests condition codes to determine all possible unsigned and

signed relations.

E.3 Instructions: the MIPS Core Subset

E-15

Control (instruction formats)

B, J, C

B, J, C

B, J, C

B, J, C

B, J, C

Instruction name

ARMv4

Thumb

SuperH

M32R

MIPS-16

Branch on integer compare

B/cond

B/cond

BF, BT

BEQ, BNE, BC, BNC, B__Z BEQZ2, BNEZ2, BTEQZ2,

BTNEZ2

Jump, jump register

MOV pc, ri

MOV pc, ri

BRA, JMP

BRA, JMP

B2, JR

Call, call register

BL

BL

BSR, JSR

BL, JL

JAL, JALR, JALX2

r

T a

p

W

S

I

S

I

W

R

T A

A

P

A

R

T

P

R

B

K

A

E

Return from interrupt

MOVS pc, r14

—1

S

T

R

E

T

R

—1

FIGURE E.3.8 Embedded RISC control instructions equivalent to MIPS core. Th

umb and MIPS-16 are just 16-bit instruction

subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th

umb or MIPS-16. Th

e superscript 2 shows new instructions found only in 16-bit

mode of Th

umb or MIPS-16, such as BTEQZ2.

Conventions

ARMv4

Thumb

SuperH

M32R

MIPS-16

Return address reg.

R14

R14

PR (special)

R14

RA (special)

No-op

MOV r0, r0

MOV r0, r0

NOP

NOP

SLL r0, r0

Operands, order

OP Rd, Rs1, Rs2

OP Rd, Rs1

OP Rs1, Rd

OP Rd, Rs1

OP Rd, Rs1, Rs2

FIGURE E.3.9 Conventions of embedded RISC instructions equivalent to MIPS core.

As we shall see in Section E.12, one unusual feature of ARM is that every

instruction has the option of executing conditionally depending on the condition

codes. (Th

is bears similarities to the annulling option of PA-RISC, seen in

Section E.11.)

Not surprisingly, Th

umb follows ARM. Th

e diff erences are that setting condition

codes are not optional, the TEQ instruction is dropped, and there is no conditional

execution of instructions.

Th

e Hitachi SuperH uses a single T-bit condition that is set by compare

instructions. Two branch instructions decide to branch if either the T bit is 1

(BT) or the T bit is 0 (BF). Th

e two fl avors of branches allow fewer comparison

instructions.

Mitsubishi M32R also off ers a single condition code bit (C) used for signed and

unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less

than the other or not, similar to the MIPS set on less than instructions. Two branch

instructions test to see if the C bit is 1 or 0: BC and BNC. Th

e M32R also includes

instructions to branch on equality or inequality of registers (BEQ and BNE) and all

relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike

BC and BNC, these last instructions are all 32 bits wide.

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU),

but instead of putting the result in one of the eight registers, it is placed in a special

register named T. MIPS-16 is always implemented in machines that also have the

full 32-bit MIPS instructions and registers; hence, register T is really register 24 in

the full MIPS architecture. Th

e MIPS-16 branch instructions test to see if a register

is or is not equal to zero (BEQZ and BNEZ). Th

ere are also instructions that branch

E-16

Appendix E A Survey of RISC Architectures

Alpha MIPS-64

PA-RISC

2.0

PowerPC SPARCv9

Number of condition code bits 0

8 FP

8 FP

8 × 4 both

2 × 4 integer, 4 × 2 FP

(integer and FP)

Basic compare instructions

1 integer, 1 FP

1 integer, 1 FP

4 integer, 2 FP

4 integer, 2 FP

1 FP

(integer and FP)

Basic branch instructions

1

2 integer, 1 FP

7 integer

1 both

3 integer, 1 FP

(integer and FP)

Compare register with

—

=, not=

=, not=, <, <=, >, >=, — —

register/const and branch

even, odd

Compare register to zero and

=, not=, <, <=, >, =, not=, <, <=,

=, not=, <, <=, >, >=, —

=, not=, <, <=, >, >=

branch

>=, even, odd

>, >=

even, odd

FIGURE E.3.10 Summary of fi ve desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC is accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARMv4

Thumb

SuperH

M32R

MIPS-16

Number of condition code bits

4

4

1

1

1

Basic compare instructions

4

3

2

2

2

Basic branch instructions

1

1

2

3

2

Compare register with register/const

—

—

=, >, >=

=, not=

—

and branch

Compare register to zero and branch

—

—

=, >, >=

=, not=, <, <=, >, >=

=, not=

FIGURE E.3.11 Summary of fi ve embedded RISC approaches to conditional branches

if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two registers are

equal, MIPS added compare instructions (CMP, CMPI) that compute the exclusive

OR of two registers and place the result in register T. Compare was added since

MIPS-16 left out instructions to compare and branch if registers are equal or not

(BEQ and BNE).

Figures E.3.10 and E.3.11 summarize the schemes used for conditional branches.

Instructions: Multimedia Extensions of

 E.4

the Desktop/Server RISCs

Since every desktop microprocessor by defi nition has its own graphical displays,

as transistor budgets increased it was inevitable that support would be added for

graphics operations. Many graphics systems use eight bits to represent each of the

three primary colors plus eight bits for the location of a pixel.

E.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs

E-17

Th

e addition of speakers and microphones for teleconferencing and video

games suggested support of sound as well. Audio samples need more than eight

bits of precision, but 16 bits are suffi

cient.

Every microprocessor has special support so that bytes and halfwords take

up less space when stored in memory, but due to the infrequency of arithmetic

operations on these data sizes in typical integer programs, there is little support

beyond data transfers. Th

e architects of the Intel i860, which was justifi ed as a

graphical accelerator within the company, recognized that many graphics and

audio applications would perform the same operation on vectors of this data.

Although a vector unit was beyond the transistor budget of the i860 in 1989, by

partitioning the carry chains within a 64-bit ALU, it could perform simultaneous

operations on short vectors of eight 8-bit operands, four 16-bit operands, or two

32-bit operands. Th

e cost of such partitioned ALUs was small. Applications that

lend themselves to such support include MPEG (video), games like DOOM (3-D

graphics), Adobe Photoshop (digital photography), and teleconferencing (audio

and image processing).

Like a virus, over time such multimedia support has spread to nearly every

desktop microprocessor. HP was the fi rst successful desktop RISC to include such

support. As we shall see, this virus spread unevenly. Th

e PowerPC is the only

holdout, and rumors are that it is “running a fever.”

Th

ese extensions have been called subword parallelism, vector, or SIMD (single-

instruction, multiple data) (see Chapter 6). Since Intel marketing uses SIMD to

describe the MMX extension of the 8086, that has become the popular name.

Figure E.4.1 summarizes the support by architecture.

From Figure E.4.1, you can see that in general, MIPS MDMX works on eight

bytes or four halfwords per instruction, HP PA-RISC MAX2 works on four half-

words, SPARC VIS works on four halfwords or two words, and Alpha doesn’t do

much. Th

e Alpha MAX operations are just byte versions of compare, min, max, and

absolute diff erence, leaving it up to soft ware to isolate fi elds and perform parallel

adds, subtracts, and multiplies on bytes and halfwords. MIPS also added operations

to work on two 32-bit fl oating-point operands per cycle, but they are considered

part of MIPS V and not simply multimedia extensions (see Section E.7).

One feature not generally found in general-purpose microprocessors is

saturating operations. Saturation means that when a calculation overfl ows, the

result is set to the largest positive number or most negative number, rather than a

modulo calculation as in two’s complement arithmetic. Commonly found in digital

signal processors (see the next section), these saturating operations are helpful in

routines for fi ltering.

Th

ese machines largely used existing register sets to hold operands: integer

registers for Alpha and HP PA-RISC and fl oating-point registers for MIPS and Sun.

Hence data transfers are accomplished with standard load and store instructions.

MIPS also added a 192-bit (3*64) wide register to act as an accumulator for some

operations. By having three times the native data width, it can be partitioned to

accumulate either eight bytes with 24 bits per fi eld or four halfwords with 48 bits

E-18

Appendix E A Survey of RISC Architectures

Instruction category

Alpha MAX

MIPS MDMX

PA-RISC MAX2

PowerPC

SPARC VIS

d

A

/

d su t

b a

r

t

c

8

4

,

B

H

H

4

H

4

W

2

,

a

S u

t r t

a in a

g

d

d /sub

H

4

,

B

8

H

4

M l

u i

t ply

8

4

,

B

H

B

4

H

/

o

C

p

m

r

a

e

8B >

(

)

=

(

H

4

,

B

8

<

,

=

<

,

)

=

=

(

W

2

,

H

4

,

t

o

n

>

,

=

)

=

<

,

S i

h f

i

r

t

h

g

/

t le t

f

H

4

,

B

8

4

H

h

S ift r

i h

g

r

a

t

ith e

m

i

t c

4

H

H

4

M t

l

u

l

p

i

a

y

d

n

d

a

d

B

8

4

,

H

Shift and add

4H

(saturating)

r

o

/

d

n

A

x

/

r

o

B

8

H

4

,

W

2

,

4

,

B

8

2

,

H

W

B

8

4

,

W

2

,

H

B

8

H

4

,

W

2

,

Absolute difference

8B

8B

Max/min 8B,

4W

8B,

4H

Pack (2 n bits --> n b

)

s

t

i

2W-

B

2

>

-

H

4

,

B

4

>

-

H

4

*

2

,

H

4

>

-

W

2

*

2

B

8

>

-

H

4

*

2

B

8

>

W

2

H

2

>

-

W

2

,

,

B

2

>

-

4H->4B

U

c

a

p

n

m

/

k

r

e

e

g

2

2

>

-

B

H

4

>

-

B

4

,

W

8

>

-

B

4

*

2

H

2

*

2

,

B

H

4

>

-

B

4

H

4

>

-

2

,

B

4

*

B

8

>

-

e

P r

t

u

m

h

s

/

e

e

fl

f

u

H

4

,

B

8

H

4

R

s

i

g

e

t

s

r

e

e

s

t

I t

n e

r

e

g

l

F

t

P

.

+

.

9

1

b

2

c

c

A

.

n

I t

e

g

e

r

F P

.

l

.

t

FIGURE E.4.1 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits), and W

for word (32 bits). Th

us 8B means an operation on eight bytes in a single instruction. Pack and unpack use the notation 2*2W to mean two operands each with two words. Note that MDMX has vector/scalar operations, where the scalar is specifi ed as an element of one of the vector registers. Th

is table is a simplifi cation of the full multimedia architectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between two operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to set registers to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS.

per fi eld. Th

is wide accumulator can be used for add, subtract, and multiply/ add

instructions. MIPS claims performance advantages of two to four times for the

accumulator.

Perhaps the surprising conclusion of this table is the lack of consistency. Th

e

only operations found on all four are the logical operations (AND, OR, XOR),

which do not need a partitioned ALU. If we leave out the frugal Alpha, then the

only other common operations are parallel adds and subtracts on four halfwords.

Each manufacturer states that these are instructions intended to be used in

hand-optimized subroutine libraries, an intention likely to be followed, as a

compiler that works well with multimedia extensions of all desktop RISCs would

be challenging.

E.5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs

E-19

Instructions: Digital Signal-Processing

 E.5

Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) architecture is support

for integer multiply-accumulate. Th

e multiplies tend to be on shorter words than

regular integers, such as 16 bits, and the accumulator tends to be on longer words,

such as 64 bits. Th

e reason for multiply-accumulate is to effi

ciently implement

digital fi lters, common in DSP applications. Since Th

umb and MIPS-16 are subset

architectures, they do not provide such support. Instead, programmers should use

the DSP or multimedia extensions found in the 32-bit mode instructions of ARM

and MIPS-64.

Figure E.5.1 shows the size of the multiply, the size of the accumulator, and

the operations and instruction names for the embedded RISCs. Machines with

accumulator sizes greater than 32 and less than 64 bits will force the upper bits

to remain as the sign bits, thereby “saturating” the add to set to maximum and

minimum fi xed-point values if the operations overfl ow.

ARMv4

Thumb SuperH

M32R

MIPS-16

Size of multiply

32B × 32B

—

32B × 32B, 16B × 16B

32B × 16B, 16B × 16B

—

S e

z

i

u

c

c

a

f

o

a

l

u

m

t r

o

32B

B

4

6

/

—

3

/

B

2

B

2

4

8

4

,

B 6

/

B

4

5

B

6

—

A

u

c

c

l

u

m

t

a

r

o n

e

m

a

y

n

A

R

P

G

r

o

r

i

a

p

s

R

P

G

f

o

s

—

C

A

M

C

A

M

,

H

L

C

C

A

—

Operations

32B/64B product + 64B

—

32B product + 42B/32B

32B/48B product +

—

accumulate signed/

accumulate (operands in

64B accumulate,

unsigned

memory); 64B product

round, move

+ 64B/48B accumulate

(operands in memory); clear

MAC

Corresponding

MLA, SMLAL, UMLAL

—

MAC, MACS, MAC.L, MAC.LS, MACHI/MACLO,

—

instruction names

CLRMAC

MACWHI/MACWLO,

RAC, RACH, MVFACHI/

MVFACLO, MVTACHI/

MVTACLO

FIGURE E.5.1 Summary of fi ve embedded RISC approaches to multiply-accumulate.

E-20

Appendix E A Survey of RISC Architectures

Instructions: Common Extensions to

 E.6

MIPS Core

Figures E.6.1 through E.6.7 list instructions not found in Figures E.3.5 through

E.3.11 in the same four categories. Instructions are put in these lists if they appear

in more than one of the standard architectures. Th

e instructions are defi ned using

the hardware description language defi ned in Figure E.6.8.

Although most of the categories are self-explanatory, a few bear comment:

■ Th

e “atomic swap” row means a primitive that can exchange a register with

memory without interruption. Th

is is useful for operating system semaphores

in a uniprocessor as well as for multiprocessor synchronization (see Section

2.11 in Chapter 2).

■ Th

e 64-bit data transfer and operation rows show how MIPS, PowerPC,

and SPARC defi ne 64-bit addressing and integer operations. SPARC simply

defi nes all register and addressing operations to be 64 bits, adding only

Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Atomic swap R/M

Temp<---Rd; Rd<–Mem[x]; LDL/Q_L;

LL; SC

— (see D.8)

LWARX;

CASA, CASX

(for locks and

Mem[x]<---Temp

STL/Q_C

STWCX

semaphores)

Load 64-bit integer

Rd<–64 Mem[x]

LDQ LD

LDD

LD LDX

Store 64-bit integer

Mem[x]<---64 Rd

STQ SD

STD

STD STX

Load 32-bit integer

Rd32..63<–32 Mem[x];

LDL; EXTLL LWU

LDW

LWZ

LDUW

unsigned

Rd0..31<–32 0

Load 32-bit integer

Rd32..63<–32 Mem[x]; 32

LDL

LW LDW;

EXTRD,S

LWA LDSW

signed

Rd0..31<–32 Mem[x]0

63, 8

Prefetch Cache[x]<– hint

FETCH,

PREF, PREFX LDD, r0

DCBT,

PRE-FETCH

FETCH_M*

LDW, r0

DCBTST

Load coprocessor

Coprocessor<– Mem[x]

—

LWCi CLDWX,

CLDWS

—

—

Store coprocessor

Mem[x]<– Coprocessor

—

SWCi CSTWX,

CSTWS

— —

Endian

(Big/little endian?)

Either

Either

Either

Either Either

Cache fl ush

(Flush cache block at this ECB

CP0op

FDC, FIC

DCBF

FLUSH

address)

Shared memory

(All prior data transfers

WMB

SYNC

SYNC

SYNC

MEMBAR

synchronization

complete before next data

transfer may start)

FIGURE E.6.1 Data transfer instructions not found in MIPS core but found in two or more of the fi ve desktop architectures. Th

e load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing data to be read from memory, modifi ed, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see Chapter 2). Prefetching in the Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, and LD_Y A. F31 is used in the Alpha 21164 (see Bhandarkar [1995], p. 190).

E.6 Instructions: Common Extensions to MIPS Core

E-21

Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

64-bit integer

Rd<–64Rs1 op64 Rs2

ADD,

DADD, DSUB ADD, SUB,

ADD, SUBF,

ADD, SUB,

arithmetic ops

SUB, MUL

DMULT, DDIV SHLADD, DS

MULLD, DIVD

MULX,

S/UDIVX

64-bit integer

Rd<–64Rs1 op64 Rs2

AND, OR, AND, OR,

AND, OR, XOR

AND, OR, XOR AND, OR,

logical ops

XOR

XOR

XOR

64-bit shifts

Rd<–64Rs1 op64 Rs2

SLL,

DSLL/V,

DEPD,Z

SLD, SRAD,

SLLX, SRAX,

SRA, SRL

DSRA/V,

EXTRD,S

SRLD

SRLX

DSRL/V

EXTRD,U

Conditional move

if (cond) Rd<–Rs

CMOV_

MOVN/Z

SUBc, n; ADD

— MOVcc,

MOVr

Support for

CarryOut, Rd <– Rs1 +

— ADU;

SLTU;

ADDC ADDC,

ADDE

ADDcc

multiword integer

Rs2 + OldCarryOut

ADDU, DADU;

add

SLTU; DADDU

Support for

CarryOut, Rd <– Rs1

— SUBU;

SLTU;

SUBB

SUBFC, SUBFE SUBcc

multiword integer

Rs2 + OldCarryOut

SUBU,

sub

DSUBU;

SLTU; DSUBU

And not

Rd <– Rs1 & ~(Rs2)

BIC

—

ANDCM ANDC

ANDN

Or not

Rd <– Rs1 | ~(Rs2)

ORNOT

—

—

ORC

ORN

Add high immediate Rd0..15<–Rs10..15 +

—

—

ADDIL (R-I)

ADDIS (R-I)

—

(Const<<16);

Coprocessor

(Defi ned by coprocessor)

—

COPi COPR,i

—

IMPDEPi

operations

FIGURE E.6.2 Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve desktop architectures.

Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Optimized delayed

(Branch not always

—

BEQL, BNEL,

COMBT, n,

— BPcc,

A,

branches

delayed)

B_ZL (<, >,

COMBF, n

FPBcc, A

<=, >=)

Conditional trap

if (COND) {R31<---PC; PC

—

T_,,T_I (=, SUBc, n; BREAK

TW, TD, TWI,

Tcc

<–0..0#i}

not=, <, >,

TDI

<=, >=)

No. control

Misc. regs (virtual

6

equiv. 12

32

33

29

registers

memory, interrupts, . . .)

FIGURE E.6.3 Control instructions not found in MIPS core but found in two or more of the fi ve desktop architectures.

special instructions for 64-bit shift s, data transfers, and branches. MIPS

includes the same extensions, plus it adds separate 64-bit signed arithmetic

instructions. PowerPC adds 64-bit right shift , load, store, divide, and compare

and has a separate mode determining whether instructions are interpreted as

32- or 64-bit operations; 64-bit operations will not work in a machine that

E-22

Appendix E A Survey of RISC Architectures

Name Defi nition

Alpha

MIPS-64

PA-RISC 2.0

PowerPC

SPARCv9

Multiply and add

Fd <– (Fs1 × Fs2)

—

MADD.S/D

FMPYFADD sgl/dbl FMADD/S

+ Fs3

Multiply and sub

Fd <– (Fs1 × Fs2)

—

MSUB.S/D

FMSUB/S

– Fs3

Neg mult and add Fd <– -((Fs1 × Fs2) —

NMADD.S/D

FMPYFNEG sgl/dbl FNMADD/S

+ Fs3)

Neg mult and sub Fd <– -((Fs1 × Fs2) —

U

S

M

N

D

/

S

.

B

M

N

F

S

/

B

U

S

– Fs3)

Square root

Fd <– SQRT(Fs)

SQRT_

SQRT.S/D

FSQRT sgl/dbl

FSQRT/S

FSQRTS/D

Conditional move

if (cond) Fd<–Fs

FCMOV_

MOVF/T,

FTESTFCPY

—

FMOVcc

MOVF/T.S/D

Negate

Fd <– Fs ^

CPYSN

NEG.S/D

FNEG sgl/dbl

FNEG

FNEGS/D/Q

x80000000

Absolute value

Fd <– Fs &

—

ABS.S/D

FABS/dbl

FABS

FABSS/D/Q

x7FFFFFFF

FIGURE E.6.4 Floating-point instructions not found in MIPS core but found in two or more of the fi ve desktop architectures.

Name Defi nition

ARMv4

Thumb

SuperH

M32R

MIPS-16

Atomic swap R/M (for

Temp<–Rd; Rd<–Mem[x];

SWP, SWPB

—1

(see TAS)

LOCK; UNLOCK

—1

semaphores)

Mem[x]<–Temp

Memory management unit

Paged address translation Via coprocessor

—1

LDTLB

—1

instructions

Endian (Big/little

endian?)

Either

Either

Either

Big

Either

FIGURE E.6.5 Data transfer instructions not found in MIPS core but found in two or more of the fi ve embedded architectures. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Th umb or MIPS-16.

only supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and

operations in version 2.0.

■ Th

e “prefetch” instruction supplies an address and hint to the implementation

about the data. Hints include whether the data is likely to be read or written

soon, likely to be read or written only once, or likely to be read or written

many times. Prefetch does not cause exceptions. MIPS has a version that

adds two registers to get the address for fl oating-point programs, unlike

nonfl oating-point MIPS programs.

■ In the “Endian” row, “Big/little” means there is a bit in the program

status register that allows the processor to act either as big endian or little

endian (see Appendix B). Th

is can be accomplished by simply complementing

some of the least signifi cant bits of the address in data transfer instructions.

E.6 Instructions: Common Extensions to MIPS Core

E-23

■ Th

e “shared memory synchronization” helps with cache-coherent multi-

processors: all loads and stores executed before the instruction must complete

before loads and stores aft er it can start. (See Chapter 2.)

■ Th

e “coprocessor operations” row lists several categories that allow for the

processor to be extended with special-purpose hardware.

Name Defi nition

ARMv4

Thumb

SuperH

M32R

MIPS-16

Load immediate

Rd<---Imm

MOV

MOV

MOV, MOVA LDI, LD24

LI

Support for multiword integer add

CarryOut, Rd <--- Rd + Rs1 +

ADCS

ADC

ADDC

ADDX

—1

OldCarryOut

Support for multiword integer sub

CarryOut, Rd <--- Rd – Rs1 +

SBCS

SBC

SUBC

SUBX

—1

OldCarryOut

a

g

e

N

t

e

1

s

R

–

0

-

-

-

<

d

R

NEG2

NEG

NEG

NEG

o

N t

<

d

R

~

-

-

-

s

R

(

)

1

MVN

MVN

NOT

NOT

NOT

M v

o

e

<

d

R

1

s

R

-

-

-

MOV

MOV

MOV

MV

MOVE

Rotate right

Rd <--- Rs i, >> Rd

ROR

ROR

ROTC

0. . . i–1 <---

Rs31– i. . . 31

n

A

t

o

n

d

d

R

-

< -

-

&

1

s

R

)

2

s

R

(

~

BIC

BIC

FIGURE E.6.6 Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve embedded architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Th umb or MIPS-16. Th

e superscript

2 shows new instructions found only in 16-bit mode of Th

umb or MIPS-16, such as NEG2.

Name Defi nition

ARMv4

Thumb

SuperH

M32R

MIPS-16

No. control registers

Misc. registers

21

29

9

5

36

FIGURE E.6.7 Control information in the fi ve embedded architectures.

One diff erence that needs a longer explanation is the optimized branches. Figure

E.6.9 shows the options. Th

e Alpha and PowerPC off er branches that take eff ect

immediately, like branches on earlier architectures. To accelerate branches, these

machines use branch prediction (see Chapter 4). All the rest of the desktop RISCs

off er delayed branches (see Appendix A). Th

e embedded RISCs generally do not

support delayed branch, with the exception of SuperH, which has it as an option.

Th

e other three desktop RISCs provide a version of delayed branch that makes it

easier to fi ll the delay slot. Th

e SPARC “annulling” branch executes the instruction

in the delay slot only if the branch is taken; otherwise the instruction is annulled.

