

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the e-book in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

The Go Programming Language

Alan A. A. Donovan
Google Inc.

Brian W. Kernighan
Princeton University

[image: Image]

New York • Boston • Indianapolis • San Francisco

Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015950709

Copyright © 2016 Alan A. A. Donovan & Brian W. Kernighan

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you may fax your request to (201) 236-3290.

Front cover: Millau Viaduct, Tarn valley, southern France. A paragon of simplicity in modern engineering design, the viaduct replaced a convoluted path from capital to coast with a direct route over the clouds. © Jean-Pierre Lescourret/Corbis.

Back cover: the original Go gopher. © 2009 Renée French. Used under Creative Commons Attributions 3.0 license.

Typeset by the authors in Minion Pro, Lato, and Consolas, using Go, groff, ghostscript, and a host of other open-source Unix tools. Figures were created in Google Drawings.

ISBN-13: 978-0-13-419044-0

ISBN-10: 0-13-419044-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

Second printing, December 2015

For Leila and Meg

Contents

Preface

The Origins of Go

The Go Project

Organization of the Book

Where to Find More Information

Acknowledgments

1. Tutorial

1.1. Hello, World

1.2. Command-Line Arguments

1.3. Finding Duplicate Lines

1.4. Animated GIFs

1.5. Fetching a URL

1.6. Fetching URLs Concurrently

1.7. A Web Server

1.8. Loose Ends

2. Program Structure

2.1. Names

2.2. Declarations

2.3. Variables

2.4. Assignments

2.5. Type Declarations

2.6. Packages and Files

2.7. Scope

3. Basic Data Types

3.1. Integers

3.2. Floating-Point Numbers

3.3. Complex Numbers

3.4. Booleans

3.5. Strings

3.6. Constants

4. Composite Types

4.1. Arrays

4.2. Slices

4.3. Maps

4.4. Structs

4.5. JSON

4.6. Text and HTML Templates

5. Functions

5.1. Function Declarations

5.2. Recursion

5.3. Multiple Return Values

5.4. Errors

5.5. Function Values

5.6. Anonymous Functions

5.7. Variadic Functions

5.8. Deferred Function Calls

5.9. Panic

5.10. Recover

6. Methods

6.1. Method Declarations

6.2. Methods with a Pointer Receiver

6.3. Composing Types by Struct Embedding

6.4. Method Values and Expressions

6.5. Example: Bit Vector Type

6.6. Encapsulation

7. Interfaces

7.1. Interfaces as Contracts

7.2. Interface Types

7.3. Interface Satisfaction

7.4. Parsing Flags with flag.Value

7.5. Interface Values

7.6. Sorting with sort.Interface

7.7. The http.Handler Interface

7.8. The error Interface

7.9. Example: Expression Evaluator

7.10. Type Assertions

7.11. Discriminating Errors with Type Assertions

7.12. Querying Behaviors with Interface Type Assertions

7.13. Type Switches

7.14. Example: Token-Based XML Decoding

7.15. A Few Words of Advice

8. Goroutines and Channels

8.1. Goroutines

8.2. Example: Concurrent Clock Server

8.3. Example: Concurrent Echo Server

8.4. Channels

8.5. Looping in Parallel

8.6. Example: Concurrent Web Crawler

8.7. Multiplexing with select

8.8. Example: Concurrent Directory Traversal

8.9. Cancellation

8.10. Example: Chat Server

9. Concurrency with Shared Variables

9.1. Race Conditions

9.2. Mutual Exclusion: sync.Mutex

9.3. Read/Write Mutexes: sync.RWMutex

9.4. Memory Synchronization

9.5. Lazy Initialization: sync.Once

9.6. The Race Detector

9.7. Example: Concurrent Non-Blocking Cache

9.8. Goroutines and Threads

10. Packages and the Go Tool

10.1. Introduction

10.2. Import Paths

10.3. The Package Declaration

10.4. Import Declarations

10.5. Blank Imports

10.6. Packages and Naming

10.7. The Go Tool

11. Testing

11.1. The go test Tool

11.2. Test Functions

11.3. Coverage

11.4. Benchmark Functions

11.5. Profiling

11.6. Example Functions

12. Reflection

12.1. Why Reflection?

12.2. reflect.Type and reflect.Value

12.3. Display, a Recursive Value Printer

12.4. Example: Encoding S-Expressions

12.5. Setting Variables with reflect.Value

12.6. Example: Decoding S-Expressions

12.7. Accessing Struct Field Tags

12.8. Displaying the Methods of a Type

12.9. A Word of Caution

13. Low-Level Programming

13.1. unsafe.Sizeof, Alignof, and Offsetof

13.2. unsafe.Pointer

13.3. Example: Deep Equivalence

13.4. Calling C Code with cgo

13.5. Another Word of Caution

Preface

“Go is an open source programming language that makes it
easy to build simple, reliable, and efficient software.”
(From the Go web site at golang.org)

Go was conceived in September 2007 by Robert Griesemer, Rob Pike, and

Ken Thompson, all at Google, and was announced in November 2009. The
goals of the language and its
accompanying tools were to be expressive, efficient in both
compilation and execution, and effective in writing reliable and
robust programs.

Go bears a surface similarity to C and, like C, is a tool
for professional programmers, achieving maximum effect with
minimum means. But it is much more than an updated version of C. It
borrows and adapts good ideas from many other languages, while avoiding
features that have led to complexity and unreliable code. Its
facilities for concurrency are new and efficient, and its
approach to data abstraction and object-oriented programming is
unusually flexible.

It has automatic memory management or garbage collection.

Go is especially well suited for building infrastructure like
networked servers, and tools and systems for programmers, but it is
truly a general-purpose language and finds use in domains as
diverse as graphics, mobile applications, and machine learning.

It has become popular as a replacement for untyped scripting languages
because it balances expressiveness with safety: Go programs typically
run faster than programs written in dynamic languages and suffer far
fewer crashes due to unexpected type errors.

Go is an open-source project, so source code for its compiler,
libraries, and tools is freely available to
anyone. Contributions to the project come from
an active worldwide community.

Go runs on Unix-like systems—Linux, FreeBSD, OpenBSD,
Mac OS X—and on Plan 9 and Microsoft Windows.

Programs written in one of these environments
generally work without modification on the others.

This book is meant to help you start using Go effectively right away
and to use it well, taking full advantage of Go’s
language features and standard libraries to write clear, idiomatic, and
efficient programs.

The Origins of Go

Like biological
species, successful languages beget offspring that incorporate the
advantages of their ancestors; interbreeding sometimes leads to
surprising strengths; and, very occasionally, a radical new feature
arises without precedent.
We can learn a lot about why a language is the way it is and what
environment it has been adapted for by looking at these influences.

The figure below shows the most important influences of
earlier programming languages on the design of Go.

[image:]

Go is sometimes described as a “C-like language,” or as “C for the 21st
century.” From C, Go inherited its expression syntax, control-flow

statements, basic data types, call-by-value parameter passing,
pointers, and above all, C’s emphasis on programs that compile
to efficient machine code and cooperate naturally with the
abstractions of current operating systems.

But there are other ancestors in Go’s family tree. One major stream of
influence comes from languages by Niklaus Wirth, beginning with Pascal.

Modula-2 inspired the package concept.
Oberon eliminated the distinction between module interface files and
module implementation files.
Oberon-2 influenced the syntax for packages, imports, and declarations,
and Object Oberon provided the syntax for method declarations.

Another lineage among Go’s ancestors, and one that makes Go
distinctive among recent programming languages, is a sequence of
little-known research languages developed at Bell Labs, all inspired
by the concept of communicating sequential processes (CSP)

from Tony Hoare’s seminal 1978 paper on the foundations of concurrency.

In CSP, a program is a parallel composition of processes that have no
shared state; the processes communicate and synchronize using channels.

But Hoare’s CSP was a formal language for describing the fundamental
concepts of concurrency, not a programming language for writing
executable programs.

Rob Pike and others began to experiment with CSP implementations as

actual languages. The first was called Squeak (“A language for
communicating with mice”), which provided a language for handling mouse
and keyboard events, with statically created channels. This was

followed by Newsqueak, which offered C-like statement and expression syntax
and Pascal-like type notation. It was a purely functional language with
garbage collection, again aimed at managing keyboard, mouse, and window

events. Channels became first-class values, dynamically created and
storable in variables.

The Plan 9 operating system carried these ideas forward in a
language called Alef. Alef tried to make Newsqueak a viable

system programming language, but its omission of garbage collection
made concurrency too painful.

Other constructions in Go show the influence of non-ancestral genes here
and there; for example iota is loosely from APL, and lexical scope with

nested functions is from Scheme (and most languages since).

Here too we find novel mutations. Go’s innovative slices
provide dynamic arrays with efficient random access but also permit
sophisticated sharing arrangements reminiscent of linked lists.
And the defer statement is new with Go.

The Go Project

All programming languages reflect the programming philosophy of their
creators, which often includes a significant component of reaction to
the perceived shortcomings of earlier languages.

The Go project was born of frustration with several software systems
at Google that were suffering from an explosion of complexity.

(This problem is by no means unique to Google.)

As Rob Pike put it,

“complexity is multiplicative”: fixing a problem by making one part of
the system more complex slowly but surely adds complexity to other parts.

With constant pressure to add features and options and configurations,
and to ship code quickly, it’s
easy to neglect simplicity, even though in the long run
simplicity is the key to good software.

Simplicity requires more work at the beginning of a project to reduce
an idea to its essence and more discipline over the lifetime of
a project to distinguish good changes from bad or
pernicious ones. With sufficient effort, a good change can be accommodated
without compromising what Fred Brooks called the “conceptual
integrity”

of the design but a bad change cannot, and a pernicious change
trades simplicity for its shallow cousin, convenience.

Only through simplicity of design can a system remain stable,
secure, and coherent as it grows.

The Go project includes the language itself, its
tools and standard libraries, and last but not least, a cultural agenda
of radical simplicity.

As a recent high-level language, Go has the benefit of
hindsight, and the basics are done well: it has garbage collection, a
package system, first-class functions, lexical scope, a system call
interface, and immutable strings in which text is generally encoded
in UTF-8.

But it has comparatively few features and is unlikely to add more.
For instance, it has
no implicit numeric conversions,
no constructors or destructors,
no operator overloading,
no default parameter values,
no inheritance,
no generics,
no exceptions,
no macros,
no function annotations, and
no thread-local storage.

The language is mature and stable, and guarantees backwards
compatibility: older Go programs can be compiled and run with newer
versions of compilers and standard libraries.

Go has enough of a type system to avoid most of the careless mistakes
that plague programmers in dynamic languages, but it has a simpler
type system than comparable typed languages.

This approach can sometimes lead to isolated pockets of “untyped”
programming within a broader framework of types,
and Go programmers do not go to the lengths that C++ or

Haskell programmers do to express safety properties as type-based proofs.

But in practice Go gives programmers much of the safety and run-time
performance benefits of a relatively strong type system without the burden of
a complex one.

Go encourages an awareness of contemporary computer system design,
particularly the importance of locality.

Its built-in data types and most library data structures are crafted
to work naturally without explicit initialization or implicit
constructors, so relatively few memory allocations and
memory writes are hidden in the code.

Go’s aggregate types (structs and arrays) hold their elements
directly, requiring less storage and fewer allocations and pointer
indirections than languages that use indirect fields.

And since the modern computer is a parallel machine, Go has
concurrency features based on CSP, as mentioned earlier.
The variable-size stacks of Go’s lightweight threads or
goroutines are initially small enough that creating one goroutine is
cheap and creating a million is practical.

Go’s standard library, often described as coming with “batteries
included,” provides clean building blocks and APIs for I/O, text
processing, graphics, cryptography, networking, and distributed
applications, with support for many standard file formats and
protocols.

The libraries and tools make extensive use of convention to reduce the need for
configuration and explanation, thus simplifying program logic and making
diverse Go programs more similar to each other and thus easier to
learn.

Projects built using the go tool use only file and identifier
names and an occasional special comment to determine all the
libraries, executables, tests, benchmarks, examples, platform-specific
variants, and documentation for a project;
the Go source itself contains the build specification.

Organization of the Book

We assume that you have programmed in one or more other
languages, whether compiled like C, C++, and Java, or interpreted like
Python, Ruby, and JavaScript, so we won’t spell out everything as if

for a total beginner. Surface syntax will be familiar, as will variables
and constants, expressions, control flow, and functions.

Chapter 1 is a tutorial on the basic constructs of Go, introduced
through a dozen programs for everyday tasks like
reading and writing files, formatting text, creating images,
and communicating with Internet clients and servers.

Chapter 2 describes the structural elements of
a Go program—declarations, variables, new types,
packages and files, and scope.

Chapter 3 discusses numbers, booleans,
strings, and constants, and explains how to process Unicode.

Chapter 4 describes composite
types, that is, types built up from simpler ones using
arrays, maps, structs, and slices, Go’s approach
to dynamic lists.

Chapter 5 covers functions and discusses error handling,
panic and recover, and the defer statement.

Chapters 1 through 5 are thus the basics, things that are part of
any mainstream imperative language. Go’s syntax and style sometimes
differ from other languages, but most programmers will pick them up quickly. The
remaining chapters focus on topics where Go’s approach is less conventional:
methods, interfaces, concurrency, packages, testing, and reflection.

Go has an unusual approach to object-oriented programming.
There are no class hierarchies, or indeed any classes;
complex object behaviors are
created from simpler ones by composition, not inheritance.

Methods may be associated with any user-defined type, not just
structures,
and the relationship between concrete types
and abstract types (interfaces) is implicit, so a concrete type may
satisfy an interface that the type’s designer was unaware of.
Methods are covered in Chapter 6 and interfaces
in Chapter 7.

Chapter 8 presents Go’s approach to concurrency,
which is based on the idea of communicating sequential processes (CSP),
embodied by goroutines and channels.

Chapter 9 explains the more
traditional aspects of concurrency based on shared variables.

Chapter 10 describes packages, the mechanism for organizing libraries.
This chapter also shows how to make effective use of the go tool,
which provides for compilation, testing, benchmarking, program formatting, documentation,
and many other tasks, all within a single command.

Chapter 11 deals with testing, where Go takes a notably
lightweight approach, avoiding abstraction-laden frameworks in favor
of simple libraries and tools.

The testing libraries provide a foundation atop which more complex
abstractions can be built if necessary.

Chapter 12 discusses reflection, the ability of a program
to examine its own representation during execution. Reflection is a
powerful tool, though one to be used carefully; this chapter explains
finding the right balance by showing how it is used to implement
some important Go libraries.

Chapter 13 explains the gory details of low-level
programming that uses the unsafe package to step around Go’s
type system, and when that is appropriate.

Each chapter has a number of exercises that you can use
to test your understanding of Go, and to explore
extensions and alternatives to the examples from the book.

All but the most trivial code examples in the book are available for
download from the public Git repository at gopl.io.

Each example is identified by its package import path and may be
conveniently fetched, built, and installed using the go get
command.

You’ll need to choose a directory to be your Go workspace and set the
GOPATH environment variable to point to it.

The go tool will create the directory if necessary.

For example:

Click here to view code image

$ export GOPATH=$HOME/gobook # choose workspace directory
$ go get gopl.io/ch1/helloworld # fetch, build, install
$ $GOPATH/bin/helloworld # run
Hello, [image: Image]

To run the examples, you will need at least version 1.5 of Go.

$ go version
go version go1.5 linux/amd64

Follow the instructions at https://golang.org/doc/install if
the go tool on your computer is older or missing.

Where to Find More Information

The best source for more information about Go is the official
web site, https://golang.org,
which provides access to the documentation,
including the Go Programming Language Specification, standard packages, and the like.
There are also tutorials on how to write Go and how to write it well,
and a wide variety of online text and video resources that will be
valuable complements to this book.

The Go Blog at blog.golang.org publishes some of the best writing on
Go, with articles on the state of the language, plans for
the future, reports on conferences, and in-depth explanations of a
wide variety of Go-related topics.

One of the most useful aspects of online access to Go (and a
regrettable limitation of a paper book) is the ability to run Go
programs from the web pages that describe them. This functionality is
provided by the Go Playground at play.golang.org, and may be

embedded within other pages, such as the home page at
golang.org or the documentation pages served by the godoc
tool.

The Playground makes it convenient to perform simple experiments to
check one’s understanding of syntax, semantics, or library packages
with short programs, and in many ways takes the place of a
read-eval-print loop (REPL) in other languages. Its persistent URLs
are great for sharing snippets of Go code with others, for reporting
bugs or making suggestions.

Built atop the Playground, the Go Tour at tour.golang.org is
a sequence of short interactive lessons on the basic ideas
and constructions of Go, an orderly walk through the language.

The primary shortcoming of the Playground and the Tour is that they allow
only standard libraries to be imported, and many library features—networking,
for example—are restricted for practical or security
reasons. They also require access to the Internet to compile and run
each program. So for more elaborate experiments, you will have to run
Go programs on your own computer. Fortunately the download process is
straightforward, so it should not take more than a few minutes to fetch the Go
distribution from golang.org and start writing and running Go
programs of your own.

Since Go is an open-source project, you can read the code for any type
or function in the standard library online at https://golang.org/pkg;
the same code is part of the downloaded
distribution.

Use this to figure out how something works, or to answer questions about
details, or merely to see how experts write really good Go.

Acknowledgments

Rob Pike and Russ Cox, core members of the Go team, read
the manuscript several times with great care; their comments
on everything from word choice to overall structure and
organization have been invaluable.

While preparing the Japanese translation, Yoshiki Shibata went far
beyond the call of duty; his meticulous eye spotted numerous
inconsistencies in the English text and errors in the code.

We greatly appreciate thorough reviews and critical comments on the entire manuscript from
Brian Goetz,
Corey Kosak,
Arnold Robbins,
Josh Bleecher Snyder,
and Peter Weinberger.

We are indebted to Sameer Ajmani, Ittai Balaban, David Crawshaw, Billy Donohue, Jonathan Feinberg, Andrew Gerrand, Robert Griesemer, John Linderman, Minux Ma, Bryan Mills, Bala Natarajan, Cosmos Nicolaou, Paul Staniforth, Nigel Tao, and Howard Trickey for many helpful suggestions. We also thank David Brailsford and Raph Levien for typesetting advice, and Chris Loper for explaining many mysteries of e-book production.

Our editor Greg Doench at Addison-Wesley got the ball rolling
originally and has been continuously helpful ever since.

The AW production team—John Fuller,
Dayna Isley,
Julie Nahil,
Chuti Prasertsith,
and
Barbara Wood—has been outstanding; authors could not hope for better support.

Alan Donovan wishes to thank:
Sameer Ajmani, Chris Demetriou, Walt Drummond, and Reid Tatge at
Google for allowing him time to write;
Stephen Donovan, for
his advice and timely encouragement; and above all, his wife Leila
Kazemi, for her unhesitating enthusiasm and unwavering support for
this project, despite the long hours of distraction and absenteeism
from family life that it entailed.

Brian Kernighan is deeply grateful to friends and colleagues for their
patience and forbearance as he moved slowly along the path to understanding,
and especially to his wife Meg, who has been unfailingly supportive of
book-writing and so much else.

New York

October 2015

1. Tutorial

This chapter is a tour of the basic components of Go. We hope to
provide enough information and examples to get you off the ground and
doing useful things as quickly as possible. The examples here, and
indeed in the whole book, are aimed at tasks that you might have to do
in the real world.

In this chapter we’ll try to give you a taste of the diversity of
programs that one might write in Go, ranging from simple file processing
and a bit of graphics
to concurrent Internet clients and servers.

We certainly won’t explain everything in
the first chapter, but studying such programs in a new language can be
an effective way to get started.

When you’re learning a new language, there’s a natural tendency to
write code as you would have written it in a language you already
know. Be aware of this bias as you learn
Go and try to avoid it. We’ve tried to illustrate and explain how to
write good Go, so use the code here as a guide when you’re
writing your own.

1.1 Hello, World

We’ll start with the now-traditional “hello, world” example, which
appears at the beginning of The C Programming Language,
published in 1978.

C is one of the most direct influences on Go,
and “hello, world” illustrates a number of central ideas.

Click here to view code image

gopl.io/ch1/helloworld

package main

import "fmt"

func main() {
 fmt.Println("Hello, [image: Image]")
}

Go is a compiled language. The
Go toolchain converts a source program
and the things it depends on into instructions in the native machine
language of a computer. These tools are accessed through a single
command called go

that has a number of subcommands. The simplest of
these subcommands is run, which compiles the source code from

one or more source files whose names end in .go, links it with libraries,
then runs the resulting executable file.

(We will use $ as the command prompt throughout the book.)

$ go run helloworld.go

Not surprisingly, this prints

Hello, [image: Image]

Go natively handles
Unicode, so it can process text in all the world’s languages.

If the program is more than a one-shot experiment, it’s likely
that you would want to compile it once and save the compiled result for
later use. That is done with go build:

$ go build helloworld.go

This creates an executable binary file called helloworld
that can be run any time without further processing:

$./helloworld
Hello, [image: Image]

We have labeled each significant
example as a reminder that you can obtain the
code from the book’s source code repository at gopl.io:

gopl.io/ch1/helloworld

If you run go get gopl.io/ch1/helloworld, it will fetch the source code and place
it in the corresponding directory. There’s more about this
topic in Section 2.6 and Section 10.7.

Let’s now talk about the program itself. Go code is organized into packages,

which are similar to libraries or modules in other
languages. A package consists of one or more .go source files
in a single directory that
define what the package does. Each source file begins with a
package declaration, here package main, that states which package the file belongs to,
followed by a list of other packages that it imports, and then the declarations
of the program that are stored in that file.

The Go standard library has over 100
packages for common tasks like input and output, sorting, and text
manipulation.
For instance, the fmt package contains functions for

printing formatted output and scanning input. Println is one of the

basic output functions in fmt; it prints one or more values, separated
by spaces, with a newline character at the end so that the values
appear as a single line of output.

Package main is special. It defines a standalone executable
program, not a library. Within package main the
function main is

also special—it’s where execution of the program begins. Whatever main
does is what the program does. Of course, main will normally call upon
functions in other packages to do much of the work, such as
the function fmt.Println.

We must tell the compiler what packages are needed by this
source file; that’s the role of the import declaration that follows the

package declaration. The “hello, world” program uses only one function from
one other package, but most programs will import more packages.

You must import exactly the packages you need.

A program will not compile
if there are missing imports or if there are unnecessary ones.
This strict requirement
prevents references to unused packages from accumulating as programs evolve.

The import declarations must follow the package declaration. After that,
a program consists of the declarations of functions, variables,
constants, and types
(introduced by the keywords func, var, const, and type);
for the most part, the order of declarations does not matter.
This program is about as short as
possible since it declares only one function, which in turn calls only
one other function. To save space, we will sometimes not show the package
and import declarations when presenting examples, but they are in the
source file and must be there to compile the code.

A function declaration consists of the keyword func, the name of the

function, a parameter list (empty for main),
a result list (also empty here), and the body of the function—the
statements that define what it does—enclosed in braces. We’ll
take a closer look at functions in Chapter 5.

Go does not
require semicolons at the ends of statements or declarations, except
where two or more appear on the same line. In effect, newlines
following certain tokens are converted into semicolons, so where newlines
are placed matters to proper parsing of Go code.
For instance, the opening brace { of the function must be on the same line as the
end of the func declaration, not on a line by itself,
and in the expression x + y, a newline is permitted after but
not before the + operator.

Go takes a strong stance on code formatting.
The gofmt tool rewrites code into the

standard format, and the go tool’s fmt subcommand applies
gofmt to all the files in the specified package, or the ones in the current
directory by default. All Go source files in the book
have been run through gofmt, and you should get into the habit of
doing the same for your own code.

Declaring a standard format by fiat eliminates a lot of pointless
debate about trivia and, more importantly, enables a variety of
automated source code transformations that would be infeasible
if arbitrary formatting were allowed.

Many text editors can be configured to run gofmt each time you save a file,
so that your source code is always properly formatted.

A related tool, goimports,

additionally manages the insertion and removal of import declarations
as needed.

It is not part of the standard distribution but you can obtain it
with this command:

Click here to view code image

$ go get golang.org/x/tools/cmd/goimports

For most users, the usual way to download and build packages, run
their tests, show their documentation, and so on, is with the
go tool, which we’ll look at in Section 10.7.

1.2 Command-Line Arguments

Most programs process some input to produce some output; that’s pretty
much the definition of computing. But how does a program get input data
on which to operate? Some programs generate their own data,
but more often, input comes from an external
source: a file, a network connection, the output of another program, a
user at a keyboard, command-line arguments, or the like. The
next few examples will discuss some of these alternatives, starting
with command-line arguments.

The os package provides functions and other values for dealing with

the operating system in a platform-independent fashion. Command-line
arguments are available to a program in a variable named Args that
is part of the os package; thus its name anywhere outside the
os package is os.Args.

The variable os.Args is a slice of strings.

Slices are a fundamental notion in Go, and we’ll talk a lot more about
them soon. For now, think of a slice as a dynamically sized sequence
s of array elements where individual elements can be accessed as
s[i] and a contiguous subsequence as s[m:n].

The number of elements is given by len(s).

As in most other programming languages,
all indexing in Go uses half-open intervals

that include the first index but exclude the last, because it
simplifies logic. For example, the slice s[m:n],

where 0 ≤ m ≤ n ≤ len(s), contains
n-m elements.

The first element of os.Args, os.Args[0], is the name of the command
itself; the other elements are the arguments that were presented to the program when it
started execution.
A slice expression of the form s[m:n] yields a slice that
refers to elements m through
n-1, so the elements we need for our next example are those in
the slice os.Args[1:len(os.Args)].
If m or n is omitted, it defaults to 0 or len(s) respectively,
so we can abbreviate the desired slice as os.Args[1:].

Here’s an implementation of the Unix echo command, which
prints its command-line arguments on a single line. It imports two packages,
which are given as a parenthesized list rather than as individual

import declarations. Either form is legal, but conventionally the
list form is used. The order of imports doesn’t matter;
the gofmt tool sorts the package names into alphabetical order.

(When there are several versions of an example, we will often number
them so you can be sure of which one we’re talking about.)

Click here to view code image

gopl.io/ch1/echo1

// Echo1 prints its command-line arguments.
package main

import (
 "fmt"
 "os"
)

func main() {
 var s, sep string
 for i := 1; i < len(os.Args); i++ {
 s += sep + os.Args[i]
 sep = " "
 }
 fmt.Println(s)
}

Comments begin with //. All text from a // to

the end of the line is commentary for programmers and is ignored by the
compiler.
By convention, we describe each package in a comment immediately preceding its
package declaration; for a main package, this comment is one or more
complete sentences that describe the program as a whole.

The var declaration declares two variables s and sep, of type
string. A variable can be initialized as part of its declaration.

If it is not explicitly initialized, it is implicitly
initialized to the zero value for its type, which is 0 for numeric

types and the empty string "" for strings.

Thus in this example, the declaration implicitly initializes s and sep to empty
strings.
We’ll have more to say

about variables and declarations in Chapter 2.

For numbers, Go provides the usual arithmetic and logical operators.

When applied to strings, however, the + operator concatenates the values,

so the expression

sep + os.Args[i]

represents the concatenation of the strings sep and os.Args[i].

The statement we used in the program,

s += sep + os.Args[i]

is an assignment statement that
concatenates the old value of s with sep and os.Args[i]
and assigns it back to s;
it is equivalent to

s = s + sep + os.Args[i]

The operator += is an assignment operator.

Each arithmetic and logical operator like + or *
has a corresponding assignment operator.

The echo program could have printed its output in a loop one piece at a
time, but this version instead builds up a string by repeatedly
appending new text to the end.

The string s starts life empty, that
is, with value "", and each trip through the loop adds some text to it;
after the first iteration,
a space is also inserted so that when the loop is finished, there is one
space between each argument.

This is a quadratic process
that could be costly if the number of arguments is large, but for
echo, that’s unlikely.

We’ll show a number of improved versions of echo in this
chapter and the next that will deal with any real inefficiency.

The loop index variable i is declared in the first part of the for
loop.
The := symbol is part of a short variable declaration, a

statement that declares one or more variables and gives them
appropriate types based on the initializer values; there’s
more about this in the next chapter.

The increment statement i++ adds 1 to i; it’s equivalent to i += 1

which is in turn equivalent to i = i + 1. There’s a corresponding
decrement statement i-- that subtracts 1. These are statements,
not expressions as they are in most languages in the C family, so

j = i++ is illegal, and they are postfix only, so --i is not legal either.

The for loop is the only loop statement in Go.

It has a number of forms, one of which is illustrated here:

Click here to view code image

for initialization; condition; post {
 // zero or more statements
}

Parentheses are never used around the three components of a for loop.

The braces are mandatory, however, and the opening brace must be on the same
line as the post statement.

The optional initialization statement is executed before the loop

starts. If it is present, it must be a simple
statement, that is, a short variable declaration, an increment or
assignment statement, or a function call.

The condition is a boolean expression that is evaluated at the beginning of
each iteration of the loop; if it evaluates to true, the statements
controlled by the loop are executed. The post statement is
executed after the body of the loop, then the condition is evaluated
again. The loop ends when the condition becomes false.

Any of these parts may be omitted. If there is no initialization and no
post, the semicolons may also be omitted:

// a traditional "while" loop
for condition {
 // ...
}

If the condition is omitted entirely in any of these forms, for example
in

// a traditional infinite loop
for {
 // ...
}

the loop is infinite, though loops of this form may be terminated in
some other way, like a break or return statement.

Another form of the for loop iterates over a range of

values from a data type like a string or a slice. To illustrate,
here’s a second version of echo:

Click here to view code image

gopl.io/ch1/echo2

// Echo2 prints its command-line arguments.
package main

import (
 "fmt"
 "os"
)

func main() {
 s, sep := "", ""
 for _, arg := range os.Args[1:] {
 s += sep + arg
 sep = " "
 }
 fmt.Println(s)
}

In each iteration of the loop, range produces a pair of values: the
index and the value of the element at that index.

In this example, we don’t need the index, but the syntax of a range loop requires
that if we deal with the element, we must deal with the index too.

One idea would be to assign the index to an obviously temporary
variable like temp and ignore its value, but Go does not permit
unused local variables, so this would result in a compilation error.

The solution is to use the blank identifier,
whose name is _ (that is, an underscore).

The blank identifier may be used whenever syntax requires a
variable name but program logic does not, for instance to
discard an unwanted loop index when we require only the element value.

Most Go programmers would likely use range and _
to write the echo program as above, since the indexing over
os.Args is implicit, not explicit, and thus easier to get
right.

This version of the program uses a short variable declaration to

declare and initialize s and sep,
but we could equally well have declared the variables separately.

There are several ways to declare a string variable; these are all equivalent:

s := ""
var s string
var s = ""
var s string = ""

Why should you prefer one form to another? The first form, a short
variable declaration, is the most compact, but it may be used only
within a function, not for package-level variables. The second form
relies on default initialization to the zero value for strings, which

is "".

The third form is rarely used except when declaring multiple variables.

The fourth form is explicit
about the variable’s type, which is redundant when it is the same as that
of the initial value but necessary in other cases where they are not
of the same type.

In practice, you should generally use one of the first two forms, with
explicit initialization to say that the initial value is important and
implicit initialization to say that the initial value doesn’t matter.

As noted above, each time around the loop, the string s gets completely new
contents. The += statement makes a new string by concatenating the old

string, a space character, and the next argument, then assigns the new string
to s. The old contents of s are no longer in use, so they will be
garbage-collected in due course.

If the amount of data involved is large, this could be costly.

A simpler and more efficient solution would be to use the
Join function from the strings package:

Click here to view code image

gopl.io/ch1/echo3

func main() {
 fmt.Println(strings.Join(os.Args[1:], " "))
}

Finally, if we don’t care about format but just want to see the
values, perhaps for debugging, we can let Println format
the results for us:

fmt.Println(os.Args[1:])

The output of this statement is like what we would get from
strings.Join, but with surrounding brackets.
Any slice may be printed this way.

Exercise 1.1: Modify the echo program to also print os.Args[0],
the name of the command that invoked it.

Exercise 1.2:
Modify the echo program to print the index and value of each of
its arguments, one per line.

Exercise 1.3:
Experiment to measure the difference in running time between our
potentially inefficient versions and the one that uses strings.Join.
(Section 1.6 illustrates part of the time package,
and Section 11.4 shows how to write benchmark tests
for systematic performance evaluation.)

1.3 Finding Duplicate Lines

Programs for file copying, printing, searching, sorting, counting,
and the like all have a similar structure: a loop over the input,
some computation on each element, and generation of output on the
fly or at the end.

We’ll show three variants of a program called dup; it is partly inspired
by the Unix uniq command, which looks for adjacent duplicate lines.

The structures and packages used are
models that can be easily adapted.

The first version of dup prints each line that appears
more than once in the standard input, preceded by its count.
This program introduces the if statement, the map data type, and
the bufio package.

