

 [image: Pragmatic Bookshelf]

Functional Programming Patterns in Scala and Clojure

Write Lean Programs for the JVM

by Michael Bevilacqua-Linn

Version: P1.0 (October 2013)
Copyright © 2013 The Pragmatic Programmers, LLC. This book is licensed to
	the individual who purchased it. We don't copy-protect it
	because that would limit your ability to use it for your
	own purposes. Please don't break this trust—you can use
	this across all of your devices but please do not share this copy
	with other members of your team, with friends, or via file sharing services. Thanks.

—Dave & Andy.

 Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and The Pragmatic Programmers, LLC
 was aware of a trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic Starter Kit,
 The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
 and the linking
 g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this
 book. However, the publisher assumes no responsibility for errors or
 omissions, or for damages that may result from the use of information
 (including program listings) contained herein.

 Our Pragmatic courses,
 workshops, and other products can help you and your team create better
 software and have more fun. For more information, as well as the
 latest Pragmatic titles, please visit us at
 http://pragprog.com.

Table of Contents
		Acknowledgments

		Preface

	 	How This Book Is Organized

	 	Pattern Template

	 	Why Scala and Clojure

	 	How to Read This Book

	 	Online Resources

	1. 	Patterns and Functional Programming

	 	1.1 	What Is Functional Programming?

	 	1.2 	Pattern Glossary

	2. 	TinyWeb: Patterns Working Together

	 	2.1 	Introducing TinyWeb

	 	2.2 	TinyWeb in Java

	 	2.3 	TinyWeb in Scala

	 	2.4 	TinyWeb in Clojure

	3. 	Replacing Object-Oriented Patterns

	 	3.1 	Introduction

	 	Pattern 1. Replacing Functional Interface

	 	Pattern 2. Replacing State-Carrying Functional Interface

	 	Pattern 3. Replacing Command

	 	Pattern 4. Replacing Builder for Immutable Object

	 	Pattern 5. Replacing Iterator

	 	Pattern 6. Replacing Template Method

	 	Pattern 7. Replacing Strategy

	 	Pattern 8. Replacing Null Object

	 	Pattern 9. Replacing Decorator

	 	Pattern 10. Replacing Visitor

	 	Pattern 11. Replacing Dependency Injection

	4. 	Functional Patterns

	 	4.1 	Introduction

	 	Pattern 12. Tail Recursion

	 	Pattern 13. Mutual Recursion

	 	Pattern 14. Filter-Map-Reduce

	 	Pattern 15. Chain of Operations

	 	Pattern 16. Function Builder

	 	Pattern 17. Memoization

	 	Pattern 18. Lazy Sequence

	 	Pattern 19. Focused Mutability

	 	Pattern 20. Customized Control Flow

	 	Pattern 21. Domain-Specific Language

	5. 	The End

		Bibliography

Copyright © 2013, The Pragmatic Bookshelf.

 Early Praise for ​Functional Programming Patterns​

	This book is an absolute gem and should be required reading for anybody looking to transition from OO to FP. It is an extremely well-built safety rope for those crossing the bridge between two very different worlds. Consider this mandatory reading.

	→ 	Colin Yates, technical team leader at QFI Consulting, LLP

 This book sticks to the meat and potatoes of what functional programming can do for the object-oriented JVM programmer. The functional patterns are sectioned in the back of the book separate from the functional replacements of the object-oriented patterns, making the book handy reference material. As a Scala programmer, I even picked up some new tricks along the read.

	→ 	Justin James, developer with Full Stack Apps

This book is good for those who have dabbled a bit in Clojure or
 Scala but are not really comfortable with it; the ideal audience is seasoned OO programmers looking to adopt a functional style, as it gives those programmers a guide for transitioning away from the patterns they are comfortable with.

	→ 	Rod Hilton, Java developer and PhD candidate at the University of Colorado

Acknowledgments

		I’d like to thank my parents, without whom I would not exist. 	
	

		Thanks also go to my wonderful girlfriend, who put up with many a night and weekend listening to me mutter about code samples,
 inconsistent tenses, and run-on sentences.
	

		This book would have suffered greatly without a great group of technical reviewers. My thanks to Rod Hilton, Michajlo “Mishu”
 Matijkiw, Venkat Subramaniam, Justin James, Dave Cleaver, Ted Neward, Neal Ford, Richard Minerich, Dustin Campbell, Dave
 Copeland, Josh Carter, Fred Daoud, and Chris Smith.
	

		Finally, I’d like to thank Dave Thomas and Andy Hunt. Their book, The Pragmatic Programmer, is one of the first books I read
 when I started my career. It made a tremendous impact, and I’ve still got my original dog-eared, fingerprint-covered,
 bruised and battered copy. In the Pragmatic Bookshelf, they’ve created a publisher that’s truly dedicated to producing high-quality technical books and supporting the authors who write them.
	

Copyright © 2013, The Pragmatic Bookshelf.

Preface

This book is about patterns and functional programming in Scala and Clojure. It shows how to replace, or greatly simplify,
 many of the common patterns we use in object-oriented programming, and it introduces some patterns commonly used in the
 functional world.
	

		Used together, these patterns let programmers solve problems faster and in a more concise, declarative style than with
 object-oriented programming alone. If you’re using Java and want to see how functional programming can help you work more
 efficiently, or if you’ve started using Scala and Clojure and can’t quite wrap your head around functional
 problem-solving, this is the book for you.
	

		Before we dig in, I’d like to start off with a story. This story is true, though some names have been changed to protect
 the not-so-innocent.
	
A Tale of Functional Programming

 by Michael Bevilacqua-Linn, software firefighter
Michael Bevilacqua-Linn

			The site isn’t down, but an awful lot of alarms are going off. We trace the problems to changes someone made to a
 third-party API we use. The changes are causing major data problems on our side; namely, we don’t know what the
 changes are and we can’t find anyone who can tell us. It also turns out the system that talks to the API uses legacy
 code, and the only guy who knows how to work on it happens to be away on vacation. This a big system:
			500,000-lines-of-Java-and-OSGI big.
		

			Support calls are flooding in, lots of them. Expensive support calls from frustrated customers. We need to fix the
 problem quickly. I start up a Clojure REPL and use it to poke around the problem API.
		

			My boss pokes his head into my office. “How’s it going?” he asks. “Working on it,” I say. Ten minutes later, my
 grandboss pokes his head into my office. “How’s it going?” he asks. “Working on it,” I say. Another ten minutes pass
 by when my great-grandboss pokes his head into my office. “How’s it going?” he asks. “Working on it,” I say. I get a
 half hour of silence before the CTO pokes his head into my office. “Working on it,” I say before he opens his mouth.
		

			An hour passes, and I figure out what’s changed. I whip up a way to keep the data clean until the legacy developer
 gets back and can put together a proper fix. I hand my little program off to the operations team, which gets it up and
 running in a JVM, somewhere safe. The support calls stop coming in, and everyone relaxes a bit.
		

			A week or so later at an all-hands meeting, the great-grandboss thanks me for the Java program I wrote that saved the
 day. I smile and say, “That wasn’t Java.”
		

		The REPL, Clojure’s interactive programming environment, helped a lot in this story. However, lots of languages that aren’t particularly functional have similar interactive programming
 environments, so that’s not all there is to it.
	

		Two of the patterns that we’ll see in this book, Pattern 21, ​Domain-Specific Language​, and Pattern 15, ​Chain of Operations​, contributed greatly to this story’s happy ending.
	

		Earlier on, I had written a small instance of domain-specific language for working with these particular APIs that
 helped me explore them very quickly even though they’re very large and it was difficult to figure out where the problem
 might lie. In addition, the powerful data transformation facilities that functional programming relies on, such as the
 examples we’ll see in Pattern 15, ​Chain of Operations​, helped me quickly write code to clean up the mess.
	

How This Book Is Organized

			We’ll start with an introduction to patterns and how they relate to functional programming. Then we’ll take a look at
 an extended example, a small web framework called TinyWeb. We’ll first show TinyWeb written using classic
 object-oriented patterns in Java. We’ll then rewrite it, piece by piece, to a hybrid style that is object oriented and
 functional, using Scala. We’ll then write in a functional style using Clojure.
		

			The TinyWeb extended example serves a few purposes. It will let us see how several of the patterns we cover in this
 book fit together in a comprehensive manner. We also use it to introduce the basics of Scala and Clojure. Finally,
 since we’ll transform TinyWeb from Java to Scala and Clojure bit by bit, it gives us a chance to explore how to easily
 integrate Java code with Scala and Clojure.
		

			The remainder of the book is organized into two sections. The first, Chapter 3, ​Replacing Object-Oriented Patterns​, describes
 functional replacements for object-oriented patterns. These take weighty object-oriented patterns and replace them
 with concise functional solutions.

		

			Peter Norvig, author of the classic Lisp text Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp [Nor92], current director of research at
 Google, and all-around very smart guy, pointed out in Design Patterns in Dynamic Languages
			that expressive languages like Lisp could turn classic
 object-oriented patterns invisible.[1]
		

			 Unfortunately, not many people in the mainstream software development world seem to have read Norvig, but when we can
 replace a complicated pattern with something simpler, it makes sense that we should. It makes our code more concise,
 easier to understand, and easier to maintain.
		

			The second section, Chapter 4, ​Functional Patterns​, describes patterns that are native to the functional world. These
 patterns run the gamut from tiny—patterns consisting of a line or two of code—to very
			large—ones that deal
 with entire programs.
		

			Sometimes these patterns have first-class language support, which means that someone else has done the hard work of
 implementing them for us. Even when they don’t, we can often use an extremely powerful pattern, Pattern 21, ​Domain-Specific Language​, to add it. This means that functional patterns are more lightweight than
 object-oriented patterns. You still need to understand the pattern before you can use it, but the
			implementation becomes as
 simple as a few lines of code.
		

Pattern Template

			The patterns are laid out using the following format, with some exceptions. For example, a pattern that doesn’t have
 any other common name would not have the Also Known As subsection, and the Functional Replacement subsections only
 apply to the patterns in Chapter 3, ​Replacing Object-Oriented Patterns​.
		
Intent

The Intent subsection provides a quick explanation of the intent of this pattern and the problem it solves.
			
Overview

				Here is where you’ll find a deeper motivation for the pattern and an explanation of how it works.
			
Also Known As

				This subsection lists other common names for the pattern.
			
Functional Replacement

				Here you’ll find how to replace this pattern with functional programming techniques—sometimes
 object-oriented patterns can be replaced with basic functional language features and sometimes with simpler
 patterns.
			
Example Code

				This subsection contains samples of the pattern—for object-oriented patterns, we first show a sketch of the
 object-oriented solution using either class diagrams or a sketch of the Java code before showing how to replace
 them in Clojure and Scala. Functional patterns will be shown in Clojure and Scala only.
			
Discussion

				This area provides a summary and discussion of interesting points about the pattern.
			
For Further Reading

				Look here for a list of references for further information on the pattern.
			
Related Patterns

				This provides a list of other patterns in this book that are related to the current one.
			

Why Scala and Clojure

			Many of the patterns in this book can be applied using other languages with functional features, but we will focus on
 Clojure and Scala for our examples. We focus on these two languages for quite a few reasons, but first and
 foremost because they’re both practical languages suitable for coding in production environments.
		

			 Both Scala and Clojure run on a Java virtual machine (JVM), so they interoperate
 well with existing Java libraries and have no issues being dropped into the JVM infrastructure. This makes them ideal
 to run alongside existing Java codebases. Finally, while both Scala and Clojure have functional features, they’re
 quite different from each other. Learning to use both of them exposes us to a very broad range of functional
 programming paradigms.
		

			Scala is a hybrid object-oriented/functional language. It’s statically typed and combines a very
 sophisticated type system with local type inference, which allows us to often omit explicit type annotations in our
 code.
		

			 Clojure is a modern take on Lisp. It has Lisp’s powerful
 macro system and dynamic typing, but Clojure has added some new features not seen in older Lisps. Most important is
 its unique way of dealing with state change by using reference types, a software transactional memory system, and
 efficient immutable data structures.
		

			While Clojure is not an object-oriented language,
 it does give us some good features that are common in object-oriented languages,
 just not in the way we may be familiar with. For instance, we can still get polymorphism through Clojure’s
 multimethods and protocols, and we can get hierarchies through Clojure’s ad hoc hierarchies.
		

			As we introduce the patterns, we’ll explore both of these languages and their features, so this book serves as a good
			introduction to both Scala and Clojure.
 For further detail on either language, my favorite books are Programming Clojure [Hal09]
 and The Joy of Clojure [FH11] for Clojure, and Programming Scala: Tackle Multi-Core Complexity on the Java Virtual Machine [Sub09] and Scala In Depth [Sue12] for Scala.
		

How to Read This Book

			The best place to start is with Chapter 1, ​Patterns and Functional Programming​, which goes over the basics of functional programming and
 its relation to patterns. Next, Chapter 2, ​TinyWeb: Patterns Working Together​, introduces basic concepts in Scala and Clojure and shows how several of the patterns in this book fit together.
		

			From there you can jump around, pattern by pattern, as needed. The patterns covered earlier in Chapter 3, ​Replacing Object-Oriented Patterns​, and Chapter 4, ​Functional Patterns​, tend to be more basic than later ones, so they’re worth reading first
 if you have no previous functional experience.
		

			A quick summary of each pattern can be found in Section 1.2, ​Pattern Glossary​, for easy browsing. Once you’re through
			the introduction, you can use it to look up a pattern that solves the particular problem you need to solve.

However, if you are completely new to functional programming, you should start with Pattern 1, ​Replacing Functional Interface​, Pattern 2, ​Replacing State-Carrying Functional Interface​, and Pattern 12, ​Tail Recursion​.
		

Online Resources

 As you work through the book, you can download all the included code files from
 ​http://pragprog.com/titles/mbfpp/source_code​
 .
 On the book’s home page at
 ​http://pragprog.com/book/mbfpp​
 , you can find links to the book forum and to report errata.
 Also, for ebook buyers, clicking on the box above the code extracts downloads the code for that extract for you.

Footnotes

	[1]	

 ​http://norvig.com/design-patterns/​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 1
Patterns and Functional Programming

		Patterns and functional programming go together in two ways. First, many object-oriented design patterns are simpler to
 implement with functional programming. This is true for several reasons. Functional languages give us a concise way of
 passing around a bit of computation without having to create a new class.
Also, using expressions rather than statements lets us eliminate extraneous variables, and the declarative nature of many
 functional solutions lets us do in a single line of code what might take five lines in the imperative style.
 Some object-oriented patterns can even be replaced with a straightforward application of functional language features.

	

 Second, the functional world also has its own set of useful patterns. These patterns focus on writing code that avoids
 mutability and favors a declarative style, which helps us write simpler, more maintainable code. The two main sections of
 this book cover these two sets of patterns.
	

		
		
		
		You may be surprised to see the first set. Don’t the patterns we know and love extend across languages? Aren’t they
 supposed to provide common solutions to common problems regardless of what language you are using? The answer to both
 questions is yes, so long as the language you are using looks something like Java or its ancestor, C++.
	

		With the emergence of more expressive language features, many of these patterns fade away. Classic Java itself has a great
 example of a language feature replacing a pattern: ​foreach​. The introduction of
 ​foreach​ loops to Java 1.5 reduced the usefulness of the explicit Iterator pattern
 described in Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95], even though ​foreach​ loops use it behind the
 scenes.
	

		That’s not to say that ​foreach​ loops are exactly equivalent to the Iterator. A
 ​foreach​ won’t replace an Iterator in all cases. The problems they do address are solved in a simpler
 way. Developers prefer the built-in ​foreach​ loops for the common-sense reasons that they are less work
 to implement and are less error prone.
	

		Many functional language features and techniques have a similar effect on coding projects. While they may not be the exact
 equivalent to a pattern, they often provide developers with a built-in alternative that solves the same problem. Similar to
 the ​foreach​-Iterator example, other language features give programmers techniques that are less work
 and often produce code that is more concise and easier to understand than the original.
	

		
		
		
		Adding functional features and techniques adds more tools to our programming toolbox, just as Java 1.5 did with its
 ​foreach​ loop but on a grander scale. These tools often complement the tools we already know and
 love from the object-oriented world.
	

		
		The second set of patterns we cover in this book, native functional patterns, describes the patterns that evolved out of
 the functional style. These functional patterns differ from the object-oriented patterns you may be familiar with in a few
 key ways. The first, and most obvious, is that functions are the primary unit of composition, just as objects are in the
 object-oriented world.
	

		Another key difference lies in the patterns’ granularity. The patterns from Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]
 (one of the original drivers of the software patterns movement) are generally templates that define a few classes and
 specify how they fit together. Most of them are medium size. They often don’t concern themselves either with very small
 issues that encompass just a few lines of code or with very large issues that encompass entire programs.
	

		The functional patterns in this book cover a much broader range, as some of them can be implemented in a line or two of
 code. Others tackle very big problems, such as creating new, miniature programming languages.
	

		The range is in line with the book that started the patterns movement in general, A
 Pattern Language [AIS77]. This book on architectural patterns starts off with the very big “1—Independent Regions”
 pattern, which outlines why the planet should be organized into political entities of about 10,000 people, and goes all
 the way down to “248—Soft Tile and Brick,” which explains how to make your own bricks.
	

		Before we dig into the various patterns in this book, let’s spend some time getting familiar with functional programming
 itself.
	

1.1 What Is Functional Programming?

			 At its core, functional programming is about immutability and about composing functions
 rather than objects. Many related characteristics fall out of this style.
		

			Functional programs do the following:
		
	​Have first-class functions​:
	

 ​ First-class functions​

 are
 functions that can be passed around, dynamically created, stored in data structures, and treated like any
 other first-class object in the language.
				

	​Favor pure functions​:
	

					
 ​ Pure functions​

 are functions that have no side
 effects. A
 ​ side effect​

 is an action that the function does that modifies state outside the
 function.
				

	​Compose functions​:
	

					Functional programming favors building programs from the bottom up by composing functions together.
				

	​Use expressions​:
	

					
					Functional programming favors expressions over statements. Expressions yield values. Statements do not and
 exist only to control the flow of a program.
				

	​Use Immutability​:
	

					
					Since functional programming favors pure functions, which can’t mutate data, it also makes heavy use of
 immutable data. Instead of modifying an existing data structure, a new one is efficiently created.
				

	​Transform, rather than mutate, data:​
	

					Functional programming uses functions to transform immutable data. One data structure is put into the
 function, and a new immutable data structure comes out. This is in explicit contrast with the popular
 object-oriented model, which views objects as little packets of mutable state and behavior.
				

			
			A focus on immutable data leads to programs that are written in a more declarative style, since we can’t modify a data
 structure piece by piece. Here’s an iterative way to filter the odd numbers out of a list, written in
 Java. Notice how it relies on mutation to add odd numbers to ​filteredList​ one at a time.
		
	JavaExamples/src/main/java/com/mblinn/mbfpp/intro/FilterOdds.java
	​ 	​public​ ​List​<​Integer​> filterOdds(​List​<​Integer​> list) {

	​ 	 ​List​<​Integer​> filteredList = ​new​ ​ArrayList​<​Integer​>();

	​ 	 ​for​ (​Integer​ current : list) {

	​ 	 ​if​ (isOdd(current)) {

	​ 	 filteredList.add(current);

	​ 	 }

	​ 	 }

	​ 	 ​return​ filteredList;

	​ 	}

	​ 	​private​ ​boolean​ isOdd(​Integer​ integer) {

	​ 	 ​return​ 0 != integer % 2;

	​ 	}

			And here’s a functional version, written in Clojure.
		
	​ 	(​filter​ ​odd?​ list-of-ints)

			The functional version is obviously much shorter than the object-oriented version. As mentioned previously, this is
 because functional programming is declarative. That is, it specifies what should be done rather than how to do it. For
 many problems we encounter in programming, this style lets us work at a higher level of abstraction.

		

			However, other problems are hard, if not impossible, to solve using strict functional programming
 techniques. A compiler is a pure function. If you put a program in, you expect to get the same machine code out every
 time. If you don’t, it’s probably a compiler bug. Google’s search engine, however, is not a pure function. If we got
 the same results from a Google search query every time, we’d be stuck with a late 1990s view of the Web, which would
 be quite tragic.
		

			For this reason, functional programming languages tend to lie on a spectrum of strictness. Some are more functionally
 pure than others. Of the two languages we’re using in this book, Clojure is purer on the functional spectrum; at
 least, it is if we avoid its Java interoperability features.

		

			For example, in idiomatic Clojure, we don’t mutate data as we do in Java. Instead, we rely on an efficient set of
 immutable data structures, a set of reference types, and a software transactional memory system. This allows us to get
 the benefits of mutability without the dangers. We’ll introduce these techniques in Section 2.4, ​TinyWeb in Clojure​.
		

			
			Scala has more support for mutable data, but immutable data is preferred. For instance, Scala has both mutable and
 immutable versions of its collections library, but the immutable data structures are imported and used by default.

		

1.2 Pattern Glossary

			 Here is where we introduce all of the
 patterns we cover in the book and give a brief overview of each. This is a great list to skim if you already have a
 specific problem you need to solve in a functional way.
		
Replacing Object-Oriented Patterns

				This section shows how to replace common object-oriented patterns with functional language features. This
 generally cuts down on the amount of code we have to write while giving us a more concise code to maintain.
			
Pattern 1, ​Replacing Functional Interface​

					Here we replace common types of functional interfaces, such as ​Runnable​ or ​Comparator​,
 with native functional features.
				

					 This section introduces two basic types of functional features. The first type, higher-order functions,
 allows us to pass functions around as first-class data. The second, anonymous functions, allows us to write
 quick one-off functions without giving them a name. These features combine to let us replace most instances
 of Functional Interface very concisely.
				
Pattern 2, ​Replacing State-Carrying Functional Interface​

					With this pattern we replace instances of Functional Interface that need to carry around some bit of state—we introduce
 another new functional feature, closures, which lets us wrap up a function and some state to pass around.
				
Pattern 3, ​Replacing Command​

					Replacing Command encapsulates an action in an object—here we’ll take a look at how we can replace the object-oriented
 version using the techniques introduced in the previous two patterns.
				
Pattern 4, ​Replacing Builder for Immutable Object​

					Here we carry data using the classic Java convention, a class full of getters and setters—this approach is
 intimately tied up with mutability. Here we’ll show how to get the convenience of a Java Bean along with the
 benefits of immutability.
				
Pattern 5, ​Replacing Iterator​

					Replacing Iterator gives us a way to access items in a collection sequentially—here we’ll see how we can solve many of the
 problems we’d solve with Iterator using higher-order functions and sequence comprehensions, which give us solutions that are more declarative.
				
Pattern 6, ​Replacing Template Method​

					This pattern defines the outline of an algorithm in a superclass, leaving subclasses to implement its details. Here we’ll
 see how to use higher-order functions and function composition to replace this inheritance-based pattern.
				
Pattern 7, ​Replacing Strategy​

					In this pattern we define a set of algorithms that all implement a common interface. This allows a programmer to easily swap out
 one implementation of an algorithm for another.
				
Pattern 8, ​Replacing Null Object​

					In this pattern we discuss how to replace Null Object and talk about other types of null handling—in Scala, we take advantage of
 the type system using ​Option​. In Clojure, we rely on ​nil​ and some language
 support to make it more convenient to deal with.
				
Pattern 9, ​Replacing Decorator​

					Replacing Decorator adds new behavior to an object without changing the original class. Here we’ll see how to achieve the same
 effect with function composition.
				
Pattern 10, ​Replacing Visitor​

					Replacing Visitor makes it easy to add operations to a data type but difficult to add new implementations of the type. Here we
 show solutions in Scala and Clojure that make it possible to do both.
				
Pattern 11, ​Replacing Dependency Injection​

					This pattern injects an object’s dependencies into it, rather than instantiating them inline—this allows us to swap
 out their implementations. We’ll explore Scala’s Cake pattern, which gives us a DI-like pattern.
				
Introducing Functional Patterns
Pattern 12, ​Tail Recursion​

					Tail Recursion is functionally equivalent to iteration and provides a way to write a recursive algorithm
 without requiring a stack frame for each recursive call. While we’ll prefer more declarative solutions
 throughout the book, sometimes the most straightforward way to solve a problem is more iterative. Here
 we’ll show how to use Tail Recursion for those situations.
				
Pattern 13, ​Mutual Recursion​

					Mutual Recursion is a pattern where recursive functions call one another. As with Tail Recursion, we need a
 way to do this without consuming stack frames for it to be practical. Here we’ll show how to use a feature
 called
 ​ trampolining​

 to do just that.
				
Pattern 14, ​Filter-Map-Reduce​

					Filter, map, and reduce are three of the most commonly used higher-order functions. Used together, they’re a
 very powerful tool for data manipulation and are the inspiration for the popular MapReduce data-processing
 paradigm. In this pattern, we’ll see how they can be used on a smaller scale.
				
Pattern 15, ​Chain of Operations​

					Functional programming eschews mutability; so instead of mutating a data structure, we take one immutable data
 structure, operate on it, and produce a new one. Chain of Operations examines the differing ways to do so in
 Scala and Clojure.
				
Pattern 16, ​Function Builder​

					Higher-order functions can create other functions using the Function Builder pattern. Here we’ll show some
 common instances of the pattern that are built into many functional languages, and we’ll explore a few custom
 ones.
				
Pattern 17, ​Memoization​

					This pattern caches the results of a pure function invocation to avoid having to do an expensive computation more than
 once.
				
Pattern 18, ​Lazy Sequence​

					Lazy Sequence is a pattern where a sequence is realized bit by bit only as it’s needed. This allows us to
 create infinitely long sequences and to easily work with streams of data.
				
Pattern 19, ​Focused Mutability​

					Focused Mutability makes a small critical section of code use mutable data structures to optimize performance. The need for this
 is less common than you might think. Clojure and Scala, backed by the JVM, provide very efficient mechanisms
 for working with immutable data, so immutability is rarely the bottleneck.
				
Pattern 20, ​Customized Control Flow​

					With most languages, it’s impossible to add a new way of doing control flow to the language without modifying
 the language itself. Functional languages, however, usually provide a way to create custom control
 abstractions tailored for specific uses.
				
Pattern 21, ​Domain-Specific Language​

					The Domain-Specific Language pattern allows us to create a language that is purpose-built for solving a specific problem.
 Using a well-designed implementation of domain-specific language is the ultimate solution for
 often-solved problems, as it lets us program close to the problem domain. This reduces the amount of code we have to write
 and the mental friction in transforming our thoughts into code.
					
					
					
				

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 2
TinyWeb: Patterns Working Together

2.1 Introducing TinyWeb

			We’ll start our journey with a look at an example of a program that makes heavy use of classic object-oriented
 patterns, a small web framework called TinyWeb. After introducing TinyWeb, we’ll see how to rewrite it in a hybrid
 object-oriented and functional style using Scala. Finally, we’ll move on to a more fully functional style in Clojure.
		

			Let’s focus on a few goals for this example. The first is to see several patterns working together in one codebase
 before we go into them in more detail.
		

			 The second is to introduce basic Scala and Clojure concepts for those unfamiliar with either, or both, of the
 languages. A full introduction to the languages is beyond the scope of this book, but this section gives you enough
 of the basics to understand the majority of the remaining code.
		

			Finally, we’ll work existing Java code into a Scala or Clojure codebase. We’ll do this by taking the
 Java version of TinyWeb and transforming it into Scala and Clojure piece by piece.
		

			TinyWeb itself is a small
 ​ model-view-controller​

 (MVC) web framework. It’s far from complete, but
 it should feel familiar to anyone who has worked with any of the popular frameworks, such as Spring MVC. There’s one
 little twist to TinyWeb: since this is a book on functional programming, we’re going to do our best to work with
 immutable data, which can be quite challenging in Java.
		

2.2 TinyWeb in Java

				 The Java version of TinyWeb is a basic
 MVC web framework written in a classic object-oriented style. To handle requests we use a
 ​Controller​ implemented using the Template method, which we cover in detail in Pattern 6, ​Replacing Template Method​. Views are implemented using the Strategy pattern, covered in Pattern 7, ​Replacing Strategy​.
			

				
				
				Our framework is built around core pieces of data objects, ​HttpRequest​ and
 ​HttpResponse​. We want these to be immutable and easy to work with, so we are going to build them
 using the Builder pattern discussed in Pattern 4, ​Replacing Builder for Immutable Object​. Builder is a standard way of getting
 immutable objects in Java.

			

				Finally, we’ve got request filters that run before a request is handled and that do some work on the request, such
 as modifying it. We will implement these filters using the ​Filter​ class, a simple example of Pattern 1, ​Replacing Functional Interface​. Our filters also show how to handle changing data using immutable
 objects.
			

				The whole system is summarized in the following figure.
			
[image: images/TinywebOverview.png]

Figure 1. A TinyWeb Overview. A graphical overview of TinyWeb

				
				We’ll start off with a look at our core data types, ​HttpRequest​ and ​HttpResponse​.	
			
HttpRequest and HttpResponse

					Let’s dig into the code, starting with ​HttpResponse​. In this example we’ll only need a body
 and a response code in our response, so those are the only attributes we’ll add. The following code block
 shows how we can implement the class. Here we use the fluent builder of the type made popular in the Java
 classic, Effective Java [Blo08].
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/HttpResponse.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​public​ ​class​ HttpResponse {

	​ 	 ​private​ ​final​ ​String​ body;

	​ 	 ​private​ ​final​ ​Integer​ responseCode;

	​ 	

	​ 	 ​public​ ​String​ getBody() {

	​ 	 ​return​ body;

	​ 	 }

	​ 	

	​ 	 ​public​ ​Integer​ getResponseCode() {

	​ 	 ​return​ responseCode;

	​ 	 }

	​ 	

	​ 	 ​private​ HttpResponse(Builder builder) {

	​ 	 body = builder.body;

	​ 	 responseCode = builder.responseCode;

	​ 	 }

	​ 	

	​ 	 ​public​ ​static​ ​class​ Builder {

	​ 	 ​private​ ​String​ body;

	​ 	 ​private​ ​Integer​ responseCode;

	​ 	

	​ 	 ​public​ Builder body(​String​ body) {

	​ 	 this.body = body;

	​ 	 ​return​ this;

	​ 	 }

	​ 	

	​ 	 ​public​ Builder responseCode(​Integer​ responseCode) {

	​ 	 this.responseCode = responseCode;

	​ 	 ​return​ this;

	​ 	 }

	​ 	

	​ 	 ​public​ HttpResponse build() {

	​ 	 ​return​ ​new​ HttpResponse(this);

	​ 	 }

	​ 	

	​ 	 ​public​ ​static​ Builder newBuilder() {

	​ 	 ​return​ ​new​ Builder();

	​ 	 }

	​ 	 }

	​ 	}

					This approach encapsulates all mutability inside of a ​Builder​ object, which then builds an
 immutable ​HttpResponse​. While this gives us a clean way of working with immutable data, it’s
 quite verbose. For example, we could create a simple test request using this code:
				
	​ 	HttpResponse testResponse = HttpResponse.Builder.newBuilder()

	​ 	 .responseCode(200)

	​ 	 .body(​"responseBody"​)

	​ 	 .build();

					Without using Builder we’d need to pass all of our arguments in the constructor. This is okay for our small
 example, but this practice grows unwieldy when working with larger classes. Another option would be to use a Java Bean–style
 class with getters and setters, but that would require mutability.
				

					Let’s move on and take a quick look at ​HttpRequest​. Since the class is similar to
 ​HttpResponse​ (though it lets us set a request body, headers, and a path), we won’t repeat the
 code in full. One feature is worth mentioning, though.
				

					 In order to support request filters that “modify” the incoming request, we need to create a new request
 based off the existing one, since our request objects aren’t mutable. We’ll use

 ​builderFrom​
 to do so. This method takes an existing ​HttpRequest​ and uses it
 to set starting values for a new builder. The code for
 ​builderFrom​
 follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/HttpRequest.java
	​ 	​public​ ​static​ Builder builderFrom(HttpRequest request) {

	​ 	 Builder builder = ​new​ Builder();

	​ 	 builder.path(request.getPath());

	​ 	 builder.body(request.getBody());

	​ 	

	​ 	 ​Map​<​String​, ​String​> headers = request.getHeaders();

	​ 	 ​for​ (​String​ headerName : headers.keySet())

	​ 	 builder.addHeader(headerName,

	​ 	 headers.get(headerName));

	​ 	

	​ 	 ​return​ builder;

	​ 	}

					
					This may seem wasteful, but the JVM is a miracle of modern software engineering. It’s able to garbage-collect
 short-lived objects very efficiently, so this style of programming performs admirably well in most domains.

				
Immutability: Not Just for Functional Programmers

						The experienced object-oriented programmer might grumble about extra effort to get immutable
 objects, especially if we’re doing it “just to be functional.” However, immutable data doesn’t just fall
 out of functional programming; it’s a good practice that can help us write cleaner code.

					

						A large class of software bugs boil down to one section of code modifying data in another section in an
 unexpected way. This type of bug becomes even more heinous in the multicore world we all live in now. By
 making our data immutable, we can avoid this class of bugs altogether.
					

						Using immutable data is an oft-repeated bit of advice in the Java world; it’s mentioned in Effective Java [Blo08]—​Item 15: Minimize Mutability​,
 among other places, but it is rarely followed. This is largely due to the fact that Java wasn’t designed
 with immutability in mind, so it takes a lot of programmer effort to get it.
					

						Still, some popular, high-quality libraries, such as Joda-Time and Google’s collections library, provide
 excellent support for programming with immutable data. The fact that both of these popular libraries
 provide replacements for functionality available in Java’s standard library speaks to the usefulness of
 immutable data.
					

						Thankfully, both Scala and Clojure have much more first-class support for immutable data, to the extent
 that it’s often harder to use mutable data than immutable.
					

Views and Strategy

					
					Let’s continue our tour of TinyWeb with a look at view handling. In a fully featured framework, we’d include
 some ways to plug template engines into our view, but for TinyWeb we’ll just assume we’re generating our
 response bodies entirely in code using string manipulation.
				

					First we’ll need a ​View​ interface, which has a single method,
 ​render​
 .

 ​render​
 takes in a model in the form of a ​Map<String, List<String>>​,
 which represents the model attributes and values. We’ll use a ​List<String>​ for our values so
 that a single attribute can have multiple values. It returns a ​String​ representing the rendered view.
				

					The ​View​ interface is in the following code:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/View.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	

	​ 	​public​ ​interface​ View {

	​ 	 ​public​ ​String​ render(​Map​<​String​, ​List​<​String​>> model);

	​ 	}

					
					Next we need two classes that are designed to work together using the Strategy pattern:
 ​StrategyView​ and ​RenderingStrategy​.
				

					​RenderingStrategy​ is responsible for doing the actual work of rendering a view as implemented
 by the framework user. It’s an instance of a ​Strategy​ class from the Strategy pattern, and its
 code follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/RenderingStrategy.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	

	​ 	​public​ ​interface​ RenderingStrategy {

	​ 	

	​ 	 ​public​ ​String​ renderView(​Map​<​String​, ​List​<​String​>> model);

	​ 	

	​ 	}

					Now let’s examine the class that delegates to ​RenderingStrategy​, ​StrategyView​.
 This class is implemented by the framework and takes care of properly handing exceptions thrown out of the
 ​RenderingStrategy​. Its code follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/StrategyView.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	

	​ 	​public​ ​class​ StrategyView ​implements​ ​View​ {

	​ 	

	​ 	 ​private​ RenderingStrategy viewRenderer;

	​ 	

	​ 	 ​public​ StrategyView(RenderingStrategy viewRenderer) {

	​ 	 this.viewRenderer = viewRenderer;

	​ 	 }

	​ 	

	​ 	 @Override

	​ 	 ​public​ ​String​ render(​Map​<​String​, ​List​<​String​>> model) {

	​ 	 ​try​ {

	​ 	 ​return​ viewRenderer.renderView(model);

	​ 	 } ​catch​ (Exception e) {

	​ 	 ​throw​ ​new​ RenderingException(e);

	​ 	 }

	​ 	 }

	​ 	}

					To implement a view, the framework user creates a new subclass of ​RenderingStrategy​ with the
 right view-rendering logic, and the framework injects it into ​StrategyView​.
				

					In this simple example, ​StrategyView​ plays a minimal role. It simply swallows exceptions and
 wraps them in ​RenderingException​ so that they can be handled properly at a higher level. A more
 complete framework might use ​StrategyView​ as an integration point for various rendering
 engines, among other things, but we’ll keep it simple here.

				
Controllers and Template Method

					
					Next up is our ​Controller​. The ​Controller​ itself is a simple interface with a
 single method,
 ​handleRequest​
 , which takes an ​HttpRequest​ and returns an
 ​HttpResponse​. The code for the interface follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/Controller.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​public​ ​interface​ Controller {

	​ 	 ​public​ HttpResponse handleRequest(HttpRequest httpRequest);

	​ 	}

					
					We’ll use the Template Method pattern so that users can implement their own controllers. The central class
 for this implementation is ​TemplateController​, which has an abstract

 ​doRequest​
 , as shown in the following code:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/TemplateController.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	

	​ 	​public​ ​abstract​ ​class​ TemplateController ​implements​ Controller {

	​ 	 ​private​ ​View​ view;

	​ 	 ​public​ TemplateController(​View​ view) {

	​ 	 this.view = view;

	​ 	 }

	​ 	

	​ 	 ​public​ HttpResponse handleRequest(HttpRequest request) {

	​ 	 ​Integer​ responseCode = 200;

	​ 	 ​String​ responseBody = ​""​;

	​ 	

	​ 	 ​try​ {

	​ 	 ​Map​<​String​, ​List​<​String​>> model = doRequest(request);

	​ 	 responseBody = view.render(model);

	​ 	 } ​catch​ (ControllerException e) {

	​ 	 responseCode = e.getStatusCode();

	​ 	 } ​catch​ (RenderingException e) {

	​ 	 responseCode = 500;

	​ 	 responseBody = ​"Exception while rendering."​;

	​ 	 } ​catch​ (Exception e) {

	​ 	 responseCode = 500;

	​ 	 }

	​ 	

	​ 	 ​return​ HttpResponse.Builder.newBuilder().body(responseBody)

	​ 	 .responseCode(responseCode).build();

	​ 	 }

	​ 	 ​protected​ ​abstract​ ​Map​<​String​, ​List​<​String​>> doRequest(HttpRequest request);

	​ 	}

					To implement a controller, a user of the framework extends ​TemplateController​ and implements
 its
 ​doRequest​
 method.
				

					Both the Template Method pattern we used for our controllers and the Strategy pattern we used for our views
 support similar tasks.
 They let some general code, perhaps in a library or framework, delegate out
 to another bit of code intended to perform a specific task. The Template Method pattern does it using
 inheritance, while the Strategy pattern does it using composition.
				

					In the functional world, we’ll rely heavily on composition, which also happens be good practice in the
 object-oriented world. However, it’ll be a composition of functions rather than a composition of objects.

				
Filter and Functional Interface

					
					
					Finally, let’s examine ​Filter​. The ​Filter​ class is a Functional Interface that
 lets us perform some action on ​HttpRequest​ before it’s processed. For instance, we may want
 to log some information about the request or even add a header. It has a single method,

 ​doFilter​
 , takes ​HttpRequest​, and returns a filtered instance of it.
				

					If an individual ​Filter​ needs to do something that modifies a request, it simply creates a new
 one based on the existing request and returns it. This lets us work with an immutable
 ​HttpRequest​ but gives us the illusion that it can be changed.
				

					The code for ​Filter​ follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/Filter.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​public​ ​interface​ Filter {

	​ 	 ​public​ HttpRequest doFilter(HttpRequest request);

	​ 	}

					Now that we’ve seen all of the pieces of TinyWeb, let’s see how they fit together.
				
Tying It All Together

					
					To tie it all together, we’ll use the main class, ​TinyWeb​. This class takes two constructor
 arguments. The first is a ​Map​, where the keys are ​String​s representing request
 paths and the values are ​Controller​ objects. The second argument is a list of
 ​Filter​s to run on all requests before they are passed to the appropriate controller.
				

					The ​TinyWeb​ class has a single public method,
 ​handleRequest​
 , which takes
 ​HttpRequest​. The
 ​handleRequest​
 method then runs the request through the
 filters, looks up the appropriate controller to handle it, and returns the resulting
 ​HttpResponse​. The code is below:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/TinyWeb.java
	​ 	​package​ com.mblinn.oo.tinyweb;

	​ 	

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	

	​ 	​public​ ​class​ TinyWeb {

	​ 	 ​private​ ​Map​<​String​, Controller> controllers;

	​ 	 ​private​ ​List​<​Filter​> filters;

	​ 	

	​ 	 ​public​ TinyWeb(​Map​<​String​, Controller> controllers, ​List​<​Filter​> filters) {

	​ 	 this.controllers = controllers;

	​ 	 this.filters = filters;

	​ 	 }

	​ 	

	​ 	 ​public​ HttpResponse handleRequest(HttpRequest httpRequest) {

	​ 	

	​ 	 HttpRequest currentRequest = httpRequest;

	​ 	 ​for​ (​Filter​ filter : filters) {

	​ 	 currentRequest = filter.doFilter(currentRequest);

	​ 	 }

	​ 	

	​ 	 Controller controller = controllers.get(currentRequest.getPath());

	​ 	

	​ 	 ​if​ (null == controller)

	​ 	 ​return​ null;

	​ 	

	​ 	 ​return​ controller.handleRequest(currentRequest);

	​ 	 }

	​ 	}

					A full-featured Java web framework wouldn’t expose a class like this directly as its framework plumbing.
 Instead it would use some set of configuration files and annotations to wire things together. However, we’ll
 stop adding to TinyWeb here and move on to an example that uses it.

				
Using TinyWeb

					
					Let’s implement an example program that takes an ​HttpRequest​ with a comma-separated list of
 names as its value and returns a body that’s full of friendly greetings for those names. We’ll also add a
 filter that logs the path that was requested.
				

					We’ll start by looking at ​GreetingController​. When the controller receives an
 ​HttpRequest​, it picks out the body of the request, splits it on commas, and treats each element
 in the split body as a name. It then generates a random friendly greeting for each name and puts the names into the
 model under the key ​greetings​. The code for ​GreetingController​ follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/GreetingController.java
	​ 	​package​ com.mblinn.oo.tinyweb.example;

	​ 	​import​ java.util.ArrayList;

	​ 	​import​ java.util.HashMap;

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	​import​ java.util.Random;

	​ 	

	​ 	​import​ com.mblinn.oo.tinyweb.HttpRequest;

	​ 	​import​ com.mblinn.oo.tinyweb.TemplateController;

	​ 	​import​ com.mblinn.oo.tinyweb.View;

	​ 	

	​ 	​public​ ​class​ GreetingController ​extends​ TemplateController {

	​ 	 ​private​ ​Random​ random;

	​ 	 ​public​ GreetingController(​View​ view) {

	​ 	 super(view);

	​ 	 random = ​new​ ​Random​();

	​ 	 }

	​ 	

	​ 	 @Override

	​ 	 ​public​ ​Map​<​String​, ​List​<​String​>> doRequest(HttpRequest httpRequest) {

	​ 	 ​Map​<​String​, ​List​<​String​>> helloModel =

	​ 	 ​new​ ​HashMap​<​String​, ​List​<​String​>>();

	​ 	 helloModel.put(​"greetings"​,

	​ 	 generateGreetings(httpRequest.getBody()));

	​ 	 ​return​ helloModel;

	​ 	 }

	​ 	

	​ 	 ​private​ ​List​<​String​> generateGreetings(​String​ namesCommaSeperated) {

	​ 	 ​String​​[]​ names = namesCommaSeperated.split(​","​);

	​ 	 ​List​<​String​> greetings = ​new​ ​ArrayList​<​String​>();

	​ 	 ​for​ (​String​ name : names) {

	​ 	 greetings.add(makeGreeting(name));

	​ 	 }

	​ 	 ​return​ greetings;

	​ 	 }

	​ 	

	​ 	 ​private​ ​String​ makeGreeting(​String​ name) {

	​ 	 ​String​​[]​ greetings =

	​ 	 { ​"Hello"​, ​"Greetings"​, ​"Salutations"​, ​"Hola"​ };

	​ 	 ​String​ greetingPrefix = greetings[random.nextInt(4)];

	​ 	 ​return​ ​String​.format(​"%s, %s"​, greetingPrefix, name);

	​ 	 }

	​ 	}

					Next up, let’s take a look at ​GreetingRenderingStrategy​. This class iterates through the list
 of friendly greetings generated by the controller and places each into an ​<h2>​ tag. Then it
 prepends the greetings with an ​<h1>​ containing ​"Friendly Greetings:"​, as the following
 code shows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/GreetingRenderingStrategy.java
	​ 	​package​ com.mblinn.oo.tinyweb.example;

	​ 	

	​ 	​import​ java.util.List;

	​ 	​import​ java.util.Map;

	​ 	

	​ 	​import​ com.mblinn.oo.tinyweb.RenderingStrategy;

	​ 	

	​ 	​public​ ​class​ GreetingRenderingStrategy ​implements​ RenderingStrategy {

	​ 	

	​ 	 @Override

	​ 	 ​public​ ​String​ renderView(​Map​<​String​, ​List​<​String​>> model) {

	​ 	 ​List​<​String​> greetings = model.get(​"greetings"​);

	​ 	 ​StringBuffer​ responseBody = ​new​ ​StringBuffer​();

	​ 	 responseBody.append(​"<h1>Friendly Greetings:</h1>\n"​);

	​ 	 ​for​ (​String​ greeting : greetings) {

	​ 	 responseBody.append(

	​ 	 ​String​.format(​"<h2>%s</h2>\n"​, greeting));

	​ 	

	​ 	 }

	​ 	 ​return​ responseBody.toString();

	​ 	 }

	​ 	

	​ 	}

					Finally, let’s look at an example filter. The ​LoggingFilter​ class just logs out the path of the
 request it’s being run on. Its code follows:
				
	JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/LoggingFilter.java
	​ 	​package​ com.mblinn.oo.tinyweb.example;

	​ 	

	​ 	​import​ com.mblinn.oo.tinyweb.Filter;

	​ 	​import​ com.mblinn.oo.tinyweb.HttpRequest;

	​ 	

	​ 	​public​ ​class​ LoggingFilter ​implements​ ​Filter​ {

	​ 	

	​ 	 @Override

	​ 	 ​public​ HttpRequest doFilter(HttpRequest request) {

	​ 	 ​System​.out.println(​"In Logging Filter - request for path: "​

	​ 	 + request.getPath());

	​ 	 ​return​ request;

	​ 	 }

	​ 	

	​ 	}

					Wiring up a simple test harness that connects everything together into a ​TinyWeb​, throws an
 ​HttpRequest​ at it, and then prints the response to the console gets us the following output.
 This indicates that everything is working properly:
				
	​ 	In Logging Filter - request for path: greeting/

	​ 	responseCode: 200

	​ 	responseBody:

	​ 	<h1>Friendly Greetings:</h1>

	​ 	<h2>Hola, Mike</h2>

	​ 	<h2>Greetings, Joe</h2>

	​ 	<h2>Hola, John</h2>

	​ 	<h2>Salutations, Steve</h2>

					
					Now that we’ve seen the TinyWeb framework in Java, let’s take a look at how we’ll use some of the functional
 replacements for the object-oriented patterns we’ll explore in this book. This will give us a TinyWeb that’s
 functionally equivalent but written with fewer lines of code and in a more declarative, easier-to-read style.
				

2.3 TinyWeb in Scala

				
				
				Let’s take TinyWeb and transform it into Scala. We’ll do this a bit at a time so we can show how our Scala code
 can work with the existing Java code. The overall shape of the framework will be similar to the Java version, but
 we’ll take advantage of some of Scala’s functional features to make the code more concise.
			
Step One: Changing Views

					
					We’ll start with our view code. In Java, we used the classic Strategy pattern. In Scala, we’ll stick with the
 Strategy pattern, but we’ll use
 ​ higher-order functions​

 for our strategy implementations.
 We’ll also see some of the benefits of expressions over statements for control flow.
				

					The biggest change we’ll make is to the view-rendering code. Instead of using Functional Interface in the form
 of ​RenderingStrategy​, we’ll use a higher-order function. We go over this replacement in great
 detail in Pattern 1, ​Replacing Functional Interface​.
				

					Here’s our modified view code in its full functional glory:	
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepone/View.scala
	​ 	​package​ com.mblinn.mbfpp.oo.tinyweb.stepone

	​ 	​import​ com.mblinn.oo.tinyweb.RenderingException

	​ 	

	​ 	​trait​ View {

	​ 	 ​def​ render(model: Map[​String​, ​List​[​String​]]): ​String​

	​ 	}

	​ 	​class​ FunctionView(viewRenderer: (Map[​String​, ​List​[​String​]]) => ​String​)

	​ 	 ​extends​ View {

	​ 	 ​def​ render(model: Map[​String​, ​List​[​String​]]) =

	​ 	 ​try​

	​ 	 viewRenderer(model)

	​ 	 ​catch​ {

	​ 	 ​case​ e: Exception => ​throw​ ​new​ RenderingException(e)

	​ 	 }

	​ 	}

					
					We start off with our ​View​ trait. It defines a single method,
 ​render​
 , which
 takes a map representing the data in our model and returns a rendered ​String​.
				
	​ 	​trait​ View {

	​ 	 ​def​ render(model: Map[​String​, ​String​]): ​String​

	​ 	}

					Next up, let’s take a look at the body of ​FunctionView​. The code below declares a class that
 has a constructor with a single argument, ​viewRenderer​, which sets an immutable field of
 the same name.
				
	​ 	​class​ FunctionView(viewRenderer: (Map[​String​, ​String​]) => ​String​) ​extends​ View {

	​ 	 classBody

	​ 	}

					The ​viewRenderer​ function parameter has a rather strange-looking type annotation,
 ​(Map[String, String]) => String​. This is a function type. It says that
 ​viewRenderer​ is a function that takes a ​Map[String, String]​ and returns a
 ​String​, just like the
 ​renderView​
 on our Java ​RenderingStrategy​.

				

					Next, let’s take a look at the
 ​render​
 method itself. As we can see from the code below, it takes
 in a model and runs it through the
 ​viewRender​
 function.
				
	​ 	​def​ render(model: Map[​String​, ​String​]) =

	​ 	 ​try​

	​ 	 viewRenderer(model)

	​ 	 ​catch​ {

	​ 	 ​case​ e: Exception => ​throw​ ​new​ RenderingException(e)

	​ 	 }

					Notice how there’s no ​return​ keyword anywhere in this code snippet? This illustrates
 another important aspect of functional programming. In the functional world, we program primarily with
 expressions. The value of a function is just the value of the last expression in it.

				

					In this example, that expression happens to be a try block. If no exception is thrown, the try block takes on
 the value of its main branch; otherwise it takes on the value of the appropriate case clause in the catch
 branch.
				

					
					If we wanted to supply a default value rather than wrap the exception up
					into a ​RenderException​,
 we can do so just by having the appropriate case branch take on our default, as illustrated in the following
 code:
				
	​ 	​try​

	​ 	 viewRenderer(model)

	​ 	​catch​ {

	​ 	 ​case​ e: Exception => ​""​

	​ 	}

					Now when an exception is caught, the try block takes on the value of the empty string.
					
				
Step Two: A Controller First Cut

					
					Now let’s take a look at transforming our controller code into Scala. In Java we used the
 ​Controller​ interface and the ​TemplateController​ class. Individual controllers
 were implemented by subclassing ​TemplateController​.
				

					In Scala, we rely on function composition just like we did with our views by passing in a

 ​doRequest​
 function when we create a ​Controller​:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/steptwo/Controller.scala
	​ 	​package​ com.mblinn.mbfpp.oo.tinyweb.steptwo

	​ 	

	​ 	​import​ com.mblinn.oo.tinyweb.HttpRequest

	​ 	​import​ com.mblinn.oo.tinyweb.HttpResponse

	​ 	​import​ com.mblinn.oo.tinyweb.ControllerException

	​ 	​import​ com.mblinn.oo.tinyweb.RenderingException

	​ 	

	​ 	​trait​ Controller {

	​ 	 ​def​ handleRequest(httpRequest: HttpRequest): HttpResponse

	​ 	}

	​ 	

	​ 	​class​ FunctionController(view: View, doRequest: (HttpRequest) =>

	​ 	 Map[​String​, ​List​[​String​]]) ​extends​ Controller {

	​ 	

	​ 	 ​def​ handleRequest(request: HttpRequest): HttpResponse = {

	​ 	 ​var​ responseCode = 200;

	​ 	 ​var​ responseBody = ​""​;

	​ 	

	​ 	 ​try​ {

	​ 	 ​val​ model = doRequest(request)

	​ 	 responseBody = view.render(model)

	​ 	 } ​catch​ {

	​ 	 ​case​ e: ControllerException =>

	​ 	 responseCode = e.getStatusCode()

	​ 	 ​case​ e: RenderingException =>

	​ 	 responseCode = 500

	​ 	 responseBody = ​"Exception while rendering."​

	​ 	 ​case​ e: Exception =>

	​ 	 responseCode = 500

	​ 	 }

	​ 	

	​ 	 HttpResponse.Builder.newBuilder()

	​ 	 .body(responseBody).responseCode(responseCode).build()

	​ 	 }

	​ 	}

					This code should look fairly similar to our view code. This is a fairly literal translation of Java into Scala, but
 it’s not terribly functional because we’re using the ​try-catch​ as a statement to set the
 values of ​responseCode​ and ​responseBody​.
				

					We’re also reusing our Java ​HttpRequest​ and ​HttpResponse​. Scala provides a more
 concise way to create these data-carrying classes, called
 ​ case classes​

 . Switching over to
 use the ​try-catch​ as a statement, as well as using case classes, can help cut down on our
 code significantly.
				

					We’ll make both of these changes in our next transformation.
				
Immutable HttpRequest and HttpResponse

					
					
					Let’s start by switching over to case classes instead of using the Builder pattern. It’s as simple as the code
 below:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepthree/HttpData.scala
	​ 	​package​ com.mblinn.mbfpp.oo.tinyweb.stepthree

	​ 	

	​ 	​case​ ​class​ HttpRequest(headers: Map[​String​, ​String​], body: ​String​, path: ​String​)

	​ 	​case​ ​class​ HttpResponse(body: ​String​, responseCode: ​Integer​)

					We can create new ​HttpRequest​ and ​HttpResponse​ objects easily, as the following
 REPL output shows:
				
	​ 	scala>​ val request = HttpRequest(Map("X-Test" -> "Value"), "requestBody", "/test")​

	​ 	request: com.mblinn.mbfpp.oo.tinyweb.stepfour.HttpRequest =

	​ 	 HttpRequest(Map(X-Test -> Value),requestBody,/test)

	​ 	

	​ 	scala>​ val response = HttpResponse("requestBody", 200)​

	​ 	response: com.mblinn.mbfpp.oo.tinyweb.stepfour.HttpResponse =

	​ 	 HttpResponse(requestBody,200)

					At first glance, this might seem similar to using a Java class with constructor arguments, except that we
 don’t need to use the ​new​ keyword. However, in Pattern 4, ​Replacing Builder for Immutable Object​, we dig
 deeper and see how Scala’s ability to provide default arguments in a constructor, the natural immutability of
 case classes, and the ability to easily create a new instance of a case class from an existing instance lets
 them satisfy the intent of the Builder pattern.
				