Th

is means the instruction at the target of the branch can safely be copied into the

delay slot, since it will only be executed if the branch is taken. Th

e restrictions are

that the target is not another branch and that the target is known at compile time.

(SPARC also off ers a nondelayed jump because an unconditional branch with the

annul bit set does not execute the following instruction.) Later versions of the MIPS

E-24

Appendix E A Survey of RISC Architectures

No

o

i

t

a

t

n

M a

e

g

n

i

n

E

p

m

a

x

e

l

a

e

M

i

n

g

n

<- -

Data transfer. Length of transfer is given by

Regs[R1]<--Regs[R2];

Transfer contents of R2 to R1.

the destination’s length; the length is specifi ed

Registers have a fi xed length, so

when not clear.

transfers shorter than the register

size must indicate which bits are

used.

M

Array of memory accessed in bytes. The

Regs[R1]<--M[x];

Place contents of memory location x

starting address for a transfer is indicated as

into R1. If a transfer starts at M[i]

the index to the memory array.

and requires 4 bytes, the transferred

bytes are M[i], M[i+1], M[i+2],

and M[i+3].

<- -n Transfer

an

 n-bit fi eld, used whenever length

M[y]<--16M[x];

Transfer 16 bits starting at memory

of transfer is not clear.

location x to memory location y. The

length of the two sides should match.

Xn

Subscript selects a bit.

Regs[R1]0<--0;

Change sign bit of R1 to 0. (Bits are

numbered from MSB starting at 0.)

Xm..n

Subscript selects a fi eld.

Regs[R3]24..31<--M[x];

Moves contents of memory location x

into low-order byte of R3.

Xn

Superscript replicates a bit fi eld.

Regs[R3]0..23<--024;

Sets high-order three bytes of R3 to 0.

Concatenates two fi elds.

Regs[R3]<--240## M[x];

Moves contents of location x into low

F2##F3<--64M[x];

byte of R3; clears upper three bytes.

Moves 64 bits from memory starting

at location x; 1st 32 bits go into F2,

2nd 32 into F3.

*, &

Dereference a pointer; get the address of a

p*<--&x;

Assign to object pointed to by p the

variable.

address of the variable x.

<<, >>

C logical shifts (left, right).

Regs[R1] << 5 Shift

R1 left 5 bits.

==, !=, >, <,

C relational operators; equal, not equal,

(Regs[R1]== Regs[R2]) & True if contents of R1 equal the

>=, <=

greater, less, greater or equal, less or equal.

(Regs[R3]!=Regs[R4])

contents of R2 and contents of R3 do

not equal the contents of R4.

&, |, ^, !

C bitwise logical operations: AND, OR,

(Regs[R1] & (Regs[R2]|

Bitwise AND of R1 and bitwise OR of

exclusive OR, and complement.

Regs[R3]))

R2 and R3.

FIGURE E.6.8 Hardware description notation (and some standard C operators).

(Plain) branch

Delayed branch

Annulling delayed branch

Found in architectures

Alpha, PowerPC, ARM, Thumb, MIPS-64, PA-RISC,

MIPS-64, SPARC

PA-RISC

SuperH, M32R, MIPS-16

SPARC, SuperH

Execute following instruction

Only if branch not taken

Always

Only if branch

If forward branch not

taken

taken or backward

branch taken

FIGURE E.6.9 When the instruction following the branch is executed for three types of branches.

E.7 Instructions Unique to MIPS-64

E-25

architecture have added a branch likely instruction that also annuls the following

instruction if the branch is not taken. PA-RISC allows almost any instruction to

annul the next instruction, including branches. Its “nullifying” branch option will

execute the next instruction depending on the direction of the branch and whether

it is taken (i.e., if a forward branch is not taken or a backward branch is taken).

Presumably this choice was made to optimize loops, allowing the instructions

following the exit branch and the looping branch to exe cute in the common case.

Now that we have covered the similarities, we will focus on the unique features

of each architecture. We fi rst cover the desktop/server RISCs, ordering them by

length of description of the unique features from shortest to longest, and then the

embedded RISCs.

 E.7

Instructions Unique to MIPS-64

MIPS has gone through fi ve generations of instruction sets, and this evolution has

generally added features found in other architectures. Here are the salient unique

features of MIPS, the fi rst several of which were found in the original instruction set.

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A rare event

in most programs, it is included for supporting 16-bit minicomputer applications

and for doing memcpy and strcpy faster. Although most RISCs trap if you try to

load a word or store a word to a misaligned address, on all architectures misaligned

words can be accessed without traps by using four load byte instructions and then

assembling the result using shift s and logical ORs. Th

e MIPS load and store word

left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just

two instructions: LWL loads the left portion of the register and LWR loads the right

portion of the register. SWL and SWR do the corresponding stores. Figure E.7.1

shows how they work. Th

ere are also 64-bit versions of these instructions.

Remaining Instructions

Below is a list of the remaining unique details of the MIPS-64 architecture:

■ NOR—Th

is logical instruction calculates ⬃(Rs1 | Rs2).

■ Constant shift amount—Nonvariable shift s use the 5-bit constant fi eld shown

in the register-register format in Figure E.2.3.

■ SYSCALL—Th

is special trap instruction is used to invoke the operating

system.

E-26

Appendix E A Survey of RISC Architectures

Case 1

Case 2

Before

Before

M[100]

D

A

V

M[200]

D

100 101 102 103

200 201 202 203

M[104]

E

M[204]

A

V

E

104 105 106 107

204 205 206 207

R2

J

O

H

N

R4

J

O

H

N

After

LWL R2, 101:

After

LWL R4, 203:

R2

D

A

V

N

R4

D

O

H

N

After

LWR R2, 104:

After

LWR R4, 206:

R2

D

A

V

E

R4

D

A

V

E

FIGURE E.7.1 MIPS instructions for unaligned word reads. Th

is fi gure assumes operation in

big-endian mode. Case 1 fi rst loads the three bytes 101, 102, and 103 into the left of R2, leaving the least signifi cant byte undisturbed. Th

e following LWR simply loads byte 104 into the least signifi cant byte of

R2, leaving the other bytes of the register unchanged using LWL. Case 2 fi rst loads byte 203 into the most signifi cant byte of R4, and the following LWR loads the other three bytes of R4 from memory bytes 204, 205, and 206. LWL reads the word with the fi rst byte from memory, shift s to the left to discard the unneeded byte(s), and changes only those bytes in Rd. Th

e byte(s) transferred are from the fi rst byte to the lowest-order

byte of the word. Th

e following LWR addresses the last byte, right-shift s to discard the unneeded byte(s), and

fi nally changes only those bytes of Rd. Th

e byte(s) transferred are from the last byte up to the highest-order

byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is the inverse of LWR. Changing to little-endian mode fl ips which bytes are selected and discarded. (If big-little, left -right, load-store seem confusing, don’t worry; they work!)

■ Move to/from control registers—CTCi and CFCi move between the integer

registers and control registers.

■ Jump/call not PC-relative—Th

e 26-bit address of jumps and calls is not added

to the PC. It is shift ed left two bits and replaces the lower 28 bits of the PC.

Th

is would only make a diff erence if the program were located near a 256 MB

boundary.

■ TLB instructions—Translation-lookaside buff er (TLB) misses were handled

in soft ware in MIPS I, so the instruction set also had instructions for

manipulating the registers of the TLB (see Chapter 5 for more on TLBs).

Th

ese registers are considered part of the “system coprocessor.” Since MIPS I

E.8 Instructions Unique to Alpha

E-27

the instructions diff er among versions of the architecture; they are more part

of the implementations than part of the instruction set architecture.

■ Reciprocal and reciprocal square root—Th

ese instructions, which do not

follow IEEE 754 guidelines of proper rounding, are included apparently for

applications that value speed of divide and square root more than they value

accuracy.

■ Conditional procedure call instructions—BGEZAL saves the return address and

branches if the content of Rs1 is greater than or equal to zero, and BLTZAL

does the same for less than zero. Th

e purpose of these instructions is to get a

PC-relative call. (Th

ere are “likely” versions of these instructions as well.)

■ Parallel single precision fl oating-point operations—As well as extending

the architecture with parallel integer operations in MDMX, MIPS-64 also

supports two parallel 32-bit fl oating-point operations on 64-bit registers

in a single instruction. “Paired single” operations include add (ADD.PS),

subtract (SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL,

CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS,

MOVF.PS, MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and

multiply-subtract (MSUB.PS).

Th

ere is no specifi c provision in the MIPS architecture for fl oating-point execution

to proceed in parallel with integer execution, but the MIPS implementations of

fl oating point allow this to happen by checking to see if arithmetic interrupts are

possible early in the cycle. Normally, exception detection would force serialization

of execution of integer and fl oating-point operations.

 E.8

Instructions Unique to Alpha

Th

e Alpha was intended to be an architecture that made it easy to build high-

performance implementations. Toward that goal, the architects originally made

two controversial decisions: imprecise fl oating-point exceptions and no byte or

halfword data transfers.

To simplify pipelined execution, Alpha does not require that an exception

should act as if no instructions past a certain point are executed and that all before

that point have been executed. It supplies the TRAPB instruction, which stalls until

all prior arithmetic instructions are guaranteed to complete without incurring

arithmetic exceptions. In the most conservative mode, placing one TRAPB per

exception-causing instruction slows execution by roughly fi ve times but provides

precise exceptions (see Darcy and Gay [1996]).

E-28

Appendix E A Survey of RISC Architectures

Code that does not include TRAPB does not obey the IEEE 754 fl oating-point

standard. Th

e reason is that parts of the standard (NaNs, infi nities, and denormals)

are implemented in soft ware on Alpha, as they are on many other microprocessors.

To implement these operations in soft ware, however, programs must fi nd the

off ending instruction and operand values, which cannot be done with imprecise

interrupts!

When the architecture was developed, it was believed by the architects that byte

loads and stores would slow down data transfers. Byte loads require an extra shift er

in the data transfer path, and byte stores require that the memory system perform

a read-modify-write for memory systems with error correction codes, since the

new ECC value must be recalculated. Th

is omission meant that byte stores required

the sequence load word, replaced the desired byte, and then stored the word.

(Inconsistently, fl oating-point loads go through considerable byte swapping to

convert the obtuse VAX fl oating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes

an elaborate set of byte manipulation instructions: extract fi eld and zero rest of a

register (EXTxx), insert fi eld (INSxx), mask rest of a register (MSKxx), zero fi elds

of a register (ZAP), and compare multiple bytes (CMPGE).

Apparently, the implementors were not as bothered by load and store byte as

were the original architects. Beginning with the shrink of the second version of the

Alpha chip (21164A), the architecture does include loads and stores for bytes and

halfwords.

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture:

■ PAL code—To provide the operations that the VAX performed in microcode,

Alpha provides a mode that runs with all privileges enabled, interrupts

disabled, and virtual memory mapping turned off for instructions. PAL

(privileged architecture library) code is used for TLB management, atomic

memory operations, and some operating system primitives. PAL code is

called via the CALL_PAL instruction.

■ No divide—Integer divide is not supported in hardware.

■ “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using

addresses that ignore the least signifi cant three bits. Extract instructions

then select the desired unaligned word using the lower address bits. Th

ese

instructions are similar to LWL/R, SWL/R in MIPS.

■ Floating-point single precision represented as double precision—Single precision

data is kept as conventional 32-bit formats in memory but is converted to 64-

bit double precision format in registers.

■ Floating-point register F31 is fi xed at zero—To simplify comparisons to zero.

E.9 Instructions Unique to SPARC v9

E-29

■ VAX fl oating-point formats—To maintain compatibility with the VAX

architecture, in addition to the IEEE 754 single and double precision formats

called S and T, Alpha supports the VAX single and double precision formats

called F and G, but not VAX format D. (D had too narrow an exponent fi eld

to be useful for double precision and was replaced by G in VAX code.)

■ Bit count instructions—Version 3 of the architecture added instructions to

count the number of leading zeros (CTLZ), count the number of trailing zeros

(CTTZ), and count the number of ones in a word (CTPOP). Originally found

on Cray computers, these instructions help with decryption.

 E.9

Instructions Unique to SPARC v9

Several features are unique to SPARC.

Register Windows

Th

e primary unique feature of SPARC is register windows, an optimization for

reducing register traffi

c on procedure calls. Several banks of registers are used, with

a new one allocated on each procedure call. Although this could limit the depth of

procedure calls, the limitation is avoided by operating the banks as a circular buff er,

providing unlimited depth. Th

e knee of the cost/performance curve seems to be six

to eight banks.

SPARC can have between 2 and 32 windows, typically using 8 registers each

for the globals, locals, incoming parameters, and outgoing parameters. (Given that

each window has 16 unique registers, an implementation of SPARC can have as

few as 40 physical registers and as many as 520, although most have 128 to 136, so

far.) Rather than tie window changes with call and return instructions, SPARC has

the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s

window by pointing to the next window of registers in addition to performing an

add instruction. Th

e trick is that the source registers are from the caller’s window

of the addition operation, while the destination register is in the callee’s window.

SPARC compilers typically use this instruction for changing the stack pointer to

allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,

bringing back the caller’s window while acting as an add instruction, with the

source registers from the callee’s window and the destination register in the caller’s

window. Th

is automatically deallocates the stack frame. Compilers can also make

use of it for generating the callee’s fi nal return value.

Th

e danger of register windows is that the larger number of registers could slow

down the clock rate. Th

is was not the case for early implementations. Th

e SPARC

architecture (with register windows) and the MIPS R2000 architecture (without)

E-30

Appendix E A Survey of RISC Architectures

have been built in several technologies since 1987. For several generations, the

SPARC clock rate has not been slower than the MIPS clock rate for implementations

in similar technologies, probably because cache access times dominate register

access times in these implementations. Th

e current-generation machines took

diff erent implementation strategies—in order versus out of order—and it’s unlikely

that the number of registers by themselves determined the clock rate in either

machine. Recently, other architectures have included register windows: Tensilica

and IA-64.

Another data transfer feature is alternate space option for loads and stores.

Th

is simply allows the memory system to identify memory accesses to input/

output devices, or to control registers for devices such as the cache and memory

management unit.

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level

of traps to at least four levels, allowing the window overfl ow and underfl ow trap

handlers to be interrupted. Th

e extra levels mean the handler does not need to

check for page faults or misaligned stack pointers explicitly in the code, thereby

making the handler faster. Two new instructions were added to return from this

multilevel handler: RETRY (which retries the interrupted instruction) and DONE

(which does not). To support user-level traps, the instruction RETURN will return

from the trap in nonprivileged mode.

Support for LISP and Smalltalk

Th

e primary remaining arithmetic feature is tagged addition and subtraction.

Th

e designers of SPARC spent some time thinking about languages like LISP and

Smalltalk, and this infl uenced some of the features of SPARC already discussed:

register windows, conditional trap instructions, calls with 32-bit instruction

addresses, and multiword arithmetic (see Taylor, et al. [1986] and Ungar, et al.

[1984]). A small amount of support is off ered for tagged data types with operations

for addition, subtraction, and, hence, comparison. Th

e two least signifi cant bits

indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc

set the overfl ow bit if either operand is not tagged as an integer or if the result is

too large. A subsequent conditional branch or trap instruction can decide what to

do. (If the operands are not integers, soft ware recovers the operands, checks the

types of the operands, and invokes the correct operation based on those types.) It

turns out that the misaligned memory access trap can also be put to use for tagged

data, since loading from a pointer with the wrong tag can be an invalid access.

Figure E.9.1 shows both types of tag support.

E.9 Instructions Unique to SPARC v9

E-31

a. Add, sub, or

00

(R5)

compare integers

(coded as 00)

00

(R6)

TADDcc r7, r5, r6

00

(R7)

b. Loading via

11

(R4)

valid pointer

(coded as 11)

–

3

LD rD, r4, –3

00

(Word

address)

FIGURE E.9.1 SPARC uses the two least signifi cant bits to encode different data types for the tagged arithmetic instructions. a. Integer arithmetic takes a single cycle as long as the operands and the result are integers. b. Th

e misaligned trap can be used to catch invalid memory accesses, such as

trying to use an integer as a pointer. For languages with paired data like LISP, an off set of –3 can be used to access the even word of a pair (CAR) and ⫹1 can be used for the odd word of a pair (CDR).

Overlapped Integer and Floating-Point Operations

SPARC allows fl oating-point instructions to overlap execution with integer

instructions. To recover from an interrupt during such a situation, SPARC has a

queue of pending fl oating-point instructions and their addresses. RDPR allows the

processor to empty the queue. Th

e second fl oating-point feature is the inclusion of

fl oating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions

Th

e remaining unique features of SPARC are as follows:

■ JMPL uses Rd to specify the return address register, so specifying r31 makes

it similar to JALR in MIPS and specifying r0 makes it like JR.

■ LDSTUB loads the value of the byte into Rd and then stores FF16 into

the addressed byte. Th

is version 8 instruction can be used to implement

synchronization (see Chapter 2).

■ CASA (CASXA) atomically compares a value in a processor register to a

32-bit (64-bit) value in memory; if and only if they are equal, it swaps the

value in memory with the value in a second processor register. Th

is version 9

E-32

Appendix E A Survey of RISC Architectures

instruction can be used to construct wait-free synchronization algorithms

that do not require the use of locks.

■ XNOR calculates the exclusive OR with the complement of the second operand.

■ BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler

can give hints to the machine about whether a branch is likely to be taken or not.

■ ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how

this is used for proper execution of aggregate returning procedures in C.

■ POPC counts the number of bits set to one in an operand, also found in the

third version of the Alpha architecture.

■ Nonfaulting loads allow compilers to move load instructions ahead of

conditional control structures that control their use. Hence, nonfaulting

loads will be executed speculatively.

■ Quadruple precision fl oating-point arithmetic and data transfer allow the

fl oating-point registers to act as eight 128-bit registers for fl oating-point

operations and data transfers.

■ Multiple precision fl oating-point results for multiply mean that two single

precision operands can result in a double precision product and two double

precision operands can result in a quadruple precision product. Th

ese

instructions can be useful in complex arithmetic and some models of fl oating-

point calculations.

 E.10 Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC machines—

IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return

address on procedure call, PowerPC puts the address into a special register called

the link register. Since many procedures will return without calling another

procedure, the link doesn’t always have to be saved. Making the return address

a special register makes the return jump faster, since the hardware need not go

through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where the program iterates a fi xed number of times. By using a special register, the branch

E.10 Instructions Unique to PowerPC

E-33

hardware can determine quickly whether a branch based on the count register is

likely to branch, since the value of the register is known early in the execution cycle.

Tests of the value of the count register in a branch instruction will automatically

decrement the count register.

Given that the count register and link register are already located with the

hardware that controls branches, and that one of the problems in branch prediction

is getting the target address early in the pipeline (see Appendix A), the PowerPC

architects decided to make a second use of these registers. Either register can hold

a target address of a conditional branch. Th

us, PowerPC supplements its basic

conditional branch with two instructions that get the target address from these

registers (BCLR, BCCTR).

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It

cannot be used as a base register—that is, it generates a 0 in this case—but in base

⫹ index addressing it can be used as the index. Th

e other unique features of the

PowerPC are as follows:

■ Load multiple and store multiple save or restore up to 32 registers in a single

instruction.

■ LSW and STSW permit fetching and storing of fi xed- and variable-length

strings that have arbitrary alignment.

■ Rotate with mask instructions support bit fi eld extraction and insertion. One

version rotates the data and then per forms logical AND with a mask of ones,

thereby extracting a fi eld. Th

e other version rotates the data but only places

the bits into the destination register where there is a corresponding 1 bit in

the mask, thereby inserting a fi eld.

■ Algebraic right shift sets the carry bit (CA) if the operand is negative and any

1 bits are shift ed out. Th

us, a signed divide by any constant power of two that

rounds toward 0 can be accomplished with an SRAWI followed by ADDZE,

which adds CA to the register.

■ CBTLZ will count leading zeros.

■ SUBFIC computes (immediate - RA), which can be used to develop a one’s or

two’s complement.

■ Logical shift ed immediate instructions shift the 16-bit immediate to the left 16

bits before performing AND, OR, or XOR.

E-34

Appendix E A Survey of RISC Architectures

 E.11 Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi cantly

in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual

features of any desktop RISC machine. For example, it has the most addressing

modes and instruction formats, and, as we shall see, several instructions that are

really the combination of two simpler instructions.

Nullifi cation

As shown in Figure E.6.9, several RISC machines can choose not to execute the

instruction following a delayed branch to improve utilization of the branch slot.

Th

is is called nullifi cation in PA-RISC, and it has been generalized to apply to any

arithmetic/logical instruction as well as to all branches. Th

us, an add instruction

can add two operands, store the sum, and cause the following instruction to be

skipped if the sum is zero. Like conditional move instructions, nullifi cation allows

PA-RISC to avoid branches in cases where there is just one instruction in the then

part of an if statement.

A Cornucopia of Conditional Branches

Given nullifi cation, PA-RISC did not need to have separate conditional branch

instructions. Th

e inventors could have recommended that nullifying instructions

precede unconditional branches, thereby simplifying the instruction set. Instead,

PA-RISC has the largest number of conditional branches of any RISC machine.

Figure E.11.1 shows the conditional branches of PA-RISC. As you can see, several

are really combinations of two instructions.

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthesized

in soft ware. Instructions that shift one operand 1, 2, or 3 bits and then add, trapping

or not on overfl ow, are useful in multiplies. (Alpha also includes instructions that

multiply the second operand of adds and subtracts by 4 or by 8: S4ADD, S8ADD,

S4SUB, and S8SUB.) Th

e divide step performs the critical step of nonrestoring

divide, adding or subtracting depending on the sign of the prior result. Magen-

heimer, et al. [1988] measured the size of operands in multiplies and divides to

show how well the multiply step would work. Using this data for C programs,

Muchnick [1988] found that by making special cases, the average multiply by a

constant takes 6 clock cycles and the multiply of variables takes 24 clock cycles.

PA- RISC has ten instructions for these operations.

E.11 Instructions Unique to PA-RISC 2.0

E-35

a

N

e

m

r

t

s

n

I

u

o

i

t

c

n

a

t

o

N

i

t

n

o

COMB

Compare and branch

f

i

(

n

o

c

d R

(

1

s

R

, s

)

)

2

P

{ C

-

< -

C

P

+

e

s

f

f

o

}

2

1

t

COMIB Compare immediate

f

i

(

n

o

c

d i

(

m

m

,

5

s

R

)

2)

{ C

P

-

-

<

C

P

+

s

f

f

o

1

t

e

2}

and branch

MOVB

Move and branch

Rs2 <-- Rs1, if (cond(Rs1,0))

{PC <-- PC + offset12}

MOVIB Move immediate

Rs2 <-- imm5, if (cond(imm5,0))

{PC <-- PC + offset12}

and branch

ADDB

Add and branch

Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0))

{PC <-- PC + offset12}

ADDIB Add immediate

Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0)) {PC <-- PC + offset12}

and branch

BB

Branch on bit

if (c

d

n

o

R

(

p

s

)

0

,

)

{ C

P

-

-

<

PC +

s

f

f

o

2

1

t

e

}

BVB

Branch on variable bit

f

i

(

n

o

c

d R

(

s

s

r

a ,

)

)

0

P

{ C

-

< -

C

P

+

e

s

f

f

o

}

2

1

t

FIGURE E.11.1 The PA-RISC conditional branch instructions. Th

e 12-bit off set is called offset12 in this table, and the 5-bit

immediate is called imm5. Th

e 16 conditions are ⫽, ⬍, ⬍ ⫽, odd, signed overfl ow, unsigned no overfl ow, zero or no overfl ow unsigned, never, and their respective complements. Th

e BB instruction selects one of the 32 bits of the register and branches depending on whether its value is 0 or 1. Th

e BVB selects the bit to branch using the shift amount register, a special-purpose register. Th

e subscript notation specifi es a

bit fi eld.