Click here to view code image

gopl.io/ch1/dup1

// Dup1 prints the text of each line that appears more than
// once in the standard input, preceded by its count.
package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {
 counts := make(map[string]int)
 input := bufio.NewScanner(os.Stdin)
 for input.Scan() {
 counts[input.Text()]++
 }
 // NOTE: ignoring potential errors from input.Err()
 for line, n := range counts {
 if n > 1 {
 fmt.Printf("%d\t%s\n", n, line)
 }
 }
}

As with for, parentheses are never used

around the condition in an if statement, but braces are required
for the body.

There can be an optional else part that is executed if the condition is false.

A map holds a set of key/value pairs and provides
constant-time operations to store, retrieve, or test for an item in the set.

The key may be of any type whose values can be compared with ==,
strings being the most common example; the value may be of any type
at all.
In this example, the keys are strings and the values are
ints.

The built-in function make creates a new empty map;
it has other uses too.
Maps are discussed at length in Section 4.3.

Each time dup reads a line of input, the line is used as
a key into the map and the corresponding value is incremented.

The statement counts[input.Text()]++ is equivalent to these two
statements:

Click here to view code image

line := input.Text()
counts[line] = counts[line] + 1

It’s not a problem if the map doesn’t yet contain that key.
The first time a new line is seen, the expression counts[line]
on the right-hand side evaluates to the zero value for its type, which
is 0 for int.

To print the results, we use another range-based for

loop, this time over the counts map.
As before, each iteration produces two results, a key and the value of the map
element for that key.

The order of map iteration is not specified, but in practice it is random,
varying from one run to another.

This design is intentional, since it prevents programs from relying on
any particular ordering where none is guaranteed.

Onward to the bufio package, which helps make input and output efficient and
convenient.

One of its most useful features is a type called

Scanner that reads input and breaks it into lines or words; it’s
often the easiest way to process input that comes naturally in lines.

The program uses a short variable declaration to create a new variable
input that refers to a bufio.Scanner:

Click here to view code image

input := bufio.NewScanner(os.Stdin)

The scanner reads from the program’s standard input.

Each call to input.Scan() reads the next line and removes the
newline character from the end; the result
can be retrieved by calling input.Text(). The
Scan function returns true if there is a line and false
when there is no more input.

The function fmt.Printf, like printf in C and other

languages, produces formatted output from a list of expressions.

Its first argument is a format string that specifies how subsequent
arguments should be formatted.

The format of each argument is determined by a conversion
character, a letter following a percent sign.

For example, %d formats an integer operand using decimal notation,
and %s expands to the value of a string operand.

Printf has over a dozen such conversions,
which Go programmers call verbs.

This table is far from a complete specification but illustrates many
of the features that are available:

View table image

	%d
	decimal integer

	%x, %o, %b
	integer in hexadecimal, octal, binary

	%f, %g, %e
	floating-point number: 3.141593 3.141592653589793 3.141593e+00

	%t
	boolean: true or false

	%c
	rune (Unicode code point)

	%s
	string

	%q
	quoted string "abc" or rune 'c'

	%v
	any value in a natural format

	%T
	type of any value

	%%
	literal percent sign (no operand)

The format string in dup1 also contains a tab \t and a newline \n.
String literals may contain such escape sequences

for representing otherwise invisible characters.

Printf does not write a newline by default.

By convention, formatting functions whose names end in f, such
as log.Printf and fmt.Errorf, use
the formatting rules of fmt.Printf, whereas those whose names end in
ln follow Println,
formatting their arguments as if by %v,
followed by a newline.

Many programs read either from their standard input, as above, or from
a sequence of named files.

The next version of dup can read from the standard input or
handle a list of file names, using os.Open to open each one:

Click here to view code image

gopl.io/ch1/dup2

// Dup2 prints the count and text of lines that appear more than once
// in the input. It reads from stdin or from a list of named files.
package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {
 counts := make(map[string]int)
 files := os.Args[1:]
 if len(files) == 0 {
 countLines(os.Stdin, counts)
 } else {
 for _, arg := range files {
 f, err := os.Open(arg)
 if err != nil {
 fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
 continue
 }
 countLines(f, counts)
 f.Close()
 }
 }
 for line, n := range counts {
 if n > 1 {
 fmt.Printf("%d\t%s\n", n, line)
 }
 }
}

func countLines(f *os.File, counts map[string]int) {
 input := bufio.NewScanner(f)
 for input.Scan() {
 counts[input.Text()]++
 }
 // NOTE: ignoring potential errors from input.Err()
}

The function os.Open returns two values.

The first is an open file (*os.File)

that is used in subsequent reads by the Scanner.

The second result of os.Open is a value of the built-in
error type.

If err equals the special built-in value nil,
the file was opened successfully.

The file is read, and when the end of the input is reached,
Close closes the file and releases any resources.

On the other hand, if err is not nil, something went wrong.

In that case, the error value describes the problem.

Our simple-minded error handling prints a message on the standard error
stream using Fprintf and the verb %v, which displays a value of

any type in a default format,
and dup then carries on with the next file; the continue statement
goes to the next iteration of the enclosing for loop.

In the interests of keeping code samples to a reasonable size, our early
examples are intentionally somewhat cavalier about error handling.

Clearly we must check for an error from os.Open; however, we
are ignoring the less likely possibility that an error could occur while reading
the file with input.Scan.

We will note places where we’ve skipped error checking, and we will go
into the details of error handling in Section 5.4.

Notice that the call to countLines precedes its declaration.
Functions and other package-level entities may be declared in any order.

A map is a reference to the data structure created by
make.

When a map is passed to a function, the function receives a copy of
the reference, so any changes the called function makes to the underlying
data structure will be visible through the caller’s map reference too.

In our example, the values inserted into the counts map by
countLines are seen by main.

The versions of dup above operate in a “streaming” mode
in which input is read and broken into lines as needed,
so in principle these programs can handle an arbitrary amount of input.

An alternative approach is to read the entire input into memory in one big gulp,
split it into lines all at once, then process the lines.

The following version, dup3, operates in that fashion.

It introduces the function ReadFile (from the io/ioutil
package), which reads
the entire contents of a named file, and strings.Split,
which splits a string into a slice of substrings.

(Split is the opposite of strings.Join, which we
saw earlier.)

We’ve simplified dup3 somewhat.

First, it only reads named files, not the standard input, since
ReadFile requires a file name argument.

Second, we moved the counting of the lines back into main,
since it is now needed in only one place.

Click here to view code image

gopl.io/ch1/dup3

package main

import (
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

func main() {
 counts := make(map[string]int)
 for _, filename := range os.Args[1:] {
 data, err := ioutil.ReadFile(filename)
 if err != nil {
 fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
 continue
 }
 for _, line := range strings.Split(string(data), "\n") {
 counts[line]++
 }
 }
 for line, n := range counts {
 if n > 1 {
 fmt.Printf("%d\t%s\n", n, line)
 }
 }
}

ReadFile returns a byte slice
that must be converted into a string so it can be split
by strings.Split.

We will discuss strings and byte slices at length in Section 3.5.4.

Under the covers, bufio.Scanner, ioutil.ReadFile, and ioutil.WriteFile
use the Read and Write methods of *os.File, but it’s rare that most
programmers need to access those lower-level routines directly.

The higher-level functions like those from bufio and io/ioutil
are easier to use.

Exercise 1.4:
Modify dup2 to print the names of all files in which
each duplicated line occurs.

1.4 Animated GIFs

The next program demonstrates basic usage of Go’s standard image
packages, which we’ll use to create a sequence of bit-mapped images
and then encode the sequence as a GIF animation.

The images, called Lissajous figures,
were a staple visual effect in sci-fi films of the 1960s.
They are the parametric curves produced by harmonic oscillation in two
dimensions, such as two sine waves fed into the x and y inputs of an
oscilloscope.

Figure 1.1 shows some examples.

[image: Four Lissajous figures.]
Figure 1.1.
Four Lissajous figures.

There are several new constructs in this code, including
const declarations, struct types, and composite literals.

Unlike most of our examples, this one also involves floating-point computations.

We’ll discuss these topics only briefly here,
pushing most details off to later chapters, since the primary goal
right now is to give you an idea of what Go looks like and the kinds of
things that can be done easily with the language and its libraries.

Click here to view code image

gopl.io/ch1/lissajous

// Lissajous generates GIF animations of random Lissajous figures.
package main

import (
 "image"
 "image/color"
 "image/gif"
 "io"
 "math"
 "math/rand"
 "os"
)

var palette = []color.Color{color.White, color.Black}

const (
 whiteIndex = 0 // first color in palette
 blackIndex = 1 // next color in palette
)

func main() {
 lissajous(os.Stdout)
}

func lissajous(out io.Writer) {
 const (
 cycles = 5 // number of complete x oscillator revolutions
 res = 0.001 // angular resolution
 size = 100 // image canvas covers [-size..+size]
 nframes = 64 // number of animation frames
 delay = 8 // delay between frames in 10ms units
)
 freq := rand.Float64() * 3.0 // relative frequency of y oscillator
 anim := gif.GIF{LoopCount: nframes}
 phase := 0.0 // phase difference
 for i := 0; i < nframes; i++ {
 rect := image.Rect(0, 0, 2*size+1, 2*size+1)
 img := image.NewPaletted(rect, palette)
 for t := 0.0; t < cycles*2*math.Pi; t += res {
 x := math.Sin(t)
 y := math.Sin(t*freq + phase)
 img.SetColorIndex(size+int(x*size+0.5), size+int(y*size+0.5),
 blackIndex)
 }
 phase += 0.1
 anim.Delay = append(anim.Delay, delay)
 anim.Image = append(anim.Image, img)
 }
 gif.EncodeAll(out, &anim) // NOTE: ignoring encoding errors
}

After importing a package whose path has multiple components,
like image/color,

we refer to the package with a name that
comes from the last component.

Thus the variable color.White belongs to
the image/color package and gif.GIF belongs to
image/gif.

A const declaration (§3.6) gives names to constants,
that is, values that are fixed at

compile time, such as the numerical parameters for cycles, frames, and delay.
Like var declarations, const declarations may
appear at package level (so the names are visible throughout the
package) or within a function (so the names are visible only within
that function). The value of a constant must be a number, string, or
boolean.

The expressions []color.Color{...} and gif.GIF{...} are
composite literals (§4.2, §4.4.1),
a compact notation for instantiating any of
Go’s composite types from a sequence of element values.

Here, the first one is a slice and the second one is a struct.

The type gif.GIF is a struct type (§4.4).

A struct is a group of values called fields, often of different types,
that are collected together in a single object that can be treated as a
unit.

The variable anim is a struct of type gif.GIF.

The struct literal creates a struct value whose LoopCount field
is set to nframes; all other fields have the zero value for their
type.

The individual fields of a struct can be accessed using dot notation,
as in the final two assignments which explicitly update the
Delay and Image fields of anim.

The lissajous function has two nested loops.

The outer loop runs for 64 iterations, each producing a single frame
of the animation. It creates a new 201×201 image with a palette
of two colors, white and black.

All pixels are initially set to the palette’s zero value
(the zeroth color in the palette), which we set to white.

Each pass through the inner loop generates a new
image by setting some pixels to black. The result is appended, using the
built-in append function (§4.2.1),
to a list of frames in anim,
along with a specified delay of 80ms. Finally the sequence of frames
and delays is encoded into GIF format and written to the output stream
out.

The type of out is io.Writer,

which lets us write to a wide range of
possible destinations, as we’ll show soon.

The inner loop runs the two oscillators.
The x oscillator is just the sine function. The y
oscillator is also a sinusoid, but its frequency relative to
the x oscillator is a random number between 0 and 3, and its
phase relative to the x oscillator is initially zero but
increases with each frame of the animation.
The loop runs until the x oscillator has completed five full
cycles.
At each step, it calls SetColorIndex to color the pixel
corresponding to (x, y) black, which is at position
1 in the palette.

The main function calls the lissajous function,
directing it to write to the standard output,
so this command produces an animated
GIF with frames like those in Figure 1.1:

Click here to view code image

$ go build gopl.io/ch1/lissajous
$./lissajous >out.gif

Exercise 1.5:
Change the Lissajous program’s color palette to green on black, for
added authenticity.

To create the web color #RRGGBB, use
color.RGBA{0xRR, 0xGG, 0xBB, 0xff},
where each pair of hexadecimal digits
represents the intensity of the red, green, or blue component of the
pixel.

Exercise 1.6:
Modify the Lissajous program to produce images in multiple colors
by adding more values to palette and then displaying them
by changing the third argument of SetColorIndex in some
interesting way.

1.5 Fetching a URL

For many applications, access to information from the Internet is
as important as access to the local file system. Go provides a
collection of packages, grouped under net, that make it easy to send
and receive information through the Internet, make low-level network
connections, and set up servers, for which Go’s concurrency
features (introduced in Chapter 8) are particularly useful.

To illustrate the minimum necessary to retrieve information over HTTP,
here’s a simple program called fetch that fetches the content of
each specified URL and prints it as uninterpreted text; it’s inspired by the
invaluable utility curl.

Obviously one would usually do more with
such data, but this shows the basic idea.

We will use this program frequently in the book.

Click here to view code image

gopl.io/ch1/fetch

// Fetch prints the content found at a URL.
package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
)

func main() {
 for _, url := range os.Args[1:] {
 resp, err := http.Get(url)
 if err != nil {
 fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
 os.Exit(1)
 }
 b, err := ioutil.ReadAll(resp.Body)
 resp.Body.Close()
 if err != nil {
 fmt.Fprintf(os.Stderr, "fetch: reading %s: %v\n", url, err)
 os.Exit(1)
 }
 fmt.Printf("%s", b)
 }
}

This program introduces functions from two packages, net/http

and io/ioutil.

The http.Get function makes an HTTP request and, if there is no
error, returns the result
in the response struct resp.

The Body field of resp contains the server response as a readable stream.

Next, ioutil.ReadAll

reads the entire response; the result is stored in b.
The Body stream is closed to avoid leaking resources,
and Printf writes the response to the standard output.

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://gopl.io
<html>
<head>
<title>The Go Programming Language</title>
...

If the HTTP request fails, fetch reports the failure instead:

Click here to view code image

$./fetch http://bad.gopl.io
fetch: Get http://bad.gopl.io: dial tcp: lookup bad.gopl.io: no such host

In either error case, os.Exit(1) causes the process to
exit with a status code of 1.

Exercise 1.7:
The function call io.Copy(dst, src) reads from src
and writes to dst.

Use it instead of ioutil.ReadAll to copy the response
body to os.Stdout without requiring a buffer large
enough to hold the entire stream.

Be sure to check the error result of io.Copy.

Exercise 1.8:
Modify fetch to add the prefix http://
to each argument URL if it is
missing. You might want to use strings.HasPrefix.

Exercise 1.9:
Modify fetch to also print the HTTP status code,
found in resp.Status.

1.6 Fetching URLs Concurrently

One of the most interesting and novel aspects of Go is its support for
concurrent programming. This is a large topic, to which
Chapter 8 and Chapter 9
are devoted, so for now we’ll give you just a taste of Go’s
main concurrency mechanisms, goroutines and channels.

The next program, fetchall, does the same fetch of a URL’s contents as
the previous example, but it fetches many URLs, all
concurrently, so that the process will take no longer than the longest
fetch rather than the sum of all the fetch times. This version of
fetchall discards the
responses but reports the size and elapsed time for each one:

Click here to view code image

gopl.io/ch1/fetchall

// Fetchall fetches URLs in parallel and reports their times and sizes.
package main

import (
 "fmt"
 "io"
 "io/ioutil"
 "net/http"
 "os"
 "time"
)

func main() {
 start := time.Now()
 ch := make(chan string)
 for _, url := range os.Args[1:] {
 go fetch(url, ch) // start a goroutine
 }
 for range os.Args[1:] {
 fmt.Println(<-ch) // receive from channel ch
 }
 fmt.Printf("%.2fs elapsed\n", time.Since(start).Seconds())
}

func fetch(url string, ch chan<- string) {
 start := time.Now()
 resp, err := http.Get(url)
 if err != nil {
 ch <- fmt.Sprint(err) // send to channel ch
 return
 }

 nbytes, err := io.Copy(ioutil.Discard, resp.Body)
 resp.Body.Close() // don't leak resources
 if err != nil {
 ch <- fmt.Sprintf("while reading %s: %v", url, err)
 return
 }
 secs := time.Since(start).Seconds()
 ch <- fmt.Sprintf("%.2fs %7d %s", secs, nbytes, url)
}

Here’s an example:

Click here to view code image

$ go build gopl.io/ch1/fetchall
$./fetchall https://golang.org http://gopl.io https://godoc.org
0.14s 6852 https://godoc.org
0.16s 7261 https://golang.org
0.48s 2475 http://gopl.io
0.48s elapsed

A goroutine is a concurrent function execution.
A channel is a communication mechanism that allows one
goroutine to pass values of a specified type to another goroutine.

The function main runs in a goroutine and the go statement
creates additional goroutines.

The main function creates a channel of strings using make. For each

command-line argument, the go statement in the first range loop starts a new goroutine
that calls fetch asynchronously to fetch the URL using http.Get.

The io.Copy function reads the body of the response and discards it by
writing to the ioutil.Discard output stream.

Copy returns the byte count, along with any error that
occurred.

As each result arrives, fetch sends a summary line on the
channel ch.

The second range loop in main receives and prints those lines.

When one goroutine attempts a send or receive on a channel, it blocks until
another goroutine attempts the corresponding receive or send operation,
at which point the value is transferred and both goroutines proceed.

In this example, each fetch sends a value (ch <- expression)
on the channel ch,
and main receives all of them (<-ch).

Having main do all the printing ensures
that output from each goroutine is processed as a unit, with no
danger of interleaving if two goroutines finish at the same time.

Exercise 1.10:
Find a web site that produces a large amount of data. Investigate
caching by running
fetchall twice in succession to see whether the reported time
changes much. Do you get the same content each time? Modify
fetchall to print its output to a file so it can be examined.

Exercise 1.11:
Try fetchall with longer argument lists, such as samples
from the top million web sites available at alexa.com. How
does the program behave if a web site just doesn’t respond?
(Section 8.9 describes mechanisms for coping
in such cases.)

1.7 A Web Server

Go’s libraries makes it easy to write a web server that responds to client
requests like those made by fetch.
In this section, we’ll show a minimal server that
returns the path component of the URL used to access the server.
That is, if the request is for http://localhost:8000/hello, the
response will be URL.Path = "/hello".

Click here to view code image

gopl.io/ch1/server1

// Server1 is a minimal "echo" server.
package main

import (
 "fmt"
 "log"
 "net/http"
)

func main() {
 http.HandleFunc("/", handler) // each request calls handler
 log.Fatal(http.ListenAndServe("localhost:8000", nil))
}

// handler echoes the Path component of the requested URL.
func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "URL.Path = %q\n", r.URL.Path)
}

The program is only a handful of lines long because library functions do
most of the work.

The main function connects a handler function to incoming URLs whose path begins with /, which is all URLs, and starts a server listening
for incoming requests on port 8000.

A request is represented as a struct of type http.Request,
which contains a number of related fields, one of which is the URL of
the incoming request.

When a request arrives, it is given to the handler function, which
extracts the path component (/hello) from the request URL and
sends it back as the response, using fmt.Fprintf.

Web servers will be explained in detail in
Section 7.7.

Let’s start the server in the background.

On Mac OS X or Linux, add an ampersand (&) to the command;
on Microsoft Windows, you will need to run the command without the
ampersand in a separate command window.

Click here to view code image

$ go run src/gopl.io/ch1/server1/main.go &

We can then make client requests from the command line:

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://localhost:8000
URL.Path = "/"
$./fetch http://localhost:8000/help
URL.Path = "/help"

Alternatively, we can access the server from a web browser, as shown
in Figure 1.2.

[image: A response from the echo server.]
Figure 1.2.
A response from the echo server.

It’s easy to add features to the server. One useful addition
is a specific URL that returns a status of some
sort. For example, this version does the same echo but also counts
the number of requests; a request to the URL /count returns
the count so far, excluding /count requests themselves:

Click here to view code image

gopl.io/ch1/server2

// Server2 is a minimal "echo" and counter server.
package main

import (
 "fmt"
 "log"
 "net/http"
 "sync"
)

var mu sync.Mutex
var count int

func main() {
 http.HandleFunc("/", handler)
 http.HandleFunc("/count", counter)
 log.Fatal(http.ListenAndServe("localhost:8000", nil))
}

// handler echoes the Path component of the requested URL.
func handler(w http.ResponseWriter, r *http.Request) {
 mu.Lock()
 count++
 mu.Unlock()
 fmt.Fprintf(w, "URL.Path = %q\n", r.URL.Path)
}

// counter echoes the number of calls so far.
func counter(w http.ResponseWriter, r *http.Request) {
 mu.Lock()
 fmt.Fprintf(w, "Count %d\n", count)
 mu.Unlock()
}

The server has two handlers, and the request URL determines which one is
called: a request for /count invokes counter and all others invoke
handler. A handler pattern that ends with a slash matches any URL that
has the pattern as a prefix.

Behind the scenes, the server runs the handler for each incoming
request in a separate goroutine so that it can serve multiple
requests simultaneously.

However, if two concurrent requests try to update
count at the same time, it might not be incremented consistently; the program
would have a serious bug called a

race condition (§9.1).

To avoid this problem, we must ensure that at most one goroutine accesses
the variable at a time, which is the purpose of the mu.Lock()
and mu.Unlock() calls that bracket each access of count.

We’ll look more closely at concurrency with shared variables in
Chapter 9.

As a richer example, the handler function can report on the
headers and form data that it receives, making the server useful
for inspecting and debugging requests:

Click here to view code image

gopl.io/ch1/server3

// handler echoes the HTTP request.
func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL, r.Proto)
 for k, v := range r.Header {
 fmt.Fprintf(w, "Header[%q] = %q\n", k, v)
 }
 fmt.Fprintf(w, "Host = %q\n", r.Host)
 fmt.Fprintf(w, "RemoteAddr = %q\n", r.RemoteAddr)
 if err := r.ParseForm(); err != nil {
 log.Print(err)
 }
 for k, v := range r.Form {
 fmt.Fprintf(w, "Form[%q] = %q\n", k, v)
 }
}

This uses the fields of the http.Request struct

to produce output like this:

Click here to view code image

GET /?q=query HTTP/1.1
Header["Accept-Encoding"] = ["gzip, deflate, sdch"]
Header["Accept-Language"] = ["en-US,en;q=0.8"]
Header["Connection"] = ["keep-alive"]
Header["Accept"] = ["text/html,application/xhtml+xml,application/xml;..."]
Header["User-Agent"] = ["Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_5)..."]
Host = "localhost:8000"
RemoteAddr = "127.0.0.1:59911"
Form["q"] = ["query"]

Notice how the call to ParseForm is nested within an if
statement.

Go allows a simple statement such as a local variable declaration to
precede the if condition, which is particularly useful for
error handling as in this example.

We could have written it as

err := r.ParseForm()
if err != nil {
 log.Print(err)
}

but combining the statements is shorter and reduces the scope of the
variable err, which is good practice.

We’ll define scope in Section 2.7.

In these programs, we’ve seen three very different types used as output
streams. The fetch program copied HTTP response data
to os.Stdout, a file, as did the lissajous program. The fetchall
program threw the response away (while counting its length) by
copying it to the trivial sink ioutil.Discard.

And the web server above used
fmt.Fprintf to write to an http.ResponseWriter

representing the web browser.

Although these three types differ in the details of what they do, they all satisfy a
common interface, allowing any of them to be used wherever an output
stream is needed.
That interface, called io.Writer, is discussed in
Section 7.1.

Go’s interface mechanism is the topic of
Chapter 7, but to give an idea of what
it’s capable of, let’s see how easy it is to combine the web server
with the lissajous function so that animated GIFs
are written not to the standard output, but to the HTTP client.

Just add these lines to the web server:

Click here to view code image

handler := func(w http.ResponseWriter, r *http.Request) {
 lissajous(w)
}
http.HandleFunc("/", handler)

or equivalently:

Click here to view code image

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 lissajous(w)
})

The second argument to the HandleFunc function call immediately above
is a function literal, that is, an anonymous function defined at its
point of use.

We will explain it further in Section 5.6.

Once you’ve made this change, visit http://localhost:8000 in
your browser.

Each time you load the page, you’ll see a new animation like the one
in Figure 1.3.

Exercise 1.12:
Modify the Lissajous server to read parameter values from the URL.
For example, you might arrange it so that a URL like
http://localhost:8000/?cycles=20
sets the number of cycles to 20 instead of the default 5.

Use the strconv.Atoi function to convert the string
parameter into an integer.

You can see its documentation with go doc strconv.Atoi.

[image: Animated Lissajous figures in a browser.]
Figure 1.3.
Animated Lissajous figures in a browser.

1.8 Loose Ends

There is a lot more to Go than we’ve covered in this quick
introduction. Here are some topics we’ve barely touched upon or omitted entirely,
with just enough discussion that they will be familiar when they make brief
appearances before the full treatment.

Control flow:
We covered the two fundamental control-flow statements,
if and for, but not the switch statement, which is

a multi-way branch. Here’s a small example:

Click here to view code image

switch coinflip() {
case "heads":
 heads++
case "tails":
 tails++
default:
 fmt.Println("landed on edge!")
}

The result of calling coinflip is compared to the value of each case.

Cases are evaluated from top to bottom, so the first matching one is executed.

The optional default case matches if none of the other cases does;
it may be placed anywhere.

Cases do not fall through from one to the next as in C-like languages
(though there is a rarely used fallthrough statement that

overrides this behavior).

A switch does not need an operand;
it can just list the cases, each of which is a boolean expression:

func Signum(x int) int {
 switch {
 case x > 0:
 return +1
 default:
 return 0
 case x < 0:
 return -1
 }
}

This form is called a tagless switch; it’s equivalent to
switch true.

Like the for and if statements, a switch
may include an optional simple statement—a short variable declaration,
an increment or assignment statement, or a function call—that can be used
to set a value before it is tested.

The break and continue statements modify the flow of control.

A break causes control to resume at the next statement after
the innermost for, switch,
or select statement (which we’ll see later),
and as we saw in Section 1.3,
a continue causes the innermost for loop to
start its next iteration.

Statements may be labeled so that break and continue can
refer to them, for instance to break out of several nested loops at once
or to start the next iteration of the outermost loop.

There is even a

goto statement, though it’s intended for machine-generated
code, not regular use by programmers.

Named types:

A type declaration makes it possible to give a name to an existing type.
Since struct types are often long, they are nearly always named.
A familiar example is the definition of a Point type for
a 2-D graphics system:

type Point struct {
 X, Y int
}
var p Point

Type declarations and named types are covered in Chapter 2.

Pointers: Go provides pointers, that is, values that contain

the address of a variable. In some languages, notably C,
pointers are relatively unconstrained. In other languages, pointers
are disguised as “references,” and there’s not much that can be done with
them except pass them around. Go takes a position somewhere in the
middle.

Pointers are explicitly visible.

The & operator yields the address of a variable, and the
* operator retrieves the variable that the pointer refers to,

but there is no pointer arithmetic.

We’ll explain pointers in Section 2.3.2.

Methods and interfaces:
A method is a function associated with a named type;
Go is unusual in that methods may be attached to almost any named type.
Methods are covered in Chapter 6.

Interfaces are abstract types that let us treat different concrete
types in the same way based on what methods they have, not how they
are represented or implemented.

Interfaces are the subject of Chapter 7.

Packages:
Go comes with an extensive standard library of useful packages, and the Go
community has created and shared many more.

Programming is often more about using existing packages than about
writing original code of one’s own.

Throughout the book, we will point out a couple of dozen of the most important
standard packages, but there are many more we
don’t have space to mention, and we cannot provide anything remotely
like a complete reference for any package.

Before you embark on any new program, it’s a good idea
to see if packages already exist that
might help you get your job done more easily.

You can find an index of the standard library packages at
https://golang.org/pkg and the packages contributed by the
community at https://godoc.org.

The go doc tool makes these documents easily accessible from
the command line:

Click here to view code image

$ go doc http.ListenAndServe
package http // import "net/http"

func ListenAndServe(addr string, handler Handler) error

 ListenAndServe listens on the TCP network address addr and then
 calls Serve with handler to handle requests on incoming connections.
...

Comments:
We have already mentioned documentation comments at the beginning of a
program or package.

It’s also good style to write a comment
before the declaration of each function to specify its behavior.

These conventions are important, because they are used by
tools like go doc and godoc
to locate and display documentation (§10.7.4).

For comments that span multiple lines or appear within an expression
or statement, there is also the /* ... */ notation familiar from
other languages. Such comments are sometimes used at the beginning of
a file for a large block of explanatory text to avoid a // on
every line.

Within a comment, // and /* have no special meaning, so
comments do not nest.

2. Program Structure

In Go, as in any other programming language, one builds large programs from a small
set of basic constructs. Variables store values. Simple expressions
are combined into larger ones with operations like
addition and subtraction. Basic
types are collected into aggregates like arrays and structs.
Expressions are used in statements whose execution order is determined by
control-flow statements like if and for. Statements are
grouped into functions for isolation and reuse. Functions are
gathered into source files and packages.

We saw examples of most of these in the previous chapter.
In this chapter, we’ll go into more detail about the basic structural elements of a Go
program.
The example programs are intentionally simple, so we can
focus on the language without getting sidetracked by complicated
algorithms or data structures.

2.1 Names

The names of Go functions, variables, constants, types, statement labels, and packages
follow a simple rule: a name begins with a letter (that is, anything that
Unicode deems a letter) or an underscore and may have any number of

additional letters, digits, and underscores.
Case matters: heapSort and Heapsort are different names.

Go has 25 keywords
like if and switch that may be used only where the syntax permits;
they can’t be used as names.

Click here to view code image

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

In addition, there are about three dozen predeclared
names like int and true for built-in constants, types,
and functions:

	Constants:

	true false iota nil

	Types:

	int int8 int16 int32 int64

	

	uint uint8 uint16 uint32 uint64 uintptr

	

	float32 float64 complex128 complex64

	

	bool byte rune string error

	Functions:

	make len cap new append copy close delete

	

	complex real imag

	

	panic recover

These names are not reserved, so you may use
them in declarations. We’ll see a handful of places where redeclaring one
of them makes sense, but beware of the potential for confusion.

If an entity is declared within a function, it is local to that function.
If declared outside of a function, however, it is
visible in all files of the package to which it belongs.

The case of the first letter of a name determines
its visibility across package boundaries. If the name
begins with an upper-case letter, it is
exported, which means that it is visible and accessible outside

of its own package and may be referred to by other parts of the program,
as with Printf in the fmt package.

Package names themselves are always in lower case.

There is no limit on name length, but convention and style
in Go programs lean toward short names, especially for
local variables with small scopes; you are much more likely to see variables named i
than theLoopIndex. Generally, the larger the scope of a name,
the longer and more meaningful it should be.

Stylistically, Go programmers use “camel case” when forming names

by combining words; that is, interior capital letters are preferred
over interior underscores.

Thus the standard libraries have functions with names like
QuoteRuneToASCII and parseRequestLine but never
quote_rune_to_ASCII or parse_request_line.

The letters of acronyms and initialisms like ASCII and HTML
are always rendered in the same case, so a function might be
called htmlEscape, HTMLEscape, or escapeHTML, but
not escapeHtml.

2.2 Declarations

A declaration names a program entity and specifies some or all of
its properties. There are four major kinds of declarations: var,
const, type, and func. We’ll talk about variables
and types in this chapter, constants in Chapter 3,
and functions in Chapter 5.

A Go program is stored in one or more files whose names end in
.go. Each file begins with a package declaration that says
what package the file is part of.

The package declaration is followed by
any import declarations, and then a sequence of package-level

declarations of types, variables, constants, and functions, in any order.
For example, this program declares a constant, a function, and a couple of
variables:

Click here to view code image

gopl.io/ch2/boiling

// Boiling prints the boiling point of water.
package main

import "fmt"

const boilingF = 212.0

func main() {
 var f = boilingF
 var c = (f - 32) * 5 / 9
 fmt.Printf("boiling point = %g°F or %g°C\n", f, c)
 // Output:
 // boiling point = 212°F or 100°C
}

The constant boilingF is a package-level declaration (as is
main), whereas the variables f and c are
local to the function main.

The name of each package-level entity is
visible not only throughout the source file that contains its
declaration, but throughout all the files of the package.

By contrast, local declarations are visible only within
the function in which they are declared and perhaps only within a
small part of it.

A function declaration has a name, a list of parameters

(the variables whose values are provided by the function’s callers), an optional list of results,
and the function body, which contains the statements that define
what the function does. The result list is omitted if the function
does not return anything.

Execution of the function begins with the first statement and

continues until it encounters a return statement or reaches
the end of a function that has no results.

Control and any results are then returned to the caller.