					 Let’s take a look at our second change.
 Since a ​try-catch​ block in Scala has a value, we can use it as an expression rather than as a
 statement. This might
 seem a bit odd at first, but the upshot is that we can use the fact that Scala’s ​try-catch​
 is an expression to simply have the ​try-catch​ block take on the value of the
 ​HttpResponse​ we’re returning. The code to do so is below:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepthree/Controller.scala
	​ 	​package​ com.mblinn.mbfpp.oo.tinyweb.stepthree

	​ 	​import​ com.mblinn.oo.tinyweb.ControllerException

	​ 	​import​ com.mblinn.oo.tinyweb.RenderingException

	​ 	

	​ 	​trait​ Controller {

	​ 	 ​def​ handleRequest(httpRequest: HttpRequest): HttpResponse

	​ 	}

	​ 	​class​ FunctionController(view: View, doRequest: (HttpRequest) =>

	​ 	 Map[​String​, ​List​[​String​]]) ​extends​ Controller {

	​ 	 ​def​ handleRequest(request: HttpRequest): HttpResponse =

	​ 	 ​try​ {

	​ 	 ​val​ model = doRequest(request)

	​ 	 ​val​ responseBody = view.render(model)

	​ 	 HttpResponse(responseBody, 200)

	​ 	 } ​catch​ {

	​ 	 ​case​ e: ControllerException =>

	​ 	 HttpResponse(​""​, e.getStatusCode)

	​ 	 ​case​ e: RenderingException =>

	​ 	 HttpResponse(​"Exception while rendering."​, 500)

	​ 	 ​case​ e: Exception =>

	​ 	 HttpResponse(​""​, 500)

	​ 	 }

	​ 	}

					This style of programming has a couple of benefits. First, we’ve eliminated a couple of extraneous variables,
 ​responseCode​ and ​responseBody​. Second, we’ve reduced the number of
 lines of code a programmer needs to scan to understand which ​HttpRequest​ we’re returning from the
 entire method to a single line.
				

					Rather than tracing the values of ​responseCode​ and ​responseBody​ from
 the top of the method through the try block and finally into the ​HttpResponse​, we only need
 to look at the appropriate piece of the try block to understand the final value of the
 ​HttpResponse​. These changes combine to give us code that’s more readable and concise.

				
Tying It Together

					
					Now let’s add in the class that ties it all together, ​TinyWeb​. Like its Java counterpart,
 ​TinyWeb​ is instantiated with a map of ​Controller​s and a map of filters. Unlike
 Java, we don’t define a class for filter; we simply use a list of higher-order functions!
				

					Also like the Java version, the Scala ​TinyWeb​ has a single method,

 ​handleRequest​
 , which takes in an ​HttpRequest​. Instead of returning an
 ​HttpResponse​ directly, we return an ​Option[HttpResponse]​, which gives us a clean
 way of handling the case when we can’t find a controller for a particular request. The code for the Scala
 ​TinyWeb​ is below:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepfour/Tinyweb.scala
	​ 	​package​ com.mblinn.mbfpp.oo.tinyweb.stepfour

	​ 	​class​ TinyWeb(controllers: Map[​String​, Controller],

	​ 	 filters: ​List​[(HttpRequest) => HttpRequest]) {

	​ 	

	​ 	 ​def​ handleRequest(httpRequest: HttpRequest): ​Option​[HttpResponse] = {

	​ 	 ​val​ composedFilter = filters.reverse.reduceLeft(

	​ 	 (composed, next) => composed compose next)

	​ 	 ​val​ filteredRequest = composedFilter(httpRequest)

	​ 	 ​val​ controllerOption = controllers.get(filteredRequest.path)

	​ 	 controllerOption map { controller => controller.handleRequest(filteredRequest) }

	​ 	 }

	​ 	}

					Let’s take a look at it in greater detail starting with the class definition.	
				
	​ 	​class​ TinyWeb(controllers: Map[​String​, Controller],

	​ 	 filters: ​List​[(HttpRequest) => HttpRequest]) {

	​ 	 classBody

	​ 	}

					Here we’re defining a class that takes two constructor arguments, a map of controllers and a list of filters.
 Note the type of the ​filters​ argument, ​List[(HttpRequest) => HttpRequest]​. This
 says that ​filters​ is a list of functions from ​HttpRequest​ to
 ​HttpRequest​.
				

					Next up, let’s look at the signature of the
 ​handleRequest​
 method:
				
	​ 	​def​ handleRequest(httpRequest: HttpRequest): ​Option​[HttpResponse] = {

	​ 	 functionBody

	​ 	}

					
					As advertised, we’re returning an ​Option[HttpResponse]​ instead of an
 ​HttpResponse​. The ​Option​ type is a container type with two subtypes,
 ​Some​ and ​None​. If we’ve got a value to store in it, we can store it in an
 instance of ​Some​; otherwise we use ​None​ to indicate that we’ve got no real
 value. We’ll cover ​Option​ in greater detail in Pattern 8, ​Replacing Null Object​.
				

					
					Now that we’ve seen the TinyWeb framework, let’s take a look at it in action. We’ll use the same example from
 the Java section, returning a list of friendly greetings. However, since it’s Scala, we can poke at our
 example in the REPL as we go. Let’s get started with our view code.
				
Using Scala TinyWeb

					
					Let’s take a look at using our Scala TinyWeb framework.	
				

					We’ll start by creating a ​FunctionView​ and the rendering function we’ll compose into it. The
 following code creates this function, which we’ll name
 ​greetingViewRenderer​
 , and the
 ​FunctionView​ that goes along with it:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
	​ 	​def​ greetingViewRenderer(model: Map[​String​, ​List​[​String​]]) =

	​ 	 ​"<h1>Friendly Greetings:%s"​.format(

	​ 	 model

	​ 	 getOrElse(​"greetings"​, ​List​[​String​]())

	​ 	 map(renderGreeting)

	​ 	 mkString ​", "​)

	​ 	

	​ 	​private​ ​def​ renderGreeting(greeting: ​String​) =

	​ 	 ​"<h2>%s</h2>"​.format(greeting)

	​ 	

	​ 	​def​ greetingView = ​new​ FunctionView(greetingViewRenderer)

					We’re using a couple of new bits of Scala here. First, we introduce the
 ​map​
 method, which
 lets us map a function over all the elements in a sequence and returns a new sequence. Second, we’re using a
 bit of syntactic sugar that Scala provides that allows us to treat any method with a single argument as an
 infix operator. The object on the left side of the operator is treated as the receiver of the method
 call, and the object on the right is the argument.

				

					This bit of syntax means that we can omit the familiar dot syntax when working in Scala. For instance,
 the two usages of
 ​map​
 below are equivalent:
				
	​ 	scala>​ val greetings = List("Hi!", "Hola", "Aloha")​

	​ 	greetings: List[java.lang.String]

	​ 	

	​ 	scala>​ greetings.map(renderGreeting)​

	​ 	res0: List[String] = List(<h2>Hi!</h2>, <h2>Hola</h2>, <h2>Aloha</h2>)

	​ 	

	​ 	scala>​ greetings map renderGreeting​

	​ 	res1: List[String] = List(<h2>Hi!</h2>, <h2>Hola</h2>, <h2>Aloha</h2>)

Scala Functions and Methods

						
						Since Scala is a hybrid language, it’s got both functions and methods. Methods are defined using the
 ​def​ keyword, as we do in the following code snippet:
					
	​ 	scala>​ def addOneMethod(num: Int) = num + 1​

	​ 	addOneMethod: (num: Int)Int

						We can create a function and name it by using Scala’s anonymous function syntax, assigning the
 resulting function to a ​val​, like we do in this code snippet:

					
	​ 	scala>​ val addOneFunction = (num: Int) => num + 1​

	​ 	addOneFunction: Int => Int = <function1>

						We can almost always use methods as higher-order functions. For instance, here we pass both the method and the
 function version of
 ​addOne​
 into
 ​map​
 .
					
	​ 	scala>​ val someInts = List(1, 2, 3)​

	​ 	someInts: List[Int] = List(1, 2, 3)

	​ 	

	​ 	scala>​ someInts map addOneMethod​

	​ 	res1: List[Int] = List(2, 3, 4)

	​ 	

	​ 	scala>​ someInts map addOneFunction​

	​ 	res2: List[Int] = List(2, 3, 4)

						Since method definitions have a cleaner syntax, we use them when we need to define a function, rather
 than using the function syntax. When we need to manually convert a method into a function, we can do so with the underscore
 operator, as we do in the following REPL session:
					
	​ 	scala>​ addOneMethod _​

	​ 	res3: Int => Int = <function1>

						The need to do this is very rare, though; for the most part Scala is smart enough to do the conversion
 automatically.
					

					Now let’s take a look at our controller code. Here we create the
 ​handleGreetingRequest​

 function to pass into our ​Controller​. As a helper, we use
 ​makeGreeting​
 , which
 takes in a name and generates a random friendly greeting.
				

					Inside of
 ​handleGreetingRequest​
 we create a list of names by splitting the request body,
 which returns an array like in Java, converting that array into a Scala list and mapping the

 ​makeGreeting​
 method over it. We then use that list as the value for the ​"greetings"​
 key in our model map:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
	​ 	​def​ handleGreetingRequest(request: HttpRequest) =

	​ 	 Map(​"greetings"​ -> request.body.split(​","​).toList.map(makeGreeting))

	​ 	

	​ 	​private​ ​def​ random = ​new​ Random()

	​ 	​private​ ​def​ greetings = Vector(​"Hello"​, ​"Greetings"​, ​"Salutations"​, ​"Hola"​)

	​ 	​private​ ​def​ makeGreeting(name: ​String​) =

	​ 	 ​"%s, %s"​.format(greetings(random.nextInt(greetings.size)), name)

	​ 	

	​ 	​def​ greetingController = ​new​ FunctionController(greetingView, handleGreetingRequest)

					Finally, let’s take a look at our logging filter. This function simply writes the path that it finds in the
 passed-in ​HttpRequest​ to the console and then returns the path unmodified:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
	​ 	​private​ ​def​ loggingFilter(request: HttpRequest) = {

	​ 	 println(​"In Logging Filter - request for path: %s"​.format(request.path))

	​ 	 request

	​ 	}

					To finish up the example, we need to create an instance of ​TinyWeb​ with the controller, the view,
 and the filter we defined earlier, and we need to create a test ​HttpResponse​:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
	​ 	​def​ tinyweb = ​new​ TinyWeb(

	​ 	 Map(​"/greeting"​ -> greetingController),

	​ 	 ​List​(loggingFilter))

	​ 	​def​ testHttpRequest = HttpRequest(

	​ 	 body=​"Mike,Joe,John,Steve"​,

	​ 	 path=​"/greeting"​)

					We can now run the test request through TinyWeb’s
 ​handleRequest​
 method in the REPL and view
 the corresponding ​HttpResponse​:
				
	​ 	scala>​ tinyweb.handleRequest(testHttpRequest)​

	​ 	In Logging Filter - request for path: /greeting

	​ 	res0: Option[com.mblinn.mbfpp.oo.tinyweb.stepfour.HttpResponse] =

	​ 	Some(HttpResponse(<h1>Friendly Greetings:<h2>Mike</h2>, <h2>Nam</h2>, <h2>John</h2>,

	​ 	200))

				That wraps up our Scala version of TinyWeb. We’ve made a few changes to the style that we used in our Java
 version. First, we replaced most of our iterative code with code that’s more declarative. Second, we’ve replaced
 our bulky builders with Scala’s case classes, which give us a built-in way to handle immutable data. Finally,
 we’ve replaced our use of Functional Interface with plain old functions.
			

				Taken together, these small changes save us quite a bit of code and give us a solution that’s shorter and easier
 to read. Next up, we’ll take a look at TinyWeb in Clojure.

			

2.4 TinyWeb in Clojure

				Now let’s take TinyWeb and translate it into Clojure. This is going to be a bigger leap than the translation from
 Java to Scala, so we’ll take it slowly.
			

				The most obvious difference between Clojure and Java is the syntax. It’s very different than the C-inspired syntax
 found in most modern programming languages. This isn’t incidental: the syntax enables one of Clojure’s most
 powerful features,
 ​ macros​

 , which we’ll cover in Pattern 21, ​Domain-Specific Language​.
			
A Gentle Introduction to Clojure

					
					For now let’s just have a gentle introduction. Clojure uses
 ​ prefix syntax​

 , which just
 means that the function name comes before the function arguments in a function call. Here we call the
 ​count​ function to get the size of a vector, one of Clojure’s immutable data structures:
				
	​ 	=> (count [1 2 3 4])

	​ 	4

					
					Like Scala, Clojure has excellent interoperability with existing Java code. Calling a method on a Java class
 looks almost exactly like calling a Clojure function; you just need to prepend the method name with a period
 and put it before the class instance rather than after. For instance, this is how we call the

 ​length​
 method on an instance of a Java ​String​:

				
	​ 	=> (.length "Clojure")

	​ 	7

					
					
					Instead of organizing Clojure code into objects and methods in Java or into objects, methods, and functions in
 Scala, Clojure code is organized into functions and namespaces. Our Clojure version of TinyWeb is based on
 models, views, controllers, and filters, just like the Java and Scala versions; however, these components will
 take quite a different form.
				

					Our views, controllers, and filter codes are simply functions, and our models are maps. To tie everything
 together, we use a function named TinyWeb, which takes in all our components and returns a function that takes
 in an HTTP request, runs it through the filters, and then routes it to the proper controller and view.
				
Controllers in Clojure

					 Let’s start our look at the
 Clojure code with the controllers. Below, we implement a simple controller that takes the body of an incoming
 HTTP request and uses it to set a name in a model. For this first iteration, we’ll use the same
 ​HttpRequest​ as our Java code. We’ll change it to be more idiomatic Clojure later on:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
	​ 	(​ns​ mbfpp.oo.tinyweb.stepone

	​ 	 (:import (com.mblinn.oo.tinyweb HttpRequest HttpRequest$Builder)))

	​ 	(​defn​ test-controller [http-request]

	​ 	 {:name (​.​getBody http-request)})

	​ 	(​def​ test-builder (HttpRequest$Builder/newBuilder))

	​ 	(​def​ test-http-request (​..​ test-builder (body ​"Mike"​) (path ​"/say-hello"​) build))

	​ 	(​defn​ test-controller-with-map [http-request]

	​ 	 {:name (http-request :body)})

					Let’s take a look at this code piece by piece, starting with the namespace declaration.
					
				
	ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
	​ 	(​ns​ mbfpp.oo.tinyweb.stepone

	​ 	 (:import (com.mblinn.oo.tinyweb HttpRequest HttpRequest$Builder)))

					Here we define a namespace called ​mbfpp.oo.tinyweb.stepone​. A namespace is simply a collection of
 functions that form a library that can be imported in full or in part by another namespace.
				

					
					As part of the definition, we import a couple of Java classes, ​HttpRequest​ and
 ​HttpRequest$Builder​. The second one might look a little strange, but it’s just the full name
 for the static inner ​Builder​ class we created as part of our ​HttpRequest​.
 Clojure doesn’t have any special syntax for referring to static inner classes, so we need to use the full
 class name.
				

					 The keyword ​:import​ is an example of a Clojure keyword. A
 keyword is just an identifier that provides very fast equality checks and
 is always prepended with a colon. Here we’re using the ​:import​ keyword to indicate what
 classes should be imported into the namespace we’ve just declared, but keywords have many other uses. They’re
 often used as keys in a map, for instance.
				

					Now let’s take a look at our controller, which takes an ​HttpRequest​ from the original Java
 solution and produces a Clojure map as a model:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
	​ 	(​defn​ test-controller [http-request]

	​ 	 {:name (​.​getBody http-request)})

					
					Here we call the
 ​getBody​
 method on the ​HttpRequest​ to get the body of the
 request, and we use it to create a map with a single key-value pair. The key is the keyword
 ​:name​, and the value is the ​String​ body of the ​HttpRequest​.
				

					
					Before we move on, let’s look at Clojure maps in greater detail. In Clojure, it’s common to use maps to pass
 around data. The syntax for creating a map in Clojure is to enclose key-value pairs inside curly braces.
 For instance, here we’re creating a map with two key-value pairs. The first key is the keyword ​:name​,
 and the value is the ​String​ ​"Mike"​. The second is the keyword ​:sex​, and the
 value is another keyword, ​:male>​:
				
	​ 	=> {:name "Mike" :sex :male}

	​ 	{:name "Mike" :sex :male}

					Maps in Clojure are functions of their keys. This means that we can call a map as a function, passing a key we
 expect to be in the map, and the map will return the value. If the key isn’t in the map,
 ​nil​ is returned, as the code below shows:
				
	​ 	=> (def test-map {:name "Mike"})

	​ 	#'mbfpp.oo.tinyweb.stepone/test-map

	​ 	=> (test-map :name)

	​ 	"Mike"

	​ 	=> (test-map :orange)

	​ 	nil

					 Keywords in Clojure are also functions. When they are passed a map, they will
 look themselves up in it, as in the following snippet, which shows the most common way to look up a value from
 a map:
				
	​ 	=> (def test-map {:name "Mike"})

	​ 	#'mbfpp.oo.tinyweb.stepone/test-map

	​ 	=> (:name test-map)

	​ 	"Mike"

	​ 	=> (:orange test-map)

	​ 	nil

					
				

					Now let’s create some test data. Below, we create an ​HttpRequest$Builder​ and use it to
 create a new ​HttpRequest​:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
	​ 	(​def​ test-builder (HttpRequest$Builder/newBuilder))

	​ 	(​def​ test-http-request (​..​ test-builder (body ​"Mike"​) (path ​"/say-hello"​) build))

					
					This code features two more Clojure/Java interop features. First, the forward slash lets us call a static
 method or reference a static variable on a class. So the snippet ​(HttpRequest$Builder/newBuilder)​ is
 calling the
 ​newBuilder​
 method on the ​HttpRequest$Builder​ class. As another
 example, we can use this syntax to parse an integer from a ​String​ using the

 ​parseInt​
 method on the ​Integer​ class:
				
	​ 	=> (Integer/parseInt "42")

	​ 	42

					
					
					
					Next up is the ​..​ macro, a handy interop feature that makes calling a series of methods on a Java
 object easy. It works by taking the first argument to ​..​ and threading it through calls to the rest
 of the arguments.
				

					 The snippet ​(.. test-builder (body "Mike") (path "/say-hello") build)​ first calls the
	
 ​body​
 method on ​test-builder​ with the argument ​"Mike"​. Then it
	 takes that result and calls the
 ​path​
 method on it with the argument ​"say-hello"​ and
	 finally calls
 ​build​
 on that result to return an instance of ​HttpResult​.
				

					Here’s another example of using the ​..​ macro to uppercase the string ​"mike"​ and then take
 the first character of it:
				
	​ 	=> (.. "mike" toUpperCase (substring 0 1))

	​ 	"M"

Maps for Data

					
					
					Now that we’ve seen some basic Clojure and Clojure/Java interoperability, let’s take the next step in
 transforming TinyWeb into Clojure. Here we’ll change ​test-controller​ so that the HTTP request it
 takes in is also a map, just like the model it returns. We’ll also introduce a view function and a
 ​render​ function that’s responsible for calling views. The code for our next iteration is
 below:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
	​ 	(​ns​ mbfpp.oo.tinyweb.steptwo

	​ 	 (:import (com.mblinn.oo.tinyweb RenderingException)))

	​ 	

	​ 	(​defn​ test-controller [http-request]

	​ 	 {:name (http-request :body)})

	​ 	

	​ 	(​defn​ test-view [model]

	​ 	 (​str​ ​"<h1>Hello, "​ (model :name) ​"</h1>"​))

	​ 	

	​ 	(​defn-​ render [view model]

	​ 	 (​try​

	​ 	 (view model)

	​ 	 (​catch​ Exception e (​throw​ (RenderingException. e)))))

					Let’s take a closer look at the pieces, starting with our new ​test-controller​. As we can
 see in the code, we’re expecting ​http-request​ to be a map with a ​:body​
 key that represents the body of the HTTP request. We’re pulling out the value for that key and putting it into
 a new map that represents our model:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
	​ 	(​defn​ test-controller [http-request]

	​ 	 {:name (http-request :body)})

					We can explore how ​test-controller​ works very easily using the REPL. All we need to do is
 define a ​test-http-request​ map and pass it into ​test-controller​, which
 we do in this REPL output:

				
	​ 	=> (def test-http-request {:body "Mike" :path "/say-hello" :headers {}})

	​ 	#'mbfpp.oo.tinyweb.steptwo/test-http-request

	​ 	=> (test-controller test-http-request)

	​ 	{:name "Mike"}

Views in Clojure

					
					Now that we’ve got our controller approach buttoned up, let’s take a look at some view code. Just like our
	 controllers, views will be functions. They take a map that represents the model they operate on and return a
	 ​String​ that represents the output of the view.
				

					Here is some code for a simple ​test-view​ that just wraps a name in an ​<h1>​ tag:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
	​ 	(​defn​ test-view [model]

	​ 	 (​str​ ​"<h1>Hello, "​ (model :name) ​"</h1>"​))

					Again, we can try this out simply in the REPL by defining a test model and passing it into the function:
				
	​ 	=> (def test-model {:name "Mike"})

	​ 	#'mbfpp.oo.tinyweb.steptwo/test-model

	​ 	=> (test-view test-model)

	​ 	"<h1>Hello, Mike</h1>"

					We need one more piece to finish our view-handling code. In Java, we used Pattern 7, ​Replacing Strategy​, to ensure that any exceptions in view-handling code were
 properly wrapped up in a ​RenderingException​. In Clojure we’ll do something similar with
 higher-order functions. As the code below shows, all we need to do is pass our view function into the
 ​render​ function, which takes care of running the view and wrapping any exceptions:

				
	ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
	​ 	(​defn-​ render [view model]

	​ 	 (​try​

	​ 	 (view model)

	​ 	 (​catch​ Exception e (​throw​ (RenderingException. e)))))

Tying It All Together

					
					
					Now that we’ve got a handle on our Clojure views and controllers, let’s finish up the example by adding in
 filters and the glue code that ties everything together. We’ll do this final step in a namespace called
 ​core​. This is the standard core namespace that Clojure’s build tool Leiningen creates when you create
 a new project, so it’s become the de facto standard core namespace for Clojure projects.
				

					To do this, we’ll add an ​execute-request​ function, which is responsible for executing an
 ​http-request​. The function takes an ​http-request​ and a request handler.
 The request handler is simply a map containing the controller and view that should be used to handle the
 request.
				

					We’ll also need ​apply-filters​, which takes an ​http-request​, applies a
 series of filters to it, and returns a new ​http-request​. Finally, we’ll need the
 ​tinyweb​ function.
				

					The ​tinyweb​ function is what ties everything together. It takes in two arguments: a map of
 request handlers keyed off the path each should handle and a sequence of filters. It then returns a
 function that takes an ​http-request​, applies the sequence of filters to it, routes it to
 the appropriate request handler, and returns the result.
				

					Here is the code for the full Clojure TinyWeb library:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/core.clj
	​ 	(​ns​ mbfpp.oo.tinyweb.core

	​ 	 (:require [clojure.string :as ​str​])

	​ 	 (:import (com.mblinn.oo.tinyweb RenderingException ControllerException)))

	​ 	(​defn-​ render [view model]

	​ 	 (​try​

	​ 	 (view model)

	​ 	 (​catch​ Exception e (​throw​ (RenderingException. e)))))

	​ 	(​defn-​ execute-request [http-request handler]

	​ 	 (​let​ [controller (handler :controller)

	​ 	 view (handler :view)]

	​ 	 (​try​

	​ 	 {:status-code 200

	​ 	 :body

	​ 	 (render

	​ 	 view

	​ 	 (controller http-request))}

	​ 	 (​catch​ ControllerException e {:status-code (​.​getStatusCode e) :body ​""​})

	​ 	 (​catch​ RenderingException e {:status-code 500

	​ 	 :body ​"Exception while rendering"​})

	​ 	 (​catch​ Exception e (​.​printStackTrace e) {:status-code 500 :body ​""​}))))

	​ 	(​defn-​ apply-filters [filters http-request]

	​ 	 (​let​ [composed-filter (​reduce​ ​comp​ (​reverse​ filters))]

	​ 	 (composed-filter http-request)))

	​ 	(​defn​ tinyweb [request-handlers filters]

	​ 	 (​fn​ [http-request]

	​ 	 (​let​ [filtered-request (apply-filters filters http-request)

	​ 	 path (http-request :path)

	​ 	 handler (request-handlers path)]

	​ 	 (execute-request filtered-request handler))))

					The render method is unchanged from the previous iteration, so let’s start by examining the
 ​execute-request​ function. We have already defined the function in the full Clojure TinyWeb library.
	
					
					To start picking apart the ​execute-request​ function, let’s first define some test data in
 the REPL. We’ll need the ​test-controller​ and ​test-view​ we defined in our
 last iteration to create a test request handler, which we do below:
				
	​ 	=> (defn test-controller [http-request]

	​ 	{:name (http-request :body)})

	​ 	

	​ 	(defn test-view [model]

	​ 	(str "<h1>Hello, " (model :name) "</h1>"))

	​ 	#'mbfpp.oo.tinyweb.core/test-controller

	​ 	#'mbfpp.oo.tinyweb.core/test-view

	​ 	=> (def test-request-handler {:controller test-controller

	​ 	 :view test-view})

	​ 	#'mbfpp.oo.tinyweb.core/test-request-handler

	
					Now we just need our ​test-http-request​, and we can verify that
	 ​execute-request​ runs the passed-in ​request-handler​ on the passed-in
	 ​http-request​, as we’d expect:
				
	​ 	=> (def test-http-request {:body "Mike" :path "/say-hello" :headers {}})

	​ 	#'mbfpp.oo.tinyweb.steptwo/test-http-request

	​ 	=> (execute-request test-http-request test-request-handler)

	​ 	{:status-code 200, :body "<h1>Hello, Mike</h1>"}

					
					
					Let’s look at the pieces of ​execute-request​ in more detail by trying them out in the REPL,
	 starting with the ​let​ statement that picks the controller and view out of
	 ​request-handler​, which we’ve outlined here:
				
	​ 	(​let​ [controller (handler :controller)

	​ 	 view (handler :view)]

	​ 	let-body)

					A ​let​ statement is how you assign local names in Clojure, somewhat like a local variable in Java. However,
 unlike a variable, the value these names refer to isn’t meant to be changed. In the ​let​ statement above, we’re
 picking the view and controller functions out of the ​request-handler​ map and naming them
 ​controller​ and ​view​. We can then refer to them by those names inside
 the ​let​ statement.
				

					 Let’s take a look at a simpler example of a ​let​ expression. Below, we use
 ​let​ to bind ​name​ to the ​String​ ​"Mike"​ and to bind
 ​greeting​ to the ​String​ ​"Hello"​. Then, inside the body of the
 ​let​ expression, we use them to create a greeting:
				
	​ 	=> (let [name "Mike"

	​ 	 greeting "Hello"]

	​ 	 (str greeting ", " name))

	​ 	"Hello, Mike"

					
					Now that we’ve got ​let​ under our belts, let’s take a look at the ​try​
 expression, which we’ve repeated below. Much like in Scala, ​try​ is an expression with a
 value. If no exception is thrown, ​try​ takes on the value of the body of the expression
 itself; otherwise it takes on the value of a catch clause:
				
	​ 	(try

	​ 	 {:status-code 200

	​ 	 :body

	​ 	 (render

	​ 	 view

	​ 	 (controller http-request))}

	​ 	(catch ControllerException e {:status-code (.getStatusCode e) :body ""})

	​ 	(catch RenderingException e {:status-code 500

	​ 	 :body "Exception while rendering"})

	​ 	(catch Exception e (.printStackTrace e) {:status-code 500 :body ""})

					If no exception is thrown, then the ​try​ expression takes the value of a map with two key-value pairs, which
 represents our HTTP response. The first key is the ​:status-code​ with a value of
 ​200​. The second is ​:body​. Its value is computed by passing the
 ​http-request​ into the controller and then passing that result into the render function along with the view to
 be rendered.
				

					We can see this in action using our ​test-view​ and ​test-controller​
 below:
				
	​ 	=> (render test-view (test-controller test-http-request))

	​ 	"<h1>Hello, Mike</h1>"

					Before we move on, let’s take a bit of a closer look at Clojure’s exception handling using a couple of simpler
	 examples. Below, we see an example of a ​try​ expression where the body is just the
	 ​String​ ​"hello, world"​, so the value of the whole expression is ​"hello,
	 world"​:
				
	​ 	=> (try

	​ 	 "hello, world"

	​ 	 (catch Exception e (.message e)))

	​ 	"hello, world"

					Here’s a simple example of how ​try​ expressions work when things go wrong. In the body of
 the ​try​ expression below, we’re throwing a ​RuntimeException​ with the message
 ​"It’s broke!"​. In the catch branch, we’re catching ​Exception​ and just pulling the
 message out of it, which then becomes the value of the ​catch​ branch and thus the value of the
 entire ​try​ expression:
				
	​ 	=> (try

	​ 	 (throw (RuntimeException. "It's broke!"))

	​ 	 (catch Exception e (.getMessage e)))

	​ 	"It's broke!"

					
					
					Next up, let’s take a look at how we apply our filters. We use an ​apply-filters​ function,
 which takes a sequence of filters and an HTTP request, composes them into a single filter, and then applies it
 to the HTTP request. The code is below:
				
	​ 	(defn- apply-filters [filters http-request]

	​ 	 (let [composed-filter (reduce comp filters)]

	​ 	 (composed-filter http-request)))

					We explore the ​comp​ function further as part of Pattern 16, ​Function Builder​.
				

					To finish off our Clojure TinyWeb implementation, we need a function, ​tinyweb​, to tie
					everything together.
 	This function takes in a map of request handlers and a sequence of filters. It
 returns a function that takes an HTTP request, using ​apply-filters​ to apply all the filters
 to the request.
				

					Then it picks the path out of the HTTP request, looks in the map of request handlers to find the appropriate
 handler, and uses ​execute-request​ to execute it. The following is the code for
 					​tinyweb​:
				
	​ 	(​defn​ tinyweb [request-handlers filters]

	​ 	 (​fn​ [http-request]

	​ 	 (​let​ [filtered-request (apply-filters filters http-request)

	​ 	 path (:path http-request)

	​ 	 handler (request-handlers path)]

	​ 	 (execute-request filtered-request handler))))

Using TinyWeb

					
					
					
					
					
					Let’s take a look at using the Clojure version of TinyWeb. First let’s define a test HTTP request:	
				
	​ 	=> (​def​ request {:path ​"/greeting"​ :body ​"Mike,Joe,John,Steve"​})

	​ 	#'mbfpp.oo.tinyweb.core/request

					Now let’s take a look at our controller code, which is just a simple function and works much like our Scala
 version:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
	​ 	(​defn​ make-greeting [​name​]

	​ 	 (​let​ [greetings [​"Hello"​ ​"Greetings"​ ​"Salutations"​ ​"Hola"​]

	​ 	 greeting-count (​count​ greetings)]

	​ 	 (​str​ (greetings (​rand-int​ greeting-count)) ​", "​ ​name​)))

	​ 	

	​ 	(​defn​ handle-greeting [http-request]

	​ 	 {:greetings (​map​ make-greeting (str/split (:body http-request) #","))})

					Running our test request through it returns the appropriate model map, as seen below:
				
	​ 	=> (handle-greeting request)

	​ 	{:greetings ("Greetings, Mike" "Hola, Joe" "Hola, John" "Hola, Steve")}

					Next up is our view code. This code renders the model into HTML. It’s just another function that takes in the
 appropriate model map and returns a string:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
	​ 	(​defn​ render-greeting [greeting]

	​ 	 (​str​ ​"<h2>"​greeting​"</h2>"​))

	​ 	

	​ 	(​defn​ greeting-view [model]

	​ 	 (​let​ [rendered-greetings (str/join ​" "​ (​map​ render-greeting (:greetings model)))]

	​ 	 (​str​ ​"<h1>Friendly Greetings</h1> "​ rendered-greetings)))

					If we run ​greeting-view​ over the output of ​handle-greeting​, we get our
 rendered HTML:
				
	​ 	=> (greeting-view (handle-greeting request))

	​ 	"<h1>Friendly Greetings</h1>

	​ 	<h2>Hola, Mike</h2>

	​ 	<h2>Hello, Joe</h2>

	​ 	<h2>Greetings, John</h2>

	​ 	<h2>Salutations, Steve</h2>"

					Next let’s look at our ​logging-filter​. This is just a simple function that logs out the
 path of the request before returning it:
				
	ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
	​ 	(​defn​ logging-filter [http-request]

	​ 	 (​println​ (​str​ ​"In Logging Filter - request for path: "​ (:path http-request)))

	​ 	 http-request)

					Finally, we’ll wire everything together into an instance of TinyWeb, as we do in the following code:	
				
	ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
	​ 	(​def​ request-handlers

	​ 	 {​"/greeting"​ {:controller handle-greeting :view greeting-view}})

	​ 	(​def​ filters [logging-filter])

	​ 	(​def​ tinyweb-instance (tinyweb request-handlers filters))

					If we run our test request through the instance of TinyWeb, it’s filtered and processed as it should be:	
				
	​ 	=> (tinyweb-instance request)

	​ 	In Logging Filter - request for path: /greeting

	​ 	{:status-code 200,

	​ 	:body "<h1>Friendly Greetings</h1>

	​ 	<h2>Greetings, Mike</h2>

	​ 	<h2>Greetings, Joe</h2>

	​ 	<h2>Hello, John</h2>

	​ 	<h2>Hola, Steve</h2>"}

				
				That wraps up our look at TinyWeb! The code in this chapter has been kept simple; we’ve stuck to a minimal set of
 language features and omitted much error handling and many useful features. However, it does show how quite a few of
 the patterns we’ll examine in this book fit together.
			

				Throughout the remainder of the book, we’ll take a closer look at these patterns and many others as we continue
 our journey through functional programming.
			

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 3
Replacing Object-Oriented Patterns

3.1 Introduction

Object-oriented patterns are a staple of modern software engineering. In this chapter, we’ll take a look at some of the
 most common ones and the problems they solve. Then we’ll introduce more functional solutions that solve the same
 sorts of problems that the object-oriented patterns solve.
		

			For each pattern that we introduce, we’ll first look at it in Java. Then we’ll look at a Scala approach that solves
 the same problems, and finally we’ll wrap up with a look at a Clojure version that does as well.
		

			Sometimes the Scala and Clojure replacements will be quite similar. For instance, the Scala and Clojure solutions in
 both Pattern 1, ​Replacing Functional Interface​, and Pattern 7, ​Replacing Strategy​, are largely the same.
 Other times the solutions we explore in these two languages will be quite different but still embody the same
 functional concept.
		

			The solutions we look at in Pattern 4, ​Replacing Builder for Immutable Object​, for instance, are very different in Scala and
 Clojure. However, in both cases they show straightforward ways of working with immutable data.
		

			By exploring both the similarities and the differences between Scala and Clojure, you should get a good feel for
 how each language approaches functional programming and how it differs from the traditional imperative style you may be
 used to.
		

			Let’s get started with our first pattern, Functional Interface!
		

	Pattern 1	Replacing Functional Interface

Intent

			 To encapsulate a bit of program
 logic so that it can be passed around, stored in data structures, and generally treated like any other first-class
 construct
		
Overview

			Functional Interface is a basic object-oriented design pattern. It consists of an interface with a single method
 with a name like run, execute, perform, apply, or some other generic verb. Implementations of Functional Interface
 perform a single well-defined action, as any method should.
		

			Functional Interface lets us call an object as if it were a function, which lets us pass verbs around our program
 rather than nouns. This turns the traditional object-oriented view of the world on its head a bit. In the strict
 object-oriented view, objects, which are nouns, are king. Verbs, or methods, are second-class citizens, always
 attached to an object, doomed to a life of servitude to their noun overlords.
		
Also Known As

Function Object
			
Functoid
			
Functor

Functional Replacement

			A strict view of object orientation makes some problems clumsier to solve. I’ve lost track of the number of times I’ve
 written five or six lines of boilerplate to wrap a single line of useful code into ​Runnable​ or
 ​Callable​, two of Java’s most popular instances of Functional Interface.
		

			To simplify things, we can replace Functional Interface with plain functions. It might seem strange that we can
 replace an object with seemingly more primitive functions, but functions in functional programming are much more
 powerful than functions in C or methods in Java.
		

			
			In functional languages, functions are
 ​ higher order​

 : they can be returned from functions and used
 as arguments to others. They are
 ​ first-class constructs​

 , which means that in addition to being
 higher order they can also be assigned to variables, put into data structures, and generally manipulated. They can be
 unnamed, or
 ​ anonymous functions​

 , which are extremely handy for small, one-off pieces of code. In
 fact, Functional Interface (as its name might suggest) is a pattern that in the object-oriented world
 approximates the behavior of the functions of the functional world.
		

			We’ll cover a couple of different flavors of a Functional Interface replacement in this section. The first replaces
 smaller instances of the pattern—say ones that take a few lines of code—with an anonymous function. This
 is similar to using an anonymous inner class to implement Functional Interface in Java and is covered in ​Sample Code: Anonymous Functions​.
		

			The second covers instances of the pattern that span more than a few lines. In Java, we’d implement these using a
 named rather than an anonymous class; in the functional world we use a named function, as we do in ​Sample Code: Named Functions​.
		
Sample Code: Anonymous Functions

			
			
			Our first example demonstrates anonymous functions and how we can use them to replace small instances of Functional
 Interface. One common situation where we’d do this is when we need to sort a collection differently than its

 ​ natural ordering​

 , the way it’s commonly ordered.
		

			To do so, we need to create a custom comparison so that the sorting algorithm knows which elements come first. In
 classic Java, we need to create a ​Comparator​ implemented as an anonymous class. In Scala and
 Clojure, we get right to the point by using an anonymous function.

			We’ll take a look at a simple example of sorting differently than the natural ordering for an object: sorting a
 ​Person​ by first name rather than last.
		
Classic Java

				In classic Java, we’ll use a Functional Interface named ​Comparator​ to help with our sort. We’ll
 implement it as an anonymous function, since it’s only a tiny bit of code, and we’ll pass it into the sorting function.
 The kernel of the solution is here:
			
	JavaExamples/src/main/java/com/mblinn/mbfpp/oo/fi/PersonFirstNameSort.java
	​ 	​Collections​.sort(people, ​new​ ​Comparator​<Person>() {

	​ 	 ​public​ ​int​ compare(Person p1, Person p2) {

	​ 	 ​return​ p1.getFirstName().compareTo(p2.getFirstName());

	​ 	 }

	​ 	});

				This works, but most of the code is extra syntax to wrap our one line of actual logic into an anonymous class.
 Let’s see how anonymous functions can help clean this up.

			
In Scala

				Let’s take a look at how we’d solve the problem of sorting by first rather than last name in Scala. We’ll use a
 case class to represent people, and we’ll do away with the Functional Interface ​Comparator​. In its
 place, we’ll use a plain old function.
			

				
				
				Creating an anonymous function in Scala uses the following syntax:
			
	​ 	(arg1: Type1, arg2: Type2) => FunctionBody

				For instance, the following REPL session creates an anonymous function that takes two integer arguments and adds
 them together.
			
	​ 	scala>​ (int1: Int, int2: Int) => int1 + int2​

	​ 	res0: (Int, Int) => Int = <function2>

				
				Now that we’ve got the basic syntax down, let’s see how to use an anonymous function to solve our person-sorting
 problem. To do so we use a method in Scala’s collections library,
 ​sortWith​
 . The

 ​sortWith​
 method takes a comparison function and uses it to help sort a collection, much like

 ​Collections.sort​
 takes a ​Comparator​ to do the same.
			

				Let’s start with the code for our ​Person​ case class:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
	​ 	​case​ ​class​ Person(firstName: ​String​, lastName: ​String​)

				Here’s a vector full of them to use for test data:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
	​ 	​val​ p1 = Person(​"Michael"​, ​"Bevilacqua"​)

	​ 	​val​ p2 = Person(​"Pedro"​, ​"Vasquez"​)

	​ 	​val​ p3 = Person(​"Robert"​, ​"Aarons"​)

	​ 	

	​ 	​val​ people = Vector(p3, p2, p1)

				The
 ​sortWith​
 method expects its comparison function to return a Boolean value that tells it whether the
 first argument is higher than the second argument. Scala’s comparison operators ​<​ and
 ​>​ work on strings, so we can use them for this purpose.
			

				The following code demonstrates this approach. We can omit the type annotations for the function parameters. Scala
 is able to infer them from the
 ​sortWith​
 method:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
	​ 	people.sortWith((p1, p2) => p1.firstName < p2.firstName)

				Running this in Scala’s REPL gets us the following output.	
			
	​ 	res1: scala.collection.immutable.Vector[...] =

	​ 	 Vector(

	​ 	 Person(Michael,Bevilacqua),

	​ 	 Person(Pedro,Vasquez),

	​ 	 Person(Robert,Aarons))

				This is shorter and simpler than using an equivalent implementation of Functional Interface!
				
				
				
				
			
In Clojure

				
				We define an anonymous function in Clojure using the ​fn​ special form, as the following code
 outline shows.
			
	​ 	(​fn​ [arg1 arg2] function-body)

				Let’s start by creating some test people. In Clojure, we won’t define a class to carry around data; we’ll use a
 humble map:
			
	ClojureExamples/src/mbfpp/rso/person.clj
	​ 	(​def​ p1 {:first-name ​"Michael"​ :last-name ​"Bevilacqua"​})

	​ 	(​def​ p2 {:first-name ​"Pedro"​ :last-name ​"Vasquez"​})

	​ 	(​def​ p3 {:first-name ​"Robert"​ :last-name ​"Aarons"​})

	​ 	

	​ 	(​def​ people [p3 p2 p1])

				Now we create an anonymous ordering function and pass it into the ​sort​ function along with the
 people we want to sort, as the following code demonstrates:
			
	​ 	=> (sort (fn [p1 p2] (compare (p1 :first-name) (p2 :first-name))) people)

	​ 	({:last-name "Bevilacqua", :first-name "Michael"}

	​ 	 {:last-name "Vasquez", :first-name "Pedro"}

	​ 	 {:last-name "Aarons", :first-name "Robert"})

				By eliminating the extra syntax we need in Java to wrap our ordering function in a ​Comparator​, we
 write code that gets right to the point.
			
Sample Code: Named Functions

			Let’s expand our person-sorting problem a bit. We’ll add a middle name to each person in our list and modify our
 unusual sorting algorithm to sort by first name, then last name if the first names are the same, and finally middle
 name if the last names are also the same.
		

			This makes the comparison code long enough that we should no longer embed it in the code that’s using it. In Java we
 move the code out of an anonymous inner class and into a named class. In Clojure and Scala, we move it into a named
 function.
		
Classic Java

				Anonymous classes and functions are great when the logic they’re wrapping is small, but when it grows larger it
 gets messy to embed. In classic Java, we move to using a named class, as is sketched out below:
			
	​ 	​public​ ​class​ ComplicatedNameComparator ​implements​ ​Comparator​<Person> {

	​ 	 ​public​ ​int​ compare(Person p1, Person p2) {

	​ 	 complicatedSortLogic

	​ 	 }

	​ 	}

				With higher-order functions, we use a named function.
			
In Scala

				We start off by expanding our Scala case class to have a middle name and by defining some test data:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExpanded.scala
	​ 	​case​ ​class​ Person(firstName: ​String​, middleName: ​String​, lastName: ​String​)

	​ 	​val​ p1 = Person(​"Aaron"​, ​"Jeffrey"​, ​"Smith"​)

	​ 	​val​ p2 = Person(​"Aaron"​, ​"Bailey"​, ​"Zanthar"​)

	​ 	​val​ p3 = Person(​"Brian"​, ​"Adams"​, ​"Smith"​)

	​ 	​val​ people = Vector(p1, p2, p3)

				Now we create a named comparison function and pass it into
 ​sortWith​
 , as the following code
 demonstrates:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExpanded.scala
	​ 	​def​ complicatedSort(p1: Person, p2: Person) =

	​ 	 ​if​ (p1.firstName != p2.firstName)

	​ 	 p1.firstName < p2.firstName

	​ 	 ​else​ ​if​ (p1.lastName != p2.lastName)

	​ 	 p1.lastName < p2.lastName

	​ 	 ​else​

	​ 	 p1.middleName < p2.middleName

				And voilà! We can easily sort our people using an arbitrarily named function:
			
	​ 	scala>​ people.sortWith(complicatedSort)​

	​ 	res0: scala.collection.immutable.Vector[...] =

	​ 	 Vector(

	​ 	 Person(Aaron,Jeffrey,Smith),

	​ 	 Person(Aaron,Bailey,Zanthar),

	​ 	 Person(Brian,Adams,Smith))

In Clojure

				The Clojure solution is quite similar to the Scala one. We’ll need a named function that can compare people
 according to our more complex set of rules, and we’ll need to add middle names to our people.
			

				Here’s the code for our complicated sort algorithm:
			
	ClojureExamples/src/mbfpp/rso/person_expanded.clj
	​ 	(​defn​ complicated-sort [p1 p2]

	​ 	 (​let​ [first-name-compare (​compare​ (p1 :first-name) (p2 :first-name))

	​ 	 middle-name-compare (​compare​ (p1 :middle-name) (p2 :middle-name))

	​ 	 last-name-compare (​compare​ (p1 :last-name) (p2 :last-name))]

	​ 	 (​cond​

	​ 	 (​not​ (​=​ 0 first-name-compare)) first-name-compare

	​ 	 (​not​ (​=​ 0 last-name-compare)) last-name-compare

	​ 	 :else middle-name-compare)))

				Now we can call ​sort​ as before, but instead of passing in an anonymous function, we pass the
 named function ​complicated-sort​:
			
	ClojureExamples/src/mbfpp/rso/person_expanded.clj
	​ 	(​def​ p1 {:first-name ​"Aaron"​ :middle-name ​"Jeffrey"​ :last-name ​"Smith"​})

	​ 	(​def​ p2 {:first-name ​"Aaron"​ :middle-name ​"Bailey"​ :last-name ​"Zanthar"​})

	​ 	(​def​ p3 {:first-name ​"Brian"​ :middle-name ​"Adams"​ :last-name ​"Smith"​})

	​ 	(​def​ people [p1 p2 p3])

	​ 	=> (sort complicated-sort people)

	​ 	({:middle-name "Jeffrey", :last-name "Smith", :first-name "Aaron"}

	​ 	{:middle-name "Bailey", :last-name "Zanthar", :first-name "Aaron"}

	​ 	{:middle-name "Adams", :last-name "Smith", :first-name "Brian"})

				That’s all there is to it.
			
Discussion

			Functional Interface is a bit odd. It comes from Java’s current insistence on turning everything into an object, a
 noun. This is like having to use a ShoePutterOnner, a DoorOpener, and a Runner just to go for a run! Replacing the pattern
 with higher-order functions helps us in several ways. The first is that it reduces the syntactic overhead of many
 common tasks, cruft you have to write in order to write the code you want to write.
		

			For instance, the first ​Comparator​ we came across in this section required five lines
 of Java code (formatted properly) to convey just one line of actual computation:
		
	​ 	​new​ ​Comparator​<Person>() {

	​ 	 ​public​ ​int​ compare(Person left, Person right) {

	​ 	 ​return​ left.getFirstName().compareTo(right.getFirstName());

	​ 	 }

	​ 	}

			Compare that to a single line of Clojure.
		
	​ 	(​fn​ [left right] (​compare​ (left :first-name) (right :first-name)))

			
			More importantly, using higher-order functions gives us a consistent way of passing around small bits of computation.
 With Functional Interface, you need to look up the right interface for every little problem you want to solve and
 figure out how to use it. We’ve seen ​Comparator​ in this chapter and mentioned a few other common uses
 of the pattern. Hundreds of others exist in Java’s standard libraries and other popular libraries, each as unique
 as a snowflake, but more annoyingly different than beautiful.
		

			Functional Interface and its replacements in this chapter have some differences that don’t touch on the core problem
 that it’s meant to solve. Since Functional Interface is implemented with a class, it defines a type and can use common
 object-oriented features such as subclassing and polymorphism. Higher-order functions cannot. This is actually a
 strength of higher-order functions over Functional Interface: you don’t need a new type for each type of Functional
 Interface when just the existing function types will do.

		
For Further Reading

				Effective Java [Blo08]—​Item 21: Use Function Objects to
					Represent Strategies​
			

				JSR 335: Lambda Expressions for the Java Programming Language [Goe12]
				[2]
			

Related Patterns

Pattern 3, ​Replacing Command​

Pattern 6, ​Replacing Template Method​

Pattern 7, ​Replacing Strategy​

Pattern 16, ​Function Builder​

	Pattern 2	Replacing State-Carrying Functional Interface

Intent

			
			To encapsulate a bit of state along with program logic so it can be passed around, stored in data structures, and
 generally treated like any other first-class construct
		
Overview

			In Pattern 1, ​Replacing Functional Interface​, we saw how to replace Functional Interface with higher-order
 functions, but the instances we looked at didn’t carry around any program state. In this pattern, we’ll take a look at
 how we can replace Functional Interface implementations that need state using a powerful construct called a

 ​ closure​

 .
		
Also Known As

Function Object
			
Functoid
			
Functor

Functional Replacement

			
			Functions in the functional world are part of a powerful construct called a
 ​ closure​

 . A closure
 wraps up a function along with the state available to it when it was created. This means that a function can reference
 any variable that was in scope when the function was created at the time it’s called. The programmer doesn’t have to
 do anything special to create a closure; the compiler and runtime take care of it, and the closure simply captures all
 the state that it needs automatically.
		

			In classic Java, we’d carry state around by creating fields on the class and by providing setters for them or setting
 them through a constructor. In the functional world, we can take advantage of closures to handle this without any
 extra machinery. Closures are a bit magical, so it’s worth examining them in more detail before we move on.
		

			A closure is composed of a function and the state that was available to that function when it was created. Let’s see
 what this might look like pictorially, as shown in the figure.
		

A closure is a structure that consists of a function and its context at the time it was defined.
[image: images/ChapOneClosure.png]

Figure 2. Structure of a Closure.

	
			Here we can see that the closure has a function in it and a scope chain that lets it look up any variables that it
 needs to do its job. Translated into Clojure, it looks like this:

		
	ClojureExamples/src/mbfpp/rso/closure_example.clj
	​ 	(​ns​ mbfpp.rso.closure-example)

	​ 	

	​ 	​; Scope 1 - Top Level​

	​ 	(​def​ foo ​"first foo"​)

	​ 	(​def​ bar ​"first bar"​)

	​ 	(​def​ baz ​"first baz"​)

	​ 	

	​ 	(​defn​ make-printer [foo bar] ​; Scope 2 - Function Arguments​

	​ 	 (​fn​ []

	​ 	 (​let​ [foo ​"third foo"​] ​; Scope 3 - Let Statement​

	​ 	 (​println​ foo)

	​ 	 (​println​ bar)

	​ 	 (​println​ baz))))

			If we use this code to make a printer function and run it, it prints the ​foo​,
 ​bar​, and ​baz​ from the deepest scope that they’re defined in, just as any
 experienced developer would expect:
		
	​ 	=> (def a-printer (make-printer "second foo" "second bar"))

	​ 	#'closure-example/a-printer

	​ 	=> (a-printer)

	​ 	third foo

	​ 	second bar

	​ 	first baz

	​ 	nil

			This may not seem surprising, but what if we took ​a-printer​ and passed it around our program, or
 stored it in a vector to retrieve and use later? It would still print the same values for ​foo​,
 ​bar​, and ​baz​, which implies that those values stick around somewhere.
		

			Behind the scenes, Clojure and Scala need to do an awful lot of magic to make that work. However, actually using a
 closure is as simple as declaring a function. I like to keep the previous figure in mind
 when working with closures because it’s a good mental model of how they work.

		
Sample Code: Closure

			To demonstrate closures, we’ll take one last look at comparisons, with a bit of a twist. This time, we’ll see how to
 create a comparison that’s composed of a list of other comparisons, which means that we need someplace to store this
 list of comparisons.
		

			In Java, we’ll just pass them in as arguments to a constructor in our custom ​Comparator​
 implementation, and we’ll store them in a field. In Scala and Clojure, we can just use a closure. Let’s jump into the Java
 example first.
		
Classic Java

				In Java, we create a custom implementation of ​Comparator​ called
 ​ComposedComparator​, with a single constructor that uses varargs to get an array of
 ​Comparator​s and stores them in a field.
			

				When the
 ​compare​
 method on a ​ComposedComparator​ is called, it runs through all the
 comparators in its array and returns the first nonzero result. If all the results are zero, then it returns
 zero. An outline of this solution looks like so:
			
	​ 	​public​ ​class​ ComposedComparator<T> ​implements​ ​Comparator​<T> {

	​ 	 ​private​ ​Comparator​<T>​[]​ comparators;

	​ 	 ​public​ ComposedComparator(​Comparator​<T>... comparators) {

	​ 	 this.comparators = comparators;

	​ 	 }

	​ 	 @Override

	​ 	 ​public​ ​int​ compare(T o1, T o2) {

	​ 	 ​//Iterate through comparators and call each in turn.​

	​ 	 }

	​ 	

	​ 	}

				In the functional world, we can use closures instead of having to create new classes. Let’s dig into how to do this
 in Scala.
			
In Scala

				
				
				In Scala, we’ll take advantage of closures to avoid explicitly keeping track of our list of comparisons in our
 composed comparison. Our Scala solution is centered around a higher-order function,

 ​makeComposedComparison​
 , which uses varargs to take in an array of comparison functions and
 returns a function that executes them in order.
			

				One other difference between the Java and Scala solutions is in how we return the final result. In Java, we
 iterated through the list of ​Comparator​s, and as soon as we saw a nonzero comparison, we returned
 it.
			

				We use
 ​map​
 to run our comparisons over our input. Then we search for the first one that’s
 nonzero. If we don’t find a nonzero value, all our comparisons were the same and we return zero. Here’s the code for

 ​makeComposedComparison​
 :
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
	​ 	​def​ makeComposedComparison(comparisons: (Person, Person) => ​Int​*) =

	​ 	 (p1: Person, p2: Person) =>

	​ 	 comparisons.map(cmp => cmp(p1, p2)).find(_ != 0).getOrElse(0)

				Now we can take two comparison functions and compose them together. In the code below, we define

 ​firstNameComparison​
 and
 ​lastNameComparison​
 , and then we compose them together into

 ​firstAndLastNameComparison​
 :
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
	​ 	​def​ firstNameComparison(p1: Person, p2: Person) =

	​ 	 p1.firstName.compareTo(p2.firstName)

	​ 	

	​ 	​def​ lastNameComparison(p1: Person, p2: Person) =

	​ 	 p1.lastName.compareTo(p2.lastName)

	​ 	

	​ 	​val​ firstAndLastNameComparison = makeComposedComparison(

	​ 	 firstNameComparison, lastNameComparison

	​)

				Let’s take a look at our composed comparison function in action by defining a couple of people and comparing
 them:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
	​ 	​val​ p1 = Person(​"John"​, ​""​, ​"Adams"​)

	​ 	​val​ p2 = Person(​"John"​, ​"Quincy"​, ​"Adams"​)

	​ 	scala>​ firstAndLastNameComparison(p1, p2)​

	​ 	res0: Int = 0

				One optimization we could make is to create a short-circuiting version of the composed comparison that stops
 running comparisons as soon as it comes across the first nonzero result. To do so, we could use a recursive
 function such as the ones we discuss in Pattern 12, ​Tail Recursion​, rather than the for
 comprehension we use here.

			
In Clojure

				
				
				We’ll wrap up the code samples for this pattern with a look at how we’d create composed comparisons in Clojure.
 We’ll rely on a ​make-composed​ comparison, but it’ll work a bit differently than the Scala
 version.
			

				In Scala, we could use the
 ​find​
 method to find the first nonzero result; in Clojure we can use
 the ​some​ function. This is very different than Scala’s ​Some​ type!
			