Th

e original SPARC architecture used similar optimizations, but with increasing

numbers of transistors the instruction set was expanded to include full multiply

and divide operations. PA-RISC gives some support along these lines by putting

a full 32-bit integer multiply in the fl oating-point unit; however, the integer data

must fi rst be moved to fl oating-point registers.

Decimal Operations

COBOL programs will compute on decimal values, stored as four bits per digit,

rather than converting back and forth between binary and decimal. PA-RISC has

instructions that will convert the sum from a normal 32-bit add into proper decimal

digits. It also provides logical and arithmetic operations that set the condition codes

to test for carries of digits, bytes, or halfwords. Th

ese operations also test whether

bytes or halfwords are zero. Th

ese operations would be useful in arithmetic on 8-bit

ASCII characters. Five PA-RISC instructions provide decimal support.

Remaining Instructions

Here are some remaining PA-RISC instructions:

■ Branch vectored shift s an index register left three bits, adds it to a base register, and then branches to the calculated address. It is used for case statements.

■ Extract and deposit instructions allow arbitrary bit fi elds to be selected from or inserted into registers. Variations include whether the extracted fi eld is

sign-extended, whether the bit fi eld is specifi ed directly in the instruction or

indirectly in another register, and whether the rest of the register is set to zero

or left unchanged. PA-RISC has 12 such instructions.

E-36

Appendix E A Survey of RISC Architectures

■ To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which

adds a left -adjusted 21-bit constant to a register and places the result in

register 1. Th

e following data transfer instruction uses off set addressing to

add the lower 11 bits of the address to register 1. Th

is pair of instructions

allows PA-RISC to add a 32-bit constant to a base register, at the cost of

changing register 1.

■ PA-RISC has nine debug instructions that can set breakpoints on instruction

or data addresses and return the trapped addresses.

■ Load and clear instructions provide a semaphore or lock that reads a value

from memory and then writes zero.

■ Store bytes short optimizes unaligned data moves, moving either the left most

or the rightmost bytes in a word to the eff ective address, depending on the

instruction options and condition code bits.

■ Loads and stores work well with caches by having options that give hints

about whether to load data into the cache if it’s not already in the cache. For

example, a load with a destination of register 0 is defi ned to be a soft ware-

controlled cache prefetch.

■ PA-RISC 2.0 extended cache hints to stores to indicate block copies,

recommending that the processor not load data into the cache if it’s not

already in the cache. It also can suggest that on loads and stores, there is

spatial locality to prepare the cache for subsequent sequential accesses.

■ PA-RISC 2.0 also provides an optional branch target stack to predict indirect

jumps used on subroutine returns. Soft ware can suggest which addresses get

placed on and removed from the branch target stack, but hardware controls

whether or not these are valid.

■ Multiply/add and multiply/subtract are fl oating-point operations that can

launch two independent fl oating-point operations in a single instruction in

addition to the fused multiply/add and fused multiply/negate/add introduced

in version 2.0 of PA-RISC.

 E.12 Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is the conditional

execution of instructions. Every instruction starts with a 4-bit fi eld that determines

whether it will act as a nop or as a real instruction, depending on the condition

codes. Hence, conditional branches are properly considered as conditionally

executing the unconditional branch instruction. Conditional execution allows

E.12 Instructions Unique to ARM

E-37

avoiding a branch to jump over a single instruction. It takes less code space and

time to simply conditionally execute one instruction.

Th

e 12-bit immediate fi eld has a novel interpretation. Th

e eight least signifi cant

bits are zero-extended to a 32-bit value, then rotated right the number of bits specifi ed

in the fi rst four bits of the fi eld multiplied by two. Whether this split actually catches

more immediates than a simple 12-bit fi eld would be an interesting study. One

advantage is that this scheme can represent all powers of two in a 32-bit word.

Operand shift ing is not limited to immediates. Th

e second register of all

arithmetic and logical processing operations has the option of being shift ed before

being operated on. Th

e shift options are shift left logical, shift right logical, shift

right arithmetic, and rotate right. Once again, it would be interesting to see how

oft en operations like rotate-and-add, shift -right-and-test, and so on occur in ARM

programs.

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture:

■ Block loads and stores—Under control of a 16-bit mask within the

instructions, any of the 16 registers can be loaded or stored into memory

in a single instruction. Th

ese instructions can save and restore registers on

procedure entry and return. Th

ese instructions can also be used for block

memory copy—off ering up to four times the bandwidth of a single register

load-store—and today, block copies are the most important use.

■ Reverse subtract—RSB allows the fi rst register to be subtracted from the

immediate or shift ed register. RSC does the same thing, but includes the

carry when calculating the diff erence.

■ Long multiplies—Similarly to MIPS, Hi and Lo registers get the 64-bit signed

product (SMULL) or the 64-bit unsigned prod uct (UMULL).

■ No divide—Like the Alpha, integer divide is not supported in hardware.

■ Conditional trap—A common extension to the MIPS core found in desktop

RISCs (Figures E.6.1 through E.6.4), it comes for free in the conditional

execution of all ARM instructions, including SWI.

■ Coprocessor interface—Like many of the desktop RISCs, ARM defi nes a

full set of coprocessor instructions: data transfer, moves between general-

purpose and coprocessor registers, and coprocessor operations.

■ Floating-point architecture—Using the coprocessor interface, a fl oating-point

architecture has been defi ned for ARM. It was implemented as the FPA10

coprocessor.

■ Branch and exchange instruction sets—Th

e BX instruction is the transition

between ARM and Th

umb, using the lower 31 bits of the register to set the PC

and the most signifi cant bit to determine if the mode is ARM (1) or Th

umb (0).

E-38

Appendix E A Survey of RISC Architectures

 E.13 Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM

instructions to get maximum performance, with the less frequently executed ones

using Th

umb to reduce the overall code size of the program. Since typically only a

few procedures dominate execution time, the hope is that this hybrid gets the best

of both worlds.

Although Th

umb instructions are translated by the hardware into conventional

ARM instructions for execution, there are several restrictions. First, conditional

execution is dropped from almost all instructions. Second, only the fi rst eight

registers are easily available in all instructions, with the stack pointer, link register,

and program counter used implicitly in some instructions. Th

ird, Th

umb uses a two-

operand format to save space. Fourth, the unique shift ed immediates and shift ed

second operands have disappeared and are replaced by separate shift instructions.

Fift h, the addressing modes are simplifi ed. Finally, putting all instructions into 16

bits forces many more instruction formats.

In many ways, the simplifi ed Th

umb architecture is more conventional than

ARM. Here are additional changes made from ARM in going to Th

umb:

■ Drop of immediate logical instructions—Logical immediates are gone.

■ Condition codes implicit—Rather than have condition codes set optionally,

they are defi ned by the opcode. All ALU instructions and none of the data

transfers set the condition codes.

■ Hi/Lo register access—Th

e 16 ARM registers are halved into Lo registers

and Hi registers, with the eight Hi registers including the stack pointer (SP),

link register, and PC. Th

e Lo registers are available in all ALU operations.

Variations of ADD, BX, CMP, and MOV also work with all combinations

of Lo and Hi registers. SP and PC registers are also available in variations of

data transfers and add immediates. Any other operations on the Hi registers

require one MOV to put the value into a Lo register, perform the operation

there, and then transfer the data back to the Hi register.

■ Branch/call distance—Since instructions are 16 bits wide, the 8-bit conditional

branch address is shift ed by 1 instead of by 2. Branch with link is specifi ed

in two instructions, concatenating 11 bits from each instruction and shift ing

them left to form a 23-bit address to load into PC.

■ Distance for data transfer off sets—Th

e off set is now fi ve bits for the general-

purpose registers and eight bits for SP and PC.

E.14 Instructions Unique to SuperH

E-39

 E.14 Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to

another register to form an address in indirect indexed addressing and PC-relative

addressing. R0 is used to load constants to give a larger addressing range than can

easily be fi t into the 16-bit instructions of the SuperH. R0 is also the only register

that can be an operand for immediate versions of AND, CMP, OR, and XOR. Below

is a list of the remaining unique details of the SuperH architecture:

■ Decrement and test—DT decrements a register and sets the T bit to 1 if the

result is 0.

■ Optional delayed branch—Although the other embedded RISC machines

generally do not use delayed branches (see Appendix B), SuperH off ers

optional delayed branch execution for BT and BF.

■ Many multiplies—Depending on whether the operation is signed or unsigned,

if the operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the

proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. Th

e

product is found in the MACL and MACH registers.

■ Zero and sign extension—Byte or halfwords are either zero-extended (EXTU)

or sign-extended (EXTS) within a 32-bit register.

■ One-bit shift amounts—Perhaps in an attempt to make them fi t within the

16-bit instructions, shift instructions only shift a single bit at a time.

■ Dynamic shift amount—Th

ese variable shift s test the sign of the amount in a

register to determine whether they shift left (positive) or shift right (negative).

Both logical (SHLD) and arithmetic (SHAD) instructions are supported. Th

ese

instructions help off set the 1-bit constant shift amounts of standard shift s.

■ Rotate—SuperH off ers rotations by 1 bit left (ROTL) and right (ROTR), which

set the T bit with the value rotated, and also have variations that include the

T bit in the rotations (ROTCL and ROTCR).

■ SWAP—Th

is instruction swaps either the high and low bytes of a 32-bit word

or the two bytes of the rightmost 16 bits.

■ Extract word (XTRCT)—Th

e middle 32 bits from a pair of 32-bit registers are

placed in another register.

■ Negate with carry—Like SUBC (Figure E.6.6), except the fi rst operand is 0.

■ Cache prefetch—Like many of the desktop RISCs (Figures E.6.1 through

E.6.4), SuperH has an instruction (PREF) to prefetch data into the cache.

E-40

Appendix E A Survey of RISC Architectures

■ Test-and-set—SuperH uses the older test-and-set (TAS) instruction to

perform atomic locks or semaphores (see Chapter 2). TAS fi rst loads a byte

from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not

0. Finally, it sets the most signifi cant bit of the byte to 1 and writes the result

back to memory.

 E.15 Instructions Unique to M32R

Th

e most unusual feature of the M32R is a slight VLIW approach to the pairs of

16-bit instructions. A bit is reserved in the fi rst instruction of the pair to say whether

this instruction can be executed in parallel with the next instruction— that is, the

two instructions are independent—or if these two must be executed sequentially.

(An earlier machine that off ered a similar option was the Intel i860.) Th

is feature is

included for future implementations of the architecture.

One surprise is that all branch displacements are shift ed left 2 bits before being

added to the PC, and the lower 2 bits of the PC are set to 0. Since some instructions

are only 16 bits long, this shift means that a branch cannot go to any instruction

in the program: it can only branch to instructions on word boundaries. A similar

restriction is placed on the return address for the branch-and-link and jump-and-

link instructions: they can only return to a word boundary. Th

us, for a slightly

larger branch distance, soft ware must ensure that all branch addresses and all

return addresses are aligned to a word boundary. Th

e M32R code space is probably

slightly larger, and it probably executes more nop instructions than it would if the

branch address was only shift ed left 1 bit.

However, the VLIW feature above means that a nop can execute in parallel with

another 16-bit instruction so that the padding doesn’t take more clock cycles. Th

e

code size expansion depends on the ability of the compiler to schedule code and to

pair successive 16-bit instructions; Mitsubishi claims that code size overall is only

7% larger than that for the Motorola 6800 architecture.

Th

e last remaining novel feature is that the result of the divide operation is the

remainder instead of the quotient.

 E.16 Instructions Unique to MIPS-16

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full

32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS

architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). Th

e ISA

mode bit determines the width of instructions: 0 means 32-bit-wide instructions

E.16 Instructions Unique to MIPS-16

E-41

and 1 means 16-bit-wide instructions. Th

e new JALX instruction toggles the ISA

mode bit to switch to the other ISA. JR and JALR have been redefi ned to set the ISA

mode bit from the most signifi cant bit of the register containing the branch address,

and this bit is not considered part of the address. All jump-and-link instructions

save the current mode bit as the most signifi cant bit of the return address.

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit

instructions, but it does not support mixing the two lengths together in a single

procedure. Th

e one exception is the JAL and JALX: these two instructions need

32 bits even in the 16-bit mode, presumably to get a large enough address to branch

to far procedures.

In picking this subset, MIPS decided to include opcodes for some three-operand

instructions and to keep 16 opcodes for 64-bit operations. Th

e combination of this

many opcodes and operands in 16 bits led the architects to provide only eight easy-

to-use registers—just like Th

umb—whereas the other embedded RISCs off er about

16 registers. Since the hardware must include the full 32 registers of the 32-bit

ISA mode, MIPS-16 includes move instructions to copy values between the eight

MIPS-16 registers and the remaining 24 registers of the full MIPS architecture.

To reduce pressure on the eight visible registers, the stack pointer is considered

a separate register. MIPS-16 includes a variety of separate opcodes to do data

transfers using SP as a base register and to increment SP: LWSP, LDSP, SWSP,

SDSP, ADJSP, DADJSP, ADDIUSPD, and DADDIUSP.

To fi t within the 16-bit limit, immediate fi elds have generally been shortened to

fi ve to eight bits. MIPS-16 provides a way to extend its shorter immediates into the

full width of immediates in the 32-bit mode. Borrowing a trick from the Intel 8086,

the EXTEND instruction is really a 16-bit prefi x that can be prepended to any MIPS-

16 instruction with an address or immediate fi eld. Th

e prefi x supplies enough bits

to turn the 5-bit fi eld of data transfers and 5- to 8-bit fi elds of arithmetic immediates

into 16-bit constants. Alas, there are two exceptions. ADDIU and DADDIU start with

4-bit immediate fi elds, but since EXTEND can only supply 11 more bits, the wider

immediate is limited to 15 bits. EXTEND also extends the 3-bit shift fi elds into 5-bit

fi elds for shift s. (In case you were wondering, the EXTEND prefi x does not need to

start on a 32-bit boundary.)

To further address the supply of constants, MIPS-16 added a new addressing

mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shift s

an 8-bit immediate fi eld by two or three bits, respectively, adding it to the PC with

the lower two or three bits cleared. Th

e constant word or doubleword is then loaded

into a register. Th

us 32-bit or 64-bit constants can be included with MIPS-16 code,

despite the loss of LIU to set the upper register bits. Given the new addressing

mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and

place it in a register.

MIPS-16 diff ers from the other embedded RISCs in that it can subset a 64-bit

address architecture. As a result it has 16-bit instruction-length versions of 64-bit

E-42

Appendix E A Survey of RISC Architectures

data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU,

DSUBU, DMULT/U, DDIV/U), and shift s (DSLL/V, DSRA/V, DSRL/V).

Since MIPS plays such a prominent role in this book, we show all the additional

changes made from the MIPS core instructions in going to MIPS-16:

■ Drop of signed arithmetic instructions—Arithmetic instructions that can trap were

dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB.

■ Drop of immediate logical instructions—Logical immediates are gone too:

ANDI, ORI, XORI.

■ Branch instructions pared down—Comparing two registers and then branching

did not fi t, nor did all the other comparisons of a register to zero. Hence these

instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and

BLTZ. As mentioned in Section E.3, to help compensate MIPS-16 includes

compare instructions to test if two registers are equal. Since compare and set

on less than set the new T register, branches were added to test the T register.

■ Branch distance—Since instructions are 16 bits wide, the branch address is

shift ed by one instead of by two.

■ Delayed branches disappear—Th

e branches take eff ect before the next

instruction. Jumps still have a one-slot delay.

■ Extension and distance for data transfer off sets—Th

e 5-bit and 8-bit fi elds

are zero-extended instead of sign-extended in 32-bit mode. To get greater

range, the immediate fi elds are shift ed left one, two, or three bits depending

on whether the data is halfword, word, or doubleword. If the EXTEND prefi x

is prepended to these instructions, they use the conventional signed 16-bit

immediate of the 32-bit mode.

■ Extension of arithmetic immediates—Th

e 5-bit and 8-bit fi elds are zero-

extended for set on less than and compare instructions, for forming a PC-

relative address, and for adding to SP and placing the result in a register

(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefi x is prepended to

these instructions, they use the conventional signed 16-bit immediate of the

32-bit mode. Th

ey are still sign-extended for general adds and for adding to

SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density

and orthogonality are strange bedfellows in MIPS-16!

■ Redefi ning shift amount of 0—MIPS-16 defi nes the value 0 in the 3-bit shift

fi eld to mean a shift of 8 bits.

■ New instructions added due to loss of register 0 as zero—Load immediate,

negate, and not were added, since these operations could no longer be

synthesized from other instructions using r0 as a source.

 E.17

Concluding

Remarks

E-43

 E.17 Concluding

Remarks

Th

is appendix covers the addressing modes, instruction formats, and all instructions

found in ten RISC architectures. Although the later sections of the appendix

concentrate on the diff erences, it would not be possible to cover ten architectures in

these few pages if there were not so many similarities. In fact, we would guess that

more than 90% of the instructions executed for any of these architectures would

be found in Figures E.3.5 through E.3.11. To contrast this homogeneity, Figure

E.17.1 gives a summary for four architectures from the 1970s in a format similar

to that shown in Figure E.1.1. (Imagine trying to write a single chapter in this style

for those architectures!) In the history of computing, there has never been such

widespread agreement on computer architecture.

IBM 360/370

Intel 8086

Motorola 68000

DEC VAX

Date announced

1964/1970

1978

1980

1977

Instruction size(s) (bits)

16, 32, 48

8, 16, 24, 32, 40, 48

16, 32, 48, 64, 80

8, 16, 24, 32, . . . , 432

Addressing (size, model)

24 bits, fl at/31 bits,

4 + 16 bits,

24 bits, fl at

32 bits, fl at

fl at

segmented

Data aligned?

Yes 360/No 370

No

16-bit aligned

No

D t

a a d

a

r

d e

i

s

s

g

n

d

o

m

es

3

/

2

5

9

= 14

r

P

e

t

o

t

c o

i n

e

g

a

P

n

o

N

e

p

O

o

i

t

l

a

n

e

g

a

P

a

P

e

g

i

s e

z

2

B

K

& 4

B

K

—

0

5

2

.

to

2

3

KB

5

.

0

B

K

/

I O

d

o

c

p

O

e

O c

p

d

o e

e

M m r

o y m

d

e

p

p

a

r

o

m

e

M

y

d

e

p

p

a

m

Integer registers (size,

16 GPR × 32 bits

8 dedicated data ×

8 data and 8 address × 15 GPR × 32 bits

model, number)

16 bits

32 bits

Separate fl oating-point registers

4 × 64 bits

Optional: 8 × 80 bits

Optional: 8 × 80 bits

0

Floating-point format

IBM (fl oating

IEEE 754 single,

IEEE 754 single,

DEC

hexadecimal)

double, extended

double, extended

FIGURE E.17.1 Summary of four 1970s architectures. Unlike the architectures in Figure E.1.1, there is little agreement between these architectures in any category.

Th

is style of architecture cannot remain static, however. Like people, instruction

sets tend to get bigger as they get older. Figure E.17.2 shows the genealogy of these

instruction sets, and Figure E.17.3 shows which features were added to or deleted

from generations of desktop RISCs over time.

As you can see, all the desktop RISC machines have evolved to 64-bit address

architectures, and they have done so fairly painlessly.

E-44

Appendix E A Survey of RISC Architectures

1960

CDC 6600

1963

1965

1970

IBM ASC 1968

1975

IBM 801

Cray-1

1975

1976

1980

Berkeley RISC-1 Stanford MIPS

1981

1982

America

ARM1

1985

1985

1985

MIPS I

PA-RISC

RT/PC

1986

1986

1986

ARM2

SPARCv8

1987

1987

MIPS II Digital PRISM

1989

1988

1990

ARM3

PA-RISC 1.1

Power1

SuperH

1990

MIPS III

Alpha

1990

1990

1992

1992

1992

SPARCv9

MIPS IV

1995

Thumb ARMv4

Power2 PowerPC

1994

1994

1993

1993

M32R 1995

1995

MIPS-16

MIPS V

Alphav3

PA-RISC 2.0

1997

1996

1996

1996

1996

2000

2002

MIPS-32

MIPS-64

2002

2002

FIGURE E.17.2 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research machines in bold. Th

e CDC 6600 and Cray-1 were load-store machines with register 0 fi xed at 0, and with separate integer and fl oating-point registers.

Instructions could not cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801

leading to the unsuccessful RT/PC and America leading to the successful Power architecture. Some people who worked on the 801 later joined Hewlett-Packard to work on the PA-RISC. Th

e two university projects were the basis of MIPS and SPARC machines. According to

Furber [1996], the Berkeley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips. (Th ere are no ARMv4 and

ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC microprocessor in 1988 but did not introduce it.

Instead, DEC shipped workstations using MIPS microprocessors for three years before they brought out their own RISC instruction set, Alpha 21064, which is very similar to MIPS III and PRISM. Th

e Alpha architecture has had small extensions, but they have not been formalized with

version numbers; we used version 3 because that is the version of the reference manual. Th

e Alpha 21164A chip added byte and halfword loads

and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Digital names chips aft er the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264). “EV” stands for “extended VAX.”

Further Reading

E-45

A

P

I

R

-

C

S

S

C

R

A

P

P

I

M

S

r

e

w

o

P

Feature

1.0

1.1

2.0

v8

v9

I

II

III

IV

V

1

2

PC

Interlocked loads

X

”

”

X

”

+

”

”

X

”

”

Load-store FP double

X

”

”

X

”

+

”

”

X

”

”

Semaphore X

”

”

X

”

+

”

”

X

”

”

Square root

X

”

”

X

”

+

”

”

+

”

n

i

S

e

l

g

e

r

p

i

s

i

c

n

o FP o s

p

X

”

”

X

”

X

”

”

”

+

Memory synchronize

X

”

”

X

”

+

”

”

X

”

”

Coprocessor

X ”

”

X

—

X ” ” ”

B s

a e +

e

d

n

i

x ad r

d e

i

s

s

g

n

X

”

”

X

”

+

X

”

”

q

E

i

u .

v

2

3

i

b

-

4

6

t P

F

e

r

i

g t

s

r

e s

”

”

+

+

”

X

”

”

Annulling delayed branch

X

”

”

X

”

+

”

”

Branch register contents

X

”

”

+

X

”

”

”

B

t

i

l

/

g

i

e

l

t

n

e

n

a

i

d

+

”

+

X

”

”

”

+

B

n

a

r

h

c

r

p e c

i

d

n

o

i

t

t

i

b

+

+

”

”

X

”

”

o

C

i

d

n t o

i

l

a

n

v

o

m

e

+

+

X

”

—

f

e

r

P

h

c

t

e

t

a

d

a

o

t

n

i

h

c

a

c

e

+

+

+

X

”

”

-

4

6

t

i

b

d

d

a

r

s

s

e

n

i

/

g int. o s

p

+

+

+

”

+

32-bit multiply, divide

+

”

+

X

”

”

”

X

”

”

d

a

o

L

t

s

-

r

o e P

F

a

u

q

d

+

+

—

u

F

d

e

s

P

F

m /

l

u

d

d

a

+

+

X

”

”

S r

t i g

n

n

i s r

t

c

u

o

i

t

s

n

X

”

”

X

”

—

M

m

i

t

l

u

e i

d a u

s

o

p

p

rt

X

”

X

X

FIGURE E.17.3 Features added to desktop RISC machines. X means in the original machine, ⫹ means added later, ” means continued from prior machine, and — means removed from architecture. Alpha is not included, but it added byte and word loads and stores, and bit count and multimedia extensions, in version 3. MIPS V added the MDMX instructions and paired single fl oating-point operations.

We would like to thank the following people for comments on draft s of this

appendix: Professor Steven B. Furber, University of Manchester; Dr. Dileep

Bhandarkar, Intel Corporation; Dr. Earl Killian, Silicon Graphics/MIPS; and Dr.

Hiokazu Takata, Mitsubishi Electric Corporation.

Further Reading

Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, Newton, MA: Digital Press.

Darcy, J. D., and D. Gay [1996]. “FLECKmarks: Measuring fl oating point performance using a full IEEE

compliant arithmetic benchmark,” CS 252 class project, U.C. Berkeley (see HTTP.CS.Berkeley.EDU/⬃ darcy/

 Projects/cs252/).