We’ve seen a fair number of functions already and there are lots more
to come, including an extensive discussion in Chapter 5, so this is only a sketch. The function fToC below
encapsulates the temperature conversion logic so that it is defined
only once but may be used from multiple places. Here main calls it
twice, using the values of two different local constants:

Click here to view code image

gopl.io/ch2/ftoc

// Ftoc prints two Fahrenheit-to-Celsius conversions.
package main

import "fmt"

func main() {
 const freezingF, boilingF = 32.0, 212.0
 fmt.Printf("%g°F = %g°C\n", freezingF, fToC(freezingF)) // "32°F = 0°C"
 fmt.Printf("%g°F = %g°C\n", boilingF, fToC(boilingF)) // "212°F = 100°C"
}

func fToC(f float64) float64 {
 return (f - 32) * 5 / 9
}

2.3 Variables

A var
declaration creates a variable of a particular type, attaches a name to

it, and sets its initial value. Each declaration has the general form

var name type = expression

Either the type or the = expression part may be omitted, but
not both.

If the type is omitted, it is determined by the initializer
expression.

If the expression is omitted, the initial value is the zero value

for the type, which is 0 for numbers, false for booleans,
"" for strings, and nil for interfaces and reference
types (slice, pointer, map, channel, function).

The zero value of an aggregate type like an array or a struct has the
zero value of all of its elements or fields.

The zero-value mechanism ensures that a variable always
holds a well-defined value of its type; in Go there is no such thing as an uninitialized variable.
This simplifies code and often ensures sensible behavior of boundary
conditions without extra work. For example,

var s string
fmt.Println(s) // ""

prints an empty string, rather than causing some kind of error
or unpredictable behavior.

Go programmers often go to some effort to make the
zero value of a more complicated type meaningful, so that variables
begin life in a useful state.

It is possible to declare and optionally initialize a set of variables
in a single declaration, with a matching list of expressions.

Omitting the type allows declaration of multiple variables of
different types:

Click here to view code image

var i, j, k int // int, int, int
var b, f, s = true, 2.3, "four" // bool, float64, string

Initializers may be literal values or arbitrary expressions.
Package-level variables are initialized before main begins
(§2.6.2),
and local variables are initialized as their declarations
are encountered during function execution.

A set of variables can also be initialized by calling a function
that returns multiple values:

Click here to view code image

var f, err = os.Open(name) // os.Open returns a file and an error

2.3.1 Short Variable Declarations

Within a function, an alternate form called a short variable declaration
may be used to declare and initialize local variables.

It takes the form name := expression, and the type of
name is determined by the type of expression.

Here are three of the many short variable declarations in the
lissajous function (§1.4):

Click here to view code image

anim := gif.GIF{LoopCount: nframes}
freq := rand.Float64() * 3.0
t := 0.0

Because of their brevity and flexibility, short variable declarations are
used to declare and initialize the majority of local variables.

A var declaration tends to be reserved for local variables that
need an explicit type that differs from that of the initializer
expression, or for when the variable will be assigned a value later
and its initial value is unimportant.

Click here to view code image

i := 100 // an int
var boiling float64 = 100 // a float64

var names []string
var err error
var p Point

As with var
declarations, multiple variables may be declared and initialized in
the same short variable declaration,

i, j := 0, 1

but declarations with multiple initializer expressions should be used
only when they help readability, such as for short and natural
groupings like the initialization part of a for loop.

Keep in mind that := is a declaration, whereas = is an
assignment.

A multi-variable declaration should not be confused with a tuple assignment
(§2.4.1),
in which each variable on the left-hand side
is assigned the corresponding value from the right-hand side:

Click here to view code image

i, j = j, i // swap values of i and j

Like ordinary var declarations, short variable declarations may

be used for calls to functions like os.Open that return two or more
values:

f, err := os.Open(name)
if err != nil {
 return err
}
// ...use f...
f.Close()

One subtle but important point: a short variable declaration does not
necessarily declare all the variables on its left-hand side. If
some of them were already declared in the same
lexical block (§2.7), then the short variable declaration acts
like an assignment to those variables.

In the code below, the first statement declares both in and
err.

The second declares out but only assigns
a value to the existing err variable.

in, err := os.Open(infile)
// ...
out, err := os.Create(outfile)

A short variable declaration must declare at least one new variable, however,
so this code will not compile:

Click here to view code image

f, err := os.Open(infile)
// ...
f, err := os.Create(outfile) // compile error: no new variables

The fix is to use an ordinary assignment for the second statement.

A short variable declaration acts like an assignment only to variables
that were already declared in the same lexical block; declarations in
an outer block are ignored.

We’ll see examples of this at the end of the chapter.

2.3.2 Pointers

A variable is a piece of storage containing a value.

Variables created by declarations are identified by a name, such as
x, but many variables are identified only by expressions like
x[i] or x.f.

All these expressions read the value of a variable, except when they
appear on the left-hand side of an assignment, in which case a new value
is assigned to the variable.

A pointer value is the address of a variable.

A pointer is thus the location at which a value is stored.

Not every value has an address, but every variable does.
With a pointer, we can read or update the
value of a variable indirectly, without using or even knowing
the name of the variable, if indeed it has a name.

If a variable is declared var x int,
the expression &x (“address of x”) yields a pointer to an integer variable, that is, a

value of type *int, which is pronounced “pointer to int.” If this
value is called p, we say “p points to x,” or equivalently “p
contains the address of x.” The variable to which p points is
written *p. The expression *p yields the value of that variable,

an int, but since *p denotes a variable, it may also appear on the
left-hand side of an assignment, in which case the assignment updates
the variable.

Click here to view code image

x := 1
p := &x // p, of type *int, points to x
fmt.Println(*p) // "1"
*p = 2 // equivalent to x = 2
fmt.Println(x) // "2"

Each component of a variable of aggregate type—a field of a
struct or an element of an array—is also a variable and thus has
an address too.

Variables are sometimes described as addressable values.

Expressions that denote variables are the only expressions
to which the address-of operator & may be applied.

The zero value for a pointer of any type is nil. The test
p != nil is true if p points to a variable.

Pointers are comparable; two pointers are equal if and only if they point to the same variable

or both are nil.

Click here to view code image

var x, y int
fmt.Println(&x == &x, &x == &y, &x == nil) // "true false false"

It is perfectly safe for a function to return the
address of a local variable.

For instance, in the code below,

the local variable v created by this particular call to
f will remain in existence even after the call has returned, and
the pointer p will still refer to it:

var p = f()

func f() *int {
 v := 1
 return &v
}

Each call of f returns a distinct value:

Click here to view code image

fmt.Println(f() == f()) // "false"

Because a pointer contains the address of a variable, passing
a pointer argument to a function makes it possible for the function to
update the variable that was indirectly passed.

For example,
this function increments the variable that its argument points
to and returns the new value of the variable so it may be used in an expression:

Click here to view code image

func incr(p *int) int {
 *p++ // increments what p points to; does not change p
 return *p
}

v := 1
incr(&v) // side effect: v is now 2
fmt.Println(incr(&v)) // "3" (and v is 3)

Each time we take the address of a variable or copy a pointer,
we create new aliases or ways to identify the same variable.

For example, *p is an alias for v.

Pointer aliasing is useful because it allows us to access a variable
without using its name, but this is a double-edged sword: to find
all the statements that access a variable, we have to know all its
aliases.

It’s not just pointers that create aliases; aliasing also
occurs when we copy values of other reference types like slices,
maps, and channels, and even structs, arrays, and interfaces that
contain these types.

Pointers are key to the flag package, which uses a program’s command-line

arguments to set the values of certain variables

distributed throughout the program. To illustrate, this variation on
the earlier echo command takes two optional flags: -n causes echo
to omit the trailing newline that would normally be printed, and -s sep
causes it to separate the output arguments by the contents of the
string sep instead of the default single space.

Since this is our fourth version,
the package is called gopl.io/ch2/echo4.

Click here to view code image

gopl.io/ch2/echo4

// Echo4 prints its command-line arguments.
package main

import (
 "flag"
 "fmt"
 "strings"
)

var n = flag.Bool("n", false, "omit trailing newline")
var sep = flag.String("s", " ", "separator")

func main() {
 flag.Parse()
 fmt.Print(strings.Join(flag.Args(), *sep))
 if !*n {
 fmt.Println()
 }
}

The function flag.Bool creates a new flag variable of type bool.
It takes three arguments: the name of the flag ("n"), the variable’s
default value (false), and a message
that will be printed if the user provides an invalid argument, an
invalid flag, or -h or -help.

Similarly, flag.String takes a name, a default value, and a message,
and creates a string variable.

The variables sep and n are pointers to the
flag variables, which must be accessed indirectly as *sep
and *n.

When the program is run, it must call flag.Parse before the flags are used,
to update the flag variables from their default values.

The non-flag arguments are available from flag.Args() as a slice of strings. If
flag.Parse encounters an error, it prints a usage message
and calls os.Exit(2) to terminate the program.

Let’s run some test cases on echo:

Click here to view code image

$ go build gopl.io/ch2/echo4
$./echo4 a bc def
a bc def
$./echo4 -s / a bc def
a/bc/def
$./echo4 -n a bc def
a bc def$
$./echo4 -help
Usage of ./echo4:
 -n omit trailing newline
 -s string
 separator (default " ")

2.3.3 The new Function

Another way to create a variable is to use the built-in function new.

The expression new(T) creates an unnamed variable of type T,

initializes it to the zero value of T,
and returns its address, which is a value of type *T.

Click here to view code image

p := new(int) // p, of type *int, points to an unnamed int variable
fmt.Println(*p) // "0"
*p = 2 // sets the unnamed int to 2
fmt.Println(*p) // "2"

A variable created with new is no different from an ordinary
local variable whose address is taken, except that there’s no need to
invent (and declare) a dummy name, and we can use new(T) in an
expression.

Thus new is only a syntactic convenience, not a fundamental notion:
the two newInt functions below have identical behaviors.

Click here to view code image

func newInt() *int { func newInt() *int {
 return new(int) var dummy int
} return &dummy
 }

Each call to new returns a distinct variable with a unique address:

p := new(int)
q := new(int)
fmt.Println(p == q) // "false"

There is one exception to this rule: two variables whose type carries no
information and is therefore of size
zero, such as struct{} or [0]int, may, depending on the
implementation, have the same address.

The new function is relatively rarely used
because the most common unnamed
variables are of struct types, for which the struct literal syntax
(§4.4.1) is more flexible.

Since new is a predeclared function, not a keyword, it’s possible
to redefine the name for something else within a function, for
example:

Click here to view code image

func delta(old, new int) int { return new - old }

Of course, within delta, the built-in new function is unavailable.

2.3.4 Lifetime of Variables

The lifetime of a variable is the interval of time

during which it exists as the program executes.

The lifetime of a package-level variable is the entire execution of
the program.

By contrast, local variables have dynamic lifetimes: a new instance is created
each time the declaration statement is executed, and the variable lives on
until it becomes unreachable,
at which point its storage may be recycled.

Function parameters and results are local variables too;
they are created each time their enclosing function is called.

For example, in this excerpt from the Lissajous program of

Section 1.4,

Click here to view code image

for t := 0.0; t < cycles*2*math.Pi; t += res {
 x := math.Sin(t)
 y := math.Sin(t*freq + phase)
 img.SetColorIndex(size+int(x*size+0.5), size+int(y*size+0.5),
 blackIndex)
}

the variable t is created each time the for loop begins, and
new variables x and y are created on each iteration of
the loop.

How does the garbage collector know that a variable’s storage can be

reclaimed? The full story is much more detailed than we need here,
but the basic idea is that every package-level variable, and every
local variable of each currently active function, can potentially be
the start or root of a path to the variable in question, following pointers and
other kinds of references that ultimately lead to the variable.
If no such path exists, the variable has become
unreachable, so it can no longer affect the rest of the computation.

Because the lifetime of a variable is determined only by whether or
not it is reachable, a local variable may outlive a single iteration
of the enclosing loop. It may continue to exist even after its
enclosing function has returned.

A compiler may choose to allocate local variables on the heap or on

the stack but, perhaps surprisingly, this choice is not determined by
whether var or new was used to declare the variable.

Click here to view code image

var global *int

func f() { func g() {
 var x int y := new(int)
 x = 1 *y = 1
 global = &x }
}

Here, x must be heap-allocated because it is still reachable
from the variable global after f has returned, despite being
declared as a local variable; we say x escapes
from f.

Conversely, when g returns, the variable *y becomes
unreachable and can be recycled.

Since *y does not escape from g, it’s safe for the
compiler to allocate *y on the stack, even though it was allocated
with new.

In any case, the notion of escaping is not something that you need
to worry about in order to write correct code, though
it’s good to keep in mind during performance optimization, since each
variable that escapes requires an extra memory allocation.

Garbage collection is a tremendous help in writing correct programs, but
it does not relieve you of the burden of thinking about memory. You
don’t need to explicitly allocate and free memory, but to write
efficient programs you still need to be aware of the lifetime of
variables.

For example, keeping unnecessary pointers to short-lived objects within
long-lived objects, especially global variables, will prevent the
garbage collector from reclaiming the short-lived objects.

2.4 Assignments

The value held by a variable is updated by an assignment statement,
which in its simplest form has a variable on the left of the =
sign and an expression on the right.

Click here to view code image

x = 1 // named variable
*p = true // indirect variable
person.name = "bob" // struct field
count[x] = count[x] * scale // array or slice or map element

Each of the arithmetic and bitwise binary operators has a
corresponding assignment operator allowing, for example, the
last statement to be rewritten as

count[x] *= scale

which saves us from having to repeat (and re-evaluate) the expression for the variable.

Numeric variables can also be incremented and
decremented by ++ and -- statements:

Click here to view code image

v := 1
v++ // same as v = v + 1; v becomes 2
v-- // same as v = v - 1; v becomes 1 again

2.4.1 Tuple Assignment

Another form of assignment, known as tuple assignment, allows

several variables to be assigned at once. All of the right-hand side
expressions are evaluated before any of the variables are updated,
making this form most useful when some of the variables appear on both
sides of the assignment, as happens, for example, when swapping the
values of two variables:

x, y = y, x

a[i], a[j] = a[j], a[i]

or when computing the greatest common divisor (GCD) of two integers:

func gcd(x, y int) int {
 for y != 0 {
 x, y = y, x%y
 }
 return x
}

or when computing the n-th Fibonacci number iteratively:

func fib(n int) int {
 x, y := 0, 1
 for i := 0; i < n; i++ {
 x, y = y, x+y
 }
 return x
}

Tuple assignment can also make a sequence of trivial assignments
more compact,

i, j, k = 2, 3, 5

though as a matter of style, avoid the
tuple form if the expressions are complex; a sequence of
separate statements is easier to read.

Certain expressions, such as a call to a
function with multiple results, produce several values.

When such a call is used in an assignment statement, the left-hand
side must have as many variables as the function has results.

Click here to view code image

f, err = os.Open("foo.txt") // function call returns two values

Often, functions use these additional results to
indicate some kind of error, either by returning an error as in the
call to os.Open, or a bool, usually called ok.

As we’ll see in later chapters, there are three operators that
sometimes behave this way too. If a map lookup (§4.3), type
assertion (§7.10), or channel receive (§8.4.2) appears in an assignment in which two results
are expected, each produces an additional boolean result:

Click here to view code image

v, ok = m[key] // map lookup
v, ok = x.(T) // type assertion
v, ok = <-ch // channel receive

As with variable declarations, we can assign unwanted values to
the blank identifier:

Click here to view code image

_, err = io.Copy(dst, src) // discard byte count
_, ok = x.(T) // check type but discard result

2.4.2 Assignability

Assignment statements are an explicit form of assignment, but there

are many places in a program where an assignment occurs implicitly:

a function call implicitly assigns the argument values to the
corresponding parameter variables; a return statement implicitly
assigns the return operands to the corresponding result variables;
and a literal expression for a composite type (§4.2) such as
this slice:

Click here to view code image

medals := []string{"gold", "silver", "bronze"}

implicitly assigns each element, as if it had been written like
this:

medals[0] = "gold"
medals[1] = "silver"
medals[2] = "bronze"

The elements of maps and channels, though not ordinary variables,
are also subject to similar implicit assignments.

An assignment, explicit or implicit, is always legal if the left-hand side
(the variable) and the right-hand side (the value) have the same type.
More generally, the assignment is legal only if the value
is assignable to the type of the variable.

The rule for assignability has cases for various types, so we’ll

explain the relevant case as we introduce each new type. For the
types we’ve discussed so far, the rules are simple: the types
must exactly match, and nil may be assigned to any variable of
interface or reference type.

Constants (§3.6) have more flexible
rules for assignability that avoid the need for most explicit
conversions.

Whether two values may be compared with
== and != is related to assignability: in any
comparison, the first operand must be assignable to the type of the
second operand, or vice versa.

As with assignability, we’ll explain the relevant cases for
comparability when we present each new type.

2.5 Type Declarations

The type of a variable or expression defines the characteristics of

the values it may take on, such as their size (number of bits or
number of elements, perhaps), how they are represented internally, the
intrinsic operations that can be performed on them, and the methods
associated with them.

In any program there are variables that share the same
representation but signify very different concepts. For instance,
an int could be used to represent a loop index, a
timestamp, a file descriptor, or a month; a float64 could represent
a velocity in meters per second or a temperature in one of several
scales; and a
string could represent a password or the name of a color.

A type declaration defines a new named type that has the

same underlying type as an existing type. The named type provides a way to
separate different and perhaps incompatible uses of the underlying type
so that they can’t be mixed unintentionally.

type name underlying-type

Type declarations most often appear at package level, where the named type is
visible throughout the package, and if the name is exported (it starts with
an upper-case letter), it’s
accessible from other packages as well.

To illustrate type declarations, let’s
turn the different temperature scales into different types:

Click here to view code image

gopl.io/ch2/tempconv0

// Package tempconv performs Celsius and Fahrenheit temperature computations.
package tempconv

import "fmt"

type Celsius float64
type Fahrenheit float64

const (
 AbsoluteZeroC Celsius = -273.15
 FreezingC Celsius = 0
 BoilingC Celsius = 100
)

func CToF(c Celsius) Fahrenheit { return Fahrenheit(c*9/5 + 32) }

func FToC(f Fahrenheit) Celsius { return Celsius((f - 32) * 5 / 9) }

This package defines two types, Celsius and
Fahrenheit, for the two units of temperature. Even though both

have the same underlying type, float64,
they are not the same type, so they cannot be compared or combined in
arithmetic expressions. Distinguishing the types makes it
possible to avoid errors like inadvertently combining temperatures in
the two different scales; an explicit type conversion like
Celsius(t) or Fahrenheit(t) is required to convert
from a float64.

Celsius(t) and Fahrenheit(t) are conversions, not function calls.
They don’t change the value or representation in any way,
but they make the change of meaning explicit.

On the other hand, the functions CToF and FToC convert between the two
scales; they do return different values.

For every type T, there is a corresponding conversion operation
T(x) that converts the value x to type T.

A conversion from one type to another is allowed if both have
the same underlying type, or if both are unnamed pointer types that
point to variables of the same underlying type; these conversions change the
type but not the representation of the value.

If x is assignable to T,
a conversion is permitted but is usually redundant,

Conversions are also allowed between numeric types, and between
string and some slice types, as we will see in the next chapter. These
conversions may change the representation of the value.

For instance, converting a floating-point number to an integer
discards any fractional part, and converting a string to a
[]byte slice allocates a copy of the string data.

In any case, a conversion never fails at run time.

The underlying type of a named type determines its structure and representation,
and also the set of intrinsic operations it supports, which are
the same as if the underlying type had been used directly.

That means that arithmetic operators work
the same for Celsius and Fahrenheit as they do for float64, as
you might expect.

Click here to view code image

fmt.Printf("%g\n", BoilingC-FreezingC) // "100" °C
boilingF := CToF(BoilingC)
fmt.Printf("%g\n", boilingF-CToF(FreezingC)) // "180" °F
fmt.Printf("%g\n", boilingF-FreezingC) // compile error: type mismatch

Comparison operators like == and < can also be
used to compare a value of a named type to another of the same
type, or to a value of the underlying type. But two values of
different named types cannot be compared directly:

Click here to view code image

var c Celsius
var f Fahrenheit
fmt.Println(c == 0) // "true"
fmt.Println(f >= 0) // "true"
fmt.Println(c == f) // compile error: type mismatch
fmt.Println(c == Celsius(f)) // "true"!

Note the last case carefully. In spite of its name,
the type conversion Celsius(f) does not change the
value of its argument, just its type. The test is true because c
and f are both zero.

A named type may provide notational convenience if it helps avoid

writing out complex types over and over again. The advantage is small
when the underlying type is simple like float64, but big
for complicated types, as we will see when we discuss structs.

Named types also make it possible to define
new behaviors for values of the type. These behaviors are expressed as
a set of functions associated with the type, called the type’s
methods. We’ll look at methods in detail in Chapter 6
but will give a taste of the mechanism here.

The declaration below, in which the Celsius parameter c

appears before the function name, associates with the Celsius
type a method named String that returns c’s numeric

value followed by °C:

Click here to view code image

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }

Many types declare a String method of this form because
it controls how values of the type appear when printed as a string by
the fmt package, as we will see in Section 7.1.

Click here to view code image

c := FToC(212.0)
fmt.Println(c.String()) // "100°C"
fmt.Printf("%v\n", c) // "100°C"; no need to call String explicitly
fmt.Printf("%s\n", c) // "100°C"
fmt.Println(c) // "100°C"
fmt.Printf("%g\n", c) // "100"; does not call String
fmt.Println(float64(c)) // "100"; does not call String

2.6 Packages and Files

Packages in Go serve the same purposes as libraries or modules
in other languages, supporting modularity, encapsulation, separate compilation,
and reuse. The source code for a package resides in one or more
.go files, usually in a directory whose name ends with the
import path; for instance, the files of the gopl.io/ch1/helloworld package are
stored in directory $GOPATH/src/gopl.io/ch1/helloworld.

Each package serves as a separate name space for its declarations.

Within the image package, for example, the identifier
Decode refers to a different function than does the same identifier
in the unicode/utf16 package.

To refer to a function from
outside its package, we must qualify the identifier to make
explicit whether we mean image.Decode or utf16.Decode.

Packages also let us hide information by
controlling which names are visible outside the package, or exported.

In Go, a simple rule governs which identifiers are exported
and which are not: exported identifiers start with an
upper-case letter.

To illustrate the basics, suppose that our temperature conversion software
has become popular and we want to make it available to the Go
community as a new package. How do we do that?

Let’s create a package called gopl.io/ch2/tempconv, a variation
on the previous example.

(Here we’ve made an exception to our usual rule of numbering examples
in sequence, so that the package path can be more realistic.)

The package itself is stored in two files to show how declarations in
separate files of a package are accessed; in real life, a tiny package like this
would need only one file.

We have put the declarations of the types, their constants, and their
methods in tempconv.go:

Click here to view code image

gopl.io/ch2/tempconv

// Package tempconv performs Celsius and Fahrenheit conversions.
package tempconv

import "fmt"

type Celsius float64
type Fahrenheit float64

const (
 AbsoluteZeroC Celsius = -273.15
 FreezingC Celsius = 0
 BoilingC Celsius = 100
)

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }
func (f Fahrenheit) String() string { return fmt.Sprintf("%g°F", f) }

and the conversion functions in conv.go:

Click here to view code image

package tempconv

// CToF converts a Celsius temperature to Fahrenheit.
func CToF(c Celsius) Fahrenheit { return Fahrenheit(c*9/5 + 32) }

// FToC converts a Fahrenheit temperature to Celsius.
func FToC(f Fahrenheit) Celsius { return Celsius((f - 32) * 5 / 9) }

Each file starts with a package declaration
that defines the package name. When the package is imported,
its members are referred to as tempconv.CToF and so on.
Package-level names like the types and constants declared in one file of a
package are visible to all the other files of the package, as if the
source code were all in a single file. Note that tempconv.go imports
fmt, but conv.go does not, because it does not use anything
from fmt.

Because the package-level const names begin with upper-case letters, they too are
accessible with qualified names like tempconv.AbsoluteZeroC:

Click here to view code image

fmt.Printf("Brrrr! %v\n", tempconv.AbsoluteZeroC) // "Brrrr! -273.15°C"

To convert a Celsius temperature to Fahrenheit in a package that
imports gopl.io/ch2/tempconv, we can write the following code:

Click here to view code image

fmt.Println(tempconv.CToF(tempconv.BoilingC)) // "212°F"

The doc comment (§10.7.4) immediately
preceding the package
declaration documents the package as a whole. Conventionally, it
should start with a summary sentence in the style illustrated. Only
one file in each package should have a package doc comment. Extensive
doc comments are often placed in a file of their own, conventionally
called doc.go.

Exercise 2.1:
Add types, constants, and functions to tempconv for processing
temperatures in the Kelvin scale, where zero Kelvin is −273.15°C
and a difference of 1K has the same magnitude as 1°C.

2.6.1 Imports

Within a Go program, every package is identified by a unique string
called its import path. These are the strings that appear in an

import declaration like "gopl.io/ch2/tempconv".

The language specification doesn’t define where these strings come
from or what they mean; it’s up to
the tools to interpret them.
When using the go tool (Chapter 10),

an import path denotes a directory
containing one or more Go source files that together make up the
package.

In addition to its import path, each package has a package
name, which is the short (and not necessarily unique) name that

appears in its package declaration.

By convention, a package’s name matches the last segment of its import
path, making it easy to predict that the package name of
gopl.io/ch2/tempconv is tempconv.

To use gopl.io/ch2/tempconv, we must import it:

Click here to view code image

gopl.io/ch2/cf

// Cf converts its numeric argument to Celsius and Fahrenheit.
package main

import (
 "fmt"
 "os"
 "strconv"

 "gopl.io/ch2/tempconv"
)

func main() {
 for _, arg := range os.Args[1:] {
 t, err := strconv.ParseFloat(arg, 64)
 if err != nil {
 fmt.Fprintf(os.Stderr, "cf: %v\n", err)
 os.Exit(1)
 }
 f := tempconv.Fahrenheit(t)
 c := tempconv.Celsius(t)
 fmt.Printf("%s = %s, %s = %s\n",
 f, tempconv.FToC(f), c, tempconv.CToF(c))
 }
}

The import declaration binds a short name to the imported package that
may be used to refer to its contents throughout the file.

The import above lets us refer to names within gopl.io/ch2/tempconv
by using a qualified identifier like tempconv.CToF.

By default, the short name is the package name—tempconv in this
case—but an import declaration may specify an alternative name to avoid
a conflict (§10.3).

The cf program converts a single numeric command-line argument

to its value in both Celsius and Fahrenheit:

$ go build gopl.io/ch2/cf
$./cf 32
32°F = 0°C, 32°C = 89.6°F
$./cf 212
212°F = 100°C, 212°C = 413.6°F
$./cf -40
-40°F = -40°C, -40°C = -40°F

It is an error to import a package and then not refer to it.
This check helps eliminate dependencies that become unnecessary
as the code evolves, although it can be a
nuisance during debugging, since commenting out a line of code like
log.Print("got here!") may remove the sole reference to the package
name log, causing the compiler to emit an error.

In this situation, you need to comment out or delete the unnecessary
import.

Better still, use the golang.org/x/tools/cmd/goimports tool,

which automatically inserts and removes packages from the import
declaration as necessary; most editors can be configured to run
goimports each time you save a file.
Like the gofmt tool, it also

pretty-prints Go source files in the canonical format.

Exercise 2.2:
Write a general-purpose unit-conversion program analogous to cf that reads
numbers from its command-line arguments or from the standard input
if there are no arguments, and converts each number into
units like temperature in Celsius and Fahrenheit,
length in feet and meters, weight in pounds and kilograms, and the like.

2.6.2 Package Initialization

Package initialization begins by initializing package-level variables
in the order in which they are declared, except that dependencies are resolved first:

Click here to view code image

var a = b + c // a initialized third, to 3
var b = f() // b initialized second, to 2, by calling f
var c = 1 // c initialized first, to 1

func f() int { return c + 1 }

If the package has multiple .go files, they
are initialized in the order in which the files are given to the
compiler; the go tool sorts .go files by name before
invoking the compiler.

Each variable declared at package level starts life with the value of
its initializer expression, if any, but for some variables, like
tables of data, an initializer expression may not be the simplest way
to set its initial value.

In that case, the init function mechanism may be

simpler.

Any file may contain any number of functions
whose declaration is just

func init() { /* ... */ }

Such init functions can’t be called or referenced,
but otherwise they are normal functions.

Within each file, init functions are automatically executed when the
program starts, in the order in which they are declared.

One package is initialized at a time, in the order of imports in the
program, dependencies first, so a package p importing
q can be sure that q is fully initialized before
p’s initialization begins.

Initialization proceeds from the bottom up; the main package
is the last to be initialized. In this manner, all packages are
fully initialized before the application’s main function
begins.

The package below defines a function PopCount that returns the
number of set bits, that is, bits whose value is 1, in a uint64
value, which is called its population count.

It uses an init function to precompute a table of results,
pc, for each possible 8-bit value so that the PopCount
function needn’t take 64 steps but can just return the sum of eight table
lookups.

(This is definitely not the fastest algorithm for counting bits,
but it’s convenient for illustrating init functions, and for showing
how to precompute a table of values, which is often a useful
programming technique.)

Click here to view code image

gopl.io/ch2/popcount

package popcount

// pc[i] is the population count of i.
var pc [256]byte

func init() {
 for i := range pc {
 pc[i] = pc[i/2] + byte(i&1)
 }
}

// PopCount returns the population count (number of set bits) of x.
func PopCount(x uint64) int {
 return int(pc[byte(x>>(0*8))] +
 pc[byte(x>>(1*8))] +
 pc[byte(x>>(2*8))] +
 pc[byte(x>>(3*8))] +
 pc[byte(x>>(4*8))] +
 pc[byte(x>>(5*8))] +
 pc[byte(x>>(6*8))] +
 pc[byte(x>>(7*8))])
}

Note that the range loop in init uses only the index;
the value is unnecessary and thus need not be included.

The loop could also have been written as

for i, _ := range pc {

We’ll see other uses of init functions in the next section and
in Section 10.5.

Exercise 2.3:
Rewrite PopCount to use a loop instead of a single expression.
Compare the performance of the two versions.

(Section 11.4 shows how to compare the
performance of different implementations systematically.)

Exercise 2.4:
Write a version of PopCount that counts bits by shifting
its argument through 64 bit positions, testing the rightmost bit
each time. Compare its performance to the table-lookup version.

Exercise 2.5:
The expression x&(x-1) clears the rightmost non-zero bit of
x. Write a version of PopCount that counts bits by
using this fact, and assess its performance.

2.7 Scope

A declaration associates a name with a program entity, such as a function
or a variable.

The scope of a declaration is the part of the source code where
a use of the declared name refers to that declaration.

Don’t confuse scope with lifetime.

The scope of a declaration is a region of the program text; it is a
compile-time property.

The lifetime of a variable is the range of time during execution when
the variable can be referred to by other parts of the program; it is a
run-time property.

A syntactic block is a sequence of statements enclosed
in braces like those that surround the body of a function or loop.

A name declared inside a syntactic block is not visible outside that
block.

The block encloses its declarations and determines their scope.

We can generalize this notion of blocks to include other groupings of
declarations that are not explicitly surrounded by braces in the
source code; we’ll call them all lexical blocks.

There is a lexical block for the entire source code, called the
universe block; for each package; for each file; for each
for, if, and switch statement; for each case
in a switch or select statement; and, of course, for each
explicit syntactic block.

A declaration’s lexical block determines its scope, which may be large
or small.

The declarations of built-in types, functions, and
constants like int, len, and true
are in the universe block and
can be referred to throughout the entire program.

Declarations outside any function, that is, at package level,
can be referred to from any file in the same package.

Imported packages, such as fmt in the tempconv example,
are declared at the file level, so they can be referred to from
the same file, but not from another file in the same package without
another import.

Many declarations, like that of the variable c in the
tempconv.CToF function, are local, so they can be
referred to only from within the same function or perhaps just a part
of it.

The scope of a control-flow label, as used by
break, continue, and goto statements, is
the entire enclosing function.

A program may contain multiple declarations of the same name so long as
each declaration is in a different lexical block.

For example, you can declare a local variable with the same name as a
package-level variable.

Or, as shown in Section 2.3.3, you can declare a
function parameter called new, even though a function of
this name is predeclared in the universe block.

Don’t overdo it, though; the larger the scope of the redeclaration,
the more likely you are to surprise the reader.

When the compiler encounters a reference to a name, it looks for
a declaration, starting with the innermost enclosing lexical block
and working up to the universe block.

If the compiler finds no declaration, it reports an “undeclared name” error.

If a name is declared in both an outer block and an inner block, the inner
declaration will be found first.

In that case, the inner declaration is said to shadow or
hide the outer one, making it inaccessible:

Click here to view code image

func f() {}

var g = "g"

func main() {
 f := "f"
 fmt.Println(f) // "f"; local var f shadows package-level func f
 fmt.Println(g) // "g"; package-level var
 fmt.Println(h) // compile error: undefined: h
}

Within a function, lexical blocks may be nested to arbitrary depth, so
one local declaration can shadow another.

Most blocks are created by control-flow constructs like
if statements and for loops.

The program below has three different variables called
x because each declaration appears in a different lexical block.
(This example illustrates scope rules, not good style!)

Click here to view code image

func main() {
 x := "hello!"
 for i := 0; i < len(x); i++ {
 x := x[i]
 if x != '!' {
 x := x + 'A' - 'a'
 fmt.Printf("%c", x) // "HELLO" (one letter per iteration)
 }
 }
}

The expressions x[i] and x + 'A' - 'a' each refer to
a declaration of x from an outer block; we’ll explain that in a moment.