				
				In Clojure, the ​some​ function takes a predicate and a sequence, and it returns the first
 value for which the predicate is true. Here we use Clojure’s ​some​ and
 ​for​ to run all of the comparisons and select the correct final value:
			
	ClojureExamples/src/mbfpp/rso/closure_comparison.clj
	​ 	(​defn​ make-composed-comparison [& comparisons]

	​ 	 (​fn​ [p1 p2]

	​ 	 (​let​ [results (​for​ [comparison comparisons] (comparison p1 p2))

	​ 	 first-non-zero-result

	​ 	 (​some​ (​fn​ [result] (​if​ (​not​ (​=​ 0 result)) result nil)) results)]

	​ 	 (​if​ (​nil?​ first-non-zero-result)

	​ 	 0

	​ 	 first-non-zero-result))))

				Now we can create our ​first-name-comparison​ and ​last-name-comparison​ and
 compose them together:
			
	ClojureExamples/src/mbfpp/rso/closure_comparison.clj
	​ 	(​defn​ first-name-comparison [p1, p2]

	​ 	 (​compare​ (:first-name p1) (:first-name p2)))

	​ 	

	​ 	(​defn​ last-name-comparison [p1 p2]

	​ 	 (​compare​ (:last-name p1) (:last-name p2)))

	​ 	

	​ 	(​def​ first-and-last-name-comparison

	​ 	 (make-composed-comparison

	​ 	 first-name-comparison last-name-comparison))

				And we’ll use them to compare two people:
			
	ClojureExamples/src/mbfpp/rso/closure_comparison.clj
	​ 	(​def​ p1 {:first-name ​"John"​ :middle-name ​""​ :last-name ​"Adams"​})

	​ 	(​def​ p2 {:first-name ​"John"​ :middle-name ​"Quincy"​ :last-name ​"Adams"​})

	​ 	=> (first-and-last-name-comparison p1 p2)

	​ 	0

				That wraps up our look at using closures to replace state-carrying Functional Interface implementations. Before we
 move on, let’s discuss the relationship between closures and classes in a bit more detail.

			
Discussion

			
			There’s a joke about closures and classes: classes are a poor man’s closure, and closures are a poor man’s class.
 Besides demonstrating that functional programmers probably shouldn’t go into standup comedy, this illustrates
 something interesting about the relationship between classes and closures.
		

			In some ways, closures and classes are very similar. They can both carry around state and behavior. In others, they’re
 quite different. Classes have a whole bunch of object-oriented machinery around them, they define types, they can be part
 of hierarchies, and so on. Closures are much simpler—they’re just composed of a function and the context it was created in.
		

			Having closures makes it much simpler to solve a whole host of common programming tasks, as we’ve seen in this
 section, which is why classes are a poor man’s closure. However, classes have many programming features that closures
 don’t, which is why closures are a poor man’s class. Scala solves this problem by giving us both classes and closures,
 and Clojure solves it by deconstructing the good stuff from classes, such as polymorphism and type hierarchies, and
 giving it to programmers in other forms.
		

			Having closures and higher-order functions can simplify many common patterns (Command, Template Method, and Strategy
 to name a few) to such an extent that they almost disappear. They’re useful enough that closures and higher-order
 functions are one of the new major pieces of functionality in the upcoming Java 8 under the guise of JSR 335.

		

			This is a big change to a mature language that absolutely has to be backwards-compatible, so it’s not an easy task.
 It’s not one that the stewards of Java undertook lightly; but because higher-order functions are such a big win, it
 was deemed important to include them. It’s taken years of effort to specify and implement, but they’re finally coming!

		
For Further Reading

				Effective Java [Blo08]—​Item 21: Use Function Objects to
					Represent Strategies​
			

				JSR 335: Lambda Expressions for the Java Programming Language [Goe12]
				[3]
			

Related Patterns

Pattern 3, ​Replacing Command​

Pattern 6, ​Replacing Template Method​

Pattern 7, ​Replacing Strategy​

Pattern 16, ​Function Builder​

	Pattern 3	Replacing Command

Intent

			
			
			To turn a method invocation into an object and execute it in a central location so that we can keep track of
 invocations so they can be undone, logged, and so forth
		
Overview

			Command encapsulates an action along with the information needed to perform it. Though it seems simple, the pattern has
 quite a few moving parts. In addition to the ​Command​ interface and its implementations,
 there’s a client, which is responsible for creating the ​Command​; an invoker, which is responsible for
 running it; and a receiver, on which the ​Command​ performs its action.
		

			The invoker is worth talking about a little because it’s often misunderstood. It helps to decouple the invocation of a
 method from the client asking for it to be invoked and gives us a central location in which all method invocations
 take place. This, combined with the fact that the invocation is represented by an object, lets us do handy things like
 log the method invocation so it can be undone or perhaps serialized to disk.
		

		 Figure 3, ​Command Outline​ sketches out how Command fits together.	
		
[image: images/CommandClassDiagram.png]

Figure 3. Command Outline. The outline of the Command pattern

			A simple example is a logging ​Command​. Here, the client is any class that needs to do logging and the
 receiver is a ​Logger​ instance. The invoker is the class that the client calls instead of calling
 the ​Logger​ directly.
		
Also Known As

			Action
		
Functional Replacement

			Command has a few moving parts, as does our functional replacement. The Command class itself is a Functional Interface that generally carries state,
 so we’ll replace it with the closures we introduced in Pattern 2, ​Replacing State-Carrying Functional Interface​.
		

			Next we’ll replace the invoker with a simple function responsible for executing commands, which I’ll call the
 ​execution function​. Just like the invoker, the ​execution function​ gives us a central place to control execution
 of our commands, so we can store or otherwise manipulate them as needed.
		

			Finally, we’ll create a Pattern 16, ​Function Builder​ that’s responsible for creating our
 commands so we can create them easily and consistently.
		
Sample Code: Cash Register

			Let’s look at how we’d implement a simple cash register with Command. Our cash register is very basic: it only handles
 whole dollars, and it contains a total amount of cash. Cash can only be added to the register.
		

			We’ll keep a log of transactions so that we can replay them. We’ll take a look at how we’d do this with the
 traditional Command pattern first before moving on to the functional replacements in Scala and Clojure.
		
Classic Java

				A Java implementation starts with defining a standard ​Command​ interface. This is an example of Pattern 1, ​Replacing Functional Interface​. We implement that interface with a ​Purchase​ class.
			

				The receiver for our pattern is a ​CashRegister​ class. A ​Purchase​ will contain a
 reference to the ​CashRegister​ it should be executed against. To round out the pattern, we’ll need
 an invoker, ​PurchaseInvoker​, to actually execute our purchases.
			

				A diagram of this implementation is below, and the full source can be found in this book’s code samples.
			
[image: images/CashRegisterClass.png]

Figure 4. Cash Register Command. The structure of a cash register as a Command pattern in Java

				Now that we’ve sketched out a Java implementation of the Command pattern, let’s see how we can simplify it
 using functional programming.
			
In Scala

				The cleanest replacement for Command in Scala takes advantage of Scala’s hybrid nature. We’ll retain a
 ​CashRegister​ class, just as in Java; however, instead of creating a ​Command​
 interface and implementation, we’ll simply use higher-order functions. Instead of creating a separate class to act
 as an invoker, we’ll just create an execution function. Let’s take a look at the code, starting with the
 ​CashRegister​ itself:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
	​ 	​class​ CashRegister(​var​ total: ​Int​) {

	​ 	 ​def​ addCash(toAdd: ​Int​) {

	​ 	 total += toAdd

	​ 	 }

	​ 	}

				Next we’ll create the function ​makePurchase​ to create our purchase functions. It takes 		
				​amount​ and ​register​ as arguments to add to it, and it returns a function that
 does the deed, as the following code shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
	​ 	​def​ makePurchase(register: CashRegister, amount: ​Int​) = {

	​ 	 () => {

	​ 	 println(​"Purchase in amount: "​ + amount)

	​ 	 register.addCash(amount)

	​ 	 }

	​ 	}

				Finally, let’s look at our execution function, ​executePurchase​. It just adds the purchase
 function it was passed to a ​Vector​ to keep track of purchases we’ve made before executing it.
 Here’s the code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
	​ 	​var​ purchases: Vector[() => ​Unit​] = Vector()

	​ 	​def​ executePurchase(purchase: () => ​Unit​) = {

	​ 	 purchases = purchases :+ purchase

	​ 	 purchase()

	​ 	}

What's That Var Doing in Here?

					The ​code​​​ has a mutable reference front and center.
				
	​ 	​var​ purchases: Vector[() => ​Unit​] = Vector()

					
					This might seem a bit odd in a book on functional programming. Shouldn’t everything be immutable? It turns out
 that it’s difficult, though not impossible, to model everything in a purely functional way. Keeping track of
 changing stack is especially tricky.
				

					Never fear though; all we’re doing here is moving around a reference to a bit of immutable data. This gives us
 most of the benefits of immutability. For instance, we can safely create as many references to our original
 ​Vector​ without worrying about accidentally modifying the original, as the following code shows:
				
	​ 	scala>​ var v1 = Vector("foo", "bar")​

	​ 	v1: scala.collection.immutable.Vector[String] = Vector(foo, bar)

	​ 	

	​ 	scala>​ val v1Copy = v1​

	​ 	v1Copy: scala.collection.immutable.Vector[String] = Vector(foo, bar)

	​ 	

	​ 	scala>​ v1 = v1 :+ "baz"​

	​ 	v1: scala.collection.immutable.Vector[String] = Vector(foo, bar, baz)

	​ 	

	​ 	scala>​ v1Copy​

	​ 	res0: scala.collection.immutable.Vector[String] = Vector(foo, bar)

					It’s possible to program in a purely functional way using the excellent Scalaz
 library,[4] but this book focuses on a more
 pragmatic form of functional programming.
				

				Here’s our solution in action:
			
	​ 	scala>​ val register = new CashRegister(0)​

	​ 	register: CashRegister = CashRegister@53f7eb48

	​ 	

	​ 	scala>​ val purchaseOne = makePurchase(register, 100)​

	​ 	purchaseOne: () => Unit = <function0>

	​ 	

	​ 	scala>​ val purchaseTwo = makePurchase(register, 50)​

	​ 	purchaseTwo: () => Unit = <function0>

	​ 	

	​ 	scala>​ executePurchase(purchaseOne)​

	​ 	Purchase in amount: 100

	​ 	

	​ 	scala>​ executePurchase(purchaseTwo)​

	​ 	Purchase in amount: 50

				As you can see, the register now has the correct total:
			
	​ 	scala>​ register.total​

	​ 	res2: Int = 150

				If we reset the register to 0, we can replay the purchases using the ones we’ve stored in the
 ​purchases​ vector:
			
	​ 	scala>​ register.total = 0​

	​ 	register.total: Int = 0

	​ 	

	​ 	scala>​ for(purchase <- purchases){ purchase.apply() }​

	​ 	Purchase in amount: 100

	​ 	Purchase in amount: 50

	​ 	

	​ 	scala>​ register.total​

	​ 	res4: Int = 150

			Compared to the Java version, the Scala version is quite a bit more straightforward. No need for a
 ​Command​, ​Purchase​, or separate invoker class when you’ve got higher-order functions.
		
In Clojure

				The overall structure of the Clojure solution is similar to the Scala one. We’ll use higher-order functions for
 our commands, and we’ll use an execution function to execute them. The biggest difference between the Scala and
 Clojure solutions is the cash register itself. Since Clojure doesn’t have object-oriented features, we can’t
 create a CashRegister class.
			

				
				Instead, we’ll simply use a Clojure ​atom​ to keep track of the cash in the register. To do so,
 we’ll create a ​make-cash-register​ function that returns a fresh atom to represent a new
 register and an ​add-cash​ function that takes a register and an amount. We’ll also create a
 ​reset​ function to reset our register to zero.
			

				Here’s the code for the Clojure cash register:
			
	ClojureExamples/src/mbfpp/oo/command/cash_register.clj
	​ 	(​defn​ make-cash-register []

	​ 	 (​let​ [register (​atom​ 0)]

	​ 	 (​set-validator!​ register (​fn​ [new-total] (​>​​=​ new-total 0)))

	​ 	 register))

	​ 	

	​ 	(​defn​ add-cash [register to-add]

	​ 	 (​swap!​ register ​+​ to-add))

	​ 	

	​ 	(​defn​ reset [register]

	​ 	 (​swap!​ register (​fn​ [oldval] 0)))

				We can create an empty register:
			
	​ 	=> (def register (make-cash-register))

	​ 	#'mblinn.oo.command.ex1.version-one/register

				And we’ll add some cash:
			
	​ 	=> (add-cash register 100)

	​ 	100

				Now that we’ve got our cash register, let’s take a look at how we’ll create commands. Remember, in Java this
 would require us to implement a ​Command​ interface. In Clojure we just use a function to represent
 purchases.
			

				To create them, we’ll use the ​make-purchase​ function, which takes a ​register​
 and an ​amount​ and returns a function that adds ​amount​ to
 ​register​. Here’s the code:
			
	ClojureExamples/src/mbfpp/oo/command/cash_register.clj
	​ 	(​defn​ make-purchase [register amount]

	​ 	 (​fn​ []

	​ 	 (​println​ (​str​ ​"Purchase in amount: "​ amount))

	​ 	 (add-cash register amount)))

				Here we use it to create a couple of purchases:
			
	​ 	=> (def register (make-cash-register))

	​ 	#'mblinn.oo.command.ex1.version-one/register

	​ 	=> @register

	​ 	0

	​ 	=> (def purchase-1 (make-purchase register 100))

	​ 	#'mblinn.oo.command.ex1.version-one/purchase-1

	​ 	=> (def purchase-2 (make-purchase register 50))

	​ 	#'mblinn.oo.command.ex1.version-one/purchase-2

				And here we run them:
			
	​ 	=> (purchase-1)

	​ 	Purchase in amount: 100

	​ 	100

	​ 	=> (purchase-2)

	​ 	Purchase in amount: 50

	​ 	150

				To finish off the example, we’ll need our execution function, ​execute-purchase​, which stores
 the purchase commands before executing them. We’ll use an atom, ​purchases​, wrapped around a
 vector for that purpose. Here’s the code we need:
			
	ClojureExamples/src/mbfpp/oo/command/cash_register.clj
	​ 	(​def​ purchases (​atom​ []))

	​ 	(​defn​ execute-purchase [purchase]

	​ 	 (​swap!​ purchases ​conj​ purchase)

	​ 	 (purchase))

				Now we can use ​execute-purchase​ to execute the purchases we defined above so that this time
 we’ll get them in our purchase history. We’ll reset ​register​ first:
			
	​ 	=> (execute-purchase purchase-1)

	​ 	Purchase in amount: 100

	​ 	100

	​ 	=> (execute-purchase purchase-2)

	​ 	Purchase in amount: 50

	​ 	150

				Now if we reset the register again, we can run through our purchase history to rerun the purchases:
			
	​ 	=> (reset register)

	​ 	0

	​ 	=> (doseq [purchase @purchases] (purchase))

	​ 	Purchase in amount: 100

	​ 	Purchase in amount: 50

	​ 	nil

	​ 	=> @register

	​ 	150

				That’s our Clojure solution! One tidbit I find interesting about it is how we modeled our cash register without
 using objects by simply representing it as a bit of data and functions that operate on it. This is, of course,
 common in the functional world and it often leads to simpler code and smaller systems.
			

				This might seem limiting to the experienced object-oriented programmer at first; for instance, what if you need
 polymorphism or hierarchies of types? Never fear, Clojure provides the programmer with all of the good stuff from
 the object-oriented world, just in a different, more decoupled form. For instance, Clojure has a way to create
 ad hoc hierarchies, and its multimethods and protocols give us polymorphism. We’ll look at some of these tools in
 more detail in Pattern 10, ​Replacing Visitor​.
			
Discussion

			I’ve found that Command, though it’s used everywhere, is one of the most misunderstood patterns of Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]. People often conflate the ​Command​ interface with the Command pattern. The ​Command​ interface is only a small part of the overall pattern and is itself an example of Pattern 1, ​Replacing Functional Interface​. This isn’t to say that the way it’s commonly used is wrong, but it is
 often different than the way the Gang of Four describes it, which can lead to some confusion when talking about the
 pattern.
		

			The examples in this section implemented a replacement for the full pattern in all its invoker/receiver/client glory,
 but it’s easy enough to strip out unneeded parts. For example, if we didn’t need our command to be able to work with
 multiple registers, we wouldn’t have to pass a register into ​makePurchase​.

		
For Further Reading

			Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—​Command​
		
Related Patterns

Pattern 1, ​Replacing Functional Interface​

	Pattern 4	Replacing Builder for Immutable Object

Intent

			 To create an immutable object using a friendly syntax for setting attributes—because we can’t
 modify them, we also need a simple way to create new objects based off existing ones, setting some attributes to new
 values as we do so.
		
Overview

			
			In this section, we’ll cover Fluent Builder, which produces immutable objects. This is a common pattern; Java’s
 standard library uses it with its ​StringBuilder​ and ​StringBuffer​. Many other common
 libraries use it as well, such as Google’s protocol buffers framework.
		

			Using immutable objects are a good practice that’s often ignored in Java, where the most common way of carrying data
 around is in a class with a bunch of getters and setters. This forces data objects to be mutable, and mutability is
 the source of many common bugs.
		

			
			
			The easiest way to get an immutable object in Java is just to create a class that takes in all the data it needs as
 constructor arguments. Unfortunately, as item 2 of the excellent Effective
 Java [Blo08] points out, this leads to a couple of problems when dealing with a large number of attributes.
		

			 The first is that a Java class with many constructor arguments is very hard to use. A programmer has to remember
 which argument goes in which position, rather than referring to it by name. The second is that there is no easy way
 to create defaults for attributes, since values for all attributes need to be passed into the constructor.
		

			
			One way to get around that is to create several different constructors that take only a subset of values and that default
 the ones not passed in. For large objects this leads to the
 ​ telescoping constructor problem​

 , where a
 class has to implement many different constructors and pass values from the smaller constructors to ever larger ones.
		

			The builder pattern we examine in this section, outlined in Effective Java [Blo08],
 solves both of these problems at the cost of quite a bit of code.
		
Functional Replacement

			The techniques used to replace these two patterns in Scala and Clojure are quite different, but both share the very
 important property that they make it extremely simple to create immutable objects. Let’s take a look at Scala first.
		
In Scala

				We’ll cover three different techniques for creating immutable data structures in Scala, each of which has its own
 strengths and weaknesses.
			

				First we’ll cover creating a Scala class that consists entirely of immutable values. We’ll show how to use named
 parameters and default values to achieve something very much like the fluent builder for an immutable object in
 Java but with a fraction of the overhead.
			

				Next we’ll take a look at Scala’s case classes. Case classes are meant specifically for carrying data, so they
 come with some handy methods already implemented, like
 ​equals​
 and
 ​hashCode​
 , and
 they can be used with Scala’s pattern matching to easily pick them apart. This makes them a good default choice
 for many data carrying uses.
			

				In both instances, we’ll use Scala’s constructors to create objects. Scala’s constructors don’t have the same
 shortcomings as the Java constructors we discussed earlier, because we can name parameters and provide them with
 default values. This helps us avoid both the telescoping constructor problem and the problems involved with
 passing in several unnamed parameters and trying to remember which is which.
			

				Finally, we’ll cover Scala tuples, which are a handy way to pass around small composite data structures without
 having to create a new class.
			
In Clojure

				Clojure has support for creating new classes, but it’s intended to be used only for interop with Java.
 Instead, it’s common to use plain old immutable maps to model aggregate data.
			

				Coming from the Java world, it might seem like this is a bad idea, but since Clojure has excellent support for
 working with maps, it’s actually very convenient. Using maps to model data allows us the full power of Clojure’s
 sequence library in manipulating that data, which is a very powerful.
			

				
				
				 Many libraries rely on inspecting data objects to perform operations on their data, such as XStream, which
 serializes data objects to XML, or Hibernate, which can generate SQL queries using them. To do this sort of
 programming in Java, you need to use the reflection library. With Clojure, you can just use simple map operations.
			

				The second way to model data in Clojure is to use a record. A record exposes a map-like interface; so you can
				still use the full power of Clojure’s sequence library on it, but records have a few advantages over maps.

First, records
 are generally more performant. In addition, records define a type that can participate in Clojure’s polymorphism.
 To use the old object-oriented chestnut, it allows us to define a ​make-noise​ that will bark
 when passed a dog and meow when passed a cat. In addition, records let us constrain the attributes that we can
 put into a data structure.

			

				Generally, a good way to work in Clojure is to start off modeling your data using maps and then switch to records
 when you need the additional speed, you need to use polymorphism, or you just want to constrain the names of the
 attributes you’re handling.
			
Sample Code: Immutable Data

			In this section we’ll take a look at how to represent data in Java using a builder for immutable objects. Then we’ll
 take a look at three ways of replacing them in Clojure: regular classes with immutable attributes, case classes, and
 tuples. Finally, we’ll take a look at two ways of replacing them in Clojure: plain old maps and records.
		
Classic Java

				
				
				
				In classic Java, we can use a fluent builder to create an immutable object using nice syntax. To solve our
 problem, we create an ​ImmutablePerson​ that only has getters for its attributes. Nested inside of
 that class, we create a ​Builder​ class, which lets us construct an ​ImmutablePerson​.
			

				When we want to create an ​ImmutablePerson​, we don’t construct it directly; we create a new
 ​Builder​, set the attributes we want to set, and then call
 ​build​
 to get an
 ​ImmutablePerson​. This is outlined below:
			
	​ 	​public​ ​class​ ImmutablePerson {

	​ 	

	​ 	 ​private​ ​final​ ​String​ firstName;

	​ 	 ​// more attributes​

	​ 	

	​ 	 ​public​ ​String​ getFirstName() {

	​ 	 ​return​ firstName;

	​ 	 }

	​ 	 ​// more getters​

	​ 	

	​ 	 ​private​ ImmutablePerson(Builder builder) {

	​ 	 firstName = builder.firstName;

	​ 	 ​// set more attributes​

	​ 	 }

	​ 	

	​ 	 ​public​ ​static​ ​class​ Builder {

	​ 	 ​private​ ​String​ firstName;

	​ 	 ​// more attributes​

	​ 	

	​ 	 ​public​ Builder firstName(​String​ firstName) {

	​ 	 this.firstName = firstName;

	​ 	 ​return​ this;

	​ 	 }

	​ 	 ​// more setters​

	​ 	 ​public​ ImmutablePerson build() {

	​ 	 ​return​ ​new​ ImmutablePerson(this);

	​ 	 }

	​ 	 }

	​ 	 ​public​ ​static​ Builder newBuilder() {

	​ 	 ​return​ ​new​ Builder();

	​ 	 }

	​ 	}

				The downside is that we’ve got a whole lot of code for such a basic task. Passing around aggregate data is one of
 the most basic things we do as programmers, so languages should give us a better way to do it. Thankfully, both
 Scala and Clojure do. Let’s take a look, starting with Scala.

			
In Scala

				
				We’ll take a look at three different ways of representing immutable data in Scala: immutable classes, case classes,
 and tuples. Immutable classes are plain classes that only contain immutable attributes; case classes are a special
 kind of class intended to work with Scala’s pattern matching; and tuples are immutable data structures that let us
 group data together without defining a new class.
			
Immutable Classes

					
					
					Let’s start by looking at the Scala way to produce immutable objects. All we need to do is define a class
 that defines some ​val​s as constructor arguments, which will cause the passed-in values to
 be assigned to public ​vals​. Here’s the code for this solution:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
	​ 	​class​ Person(

	​ 	 ​val​ firstName: ​String​,

	​ 	 ​val​ middleName: ​String​,

	​ 	 ​val​ lastName: ​String​)

					Now we can create a ​Person​ using the constructor parameters positionally:
				
	​ 	scala>​ val p1 = new Person("John", "Quincy", "Adams")​

	​ 	p1: Person = Person@83d2eb1

					Or we can use them as named parameters:
				
	​ 	scala>​ val p2 = new Person(firstName="John", middleName="Quincy", lastName="Adams")​

	​ 	p2: Person = Person@33d6798

					We can add a default value for parameters, which lets us omit them when using the named parameter form. Here
 we’re adding a default empty middle name:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
	​ 	​class​ PersonWithDefault(

	​ 	 ​val​ firstName: ​String​,

	​ 	 ​val​ middleName: ​String​ = ​""​,

	​ 	 ​val​ lastName: ​String​)

					This lets us handle people who may not have a middle name:
				
	​ 	scala>​ val p3 = new PersonWithDefault(firstName="John", lastName="Adams")​

	​ 	p3: PersonWithDefault = PersonWithDefault@6d0984e0

				This gives us a simple way of creating immutable objects in Scala, but it does have a few shortcomings. If we want
 object equality, hash codes, or a nice representation when printed, we need to implement it ourselves. Case classes
 give us all this out of the box and are designed to participate in Scala’s pattern matching. They can’t, however,
 be extended, so they’re not suitable for all purposes.

			
Case Classes

					
					A case class is defined using ​case class​, as shown below:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
	​ 	​case​ ​class​ PersonCaseClass(

	​ 	 firstName: ​String​,

	​ 	 middleName: ​String​ = ​""​,

	​ 	 lastName: ​String​)

					Now we can create a ​PersonCaseClass​ in the same ways we’d create a normal class, except we
 don’t have to use the ​new​ operator. Here we create one using named parameters and by omitting
 the middle name:
				
	​ 	scala>​ val p = PersonCaseClass(firstName="John", lastName="Adams")​

	​ 	p: PersonCaseClass = PersonCaseClass(John,,Adams)

					Notice how the case class prints as ​PersonCaseClass(John,,Adams)​, and we didn’t have to implement a

 ​toString​
 . We also get
 ​equals​
 and
 ​hashCode​
 for free with
 case classes. Here, we test-drive equality:
				
	​ 	scala>​ val p2 = PersonCaseClass(firstName="John", lastName="Adams")​

	​ 	p2: PersonCaseClass = PersonCaseClass(John,,Adams)

	​ 	

	​ 	scala>​ p.equals(p2)​

	​ 	res1: Boolean = true

	​ 	

	​ 	scala>​ val p3 = PersonCaseClass(​

	​ 	 firstName="John",

	​ 	 middleName="Quincy",

	​ 	 lastName="Adams")

	​ 	p3: PersonCaseClass = PersonCaseClass(John,Quincy,Adams)

	​ 	

	​ 	scala>​ p2.equals(p3)​

	​ 	res2: Boolean = false

					Case classes are immutable, so we can’t modify them, but we can get the same effect by using the

 ​copy​
 method to create a new case class based on an existing one, as we do in the following
 REPL session:
				
	​ 	scala>​ val p2 = p.copy(middleName="Quincy")​

	​ 	p2: com.mblinn.mbfpp.oo.javabean.PersonCaseClass =

	​ 	 PersonCaseClass(John,Quincy,Adams)

					
					Finally, case classes can be used with Scala’s pattern matching. Here we use a pattern match to pick apart the
 sixth American president:
				
	​ 	scala>​ p3 match {​

	​ 	 | case PersonCaseClass(firstName, middleName, lastName) => {

	​ 	 | "First: %s - Middle: %s - Last: %s".format(

	​ 	 firstName, middleName, lastName)

	​ 	 | }}

	​ 	res0: String = First: John - Middle: Quincy - Last: Adams

				
				There’s one final common way to represent data in Scala: tuples. Tuples let us represent a fixed-size record, but they
 don’t create a new type as classes and case classes do. They’re handy for explorative development; you can use
 them to model your data during early phases when you’re not sure what it looks like and then switch to classes or case
 classes later. Let’s take a look at how they work.

			
Tuples

					
					To create a tuple, you enclose the values that it contains inside of parentheses, like so:
				
	​ 	scala>​ def p = ("John", "Adams")​

	​ 	p: (java.lang.String, java.lang.String)

					To get values back out, reference them by position, as we do below:
				
	​ 	scala>​ p._1​

	​ 	res0: java.lang.String = John

	​ 	

	​ 	scala>​ p._2​

	​ 	res1: java.lang.String = Adams

					
					Finally, tuples can be easily used in pattern matching, just like case classes:
				
	​ 	scala>​ p match {​

	​ 	 | case (firstName, lastName) => {

	​ 	 | println("First name is: " + firstName)

	​ 	 | println("Last name is: " + lastName)

	​ 	 | }}

	​ 	First name is: John

	​ 	Last name is: Adams

			That covers the three main ways of working with immutable data in Scala.

Plain old immutable classes are handy when
 you’ve got more attributes than the twenty-two that a case class can handle, though this might suggest that it’s time to
 refine your data model or that your data objects need to have some methods on them.
			

				Case classes are useful when you want their built-in
 ​equals​
 ,
 ​hashCode​
 , and
 ​toString​, or when you need to work with pattern matching. Finally, tuples are great for explorative
 development; you can use them to simply model your data before switching to classes or case classes.

			
In Clojure

				
				
				We’ll take a look at two ways to represent immutable data in Clojure. The first is simply storing it in a map, and
 the second uses a record. Maps are the humble data structure that we all know and love; records are a bit
 different. They allow us to define a data type and constrain the attributes that they contain, but they still give
 us a map-like interface.
			
Maps

					Let’s start by taking a look at the simpler of the two options: using an immutable map. All we need to do is
 create a map with keywords for keys and our data as values, as we do below:
				
	ClojureExamples/src/mbfpp/oo/javabean/person.clj
	​ 	(​def​ p

	​ 	 {:first-name ​"John"​

	​ 	 :middle-name ​"Quincy"​

	​ 	 :last-name ​"Adams"​})

					We can get at attributes as we would with any map:	
				
	​ 	=> (p :first-name)

	​ 	"John"

	​ 	=> (get p :first-name)

	​ 	"John"

					One benefit that may not be so obvious is that we can use the full set of operations that maps support,
 including the ones that treat maps as sequences. For instance, if we wanted to uppercase all the parts of a
 name, we could do it with the following code:
				
	​ 	=> (into {} (for [[k, v] p] [k (.toUpperCase v)]))

	​ 	{:middle-name "QUINCY", :last-name "ADAMS", :first-name "JOHN"}

					In order to do something similar with objects and getters, we’d need to call all the appropriate getters. That
 means we’ve taken a solution to a general problem, the problem of capitalizing all the attributes in a data
 structure full of strings, and reduced its generality to only capitalize the attributes of a particular type,
 which in turn means we need to reimplement that solution for every type of object.
				

				Using immutable maps as one of the primary ways to carry data around has a few other advantages. Creating them uses simple
 syntax, so you have no constraints on the attributes you can add to them. This makes them
 great for exploratory programming.
			

				This flexibility has some downsides. Clojure maps aren’t as efficient as simple Java classes, and once you’ve got
 your data model more fleshed out, it may help to constrain the attributes you’re dealing with.
			

				
				
				 Most importantly, however, using plain maps makes it awkward for maps to be used with polymorphism, because using
 a map doesn’t define a new type. Let’s take a look at another Clojure feature that solves these problems but
 still presents a map-like interface.

			
Awkward, Not Impossible

		
		 Earlier I said it was awkward to use maps when you want type-based polymorphism. This is true, but Clojure
		 is flexible enough that it’s merely awkward, not impossible. We could encode the type in the map itself
		 and use Clojure multimethods, as the code below shows:
		
		
		
	ClojureExamples/src/mbfpp/oo/javabean/sidebar.clj
	​ 	(​def​ cat {:type :cat

	​ 	 :color ​"Calico"​

	​ 	 :name ​"Fuzzy McBootings"​})

	​ 	

	​ 	(​def​ dog {:type :dog

	​ 	 :color ​"Brown"​

	​ 	 :name ​"Brown Dog"​})

	​ 	

	​ 	(​defmulti​ make-noise (​fn​ [animal] (:type animal)))

	​ 	(​defmethod​ make-noise :cat [cat] (​println​ (​str​ (:name cat)) ​"meows!"​))

	​ 	(​defmethod​ make-noise :dog [dog] (​println​ (​str​ (:name dog)) ​"barks!"​))

		 In general, if you want polymorphism on types, it’s best to just use a protocol and save multimethods
		 for fancier polymorphism, when you need the full power that comes with being able to define your own
		 dispatch function.
		

Records

					
					To demonstrate records, let’s borrow an old object-oriented example: creating cats and dogs. To create our
 ​Cat​ and ​Dog​ types, we use the code below:
				
	ClojureExamples/src/mbfpp/oo/javabean/catsanddogslivingtogether.clj
	​ 	(​defrecord​ Cat [color ​name​])

	​ 	

	​ 	(​defrecord​ Dog [color ​name​])

					We can treat them as maps so that we get the full power mentioned above:
				
	​ 	=> (def cat (Cat. "Calico" "Fuzzy McBootings"))

	​ 	#'mbfpp.oo.javabean.catsanddogslivingtogether/cat

	​ 	=> (def dog (Dog. "Brown" "Brown Dog"))

	​ 	#'mbfpp.oo.javabean.catsanddogslivingtogether/dog

	​ 	=> (:name cat)

	​ 	"Fuzzy McBootings"

	​ 	=> (:name dog)

	​ 	"Brown Dog"

					
					
					And they can easily participate in polymorphism using Clojure’s protocols. Here we define a protocol that has
 a single function, ​make-noise​, and we create a ​NoisyCat​ and
 ​NoisyDog​ to take advantage of it:
				
	ClojureExamples/src/mbfpp/oo/javabean/catsanddogslivingtogether.clj
	​ 	(​defprotocol​ NoiseMaker

	​ 	 (make-noise [this]))

	​ 	

	​ 	(​defrecord​ NoisyCat [color ​name​]

	​ 	 NoiseMaker

	​ 	 (make-noise [this] (​str​ (:name this) ​"meows!"​)))

	​ 	

	​ 	(​defrecord​ NoisyDog [color ​name​]

	​ 	 NoiseMaker

	​ 	 (make-noise [this] (​str​ (:name this) ​"barks!"​)))

	​ 	=> (def noisy-cat (NoisyCat. "Calico" "Fuzzy McBootings"))

	​ 	#'mbfpp.oo.javabean.catsanddogslivingtogether/noisy-cat

	​ 	=> (def noisy-dog (NoisyDog. "Brown" "Brown Dog"))

	​ 	#'mbfpp.oo.javabean.catsanddogslivingtogether/noisy-dog

	​ 	=> (make-noise noisy-cat)

	​ 	"Fuzzy McBootingsmeows!"

	​ 	=> (make-noise noisy-dog)

	​ 	"Brown Dogbarks!"

					Those are the two main ways to carry data around in Clojure. The first, plain old maps, is a good place to
 start. Once you’ve got your data model more nailed down, or if you want to take advantage of Clojure’s
 protocol polymorphism, you can switch over to a record.

				
Discussion

			There’s a basic tension between locking down your data structures and keeping them flexible. Keeping them flexible
 helps during development time, while your data model is in flux, but locking them down can help to bring bugs to the
 			surface earlier,
 which is important once your code is in production. This is mirrored somewhat in the wider technical world with some
 of the debate surrounding traditional relational databases, which impose a strict schema, and some of the newer
 nonrelational ones, which have no schemas or have more relaxed schemas, with both sides claiming their approach is better.
		

			In reality, both approaches are useful, depending on the situation. Clojure and Scala give us the best of both worlds
 here by letting us keep our data structures flexible in the beginning (using maps in Clojure and tuples in Scala)
 and letting us lock them down as we understand our data better (using records in Clojure and classes or case classes in Scala).

		
For Further Reading

				Effective Java [Blo08]—​Item 2: Consider a Builder When Faced with Many Constructor Parameters​
			

				Effective Java [Blo08]—​Item 15: Minimize Mutability​
			

Related Patterns

Pattern 19, ​Focused Mutability​

	Pattern 5	Replacing Iterator

Intent

			
			
			
			To iterate through the elements of a sequence in order, without having to index into it
		
Overview

			An iterator is an object that allows us to iterate over all the objects in a sequence. It does so by maintaining an
 internal bit of state that keeps track of where in the sequence the iterator is currently. At its simplest, an
 implementation of Iterator just requires a method that returns the next item in the sequence, with some sentinel value
 returned when there are no more items.
		

		 	Most implementations have a separate method to
 check to see if the iterator has any more items, rather than using a sentinel to check. Some implementations of
 Iterator allow the underlying collection to be modified by removing the current item.
		
Also Known As

Cursor
		
Enumerator
Functional Replacement

			
			In this section, we’ll focus on replacing an iterator with a combination of higher-order functions and ​sequence
 comprehensions​. A sequence comprehension is a clever technique that lets us take one sequence and transform
 it into another in some sophisticated ways. They’re a bit like the ​map​ function on steroids.
		

			Many basic uses of Iterator can be replaced by simple higher-order functions. For instance, summing a sequence can be
 done in Clojure using the ​reduce​ higher-order function.
		

			Other, more complex uses can be handled with sequence comprehensions. Sequence comprehensions provide a concise way to
 create a new sequence from an old one, including the ability to filter out unwanted values.
		

			In this section we’ll stick with the uses of ​Iterator​ that can be expressed using a Java ​foreach​
 loop. Other, less common uses can be replaced by the functional patterns Pattern 12, ​Tail Recursion​, and Pattern 13, ​Mutual Recursion​.

		
Sample Code: Higher-Order Functions

			Let’s start by looking at a grab bag of simple uses of Iterator that can be replaced with higher-order functions.
 First we’ll look at identifying the vowels in a string, then we’ll take a look at prepending a list of names with
 ​"Hello, "​, and finally we’ll sum up a sequence.
		

			We’ll look at these examples first in an iterative style written in Java, and then we’ll collapse them into a more
 declarative style in Scala and Clojure.
		
Classic Java

				To identify the set of vowels in a word, we iterate through the characters and check each character against the
 set of all vowels. If it’s in the set of all vowels, we add it to ​vowelsInWorld​ and return
 it. The code below, which assumes an
 ​isVowel​
 helper method, illustrates this solution:
			
	JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
	​ 	​public​ ​static​ ​Set​<​Character​> vowelsInWord(​String​ word) {

	​ 	

	​ 	 ​Set​<​Character​> vowelsInWord = ​new​ ​HashSet​<​Character​>();

	​ 	

	​ 	 ​for​ (​Character​ character : word.toLowerCase().toCharArray()) {

	​ 	 ​if​ (isVowel(character)) {

	​ 	 vowelsInWord.add(character);

	​ 	 }

	​ 	 }

	​ 	

	​ 	 ​return​ vowelsInWord;

	​ 	}

				There’s a higher-level pattern here: we’re filtering some type of element out of a sequence. Here it’s vowels in
 a string, but it could be odd numbers, people named “Michael” or anything else. We’ll exploit this
 higher-order pattern in our functional replacement, which uses the ​filter​ function.
			

				Next up, let’s discuss prepending a list of names with the “Hello, ” string. Here we take in a list of names,
				iterate through them, prepend “Hello, ” to each name, and add it to a new list. Finally we return that list.

The code below demonstrates this approach:
			
	JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
	​ 	​public​ ​static​ ​List​<​String​> prependHello(​List​<​String​> names) {

	​ 	 ​List​<​String​> prepended = ​new​ ​ArrayList​<​String​>();

	​ 	 ​for​ (​String​ name : names) {

	​ 	 prepended.add(​"Hello, "​ + name);

	​ 	 }

	​ 	 ​return​ prepended;

	​ 	}

				Again, there’s a higher-level pattern hiding here. We’re mapping an operation onto each item in a sequence, here
 prepending a word with the “Hello, ” string. We’ll see how we can use the higher-order ​map​
 function to do so.
			

				Let’s examine one final problem: summing up a sequence of numbers. In classic Java, we’d compute a sum by
 iterating through a list and adding each number to a ​sum​ variable, as in the code below:
			
	JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
	​ 	​public​ ​static​ ​Integer​ sumSequence(​List​<​Integer​> sequence) {

	​ 	 ​Integer​ sum = 0;

	​ 	 ​for​ (​Integer​ num : sequence) {

	​ 	 sum += num;

	​ 	 }

	​ 	 ​return​ sum;

	​ 	}

				This type of iteration is an example of another pattern, performing an operation on a sequence to reduce it to
 a single value. We’ll take advantage of that pattern in our functional replacement using the
 ​reduce​ function and a closely related function known as ​fold​.
			
In Scala

				
				Let’s take a look at the first of our examples, returning the set of vowels in a word. In the functional world,
 this can be done in two steps: first we use
 ​filter​
 to filter all the vowels out of a word,
 and then we take that sequence and turn it into a set to remove any duplicates.

				To do our filtering, we can take advantage of the fact that Scala sets can be called as predicate functions. If
 the set contains the passed-in argument, it returns true; otherwise it returns false, as the code
				below shows:				

			
	​ 	scala>​ val isVowel = Set('a', 'e', 'i', 'o', 'u')​

	​ 	isVowel: scala.collection.immutable.Set[Char] = Set(e, u, a, i, o)

	​ 	

	​ 	scala>​ isVowel('a')​

	​ 	res0: Boolean = true

	​ 	

	​ 	scala>​ isVowel('z')​

	​ 	res1: Boolean = false

				
				Now we can use the
 ​isVowel​
 from above, along with
 ​filter​
 and

 ​toSet​
 , to get a set of vowels out of a string:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
	​ 	​val​ isVowel = Set('a', 'e', 'i', 'o', 'u')

	​ 	​def​ vowelsInWord(word: ​String​) = word.filter(isVowel).toSet

				Here we can see it in action, filtering vowels out of a string:
			
	​ 	scala>​ vowelsInWord("onomotopeia")​

	​ 	res4: scala.collection.immutable.Set[Char] = Set(o, e, i, a)

	​ 	

	​ 	scala>​ vowelsInWord("yak")​

	​ 	res5: scala.collection.immutable.Set[Char] = Set(a)

				
				
				Our next example—prepending a list of names with “Hello, ”—can be written by mapping a function that does the
 prepending over a sequence of strings. Here, mapping just means that the function is applied to each element in a
 sequence and that a new sequence is returned with the result.
			
				 Here we map a function that prepends the string ​"Hello, "​ to each name in a sequence:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
	​ 	​def​ prependHello(names : Seq[​String​]) =

	​ 	 names.map((name) => ​"Hello, "​ + name)

				
				This does the job, as the code below shows. The Scala REPL inserts commas between elements in a sequence, so it’s
 putting an additional comma between each of our greetings.
			
	​ 	scala>​ prependHello(Vector("Mike", "John", "Joe"))​

	​ 	res0: Seq[java.lang.String] = Vector(Hello, Mike, Hello, John, Hello, Joe)

				
				Finally, our last example—summing a sequence. We’re using an operation, in this case, addition, to take a sequence
 and reduce it to a single value. In Scala, the simplest way to do this is to use the aptly named reduce method,
 which takes a single argument, a reducing function.
			

				Here we create a reducing function that adds its arguments together, and we use it to sum a sequence:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
	​ 	​def​ sumSequence(sequence : Seq[​Int​]) =

	​ 	 ​if​(sequence.isEmpty) 0 ​else​ sequence.reduce((acc, curr) => acc + curr)

				Let’s take a look at it in action:
			
	​ 	scala>​ sumSequence(Vector(1, 2, 3, 4, 5))​

	​ 	res0: Int = 15

				That’s it—no iterating, no mutation, just a simple higher-order function!
			
In Clojure

				
				Our first example takes advantage of the same trick we used in Scala, where a set can be used as a predicate
 function. If the passed-in element is in the set, it’s returned (remember, anything but ​false​
 and ​nil​ is treated as true in Clojure); otherwise ​nil​ is returned.
			

				Here we take advantage of that property of Clojure sets to define a ​vowel?​ predicate, which we
 can then use with ​filter​ to filter the vowels out of a sequence. We then use Clojure’s
 ​set​ function to construct a new set from an existing sequence. The code below puts it all
 together:

			
	ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
	​ 	(​def​ vowel? #{\a \e \i \o \u})

	​ 	(​defn​ vowels-in-word [word]

	​ 	 (​set​ (​filter​ vowel? word)))

				Now we can use it to filter out sets of vowels from a word:
			
	​ 	=> (vowels-in-word "onomotopeia")

	​ 	#{\a \e \i \o}

	​ 	=> (vowels-in-word "yak")

	​ 	#{\a}

				Next up is our friendly little hello prepender, ​prepend-hello​. Just like the Scala example, we
 simply use ​map​ to map a function that prepends ​"Hello, "​ to each name in a sequence
 of names. Here’s the code:
			
	ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
	​ 	(​defn​ prepend-hello [names]

	​ 	 (​map​ (​fn​ [​name​] (​str​ ​"Hello, "​ ​name​)) names))

				We can use this to generate a set of greetings:
			
	​ 	=> (prepend-hello ["Mike" "John" "Joe"])

	​ 	("Hello, Mike" "Hello, John" "Hello, Joe")

				
				Finally, let’s look at how we’d sum a sequence in Clojure. Just like Scala, we can use the reduce function, though
 we don’t have to create our own function to add integers together as we did in Scala: we can just use Clojure’s
 ​+​ function. Here’s the code:
			
	ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
	​ 	(​defn​ sum-sequence [s]

	​ 	 {:pre [(​not​ (​empty?​ s))]}

	​ 	 (​reduce​ ​+​ s))

				And here we are using it to sum a sequence:
			
	​ 	=> (sum-sequence [1 2 3 4 5])

	​ 	15

				Those unfamiliar with Clojure might find it a bit odd that the ​+​ is just another function that
 we can pass into ​reduce​, but this is one of the strengths of Clojure and Lisps in general. Many
 things that would be special operators in other languages are just functions in Clojure, which lets us use them as
 arguments to higher-order functions like ​reduce​.
			

				 One note on ​reduce​ in Clojure and Scala: While we
 were able to use them the same way here, they’re actually somewhat different. Scala’s
 ​reduce​
 operates
 over a sequence of some type, and it returns a single item of that type. For instance, reducing a
 ​List​ of ​Int​ will return a single ​Int​.
			

				Clojure, on the other hand, allows you to return anything at all from its ​reduce​ function,
 including another collection of some sort! This is more general (and often very handy), and Scala supports this
 more general idea of reduction under a different name,
 ​foldLeft​
 .

			

				It’s usually easier and clearer in Scala to use
 ​reduce​
 when you truly are reducing a sequence
 of some type to a single instance of that type, and to use
 ​foldLeft​
 otherwise.
			
Sample Code: Sequence Comprehensions

			
			Both Scala and Clojure support a very handy feature called a sequence comprehension. Sequence comprehensions give us a
 handy syntax that lets us do a few different things together. Much like the ​map​ function, sequence
 comprehensions let us transform one sequence into another. Sequence comprehensions also let us include a filtering
 step, and they provide a handy way to get at pieces of aggregate data, known as ​destructuring​.
		

			Let’s take a look at how we’d use sequence comprehensions to solve a delicious little problem. We’ve got a list of
 people who asked to be notified when our new restaurant, The Lambda Bar and Grille, opens, and we’d like to send them
 an invitation to a grand-opening party.
		

			We’ve got names and addresses, and we figure that people who live closest to the Lambda will be more likely to come,
 so we’d like to send invitations to them first. Finally, we’d like to filter out people who live so far away that
 we’re entirely sure they won’t come.
		

			We decide to solve the problem like so: we’ll put our customers into groups based on zip codes, and we’ll send
 invitations to the groups of people in zip codes closest to our restaurant first. Additionally, we’ll constrain
 ourselves to a small group of close zip codes.
		

			Let’s see how to solve this problem. We’ll start, as always, with the iterative solution in Java, and then we’ll move onto
 functional ones using sequence comprehensions in Scala and Clojure.
		
Classic Java

				In Java, we create a ​Person​ and an ​Address​ in the customary JavaBean format, and we
 create a method,
 ​peopleByZip​
 , that takes in a list of people, filters out the ones who don’t live
 close enough, and returns a map keyed off zip codes that contains lists of people in each zip code.
			

				To do this we use a standard iterative solution with a couple of helper methods. The first,

 ​addPerson​
 , adds a person to a list, creating the list if it doesn’t already exist, so we can
 handle the case where we come across the first person in a zip code.
			

				The second,
 ​isCloseZip​
 , returns true if the zip is close enough to the Lambda Bar and Grille to
 get an invite to the party, and false otherwise. To keep the example small, we’ve hard-coded just a couple of zip
 codes in there, but since we’ve factored that check out into its own method, it would be easy to change it to pull
 from some dynamic data source of zip codes we care about.
			

				To solve the problem, we just iterate through the list of people. For each person, we check to see if
				he or she has a
 close zip code, and if yes we add them to a map of lists of people keyed off of zip codes called
 ​closePeople​. When we’re all done with our iteration, we just return the map. This solution is
 outlined below:
			
	JavaExamples/src/main/java/com/mblinn/oo/iterator/TheLambdaBarAndGrille.java
	​ 	​public​ ​class​ TheLambdaBarAndGrille {

	​ 	

	​ 	 ​public​ ​Map​<​Integer​, ​List​<​String​>> peopleByZip(​List​<Person> people) {

	​ 	 ​Map​<​Integer​, ​List​<​String​>> closePeople =

	​ 	 ​new​ ​HashMap​<​Integer​, ​List​<​String​>>();

	​ 	

	​ 	 ​for​ (Person person : people) {

	​ 	 ​Integer​ zipCode = person.getAddress().getZipCode();

	​ 	 ​if​ (isCloseZip(zipCode)){

	​ 	 ​List​<​String​> peopleForZip =

	​ 	 closePeople.get(zipCode);

	​ 	 closePeople.put(zipCode,

	​ 	 addPerson(peopleForZip, person));

	​ 	 }

	​ 	 }

	​ 	

	​ 	 ​return​ closePeople;

	​ 	 }

	​ 	

	​ 	 ​private​ ​List​<​String​> addPerson(​List​<​String​> people, Person person) {

	​ 	 ​if​ (null == people)

	​ 	 people = ​new​ ​ArrayList​<​String​>();

	​ 	 people.add(person.getName());

	​ 	 ​return​ people;

	​ 	 }

	​ 	 ​private​ ​Boolean​ isCloseZip(​Integer​ zipCode) {

	​ 	 ​return​ zipCode == 19123 || zipCode == 19103;

	​ 	 }

	​ 	}

				This is a fairly simple data transformation, but it takes quite a bit of doing in an imperative style since we
 need to muck about with adding elements to the new list, and we don’t have a first-class way of filtering elements
 from the existing one. The more declarative sequence comprehensions help us bump up the level of abstraction here.
 Now let’s take a look at Scala’s version.
			
In Scala

				 In Scala, we can use Scala’s syntax for sequence comprehensions, the
 ​for​ comprehension, to generate our greetings in a cleaner way. We’ll use case classes for our
 ​Person​ and ​Address​, and we’ll write a for comprehension that takes in a sequence of
 ​Person​ and produces a sequence of greetings.
			

				For comprehensions are handy for this for a few reasons. The first is that we can use Scala’s pattern-matching
 syntax inside of them, which gives us a concise way to pick apart a ​Person​ into a name and an
 address.
			

				
				Second, for comprehensions let us include a filter directly in the comprehension itself, known as a guard, so we
 don’t need a separate if statement to filter out people with the wrong zip codes. Finally, for comprehensions are
 intended to create new sequences, so there’s no need to have a temporary list to accumulate new values into; we
 simply return the value of the comprehension.
			

				With a for comprehension, we’ll still use a helper
 ​isCloseZip​
 method, but we’ll use it as part of
 a guard in the for comprehension itself, and we’ll do away with the mutable list of greetings from the Java
 solution entirely, since the result we want is just the value of the for comprehension itself.
			

				The code for the entire solution is below:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/TheLambdaBarAndGrille.scala
	​ 	​case​ ​class​ Person(name: ​String​, address: Address)

	​ 	​case​ ​class​ Address(zip: ​Int​)

	​ 	​def​ generateGreetings(people: Seq[Person]) =

	​ 	 ​for​ (Person(name, address) <- people ​if​ isCloseZip(address.zip))

	​ 	 ​yield​ ​"Hello, %s, and welcome to the Lambda Bar And Grille!"​.format(name)

	​ 	​def​ isCloseZip(zipCode: ​Int​) = zipCode == 19123 || zipCode == 19103

				One thing that may not be obvious when using for comprehensions is how to deal with situations when we absolutely
 need side effects. Since we’re programming in the functional style this should be fairly rare. As we saw above, we
 don’t need a mutable list to generate our list of greetings. One simple use of side effects that we still need in
 the functional world is printing to the console.
			

				Here we’ve rewritten the example to just print the greetings to the console, rather than gathering them up into a
 sequence:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/TheLambdaBarAndGrille.scala
	​ 	​def​ printGreetings(people: Seq[Person]) =

	​ 	 ​for​ (Person(name, address) <- people ​if​ isCloseZip(address.zip))

	​ 	 println(​"Hello, %s, and welcome to the Lambda Bar And Grille!"​.format(name))

				We’ve only touched on the basics of Scala’s for comprehensions here; they’re very powerful beasts. They can be
 used with multiple sequences and multiple guards at the same time, among several other features, but the ones that
 we’ve covered here let us handle the most common cases where we’d use the Iterator pattern.

			
In Clojure

				
				Clojure also has built-in sequence comprehensions using the ​for​ macro. Just as in Scala, the
 primary point of a Clojure sequence comprehension is to take one sequence and transform it into another with
 built-in filtering. Clojure’s sequence comprehensions also provide a handy way of pulling apart aggregate data with
 destructuring.
			

				Since Clojure and Scala’s sequence comprehensions are similar, at least for this basic usage, the structure of the
 solution looks pretty much the same. We’ve got a ​close-zip?​ function that takes advantage of
 Clojure’s handy set-as-function feature, and a ​generate-greetings​ function that consists of a
 single ​for​ statement.
			

				The ​for​ statement uses ​close-zip?​ to filter out people outside of the zips
 we care about, and then it generates a greeting to the people who are left. The code is below:
			
	ClojureExamples/src/mbfpp/oo/iterator/lambda_bar_and_grille.clj
	​ 	(​def​ close-zip? #{19123 19103})

	​ 	

	​ 	(​defn​ generate-greetings [people]

	​ 	 (​for​ [{:keys [​name​ address]} people :when (close-zip? (address :zip-code))]

	​ 	 (​str​ ​"Hello, "​ ​name​ ​", and welcome to the Lambda Bar And Grille!"​)))

				Clojure also has a way to use a sequence comprehension-like syntax for side effects, though Clojure separates it
 out into a ​doseq​ macro. Here we use ​doseq​ to print our list of greetings
 rather than gather them up:

			
	ClojureExamples/src/mbfpp/oo/iterator/lambda_bar_and_grille.clj
	​ 	(​defn​ print-greetings [people]

	​ 	 (​for​ [{:keys [​name​ address]} people :when (close-zip? (address :zip-code))]

	​ 	 (​println​ (​str​ ​"Hello, "​ ​name​ ​", and welcome to the Lambda Bar And Grille!"​))))

			
			
			Scala and Clojure’s sequence comprehensions are similar in some respects, though not all. Scala’s
 ​for​ statement is generally used more pervasively, and often in ways that seem surprising to the
 uninitiated. For instance, the ​for​ statement can be used in conjunction with Scala’s option type to provide an elegant
 solution to problems that would require lots of null checks in Java, as we cover in Pattern 8, ​Replacing Null Object​.
		

			
			
			Also, while Scala’s pattern matching and Clojure’s destructuring have some similarity, both allow us to pick apart
 aggregate data structures; pattern matching in Scala is less flexible than Clojure’s destructuring. Destructuring lets
 us pick apart arbitrary maps and vectors, while Scala’s pattern matching is confined to case classes and a few other
 constructs that are statically defined at compile time.
		
Discussion

			One nonobvious difference between Iterator and the solutions we covered in this chapter is that Iterator is
 fundamentally imperative because it relies on mutable state. Every iterator has a bit of state inside it that keeps
 track of where the iterator is currently. This can get you in trouble if you start passing iterators around and part
 of your program unexpectedly advances the iterator, affecting another part.
		