Digital Semiconductor [1996]. Alpha Architecture Handbook, Version 3, Maynard, MA: Digital Press, Order number EC-QD2KB-TE (October).

E-46

Appendix E A Survey of RISC Architectures

Furber, S. B. [1996]. ARM System Architecture, Harlow, England: Addison-Wesley. (See www.cs.man.ac.uk/

 amulet/publications/books/ARMsysArch.)

Hewlett-Packard [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed.

Hitachi [1997]. SuperH RISC Engine SH7700 Series Programming Manual. (See www.halsp.hitachi.com/tech_

 prod/ and search for title.)

IBM [1994]. Th

 e PowerPC Architecture, San Francisco: Morgan Kaufmann.

Kane, G. [1996]. PA-RISC 2.0 Architecture, Upper Saddle River, NJ: Prentice Hall PTR.

Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Englewood Cliff s, NJ: Prentice Hall.

Kissell, K. D. [1997]. MIPS16: High-Density for the Embedded Market. (See www.sgi.com/MIPS/arch/MIPS16/

 MIPS16.whitepaper.pdf.)

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multiplication and division on the HP precision architecture,” IEEE Trans. on Computers 37:8, 980–90.

MIPS [1997]. MIPS16 Application Specifi c Extension Product Description. (See www.sgi.com/MIPS/arch/

 MIPS16/mips16.pdf.)

Mitsubishi [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family Soft ware Manual (September).

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC,” Sun Technology 1:3 (Summer), 64–77.

Seal, D. Arm Architecture Reference Manual, 2nd ed, Morgan Kaufmann, 2000.

Silicon Graphics [1996]. MIPS V Instruction Set. (See www.sgi.com/MIPS/arch /ISA5/#MIPSV_indx.) Sites, R. L., and R. Witek (eds.) [1995]. Alpha Architecture Reference Manual, 2nd ed. Newton, MA: Digital Press.

Sloss, A. N., D. Symes, and C. Wright, ARM System Developer’s Guide, San Francisco: Elsevier Morgan Kaufmann, 2004.

Sun Microsystems [1989]. Th

 e SPARC Architectural Manual, Version 8, Part No. 800-1399-09, August 25.

Sweetman, D. See MIPS Run, 2nd ed, Morgan Kaufmann, 2006.

Taylor, G., P. Hilfi nger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the SPUR LISP architecture,”

 Proc. 13th Symposium on Computer Architecture (June), Tokyo.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of SOAR: Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, MI, 188–97.

Weaver, D. L., and T. Germond [1994]. Th

 e SPARC Architectural Manual, Version 9, Englewood Cliff s, NJ:

Prentice Hall.

Weiss, S., and J. E. Smith [1994]. Power and PowerPC, San Francisco: Morgan Kaufmann.

This page intentionally left blank

Index

 Note: Online information is listed by chapter and section number followed by page numbers (OL3.11-7). Page references preceded by a single letter with hyphen refer to appendices.

1-bit ALU, B-26–29. See also Arithmetic

addiu (Add Imm.Unsigned), 119

AGP, C-9

logic unit (ALU)

Address interleaving, 381

Algol-60, OL2.21-7

adder, B-27

Address select logic, D-24, D-25

Aliasing, 444

CarryOut, B-28

Address space, 428, 431

Alignment restriction, 69–70

for most signifi cant bit, B-33

extending, 479

All-pairs N-body algorithm, C-65

illustrated, B-29

fl at, 479

Alpha architecture

logical unit for AND/OR, B-27

ID (ASID), 446

bit count instructions, E-29

performing AND, OR, and addition,

inadequate, OL5.17-6

fl oating-point instructions, E-28

B-31, B-33

shared, 519–520

instructions, E-27–29

32-bit ALU, B-29–38. See also Arithmetic

single physical, 517

no divide, E-28

logic unit (ALU)

unmapped, 450

PAL code, E-28

defi ning in Verilog, B-35–38

virtual, 446

unaligned load-store, E-28

from 31 copies of 1-bit ALU, B-34

Address translation

VAX fl oating-point formats, E-29

illustrated, B-36

for ARM cortex-A8, 471

ALU control, 259–261. See also

ripple carry adder, B-29

defi ned, 429

Arithmetic logic unit (ALU)

tailoring to MIPS, B-31–35

fast, 438–439

bits, 260

with 32 1-bit ALUs, B-30

for Intel core i7, 471

logic, D-6

32-bit immediate operands, 112–113

TLB for, 438–439

mapping to gates, D-4–7

7090/7094 hardware, OL3.11-7

Address-control lines, D-26

truth tables, D-5

Addresses

ALU control block, 263

A

32-bit immediates, 113–116

defi ned, D-4

base, 69

generating ALU control bits, D-6

Absolute references, 126

byte, 69

ALUOp, 260, D-6

Abstractions

defi ned, 68

bits, 260, 261

hardware/soft ware interface, 22

memory, 77

control signal, 263

principle, 22

virtual, 428–431, 450

Amazon Web Services (AWS), 425

to simplify design, 11

Addressing

AMD Opteron X4 (Barcelona), 543, 544

Accumulator architectures, OL2.21-2

32-bit immediates, 113–116

AMD64, 151, 224, OL2.21-6

Acronyms, 9

base, 116

Amdahl’s law, 401, 503

Active matrix, 18

displacement, 116

corollary, 49

add (Add), 64

immediate, 116

defi ned, 49

add.d (FP Add Double), A-73

in jumps and branches, 113–116

fallacy, 556

add.s (FP Add Single), A-74

MIPS modes, 116–118

and (AND), 64

Add unsigned instruction, 180

PC-relative, 114, 116

AND gates, B-12, D-7

addi (Add Immediate), 64

pseudodirect, 116

AND operation, 88

Addition, 178–182. See also Arithmetic

register, 116

AND operation, A-52, B-6

binary, 178–179

x86 modes, 152

andi (And Immediate), 64

fl oating-point, 203–206, 211, A-73–74

Addressing modes, A-45–47

Annual failure rate (AFR), 418

instructions, A-51

desktop architectures, E-6

 versus. MTTF of disks, 419–420

operands, 179

addu (Add Unsigned), 64

Antidependence, 338

signifi cands, 203

Advanced Vector Extensions (AVX), 225,

Antifuse, B-78

speed, 182

227

Apple computer, OL1.12-7

I-1

I-2

Index

Apple iPad 2 A1395, 20

TLB hardware for, 471

programs, 123

logic board of, 20

ARM instructions, 145–147

translating into machine language, 84

processor integrated circuit of, 21

12-bit immediate fi eld, 148

when to use, A-7–9

Application binary interface (ABI), 22

addressing modes, 145

Asserted signals, 250, B-4

Application programming interfaces

block loads and stores, 149

Associativity

(APIs)

brief history, OL2.21-5

in caches, 405

defi ned, C-4

calculations, 145–146

degree, increasing, 404, 455

graphics, C-14

compare and conditional branch,

increasing, 409

Architectural registers, 347

147–148

set, tag size versus, 409

Arithmetic, 176–236

condition fi eld, 324

Atomic compare and swap, 123

addition, 178–182

data transfer, 146

Atomic exchange, 121

addition and subtraction, 178–182

features, 148–149

Atomic fetch-and-increment, 123

division, 189–195

formats, 148

Atomic memory operation, C-21

fallacies and pitfalls, 229–232

logical, 149

Attribute interpolation, C-43–44

fl oating-point, 196–222

MIPS similarities, 146

Automobiles, computer application in, 4

historical perspective, 236

register-register, 146

Average memory access time (AMAT),

multiplication, 183–188

unique, E-36–37

402

parallelism and, 222–223

ARMv7, 62

calculating, 403

Streaming SIMD Extensions and

ARMv8, 158–159

advanced vector extensions in x86,

ARPANET, OL1.12-10

B

224–225

Arrays, 415

subtraction, 178–182

logic elements, B-18–19

Backpatching, A-13

subword parallelism, 222–223

multiple dimension, 218

Bandwidth, 30–31

subword parallelism and matrix

pointers versus, 141–145

bisection, 532

multiply, 225–228

procedures for setting to zero, 142

external to DRAM, 398

Arithmetic instructions. See also

ASCII

memory, 380–381, 398

Instructions

binary numbers versus, 107

network, 535

desktop RISC, E-11

character representation, 106

Barrier synchronization, C-18

embedded RISC, E-14

defi ned, 106

defi ned, C-20

logical, 251

symbols, 109

for thread communication, C-34

MIPS, A-51–57

Assembler directives, A-5

Base addressing, 69, 116

operands, 66–, 73

Assemblers, 124–126, A-10–17

Base registers, 69

Arithmetic intensity, 541

conditional code assembly, A-17

Basic block, 93

Arithmetic logic unit (ALU). See also

defi ned, 14, A-4

Benchmarks, 538–540

ALU control; Control units

function, 125, A-10

defi ned, 46

1-bit, B-26–29

macros, A-4, A-15–17

Linpack, 538, OL3.11-4

32-bit, B-29–38

microcode, D-30

multicores, 522–529

before forwarding, 309

number acceptance, 125

multiprocessor, 538–540

branch datapath, 254

object fi le, 125

NAS parallel, 540

hardware, 180

pseudoinstructions, A-17

parallel, 539

memory-reference instruction use, 245

relocation information, A-13, A-14

PARSEC suite, 540

for register values, 252

speed, A-13

SPEC CPU, 46–48

R-format operations, 253

symbol table, A-12

SPEC power, 48–49

signed-immediate input, 312

Assembly language, 15

SPECrate, 538–539

ARM Cortex-A8, 244, 345–346

defi ned, 14, 123

Stream, 548

address translation for, 471

drawbacks, A-9–10

beq (Branch On Equal), 64

caches in, 472

fl oating-point, 212

bge (Branch Greater Th

an or Equal), 125

data cache miss rates for, 474

high-level languages versus, A - 12

bgt (Branch Greater Th

an), 125

memory hierarchies of, 471–475

illustrated, 15

Biased notation, 79, 200

performance of, 473–475

MIPS, 64, 84, A-45–80

Big-endian byte order, 70, A-43

specifi cation, 345

production of, A-8–9

Binary numbers, 81–82

Index

I-3

ASCII versus, 107

operations, 254

C

conversion to decimal numbers, 76

Branch delay slots

defi ned, 73

defi ned, 322

C.mmp, OL6.15-4

Bisection bandwidth, 532

scheduling, 323

C language

Bit maps

Branch equal, 318

assignment, compiling into MIPS,

defi ned, 18, 73

Branch instructions, A-59–63

65–66

goal, 18

jump instruction versus, 270

compiling, 145, OL2.15-2–2.15-3

storing, 18

list of, A-60–63

compiling assignment with registers,

Bit-Interleaved Parity (RAID 3), OL5.11-

pipeline impact, 317

67–68

5

Branch not taken

compiling while loops in, 92

Bits

assumption, 318

sort algorithms, 141

ALUOp, 260, 261

defi ned, 254

translation hierarchy, 124

defi ned, 14

Branch prediction

translation to MIPS assembly language,

dirty, 437

as control hazard solution, 284

65

guard, 220

buff ers, 321, 322

variables, 102

patterns, 220–221

defi ned, 283

C++ language, OL2.15-27, OL2.21-8

reference, 435

dynamic, 284, 321–323

Cache blocking and matrix multiply,

rounding, 220

static, 335

475–476

sign, 75

Branch predictors

Cache coherence, 466–470

state, D-8

accuracy, 322

coherence, 466

sticky, 220

correlation, 324

consistency, 466

valid, 383

information from, 324

enforcement schemes, 467–468

ble (Branch Less Th

an or Equal), 125

tournament, 324

implementation techniques,

Blocking assignment, B-24

Branch taken

OL5.12-11–5.12-12

Blocking factor, 414

cost reduction, 318

migration, 467

Block-Interleaved Parity (RAID 4),

defi ned, 254

problem, 466, 467, 470

OL5.11-5–5.11-6

Branch target

protocol example, OL5.12-12–5.12-16

Blocks

addresses, 254

protocols, 468

combinational, B-4

buff ers, 324

replication, 468

defi ned, 376

Branches. See also Conditional

snooping protocol, 468–469

fi nding, 456

branches

snoopy, OL5.12-17

fl exible placement, 402–404

addressing in, 113–116

state diagram, OL5.12-16

least recently used (LRU), 409

compiler creation, 91

Cache coherency protocol, OL5.12-

loads/stores, 149

condition, 255

12–5.12-16

locating in cache, 407–408

decision, moving up, 318

fi nite-state transition diagram, OL5.12-

miss rate and, 391

delayed, 96, 255, 284, 318–319, 322,

15

multiword, mapping addresses to, 390

324

functioning, OL5.12-14

placement locations, 455–456

ending, 93

mechanism, OL5.12-14

placement strategies, 404

execution in ID stage, 319

state diagram, OL5.12-16

replacement selection, 409

pipelined, 318

states, OL5.12-13

replacement strategies, 457

target address, 318

write-back cache, OL5.12-15

spatial locality exploitation, 391

unconditional, 91

Cache controllers, 470

state, B-4

Branch-on-equal instruction, 268

coherent cache implementation

valid data, 386

Bubble Sort, 140

techniques, OL5.12-11–5.12-12

blt (Branch Less Th

an), 125

Bubbles, 314

implementing, OL5.12-2

bne (Branch On Not Equal), 64

Bus-based coherent multiprocessors,

snoopy cache coherence, OL5.12-17

Bonding, 28

OL6.15-7

SystemVerilog, OL5.12-2

Boolean algebra, B-6

Buses, B-19

Cache hits, 443

Bounds check shortcut, 95

Bytes

Cache misses

Branch datapath

addressing, 70

block replacement on, 457

ALU, 254

order, 70, A-43

capacity, 459

I-4

Index

Cache misses (Continued)

virtual memory and TLB integration,

defi ned, 33

compulsory, 459

440–441

memory-stall, 399

confl ict, 459

virtually addressed, 443

number of registers and, 67

defi ned, 392

virtually indexed, 443

worst-case delay and, 272

direct-mapped cache, 404

virtually tagged, 443

Clock cycles per instruction (CPI), 35,

fully associative cache, 406

write-back, 394, 395, 458

282

handling, 392–393

write-through, 393, 395, 457

one level of caching, 410

memory-stall clock cycles, 399

writes, 393–395

two levels of caching, 410

reducing with fl exible block placement,

Callee, 98, 99

Clock rate

402–404

Callee-saved register, A-23

defi ned, 33

set-associative cache, 405

Caller, 98

frequency switched as function of, 41

steps, 393

Caller-saved register, A-23

power and, 40

in write-through cache, 393

Capabilities, OL5.17-8

Clocking methodology, 249–251, B-48

Cache performance, 398–417

Capacity misses, 459

edge-triggered, 249, B-48, B-73

calculating, 400

Carry lookahead, B-38–47

level-sensitive, B-74, B-75–76

hit time and, 401–402

4-bit ALUs using, B-45

for predictability, 249

impact on processor performance, 400

adder, B-39

Clocks, B-48–50

Cache-aware instructions, 482

fast, with fi rst level of abstraction,

edge, B-48, B-50

Caches, 383–398. See also Blocks

B-39–40

in edge-triggered design, B-73

accessing, 386–389

fast, with “infi nite” hardware, B-38–39

skew, B-74

in ARM cortex-A8, 472

fast, with second level of abstraction,

specifi cation, B-57

associativity in, 405–406

B-40–46

synchronous system, B-48–49

bits in, 390

plumbing analogy, B-42, B-43

Cloud computing, 533

bits needed for, 390

ripple carry speed versus, B - 46

defi ned, 7

contents illustration, 387

summary, B-46–47

Cluster networking, 537–538, OL6.9-12

defi ned, 21, 383–384

Carry save adders, 188

Clusters, OL6.15-8–6.15-9

direct-mapped, 384, 385, 390, 402

Cause register

defi ned, 30, 500, OL6.15-8

empty, 386–387

defi ned, 327

isolation, 530

FSM for controlling, 461–462

fi elds, A-34, A-35

organization, 499

fully associative, 403

OLC 6600, OL1.12-7, OL4.16-3

scientifi c computing on, OL6.15-8

GPU, C-38

Cell phones, 7

Cm*, OL6.15-4

inconsistent, 393

Central processor unit (CPU). See also

CMOS (complementary metal oxide

index, 388

Processors

semiconductor), 41

in Intel Core i7, 472

classic performance equation, 36–40

Coarse-grained multithreading, 514

Intrinsity FastMATH example,

coprocessor 0, A-33–34

Cobol, OL2.21-7

395–398

defi ned, 19

Code generation, OL2.15-13

locating blocks in, 407–408

execution time, 32, 33–34

Code motion, OL2.15-7

locations, 385

performance, 33–35

Cold-start miss, 459

multilevel, 398, 410

system, time, 32

Collision misses, 459

nonblocking, 472

time, 399

Column major order, 413

physically addressed, 443

time measurements, 33–34

Combinational blocks, B-4

physically indexed, 443

user, time, 32

Combinational control units, D-4–8

physically tagged, 443

Cg pixel shader program, C-15–17

Combinational elements, 248

primary, 410, 417

Characters

Combinational logic, 249, B-3, B-9–20

secondary, 410, 417

ASCII representation, 106

arrays, B-18–19

set-associative, 403

in Java, 109–111

decoders, B-9

simulating, 478

Chips, 19, 25, 26

defi ned, B-5

size, 389

manufacturing process, 26

don’t cares, B-17–18

split, 397

Classes

multiplexors, B-10

summary, 397–398

defi ned, OL2.15-15

ROMs, B-14–16

tag fi eld, 388

packages, OL2.15-21

two-level, B-11–14

tags, OL5.12-3, OL5.12-11

Clock cycles

Verilog, B-23–26

Index

I-5

Commercial computer development,

Moore’s law, 11

forwarding, 307

OL1.12-4–1.12-10

parallelism, 12

FSM, D-8–21

Commit units

pipelining, 12

implementation, optimizing, D-27–28

buff er, 339–340

prediction, 12

for jump instruction, 270

defi ned, 339–340

Computers

mapping to hardware, D-2–32

in update control, 343

application classes, 5–6

memory, D-26

Common case fast, 11

applications, 4

organizing, to reduce logic, D-31–32

Common subexpression elimination,

arithmetic for, 176–236

pipelined, 300–303

OL2.15-6

characteristics, OL1.12-12

Control fl ow graphs, OL2.15-9–2.15-10

Communication, 23–24

commercial development, OL1.12-

illustrated examples, OL2.15-9,

overhead, reducing, 44–45

4–1.12-10

OL2.15-10

thread, C-34

component organization, 17

Control functions

Compact code, OL2.21-4

components, 17, 177

ALU, mapping to gates, D-4–7

Comparison instructions, A-57–59

design measure, 53

defi ning, 264

fl oating-point, A-74–75

desktop, 5

PLA, implementation, D-7,

list of, A-57–59

embedded, 5, A-7

D-20–21

Comparisons, 93

fi rst, OL1.12-2–1.12-4

ROM, encoding, D-18–19

constant operands in, 93

in information revolution, 4

for single-cycle implementation, 269

signed versus unsigned, 94–95

instruction representation, 80–87

Control hazards, 281–282, 316–325

Compilers, 123–124

performance measurement, OL1.12-10

branch delay reduction, 318–319

branch creation, 92

PostPC Era, 6–7

branch not taken assumption, 318

brief history, OL2.21-9

principles, 86

branch prediction as solution, 284

conservative, OL2.15-6

servers, 5

delayed decision approach, 284

defi ned, 14

Condition fi eld, 324

dynamic branch prediction,

front end, OL2.15-3

Conditional branches

321–323

function, 14, 123–124, A-5–6

ARM, 147–148

logic implementation in Verilog,

high-level optimizations, OL2.15-4

changing program counter with, 324

OL4.13-8

ILP exploitation, OL4.16-5

compiling if-then-else into, 91

pipeline stalls as solution, 282

Just In Time (JIT), 132

defi ned, 90

pipeline summary, 324

machine language production, A-8–9,

desktop RISC, E-16

simplicity, 317

A-10

embedded RISC, E-16

solutions, 282

optimization, 141, OL2.21-9

implementation, 96

static multiple-issue processors and,

speculation, 333–334

in loops, 115

335–336

structure, OL2.15-2

PA-RISC, E-34, E-35

Control lines

Compiling

PC-relative addressing, 114

asserted, 264

C assignment statements, 65–66

RISC, E-10–16

in datapath, 263

C language, 92–93, 145, OL2.15-

SPARC, E-10–12

execution/address calculation, 300

2–2.15-3

Conditional move instructions, 324

fi nal three stages, 303

fl oating-point programs, 214–217

Confl ict misses, 459

instruction decode/register fi le read,

if-then-else, 91

Constant memory, C-40

300

in Java, OL2.15-19

Constant operands, 72–73

instruction fetch, 300

procedures, 98, 101–102

in comparisons, 93

memory access, 302

recursive procedures, 101–102

frequent occurrence, 72

setting of, 264

while loops, 92–93

Constant-manipulating instructions,

values, 300

Compressed sparse row (CSR) matrix,

A-57

write-back, 302

C-55, C-56

Content Addressable Memory (CAM),

Control signals

Compulsory misses, 459

408

ALUOp, 263

Computer architects, 11–12

Context switch, 446

defi ned, 250

abstraction to simplify design, 11

Control

eff ect of, 264

common case fast, 11

ALU, 259–261

multi-bit, 264

dependability via redundancy, 12

challenge, 325–326

pipelined datapaths with, 300–303

hierarchy of memories, 12

fi nishing, 269–270

truth tables, D-14

I-6

Index

Control units, 247. See also Arithmetic

shared memories, C-18

in operation for R-type instruction,

logic unit (ALU)

threads, C-36

266

address select logic, D-24, D-25

Cyclic redundancy check, 423

operation of, 264–269

combinational, implementing, D-4–8

Cylinder, 381

pipelined, 286–303

with explicit counter, D-23

for R-type instructions, 256, 264–265

illustrated, 265

D

single, creating, 256

logic equations, D-11

single-cycle, 283

main, designing, 261–264

D fl ip-fl ops, B-51, B-53

static two-issue, 336

as microcode, D-28

D latches, B-51, B-52

Deasserted signals, 250, B-4

MIPS, D-10

Data bits, 421

Debugging information, A-13

next-state outputs, D-10, D-12–13

Data fl ow analysis, OL2.15-11

DEC PDP-8, OL2.21-3

output, 259–261, D-10

Data hazards, 278, 303–316. See also

Decimal numbers

Conversion instructions, A-75–76

Hazards

binary number conversion to, 76

Cooperative thread arrays (CTAs), C-30

forwarding, 278, 303–316

defi ned, 73

Coprocessors, A-33–34

load-use, 280, 318

Decision-making instructions, 90–96

defi ned, 218

stalls and, 313–316

Decoders, B-9

move instructions, A-71–72

Data layout directives, A-14

two-level, B-65

Core MIPS instruction set, 236. See also

Data movement instructions, A-70–73

Decoding machine language, 118–120

MIPS

Data parallel problem decomposition,

Defect, 26

abstract view, 246

C-17, C-18

Delayed branches, 96. See also Branches

desktop RISC, E-9–11

Data race, 121

as control hazard solution, 284

implementation, 244–248

Data segment, A-13

defi ned, 255

implementation illustration, 247

Data selectors, 246

embedded RISCs and, E-23

overview, 245

Data transfer instructions. See also

for fi ve-stage pipelines, 26, 323–324

subset, 244

Instructions

reducing, 318–319

Cores

defi ned, 68

scheduling limitations, 323

defi ned, 43

load, 68

Delayed decision, 284

number per chip, 43

off set, 69

DeMorgan’s theorems, B-11

Correlation predictor, 324

store, 71

Denormalized numbers, 222

Cosmic Cube, OL6.15-7

Datacenters, 7

Dependability via redundancy, 12

Count register, A-34

Data-level parallelism, 508

Dependable memory hierarchy, 418–423

CPU, 9

Datapath elements

failure, defi ning, 418

Cray computers, OL3.11-5–3.11-6

defi ned, 251

Dependences

Critical word fi rst, 392

sharing, 256

between pipeline registers, 308

Crossbar networks, 535

Datapaths

between pipeline registers and ALU

CTSS (Compatible Time-Sharing

branch, 254

inputs, 308

System), OL5.18-9

building, 251–259

bubble insertion and, 314

CUDA programming environment, 523,

control signal truth tables, D-14

detection, 306–308

C-5

control unit, 265

name, 338

barrier synchronization, C-18, C-34

defi ned, 19

sequence, 304

development, C-17, C-18

design, 251

Design

hierarchy of thread groups, C-18

exception handling, 329

compromises and, 161

kernels, C-19, C-24

for fetching instructions, 253

datapath, 251

key abstractions, C-18

for hazard resolution via forwarding,

digital, 354

paradigm, C-19–23

311

logic, 248–251, B-1–79

parallel plus-scan template, C-61

for jump instruction, 270

main control unit, 261–264

per-block shared memory, C-58

for memory instructions, 256

memory hierarchy, challenges, 460

plus-reduction implementation, C-63

for MIPS architecture, 257

pipelining instruction sets, 277

programs, C-6, C-24

in operation for branch-on-equal

Desktop and server RISCs. See also

scalable parallel programming with,

instruction, 268

Reduced instruction set computer

C-17–23

in operation for load instruction, 267

(RISC) architectures

Index

I-7

addressing modes, E-6

Dividend, 189

bandwidth external to, 398

architecture summary, E-4

Division, 189–195

cost, 23

arithmetic/logical instructions, E-11

algorithm, 191

defi ned, 19, B-63

conditional branches, E-16

dividend, 189

DIMM, OL5.17-5

constant extension summary, E-9

divisor, 189

Double Date Rate (DDR), 379–380

control instructions, E-11

Divisor, 189

early board, OL5.17-4

conventions equivalent to MIPS core,

divu (Divide Unsigned), A-52. See also

GPU, C-37–38

E-12

Arithmetic

growth of capacity, 25

data transfer instructions, E-10

faster, 194

history, OL5.17-2

features added to, E-45

fl oating-point, 211, A-76

internal organization of, 380

fl oating-point instructions, E-12

hardware, 189–192

pass transistor, B-63

instruction formats, E-7

hardware, improved version, 192

SIMM, OL5.17-5, OL5.17-6

multimedia extensions, E-16–18

instructions, A-52–53

single-transistor, B-64

multimedia support, E-18

in MIPS, 194

size, 398

types of, E-3

operands, 189

speed, 23

Desktop computers, defi ned, 5

quotient, 189

synchronous (SDRAM), 379–380,

Device driver, OL6.9-5

remainder, 189

B-60, B-65

DGEMM (Double precision General

signed, 192–194

two-level decoder, B-65

Matrix Multiply), 225, 352, 413, 553

SRT, 194

Dynamically linked libraries (DLLs),

cache blocked version of, 415

Don’t cares, B-17–18

129–131

optimized C version of, 226, 227, 476

example, B-17–18

defi ned, 129

performance, 354, 416

term, 261

lazy procedure linkage version, 130

Dicing, 27

Double data rate (DDR), 379

Dies, 26, 26–27

Double Data Rate RAMs (DDRRAMs),

E

Digital design pipeline, 354

379–380, B-65

Digital signal-processing (DSP)