(Note that the latter expression is not equivalent to unicode.ToUpper.)

As mentioned above, not all lexical blocks correspond to explicit brace-delimited
sequences of statements; some are merely implied.

The for loop above creates two lexical blocks: the
explicit block for the loop body,
and an implicit block that additionally encloses the
variables declared by the initialization clause, such as i.

The scope of a variable declared in the implicit block is the
condition, post-statement (i++), and body of the for
statement.

The example below also has three variables named x, each
declared in a different block—one in the function body, one in the
for statement’s block, and one in the loop body—but only two
of the blocks are explicit:

Click here to view code image

func main() {
 x := "hello"
 for _, x := range x {
 x := x + 'A' - 'a'
 fmt.Printf("%c", x) // "HELLO" (one letter per iteration)
 }
}

Like for loops, if statements and switch statements
also create implicit blocks in addition to their body blocks.

The code in the following if-else chain shows the scope
of x and y:

Click here to view code image

if x := f(); x == 0 {
 fmt.Println(x)
} else if y := g(x); x == y {
 fmt.Println(x, y)
} else {
 fmt.Println(x, y)
}
fmt.Println(x, y) // compile error: x and y are not visible here

The second if statement is nested within the first,
so variables declared within the first statement’s initializer
are visible within the second.

Similar rules apply to each case of a switch statement:
there is a block for the condition and a block for each
case body.

At the package level, the order in which declarations appear has no
effect on their scope, so a declaration may refer to itself or
to another that follows it, letting us declare recursive or mutually
recursive types and functions.

The compiler will report an error if a constant or variable
declaration refers to itself, however.

In this program:

Click here to view code image

if f, err := os.Open(fname); err != nil { // compile error: unused: f
 return err
}
f.ReadByte() // compile error: undefined f
f.Close() // compile error: undefined f

the scope of f is just the if statement, so f is not
accessible to the statements that follow, resulting in compiler
errors.

Depending on the compiler, you may get an additional error reporting
that the local variable f was never used.

Thus it is often necessary to declare f before the condition so
that it is accessible after:

f, err := os.Open(fname)
if err != nil {
 return err
}
f.ReadByte()
f.Close()

You may be tempted to avoid declaring f and err in the
outer block by moving the calls to ReadByte and Close
inside an else block:

Click here to view code image

if f, err := os.Open(fname); err != nil {
 return err
} else {
 // f and err are visible here too
 f.ReadByte()
 f.Close()
}

but normal practice in Go is to deal with the error in the if
block and then return, so that the successful execution path is not
indented.

Short variable declarations demand an awareness of scope.

Consider the program below, which starts by obtaining its current working
directory and saving it in a package-level variable. This could be
done by calling os.Getwd in function main, but it might
be better to separate this concern from the primary logic, especially
if failing to get the directory is a fatal error.

The function log.Fatalf prints a message and calls
os.Exit(1).

Click here to view code image

var cwd string

func init() {
 cwd, err := os.Getwd() // compile error: unused: cwd
 if err != nil {
 log.Fatalf("os.Getwd failed: %v", err)
 }
}

Since neither cwd nor err is already declared in
the init function’s block, the := statement declares
both of them as local variables.

The inner declaration of cwd makes the outer one inaccessible,
so the statement does not update the package-level cwd variable
as intended.

Current Go compilers detect that the local cwd variable is never
used and report this as an error, but they are not strictly required
to perform this check. Furthermore, a minor change, such as the
addition of a logging statement that refers to the local cwd
would defeat the check.

Click here to view code image

var cwd string

func init() {
 cwd, err := os.Getwd() // NOTE: wrong!
 if err != nil {
 log.Fatalf("os.Getwd failed: %v", err)
 }
 log.Printf("Working directory = %s", cwd)
}

The global cwd variable remains
uninitialized, and the apparently normal log output obfuscates the
bug.

There are a number of ways to deal with this potential problem.
The most direct is to avoid := by declaring err
in a separate var declaration:

Click here to view code image

var cwd string

func init() {
 var err error
 cwd, err = os.Getwd()
 if err != nil {
 log.Fatalf("os.Getwd failed: %v", err)
 }
}

We’ve now seen how packages, files, declarations, and statements
express the structure of programs.

In the next two chapters, we’ll look at the structure of data.

3. Basic Data Types

It’s all bits at the bottom, of course, but computers operate
fundamentally on fixed-size numbers called words, which are
interpreted as integers, floating-point numbers, bit sets,
or memory addresses, then
combined into larger aggregates that represent packets, pixels,
portfolios, poetry, and everything else.

Go offers a variety of ways to organize data,
with a spectrum of data types that at one end match the
features of the hardware and at the other end provide what
programmers need to conveniently represent complicated
data structures.

Go’s types fall into four categories: basic types,
aggregate types, reference types, and interface types.

Basic types, the topic of this chapter, include numbers, strings, and booleans.

Aggregate types—arrays (§4.1) and structs
(§4.4)—form more complicated data types by
combining values of several simpler ones.

Reference types are a diverse group that includes pointers
(§2.3.2), slices (§4.2), maps
(§4.3), functions (Chapter 5), and channels
(Chapter 8), but what
they have in common is that they all refer to program variables or state
indirectly, so that the effect of an operation applied to one
reference is observed by all copies of that reference.

Finally, we’ll talk about interface types in
Chapter 7.

3.1 Integers

Go’s numeric data types include several sizes of integers,
floating-point numbers, and complex numbers. Each numeric type
determines the size and signedness of its values.

Let’s begin with integers.

Go provides both signed and unsigned integer arithmetic.
There are four distinct sizes of
signed integers—8, 16, 32, and 64 bits—represented by the types
int8, int16, int32, and int64, and corresponding unsigned
versions uint8, uint16, uint32, and uint64.

There are also two types called just int and uint that are the
natural or most efficient size for signed and unsigned integers on a particular platform;
int is by far the most widely used numeric type.

Both these types have the same size, either 32 or 64 bits, but one
must not make assumptions about which; different compilers may make
different choices even on identical hardware.

The type rune is a synonym for int32 and conventionally
indicates that a value is a Unicode code point.
The two names may be used interchangeably.

Similarly, the type byte is a synonym for uint8, and
emphasizes that the value is a piece of raw data rather than a small
numeric quantity.

Finally, there is an unsigned integer type uintptr, whose
width is not specified but is sufficient to hold all the bits
of a pointer value.

The uintptr type is used only for low-level programming, such
as at the boundary of a Go program with a C library or an operating
system.

We’ll see examples of this when we deal with the unsafe package
in Chapter 13.

Regardless of their size, int, uint, and uintptr
are different types from their explicitly sized siblings.

Thus int is not the same type as int32, even if the
natural size of integers is 32 bits, and an explicit conversion is
required to use an int value where an int32 is needed, and vice versa.

Signed numbers are represented in 2’s-complement form, in which the

high-order bit is reserved for the sign of the number and the range of
values of an n-bit number is from −2n−1 to 2n−1−1.
Unsigned integers use the full range of bits for non-negative values and
thus have the range 0 to 2n−1.
For instance, the range of int8 is −128 to
127, whereas the range of uint8 is 0 to 255.

Go’s binary operators for arithmetic, logic, and comparison are listed here
in order of decreasing precedence:

Click here to view code image

* / % << >> & &^
+ - | ^
== != < <= > >=
&&
||

There are only five levels of precedence for binary operators.
Operators at the same level associate to the left, so parentheses
may be required for clarity, or to make the operators evaluate in the intended order
in an expression like mask & (1 << 28).

Each operator in the first two lines of the table above, for instance
+, has a corresponding assignment operator like +=
that may be used to abbreviate an assignment statement.

The integer arithmetic operators +, -,
*, and / may be applied to integer, floating-point, and complex numbers,
but the remainder operator % applies only to integers.

The behavior of % for negative numbers varies across
programming languages. In Go, the
sign of the remainder is always the same as the sign of the dividend,
so -5%3 and -5%-3 are both -2.

The behavior of / depends on whether its operands are integers,
so 5.0/4.0 is 1.25, but 5/4 is 1 because
integer division truncates the result toward zero.

If the result of an arithmetic operation, whether signed or unsigned, has
more bits than can be represented in the result type, it is said to overflow.

The high-order bits that do not fit are silently discarded.

If the original
number is a signed type, the result could be negative if the leftmost
bit is a 1, as in the int8 example here:

Click here to view code image

var u uint8 = 255
fmt.Println(u, u+1, u*u) // "255 0 1"

var i int8 = 127
fmt.Println(i, i+1, i*i) // "127 -128 1"

Two integers of the same type may be compared using the binary
comparison operators below; the type of a comparison expression
is a boolean.

	==

	equal to

	!=

	not equal to

	<

	less than

	<=

	less than or equal to

	>

	greater than

	>=

	greater than or equal to

In fact, all values of basic type—booleans, numbers, and strings—are
comparable, meaning that two values of the same type may
be compared using the == and != operators.

Furthermore, integers, floating-point numbers, and strings are
ordered by the comparison operators.

The values of many other types are not comparable, and no other types are
ordered. As we encounter each type, we’ll present the rules governing
the comparability of its values.

There are also unary addition and subtraction operators:

	+

	unary positive (no effect)

	-

	unary negation

For integers, +x is a shorthand for 0+x and
-x is a shorthand for 0-x;
for floating-point and complex numbers, +x is just x and
-x is the negation of x.

Go also provides the following bitwise binary operators,
the first four of which treat their operands as bit patterns with no
concept of arithmetic carry or sign:

	&

	bitwise AND

	|

	bitwise OR

	^

	bitwise XOR

	&^

	bit clear (AND NOT)

	<<

	left shift

	>>

	right shift

The operator ^ is bitwise exclusive OR (XOR) when used as a binary operator,
but when used as a unary prefix operator it is bitwise negation or complement; that is,
it returns a value with each bit in its operand inverted.

The &^ operator is bit clear (AND NOT): in the
expression z = x &^ y, each bit of z is
0 if the corresponding bit of y is 1; otherwise it equals
the corresponding bit of x.

The code below shows how bitwise operations can be used to interpret
a uint8 value as a compact and efficient set of 8 independent
bits. It uses Printf’s %b verb to print a number’s binary digits;

08 modifies %b (an adverb!) to
pad the result with zeros to exactly 8 digits.

Click here to view code image

var x uint8 = 1<<1 | 1<<5
var y uint8 = 1<<1 | 1<<2

fmt.Printf("%08b\n", x) // "00100010", the set {1, 5}
fmt.Printf("%08b\n", y) // "00000110", the set {1, 2}

fmt.Printf("%08b\n", x&y) // "00000010", the intersection {1}
fmt.Printf("%08b\n", x|y) // "00100110", the union {1, 2, 5}
fmt.Printf("%08b\n", x^y) // "00100100", the symmetric difference {2, 5}
fmt.Printf("%08b\n", x&^y) // "00100000", the difference {5}

for i := uint(0); i < 8; i++ {
 if x&(1<<i) != 0 { // membership test
 fmt.Println(i) // "1", "5"
 }
}

fmt.Printf("%08b\n", x<<1) // "01000100", the set {2, 6}
fmt.Printf("%08b\n", x>>1) // "00010001", the set {0, 4}

(Section 6.5 shows an implementation of
integer sets that can be much bigger than a byte.)

In the shift operations x<<n and x>>n, the n operand

determines the number of bit positions to shift and must be unsigned; the x
operand may be unsigned or signed. Arithmetically, a left shift
x<<n is equivalent to multiplication by 2n
and a right shift x>>n
is equivalent to the floor of division by 2n.

Left shifts fill the vacated bits with zeros, as do right shifts of
unsigned numbers, but right shifts of signed numbers fill the vacated
bits with copies of the sign bit. For this reason, it is important to
use unsigned arithmetic when you’re treating an integer as a bit
pattern.

Although Go provides unsigned numbers and arithmetic, we tend to use
the signed int form even for quantities that can’t be negative, such as
the length of an array, though uint might seem a more obvious
choice.

Indeed, the built-in len function returns a signed int,

as in this loop which announces prize medals in reverse order:

Click here to view code image

medals := []string{"gold", "silver", "bronze"}
for i := len(medals) - 1; i >= 0; i-- {
 fmt.Println(medals[i]) // "bronze", "silver", "gold"
}

The alternative would be calamitous.
If len returned an unsigned number, then i too would be a uint,
and the condition i >= 0 would always be true by definition.
After the third iteration, in which i == 0, the i--
statement would cause i to become not −1, but the maximum uint
value (for example, 264−1), and the evaluation of medals[i] would
fail at run time, or panic (§5.9), by
attempting to access an element outside the bounds of the slice.

For this reason, unsigned numbers tend to be used only when their

bitwise operators or peculiar arithmetic operators are required,
as when implementing bit sets, parsing binary file formats,
or for hashing and cryptography.

They are typically not used for merely non-negative quantities.

In general, an explicit conversion is required to convert a value from
one type to another, and binary operators for arithmetic and logic
(except shifts) must have operands of the same type.

Although this occasionally results in longer expressions, it also
eliminates a whole class of problems and makes programs easier to
understand.

As an example familiar from other contexts, consider this sequence:

Click here to view code image

var apples int32 = 1
var oranges int16 = 2
var compote int = apples + oranges // compile error

Attempting to compile these three declarations produces an error message:

Click here to view code image

invalid operation: apples + oranges (mismatched types int32 and int16)

This type mismatch can be fixed in several ways, most directly by converting

everything to a common type:

Click here to view code image

var compote = int(apples) + int(oranges)

As described in Section 2.5,
for every type T, the conversion operation T(x)
converts the value x to type T if the conversion is allowed.

Many integer-to-integer conversions do not entail any
change in value; they just tell the compiler how to interpret a value.

But a conversion that narrows a big integer into a smaller one, or a
conversion from integer to floating-point or vice versa, may change
the value or lose precision:

Click here to view code image

f := 3.141 // a float64
i := int(f)
fmt.Println(f, i) // "3.141 3"
f = 1.99
fmt.Println(int(f)) // "1"

Float to integer conversion discards any fractional part, truncating

toward zero.
You should avoid conversions in which the operand is out of range for
the target type, because the behavior depends on the implementation:

Click here to view code image

f := 1e100 // a float64
i := int(f) // result is implementation-dependent

Integer literals of any size and type can be written as ordinary
decimal numbers, or as octal numbers if they begin with 0, as in

0666, or as hexadecimal if they begin with 0x or 0X, as in
0xdeadbeef. Hex digits may be upper or lower case. Nowadays octal

numbers seem to be used for exactly one purpose—file permissions on
POSIX systems—but hexadecimal numbers are widely used to emphasize

the bit pattern of a number over its numeric value.

When printing numbers using the fmt package, we can control the radix and format
with the %d, %o, and %x verbs, as shown in this example:

Click here to view code image

o := 0666
fmt.Printf("%d %[1]o %#[1]o\n", o) // "438 666 0666"
x := int64(0xdeadbeef)
fmt.Printf("%d %[1]x %#[1]x %#[1]X\n", x)
// Output:
// 3735928559 deadbeef 0xdeadbeef 0XDEADBEEF

Note the use of two fmt tricks.

Usually a Printf format string containing multiple %
verbs would require the same number of extra operands, but the
[1] “adverbs” after % tell Printf to use the first operand over

and over again. Second, the # adverb for %o or %x
or %X tells Printf to emit a
0 or 0x or 0X prefix respectively.

Rune literals are written as a character within single quotes. The

simplest example is an ASCII character like 'a', but it’s possible
to write any Unicode code point either directly or with numeric
escapes, as we will see shortly.

Runes are printed with %c, or with %q if quoting is desired:

Click here to view code image

ascii := 'a'
unicode := '[image: Image]'
newline := '\n'
fmt.Printf("%d %[1]c %[1]q\n", ascii) // "97 a 'a'"
fmt.Printf("%d %[1]c %[1]q\n", unicode) // "22269 [image: Image] '[image: Image]'"
fmt.Printf("%d %[1]q\n", newline) // "10 '\n'"

3.2 Floating-Point Numbers

Go provides two sizes of floating-point numbers, float32 and

float64.
Their arithmetic properties are governed by the IEEE 754 standard

implemented by all modern CPUs.

Values of these numeric types range from tiny to huge.
The limits of floating-point values can be found in the math

package.
The constant math.MaxFloat32, the largest float32, is
about 3.4e38, and math.MaxFloat64 is about 1.8e308.
The smallest
positive values are near 1.4e-45 and 4.9e-324, respectively.

A float32 provides approximately six decimal digits of precision, whereas
a float64 provides about 15 digits; float64 should be preferred for
most purposes because float32 computations accumulate error
rapidly unless one is quite careful, and the smallest positive integer that
cannot be exactly represented as a float32 is not large:

Click here to view code image

var f float32 = 16777216 // 1 << 24
fmt.Println(f == f+1) // "true"!

Floating-point numbers can be written literally using decimals, like this:

Click here to view code image

const e = 2.71828 // (approximately)

Digits may be omitted before the decimal point (.707) or after it
(1.). Very small or very large numbers are better
written in scientific notation, with the letter e or E preceding
the decimal exponent:

Click here to view code image

const Avogadro = 6.02214129e23
const Planck = 6.62606957e-34

Floating-point values are conveniently printed with Printf’s %g verb,

which chooses the most compact representation that has adequate precision,

but for tables of
data, the %e (exponent) or %f (no exponent) forms may be more
appropriate.

All three verbs allow field width and numeric precision to be
controlled.

Click here to view code image

for x := 0; x < 8; x++ {
 fmt.Printf("x = %d ex = %8.3f\n", x, math.Exp(float64(x)))
}

The code above
prints the powers of e with three decimal digits of precision, aligned
in an eight-character field:

x = 0 ex = 1.000
x = 1 ex = 2.718
x = 2 ex = 7.389
x = 3 ex = 20.086
x = 4 ex = 54.598
x = 5 ex = 148.413
x = 6 ex = 403.429
x = 7 ex = 1096.633

In addition to a large collection of the usual mathematical functions,
the math package has functions for creating and detecting the
special values defined by IEEE 754: the positive and negative

infinities, which represent numbers of excessive magnitude and the
result of division by zero; and NaN (“not a number”), the result of

such mathematically dubious operations as 0/0 or Sqrt(-1).

Click here to view code image

var z float64
fmt.Println(z, -z, 1/z, -1/z, z/z) // "0 -0 +Inf -Inf NaN"

The function math.IsNaN tests whether its argument is a not-a-number
value, and math.NaN returns such a value. It’s
tempting to use NaN as a sentinel value in a numeric computation, but
testing whether a specific computational result is equal to NaN is
fraught with peril because any comparison with NaN always yields false:

Click here to view code image

nan := math.NaN()
fmt.Println(nan == nan, nan < nan, nan > nan) // "false false false"

If a function that returns a floating-point result
might fail, it’s better to report the failure separately, like this:

Click here to view code image

func compute() (value float64, ok bool) {
 // ...
 if failed {
 return 0, false
 }
 return result, true
}

The next program illustrates floating-point graphics
computation. It plots a function of two variables z = f(x, y)
as a wire mesh 3-D surface, using Scalable Vector Graphics (SVG),

a standard XML notation for line drawings.
Figure 3.1 shows an example of its output
for the function sin(r)/r, where r is
sqrt(x*x+y*y).

[image: A surface plot of the function sin(r)/r.]
Figure 3.1.
A surface plot of the function sin(r)/r.

Click here to view code image

gopl.io/ch3/surface

// Surface computes an SVG rendering of a 3-D surface function.
package main

import (
 "fmt"
 "math"
)

const (
 width, height = 600, 320 // canvas size in pixels
 cells = 100 // number of grid cells
 xyrange = 30.0 // axis ranges (-xyrange..+xyrange)
 xyscale = width / 2 / xyrange // pixels per x or y unit
 zscale = height * 0.4 // pixels per z unit
 angle = math.Pi / 6 // angle of x, y axes (=30°)
)

var sin30, cos30 = math.Sin(angle), math.Cos(angle) // sin(30°), cos(30°)

func main() {
 fmt.Printf("<svg xmlns='http://www.w3.org/2000/svg' "+
 "style='stroke: grey; fill: white; stroke-width: 0.7' "+
 "width='%d' height='%d'>", width, height)
 for i := 0; i < cells; i++ {
 for j := 0; j < cells; j++ {
 ax, ay := corner(i+1, j)
 bx, by := corner(i, j)
 cx, cy := corner(i, j+1)
 dx, dy := corner(i+1, j+1)
 fmt.Printf("<polygon points='%g,%g %g,%g %g,%g %g,%g'/>\n",
 ax, ay, bx, by, cx, cy, dx, dy)
 }
 }
 fmt.Println("</svg>")
}

func corner(i, j int) (float64, float64) {
 // Find point (x,y) at corner of cell (i,j).
 x := xyrange * (float64(i)/cells - 0.5)
 y := xyrange * (float64(j)/cells - 0.5)

 // Compute surface height z.
 z := f(x, y)

 // Project (x,y,z) isometrically onto 2-D SVG canvas (sx,sy).
 sx := width/2 + (x-y)*cos30*xyscale
 sy := height/2 + (x+y)*sin30*xyscale - z*zscale
 return sx, sy
}

func f(x, y float64) float64 {
 r := math.Hypot(x, y) // distance from (0,0)
 return math.Sin(r) / r
}

Notice that the function corner returns two values, the coordinates
of the corner of the cell.

The explanation of how the program works requires only basic geometry, but it’s fine to skip
over it, since the point is to illustrate floating-point computation.

The essence of the program is mapping between three different
coordinate systems, shown in Figure 3.2.
The first is a 2-D grid of 100×100 cells
identified by integer coordinates (i, j), starting at (0, 0) in the far
back corner. We plot from the back to the front so that background
polygons may be obscured by foreground ones.

[image: Three different coordinate systems.]
Figure 3.2.
Three different coordinate systems.

The second coordinate system is a mesh of 3-D floating-point coordinates (x,
y, z), where x and y are linear functions
of i and j, translated so that the origin is in the center,
and scaled by the constant xyrange. The height z is the value of the
surface function f (x, y).

The third coordinate system is the 2-D image canvas, with (0, 0) in
the top left corner. Points in this plane are denoted (sx, sy).

We use an isometric projection to map each 3-D point
(x, y, z) onto the 2-D canvas.

A point appears farther to the right on the canvas the greater its
x value or the smaller its y value.

And a point appears farther down the canvas the greater its x
value or y value, and the smaller its z value.

The vertical and horizontal scale factors for x and y
are derived from the sine and cosine of a 30° angle.

The scale factor for z, 0.4, is an arbitrary parameter.

For each cell in the 2-D grid, the main function computes the
coordinates on the image canvas of the four corners of the polygon
ABCD, where B corresponds to (i, j) and A,
C, and D are its neighbors, then prints an SVG instruction
to draw it.

Exercise 3.1:
If the function f returns a non-finite float64 value,
the SVG file will contain invalid <polygon>
elements (although many SVG renderers handle this gracefully).

Modify the program to skip invalid polygons.

Exercise 3.2:
Experiment with visualizations of other functions from the math package.
Can you produce an egg box, moguls, or a saddle?

Exercise 3.3:
Color each polygon based on its height, so that the peaks are colored
red (#ff0000) and the valleys blue (#0000ff).

Exercise 3.4:
Following the approach of the Lissajous example in Section 1.7,
construct a web server that computes surfaces and writes SVG data to
the client.

The server must set the Content-Type header like this:

Click here to view code image

w.Header().Set("Content-Type", "image/svg+xml")

(This step was not required in the Lissajous example because the server
uses standard heuristics to recognize common formats like PNG from the
first 512 bytes of the response, and generates the proper header.)

Allow the client to specify values like height, width, and color as
HTTP request parameters.

3.3 Complex Numbers

Go provides two sizes of complex numbers, complex64 and
complex128, whose components are float32 and float64

respectively.

The built-in function complex creates a complex number from its

real and imaginary components, and the built-in real and imag functions
extract those components:

Click here to view code image

var x complex128 = complex(1, 2) // 1+2i
var y complex128 = complex(3, 4) // 3+4i
fmt.Println(x*y) // "(-5+10i)"
fmt.Println(real(x*y)) // "-5"
fmt.Println(imag(x*y)) // "10"

If a floating-point literal or decimal integer literal is immediately
followed by i, such as 3.141592i or 2i,
it becomes an imaginary literal, denoting a complex

number with a zero real component:

Click here to view code image

fmt.Println(1i * 1i) // "(-1+0i)", i² = -1

Under the rules for constant arithmetic,
complex constants can be added to other numeric constants (integer or floating
point, real or imaginary), allowing us to write complex numbers
naturally, like 1+2i or, equivalently, 2i+1. The declarations
of x and y above can be simplified:

x := 1 + 2i
y := 3 + 4i

Complex numbers may be compared for equality with == and !=.

Two complex numbers are equal if their real parts are equal and their
imaginary parts are equal.

The math/cmplx package provides library functions for working with

complex numbers, such as the complex square root and exponentiation
functions.

Click here to view code image

fmt.Println(cmplx.Sqrt(-1)) // "(0+1i)"

The following program uses complex128 arithmetic to generate a Mandelbrot set.

Click here to view code image

gopl.io/ch3/mandelbrot

// Mandelbrot emits a PNG image of the Mandelbrot fractal.
package main

import (
 "image"
 "image/color"
 "image/png"
 "math/cmplx"
 "os"
)

func main() {
 const (
 xmin, ymin, xmax, ymax = -2, -2, +2, +2
 width, height = 1024, 1024
)

 img := image.NewRGBA(image.Rect(0, 0, width, height))
 for py := 0; py < height; py++ {
 y := float64(py)/height*(ymax-ymin) + ymin
 for px := 0; px < width; px++ {
 x := float64(px)/width*(xmax-xmin) + xmin
 z := complex(x, y)
 // Image point (px, py) represents complex value z.
 img.Set(px, py, mandelbrot(z))
 }
 }
 png.Encode(os.Stdout, img) // NOTE: ignoring errors
}

func mandelbrot(z complex128) color.Color {
 const iterations = 200
 const contrast = 15

 var v complex128
 for n := uint8(0); n < iterations; n++ {
 v = v*v + z
 if cmplx.Abs(v) > 2 {
 return color.Gray{255 - contrast*n}
 }
 }
 return color.Black
}

The two nested loops iterate over
each point in a 1024×1024 grayscale raster image representing the
−2 to +2 portion of the complex plane.

The program tests whether
repeatedly squaring and adding the number that point represents eventually “escapes” the
circle of radius 2.

If so, the point is shaded by the number of iterations it took to
escape.

If not, the value belongs to the Mandelbrot set, and the point
remains black.

Finally, the program writes to its standard output the PNG-encoded
image of the iconic fractal, shown in Figure 3.3.

Exercise 3.5:
Implement a full-color Mandelbrot set using the function image.NewRGBA
and the type color.RGBA or color.YCbCr.

Exercise 3.6:
Supersampling is a technique to reduce the effect of pixelation by
computing the color value at several points within each pixel and
taking the average. The simplest method is to divide each pixel into
four “subpixels.” Implement it.

Exercise 3.7:
Another simple fractal uses Newton’s method to find complex
solutions to a function such as z4−1 = 0.

Shade each starting point by the number of iterations required
to get close to one of the four roots.

Color each point by the root it approaches.

[image: The Mandelbrot set.]
Figure 3.3.
The Mandelbrot set.

Exercise 3.8:
Rendering fractals at high zoom levels demands great
arithmetic precision. Implement the same fractal using four
different representations of numbers: complex64, complex128,
big.Float, and big.Rat. (The latter two types are found in the
math/big package.

Float uses arbitrary but bounded-precision
floating-point; Rat uses unbounded-precision rational numbers.)
How do they compare in performance and memory usage? At what zoom
levels do rendering artifacts become visible?

Exercise 3.9:
Write a web server that renders fractals and writes the image data to
the client.

Allow the client to specify the x, y, and zoom values as
parameters to the HTTP request.

3.4 Booleans

A value of type bool, or boolean, has only two possible values,

true and false.

The conditions in if and for statements are booleans, and comparison
operators like == and < produce a boolean result. The unary operator ! is

logical negation, so !true is false, or, one might say,
(!true==false)==true, although as a matter of style, we always
simplify redundant boolean expressions like x==true to x.

Boolean values can be combined with the && (AND) and || (OR)
operators, which have short-circuit behavior: if the answer is

already determined by the value of the left operand, the right operand
is not evaluated, making it safe to write expressions like this:

s != "" && s[0] == 'x'

where s[0] would panic if applied to an empty string.

Since && has higher precedence than ||

(mnemonic: && is boolean
multiplication, || is boolean addition), no parentheses are required for
conditions of this form:

Click here to view code image

if 'a' <= c && c <= 'z' ||
 'A' <= c && c <= 'Z' ||
 '0' <= c && c <= '9' {
 // ...ASCII letter or digit...
}

There is no implicit conversion from a boolean value to a numeric value like 0 or

1, or vice versa. It’s necessary to use an explicit if, as in

i := 0
if b {
 i = 1
}

It might be worth writing a conversion function if this operation were
needed often:

Click here to view code image

// btoi returns 1 if b is true and 0 if false.
func btoi(b bool) int {
 if b {
 return 1
 }
 return 0
}

The inverse operation is so simple that it doesn’t warrant a
function, but for symmetry here it is:

Click here to view code image

// itob reports whether i is non-zero.
func itob(i int) bool { return i != 0 }

3.5 Strings

A string is an immutable sequence of bytes. Strings may contain
arbitrary data, including bytes with value 0, but usually they contain
human-readable text. Text strings are conventionally interpreted as
UTF-8-encoded sequences of Unicode code points (runes), which we’ll explore
in detail very soon.

The built-in len function returns the number of bytes (not runes) in a string,

and the index operation s[i] retrieves the i-th byte of
string s, where 0 ≤ i < len(s).

Click here to view code image

s := "hello, world"
fmt.Println(len(s)) // "12"
fmt.Println(s[0], s[7]) // "104 119" ('h' and 'w')

Attempting to access a byte outside this range results in a panic:

Click here to view code image

c := s[len(s)] // panic: index out of range

The i-th byte of a string is not necessarily the i-th character of
a string, because the UTF-8 encoding of a non-ASCII code point requires
two or more bytes.

Working with characters is discussed shortly.

The substring operation s[i:j] yields a new string consisting of

the bytes of the original string starting at index
i and continuing up to, but not including, the byte at index j.
The result contains j-i bytes.

fmt.Println(s[0:5]) // "hello"

Again, a panic results if either index is out of bounds or if j is
less than i.

Either or both of the i and j operands may be omitted, in which
case the default values of 0 (the start of the string) and len(s)
(its end) are assumed, respectively.

Click here to view code image

fmt.Println(s[:5]) // "hello"
fmt.Println(s[7:]) // "world"
fmt.Println(s[:]) // "hello, world"

The + operator makes a new string by concatenating two strings:

Click here to view code image

fmt.Println("goodbye" + s[5:]) // "goodbye, world"

Strings may be compared with comparison operators like == and
<;

the comparison is done byte by byte, so the result is
the natural lexicographic ordering.

String values are immutable: the byte

sequence contained in a string value can never be changed, though of
course we can assign a new value to a string variable. To append
one string to another, for instance, we can write

s := "left foot"
t := s
s += ", right foot"

This does not modify the string that s originally held but causes
s to hold the new string formed by the += statement; meanwhile, t still
contains the old string.

Click here to view code image

fmt.Println(s) // "left foot, right foot"
fmt.Println(t) // "left foot"

Since strings are immutable, constructions that try to modify a string’s data
in place are not allowed:

Click here to view code image

s[0] = 'L' // compile error: cannot assign to s[0]

Immutability means that it is safe for two copies of a string to share the
same underlying memory, making it cheap to copy strings of any length.
Similarly, a string s and a substring like s[7:] may safely share the same
data, so the substring operation is also cheap. No new memory
is allocated in either case.

Figure 3.4 illustrates the arrangement of a string and two of its
substrings sharing the same underlying byte array.

[image: The string "hello, world" and two substrings.]
Figure 3.4.
The string "hello, world" and two substrings.

3.5.1 String Literals

A string value can be written as a string literal, a sequence of

bytes enclosed in double quotes:

"Hello, [image: Image]"

Because Go source files are always encoded in UTF-8 and Go

text strings are conventionally interpreted as UTF-8, we can include
Unicode code points in string literals.

Within a double-quoted string literal, escape sequences that begin with
a backslash \ can be
used to insert arbitrary byte values into the string. One set of
escapes handles ASCII control codes like newline, carriage return,
and tab:

	\a

	“alert” or bell

	\b

	backspace

	\f

	form feed

	\n

	newline

	\r

	carriage return

	\t

	tab

	\v

	vertical tab

	\'

	single quote (only in the rune literal '\'')

	\"

	double quote (only within "..." literals)

	\\

	backslash

Arbitrary bytes can also be included in literal strings using
hexadecimal or octal escapes. A hexadecimal escape is written

\xhh, with exactly two hexadecimal digits h (in upper or lower
case). An octal escape is written \ooo with exactly three octal
digits o (0 through 7) not exceeding \377. Both denote a single
byte with the specified value. Later, we’ll see how to encode Unicode
code points numerically in string literals.