			In contrast, the solutions we’ve gone over in this chapter rely on transforming one immutable sequence into another.
 In fact, the sequence comprehensions we went over are both examples of a technique popularized by the highly
 functional language Haskell that is known as
 ​ monadic transformations​

 , which rely on a concept from
 category theory known as ​monads​.

		

			Explaining monads is a bit of a cottage industry among functional programmers and has inspired many a blog post
 attempting to explain monads by analogy to, among other things, burritos, elephants, writing desks, and Muppets. We
 won’t put you through another such explanation here; it’s not necessary to understand monads to use sequence
 comprehensions, and neither Scala nor Clojure particularly emphasize the monadic nature of their respective
 comprehensions.
		

			At a very high level though, one of the things monads do is provide a way to program in a very functional style by
 transforming immutable data in a pipeline rather than relying on mutable state. Readers curious about monads should
 check out the excellent Learn You a Haskell for Great Good! A Beginner’s Guide [Lip11].
		
For Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—​Iterator​

				Java Standard Library[5]
			

Related Patterns

Pattern 12, ​Tail Recursion​

Pattern 13, ​Mutual Recursion​

Pattern 14, ​Filter-Map-Reduce​

	Pattern 6	Replacing Template Method

Intent

			
			To specify the outline of an algorithm, letting callers plug in some of the specifics
		
Overview

			 The Template Method pattern consists of an abstract class that defines some operation, or set
 of operations, in terms of abstract suboperations. Users of Template Method implement the abstract template class to
 provide implementation of the substeps. A template class looks like this code snippet:
		
	​ 	​public​ ​abstract​ ​class​ TemplateExample{

	​ 	

	​ 	 ​public​ ​void​ anOperation(){

	​ 	 subOperationOne();

	​ 	 subOperationTwo();

	​ 	 }

	​ 	

	​ 	 ​protected​ ​abstract​ ​void​ subOperationOne();

	​ 	

	​ 	 ​protected​ ​abstract​ ​void​ subOperationTwo();

	​ 	}

			To use it, extend the ​TemplateExample​ and implement the abstract suboperations.
		

			For instance, to use Template Method for board games, create a ​Game​ template that defines the abstract
 set of steps it takes to play a board game (
 ​setUpBoard​
 ,
 ​makeMove​
 ,

 ​declareWinner​
 , and so on). To implement any particular board game, extend the abstract
 ​Game​ class and implement the substeps as appropriate for a particular game.
		
Functional Replacement

			
			Our functional replacement for Template Method will satisfy its intent, which is to create a skeleton for some
 algorithm and let callers plug in the details. Instead of using classes to implement our suboperations,
 			we’ll use
 higher-order functions; and instead of relying on subclassing, we’ll rely on function composition. We’ll do so by
 passing the suboperations into a Pattern 16, ​Function Builder​ and having it return a
 new function that does the full operation.
		

			An outline of this approach in Scala looks like so:
		
	​ 	​def​ makeAnOperation(

	​ 	 subOperationOne: () => ​Unit​,

	​ 	 subOperationTwo: () => ​Unit​) =

	​ 	 () => {

	​ 	 subOperationOne()

	​ 	 subOperationTwo()

	​ 	 }

			This lets us program more directly, since we no longer need to define suboperations and subclasses.
		
Sample Code: Grade Reporter

			As an example, let’s take a look at a template method that prints grade reports. It does this in two steps. The
 first takes a list of grades in numeric form and translates them into letter form, and the second formats and prints
 the report.
		

			Since those two steps can be done in many different ways, we’ll just specify the skeleton required to create a grade
 report, translate the grades first, and then format and print the report, and we’ll leave it up to individual
 implementations to specify exactly how the grades are translated and the report is printed.
		

			We’ll also go over two such implementations. The first translates to the full letter grades ​A​,
 ​B​, ​C​, ​D​, and ​F​ and prints a simple
 histogram. The second adds plus and minus grades to some of the letters and prints a full list of grades.
		
Classic Java

				A sketch of using Template Method to solve this problem in classic Java uses the following: a
 ​GradeReporterTemplate​ that has a single fully implemented method,
 ​reportGrades​
 ,
 and two abstract methods,
 ​numToLetter​
 and
 ​printGradeReport​
 .
			

				The
 ​numToLetter​
 method specifies how to convert a single numeric grade into a letter grade, and

 ​printGradeReport​
 specifies how to format and print a grade report. Both methods must be
 implemented by users of the template. The class diagram provides an outline:
			
[image: images/GradeReporter.png]

Figure 5. Grade Reporter Template. Using Template Method to report grades

				To get template implementations with different behaviors, the user of the Template class creates different
 subclasses with different implementations of
 ​numToLetter​
 and
 ​printGradeReport​
 .
			
In Scala

				Instead of relying on inheritance, the Scala replacement for Template Method uses Pattern 16, ​Function Builder​ to compose together suboperations.
			

				The core of the solution is the function
 ​makeGradeReporter​
 , which takes a

 ​numToLetter​
 function to translate numeric grades to letter grades and a

 ​printGradeReport​
 to print the report. The
 ​makeGradeReporter​
 function
 returns a new function that composes its input functions together.
			

				We’ll also need a couple of different implementations of the
 ​numToLetter​
 and

 ​printGradeReport​
 functions so we can see this solution in action.
			

				Let’s start by looking at
 ​makeGradeReporter​
 . It takes
 ​numToLetter​
 and

 ​printGradeReport​
 as arguments and produces a new function that takes a ​Seq[Double]​ to
 represent a list of grades. It then uses
 ​map​
 to convert each grade to a letter grade
				and passes
 the new list into
 ​printGradeReport​
 . Here’s the code:

			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​def​ makeGradeReporter(

	​ 	 numToLetter: (Double) => ​String​,

	​ 	 printGradeReport: (Seq[​String​]) => ​Unit​) = (grades: Seq[Double]) => {

	​ 	 printGradeReport(grades.map(numToLetter))

	​ 	}

				Now let’s take a look at the functions we’ll need to convert to full letter grades and to print a histogram. The
 first,
 ​fullGradeConverter​
 , just uses a big if-else statement to do the grade conversion:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​def​ fullGradeConverter(grade: Double) =

	​ 	 ​if​(grade <= 5.0 && grade > 4.0) ​"A"​

	​ 	 ​else​ ​if​(grade <= 4.0 && grade > 3.0) ​"B"​

	​ 	 ​else​ ​if​(grade <= 3.0 && grade > 2.0) ​"C"​

	​ 	 ​else​ ​if​(grade <= 2.0 && grade > 0.0) ​"D"​

	​ 	 ​else​ ​if​(grade == 0.0) ​"F"​

	​ 	 ​else​ ​"N/A"​

				The next,
 ​printHistogram​
 , is a bit more involved. It uses a method named
 ​groupBy​

 to group grades together into a ​Map​, which it then turns into a list of tuples of counts
 using the
 ​map​
 method. Finally, it uses a for comprehension to print the histogram, as the code
 below shows:

			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​def​ printHistogram(grades: Seq[​String​]) = {

	​ 	 ​val​ grouped = grades.groupBy(identity)

	​ 	 ​val​ counts = grouped.map((kv) => (kv._1, kv._2.size)).toSeq.sorted

	​ 	 ​for​(count <- counts) {

	​ 	 ​val​ stars = ​"*"​ * count._2

	​ 	 println(​"%s: %s"​.format(count._1, stars))

	​ 	 }

	​ 	}

				Let’s take a look at this sample line by line, starting with the first line of
 ​printHistogram​
 ’s
 body:
			
	​ 	​val​ grouped = grades.groupBy(identity)

				
				The
 ​groupBy​
 method takes in a function and uses it to group together all the elements of a
 sequence for which the function returns the same value. Here we pass in the identify function, which just returns
 whatever was passed in so we can group together all grades that are the same. The REPL
 				output below shows us
 using this snippet to group together a vector of grades:
			
	​ 	scala>​ val grades = Vector("A", "B", "A", "B", "B")​

	​ 	grades: scala.collection.immutable.Vector[java.lang.String] = Vector(A, B, A, B, B)

	​ 	

	​ 	scala>​ val grouped = grades.groupBy(identity)​

	​ 	grouped: scala.collection.immutable.Map[...] =

	​ 	 Map(A -> Vector(A, A), B -> Vector(B, B, B))

				
				
				Next we take the map of grouped grades and use
 ​map​
 and
 ​toSeq​
 to turn it into a
 sequence of tuples, where the first element is the grade and the second element is the grade count. Then we sort
 that sequence. By default, Scala sorts sequences of tuples by their first element, so this gives us a sorted
 sequence of grade counts.
			
	​ 	​val​ counts = grouped.map((kv) => (kv._1, kv._2.size)).toSeq.sorted

				The REPL output below shows us using this code snippet to get our sequence of grade counts:
			
	​ 	scala>​ val counts = grouped.map((kv) => (kv._1, kv._2.size)).toSeq.sorted​

	​ 	counts: Seq[(java.lang.String, Int)] = ArrayBuffer((A,2), (B,3))

				
				Finally we use a for comprehension over the sequence of tuples to print up a histogram of grades, as the snippet
 below shows:
			
	​ 	​for​(count <- counts) {

	​ 	 ​val​ stars = ​"*"​ * count._2

	​ 	

	​ 	 println(​"%s: %s"​.format(count._1, stars))

	​ 	}

				
				
				This highlights an interesting use of Scala’s ​*​ operator. It can be used to repeat a string, as
 the following REPL output demonstrates:
			
	​ 	scala>​ "*" * 5​

	​ 	res0: String = *****

				Now we just need to use
 ​makeGradeReporter​
 to compose our two functions together to create

 ​fullGradeReporter​
 , as the following code does:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​val​ fullGradeReporter = makeGradeReporter(fullGradeConverter, printHistogram)

				Then we can define some sample data and run
 ​fullGradeReporter​
 to print a histogram:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​val​ sampleGrades = Vector(5.0, 4.0, 4.4, 2.2, 3.3, 3.5)

	​ 	scala>​ fullGradeReporter(sampleGrades)​

	​ 	A: **

	​ 	B: ***

	​ 	C: *

				Now if we want to change the way we do our grade conversion and report printing, we only need to create
 additional conversion and reporting functions. We can use
 ​makeGradeReporter​
 to compose them
 together.
			

				Let’s see how to rewrite the Template Method example that converts to plus/minus grades and prints up a full list
 of them. As before, we’ll need two functions. The first is
 ​plusMinusGradeConverter​
 , for our grade
 conversions. The second is the
 ​printAllGrades​
 method, which just prints a simple list of
 converted grades.
			

				Here’s the code for our
 ​plusMinusGradeConverter​
 function:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​def​ plusMinusGradeConverter(grade: Double) =

	​ 	 ​if​(grade <= 5.0 && grade > 4.7) ​"A"​

	​ 	 ​else​ ​if​(grade <= 4.7 && grade > 4.3) ​"A-"​

	​ 	 ​else​ ​if​(grade <= 4.3 && grade > 4.0) ​"B+"​

	​ 	 ​else​ ​if​(grade <= 4.0 && grade > 3.7) ​"B"​

	​ 	 ​else​ ​if​(grade <= 3.7 && grade > 3.3) ​"B-"​

	​ 	 ​else​ ​if​(grade <= 3.3 && grade > 3.0) ​"C+"​

	​ 	 ​else​ ​if​(grade <= 3.0 && grade > 2.7) ​"C"​

	​ 	 ​else​ ​if​(grade <= 2.7 && grade > 2.3) ​"C-"​

	​ 	 ​else​ ​if​(grade <= 2.3 && grade > 0.0) ​"D"​

	​ 	 ​else​ ​if​(grade == 0.0) ​"F"​

	​ 	 ​else​ ​"N/A"​

				And here’s the code for
 ​printAllGrades​
 :
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​def​ printAllGrades(grades: Seq[​String​]) =

	​ 	 ​for​(grade <- grades) println(​"Grade is: "​ + grade)

				Now we just need to compose them together using
 ​makeGradeReporter​
 , and we can use it to create a
 full grade report, as the code below shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
	​ 	​val​ plusMinusGradeReporter =

	​ 	 makeGradeReporter(plusMinusGradeConverter, printAllGrades)

	​ 	scala>​ plusMinusGradeReporter(sampleGrades)​

	​ 	Grade is: A

	​ 	Grade is: B

	​ 	Grade is: A-

	​ 	Grade is: D

	​ 	Grade is: C+

	​ 	Grade is: B-

				That wraps up our replacement for Template Method in Scala. Next up, let’s take a look at how things look in
 Clojure.
			
In Clojure

				The Clojure replacement for Template Method is similar to the Scala one. Just as in Scala, we’ll use Pattern 16, ​Function Builder​, named ​make-grade-reporter​, to compose together a
 function that converts numeric grades to letter grades and a function that prints a report.

				The ​make-grade-reporter​ returns a function that maps ​num-to-letter​ over a
 sequence of numeric grades. Let’s take a look at the code for it first:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​defn​ make-grade-reporter [num-to-letter print-grade-report]

	​ 	 (​fn​ [grades]

	​ 	 (print-grade-report (​map​ num-to-letter grades))))

				
				Converting a numeric grade to a full letter grade is just a matter of a simple ​cond​ expression,
 as we can see below:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​defn​ full-grade-converter [grade]

	​ 	 (​cond​

	​ 	 (​and​ (​<​​=​ grade 5.0) (​>​ grade 4.0)) ​"A"​

	​ 	 (​and​ (​<​​=​ grade 4.0) (​>​ grade 3.0)) ​"B"​

	​ 	 (​and​ (​<​​=​ grade 3.0) (​>​ grade 2.0)) ​"C"​

	​ 	 (​and​ (​<​​=​ grade 2.0) (​>​ grade 0)) ​"D"​

	​ 	 (​=​ grade 0) ​"F"​

	​ 	 :else ​"N/A"​))

				Printing a histogram can be done much the way we did it in Scala, using ​group-by​ to group
 grades together, mapping a function over the grouped grades to get counts, and then using a sequence comprehension
 to print the final histogram. Here’s the code to print a histogram:

			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​defn​ print-histogram [grades]

	​ 	 (​let​ [grouped (group-by ​identity​ grades)

	​ 	 counts (​sort​ (​map​

	​ 	 (​fn​ [[grade grades]] [grade (​count​ grades)])

	​ 	 grouped))]

	​ 	 (​doseq​ [[grade ​num​] counts]

	​ 	 (​println​ (​str​ grade ​":"​ (​apply​ ​str​ (​repeat​ ​num​ ​"*"​)))))))

				Now we can use ​make-grade-reporter​ to combine ​full-grade-converter​ and ​print-histogram​
 into a new function, ​full-grade-reporter​. The code to do so is below:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​def​ full-grade-reporter (make-grade-reporter full-grade-converter print-histogram))

				Here we’re running it on some sample data:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​def​ sample-grades [5.0 4.0 4.4 2.2 3.3 3.5])

	​ 	=> (full-grade-reporter sample-grades)

	​ 	A:**

	​ 	B:***

	​ 	C:*

				To change the way we convert grades and print the report, we just create new functions to compose with
 ​make-grade-reporter​. Let’s create ​plus-minus-grade-converter​ and
 ​print-all-grades​ functions and then compose them together into a
 ​plus-minus-grade-reporter​.
			

				The ​plus-minus-grade-reporter​ function is straightforward; it’s just a simple
 ​cond​ expression:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​defn​ plus-minus-grade-converter [grade]

	​ 	 (​cond​

	​ 	 (​and​ (​<​​=​ grade 5.0) (​>​ grade 4.7)) ​"A"​

	​ 	 (​and​ (​<​​=​ grade 4.7) (​>​ grade 4.3)) ​"A-"​

	​ 	 (​and​ (​<​​=​ grade 4.3) (​>​ grade 4.0)) ​"B+"​

	​ 	 (​and​ (​<​​=​ grade 4.0) (​>​ grade 3.7)) ​"B"​

	​ 	 (​and​ (​<​​=​ grade 3.7) (​>​ grade 3.3)) ​"B-"​

	​ 	 (​and​ (​<​​=​ grade 3.3) (​>​ grade 3.0)) ​"C+"​

	​ 	 (​and​ (​<​​=​ grade 3.0) (​>​ grade 2.7)) ​"C"​

	​ 	 (​and​ (​<​​=​ grade 2.7) (​>​ grade 2.3)) ​"C"​

	​ 	 (​and​ (​<​​=​ grade 2.3) (​>​ grade 0)) ​"D"​

	​ 	 (​=​ grade 0) ​"F"​

	​ 	 :else ​"N/A"​))

				The ​print-all-grades​ function simply uses a sequence comprehension to print each grade:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​defn​ print-all-grades [grades]

	​ 	 (​doseq​ [grade grades]

	​ 	 (​println​ ​"Grade is:"​ grade)))

				Now we can compose them together with ​make-grade-reporter​ and run them on our sample data to
 print a grade report:
			
	ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
	​ 	(​def​ plus-minus-grade-reporter

	​ 	 (make-grade-reporter plus-minus-grade-converter print-all-grades))

	​ 	=> (plus-minus-grade-reporter sample-grades)

	​ 	Grade is: A

	​ 	Grade is: B

	​ 	Grade is: A-

	​ 	Grade is: D

	​ 	Grade is: C+

	​ 	Grade is: B-

				That’s it for our Clojure version of Template Method replacement. Let’s wrap up with some discussion on how
 the Template Method compares to its functional replacement.
			
Discussion

			
			Our functional replacement for Template Method fulfills the same intent but operates quite differently. Instead of
 using subtypes to implement specific suboperations, we use functional composition and higher-order functions.
		

			This mirrors the old object-oriented preference of composition over inheritance. Even in the object-oriented
 world, I prefer to use the pattern described in Pattern 11, ​Replacing Dependency Injection​ to inject suboperations into a class, rather than
 using Template Method and subclassing.
		

			The biggest reason for this is that it helps to prevent code duplication. For instance, in the example we used in this
 chapter, if we wanted a class that printed a histogram of plus/minus grades, we would have to either create a deeper
 inheritance hierarchy or cut and paste code from the existing implementations. In a real system, this can get fragile
 very quickly.
		

			Composition also does a better job of making an API explicit. The Template Method class may expose protected helper
 methods that are used by framework code but shouldn’t be used by a client. The only way to indicate this is with
 comments in the API documentation.

		
For Further Reading

			Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]–​Template Method​
		
Related Patterns

Pattern 1, ​Replacing Functional Interface​

Pattern 7, ​Replacing Strategy​

Pattern 16, ​Function Builder​

	Pattern 7	Replacing Strategy

Intent

			
			
			To define an algorithm in abstract terms so it can be implemented in several different ways, and to allow it to be injected
 into clients so it can be used across several different clients
		
Overview

			Strategy has a few parts. The first is an interface that represents some algorithm, such as a bit of validation logic
 or a sorting routine. The second is one or more implementations of that interface; these are the strategy classes
 themselves. Finally, one or more clients use the strategy objects.
		

			For instance, we may have several different ways we want to validate a set of data input from a form on a website, and
 we may want to use that validation code in several places. We could create a ​Validator​ interface with a

 ​validate​
 method to serve as our strategy object, along with several implementations that could be
 injected into our code at the appropriate spots.
		
Also Known As

			Policy
		
Functional Replacement

			 Strategy is closely related to Pattern 1, ​Replacing Functional Interface​, in that the strategy objects
 themselves are generally a simple functional interface, but the Strategy pattern contains more moving parts than just
 a Functional Interface. Still, this suggests a straightforward replacement for Strategy in the functional world.
		

			To replace the strategy classes, we use higher-order functions that implement the needed algorithms. This avoids the
 need to create and apply interfaces for different strategy implementations. From there, it’s straightforward to
 pass our strategy functions around and use them where needed.
		
Sample Code: Person Validation

			One common use of Strategy is to create different algorithms that can be used to validate the same set of data. Let’s
 take a look at an example of using Strategy to do just that.
		

			We’ll implement two different validation strategies for a person that contain a first, middle, and last name. The
 first strategy will consider the person valid if he or she has a first name, the second will only consider the person valid if all
 three names are set. On top of that, we’ll look at some simple client code that collects valid people together.
		
In Java

				In Java, we need a ​PersonValidator​ interface, which our two validation strategies,
 ​FirstNameValidator​ and ​FullNameValidator​, will implement. The validators themselves
 are straightforward; they return true if they consider the person valid and false otherwise.
			

				The validators can then be composed in the ​PersonCollector​ class, which will collect
 ​People​ objects that pass validation. The class diagram below outlines this solution:
			
[image: images/PersonValidator.png]

Figure 6. Person Validator Strategy. Using Strategy to validate a person

				This works fine, but it involves spreading our logic across several classes for no particularly good reason. Let’s
 see how we can simplify Strategy using functional techniques.
			
In Scala

				
				In Scala, there’s no need for the ​PersonValidator​ interface we saw in the Java examples. Instead,
 we’ll just use plain old functions to do our validation. To carry a person around, we’ll rely on a case class with
 attributes for each part of a person’s name. Finally, instead of using a full-on class for the person collector,
 we’ll use a higher-order function that itself returns another function that’s responsible for collecting people.
			

				
				
				Let’s start with the ​Person​ case class. This is a pretty standard case class, but notice how we’re
 using ​Option[String]​ to represent the names instead of just ​String​, since this case class
 represents a person that may have parts of the name missing:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
	​ 	​case​ ​class​ Person(

	​ 	 firstName: ​Option​[​String​],

	​ 	 middleName: ​Option​[​String​],

	​ 	 lastName: ​Option​[​String​])

				
				Now let’s take a look at our first name validator, a function called
 ​isFirstNameValid​
 . As the
 code below shows, we use the
 ​isDefined​
 method on Scala’s ​Option​, which returns
 ​true​ if the ​Option​ contains ​Some​ and
 returns ​false​ otherwise to see whether the person has a first name:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
	​ 	​def​ isFirstNameValid(person: Person) = person.firstName.isDefined

				
				Our full name validator is a function,
 ​isFullNameValid​
 . Here, we use a Scala
 ​match​ statement to pick apart a ​Person​, and then we ensure that each name is there
 using
 ​isDefined​
 . The code is below:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
	​ 	​def​ isFullNameValid(person: Person) = person ​match​ {

	​ 	 ​case​ Person(firstName, middleName, lastName) =>

	​ 	 firstName.isDefined && middleName.isDefined && lastName.isDefined

	​ 	}

				Finally, our person collector, a function aptly named
 ​personCollector​
 , takes in a
 validation function and produces another function that’s responsible for collecting valid people. It does so by
 running a passed-in person through the validation function. It then appends it to an immutable vector and stores a
 reference to the new vector in the ​validPeople​ ​var​ if it passes
 validation. Finally it returns ​validPeople​, as the code below shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
	​ 	​def​ personCollector(isValid: (Person) => ​Boolean​) = {

	​ 	 ​var​ validPeople = Vector[Person]()

	​ 	 (person: Person) => {

	​ 	 ​if​(isValid(person)) validPeople = validPeople :+ person

	​ 	 validPeople

	​ 	 }

	​ 	}

				Let’s take a look at our validators and person-collector at work, starting with creating a person-collector that
 considers single names valid and one that only considers full names valid:
			
	​ 	scala>​ val singleNameValidCollector = personCollector(isFirstNameValid)​

	​ 	singleNameValidCollector: ...

	​ 	

	​ 	scala>​ val fullNameValidCollector = personCollector(isFullNameValid)​

	​ 	fullNameValidCollector: ...

				We can now define a few test names:
			
	​ 	scala>​ val p1 = Person(Some("John"), Some("Quincy"), Some("Adams"))​

	​ 	p1: com.mblinn.mbfpp.oo.strategy.PeopleExample.Person = ...

	​ 	

	​ 	scala>​ val p2 = Person(Some("Mike"), None, Some("Linn"))​

	​ 	p2: com.mblinn.mbfpp.oo.strategy.PeopleExample.Person = ...

	​ 	

	​ 	scala>​ val p3 = Person(None, None, None)​

	​ 	p3: com.mblinn.mbfpp.oo.strategy.PeopleExample.Person = ...

				Then we run through our two person-collectors, starting with
 ​singleNameValidCollector​
 :
			
	​ 	scala>​ singleNameValidCollector(p1)​

	​ 	res0: scala.collection.immutable.Vector[...] =

	​ 	 Vector(Person(Some(John),Some(Quincy),Some(Adams)))

	​ 	

	​ 	scala>​ singleNameValidCollector(p2)​

	​ 	res1: scala.collection.immutable.Vector[...] =

	​ 	 Vector(

	​ 	 Person(Some(John),Some(Quincy),Some(Adams)),

	​ 	 Person(Some(Mike),None,Some(Linn)))

	​ 	

	​ 	scala>​ singleNameValidCollector(p3)​

	​ 	res2: scala.collection.immutable.Vector[...] =

	​ 	 Vector(

	​ 	 Person(Some(John),Some(Quincy),Some(Adams)),

	​ 	 Person(Some(Mike),None,Some(Linn)))

				And we’ll finish up with
 ​fullNameValidCollector​
 :
			
	​ 	scala>​ fullNameValidCollector(p1)​

	​ 	res3: scala.collection.immutable.Vector[...] =

	​ 	 Vector(Person(Some(John),Some(Quincy),Some(Adams)))

	​ 	

	​ 	scala>​ fullNameValidCollector(p2)​

	​ 	res4: scala.collection.immutable.Vector[...] =

	​ 	 Vector(Person(Some(John),Some(Quincy),Some(Adams)))

	​ 	

	​ 	scala>​ fullNameValidCollector(p3)​

	​ 	res5: scala.collection.immutable.Vector[...] =

	​ 	 Vector(Person(Some(John),Some(Quincy),Some(Adams)))

				As we can see, the two collectors work as they should, delegating to the validation functions that were passed in
 when they were created.
			
In Clojure

				
				In Clojure, we’ll solve our person-collecting problem in a similar way to Scala, using functions for the
 validators and a higher-order function that takes in a validator and produces a person-collecting function. To
 represent the people, we’ll use good old Clojure maps. Since Clojure is a dynamic language and doesn’t have
 Scala’s Option typing, we’ll use ​nil​ to represent the lack of a name.
			

				Let’s start by looking at ​first-name-valid?​. It checks to see if the
 ​:first-name​ of the person is not nil and returns ​true​ if so;
				otherwise it returns ​false​.
			
	ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
	​ 	(​defn​ first-name-valid? [person]

	​ 	 (​not​ (​nil?​ (:first-name person))))

				The ​full-name-valid?​ function pulls out all three names and returns ​true​
 only if they’re all not nil:
			
	ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
	​ 	(​defn​ full-name-valid? [person]

	​ 	 (​and​

	​ 	 (​not​ (​nil?​ (:first-name person)))

	​ 	 (​not​ (​nil?​ (:middle-name person)))

	​ 	 (​not​ (​nil?​ (:last-name person)))))

				Finally, let’s take a look at our ​person-collector​, which takes in a validation function and
 produces a collector function. This works almost exactly like the Scala version, the main difference being that we
 need to use an atom to store a reference to our immutable vector in an atom.

			
	ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
	​ 	(​defn​ person-collector [valid?]

	​ 	 (​let​ [valid-people (​atom​ [])]

	​ 	 (​fn​ [person]

	​ 	 (​if​ (valid? person)

	​ 	 (​swap!​ valid-people ​conj​ person))

	​ 	 @valid-people)))

				Before we wrap up, let’s see our Clojure person collection in action, starting by defining the collector functions
 as we do below:
			
	​ 	=> (def first-name-valid-collector (person-collector first-name-valid?))

	​ 	#'mbfpp.oo.strategy.people-example/first-name-valid-collector

	​ 	=> (def full-name-valid-collector (person-collector full-name-valid?))

	​ 	#'mbfpp.oo.strategy.people-example/full-name-valid-collector

				Now we need some test data:
			
	​ 	=> (def p1 {:first-name "john" :middle-name "quincy" :last-name "adams"})

	​ 	#'mbfpp.oo.strategy.people-example/p1

	​ 	=> (def p2 {:first-name "mike" :middle-name nil :last-name "adams"})

	​ 	#'mbfpp.oo.strategy.people-example/p2

	​ 	=> (def p3 {:first-name nil :middle-name nil :last-name nil})

	​ 	#'mbfpp.oo.strategy.people-example/p3

				And we can run it through our collectors, starting with the collector that only requires a first name for the
 person to be valid:
			
	​ 	=> (first-name-valid-collector p1)

	​ 	[{:middle-name "quincy", :last-name "adams", :first-name "john"}]

	​ 	=> (first-name-valid-collector p2)

	​ 	[{:middle-name "quincy", :last-name "adams", :first-name "john"}

	​ 	{:middle-name nil, :last-name "adams", :first-name "mike"}]

	​ 	=> (first-name-valid-collector p3)

	​ 	[{:middle-name "quincy", :last-name "adams", :first-name "john"}

	​ 	{:middle-name nil, :last-name "adams", :first-name "mike"}]

				Then we finish up with the collector that requires the full name for the person to be valid:
			
	​ 	=> (full-name-valid-collector p1)

	​ 	[{:middle-name "quincy", :last-name "adams", :first-name "john"}]

	​ 	=> (full-name-valid-collector p2)

	​ 	[{:middle-name "quincy", :last-name "adams", :first-name "john"}]

	​ 	=> (full-name-valid-collector p3)

	​ 	[{:middle-name "quincy", :last-name "adams", :first-name "john"}]

				Both work as expected, validating the passed-in name before storing it if valid and then returning the full set of
 valid names.
			
Discussion

			Strategy and Template Method serve similar ends. Both are ways to inject some bit of custom code into a larger
 framework or algorithm. Strategy does so using composition, and Template Method does so using inheritance. We replaced
 both patterns with ones based on functional composition.

		

			Though both Clojure and Scala have language features that allow us to build hierarchies, we’ve replaced both Template
 Method and Strategy with patterns based on functional composition. This leads to simpler solutions to common problems,
 mirroring the old object-oriented preference to favor composition over inheritance.

		
For Further Reading

		 Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—​Strategy​
		
Related Patterns

Pattern 1, ​Replacing Functional Interface​

Pattern 6, ​Replacing Template Method​

	Pattern 8	Replacing Null Object

Intent

			 To avoid scattering null checks throughout our code by encapsulating
 the action taken for null references into a surrogate null object
		
Overview

			A common way to represent the lack of a value in Java is to use a null reference. This leads to a lot of code that
 looks like so:
		
	​ 	​if​(null == someObject){

	​ 	 ​// default null handling behavior​

	​ 	}​else​{

	​ 	 someObject.someMethod()

	​ 	}

			This style leads to scattering null handling logic throughout our code, often repeating it. If we forget to check for
 null it may lead to a program crashing ​NullPointerException​, even if there is a reasonable default
 behavior that can handle the lack of a value.
		

			
			A common solution to this is to create a singleton null object that has the same interface as our real objects but
 implements our default behavior. We can then use this object in place of null references.
		

			The two main benefits here are these:
		
	

					We can avoid scattering null checks throughout our code, which keeps our code clean and easier to read.
				

	

					We can centralize logic that deals with handling the absence of a value.
				

			Using Null Object has its trade-offs, however. Pervasive use of the pattern means that your program probably won’t
 fail fast. You may generate a null object due to a bug and not know until much later in the program’s execution, which
 makes it much harder to track down the source of the bug.
		

			In Java, I generally use Null Object judiciously when I know that there’s a good reason why I may not have a value for
 something and use null checks elsewhere. The difference between these two situations can be subtle.
		

			For instance, let’s imagine we’re writing part of a system that looks up a person by a generated, unique ID. If the
 IDs are closely related to the system we’re writing and we know that every lookup should succeed and return a person,
 I’d stick with using null references. This way, if something goes wrong and we don’t have a person, we fail fast and
 don’t pass the problem on.
		

			However, if the IDs aren’t closely related to our program, I’d probably use Null Object. Say, for instance, that the
 IDs are generated by some other system and imported into ours via a batch process, which means that there’s some
 latency between when the ID is created and when it becomes available to our system. In this case, handling a missing
 ID would be part of our program’s normal operation, and I’d use Null Object to keep the code clean and avoid
 extraneous null checks.
		

			The functional replacements we examine will explore these tradeoffs. 	
		
Functional Replacement

			We’ll examine a few different approaches here. In Scala, we’ll take advantage of static typing and
 ​Option​ typing to replace null object references. In Clojure, we’ll primarily focus on Clojure’s
 treatment of ​nil​, but we’ll also touch on Clojure’s optional static typing system, which provides
 us with an ​Option​ much like Scala’s.
		
In Scala

				
				We have null references in Scala just as we do in Java; however, it’s not common to use them. Instead we can take
 advantage of the type system to replace both null references and Null Object. We’ll look at two container types,
 ​Option​ and ​Either​. The first, ​Option​, lets us indicate that we may
 not have a value in a type-safe manner. The second, ​Either​, lets us provide a value when we’ve got
 one and a default or error value when we don’t.

			

				Let’s take a closer look at ​Option​ first. Option types are
				containers, much like a
 ​Map​ or a ​Vector​, except they can only hold one
 				element at most. ​Option​ has two important subtypes:
 				​Some​, which carries a value, and the singleton object
 ​None​, which does not. In the following code, we
				create a ​Some[String]​ that carries
 the value ​"foo"​ and a reference to ​None​:

			
	​ 	scala>​ def aSome = Some("foo")​

	​ 	aSome: Some[java.lang.String]

	​ 	

	​ 	scala>​ def aNone = None​

	​ 	aNone: None.type

				Now we can work with our ​Option​ instances in a variety of ways. Perhaps the simplest is the

 ​getOrElse​
 method. The
 ​getOrElse​
 method is called with a single argument, a
 default value. When called on an instance of ​Some​, the carried value is returned; when called on
 ​None​ the default value is returned. The following code demonstrates this:
			
	​ 	scala>​ aSome.getOrElse("default value")​

	​ 	res0: java.lang.String = foo

	​ 	

	​ 	scala>​ aNone.getOrElse("default value")​

	​ 	res1: java.lang.String = default value

				When working with ​Option​, it’s cleanest to treat a value as another container type. For example, if
 we need to do something to a value inside an ​Option​, we can use our old friend

 ​map​
 , as in the following code:
			
	​ 	scala>​ aSome.map((s) => s.toUpperCase)​

	​ 	res2: Option[java.lang.String] = Some(FOO)

				We’ll examine some more-sophisticated ways of working with ​Option​ in the code samples.
			

				One final note on ​Option​: In its simplest form, it can be used much as we’d use a null check in
 Java, though there are more powerful ways to use it. However, even in this simplest form, there’s one major
 difference.
 			

				​Option​ is part of the type system, so if we use it consistently we know exactly in which parts of our code we may have to deal with
 the lack of a value or a default value. Everywhere else we can write code safe in the knowledge that we’ll have a
 value.
			
In Clojure

				
				In Clojure, we don’t have the ​Option​ typing that Scala’s static type system provides us. Instead,
 we’ve got ​nil​, which is equivalent to Java’s ​null​ at the bytecode level.
 However, Clojure provides several convenient features that make it much cleaner to deal with the lack of a value
 using ​nil​ and that give us many of the same benefits we get with Null Object.
 			

				First up, ​nil​ is treated the same as ​false​ in Clojure. Combined with
 a pervasive use of expressions, this makes it much simpler to do a ​nil​ check in Clojure than it
 is to check for ​null​ in Java, as the following code demonstrates:
			
	​ 	=> (if nil "default value" "real value")

	​ 	"real value"

				Second, the functions that we use to get values of our Clojure’s composite data structures provide a way to get a
 default value if the element we’re trying to retrieve isn’t present. Here we use the ​get​ method
 to try to retrieve the value for ​:foo​ from an empty map, and we get back our passed-in default
 value instead:

			
	​ 	=> (get {} :foo "default value")

	​ 	"default value"

				The lack of a value for a key is distinct from a key that has the value of ​nil​, as
 this code demonstrates:
			
	​ 	=> (get {:foo nil} :foo "default value")

	​ 	nil

				Let’s dig into some code samples!
				
			
Sample Code: Default Values

			We’ll start by looking at how we’d use Null Object as a default when we don’t get back a value from a map lookup. In
 this example, we’ll have a map full of people keyed off of an ID. If we don’t find a person for a given ID, we need to
 return a default person with the name “John Doe.”
		
Classic Java

				In classic Java, we’ll create a ​Person​ interface with two subclasses, ​RealPerson​ and
 ​NullPerson​. The first, ​RealPerson​, allows us to set a first and last name, while
 ​NullPerson​ has them hardcoded to ​"John"​ and ​"Doe"​.
			

				If we get a ​null​ back when we try to get a person by ID, we return an instance of
 ​NullPerson​; otherwise we use the ​RealPerson​ we got out of the map. The
 following code sketches out this approach:
			
	JavaExamples/src/main/java/com/mblinn/oo/nullobject/PersonExample.java
	​ 	​public​ ​class​ PersonExample {

	​ 	 ​private​ ​Map​<​Integer​, Person> people;

	​ 	

	​ 	 ​public​ PersonExample() {

	​ 	 people = ​new​ ​HashMap​<​Integer​, Person>();

	​ 	 }

	​ 	

	​ 	 ​public​ Person fetchPerson(​Integer​ id) {

	​ 	 Person person = people.get(id);

	​ 	 ​if​ (null != person)

	​ 	 ​return​ person;

	​ 	 ​else​

	​ 	 ​return​ ​new​ NullPerson();

	​ 	 }

	​ 	 ​// Code to add/remove people​

	​ 	

	​ 	 ​public​ Person buildPerson(​String​ firstName, ​String​ lastName){

	​ 	 ​if​(null != firstName && null != lastName)

	​ 	 ​return​ ​new​ RealPerson(firstName, lastName);

	​ 	 ​else​

	​ 	 ​return​ ​new​ NullPerson();

	​ 	 }

	​ 	}

				Let’s see how we can use Scala’s ​Option​ to eliminate the explicit null check we need to do in Java.
			
In Scala

				
				In Scala, the
 ​get​
 on ​Map​ doesn’t return a value directly. If the key exists, the
 value is returned wrapped in a ​Some​, otherwise a ​None​ is returned.
			

				For instance, in the following code we create a map with two integer keys, ​1​ and ​2​, and
 ​String​ greetings as values. When we try to fetch either of them using
 ​get​
 , we get
 back a ​String​ wrapped in a ​Some​. For any other key, we get back a
 ​None​.

			
	​ 	scala>​ def aMap = Map(1->"Hello", 2->"Aloha")​

	​ 	aMap: scala.collection.immutable.Map[Int,java.lang.String]

	​ 	

	​ 	scala>​ aMap.get(1)​

	​ 	res0: Option[java.lang.String] = Some(Hello)

	​ 	

	​ 	scala>​ aMap.get(3)​

	​ 	res1: Option[java.lang.String] = None

				
				We could work with the ​Option​ type directly, but Scala provides a nice shorthand that lets us
 get back a default value directly from a map,
 ​getOrElse​
 . In the following REPL output, we use it
 to attempt to fetch the value for the key ​3​ from the map. Since it’s not there, we get back our default
 value instead.
			
	​ 	scala>​ aMap.getOrElse(3, "Default Greeting")​

	​ 	res3: java.lang.String = Default Greeting

				Now let’s see how we can use this handy feature to implement our person-fetching example. Here we’re using a trait
 as the base type for our people, and we’re using case classes for the ​RealPerson​ and ​NullPerson​.
 We can then use an instance of ​NullPerson​ as the default value in our lookup. The following code
 demonstrates this approach:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
	​ 	​case​ ​class​ Person(firstName: ​String​=​"John"​, lastName: ​String​=​"Doe"​)

	​ 	​val​ nullPerson = Person()

	​ 	

	​ 	​def​ fetchPerson(people: Map[​Int​, Person], id: ​Int​) =

	​ 	 people.getOrElse(id, nullPerson)

				Let’s define some test data so we can see this approach at work:	
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
	​ 	​val​ joe = Person(​"Joe"​, ​"Smith"​)

	​ 	​val​ jack = Person(​"Jack"​, ​"Brown"​)

	​ 	​val​ somePeople = Map(1 -> joe, 2 -> jack)

				Now if we use
 ​fetchPerson​
 on a key that exists, it’s returned; otherwise our default person is
 returned:
			
	​ 	scala>​ fetchPerson(somePeople, 1)​

	​ 	res0: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(Joe,Smith)

	​ 	

	​ 	scala>​ fetchPerson(somePeople, 3)​

	​ 	res1: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(John,Doe)

				Now let’s take a look at how we can accomplish this in Clojure.
			
In Clojure

				When we try to look up a nonexistent key from a map in Clojure, ​nil​ is returned.
			
	​ 	=> ({} :foo)

	​ 	nil

				
				Clojure provides another way to look up keys from a map, the ​get​ function, which lets us
 provide an optional default value. The following REPL snippet shows a simple example of ​get​ in
 action.
			
	​ 	=> (get :foo {} "default")

	​ 	"default"

				To write our person lookup example in Clojure, all we need to do is define a default
 ​null-person​. We then pass it into ​get​ as a default value when we try to do
 our lookup, as the following code and REPL output demonstrates:
			
	ClojureExamples/src/mbfpp/oo/nullobject/examples.clj
	​ 	(​def​ null-person {:first-name ​"John"​ :last-name ​"Doe"​})

	​ 	(​defn​ fetch-person [people id]

	​ 	 (​get​ id people null-person))

	​ 	=> (def people {42 {:first-name "Jack" :last-name "Bauer"}})

	​ 	#'mbfpp.oo.nullobject.examples/people

	​ 	=> (fetch-person 42 people)

	​ 	{:last-name "Bauer", :first-name "Jack"}

	​ 	=> (fetch-person 4 people)

	​ 	{:last-name "Doe", :first-name "John"}

				The code in this example deals with a basic use of Null Object as a default value at lookup time. Next up, let’s
 take a look at how we’d handle working with Null Object and its replacements when the time comes to modify them.
			
Sample Code: Something from Nothing

			Let’s take a look at our person example from a different angle. This time, instead of looking up a person that may not
 exist, we want to create a person only if we’ve got a valid first and last name. Otherwise, we want to use a
 default.
		
Classic Java

				In Java, we’ll use the same null object we saw in ​Classic Java​. If we have
 both a first and last name available to use, we’ll use a ​RealPerson​; otherwise we’ll use a
 ​NullPerson​.
			

				
				To do this, we write a
 ​buildPerson​
 that takes a ​firstName​ and a
 ​lastName​. If either is ​null​, we return a ​NullPerson​;
 otherwise we return a ​RealPerson​ built with the passed-in names. The following code outlines this
 solution:
			
	JavaExamples/src/main/java/com/mblinn/oo/nullobject/PersonExample.java
	​ 	​public​ Person buildPerson(​String​ firstName, ​String​ lastName){

	​ 	 ​if​(null != firstName && null != lastName)

	​ 	 ​return​ ​new​ RealPerson(firstName, lastName);

	​ 	 ​else​

	​ 	 ​return​ ​new​ NullPerson();

	​ 	}

				This approach allows us to minimize the surface area of our code where we need to deal with
 ​null​, which helps cut down on surprise null pointers. Now let’s see how we can accomplish the
 same in Scala without needing to introduce an extraneous null object.
			
In Scala

				
				Our Scala approach to this problem will take advantage of ​Option​ instead of creating a special Null
 Object type. The ​firstName​ and ​lastName​ we pass into

 ​buildPerson​
 are ​Option[String]​s, and we return an ​Option[Person]​.
			

				If both ​firstName​ and ​lastName​ are ​Some[String]​, then we
 return a ​Some[Person]​; otherwise we return a ​None​. The right way to do this in Scala
 is to treat the ​Option​s as we would treat any other container, such as a ​Map​ or a
 ​Vector​.
			

				
				Earlier we saw a simple example of using the
 ​map​
 method on an instance of ​Some​.
 Let’s look at how we’d use Scala’s most powerful sequence manipulation tool, the sequence comprehensions we
 introduced in ​Sample Code: Sequence Comprehensions​, to manipulate ​Option​ types.
			

				First, let’s get some test data into our REPL. In the following snippet, we define a simple vector and a few
 option types:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
	​ 	​def​ vecFoo = Vector(​"foo"​)

	​ 	​def​ someFoo = Some(​"foo"​)

	​ 	​def​ someBar = Some(​"bar"​)

	​ 	​def​ aNone = None

				
				As we can see in the following code, manipulating a ​Some​ looks much like manipulating a
 ​Vector​ with a single value in it:
			
	​ 	scala>​ for(theFoo <- vecFoo) yield theFoo​

	​ 	res0: scala.collection.immutable.Vector[java.lang.String] = Vector(foo)

	​ 	scala>​ for(theFoo <- someFoo) yield theFoo​

	​ 	res1: Option[java.lang.String] = Some(foo)

				The real power of using a for comprehension to work with ​Option​ comes in when we’re working with
 multiple ​Option​s at a time. We can use multiple generators, one for each option, to get at the
 values in each. In the following code, we use this technique to pull the strings out of
 ​someFoo​ and ​someBar​ and put them into a tuple, which we then yield:
			
	​ 	scala>​ for(theFoo <- someFoo; theBar <- someBar) yield (theFoo, theBar)​

	​ 	res2: Option[(java.lang.String, java.lang.String)] = Some((foo,bar))

				When working with options in this fashion, if any of the generators produces a ​None​, then the value
 of the entire expression is a ​None​. This gives us a clean syntax for working with
 ​Some​ and ​None​:
			
	​ 	scala>​ for(theFoo <- someFoo; theNone <- aNone) yield (theFoo, theNone)​

	​ 	res3: Option[(java.lang.String, Nothing)] = None

				We can now apply this to our person-building example pretty simply. We use two generators in our for
 comprehensions, one for the ​firstName​ and one for the ​lastName​. We then
 yield a ​Person​.

				The for comprehension wraps that up inside of an ​Option​, and we use
 ​getOrElse​
 to
 get at it or use a default. The following code demonstrates this approach:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
	​ 	​def​ buildPerson(firstNameOption: ​Option​[​String​], lastNameOption: ​Option​[​String​]) =

	​ 	 (​for​(

	​ 	 firstName <- firstNameOption;

	​ 	 lastName <- lastNameOption)

	​ 	 ​yield​ Person(firstName, lastName)).getOrElse(Person(​"John"​, ​"Doe"​))

				Here we can see it in action:
			
	​ 	scala>​ buildPerson(Some("Mike"), Some("Linn"))​

	​ 	res4: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(Mike,Linn)

	​ 	

	​ 	scala>​ buildPerson(Some("Mike"), None)​

	​ 	res5: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(John,Doe)

				Let’s finish up the example by seeing how to handle person-building in Clojure.
			
In Clojure

				In Clojure, our person-building example boils down to a simple nil check. We pass ​first-name​
 and ​last-name​ into our ​build-person​ function. If they’re both not-nil, we
 use them to create a person; otherwise we create a default person.
			

				
				Clojure’s treatment of nil as a “falsey” value makes this convenient to do, but otherwise it’s very similar to our
 Java approach. The code follows:
			
	ClojureExamples/src/mbfpp/oo/nullobject/examples.clj
	​ 	(​defn​ build-person [first-name last-name]

	​ 	 (​if​ (​and​ first-name last-name)

	​ 	 {:first-name first-name :last-name last-name}

	​ 	 {:first-name ​"John"​ :last-name ​"Doe"​}))

				Here it produces a real person and a default person:		
			
	​ 	=> (build-person "Mike" "Linn")

	​ 	{:first-name "Mike", :last-name "Linn"}

	​ 	=> (build-person "Mike" nil)

	​ 	{:first-name "John", :last-name "Doe"}

				Let’s take one last look at handling nothing by examining a case in which we have many parts of our code that want
 to deal with the lack of a value in the same way.
			
Discussion

			The idiomatic approach to handling the lack of a value in Clojure versus Scala is very different. The difference comes
 down to Scala’s static type system and Clojure’s dynamic one. Scala’s static type system and type parameters make
 the ​Option​ type possible.
		

			
			The tradeoffs that Scala and Clojure make here mirror the general tradeoffs between static and dynamic typing. With
 Scala’s approach, the compiler helps to ensure that we’re properly handling nothing at compile time, though we have to
 be careful not to let Java’s ​null​ creep into our Scala code.
		

			With Clojure’s approach, we’ve got the possibility for null pointers just about anywhere, just as in Java. We need to
 be more careful that we’re handling them appropriately, or we risk runtime errors.
		

			My preference is to take care of all my nothing handling at the outermost layer of my code, whether I’m using
 Scala’s ​Option​ typing or the ​null​/​nil​ that Java and Clojure
 share. For instance, if I’m querying a database for a person who may or may not exist, I prefer to check for his/her
 existence only once: when we attempt to pull it back from the database.
			Then I use the techniques outlined in this pattern to create a default person if necessary.
			This allows the rest of
 my code to avoid doing null checks or to deal with ​Option​ typing.
			I’ve found that Scala’s approach to
 ​Option​ typing makes it much easier to write programs in this style, because it forces us to
 explicitly deal with the lack of a value whenever we might not have one and to assume that we’ll have a value everywhere
 else.

		
For Further Reading

Pattern Languages of Program Design 3 [MRB97]—​Null Object​

Refactoring: Improving the Design of Existing Code [FBBO99]—​Introduce Null Object​

	Pattern 9	Replacing Decorator

Intent

			
			
			To add behavior to an individual object rather than to an entire class of objects—this allows us to change the behavior of
 an existing class.
		
Overview

			Decorator is useful when we’ve got an existing class that we need to add some behavior to but we can’t change the
 existing class. We may want to introduce a breaking change, but we can’t change every other part of the system where the
 class is used. Or the class may be part of a library that we can’t, or don’t want to, modify.
		

			Decorator uses a combination of inheritance and composition. It starts with an interface with at least one concrete
 implementation. This implementation is the class that we can’t or don’t want to change.
		

			
			We then implement the interface with an abstract decorator class, which gets an instance of our existing, concrete
 class composed into it. Our abstract decorator class can itself have several implementations, which tweak the behavior
 of the existing class using composition, as shown in this figure:
		
[image: images/Decorator.png]

Figure 7. Decorator Diagram. A class diagram for the Decorator pattern

			This gives us some ability to add or modify behavior on existing classes, but we’re mostly limited to small tweaks since
 we rely on the base behavior of the composed class.
		
Also Known As

			Wrapper
		
Functional Replacement

			The essence of Decorator is wrapping an existing class with a new one so that the new class can tweak the behavior of
 the existing one. In the functional world, one simple replacement is to create a higher-order function that takes in
 the existing function and returns a new, wrapped function.
		

			The wrapped function does its job and then delegates to the existing function. For instance, we could create a

 ​wrapWithLogger​
 function that wraps up an existing function with a bit of logging, returning a new
 function.
		
Sample Code: Logging Calculator

			Let’s take a look at using Decorator with a basic four-function calculator. The calculator has four operations,

 ​add​
 ,
 ​subtract​
 ,
 ​multiply​
 , and
 ​divide​
 . To demonstrate
 Decorator, we’ll take a basic calculator and decorate it so that it logs out the calculation it’s performing to the
 console.
		
Classic Java

				In Java, our solution consists of an interface and two concrete classes. The ​Calculator​ interface
 is implemented by both ​CalculatorImp​ and ​LoggingCalculator​. The
 ​LoggingCalculator​ class serves as our decorator and needs a ​CalculatorImpl​ composed
 into it to do its job.

			 An outline of this approach can be found in the following image:
			
[image: images/Calculator.png]

				The ​LoggingCalculator​ class delegates to the composed ​CalculatorImpl​ and then logs the
 calculation to the console.
			
In Scala

				In Scala, our calculator is just a collection of four functions. To keep things simple, we’ll constrain ourselves
 to integer operations, since implementing generic numeric functions in Scala is a bit involved. The code for our Scala
 calculator follows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
	​ 	​def​ add(a: ​Int​, b: ​Int​) = a + b

	​ 	​def​ subtract(a: ​Int​, b: ​Int​) = a - b

	​ 	​def​ multiply(a: ​Int​, b: ​Int​) = a * b

	​ 	​def​ divide(a: ​Int​, b: ​Int​) = a / b

				
				To wrap our calculator functions in logging code, we use
 ​makeLogger​
 . This is a higher-order
 function that takes in a calculator function and returns a new function that runs the original calculator
 function and prints the result to the console before returning it.
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
	​ 	​def​ makeLogger(calcFn: (​Int​, ​Int​) => ​Int​) =

	​ 	 (a: ​Int​, b: ​Int​) => {

	​ 	 ​val​ result = calcFn(a, b)

	​ 	 println(​"Result is: "​ + result)

	​ 	 result

	​ 	 }

				To use
 ​makeLogger​
 , we run our original calculator functions through it and assign the results
 into new ​val​s, as the following code shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
	​ 	​val​ loggingAdd = makeLogger(add)

	​ 	​val​ loggingSubtract = makeLogger(subtract)

	​ 	​val​ loggingMultiply = makeLogger(multiply)

	​ 	​val​ loggingDivide = makeLogger(divide)

				Now we can use our printing calculator function to do some arithmetic and print the results:
			
	​ 	scala>​ loggingAdd(2, 3)​

	​ 	Result is: 5

	​ 	res0: Int = 5

	​ 	

	​ 	scala>​ loggingSubtract(2, 3)​

	​ 	Result is: -1

	​ 	res1: Int = -1

				Let’s take a look at our calculator solution in Clojure.
			
In Clojure

				The structure of our Clojure solution is similar to the Scala one, the main difference being that our Clojure
 solution isn’t constrained to integers since Clojure is dynamically typed. The following code defines our
 calculator functions:
			
	ClojureExamples/src/mbfpp/oo/decorator/examples.clj
	​ 	(​defn​ add [a b] (​+​ a b))

	​ 	(​defn​ subtract [a b] (​-​ a b))

	​ 	(​defn​ multiply [a b] (​*​ a b))

	​ 	(​defn​ divide [a b] (​/​ a b))

				Next we need a ​make-logger​ higher-order function to wrap our calculator functions up with
 logging code:
			
	ClojureExamples/src/mbfpp/oo/decorator/examples.clj
	​ 	(​defn​ make-logger [calc-fn]

	​ 	 (​fn​ [a b]

	​ 	 (​let​ [result (calc-fn a b)]

	​ 	 (​println​ (​str​ ​"Result is: "​ result))

	​ 	 result)))

				Finally, we can create some logging calculator functions and use them to do some logging math:
			
	ClojureExamples/src/mbfpp/oo/decorator/examples.clj
	​ 	(​def​ logging-add (make-logger add))

	​ 	(​def​ logging-subtract (make-logger subtract))

	​ 	(​def​ logging-multiply (make-logger multiply))

	​ 	(​def​ logging-divide (make-logger divide))

	​ 	=> (logging-add 2 3)

	​ 	Result is: 5

	​ 	5

	​ 	=> (logging-subtract 2 3)

	​ 	Result is: -1

	​ 	-1

				It’s no accident that the Scala and Clojure solutions to the calculator problem are so similar:
				they both rely only on
 basic higher-order functions, which are similar across both languages.

			
For Further Reading

		 Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—​Decorator​
		
Related Patterns

Pattern 7, ​Replacing Strategy​

Pattern 16, ​Function Builder​

	Pattern 10	Replacing Visitor

Intent

			 To encapsulate an action to be performed on a data structure in a way
 that allows the addition of new operations to the data structure without having to modify it.
		
Overview

			A common sticking point in large, long-lived programs is how to extend a data type. We want to extend along two
 dimensions. First, we may want to add new operations to existing implementations of the data type. Second, we may want
 to add new implementations of the data type.
		

			We’d like to be able to do this without recompiling the original source, indeed, possibly without even having access
 to it. This is a problem that’s as old as programming itself, and it’s now known as the
 ​ expression
 problem​

 .