Double precision. See also Single precision

Early restart, 392

extensions, E-19

defi ned, 198

Edge-triggered clocking methodology,

DIMMs (dual inline memory modules),

FMA, C-45–46

249, 250, B-48, B-73

OL5.17-5

GPU, C-45–46, C-74

advantage, B-49

Direct Data IO (DDIO), OL6.9-6

representation, 201

clocks, B-73

Direct memory access (DMA), OL6.9-4

Double words, 152

drawbacks, B-74

Direct3D, C-13

Dual inline memory modules (DIMMs),

illustrated, B-50

Direct-mapped caches. See also Caches

381

rising edge/falling edge, B-48

address portions, 407

Dynamic branch prediction, 321–323. See

EDSAC (Electronic Delay Storage

choice of, 456

 also Control hazards

Automatic Calculator), OL1.12-3,

defi ned, 384, 402

branch prediction buff er, 321

OL5.17-2

illustrated, 385

loops and, 321–323

Eispack, OL3.11-4

memory block location, 403

Dynamic hardware predictors, 284

Electrically erasable programmable read-

misses, 405

Dynamic multiple-issue processors, 333,

only memory (EEPROM), 381

single comparator, 407

339–341. See also Multiple issue

Elements

total number of bits, 390

pipeline scheduling, 339–341

combinational, 248

Dirty bit, 437

superscalar, 339

datapath, 251, 256

Dirty pages, 437

Dynamic pipeline scheduling, 339–341

memory, B-50–58

Disk memory, 381–383

commit unit, 339–340

state, 248, 250, 252, B-48, B-50

Displacement addressing, 116

concept, 339–340

Embedded computers, 5

Distributed Block-Interleaved Parity

hardware-based speculation, 341

application requirements, 6

(RAID 5), OL5.11-6

primary units, 340

defi ned, A-7

div (Divide), A-52

reorder buff er, 343

design, 5

div.d (FP Divide Double), A-76

reservation station, 339–340

growth, OL1.12-12–1.12-13

div.s (FP Divide Single), A-76

Dynamic random access memory

Embedded Microprocessor Benchmark

Divide algorithm, 190

(DRAM), 378, 379–381, B-63–65

Consortium (EEMBC), OL1.12-12

I-8

Index

Embedded RISCs. See also Reduced

datapath with controls for handling,

pipelining, 355–356

instruction set computer (RISC)

329

powerful instructions mean higher

architectures

defi ned, 180, 326

performance, 159

addressing modes, E-6

detecting, 326

right shift , 229

architecture summary, E-4

event types and, 326

False sharing, 469

arithmetic/logical instructions, E-14

imprecise, 331–332

Fast carry

conditional branches, E-16

instructions, A-80

with “infi nite” hardware, B-38–39

constant extension summary, E-9

interrupts versus, 325–326

with fi rst level of abstraction, B-39–40

control instructions, E-15

in MIPS architecture, 326–327

with second level of abstraction,

data transfer instructions, E-13

overfl ow, 329

B-40–46

delayed branch and, E-23

PC, 445, 446–447

Fast Fourier Transforms (FFT), C-53

DSP extensions, E-19

pipelined computer example, 328

Fault avoidance, 419

general purpose registers, E-5

in pipelined implementation, 327–332

Fault forecasting, 419

instruction conventions, E-15

precise, 332

Fault tolerance, 419

instruction formats, E-8

reasons for, 326–327

Fermi architecture, 523, 552

multiply-accumulate approaches, E-19

result due to overfl ow in add

Field programmable devices (FPDs), B-78

types of, E-4

instruction, 330

Field programmable gate arrays (FPGAs),

Encoding

saving/restoring stage on, 450

B-78

defi ned, D-31

Exclusive OR (XOR) instructions, A-57

Fields

fl oating-point instruction, 213

Executable fi les, A-4

Cause register, A-34, A-35

MIPS instruction, 83, 119, A-49

defi ned, 126

defi ned, 82

ROM control function, D-18–19

linker production, A-19

format, D-31

ROM logic function, B-15

Execute or address calculation stage, 292

MIPS, 82–83

x86 instruction, 155–156

Execute/address calculation

names, 82

ENIAC (Electronic Numerical Integrator

control line, 300

Status register, A-34, A-35

and Calculator), OL1.12-2, OL1.12-

load instruction, 292

Files, register, 252, 257, B-50, B-54–56

3, OL5.17-2

store instruction, 292

Fine-grained multithreading, 514

EPIC, OL4.16-5

Execution time

Finite-state machines (FSMs), 451–466,

Error correction, B-65–67

as valid performance measure, 51

B-67–72

Error Detecting and Correcting Code

CPU, 32, 33–34

control, D-8–22

(RAID 2), OL5.11-5

pipelining and, 286

controllers, 464

Error detection, B-66

Explicit counters, D-23, D-26

for multicycle control, D-9

Error detection code, 420

Exponents, 197–198

for simple cache controller, 464–466

Ethernet, 23

External labels, A-10

implementation, 463, B-70

EX stage

Mealy, 463

load instructions, 292

F

Moore, 463

overfl ow exception detection, 328

next-state function, 463, B-67

store instructions, 294

Facilities, A-14–17

output function, B-67, B-69

Exabyte, 6

Failures, synchronizer, B-77

state assignment, B-70

Exception enable, 447

Fallacies. See also Pitfalls

state register implementation, B-71

Exception handlers, A-36–38

add immediate unsigned, 227

style of, 463

defi ned, A-35

Amdahl’s law, 556

synchronous, B-67

return from, A-38

arithmetic, 229–232

SystemVerilog, OL5.12-7

Exception program counters (EPCs), 326

assembly language for performance,

traffi

c light example, B-68–70

address capture, 331

159–160

Flash memory, 381

copying, 181

commercial binary compatibility

characteristics, 23

defi ned, 181, 327

importance, 160

defi ned, 23

in restart determination, 326–327

defi ned, 49

Flat address space, 479

transferring, 182

GPUs, C-72–74, C-75

Flip-fl ops

Exceptions, 325–332, A-33–38

low utilization uses little power, 50

D fl ip-fl ops, B-51, B-53

association, 331–332

peak performance, 556

defi ned, B-51

Index

I-9

Floating point, 196–222, 224

Floating-point instructions, A-73–80

Fully associative caches. See also Caches

assembly language, 212

absolute value, A-73

block replacement strategies, 457

backward step, OL3.11-4–3.11-5

addition, A-73–74

choice of, 456

binary to decimal conversion, 202

comparison, A-74–75

defi ned, 403

branch, 211

conversion, A-75–76

memory block location, 403

challenges, 232–233

desktop RISC, E-12

misses, 406

diversity versus portability, OL3.11-

division, A-76

Fully connected networks, 535

3–3.11-4

load, A-76–77

Function code, 82

division, 211

move, A-77–78

Fused-multiply-add (FMA) operation,

fi rst dispute, OL3.11-2–3.11-3

multiplication, A-78

220, C-45–46

form, 197

negation, A-78–79

fused multiply add, 220

SPARC, E-31

G

guard digits, 218–219

square root, A-79

history, OL3.11-3

store, A-79

Game consoles, C-9

IEEE 754 standard, 198, 199

subtraction, A-79–80

Gates, B-3, B-8

instruction encoding, 213

truncation, A-80

AND, B-12, D-7

intermediate calculations, 218

Floating-point multiplication, 206–210

delays, B-46

machine language, 212

binary, 210–211

mapping ALU control function to,

MIPS instruction frequency for, 236

illustrated, 209

D-4–7

MIPS instructions, 211–213

instructions, 211

NAND, B-8

operands, 212

signifi cands, 206

NOR, B-8, B-50

overfl ow, 198

steps, 206–210

Gather-scatter, 511, 552

packed format, 224

Flow-sensitive information, OL2.15-15

General Purpose GPUs (GPGPUs),

precision, 230

Flushing instructions, 318, 319

C-5

procedure with two-dimensional

defi ned, 319

General-purpose registers, 150

matrices, 215–217

exceptions and, 331

architectures, OL2.21-3

programs, compiling, 214–217

For loops, 141, OL2.15-26

embedded RISCs, E-5

registers, 217

inner, OL2.15-24

Generate

representation, 197–202

SIMD and, OL6.15-2

defi ned, B-40

rounding, 218–219

Formal parameters, A-16

example, B-44

sign and magnitude, 197

Format fi elds, D-31

super, B-41

SSE2 architecture, 224–225

Fortran, OL2.21-7

Gigabyte, 6

subtraction, 211

Forward references, A-11

Global common subexpression

underfl ow, 198

Forwarding, 303–316

elimination, OL2.15-6

units, 219

ALU before, 309

Global memory, C-21, C-39

in x86, 224

control, 307

Global miss rates, 416

Floating vectors, OL3.11-3

datapath for hazard resolution, 311

Global optimization, OL2.15-5

Floating-point addition, 203–206

defi ned, 278

code, OL2.15-7

arithmetic unit block diagram, 207

functioning, 306

implementing, OL2.15-8–2.15-11

binary, 204

graphical representation, 279

Global pointers, 102

illustrated, 205

illustrations, OL4.13-26–4.13-26

GPU computing. See also Graphics

instructions, 211, A-73–74

multiple results and, 281

processing units (GPUs)

steps, 203–204

multiplexors, 310

defi ned, C-5

Floating-point arithmetic (GPUs),

pipeline registers before, 309

visual applications, C-6–7

C-41–46

with two instructions, 278

GPU system architectures, C-7–12

basic, C-42

Verilog implementation, OL4.13-

graphics logical pipeline, C-10

double precision, C-45–46, C-74

2–4.13-4

heterogeneous, C-7–9

performance, C-44

Fractions, 197, 198

implications for, C-24

specialized, C-42–44

Frame buff er, 18

interfaces and drivers, C-9

supported formats, C-42

Frame pointers, 103

unifi ed, C-10–12

texture operations, C-44

Front end, OL2.15-3

Graph coloring, OL2.15-12

I-10

Index

Graphics displays

Handlers

defi ned, 376

computer hardware support, 18

defi ned, 449

Hit under miss, 472

LCD, 18

TLB miss, 448

Hold time, B-54

Graphics logical pipeline, C-10

Hard disks

Horizontal microcode, D-32

Graphics processing units (GPUs), 522–

access times, 23

Hot-swapping, OL5.11-7

529. See also GPU computing

defi ned, 23

Human genome project, 4

as accelerators, 522

Hardware

attribute interpolation, C-43–44

as hierarchical layer, 13

I

defi ned, 46, 506, C-3

language of, 14–16

evolution, C-5

operations, 63–66

I

fallacies and pitfalls, C-72–75

supporting procedures in, 96–106

I/O, A-38–40, OL6.9-2, OL6.9-3

fl oating-point arithmetic, C-17, C-41–

synthesis, B-21

memory-mapped, A-38

46, C-74

translating microprograms to, D-28–32

on system performance, OL5.11-2

GeForce 8-series generation, C-5

virtualizable, 426

I/O benchmarks. See Benchmarks

general computation, C-73–74

Hardware description languages. See also

IBM 360/85, OL5.17-7

General Purpose (GPGPUs), C-5

Verilog

IBM 701, OL1.12-5

graphics mode, C-6

defi ned, B-20

IBM 7030, OL4.16-2

graphics trends, C-4

using, B-20–26

IBM ALOG, OL3.11-7

history, C-3–4

VHDL, B-20–21

IBM Blue Gene, OL6.15-9–6.15-10

logical graphics pipeline, C-13–14

Hardware multithreading, 514–517

IBM Personal Computer, OL1.12-7,

mapping applications to, C-55–72

coarse-grained, 514

OL2.21-6

memory, 523

options, 516

IBM System/360 computers, OL1.12-6,

multilevel caches and, 522

simultaneous, 515–517

OL3.11-6, OL4.16-2

N-body applications, C-65–72

Hardware-based speculation, 341

IBM z/VM, OL5.17-8

NVIDIA architecture, 523–526

Harvard architecture, OL1.12-4

ID stage

parallel memory system, C-36–41

Hazard detection units, 313–314

branch execution in, 319

parallelism, 523, C-76

functions, 314

load instructions, 292

performance doubling, C-4

pipeline connections for, 314

store instruction in, 291

perspective, 527–529

Hazards, 277–278. See also Pipelining

IEEE 754 fl oating-point standard, 198,

programming, C-12–24

control, 281–282, 316–325

199, OL3.11-8–3.11-10. See also

programming interfaces to, C-17

data, 278, 303–316

Floating point

real-time graphics, C-13

forwarding and, 312

fi rst chips, OL3.11-8–3.11-9

summary, C-76

structural, 277, 294

in GPU arithmetic, C-42–43

Graphics shader programs, C-14–15

Heap

implementation, OL3.11-10

Gresham’s Law, 236, OL3.11-2

allocating space on, 104–106

rounding modes, 219

Grid computing, 533

defi ned, 104

today, OL3.11-10

Grids, C-19

Heterogeneous systems, C-4–5

If statements, 114

GTX 280, 548–553

architecture, C-7–9

I-format, 83

Guard digits

defi ned, C-3

If-then-else, 91

defi ned, 218

Hexadecimal numbers, 81–82

Immediate addressing, 116

rounding with, 219

binary number conversion to, 81–82

Immediate instructions, 72

Hierarchy of memories, 12

Imprecise interrupts, 331, OL4.16-4

H

High-level languages, 14–16, A-6

Index-out-of-bounds check, 94–95

benefi ts, 16

Induction variable elimination, OL2.15-7

Half precision, C-42

computer architectures, OL2.21-5

Inheritance, OL2.15-15

Halfwords, 110

importance, 16

In-order commit, 341

Hamming, Richard, 420

High-level optimizations, OL2.15-4–2.15-

Input devices, 16

Hamming distance, 420

5

Inputs, 261

Hamming Error Correction Code (ECC),

Hit rate, 376

Instances, OL2.15-15

420–421

Hit time

Instruction count, 36, 38

calculating, 420–421

cache performance and, 401–402

Instruction decode/register fi le read stage

Index

I-11

control line, 300

compiler exploitation, OL4.16-5–4.16-6

PA-RISC, E-34–36

load instruction, 289

defi ned, 43, 333

performance, 35–36

store instruction, 294

exploitation, increasing, 343

pipeline sequence, 313

Instruction execution illustrations,

and matrix multiply, 351–354

PowerPC, E-12–13, E-32–34

OL4.13-16–4.13-17

Instructions, 60–164, E-25–27, E-40–42.

PTX, C-31, C-32

clock cycle 9, OL4.13-24

 See also Arithmetic instructions;

remainder, A-55

clock cycles 1 and 2, OL4.13-21

MIPS; Operands

representation in computer, 80–87

clock cycles 3 and 4, OL4.13-22

add immediate, 72

restartable, 450

clock cycles 5 and 6, OL4.13-23,

addition, 180, A-51

resuming, 450

OL4.13-23

Alpha, E-27–29

R-type, 252

clock cycles 7 and 8, OL4.13-24

arithmetic-logical, 251, A-51–57

shift , A-55–56

examples, OL4.13-20–4.13-25

ARM, 145–147, E-36–37

SPARC, E-29–32

forwarding, OL4.13-26–4.13-31

assembly, 66

store, 71, A-68–70

no hazard, OL4.13-17

basic block, 93

store conditional, 122

pipelines with stalls and forwarding,

branch, A-59–63

subtraction, 180, A-56–57

OL4.13-26, OL4.13-20

cache-aware, 482

SuperH, E-39–40

Instruction fetch stage

comparison, A-57–59

thread, C-30–31

control line, 300

conditional branch, 90

Th

umb, E-38

load instruction, 289

conditional move, 324

trap, A-64–66

store instruction, 294

constant-manipulating, A-57

vector, 510

Instruction formats, 157

conversion, A-75–76

as words, 62

ARM, 148

core, 233

x86, 149–155

defi ned, 81

data movement, A-70–73

Instructions per clock cycle (IPC), 333

desktop/server RISC architectures, E-7

data transfer, 68

Integrated circuits (ICs), 19. See also

embedded RISC architectures, E-8

decision-making, 90–96

specifi c chips

I-type, 83

defi ned, 14, 62

cost, 27

J-type, 113

desktop RISC conventions, E-12

defi ned, 25

jump instruction, 270

division, A-52–53

manufacturing process, 26

MIPS, 148

as electronic signals, 80

very large-scale (VLSIs), 25

R-type, 83, 261

embedded RISC conventions, E-15

Intel Core i7, 46–49, 244, 501, 548–553

x86, 157

encoding, 83

address translation for, 471

Instruction latency, 356

exception and interrupt, A-80

architectural registers, 347

Instruction mix, 39, OL1.12-10

exclusive OR, A-57

caches in, 472

Instruction set architecture

fetching, 253

memory hierarchies of, 471–475

ARM, 145–147

fi elds, 80

microarchitecture, 338

branch address calculation, 254

fl oating-point (x86), 224

performance of, 473

defi ned, 22, 52

fl oating-point, 211–213, A-73–80

SPEC CPU benchmark, 46–48

history, 163

fl ushing, 318, 319, 331

SPEC power benchmark, 48–49

maintaining, 52

immediate, 72

TLB hardware for, 471

protection and, 427

introduction to, 62–63

Intel Core i7 920, 346–349

thread, C-31–34

jump, 95, 97, A-63–64

microarchitecture, 347

virtual machine support, 426–427

left -to-right fl ow, 287–288

Intel Core i7 960

Instruction sets, 235, C-49

load, 68, A-66–68

benchmarking and roofl ines of,

ARM, 324

load linked, 122

548–553

design for pipelining, 277

logical operations, 87–89

Intel Core i7 Pipelines, 344, 346–349

MIPS, 62, 161, 234

M32R, E-40

memory components, 348

MIPS-32, 235

memory access, C-33–34

performance, 349–351

Pseudo MIPS, 233

memory-reference, 245

program performance, 351

x86 growth, 161

multiplication, 188, A-53–54

specifi cation, 345

Instruction-level parallelism (ILP), 354.

negation, A-54

Intel IA-64 architecture, OL2.21-3

 See also Parallelism

nop, 314

Intel Paragon, OL6.15-8

I-12

Index

Intel Th

reading Building Blocks, C-60

jr (Jump Register), 64

lhu (Load Halfword Unsigned), 64

Intel x86 microprocessors

J-type instruction format, 113

li (Load Immediate), 162

clock rate and power for, 40

Jump instructions, 254, E-26

Link, OL6.9-2

Interference graphs, OL2.15-12

branch instruction versus, 270

Linkers, 126–129, A-18–19

Interleaving, 398

control and datapath for, 271

defi ned, 126, A-4

Interprocedural analysis, OL2.15-14

implementing, 270

executable fi les, 126, A-19

Interrupt enable, 447

instruction format, 270

function illustration, A-19

Interrupt handlers, A-33

list of, A-63–64

steps, 126

Interrupt-driven I/O, OL6.9-4

Just In Time (JIT) compilers,

using, 126–129

Interrupts

132, 560

Linking object fi les, 126–129

defi ned, 180, 326

Linpack, 538, OL3.11-4

event types and, 326

K

Liquid crystal displays (LCDs), 18

exceptions versus, 325–326

LISP, SPARC support, E-30

imprecise, 331, OL4.16-4

Karnaugh maps, B-18

Little-endian byte order, A-43

instructions, A-80

Kernel mode, 444

Live range, OL2.15-11

precise, 332

Kernels

Livermore Loops, OL1.12-11

vectored, 327

CUDA, C-19, C-24

ll (Load Linked), 64

Intrinsity FastMATH processor, 395–398

defi ned, C-19

Load balancing, 505–506

caches, 396

Kilobyte, 6

Load instructions. See also Store

data miss rates, 397, 407

instructions

read processing, 442

L

access, C-41

TLB, 440

base register, 262

write-through processing, 442

Labels

block, 149

Inverted page tables, 436

global, A-10, A-11

compiling with, 71

Issue packets, 334

local, A-11

datapath in operation for, 267

LAPACK, 230

defi ned, 68

J

Large-scale multiprocessors, OL6.15-7,

details, A-66–68

OL6.15-9–6.15-10

EX stage, 292

j (Jump), 64

Latches

fl oating-point, A-76–77

jal (Jump And Link), 64

D latch, B-51, B-52

halfword unsigned, 110

Java

defi ned, B-51

ID stage, 291

bytecode, 131

Latency

IF stage, 291

bytecode architecture, OL2.15-17

instruction, 356

linked, 122, 123

characters in, 109–111

memory, C-74–75

list of, A-66–68

compiling in, OL2.15-19–2.15-20

pipeline, 286

load byte unsigned, 76

goals, 131

use, 336–337

load half, 110

interpreting, 131, 145, OL2.15-15–

lbu (Load Byte Unsigned), 64

load upper immediate, 112, 113

2.15-16

Leaf procedures. See also Procedures

MEM stage, 293

keywords, OL2.15-21

defi ned, 100

pipelined datapath in, 296

method invocation in, OL2.15-21

example, 109

signed, 76

pointers, OL2.15-26

Least recently used (LRU)

unit for implementing, 255

primitive types, OL2.15-26

as block replacement strategy, 457

unsigned, 76

programs, starting, 131–132

defi ned, 409

WB stage, 293

reference types, OL2.15-26

pages, 434

Load word, 68, 71

sort algorithms, 141

Least signifi cant bits, B-32

Loaders, 129

strings in, 109–111

defi ned, 74

Loading, A-19–20

translation hierarchy, 131

SPARC, E-31

Load-store architectures, OL2.21-3

while loop compilation in, OL2.15-

Left -to-right instruction fl ow, 287–288

Load-use data hazard, 280, 318

18–2.15-19

Level-sensitive clocking, B-74, B-75–76

Load-use stalls, 318

Java Virtual Machine (JVM), 145,

defi ned, B-74

Local area networks (LANs), 24. See also

OL2.15-16

two-phase, B-75

Networks

Index

I-13

Local labels, A-11

M

main, 23

Local memory, C-21, C-40

nonvolatile, 22

Local miss rates, 416

M32R, E-15, E-40

operands, 68–69

Local optimization, OL2.15-5.