A raw string literal is written `...`, using backquotes

instead of double quotes.
Within a raw string literal, no escape sequences are processed;
the contents are taken literally, including backslashes and newlines, so a raw string
literal may spread over several lines in the program source.

The only processing is that carriage returns are deleted so that the
value of the string is the same on all platforms, including those that
conventionally put carriage returns in text files.

Raw string literals are a convenient way to write regular expressions, which

tend to have lots of backslashes.
They are also useful for HTML templates, JSON literals,
command usage messages, and the like, which often extend over multiple
lines.

Click here to view code image

const GoUsage = `Go is a tool for managing Go source code.

Usage:
 go command [arguments]
...`

3.5.2 Unicode

Long ago, life was simple and there was, at least in a parochial view,
only one character set to deal with: ASCII, the American Standard Code
for Information Interchange.

ASCII, or more precisely US-ASCII, uses 7
bits to represent 128 “characters”: the upper- and lower-case letters of
English, digits, and a variety of punctuation and device-control
characters. For much of the early days of computing, this was adequate,
but it left a very large fraction of the world’s population unable to
use their own writing systems in computers. With the growth of the
Internet, data in myriad languages has become much more common. How can
this rich variety be dealt with at all and, if possible, efficiently?

The answer is Unicode (unicode.org), which collects all of the

characters in all of the world’s writing systems, plus
accents and other diacritical marks, control codes like tab and carriage
return, and plenty of esoterica, and assigns each one a standard number
called a Unicode code point or, in Go terminology, a rune.

Unicode version 8 defines code points for over 120,000 characters
in well over 100 languages and scripts. How are these
represented in computer programs and data? The natural data type to
hold a single rune is int32, and that’s what Go uses; it has the
synonym rune for precisely this purpose.

We could represent a sequence of runes as a sequence of
int32 values. In this representation, which is called UTF-32 or UCS-4, the
encoding of each Unicode code point has the same size, 32 bits. This
is simple and uniform, but it uses much more space than
necessary since most computer-readable text is in ASCII, which requires
only 8 bits or 1 byte per character.
All the characters in widespread use still number fewer than 65,536,
which would fit in 16 bits. Can we do better?

3.5.3 UTF-8

UTF-8 is a variable-length encoding of Unicode code points as bytes. UTF-8
was invented by Ken Thompson and Rob Pike, two of the creators of Go,
and is now a Unicode standard.

It uses between 1 and 4 bytes to represent each rune, but only
1 byte for ASCII characters, and only 2 or 3 bytes for most
runes in common use. The high-order bits of the first byte of the
encoding for a rune indicate how many bytes follow.
A high-order 0 indicates 7-bit ASCII, where each
rune takes only 1 byte, so it is identical to conventional ASCII.
A high-order 110 indicates that the rune takes 2 bytes; the second
byte begins with 10. Larger runes have analogous encodings.

View table image

	0xxxxxx
	runes 0–127
	(ASCII)

	110xxxxx 10xxxxxx
	128–2047
	(values <128 unused)

	1110xxxx 10xxxxxx 10xxxxxx
	2048–65535
	(values <2048 unused)

	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
	65536–0x10ffff
	(other values unused)

A variable-length encoding precludes direct indexing to access
the n-th character of a string, but
UTF-8 has many desirable properties to compensate. The encoding is compact,
compatible with ASCII, and self-synchronizing: it’s possible to
find the beginning of a character by backing up no more than three
bytes. It’s also a prefix code, so it can be decoded from left to right
without any ambiguity or lookahead. No
rune’s encoding is a substring of any other, or even of a sequence of
others, so you can search for a rune by just searching for its bytes,
without worrying about the preceding context. The
lexicographic byte order equals the Unicode code point order, so sorting
UTF-8 works naturally. There are no embedded NUL (zero) bytes, which is
convenient for programming languages that use NUL to terminate strings.

Go source files are always encoded in UTF-8, and UTF-8 is the
preferred encoding for text strings manipulated by Go programs. The
unicode package provides functions for working with individual runes
(such as distinguishing letters from numbers, or converting an
upper-case letter to a lower-case one), and the unicode/utf8
package provides functions for encoding and decoding runes as bytes
using UTF-8.

Many Unicode characters are hard to type on a keyboard or to
distinguish visually from similar-looking ones; some are even
invisible. Unicode escapes in Go string literals allow us to specify them

by their numeric code point value. There are two forms,
\uhhhh for a 16-bit value and \Uhhhhhhhh for a 32-bit value,
where each h is a hexadecimal digit; the need for the 32-bit form
arises very infrequently. Each denotes the UTF-8 encoding of the
specified code point. Thus, for example, the following string literals
all represent the same six-byte string:

"[image: Image]"
"\xe4\xb8\x96\xe7\x95\x8c"
"\u4e16\u754c"
"\U00004e16\U0000754c"

The three escape sequences above provide alternative
notations for the first string, but the values they denote are
identical.

Unicode escapes may also be used in rune literals.
These three literals are equivalent:

'[image: Image]' '\u4e16' '\U00004e16'

A rune whose value is less than 256 may be written with a single hexadecimal
escape, such as '\x41' for 'A', but for higher values, a
\u or \U escape must be used.

Consequently, '\xe4\xb8\x96' is not a legal rune literal,
even though those three bytes are a valid UTF-8 encoding of a
single code point.

Thanks to the nice properties of UTF-8, many string operations don’t
require decoding. We can test whether one string contains another as
a prefix:

Click here to view code image

func HasPrefix(s, prefix string) bool {
 return len(s) >= len(prefix) && s[:len(prefix)] == prefix
}

or as a suffix:

Click here to view code image

func HasSuffix(s, suffix string) bool {
 return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}

or as a substring:

Click here to view code image

func Contains(s, substr string) bool {
 for i := 0; i < len(s); i++ {
 if HasPrefix(s[i:], substr) {
 return true
 }
 }
 return false
}

using the same logic for UTF-8-encoded text as for raw bytes. This is
not true for other encodings. (The functions above are drawn from the
strings package, though its implementation of Contains
uses a hashing technique to search more efficiently.)

On the other hand, if we really care about the individual Unicode

characters, we have to use other mechanisms.

Consider the string from our very first example, which includes two
East Asian characters.

Figure 3.5 illustrates its representation in memory.

The string contains 13 bytes, but interpreted as UTF-8, it encodes
only nine code points or runes:

[image: A range loop decodes a UTF-8-encoded string.]
Figure 3.5.
A range loop decodes a UTF-8-encoded string.

Click here to view code image

import "unicode/utf8"

s := "Hello, [image: Image]"
fmt.Println(len(s)) // "13"
fmt.Println(utf8.RuneCountInString(s)) // "9"

To process those characters, we need a UTF-8 decoder. The
unicode/utf8 package provides one that we can use like this:

Click here to view code image

for i := 0; i < len(s); {
 r, size := utf8.DecodeRuneInString(s[i:])
 fmt.Printf("%d\t%c\n", i, r)
 i += size
}

Each call to DecodeRuneInString returns r, the rune itself, and
size, the number of bytes occupied by the UTF-8 encoding of r. The
size is used to update the byte index i of the next rune in the
string. But this is clumsy, and we need loops of this kind all the
time. Fortunately, Go’s range loop, when applied to a string,
performs UTF-8 decoding implicitly.

The output of the loop below is also shown in Figure 3.5;
notice how the index jumps by more than 1 for each non-ASCII rune.

Click here to view code image

for i, r := range "Hello, [image: Image]" {
 fmt.Printf("%d\t%q\t%d\n", i, r, r)
}

We could use a simple range loop to count the number of runes in a
string, like this:

n := 0
for _, _ = range s {
 n++
}

As with the other forms of range loop, we can omit the variables we
don’t need:

n := 0
for range s {
 n++
}

Or we can just call utf8.RuneCountInString(s).

We mentioned earlier that it is mostly a matter of convention in
Go that text strings are interpreted as UTF-8-encoded sequences of
Unicode code points, but for correct use of range
loops on strings, it’s more than a convention, it’s a necessity.
What happens if we range over a string containing arbitrary binary
data or, for that matter, UTF-8 data containing errors?

Each time a UTF-8 decoder, whether explicit in a call to
utf8.DecodeRuneInString or implicit in a range loop,
consumes an unexpected input byte,
it generates a special Unicode replacement
character, '\uFFFD', which is usually printed as a white question mark

inside a black hexagonal or diamond-like shape [image: Image]. When a program encounters this
rune value, it’s often a sign that some upstream part of the system that
generated the string data has been careless in its treatment of text
encodings.

UTF-8 is exceptionally convenient as an interchange format
but within a program runes may be more convenient
because they are of uniform size and are thus easily indexed
in arrays and slices.

A []rune conversion applied to a UTF-8-encoded string returns
the sequence of Unicode code points that the string encodes:

Click here to view code image

// "program" in Japanese katakana
s := "[image: Image]"
fmt.Printf("% x\n", s) // "e3 83 97 e3 83 ad e3 82 b0 e3 83 a9 e3 83 a0"
r := []rune(s)
fmt.Printf("%x\n", r) // "[30d7 30ed 30b0 30e9 30e0]"

(The verb % x in the first Printf inserts a space between each
pair of hex digits.)

If a slice of runes is converted to a string, it produces the
concatenation of the UTF-8 encodings of each rune:

Click here to view code image

fmt.Println(string(r)) // "[image: Image]"

Converting an integer value to a string interprets the integer
as a rune value, and yields the UTF-8 representation of that rune:

Click here to view code image

fmt.Println(string(65)) // "A", not "65"
fmt.Println(string(0x4eac)) // "[image: Image]"

If the rune is invalid, the replacement character is substituted:

Click here to view code image

fmt.Println(string(1234567)) // "[image: Image]"

3.5.4 Strings and Byte Slices

Four standard packages are particularly important for manipulating
strings: bytes, strings, strconv, and unicode.

The strings package provides many functions for searching,
replacing, comparing, trimming, splitting, and joining strings.

The bytes package has similar
functions for manipulating slices of bytes,
of type []byte, which share some
properties with strings.

Because strings are immutable, building up strings incrementally can involve
a lot of allocation and copying.

In such cases, it’s more efficient to use the bytes.Buffer
type, which we’ll show in a moment.

The strconv package provides functions for converting
boolean, integer, and floating-point values to and from their string
representations, and functions for quoting and unquoting strings.

The unicode package provides functions like IsDigit,

IsLetter, IsUpper, and IsLower for classifying

runes. Each function takes a single rune argument and
returns a boolean. Conversion functions like ToUpper and
ToLower convert a rune into the given case if it is a letter.

All these functions use the Unicode standard categories for
letters, digits, and so on.

The strings package has similar functions, also called ToUpper and

ToLower, that return a new string with the specified transformation
applied to each character of the original string.

The basename function below
was inspired by the Unix shell utility of the same name.

In our
version, basename(s) removes any prefix of s that looks like a
file system path with components separated by slashes, and it removes
any suffix that looks like a file type:

Click here to view code image

fmt.Println(basename("a/b/c.go")) // "c"
fmt.Println(basename("c.d.go")) // "c.d"
fmt.Println(basename("abc")) // "abc"

The first version of basename does all the work without the help of
libraries:

Click here to view code image

gopl.io/ch3/basename1

// basename removes directory components and a .suffix.
// e.g., a => a, a.go => a, a/b/c.go => c, a/b.c.go => b.c
func basename(s string) string {
 // Discard last '/' and everything before.
 for i := len(s) - 1; i >= 0; i-- {
 if s[i] == '/' {
 s = s[i+1:]
 break
 }
 }
 // Preserve everything before last '.'.
 for i := len(s) - 1; i >= 0; i-- {
 if s[i] == '.' {
 s = s[:i]
 break
 }
 }
 return s
}

A simpler version uses the strings.LastIndex library function:

Click here to view code image

gopl.io/ch3/basename2

func basename(s string) string {
 slash := strings.LastIndex(s, "/") // -1 if "/" not found
 s = s[slash+1:]
 if dot := strings.LastIndex(s, "."); dot >= 0 {
 s = s[:dot]
 }
 return s
}

The path and path/filepath packages provide a more
general set of functions for manipulating hierarchical names.

The path package works with slash-delimited paths on any
platform. It shouldn’t be used for file names, but it is appropriate for
other domains, like the path component of a URL. By contrast,
path/filepath manipulates file names using the rules for the
host platform, such as /foo/bar for POSIX or c:\foo\bar on
Microsoft Windows.

Let’s continue with another substring example.
The task is to take a string
representation of an integer, such as "12345", and insert commas every three
places, as in "12,345".

This version only works for integers; handling floating-point numbers is left
as a exercise.

Click here to view code image

gopl.io/ch3/comma

// comma inserts commas in a non-negative decimal integer string.
func comma(s string) string {
 n := len(s)
 if n <= 3 {
 return s
 }
 return comma(s[:n-3]) + "," + s[n-3:]
}

The argument to comma is a string. If its length is less than or
equal to 3, no comma is necessary. Otherwise, comma calls itself
recursively with a substring consisting of all but the last three
characters, and appends a comma and the last three characters to the
result of the recursive call.

A string contains an array of bytes that, once created, is immutable.

By contrast, the elements of a byte slice can be freely modified.

Strings can be converted to byte slices and back again:

s := "abc"
b := []byte(s)
s2 := string(b)

Conceptually, the []byte(s) conversion allocates a new byte
array holding a copy of the bytes of s, and yields a slice
that references the entirety of that array.

An optimizing compiler may be able to avoid the allocation and copying
in some cases, but in general copying is required to ensure that the
bytes of s remain unchanged even if those of b are
subsequently modified.

The conversion from byte slice back to string with string(b) also
makes a copy, to ensure immutability of the resulting string s2.

To avoid conversions and unnecessary memory allocation, many of the
utility functions in the bytes package directly parallel their

counterparts in the strings package. For example, here are half a
dozen functions from strings:

Click here to view code image

func Contains(s, substr string) bool
func Count(s, sep string) int
func Fields(s string) []string
func HasPrefix(s, prefix string) bool
func Index(s, sep string) int
func Join(a []string, sep string) string

and the corresponding ones from bytes:

Click here to view code image

func Contains(b, subslice []byte) bool
func Count(s, sep []byte) int
func Fields(s []byte) [][]byte
func HasPrefix(s, prefix []byte) bool
func Index(s, sep []byte) int
func Join(s [][]byte, sep []byte) []byte

The only difference is that strings have been replaced
by byte slices.

The bytes package provides the Buffer type for efficient

manipulation of byte slices. A Buffer starts out empty but grows as
data of types like string, byte, and []byte
are written to it.

As the example below shows, a bytes.Buffer variable requires no
initialization because its zero value is usable:

Click here to view code image

gopl.io/ch3/printints

// intsToString is like fmt.Sprint(values) but adds commas.
func intsToString(values []int) string {
 var buf bytes.Buffer
 buf.WriteByte('[')
 for i, v := range values {
 if i > 0 {
 buf.WriteString(", ")
 }
 fmt.Fprintf(&buf, "%d", v)
 }
 buf.WriteByte(']')
 return buf.String()
}

func main() {
 fmt.Println(intsToString([]int{1, 2, 3})) // "[1, 2, 3]"
}

When appending the UTF-8 encoding of an arbitrary rune to a bytes.Buffer,
it’s best to use bytes.Buffer’s WriteRune method, but
WriteByte is fine for ASCII characters such as '[' and ']'.

The bytes.Buffer type is extremely versatile, and when we discuss interfaces
in Chapter 7, we’ll see how it may be used as a replacement for a file
whenever an I/O function requires a sink for bytes (io.Writer) as
Fprintf does above, or a source of bytes (io.Reader).

Exercise 3.10:
Write a non-recursive version of comma, using bytes.Buffer
instead of string concatenation.

Exercise 3.11:
Enhance comma so that it deals correctly with floating-point
numbers and an optional sign.

Exercise 3.12:
Write a function that reports whether two strings are anagrams of each
other, that is, they contain the same letters in a different order.

3.5.5 Conversions between Strings and Numbers

In addition to conversions between strings, runes, and bytes, it’s
often necessary to convert between numeric values and their string
representations.

This is done with functions from the strconv package.

To convert an integer to a string, one option is to
use fmt.Sprintf; another is to use the function strconv.Itoa (“integer to
ASCII”):

Click here to view code image

x := 123
y := fmt.Sprintf("%d", x)
fmt.Println(y, strconv.Itoa(x)) // "123 123"

FormatInt and FormatUint can be used to format numbers in a different base:

Click here to view code image

fmt.Println(strconv.FormatInt(int64(x), 2)) // "1111011"

The fmt.Printf verbs %b, %d, %u, and
%x are often more convenient than Format functions, especially if we want to include
additional information besides the number:

Click here to view code image

s := fmt.Sprintf("x=%b", x) // "x=1111011"

To parse a string representing an integer, use the strconv
functions Atoi or ParseInt,
or ParseUint for unsigned integers:

Click here to view code image

x, err := strconv.Atoi("123") // x is an int
y, err := strconv.ParseInt("123", 10, 64) // base 10, up to 64 bits

The third argument of ParseInt gives the size of the integer type that
the result must fit into; for example, 16 implies int16, and the special
value of 0 implies int.
In any case, the type of the result y is always int64,
which you can then convert to a smaller type.

Sometimes fmt.Scanf is useful for parsing input that consists of
orderly mixtures of strings and numbers all on a single line,
but it can be inflexible, especially when handling incomplete
or irregular input.

3.6 Constants

Constants are expressions whose value is known to the compiler and whose
evaluation is guaranteed to occur at compile time, not at run time.
The underlying type of every constant is a basic type: boolean, string, or number.

A const declaration defines named values that look syntactically like

variables but whose value is constant, which prevents
accidental (or nefarious) changes during program execution. For
instance, a constant is more appropriate
than a variable for a mathematical constant
like pi, since its value won’t change:

Click here to view code image

const pi = 3.14159 // approximately; math.Pi is a better approximation

As with variables, a sequence of
constants can appear in one declaration; this would be appropriate for a
group of related values:

Click here to view code image

const (
 e = 2.71828182845904523536028747135266249775724709369995957496696763
 pi = 3.14159265358979323846264338327950288419716939937510582097494459
)

Many computations on constants can be completely evaluated at
compile time, reducing the work necessary at run time and enabling
other compiler optimizations.

Errors ordinarily detected at run time can be reported at compile time
when their operands are constants, such as integer division by zero,
string indexing out of bounds, and any floating-point operation that
would result in a non-finite value.

The results of all arithmetic, logical, and comparison operations
applied to constant operands are themselves constants, as are the
results of conversions and calls to certain built-in functions such as len,
cap, real, imag, complex, and
unsafe.Sizeof (§13.1).

Since their values are known to the compiler, constant expressions
may appear in types, specifically as the length of an array type:

Click here to view code image

const IPv4Len = 4

// parseIPv4 parses an IPv4 address (d.d.d.d).
func parseIPv4(s string) IP {
 var p [IPv4Len]byte
 // ...
}

A constant declaration may specify a type as well as a value, but
in the absence of an explicit type, the type is inferred from the
expression on the right-hand side.

In the following, time.Duration is a named type whose underlying
type is int64, and time.Minute is a constant of that type.

Both of the constants declared below thus have the type time.Duration as well,
as revealed by %T:

Click here to view code image

const noDelay time.Duration = 0
const timeout = 5 * time.Minute
fmt.Printf("%T %[1]v\n", noDelay) // "time.Duration 0"
fmt.Printf("%T %[1]v\n", timeout) // "time.Duration 5m0s"
fmt.Printf("%T %[1]v\n", time.Minute) // "time.Duration 1m0s"

When a sequence of constants is declared as a group, the right-hand
side expression may be omitted for all but the first of the group,
implying that the previous expression and its type should be used again.
For example:

Click here to view code image

const (
 a = 1
 b
 c = 2
 d
)

fmt.Println(a, b, c, d) // "1 1 2 2"

This is not very useful if the implicitly copied right-hand
side expression always evaluates to the same thing. But what if it
could vary? This brings us to iota.

3.6.1 The Constant Generator iota

A const declaration may use the constant
generator iota, which is used to create a sequence of related

values without spelling out each one explicitly. In a const
declaration, the value of iota begins at zero and increments by one
for each item in the sequence.

Here’s an example from the time package, which defines named

constants of type Weekday for the days of the week, starting with
zero for Sunday. Types of this kind are often called
enumerations, or enums for short.

type Weekday int

const (
 Sunday Weekday = iota
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
)

This declares Sunday to be 0, Monday to be 1, and so on.

We can use iota in more complex expressions too, as in this

example from the net package where each of the lowest 5 bits
of an unsigned integer is given a distinct name and boolean
interpretation:

Click here to view code image

type Flags uint

const (
 FlagUp Flags = 1 << iota // is up
 FlagBroadcast // supports broadcast access capability
 FlagLoopback // is a loopback interface
 FlagPointToPoint // belongs to a point-to-point link
 FlagMulticast // supports multicast access capability
)

As iota increments, each constant is assigned the value of
1 << iota, which evaluates to successive powers of two, each
corresponding to a single bit.

We can use these constants within functions that test, set, or clear
one or more of these bits:

Click here to view code image

gopl.io/ch3/netflag

func IsUp(v Flags) bool { return v&FlagUp == FlagUp }
func TurnDown(v *Flags) { *v &^= FlagUp }
func SetBroadcast(v *Flags) { *v |= FlagBroadcast }
func IsCast(v Flags) bool { return v&(FlagBroadcast|FlagMulticast) != 0 }

func main() {
 var v Flags = FlagMulticast | FlagUp
 fmt.Printf("%b %t\n", v, IsUp(v)) // "10001 true"
 TurnDown(&v)
 fmt.Printf("%b %t\n", v, IsUp(v)) // "10000 false"
 SetBroadcast(&v)
 fmt.Printf("%b %t\n", v, IsUp(v)) // "10010 false"
 fmt.Printf("%b %t\n", v, IsCast(v)) // "10010 true"
}

As a more complex example of iota, this declaration names
the powers of 1024:

Click here to view code image

const (
 _ = 1 << (10 * iota)
 KiB // 1024
 MiB // 1048576
 GiB // 1073741824
 TiB // 1099511627776 (exceeds 1 << 32)
 PiB // 1125899906842624
 EiB // 1152921504606846976
 ZiB // 1180591620717411303424 (exceeds 1 << 64)
 YiB // 1208925819614629174706176
)

The iota mechanism has its limits.

For example, it’s not possible to
generate the more familiar powers of 1000 (KB, MB, and so on) because
there is no exponentiation operator.

Exercise 3.13:
Write const declarations for KB, MB, up through YB as compactly
as you can.

3.6.2 Untyped Constants

Constants in Go are a bit unusual.

Although a constant can have any of the basic data types like
int or float64, including named basic types like
time.Duration, many constants are not committed to a particular
type.

The compiler represents these uncommitted constants with much greater
numeric precision than values of basic types,
and arithmetic on them is more precise than machine arithmetic;
you may assume at least 256 bits of precision.

There are six flavors of these uncommitted constants, called
untyped boolean, untyped integer, untyped rune, untyped
floating-point, untyped complex, and untyped string.

By deferring this commitment, untyped constants not only retain their
higher precision until later, but they can participate in many more
expressions than committed constants without requiring conversions.

For example, the values ZiB and YiB in the example above
are too big to store in any integer variable, but they are legitimate
constants that may be used in expressions like this one:

fmt.Println(YiB/ZiB) // "1024"

As another example, the floating-point constant math.Pi may be used
wherever any floating-point or complex value is needed:

var x float32 = math.Pi
var y float64 = math.Pi
var z complex128 = math.Pi

If math.Pi had been committed to a specific type such as float64,
the result would not be as precise,
and type conversions would be required to use it when a float32 or

complex128 value is wanted:

Click here to view code image

const Pi64 float64 = math.Pi

var x float32 = float32(Pi64)
var y float64 = Pi64
var z complex128 = complex128(Pi64)

For literals, syntax determines flavor.

The literals 0, 0.0, 0i, and '\u0000'
all denote constants of the same value but different flavors:
untyped integer, untyped floating-point, untyped complex, and untyped
rune, respectively.

Similarly, true and false are
untyped booleans and string literals are untyped strings.

Recall that / may represent integer or floating-point division
depending on its operands.

Consequently, the choice of literal may affect the result of a
constant division expression:

Click here to view code image

var f float64 = 212
fmt.Println((f - 32) * 5 / 9) // "100"; (f - 32) * 5 is a float64
fmt.Println(5 / 9 * (f - 32)) // "0"; 5/9 is an untyped integer, 0
fmt.Println(5.0 / 9.0 * (f - 32)) // "100"; 5.0/9.0 is an untyped float

Only constants can be untyped.

When an untyped constant is assigned to a variable, as in the first
statement below, or appears on the right-hand side of a variable
declaration with an explicit type, as in the other three statements, the constant
is implicitly converted to the type of that variable if possible.

Click here to view code image

var f float64 = 3 + 0i // untyped complex -> float64
f = 2 // untyped integer -> float64
f = 1e123 // untyped floating-point -> float64
f = 'a' // untyped rune -> float64

The statements above are thus equivalent to these:

var f float64 = float64(3 + 0i)
f = float64(2)
f = float64(1e123)
f = float64('a')

Whether implicit or explicit, converting a constant from one type to
another requires that the target type can represent the original value.

Rounding is allowed for real and complex floating-point numbers:

Click here to view code image

const (
 deadbeef = 0xdeadbeef // untyped int with value 3735928559
 a = uint32(deadbeef) // uint32 with value 3735928559
 b = float32(deadbeef) // float32 with value 3735928576 (rounded up)
 c = float64(deadbeef) // float64 with value 3735928559 (exact)
 d = int32(deadbeef) // compile error: constant overflows int32
 e = float64(1e309) // compile error: constant overflows float64
 f = uint(-1) // compile error: constant underflows uint
)

In a variable declaration without an explicit type (including short
variable declarations), the flavor of the untyped constant implicitly
determines the default type of the variable, as in these examples:

Click here to view code image

i := 0 // untyped integer; implicit int(0)
r := '\000' // untyped rune; implicit rune('\000')
f := 0.0 // untyped floating-point; implicit float64(0.0)
c := 0i // untyped complex; implicit complex128(0i)

Note the asymmetry: untyped integers are converted to int,
whose size is not guaranteed, but untyped floating-point and complex
numbers are converted to the explicitly sized types float64 and
complex128.

The language has no unsized float and complex types
analogous to unsized int, because it is very difficult to write
correct numerical algorithms without knowing the size of one’s
floating-point data types.

To give the variable a different type, we must explicitly
convert the untyped constant to the desired type or state the desired type
in the variable declaration, as in these examples:

var i = int8(0)
var i int8 = 0

These defaults are particularly important when converting an untyped
constant to an interface value (see Chapter 7) since they determine
its dynamic type.

Click here to view code image

fmt.Printf("%T\n", 0) // "int"
fmt.Printf("%T\n", 0.0) // "float64"
fmt.Printf("%T\n", 0i) // "complex128"
fmt.Printf("%T\n", '\000') // "int32" (rune)

We’ve now covered the basic data types of Go.

The next step is to show how they can be combined into larger
groupings like arrays and structs, and then into data structures
for solving real programming problems; that is the topic
of Chapter 4.

4. Composite Types

In Chapter 3 we discussed the basic types that serve as building
blocks for data structures in a Go program; they are the atoms of
our universe. In this chapter,
we’ll take a look at composite types, the molecules

created by combining the basic types in various ways. We’ll talk
about four such types—arrays, slices, maps, and structs—and
at the end of the chapter, we’ll show how structured data using
these types can be encoded as and parsed from JSON data and used
to generate HTML from templates.

Arrays and structs are aggregate types; their values are

concatenations of other values in memory.

Arrays are homogeneous—their elements all have the same
type—whereas structs are heterogeneous.

Both arrays and structs are fixed size.

In contrast, slices and maps are dynamic data structures that grow as
values are added.

4.1 Arrays

An array is a fixed-length sequence of zero or more elements of a particular type.

Because of their fixed length, arrays are rarely used directly in
Go. Slices, which can grow and shrink, are much more versatile, but
to understand slices we must understand arrays first.

Individual array elements are accessed with the conventional subscript
notation, where subscripts run from zero to one less than the array length.
The built-in function len returns the number of elements in the
array.

Click here to view code image

var a [3]int // array of 3 integers
fmt.Println(a[0]) // print the first element
fmt.Println(a[len(a)-1]) // print the last element, a[2]

// Print the indices and elements.
for i, v := range a {
 fmt.Printf("%d %d\n", i, v)
}

// Print the elements only.
for _, v := range a {
 fmt.Printf("%d\n", v)
}

By default, the elements of a new array variable are initially set to
the zero value for the element type, which is 0 for numbers.

We can use an
array literal to initialize an array with a list of values:

Click here to view code image

var q [3]int = [3]int{1, 2, 3}
var r [3]int = [3]int{1, 2}
fmt.Println(r[2]) // "0"

In an array literal, if an ellipsis “...” appears in place of
the length, the array length is determined by the number of initializers.

The definition of q can be
simplified to

q := [...]int{1, 2, 3}
fmt.Printf("%T\n", q) // "[3]int"

The size of an array is part of its type, so [3]int
and [4]int are different types. The size must
be a constant expression, that is, an expression whose value
can be computed as the program is being compiled.

Click here to view code image

q := [3]int{1, 2, 3}
q = [4]int{1, 2, 3, 4} // compile error: cannot assign [4]int to [3]int

As we’ll see, the literal syntax is similar
for arrays, slices, maps, and structs. The specific form above is a list
of values in order, but it is also possible to specify a list of
index and value pairs, like this:

Click here to view code image

type Currency int

const (
 USD Currency = iota
 EUR
 GBP
 RMB
)

symbol := [...]string{USD: "$", EUR: "€", GBP: "£", RMB: "¥"}

fmt.Println(RMB, symbol[RMB]) // "3 ¥"

In this form, indices can appear in any order and some may be omitted;
as before, unspecified values take on the zero value for the element type. For instance,

r := [...]int{99: -1}

defines an array r with 100 elements, all zero except for the last,
which has value −1.

If an array’s element type is comparable then the array type is
comparable too, so we may directly compare two arrays of that type
using the == operator, which reports whether all corresponding
elements are equal.

The != operator is its negation.

Click here to view code image

a := [2]int{1, 2}
b := [...]int{1, 2}
c := [2]int{1, 3}
fmt.Println(a == b, a == c, b == c) // "true false false"
d := [3]int{1, 2}
fmt.Println(a == d) // compile error: cannot compare [2]int == [3]int

As a more plausible example, the function Sum256 in the crypto/sha256

package produces the SHA256 cryptographic hash or digest of a message
stored in an arbitrary byte slice.
The digest has 256 bits, so its type is [32]byte. If two
digests are the same, it is extremely likely that the two messages are
the same; if the digests differ, the two
messages are different. This program prints and compares the SHA256 digests of "x"
and "X":

Click here to view code image

gopl.io/ch4/sha256

import "crypto/sha256"

func main() {
 c1 := sha256.Sum256([]byte("x"))
 c2 := sha256.Sum256([]byte("X"))
 fmt.Printf("%x\n%x\n%t\n%T\n", c1, c2, c1 == c2, c1)
 // Output:
 // 2d711642b726b04401627ca9fbac32f5c8530fb1903cc4db02258717921a4881
 // 4b68ab3847feda7d6c62c1fbcbeebfa35eab7351ed5e78f4ddadea5df64b8015
 // false
 // [32]uint8
}

The two inputs differ by only a single bit, but approximately
half the bits are different in the digests.

Notice the Printf verbs: %x to print all the elements of an
array or slice of bytes in hexadecimal, %t to show a boolean, and %T to display the

type of a value.

When a function is called, a copy of each argument value is assigned to
the corresponding parameter variable, so the function receives a copy,
not the original.

Passing large arrays in this way can be inefficient, and any changes
that the function makes to array elements affect only the copy, not
the original.

In this regard, Go treats arrays like any other type,
but this behavior is different from languages
that implicitly pass arrays by reference.

Of course, we can explicitly pass a pointer to an array so that any

modifications the function makes to array elements will be visible to
the caller.

This function zeroes the contents of a [32]byte array:

func zero(ptr *[32]byte) {
 for i := range ptr {
 ptr[i] = 0
 }
}

The array literal [32]byte{} yields an array of 32 bytes.

Each element of the array has the zero value for byte,
which is zero.

We can use that fact to write a different version of zero:

func zero(ptr *[32]byte) {
 *ptr = [32]byte{}
}

Using a pointer to an array is efficient and allows the called function to
mutate the caller’s variable, but arrays are still inherently
inflexible because of their fixed size. The zero function will not
accept a pointer to a [16]byte variable, for example, nor is there
any way to add or remove array elements. For these reasons,
other than special cases like SHA256’s fixed-size hash,
arrays are seldom used as function parameters; instead, we use
slices.

Exercise 4.1:
Write a function that counts the number of bits that are different in
two SHA256 hashes.