		

			
			For example, consider Java’s ​Collection​ as a sample data type. The ​Collection​ interface
 defines many methods, or operations, and has many implementations. In a perfect world, we’d be able to easily add both
 new operations to ​Collection​ as well as new implementations of ​Collection​.
 		

			In object-oriented languages, however, it’s only easy to do the latter. We can create a new implementation of
 ​Collection​ by implementing the interface. If we want to add new operations to ​Collection​
 that work with all the existing ​Collection​ implementation, we’re out of luck.
		

			In Java, we often get around this by creating a class full of static utility methods, rather than by adding the
 operations directly to the data type. One such library for ​Collection​ is the Apache foundation’s
 ​CollectionUtils​.
		

			Visitor is another partial solution to this sort of problem. It allows us to add new operations to an existing data
 type and is often used with tree-structured data. Visitor allows us to fairly easily add new operations to an
 existing data type, but it makes adding new implementations of the data type difficult.
		
Visitor Pattern

			The Visitor class diagram (shown in the following figure) shows the main pieces of the Visitor pattern. Our data type here is the
 ​DataElement​ class, which has two implementations. Instead of implementing operations directly on the
 subclasses of ​DataElement​, we create an
 ​accept​
 method that takes a
 ​Visitor​ and calls
 ​visit​
 , passing itself in.
		
[image: images/Visitor.png]

Figure 8. Visitor Classes. A sketch of the Visitor pattern

			This inverts the normal object-oriented constraint that it’s easy to add new implementations of a data type but
 difficult to add new operations. If we want to add a new operation, we just need to create a new visitor and write
 code such that it knows how to visit each existing concrete element.
		

			However, it’s hard to add new implementations of ​DataElement​. To do so, we’d need to modify all of the
 existing visitors to know how to visit the new ​DataElement​ implementation. If those
 ​Visitor​ classes are outside of our control, it may be impossible!

		
Functional Replacement

			The Visitor pattern makes it possible to add new operations to an object-oriented data type but difficult, or
 impossible, to add new implementations of the type. In the functional world, this is the norm. It’s easy to add a new
 operation on some data type by writing a new function that operates on it, but it’s difficult to add new data types to an
 existing operation.
		

			In our replacements, we’ll examine a few different ways to deal with this extensibility problem in Scala and Clojure.
 The solutions are quite different in the two languages. In part, this is because Scala is statically typed while
 Clojure is dynamically typed. This means that Scala has a harder problem to solve in that it attempts to perform its
 extensions while preserving static type safety.
		

			
			
			The other difference is that Scala’s take on polymorphism is an extension of the traditional object-oriented model,
 which uses a hierarchy of subclasses. Clojure takes a novel view and provides polymorphism in a more ad hoc manner.
 Since polymorphism is intimately bound up with extensibility, this affects the overall shape of the solutions.
		
In Scala

				Since Scala is a hybrid language, extending existing code requires us to dip into its object-oriented features,
 especially its type system.
			

				
				First we’ll look at a method of extending the operations in an existing library that uses Scala’s

 ​ implicit conversion​

 system. This allows us to add new operations to existing libraries.
			

				Second we’ll look at a solution that takes advantage of Scala’s mix-in inheritance and traits, which allows us to
 easily add both new operations and new implementations to a data type.
			
In Clojure

				
				
				In Clojure we’ll take a look at the language’s unique take on polymorphism. First we’ll look at Clojure’s
 datatypes and protocols. These allow us to specify data types and the operations performed on them independently
 and to extend datatypes with both new implementations and new operations while taking advantage of the JVMs highly
 optimized method dispatch.
			

				
				Next we’ll look at Clojure’s multimethods. These allow us to provide our own dispatch function, which lets
 us dispatch a method call however we please. They’re more flexible than protocols but slower, since they require
 an additional function call to the user-provided dispatch function.
			

			The Scala and Clojure solutions we examine aren’t exactly equivalent, but they both provide flexible ways to extend
 existing code.
		
Sample Code: Extensible Persons

			In this example, we’ll look at a ​Person​ type and see how we can extend it to have both new
 implementations and operations. This doesn’t replace the full Visitor pattern, but it’s a simpler example of the sorts
 of problems that Visitor touches on.
		
In Java

				
				The code that we’ll look at here is a basic example of extending an existing library without wrapping the original
 objects. In Java, it would be easy to create new implementations of a ​Person​ type, assuming the
 original libraries’ authors defined an interface for it.
			

				More difficult would be adding new operations to ​Person​. We can’t just create a subinterface of
 ​Person​ with new methods, as that could no longer be used in place of a plain ​Person​. Wrapping
 ​Person​ in a new class is also out for the same reason.
			

				Java doesn’t have a good story for extending an existing type to have new operations, so we often end up faking it
 by creating classes full of static utility methods that operate on the type. Scala and Clojure give us more
 flexibility to extend along both dimensions.
			
In Scala

				
				In Scala, our ​Person​ is defined by a trait. The trait specifies methods to get a person’s first
 name, last name, house number, and street. In addition, there’s a method to get the person’s full name, as the
 following code shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
	​ 	​trait​ Person {

	​ 	 ​def​ fullName: ​String​

	​ 	 ​def​ firstName: ​String​

	​ 	 ​def​ lastName: ​String​

	​ 	 ​def​ houseNum: ​Int​

	​ 	 ​def​ street: ​String​

	​ 	}

				Now let’s create an implementation of our ​Person​ type, ​SimplePerson​. We’ll take
 advantage of the fact that Scala will automatically create methods that expose the attributes passed into a
 constructor.

				The only method we need to implement by hand is
 ​fullName​
 , as the following code snippet shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
	​ 	​class​ SimplePerson(​val​ firstName: ​String​, ​val​ lastName: ​String​,

	​ 	 ​val​ houseNum: ​Int​, ​val​ street: ​String​) ​extends​ Person {

	​ 	 ​def​ fullName = firstName + ​" "​ + lastName

	​ 	}

				Now we can create a ​SimplePerson​	and call the
 ​fullName​
 method:
			
	​ 	scala>​ val simplePerson = new SimplePerson("Mike", "Linn", 123, "Fake. St.")​

	​ 	simplePerson: com.mblinn.mbfpp.oo.visitor.Examples.SimplePerson = ...

	​ 	scala>​ simplePerson.fullName​

	​ 	res0: String = Mike Linn

				What if we want to extend the ​Person​ type to have another operation,
 ​fullAddress​
 ?
 One way to do so would be to simply create a new subtype with the new operation, but then we couldn’t use that new
 type where a ​Person​ is needed.
			

				
				In Scala a better way is to define an
 ​ implicit conversion​

 that converts from a
 ​Person​ to a new class with the
 ​fullAddress​
 method. An implicit conversion
 changes from one type to another depending on context.
			

				Most languages have a certain set of explicit conversions, or casts, built in. For instance, if you use the
 ​+​ operator on an ​int​ and a ​String​ in Java, the
 ​int​ will be converted to a ​String​ and the two will be concatenated.
 			

				
				Scala lets programmers define their own implicit conversions. One way to do so is by using an
 ​ implicit
 class​

 . An implicit class exposes its constructor as a candidate for implicit conversions. The
 following code snippet creates an implicit class that converts from a ​Person​ to an
 ​ExtendedPerson​ with a
 ​fullAddress​
 :
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
	​ 	​implicit​ ​class​ ExtendedPerson(person: Person) {

	​ 	 ​def​ fullAddress = person.houseNum + ​" "​ + person.street

	​ 	}

				Now when we try to call
 ​fullAddress​
 on a ​Person​, the Scala compiler will realize
 that the ​Person​ type has no such method. It will then search for an implicit conversion from a
 ​Person​ to a type that does and find it in the ​ExtendedPerson​ class.
			

				The compiler will then construct an ​ExtendedPerson​ by passing the ​Person​ into its
 primary constructor and call
 ​fullAddress​
 on it, as the following REPL output demonstrates:
			
	​ 	scala>​ simplePerson.fullAddress​

	​ 	res1: String = 123 Fake. St.

				Now that we’ve seen the trick that allows us to simulate adding new methods to an existing type, the hard part is
 done. Adding a new implementation of the type is as simple as creating a new implementation of the original
 ​Person​ trait.
			

				Let’s take a look at a ​Person​ implementation called ​ComplexPerson​ that
				uses separate objects for its name and its address:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
	​ 	​class​ ComplexPerson(name: Name, address: Address) ​extends​ Person {

	​ 	 ​def​ fullName = name.firstName + ​" "​ + name.lastName

	​ 	

	​ 	 ​def​ firstName = name.firstName

	​ 	 ​def​ lastName = name.lastName

	​ 	 ​def​ houseNum = address.houseNum

	​ 	 ​def​ street = address.street

	​ 	}

	​ 	​class​ Address(​val​ houseNum: ​Int​, ​val​ street: ​String​)

	​ 	​class​ Name(​val​ firstName: ​String​, ​val​ lastName: ​String​)

				Now we create a new ​ComplexPerson​:
			
	​ 	scala>​ val name = new Name("Mike", "Linn")​

	​ 	name: com.mblinn.mbfpp.oo.visitor.Examples.Name = ..

	​ 	

	​ 	scala>​ val address = new Address(123, "Fake St.")​

	​ 	address: com.mblinn.mbfpp.oo.visitor.Examples.Address = ..

	​ 	

	​ 	scala>​ val complexPerson = new ComplexPerson(name, address)​

	​ 	complexPerson: com.mblinn.mbfpp.oo.visitor.Examples.ComplexPerson = ...

				Our existing implicit conversion will still work!	
			
	​ 	scala>​ complexPerson.fullName​

	​ 	res2: String = Mike Linn

	​ 	

	​ 	scala>​ complexPerson.fullAddress​

	​ 	res3: String = 123 Fake St.

				This means we were able to extend a data type with both a new operation and a new implementation.
			
In Clojure

				
				
				Let’s take a look at our extensible persons example in Clojure. We’ll start by defining a protocol with a single
 operation in it, ​extract-name​. This operation is intended to extract a full name out of a
 person and is defined in the following code snippet:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defprotocol​ NameExtractor

	​ 	 (extract-name [this] ​"Extracts a name from a person."​))

				
				
				Now we can create a Clojure record, ​SimplePerson​, using ​defrecord​. This creates a
 data type with several fields on it:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defrecord​ SimplePerson [first-name last-name house-num street])

				We can create a new instance of a ​SimplePerson​ using the ​->SimplePerson​ factory
 function, as we do in the following snippet:
			
	​ 	=> (def simple-person (->SimplePerson "Mike" "Linn" 123 "Fake St."))

	​ 	#'mbfpp.oo.visitor.examples/simple-person

				Once created, we can get at fields in the data type as if it were a map with keywords for keys. In the following
 snippet, we get the first name out of our simple person instance:
			
	​ 	=> (:first-name simple-person)

	​ 	"Mike"

				Notice how we defined our data type and the set of operations independently? To hook the two together, we can use
 ​extend-type​ to have our ​SimplePerson​ implement the
 ​NameExtractor​ protocol, as we do in the following snippet:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​extend-type​ SimplePerson

	​ 	 NameExtractor

	​ 	 (extract-name [this]

	​ 	 (​str​ (:first-name this) ​" "​ (:last-name this))))

				Now we can call ​extract-name​ on a ​SimplePerson​ and have it extract the person’s
 full name:
			
	​ 	=> (extract-name simple-person)

	​ 	"Mike Linn"

				Now let’s see how to create a new type, ​ComplexPerson​, which represents its name and address as an
 embedded map. We’ll use a version of ​defrecord​ that allows
 us to extend the type to a protocol at the same time we create it. This is just a convenience; the record and
 protocol that we’ve created are still their own entities:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defrecord​ ComplexPerson [​name​ address]

	​ 	 NameExtractor

	​ 	 (extract-name [this]

	​ 	 (​str​ (​->​ this :name :first) ​" "​ (​->​ this :name :last))))

				Now we can create a ​ComplexPerson​ and extract its full name:
			
	​ 	=> (def complex-person (->ComplexPerson {:first "Mike" :last "Linn"}

	​ 	 {:house-num 123 :street "Fake St."}))

	​ 	#'mbfpp.oo.visitor.examples/complex-person

	​ 	=> (extract-name complex-person)

	​ 	"Mike Linn"

				To add a new operation or set of operations to our existing types, we only need to create a new protocol and extend
 the types. In the following snippet, we create a protocol that allows us to extract an address from a person:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defprotocol​

	​ 	 AddressExtractor

	​ 	 (extract-address [this] ​"Extracts and address from a person."​))

				Now we can extend our existing types to conform to the new protocol, as we do in the following code:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​extend-type​ SimplePerson

	​ 	 AddressExtractor

	​ 	 (extract-address [this]

	​ 	 (​str​ (:house-num this) ​" "​ (:street this))))

	​ 	

	​ 	(​extend-type​ ComplexPerson

	​ 	 AddressExtractor

	​ 	 (extract-address [this]

	​ 	 (​str​ (​->​ this :address :house-num)

	​ 	 ​" "​

	​ 	 (​->​ this :address :street))))

				As we can see from the following REPL output, both of our datatypes now conform to the new protocol:	
			
	​ 	=> (extract-address complex-person)

	​ 	"123 Fake St."

	​ 	=> (extract-address simple-person)

	​ 	"123 Fake St."

			While we’ve used Scala’s implicit conversions and Clojure protocols to achieve a similar end here, they’re not the
 same. In Scala, the operations we saw were methods defined on classes, which are part of a type. Scala’s implicit
 conversion technique allows us to implicitly convert from one type to another, which makes it look as if we can add
 operations to an existing type.
		

			Clojure’s protocols, on the other hand, define sets of operations and types completely independently via protocols and
 records. We can then extend any record with any number of protocols, which allows us to easily extend an existing
 solution both with new operations and new types.

		
Sample Code: Extensible Geometry

			Let’s take a look at a more involved example. We’ll start off by defining two shapes, a circle and a rectangle, and an
 operation that calculates their perimeters.
		

			Then we’ll show how we can independently add new shapes that work with the existing perimeter operation and new
 operations that work with our existing shapes. Finally, we’ll show how to combine both types of extensions.
		
In Java

				
				In Java, this is a problem that’s impossible to solve well. Extending the shape type to have additional
 implementations is easy. We create a ​Shape​ interface with multiple implementations.
			

				If we want to extend ​Shape​ so that it has new implementations, it’s a bit more difficult, but
 we can use Visitor as demonstrated in the Visitor Classes diagram.
			
[image: images/ShapeVisitor.png]

Figure 9. Shape Visitor. The Visitor pattern implemented

				However, if we go this route, it’s now difficult to have new implementations because we’d have to modify all of the existing
 ​Visitor​s. If the ​Visitor​s are implemented by third-party code, it can be impossible
 to extend in this dimension without introducing backwards-incompatible changes.
			

				In Java, we need to decide at the outset whether we want to add new operations over our ​Shape​
				or whether we want
 new implementations of it.
			
In Scala

				In Scala, we use a simplified version of a technique introduced in a paper written by Scala’s designer, Martin
 Odersky.
			

				
				We’ll create a trait, ​Shape​, to serve as the base for all of our shapes. We’ll start off with a
 single method,
 ​perimeter​
 , and two implementations, ​Circle​ and
 ​Rectangle​.
			

				To perform our extension magic, we’ll use some advanced features of Scala’s type system. First, we’ll take
 advantage of the fact that we can use Scala’s traits as modules. At each step, we’ll package our code in a
 top-level trait separate from the one we’re using to represent ​Shape​.
			

				This allows us to bundle sets of data types and operations together and to extend those bundles later on
 using Scala’s mix-in inheritance. Then we can have a new type extend many different
 traits, an ability we take advantage of to combine independent extensions.

			

				Let’s dig into the code, starting with our initial ​Shape​ trait and the first two implementations:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​trait​ PerimeterShapes {

	​ 	 ​trait​ Shape {

	​ 	 ​def​ perimeter: Double

	​ 	 }

	​ 	

	​ 	 ​class​ Circle(radius: Double) ​extends​ Shape {

	​ 	 ​def​ perimeter = 2 * Math.PI * radius

	​ 	 }

	​ 	

	​ 	 ​class​ Rectangle(width: Double, height: Double) ​extends​ Shape {

	​ 	 ​def​ perimeter = 2 * width + 2 * height

	​ 	 }

	​ 	}

				Outside of the top-level ​PerimeterShapes​ trait, this is a pretty straightforward declaration of a
 ​Shape​ trait and a couple of implementations. To use our shape code we can extend an
 ​object​ with the top-level trait.
			

				This adds our ​Shape​ trait and its implementations to the object. We can now use them directly or
 easily import them into the REPL, as we do in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​object​ FirstShapeExample ​extends​ PerimeterShapes {

	​ 	 ​val​ aCircle = ​new​ Circle(4);

	​ 	 ​val​ aRectangle = ​new​ Rectangle(2, 2);

	​ 	}

				Now we can import our shapes into the REPL and try them out, like in the following snippet:
			
	​ 	import com.mblinn.mbfpp.oo.visitor.FirstShapeExample._

	​ 	

	​ 	scala>​ aCircle.perimeter​

	​ 	res1: Double = 25.132741228718345

	​ 	

	​ 	scala>​ aRectangle.perimeter​

	​ 	res2: Double = 8.0

				Extending our ​Shape​ with new operations is what’s difficult in most purely object-oriented
 languages, so let’s tackle that first. To extend our initial set of shapes, we create a new top-level trait called
 ​AreaShapes​, which extends ​PerimeterShapes​.
			

				Inside of ​AreaShapes​ we extend our initial ​Shape​ class to have an

 ​area​
 method, and we create a new ​Circle​ and
				a new ​Rectangle​, which
 implement
 ​area​
 . The code for our extensions follows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​trait​ AreaShapes ​extends​ PerimeterShapes {

	​ 	 ​trait​ Shape ​extends​ ​super​.Shape {

	​ 	 ​def​ area: Double

	​ 	 }

	​ 	

	​ 	 ​class​ Circle(radius: Double) ​extends​ ​super​.Circle(radius) ​with​ Shape {

	​ 	 ​def​ area = Math.PI * radius * radius

	​ 	 }

	​ 	

	​ 	 ​class​ Rectangle(width: Double, height: Double)

	​ 	 ​extends​ ​super​.Rectangle(width, height) ​with​ Shape {

	​ 	 ​def​ area = width * height

	​ 	 }

	​ 	}

				Let’s take a look at this in greater detail. First we create our top-level trait ​AreaShapes​, which
 extends ​PerimeterShapes​. This lets us easily refer to and extend the classes and trait inside of
 ​AreaShapes​:
			
	​ 	​trait​ AreaShapes ​extends​ PerimeterShapes {

	​ 	 area-shapes

	​ 	}

				Next we create a new ​Shape​ trait inside of ​AreaShapes​ and have it extend the old
 one inside of ​PerimeterShapes​:
			
	​ 	​trait​ Shape ​extends​ ​super​.Shape {

	​ 	 ​def​ area: Double

	​ 	}

				We need to refer to the ​Shape​ class in ​PerimeterShapes​ as
 ​super.Shape​ to differentiate it from the one we just created in ​AreaShapes​.
			

				
				Now we’re ready to implement our
 ​area​
 . To so we first extend our old ​Circle​ and
 ​Rectangle​ classes, and then we mix in our new ​Shape​ trait, which has

 ​area​
 on it.
			

				Finally, we implement the
 ​area​
 on our new ​Circle​ and ​Rectangle​, as
 shown in the following snippet:
			
	​ 	​class​ Circle(radius: Double) ​extends​ ​super​.Circle(radius) ​with​ Shape {

	​ 	 ​def​ area = Math.PI * radius * radius

	​ 	}

	​ 	

	​ 	​class​ Rectangle(width: Double, height: Double)

	​ 	 ​extends​ ​super​.Rectangle(width, height) ​with​ Shape {

	​ 	 ​def​ area = width * height

	​ 	}

				Now we can create some sample shapes and see both
 ​perimeter​
 and
 ​area​
 in action:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​object​ SecondShapeExample ​extends​ AreaShapes {

	​ 	 ​val​ someShapes = Vector(​new​ Circle(4), ​new​ Rectangle(2, 2));

	​ 	}

	​ 	scala>​ for(shape <- someShapes) yield shape.perimeter​

	​ 	res0: scala.collection.immutable.Vector[Double] = Vector(25.132741228718345, 8.0)

	​ 	

	​ 	scala>​ for(shape <- someShapes) yield shape.area​

	​ 	res1: scala.collection.immutable.Vector[Double] = Vector(50.26548245743669, 4.0)

				That covers the hard part, extending ​Shape​ with a new operation. Now let’s take a look at the easier
 part. We’ll extend ​Shape​ to have a new implementation by creating a ​Square​ class.
			

				In the first piece of our extension we create the ​MorePerimeterShapes​ top-level trait, which extends the
 original ​PerimeterShapes​. Inside, we create a new ​Square​ implementation of our
 original trait class. The first piece of our extension is in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​trait​ MorePerimeterShapes ​extends​ PerimeterShapes {

	​ 	 ​class​ Square(side: Double) ​extends​ Shape {

	​ 	 ​def​ perimeter = 4 * side;

	​ 	 }

	​ 	}

				Now we can create another new top-level trait, ​MoreAreaShapes​, that extends our original
 ​AreaShapes​ and mixes in the ​MorePerimeterShapes​ trait we just created. Inside this
 trait, we extend the ​Square​ we just created to also have an
 ​area​
 method:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​trait​ MoreAreaShapes ​extends​ AreaShapes ​with​ MorePerimeterShapes {

	​ 	 ​class​ Square(side: Double) ​extends​ ​super​.Square(side) ​with​ Shape {

	​ 	 ​def​ area = side * side

	​ 	 }

	​ 	}

				Now we can add a ​Square​ to our test shapes and see the full set of shapes and operations in action,
 as we do in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
	​ 	​object​ ThirdShapeExample ​extends​ MoreAreaShapes {

	​ 	 ​val​ someMoreShapes = Vector(​new​ Circle(4), ​new​ Rectangle(2, 2), ​new​ Square(4));

	​ 	}

	​ 	scala>​ for(shape <- someMoreShapes) yield shape.perimeter​

	​ 	res2: scala.collection.immutable.Vector[Double] =

	​ 	 Vector(25.132741228718345, 8.0, 16.0)

	​ 	

	​ 	scala>​ for(shape <- someMoreShapes) yield shape.area​

	​ 	res3: scala.collection.immutable.Vector[Double] =

	​ 	 Vector(50.26548245743669, 4.0, 16.0)

				Now we’ve successfully added both new implementations of ​Shape​ and new operations over it, and
 we’ve done so in a typesafe manner!

			
In Clojure

				
				
				Our Clojure solution relies on multimethods, which let us specify an arbitrary dispatch function. Let’s take a
 look at a simple example.
			

				First, we create the multimethod using ​defmulti​. This doesn’t specify any implementations of
 the method; rather, it contains a dispatch function. In the following snippet we create a multimethod named
 ​test-multimethod​. The dispatch function is a function of one argument, and it returns that
 argument untouched. However, it can be an arbitrary piece of code:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defmulti​ test-multimethod (​fn​ [​keyword​] ​keyword​))

				The multimethod is implemented using ​defmethod​. Method definitions look much like function
 definitions, except that they also contain a dispatching value, which corresponds to the values returned from the
 dispatch function.
			

				In the following snippet, we define two implementations of ​test-multimethod​. The first expects
 a dispatch value of ​:foo​, and the second, ​:bar​.
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defmethod​ test-multimethod :foo [a-map]

	​ 	 ​"foo-method was called"​)

	​ 	

	​ 	(​defmethod​ test-multimethod :bar [a-map]

	​ 	 ​"bar-method was called"​)

				When the multimethod is called, the dispatch function is first called, and then Clojure dispatches the call to the
 method with the matching dispatch value. Since our dispatch function returns its input, we call it with the
 desired dispatch values. The following REPL output demonstrates this:
			
	​ 	=> (test-multimethod :foo)

	​ 	"foo-method was called"

	​ 	=> (test-multimethod :bar)

	​ 	"bar-method was called"

				Now that we’ve seen a basic example of multimethods in action, let’s dig a bit deeper in. We’ll define our
 perimeter operation as a multimethod. The dispatch function expects a map that represents our shape. One of the
 keys in the map is ​:shape-name​, which the dispatch function extracts as our dispatch value.
			

				Our ​perimeter​ multimethod is defined below, along with implementations
				for the circle and the rectangle:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defmulti​ perimeter (​fn​ [shape] (:shape-name shape)))

	​ 	(​defmethod​ perimeter :circle [circle]

	​ 	 (​*​ 2 Math/PI (:radius circle)))

	​ 	(​defmethod​ perimeter :rectangle [rectangle]

	​ 	 (​+​ (​*​ 2 (:width rectangle)) (​*​ 2 (:height rectangle))))

				Now we can define a few test shapes:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​def​ some-shapes [{:shape-name :circle :radius 4}

	​ 	 {:shape-name :rectangle :width 2 :height 2}])

				Then we can run our perimeter method over them:
			
	​ 	=> (for [shape some-shapes] (perimeter shape))

	​ 	(25.132741228718345 8)

				To add new operations, we create a new multimethod that handles the existing dispatch values. In the following
 snippet, we add support for an area operation:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defmulti​ area (​fn​ [shape] (:shape-name shape)))

	​ 	(​defmethod​ area :circle [circle]

	​ 	 (​*​ Math/PI (:radius circle) (:radius circle)))

	​ 	(​defmethod​ area :rectangle [rectangle]

	​ 	 (​*​ (:width rectangle) (:height rectangle)))

				Now we can calculate an area for our shapes as well:
			
	​ 	=> (for [shape some-shapes] (area shape))

	​ 	(50.26548245743669 4)

				To add a new shape into the set of shapes we can handle across both the perimeter and area operations, we add new
 implementations of our multimethods that handle the appropriate dispatch values. In the following code, we add
 support for squares:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​defmethod​ perimeter :square [square]

	​ 	 (​*​ 4 (:side square)))

	​ 	(​defmethod​ area :square [square]

	​ 	 (​*​ (:side square) (:side square)))

				Let’s add a square to our vector of test shapes:
			
	ClojureExamples/src/mbfpp/oo/visitor/examples.clj
	​ 	(​def​ more-shapes (​conj​ some-shapes

	​ 	 {:shape-name :square :side 4}))

				And we can verify that our operations work on squares as well:
			
	​ 	=> (for [shape more-shapes] (perimeter shape))

	​ 	(25.132741228718345 8 16)

	​ 	=> (for [shape more-shapes] (area shape))

	​ 	(50.26548245743669 4 16)

				We’ve only scratched the surface of what multimethods can do. Since we can specify an arbitrary dispatch function,
 we can dispatch on just about anything. Clojure also provides a way to make multimethods work
				with user-defined
 hierarchies, much like class hierarchies in object-oriented languages. However, even the simple usage of
 multimethods we just saw is enough to replace the interesting aspects of the Visitor pattern.

			
Discussion

			Scala has a much harder problem to solve here, since it maintains static type safety while allowing for extensions both to
 implementations of a data type and the operations performed on it. Since Clojure is dynamically typed, it has no such
 requirement.
		

			
			Our Visitor replacements are a great example of the tradeoffs between an expressive statically typed language like
 Scala and a dynamically typed language like Clojure. We had to expend more effort in Scala, and our solutions aren’t
 quite as straightforward as the Clojure solutions. However, if we try to perform some operation on a type that can’t
 handle it in Clojure, it’s a runtime rather than a compile-time problem.

		
For Further Reading

				Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—​Visitor​
			

Related Patterns

				Pattern 9, ​Replacing Decorator​
			

	Pattern 11	Replacing Dependency Injection

Intent

To compose objects together using an external configuration or code, rather than having an object instantiate its own
 dependencies—this allows us to easily inject different dependency implementations into an object and provides a
 centralized place to understand what dependencies a given object has.

		
Overview

			Objects are the primary unit of composition in the object-oriented world. Dependency Injection is about composing
 graphs of objects together. In its simplest form, all that’s involved in Dependency Injection is to inject an object’s
 dependencies through a constructor or setter.
		

			For instance, the following class outlines a movie service that’s capable of returning a user’s favorite movies. It
 depends on a favorites service to pull back a list of favorite movies and a movie DAO to fetch details about
 individual movies:
		
	JavaExamples/src/main/java/com/mblinn/mbfpp/oo/di/MovieService.java
	​ 	​package​ com.mblinn.mbfpp.oo.di;

	​ 	​public​ ​class​ MovieService {

	​ 	

	​ 	 ​private​ MovieDao movieDao;

	​ 	 ​private​ FavoritesService favoritesService;

	​ 	 ​public​ MovieService(MovieDao movieDao, FavoritesService favoritesService){

	​ 	 this.movieDao = movieDao;

	​ 	 this.favoritesService = favoritesService;

	​ 	 }

	​ 	}

			Here we’re using classic, constructor-based Dependency Injection. When it’s constructed, the ​MovieService​ class needs to have
 its dependencies passed in. This can be done manually, but it’s generally done using a
 dependency-injection framework.
		

			Dependency Injection has several benefits. It makes it easy to change the implementation for a given dependency, which
 is especially handy for swapping out a real dependency with a stub in a unit test.
		

			With appropriate container support, dependency injection can also make it easier to declaratively specify the overall
 shape of a system, as each component has its dependencies injected into it in a configuration file or in a bit of
 configuration code.
		
Functional Replacement

			 There’s less of a need for a Dependency
 Injection–like pattern when programming in a more functional style. Functional programming naturally involves
 composing functions, as we’ve seen in patterns like Pattern 16, ​Function Builder​. Since this
 involves composing functions much as Dependency Injection composes classes, we get some of the benefits for free just
 from functional composition.
		

			However, simple functional composition doesn’t solve all of the problems Dependency Injection does. This is especially
 true in Scala because it’s a hybrid language, and larger bodies of code are generally organized into objects.
		
In Scala

				
				
				Classic Dependency Injection can be used in Scala. We can even use familiar Java frameworks like Spring or
				Guice.
 However, we can achieve many of the same goals without the need for any framework.
			

				We’ll take a look at a Scala pattern called the Cake pattern. This pattern uses Scala traits and
 self-type annotations to accomplish the same sort of composition and structure that we get
 with Dependency Injection without the need for a container.
			
In Clojure

				The unit of injection in Clojure is the function, since Clojure is not object oriented. For the most part, this means
 that the problems we solve with Dependency Injection in an object-oriented language don’t exist in Clojure, as we
 can naturally compose functions together.
			

				However, one use for Dependency Injection does need a bit of special treatment in Clojure. To stub out functions
 for testing purposes, we can use a macro named ​with-redfs​, which allows us to temporarily
 replace a function with a stub.
			
Sample Code: Favorite Videos

			Let’s take a closer look at the sketch of a problem we saw in the ​Overview​. There we
 created a movie service that allows us to do several movie-related actions. Each video is associated with a movie
 and needs to be decorated with details related to that movie, such as the movie’s title.
		

			To accomplish this, we’ve got a top-level movie service that depends on a movie DAO to get movie details and on a
 favorites service to fetch favorites for a given user.
		
Classic Java

				In Java, our top-level ​MovieService​ is sketched out in the following class. We use Dependency
 Injection to inject a ​FavoritesService​ and a ​MovieDao​ via a constructor:
			
	JavaExamples/src/main/java/com/mblinn/mbfpp/oo/di/MovieService.java
	​ 	​package​ com.mblinn.mbfpp.oo.di;

	​ 	​public​ ​class​ MovieService {

	​ 	

	​ 	 ​private​ MovieDao movieDao;

	​ 	 ​private​ FavoritesService favoritesService;

	​ 	 ​public​ MovieService(MovieDao movieDao, FavoritesService favoritesService){

	​ 	 this.movieDao = movieDao;

	​ 	 this.favoritesService = favoritesService;

	​ 	 }

	​ 	}

				In a full program, we’d then use a framework to wire up ​MovieService​’s dependencies. We have
 quite a few ways to do this, ranging from XML configuration files to Java configuration classes to annotations
 that automatically wire dependencies in.
			

				All of these share one common trait: they need an external framework to be effective. Here we’ll examine Scala and
 Clojure options that have no such limitation.
			
In Scala

				
				Now we’ll take a look at an example of Scala’s Cake pattern. The rough idea is that we’ll encapsulate the
 dependencies we want to inject inside of top-level traits, which represent our injectable components. Instead of
 instantiating dependencies directly inside of the trait, we create abstract ​val​s that will hold
 references to them when we wire everything up.
			

				We’ll then use Scala’s self-type annotation and mixin inheritance to specify wiring in a typesafe manner. Finally,
 we use a simple Scala object as a component registry. We mix all of our dependencies into the container object and
 instantiate them, holding references to them in the abstract ​val​s mentioned previously.
			

				This approach has a few nice properties. As we mentioned before, it doesn’t require an outside container to use.
 In addition, wiring things up maintains static type safety.
			

				Let’s start off with a look at the data we’ll be operating over. We’ve got three case classes, a
 ​Movie​, a ​Video​, and a ​DecoratedMovie​, which represents a movie decorated
 with a video about it.
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​case​ ​class​ Movie(movieId: ​String​, title: ​String​)

	​ 	​case​ ​class​ Video(movieId: ​String​)

	​ 	​case​ ​class​ DecoratedMovie(movie: Movie, video: Video)

				
				Now let’s define some traits as interfaces for our dependencies, ​FavoritesService​ and
 ​MovieDao​. We’ll nest these traits inside of another set of traits that represent the injectable
 components. We’ll see why this is necessary later in the example.
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​trait​ MovieDaoComponent {

	​ 	 ​trait​ MovieDao {

	​ 	 ​def​ getMovie(id: ​String​): Movie

	​ 	 }

	​ 	}

	​ 	

	​ 	​trait​ FavoritesServiceComponent {

	​ 	 ​trait​ FavoritesService {

	​ 	 ​def​ getFavoriteVideos(id: ​String​): Vector[Video]

	​ 	 }

	​ 	}

				Next up, we’ve got our implementations of the components introduced previously. Here we’ll stub out the
 ​MovieDao​ and ​FavoritesService​ to return static responses by implementing the
 interfaces. Note that we need to extend the component traits we’ve wrapped them in as well.
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​trait​ MovieDaoComponentImpl ​extends​ MovieDaoComponent {

	​ 	 ​class​ MovieDaoImpl ​extends​ MovieDao {

	​ 	 ​def​ getMovie(id: ​String​): Movie = ​new​ Movie(​"42"​, ​"A Movie"​)

	​ 	 }

	​ 	}

	​ 	

	​ 	​trait​ FavoritesServiceComponentImpl ​extends​ FavoritesServiceComponent {

	​ 	 ​class​ FavoritesServiceImpl ​extends​ FavoritesService {

	​ 	 ​def​ getFavoriteVideos(id: ​String​): Vector[Video] = Vector(​new​ Video(​"1"​))

	​ 	 }

	​ 	}

				Now let’s take a look at ​MovieServiceImpl​, which depends on the ​FavoritesService​ and
 ​MovieDao​ defined previously. This class implements a single method,

 ​getFavoriteDecoratedMovies​
 , which takes a user ID and returns that user’s favorite movies decorated
 by a video of that movie.
			

				The full code for ​MovieServiceImpl​, wrapped up in a top-level
 ​MovieServiceComponentImpl​ trait, follows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​trait​ MovieServiceComponentImpl {

	​ 	 ​this​: MovieDaoComponent ​with​ FavoritesServiceComponent =>

	​ 	

	​ 	 ​val​ favoritesService: FavoritesService

	​ 	 ​val​ movieDao: MovieDao

	​ 	

	​ 	 ​class​ MovieServiceImpl {

	​ 	 ​def​ getFavoriteDecoratedMovies(userId: ​String​): Vector[DecoratedMovie] =

	​ 	 ​for​ (

	​ 	 favoriteVideo <- favoritesService.getFavoriteVideos(userId);

	​ 	 ​val​ movie = movieDao.getMovie(favoriteVideo.movieId)

	​) ​yield​ DecoratedMovie(movie, favoriteVideo)

	​ 	 }

	​ 	}

				
				Let’s take a closer look at this bit by bit. First we’ve got the self-type annotation on the top-level
 ​MovieServiceComponentImpl​ trait. This is part of the Scala magic that makes the Cake pattern
 typesafe.

			
	​ 	​this​: MovieDaoComponent ​with​ FavoritesServiceComponent =>

				The self-type annotation ensures that whenever ​MovieServiceComponentImpl​ is mixed into an object or
 a class, this reference of that object has the type ​MovieDaoComponent with
 FavoritesServiceComponent​. Put another way, it ensures that when the ​MovieServiceComponentImpl​
 is mixed into something, ​MovieDaoComponent​ and ​FavoritesServiceComponent​ or one of
 their subtypes are as well.
			

				Next up are the explicit ​val​s that we’ll store references to our dependencies in:
			
	​ 	​val​ favoritesService: FavoritesService

	​ 	​val​ movieDao: MovieDao

				These ensure that when we mix ​MovieServiceComponentImpl​ into our container object, we’ll need to
 assign to the abstract ​val​s.
			

				Finally, we’ve got the object that serves as our component registry, ​ComponentRegistry​. The
 registry extends implementations of all of our dependencies and instantiates them, storing references to them in
 the abstract ​val​s we previously defined:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​object​ ComponentRegistry ​extends​ MovieServiceComponentImpl

	​ 	 ​with​ FavoritesServiceComponentImpl ​with​ MovieDaoComponentImpl {

	​ 	 ​val​ favoritesService = ​new​ FavoritesServiceImpl

	​ 	 ​val​ movieDao = ​new​ MovieDaoImpl

	​ 	

	​ 	 ​val​ movieService = ​new​ MovieServiceImpl

	​ 	}

				Now we can pull a full wired-up ​MovieService​ out of the registry when needed:
			
	​ 	scala>​ val movieService = ComponentRegistry.movieService​

	​ 	movieService: ...

				Earlier I claimed that this wiring preserves static type safety. Let’s explore what this means in greater detail.
 First, let’s take a look at what happens if we only extend ​MovieServiceComponentImpl​ itself in our
 object registry, as in the following code outline:
			
	​ 	​object​ BrokenComponentRegistry ​extends​ MovieServiceComponentImpl {

	​ 	

	​ 	}

				This causes a compiler error, something like the following:	
			

				illegal inheritance; self-type com.mblinn.mbfpp.oo.di.ex1.Example.BrokenComponentRegistry.type ​does not conform to com.mblinn.mbfpp.oo.di.ex1.Example.MovieServiceComponentImpl’s selftype​...
				

				Here, the compiler is telling us that ​BrokenComponentRegistry​ doesn’t conform to the self-type we
 declared for ​MovieServiceComponentImpl​, as we’re not also mixing in
 ​MovieDaoComponent​ and ​FavoritesServiceComponent​.
			

				We can fix that error by extending ​FavoritesServiceComponentImpl​ and
 ​MovieDaoComponentImpl​, as we do in the following code:
			
	​ 	​object​ BrokenComponentRegistry ​extends​ MovieServiceComponentImpl

	​ 	 ​with​ FavoritesServiceComponentImpl ​with​ MovieDaoComponentImpl {

	​ 	

	​ 	}

				However, this will get us another compiler error, which starts as follows:
			

object creation impossible, since: it has 2 unimplemented members...

				This error is saying we haven’t implemented the ​favoritesService​ and ​movieDao​ members that
 ​MovieServiceComponentImpl​ requires us to.
			
In Clojure

				Clojure doesn’t have a direct analog to Dependency Injection. Instead, we pass functions directly into other
 functions as needed. For instance, here we declare our ​get-movie​ and
 ​get-favorite-videos​ functions:
			
	ClojureExamples/src/mbfpp/functional/di/examples.clj
	​ 	(​defn​ get-movie [movie-id]

	​ 	 {:id ​"42"​ :title ​"A Movie"​})

	​ 	

	​ 	(​defn​ get-favorite-videos [user-id]

	​ 	 [{:id ​"1"​}])

				Here we pass them into ​get-favorite-decorated-videos​ where they’re used:
			
	ClojureExamples/src/mbfpp/functional/di/examples.clj
	​ 	(​defn​ get-favorite-decorated-videos [user-id get-movie get-favorite-videos]

	​ 	 (​for​ [video (get-favorite-videos user-id)]

	​ 	 {:movie (get-movie (:id video))

	​ 	 :video video}))

				Another possibility is to use Pattern 16, ​Function Builder​, to package up the dependent
 functions in a closure.
			

				However, in Clojure, we generally only do this sort of direct injection when we want the user of the function to
 have control over the passed-in dependencies. We tend not to need it to define the overall shape of our programs.
			

				Instead, programs in Clojure and other Lisps are generally organized as a series of layered, domain-specific
 languages. We’ll see an example of such in Pattern 21, ​Domain-Specific Language​.
			
Sample Code: Test Stubs

			While Dependency Injection is largely concerned with the organization of programs as a whole, one specific area in
 which it’s especially helpful is injecting stubbed-out dependencies into tests.
		
Classic Java

				In Java, we can just take our ​MovieService​ and manually inject stubs or mocks into it using
 constructor injection. Another option is to use the dependency injection container to instantiate a set of test
 dependencies.
			

				The best approach depends on what sort of tests we’re currently writing. For unit tests, it’s generally simpler to
 just manually inject individual mocks. For larger integration-style tests, I prefer to go with the
				full-container
 approach.
			
In Scala

				
				
				With Scala’s Cake pattern, we can easily created mocked out versions of our dependencies. We do so in the
 following code snippet:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​trait​ MovieDaoComponentTestImpl ​extends​ MovieDaoComponent {

	​ 	 ​class​ MovieDaoTestImpl ​extends​ MovieDao {

	​ 	 ​def​ getMovie(id: ​String​): Movie = ​new​ Movie(​"43"​, ​"A Test Movie"​)

	​ 	 }

	​ 	}

	​ 	

	​ 	​trait​ FavoritesServiceComponentTestImpl ​extends​ FavoritesServiceComponent {

	​ 	 ​class​ FavoritesServiceTestImpl ​extends​ FavoritesService {

	​ 	 ​def​ getFavoriteVideos(id: ​String​): Vector[Video] = Vector(​new​ Video(​"2"​))

	​ 	 }

	​ 	}

				Now we only need to mix in and instantiate the stubbed components rather than the real ones, and then our test movie
 service is ready to use:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
	​ 	​object​ TestComponentRegistery ​extends​ MovieServiceComponentImpl

	​ 	 ​with​ FavoritesServiceComponentTestImpl ​with​ MovieDaoComponentTestImpl {

	​ 	 ​val​ favoritesService = ​new​ FavoritesServiceTestImpl

	​ 	 ​val​ movieDao = ​new​ MovieDaoTestImpl

	​ 	

	​ 	 ​val​ movieService = ​new​ MovieServiceImpl

	​ 	}

In Clojure

				With our example Clojure code written as it is in the previous example, we only need to create test versions of
 our dependent functions and pass them into ​get-favorite-decorated-videos​. We demonstrate this
 in the following code snippet:
			
	ClojureExamples/src/mbfpp/functional/di/examples.clj
	​ 	(​defn​ get-test-movie [movie-id]

	​ 	 {:id ​"43"​ :title ​"A Test Movie"​})

	​ 	

	​ 	(​defn​ get-test-favorite-videos [user-id]

	​ 	 [{:id ​"2"​}])

	​ 	=> (get-favorite-decorated-videos "2" get-test-movie get-test-favorite-videos)

	​ 	({:movie {:title "A Test Movie", :id "43"}, :video {:id "2"}})

				
				However, since we don’t always structure whole Clojure programs by passing in every dependency as a
				higher-order
 function, we often need an alternative method for stubbing out test dependencies. Let’s take a look at another
 version of ​get-favorite-decorated-videos​ that relies on its dependencies directly, rather than
 on having them passed in:
			
	ClojureExamples/src/mbfpp/functional/di/examples.clj
	​ 	(​defn​ get-favorite-decorated-videos-2 [user-id]

	​ 	 (​for​ [video (get-favorite-videos user-id)]

	​ 	 {:movie (get-movie (:id video))

	​ 	 :video video}))

				If we call ​get-favorite-decorated-videos-2​, it’ll use its hard-coded dependencies:
			
	​ 	=> (get-favorite-decorated-videos-2 "1")

	​ 	({:movie {:title "A Movie", :id "42"}, :video {:id "1"}})

				
				We can use ​with-redefs​ to temporarily redefine those dependencies, as we demonstrate below:	
			
	​ 	=> (with-redefs

	​ 	 [get-favorite-videos get-test-favorite-videos

	​ 	 get-movie get-test-movie]

	​ 	 (doall (get-favorite-decorated-videos-2 "2")))

	​ 	({:movie {:title "A Test Movie", :id "43"}, :video {:id "2"}})

				
				Note that we wrapped our call to ​get-favorite-decorated-videos-2​ in a call to
 ​doall​. The ​doall​ form forces the lazy sequence produced by
 ​get-favorite-decorated-videos-2​ to be realized.

			

			 We need to use it here because laziness and ​with-redefs​ have a subtle interaction that can be
 confusing. Without forcing the sequence to be realized, it won’t be fully realized until the REPL attempts to print
 it. By that time, the rebound function bindings will have reverted to their original bindings.
			

				Clojure’s ​with-redefs​ is a blunt instrument. As you might guess, replacing function definitions
 on the fly can be quite dangerous, so this is best saved only for test code.

			
Related Patterns

Pattern 16, ​Function Builder​

Pattern 21, ​Domain-Specific Language​

Footnotes

	[2]	

 ​http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html​

	[3]	

 ​http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html​

	[4]	

 ​https://code.google.com/p/scalaz/​

	[5]	

 ​http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 4
Functional Patterns

4.1 Introduction

			Functional programming has its own set of patterns that have evolved out of the functional style.
		

			These patterns rely heavily on immutability. For instance, Pattern 12, ​Tail Recursion​, shows a
 general purpose replacement for iteration that doesn’t rely on a mutable counter, while Pattern 15, ​Chain of Operations​, shows how to work with immutable data by chaining transformations on an immutable
 data structure.
		

			Another theme in these patterns is the use of higher-order functions as a primary unit of composition. This dovetails
 nicely with the first theme, immutability and transformation of immutable data. By using higher-order functions we can
 easily do these transformations, as we demonstrate in Pattern 14, ​Filter-Map-Reduce​.
		

			One final theme we’ll explore is the ability of functional languages to be adapted to create little languages that
 solve particular problems. This type of programming has spread well outside the functional style, but it started
 with the Lisp tradition that Clojure carries on. We’ll see it in Pattern 12, ​Tail Recursion​,
 and Pattern 21, ​Domain-Specific Language​.
		

			Let’s take a look at our first pattern, Tail Recursion.
		

	Pattern 12	Tail Recursion

Intent

 To repeat a computation without using mutable state and without overflowing the stack
Overview

 Iteration is an imperative
 technique that requires mutable state. For example, let’s examine a trivial problem, writing a function
 that will calculate the sum from one up to an arbitrary number, inclusive. The code below does just
 that, but it requires both ​i​ and ​sum​ to be mutable:
	JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
	​ 	​public​ ​static​ ​int​ sum(​int​ upTo) {

	​ 	 ​int​ sum = 0;

	​ 	 ​for​ (​int​ i = 0; i <= upTo; i++)

	​ 	 sum += i;

	​ 	 ​return​ sum;

	​ 	}

 Since the functional world
 emphasizes immutability, iteration is out. In its place, we can use recursion, which does not require
 immutability. Recursion has its own problems, though; in particular, each recursive call will lead to
 another frame on the program’s call stack.

 To get around that, we can use a particular form of recursion called
 ​ tail
 recursion​

 , which can be optimized to use a single frame on the stack, a process known as

 ​ tail call optimization​

 or ​TCO​.

 Let’s think about how we’d write the
 ​sum​
 as a recursive function,

 ​sumRecursive​
 . First, we need to decide when our recursion should stop and start. Since
 we’re summing together all numbers stopping at some arbitrary number, it makes sense to work down from
 that number and stop at zero. This stopping point is known as our
 ​ base case.​

 Next we need to figure out what to do to perform the actual computation. In this case, we take the
 number we’re currently working on and add it to the results of calling
 ​tailRecursive​

 with that number minus one. Eventually, we get down to our base case of zero, at which point the stack
 unwinds, returning partial sums as it goes, until it reaches the top and returns the final sum. The code
 below demonstrates this solution:
	JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
	​ 	​public​ ​static​ ​int​ sumRecursive(​int​ upTo) {

	​ 	 ​if​ (upTo == 0)

	​ 	 ​return​ 0;

	​ 	 ​else​

	​ 	 ​return​ upTo + sumRecursive(upTo - 1);

	​ 	}

 There’s a problem with this, though. Each recursive call adds a frame to the stack, which means this
 solution takes memory proportional to the size of the sequence we’re summing, as shown in the following
 figure.
[image: images/StackFrame.png]

Figure 10. Simple Stack. An illustration of the stack during normal recursive calls—each recursive call adds a call to the
 stack; these frames represent memory that cannot be reclaimed until after the recursion is done.

 Clearly this isn’t practical, but we can do better. The ultimate cause for exploding stack use is that
 each time we make a recursive call, we need the result of that call to finish the computation we’re
 doing in the current call. This means that the runtime has no choice but to store the intermediate
 results on the stack.

 If we were to make sure that the recursive call was the last thing that happens in each branch of the
 function, known as the ​tail position​, this would no longer be the case. Doing so
 requires us to take the intermediate values that were formerly stored on the stack and pass them through
 the call chain. The code below illustrates this:
	JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
	​ 	​public​ ​static​ ​int​ sumTailRecursive(​int​ upTo, ​int​ currentSum) {

	​ 	 ​if​ (upTo == 0)

	​ 	 ​return​ currentSum;

	​ 	 ​else​

	​ 	 ​return​ sumTailRecursive(upTo - 1, currentSum + upTo);

	​ 	}

 Once we rewrite the function to be tail recursive, it’s possible to use TCO to run it in only a single
 stack frame, as shown in this figure.
[image: images/RecursiveCallsTCO.png]

Figure 11. Stack with TCO. With TCO, recursive calls in the tail position don’t generate a new stack frame. Instead, each call
 uses the existing stack frame, removing whatever data was there from the previous call.

 Unfortunately, the JVM doesn’t support TCO directly, so Scala and
 Clojure need to use some tricks to compile their tail recursive calls down to the same bytecode used for
 iteration. In Clojure’s case, this is done by providing two special forms, ​loop​ and
 ​recur​, instead of using general purpose function calls.

 In Scala’s case, the Scala compiler will attempt to
 translate tail recursive calls into iteration behind the scenes, and Scala provides an annotation,
 ​@tailrec​, that can be placed on functions that are meant to be used in a tail
 recursive manner. If the function is called recursively without being in the tail position, the compiler
 will generate an error.
Code Sample: Recursive People

 Let’s take a look at a recursive solution to a simple problem. We’ve got a sequence of first names and
 a sequence of last names, and we want to put them together to make people. To solve this, we need to go
 through both sequences in lock step. We’ll assume that some other part of the program has verified that
 the two sequences are of the same size.

 At each step in the recursion, we’ll take the first element in both sequences and put them together to
 form a full name. We’ll then pass the rest of each sequence onto the next recursive call along with a
 sequence of the people we’ve formed so far. Let’s see how it looks in Scala.
In Scala

 The first thing we’ll need is
 a Scala case class to represent our people. Here we’ve got one with a first and a last name:
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/tr/Names.scala
	​ 	​case​ ​class​ Person(firstNames: ​String​, lastNames: ​String​)

 Next up is our recursive function itself. This is actually split into two functions. The first is a
 function named ​makePeople​, which takes in two sequences,
 ​firstNames​ and ​lastNames​. The second is a helper function nested
 inside of ​makePeople​, which adds an additional argument used to pass the list of
 people through recursive calls. Let’s take a look at the whole function before we break it down into smaller parts:
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/tr/Names.scala
	​ 	​def​ makePeople(firstNames: Seq[​String​], lastNames: Seq[​String​]) = {

	​ 	 @tailrec

	​ 	 ​def​ helper(firstNames: Seq[​String​], lastNames: Seq[​String​],

	​ 	 people: Vector[Person]): Seq[Person] =

	​ 	 ​if​ (firstNames.isEmpty)

	​ 	 people

	​ 	 ​else​ {

	​ 	 ​val​ newPerson = Person(firstNames.head, lastNames.head)

	​ 	 helper(firstNames.tail, lastNames.tail, people :+ newPerson)

	​ 	 }

	​ 	 helper(firstNames, lastNames, Vector[Person]())

	​ 	}

 First, let’s examine the function signature of ​makePeople​:
	​ 	​def​ makePeople(firstNames: Seq[​String​], lastNames: Seq[​String​]) = {

	​ 	 function-body

	​ 	}

 This just says that ​makePeople​ takes two ​Seq​s of
 ​String​. Since we don’t specify a return type, the compiler will infer it from the
 function body.

 Next up, let’s look at the signature of the ​helper​ function. This function is
 responsible for the actual tail recursive calls.
 The ​helper​ function is
 annotated with a ​@tailrec​ annotation, which makes the compiler generate an error if
 it’s called recursively but not tail recursively. The function signature simply adds an additional
 argument, the ​people​ vector, which will accumulate results through recursive calls.

 Notice that we specified a return type here, though we generally omit it in our Scala examples. This
 is because the compiler can’t infer types for recursively called functions.
	​ 	​def​ helper(firstNames: Seq[​String​], lastNames: Seq[​String​],

	​ 	 people: Vector[Person]): Seq[Person] =

	​ 	 function-body

 Now the body for ​helper​. If the ​firstNames​ sequence is empty,
 we return the list of people we’ve built up. Otherwise, we pick the first first name and the first
 last name off of their respective sequences, create a ​Person​ out of them, and call
 the helper function again with the tail of the two sequences and the new person appended to the list
 of people:
	​ 	​if​ (firstNames.isEmpty)

	​ 	 people

	​ 	​else​ {

	​ 	 ​val​ newPerson = Person(firstNames.head, lastNames.head)

	​ 	 helper(firstNames.tail, lastNames.tail, people :+ newPerson)

	​ 	}

 Finally, we simply call ​helper​ with the sequences of names and an empty
 ​Vector​ to hold our people:
	​ 	helper(firstNames, lastNames, Vector[Person]())

 One closing note on the syntax: using some of Scala’s
 object-oriented features, namely methods, would let us cut out some of the verbosity that comes along
 with a recursive function definition. The method signatures would look like this:
	​ 	​def​ makePeopleMethod(firstNames: Seq[​String​], lastNames: Seq[​String​]) = {

	​ 	 @tailrec

	​ 	 ​def​ helper(firstNames: Seq[​String​], lastNames: Seq[​String​],

	​ 	 people: Vector[Person]): Seq[Person] =

	​ 	 method-body

	​ 	 }

	​ 	}

 Since we’re sticking mainly to the functional bits of Scala in this book, we’re using functions for
 most of the examples rather than methods. Methods can often be used as higher-order functions in
 Scala, but it can sometimes be awkward to do so.
In Clojure

 In Clojure, tail recursive
 calls are never optimized, so even a tail recursive call will end up consuming a stack frame. Instead
 of providing TCO, Clojure gives us two forms, ​loop​ and ​recur​.
 The ​loop​ form defines a recursion point, and the keyword ​recur​
 jumps back to it, passing it new values.