Machine code, 81

parallel system, C-36–41

 See also Optimization

Machine instructions, 81

read-only (ROM), B-14–16

implementing, OL2.15-8

Machine language, 15

SDRAM, 379–380

Locality

branch off set in, 115

secondary, 23

principle, 374

decoding, 118–120

shared, C-21, C-39–40

spatial, 374, 377

defi ned, 14, 81, A-3

spaces, C-39

temporal, 374, 377

fl oating-point, 212

SRAM, B-58–62

Lock synchronization, 121

illustrated, 15

stalls, 400

Locks, 518

MIPS, 85

technologies for building, 24–28

Logic

SRAM, 21

texture, C-40

address select, D-24, D-25

translating MIPS assembly language

usage, A-20–22

ALU control, D-6

into, 84

virtual, 427–454

combinational, 250, B-5, B-9–20

Macros

volatile, 22

components, 249

defi ned, A-4

Memory access instructions, C-33–34

control unit equations, D-11

example, A-15–17

Memory access stage

design, 248–251, B-1–79

use of, A-15

control line, 302

equations, B-7

Main memory, 428. See also Memory

load instruction, 292

minimization, B-18

defi ned, 23

store instruction, 292

programmable array (PAL),

page tables, 437

Memory bandwidth, 551, 557

B-78

physical addresses, 428

Memory consistency model, 469

sequential, B-5, B-56–58

Mapping applications, C-55–72

Memory elements, B-50–58

two-level, B-11–14

Mark computers, OL1.12-14

clocked, B-51

Logical operations, 87–89

Matrix multiply, 225–228, 553–555

D fl ip-fl op, B-51, B-53

AND, 88, A-52

Mealy machine, 463–464, B-68, B-71,

D latch, B-52

ARM, 149

B-72

DRAMs, B-63–67

desktop RISC, E-11

Mean time to failure(MTTF), 418

fl ip-fl op, B-51

embedded RISC, E-14

improving, 419

hold time, B-54

MIPS, A-51–57

 versus AFR of disks, 419–420

latch, B-51

NOR, 89, A-54

Media Access Control (MAC) address,

setup time, B-53, B-54

NOT, 89, A-55

OL6.9-7

SRAMs, B-58–62

OR, 89, A-55

Megabyte, 6

unclocked, B-51

shift s, 87

Memory

Memory hierarchies, 545

Long instruction word (LIW),

addresses, 77

of ARM cortex-A8, 471–475

OL4.16-5

affi

nity, 545

block (or line), 376

Lookup tables (LUTs), B-79

atomic, C-21

cache performance, 398–417

Loop unrolling

bandwidth, 380–381, 397

caches, 383–417

defi ned, 338, OL2.15-4

cache, 21, 383–398, 398–417

common framework, 454–461

for multiple-issue pipelines, 338

CAM, 408

defi ned, 375

register renaming and, 338

constant, C-40

design challenges, 461

Loops, 92–93

control, D-26

development, OL5.17-6–5.17-8

conditional branches in, 114

defi ned, 19

exploiting, 372–498

for, 141

DRAM, 19, 379–380, B-63–65

of Intel core i7, 471–475

prediction and, 321–323

fl ash, 23

level pairs, 376

test, 142, 143

global, C-21, C-39

multiple levels, 375

while, compiling, 92–93

GPU, 523

overall operation of, 443–444

lui (Load Upper Imm.), 64

instructions, datapath for, 256

parallelism and, 466–470, OL5.11-2

lw (Load Word), 64

layout, A-21

pitfalls, 478–482

lwc1 (Load FP Single), A-73

local, C-21, C-40

program execution time and, 417

I-14

Index

Memory hierarchies (Continued)

defi ned, B-12, D-20

data transfer instructions not in, E-20,

quantitative design parameters, 454

in PLA implementation, D-20

E-22

redundant arrays and inexpensive

MIP-map, C-44

fl oating-point instructions not in, E-22

disks, 470

MIPS, 64, 84, A-45–80

instruction set, 233, 244–248, E-9–10

reliance on, 376

addressing for 32-bit immediates,

MIPS-16

structure, 375

116–118

16-bit instruction set, E-41–42

structure diagram, 378

addressing modes, A-45–47

immediate fi elds, E-41

variance, 417

arithmetic core, 233

instructions, E-40–42

virtual memory, 427–454

arithmetic instructions, 63, A-51–57

MIPS core instruction changes, E-42

Memory rank, 381

ARM similarities, 146

PC-relative addressing, E-41

Memory technologies, 378–383

assembler directive support, A-47–49

MIPS-32 instruction set, 235

disk memory, 381–383

assembler syntax, A-47–49

MIPS-64 instructions, E-25–27

DRAM technology, 378, 379–381

assembly instruction, mapping, 80–81

conditional procedure call instructions,

fl ash memory, 381

branch instructions, A-59–63

E-27

SRAM technology, 378, 379

comparison instructions, A-57–59

constant shift amount, E-25

Memory-mapped I/O, OL6.9-3

compiling C assignment statements

jump/call not PC-relative, E-26

use of, A-38

into, 65

move to/from control registers, E-26

Memory-stall clock cycles, 399

compiling complex C assignment into,

nonaligned data transfers, E-25

Message passing

65–66

NOR, E-25

defi ned, 529

constant-manipulating instructions,

parallel single precision fl oating-point

multiprocessors, 529–534

A-57

operations, E-27

Metastability, B-76

control registers, 448

reciprocal and reciprocal square root,

Methods

control unit, D-10

E-27

defi ned, OL2.15-5

CPU, A-46

SYSCALL, E-25

invoking in Java, OL2.15-20–2.15-21

divide in, 194

TLB instructions, E-26–27

static, A-20

exceptions in, 326–327

Mirroring, OL5.11-5

mfc0 (Move From Control), A-71

fi elds, 82–83

Miss penalty

mfh i (Move From Hi), A-71

fl oating-point instructions, 211–213

defi ned, 376

mfl o (Move From Lo), A-71

FPU, A-46

determination, 391–392

Microarchitectures, 347

instruction classes, 163

multilevel caches, reducing, 410

Intel Core i7 920, 347

instruction encoding, 83, 119, A-49

Miss rates

Microcode

instruction formats, 120, 148, A-49–51

block size versus, 392

assembler, D-30

instruction set, 62, 162, 234

data cache, 455

control unit as, D-28

jump instructions, A-63–66

defi ned, 376

defi ned, D-27

logical instructions, A-51–57

global, 416

dispatch ROMs, D-30–31

machine language, 85

improvement, 391–392

horizontal, D-32

memory addresses, 70

Intrinsity FastMATH processor, 397

vertical, D-32

memory allocation for program and

local, 416

Microinstructions, D-31

data, 104

miss sources, 460

Microprocessors

multiply in, 188

split cache, 397

design shift , 501

opcode map, A-50

Miss under miss, 472

multicore, 8, 43, 500–501

operands, 64

MMX (MultiMedia eXtension), 224

Microprograms

Pseudo, 233, 235

Modules, A-4

as abstract control representation,

register conventions, 105

Moore machines, 463–464, B-68, B-71,

D-30

static multiple issue with, 335–338

B-72

fi eld translation, D-29

MIPS core

Moore’s law, 11, 379, 522, OL6.9-2,

translating to hardware, D-28–32

architecture, 195

C-72–73

Migration, 467

arithmetic/logical instructions not in,

Most signifi cant bit

Million instructions per second (MIPS),

E-21, E-23

1-bit ALU for, B-33

51

common extensions to, E-20–25

defi ned, 74

Minterms

control instructions not in, E-21

move (Move), 139

Index

I-15

Move instructions, A-70–73

Multiplicand, 183

defi ned, 506

coprocessor, A-71–72

Multiplication, 183–188. See also

fi ne-grained, 514

details, A-70–73

Arithmetic

hardware, 514–517

fl oating-point, A-77–78

fast, hardware, 188

simultaneous (SMT), 515–517

MS-DOS, OL5.17-11

faster, 187–188

multu (Multiply Unsigned), A-54

mul.d (FP Multiply Double), A-78

fi rst algorithm, 185

Must-information, OL2.15-5

mul.s (FP Multiply Single), A-78

fl oating-point, 206–208, A-78

Mutual exclusion, 121

mult (Multiply), A-53

hardware, 184–186

Multicore, 517–521

instructions, 188, A-53–54

N

Multicore multiprocessors, 8, 43

in MIPS, 188

defi ned, 8, 500–501

multiplicand, 183

Name dependence, 338

MULTICS (Multiplexed Information

multiplier, 183

NAND gates, B-8

and Computing Service), OL5.17-

operands, 183

NAS (NASA Advanced Supercomputing),

9–5.17-10

product, 183

540

Multilevel caches. See also Caches

sequential version, 184–186

N-body

complications, 416

signed, 187

all-pairs algorithm, C-65

defi ned, 398, 416

Multiplier, 183

GPU simulation, C-71

miss penalty, reducing, 410

Multiply algorithm, 186

mathematics, C-65–67

performance of, 410

Multiply-add (MAD), C-42

multiple threads per body, C-68–69

summary, 417–418

Multiprocessors

optimization, C-67

Multimedia extensions

benchmarks, 538–540

performance comparison, C-69–70

desktop/server RISCs, E-16–18

bus-based coherent, OL6.15-7

results, C-70–72

as SIMD extensions to instruction sets,

defi ned, 500

shared memory use, C-67–68

OL6.15-4

historical perspective, 561

Negation instructions, A-54, A-78–79

vector versus, 511–512

large-scale, OL6.15-7–6.15-8, OL6.15-

Negation shortcut, 76

Multiple dimension arrays, 218

9–6.15-10

Nested procedures, 100–102

Multiple instruction multiple data

message-passing, 529–534

compiling recursive procedure

(MIMD), 558

multithreaded architecture, C-26–27,

showing, 101–102

defi ned, 507, 508

C-35–36

NetFPGA 10-Gigagit Ethernet card,

fi rst multiprocessor, OL6.15-14

organization, 499, 529

OL6.9-2, OL6.9-3

Multiple instruction single data (MISD), 507

for performance, 559

Network of Workstations, OL6.15-

Multiple issue, 332–339

shared memory, 501, 517–521

8–6.15-9

code scheduling, 337–338

soft ware, 500

Network topologies, 534–537

dynamic, 333, 339–341

TFLOPS, OL6.15-6

implementing, 536

issue packets, 334

UMA, 518

multistage, 537

loop unrolling and, 338

Multistage networks, 535

Networking, OL6.9-4

processors, 332, 333

Multithreaded multiprocessor

operating system in, OL6.9-4–6.9-5

static, 333, 334–339

architecture, C-25–36

performance improvement, OL6.9-

throughput and, 342

conclusion, C-36

7–6.9-10

Multiple processors, 553–555

ISA, C-31–34

Networks, 23–24

Multiple-clock-cycle pipeline diagrams,

massive multithreading, C-25–26

advantages, 23

296–297

multiprocessor, C-26–27

bandwidth, 535

fi ve instructions, 298

multiprocessor comparison, C-35–36

crossbar, 535

illustrated, 298

SIMT, C-27–30

fully connected, 535

Multiplexors, B-10

special function units (SFUs), C-35

local area (LANs), 24

controls, 463

streaming processor (SP), C-34

multistage, 535

in datapath, 263

thread instructions, C-30–31

wide area (WANs), 24

defi ned, 246

threads/thread blocks management,

Newton’s iteration, 218

forwarding, control values, 310

C-30

Next state

selector control, 256–257

Multithreading, C-25–26

nonsequential, D-24

two-input, B-10

coarse-grained, 514

sequential, D-23

I-16

Index

Next-state function, 463, B-67

NVIDIA GPU architecture, 523–526

compiler, 141

defi ned, 463

NVIDIA GTX 280, 548–553

control implementation, D-27–28

implementing, with sequencer,

NVIDIA Tesla GPU, 548–553

global, OL2.15-5

D-22–28

high-level, OL2.15-4–2.15-5

Next-state outputs, D-10, D-12–13

O

local, OL2.15-5, OL2.15-8

example, D-12–13

manual, 144

implementation, D-12

Object fi les, 125, A-4

or (OR), 64

logic equations, D-12–13

debugging information, 124

OR operation, 89, A-55, B-6

truth tables, D-15

defi ned, A-10

ori (Or Immediate), 64

No Redundancy (RAID 0), OL5.11-4

format, A-13–14

Out-of-order execution

No write allocation, 394

header, 125, A-13

defi ned, 341

Nonblocking assignment, B-24

linking, 126–129

performance complexity, 416

Nonblocking caches, 344, 472

relocation information, 125

processors, 344

Nonuniform memory access (NUMA),

static data segment, 125

Output devices, 16

518

symbol table, 125, 126

Overfl ow

Nonvolatile memory, 22

text segment, 125

defi ned, 74, 198

Nops, 314

Object-oriented languages. See also Java

detection, 180

nor (NOR), 64

brief history, OL2.21-8

exceptions, 329

NOR gates, B-8

defi ned, 145, OL2.15-5

fl oating-point, 198

cross-coupled, B-50

One’s complement, 79, B-29

occurrence, 75

D latch implemented with, B-52

Opcodes

saturation and, 181

NOR operation, 89, A-54, E-25

control line setting and, 264

subtraction, 179

NOT operation, 89, A-55, B-6

defi ned, 82, 262

Numbers

OpenGL, C-13

P

binary, 73

OpenMP (Open MultiProcessing), 520,

computer versus real-world, 221

540

P+Q redundancy (RAID 6), OL5.11-7

decimal, 73, 76

Operands, 66–73. See also Instructions

Packed fl oating-point format, 224

denormalized, 222

32-bit immediate, 112–113

Page faults, 434. See also Virtual memory

hexadecimal, 81–82

adding, 179

for data access, 450

signed, 73–78

arithmetic instructions, 66

defi ned, 428

unsigned, 73–78

compiling assignment when in

handling, 429, 446–453

NVIDIA GeForce 8800, C-46–55

memory, 69

virtual address causing, 449, 450

all-pairs N-body algorithm, C-71

constant, 72–73

Page tables, 456

dense linear algebra computations,

division, 189

defi ned, 432

C-51–53

fl oating-point, 212

illustrated, 435

FFT performance, C-53

memory, 68–69

indexing, 432

instruction set, C-49

MIPS, 64

inverted, 436

performance, C-51

multiplication, 183

levels, 436–437

rasterization, C-50

shift ing, 148

main memory, 437

ROP, C-50–51

Operating systems

register, 432

scalability, C-51

brief history, OL5.17-9–5.17-12

storage reduction techniques, 436–437

sorting performance, C-54–55

defi ned, 13

updating, 432

special function approximation

encapsulation, 22

VMM, 452

statistics, C-43

in networking, OL6.9-4–6.9-5

Pages. See also Virtual memory

special function unit (SFU), C-50

Operations

defi ned, 428

streaming multiprocessor (SM),

atomic, implementing, 121

dirty, 437

C-48–49

hardware, 63–66

fi nding, 432–434

streaming processor, C-49–50

logical, 87–89

LRU, 434

streaming processor array (SPA), C-46

x86 integer, 152, 154–155

off set, 429

texture/processor cluster (TPC),

Optimization

physical number, 429

C-47–48

class explanation, OL2.15-14

placing, 432–434

Index

I-17

size, 430

Paravirtualization, 482

space, 517, 521

virtual number, 429

PA-RISC, E-14, E-17

Physically addressed caches, 443

Parallel bus, OL6.9-3

branch vectored, E-35

Pipeline registers

Parallel execution, 121

conditional branches, E-34, E-35

before forwarding, 309

Parallel memory system, C-36–41. See

debug instructions, E-36

dependences, 308

 also Graphics processing units

decimal operations, E-35

forwarding unit selection, 312

(GPUs)

extract and deposit, E-35

Pipeline stalls, 280

caches, C-38

instructions, E-34–36

avoiding with code reordering, 280

constant memory, C-40

load and clear instructions, E-36

data hazards and, 313–316

DRAM considerations, C-37–38

multiply/add and multiply/subtract,

insertion, 315

global memory, C-39

E-36

load-use, 318

load/store access, C-41

nullifi cation, E-34

as solution to control hazards, 282

local memory, C-40

nullifying branch option, E-25

Pipelined branches, 319

memory spaces, C-39

store bytes short, E-36

Pipelined control, 300–303. See also

MMU, C-38–39

synthesized multiply and divide,

Control

ROP, C-41

E-34–35

control lines, 300, 303

shared memory, C-39–40

Parity, OL5.11-5

overview illustration, 316

surfaces, C-41

bits, 421

specifying, 300

texture memory, C-40

code, 420, B-65

Pipelined datapaths, 286–303

Parallel processing programs, 502–507

PARSEC (Princeton Application

with connected control signals, 304

creation diffi

culty, 502–507

Repository for Shared Memory

with control signals, 300–303

defi ned, 501

Computers), 540

corrected, 296

for message passing, 519–520

Pass transistor, B-63

illustrated, 289

great debates in, OL6.15-5

PCI-Express (PCIe), 537, C-8, OL6.9-2

in load instruction stages, 296

for shared address space, 519–520

PC-relative addressing, 114, 116

Pipelined dependencies, 305

use of, 559

Peak fl oating-point performance, 542

Pipelines

Parallel reduction, C-62

Pentium bug morality play, 231–232

branch instruction impact, 317

Parallel scan, C-60–63

Performance, 28–36

eff ectiveness, improving, OL4.16-

CUDA template, C-61

assessing, 28

4–4.16-5

inclusive, C-60

classic CPU equation, 36–40

execute and address calculation stage,

tree-based, C-62

components, 38

290, 292

Parallel soft ware, 501

CPU, 33–35

fi ve-stage, 274, 290, 299

Parallelism, 12, 43, 332–344

defi ning, 29–32

graphic representation, 279, 296–300

and computers arithmetic, 222–223

equation, using, 36

instruction decode and register fi le

data-level, 233, 508

improving, 34–35

read stage, 289, 292

debates, OL6.15-5–6.15-7

instruction, 35–36

instruction fetch stage, 290, 292

GPUs and, 523, C-76

measuring, 33–35, OL1.12-10

instructions sequence, 313

instruction-level, 43, 332, 343

program, 39–40

latency, 286

memory hierarchies and, 466–470,

ratio, 31

memory access stage, 290, 292

OL5.11-2

relative, 31–32

multiple-clock-cycle diagrams,

multicore and, 517

response time, 30–31

296–297

multiple issue, 332–339

sorting, C-54–55

performance bottlenecks, 343

multithreading and, 517

throughput, 30–31

single-clock-cycle diagrams, 296–297

performance benefi ts, 44–45

time measurement, 32

stages, 274

process-level, 500

Personal computers (PCs), 7

static two-issue, 335

redundant arrays and inexpensive

defi ned, 5

write-back stage, 290, 294

disks, 470

Personal mobile device (PMD)

Pipelining, 12, 272–286

subword, E-17

defi ned, 7

advanced, 343–344

task, C-24

Petabyte, 6

benefi ts, 272

task-level, 500

Physical addresses, 428

control hazards, 281–282

thread, C-22

mapping to, 428–429

data hazards, 278

I-18

Index

Pipelining (Continued)

branch registers, E-32–33

two-issue, 336–337

exceptions and, 327–332

condition codes, E-12

vector, 508–510

execution time and, 286

instructions, E-12–13

VLIW, 335

fallacies, 355–356

instructions unique to, E-31–33

Product, 183

hazards, 277–278

load multiple/store multiple, E-33

Product of sums, B-11

instruction set design for, 277

logical shift ed immediate, E-33

Program counters (PCs), 251

laundry analogy, 273

rotate with mask, E-33

changing with conditional branch, 324

overview, 272–286

Precise interrupts, 332

defi ned, 98, 251

paradox, 273

Prediction, 12

exception, 445, 447

performance improvement, 277

2-bit scheme, 322

incrementing, 251, 253

pitfall, 355–356

accuracy, 321, 324

instruction updates, 289

simultaneous executing instructions,

dynamic branch, 321–323

Program libraries, A-4

286

loops and, 321–323

Program performance

speed-up formula, 273

steady-state, 321

elements aff ecting, 39

structural hazards, 277, 294

Prefetching, 482, 544

understanding, 9

summary, 285

Primitive types, OL2.15-26

Programmable array logic (PAL), B-78

throughput and, 286

Procedure calls

Programmable logic arrays (PLAs)