(See PopCount from Section 2.6.2.)

Exercise 4.2:
Write a program that prints the SHA256 hash of its standard input
by default but supports a command-line flag to print the
SHA384 or SHA512 hash instead.

4.2 Slices

Slices represent variable-length sequences
whose elements all have the same type.

A slice type is written []T, where the elements have

type T; it looks like an array type without a size.

Arrays and slices are intimately connected.

A slice is a lightweight data structure that gives access to
a subsequence (or perhaps all) of the elements of an array,
which is known as the slice’s underlying array.

A slice has three components: a pointer, a length, and a
capacity.

The pointer points to the first element of the array that is
reachable through the slice, which is not necessarily the array’s
first element.

The length is the number of slice elements; it can’t exceed
the capacity, which is usually the number of elements between the
start of the slice and the end of the underlying array.

The built-in functions len and cap return those values.

[image: Two overlapping slices of an array of months.]
Figure 4.1.
Two overlapping slices of an array of months.

Multiple slices can share the same underlying array and may refer to
overlapping parts of that array.

Figure 4.1 shows an array of strings for the months of the year,
and two overlapping slices of it.

The array is declared as

Click here to view code image

months := [...]string{1: "January", /* ... */, 12: "December"}

so January is months[1] and December is months[12].
Ordinarily, the array element at index 0 would contain the first
value, but because months are always numbered from 1, we can leave it
out of the declaration and it will be initialized to an empty string.

The slice operator s[i:j],
where 0 ≤ i ≤ j ≤ cap(s),
creates a

new slice that refers to elements i through j-1 of the sequence s,
which may be an array variable, a pointer to an array, or another
slice. The resulting slice has j-i elements.
If i is omitted, it’s 0, and if j is omitted, it’s
len(s).
Thus the slice months[1:13] refers to the whole range of valid months, as does
the slice months[1:]; the slice months[:] refers to the whole array.

Let’s define overlapping slices for the second quarter and the
northern summer:

Click here to view code image

Q2 := months[4:7]
summer := months[6:9]
fmt.Println(Q2) // ["April" "May" "June"]
fmt.Println(summer) // ["June" "July" "August"]

June is included in each and is
the sole output of this (inefficient) test for common elements:

Click here to view code image

for _, s := range summer {
 for _, q := range Q2 {
 if s == q {
 fmt.Printf("%s appears in both\n", s)
 }
 }
}

Slicing beyond cap(s) causes a panic, but slicing beyond
len(s) extends the slice,
so the result may be longer than the original:

Click here to view code image

fmt.Println(summer[:20]) // panic: out of range

endlessSummer := summer[:5] // extend a slice (within capacity)
fmt.Println(endlessSummer) // "[June July August September October]"

As an aside, note the similarity of the substring operation on strings

to the slice operator on []byte slices. Both are written
x[m:n], and both return a subsequence of the original bytes,
sharing the underlying representation so that both operations take constant
time. The expression x[m:n] yields a string if x is a string,
or a []byte if x is a []byte.

Since a slice contains a pointer to an element of an array, passing a
slice to a function permits the function to modify the underlying
array elements.

In other words, copying a slice creates an alias (§2.3.2) for the underlying array.

The function reverse reverses the elements of an []int slice in place,
and it may be applied to slices of any length.

Click here to view code image

gopl.io/ch4/rev

// reverse reverses a slice of ints in place.
func reverse(s []int) {
 for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
 s[i], s[j] = s[j], s[i]
 }
}

Here we reverse the
whole array a:

Click here to view code image

a := [...]int{0, 1, 2, 3, 4, 5}
reverse(a[:])
fmt.Println(a) // "[5 4 3 2 1 0]"

A simple way to rotate a slice left by n elements is to apply the

reverse function three times, first to the leading n
elements, then to the remaining elements, and finally to the whole
slice. (To rotate to the right, make the third call first.)

Click here to view code image

s := []int{0, 1, 2, 3, 4, 5}
// Rotate s left by two positions.
reverse(s[:2])
reverse(s[2:])
reverse(s)
fmt.Println(s) // "[2 3 4 5 0 1]"

Notice how the expression that initializes the slice s differs
from that for the array a.

A slice literal looks like an array literal, a sequence of values

separated by commas and surrounded by braces, but the size is not
given. This implicitly creates an array variable of the right size and
yields a slice that points to it.

As with array literals, slice literals may specify the values in order, or
give their indices explicitly, or use a mix of the two styles.

Unlike arrays, slices are not comparable, so we cannot use == to

test whether two slices contain the same elements. The standard library
provides the highly optimized bytes.Equal function for comparing two

slices of bytes ([]byte), but for other types of slice,
we must do the comparison ourselves:

Click here to view code image

func equal(x, y []string) bool {
 if len(x) != len(y) {
 return false
 }
 for i := range x {
 if x[i] != y[i] {
 return false
 }
 }
 return true
}

Given how natural this “deep” equality test is,
and that it is no more costly at run time than
the == operator for arrays of strings,
it may be puzzling that slice comparisons do not also work this way.

There are two reasons why deep equivalence is problematic.

First, unlike array elements, the elements of a slice are indirect,
making it possible for a slice to contain itself.

Although there are ways to deal with such cases,
none is simple, efficient, and most importantly, obvious.

Second, because slice elements are indirect, a fixed slice value may
contain different elements at different times as the contents of the
underlying array are modified.

Because a hash table such as Go’s map type makes only shallow copies
of its keys, it requires that equality for each key remain the same
throughout the lifetime of the hash table.

Deep equivalence would thus make slices unsuitable for use
as map keys.

For reference types like pointers and channels, the == operator
tests reference identity,

that is, whether the two entities refer to the same thing.

An analogous “shallow” equality test for slices could be useful, and
it would solve the problem with maps, but the inconsistent treatment
of slices and arrays by the == operator would be confusing.

The safest choice is to disallow slice comparisons altogether.

The only legal slice comparison is against nil, as in

if summer == nil { /* ... */ }

The zero value of a slice type is nil.

A nil slice has no underlying array.

The nil slice has length and capacity zero, but there are also non-nil
slices of length and capacity zero, such as []int{} or
make([]int, 3)[3:].

As with any type that can have nil values, the nil value of a particular
slice type can be written using a conversion expression such as
[]int(nil).

Click here to view code image

var s []int // len(s) == 0, s == nil
s = nil // len(s) == 0, s == nil
s = []int(nil) // len(s) == 0, s == nil
s = []int{} // len(s) == 0, s != nil

So, if you need to test whether a slice is empty, use len(s) == 0,
not s == nil.

Other than comparing equal to nil, a nil slice behaves like any other
zero-length slice; reverse(nil) is perfectly safe, for example.

Unless clearly documented to the contrary, Go functions should treat
all zero-length slices the same way, whether nil or non-nil.

The built-in function make creates

a slice of a specified element type, length, and capacity.
The capacity argument may be omitted, in which case the capacity
equals the length.

Click here to view code image

make([]T, len)
make([]T, len, cap) // same as make([]T, cap)[:len]

Under the hood, make creates an unnamed array variable

and returns a slice of it; the array is accessible

only through the returned slice.

In the first form, the slice is a view of the entire array.

In the second, the slice is a view of only the array’s first
len elements, but its capacity includes the entire array.

The additional elements are set aside for future growth.

4.2.1 The append Function

The built-in append function appends items to slices:

Click here to view code image

var runes []rune
for _, r := range "Hello, [image: Image]" {
 runes = append(runes, r)
}
fmt.Printf("%q\n", runes) // "['H' 'e' 'l' 'l' 'o' ',' ' ' '[image: Image]' '[image: Image]']"

The loop uses append to build the slice of nine runes
encoded by the string literal, although this specific problem is more
conveniently solved by using the built-in conversion []rune("Hello, [image: Image]").

The append function is crucial to understanding how slices work, so
let’s take a look at what is going on. Here’s a version called
appendInt that is specialized for []int slices:

Click here to view code image

gopl.io/ch4/append

func appendInt(x []int, y int) []int {
 var z []int
 zlen := len(x) + 1
 if zlen <= cap(x) {
 // There is room to grow. Extend the slice.
 z = x[:zlen]
 } else {
 // There is insufficient space. Allocate a new array.
 // Grow by doubling, for amortized linear complexity.
 zcap := zlen
 if zcap < 2*len(x) {
 zcap = 2 * len(x)
 }
 z = make([]int, zlen, zcap)
 copy(z, x) // a built-in function; see text
 }
 z[len(x)] = y
 return z
}

Each call to appendInt must check whether the slice has
sufficient capacity to hold the new elements in the existing array.

If so, it extends the slice by defining a larger slice (still within the original array),
copies the element y into the new space, and returns
the slice. The input x and the result z share the same
underlying array.

If there is insufficient space for growth, appendInt must allocate a
new array big enough to hold the result, copy the values from x into
it, then append the new element y. The result z now refers to a
different underlying array than the array that x refers to.

It would be straightforward to copy the elements with explicit loops,
but it’s easier to use the built-in function copy, which copies

elements from one slice to another of the same type.

Its first argument is the destination and its second is the source,
resembling the order of operands in an assignment like dst = src.

The slices may refer to the same underlying array; they may even
overlap.

Although we don’t use it here, copy returns the number
of elements actually copied, which is the smaller of the two slice
lengths, so there is no danger of running off the end or
overwriting something out of range.

For efficiency, the new array is usually somewhat larger than the
minimum needed to hold x and y. Expanding the array
by doubling its size at each expansion avoids
an excessive number of allocations and ensures that
appending a single element takes constant time on average.

This program demonstrates the effect:

Click here to view code image

func main() {
 var x, y []int
 for i := 0; i < 10; i++ {
 y = appendInt(x, i)
 fmt.Printf("%d cap=%d\t%v\n", i, cap(y), y)
 x = y
 }
}

Each change in capacity indicates an allocation and a copy:

0 cap=1 [0]
1 cap=2 [0 1]
2 cap=4 [0 1 2]
3 cap=4 [0 1 2 3]
4 cap=8 [0 1 2 3 4]
5 cap=8 [0 1 2 3 4 5]
6 cap=8 [0 1 2 3 4 5 6]
7 cap=8 [0 1 2 3 4 5 6 7]
8 cap=16 [0 1 2 3 4 5 6 7 8]
9 cap=16 [0 1 2 3 4 5 6 7 8 9]

Let’s take a closer look at the i=3 iteration. The slice x contains
the three elements [0 1 2] but has capacity 4, so there is a
single element of slack at the end, and appendInt of the element
3 may proceed without reallocating. The resulting slice y has
length and capacity 4, and has the same underlying array as the original

slice x, as Figure 4.2 shows.

[image: Appending with room to grow.]
Figure 4.2.
Appending with room to grow.

On the next iteration, i=4, there is no slack at all, so
appendInt allocates a new array of size 8,
copies the four elements [0 1 2 3] of x,
and appends 4, the value of i. The resulting slice
y has a length of 5 but a capacity of 8; the slack of 3 will save
the next three iterations from the need to reallocate. The slices y and x
are views of different arrays.

This operation is depicted in Figure 4.3.

[image: Appending without room to grow.]
Figure 4.3.
Appending without room to grow.

The built-in append function may use a more sophisticated
growth strategy than appendInt’s simplistic one.

Usually we don’t know whether a given call to append will
cause a reallocation, so we can’t assume that the original slice
refers to the same array as the resulting slice, nor that it refers to
a different one.

Similarly, we must not assume that assignments to elements of the old slice will
(or will not) be reflected in the new slice.

Consequently, it’s usual to assign the result of a call to
append to the same slice variable whose value we passed to
append:

runes = append(runes, r)

Updating the slice variable is required not just when calling append, but for any
function that may change the length or capacity of a slice or make it
refer to a different underlying array.

To use slices correctly, it’s important to bear in mind that although
the elements of the underlying array are indirect, the slice’s pointer,
length, and capacity are not.

To update them requires an assignment like the one above.

In this respect, slices are not “pure” reference types but resemble
an aggregate type such as this struct:

type IntSlice struct {
 ptr *int
 len, cap int
}

Our appendInt function adds a single element to
a slice, but the built-in append lets us add more than one new
element, or even a whole slice of them.

Click here to view code image

var x []int
x = append(x, 1)
x = append(x, 2, 3)
x = append(x, 4, 5, 6)
x = append(x, x...) // append the slice x
fmt.Println(x) // "[1 2 3 4 5 6 1 2 3 4 5 6]"

With the small modification shown below, we can match the behavior
of the built-in append.

The ellipsis “...” in the declaration of appendInt
makes the function variadic: it accepts any number of
final arguments.

The corresponding ellipsis in the call above to append shows
how to supply a list of arguments from a slice.

We’ll explain this mechanism in detail in Section 5.7.

Click here to view code image

func appendInt(x []int, y ...int) []int {
 var z []int
 zlen := len(x) + len(y)
 // ...expand z to at least zlen...
 copy(z[len(x):], y)
 return z
}

The logic to expand z’s underlying array remains unchanged and is
not shown.

4.2.2 In-Place Slice Techniques

Let’s see more examples of functions that, like rotate and
reverse, modify the elements of a slice in place.

Given a list of strings, the nonempty function returns the non-empty
ones:

Click here to view code image

gopl.io/ch4/nonempty

// Nonempty is an example of an in-place slice algorithm.
package main

import "fmt"

// nonempty returns a slice holding only the non-empty strings.
// The underlying array is modified during the call.
func nonempty(strings []string) []string {
 i := 0
 for _, s := range strings {
 if s != "" {
 strings[i] = s
 i++
 }
 }
 return strings[:i]
}

The subtle part is that the input slice and the output slice share the
same underlying array.

This avoids the need to allocate another array, though of course the
contents of data are partly overwritten, as evidenced by the
second print statement:

Click here to view code image

data := []string{"one", "", "three"}
fmt.Printf("%q\n", nonempty(data)) // `["one" "three"]`
fmt.Printf("%q\n", data) // `["one" "three" "three"]`

Thus we would usually write: data = nonempty(data).

The nonempty function can also be written using append:

Click here to view code image

func nonempty2(strings []string) []string {
 out := strings[:0] // zero-length slice of original
 for _, s := range strings {
 if s != "" {
 out = append(out, s)
 }
 }
 return out
}

Whichever variant we use,
reusing an array in this way requires that at most one output value is
produced for each input value, which is true of many algorithms
that filter out elements of a sequence or combine adjacent ones.
Such intricate slice usage is the exception, not the rule, but it
can be clear, efficient, and useful on occasion.

A slice can be used to implement a stack. Given an

initially empty slice stack, we can push a new value onto
the end of the slice with append:

Click here to view code image

stack = append(stack, v) // push v

The top of the stack is the last element:

Click here to view code image

top := stack[len(stack)-1] // top of stack

and shrinking the stack by popping that element is

Click here to view code image

stack = stack[:len(stack)-1] // pop

To remove an element from the middle of a slice, preserving the order
of the remaining elements, use copy to slide the
higher-numbered elements down by one to fill the gap:

Click here to view code image

func remove(slice []int, i int) []int {
 copy(slice[i:], slice[i+1:])
 return slice[:len(slice)-1]
}

func main() {
 s := []int{5, 6, 7, 8, 9}
 fmt.Println(remove(s, 2)) // "[5 6 8 9]"
}

And if we don’t need to preserve the order, we can
just move the last element into the gap:

Click here to view code image

func remove(slice []int, i int) []int {
 slice[i] = slice[len(slice)-1]
 return slice[:len(slice)-1]
}

func main() {
 s := []int{5, 6, 7, 8, 9}
 fmt.Println(remove(s, 2)) // "[5 6 9 8]
}

Exercise 4.3:
Rewrite reverse to use an array pointer instead of a slice.

Exercise 4.4:
Write a version of rotate that operates in a single pass.

Exercise 4.5:
Write an in-place function to eliminate adjacent duplicates
in a []string slice.

Exercise 4.6:
Write an in-place function that squashes each run of adjacent Unicode
spaces (see unicode.IsSpace) in a UTF-8-encoded []byte
slice into a single ASCII space.

Exercise 4.7:
Modify reverse to reverse the characters of a
[]byte slice that represents a UTF-8-encoded string, in place.
Can you do it without allocating new memory?

4.3 Maps

The hash table is one of the most ingenious and versatile of all data

structures. It is an unordered collection of key/value pairs in which
all the keys are distinct, and the value associated with a given key
can be retrieved, updated, or removed using a constant number of key
comparisons on the average, no matter how large the hash table.

In Go, a map is a reference

to a hash table, and a map type
is written map[K]V, where K and V are the types of its keys

and values. All of
the keys in a given map are of the same type, and all of the values are of the same
type, but the keys need not be of the same type as the values.
The key type K must be comparable using ==, so that the map can test whether a

given key is equal to one already within it. Though floating-point numbers are
comparable, it’s a bad idea to compare floats for equality and, as we
mentioned in Chapter 3, especially bad if NaN is a possible value.

There are no restrictions on the value type V.

The built-in function make can be used to create a map:

Click here to view code image

ages := make(map[string]int) // mapping from strings to ints

We can also use a map literal to create a new map

populated with some initial key/value pairs:

ages := map[string]int{
 "alice": 31,
 "charlie": 34,
}

This is equivalent to

ages := make(map[string]int)
ages["alice"] = 31
ages["charlie"] = 34

so an alternative expression for a new empty map is map[string]int{}.

Map elements are accessed through the usual subscript notation:

Click here to view code image

ages["alice"] = 32
fmt.Println(ages["alice"]) // "32"

and removed with the built-in function delete:

Click here to view code image

delete(ages, "alice") // remove element ages["alice"]

All of these operations are safe even if the element isn’t in the map;
a map lookup using a key that isn’t present returns the zero value
for its type, so, for instance,

the following works even when "bob" is not yet a key in the map
because the value of ages["bob"] will be 0.

Click here to view code image

ages["bob"] = ages["bob"] + 1 // happy birthday!

The shorthand assignment forms x += y and x++ also work
for map elements, so we can rewrite the statement above as

ages["bob"] += 1

or even more concisely as

ages["bob"]++

But a map element is not a variable, and we cannot take its address:

Click here to view code image

_ = &ages["bob"] // compile error: cannot take address of map element

One reason that we can’t take the address of a map element is that growing a map might cause
rehashing of existing elements into new storage locations,
thus potentially invalidating the address.

To enumerate all the key/value pairs in the map, we use a
range-based for loop similar to those we saw for slices.

Successive iterations of the loop cause the name and age variables
to be set to the next key/value pair:

Click here to view code image

for name, age := range ages {
 fmt.Printf("%s\t%d\n", name, age)
}

The order of map iteration is unspecified, and different
implementations might use a different hash function, leading to a
different ordering.

In practice, the order is random, varying from one execution to the
next.

This is intentional; making the sequence vary helps
force programs to be robust across implementations.

To enumerate the key/value pairs in order, we must
sort the keys explicitly,
for instance, using the Strings function from the sort package
if the keys are strings.

This is a common pattern:

Click here to view code image

import "sort"

var names []string
for name := range ages {
 names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
 fmt.Printf("%s\t%d\n", name, ages[name])
}

Since we know the final size of names from the outset,
it is more efficient to allocate an array of the required
size up front.

The statement below creates a slice that is initially empty but has
sufficient capacity to hold all the keys of the ages map:

Click here to view code image

names := make([]string, 0, len(ages))

In the first range loop above, we require only
the keys of the ages map, so we omit the second loop variable. In
the second loop, we require only the elements of the names slice, so we
use the blank identifier _ to ignore the first variable, the index.

The zero value for a map type is nil, that is, a reference to

no hash table at all.

Click here to view code image

var ages map[string]int
fmt.Println(ages == nil) // "true"
fmt.Println(len(ages) == 0) // "true"

Most operations on maps, including lookup, delete, len,
and range loops, are safe to perform on a nil map

reference, since it behaves like an empty map. But storing to a nil
map causes a panic:

Click here to view code image

ages["carol"] = 21 // panic: assignment to entry in nil map

You must allocate the map before you can store into it.

Accessing a map element by subscripting always yields a value. If the
key is present in the map, you get the corresponding value; if not, you
get the zero value for the element type, as we saw with ages["bob"].
For many purposes that’s fine, but sometimes you need to know
whether the element was really there or not.

For example, if the
element type is numeric, you might have to distinguish between a
nonexistent element and an element that happens to have the value
zero, using a test like this:

Click here to view code image

age, ok := ages["bob"]
if !ok { /* "bob" is not a key in this map; age == 0. */ }

You’ll often see these two statements combined, like this:

if age, ok := ages["bob"]; !ok { /* ... */ }

Subscripting a map in this context yields two values; the second is a
boolean that reports whether the element was present.
The boolean variable is often called ok, especially

if it is immediately used in an if condition.

As with slices, maps cannot be compared to each other; the only legal

comparison is with nil.
To test whether two maps contain the same keys and the same
associated values, we must write a loop:

Click here to view code image

func equal(x, y map[string]int) bool {
 if len(x) != len(y) {
 return false
 }
 for k, xv := range x {
 if yv, ok := y[k]; !ok || yv != xv {
 return false
 }
 }
 return true
}

Observe how we use !ok to distinguish the “missing”
and “present but zero” cases. Had we naïvely written xv != y[k],
the call below would incorrectly report its arguments as equal:

Click here to view code image

// True if equal is written incorrectly.
equal(map[string]int{"A": 0}, map[string]int{"B": 42})

Go does not provide a set type, but since the keys of a map are
distinct, a map can serve this purpose.

To illustrate, the program dedup reads a sequence of lines and prints only the first
occurrence of each distinct line. (It’s a variant of the dup
program that we showed in Section 1.3.) The dedup program
uses a map whose keys represent the
set of lines that have already appeared to ensure that subsequent
occurrences are not printed.

Click here to view code image

gopl.io/ch4/dedup

func main() {
 seen := make(map[string]bool) // a set of strings
 input := bufio.NewScanner(os.Stdin)
 for input.Scan() {
 line := input.Text()
 if !seen[line] {
 seen[line] = true
 fmt.Println(line)
 }
 }

 if err := input.Err(); err != nil {
 fmt.Fprintf(os.Stderr, "dedup: %v\n", err)
 os.Exit(1)
 }
}

Go programmers often describe a map used in this fashion as a “set of
strings” without further ado, but beware, not all map[string]bool
values are simple sets; some may contain both true and false
values.

Sometimes we need a map or set whose keys are slices, but because a
map’s keys must be comparable, this cannot be expressed directly.

However, it can be done in two steps.

First we define a helper function k that maps each key to a
string, with the property that k(x) == k(y) if and only if
we consider x and y equivalent.

Then we create a map whose keys are strings, applying the helper
function to each key before we access the map.

The example below uses a map to record the number of times Add
has been called with a given list of strings.

It uses fmt.Sprintf to convert a slice of strings into a single
string that is a suitable map key, quoting each slice element with %q
to record string boundaries faithfully:

Click here to view code image

var m = make(map[string]int)

func k(list []string) string { return fmt.Sprintf("%q", list) }

func Add(list []string) { m[k(list)]++ }
func Count(list []string) int { return m[k(list)] }

The same approach can be used for any non-comparable key type, not
just slices.

It’s even useful for comparable key types when you want a
definition of equality other than ==, such as case-insensitive
comparisons for strings.

And the type of k(x) needn’t be a string; any comparable type
with the desired equivalence property will do, such as integers,
arrays, or structs.

Here’s another example of maps in action, a program that counts the
occurrences of each distinct Unicode code point in its input. Since

there are a large number of possible characters, only a small fraction of which
would appear in any particular document, a map is a natural way to keep
track of just the ones that have been seen and their corresponding
counts.

Click here to view code image

gopl.io/ch4/charcount

// Charcount computes counts of Unicode characters.
package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "unicode"
 "unicode/utf8"
)

func main() {
 counts := make(map[rune]int) // counts of Unicode characters
 var utflen [utf8.UTFMax + 1]int // count of lengths of UTF-8 encodings
 invalid := 0 // count of invalid UTF-8 characters

 in := bufio.NewReader(os.Stdin)
 for {
 r, n, err := in.ReadRune() // returns rune, nbytes, error
 if err == io.EOF {
 break
 }
 if err != nil {
 fmt.Fprintf(os.Stderr, "charcount: %v\n", err)
 os.Exit(1)
 }
 if r == unicode.ReplacementChar && n == 1 {
 invalid++
 continue
 }
 counts[r]++
 utflen[n]++
 }
 fmt.Printf("rune\tcount\n")
 for c, n := range counts {
 fmt.Printf("%q\t%d\n", c, n)
 }
 fmt.Print("\nlen\tcount\n")
 for i, n := range utflen {
 if i > 0 {
 fmt.Printf("%d\t%d\n", i, n)
 }
 }
 if invalid > 0 {
 fmt.Printf("\n%d invalid UTF-8 characters\n", invalid)
 }
}

The ReadRune method performs UTF-8 decoding and returns three

values: the decoded rune, the length in bytes of its UTF-8 encoding,
and an error value. The only error we expect is end-of-file.
If the input was not a legal UTF-8 encoding of a
rune, the returned rune is unicode.ReplacementChar and the

length is 1.

The charcount program also prints a count of the lengths of the UTF-8 encodings of
the runes that appeared in the input. A map is not the best data
structure for that; since encoding lengths range only
from 1 to utf8.UTFMax (which has the value 4), an array is more

compact.

As an experiment, we ran charcount on this book itself at one point.
Although it’s mostly in English, of course, it does
have a fair number of non-ASCII characters.

Here are the top ten:

Click here to view code image

° 27 [image: Image] 15 [image: Image] 14 é 13 x 10 ≤ 5 × 5 [image: Image] 4 [image: Image] 4 [image: Image] 3

and here is the distribution of the lengths of all the UTF-8 encodings:

len count
1 765391
2 60
3 70
4 0

The value type of a map can itself be a composite type, such as a map or
slice. In the following code, the key type of graph is string and
the value type is map[string]bool, representing a set of strings.
Conceptually, graph maps a string to a set of related strings, its
successors in a directed graph.

Click here to view code image

gopl.io/ch4/graph

var graph = make(map[string]map[string]bool)

func addEdge(from, to string) {
 edges := graph[from]
 if edges == nil {
 edges = make(map[string]bool)
 graph[from] = edges
 }
 edges[to] = true
}

func hasEdge(from, to string) bool {
 return graph[from][to]
}

The addEdge function shows the idiomatic way to populate a map
lazily, that is, to initialize each value as its key appears for the
first time. The hasEdge function shows
how the zero value of a missing map entry is often put to work: even
if neither from nor to is present, graph[from][to] will
always give a meaningful result.

Exercise 4.8:
Modify charcount to count letters, digits, and so on
in their Unicode categories, using functions like unicode.IsLetter.

Exercise 4.9:
Write a program wordfreq to report the frequency of each word
in an input text file.

Call input.Split(bufio.ScanWords) before the first
call to Scan to break the input into words instead of lines.

4.4 Structs

A struct is an aggregate data type that groups together

zero or more named values of arbitrary types as a single entity. Each
value is called a field. The classic example of a struct from

data processing is the employee record, whose fields are a unique ID,
the employee’s name, address, date of birth, position, salary, manager,
and the like. All of these fields are collected into a single entity
that can be copied as a unit, passed to functions and
returned by them, stored in arrays, and so on.

These two statements declare a struct type called Employee
and a variable called dilbert that is an instance
of an Employee:

type Employee struct {
 ID int
 Name string
 Address string
 DoB time.Time
 Position string
 Salary int
 ManagerID int
}

var dilbert Employee

The individual fields of dilbert are accessed using dot notation
like dilbert.Name and dilbert.DoB. Because
dilbert is a variable, its fields are variables too, so we may
assign to a field:

Click here to view code image

dilbert.Salary -= 5000 // demoted, for writing too few lines of code

or take its address and access it through a pointer:

Click here to view code image

position := &dilbert.Position
*position = "Senior " + *position // promoted, for outsourcing to Elbonia

The dot notation also works with a pointer to a struct:

Click here to view code image

var employeeOfTheMonth *Employee = &dilbert
employeeOfTheMonth.Position += " (proactive team player)"

The last statement is equivalent to

Click here to view code image

(*employeeOfTheMonth).Position += " (proactive team player)"

Given an employee’s unique ID, the function EmployeeByID returns a
pointer to an Employee struct.

We can use the dot notation to access its fields:

Click here to view code image

func EmployeeByID(id int) *Employee { /* ... */ }

fmt.Println(EmployeeByID(dilbert.ManagerID).Position) // "Pointy-haired boss"

id := dilbert.ID
EmployeeByID(id).Salary = 0 // fired for... no real reason

The last statement updates the Employee struct that is pointed to by
the result of the call to EmployeeByID.

If the result type of EmployeeByID were changed to
Employee instead of *Employee, the assignment statement
would not compile since its left-hand side would not identify a
variable.

Fields are usually written one per line, with the field’s name
preceding its type, but consecutive fields of the same type may be
combined, as with Name and Address here:

type Employee struct {
 ID int
 Name, Address string
 DoB time.Time
 Position string
 Salary int
 ManagerID int
}

Field order is significant to type identity.

Had we also combined the declaration of the Position field (also a
string), or interchanged Name and Address,
we would be defining a different struct type.

Typically we only combine the declarations of related fields.

The name of a struct field is exported

if it
begins with a capital letter; this is Go’s main access control
mechanism. A struct type may contain a mixture of exported and
unexported fields.

Struct types tend to be verbose because they often involve a line
for each field. Although we could write out the whole
type each time it is needed, the repetition would get
tiresome.

Instead, struct types usually appear within the
declaration of a named type like Employee.

A named struct type S can’t declare a field of the same type
S: an aggregate value cannot contain itself. (An analogous
restriction applies to arrays.) But S may declare a field of
the pointer type *S, which lets us create recursive data
structures like linked lists and trees.

This is illustrated in the code
below, which uses a binary tree to implement an insertion sort:

Click here to view code image

gopl.io/ch4/treesort

type tree struct {
 value int
 left, right *tree
}

// Sort sorts values in place.
func Sort(values []int) {
 var root *tree
 for _, v := range values {
 root = add(root, v)
 }
 appendValues(values[:0], root)
}

// appendValues appends the elements of t to values in order
// and returns the resulting slice.
func appendValues(values []int, t *tree) []int {
 if t != nil {
 values = appendValues(values, t.left)
 values = append(values, t.value)
 values = appendValues(values, t.right)
 }
 return values
}

func add(t *tree, value int) *tree {
 if t == nil {
 // Equivalent to return &tree{value: value}.
 t = new(tree)
 t.value = value
 return t
 }
 if value < t.value {
 t.left = add(t.left, value)
 } else {
 t.right = add(t.right, value)
 }
 return t
}

The zero value for a struct is composed of the zero values of each of its

fields. It is usually desirable that the zero value be a
natural or sensible default. For example, in bytes.Buffer, the initial
value of the struct is a ready-to-use empty buffer, and
the zero value of sync.Mutex, which we’ll see in
Chapter 9,
is a ready-to-use unlocked mutex.

Sometimes this sensible initial behavior happens for free, but
sometimes the type designer has to work at it.

The struct type with no fields is called the empty struct, written

struct{}. It has size zero and carries no information but may
be useful nonetheless. Some Go programmers use it instead of bool
as the value type of a map that represents a set, to emphasize that only
the keys are significant, but the space saving is
marginal and the syntax more cumbersome, so we generally avoid it.

Click here to view code image

seen := make(map[string]struct{}) // set of strings
// ...
if _, ok := seen[s]; !ok {
 seen[s] = struct{}{}
 // ...first time seeing s...
}

4.4.1 Struct Literals

A value of a struct type can be written using a struct literal that

specifies values for its fields.

type Point struct{ X, Y int }

p := Point{1, 2}

There are two forms of struct literal. The first form, shown above,
requires that a value be specified for every field, in the right
order. It burdens the writer (and reader) with remembering exactly what
the fields are, and it makes the code fragile should the set of fields
later grow or be reordered.
Accordingly, this form tends to be used only within the package that
defines the struct type, or with smaller struct types for which there
is an obvious field ordering convention,
like image.Point{x, y} or
color.RGBA{red, green, blue, alpha}.

More often, the second form is used, in which a struct value is
initialized by listing some or all of the field names and their
corresponding values, as in this statement from the Lissajous
program of Section 1.4:

Click here to view code image

anim := gif.GIF{LoopCount: nframes}

If a field is omitted in this kind of literal, it is set to the zero
value for its type. Because names are provided, the order of
fields doesn’t matter.

The two forms cannot be mixed in the same literal. Nor can you use the
(order-based) first form of literal to sneak around the rule that
unexported identifiers may not be referred to from another package.

Click here to view code image

package p
type T struct{ a, b int } // a and b are not exported

package q
import "p"
var _ = p.T{a: 1, b: 2} // compile error: can't reference a, b
var _ = p.T{1, 2} // compile error: can't reference a, b

Although the last line above doesn’t mention the unexported field
identifiers, it’s really using them implicitly, so it’s not allowed.