 In practice, this looks almost exactly like defining a private helper function does, so the form of
 our solution is very similar to the Scala solution, though we’ll use a simple map to store our people,
 as is standard in Clojure. Let’s take a look at the code:
	ClojureExamples/src/mbfpp/functional/tr/names.clj
	​ 	(​defn​ make-people [first-names last-names]

	​ 	 (​loop​ [first-names first-names last-names last-names people []]

	​ 	 (​if​ (​seq​ first-names)

	​ 	 (​recur​

	​ 	 (​rest​ first-names)

	​ 	 (​rest​ last-names)

	​ 	 (​conj​

	​ 	 people

	​ 	 {:first (​first​ first-names) :last (​first​ last-names)}))

	​ 	 people)))

 The first interesting bit of code here is the ​loop​ declaration. Here, we define
 our recursion point and the values we’ll start our recursion at: the passed-in sequences of first and
 last names and an empty vector we’ll use to accumulate people as we recur.
	​ 	(​loop​ [first-names first-names last-names last-names people []]

	​ 	 loop-body

	​)

 The code snippet ​first-names first-names last-names last-names people []​ might look a
 little funny, but all it’s doing is initializing the ​first-names​ and
 ​last-names​ that we’re defining in the ​loop​ to be the values that were
 passed into the function and the ​people​ to an empty vector.

 The bulk of the example is in the ​if​ expression. If the sequence of first names
 still has items in it, then we take the first item from each sequence, create a map to represent the
 person, and ​conj​ it onto our ​people​ accumulator.

 Once we’ve ​conj​ed the new person onto the ​people​ vector, we
 use ​recur​ to jump back to the recursion point we defined with
 ​loop​. This is analogous to the recursive call that we made in the Scala example.

 If we don’t jump back, we know that we’ve gone through the sequences of names, and we return the
 people we’ve constructed.
	​ 	(​if​ (​seq​ first-names)

	​ 	 (​recur​

	​ 	 (​rest​ first-names)

	​ 	 (​rest​ last-names)

	​ 	 (​conj​

	​ 	 people

	​ 	 {:first (​first​ first-names) :last (​first​ last-names)}))

	​ 	 people)

 It may not be immediately apparent why the test in the if expression above works. It’s because the
 ​seq​ of an empty collection is nil, which evaluates to false, while the
 ​seq​ of any other collection yields a nonempty sequence. The snippet below
 demonstrates this:
	​ 	=> (​seq​ [])

	​ 	nil

	​ 	=> (​seq​ [:hi])

	​ 	(:hi)

 Using ​nil​ as the base case for a recursion when you’re dealing with sequences is
 common in Clojure.
Discussion

 Tail
 recursion is equivalent to iteration. In fact, the Scala and Clojure compilers will compile their
 respective ways of handling tail recursion down to the same sort of bytecode that iteration in Java
 would. The main advantage of tail recursion over iteration is simply that it eliminates a source of
 mutability in the language, which is why it’s so popular in the functional world.

 I personally prefer tail recursion over iteration for a couple of other minor reasons. The first is
 that it eliminates an extra index variable. The second is that it makes it explicit exactly what data
 structures are being operated on and what data structures are being generated, because they’re both
 passed as arguments through the call chain.

 In an iterative solution, if we were trying to operate on two sequences in lock step and generate
 another data structure, they would all just be mixed in with the body of a function that may be doing
 other things. I’ve found that using tail recursion over iteration acts as a nice forcing factor to
 structure our functions well, since all of the data we’re operating on must be passed through the call
 chain, and it’s hard to do that if you’ve got more than a few pieces of data.

 Since tail recursion is equivalent to iteration, it’s really a fairly low-level operation. There’s
 generally some higher-level, more-declarative way to solve a problem than using tail recursion. For
 instance, here’s a shorter version of the solution to our person-making example that takes advantage of
 some higher-order functions in Clojure:
	ClojureExamples/src/mbfpp/functional/tr/names.clj
	​ 	(​defn​ shorter-make-people [first-names last-names]

	​ 	 (​for​ [[​first​ ​last​] (​partition​ 2 (​interleave​ first-names last-names))]

	​ 	 {:first ​first​ :last ​last​}))

 Which solution to use is a matter of preference, but experienced functional programmers tend to prefer
 the shorter, more-declarative solutions. They’re easier for the experienced functional programmer to
 read at a glance. The downside to these solutions is that they’re harder for the novice to grok, since
 they may require knowledge of many higher-order library functions.

 Whenever I’m about to write a solution that requires tail recursion, I like to comb the API docs for
 higher-order functions, or a combination of higher-order functions, that do what I want. If I can’t find
 a higher-order function that works, or if the solution I come up with involves many higher-order
 functions combined in Byzantine ways, then I fall back to tail recursion.

Related Patterns

Pattern 5, ​Replacing Iterator​

Pattern 13, ​Mutual Recursion​

Pattern 14, ​Filter-Map-Reduce​

	Pattern 13	Mutual Recursion

Intent

			 To use mutually recursive functions to express certain algorithms, such as walking
 tree-like data structures, recursive descent parsing, and state machine manipulations
		
Overview

			In Pattern 12, ​Tail Recursion​, we looked at using tail recursion to walk over sequences of
 data and the tricks that Clojure and Scala use to avoid consuming stack frames while doing so, since the JVM doesn’t
 directly support tail recursion.
		

			For the majority of cases, the simple tail recursion we looked at in Pattern 12, ​Tail Recursion​, where the only recursive calls are
 ​ self-recursive​

 , is all we need.
			However, some of the more complex
 problems require solutions where functions can call each other recursively.
		

			
			
			For instance,
 ​ finite state machines​

 are a great way of modeling many classes of problems, and
 mutual recursion is a great way to program them. Network protocols, many physical systems like vending machines and
 elevators, and parsing semistructured text can all be done with state machines.
		

			
			In this pattern, we’ll look at some problems that can be solved cleanly using mutual recursion. Since the JVM doesn’t
 support tail recursive optimization, Scala and Clojure have to use a neat trick to support practical mutual recursion,
 just as they did with normal tail recursion, to avoid running out of stack space.
		

			
			For mutual recursion, this trick is called a ​trampoline​. Instead of making mutually recursive calls
 directly, we return a function that ​would​ make the desired call,
			and we let the compiler or runtime take
			care of the rest.

Scala’s support for trampolining hides a lot of the details of this and provides us with both a

 ​tailcall​
 method to make mutually recursive calls and a
 ​done​
 method to call when
 we’re done with the recursion.
		

			That might sound bizarre, but it’s deceptively simple. To prove it, let’s take a quick look at the “Hello, World” for
 mutual recursion, a mathematically pretty but horribly inefficient way of telling if a number is even or odd, before
 we get into more real-world examples.
		

			Here’s how it works: we need two functions,
 ​isEven​
 and
 ​isOdd​
 . Each function takes a
 single ​Long​ ​n​. The
 ​isEven​
 function checks to see if ​n​ is zero
 and, if so, it returns ​true​. Otherwise it decrements ​n​ and calls ​isOdd​. The

 ​isOdd​
 method checks to see if ​n​ is zero and if so returns ​false​. Otherwise it
 decrements ​n​ and calls ​isEven​.
		

			This is clearest in code, so here it is:
		
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/EvenOdd.scala
	​ 	​def​ isOdd(n: Long): ​Boolean​ = ​if​ (n == 0) false ​else​ isEven(n - 1)

	​ 	

	​ 	​def​ isEven(n: Long): ​Boolean​ = ​if​ (n == 0) true ​else​ isOdd(n - 1)

	​ 	scala>​ isEven(0)​

	​ 	res0: Boolean = true

	​ 	

	​ 	scala>​ isOdd(1)​

	​ 	res1: Boolean = true

	​ 	

	​ 	scala>​ isEven(1000)​

	​ 	res2: Boolean = true

	​ 	

	​ 	scala>​ isOdd(1001)​

	​ 	res3: Boolean = true

			That works fine for small numbers, but what if we try it with a larger one?	
		
	​ 	scala>​ isOdd(100001)​

	​ 	java.lang.StackOverflowError

	​ 	...

			As we can see, each mutually recursive call consumes a stack frame, so this causes our stack to overflow! Let’s see
 how to fix that using Scala’s trampoline.

		

			
			
			Support for trampolining in Scala lives in ​scala.util.control.TailCalls​, and it comes in two parts. The first
 is a
 ​done​
 function, which is used to return the final result from the recursive calls. The second is
 a
 ​tailcall​
 function, which is used to make the recursive calls.

		

			In addition, the results returned by the tail recursive functions are wrapped in a ​TailRec​ type
 rather than being returned directly. To get them out at the end, we can call
 ​result​
 on the final
 ​TailRec​ instance.
		

			Here’s our even/odd code, rewritten to take advantage of Scala’s trampolining:
		
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/EvenOdd.scala
	​ 	​def​ isOddTrampoline(n: Long): TailRec[​Boolean​] =

	​ 	 ​if​ (n == 0) done(false) ​else​ tailcall(isEvenTrampoline(n - 1))

	​ 	

	​ 	​def​ isEvenTrampoline(n: Long): TailRec[​Boolean​] =

	​ 	 ​if​ (n == 0) done(true) ​else​ tailcall(isOddTrampoline(n - 1))

	​ 	scala>​ isEvenTrampoline(0).result​

	​ 	res0: Boolean = true

	​ 	

	​ 	scala>​ isEvenTrampoline(1).result​

	​ 	res1: Boolean = false

	​ 	

	​ 	scala>​ isEvenTrampoline(1000).result​

	​ 	res2: Boolean = true

	​ 	

	​ 	scala>​ isEvenTrampoline(1001).result​

	​ 	res3: Boolean = false

			Let’s try running it:
		
	​ 	scala>​ isOddTrampoline(100001).result​

	​ 	res4: Boolean = true

			
			This time, there’s no stack overflow with big numbers, though if you try with a big enough number, you should expect to wait a very long
 time, since this algorithm’s runtime is linearly proportional to the size of the number!

		
Also Known As

			Indirect Recursion
		
Example Code: Phases of Matter

			In this example, we’ll use Mutual Recursion to build a simple state machine that takes a sequence of transitions
 between the different phases of matter—​liquid​, ​solid​, ​vapor​,
 and ​plasma​—and verifies that the sequence is valid. For instance, it’s possible to go from solid
 to liquid, but not from solid to plasma.
		

			Each state in the machine is represented by a function, and the transitions are represented by a sequence of
 transition names, like ​condensation​ and ​vaporization​. A state function picks the
 first transition off of the sequence and, if it’s valid, calls the function that gets it to where it should transition,
 passing it the remainder of the transitions. If the transition isn’t valid, we stop and return
 ​false​.
		

			
			
			For example, if we’re in the ​solid​ state and the transition we see is ​melting​,
 then we call the ​liquid​ function. If it’s ​condensation​, which isn’t a valid
 transition out of the solid state, then we immediately return ​false​.
		

			Before we jump into the code, let’s take a look at a picture of the phases-of-matter state machine.
		
[image: images/PhasesOfMatter.png]

Figure 12. The Phases of Matter. The phases of matter and the transitions between them

			The nodes in this graph represent the functions we’ll need to model this state machine using Mutual Recursion, and the
 edges represent the transitions that those functions will operate on. Let’s take a look at the code, starting with
 Scala.
		
In Scala

				
				Our Scala solution relies on four functions, one for each phase of matter:
 ​plasma​
 ,

 ​vapor​
 ,
 ​liquid​
 , and
 ​solid​
 . In addition, we’ll need a set of case
 objects to represent the transitions: ​Ionization​, ​Deinonizaton​,
 ​Vaporization​, and so forth.
 			

				Each of the four functions takes a single argument and a ​List​ of transitions, and each uses Scala’s pattern
 matching to destructure it. If the list is ​Nil​, then we know we’ve reached the end successfully
 and we call
 ​done​
 , passing in ​true​.
			

				Otherwise, we check the first transition in the list to see if it’s valid. If so, we transition to the state
 it indicates and pass the remainder of the transitions. If the first transition isn’t valid, we call
 ​done​, passing in ​false​.
			

				Let’s look at the code, starting with the case objects to represent our transitions. They’re pretty
 straightforward; each transition is its own object, and they all inherit from a ​Transition​ class.
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/Phases.scala
	​ 	​class​ Transition

	​ 	​case​ ​object​ Ionization ​extends​ Transition

	​ 	​case​ ​object​ Deionization ​extends​ Transition

	​ 	​case​ ​object​ Vaporization ​extends​ Transition

	​ 	​case​ ​object​ Condensation ​extends​ Transition

	​ 	​case​ ​object​ Freezing ​extends​ Transition

	​ 	​case​ ​object​ Melting ​extends​ Transition

	​ 	​case​ ​object​ Sublimation ​extends​ Transition

	​ 	​case​ ​object​ Deposition ​extends​ Transition

				Now let’s take a look at the meat of the example, the functions that represent our phases of matter. As promised,
 there are four:
 ​plasma​
 ,
 ​vapor​
 ,
 ​liquid​
 , and

 ​solid​
 . Here’s the full set of functions we’ll need:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/Phases.scala
	​ 	​def​ plasma(transitions: ​List​[Transition]): TailRec[​Boolean​] = transitions ​match​ {

	​ 	 ​case​ Nil => done(true)

	​ 	 ​case​ Deionization :: restTransitions => tailcall(vapor(restTransitions))

	​ 	 ​case​ _ => done(false)

	​ 	}

	​ 	​def​ vapor(transitions: ​List​[Transition]): TailRec[​Boolean​] = transitions ​match​ {

	​ 	 ​case​ Nil => done(true)

	​ 	 ​case​ Condensation :: restTransitions => tailcall(liquid(restTransitions))

	​ 	 ​case​ Deposition :: restTransitions => tailcall(solid(restTransitions))

	​ 	 ​case​ Ionization :: restTransitions => tailcall(plasma(restTransitions))

	​ 	 ​case​ _ => done(false)

	​ 	}

	​ 	

	​ 	​def​ liquid(transitions: ​List​[Transition]): TailRec[​Boolean​] = transitions ​match​ {

	​ 	 ​case​ Nil => done(true)

	​ 	 ​case​ Vaporization :: restTransitions => tailcall(vapor(restTransitions))

	​ 	 ​case​ Freezing :: restTransitions => tailcall(solid(restTransitions))

	​ 	 ​case​ _ => done(false)

	​ 	}

	​ 	

	​ 	​def​ solid(transitions: ​List​[Transition]): TailRec[​Boolean​] = transitions ​match​ {

	​ 	 ​case​ Nil => done(true)

	​ 	 ​case​ Melting :: restTransitions => tailcall(liquid(restTransitions))

	​ 	 ​case​ Sublimation :: restTransitions => tailcall(vapor(restTransitions))

	​ 	 ​case​ _ => done(false)

	​ 	}

				We’ve already described how they work at a high level, so let’s pick apart one of them,
 ​vapor​
 , in
 detail, starting with its signature:
			
	​ 	​def​ vapor(transitions: ​List​[Transition]): TailRec[​Boolean​] = transitions ​match​ {

	​ 	 function-body

	​ 	}

				As we can see, it just takes in a ​List​ of ​Transition​s named
 ​transitions​ and takes pattern matches on it. Instead of returning a ​Boolean​
 directly, it returns a ​TailRec​ of ​Boolean​, so we can take advantage of Scala’s
 support for trampolining.
			

				
				Moving on to the first ​case​ clause in the match expression, we see that it calls
 ​done​ to return true if the list is empty, or ​Nil​. This is the base case of
 the recursion; if we get here it means we’ve successfully processed all the transitions originally in the
 sequence.
			
	​ 	​case​ Nil => done(true)

				
				Next up are the three middle clauses. These use pattern matching to pick off the head of the sequence if it’s a valid
 transition and call the function to transition to the appropriate state, passing the rest of the transitions:
			
	​ 	​case​ Condensation :: restTransitions => tailcall(liquid(restTransitions))

	​ 	​case​ Deposition :: restTransitions => tailcall(solid(restTransitions))

	​ 	​case​ Ionization :: restTransitions => tailcall(plasma(restTransitions))

				Finally, the last clause, which is a catchall. If we fall through to here, we know we haven’t processed all the
 transitions and the transition we saw wasn’t valid, so we call
 ​done​
 and pass in false.
			
	​ 	​case​ _ => done(false)

				Let’s take a look at it in action, first with a valid list starting from the solid state:
			
	​ 	scala>​ val validSequence = List(Melting, Vaporization, Ionization, Deionization)​

	​ 	validSequence: List[com.mblinn.mbfpp.functional.mr.Phases.Transition] =

	​ 	 List(Melting, Vaporization, Ionization, Deionization)

	​ 	

	​ 	scala>​ solid(validSequence).result​

	​ 	res0: Boolean = true

				Next we have an invalid list starting from the liquid state:
			
	​ 	scala>​ val invalidSequence = List(Vaporization, Freezing)​

	​ 	invalidSequence: List[com.mblinn.mbfpp.functional.mr.Phases.Transition] =

	​ 	 List(Vaporization, Freezing)

	​ 	

	​ 	scala>​ liquid(invalidSequence).result​

	​ 	res1: Boolean = false

				This wraps up our first look at Mutual Recursion in Scala. Let’s see how it looks in Clojure.
				
			
In Clojure

				
				The Clojure code is similar to the Scala code, at least at a high level. We’ve got ​plasma​,
 ​vapor​, ​liquid​, and ​solid​ functions, each of which takes a
 sequence of transitions.
			

				We use Clojure’s destructuring to pick apart the sequence into the current transition, which we bind to
 ​transition​ and to the rest of the transitions in ​rest-transitions​.
			

				If ​transition​ is ​nil​, we know we’ve reached the end successfully and we
 return true. Otherwise we check to see if it’s a valid transition, and, if so, we transition to the appropriate
 phase. If not, we return false. Here’s the full code:
			
	ClojureExamples/src/mbfpp/functional/mr/phases.clj
	​ 	(​declare​ plasma vapor liquid solid)

	​ 	

	​ 	(​defn​ plasma [[transition & rest-transitions]]

	​ 	 #(​case​ transition

	​ 	 nil true

	​ 	 :deionization (vapor rest-transitions)

	​ 	 :false))

	​ 	

	​ 	(​defn​ vapor [[transition & rest-transitions]]

	​ 	 #(​case​ transition

	​ 	 nil true

	​ 	 :condensation (liquid rest-transitions)

	​ 	 :deposition (solid rest-transitions)

	​ 	 :ionization (plasma rest-transitions)

	​ 	 false))

	​ 	

	​ 	(​defn​ liquid [[transition & rest-transitions]]

	​ 	 #(​case​ transition

	​ 	 nil true

	​ 	 :vaporization (vapor rest-transitions)

	​ 	 :freezing (solid rest-transitions)

	​ 	 false))

	​ 	

	​ 	(​defn​ solid [[transition & rest-transitions]]

	​ 	 #(​case​ transition

	​ 	 nil true

	​ 	 :melting (liquid rest-transitions)

	​ 	 :sublimation (vapor rest-transitions)

	​ 	 false))

				Notice how there are no calls to ​done​ or ​tailcall​ like there are in the
 Scala version? Instead of using ​tailcall​, we just return a function that ​will​ make
 the call we want to make. In this case, we’re using Clojure’s shorthand for anonymous functions to do so.

			

				
				When we actually want to start the chain of mutually recursive calls, we pass the function we want to call into
 ​trampoline​, along with its arguments:
			
	​ 	=> (​def​ valid-sequence [:melting :vaporization :ionization :deionization])

	​ 	#'mbfpp.functional.mr.phases/valid-sequence

	​ 	=> (​trampoline​ solid valid-sequence)

	​ 	true

	​ 	=> (​def​ invalid-sequence [:vaporization :freezing])

	​ 	#'mbfpp.functional.mr.phases/invalid-sequence

	​ 	=> (​trampoline​ liquid invalid-sequence)

	​ 	false

				This returns ​true​ for the valid sequence and ​false​ for the invalid one,
 just as we’d expect.
			

			
			
			
			Before we leave this example, I’d like to talk a little bit about ​Nil​ in Scala and
 ​nil​ in Clojure. The code we wrote looked fairly similar, but there’s a subtle difference between
 the two ​nil​s that’s worth mentioning.
		

			In Scala, ​Nil​ is just a synonym for the empty list, as we can see if we enter it into the Scala
 REPL:
		
	​ 	scala> Nil

	​ 	res0: scala.collection.immutable.Nil.​type​ = ​List​()

			In Clojure, nil just means “nothing”: it means that we don’t have a value, and it’s distinct from the
 empty list. Various functional languages have treated ​nil​ differently over the years, so whenever
 you come across a new one it’s always worth taking a minute to understand just what the language means by
 ​nil​.

		
Discussion

			Mutual Recursion can be pretty handy, but usually only in specific circumstances. State machines are one of these
 circumstances; they’re actually very useful little beasts. Unfortunately, most developers just remember them from their
 undergraduate computer science years, where they had to prove the equivalence between finite state machines and
 regular expressions, which is interesting but of no use to most developers.
		

			
			
			State machines have been a bit more popular in recent years, though. They’re a big part of the actor model, a
 model for concurrent and distributed programming, that’s used by Scala’s Akka library and by Erlang, another functional
 language. Ruby has a clever gem for creating them, aptly named state_machine.

		

			Another thing that’s worth noting is that the trampoline we saw here, in both Scala and Clojure, is just one way of
 doing Mutual Recursion. It’s only necessary because the JVM doesn’t implement tail call optimization directly.

		
Related Patterns

Pattern 5, ​Replacing Iterator​

Pattern 14, ​Filter-Map-Reduce​

	Pattern 14	Filter-Map-Reduce

Intent

			To manipulate a sequence (list, vector, and so on) declaratively using ​filter​,
 ​map​, and ​reduce​ to produce a new one—this is a powerful, high-level way
 of doing many sequence manipulations that would otherwise be verbose.
		
Overview

			 The way we manipulate sequences in a procedural language is more
 closely related to the way a computer works than to the way humans think. Iteration is a step above the dreaded goto
 statement, and it’s intended to be easily translated into machine code more than it’s intended to be easy to use.

		

			Filter-Map-Reduce gives us a more declarative way to do many sequence manipulations. Instead of writing code that
 reorders or alters the elements in a sequence by working its way iteratively through them, element by element, we can
 work at a higher level by using a ​filter​ function to select the elements we care about:
 ​map​ to transform each element and ​reduce​, sometimes known as
 ​fold​, to combine the results.
		

			Filter-Map-Reduce replaces many, though not all, iterative algorithms used by object-oriented programmers with
 declarative code.
		

			
			The main advantage to Filter-Map-Reduce over iteration is code clarity. A well-written Filter-Map-Reduce takes a
 fraction of the code that the iterative equivalent takes. It can often be read at a glance, like prose, by an
 experienced practitioner, while the iterative solution requires parsing at least one loop and a conditional.
		

			One downside is that not all iteration can be replaced with Filter-Map-Reduce. Another is that it may sometimes be
 difficult or unclear how to create a sequence that lends itself to Filter-Map-Reduce. In these cases, one of the
 patterns in the list of ​Related Patterns​, may be a better fit.
		
Code Sample: Calculate Discount

			The implementation of Filter-Map-Reduce combines ​filter​, ​map​, and ​reduce​, though
 not always in that order. Let’s look at an example of calculating a total discount on a sequence of prices, where any
	 price twenty dollars or over is discounted at ten percent, and any under twenty is full price.
		
In Scala

				
				Filter-Map-Reduce in Scala is very similar to the Clojure implementation. We start with a
 ​filter​ function to select prices greater than twenty dollars:

			
	​ 	scala>​ Vector(20.0, 4.5, 50.0, 15.75, 30.0, 3.5) filter (price => price >= 20)​

	​ 	res0: scala.collection.immutable.Vector[Double] = Vector(20.0, 50.0, 30.0)

				
				We use ​map​ to get ten percent of them:
			
	​ 	scala>​ Vector(20.0, 50.0, 30.0) map (price => price * 0.10)​

	​ 	res1: scala.collection.immutable.Vector[Double] = Vector(2.0, 5.0, 3.0)

				
				And we sum them together using ​reduce​:
			
	​ 	scala>​ Vector(2.0, 5.0, 3.0) reduce ((total, price) => total + price)​

	​ 	res2: Double = 10.0

				Putting it together gives us ​calculateDiscount​:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mfr/Discount.scala
	​ 	​def​ calculateDiscount(prices : Seq[Double]) : Double = {

	​ 	 prices filter(price => price >= 20.0) map

	​ 	 (price => price * 0.10) reduce

	​ 	 ((total, price) => total + price)

	​ 	}

	​ 	scala>​ calculateDiscount(Vector(20.0, 4.5, 50.0, 15.75, 30.0, 3.5))​

	​ 	res1: Double = 10.0

				You can also use named functions if that’s more your style, though I prefer the anonymous function version here:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mfr/Discount.scala
	​ 	​def​ calculateDiscountNamedFn(prices : Seq[Double]) : Double = {

	​ 	 ​def​ isGreaterThan20(price : Double) = price >= 20.0

	​ 	 ​def​ tenPercent(price : Double) = price * 0.10

	​ 	 ​def​ sumPrices(total: Double, price : Double) = total + price

	​ 	

	​ 	 prices filter isGreaterThan20 map tenPercent reduce sumPrices

	​ 	}

In Clojure

				
				Let’s create a function ​calculate-discount​ that uses Filter-Map-Reduce to calculate a total
 discount. For the sake of example, we’ll use a vector of doubles to represent our prices. We need to
 ​filter​ first so that only prices greater than twenty dollars remain, like this:

			
	​ 	=> (filter (fn [price] (>= price 20)) [20.0 4.5 50.0 15.75 30.0 3.50])

	​ 	(20.0 50.0 30.0)

				Then we need to take the filtered prices and multiply them by ​0.10​ to get ten percent of each, using
 ​map​:
			
	​ 	=> (map (fn [price] (* price 0.10)) [20.0 50.0 30.0])

	​ 	(2.0 5.0 3.0)

				Finally, we need to combine those results using ​reduce​ and addition:
				
			
	​ 	=> (reduce + [2.0 5.0 3.0])

	​ 	10.0

				Putting this together, we get ​calculate-discount​:
			
	ClojureExamples/src/mbfpp/functional/mfr/discount.clj
	​ 	(​defn​ calculate-discount [prices]

	​ 	 (​reduce​ ​+​

	​ 	 (​map​ (​fn​ [price] (​*​ price 0.10))

	​ 	 (​filter​ (​fn​ [price] (​>​​=​ price 20.0)) prices))))

				
				There’s a trick to reading Lisp code that lets experienced Lispers read this at a glance but which frustrates the
 uninitiated. To read this easily, you need to work from the inside out. Start with the ​filter​
 function, move on to ​map​, and finally to ​reduce​.
			

				In prose, this would be, “Filter the prices so that only those greater than twenty remain, multiply the remaining
 prices by a tenth, and add them together.” With a little practice, reading this sort of code is not only natural, but
 since it’s at a much higher level and closer to natural language, it’s much quicker than the equivalent iterative solution.
			

				We can make a slight modification to the pattern by naming the ​map​ and ​filter​ functions, as
 shown in the code below:
			
	ClojureExamples/src/mbfpp/functional/mfr/discount.clj
	​ 	(​defn​ calculate-discount-namedfn [prices]

	​ 	 (​letfn​ [(twenty-or-greater? [price] (​>​​=​ price 20.0))

	​ 	 (ten-percent [price] (​*​ price 0.10))]

	​ 	 (​reduce​ ​+​ 0.0 (​map​ ten-percent (​filter​ twenty-or-greater? prices)))))

				This makes the pattern read more like prose at the expense of some extra code. When the ​map​
 and ​filter​ functions are one-offs, as they are here, I prefer the original version with
 anonymous functions, but both styles are common. Which one to use is a matter of taste.

			
Discussion

			The Filter-Map-Reduce pattern relies on declarative data manipulation, which is higher level than iterative solutions
 and often higher level than explicitly recursive ones. It’s much like the difference between using SQL to generate a
 report from data in a relational database versus iterating over the lines in a flat file with the same data. A
 well-written SQL version will generally be shorter and clearer, since it’s using a language created specifically for
 manipulating data. Using Map-Reduce-Filter gives us much of that declarative power.
		

			
			One other thing to note is how we built our solutions from the bottom up, starting by creating our
 ​map​, ​reduce​, and ​filter​ functions in the REPL
 and then combining them. This bottom-up workflow is extremely common in functional programming. The ability to experiment
 in the REPL and build up programs through exploration is extremely powerful, and we’ll see many more examples of it in
 functional patterns.
		
Related Patterns

Pattern 5, ​Replacing Iterator​

Pattern 12, ​Tail Recursion​

Pattern 13, ​Mutual Recursion​

	Pattern 15	Chain of Operations

Intent

			To chain a sequence of computations together—this allows us to work cleanly with immutable data without storing
 lots of temporary results.
		
Overview

			
			Sending some bit of data through a set of operations is a useful technique. This is especially true when working with
 immutable data. Since we can’t mutate a data structure, we need to send an immutable one through a series of
 transformations if we want to make more than a single change.
		

			Another reason we chain operations is because it leads to succinct code. For instance, the builder we saw in Pattern 4, ​Replacing Builder for Immutable Object​, chains setting operations to keep our code lean, as the following snippet shows:
		
	JavaExamples/src/main/java/com/mblinn/oo/javabean/PersonHarness.java
	​ 	ImmutablePerson.Builder b = ImmutablePerson.newBuilder();

	​ 	ImmutablePerson p = b.firstName(​"Peter"​).lastName(​"Jones"​).build();

			Other times we chain method invocations to avoid creating noisy temporary values. In the code below we get a
 ​String​ value out of a ​List​ and uppercase it in one shot:
		
	JavaExamples/src/main/java/com/mblinn/mbfpp/functional/coo/Examples.java
	​ 	​List​<​String​> names = ​new​ ​ArrayList​<​String​>();

	​ 	names.add(​"Michael Bevilacqua Linn"​);

	​ 	names.get(0).toUpperCase();

			This style of programming is even more powerful in the functional world, where we have higher-order functions. For
 example, here we’ve got a snippet of Scala code that creates initials from a name:
		
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​val​ name = ​"michael bevilacqua linn"​

	​ 	​val​ initials = name.split(​" "​) map (_.toUpperCase) map (_.charAt(0)) mkString

			It does so by calling
 ​split​
 on the name, turning it into an array, then mapping functions over it
 that uppercase the strings and pick out the first character in each. Finally, we turn the array back into a string.
		

			This is concise and declarative, so it reads nicely.
			
		
Sample Code: Function Call Chaining

			
			Let’s take a look at a sample that involves several chained function calls. The objective is to write the code such
 that when we read it we can easily trace the flow of data from one step to the next.
		

			We’ll take a vector of videos that represent a person’s video-viewing history, and we’ll calculate the total time
 spent watching cat videos. To do so, we’ll need to pick only the cat videos out of the vector, get their length, and
 finally add them together.
		
In Scala

				
				For our Scala solution, we’ll represent videos as a case class with a title, video type, and length. The code to
 define this class and populate some test data follows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​case​ ​class​ Video(title: ​String​, video_type: ​String​, length: ​Int​)

	​ 	

	​ 	​val​ v1 = Video(​"Pianocat Plays Carnegie Hall"​, ​"cat"​, 300)

	​ 	​val​ v2 = Video(​"Paint Drying"​, ​"home-improvement"​, 600)

	​ 	​val​ v3 = Video(​"Fuzzy McMittens Live At The Apollo"​, ​"cat"​, 200)

	​ 	

	​ 	​val​ videos = Vector(v1, v2, v3)

				To calculate the total time spent watching cat videos, we filter out videos where the
 ​video_type​ is equal to ​"cat"​, extract the ​length​ field from the
 remaining videos, and then sum those lengths. The code to do so follows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​def​ catTime(videos: Vector[Video]) =

	​ 	 videos.

	​ 	 filter((video) => video.video_type == ​"cat"​).

	​ 	 map((video) => video.length).

	​ 	 sum

				Now we can apply
 ​catTime​
 to our test data to get the total amount of time spent on cat videos:
			
	​ 	scala>​ catTime(videos)​

	​ 	res0: Int = 500

				This solution reads nicely from top to bottom, almost like prose. It does so without needing extra variables or any
 mutation, so it’s ideal in the functional world.
			
In Clojure

				Let’s take a look at our cat-viewing problem in Clojure. Here, we’ll use maps for our videos. The following code
 snippet creates some test data:
			
	ClojureExamples/src/mbfpp/functional/coo/examples.clj
	​ 	(​def​ v1

	​ 	 {:title ​"Pianocat Plays Carnegie Hall"​

	​ 	 :type :cat

	​ 	 :length 300})

	​ 	

	​ 	(​def​ v2

	​ 	 {:title ​"Paint Drying"​

	​ 	 :type :home-improvement

	​ 	 :length 600})

	​ 	

	​ 	(​def​ v3

	​ 	 {:title ​"Fuzzy McMittens Live At The Apollo"​

	​ 	 :type :cat

	​ 	 :length 200})

	​ 	

	​ 	(​def​ videos [v1 v2 v3])

				
				Let’s take a shot at writing ​cat-time​ in Clojure. As before, we’ll filter the vector of videos
 and extract their lengths. To sum up the sequence of lengths, we’ll use ​apply​ and the
 ​+​ function. The code for this solution follows:
			
	ClojureExamples/src/mbfpp/functional/coo/examples.clj
	​ 	(​defn​ cat-time [videos]

	​ 	 (​apply​ ​+​

	​ 	 (​map​ :length

	​ 	 (​filter​ (​fn​ [video] (​=​ :cat (:type video))) videos))))

				To understand this code, start with the filter function, move onto map, and then up to apply. For long sequences this can get tricky. One option would be to name the
 intermediate results using ​let​ to make things easier to understand.
			

				
				Another option in this situation is to use Clojure’s ​->​ and ​->>​ macros.
 These macros can be used to thread a piece of data through a series of function calls.
			

				
				
				The ​->​ macro threads an expression through a series of forms, inserting it as the second item
 in each form. For instance, in the following snippet we use ​->​ to thread an integer through two
 subtractions:
			
	​ 	=> (-> 4 (- 2) (- 2))

	​ 	0

				The ​->​ macro first threads ​4​ into the second position in ​(- 2)​,
 which subtracts 2 from 4 to get 2. Then, that result is threaded into the second slot in the later ​(- 2)​
 to get a final result of 0.
			

				If we use ​->>​ we get a different result, as the following code snippet shows:
			
	​ 	=> (->> 4 (- 2) (- 2))

	​ 	4

				
				
				Here, the ​->>​ threads ​4​ into the last slot in the first ​(- 2)​, so 4
 is subtracted from 2 to get a result of -2. That -2 is then threaded into the last slot of the second ​(-2)​,
 which subtracts a -2 from 2 to get a final result of 4.
			

				Now that we’ve seen the threading operators, we can use ​->>​ to make our original
 ​catTime​ read from top to bottom. We do so in the following snippet:
			
	ClojureExamples/src/mbfpp/functional/coo/examples.clj
	​ 	(​defn​ more-cat-time [videos]

	​ 	 (​->>​ videos

	​ 	 (​filter​ (​fn​ [video] (​=​ :cat (:type video))))

	​ 	 (​map​ :length)

	​ 	 (​apply​ ​+​)))

				This works the same as our original:
			
	​ 	=> (more-cat-time videos)

	​ 	500

				One limitation of the threading macros is that if we want to use them to chain function calls, the piece of data we’re
 passing through the chain of function calls must be consistently in the first or last position.

			
Sample Code: Chaining Using Sequence Comprehensions

			 A common use for
 Chain of Operations is that we need to perform multiple operations on values inside of some container type. This is
 especially common in statically typed languages like Scala.
		

			For instance, we may have a series of ​Option​ values that we want to combine into a single value,
 returning ​None​ if any of them are ​None​. There are several ways to do so, but the most
 concise relies on using a ​for​ comprehension to pick out the values and yield a result.
		
In Scala

				
				We came across sequence comprehensions in ​Sample Code: Sequence Comprehensions​, as a replacement for
 Iterator. Here we’ll take advantage of the fact that they can operate over more than one sequence at a time, which
 makes them useful for Chain of Operations.
			

				Let’s take a look at a sequence comprehension that operates over two vectors, each with a single integer. We’ll
 use it to add the values in the vectors together. Our test vectors are defined in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​val​ vec1 = Vector(42)

	​ 	​val​ vec2 = Vector(8)

				
				Here’s the ​for​ comprehension we use them with. We pick ​i1​ out of the first vector and
 ​i2​ out of the second, and we use ​yield​ to add them together:
			
	​ 	scala>​ for { i1 <- vec1; i2 <- vec2 } yield(i1 + i2)​

	​ 	res0: scala.collection.immutable.Vector[Int] = Vector(50)

				
				From there, it’s only a short hop to using ​for​ with ​Option​. In the following
 code we define a couple of optional values:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​val​ o1 = Some(42)

	​ 	​val​ o2 = Some(8)

				Now we can add them together as we did with the values out of our vectors. 	
			
	​ 	scala>​ for { v1 <- o1; v2 <- o2 } yield(v1 + v2)​

	​ 	res1: Option[Int] = Some(50)

				One advantage is that we don’t have to call
 ​get​
 or pattern match to pull values out of
 ​Option​. The power of this approach becomes more apparent when we add a ​None​ into the
 mix:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​val​ o3: ​Option​[​Int​] = None

	​ 	scala>​ for { v1 <- o1; v3 <- o3 } yield(v1 + v3)​

	​ 	res2: Option[Int] = None

				Now our ​for​ comprehension yields a ​None​.
			

				A Chain of Operations, each of which might yield a ​None​, is common in Scala. Let’s take a look at an
 example that goes through a series of operations to retrieve a user’s list of favorite videos on a movie website.
			

				To get the list of videos, we first need to look up a user by ID, then we need to look up the list of favorite
 videos by user. Finally, we need to look up the list of videos associated with that movie, such as cast interviews, trailers, and perhaps a full-length video of the movie itself.
			

				We’ll start out by creating a couple of classes to represent a ​User​ and a ​Movie​:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​case​ ​class​ User(name: ​String​, id: ​String​)

	​ 	​case​ ​class​ Movie(name: ​String​, id: ​String​)

				Now we’ll define a set of methods to fetch a user, a favorite movie, and the list of videos for that movie.
 Each function returns ​None​ if it can’t find a response for its input. For this simple example we’ll
 do so using hardcoded values, but in real life this would likely involve a lookup from a database or service:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​def​ getUserById(id: ​String​) = id ​match​ {

	​ 	 ​case​ ​"1"​ => Some(User(​"Mike"​, ​"1"​))

	​ 	 ​case​ _ => None

	​ 	}

	​ 	

	​ 	​def​ getFavoriteMovieForUser(user: User) = user ​match​ {

	​ 	 ​case​ User(_, ​"1"​) => Some(Movie(​"Gigli"​, ​"101"​))

	​ 	 ​case​ _ => None

	​ 	}

	​ 	

	​ 	​def​ getVideosForMovie(movie: Movie) = movie ​match​ {

	​ 	 ​case​ Movie(_, ​"101"​) =>

	​ 	 Some(Vector(

	​ 	 Video(​"Interview With Cast"​, ​"interview"​, 480),

	​ 	 Video(​"Gigli"​, ​"feature"​, 7260)))

	​ 	 ​case​ _ => None

	​ 	}

				Now we can write a function to get a user’s favorite videos by chaining together calls to the functions we
 previously defined inside of a ​for​ statement:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
	​ 	​def​ getFavoriteVideos(userId: ​String​) =

	​ 	 ​for​ {

	​ 	 user <- getUserById(userId)

	​ 	 favoriteMovie <- getFavoriteMovieForUser(user)

	​ 	 favoriteVideos <- getVideosForMovie(favoriteMovie)

	​ 	 } ​yield​ favoriteVideos

				If we call
 ​getFavoriteVideos​
 with a valid user ID, it’ll return the list of favorite
 videos.
			
	​ 	scala>​ getFavoriteVideos("1")​

	​ 	res3: Option[scala.collection.immutable.Vector[...] =

	​ 	 Some(Vector(Video(Interview With Cast,interview,480),

	​ 	 Video(Gigli,feature,7260)))

				If we call it with a user who doesn’t exist, the whole chain will return ​None​ instead:
			
	​ 	scala>​ getFavoriteVideos("42")​

	​ 	res4: Option[scala.collection.immutable.Vector[...]] = None

In Clojure

				Since Clojure isn’t statically typed, it doesn’t have anything like Scala’s ​Option​ as a core part of
 the language.
			

				
				However, Clojure’s sequence comprehensions do work much like Scala’s for other container types. For instance, we
 can use ​for​ to pick out their contents and add them together, as we did in our Scala example. In
 the following code snippet, we do just that:
			
	ClojureExamples/src/mbfpp/functional/coo/examples.clj
	​ 	(​def​ v1 [42])

	​ 	(​def​ v2 [8])

	​ 	=> (for [i1 v1 i2 v2] (+ i1 i2))

	​ 	(50)

				If one of our vectors is the empty vector, then ​for​ will result in an empty sequence. The
 following code demonstrates:
			
	ClojureExamples/src/mbfpp/functional/coo/examples.clj
	​ 	(​def​ v3 [])

	​ 	=> (for [i1 v1 i3 v3] (+ i1 i3))

	​ 	()

				 Even though Clojure’s sequence comprehension works much the same as
 Scala’s, the lack of static typing and the ​Option​ type means that the sort of chaining we saw in
 Scala isn’t idiomatic. Instead we generally rely on
 chaining together functions with explicit null checks.
			

				The flexibility of Lisp makes it possible to add on even something as fundamental
				as a static type checker into the
 language as a library. Just such a library is currently under development in the core.typed
 				library,[6]
				which provides optional static typing.
				
			

				As this library gains maturity, the type of chaining we saw in the Scala examples may become more and more common.
				
			
Discussion

			
			
			The examples we saw in ​Sample Code: Chaining Using Sequence Comprehensions​, are examples of the
 ​ sequence​

 or
 ​ list
 monad​

 . While we didn’t define exactly what a monad is, we did show a basic example of the sort of problems
 that they can solve. They make it natural to chain together operations on a container type while operating on the data
 inside of the container.

		

			In the programming world, monads are most commonly known as a way to get IO and other nonpure features into a purely
 functional language. From the examples we saw above, it may not be immediately apparent what monads have to do with
 IO in a purely functional language.
		

			Since neither Scala nor Clojure make use of monads in this way, we won’t go into it in detail here. The general reason,
 however, is that the monadic container type can carry along some extra information through the call chain. For
 instance, a monad to do IO would gather up all of the IO done through the Chain of Operations and then hand it off to
 a runtime when done. The runtime would then be responsible for performing the IO.
		

			
			This style of programming was pioneered by Haskell. The curious reader can find an excellent introduction to it in
 Learn You a Haskell for Great Good!: A Beginner’s Guide [Lip11].
		
For Further Reading

Learn You a Haskell for Great Good!: A Beginner’s Guide [Lip11]

Related Patterns

Pattern 4, ​Replacing Builder for Immutable Object​

Pattern 5, ​Replacing Iterator​

Pattern 14, ​Filter-Map-Reduce​

Pattern 16, ​Function Builder​

	Pattern 16	Function Builder

Intent

			To create a function that itself creates functions, allowing us to synthesize behaviors on the fly
		
Overview

			
			Sometimes we’ve got a function that performs a useful action, and we need a function that performs some other, related
 action. We might have a ​vowel?​ predicate that returns true when a vowel is passed in and need a
 ​consonant?​ that does the same for consonants.
		

			Other times, we’ve got some data that we need to turn into an action. We might have a discount percentage and need a
 function that can apply that discount to a set of items.
		

			With Function Builder, we write a function that takes our data or function (though, as we’ve seen, the distinction
 between functions and data is blurry) and uses it to create a new function.
		

			To use Function Builder, we write a higher-order function that returns a function. The Function Builder implementation
 encodes some pattern we’ve discovered.
		

			For example, to create a ​consonant?​ predicate from a ​vowel?​ predicate, we create
 a new function that calls ​vowel?​ and negates the result. To create ​odd?​ from
 ​even?​, we create a function that calls ​even?​ and negates the result. To create
 ​dead?​ from ​alive?​, we create a function that calls ​dead?​ and
 negates the result.
		

			There’s an obvious pattern here. We can encode it with a Function Builder implementation named
 ​negate​. The ​negate​ function takes in a function and returns a new one that
 calls the passed-in function and negates the result.
		

			Another common use for Function Builder is when we’ve got a piece of static data we need to use as the basis for some
 action. For instance, we could convert a static percentage to a function that calculates percentages by writing a
 function that takes in the percentage and returns a function of one argument. This function takes in a number to
 calculate a percentage of and uses the percentage stored in its closure to do so.
		

			We’ll see several examples of both flavors of Function Builder a bit later on.
			
		
Code Sample: Functions from Static Data

			
			One way to use Function Builder is to create functions out of static data. This lets us take a bit of data—a noun—and
 turn it into an action—a verb. Let’s look at a couple of examples, starting with a function that takes a
 percentage and creates a function that calculates discounted prices based on those percentages.
		
Discount Calculator Builder

				The Function Builder
 ​discount​
 takes in a percentage between 0 and 100 and returns a function
 that computes a discounted price based on that percentage. Passing ​50​ into

 ​discount​
 returns a function that calculates a 50 percent discount, ​25​ gets us
 a 25 percent discount, and so on. Let’s take a look at the Scala version.
			
In Scala

					Our Scala code defines
 ​discount​
 , which takes a ​Double​, named
 ​percent​, and checks to ensure that it’s between 0 and 100. It then creates a function that uses
 ​discountPercentage​ to calculate a discount. Here’s the code:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/DiscountBuilder.scala
	​ 	​def​ discount(percent: Double) = {

	​ 	 ​if​(percent < 0.0 || percent > 100.0)

	​ 	 ​throw​ ​new​ IllegalArgumentException(​"Discounts must be between 0.0 and 100.0."​)

	​ 	 (originalPrice: Double) =>

	​ 	 originalPrice - (originalPrice * percent * 0.01)

	​ 	}

					Let’s take a look at how it works. The simplest way to use
 ​discountedPrice​
 is to have it
 create an anonymous function, which we call directly. Here we use it to calculate a 50 percent discount on a
 price of 200:
				
	​ 	scala>​ discount(50)(200)​

	​ 	res0: Double = 100.0

					And here we use it to calculate a 0 percent discount (full price) and a 100 percent discount (free!),
 respectively:
				
	​ 	scala>​ discount(0)(200)​

	​ 	res1: Double = 200.0

	​ 	

	​ 	scala>​ discount(100)(200)​

	​ 	res2: Double = 0.0

					If we need to use the discount function more than once, we can name it. Here we do so and use it to calculate
 discounted totals on a couple of vectors of items:
				
	​ 	scala>​ val twentyFivePercentOff = discountedPrice(25)​

	​ 	twentyFivePercentOff: Double => Double = <function1>

	​ 	

	​ 	scala>​ Vector(100.0, 25.0, 50.0, 25.0) map twentyFivePercentOff sum​

	​ 	res3: Double = 150.0

	​ 	

	​ 	scala>​ Vector(75.0, 25.0) map twentyFivePercentOff sum​

	​ 	res4: Double = 75.0

In Clojure

					
					This example works much the same in Clojure. The only interesting difference is that we can use Clojure’s
 preconditions to ensure that the discount is in the valid range. Let’s take a look at the code:
				
	ClojureExamples/src/mbfpp/functional/fb/discount_builder.clj
	​ 	(​defn​ discount [percentage]

	​ 	 {:pre [(​and​ (​>​​=​ percentage 0) (​<​​=​ percentage 100))]}

	​ 	 (​fn​ [price] (​-​ price (​*​ price percentage 0.01))))

					We can create a discounted price and call it as an anonymous function:
				
	​ 	=> ((discount 50) 200)

	​ 	100.0

					As advertised, trying to create a discount outside the acceptable range throws an exception:
				
	​ 	=> (discount 101)

	​ 	AssertionError Assert failed: ...

					And if we want to name our discount function to use it multiple times, we can do so:
				
	​ 	=> (def twenty-five-percent-off (discount 25))

	​ 	=> (apply + (map twenty-five-percent-off [100.0 25.0 50.0 25.0]))

	​ 	150.0

	​ 	=> (apply + (map twenty-five-percent-off [75.0, 25.0]))

	​ 	75.0

				The discount calculator is a fairly simple example; we’ll take a look at one that’s a bit more involved in the
 next section.

			
Map Key Selector

				
				Let’s take a look at a more involved implementation of Function Builder. The problem we’re trying to solve is
 this: we’ve got a data structure consisting of maps nested inside each other, and we want to create functions
 that help us pick out values, possibly from deeply nested parts.
			

				In a way, this is writing a very simple declarative language to pick values out of deeply nested maps. This is a
 lot like how XPath lets us select an arbitrary element from a deeply nested XML structure, or how a CSS selector lets
 us do the same with HTML.
			

				Our solution starts with creating a function, ​selector​, which takes a path to the data we’re
 looking for. For instance, if we’ve got a map that represents a person, which contains a ​name​
 key whose value is another map, which contains a ​first​ key whose value is the first name, we
 want to be able to create a selector for the first name like this: ​selector(’name, ’first)​. We can see this in the code below:
			
	​ 	scala>​ val person = Map('name -> Map('first -> "Rob"))​

	​ 	person: ...

	​ 	

	​ 	scala>​ val firstName = selector('name, 'first)​

	​ 	firstName: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

	​ 	

	​ 	scala>​ firstName(person)​

	​ 	res0: Option[Any] = Some(Rob)

				This sort of structure is extremely handy when working with structured data like XML or JSON. The data can be
 parsed into a nested structure, and this type of Function Builder can help pick it apart.
			
In Scala

					The Scala version of ​selector​ creates functions that can pick values out of deeply nested
 maps, as described previously. The ​selector​s that it creates will return ​Some(Any)​ if
 it can find the nested value; otherwise it returns None.
				

					To create a selector, we need to pass in several ​Symbol​s corresponding to the keys in
 the path we want to select. Since this is all we need to pass into ​selector​, we can use
 Scala’s support for varargs instead of passing in an explicit list; this means that creating a
 ​selector​ to pick a street name from a person’s address looks like this:
				
	​ 	scala>​ selector('address, 'street, 'name)​

	​ 	res0: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

					Once created, a map is passed into the selector, and it attempts to select a value based on the path it was
 given when it was created by recursively walking through the map. This is a slightly tricky bit of code, so
 let’s look at the whole thing and then break it down into smaller parts:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/Selector.scala
	​ 	​def​ selector(path: Symbol*): (Map[Symbol, ​Any​] => ​Option​[​Any​]) = {

	​ 	

	​ 	 ​if​(path.size <= 0) ​throw​ ​new​ IllegalArgumentException(​"path must not be empty"​)

	​ 	

	​ 	 @tailrec

	​ 	 ​def​ selectorHelper(path: Seq[Symbol], ds: Map[Symbol, ​Any​]): ​Option​[​Any​] =

	​ 	 ​if​(path.size == 1) {

	​ 	 ds.get(path(0))

	​ 	 }​else​{

	​ 	 ​val​ currentPiece = ds.get(path.head)

	​ 	 currentPiece ​match​ {

	​ 	 ​case​ Some(currentMap: Map[Symbol, ​Any​]) =>

	​ 	 selectorHelper(path.tail, currentMap)

	​ 	 ​case​ None => None

	​ 	 ​case​ _ => None

	​ 	 }

	​ 	 }

	​ 	

	​ 	 (ds: Map[Symbol, ​Any​]) => selectorHelper(path.toSeq, ds)

	​ 	}

					Let’s start by examining the signature of ​selector​:
				
	​ 	​def​ selector(path: Symbol*): (Map[Symbol, ​Any​] => ​Option​[​Any​]) = {

	​ 	 selector-body

	​ 	}

					This says that ​selector​ takes a variable number of ​Symbol​ arguments and
 returns a function. The function it returns itself takes a map from ​Symbol​ to
 ​Any​ and returns an ​Option[Any]​.
				

					The first line simply checks to make sure that the path has at least one element and throws an exception if
 it doesn’t:
				
	​ 	​if​(path.size <= 0) ​throw​ ​new​ IllegalArgumentException(​"path must not be empty"​)

					The meat of the function is a nested, recursive helper function. Let’s take a look at its type signature:
				
	​ 	@tailrec

	​ 	​def​ selectorHelper(path: Seq[Symbol], ds: Map[Symbol, ​Any​]): ​Option​[​Any​] =

	​ 	 selector-helper-body

	​ 	}

					This says that ​selectorHelper​ takes a sequence of ​Symbols​ as a path and
 a data structure that consists of a map from ​Symbol​ to ​Any​. It returns
 an Option[Any], which represents the final value we’re trying to find with the selector. In the above example,
 this would be the name of a person’s street.
				

					Next, we get the base case for our recursion. This happens when we reach the end of the path. We find the
 value we’re looking for and return it. The
 ​get​
 method returns ​None​ if the
 value doesn’t exist:
				
	​ 	​if​(path.size == 1) {

	​ 	 ds.get(path(0))

	​ 	}

					The largest piece of code contains the tail recursive call. Here, we get the current piece of the data
 structure. If it exists, then we call the helper function recursively with the remainder of the path and the
 data structure we just picked out. If it doesn’t exist, or if it doesn’t have the proper type, we return
 ​None​:
				
	​ 	​else​{

	​ 	 ​val​ currentPiece = ds.get(path.first)

	​ 	 currentPiece ​match​ {

	​ 	 ​case​ Some(currentMap: Map[Symbol, ​Any​]) =>

	​ 	 selectorHelper(path.tail, currentMap)

	​ 	 ​case​ None => None

	​ 	 ​case​ _ => None

	​ 	 }

	​ 	 }

					Finally, here is the last line, which just returns a function that calls ​selectorHelper​ with the
 appropriate arguments:
				
	​ 	(ds: Map[Symbol, ​Any​]) => selectorHelper(path.toSeq, ds)

					Let’s take a closer look at how we can use ​selector​, starting with a very simple example, a
 map that has a single key-value pair:
				
	​ 	scala>​ val simplePerson = Map('name -> "Michael Bevilacqua-Linn")​

	​ 	simplePerson: scala.collection.immutable.Map[Symbol,java.lang.String] =

	​ 	 Map('name -> Michael Bevilacqua-Linn)

	​ 	

	​ 	scala>​ val name = selector('name)​

	​ 	name: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

	​ 	

	​ 	scala>​ name(simplePerson)​

	​ 	res0: Option[Any] = Some(Michael Bevilacqua-Linn)

					Of course the real power is only apparent when we start working with nested data structures, like so:
				
	​ 	scala>​ val moreComplexPerson =​

	​ 	 Map('name -> Map('first -> "Michael", 'last -> "Bevilacqua-Linn"))

	​ 	moreComplexPerson: scala.collection.immutable.Map[...] =

	​ 	 Map('name -> Map('first -> Michael, 'last -> Bevilacqua-Linn))

	​ 	

	​ 	scala>​ val firstName = selector('name, 'first)​

	​ 	firstName: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

	​ 	

	​ 	scala>​ firstName(moreComplexPerson)​

	​ 	res1: Option[Any] = Some(Michael)

					If the selector doesn’t match anything, a ​None​ is returned:
				
	​ 	scala>​ val middleName = selector('name, 'middle)​

	​ 	middleName: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

	​ 	

	​ 	scala>​ middleName(moreComplexPerson)​

	​ 	res2: Option[Any] = None

In Clojure

					The Clojure version of ​selector​ is much simpler than the Scala one. In part, this is
 because Clojure is dynamically typed, so we don’t have to worry about the type system as we did in Scala. In
 addition, Clojure has a handy function called ​get-in​, which is tailor-made to pick values
 out of deeply nested maps.