Pitfalls. See also Fallacies

convention, A-22–33

component dots illustration, B-16

address space extension, 479

examples, A-27–33

control function implementation, D-7,

arithmetic, 229–232

frame, A-23

D-20–21

associativity, 479

preservation across, 102

defi ned, B-12

defi ned, 49

Procedures, 96–106

example, B-13–14

GPUs, C-74–75

compiling, 98

illustrated, B-13

ignoring memory system behavior, 478

compiling, showing nested procedure

ROMs and, B-15–16

memory hierarchies, 478–482

linking, 101–102

size, D-20

out-of-order processor evaluation, 479

execution steps, 96

truth table implementation, B-13

performance equation subset, 50–51

frames, 103

Programmable logic devices (PLDs), B-78

pipelining, 355–356

leaf, 100

Programmable ROMs (PROMs), B-14

pointer to automatic variables, 160

nested, 100–102

Programming languages. See also specifi c

sequential word addresses, 160

recursive, 105, A-26–27

languages

simulating cache, 478

for setting arrays to zero, 142

brief history of, OL2.21-7–2.21-8

soft ware development with

sort, 135–139

object-oriented, 145

multiprocessors, 556

strcpy, 108–109

variables, 67

VMM implementation, 481, 481–482

string copy, 108–109

Programs

Pixel shader example, C-15–17

swap, 133

assembly language, 123

Pixels, 18

Process identifi ers, 446

Java, starting, 131–132

Pointers

Process-level parallelism, 500

parallel processing, 502–507

arrays versus, 141–145

Processors, 242–356

starting, 123–132

frame, 103

as cores, 43

translating, 123–132

global, 102

control, 19

Propagate

incrementing, 143

datapath, 19

defi ned, B-40

Java, OL2.15-26

defi ned, 17, 19

example, B-44

stack, 98, 102

dynamic multiple-issue, 333

super, B-41

Polling, OL6.9-8

multiple-issue, 333

Protected keywords, OL2.15-21

Pop, 98

out-of-order execution, 344, 416

Protection

Power

performance growth, 44

defi ned, 428

clock rate and, 40

ROP, C-12, C-41

implementing, 444–446

critical nature of, 53

speculation, 333–334

mechanisms, OL5.17-9

effi

ciency, 343–344

static multiple-issue, 333, 334–339

VMs for, 424

relative, 41

streaming, C-34

Protection group, OL5.11-5

PowerPC

superscalar, 339, 515–516, OL4.16-5

Pseudo MIPS

algebraic right shift , E-33

technologies for building, 24–28

defi ned, 233

Index

I-19

instruction set, 235

Reduced instruction set computer (RISC)

number specifi cation, 252

Pseudodirect addressing, 116

architectures, E-2–45, OL2.21-5,

page table, 432

Pseudoinstructions

OL4.16-4. See also Desktop and

pipeline, 308, 309, 312

defi ned, 124

server RISCs; Embedded RISCs

primitives, 66

summary, 125

group types, E-3–4

Receiver Control, A-39

Pthreads (POSIX threads), 540

instruction set lineage, E-44

Receiver Data, A-38, A-39

PTX instructions, C-31, C-32

Reduction, 519

renaming, 338

Public keywords, OL2.15-21

Redundant arrays of inexpensive disks

right half, 290

Push

(RAID), OL5.11-2–5.11-8

spilling, 71

defi ned, 98

history, OL5.11-8

Status, 327, A-35

using, 100

RAID 0, OL5.11-4

temporary, 67, 99

RAID 1, OL5.11-5

Transmitter Control, A-39–40

Q

RAID 2, OL5.11-5

Transmitter Data, A-40

RAID 3, OL5.11-5

usage convention, A-24

Quad words, 154

RAID 4, OL5.11-5–5.11-6

use convention, A-22

Quicksort, 411, 412

RAID 5, OL5.11-6–5.11-7

variables, 67

Quotient, 189

RAID 6, OL5.11-7

Relative performance, 31–32

spread of, OL5.11-6

Relative power, 41

R

summary, OL5.11-7–5.11-8

Reliability, 418

use statistics, OL5.11-7

Relocation information, A-13, A-14

Race, B-73

Reference bit, 435

Remainder

Radix sort, 411, 412, C-63–65

References

defi ned, 189

CUDA code, C-64

absolute, 126

instructions, A-55

implementation, C-63–65

forward, A-11

Reorder buff ers, 343

RAID, See Redundant arrays of

types, OL2.15-26

Replication, 468

inexpensive disks (RAID)

unresolved, A-4, A-18

Requested word fi rst, 392

RAM, 9

Register addressing, 116

Request-level parallelism, 532

Raster operation (ROP) processors, C-12,

Register allocation, OL2.15-11–2.15-13

Reservation stations

C-41, C-50–51

Register fi les, B-50, B-54–56

buff ering operands in, 340–341

fi xed function, C-41

defi ned, 252, B-50, B-54

defi ned, 339–340

Raster refresh buff er, 18

in behavioral Verilog, B-57

Response time, 30–31

Rasterization, C-50

single, 257

Restartable instructions, 448

Ray casting (RC), 552

two read ports implementation, B-55

Return address, 97

Read-only memories (ROMs), B-14–16

with two read ports/one write port,

Return from exception (ERET), 445

control entries, D-16–17

B-55

R-format, 262

control function encoding, D-18–19

write port implementation, B-56

ALU operations, 253

dispatch, D-25

Register-memory architecture, OL2.21-3

defi ned, 83

implementation, D-15–19

Registers, 152, 153–154

Ripple carry

logic function encoding, B-15

architectural, 325–332

adder, B-29

overhead, D-18

base, 69

carry lookahead speed versus, B - 46

PLAs and, B-15–16

callee-saved, A-23

Roofl ine model, 542–543, 544, 545

programmable (PROM), B-14

caller-saved, A-23

with ceilings, 546, 547

total size, D-16

Cause, A-35

computational roofl ine, 545

Read-stall cycles, 399

clock cycle time and, 67

illustrated, 542

Read-write head, 381

compiling C assignment with, 67–68

Opteron generations, 543, 544

Receive message routine, 529

Count, A-34

with overlapping areas shaded, 547

Receiver Control register, A-39

defi ned, 66

peak fl oating-point performance,

Receiver Data register, A-38, A-39

destination, 83, 262

542

Recursive procedures, 105, A-26–27. See

fl oating-point, 217

peak memory performance, 543

 also Procedures

left half, 290

with two kernels, 547

clone invocation, 100

mapping, 80

Rotational delay. See Rotational latency

stack in, A-29–30

MIPS conventions, 105

Rotational latency, 383

I-20

Index

Rounding, 218

 n-way, 403

data vector, C-35

accurate, 218

two-way, 404

extensions, OL6.15-4

bits, 220

Setup time, B-53, B-54

for loops and, OL6.15-3

with guard digits, 219

sh (Store Halfword), 64

massively parallel multiprocessors,

IEEE 754 modes, 219

Shaders

OL6.15-2

Row-major order, 217, 413

defi ned, C-14

small-scale, OL6.15-4

R-type instructions, 252

fl oating-point arithmetic, C-14

vector architecture, 508–510

datapath for, 264–265

graphics, C-14–15

in x86, 508

datapath in operation for, 266

pixel example, C-15–17

SIMMs (single inline memory modules),

Shading languages, C-14

OL5.17-5, OL5.17-6

S

Shadowing, OL5.11-5

Simple programmable logic devices

Shared memory. See also Memory

(SPLDs), B-78

Saturation, 181

as low-latency memory, C-21

Simplicity, 161

sb (Store Byte), 64

caching in, C-58–60

Simultaneous multithreading (SMT),

sc (Store Conditional), 64

CUDA, C-58

515–517

SCALAPAK, 230

N-body and, C-67–68

support, 515

Scaling

per-CTA, C-39

thread-level parallelism, 517

strong, 505, 507

SRAM banks, C-40

unused issue slots, 515

weak, 505

Shared memory multiprocessors (SMP),

Single error correcting/Double error

Scientifi c notation

517–521

correcting (SEC/DEC), 420–422

adding numbers in, 203

defi ned, 501, 517

Single instruction single data (SISD), 507

defi ned, 196

single physical address space, 517

Single precision. See also Double

for reals, 197

synchronization, 518

precision

Search engines, 4

Shift amount, 82

binary representation, 201

Secondary memory, 23

Shift instructions, 87, A-55–56

defi ned, 198

Sectors, 381

Sign and magnitude, 197

Single-clock-cycle pipeline diagrams,

Seek, 382

Sign bit, 76

296–297

Segmentation, 431

Sign extension, 254

illustrated, 299

Selector values, B-10

defi ned, 76

Single-cycle datapaths. See also Datapaths

Semiconductors, 25

shortcut, 78

illustrated, 287

Send message routine, 529

Signals

instruction execution, 288

Sensitivity list, B-24

asserted, 250, B-4

Single-cycle implementation

Sequencers

control, 250, 263–264

control function for, 269

explicit, D-32

deasserted, 250, B-4

defi ned, 270

implementing next-state function with,

Signed division, 192–194

nonpipelined execution versus

D-22–28

Signed multiplication, 187

pipelined execution, 276

Sequential logic, B-5

Signed numbers, 73–78

non-use of, 271–272

Servers, OL5. See also Desktop and server

sign and magnitude, 75

penalty, 271–272

RISCs

treating as unsigned, 94–95

pipelined performance versus, 274

cost and capability, 5

Signifi cands, 198

Single-instruction multiple-thread

Service accomplishment, 418

addition, 203

(SIMT), C-27–30

Service interruption, 418

multiplication, 206

overhead, C-35

Set instructions, 93

Silicon, 25

multithreaded warp scheduling, C-28

Set-associative caches, 403. See also

as key hardware technology, 53

processor architecture, C-28

Caches

crystal ingot, 26

warp execution and divergence,

address portions, 407

defi ned, 26

C-29–30

block replacement strategies, 457

wafers, 26

Single-program multiple data (SPMD),

choice of, 456

Silicon crystal ingot, 26

C-22

four-way, 404, 407

SIMD (Single Instruction Multiple Data),

sll (Shift Left Logical), 64

memory-block location, 403

507–508, 558

slt (Set Less Th

an), 64

misses, 405–406

computers, OL6.15-2–6.15-4

slti (Set Less Th

an Imm.), 64

Index

I-21

sltiu (Set Less Th

an Imm.Unsigned), 64

Spatial locality, 374

push, 98, 100

sltu (Set Less Th

an Unsig.), 64

large block exploitation of, 391

recursive procedures, A-29–30

Smalltalk-80, OL2.21-8

tendency, 378

Stalls, 280

Smart phones, 7

SPEC, OL1.12-11–1.12-12

as solution to control hazard, 282

Snooping protocol, 468–470

CPU benchmark, 46–48

avoiding with code reordering, 280

Snoopy cache coherence, OL5.12-7

power benchmark, 48–49

behavioral Verilog with detection,

Soft ware optimization

SPEC2000, OL1.12-12

OL4.13-6–4.13-8

via blocking, 413–418

SPEC2006, 233, OL1.12-12

data hazards and, 313–316

Sort algorithms, 141

SPEC89, OL1.12-11

illustrations, OL4.13-23, OL4.13-30

Soft ware

SPEC92, OL1.12-12

insertion into pipeline, 315

layers, 13

SPEC95, OL1.12-12

load-use, 318

multiprocessor, 500

SPECrate, 538–539

memory, 400

parallel, 501

SPECratio, 47

write-back scheme, 399

as service, 7, 532, 558

Special function units (SFUs), C-35, C-50

write buff er, 399

systems, 13

defi ned, C-43

Standby spares, OL5.11-8

Sort procedure, 135–139. See also

Speculation, 333–334

State

Procedures

hardware-based, 341

in 2-bit prediction scheme, 322

code for body, 135–137

implementation, 334

assignment, B-70, D-27

full procedure, 138–139

performance and, 334

bits, D-8

passing parameters in, 138

problems, 334

exception, saving/restoring, 450

preserving registers in, 138

recovery mechanism, 334

logic components, 249

procedure call, 137

Speed-up challenge, 503–505

specifi cation of, 432

register allocation for, 135

balancing load, 505–506

State elements

Sorting performance, C-54–55

bigger problem, 504–505

clock and, 250

Source fi les, A-4

Spilling registers, 71, 98

combinational logic and, 250

Source language, A-6

SPIM, A-40–45

defi ned, 248, B-48

Space allocation

byte order, A-43

inputs, 249

on heap, 104–106

features, A-42–43

in storing/accessing instructions,

on stack, 103

getting started with, A-42

252

SPARC

MIPS assembler directives support,

register fi le, B-50

annulling branch, E-23

A-47–49

Static branch prediction, 335

CASA, E-31

speed, A-41

Static data

conditional branches, E-10–12

system calls, A-43–45

as dynamic data, A-21

fast traps, E-30

versions, A-42

defi ned, A-20

fl oating-point operations, E-31

virtual machine simulation, A-41–42

segment, 104

instructions, E-29–32

Split algorithm, 552

Static multiple-issue processors, 333,

least signifi cant bits, E-31

Split caches, 397

334–339. See also Multiple issue

multiple precision fl oating-point

Square root instructions, A-79

control hazards and, 335–336

results, E-32

sra (Shift Right Arith.), A-56

instruction sets, 335

nonfaulting loads, E-32

srl (Shift Right Logical), 64

with MIPS ISA, 335–338

overlapping integer operations, E-31

Stack architectures, OL2.21-4

Static random access memories (SRAMs),

quadruple precision fl oating-point

Stack pointers

378, 379, B-58–62

arithmetic, E-32

adjustment, 100

array organization, B-62

register windows, E-29–30

defi ned, 98

basic structure, B-61

support for LISP and Smalltalk, E-30

values, 100

defi ned, 21, B-58

Sparse matrices, C-55–58

Stack segment, A-22

fi xed access time, B-58

Sparse Matrix-Vector multiply (SpMV),

Stacks

large, B-59

C-55, C-57, C-58

allocating space on, 103

read/write initiation, B-59

CUDA version, C-57

for arguments, 140

synchronous (SSRAMs), B-60

serial code, C-57

defi ned, 98

three-state buff ers, B-59, B-60

shared memory version, C-59

pop, 98

Static variables, 102

I-22

Index

Status register

sub.d (FP Subtract Double), A-79

cache data and tag modules, OL5.12-6

fi elds, A-34, A-35

sub.s (FP Subtract Single), A-80

FSM, OL5.12-7

Steady-state prediction, 321

Subnormals, 222

simple cache block diagram, OL5.12-4

Sticky bits, 220

Subtraction, 178–182. See also Arithmetic

type declarations, OL5.12-2

Store buff ers, 343

binary, 178–179

Store instructions. See also Load

fl oating-point, 211, A-79–80

T

instructions

instructions, A-56–57

access, C-41

negative number, 179

Tablets, 7

base register, 262

overfl ow, 179

Tags

block, 149

subu (Subtract Unsigned), 119

defi ned, 384

compiling with, 71

Subword parallelism, 222–223, 352, E-17

in locating block, 407

conditional, 122

and matrix multiply, 225–228

page tables and, 434

defi ned, 71

Sum of products, B-11, B-12

size of, 409

details, A-68–70

Supercomputers, OL4.16-3

Tail call, 105–106

EX stage, 294

defi ned, 5

Task identifi ers, 446

fl oating-point, A-79

SuperH, E-15, E-39–40

Task parallelism, C-24

ID stage, 291

Superscalars

Task-level parallelism, 500

IF stage, 291

defi ned, 339, OL4.16-5

Tebibyte (TiB), 5

instruction dependency, 312

dynamic pipeline scheduling, 339

Telsa PTX ISA, C-31–34

list of, A-68–70

multithreading options, 516

arithmetic instructions, C-33

MEM stage, 295

Surfaces, C-41

barrier synchronization, C-34

unit for implementing, 255

sw (Store Word), 64

GPU thread instructions, C-32

WB stage, 295

Swap procedure, 133. See also Procedures

memory access instructions, C-33–34

Store word, 71

body code, 135

Temporal locality, 374

Stored program concept, 63

full, 135, 138–139

tendency, 378

as computer principle, 86

register allocation, 133

Temporary registers, 67, 99

illustrated, 86

Swap space, 434

Terabyte (TB) , 6

principles, 161

swc1 (Store FP Single), A-73

defi ned, 5

Strcpy procedure, 108–109. See also

Symbol tables, 125, A-12, A-13

Text segment, A-13

Procedures

Synchronization, 121–123, 552

Texture memory, C-40

as leaf procedure, 109

barrier, C-18, C-20, C-34

Texture/processor cluster (TPC),

pointers, 109

defi ned, 518

C-47–48

Stream benchmark, 548

lock, 121

TFLOPS multiprocessor, OL6.15-6

Streaming multiprocessor (SM), C-48–49

overhead, reducing, 44–45

Th

rashing, 453

Streaming processors, C-34, C-49–50

unlock, 121

Th

read blocks, 528

array (SPA), C-41, C-46

Synchronizers

creation, C-23

Streaming SIMD Extension 2 (SSE2)

defi ned, B-76

defi ned, C-19

fl oating-point architecture, 224

failure, B-77

managing, C-30

Streaming SIMD Extensions (SSE) and

from D fl ip-fl op, B-76

memory sharing, C-20

advanced vector extensions in x86,

Synchronous DRAM (SRAM), 379–380,

synchronization, C-20

224–225

B-60, B-65

Th

read parallelism, C-22

Stretch computer, OL4.16-2

Synchronous SRAM (SSRAM), B-60

Th

reads

Strings

Synchronous system, B-48

creation, C-23

defi ned, 107

Syntax tree, OL2.15-3

CUDA, C-36

in Java, 109–111

System calls, A-43–45

ISA, C-31–34

representation, 107

code, A-43–44

managing, C-30

Strip mining, 510

defi ned, 445

memory latencies and, C-74–75

Striping, OL5.11-4

loading, A-43

multiple, per body, C-68–69

Strong scaling, 505, 517

Systems soft ware, 13

warps, C-27

Structural hazards, 277, 294

SystemVerilog

Th

ree Cs model, 459–461

sub (Subtract), 64

cache controller, OL5.12-2

Th

ree-state buff ers, B-59, B-60

Index

I-23

Th

roughput

sign extension shortcut, 78

register, 67

defi ned, 30–31

Two-level logic, B-11–14

static, 102

multiple issue and, 342

Two-phase clocking, B-75

storage class, 102

pipelining and, 286, 342

TX-2 computer, OL6.15-4

type, 102

Th

umb, E-15, E-38

VAX architecture, OL2.21-4, OL5.17-7

Timing

U

Vector lanes, 512

asynchronous inputs, B-76–77

Vector processors, 508–510. See also

level-sensitive, B-75–76

Unconditional branches, 91

Processors

methodologies, B-72–77

Underfl ow, 198

conventional code comparison,

two-phase, B-75

Unicode

509–510

TLB misses, 439. See also Translation-

alphabets, 109

instructions, 510

lookaside buff er (TLB)

defi ned, 110

multimedia extensions and, 511–512

entry point, 449

example alphabets, 110

scalar versus, 510–511

handler, 449

Unifi ed GPU architecture, C-10–12

Vectored interrupts, 327

handling, 446–453

illustrated, C-11

Verilog

occurrence, 446

processor array, C-11–12

behavioral defi nition of MIPS ALU,

problem, 453

Uniform memory access (UMA), 518,

B-25

Tomasulo’s algorithm, OL4.16-3

C-9

behavioral defi nition with bypassing,

Touchscreen, 19

multiprocessors, 519

OL4.13-4–4.13-6

Tournament branch predicators, 324

Units

behavioral defi nition with stalls for

Tracks, 381–382

commit, 339–340, 343

loads, OL4.13-6–4.13-8

Transfer time, 383

control, 247–248, 259–261, D-4–8,

behavioral specifi cation, B-21, OL4.13-

Transistors, 25

D-10, D-12–13

2–4.13-4

Translation-lookaside buff er (TLB),

defi ned, 219

behavioral specifi cation of multicycle

438–439, E-26–27, OL5.17-6. See

fl oating point, 219

MIPS design, OL4.13-12–4.13-13

 also TLB misses

hazard detection, 313, 314–315

behavioral specifi cation with

associativities, 439

for load/store implementation, 255

simulation, OL4.13-2

illustrated, 438

special function (SFUs), C-35, C-43,

behavioral specifi cation with stall

integration, 440–441

C-50

detection, OL4.13-6–4.13-8

Intrinsity FastMATH, 440

UNIVAC I, OL1.12-5

behavioral specifi cation with synthesis,

typical values, 439

UNIX, OL2.21-8, OL5.17-9–5.17-12

OL4.13-11–4.13-16

Transmit driver and NIC hardware time

AT&T, OL5.17-10

blocking assignment, B-24

 versus. receive driver and NIC hardware

Berkeley version (BSD), OL5.17-10

branch hazard logic implementation,

time, OL6.9-8

genius, OL5.17-12

OL4.13-8–4.13-10

Transmitter Control register, A-39–40

history, OL5.17-9–5.17-12

combinational logic, B-23–26

Transmitter Data register, A-40

Unlock synchronization, 121

datatypes, B-21–22

Trap instructions, A-64–66

Unresolved references

defi ned, B-20

Tree-based parallel scan, C-62

defi ned, A-4

forwarding implementation,

Truth tables, B-5

linkers and, A-18

OL4.13-4

ALU control lines, D-5

Unsigned numbers, 73–78

MIPS ALU defi nition in, B-35–38

for control bits, 260–261

Use latency

modules, B-23

datapath control outputs, D-17

defi ned, 336–337

multicycle MIPS datapath, OL4.13-14

datapath control signals, D-14

one-instruction, 336–337

nonblocking assignment, B-24

defi ned, 260

operators, B-22

example, B-5

V

program structure, B-23

next-state output bits, D-15

reg, B-21–22

PLA implementation, B-13

Vacuum tubes, 25

sensitivity list, B-24

Two’s complement representation, 75–76

Valid bit, 386

sequential logic specifi cation, B-56–58

advantage, 75–76

Variables

structural specifi cation, B-21

negation shortcut, 76

C language, 102

wire, B-21–22

rule, 79

programming language, 67

Vertical microcode, D-32

I-24

Index

Very large-scale integrated (VLSI)

W

memory hierarchy handling of,

circuits, 25

457–458

Very Long Instruction Word (VLIW)

Wafers, 26

schemes, 394

defi ned, 334–335

defects, 26

virtual memory, 437

fi rst generation computers, OL4.16-5

dies, 26–27

write-back cache, 394, 395

processors, 335

yield, 27

write-through cache, 394, 395

VHDL, B-20–21

Warehouse Scale Computers (WSCs), 7,

Write-stall cycles, 400

Video graphics array (VGA) controllers,

531–533, 558

Write-through caches. See also Caches

C-3–4

Warps, 528, C-27

advantages, 458

Virtual addresses

Weak scaling, 505

defi ned, 393, 457

causing page faults, 449

Wear levelling, 381

tag mismatch, 394

defi ned, 428

While loops, 92–93

mapping from, 428–429

Whirlwind, OL5.17-2

X

size, 430

Wide area networks (WANs), 24. See also

Virtual machine monitors (VMMs)