Struct values can be passed as arguments to functions and returned
from them. For instance, this function scales a Point by a
specified factor:

Click here to view code image

func Scale(p Point, factor int) Point {
 return Point{p.X * factor, p.Y * factor}
}

fmt.Println(Scale(Point{1, 2}, 5)) // "{5 10}"

For efficiency, larger struct types are usually passed to or returned from functions
indirectly using a pointer,

Click here to view code image

func Bonus(e *Employee, percent int) int {
 return e.Salary * percent / 100
}

and this is required if the function must modify its argument,
since in a call-by-value language like Go, the called function
receives only a copy of an argument, not a reference to the
original argument.

Click here to view code image

func AwardAnnualRaise(e *Employee) {
 e.Salary = e.Salary * 105 / 100
}

Because structs are so commonly dealt with through pointers, it’s possible
to use this shorthand notation to create and initialize a struct variable
and obtain its address:

pp := &Point{1, 2}

It is exactly equivalent to

pp := new(Point)
*pp = Point{1, 2}

but &Point{1, 2} can be used directly within an expression, such as a
function call.

4.4.2 Comparing Structs

If all the fields of a struct are comparable,

the struct itself is comparable, so two expressions of that
type may be compared using == or !=.

The == operation compares the corresponding
fields of the two structs in order, so the two printed expressions
below are equivalent:

Click here to view code image

type Point struct{ X, Y int }

p := Point{1, 2}
q := Point{2, 1}
fmt.Println(p.X == q.X && p.Y == q.Y) // "false"
fmt.Println(p == q) // "false"

Comparable struct types, like other comparable types,
may be used as the key type of a map.

Click here to view code image

type address struct {
 hostname string
 port int
}

hits := make(map[address]int)
hits[address{"golang.org", 443}]++

4.4.3 Struct Embedding and Anonymous Fields

In this section, we’ll see how Go’s unusual struct embedding
mechanism lets us use one named struct type as an anonymous
field of another struct type, providing a convenient syntactic
shortcut so that a simple dot expression like x.f can stand for
a chain of fields like x.d.e.f.

Consider a 2-D drawing program that provides a library of shapes, such
as rectangles, ellipses, stars, and wheels. Here are two of
the types it might define:

type Circle struct {
 X, Y, Radius int
}

type Wheel struct {
 X, Y, Radius, Spokes int
}

A Circle has fields for the X and Y coordinates of its center,
and a Radius. A Wheel has all the features of a Circle, plus
Spokes, the number of inscribed radial spokes. Let’s create a
wheel:

var w Wheel
w.X = 8
w.Y = 8
w.Radius = 5
w.Spokes = 20

As the set of shapes grows, we’re bound to notice similarities and
repetition among them, so it may be convenient to factor out their
common parts:

type Point struct {
 X, Y int
}

type Circle struct {
 Center Point
 Radius int
}

type Wheel struct {
 Circle Circle
 Spokes int
}

The application may be clearer for it, but this change makes
accessing the fields of a Wheel more verbose:

var w Wheel
w.Circle.Center.X = 8
w.Circle.Center.Y = 8
w.Circle.Radius = 5
w.Spokes = 20

Go lets us declare a field with a type but no name; such fields are
called anonymous fields.

The type of the field must be a named type or a pointer to a named type.

Below, Circle and Wheel have
one anonymous field each. We say that a Point is embedded within
Circle, and a Circle is embedded within Wheel.

type Circle struct {
 Point
 Radius int
}

type Wheel struct {
 Circle
 Spokes int
}

Thanks to embedding, we can refer to the names at the leaves of the
implicit tree without giving the intervening names:

Click here to view code image

var w Wheel
w.X = 8 // equivalent to w.Circle.Point.X = 8
w.Y = 8 // equivalent to w.Circle.Point.Y = 8
w.Radius = 5 // equivalent to w.Circle.Radius = 5
w.Spokes = 20

The explicit forms shown in the comments above are still valid, however,
showing that “anonymous field” is something of a misnomer.

The fields Circle and Point do have names—that of the
named type—but those names are optional in dot expressions.

We may omit any or all of the anonymous fields when selecting their
subfields.

Unfortunately, there’s no corresponding shorthand for the struct
literal syntax, so neither of these will compile:

Click here to view code image

w = Wheel{8, 8, 5, 20} // compile error: unknown fields
w = Wheel{X: 8, Y: 8, Radius: 5, Spokes: 20} // compile error: unknown fields

The struct literal must follow the shape of the type declaration, so
we must use one of the two forms below, which are equivalent to each
other:

Click here to view code image

gopl.io/ch4/embed

w = Wheel{Circle{Point{8, 8}, 5}, 20}

w = Wheel{
 Circle: Circle{
 Point: Point{X: 8, Y: 8},
 Radius: 5,
 },
 Spokes: 20, // NOTE: trailing comma necessary here (and at Radius)
}

fmt.Printf("%#v\n", w)
// Output:
// Wheel{Circle:Circle{Point:Point{X:8, Y:8}, Radius:5}, Spokes:20}

w.X = 42

fmt.Printf("%#v\n", w)
// Output:
// Wheel{Circle:Circle{Point:Point{X:42, Y:8}, Radius:5}, Spokes:20}

Notice how the # adverb causes Printf’s %v verb
to display values in a form similar to Go syntax.

For struct values, this form includes the name of each field.

Because “anonymous” fields do have implicit names, you can’t have two anonymous
fields of the same type since their names would conflict.
And because the name of the field is implicitly determined by its
type, so too is the visibility of the field.
In the examples above, the Point and Circle anonymous fields are
exported.

Had they been unexported (point and circle), we could
still use the shorthand form

Click here to view code image

w.X = 8 // equivalent to w.circle.point.X = 8

but the explicit long form shown in the comment would be forbidden
outside the declaring package because circle and point
would be inaccessible.

What we’ve seen so far of struct embedding is just a sprinkling of
syntactic sugar on the dot notation used to select struct fields.

Later, we’ll see that anonymous fields need not be struct types; any
named type or pointer to a named type will do.

But why would you want to embed a type that has no subfields?

The answer has to do with methods.

The shorthand notation used for selecting the fields of an embedded
type works for selecting its methods as well.

In effect, the outer struct type gains not just the fields of the
embedded type but its methods too.

This mechanism is the main way that complex object behaviors are
composed from simpler ones.

Composition is central to object-oriented programming in Go,

and we’ll explore it further in Section 6.3.

4.5 JSON

JavaScript Object Notation (JSON) is a standard notation for sending
and receiving structured information.

JSON is not the only such notation.
XML (§7.14),

ASN.1,

and Google’s Protocol Buffers

serve similar purposes and each has its
niche, but because of its simplicity, readability, and universal
support, JSON is the most widely used.

Go has excellent support for encoding and decoding these formats,
provided by the standard library packages encoding/json,
encoding/xml, encoding/asn1, and so on, and these
packages all have similar APIs.

This section gives a brief overview of the most important parts of the
encoding/json package.

JSON is an encoding of JavaScript values—strings, numbers, booleans,
arrays, and objects—as Unicode text.

It’s an efficient yet readable representation for the basic data types
of Chapter 3 and the composite types of this
chapter—arrays, slices, structs, and maps.

The basic JSON types are numbers (in decimal or scientific notation),
booleans (true or false), and strings, which are
sequences of Unicode code points enclosed in
double quotes, with backslash escapes using a similar notation to
Go, though JSON’s \Uhhhh numeric escapes denote UTF-16 codes,
not runes.

These basic types may be combined recursively using JSON arrays and objects.

A JSON array is an ordered sequence of values, written as a
comma-separated list enclosed in square brackets; JSON arrays are used to
encode Go arrays and slices.

A JSON object is a mapping from strings to values, written as a sequence
of name:value pairs separated by commas and surrounded by
braces; JSON objects are used to encode Go maps (with string keys) and structs.

For example:

Click here to view code image

boolean true
number -273.15
string "She said \"Hello, [image: Image]\""
array ["gold", "silver", "bronze"]
object {"year": 1980,
 "event": "archery",
 "medals": ["gold", "silver", "bronze"]}

Consider an application that gathers movie reviews and offers
recommendations.

Its Movie data type and a typical list of values are declared below.

(The string literals after the Year and Color field
declarations are field tags; we’ll explain them in a moment.)

Click here to view code image

gopl.io/ch4/movie

type Movie struct {
 Title string
 Year int `json:"released"`
 Color bool `json:"color,omitempty"`
 Actors []string
}

var movies = []Movie{
 {Title: "Casablanca", Year: 1942, Color: false,
 Actors: []string{"Humphrey Bogart", "Ingrid Bergman"}},
 {Title: "Cool Hand Luke", Year: 1967, Color: true,
 Actors: []string{"Paul Newman"}},
 {Title: "Bullitt", Year: 1968, Color: true,
 Actors: []string{"Steve McQueen", "Jacqueline Bisset"}},
 // ...
}

Data structures like this are an excellent fit for JSON, and it’s easy to
convert in both directions. Converting a Go data structure
like movies to JSON is called marshaling.

Marshaling is done by json.Marshal:

Click here to view code image

data, err := json.Marshal(movies)
if err != nil {
 log.Fatalf("JSON marshaling failed: %s", err)
}
fmt.Printf("%s\n", data)

Marshal produces a byte slice containing a very long string
with no extraneous white space; we’ve folded the lines so it fits:

Click here to view code image

[{"Title":"Casablanca","released":1942,"Actors":["Humphrey Bogart","Ingr
id Bergman"]},{"Title":"Cool Hand Luke","released":1967,"color":true,"Ac
tors":["Paul Newman"]},{"Title":"Bullitt","released":1968,"color":true,"
Actors":["Steve McQueen","Jacqueline Bisset"]}]

This compact representation contains all the information but it’s hard to read.

For human consumption, a variant called json.MarshalIndent
produces neatly indented output. Two additional arguments
define a prefix for each line of output and a string for each level of
indentation:

Click here to view code image

data, err := json.MarshalIndent(movies, "", " ")
if err != nil {
 log.Fatalf("JSON marshaling failed: %s", err)
}
fmt.Printf("%s\n", data)

The code above prints

Click here to view code image

[
 {
 "Title": "Casablanca",
 "released": 1942,
 "Actors": [
 "Humphrey Bogart",
 "Ingrid Bergman"
]
 },
 {
 "Title": "Cool Hand Luke",
 "released": 1967,
 "color": true,
 "Actors": [
 "Paul Newman"
]
 },
 {
 "Title": "Bullitt",
 "released": 1968,
 "color": true,
 "Actors": [
 "Steve McQueen",
 "Jacqueline Bisset"
]
 }
]

Marshaling uses the Go struct field names as the field names for
the JSON objects (through reflection, as we’ll see in Section 12.6).

Only exported fields are marshaled, which is why we chose capitalized
names for all the Go field names.

You may have noticed that the name of the Year field changed to
released in the output, and Color changed to color.

That’s because of the field tags.

A field tag is a string of metadata associated at compile time
with the field of a struct:

Click here to view code image

Year int `json:"released"`
Color bool `json:"color,omitempty"`

A field tag may be any literal string, but it is conventionally
interpreted as a space-separated list of key:"value" pairs;
since they contain double quotation marks, field tags are usually
written with raw string literals.

The json key controls the behavior of the encoding/json
package, and other encoding/... packages follow this
convention.

The first part of the json field tag specifies an alternative
JSON name for the Go field.

Field tags are often used to specify an idiomatic JSON name like
total_count for a Go field named TotalCount.

The tag for Color has an additional option, omitempty,
which indicates that no JSON output should be produced if the
field has the zero value for its type (false, here) or
is otherwise empty.

Sure enough, the JSON output for Casablanca, a black-and-white
movie, has no color field.

The inverse operation to marshaling, decoding JSON and populating a Go
data structure, is called unmarshaling, and it is done by
json.Unmarshal.

The code below unmarshals the JSON movie data into a slice of
structs whose only field is Title.

By defining suitable Go data structures in this way,
we can select which parts of the JSON input to decode and
which to discard.

When Unmarshal returns, it has filled in the slice
with the Title information; other names in the
JSON are ignored.

Click here to view code image

var titles []struct{ Title string }
if err := json.Unmarshal(data, &titles); err != nil {
 log.Fatalf("JSON unmarshaling failed: %s", err)
}
fmt.Println(titles) // "[{Casablanca} {Cool Hand Luke} {Bullitt}]"

Many web services provide a JSON interface—make a request with
HTTP and back comes the desired information in JSON format.
To illustrate, let’s query the GitHub issue tracker using its
web-service interface.

First we’ll define the necessary types and constants:

Click here to view code image

gopl.io/ch4/github

// Package github provides a Go API for the GitHub issue tracker.
// See https://developer.github.com/v3/search/#search-issues.
package github

import "time"

const IssuesURL = "https://api.github.com/search/issues"

type IssuesSearchResult struct {
 TotalCount int `json:"total_count"`
 Items []*Issue
}

type Issue struct {
 Number int
 HTMLURL string `json:"html_url"`
 Title string
 State string
 User *User
 CreatedAt time.Time `json:"created_at"`
 Body string // in Markdown format
}

type User struct {
 Login string
 HTMLURL string `json:"html_url"`
}

As before, the names of all the struct fields must be capitalized
even if their JSON names are not.

However, the matching process that associates JSON
names with Go struct names during unmarshaling is case-insensitive, so it’s only
necessary to use a field tag when there’s an underscore in the JSON
name but not in the Go name.

Again, we are being selective about which fields to decode; the
GitHub search response contains considerably more information than we show here.

The SearchIssues function makes an HTTP request and decodes the
result as JSON.

Since the query terms presented by a user could contain
characters like ? and & that have special meaning in a URL,
we use url.QueryEscape to ensure that they are taken literally.

Click here to view code image

gopl.io/ch4/github

package github

import (
 "encoding/json"
 "fmt"
 "net/http"
 "net/url"
 "strings"
)

// SearchIssues queries the GitHub issue tracker.
func SearchIssues(terms []string) (*IssuesSearchResult, error) {
 q := url.QueryEscape(strings.Join(terms, " "))
 resp, err := http.Get(IssuesURL + "?q=" + q)
 if err != nil {
 return nil, err
 }

 // We must close resp.Body on all execution paths.
 // (Chapter 5 presents 'defer', which makes this simpler.)
 if resp.StatusCode != http.StatusOK {
 resp.Body.Close()
 return nil, fmt.Errorf("search query failed: %s", resp.Status)
 }

 var result IssuesSearchResult
 if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
 resp.Body.Close()
 return nil, err
 }
 resp.Body.Close()
 return &result, nil
}

The earlier examples used json.Unmarshal to decode the entire
contents of a byte slice as a single JSON entity.

For variety, this example uses the streaming decoder,
json.Decoder, which allows several JSON entities to be decoded
in sequence from the same stream, although we don’t need that feature
here.

As you might expect, there is a corresponding streaming encoder called
json.Encoder.

The call to Decode populates the variable result.

There are various ways we can format its value nicely.

The simplest, demonstrated by the issues command below, is as a
text table with fixed-width columns, but in the next section we’ll
see a more sophisticated approach based on templates.

Click here to view code image

gopl.io/ch4/issues

// Issues prints a table of GitHub issues matching the search terms.
package main

import (
 "fmt"
 "log"
 "os"

 "gopl.io/ch4/github"
)

func main() {
 result, err := github.SearchIssues(os.Args[1:])
 if err != nil {
 log.Fatal(err)
 }
 fmt.Printf("%d issues:\n", result.TotalCount)
 for _, item := range result.Items {
 fmt.Printf("#%-5d %9.9s %.55s\n",
 item.Number, item.User.Login, item.Title)
 }
}

The command-line arguments specify the search terms.

The command below queries the Go project’s issue tracker for the
list of open bugs related to JSON decoding:

Click here to view code image

$ go build gopl.io/ch4/issues
$./issues repo:golang/go is:open json decoder
13 issues:
#5680 eaigner encoding/json: set key converter on en/decoder
#6050 gopherbot encoding/json: provide tokenizer
#8658 gopherbot encoding/json: use bufio
#8462 kortschak encoding/json: UnmarshalText confuses json.Unmarshal
#5901 rsc encoding/json: allow override type marshaling
#9812 klauspost encoding/json: string tag not symmetric
#7872 extempora encoding/json: Encoder internally buffers full output
#9650 cespare encoding/json: Decoding gives errPhase when unmarshalin
#6716 gopherbot encoding/json: include field name in unmarshal error me
#6901 lukescott encoding/json, encoding/xml: option to treat unknown fi
#6384 joeshaw encoding/json: encode precise floating point integers u
#6647 btracey x/tools/cmd/godoc: display type kind of each named type
#4237 gjemiller encoding/base64: URLEncoding padding is optional

The GitHub web-service interface at
https://developer.github.com/v3/ has many more features
than we have space for here.

Exercise 4.10:
Modify issues to report the results in age categories,
say less than a month old, less than a year old, and more
than a year old.

Exercise 4.11:
Build a tool that lets users create, read, update, and delete GitHub
issues from the command line, invoking their preferred text editor
when substantial text input is required.

Exercise 4.12:
The popular web comic xkcd has a JSON interface.

For example, a request to https://xkcd.com/571/info.0.json
produces a detailed description of comic 571, one of many favorites.

Download each URL (once!) and build an offline index.

Write a tool xkcd that, using this index, prints the URL and
transcript of each comic that matches a search term provided on the
command line.

Exercise 4.13:
The JSON-based web service of the Open Movie Database
lets you search https://omdbapi.com/ for a movie by name and
download its poster image.

Write a tool poster that downloads the poster image for the
movie named on the command line.

4.6 Text and HTML Templates

The previous example does only the simplest possible formatting,
for which Printf is entirely adequate. But sometimes
formatting must be more elaborate, and it’s desirable to separate
the format from the code more completely.

This can be done with the text/template and
html/template packages, which provide a mechanism for
substituting the values of variables into a
text or HTML template.

A template is a string or file containing one or more portions enclosed
in double braces, {{...}}, called actions.

Most of the string is printed literally, but the actions trigger
other behaviors.

Each action contains an expression in the template language, a simple
but powerful notation for printing values, selecting struct fields,
calling functions and methods, expressing control flow such as
if-else statements and range loops, and instantiating other templates.

A simple template string is shown below:

Click here to view code image

gopl.io/ch4/issuesreport

const templ = `{{.TotalCount}} issues:
{{range .Items}}--
Number: {{.Number}}
User: {{.User.Login}}
Title: {{.Title | printf "%.64s"}}
Age: {{.CreatedAt | daysAgo}} days
{{end}}`

This template first prints the number of matching issues, then prints
the number, user, title, and age in days of each one.

Within an action, there is a notion of the current value, referred
to as “dot” and written as “.”, a period.

The dot initially refers to the template’s parameter, which will
be a github.IssuesSearchResult in this example.

The {{.TotalCount}} action expands to the value of the
TotalCount field, printed in the usual way.

The {{range .Items}} and {{end}} actions create a loop,
so the text between them is expanded multiple times, with dot
bound to successive elements of Items.

Within an action, the | notation makes the result of one operation
the argument of another, analogous to a Unix shell pipeline.

In the case of Title, the second operation is the printf
function, which is a built-in synonym for fmt.Sprintf in all templates.

For Age, the second operation is the following function, daysAgo,
which converts the CreatedAt field into an elapsed time,
using time.Since:

Click here to view code image

func daysAgo(t time.Time) int {
 return int(time.Since(t).Hours() / 24)
}

Notice that the type of CreatedAt is time.Time,
not string.

In the same way that a type may control its string formatting
(§2.5)
by defining certain methods, a type may also define methods to control
its JSON marshaling and unmarshaling behavior. The JSON-marshaled value
of a time.Time is a string in a standard format.

Producing output with a template is a two-step process.

First we must parse the template into a suitable internal representation,
and then execute it on specific inputs. Parsing need be
done only once.

The code below creates and parses the template templ defined
above.

Note the chaining of method calls: template.New creates
and returns a template;

Funcs adds daysAgo to the set of functions
accessible within this template, then returns that template;

finally, Parse is called on the result.

Click here to view code image

report, err := template.New("report").
 Funcs(template.FuncMap{"daysAgo": daysAgo}).
 Parse(templ)
if err != nil {
 log.Fatal(err)
}

Because templates are usually fixed at compile time, failure to parse a template
indicates a fatal bug in the program.

The template.Must helper function makes error handling more convenient:

it accepts a template and an error, checks that the error is nil (and
panics otherwise), and then returns the template.

We’ll come back to this idea in Section 5.9.

Once the template has been created, augmented with daysAgo, parsed, and checked,
we can execute it using a github.IssuesSearchResult as the
data source and os.Stdout as the destination:

Click here to view code image

var report = template.Must(template.New("issuelist").
 Funcs(template.FuncMap{"daysAgo": daysAgo}).
 Parse(templ))

func main() {
 result, err := github.SearchIssues(os.Args[1:])
 if err != nil {
 log.Fatal(err)
 }
 if err := report.Execute(os.Stdout, result); err != nil {
 log.Fatal(err)
 }
}

The program prints a plain text report like this:

Click here to view code image

$ go build gopl.io/ch4/issuesreport
$./issuesreport repo:golang/go is:open json decoder
13 issues:
--
Number: 5680
User: eaigner
Title: encoding/json: set key converter on en/decoder
Age: 750 days
--
Number: 6050
User: gopherbot
Title: encoding/json: provide tokenizer
Age: 695 days
--
...

Now let’s turn to the html/template package.

It uses the same API and expression language as text/template
but adds features for automatic and context-appropriate escaping of
strings appearing within HTML, JavaScript, CSS, or URLs.

These features can help avoid a perennial security problem of HTML generation,
an injection attack, in which an adversary crafts a
string value like the title of an issue to include
malicious code that, when improperly escaped by a template, gives them
control over the page.

The template below prints the list of issues as an HTML table.
Note the different import:

Click here to view code image

gopl.io/ch4/issueshtml

import "html/template"

var issueList = template.Must(template.New("issuelist").Parse(`
<h1>{{.TotalCount}} issues</h1>
<table>
<tr style='text-align: left'>
 <th>#</th>
 <th>State</th>
 <th>User</th>
 <th>Title</th>
</tr>
{{range .Items}}
<tr>
 <td>{{.Number}}</td>
 <td>{{.State}}</td>
 <td>{{.User.Login}}</td>
 <td>{{.Title}}</td>
</tr>
{{end}}
</table>
`))

The command below executes the new template on the results of a
slightly different query:

Click here to view code image

$ go build gopl.io/ch4/issueshtml
$./issueshtml repo:golang/go commenter:gopherbot json encoder >issues.html

Figure 4.4 shows the appearance of the table
in a web browser.

The links connect to the appropriate web pages at GitHub.

[image: An HTML table of Go project issues relating to JSON encoding.]
Figure 4.4.
An HTML table of Go project issues relating to JSON encoding.

None of the issues in Figure 4.4 pose a challenge
for HTML, but we can see the effect more clearly with issues whose
titles contain HTML metacharacters like & and
<.

We’ve selected two such issues for this example:

Click here to view code image

$./issueshtml repo:golang/go 3133 10535 >issues2.html

Figure 4.5 shows the result of this query.

Notice that the html/template package automatically
HTML-escaped the titles so that they appear literally.

Had we used the text/template package by mistake, the
four-character string "<" would have been rendered as a
less-than character '<', and the string "<link>"
would have become a link element, changing the structure of the
HTML document and perhaps compromising its security.

We can suppress this auto-escaping behavior for
fields that contain trusted HTML data by using the
named string type template.HTML instead of string.

Similar named types exist for trusted JavaScript, CSS, and URLs.

The program below demonstrates the principle by using two fields
with the same value but different types: A is a string and
B is a template.HTML.

[image: HTML metacharacters in issue titles are correctly displayed.]
Figure 4.5.
HTML metacharacters in issue titles are correctly displayed.

Click here to view code image

gopl.io/ch4/autoescape

func main() {
 const templ = `<p>A: {{.A}}</p><p>B: {{.B}}</p>`
 t := template.Must(template.New("escape").Parse(templ))
 var data struct {
 A string // untrusted plain text
 B template.HTML // trusted HTML
 }
 data.A = "Hello!"
 data.B = "Hello!"
 if err := t.Execute(os.Stdout, data); err != nil {
 log.Fatal(err)
 }
}

Figure 4.6 shows the template’s output as it
appears in a browser.

We can see that A was subject to escaping but B was not.

[image: String values are HTML-escaped but template.HTML values are not.]
Figure 4.6.
String values are HTML-escaped but template.HTML values are not.

We have space here to show only the most basic features of the
template system.

As always, for more information, consult the package documentation:

$ go doc text/template
$ go doc html/template

Exercise 4.14:
Create a web server that queries GitHub once and then allows
navigation of the list of bug reports, milestones, and users.

5. Functions

A function lets us wrap up a sequence of statements as a unit
that can be called from elsewhere in a program, perhaps multiple times.
Functions make it possible to break a big job into smaller pieces
that might well be written by different people separated by both time
and space.

A function hides its implementation details from its users.

For all of these reasons, functions are a
critical part of any programming language.

We’ve seen many functions already. Now let’s take time for a more thorough discussion.

The running example of this chapter is a web crawler, that is,
the component of a web search engine responsible for fetching web
pages, discovering the links within them, fetching the pages
identified by those links, and so on.

A web crawler gives us ample opportunity to explore recursion,
anonymous functions, error handling, and aspects of functions
that are unique to Go.

5.1 Function Declarations

A function declaration has a name, a list of parameters, an optional list of

results, and a body:

Click here to view code image

func name(parameter-list) (result-list) {
 body
}

The parameter list specifies the names and types of the function’s parameters,
which are the local variables whose values or arguments are supplied by the caller.

The result list specifies the types of the values that the function returns.

If the function returns one unnamed result or no results at all,
parentheses are optional and usually omitted.

Leaving off the result list entirely declares a function that
does not return any value and is called only for its effects.

In the hypot function,

Click here to view code image

func hypot(x, y float64) float64 {
 return math.Sqrt(x*x + y*y)
}

fmt.Println(hypot(3, 4)) // "5"

x and y are parameters in the declaration,
3 and 4 are arguments of the call,
and the function returns a float64 value.

Like parameters, results may be named.

In that case, each name declares a local variable initialized to the
zero value for its type.

A function that has a result list must end with a return
statement unless execution clearly cannot reach the end of the function,

perhaps because the function ends with
a call to panic or an infinite for loop

with no break.

As we saw with hypot, a sequence of parameters or results of
the same type can be factored so that the type itself is written only
once.

These two declarations are equivalent:

Click here to view code image

func f(i, j, k int, s, t string) { /* ... */ }
func f(i int, j int, k int, s string, t string) { /* ... */ }

Here are four ways to declare a function with two parameters and one
result, all of type int.

The blank identifier can be used to emphasize that a parameter is unused.

Click here to view code image

func add(x int, y int) int { return x + y }
func sub(x, y int) (z int) { z = x - y; return }
func first(x int, _ int) int { return x }
func zero(int, int) int { return 0 }

fmt.Printf("%T\n", add) // "func(int, int) int"
fmt.Printf("%T\n", sub) // "func(int, int) int"
fmt.Printf("%T\n", first) // "func(int, int) int"
fmt.Printf("%T\n", zero) // "func(int, int) int"

The type of a function is sometimes called its signature.

Two functions have the same type or signature if they have the same sequence of
parameter types and the same sequence of result types.

The names of parameters and results don’t affect the type, nor does whether or
not they were declared using the factored form.

Every function call must provide an argument for each parameter, in
the order in which the parameters were declared.

Go has no concept of default parameter values, nor any way to
specify arguments by name, so the names of parameters and results
don’t matter to the caller except as documentation.

Parameters are local variables within the body of the function, with their
initial values set to the arguments supplied by the caller.

Function parameters and named results are
variables in the same lexical block as the function’s outermost local
variables.

Arguments are passed by value, so the function
receives a copy of each argument; modifications to the copy do not
affect the caller.

However, if the argument contains some kind of reference, like
a pointer, slice, map, function, or channel, then the caller may
be affected by any modifications the function makes to variables
indirectly referred to by the argument.

You may occasionally encounter a function declaration without a body,
indicating that the function is implemented in a language other than Go.
Such a declaration defines the function signature.

Click here to view code image

package math

func Sin(x float64) float64 // implemented in assembly language

5.2 Recursion

Functions may be recursive, that is, they may call themselves,

either directly or indirectly. Recursion is a powerful technique
for many problems, and of course it’s essential for processing
recursive data structures.

In Section 4.4, we used recursion over a tree to implement a
simple insertion sort.

In this section, we’ll use it again for processing HTML documents.

The example program below uses a non-standard package,
golang.org/x/net/html, which provides an HTML parser.

The golang.org/x/... repositories hold packages designed
and maintained by the Go team for applications such as networking,
internationalized text processing, mobile platforms, image manipulation,
cryptography, and developer tools.

These packages are not in the standard library
because they’re still under development or because they’re rarely
needed by the majority of Go programmers.

The parts of the golang.org/x/net/html API that we’ll need
are shown below.

The function html.Parse

reads a sequence of bytes, parses them, and
returns the root of the HTML document tree, which is an html.Node.

HTML has several kinds of nodes—text, comments, and so on—but here we are
concerned only with element nodes of the form <name key='value'>.

Click here to view code image

golang.org/x/net/html

package html

type Node struct {
 Type NodeType
 Data string
 Attr []Attribute
 FirstChild, NextSibling *Node
}

type NodeType int32

const (
 ErrorNode NodeType = iota
 TextNode
 DocumentNode
 ElementNode
 CommentNode
 DoctypeNode
)

type Attribute struct {
 Key, Val string
}

func Parse(r io.Reader) (*Node, error)

The main function parses the standard input as HTML,
extracts the links using a recursive visit function, and prints each discovered link:

Click here to view code image

gopl.io/ch5/findlinks1

// Findlinks1 prints the links in an HTML document read from standard input.
package main

import (
 "fmt"
 "os"

 "golang.org/x/net/html"
)

func main() {
 doc, err := html.Parse(os.Stdin)
 if err != nil {
 fmt.Fprintf(os.Stderr, "findlinks1: %v\n", err)
 os.Exit(1)
 }
 for _, link := range visit(nil, doc) {
 fmt.Println(link)
 }
}

The visit function traverses an HTML node tree,
extracts the link from the href attribute of each anchor element

, appends the links to a slice of strings, and returns the resulting slice:

Click here to view code image

// visit appends to links each link found in n and returns the result.
func visit(links []string, n *html.Node) []string {
 if n.Type == html.ElementNode && n.Data == "a" {
 for _, a := range n.Attr {
 if a.Key == "href" {
 links = append(links, a.Val)
 }
 }
 }
 for c := n.FirstChild; c != nil; c = c.NextSibling {
 links = visit(links, c)
 }
 return links
}

To descend the tree for a node n, visit recursively calls itself for each of
n’s children, which are held in the FirstChild linked list.

Let’s run findlinks on the Go home page, piping the output of
fetch (§1.5) to the input of
findlinks.

We’ve edited the output slightly for brevity.

Click here to view code image

$ go build gopl.io/ch1/fetch
$ go build gopl.io/ch5/findlinks1
$./fetch https://golang.org | ./findlinks1
#
/doc/
/pkg/
/help/
/blog/
http://play.golang.org/
//tour.golang.org/
https://golang.org/dl/
//blog.golang.org/
/LICENSE
/doc/tos.html
http://www.google.com/intl/en/policies/privacy/

Notice the variety of forms of links that appear in the page.

Later we’ll see how to resolve them relative to the base
URL, https://golang.org, to make absolute URLs.

The next program uses recursion over the HTML node tree to print the
structure of the tree in outline. As it encounters each element,
it pushes the element’s tag onto a stack, then prints the stack.

Click here to view code image

gopl.io/ch5/outline

func main() {
 doc, err := html.Parse(os.Stdin)
 if err != nil {
 fmt.Fprintf(os.Stderr, "outline: %v\n", err)
 os.Exit(1)
 }
 outline(nil, doc)
}

func outline(stack []string, n *html.Node) {
 if n.Type == html.ElementNode {
 stack = append(stack, n.Data) // push tag
 fmt.Println(stack)
 }
 for c := n.FirstChild; c != nil; c = c.NextSibling {
 outline(stack, c)
 }
}

Note one subtlety: although outline “pushes” an element on
stack, there is no corresponding pop.

When outline calls itself recursively, the callee receives a
copy of stack.

Although the callee may append elements to this slice, modifying its
underlying array and perhaps even allocating a new array, it doesn’t
modify the initial elements that are
visible to the caller, so when the function returns, the caller’s
stack is as it was before the call.

Here’s the outline of https://golang.org, again edited for brevity:

Click here to view code image

$ go build gopl.io/ch5/outline
$./fetch https://golang.org | ./outline
[html]
[html head]
[html head meta]
[html head title]
[html head link]
[html body]
[html body div]
[html body div]
[html body div div]
[html body div div form]
[html body div div form div]
[html body div div form div a]
...

As you can see by experimenting with outline, most HTML
documents can be processed with only a few levels of recursion, but
it’s not hard to construct pathological web pages that require
extremely deep recursion.

Many programming language implementations use a fixed-size function
call stack; sizes from 64KB to 2MB are typical.

Fixed-size stacks impose a limit on the depth of recursion,

so one must be careful to avoid a stack
overflow when traversing large data structures recursively;
fixed-size stacks may even pose a security risk.