				

					Let’s take a quick look at ​get-in​ before we dig into the code. The
 ​get-in​ function takes a nested map as its first argument and a sequence that represents
 the path to the value you’re looking for. Here’s an example of using it to pick a street name from a nested
 map:
				
	​ 	=> (​def​ person {:address {:street {:name ​"Fake St."​}}})

	​ 	#'mbfpp.functional.fb.selector/person

	​ 	=> (​get-in​ person [:address :street :name])

	​ 	​"Fake St."​

					Building ​selector​ on top of ​get-in​ is extremely straightforward. We’ve
 just got to add a validator to ensure that the path isn’t empty and use varargs for the
 ​path​. Here’s the code:
				
	ClojureExamples/src/mbfpp/functional/fb/selector.clj
	​ 	(​defn​ selector [& path]

	​ 	 {:pre [(​not​ (​empty?​ path))]}

	​ 	 (​fn​ [ds] (​get-in​ ds path)))

					Using it is just as easy as the Scala version. Here we pick out a person name from a flat map:
				
	​ 	=> (​def​ person {:name ​"Michael Bevilacqua-Linn"​})

	​ 	#'mbfpp.functional.fb.selector/person

	​ 	=> (​def​ personName (selector :name))

	​ 	#'mbfpp.functional.fb.selector/personName

	​ 	=> (personName person)

	​ 	​"Michael Bevilacqua-Linn"​

					And here we pick out a street name from a more deeply nested one:
				
	​ 	=> (​def​ person {:address {:street {:name ​"Fake St."​}}})

	​ 	#'mbfpp.functional.fb.selector/person

	​ 	=> (​def​ streetName (selector :address :street :name))

	​ 	#'mbfpp.functional.fb.selector/streetName

	​ 	=> (streetName person)

	​ 	​"Fake St."​

				Before we move on, here’s a quick note on the relative complexity of the Scala and Clojure versions of this
 example. The fact that Clojure has ​get-in​, which does almost exactly what we want to do, helps
 make the Clojure version much more concise. The other factor is that Clojure is a dynamically typed language.
 Since the nested maps can hold values of any type, this takes some type system gymnastics to handle in Scala,
 which is statically typed.
			

				 In Clojure, using maps to hold data like this is very
 idiomatic. In Scala, it’s more common to use classes or case classes. However, for this sort of very dynamic
 problem, I much prefer just keeping things in a map. Using a map means we can manipulate the data structure with
 all the built-in tools for manipulation maps and collections.
			
Functions from Other Functions

			Since functions in the functional world are themselves pieces of data that can be manipulated, it’s common to use
 Function Builder to transform one function into another. This can be done very simply by just creating a new function
 that manipulates the return value of another function. For instance, if we have a function ​isVowel​
 and we want a function ​isNotVowel​, we can simply have it delegate to ​isVowel​ and
 negate the result. This creates a complementary function, as the Scala code shows:
		
	​ 	scala> ​def​ isNotVowel(c: Char) = !isVowel(c)

	​ 	isNotVowel: (c: Char)​Boolean​

	​ 	

	​ 	scala> isNotVowel('b')

	​ 	res0: ​Boolean​ = true

			In this example, we’ll take a closer look at two other ways to create functions from existing functions: function
 composition and partial function application. Function composition lets us take multiple functions and chain them
 together. Partial function application lets us take one function and some of its arguments and create a new function
 of fewer arguments. These are two of the most generally useful ways of creating functions from functions.
		
Function Composition

				
				
				Function composition is a way to chain function invocations together. Composing a list of functions together gives
 us a new function that invokes the first function, passes its output to the next, which passes it to the next,
 and so on until a result is returned.
			

				In many ways, function composition is similar to the way that Pattern 9, ​Replacing Decorator​, is used.
 With the Decorator pattern, multiple decorators, each of which does one part of some task, are chained together.
 Here multiple functions are chained together.
			

				It’s possible to use function composition by simply chaining together functions by hand, but since this is such a
 common task, functional languages provide first class support for it. Clojure and Scala are no exception here, so
 let’s take a look at it.
			
In Scala

					
					In Scala, we can compose functions together with the ​compose​ operator. As a simple
 example, let’s define three functions, ​appendA​, ​appendB​, and
 ​appendC​, which append the strings ​"a"​, ​"b"​, and ​"c"​,
 respectively, as the code shows:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
	​ 	​val​ appendA = (s: ​String​) => s + ​"a"​

	​ 	​val​ appendB = (s: ​String​) => s + ​"b"​

	​ 	​val​ appendC = (s: ​String​) => s + ​"c"​

					Now if we want a function that appends all three letters, we can define it like so using function
 composition:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
	​ 	​val​ appendCBA = appendA compose appendB compose appendC

					As the name suggests, this appends the letters ​c​, ​b​, and ​a​, in that order. It’s equivalent to writing a
 function that takes an argument, passes it into
 ​appendC​
 , takes the returned value and passes
 it into
 ​appendB​
 , and finally passes that returned value into
 ​appendA​
 :
				
	​ 	scala>​ appendCBA("z")​

	​ 	res0: java.lang.String = zcba

					 This is a trivial example, but it illustrates an important thing about function
 composition, which is the order in which the composed functions are called. The last function in the
 composition chain is called first, and the first function is called last, which is why ​c​ is the
 first letter appended to our string.
				

					Let’s take a look at a more involved example. One common situation that comes up in web application frameworks
 is the need to pass an HTTP request through a series of user-defined chunks of code. J2EE’s servlet
 filters,[7]
 which pass a request through a chain of filters before it is handled, are a common example of such a filter
 chain.
				

					Filter chains allow application code to do anything that needs to be done before request handling, like
 decrypting and decompressing the request, checking authentication credentials, logging to a request log, and
 so forth. Let’s sketch out how we’d do this using function composition.

					First, we’ll need a way to represent HTTP requests. For the purpose of this example, we’ll keep it simple and
 stick to a map of request headers and a string request body:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
	​ 	​case​ ​class​ HttpRequest(

	​ 	 headers: Map[​String​, ​String​],

	​ 	 payload: ​String​,

	​ 	 principal: ​Option​[​String​] = None)

					Next, let’s define some filters. Each filter is a function that takes in an ​HttpRequest​, does something, and
 returns an ​HttpRequest​. For this simple example, we’re returning the same ​HttpRequest​; but if the filter
 needed to modify or add something to the request, it could do so by creating a new ​HttpRequest​ with its
 modifications.
				

					Here are a couple of example filters—the first mimics checking an ​Authorization​ header and
 adding a user principal to the request if it’s valid, and the second mimics logging out a request fingerprint for
 troubleshooting:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
	​ 	​def​ checkAuthorization(request: HttpRequest) = {

	​ 	 ​val​ authHeader = request.headers.get(​"Authorization"​)

	​ 	 ​val​ mockPrincipal = authHeader ​match​ {

	​ 	 ​case​ Some(headerValue) => Some(​"AUser"​)

	​ 	 ​case​ _ => None

	​ 	 }

	​ 	 request.copy(principal = mockPrincipal)

	​ 	}

	​ 	

	​ 	​def​ logFingerprint(request: HttpRequest) = {

	​ 	 ​val​ fingerprint = request.headers.getOrElse(​"X-RequestFingerprint"​, ​""​)

	​ 	 println(​"FINGERPRINT="​ + fingerprint)

	​ 	 request

	​ 	}

					Finally, we need a function that takes a sequence of filters and composes them together. We can do this by
 simply reducing the composition function over the sequence:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
	​ 	​def​ composeFilters(filters: Seq[Function1[HttpRequest, HttpRequest]]) =

	​ 	 filters.reduce {

	​ 	 (allFilters, currentFilter) => allFilters compose currentFilter

	​ 	 }

					Let’s watch it work by composing the sample filters into a single filter chain and running a test
 ​HttpRequest​ through it:
				
	​ 	scala>​ val filters = Vector(checkAuthorization, logFingerprint)​

	​ 	filters: ...

	​ 	

	​ 	scala>​ val filterChain = composeFilters(filters)​

	​ 	filterChain: ...

	​ 	

	​ 	scala>​ val requestHeaders =​

	​ 	 Map("Authorization" -> "Auth", "X-RequestFingerprint" -> "fingerprint")

	​ 	requestHeaders: ...

	​ 	

	​ 	scala>​ val request = HttpRequest(requestHeaders, "body")​

	​ 	request: ...

	​ 	

	​ 	scala>​ filterChain(request)​

	​ 	FINGERPRINT=fingerprint

	​ 	res0: com.mblinn.mbfpp.functional.fb.ScalaExamples.HttpRequest =

	​ 	 HttpRequest(

	​ 	 Map(Authorization -> Auth, X-RequestFingerprint -> fingerprint),

	​ 	 body,

	​ 	 Some(AUser))

					As we can see, the filter chain properly runs the ​HttpRequest​ through each filter in the
 chain, which adds a user principal to the request and logs our fingerprint to the console.
				
In Clojure

					
					The easiest way to do function composition in Clojure is to use ​comp​. Here we are using
 it to compose together the string appenders:
				
	ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
	​ 	(​defn​ append-a [s] (​str​ s ​"a"​))

	​ 	(​defn​ append-b [s] (​str​ s ​"b"​))

	​ 	(​defn​ append-c [s] (​str​ s ​"c"​))

	​ 	

	​ 	(​def​ append-cba (​comp​ append-a append-b append-c))

					This works much like the Scala version:
				
	​ 	=> (append-cba ​"z"​)

	​ 	​"zcba"​

					In Clojure we’ll model the HTTP request itself, as well as the headers, as a map. A sample request looks like
 so:
				
	ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
	​ 	(​def​ request

	​ 	 {:headers

	​ 	 {​"Authorization"​ ​"auth"​

	​ 	 ​"X-RequestFingerprint"​ ​"fingerprint"​}

	​ 	 :body ​"body"​})

					Our sample filter functions pick keys out of a map and use ​nil​ instead of
 ​None​ to represent missing values. Here they are, along with the function builder,
 ​compose-filters​, to compose them into a filter chain:
				
	ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
	​ 	(​defn​ check-authorization [request]

	​ 	 (​let​ [auth-header (​get-in​ request [:headers ​"Authorization"​])]

	​ 	 (​assoc​

	​ 	 request

	​ 	 :principal

	​ 	 (​if-not​ (​nil?​ auth-header)

	​ 	 ​"AUser"​))))

	​ 	

	​ 	(​defn​ log-fingerprint [request]

	​ 	 (​let​ [fingerprint (​get-in​ request [:headers ​"X-RequestFingerprint"​])]

	​ 	 (​println​ (​str​ ​"FINGERPRINT="​ fingerprint))

	​ 	 request))

	​ 	

	​ 	(​defn​ compose-filters [filters]

	​ 	 (​reduce​

	​ 	 (​fn​ [all-filters, current-filter] (​comp​ all-filters current-filter))

	​ 	 filters))

					And here’s that filter chain in action, running through the filters, performing them, and finally returning
 the HTTP request:
				
	​ 	=> (def filter-chain (compose-filters [check-authorization log-fingerprint]))

	​ 	#'mbfpp.functional.fb.composition-examples/filter-chain

	​ 	=> (filter-chain request)

	​ 	FINGERPRINT=fingerprint

	​ 	{:principal "AUser",

	​ 	:headers {"X-RequestFingerprint" "fingerprint", "Authorization" "auth"},

	​ 	:body "body"}

				Function composition is a very general operation, and we’ve only touched on a few uses of it here. Any time you
 find yourself calling the same set of functions in the same order multiple times, or you have a dynamically
 generated list of functions that need to be chained together, function composition is a good place to turn to.

			
Partially Applied Functions

				
				While function composition takes multiple functions and chains them together, partially applying a function takes
 one function and a subset of the arguments that that function takes and returns a new function. The new function
 has fewer arguments than the original and keeps track of the subset that was passed in when the partially applied
 function was created so it can use them later when it gets the rest of the arguments.
			

				Let’s see how it works in Scala.
			
In Scala

					
					Partial function application is another functional feature that’s important enough to warrant first-class
 support in Scala. The way it works is that you call a function and replace the arguments you don’t currently
 have values for with underscores. For example, if we’ve got a function that adds two integers together and we
 want a function that adds 42 to a single integer, we could create it like this:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/PartialExamples.scala
	​ 	​def​ addTwoInts(intOne: ​Int​, intTwo: ​Int​) = intOne + intTwo

	​ 	

	​ 	​val​ addFortyTwo = addTwoInts(42, _: ​Int​)

					As the code below shows, ​addFortyTwo​ is a function of one argument, to which it adds 42.
				
	​ 	scala>​ addFortyTwo(100)​

	​ 	res0: Int = 142

					Creating partially applied functions is simple, but spotting when to use them can be a bit tough. Here’s one
 example where they come in handy. Say we’ve got a function that calculates income tax by state, and we want to
 create functions that let us calculate the income tax for a particular state. We can use
					a partially applied
 function to do it, like so:
				
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/PartialExamples.scala
	​ 	​def​ taxForState(amount: Double, state: Symbol) = state ​match​ {

	​ 	 ​// Simple tax logic, for example only!​

	​ 	 ​case​ ('NY) => amount * 0.0645

	​ 	 ​case​ ('PA) => amount * 0.045

	​ 	 ​// Rest of states...​

	​ 	}

	​ 	​val​ nyTax = taxForState(_: Double, 'NY)

	​ 	​val​ paTax = taxForState(_: Double, 'PA)

					This correctly calculates taxes for the different states:
					
				
	​ 	scala>​ nyTax(100)​

	​ 	res0: Double = 6.45

	​ 	

	​ 	scala>​ paTax(100)​

	​ 	res1: Double = 4.5

In Clojure

					 Partially applying functions
 in Clojure is similar to how it’s done in Scala, but there is one twist. To keep its syntax simple, Clojure
 only allows for the arguments that the function is being partially applied to, to come at the start of the
 argument list. For example, we could still write ​add-forty-two​, much as we did in Scala, as
 this code shows:
				
	ClojureExamples/src/mbfpp/functional/fb/partial_examples.clj
	​ 	(​defn​ add-two-ints [int-one int-two] (​+​ int-one int-two))

	​ 	

	​ 	(​def​ add-fourty-two (​partial​ add-two-ints 42))

	​ 	=> (add-forty-two 100)

	​ 	142

					But to write ​ny-tax​ and ​pa-tax​, we’d have to swap the arguments to
 ​tax-for-state​ around, like this:
				
	ClojureExamples/src/mbfpp/functional/fb/partial_examples.clj
	​ 	(​defn​ tax-for-state [state amount]

	​ 	 (​cond​

	​ 	 (​=​ :ny state) (​*​ amount 0.0645)

	​ 	 (​=​ :pa state) (​*​ amount 0.045)))

	​ 	

	​ 	(​def​ ny-tax (​partial​ tax-for-state :ny))

	​ 	(​def​ pa-tax (​partial​ tax-for-state :pa))

	​ 	=> (ny-tax 100)

	​ 	6.45

	​ 	=> (pa-tax 100)

	​ 	4.5

				Partially applied functions are very simple to use, but I often find it a bit tricky to know when to use them. I
 usually catch myself calling the same function over and over again, with a subset of the arguments remaining the
 same. Then a light bulb goes off and I realize I can clean that up a bit by using a partially applied function.

			
Discussion

			In this section, we’ve covered some of the more general ways to use Function Builder, but these are by no means the
 only ways. The Clojure and Scala libraries contain many other examples, since this is an extremely common pattern in the
 functional world.
		

			While most of the Clojure and Scala examples were very similar, the examples in ​Map Key Selector​, differed drastically. In particular, the Scala version was
 much more verbose. In part, this is because Clojure has an extremely handy ​get-in​ function that
 does almost exactly what we need; however, a large part of the difference was caused by Scala’s type system.
		

			Since Scala is statically typed, we had to specify types for the contents of the maps that we dealt with. Internal
 nodes were themselves ​Map​s, while leaf nodes could be anything at all. This led to the slight bit of
 type system gymnastics we had to do in the Scala version.
		

			
			This is a general trade-off between dynamic and static typing. Even with a powerful type system like Scala’s, there’s
 still a cost to static typing in terms of the complexity it can add and in just understanding how the type system
 works. The trade-off is that we can catch many errors at compile time that would otherwise become runtime errors with
 a dynamic type system.
		
Related Patterns

Pattern 1, ​Replacing Functional Interface​

Pattern 9, ​Replacing Decorator​

	Pattern 17	Memoization

Intent

			To cache the results of a pure function call to avoid performing the same computation more than once
		
Overview

			
			Since pure functions always return the same value for given arguments, it’s possible to replace a pure function call
 with cached results.
		

			We can do this manually by writing a function that keeps track of its previous arguments. When it’s called, it first
 checks its cache to see if it has already been called with the passed-in arguments. If it has, it returns the cached
 value. Otherwise, it performs the computation.
		

			Some languages provide first-class support for Memoization using higher-order functions. Clojure, for instance, has a
 function called ​memoize​ that takes a function and returns a new one that will cache results. Scala
 doesn’t have a built-in memoization function, so we’ll use a simple manual implementation.
		
Sample Code: Simple Caching

			One use for Memoization is as a simple cache for expensive or time-consuming functions, especially when the function
 is called multiple times with the same argument. In this example, we’ll simulate the
 			time-consuming operation by
 having it sleep the thread.
		
In Scala

				
				Let’s get started with a look at our simulated expensive function call. As an example, we’re using a lookup by ID
 from some (presumably slow) datastore. To fake it out here, we sleep the thread for a second before returning a
 value from a static map. We also print the ID we’re looking up to the console to demonstrate when the function is
 being executed:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/memoization/Examples.scala
	​ 	​def​ expensiveLookup(id: ​Int​) = {

	​ 	 Thread.sleep(1000)

	​ 	 println(s​"Doing expensive lookup for $id"​)

	​ 	 Map(42 -> ​"foo"​, 12 -> ​"bar"​, 1 -> ​"baz"​).get(id)

	​ 	}

				Just as we’d expect, the lengthy function is executed each time we call it, as we can see from the console output:
			
	​ 	scala>​ expensiveLookup(42)​

	​ 	Doing expensive lookup for 42

	​ 	res0: Option[String] = Some(foo)

	​ 	

	​ 	scala>​ expensiveLookup(42)​

	​ 	Doing expensive lookup for 42

	​ 	res1: Option[String] = Some(foo)

				Now let’s take a look at a simple memoized version of
 ​expensiveLookup​
 . To create it we’ll use

 ​memoizeExpensiveLookup​
 , which initializes a cache and returns a new function that wraps calls to

 ​memoizeExpensiveFunction​
 .
			

				The new function first checks its cache to see if it has results from a previous function call. If it does, it
 returns the cached results. Otherwise it calls the expensive lookup and caches the results before returning them.
			

				Finally, we call
 ​memoizeExpensiveFunction​
 and store a reference to the function it returns into a
 new ​var​. The full solution is in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/memoization/Examples.scala
	​ 	​def​ memoizeExpensiveLookup() = {

	​ 	 ​var​ cache = Map[​Int​, ​Option​[​String​]]()

	​ 	 (id: ​Int​) =>

	​ 	 cache.get(id) ​match​ {

	​ 	 ​case​ Some(result: ​Option​[​String​]) => result

	​ 	 ​case​ None => {

	​ 	 ​val​ result = expensiveLookup(id)

	​ 	 cache += id -> result

	​ 	 result

	​ 	 }

	​ 	 }

	​ 	}

	​ 	​val​ memoizedExpensiveLookup = memoizeExpensiveLookup

				As we can see from the following REPL output, the expensive function is only called the first time for a given
 argument. After that, it returns the cached copy:
			
	​ 	scala>​ memoizedExpensiveLookup(42)​

	​ 	Doing expensive lookup for 42

	​ 	res2: Option[String] = Some(foo)

	​ 	

	​ 	scala>​ memoizedExpensiveLookup(42)​

	​ 	res3: Option[String] = Some(foo)

				One quirk with this example is in the last line:	
			
	​ 	val memoizedExpensiveLookup = memoizeExpensiveLookup

				Here, we’re having
 ​memoizeExpensiveLookup​
 return a new function, and we’re storing a reference to it.
 This allows us to wrap the cache up in a closure so that only the function has a reference to it. If we needed
 another cache, we could create it like so:
			
	​ 	scala>​ val memoizedExpensiveLookup2 = memoizeExpensiveLookup​

	​ 	memoizedExpensiveLookup2: Int => Option[String] = <function1>

	​ 	

	​ 	scala>​ memoizedExpensiveLookup2(42)​

	​ 	Doing expensive lookup for 42

	​ 	res4: Option[String] = Some(foo)

				Our Scala solution is a bit clumsy since we’ve done it manually for a single, specific case, but it serves as a
 good model for how memoization works behind the scenes. Let’s take a look at how we can use Clojure’s
 ​memoize​ function to solve the same problem.

			
In Clojure

				
				In Clojure, we’ll start with a similar simulated expensive function. However, we won’t manually memoize it.
 Instead, we’ll use Clojure’s ​memoize​ function to automatically return a memoized version of the
 function, as this code shows:
			
	ClojureExamples/src/mbfpp/functional/memoization/examples.clj
	​ 	(​defn​ expensive-lookup [id]

	​ 	 (Thread/sleep 1000)

	​ 	 (​println​ (​str​ ​"Lookup for "​ id))

	​ 	 ({42 ​"foo"​ 12 ​"bar"​ 1 ​"baz"​} id))

	​ 	

	​ 	(​def​ memoized-expensive-lookup

	​ 	 (​memoize​ expensive-lookup))

				As we can see from the following REPL output, it behaves similarly to the Scala version and only performs the
 expensive operation once:
			
	​ 	=> (memoized-expensive-lookup 42)

	​ 	Lookup for 42

	​ 	"foo"

	​ 	=> (memoized-expensive-lookup 42)

	​ 	"foo"

				Behind the scenes, the ​memoize​ function creates a new function that’s much like the manual
 example we saw in Scala that uses a map as a cache.
			
Discussion

			
			
			One use of Memoization we didn’t cover here is in solving dynamic programming problems, which is one of its original uses.
 Dynamic programming problems are problems that can be broken down into simpler subproblems recursively. A classic,
 easy-to-understand example is computing a Fibonacci number.
		

			
			The formula for calculating the ​n​th Fibonacci number adds together the previous two numbers in the sequence. A
 simple Clojure function to calculate a Fibonacci number using this definition follows:
		
	ClojureExamples/src/mbfpp/functional/memoization/examples.clj
	​ 	(​def​ slow-fib

	​ 	 (​fn​ [n]

	​ 	 (​cond​

	​ 	 (​<​​=​ n 0) 0

	​ 	 (​<​ n 2) 1

	​ 	 :else (​+​ (slow-fib (​-​ n 1)) (slow-fib (​-​ n 2))))))

			The nice thing about this function is that it mirrors the mathematical definition. However, it needs to recursively
 compute its subparts repeatedly, so its performance is terrible for even moderately large numbers. If we memoize the
 function, as we do in the following code, then the subparts are cached and the function can perform reasonably well:
		
	ClojureExamples/src/mbfpp/functional/memoization/examples.clj
	​ 	(​def​ mem-fib

	​ 	 (​memoize​

	​ 	 (​fn​ [n]

	​ 	 (​cond​

	​ 	 (​<​​=​ n 0) 0

	​ 	 (​<​ n 2) 1

	​ 	 :else (​+​ (mem-fib (​-​ n 1)) (mem-fib (​-​ n 2)))))))

			Running the two functions shows the drastic difference in performance:
		
	​ 	=> (time (slow-fib 40))

	​ 	"Elapsed time: 6689.204 msecs"

	​ 	102334155

	​ 	=> (time (mem-fib 40))

	​ 	"Elapsed time: 0.402 msecs"

	​ 	102334155

			Dynamic programming problems are rich and fascinating; however, they only pop up in a limited number of domains. I’ve
 generally seen memoization used as a simple, convenient cache for expensive or long-lived operations rather than as a
 dynamic programming tool.
		

	Pattern 18	Lazy Sequence

Intent

			To create a sequence whose members are computed only when needed—this allows us to easily stream results from a
 computation and to work with infinitely long sequences
		
Overview

			 We often deal with elements of a sequence one at
 a time. Since this is so, we generally don’t need to have the entire sequence realized before we start processing it.
 For instance, we may wish to stream lines of a file off of disk and process them without ever holding the entire file
 in memory. We could use Pattern 12, ​Tail Recursion​, to seek through the file, but Lazy
 Sequence provides a much cleaner abstraction for this sort of streaming computation.
		

			Lazy Sequence does so by only creating an element in a sequence when it’s asked for. In the file-reading example, the
 lines are only read off of disk when asked for, and they can be garbage-collected when we’re done processing them, though
 we need to take a bit of care to ensure that they are.
		

			When we create an element, we call that
 ​ realizing​

 the element. Once realized, elements are put
 into a cache using Pattern 17, ​Memoization​, which means we only need to realize each element
 in the sequence once. This is demonstrated in Figure 13, ​Lazy Sequence​.
		
[image: images/LazySeqOne.png]

Figure 13. Lazy Sequence. An instance of Lazy Sequence before and after the third element has been realized.

			Lazy Sequence also lets us create an extremely useful abstraction: an infinitely long sequence.
			This may not seem useful at first blush, but since the entire sequence isn’t realized at once, we can work with the beginning of the
 sequence and defer creation of the rest. This allows us to create, say, an infinitely long string of pseudorandom
 numbers of which we realize only a portion.

		
Sample Code: Built-In Lazy Sequences

			Let’s start with a couple of simple examples from the built-in library. In the first example, we’ll show how to work
 with an infinitely long list of integers. In the second, we’ll show how to use Lazy Sequence to generate a series of
 random test data.
		

			Let’s get started with a dive into the Scala code.
		
In Scala

				
				
				
				Scala’s has built-in support for Lazy Sequence in its Stream library. Perhaps the simplest thing we can do with a
 lazy sequence is to create an infinite sequence of all integers. Scala’s Stream library has a method that does
 just that, called
 ​from​
 . According to the ScalaDoc, it will “create an
 infinite stream starting at start and incrementing by step.”
			

				Here, we use
 ​from​
 to create a sequence of all integers, starting at 0:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
	​ 	​val​ integers = Stream.from(0)

				
				This may seem a strange thing to do, but we can use another method,
 ​take​
 , to work with the first
 few numbers in the sequence. Here we’re using it to take the first five integers from our infinitely long list and
 then print them:
			
	​ 	scala>​ val someints = integers take 5​

	​ 	someints: scala.collection.immutable.Stream[Int] = Stream(0, ?)

	​ 	

	​ 	scala>​ someints foreach println​

	​ 	0

	​ 	1

	​ 	2

	​ 	3

	​ 	4

				
				Let’s take a look at a slightly fancier instance of Lazy Sequence that uses another method in Scala’s Sequence
 library. The
 ​continually​
 method creates an infinitely long sequence by repeatedly evaluating the
 expression passed into here.
			

				Let’s use this to create an infinitely long sequence of pseudorandom numbers. To do so, we create a new random
 number generator in the val ​generate​, and then we pass ​generate.nextInt​ in the

 ​continually​
 method, as illustrated in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
	​ 	​val​ generate = ​new​ Random()

	​ 	​val​ randoms = Stream.continually(generate.nextInt)

				We can now take a few random numbers from our infinite list:	
			
	​ 	scala>​ val aFewRandoms = randoms take 5​

	​ 	aFewRandoms: scala.collection.immutable.Stream[Int] = Stream(326862669, ?)

	​ 	

	​ 	scala>​ aFewRandoms foreach println​

	​ 	326862669

	​ 	-473217479

	​ 	-1619928859

	​ 	785666088

	​ 	1642217833

				If we want a few more random numbers, we can use
 ​take​
 again with a larger number:
			
	​ 	scala>​ val aFewMoreRandoms = randoms take 6​

	​ 	aFewMoreRandoms: scala.collection.immutable.Stream[Int] = Stream(326862669, ?)

	​ 	

	​ 	scala>​ aFewMoreRandoms foreach println​

	​ 	326862669

	​ 	-473217479

	​ 	-1619928859

	​ 	785666088

	​ 	1642217833

	​ 	1819425161

				Notice how the first five numbers here are repeated. This is because the Stream library relies on Pattern 17, ​Memoization​, to cache copies it’s already seen. The first five values were realized
 when we originally printed ​aFewRandoms​, the sixth only once we printed
 ​aFewMoreRandoms​.

			
In Clojure

				
				
				Lazy Sequence is built into Clojure as well, but it’s not focused in a single library. Rather, most of Clojure’s
 core sequence manipulation functions work in a lazy manner. Clojure’s normal ​range​ function,
 for instance, works with Lazy Sequence. The following code generates a list of all the positive integers that fit
 into an ​Integer​:
			
	ClojureExamples/src/mbfpp/functional/ls/examples.clj
	​ 	(​def​ integers (​range​ Integer/MAX_VALUE))

				
				We can then use the ​take​ function to take a few integers from the start of our long list:	
			
	​ 	=> (take 5 integers)

	​ 	(0 1 2 3 4)

				
				To generate our list of random integers, we can use Clojure’s ​repeatedly​ function. This takes a
 function of one argument and repeats it an infinite number of times, as the following code shows:
			
	ClojureExamples/src/mbfpp/functional/ls/examples.clj
	​ 	(​def​ randoms (​repeatedly​ (​fn​ [] (​rand-int​ Integer/MAX_VALUE))))

				To take a few, we can use ​take​ again:
			
	​ 	=> (take 5 randoms)

	​ 	(2147483647 2147483647 2147483647 2147483647 2147483647)

				If we want some more, we use ​take​ with a bigger argument. Again, the first five random integers won’t be
 recomputed, they’ll be pulled from a memoized cache:
			
	​ 	=> (take 6 randoms)

	​ 	(2147483647 2147483647 2147483647 2147483647 2147483647 2147483647)

			Scala and Clojure’s treatments of Lazy Sequence have a few key differences. Most of Clojure’s
 sequence-handling functions are lazy, but they recognize the sequence in chunks of thirty-two.
 			If we take a single number from a lazy
 sequence of integers, Clojure will recognize the first thirty-two integers even though we only asked for one.
		

			We can see this if we add a side effect into the lazy sequence generation. Here, we can see that
 ​take​ recognizes thirty-two integers, even though it only returns the first one:

		
	​ 	=> (defn print-num [num] (print (str num " ")))

	​ 	#'mbfpp.functional.ls.examples/print-num

	​ 	=> (take 1 (map print-num (range 100)))

	​ 	(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

	​ 	 19 20 21 22 23 24 25 26 27 28 29 30 31 nil)

			
			
			Another, more subtle difference comes into play when using Lazy Sequence in the REPL. When the Scala REPL comes
 across an instance of Lazy Sequence in the form of a Stream, it does not attempt to realize the whole thing.
		

			This is easiest to see when we’ve got an obvious side effect. In the following Scala code, we use

 ​continually​
 to print ​"hello"​ to the console and store a reference to the produced
 ​Stream​ in ​printHellos​. As we can see, the first ​"hello"​ is printed when
 we call continually, which indicates that the method realizes the first element in the stream:
		
	​ 	scala>​ val printHellos = Stream.continually(println("hello"))​

	​ 	hello

	​ 	printHellos: scala.collection.immutable.Stream[Unit] = Stream((), ?)

			If we now call
 ​take​
 on ​printHellos​, we don’t get any further ​"hello"​s
 printed to the console, which means the REPL isn’t trying to realize the returned ​Stream​.
		
	​ 	scala>​ printHellos take 5​

	​ 	res0: scala.collection.immutable.Stream[Unit] = Stream((), ?)

			If we want to force the remainder of our ​"hello"​s to be realized, we can use any method that iterates over
 ​Stream​, or we can just use the
 ​force​
 :
		
	​ 	scala>​ printHellos take 5 force​

	​ 	hello

	​ 	hello

	​ 	hello

	​ 	hello

	​ 	res1: scala.collection.immutable.Stream[Unit] = Stream((), (), (), (), ())

			 This isn’t something you generally need to do, but it’s important to understand when the elements of Lazy Sequence
 are realized.
		

			
			
			In contrast, Clojure’s REPL will attempt to realize an instance of Lazy Sequence; however, defining an instance of Lazy
 Sequence may not realize the first element! Here we define a ​print-hellos​ much like the Scala
 version. Notice how ​"hello"​ isn’t printed to the console.
		
	​ 	(def print-hellos (repeatedly (fn [] (println "hello"))))

			However, if we ​take​ five elements, the REPL evaluating the resulting instance of Lazy Sequence will
 force it to print to the console.
		
	​ 	=> (take 5 print-hellos)

	​ 	(hello

	​ 	hello

	​ 	nil hello

	​ 	nil hello

	​ 	nil hello

	​ 	nil nil)

			This reflects the difference in how Scala and Clojure’s REPL evaluate Lazy Sequence. It also highlights something to
 watch out for when using Lazy Sequence. Since you can create infinite sequences, we need to ensure that we don’t
 attempt to realize an entire infinite sequence at once. For instance, if we had forgotten to use
 ​take​ in the Clojure example and had just evaluated ​(repeatedly (fn [] (println "hello")​,
 we would have attempted to realize an infinitely long sequence of printing ​"hello"​!

		
Sample Code: Paged Response

			In our first example, we looked at a couple of higher-order functions that let us create an instance of Lazy Sequence.
 Now let’s take a look at how we’d make one from scratch.
		

			The example we’ll use here is a lazy sequence that lets us go through a set of paged data. In our simple example,
 we’ll simulate the paged data with a local function call, though in a real program this would probably come from an
 external source such as a web service. Let’s get started with a look at the Scala code.
		
In Scala

				
				
				Our Scala solution has two parts: the sequence itself, ​pagedSequence​, and a
 method to generate some sample paged data,
 ​getPage​
 .
			

				
				
				We need to define the solution to our problem recursively, much as we would in Pattern 12, ​Tail Recursion​. However, instead of passing our sequence through the call stack, we
 add to it in each recursive call using the ​#::​ operator.
			

				The following code is the full solution to our paged data problem:	
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
	​ 	​def​ pagedSequence(pageNum: ​Int​): Stream[​String​] =

	​ 	 getPage(pageNum) ​match​ {

	​ 	 ​case​ Some(page: ​String​) => page #:: pagedSequence(pageNum + 1)

	​ 	 ​case​ None => Stream.Empty

	​ 	 }

	​ 	

	​ 	​def​ getPage(page: ​Int​) =

	​ 	 page ​match​ {

	​ 	 ​case​ 1 => Some(​"Page1"​)

	​ 	 ​case​ 2 => Some(​"Page2"​)

	​ 	 ​case​ 3 => Some(​"Page3"​)

	​ 	 ​case​ _ => None

	​ 	 }

				Let’s dig into ​pagedSequence​ a bit more, starting with the ​#::​ operator,
 which allows us to prepend a value to a ​Stream​. Here we use it to append the strings
 ​"foo"​ and ​"bar"​ to a new ​Stream​:

			
	​ 	scala>​ val aStream = "foo" ​​#:: "bar" #:: Stream[String]()​

	​ 	aStream: scala.collection.immutable.Stream[String] = Stream(foo, ?)

				We can get at the head and tail of our ​Stream​, just as we could with other sequences:
			
	​ 	scala>​ aStream.head​

	​ 	res0: String = foo

	​ 	

	​ 	scala>​ aStream.tail​

	​ 	res1: scala.collection.immutable.Stream[String] = Stream(bar, ?)

				Let’s take a closer look at the heart of our solution in the following code snippet:
			
	​ 	getPage(pageNum) ​match​ {

	​ 	 ​case​ Some(page: ​String​) => page #:: pagedSequence(pageNum + 1)

	​ 	 ​case​ None => Stream.Empty

	​ 	}

				 We call
 ​getPage​
 and match on the result. If we match a ​Some​, then we know that we
 got back a valid page. We prepend it to our sequence and then recursively call the method generating the
 sequence, passing in the next page we’re trying to fetch.
			

				If we get a ​None​, we know we’ve gone through all our pages, and we append the empty stream,
 ​Stream.Empty​, to our lazy sequence. This signals the end of the sequence.
			

				Now we can work with ​pagedSequence​ just like we worked with some of the sequences we saw in
 the previous example. Here we take two pages from the sequence, starting at the first element:
			
	​ 	scala>​ pagedSequence(1) take 2 force​

	​ 	res2: scala.collection.immutable.Stream[String] = Stream(Page1, Page2)

				Here we force the whole thing to be realized, which is safe since this sequence, while lazy, isn’t infinite:
			
	​ 	scala>​ pagedSequence(1) force​

	​ 	res3: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

				
				
				That wraps up our Scala paged sequence example. Now let’s take a look at how to do it in Clojure.
			
In Clojure

				
				
				
				In Clojure, we can construct an instance of Lazy Sequence from scratch using ​lazy-sequence​
 and add to it with ​cons​, as shown in the following snippet:

			
	​ 	=> (cons 1 (lazy-seq [2]))

	​ 	(1 2)

				We can then use recursive function calls to build up useful sequences. To write our paged sequence example in
 Clojure, we first define a ​get-page​ function to mock up our paged data. The core of our
 solution is in the ​paged-sequence​ function.
			

				The ​paged-sequence​ function is called with the start page, and it recursively builds up a lazy
 sequence by fetching that page, appending it to the sequence, and then calling itself with the number of the next
 page. The entire solution follows:
			
	ClojureExamples/src/mbfpp/functional/ls/examples.clj
	​ 	(​defn​ get-page [page-num]

	​ 	 (​cond​

	​ 	 (​=​ page-num 1) ​"Page1"​

	​ 	 (​=​ page-num 2) ​"Page2"​

	​ 	 (​=​ page-num 3) ​"Page3"​

	​ 	 :default nil))

	​ 	

	​ 	(​defn​ paged-sequence [page-num]

	​ 	 (​let​ [page (get-page page-num)]

	​ 	 (​when​ page

	​ 	 (​cons​ page (​lazy-seq​ (paged-sequence (​inc​ page-num)))))))

				Now we can work with our lazy sequence like any other. If we call ​paged-sequence​ in the REPL,
 we get the entire sequence:
			
	​ 	=> (paged-sequence 1)

	​ 	("Page1" "Page2" "Page3")

				If we use ​take​, we can get a portion of it:	
			
	​ 	=> (take 2 (paged-sequence 1))

	​ 	("Page1" "Page2")

				This can give us a very clean way of working with streaming data.
			
Discussion

			One thing to watch out for when using lazy sequences is accidentally holding on to the head of the sequence when you
 don’t mean to, as Figure 14, ​Holding on to the Head​ demonstrates.
		
[image: images/HoldingHead.png]

Figure 14. Holding on to the Head. Holding on to the head of a lazy sequence will keep the entire sequence in memory.

			
			In Scala, it’s easy to accidentally do this simply by assigning our lazy sequence into a ​val​, as we
 do in the following code:
		
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
	​ 	​val​ holdsHead = {

	​ 	 ​def​ pagedSequence(pageNum: ​Int​): Stream[​String​] =

	​ 	 getPage(pageNum) ​match​ {

	​ 	 ​case​ Some(page: ​String​) => {

	​ 	 println(​"Realizing "​ + page)

	​ 	 page #:: pagedSequence(pageNum + 1)

	​ 	 }

	​ 	 ​case​ None => Stream.Empty

	​ 	 }

	​ 	 pagedSequence(1)

	​ 	}

			If we try to force the sequence more than once, we can see that the second time uses the cached copy, as the following
 REPL output demonstrates:
		
	​ 	scala>​ holdsHead force​

	​ 	Realizing Page1

	​ 	hello

	​ 	Realizing Page2

	​ 	Realizing Page3

	​ 	res0: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

	​ 	scala>​ holdsHead force​

	​ 	res1: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

			If we don’t want to hold on to the head of the sequence, we can use ​def​ instead of val, as we do in
 the following code:
		
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
	​ 	​def​ doesntHoldHead = {

	​ 	 ​def​ pagedSequence(pageNum: ​Int​): Stream[​String​] =

	​ 	 getPage(pageNum) ​match​ {

	​ 	 ​case​ Some(page: ​String​) => {

	​ 	 println(​"Realizing "​ + page)

	​ 	 page #:: pagedSequence(pageNum + 1)

	​ 	 }

	​ 	 ​case​ None => Stream.Empty

	​ 	 }

	​ 	 pagedSequence(1)

	​ 	}

			This forces the sequence to be realized fresh each time it’s forced and does not hold onto the head:
		
	​ 	scala>​ doesntHoldHead force​

	​ 	Realizing Page1

	​ 	Realizing Page2

	​ 	Realizing Page3

	​ 	res2: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

	​ 	

	​ 	scala>​ doesntHoldHead force​

	​ 	Realizing Page1

	​ 	Realizing Page2

	​ 	Realizing Page3

	​ 	res3: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

			Holding on to the head of a sequence by accident is really no more mysterious than holding on to a reference to any
 object when you don’t mean to, but it can be surprising if you’re not watching out for it.

		

	Pattern 19	Focused Mutability

Intent

			To use mutable data structures in small, performance-sensitive parts of a program hidden inside of a function while
 still using immutable data throughout the majority
		
Overview

			
			
			Programming with performant, immutable data on machines that are built out of
			fundamentally mutable components, like main memory and disk, is almost magical.
			A whole host of technology has contributed to making it possible, especially
 on the JVM. Growing processor power and memory sizes make it increasingly unnecessary to squeeze every last drop of
 performance out of a machine.

		

			Small, transient objects are cheap to create and to destroy, thanks to the JVM’s excellent generational garbage
 collector. Both Scala and Clojure use extremely clever data structures that allow immutable collections to share
 state. This obviates the need to copy the entire collection when one piece of it is changed, which means
 collections have a reasonable memory footprint and can be modified fairly quickly.
		

			Still, using immutable data has some performance costs. Even the clever data structures Clojure and Scala use
 may take up more memory than their mutable counterparts, and they perform somewhat worse. The benefits of immutable
 data, which greatly ease not only concurrent programming but also ease programming large systems in general, often outweigh the
 costs. However, sometimes you really do need that extra performance, usually in a tight loop in a
 part of the program that is frequently called.
		

			Focused Mutability shows how to use mutable data in these situations by creating functions that take in some immutable data
 structures, operate on mutable data inside of the function, and then return another immutable data structure. This
 lets us get more performance without letting mutability muck up our programs, since we’re confining it inside a
 function, where nothing else can see it.
		

			
			One consideration we need to make when using Focused Mutability is what the cost of translating a mutable data
 structure into an immutable one is. Clojure provides first-class support here with a feature called transients.
 Transients let us take an immutable data structure, convert it into a mutable one in constant time, and then convert it
 back into an immutable one when we’re done with it, also in constant time.
		

			In Scala, it’s a bit trickier, since there’s no first-class support for something like Clojure’s transients. We have
 to use the mutable versions of Scala’s data structures and then convert them into immutable ones using conversion methods on
 the collections library. Thankfully, Scala can do this conversion quite efficiently.

		
Code Sample: Adding to Indexed Sequence

			Let’s start off with a look at a very simple sample, adding a range of numbers to an indexed sequence. This isn’t a
 particularly useful thing to do in practice, but it’s a very simple example, which makes it easy to do some basic
 performance analysis.
		

			For this example, we’ll compare the time it takes to add a million elements to a mutable indexed sequence and then
 translate it into an immutable one with the amount of time it takes to build up the immutable sequence directly. This
 involves some microbenchmarking, so we’ll do several trial runs of each test to try to spot outliers caused by garbage
 collection, caching issues, and so on.

This certainly isn’t a perfect way to perform a microbenchmark, but it’s good enough
 so that we can get a feel for which solutions are faster and by how much.
		
In Scala

				
				In Scala, we’ll compare the results of adding elements to an immutable ​Vector​ directly to the results of adding
 them to a mutable ​ArrayBuffer​ and then converting it into an immutable ​Vector​. In
 addition to our test functions, which add elements to a ​Vector​ and an ​ArrayBuffer​,
 we’ll need a bit of infrastructure code to help out with timing and test runs.
			

				Let’s take a look at the immutable piece first. The following code defines a function,
 ​testImmutable​
 ,
 which appends ​count​ elements to an immutable ​Vector​ and updates a reference to
 point at the new vector each time a new element is appended:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​def​ testImmutable(count: ​Int​): IndexedSeq[​Int​] = {

	​ 	 ​var​ v = Vector[​Int​]()

	​ 	 ​for​ (c <- Range(0, count))

	​ 	 v = v :+ c

	​ 	 v

	​ 	}

				Now let’s take a look at
 ​testMutable​
 , which is similar except that it appends elements to a
 mutable ​ArrayBuffer​, which is a bit like a Java ​ArrayList​. The code is here:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​def​ testMutable(count: ​Int​): IndexedSeq[​Int​] = {

	​ 	 ​val​ s = ArrayBuffer[​Int​](count)

	​ 	 ​for​ (c <- Range(0, count))

	​ 	 s.append(c)

	​ 	 s.toIndexedSeq

	​ 	}

				
				Now we just need a way of getting timing information from runs of our test functions. We’ll time runs by recording
 system time before the test run and after. Instead of embedding this in the test functions
 themselves, we’ll create a higher-order function that can do the timing,
 ​time​
 , and another one,

 ​timeRuns​
 , that will run multiple tests at a time. Here is the code for both:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​def​ time[R](block: => R): R = {

	​ 	 ​val​ start = System.nanoTime

	​ 	 ​val​ result = block

	​ 	 ​val​ end = System.nanoTime

	​ 	 ​val​ elapsedTimeMs = (end - start) * 0.000001

	​ 	 println(​"Elapsed time: %.3f msecs"​.format(elapsedTimeMs))

	​ 	 result

	​ 	}

	​ 	

	​ 	​def​ timeRuns[R](block: => R, count: ​Int​) =

	​ 	 ​for​ (_ <- Range(0, count)) time { block }

				
				With the pieces in place, we can run some tests. Let’s try five test runs with a ​count​ of one
 million against our immutable version:
			
	​ 	scala>​ val oneMillion = 1000000​

	​ 	scala>​ timeRuns(testImmutable(oneMillion), 5)​

	​ 	Elapsed time: 127.499 msecs

	​ 	Elapsed time: 127.479 msecs

	​ 	Elapsed time: 130.501 msecs

	​ 	Elapsed time: 142.875 msecs

	​ 	Elapsed time: 123.623 msecs

				As we can see, the times range from around 123 milliseconds to about 142 milliseconds. Now let’s give it a shot
 with our mutable version, which only converts to an immutable data structure when modifications are done:
			
	​ 	scala>​ timeRuns(testMutable(oneMillion), 5)​

	​ 	Elapsed time: 98.339 msecs

	​ 	Elapsed time: 105.240 msecs

	​ 	Elapsed time: 88.800 msecs

	​ 	Elapsed time: 65.997 msecs

	​ 	Elapsed time: 54.918 msecs

				Here, the times range from around 54 milliseconds to around 105 milliseconds. Comparing the shortest run from our
 immutable version, 123 milliseconds, with the shortest run from our mutable version, 54 milliseconds, yields about
 a 230 percent improvement. Comparing the longest runs, 142 milliseconds with 105 milliseconds, yields an
 improvement of about 140 percent.
			

				While your mileage may vary somewhat depending on your machine, on your JVM version, on your garbage collection tuning,
 and so forth, this basic microbenchmark suggests that the mutable version is generally faster than the immutable
 one, as we’d expect.
			
In Clojure

				
				Clojure has built-in support for Focused Mutability through a feature named transients. Transients allow us to
 magically transform an immutable data structure into a mutable one. To use it, the immutable data structure is
 passed into the ​transient!​ form. For example, this would get us a transient, mutable vector, ​(def t
 (transient []))​.

			

				As the name suggests, transients are supposed to be, well, transient, but in a very different way than the
 transient keyword in Java means. Transients in Clojure are transient in the sense that you use them briefly
 inside a function and then transform them back into an immutable data structure before passing them around.
			

				Transients can be appended to with a special version of ​conj​ called ​conj!​. Using
 an exclamation point for operations on mutable data is an old Lisp convention meant to convey that you’re about
 to do something exciting and dangerous!

			

				Let’s take a look at our basic Focused Mutability example, which has been rewritten to use Clojure’s transients.
 First off, we need our mutable function. In Clojure, we’ll build up our sequence of numbers with a recursive
 function that passes a vector through the call chain and ​conj​es a single number to the vector in each
 call. The code is here:
			
	ClojureExamples/src/mbfpp/functional/fm/examples.clj
	​ 	(​defn​ test-immutable [​count​]

	​ 	 (​loop​ [i 0 s []]

	​ 	 (​if​ (​<​ i ​count​)

	​ 	 (​recur​ (​inc​ i) (​conj​ s i))

	​ 	 s)))

				 Our mutable version looks almost identical; the only difference is
 that we create a transient vector using ​transient​ to be modified internal to the
 function. Then we convert it back to an immutable data structure with
 ​persistent!​ when done, as the code shows:
			
	ClojureExamples/src/mbfpp/functional/fm/examples.clj
	​ 	(​defn​ test-mutable [​count​]

	​ 	 (​loop​ [i 0 s (​transient​ [])]

	​ 	 (​if​ (​<​ i ​count​)

	​ 	 (​recur​ (​inc​ i) (​conj!​ s i))

	​ 	 (​persistent!​ s))))

				
				
				Finally, we need a way to time our examples. Clojure has a built-in ​time​ function that’s
 much like the one we wrote for Scala, but we still need a way of running multiple trials in one shot. The
 somewhat cryptic-looking macro here fits the bill. If Lisp macros aren’t in in your bag of tricks yet, we discuss
 them in Pattern 21, ​Domain-Specific Language​.
			
	ClojureExamples/src/mbfpp/functional/fm/examples.clj
	​ 	(​defmacro​ time-runs [​fn​ ​count​]

	​ 	 `(​dotimes​ [_# ~​count​]

	​ 	 (​time​ ~​fn​)))

				Now we can put our Clojure solution through its paces. First, here’s the immutable version:
			
	​ 	=> (time-runs (test-immutable one-million) 5)

	​ 	"Elapsed time: 112.03 msecs"

	​ 	"Elapsed time: 114.174 msecs"

	​ 	"Elapsed time: 117.223 msecs"

	​ 	"Elapsed time: 114.976 msecs"

	​ 	"Elapsed time: 300.29 msecs"

				Next, the mutable one:	
			
	​ 	=> (time-runs (test-mutable one-million) 5)

	​ 	"Elapsed time: 84.752 msecs"

	​ 	"Elapsed time: 73.398 msecs"

	​ 	"Elapsed time: 196.601 msecs"

	​ 	"Elapsed time: 70.859 msecs"

	​ 	"Elapsed time: 70.402 msecs"

				These times are fairly similar to the Scala times, which isn’t surprising since Scala’s immutable data structures
 and Clojure’s immutable data structures are based on the same set of techniques. Comparing the shortest and longest
 runs of both versions gives us a speedup of about 1.5 times for the mutable version, which isn’t too shabby.
			

				One other interesting thing to note about this example is that the two outliers, 300.29 ms for the immutable run
 and 196.601 ms for the mutable one, are both twice as slow as the fastest run for their respective
 solutions.
			

				A bit of digging into these examples with a profiling tool reveals that the culprit here is indeed a major garbage
 collection that ran during those samples and not the others. The effects of garbage collection on this example
 might be reduced with tuning, but that, alas, would be a book in itself!

			
Code Sample: Event Stream Manipulation

			Let’s take a look at an example with a bit more weight. Here, we’ll process a stream of events that represent
 purchases. Each event contains a store number, a customer number, and an item number. Our processing will be
 straightforward; we’ll organize the stream of events into a map keyed off of the store number
 			so that we can sort purchases by store.
		

			In addition to the processing code itself, we’ll need a simple way of generating test data. For that, we’ll use Pattern 18, ​Lazy Sequence​, to generate an infinitely long sequence of test purchases, from which
 we’ll take as many as we need. Let’s take a look!
		
In Scala

				 Our Scala solution starts with a
 ​Purchase​ case class to hold on to our purchases. We’ll also need a sequence of test purchases, as
 well as the immutable and mutable versions of our test functions. In both cases, we’ll go through our test
 purchases in a ​for​ comprehension, pull out the store number from the purchase, and add it to a list of
 other purchases from that store, which we’ll then put into a map keyed off of by store number.
			

				For timing, we’ll reuse the same code from the above example. Let’s start with the ​Purchase​ class,
 a straightforward case class:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​case​ ​class​ Purchase(storeNumber: ​Int​, customerNumber: ​Int​, itemNumber: ​Int​)

				
				Generating our test data can be done with an infinitely long lazy sequence, from which we’ll take as many
 samples as we need. It’s okay if you don’t understand the details here; they can be found in Pattern 18, ​Lazy Sequence​. The upshot for our current example is that we can easily generate
 test data with
 ​infiniteTestPurchases​
 , from which we can use
 ​take​
 . Here’s the
 code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​val​ r = ​new​ Random

	​ 	​def​ makeTestPurchase = Purchase(r.nextInt(100), r.nextInt(1000), r.nextInt(500))

	​ 	​def​ infiniteTestPurchases: Stream[Purchase] =

	​ 	 makeTestPurchase #:: infiniteTestPurchases

				If we wanted to take, say, five items from our infinite sequence, we do so with
 ​take​
 , like this:
			
	​ 	scala>​ val fiveTestPurchases = infiniteTestPurchases.take(5)​

	​ 	fiveTestPurchases: ...

	​ 	

	​ 	scala>​ for(purchase <- fiveTestPurchases) println(purchase)​

	​ 	Purchase(71,704,442)

	​ 	Purchase(23,718,87)

	​ 	Purchase(39,736,3)

	​ 	Purchase(33,3,233)

	​ 	Purchase(86,985,152)

				Now that we’ve got a way of generating test data, let’s put it to good use in our immutable solution,

 ​immutableSequenceEventProcessing​
 . This function takes the number of test purchases, obtains the test purchases from our infinite sequence of test data, and adds
 them to a map indexed by store, as described earlier.
			

				To add a new purchase to the map, we pull the store number out of the purchase and attempt to get any existing
 purchases for that store from the map. If they exist, we add the new purchase to the existing list and create a new
 map with the updated key. The code to do so is here:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​def​ immutableSequenceEventProcessing(count: ​Int​) = {

	​ 	 ​val​ testPurchases = infiniteTestPurchases.take(count)

	​ 	 ​var​ mapOfPurchases = immutable.Map[​Int​, ​List​[Purchase]]()

	​ 	

	​ 	 ​for​ (purchase <- testPurchases)

	​ 	 mapOfPurchases.get(purchase.storeNumber) ​match​ {

	​ 	 ​case​ None => mapOfPurchases =

	​ 	 mapOfPurchases + (purchase.storeNumber -> ​List​(purchase))

	​ 	 ​case​ Some(existing: ​List​[Purchase]) => mapOfPurchases =

	​ 	 mapOfPurchases + (purchase.storeNumber -> (purchase :: existing))

	​ 	 }

	​ 	}

				Our mutable version is quite similar to the immutable version, except that we modify a mutable map and then turn
 it into an immutable one when done, as this code shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
	​ 	​def​ mutableSequenceEventProcessing(count: ​Int​) = {

	​ 	 ​val​ testPurchases = infiniteTestPurchases.take(count)

	​ 	 ​val​ mapOfPurchases = mutable.Map[​Int​, ​List​[Purchase]]()

	​ 	

	​ 	 ​for​ (purchase <- testPurchases)

	​ 	 mapOfPurchases.get(purchase.storeNumber) ​match​ {

	​ 	 ​case​ None => mapOfPurchases.put(purchase.storeNumber, ​List​(purchase))

	​ 	 ​case​ Some(existing: ​List​[Purchase]) =>

	​ 	 mapOfPurchases.put(purchase.storeNumber, (purchase :: existing))

	​ 	 }

	​ 	

	​ 	 mapOfPurchases.toMap

	​ 	}

				
				So how do these two solutions perform? Let’s take a look by running it over 500,000 samples, starting with the
 immutable version first:
			
	​ 	scala>​ timeRuns(immutableSequenceEventProcessing(fiveHundredThousand), 5)​

	​ 	Elapsed time: 647.948 msecs

	​ 	Elapsed time: 523.477 msecs

	​ 	Elapsed time: 551.897 msecs

	​ 	Elapsed time: 505.083 msecs

	​ 	Elapsed time: 538.568 msecs

				And now here’s the mutable one:
			
	​ 	scala>​ timeRuns(mutableSequenceEventProcessing(fiveHundredThousand), 5)​

	​ 	Elapsed time: 584.002 msecs

	​ 	Elapsed time: 283.623 msecs

	​ 	Elapsed time: 546.839 msecs

	​ 	Elapsed time: 286.259 msecs

	​ 	Elapsed time: 568.298 msecs

				As we can see, the mutable version is only a tiny bit faster. A bit of profiling reveals that this is largely
 because much of the time in the example was spent generating test data, and not manipulating the map.
			