Networks

x86, 149–158

defi ned, 424

Words

Advanced Vector Extensions in, 225

implementing, 481, 481–482

accessing, 68

brief history, OL2.21-6

laissez-faire attitude, 481

defi ned, 66

conclusion, 156–158

page tables, 452

double, 152

data addressing modes, 152, 153–154

in performance improvement, 427

load, 68, 71

evolution, 149–152

requirements, 426

quad, 154

fi rst address specifi er encoding, 158

Virtual machines (VMs), 424–427

store, 71

historical timeline, 149–152

benefi ts, 424

Working set, 453

instruction encoding, 155–156

defi ned, A-41

World Wide Web, 4

instruction formats, 157

illusion, 452

Worst-case delay, 272

instruction set growth, 161

instruction set architecture support,

Write buff ers

instruction types, 153

426–427

defi ned, 394

integer operations, 152–155

performance improvement, 427

stalls, 399

registers, 152, 153–154

for protection improvement, 424

write-back cache, 395

SIMD in, 507–508, 508

simulation of, A-41–42

Write invalidate protocols, 468, 469

Streaming SIMD Extensions in,

Virtual memory, 427–454. See also Pages

Write serialization, 467

224–225

address translation, 429, 438–439

Write-back caches. See also Caches

typical instructions/functions, 155

integration, 440–441

advantages, 458

typical operations, 157

mechanism, 452–453

cache coherency protocol, OL5.12-5

Xerox Alto computer, OL1.12-8

motivations, 427–428

complexity, 395

XMM, 224

page faults, 428, 434

defi ned, 394, 458

protection implementation,

stalls, 399

Y

444–446

write buff ers, 395

segmentation, 431

Write-back stage

Yahoo! Cloud Serving Benchmark

summary, 452–453

control line, 302

(YCSB), 540

virtualization of, 452

load instruction, 292

Yield, 27

writes, 437

store instruction, 294

YMM, 225

Virtualizable hardware, 426

Writes

Virtually addressed caches, 443

complications, 394

Z

Visual computing, C-3

expense, 453

Volatile memory, 22

handling, 393–395

Zettabyte, 6

Document Outline

	Front Cover

	Computer Organization and Design

	Copyright Page

	Acknowledgments

	Contents

	Preface

	About This Book

	About the Other Book

	Changes for the Fifth Edition

	Changes for the Fifth Edition

	Concluding Remarks

	Acknowledgments for the Fifth Edition

	1 Computer Abstractions and Technology

	1.1 Introduction

	Classes of Computing Applications and Their Characteristics

	Welcome to the PostPC Era

	What You Can Learn in This Book

	1.2 Eight Great Ideas in Computer Architecture

	Design for Moore’s Law

	Use Abstraction to Simplify Design

	Make the Common Case Fast

	Performance via Parallelism

	Performance via Pipelining

	Performance via Prediction

	Hierarchy of Memories

	Dependability via Redundancy

	1.3 Below Your Program

	From a High-Level Language to the Language of Hardware

	1.4 Under the Covers

	Through the Looking Glass

	Touchscreen

	Opening the Box

	A Safe Place for Data

	Communicating with Other Computers

	1.5 Technologies for Building Processors and Memory

	1.6 Performance

	Defining Performance

	Measuring Performance

	CPU Performance and Its Factors

	Instruction Performance

	The Classic CPU Performance Equation

	1.7 The Power Wall

	1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors

	1.9 Real Stuff: Benchmarking the Intel Core i7

	SPEC CPU Benchmark

	SPEC Power Benchmark

	1.10 Fallacies and Pitfalls

	1.11 Concluding Remarks

	Road Map for This Book

	1.12 Historical Perspective and Further Reading

	1.13 Exercises

	2 Instructions: Language of the Computer

	2.1 Introduction

	2.2 Operations of the Computer Hardware

	2.3 Operands of the Computer Hardware

	Memory Operands

	Constant or Immediate Operands

	2.4 Signed and Unsigned Numbers

	Summary

	2.5 Representing Instructions in the Computer

	MIPS Fields

	2.6 Logical Operations

	2.7 Instructions for Making Decisions

	Loops

	Case/Switch Statement

	2.8 Supporting Procedures in Computer Hardware

	Using More Registers

	Nested Procedures

	Allocating Space for New Data on the Stack

	Allocating Space for New Data on the Heap

	2.9 Communicating with People

	Characters and Strings in Java

	2.10 MIPS Addressing for 32-bit Immediates and Addresses

	32-Bit Immediate Operands

	Addressing in Branches and Jumps

	MIPS Addressing Mode Summary

	Decoding Machine Language

	2.11 Parallelism and Instructions: Synchronization

	2.12 Translating and Starting a Program

	Compiler

	Assembler

	Linker

	Loader

	Dynamically Linked Libraries

	Starting a Java Program

	2.13 A C Sort Example to Put It All Together

	The Procedure swap

	Register Allocation for swap

	Code for the Body of the Procedure swap

	The Full swap Procedure

	The Procedure sort

	Register Allocation for sort

	Code for the Body of the Procedure sort

	The Procedure Call in sort

	Passing Parameters in sort

	Preserving Registers in sort

	The Full Procedure sort

	2.14 Arrays versus Pointers

	Array Version of Clear

	Pointer Version of Clear

	Comparing the Two Versions of Clear

	2.15 Advanced Material: Compiling C and Interpreting Java

	2.16 Real Stuff: ARMv7 (32-bit) Instructions

	Addressing Modes

	Compare and Conditional Branch

	Unique Features of ARM

	2.17 Real Stuff: x86 Instructions

	Evolution of the Intel x86

	x86 Registers and Data Addressing Modes

	x86 Integer Operations

	x86 Instruction Encoding

	x86 Conclusion

	2.18 Real Stuff: ARMv8 (64-bit) Instructions

	2.19 Fallacies and Pitfalls

	2.20 Concluding Remarks

	2.21 Historical Perspective and Further Reading

	2.22 Exercises

	3 Arithmetic for Computers

	3.1 Introduction

	3.2 Addition and Subtraction

	Summary

	3.3 Multiplication

	Sequential Version of the Multiplication Algorithm and Hardware

	Signed Multiplication

	Faster Multiplication

	Multiply in MIPS

	Summary

	3.4 Division

	A Division Algorithm and Hardware

	Signed Division

	Faster Division

	Divide in MIPS

	Summary

	3.5 Floating Point

	Floating-Point Representation

	Floating-Point Addition

	Floating-Point Multiplication

	Floating-Point Instructions in MIPS

	Accurate Arithmetic

	Summary

	3.6 Parallelism and Computer Arithmetic: Subword Parallelism

	3.7 Real Stuff: Streaming SIMD Extensions and Advanced Vector Extensions in x86

	3.8 Going Faster: Subword Parallelism and Matrix Multiply

	3.9 Fallacies and Pitfalls

	3.10 Concluding Remarks

	3.11 Historical Perspective and Further Reading

	3.12 Exercises

	4 The Processor

	4.1 Introduction

	A Basic MIPS Implementation

	An Overview of the Implementation

	Clocking Methodology

	4.2 Logic Design Conventions

	4.3 Building a Datapath

	Creating a Single Datapath

	4.4 A Simple Implementation Scheme

	The ALU Control

	Designing the Main Control Unit

	Operation of the Datapath

	Finalizing Control

	Why a Single-Cycle Implementation Is Not Used Today

	4.5 An Overview of Pipelining

	Designing Instruction Sets for Pipelining

	Pipeline Hazards

	Hazards

	Data Hazards

	Control Hazards

	Pipeline Overview Summary

	4.6 Pipelined Datapath and Control

	Graphically Representing Pipelines

	Pipelined Control

	4.7 Data Hazards: Forwarding versus Stalling

	Data Hazards and Stalls

	4.8 Control Hazards

	Assume Branch Not Taken

	Reducing the Delay of Branches

	Dynamic Branch Prediction

	Pipeline Summary

	4.9 Exceptions

	How Exceptions Are Handled in the MIPS Architecture

	Exceptions in a Pipelined Implementation

	4.10 Parallelism via Instructions

	The Concept of Speculation

	Static Multiple Issue

	An Example: Static Multiple Issue with the MIPS ISA

	Dynamic Multiple-Issue Processors

	Dynamic Pipeline Scheduling

	Energy Efficiency and Advanced Pipelining

	4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines

	The ARM Cortex-A8

	The Intel Core i7 920

	Performance of the Intel Core i7 920

	4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply

	4.13 Advanced Topic: an Introduction to Digital Design Using a Hardware Design Language to Describe and Model a Pipeline and Mo…

	4.14 Fallacies and Pitfalls

	4.15 Concluding Remarks

	4.16 Historical Perspective and Further Reading

	4.17 Exercises

	5 Large and Fast: Exploiting Memory Hierarchy

	5.1 Introduction

	5.2 Memory Technologies

	SRAM Technology

	DRAM Technology

	Flash Memory

	Disk Memory

	5.3 The Basics of Caches

	Accessing a Cache

	Handling Cache Misses

	Handling Writes

	An Example Cache: The Intrinsity FastMATH Processor

	Summary

	5.4 Measuring and Improving Cache Performance

	Reducing Cache Misses by More Flexible Placement of Blocks

	Locating a Block in the Cache

	Choosing Which Block to Replace

	Reducing the Miss Penalty Using Multilevel Caches

	Software Optimization via Blocking

	Summary

	5.5 Dependable Memory Hierarchy

	Defining Failure

	The Hamming Single Error Correcting, Double Error Detecting Code (SEC/DED)

	5.6 Virtual Machines

	Requirements of a Virtual Machine Monitor

	(Lack of) Instruction Set Architecture Support for Virtual Machines

	Protection and Instruction Set Architecture

	5.7 Virtual Memory

	Placing a Page and Finding it Again

	Page Faults

	What about Writes?

	Making Address Translation Fast: the TLB

	The Intrinsity FastMATH TLB

	Integrating Virtual Memory, TLBs, and Caches

	Implementing Protection with Virtual Memory

	Handling TLB Misses and Page Faults

	Summary

	5.8 A Common Framework for Memory Hierarchy

	Question 1: Where Can a Block Be Placed?

	Question 2: How is a Block Found?

	Question 3: Which Block Should Be Replaced on a Cache Miss?

	Question 4: What Happens on a Write?

	The Three Cs: An Intuitive Model for Understanding the Behavior of Memory Hierarchies

	5.9 Using a Finite-State Machine to Control a Simple Cache

	A Simple Cache

	Finite-State Machines

	FSM for a Simple Cache Controller

	5.10 Parallelism and Memory Hierarchy: Cache Coherence

	Basic Schemes for Enforcing Coherence

	Snooping Protocols

	5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks

	5.12 Advanced Material: Implementing Cache Controllers

	5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory Hierarchies

	Performance of the A8 and Core i7 Memory Hierarchies

	5.14 Going Faster: Cache Blocking and Matrix Multiply

	5.15 Fallacies and Pitfalls

	5.16 Concluding Remarks

	5.17 Historica Perspective and Further Reading

	5.18 Exercises

	6 Parallel Processors from Client to Cloud

	6.1 Introduction

	6.2 The Difficulty of Creating Parallel Processing Programs

	6.3 SISD, MIMD, SIMD, SPMD, and Vector

	SIMD in x86: Multimedia Extensions

	Vector

	Vector versus Scalar

	Vector versus Multimedia Extensions

	6.4 Hardware Multithreading

	6.5 Multicore and Other Shared Memory Multiprocessors

	6.6 Introduction to Graphics Processing Units

	An Introduction to the NVIDIA GPU Architecture

	NVIDIA GPU Memory Structures

	Putting GPUs into Perspective

	6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing Multiprocessors

	Warehouse-Scale Computers

	6.8 Introduction to Multiprocessor Network Topologies

	Implementing Network Topologies

	6.9 Communicating to the Outside World: Cluster Networking

	6.10 Multiprocessor Benchmarks and Performance Models

	Performance Models

	The Roofline Model

	Comparing Two Generations of Opterons

	6.11 Real Stuff: Benchmarking and Rooflines of the Intel Core i7 960 and the NVIDIA Tesla GPU

	6.12 Going Faster: Multiple Processors and Matrix Multiply

	6.13 Fallacies and Pitfalls

	6.14 Concluding Remarks

	6.15 Historical Perspective and Further Reading

	6.16 Exercises

	Appendix A: Assemblers, Linkers, and the SPIM Simulator

	A.1 Introduction

	A.2 Assemblers

	A.3 Linkers

	A.4 Loading

	A.5 Memory Usage

	A.6 Procedure Call Convention

	A.7 Exceptions and Interrupts

	A.8 Input and Output

	A.9 SPIM

	A.10 MIPS R2000 Assembly Language

	A.11 Concluding Remarks

	A.12 Exercises

	Appendix B: The Basics of Logic Design

	B.1 Introduction

	B.2 Gates, Truth Tables, and Logic Equations

	B.3 Combinational Logic

	B.4 Using a Hardware Description Language

	B.5 Constructing a Basic Arithmetic Logic Unit

	B.6 Faster Addition: Carry Lookahead

	B.7 Clocks

	B.8 Memory Elements: Flip-Flops, Latches, and Registers

	B.9 Memory Elements: SRAMs and DRAMs

	B.10 Finite-State Machines

	B.11 Timing Methodologies

	B.12 Field Programmable Devices

	B.13 Concluding Remarks

	B.14 Exercises

	Appendix C:
Graphics and Computing GPUs

	 Appendix D:
Mapping Control to Hardware

	 Appendix E: A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

	Index

index-908_1.jpg

cover_image.jpg
David A. Patterson
John L. Hennessy

index-899_2.jpg

index-899_1.jpg

index-899_3.jpg
R EEEEES

index-587_5.jpg

index-638_1.png

index-626_1.png
G -X3LHIN
AN E

index-84_1.png
Computer

b Datapath
Evaluating N F—
performance

Processor

index-6_1.jpg
MORGAN KAUFMANN

index-865_1.jpg

index-853_1.jpg

index-587_2.jpg

index-587_1.jpg

index-587_4.jpg

index-587_3.jpg

index-44_1.jpg
GPIO HE - ... GPIO

Processor : Prqceésor
Data Path - Data Path
2 el 2

Processor Processor
Data Path Data Path
G g e €

Digital
Logic
Blocks

index-43_2.png

index-461_1.jpg

index-452_1.png
N 42
Interfacem

Computer

Evaluating
performance

Processor

index-566_1.jpg

index-50_1.jpg

index-1023_1.jpg
1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

MIPS Reference Data Card (**Green Card™)

O

M I P S Reference Data

CORE INSTRUCTION SET OPCODE
FOR- FUNCT
NAMF, MNEMONIC MAT OPERATION (in Verilog) (Hex)
Add asd R Rd] - Rins] + Rl (1) 0/ 20pey
Add Tmmediate I RIr)=Rirs] + Signbxitmm (1,2) S
Add Imum. Unsigned I Rin|=Rin)+ Signxtmm () Shes
Add Unsigned R Rird) = Rirs] + Rlr] 0121
And and R Rid| = Rinl & Rinl 0/ 200y
Andlmmediate anoi 1 Ril-Rin) & ZeroExmm () her
Branch On Equal beq | “},k"”c Tl s @ ‘=
Branch On NotEqualene 1 ORISR @ e
Jump 51 PC-JumpAddr G 2
JumpAndLink gal] RBIEPCAPC-TumpAdd (9 Fhes
JumpRegister 32 R PCR[] 010816,
Load Dyte Unsigned 1oy 1 MEEEROMIMS)
Load Halfword | RE=(1650.MIRIn] 5
Unsigned HSignExtimml150)) () S0
Load Linked 11 Ri)=MRinpSigExtimm) (27 O
Load Upperlmm. 101 | Rftt] - fimm. 16'60} g
Load Word LT R MRSHSigExtnm] () D
Nor aer R Rird] =~ (Rirs] | Rirt) 0120y
or R Rird]=R{ss] R[] 01256
Orlmmediste e+i | RIt]=Rin]| Zerobxilmm ® b
SetlessThan xR R[rd] = (R[] <R[10 0/ 280,
SetLessThanlmm. s161 1 Rir]= (Rirs] < SignExtmm)? 1:02) thee
SetLowThantmm. | Rlnt] = (Riny < SignExtimm) .
Unsigned 21:0 6
SetLessThan Unsig. s1c R Rl =REI<RID?1:0 (6) 0/ 2D
ShiftLeftLogical si: R Rld] = Rir] < shamt 0100,
Shift Right Logical s+1 R Rird] = Rirt] > shame 01024,
Suore Byte w1 MRRRSEEEROST o
Store Conditional 1 MIRIs] L{S[ﬁ‘fk(:f::;‘:}q b on B
Swretiafvord a1 MEBISEEmROEG S e
Store Word s 1 MRI]SignEximm] ~Rir] @) ges
Subtract st R Rird] = Rixs]-Rir) (1) 0122
Subtract Unsigned subw R Rird] = Rirs] - Rire] 0423,
(1) May causc overflow exception
(2) Signxtinm = { 16{immediate{15]}, immediate

(3) ZeroExtimm = { 16{16°0}, immediate }
(4) BranchAddr
(5) JumpAddr =

1 14{immediate(15]}. immediate, 2°b0 |
{ PCH[31:28], address, 250 |

(6) Operands considered unsigned numbers (vs. 2's comp.)
) Atomic test&set pair: R[rt] = | if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

ARITHMETIC CORE INSTRUCTION SET

NAME, MNEMONIC ~ MAT

@ orcobt

EMT T

FOR- FUNCT

OPERATION (Hex)

R [opcode 5 n rd shame funet

5 %% FED 6 15 o 05 o
1 [opeode ™ o immediate

i EE FED (a5 3
3| opeode address

g S @

Branch On FP True bott
Branch On FP False bes

Divide
Divide Unsigned
FP A Single
FPAdd

Double

FP Compare Single c.x.s*

FP Compare

aiv
asva
add. s

o TR

FI if(FPeond)PC=PC-+4+RranchAddr (4)

FIif(FPeond)PC=PC-+4-BranchAddr(4)

R Lo-RIrs)RIct): Hi-R[ss]%R 1]

R Lo=R[ms}R[rt]; Hi=R[rs]%R[rt]

FR F[fd]- F[f5] F[R]

VIR FIR1]} = {FIRLFL1]; +
AFIRLF(A=11}

FPeond = (F[fs] op F[ft]) 7 1: 0

FPeond = ({F[R]F[f-1]} op

©

FR

Double xR (FIRLF[R=11)2 1 :0
*(xis e, 11,08 L) (op is —, <, 0r <) (v Is 32, 3¢ o 3e)

FPDivide Single s1v.5 FRF[fd] = F[]/ E[}]

TP Divide ciena FRFIRLFIRITT) = (FIfSLFIf=11)

Double {FIRLFIR- 1]}

FP Multiply Single nal.s FR F[fd] = F[fs]* F[]

FP Multiply wata pr (FULELRINI) = §FISLELSS 1)

Double £ LFIRLFI-1])

P Subtract Single sub.c PR FIRIF[R] - FA]

FP Sublract b pr (FURILEIRIFIT) = {FISLFIfs1]; -

Double 2 (FIRLFR-1]}

Load FPSingle 11 T [RIrs}+SignExtimm] — (2)

Load TP 5 i [Rrs|+SignExtimm]; (2)

Double ‘ [R[rs]t SignExtlmm 4]

Move From Hi atni R R[] =Hi

MoveFromLo ~ atie R Rird]-Lo

Move From Cantrol =0 R R[rd] = CR[rs]

Multiply mit R (HiLoj=Rfrs| * Rlrt|

Multiply Unsigned suite R {HiLoj = Rlrs] * Rir]

Shifi Right Arith, ~ sr¢ R R[rd] - R[rt] = shamt

Store FP Single T MIRIrs] SignExtimm] ~ F{rt]

@ 3

117871/
11807

Stare FP cor 1 MIRIsESignBxdmm] = Fltl: Q) 5.
Double od MIR[rs]-Signxclmer+4] = Flri-1]
FLOATING-POINT INSTRUCTION FORMATS
R [opeode | fmt n[& | M] fc
5 EE) w615 i) o
FI [opeode | fmt [immediate
g % EED s B
PSEUDOINSTRUCTION SET
NAME MNEMONIC OPERATION
Branch Less Than bin MfR[rs|<R|rt]) PC = Label
Branch Greater Than IR[rs]>RIrt]) PC - Label
Branch Less Than or Equal ble if(R[s]<=R[x]) PC = Label
Brinch Greater Than or Fqual boe IRR[rs]>=R[xt)) PC = Label
Load Immediate 1 RMd] - immediae
Move nove Rird] = Rlrs]
REGISTER NAME, NUMBER, USE, CALL CONVENTION
NAME NUMBER USE PR ACROS
$zero 0 The Constant Value 0 NA.
Sat T Assembler Temporary No
Values for Function Results
W05l 23 Bxpression Evaluation No
Sa0%53 47 Arguments No
SO57 815 Temporuries No
S0857 1623 Saved Temporarics Vs
SO 2425 Temporaries o
KOS 2627 Reserved for OS Kemel Mo
Sep 38 Global Poinier Yes
$sp 29 Stck Pointer Yes
St 30 Trame Pointer Yes
Sra 3T Relum Address Yes

@ 2014 by Flsevicr, Tnc. Al rights reserved. From Patterson and Flennessy, Computer Organization and Design, $th ed.

index-1_1.jpg

index-1024_1.jpg
® IEEE 754 FLOATING-POINT ®

OPCODES, BASE CONVERSION, ASCHl SYMBOLS STANDARD IEEE 754 Symbols
MIPS (1) MIPS(2) MIPS Degi, et ASCIT, - Tlewa- ASCIT Txponent | Fraction] OBjeet
opeode funct funct | Binary e deci- Char [V deci- Char- (1) (1 + Fraction) x 2(Exponeat- Bias)] T 30
G126 (50) (5:0) mal_acter mal_acter T 20— = Demor
M 51 sedf [00000 0 O @@ where Single Precision Bias - 127,
s (000001 11 65 41 A Double Precision Bias = 1023 TioMAX T Jahything}e FL B Nom,
5 wLf 000010 2 6 42 B MAX [e
jal v, 000l B [IEEE Single Precision and AX #0 NN
B8y = e @ o L Double Precision Formats: SPMAX =255, DI MAX = 2047
blez arlv mow/ 00010 6 6 0 46 F S [Exponent Fraction
Bty s pesf l000II 17 04 G g EES [0
S TO L s e [
addin jalr oty 734y 1 s Exponent [Fraction <L ‘
slti movz 001010 10 a 44 0.4 o231 E
i oion 11 b 54 K MEMORY ALLOCATION STACK FRAME -
andl syseall round.wf (OO TTO0 T < T & L - Stack JENRE
ori breax cruncwf(001101 13 d 7 4 M Ssp Ty Fommens | Memory
o eitf (001110 14 e 78 4e N “Arguments | Addresses
wi svne f[00111 15 f 940 S$ip—pf
L 010000 1610 050 P S
@ wen 010001 17 11 8151 Q Dynantic Data & Stack
wflo movef (010010 18 12 2 2 R Sep-P1000 8000, |2 Grows
melo movaf |010OII 19 13 83 53 s —
mon b noecln u o o | s p—
010101 21 15 85 55 U e Ssp—p)
010110 22 16 8 56V Text e
oton 25 17 7w ow R Lo
wlt O0TT000 24 I8 8858 X Addieses
nultu 011001 25 19 89 50 Y Opey | Reserved ;
e 011010 26 1a W sz
atva 011011 27 1h 91 s [DATA ALIGNMENT

011100 28 Ic

o101 29 1d 9% 5] Double Word
011110 30 e 9% S~ Word Word
O 31 I Us | 95 5t >
sy 100000 20 Space| 9660 Halfword Halfword Halfword Halfword
cet.af 100001 33 21 L | 97 6 a Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
100000 34 2 " [9% & b g T E 7 T 5 v 7
100001 35 23 & | 99 63 Value of three least significant bits of byte address (Big Endian)
ve.w/ [TO0I00 36 24— % [T00 64— d EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS
1000l 97 2 ge |10L fox e B Tnterrupt Exception
00110 3 2 & |02 66 f ‘D- 7 . e .
039 271|103 67 g Mask Cote
TOT000 40 T [T0d o8 h ki i -
100001 4129) 105 69 [T
100010 42 22 * 106 6 | LE
s sita 1000043 20+ |107 6k B
0TI 44 2 . 108 6c 1 BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable
101001 45 2d - (109 6d m EXCErnOChoes
101110 46 2 10 6 n e =
W01l 47 of ¢ Ul 6 o Number Name _Cause of Exception _|Number Name _Cause of Exception
110000 48 300 {11270 p 0 T Tnwrupthardware) | 9 Bp _ Breakpoint Excepiion
R I T RTER T ; ‘Address Error Exception Reserved Instruction
AdEL 0w
10010 50 32 2 |14 T2 x (load or instruction fetch) Exception
noon st 333 |15 7 s S Address Frror Exception . Copracessor
o032 394 [T6 T 1 ¥ Ades (store) 1OV nimplemented
ol 5335 s 17 75w — Bus Error on 2 oy Aithmetic Overflow
1ol10 S4 36 6 [118 76 v Instruction Fetch < Exception
nour s 377 (19 71w Bus Erroron "
1000 56 38 8 [120 78 x 7 DBE Load or Stofa 5T Trap
11001 57 39 6 |12 79y G i 5 i
Ll & 2 8 Sys Syseall Exception 15__FPE_Floating Point Exception
| L1011 b ™ {1 siZEPREFIXES
n 3 T
Lol 61 3d a4 i | sowso. | sue | e | sk, | sae | e | soor | sz | peen | s
062 3e e o | P P P I P NP P
1 63 71 DEL . T . N -
i () iF 252116, (10,50 /= & (single); fome | e |ofom | @ | fowe | 2 o fse
if fmt(25:21)=17ign (1) f = & (doublc) N N PN P R I T I D e

22014 by Elsevier, Tnc. All i

s reserved, From Patterson and Hennessy, Computer Organization and Design, Sth e,

1. Pull along perforition to sepaiatecacd 2. Fold bottornsids (coliinnis 3:and 4) tozether

MIPS Reference Data Card (“Green Card”)

index-280_1.jpg
ERSONAL TECHNOLOGY
By Wauren S. Mosseena

A Closer Loo

Warning: Intel
Inside

Quick fix: Prog
* will work around th

Photofinish: Althowoh Photoshon outdoes
Picture P Bug Dodge Booed
sorry about 111 Q11 01 st Kevocked For

> Pentium buy ; 23 I

Chip Shot

Flawed Chlp : Hav}e[

Bruises Intel

Investors react, stock plunges D

INTEL'S MISTAKE / -
o Francine Qyonide Some Scientists Are Angry Over Flau

Bus|"iss e In Pentium Chip, and Intel’s Response

Intel’s Pentium Problem Persi-* 5

Iy Dackd insetn

, Pentlumwoescon}lnug IMIBM to stop I

Faulty FPU flubs math -~ Multithreading gets
incertain equations loston P00 systems

TECHNOLOGY

(h rllu lnn met

index-226_1.png
v Compiler

Interface «

Evaluating
performance

e

Processor

index-40_1.jpg
Eval uatihg
performance

Processor Memory

index-292_1.jpg
Datapath

Mocessor

index-43_1.jpg