				If we were reading the events off the filesystem or over the network, this overhead would be even greater, and
 the difference between the two solutions even smaller! On the other hand, even a tiny amount of time shaved off of
 each event processing may end up mattering if the data set is big enough.

			
In Clojure

				 Our Clojure solution is fairly similar
 to the Scala one. Just as in Scala, we’ll use Pattern 18, ​Lazy Sequence​, to generate an
 infinite sequence of test purchases from which we’ll take a finite number. We’ll examine two implementations of
 our test functions. The first uses a normal, immutable map, and the second a mutable,
 transient one.
			

				 Let’s get started with a
 look at the code that lets us generate test data. We can use a function named ​repeatedly​, which, as the
 name suggests, calls the function multiple times and uses the results to create a lazy sequence. Outside of that, we just need a function to create the test purchases themselves. Here’s the code for
 both:
			
	ClojureExamples/src/mbfpp/functional/fm/examples.clj
	​ 	(​defn​ make-test-purchase []

	​ 	 {:store-number (​rand-int​ 100)

	​ 	 :customer-number (​rand-int​ 100)

	​ 	 :item-number (​rand-int​ 500)})

	​ 	(​defn​ infinite-test-purchases []

	​ 	 (​repeatedly​ make-test-purchase))

				 Now we need our test
 functions. We’ll use ​reduce​ to turn a sequence of purchases into a map indexed by store number. Just as
 in the Scala example, we’ll use ​take​ to take a finite number of test purchases from our infinite sequence
 of them. Then we’ll reduce over that sequence, building up our map of purchases indexed by store number.

As before, we need to handle the case when we first see the store number, which we can do by passing in a default
 empty list to get. The code is here:
			
	ClojureExamples/src/mbfpp/functional/fm/examples.clj
	​ 	(​defn​ immutable-sequence-event-processing [​count​]

	​ 	 (​let​ [test-purchases (​take​ ​count​ (infinite-test-purchases))]

	​ 	 (​reduce​

	​ 	 (​fn​ [map-of-purchases {:keys [store-number] :as current-purchase}]

	​ 	 (​let​ [purchases-for-store (​get​ map-of-purchases store-number '())]

	​ 	 (​assoc​ map-of-purchases store-number

	​ 	 (​conj​ purchases-for-store current-purchase))))

	​ 	 {}

	​ 	 test-purchases)))

				
				Since Clojure has handy-dandy transients, the mutable solution looks very similar, save that we need to transform
 our map to and from a transient and that we need to use ​assoc!​ to add to it, as the code shows:
			
	ClojureExamples/src/mbfpp/functional/fm/examples.clj
	​ 	(​defn​ mutable-sequence-event-processing [​count​]

	​ 	 (​let​ [test-purchases (​take​ ​count​ (infinite-test-purchases))]

	​ 	 (​persistent!​ (​reduce​

	​ 	 (​fn​ [map-of-purchases {:keys [store-number] :as current-purchase}]

	​ 	 (​let​ [purchases-for-store (​get​ map-of-purchases store-number '())]

	​ 	 (​assoc!​ map-of-purchases store-number

	​ 	 (​conj​ purchases-for-store current-purchase))))

	​ 	 (​transient​ {})

	​ 	 test-purchases))))

				
				Now let’s give it a whirl, starting with the mutable version: 	
			
	​ 	=> (time-runs (mutable-sequence-event-processing five-hundred-thousand) 5)

	​ 	"Elapsed time: 445.841 msecs"

	​ 	"Elapsed time: 457.66 msecs"

	​ 	"Elapsed time: 452.743 msecs"

	​ 	"Elapsed time: 374.041 msecs"

	​ 	"Elapsed time: 403.498 msecs"

	​ 	nil

				Now on to the immutable one: 	
			
	​ 	=> (time-runs (immutable-sequence-event-processing five-hundred-thousand) 5)

	​ 	"Elapsed time: 481.547 msecs"

	​ 	"Elapsed time: 413.121 msecs"

	​ 	"Elapsed time: 460.379 msecs"

	​ 	"Elapsed time: 441.686 msecs"

	​ 	"Elapsed time: 445.772 msecs"

	​ 	nil

				As we can see, the differences are fairly minimal, but the mutable version is a bit faster.
				
			
Discussion

			Focused Mutability is an optimization pattern. It’s the sort of thing that the old advice to avoid premature
 optimization is all about. As we’ve seen from this chapter, Scala and Clojure’s immutable data structures perform very
 well—not much worse than their mutable counterparts! If you’re modifying several immutable data structures in one go
 and if you’re doing it for large amounts of data, you’re likely to see a significant improvement. However, immutable data
 structures should be the default—they’re usually plenty fast.
		

			Before using Focused Mutability or any small-scale performance optimization, it’s a good idea to profile your
 application and make sure you’re optimizing in the right place; otherwise, you might find that you’re spending time
 optimizing a section of code that is rarely called, which will have little effect on the overall performance of the program.

		

	Pattern 20	Customized Control Flow

Intent

To create focused, custom-control flow abstractions
Overview

			
			Using the right control flow abstraction for the job can help us write clearer code. For instance, Ruby includes an
 ​unless​ operator, which can be used to do something unless a conditional is true. Good Ruby code
 uses this operator over ​if​ and the ​not​ operator, since it’s clearer to read.
		

			No language has every useful control flow abstraction built in, though. Functional programming languages give us a way
 to create our own using higher-order functions. For instance, to create a control flow structure that executes a piece
 of code ​n​ times and prints out the average time for the runs, we can write a function that takes
 another function and invokes it ​n​ times.
		

			However, just using higher-order functions leaves us with a verbose syntax for our custom control flow. We can do
 better. In Clojure we can use the macro system, and in Scala we’ve got a bag of tricks that include

 ​ blocks​

 and
 ​ by name​

 parameters.
		
Sample Code: Choose One of Three

			Let’s start off with a look at a basic custom control structure, ​choose​, which chooses between three
 different options. We’ll explore two different implementations: the first will use
			higher-order functions and the
 second will explore how we can improve on our first solution by providing some syntactic sugar.
		
In Scala

				
				Our
 ​choose​
 function takes an integer between 1 and 3 and three functions. It then
 executes the corresponding function, as the following code shows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
	​ 	​def​ choose[E](num: ​Int​, first: () => E, second: () => E, third: () => E) =

	​ 	 ​if​ (num == 1) first()

	​ 	 ​else​ ​if​ (num == 2) second()

	​ 	 ​else​ ​if​ (num == 3) third()

				This is a straightforward use of higher-order functions. Let’s take a look at how we’d use it:
			
	​ 	scala>​ simplerChoose(2,​

	​ 	 | () => println("hello, world"),

	​ 	 | () => println("goodbye, cruel world"),

	​ 	 | () => println("meh, indifferent world"))

	​ 	goodbye, cruel world

				It works as we’d expect; however, the need to wrap our actions up in functions is cumbersome. A better syntax
 would be if we could just pass naked expressions into the
 ​choose​
 , as we do in the following
 imaginary REPL session:
			
	​ 	scala>​ simplerChoose(2,​

	​ 	 | println("hello, world"),

	​ 	 | println("goodbye, cruel world"),

	​ 	 | println("meh, indifferent world"))

	​ 	goodbye, cruel world

				Let’s see how to make this syntax real, starting with a very simple case. In the following REPL output, we define
 a
 ​test​
 function with a single argument, ​expression​. The body of the function
 just attempts to execute the expression. We then call
 ​test​
 with the single argument
 ​println("hello, world")​.
			
	​ 	scala>​ def test[E](expression: E) = expression​

	​ 	test: (expression: Unit)Unit

	​ 	

	​ 	scala>​ test(println("hello, world"))​

	​ 	hello, world

				It appears that this works and our expression is evaluated, since ​"hello, world"​ is printed to the
 console. But what happens if we try to execute our expression twice? Let’s find out in the following REPL
 snippet:
			
	​ 	scala>​ def testTwice[E](expression: E) = {​

	​ 	 | expression

	​ 	 | expression

	​ 	 | }

	​ 	testTwice: (expression: Unit)Unit

	​ 	

	​ 	scala>​ testTwice(println("hello, world"))​

	​ 	hello, world

				
				The string ​"hello, world"​ is only printed to the console once! This is because Scala will, by default,
 evaluate an expression at the time it’s passed into a function and then pass in the value of the evaluated
 expression. This is known as
 ​ pass by value​

 , and it’s usually what we want and expect. For
 instance, in the following example, it prevents the expression from being evaluated twice:
			
	​ 	scala>​ def printTwice[E](expression: E) = {​

	​ 	 | println(expression)

	​ 	 | println(expression)

	​ 	 | }

	​ 	printTwice: [E](expression: E)Unit

	​ 	

	​ 	scala>​ printTwice(5 * 5)​

	​ 	25

	​ 	25

				However, this is the opposite of what we need when writing custom control structures. Scala gives us an alternative
 calling semantic called
 ​ pass by name​

 . Using pass by name means that we pass a name for the
 expression into the function rather than the evaluated value of the expression. We can then refer to that name
 inside the function body to have it be evaluated on demand.

			

				
				To make a function argument pass by name rather than by value, we can use ​=>​ after the parameter name and
 before the type annotation. The following REPL snippet rewrites our test function to use pass-by-name calling:
			
	​ 	scala>​ def testByName[E](expression: => E) {​

	​ 	 | expression

	​ 	 | expression

	​ 	 | }

	​ 	testByName: [E](expression: => E)Unit

	​ 	

	​ 	scala>​ testByName(println("hello, world"))​

	​ 	hello, world

	​ 	hello, world

				Now that we understand the difference between pass by value and pass by name, we can write a

 ​simplerChoose​
 function that takes naked expressions. The following code snippet does so:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
	​ 	​def​ simplerChoose[E](num: ​Int​, first: => E, second: => E, third: => E) =

	​ 	 ​if​ (num == 1) first

	​ 	 ​else​ ​if​ (num == 2) second

	​ 	 ​else​ ​if​ (num == 3) third

				Now we can use our naked expression syntax, as in the following REPL output:	
			
	​ 	scala>​ simplerChoose(2,​

	​ 	 | println("hello, world"),

	​ 	 | println("goodbye, cruel world"),

	​ 	 | println("meh, indifferent world"))

	​ 	goodbye, cruel world

				
				
				Clojure’s approach to custom control flow is quite different and involves its powerful macro system. Let’s take a
 look!
			
In Clojure

				
				Let’s start off our Clojure sample with a look at a simple version of ​choose​ that relies on
 higher-order functions. We take three functions and an integer indicating which one to run, as the following code
 shows:
			
	ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
	​ 	(​defn​ choose [​num​ ​first​ ​second​ third]

	​ 	 (​cond​

	​ 	 (​=​ 1 ​num​) (​first​)

	​ 	 (​=​ 2 ​num​) (​second​)

	​ 	 (​=​ 3 ​num​) (third)))

				To use it, we pass in our integer and function arguments:
			
	​ 	=> (choose 2

	​ 	 (fn [] (println "hello, world"))

	​ 	 (fn [] (println "goodbye, cruel world"))

	​ 	 (fn [] (println "meh, indifferent world")))

	​ 	goodbye, cruel world

	​ 	nil

				However, we’d like to avoid the need to wrap our actions up into functions and instead write code that looks like
 the following REPL session:
			
	​ 	=> (choose 2

	​ 	 (println "hello, world")

	​ 	 (println "goodbye, cruel world")

	​ 	 (println "meh, indifferent world"))

	​ 	goodbye, cruel world

	​ 	nil

				
				To see how we can get there, we’ll need to take a short detour into one of Clojure’s most powerful features, its
 macro system. Along the way, we’ll answer the age-old question of why Lisp has such
 				a different syntax.
			
Clojure Macros

					
					Macros are a form of metaprogramming: they are pieces of code that transform other pieces of code. This
 concept has surprising depth in Clojure and other Lisps.
				

					To see why, let’s do a thought experiment. The builder we introduced in Pattern 4, ​Replacing Builder for Immutable Object​,
 is verbose to write. One way to cut down on verbosity is to create a skeletal Java class with nothing but
 attributes in it, and then write code to generate the builder based on those attributes.
				

					
					A block diagram of this approach is described in the following figure:
				
[image: images/GenerateBuilders.png]

Figure 15. Metaprogramming in Java. Code generating a Builder class

					Here, the builder creator is a piece of code that’s responsible for taking in a skeletal Java class with
 nothing but attributes and producing a builder based on it. This is much like the support that IDEs have to
 generate getters and setters.
				

					To do so, the builder creator needs some understanding of the input Java code. For such a simple task, the
 builder creator can just treat the file as text and read the input file line by line, figuring out which lines
 correspond to variable declarations as it goes.
				

					However, what if we needed to manipulate our input Java code in a more complex way? Say we wanted to modify
 certain methods to log out the time they were invoked. This would be difficult to do: how do we know when a
 method starts and ends if we’re just going through the file line by line?
				

					
					The difficulty is that our simple code generator is treating the Java file as plain text. Complicated language
 applications like compilers will go through a series of passes to generate an
 ​ abstract syntax
 tree​

 or
 ​ AST​

 . The following diagram is a
 simplified representation of this process.
				
[image: images/SimpleParser.png]

Figure 16. Simplified Compiler. Stages in a simplified compiler

					The AST represents code at a more abstract level in terms of things like methods and classes, rather than
 as simple text data. For instance, a Java compiler written in Java might have ​Method​ and
 ​VariableDefinition​ classes as parts of its AST, among other things.
				

					This makes the AST representation of code the most convenient representation to manipulate programmatically.
 However, in most programming languages, the AST is hidden away inside the compiler and requires intimate
 knowledge of the compiler to manipulate.

				

					
					Lisps, including Clojure, are different. The syntax of Clojure is defined in terms of core Clojure data
 structures, like lists and vectors. For instance, let’s take a close look at a humble function definition:
				
	​ 	(​defn​ say-hello [​name​] (​println​ (​str​ ​"Hello, "​ ​name​)))

					This is just a list with four elements in it. The first is the symbol ​defn​, the second is
 the symbol ​say-hello​, the third is a vector, and the fourth is another list. When Clojure
 evaluates a list, it assumes that the first element is something that can be called, like a function, a macro, or a
 compiler built-in, and it assumes that the rest of the list is made of arguments.
				

					Other than that, it’s just a list like any other! We can see this by using a single quote, which turns off
 evaluation on the form it’s applied to. In the following snippet we take the first element from two lists—the
 first list is a list of four integers, the second is the function definition we just introduced:
				
	​ 	=> (first '(1 2 3 4))

	​ 	1

	​ 	=> (first '(defn say-hello [name] (println (str "Hello, " name))))

	​ 	defn

					Since Clojure code is just Clojure data, it’s very easy to write code to manipulate it. Clojure’s macro system
 provides a convenient hook to do this manipulation at compile time, as the figure shows.
				
[image: images/LispReader.png]

Figure 17. Read, Evaluate, Compile. Going from Clojure text to bytecode

					Let’s dig into this process in a bit more depth. In Clojure, the process of going from a sequence of
 characters to data structures is called
 ​ reading​

 , as described in the first box in the diagram. Instead of being some magic hidden away inside of the compiler,
 it’s a facility that’s available to the programmer.
				

					Some forms are available that will read from various sources, such as files or strings. Here, we use the
 string version of ​read​ to read a vector from a string and take its first element:
				
	​ 	=> (first (read-string "[1 2 3]"))

	​ 	1

					The ​read​ form has a partner, ​eval​, as shown in the second step of the diagram. This takes a data structure and evaluates it according to a
 simple set of evaluation rules we discuss in Section 2.4, ​TinyWeb in Clojure​. In the following snippet,
 we use ​eval​ to evaluate a ​def​ after we’ve read it in from a string:

				
	​ 	=> (eval (read-string "(def foo 1)"))

	​ 	#'user/foo

	​ 	=> foo

	​ 	1

					You may have seen ​eval​ in languages like Ruby or Javascript; however, there’s a crucial difference
 between that ​eval​ and the one Clojure has. In Clojure and other Lisps, ​eval​ operates on
 data structures that have been read in, rather than on strings.
				

					This means it’s possible to do much more sophisticated manipulations, since we don’t have to build up our code
 using raw string manipulation. The macroexpansion step as described in the diagram
 provides a convenient hook for us to do exactly this.
				

					A macro is just a function with a few key differences. The arguments to a macro are not evaluated, just like
 the call-by-name arguments we used in Scala in ​In Scala​. A macro
 is run before compile time, and it returns the code to be compiled. This gives us a formal, built-in way of
 doing the sort of manipulations we introduced in our Java builder-generator thought experiment.
				

					
					
					
					
					We define a macro with the ​defmacro​ built in. In addition,
					a few other Clojure features
 help us build macros by controlling evaluation. These are the backtick, ​‘​, also known as the

 ​ syntax quote​

 , and the tilde, ​~​, also known as
 ​ unquote​

 .
				

					Together, these features let us build up code templates for use in macros. Syntax quote turns evaluation off inside
 the form it’s applied to, and it expands any symbol name out to be fully qualified by its namespace. Unquote, as
 the name suggests, lets us turn evaluation back on inside a syntax quote.
				

					In the following snippet, we use syntax quote and unquote together. The symbol ​foo​ and
 form ​(+ 1 1)​ don’t get evaluated, but since we apply unquote to ​number-one​, it
 does.
				
	​ 	=> (def number-one 1)

	​ 	#'mbfpp.functional.ccf.ccf-examples/number-one

	​ 	=> `(foo (+ 1 1) ~number-one)

	​ 	(mbfpp.functional.ccf.cff-examples/foo (clojure.core/+ 1 1) 1)

					The output looks a bit noisy because syntax quote has namespace-qualified ​foo​ and
 ​+​.
				

				Now that we’ve introduced macros, let’s see how we can use them to simplify ​choose​. We do so by
 writing a macro, ​simplerChoose​. The ​simplerChoose​ macro takes in a number and
 three forms, and it returns a ​cond​ expression that evaluates the appropriate form. The code for
 ​simplerChoose​ is in the following snippet:

			
	ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
	​ 	(​defmacro​ simpler-choose [​num​ ​first​ ​second​ third]

	​ 	 `(​cond​

	​ 	 (​=​ 1 ~​num​) ~​first​

	​ 	 (​=​ 2 ~​num​) ~​second​

	​ 	 (​=​ 3 ~​num​) ~third))

				Before running it, we can use ​macroexpand-1​ to see what code the macro generates, as we do in
 the following REPL session:
			
	​ 	=> (macroexpand-1

	​ 	 '(simpler-choose 1 (println "foo") (println "bar") (println "baz")))

	​ 	(clojure.core/cond

	​ 	 (clojure.core/= 1 1) (println "foo")

	​ 	 (clojure.core/= 2 1) (println "bar")

	​ 	 (clojure.core/= 3 1) (println "baz"))

				As we can see, the macro expands out to a ​cond​ statement, as we’d expect. Now if we run it, it
 works as we’d expect, without the need to wrap our actions up in functions!
			
	​ 	=> (simpler-choose 2

	​ 	 (println "hello, world")

	​ 	 (println "goodbye, cruel world")

	​ 	 (println "meh, indifferent world"))

	​ 	goodbye, cruel world

	​ 	nil

				Clojure’s macro system is one of its most powerful features, and it explains why Clojure has the syntax it does.
 In order for the magic to work, Clojure code has to be written in terms of simple Clojure data structures, a
 property known as
 ​ homoiconicity​

 .

			
Sample Code: Average Timing

			Let’s take a look at a more involved instance of Customized Control Flow. Here we’ll create a custom control
 abstraction that executes an expression a given number of times and returns the average time of the executions. This
 is handy for quick and dirty performance testing.
		
In Scala

				
				In Scala, our solution is two functions. The first,
 ​timeRun​
 , takes an expression, runs it, and
 returns the time it took. The second,
 ​avgTime​
 , takes an expression and a number of times to
 evaluate it and then returns the average time it took. It uses
 ​timeRun​
 as a helper function.
			

				The code for our Scala solution follows:	
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
	​ 	​def​ timeRun[E](toTime: => E) = {

	​ 	 ​val​ start = System.currentTimeMillis

	​ 	 toTime

	​ 	 System.currentTimeMillis - start

	​ 	}

	​ 	​def​ avgTime[E](times: ​Int​, toTime: => E) = {

	​ 	 ​val​ allTimes = ​for​ (_ <- Range(0, times)) ​yield​ timeRun(toTime)

	​ 	 allTimes.sum / times

	​ 	}

				As advertised, this gives us a way to get the average runtime for a statement:
			
	​ 	scala>​ avgTime(5, Thread.sleep(1000))​

	​ 	res0: Long = 1001

				Let’s break this down a bit more using the REPL. The meat of
 ​avgTime​
 is the following expression:
			
	​ 	​val​ allTimes = ​for​ (_ <- Range(0, times)) ​yield​ timeRun(toTime)

				If we substitute some expressions in by hand, we can see this generates a sequence of run times. The underscore in
 the ​for​ binding indicates that we don’t actually care about what the values of the
 ​Range​ expression are bound to, since we’re just using it to run our statement a set number of
 times:
			
	​ 	scala>​ val allTimes = for (_ <- Range(0, 5)) yield timeRun(Thread.sleep(1000))​

	​ 	allTimes: scala.collection.immutable.IndexedSeq[Long] =

	​ 	 Vector(1000, 1001, 1000, 1001, 1001)

				From there, we use
 ​sum​
 to calculate the sum off all runtimes, and we
				divide by the number of runs to
 get the average:
			
	​ 	scala>​ allTimes.sum / 5​

	​ 	res2: Long = 1000

				
				
				One other interesting element of this solution is how we pass a by-name parameter through two different functions.
 The ​toTime​ parameter is passed into
 ​avgTime​
 , and from there into

 ​timeRun​
 . It’s not evaluated until it’s used in
 ​timeRun​
 .
			

				The ability to chain together calls using by-name parameters is important because it lets us break up the code for
 more complicated instances of Customized Control Flow.

			
In Clojure

				
				In Clojure, our solution consists of a macro, ​avg-time​, and a function, ​time-run​. The
 ​avg-time​ macro generates code that uses ​time-run​ to time runs of the passed-in statement and
 then calculate its average.
			

				The code for our Clojure solution follows:	
			
	ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
	​ 	(​defn​ time-run [to-time]

	​ 	 (​let​ [start (System/currentTimeMillis)]

	​ 	 (to-time)

	​ 	 (​-​ (System/currentTimeMillis) start)))

	​ 	

	​ 	(​defmacro​ avg-time [times to-time]

	​ 	 `(​let​ [total-time#

	​ 	 (​apply​ ​+​ (​for​ [_# (​range​ ~times)] (time-run (​fn​ [] ~to-time))))]

	​ 	 (​float​ (​/​ total-time# ~times))))

				Here, we use it to calculate the average time for a test statement:	
			
	​ 	=> (avg-time 5 (Thread/sleep 1000))

	​ 	1000.8

				
				Let’s dig into how ​time-run​ works in a bit more detail, starting with a Clojure feature we introduce in
 this sample: automatic generated symbols, or
 ​ gensyms​

 . To avoid accidental variable capture in
 macros, whenever we need a symbol in our generated code, we need to generate a unique symbol.
			

				
				The way we do this in Clojure is to append a symbol name with a hash sign when we use one inside of a syntax quote. As
 the snippet below shows, Clojure will expand the gensym out to a fairly unique symbol:
			
	​ 	=> `(foo# foo#)

	​ 	(foo__2230__auto__ foo__2230__auto__)

				We use gensyms for ​total-time​ and ​_​. The second one might seem a little
 strange, since we’re just using underscore to indicate that we don’t care about the values in range, just as we did
 in Scala.
			

				If we don’t make it a generated symbol, Clojure will qualify the symbol in the current namespace, but making it a
 gensym causes Clojure to generate a unique symbol for it. We demonstrate this below:
			
	​ 	=> `(_)

	​ 	(mbfpp.functional.ccf.ccf-examples/_)

	​ 	=> `(-#)

	​ 	(-__1308__auto__)

				
				
				Now let’s examine the heart of ​avg-time​. The following syntax-quoted ​let​
 statement serves as a template for the code that the macro will generate. As we can see, the meat of the solution
 is a ​for​ statement that wraps the expression in ​to-time​ in a function
 and runs it through ​time-run​ the requested number of times:
			
	​ 	`(​let​ [total-time#

	​ 	 (​apply​ ​+​ (​for​ [_# (​range​ ~times)]

	​ 	 (time-run (​fn​ [] ~to-time))))] (​float​ (​/​ total-time# ~times))))

				To test this out, we can use ​macroexpand-1​ to look at the code it generates, as we do in the
 following REPL session:
			
	​ 	=> (​macroexpand-1​ '(avg-time 5 (Thread/sleep 100)))

	​ 	(clojure.core/let

	​ 	 [total-time__1489__auto__

	​ 	 (clojure.core/apply

	​ 	 clojure.core/+

	​ 	 (clojure.core/for

	​ 	 [___1490__auto__ (clojure.core/range 5)]

	​ 	 (mbfpp.functional.ccf.cff-examples/time-run

	​ 	 (clojure.core/fn [] (Thread/sleep 1000)))))]

	​ 	 (clojure.core/float (clojure.core// total-time__1489__auto__ 5)))

	​ 	nil

				Since all the symbols are either gensyms or are fully qualified by their namespace, this can be a bit hard to read! If
 I’m having trouble understanding how a macro works, I like to manually convert the output from
 ​macroexpand-1​ into the code that I’d write by hand.

				To do this, you generally just need to remove the namespaces from fully qualified symbols and the generated part of
 gensyms. I’ve done so in the following code:
			
	​ 	(​let​

	​ 	 [total-time

	​ 	 (​apply​ ​+​ (​for​ [n (​range​ 5)] (time-run (​fn​ [] (Thread/sleep 100)))))]

	​ 	 (​float​ (​/​ total-time 5)))

				As you can see, this cleaned-up output is much simpler to understand. I’ve also found that the process of going
 through the generated code by hand will help any bugs in the macro to surface.

			
Discussion

			Both Scala and Clojure let us create customized control flow abstractions, but the way they go about doing so is very
 different. In Scala, they’re runtime abstractions. We’re just writing functions and passing statements into them. The
 trick is that we can control when those statements are evaluated using by-name parameters.
		

			In Clojure we use the macro system, which takes advantage of Clojure’s homoiconic nature. Macros are a compile-time
 concern rather than a runtime one. As we saw, they allow us to fairly easily write code that writes code by using
 syntax quote as a template for the code we want to produce.
		

			
			Clojure’s approach is more general, but that’s only possible because of Clojure’s homoiconicity. In order to approximate
 Clojure-style macros in a nonhomoiconic language like Scala, the language would have to provide hooks into the
 compiler that let a programmer manipulate ASTs and other compiler artifacts.
		

			This is a difficult task, but Scala does have experimental support for this sort of compile time macro in Scala 1.10.
 Using this style of macro is more difficult than using a Clojure-style macro, since it requires some knowledge of
 compiler internals.
		

			Since Scala macros are experimental, and since Scala provides other ways to implement Customized Control Flow, we
 won’t cover them here.
		

	Pattern 21	Domain-Specific Language

Intent

			To create a miniature programming language tailored to solve a specific problem
		
Overview

			Domain-Specific Language is a very common pattern that has two broad classes:
			external DSL and internal DSL.
		

			
			
			An external DSL is a full-blown programming language with its own syntax and compiler. It’s not intended for general
 use; rather, it solves some targeted problems. For instance, SQL is an instance of
			Domain-Specific Language targeted at
 data manipulation. ANTLR is another, targeted at creating parsers.
		

			On the other hand, we’ve got internal DSLs, also known as
 ​ embedded languages​

 . These instances of
 the pattern piggyback on some general-purpose language and live within the constraints of the host language’s syntax.
		

			In both cases, the intent is the same. We’re trying to create a language that lets us express solutions to problems in
 a way that is closer to the domain at hand. This results in less code and clearer solutions than those created in a
 general-purpose language. It also often allows people who aren’t software developers to solve some domain
 problems.
		

			In this section, we’ll look at building internal DSLs in Scala and Clojure. The techniques we’ll use to build a DSL
 are very different in these two languages, but the intent remains the same.
		
In Scala

				The current crop of Scala DSLs rely on Scala’s flexible syntax and several other Scala tricks. The Scala DSL we
 examine here will take advantage of several of Scala’s advanced abilities.
			

				First off, we’ll see Scala’s ability to use methods in the postfix and infix positions. This lets us define
 methods that act as operators.
			

				Second, we’ll use Scala’s implicit conversions, introduced in Pattern 10, ​Replacing Visitor​. These appear to
 let us add new behavior to existing types.
			

				Finally, we’ll use a Scala companion object as a factory for the class it’s paired up with.
			
In Clojure

				
				Internal DSLs are an old Lisp technique that Clojure carries on. In Clojure and other Lisps, the line between
 Domain-Specific Language and frameworks or APIs is very blurry.
			

				Good Clojure code is often structured as layers of DSLs, one on top of the other, each of which is good at solving
 a problem on a particular layer of the system.
			

				
				For example, one possible layered system for building web applications in Clojure starts with a library called
 Ring. This provides an abstraction over HTTP, turning HTTP requests into Clojure maps. On top of that, we can use
 a DSL named Compojure to route HTTP requests to handler functions. Finally, we can use a DSL named Enlive to create
 templates for our pages.
			

				Clojure’s DSLs are generally built around a core set of higher-order functions, with macros providing syntactic
 sugar on top. This is the approach we’ll use for the Clojure DSL we examine here.
			
Code Sample: DSL for a Shell

			
			
			I sometimes find myself cutting and pasting from a shell into a REPL when programming in Scala and Clojure. Let’s take
 a look at a simple DSL to make this more natural by letting us run shell commands directly in a REPL.
		

			In addition to running commands, we’ll want to capture their exit status, standard output, and standard error. Finally,
 we’ll want to pipe commands together, just as we can in a normal shell.
		
In Scala

				
				The end goal of this example is to be able to run shell commands in a natural way inside of a Scala
 REPL. For individual commands, we’d like to be able to run them like this:
			
	​ 	scala>​ "ls" run​

				And we’d like to run pipes of commands like so:
			
	​ 	scala>​ "ls" pipe "grep some-file" run​

				Let’s take our first step on our shell DSL journey by examining what we want a command to return. We need to be
 able to inspect a shell command’s status code and both its standard output and error streams. In the following
 code, we packaged those pieces of information together into a case class named ​CommandResult​:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
	​ 	​case​ ​class​ CommandResult(status: ​Int​, output: ​String​, error: ​String​)

				Now let’s see how to actually run a command. We can dip into Java’s ​ProcessBuilder​ class for this. 	
			

				The ​ProcessBuilder​ class constructor takes a variable number of string arguments, representing the
 command to run and its arguments. In the following REPL snippet, we create a ​ProcessBuilder​
 that will allow us to run ​ ls -la ​:
			
	​ 	scala>​ val lsProcessBuilder = new ProcessBuilder("ls", "-la")​

	​ 	lsProcessBuilder: ProcessBuilder = java.lang.ProcessBuilder@5674c175

				To run the process, we call
 ​start​
 on the ​ProcessBuilder​ we just created. This
 returns a ​Process​ object that gives us a handle on the running process:
			
	​ 	scala>​ val lsProcess = lsProcessBuilder.start​

	​ 	lsProcess: Process = java.lang.UNIXProcess@61a7c7e7

				The ​Process​ object gives us access to all the information we need, but output from standard out
 and standard error are inside of ​InputStream​ objects rather than inside strings. We can use the
 ​fromInputStream​

 on Scala’s ​Source​ object to pick them out, as we demonstrate in the following code:
			
	​ 	scala>​ Source.fromInputStream(lsProcess.getInputStream()).mkString("")​

	​ 	res0: String =

	​ 	"total 96

	​ 	drwxr-xr-x 12 mblinn staff 408 Mar 17 10:23 .

	​ 	drwxr-xr-x 8 mblinn staff 272 Apr 6 15:12 ..

	​ 	-rw-r--r-- 1 mblinn staff 35583 Jun 9 16:35 .cache

	​ 	-rw-r--r-- 1 mblinn staff 1200 Mar 17 10:10 .classpath

	​ 	-rw-r--r-- 1 mblinn staff 328 Mar 17 10:08 .project

	​ 	drwxr-xr-x 3 mblinn staff 102 Mar 16 13:29 .settings

	​ 	drwxr-xr-x 9 mblinn staff 306 Jun 9 15:58 .svn

	​ 	drwxr-xr-x 2 mblinn staff 68 Mar 13 20:34 bin

	​ 	-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt

	​ 	drwxr-xr-x 6 mblinn staff 204 Mar 13 20:33 project

	​ 	drwxr-xr-x 5 mblinn staff 170 Mar 13 19:52 src

	​ 	drwxr-xr-x 6 mblinn staff 204 Mar 16 13:33 target

	​ 	"

				Notice how the method that gets us the output from standard out is somewhat confusingly called

 ​getInputStream()​
 ? That’s not a typo; the method name seems to refer to the fact that standard out is
 being written into a Java ​InputStream​ that the calling code can consume.
			

				Now we can put our ​Command​ class together. The ​Command​ takes a list of strings
 representing the command and its arguments and uses it to construct a ​ProcessBuilder​. It then runs
 the process, waits for it to complete, and picks out the completed process’s output streams and status code. The
 following code implements ​Command​:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
	​ 	​class​ Command(commandParts: ​List​[​String​]) {

	​ 	 ​def​ run() = {

	​ 	 ​val​ processBuilder = ​new​ ProcessBuilder(commandParts)

	​ 	 ​val​ process = processBuilder.start()

	​ 	 ​val​ status = process.waitFor()

	​ 	 ​val​ outputAsString =

	​ 	 Source.fromInputStream(process.getInputStream()).mkString(​""​)

	​ 	 ​val​ errorAsString =

	​ 	 Source.fromInputStream(process.getErrorStream()).mkString(​""​)

	​ 	 CommandResult(status, outputAsString, errorAsString)

	​ 	 }

	​ 	}

				To make ​Command​ classes a bit easier to construct, we add a factory method that takes a string and
 splits it into ​Command​’s companion object:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
	​ 	​object​ Command {

	​ 	 ​def​ apply(commandString: ​String​) = ​new​ Command(commandString.split(​"\\s"​).toList)

	​ 	}

				As the following REPL session demonstrates, this gets us a bit closer to our desired syntax for running a single
 command:
			
	​ 	scala>​ Command("ls -la").run​

	​ 	res1: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =

	​ 	CommandResult(0,total 96

	​ 	drwxr-xr-x 12 mblinn staff 408 Mar 17 10:23 .

	​ 	drwxr-xr-x 8 mblinn staff 272 Apr 6 15:12 ..

	​ 	-rw-r--r-- 1 mblinn staff 35592 Jun 9 16:57 .cache

	​ 	-rw-r--r-- 1 mblinn staff 1200 Mar 17 10:10 .classpath

	​ 	-rw-r--r-- 1 mblinn staff 328 Mar 17 10:08 .project

	​ 	drwxr-xr-x 3 mblinn staff 102 Mar 16 13:29 .settings

	​ 	drwxr-xr-x 9 mblinn staff 306 Jun 9 15:58 .svn

	​ 	drwxr-xr-x 2 mblinn staff 68 Mar 13 20:34 bin

	​ 	-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt

	​ 	drwxr-xr-x 6 mblinn staff 204 Mar 13 20:33 project

	​ 	drwxr-xr-x 5 mblinn staff 170 Mar 13 19:52 src

	​ 	drwxr-xr-x 6 mblinn staff 204 Mar 16 13:33 target

	​ 	,)

				
				To get the rest of the way there, we’ll use the implicit conversions we introduced in Pattern 10, ​Replacing Visitor​. We’ll create a conversion that turns a ​String​ into a
 ​CommandString​ with a
 ​run​
 method.
	
				A ​CommandString​ turns the ​String​ it’s converting into a ​Command​ that
 its
 ​run​
 method calls. It’s implemented in the following code:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
	​ 	​implicit​ ​class​ CommandString(commandString: ​String​) {

	​ 	 ​def​ run() = Command(commandString).run

	​ 	}

				Now we’ve got our desired syntax for running single commands, as we demonstrate with the following REPL output:
			
	​ 	scala>​ "ls -la" run​

	​ 	res2: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =

	​ 	CommandResult(0,total 96

	​ 	drwxr-xr-x 12 mblinn staff 408 Mar 17 10:23 .

	​ 	drwxr-xr-x 8 mblinn staff 272 Apr 6 15:12 ..

	​ 	-rw-r--r-- 1 mblinn staff 35592 Jun 9 16:57 .cache

	​ 	-rw-r--r-- 1 mblinn staff 1200 Mar 17 10:10 .classpath

	​ 	-rw-r--r-- 1 mblinn staff 328 Mar 17 10:08 .project

	​ 	drwxr-xr-x 3 mblinn staff 102 Mar 16 13:29 .settings

	​ 	drwxr-xr-x 9 mblinn staff 306 Jun 9 15:58 .svn

	​ 	drwxr-xr-x 2 mblinn staff 68 Mar 13 20:34 bin

	​ 	-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt

	​ 	drwxr-xr-x 6 mblinn staff 204 Mar 13 20:33 project

	​ 	drwxr-xr-x 5 mblinn staff 170 Mar 13 19:52 src

	​ 	drwxr-xr-x 6 mblinn staff 204 Mar 16 13:33 target

	​ 	,)

				
				Let’s extend our DSL to include pipes. The approach we’ll take is to collect our piped command strings into a
 vector and run them once we’ve constructed the full chain of pipes.
			

				Let’s start off by examining the extensions we need to make to ​CommandString​. Remember, we’d like
 to be able to run a pipe of commands like so: ​"ls -la" pipe "grep build" run​.

				This means we need to add a
 ​pipe​
 method, which takes a single string argument, to our ​CommandString​ implicit conversion. When it’s called, it’ll take the string it’s converted to a
 ​CommandString​ and the argument it was passed, and it’ll stuff them both into a ​Vector​.
	
	The code for our expanded ​CommandString​ follows:
			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
	​ 	​implicit​ ​class​ CommandString(firstCommandString: ​String​) {

	​ 	 ​def​ run = Command(firstCommandString).run

	​ 	 ​def​ pipe(secondCommandString: ​String​) =

	​ 	 Vector(firstCommandString, secondCommandString)

	​ 	}

				Now our conversion will convert ​"ls -la" pipe "grep build"​ into a vector with both shell commands in it.
			
	​ 	scala>​ "ls -la" pipe "grep build"​

	​ 	res2: scala.collection.immutable.Vector[String] = Vector(ls -la, grep build)

				The next step is to add another implicit conversion that converts a ​Vector[String]​ into a
 ​CommandVector​, much as we’ve already done for individual strings. The ​CommandVector​
 class had a
 ​run​
 and a
 ​pipe​
 method.
			

				The
 ​pipe​
 method adds a new command to the ​Vector​ of commands and returns it, and
 the
 ​run​
 method knows how to go through the commands and run them, piping the output from one to
 the next. The code for ​CommandVector​ and a new factory method on the ​Command​
 companion object used by ​CommandVector​ follows:
 			
	ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
	​ 	​implicit​ ​class​ CommandVector(existingCommands: Vector[​String​]) {

	​ 	 ​def​ run = {

	​ 	 ​val​ pipedCommands = existingCommands.mkString(​" | "​)

	​ 	 Command(​"/bin/sh"​, ​"-c"​, pipedCommands).run

	​ 	 }

	​ 	 ​def​ pipe(nextCommand: ​String​): Vector[​String​] = {

	​ 	 existingCommands :+ nextCommand

	​ 	 }

	​ 	}

	​ 	​object​ Command {

	​ 	 ​def​ apply(commandString: ​String​) = ​new​ Command(commandString.split(​"\\s"​).toList)

	​ 	 ​def​ apply(commandParts: ​String​*) = ​new​ Command(commandParts.toList)

	​ 	}

				Now we’ve got our full DSL, pipes and all! In the following REPL session, we use it to run some piped commands:
			
	​ 	scala>​ "ls -la" pipe "grep build" run​

	​ 	res3: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =

	​ 	CommandResult(0,-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt

	​ 	,)

	​ 	

	​ 	scala>​ "ls -la" pipe "grep build" pipe "wc" run​

	​ 	res4: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =

	​ 	CommandResult(0, 1 9 59

	​ 	,)

				
				
				A couple of notes on this DSL. First, it takes advantage of Scala’s ability to use methods as postfix operators.
 This is easy to misuse, so Scala 2.10 generates a warning when you do so, and it will be disabled by default in a
 future version of Scala. To use postfix operators without the warning, you can import
 ​scala.language.postfixOps​ into the file that needs them.
			

				Second is a simple DSL, suitable for basic use at a Scala REPL. Scala has a much more complete version of a
 similar DSL already built into the ​scala.sys.process​ package.

			
In Clojure

				
				In Clojure, our DSL will consist of a ​command​ function that creates a function that executes a
 shell command. Then we’ll create a ​pipe​ function that allows us to pipe several commands
 together using function composition. Finally, we’ll create two macros, ​def-command​ and
 ​def-pipe​, to make it easy to name pipes and commands.
			

				Before we jump into the main DSL code, let’s take a look at how we’ll interact with the shell. We’ll use a library
 built into Clojure in the ​clojure.java.shell​ namespace, which provides a thin wrapper around
 Java’s ​Runtime.exec()​.
			

				
				In the following REPL session, we use the ​sh​ function in ​clojure.java.shell​
 to execute the ​ls​ command. As we can see, the output of the function is a map consisting of the
 status code for the process and whatever the process wrote to its standard out and standard error streams as a
 string:
			
	​ 	=> (shell/sh "ls")

	​ 	{:exit 0, :out "README.md\nclasses\nproject.clj\nsrc\ntarget\ntest\n", :err ""}

				This isn’t very easy to read, so let’s create a function that’ll print it in a
				way that’s easier to read before
 returning the output map. The code to do so follows:
			
	ClojureExamples/src/mbfpp/functional/dsl/examples.clj
	​ 	(​defn-​ print-output [output]

	​ 	 (​println​ (​str​ ​"Exit Code: "​ (:exit output)))

	​ 	 (​if-not​ (str/blank? (:out output)) (​println​ (:out output)))

	​ 	 (​if-not​ (str/blank? (:err output)) (​println​ (:err output)))

	​ 	 output)

				We can now use ​sh​ to run ​ls -a​ and get readable output:
			
	​ 	=> (print-output (shell/sh "ls" "-a"))

	​ 	Exit Code: 0

	​ 	.

	​ 	..

	​ 	.classpath

	​ 	.project

	​ 	.settings

	​ 	.svn

	​ 	README.md

	​ 	classes

	​ 	project.clj

	​ 	src

	​ 	target

	​ 	test

	​ 	

	​ 	{:exit 0,

	​ 	:out ".\n..\n.classpath\n.project\n.settings\n.svn\n

	​ 	 README.md\nclasses\nproject.clj\nsrc\ntarget\ntest\n",

	​ 	:err ""}

				Let’s move on to the first piece of our DSL, ​command​ function. This function takes the command
 we want to execute as a string, splits it on whitespace to get a sequence of command parts,
 				and then uses
 ​apply​ to apply the ​sh​ function to the sequence.
			

				Finally, it runs the returned output through our ​print-output​ function, wraps everything up in
 a higher-order function, and returns it. The code for ​command​ follows:
			
	ClojureExamples/src/mbfpp/functional/dsl/examples.clj
	​ 	(​defn​ command [command-str]

	​ 	 (​let​ [command-parts (str/split command-str #"\s+")]

	​ 	 (​fn​ []

	​ 	 (print-output (​apply​ shell/sh command-parts)))))

				Now if we run a function returned by ​command​, it’ll run the shell command it encapsulates:
			
	​ 	=> ((command "pwd"))

	​ 	Exit Code: 0

	​ 	/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples

				If we want to name the command, we can do so using ​def​:	
			
	​ 	=> (def pwd (command "pwd"))

	​ 	#'mbfpp.functional.dsl.examples/pwd

	​ 	=> (pwd)

	​ 	Exit Code: 0

	​ 	/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples

				
				Now that we can run an individual command, let’s take a look at what it’ll take to pipe them together. A pipe in a
 Unix shell pipes the output from one command to the input of another. Since the output of a command here is captured
 in a string, all we need is a way to use that string as input to another command.
			

				
				The ​sh​ function allows us to do so with the ​:in​ option: 	
			
	​ 	=> (shell/sh "wc" :in "foo bar baz")

	​ 	{:exit 0, :out " 0 3 11\n", :err ""}

				Let’s modify our ​command​ function to take the output map from another command and use its
 standard output string as input. To do so, we’ll add a second arity to ​command​ that expects to
 be passed an output map.
			

				The ​command​ function destructures the map to pluck out its output and passes it into
 ​sh​ as input. The code for our new ​command​ follows:
			
	ClojureExamples/src/mbfpp/functional/dsl/examples.clj
	​ 	(​defn​ command [command-str]

	​ 	 (​let​ [command-parts (str/split command-str #"\s+")]

	​ 	 (​fn​

	​ 	 ([] (print-output (​apply​ shell/sh command-parts)))

	​ 	 ([{old-out :out}]

	​ 	 (print-output (​apply​ shell/sh (​concat​ command-parts [:in old-out])))))))

				Now we can define another command, like the following one that greps for the word README:	
			
	​ 	=> (def grep-readme (command "grep README"))

	​ 	#'mbfpp.functional.dsl.examples/grep-readme

				Then we can pass the output of our ​ls​ command into it, and the ​ls​ output
 will be piped into ​grep​. Each command will print its output to standard out, as the following
 REPL session shows:
			
	​ 	=> (grep-readme (ls))

	​ 	Exit Code: 0

	​ 	README.md

	​ 	classes

	​ 	project.clj

	​ 	src

	​ 	target

	​ 	test

	​ 	

	​ 	Exit Code: 0

	​ 	README.md

	​ 	

	​ 	{:exit 0, :out "README.md\n", :err ""}

				With our modified ​command​ function, we can create a pipe of commands by composing
 together several commands with ​comp​. If we want to write the commands in the same order as we
 would in a shell, we just need to reverse the sequence of commands before we compose them, as we do in the
 following ​pipe​ implementation:
			
	ClojureExamples/src/mbfpp/functional/dsl/examples.clj
	​ 	(​defn​ pipe [commands]

	​ 	 (​apply​ ​comp​ (​reverse​ commands)))

				Now we can create a pipe of commands, as we do in the following REPL session:
			
	​ 	=> (def grep-readme-from-ls

	​ 	 (pipe

	​ 	 [(command "ls")

	​ 	 (command "grep README")]))

	​ 	#'mbfpp.functional.dsl.examples/grep-readme-from-ls

				This has the same effect as running the ​ls​ command and passing its output into
 ​grep-readme​:
			
	​ 	=> (grep-readme-from-ls)

	​ 	Exit Code: 0

	​ 	README.md

	​ 	classes

	​ 	project.clj

	​ 	src

	​ 	target

	​ 	test

	​ 	

	​ 	Exit Code: 0

	​ 	README.md

	​ 	

	​ 	{:exit 0, :out "README.md\n", :err ""}

				
				Now that we can define commands and pipes, let’s use macros to add some syntactic sugar to make things easier. For
 an introduction to Clojure’s macros, see ​Clojure Macros​.

				 First we’ll create a ​def-command​ macro. This macro takes a name and a command string and
 defines a function that executes the command string. The code for ​def-command​ follows:
			
	ClojureExamples/src/mbfpp/functional/dsl/examples.clj
	​ 	(​defmacro​ def-command [​name​ command-str]

	​ 	 `(​def​ ~​name​ ~(command command-str)))

				Now we can define a command and name it with a single macro invocation, as we do in the following REPL output:
			
	​ 	=> (def-command pwd "pwd")

	​ 	#'mbfpp.functional.dsl.examples/pwd

	​ 	

	​ 	=> (pwd)

	​ 	Exit Code: 0

	​ 	/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples

	​ 	

	​ 	{:exit 0, :out "/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples\n", :err ""}

				Now let’s do the same for our piped commands as we did for single commands with the ​def-pipe​
 macro. This macro takes a command name and a variable number of command strings, turns each command string into a
 command, and finally creates a pipe with the given name. Here’s the code for ​def-pipe​:
			
	ClojureExamples/src/mbfpp/functional/dsl/examples.clj
	​ 	(​defmacro​ def-pipe [​name​ & command-strs]

	​ 	 (​let​ [commands (​map​ command command-strs)

	​ 	 pipe (pipe commands)]

	​ 	 `(​def​ ~​name​ ~pipe)))

				Now we can create a pipe in one shot, as we do below:
			
	​ 	=> (def-pipe grep-readme-from-ls "ls" "grep README")

	​ 	#'mbfpp.functional.dsl.examples/grep-readme-from-ls

	​ 	=> (grep-readme-from-ls)

	​ 	Exit Code: 0

	​ 	README.md

	​ 	classes

	​ 	project.clj

	​ 	src

	​ 	target

	​ 	test

	​ 	

	​ 	Exit Code: 0

	​ 	README.md

	​ 	

	​ 	{:exit 0, :out "README.md\n", :err ""}

				That wraps up our look at Clojure’s DSLs!	
				
				
				
			
Discussion

			Currently, Scala and Clojure take a very different approach to Domain-Specific Language. Scala uses a flexible syntax
 and a variety of tricks. Clojure uses higher-order functions and macros.
		

			Clojure’s approach is more general. In fact, most of the Clojure language itself is written as a set of Clojure
 functions and macros! Advanced Scala DSL writers may bang up against the limitations of Scala’s current approach.
		

			For this reason, macros are being added to Scala. However, as noted in the ​Discussion​, they’re much harder to implement and use without the simple syntax and
 homoiconicity available in Clojure and other languages in the Lisp family.
		
Related Patterns

Pattern 20, ​Customized Control Flow​

For Further Reading

DSLs in Action [Gho10]

Footnotes

	[6]	

 ​https://github.com/clojure/core.typed​

	[7]	

 ​http://www.oracle.com/technetwork/java/filters-137243.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 5
The End

		That wraps up our look at patterns in functional programming. Hopefully now you see how functional programming tools can help you write shorter and clearer code and how immutable data can remove large sources of error from your programs.
	

		I hope you’ve also gotten a taste for both Scala and Clojure. Even though they both include functional features, they’re quite different from each other. By seeing examples written in both Scala and Clojure, you’ve been exposed to a wide range of functional techniques.
	

		Most of all, I hope you can apply what you’ve learned in this book to make your day-to-day programming experience better.

 Thanks for reading!
	

Copyright © 2013, The Pragmatic Bookshelf.

Bibliography

	[AIS77]
	Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York, NY, 1977.
	[Blo08]
	Joshua Bloch. Effective Java. Addison-Wesley, Reading, MA, 2008.
	[FBBO99]
	Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading, MA, 1999.
	[FH11]
	Michael Fogus and Chris Houser. The Joy of Clojure. Manning Publications Co., Greenwich, CT, 2011.
	[GHJV95]
	Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.
	[Gho10]
	Debasish Ghosh. DSLs in Action. Manning Publications Co., Greenwich, CT, 2010.
	[Goe12]
	Brian Goetz. JSR 335: Lambda Expressions for the Java Programming Language. Java Community Process, http://jcp.org, 2012.
	[Hal09]
	Stuart Halloway. Programming Clojure. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2009.
	[Lip11]
	Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No Starch Press, San Francisco, CA, 2011.
	[MRB97]
	Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pattern Languages of Program Design 3. Addison-Wesley, Reading, MA, 1997.
	[Nor92]
	Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp. Morgan Kaufmann Publishers, San Francisco, CA, 1992.
	[Sub09]
	Venkat Subramaniam. Programming Scala: Tackle Multi-Core Complexity on the Java Virtual Machine. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2009.
	[Sue12]
	Joshua Suereth. Scala In Depth. Manning Publications Co., Greenwich, CT, 2012.

Copyright © 2013, The Pragmatic Bookshelf.

You May Be Interested In…
Click a cover for more information
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

images/_covers/jkthp.jpg

images/joe.jpg
Y

images/_covers/jaerlang2.jpg

images/cover.jpg
Functional
Programming
Patterns

in Scala and Clojure
Write Lean Programs for the JVM

Michael Bevilacqua-Linn
[Edited by John Osborn and Fahmida Y. Rashid

scripts/book_local.js
function init() {
 alert("In init");
}

images/WigglyRoad.jpg

images/LispReader.png
Biecode

e {obeane | e
Resd e e comi
hascers Euaunte Wevsitingd Compie
nto DiaStuctues Macro,Bpond Data Sructures
ciojure ccordng . Welore Comping Toy

o0a
..

images/_covers/btlang.jpg

images/GenerateBuilders.png
Skeleton

(ava Code)

uider
Grestor

Fleshed Out

sovac

images/SimpleParser.png
Lo s Tee Bytecode
= " Waler Emier
Characters Tokens Pare st
nto o Tree nto
Tokens pare o Bytecode
el -

images/ShapeVisitor.png
VerRecange
Vil

Fermeterviior

VisitRectangie)
VisitCicle)

images/StackFrame.png
Frame One First
Recursive Cal

FrameTwo

Second
> Recursive Cal

b

> Recursive Cal

Frame Three

FrameN

images/LazySeqOne.png
Fist | Second

Realize
Third Element

Fist || Second [—| Thira

images/HoldingHead.png
First

|

Second

>

Third

images/RecursiveCallsTCO.png
First Recursive Call,
Second Recursive Call
Nth Recursive Call

Frame One

images/PhasesOfMatter.png
Plasma

ionization deionization

saporization sublimation
Zondensation

deposition

Liquid

me\lmg

images/CashRegisterClass.png
hasa

Furchase
Cosh Register
Jmovnt Add Cash
Brecune Get Total

passed to

Purchase
Invoker

Executed
Purchases
Get Purchase

images/CommandClassDiagram.png
passed to

Thvoker

Thvoke
| Command

images/PersonValidator.png
validates hasa

Parson

Parson
Validator
Listof People

Frstame
Validator

Vaiidate

images/GradeReporter.png
Grade

Reporter
Template

Report Grades
NumberTo
Letter

Print Grade
Report

FullName First Name
Validator Ve

fator

NumberTo
Letter

Number To
Letter

Print Grade Print Grade
Report

Report

images/_covers/elixir.jpg

images/Calculator.png
lculate
dd
Subtract
Divide

A

Togging

Calcurator
Impl Calculator
Calcuator

images/Decorator.png
Conaeie
Closs
ethod |

Decorator A

Concrete

Concrete
Class.

Concrete
Decorator

Miethod

images/Visitor.png
Concrete
Element One.

Viitor
VeitConcrete
Element One)
VisitConcrete
Element Two)

Concree Vitor
VistConcrete
Element One)
VisitConcrete
Element Two)

images/h1-underline.gif

images/_covers/mcmath.jpg

images/apple-logo-black.jpg

images/_covers/rwdata.jpg

images/ChapOneClosure.png
Closure

Context

scope2

3
foo ="thrd foo”

images/TinywebOverview.png