In contrast, typical Go implementations use variable-size stacks that
start small and grow as needed up to a limit on the order
of a gigabyte.

This lets us use recursion safely and without worrying about overflow.

Exercise 5.1:
Change the findlinks program to traverse the
n.FirstChild linked list using recursive calls to visit
instead of a loop.

Exercise 5.2:
Write a function to populate a mapping from element names—p, div,
span, and so on—to the number of elements with that name
in an HTML document tree.

Exercise 5.3:
Write a function to print the contents of all text nodes in an HTML
document tree.

Do not descend into <script> or <style> elements,
since their contents are not visible in a web browser.

Exercise 5.4:
Extend the visit function so that it extracts other kinds of
links from the document, such as images, scripts, and style sheets.

5.3 Multiple Return Values

A function can return more than one result. We’ve seen many
examples of functions from standard packages that return two values,
the desired computational result and an error value or boolean that
indicates whether the computation worked. The next example shows how
to write one of our own.

The program below is a variation of findlinks that makes the
HTTP request itself so that we no longer need to run fetch.

Because the HTTP and parsing operations can fail,
findLinks declares two results: the list of discovered links
and an error.

Incidentally, the HTML parser can usually recover from bad input and
construct a document containing error nodes, so Parse rarely
fails; when it does, it’s typically due to underlying I/O errors.

Click here to view code image

gopl.io/ch5/findlinks2

func main() {
 for _, url := range os.Args[1:] {
 links, err := findLinks(url)
 if err != nil {
 fmt.Fprintf(os.Stderr, "findlinks2: %v\n", err)
 continue
 }
 for _, link := range links {
 fmt.Println(link)
 }
 }
}

// findLinks performs an HTTP GET request for url, parses the
// response as HTML, and extracts and returns the links.
func findLinks(url string) ([]string, error) {
 resp, err := http.Get(url)
 if err != nil {
 return nil, err
 }
 if resp.StatusCode != http.StatusOK {
 resp.Body.Close()
 return nil, fmt.Errorf("getting %s: %s", url, resp.Status)
 }
 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)
 }
 return visit(nil, doc), nil
}

There are four return statements in findLinks, each of which
returns a pair of values.

The first three returns cause the function to pass the
underlying errors from the http and html packages on to
the caller.

In the first case, the error is returned unchanged; in the second and third, it
is augmented with additional context information by fmt.Errorf
(§7.8).

If findLinks is successful, the final return statement
returns the slice of links, with no error.

We must ensure that resp.Body is closed
so that network resources are properly released
even in case of error.

Go’s garbage collector recycles unused memory, but do not assume it
will release unused operating system resources like open files and
network connections. They should be closed explicitly.

The result of calling a multi-valued function is a tuple of values.

The caller of such a function must explicitly assign the values to
variables if any of them are to be used:

links, err := findLinks(url)

To ignore one of the values, assign it to the blank identifier:

Click here to view code image

links, _ := findLinks(url) // errors ignored

The result of a multi-valued call may itself be returned from a
(multi-valued) calling function, as in this function that behaves
like findLinks but logs its argument:

Click here to view code image

func findLinksLog(url string) ([]string, error) {
 log.Printf("findLinks %s", url)
 return findLinks(url)
}

A multi-valued call may appear as the sole argument when calling a
function of multiple parameters.

Although rarely used in production code, this feature is sometimes convenient during
debugging since it lets us print all the results of a call using a
single statement.

The two print statements below have the same effect.

log.Println(findLinks(url))

links, err := findLinks(url)
log.Println(links, err)

Well-chosen names can document the significance of a function’s results.

Names are particularly valuable when a function returns multiple
results of the same type, like

Click here to view code image

func Size(rect image.Rectangle) (width, height int)
func Split(path string) (dir, file string)
func HourMinSec(t time.Time) (hour, minute, second int)

but it’s not always necessary to name multiple results solely for
documentation. For instance, convention dictates that a final bool
result indicates success; an error result often needs no explanation.

In a function with named results, the operands of a return statement
may be omitted.

This is called a bare return.

Click here to view code image

// CountWordsAndImages does an HTTP GET request for the HTML
// document url and returns the number of words and images in it.
func CountWordsAndImages(url string) (words, images int, err error) {
 resp, err := http.Get(url)
 if err != nil {
 return
 }

 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 err = fmt.Errorf("parsing HTML: %s", err)
 return
 }
 words, images = countWordsAndImages(doc)
 return
}

func countWordsAndImages(n *html.Node) (words, images int) { /* ... */ }

A bare return is a shorthand way to return each of the named result
variables in order, so in the function above, each return statement is
equivalent to

return words, images, err

In functions like this one, with many return statements and several
results, bare returns can reduce code duplication, but they rarely
make code easier to understand.

For instance, it’s not obvious at first glance that the two early
returns are equivalent to return 0, 0, err (because the
result variables words and images are initialized to their zero values) and that the final return

is equivalent to return words, images, nil.

For this reason, bare returns are best used sparingly.

Exercise 5.5:
Implement countWordsAndImages.

(See Exercise 4.9 for word-splitting.)

Exercise 5.6:
Modify the corner function in gopl.io/ch3/surface (§3.2) to use named results and a bare return statement.

5.4 Errors

Some functions always succeed at their task.

For example, strings.Contains and strconv.FormatBool have well-defined results
for all possible argument values and cannot fail—barring catastrophic
and unpredictable scenarios like running out of memory, where the
symptom is far from the cause and from which there’s little hope
of recovery.

Other functions always succeed so long as their preconditions are met.
For example, the time.Date function always constructs
a time.Time from its components—year, month, and so on—unless
the last argument (the time zone) is nil, in which case it panics.

This panic is a sure sign of a bug in the calling code and should
never happen in a well-written program.

For many other functions, even in a well-written program, success is not assured because it
depends on factors beyond the programmer’s control. Any function that
does I/O, for example, must confront the possibility of error, and
only a naïve programmer believes a simple read or write cannot
fail. Indeed, it’s when the most reliable
operations fail unexpectedly that we most need to know why.

Errors are thus an important part of a package’s API or an
application’s user interface, and failure is just one
of several expected behaviors.

This is the approach Go takes to error handling.

A function for
which failure is an expected behavior returns an additional result,
conventionally the last one. If the failure has only one possible
cause, the result is a boolean, usually called ok, as in
this example of a cache lookup that always succeeds unless there was
no entry for that key:

Click here to view code image

value, ok := cache.Lookup(key)
if !ok {
 // ...cache[key] does not exist...
}

More often, and especially for I/O, the failure may have a variety of
causes for which the caller will need an explanation. In such cases, the
type of the additional result is error.

The built-in type error is an interface type.

We’ll see more of what this means and its implications for error
handling in Chapter 7.

For now it’s enough to know that an error may be nil or
non-nil, that nil implies success and non-nil implies failure, and
that a non-nil error has an error message string which
we can obtain by calling its Error method
or print by calling fmt.Println(err) or fmt.Printf("%v", err).

Usually when a function returns a non-nil error, its other results are
undefined and should be ignored.

However, a few functions may return partial results in error cases.

For example, if an error occurs while reading from a
file, a call to Read returns the number
of bytes it was able to read and an
error value describing the problem.

For correct behavior, some callers may need to process the incomplete
data before handling the error, so it is important that such
functions clearly document their results.

Go’s approach sets it apart from many other languages in which failures are
reported using exceptions, not ordinary values. Although Go

does have an exception mechanism of sorts,
as we will see in Section 5.9,
it is used only for reporting truly unexpected errors
that indicate a bug, not the routine errors that a robust program
should be built to expect.

The reason for this design is that exceptions tend to entangle
the description of an error with the control flow required to
handle it, often leading to an undesirable outcome: routine errors are
reported to the end user in the form of an incomprehensible stack
trace, full of information about the structure of the program but
lacking intelligible context about what went wrong.

By contrast, Go programs use ordinary control-flow
mechanisms like if and return to respond to errors.
This style undeniably demands that more attention be paid to
error-handling logic, but that is precisely the point.

5.4.1 Error-Handling Strategies

When a function call returns an error, it’s the caller’s responsibility
to check it and take appropriate action.

Depending on the situation, there may be a number of possibilities.

Let’s take a look at five of them.

First, and most common, is to propagate the error, so that a
failure in a subroutine becomes a failure of the calling routine.

We saw examples of this in the findLinks function
of Section 5.3.

If the call to http.Get fails, findLinks returns
the HTTP error to the caller without further ado:

resp, err := http.Get(url)
if err != nil {
 return nil, err
}

In contrast, if the call to html.Parse fails,
findLinks does not return the HTML parser’s error directly
because it lacks two crucial pieces of information: that the
error occurred in the parser, and the URL of the document that was
being parsed.

In this case, findLinks constructs a new error message that
includes both pieces of information as well as the underlying parse error:

Click here to view code image

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err != nil {
 return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)
}

The fmt.Errorf function formats an error message using
fmt.Sprintf and returns a new error value.

We use it to build descriptive errors by successively prefixing
additional context information to the original error message.

When the error is ultimately handled by the program’s main
function, it should provide a clear causal chain from the root problem
to the overall failure, reminiscent of a NASA accident investigation:

Click here to view code image

genesis: crashed: no parachute: G-switch failed: bad relay orientation

Because error messages are frequently chained together, message
strings should not be capitalized and newlines should be avoided.

The resulting errors may be long, but they will be self-contained when
found by tools like grep.

When designing error messages, be deliberate, so that each one is a
meaningful description of the problem with sufficient and relevant
detail, and be consistent, so that errors returned by the same
function or by a group of functions in the same package are similar
in form and can be dealt with in the same way.

For example, the os package guarantees that every error returned
by a file operation, such as os.Open or the Read,
Write, or Close methods of an open file, describes not
just the nature of the failure (permission denied, no such directory,
and so on) but also the name of the file, so the caller needn’t
include this information in the error message it constructs.

In general, the call f(x) is responsible for reporting the
attempted operation f and the argument value x as they
relate to the context of the error.

The caller is responsible for adding further information that it
has but the call f(x) does not, such as the URL in the call to
html.Parse above.

Let’s move on to the second strategy for handling errors.

For errors that represent transient or unpredictable problems, it may
make sense to retry the failed operation, possibly with a delay
between tries, and perhaps with a limit on the number of attempts
or the time spent trying before giving up entirely.

Click here to view code image

gopl.io/ch5/wait

// WaitForServer attempts to contact the server of a URL.
// It tries for one minute using exponential back-off.
// It reports an error if all attempts fail.
func WaitForServer(url string) error {
 const timeout = 1 * time.Minute
 deadline := time.Now().Add(timeout)
 for tries := 0; time.Now().Before(deadline); tries++ {
 _, err := http.Head(url)
 if err == nil {
 return nil // success
 }
 log.Printf("server not responding (%s); retrying...", err)
 time.Sleep(time.Second << uint(tries)) // exponential back-off
 }
 return fmt.Errorf("server %s failed to respond after %s", url, timeout)
}

Third, if progress is impossible, the caller can print the error and
stop the program gracefully, but this course of action should
generally be reserved for the main package of a program.

Library functions should usually propagate errors to the caller, unless the
error is a sign of an internal inconsistency—that is, a bug.

Click here to view code image

// (In function main.)
if err := WaitForServer(url); err != nil {
 fmt.Fprintf(os.Stderr, "Site is down: %v\n", err)
 os.Exit(1)
}

A more convenient way to achieve the same effect is to call
log.Fatalf.

As with all the log functions, by default it prefixes the time
and date to the error message.

Click here to view code image

if err := WaitForServer(url); err != nil {
 log.Fatalf("Site is down: %v\n", err)
}

The default format is helpful in a long-running server, but less so
for an interactive tool:

Click here to view code image

2006/01/02 15:04:05 Site is down: no such domain: bad.gopl.io

For a more attractive output, we can set the prefix used by the
log package to the name of the command, and suppress the
display of the date and time:

log.SetPrefix("wait: ")
log.SetFlags(0)

Fourth, in some cases, it’s sufficient just to log the error and then
continue, perhaps with reduced functionality.

Again there’s a choice between using the log package,
which adds the usual prefix:

Click here to view code image

if err := Ping(); err != nil {
 log.Printf("ping failed: %v; networking disabled", err)
}

and printing directly to the standard error stream:

Click here to view code image

if err := Ping(); err != nil {
 fmt.Fprintf(os.Stderr, "ping failed: %v; networking disabled\n", err)
}

(All log functions append a newline if one is not already present.)

And fifth and finally, in rare cases we can safely ignore an error entirely:

Click here to view code image

dir, err := ioutil.TempDir("", "scratch")
if err != nil {
 return fmt.Errorf("failed to create temp dir: %v", err)
}

// ...use temp dir...

os.RemoveAll(dir) // ignore errors; $TMPDIR is cleaned periodically

The call to os.RemoveAll may fail, but the program ignores it
because the operating system periodically cleans out the temporary
directory.

In this case, discarding the error was intentional, but the program
logic would be the same had we forgotten to deal with it.

Get into the habit of considering errors after every function call,
and when you deliberately ignore one, document your intention clearly.

Error handling in Go has a particular rhythm.

After checking an error, failure is usually dealt with before success.

If failure causes the function to return, the logic for success is not
indented within an else block but follows at the outer level.

Functions tend to exhibit a common structure, with a series of
initial checks to reject errors, followed by the substance of the
function at the end, minimally indented.

5.4.2 End of File (EOF)

Usually, the variety of errors that a function may return is
interesting to the end user but not to the intervening program logic.
On occasion, however, a program must take different actions depending
on the kind of error that has occurred.

Consider an attempt to read n bytes of data from a file. If
n is chosen to be the length of the file,
any error represents a failure. On the other hand, if the caller
repeatedly tries to read fixed-size chunks until the file is
exhausted, the caller must respond differently to an end-of-file condition
than it does to all other errors.

For this reason, the io package guarantees that any read
failure caused by an end-of-file condition is always reported by a
distinguished error, io.EOF, which is defined as follows:

Click here to view code image

package io

import "errors"

// EOF is the error returned by Read when no more input is available.
var EOF = errors.New("EOF")

The caller can detect this condition using a simple comparison, as
in the loop below, which reads runes from the standard input.
(The charcount program in Section 4.3 provides a more
complete example.)

Click here to view code image

in := bufio.NewReader(os.Stdin)
for {
 r, _, err := in.ReadRune()
 if err == io.EOF {
 break // finished reading
 }
 if err != nil {
 return fmt.Errorf("read failed: %v", err)
 }
 // ...use r...
}

Since in an end-of-file condition there is no information to report
besides the fact of it, io.EOF has a fixed error message,
"EOF".

For other errors, we may need to report both the quality and quantity
of the error, so to speak, so a fixed error value will not do.

In Section 7.11, we’ll present a more systematic
way to distinguish certain error values from others.

5.5 Function Values

Functions are first-class values in Go: like other values,

function values have types, and they may be assigned to variables or passed to or
returned from functions. A function value may be called like
any other function. For example:

Click here to view code image

func square(n int) int { return n * n }
func negative(n int) int { return -n }
func product(m, n int) int { return m * n }

f := square
fmt.Println(f(3)) // "9"

f = negative
fmt.Println(f(3)) // "-3"
fmt.Printf("%T\n", f) // "func(int) int"

f = product // compile error: can't assign f(int, int) int to f(int) int

The zero value of a function type is nil. Calling a nil

function value causes a panic:

Click here to view code image

var f func(int) int
f(3) // panic: call of nil function

Function values may be compared with nil:

var f func(int) int
if f != nil {
 f(3)
}

but they are not comparable,
so they may not be compared against each other or used as keys in a
map.

Function values let us parameterize our
functions over not just data, but behavior too. The standard
libraries contain many examples.

For instance, strings.Map applies a function to

each character of a string, joining the results to make another
string.

Click here to view code image

func add1(r rune) rune { return r + 1 }

fmt.Println(strings.Map(add1, "HAL-9000")) // "IBM.:111"
fmt.Println(strings.Map(add1, "VMS")) // "WNT"

fmt.Println(strings.Map(add1, "Admix")) // "Benjy"

The findLinks function from Section 5.2 uses a
helper function, visit, to visit all the nodes in an HTML
document and apply an action to each one.

Using a function value, we can separate the logic for tree
traversal from the logic for the action to be applied to each node,
letting us reuse the traversal with different actions.

Click here to view code image

gopl.io/ch5/outline2

// forEachNode calls the functions pre(x) and post(x) for each node
// x in the tree rooted at n. Both functions are optional.
// pre is called before the children are visited (preorder) and
// post is called after (postorder).
func forEachNode(n *html.Node, pre, post func(n *html.Node)) {
 if pre != nil {
 pre(n)
 }

 for c := n.FirstChild; c != nil; c = c.NextSibling {
 forEachNode(c, pre, post)
 }

 if post != nil {
 post(n)
 }
}

The forEachNode function accepts two function
arguments, one to call before a node’s children are visited and one
to call after. This arrangement gives the caller a great deal
of flexibility.

For example, the functions startElement and endElement
print the start and end tags of an HTML element like
...:

Click here to view code image

var depth int

func startElement(n *html.Node) {
 if n.Type == html.ElementNode {
 fmt.Printf("%*s<%s>\n", depth*2, "", n.Data)
 depth++
 }
}

func endElement(n *html.Node) {
 if n.Type == html.ElementNode {
 depth--
 fmt.Printf("%*s</%s>\n", depth*2, "", n.Data)
 }
}

The functions also indent the output using another fmt.Printf trick.
The * adverb in %*s prints a string
padded with a variable number of spaces.
The width and the string are provided by the arguments depth*2
and "".

If we call forEachNode on an HTML document, like this:

Click here to view code image

forEachNode(doc, startElement, endElement)

we get a more elaborate variation on the output of our earlier
outline program:

Click here to view code image

$ go build gopl.io/ch5/outline2
$./outline2 http://gopl.io
<html>
 <head>
 <meta>
 </meta>
 <title>
 </title>
 <style>
 </style>
 </head>
 <body>
 <table>
 <tbody>
 <tr>
 <td>
 <a>

...

Exercise 5.7:
Develop startElement and endElement into a general HTML pretty-printer.

Print comment nodes, text nodes, and the attributes of each element
(). Use short forms like
instead of when an element has no children.

Write a test to ensure that the output can be parsed successfully.
(See Chapter 11.)

Exercise 5.8:
Modify forEachNode so that the pre and post
functions return a boolean result indicating whether to continue the
traversal.

Use it to write a function ElementByID with the following signature
that finds the first HTML element with the specified id attribute.
The function should stop the traversal as soon as a match is found.

Click here to view code image

func ElementByID(doc *html.Node, id string) *html.Node

Exercise 5.9:
Write a function expand(s string, f func(string) string) string that
replaces each substring “$foo” within s by the text returned
by f("foo").

5.6 Anonymous Functions

Named functions can be declared only at the package level, but we can
use a function literal to denote a function value within any

expression.

A function literal is written like a function declaration, but without
a name following the func keyword.

It is an expression, and its value is called an
anonymous function.

Function literals let us define a function at its point of use.
As an example, the
earlier call to strings.Map can be rewritten as

Click here to view code image

strings.Map(func(r rune) rune { return r + 1 }, "HAL-9000")

More importantly, functions defined in this way have access to the
entire lexical environment,

so the inner function can refer to
variables from the enclosing function, as this example shows:

Click here to view code image

gopl.io/ch5/squares

// squares returns a function that returns
// the next square number each time it is called.
func squares() func() int {
 var x int
 return func() int {
 x++
 return x * x
 }
}

func main() {
 f := squares()
 fmt.Println(f()) // "1"
 fmt.Println(f()) // "4"
 fmt.Println(f()) // "9"
 fmt.Println(f()) // "16"
}

The function squares returns another function,
of type func() int.

A call to squares creates a local variable x and
returns an anonymous function that, each time it is called, increments
x and returns its square.

A second call to squares would create a second variable
x and return a new anonymous function which increments that
variable.

The squares example demonstrates that function values are not
just code but can have state.
The anonymous inner function can access

and update the local variables of the enclosing function squares.

These hidden variable references are why we classify functions as
reference types and why function values are not comparable.

Function values like these are implemented using a technique called
closures, and Go programmers often use this term for function
values.

Here again we
see an example where the lifetime of a variable is not determined by its
scope: the variable x exists after squares has returned
within main, even though x is hidden inside f.

As a somewhat academic example of anonymous functions, consider the problem of
computing a sequence of computer science courses that
satisfies the prerequisite requirements of each one. The
prerequisites are given in the prereqs table below, which is a mapping
from each course to the list of courses that must be completed
before it.

Click here to view code image

gopl.io/ch5/toposort

// prereqs maps computer science courses to their prerequisites.
var prereqs = map[string][]string{
 "algorithms": {"data structures"},
 "calculus": {"linear algebra"},

 "compilers": {
 "data structures",
 "formal languages",
 "computer organization",
 },

 "data structures": {"discrete math"},
 "databases": {"data structures"},
 "discrete math": {"intro to programming"},
 "formal languages": {"discrete math"},
 "networks": {"operating systems"},
 "operating systems": {"data structures", "computer organization"},
 "programming languages": {"data structures", "computer organization"},
}

This kind of problem is known as topological sorting.

Conceptually, the prerequisite information forms a directed
graph with a node for each course and edges from each
course to the courses that it depends on.

The graph is acyclic: there is no path from a course that leads back
to itself.

We can compute a valid sequence using depth-first search

through the graph with the code below:

Click here to view code image

func main() {
 for i, course := range topoSort(prereqs) {
 fmt.Printf("%d:\t%s\n", i+1, course)
 }
}

func topoSort(m map[string][]string) []string {
 var order []string
 seen := make(map[string]bool)
 var visitAll func(items []string)

 visitAll = func(items []string) {
 for _, item := range items {
 if !seen[item] {
 seen[item] = true
 visitAll(m[item])
 order = append(order, item)
 }
 }
 }

 var keys []string
 for key := range m {
 keys = append(keys, key)
 }

 sort.Strings(keys)
 visitAll(keys)
 return order
}

When an anonymous function requires recursion, as in this example, we

must first declare a variable, and then assign the anonymous function
to that variable. Had these two steps been combined in the
declaration, the function literal would not be within the scope of
the variable visitAll so it would have no way to call itself recursively:

Click here to view code image

visitAll := func(items []string) {
 // ...
 visitAll(m[item]) // compile error: undefined: visitAll
 // ...
}

The output of the toposort program is shown below.

It is deterministic, an often-desirable property that doesn’t always
come for free.

Here, the values of the prereqs map are slices, not more maps,
so their iteration order is deterministic, and we sorted the keys of
prereqs before making the initial calls to visitAll.

1: intro to programming
2: discrete math
3: data structures
4: algorithms
5: linear algebra
6: calculus
7: formal languages
8: computer organization
9: compilers
10: databases
11: operating systems
12: networks
13: programming languages

Let’s return to our findLinks example.

We’ve moved the link-extraction function links.Extract
to its own package, since we’ll use it again in
Chapter 8.

We replaced the visit function with an anonymous function
that appends to the links slice directly, and used
forEachNode to handle the traversal.

Since Extract needs only the pre function, it passes
nil for the post argument.

Click here to view code image

gopl.io/ch5/links

// Package links provides a link-extraction function.
package links

import (
 "fmt"
 "net/http"

 "golang.org/x/net/html"
)

// Extract makes an HTTP GET request to the specified URL, parses
// the response as HTML, and returns the links in the HTML document.
func Extract(url string) ([]string, error) {
 resp, err := http.Get(url)
 if err != nil {
 return nil, err
 }
 if resp.StatusCode != http.StatusOK {
 resp.Body.Close()
 return nil, fmt.Errorf("getting %s: %s", url, resp.Status)
 }

 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)
 }

 var links []string
 visitNode := func(n *html.Node) {
 if n.Type == html.ElementNode && n.Data == "a" {
 for _, a := range n.Attr {
 if a.Key != "href" {
 continue
 }
 link, err := resp.Request.URL.Parse(a.Val)
 if err != nil {
 continue // ignore bad URLs
 }
 links = append(links, link.String())
 }
 }
 }
 forEachNode(doc, visitNode, nil)
 return links, nil
}

Instead of appending the raw href attribute value to the
links slice, this version parses it as a URL relative to the
base URL of the document, resp.Request.URL.

The resulting link is in absolute form, suitable for use in a
call to http.Get.

Crawling the web is, at its heart, a problem of graph traversal.

The topoSort example showed a depth-first traversal;
for our web crawler, we’ll use breadth-first traversal, at least initially.

In Chapter 8, we’ll explore concurrent traversal.

The function below encapsulates the essence of a breadth-first
traversal.

The caller provides an initial list worklist of items to visit
and a function value f to call for each item.

Each item is identified by a string.

The function f returns a list of new items to append to the
worklist.

The breadthFirst function returns when all items have been visited.
It maintains a set of strings to ensure that no item is visited twice.

Click here to view code image

gopl.io/ch5/findlinks3

// breadthFirst calls f for each item in the worklist.
// Any items returned by f are added to the worklist.
// f is called at most once for each item.
func breadthFirst(f func(item string) []string, worklist []string) {
 seen := make(map[string]bool)
 for len(worklist) > 0 {
 items := worklist
 worklist = nil
 for _, item := range items {
 if !seen[item] {
 seen[item] = true
 worklist = append(worklist, f(item)...)
 }
 }
 }
}

As we explained in passing in Chapter 3,
the argument “f(item)...” causes all the items in the list returned
by f to be appended to the worklist.

In our crawler, items are URLs.

The crawl function we’ll supply to breadthFirst prints the URL,
extracts its links, and returns them so that they too are visited.

Click here to view code image

func crawl(url string) []string {
 fmt.Println(url)
 list, err := links.Extract(url)
 if err != nil {
 log.Print(err)
 }
 return list
}

To start the crawler off, we’ll use the command-line arguments as the
initial URLs.

Click here to view code image

func main() {
 // Crawl the web breadth-first,
 // starting from the command-line arguments.
 breadthFirst(crawl, os.Args[1:])
}

Let’s crawl the web starting from https://golang.org.

Here are some of the resulting links:

Click here to view code image

$ go build gopl.io/ch5/findlinks3
$./findlinks3 https://golang.org
https://golang.org/
https://golang.org/doc/
https://golang.org/pkg/
https://golang.org/project/
https://code.google.com/p/go-tour/
https://golang.org/doc/code.html
https://www.youtube.com/watch?v=XCsL89YtqCs
http://research.swtch.com/gotour
https://vimeo.com/53221560
...

The process ends when all reachable web pages have been crawled
or the memory of the computer is exhausted.

Exercise 5.10:
Rewrite topoSort to use maps instead of slices and eliminate the
initial sort.

Verify that the results, though nondeterministic, are valid
topological orderings.

Exercise 5.11:
The instructor of the linear algebra course decides that calculus is now a
prerequisite. Extend the topoSort function to report cycles.

Exercise 5.12:
The startElement and endElement functions in
gopl.io/ch5/outline2 (§5.5)
share a global variable, depth.

Turn them into anonymous functions that share a variable local to the
outline function.

Exercise 5.13:
Modify crawl to make local copies of the pages it finds,
creating directories as necessary.

Don’t make copies of pages that come from a different domain. For
example, if the original page comes from golang.org, save all files from
there, but exclude ones from vimeo.com.

Exercise 5.14:
Use the breadthFirst function to explore a different structure.

For example, you could use the course dependencies from the
topoSort example (a directed graph), the file system hierarchy
on your computer (a tree), or a list of bus or subway routes
downloaded from your city government’s web site (an undirected graph).

5.6.1 Caveat: Capturing Iteration Variables

In this section, we’ll look at a pitfall of Go’s lexical scope rules
that can cause surprising results.

We urge you to understand the problem before proceeding,
because the trap can ensnare even experienced programmers.

Consider a program that must create a set of directories and later
remove them. We can use a slice of function values to hold the
clean-up operations. (For brevity, we have omitted all error handling
in this example.)

Click here to view code image

var rmdirs []func()
for _, d := range tempDirs() {
 dir := d // NOTE: necessary!
 os.MkdirAll(dir, 0755) // creates parent directories too
 rmdirs = append(rmdirs, func() {
 os.RemoveAll(dir)
 })
}

// ...do some work...

for _, rmdir := range rmdirs {
 rmdir() // clean up
}

You may be wondering why we assigned the loop variable d to a new
local variable dir within the loop body, instead of just naming the

loop variable dir as in this subtly incorrect variant:

Click here to view code image

var rmdirs []func()
for _, dir := range tempDirs() {
 os.MkdirAll(dir, 0755)
 rmdirs = append(rmdirs, func() {
 os.RemoveAll(dir) // NOTE: incorrect!
 })
}

The reason is a consequence of the
scope rules for loop variables.

In the program immediately above, the for loop introduces a new lexical block

in which the variable dir is
declared.

All
function values created by this loop “capture” and share the same

variable—an addressable storage location, not its value at that
particular moment.

The value of dir is updated in successive iterations,
so by the time the cleanup functions are called, the
dir variable has been updated several times by the now-completed
for loop. Thus dir holds the value from the final iteration, and
consequently all calls to os.RemoveAll will attempt to remove the
same directory.

Frequently, the inner variable introduced to work around this
problem—dir in our example—is given the exact same name as the
outer variable of which it is a copy, leading to odd-looking but
crucial variable declarations like this:

Click here to view code image

for _, dir := range tempDirs() {
 dir := dir // declares inner dir, initialized to outer dir
 // ...
}

The risk is not unique to range-based for loops.

The loop in the example below suffers from the same problem due to
unintended capture of the index variable i.

Click here to view code image

var rmdirs []func()
dirs := tempDirs()
for i := 0; i < len(dirs); i++ {
 os.MkdirAll(dirs[i], 0755) // OK
 rmdirs = append(rmdirs, func() {
 os.RemoveAll(dirs[i]) // NOTE: incorrect!
 })
}

The problem of iteration variable capture is most often encountered
when using the go
statement (Chapter 8) or with defer (which we
will see in a moment) since both may delay the execution of a
function value until after the loop has finished.

But the problem is not inherent to go or defer.

5.7 Variadic Functions

A variadic function is one that can be called with varying
numbers of arguments.

The most familiar examples are fmt.Printf and its variants.

Printf requires one fixed argument at the beginning,
then accepts any number of subsequent arguments.

To declare a variadic function, the type of the final
parameter is preceded by an ellipsis, “...”, which
indicates that the function may be called with any number
of arguments of this type.

Click here to view code image

gopl.io/ch5/sum

func sum(vals ...int) int {
 total := 0
 for _, val := range vals {
 total += val
 }
 return total
}

The sum function above returns the sum of zero or more
int arguments.

Within the body of the function, the type of vals is
an []int slice.

When sum is called, any number of values may be provided for
its vals parameter.

Click here to view code image

fmt.Println(sum()) // "0"
fmt.Println(sum(3)) // "3"
fmt.Println(sum(1, 2, 3, 4)) // "10"

Implicitly, the caller allocates an array, copies the arguments into
it, and passes a slice of the entire array to the function.

The last call above thus behaves the same as the call below, which shows
how to invoke a variadic function when the arguments are already in a
slice: place an ellipsis after the final argument.

Click here to view code image

values := []int{1, 2, 3, 4}
fmt.Println(sum(values...)) // "10"

Although the ...int parameter behaves like a slice within the
function body, the type of a variadic function is distinct from the
type of a function with an ordinary slice parameter.

Click here to view code image

func f(...int) {}
func g([]int) {}

fmt.Printf("%T\n", f) // "func(...int)"
fmt.Printf("%T\n", g) // "func([]int)"

Variadic functions are often used for string formatting.

The errorf function below constructs a formatted error message
with a line number at the beginning.

The suffix f is a widely followed naming convention
for variadic functions that accept a Printf-style format string.

Click here to view code image

func errorf(linenum int, format string, args ...interface{}) {
 fmt.Fprintf(os.Stderr, "Line %d: ", linenum)
 fmt.Fprintf(os.Stderr, format, args...)
 fmt.Fprintln(os.Stderr)
}

linenum, name := 12, "count"
errorf(linenum, "undefined: %s", name) // "Line 12: undefined: count"

The interface{} type means that this function can accept any
values at all for its final arguments, as we’ll explain in
Chapter 7.

Exercise 5.15:
Write variadic functions max and min, analogous to
sum.
What should these functions do when called with no arguments?
Write variants that require at least one argument.

Exercise 5.16:
Write a variadic version of strings.Join.

Exercise 5.17:
Write a variadic function ElementsByTagName that, given an HTML
node tree and zero or more names, returns all the elements that
match one of those names. Here are two example calls:

Click here to view code image

func ElementsByTagName(doc *html.Node, name ...string) []*html.Node

images := ElementsByTagName(doc, "img")
headings := ElementsByTagName(doc, "h1", "h2", "h3", "h4")

5.8 Deferred Function Calls

Our findLinks examples used the output of http.Get
as the input to html.Parse.

This works well if the content of the requested URL is indeed HTML,
but many pages contain images, plain text, and other file formats.

Feeding such files into an HTML parser could have undesirable
effects.

The program below fetches an HTML document and prints its title.

The title function inspects the Content-Type header of
the server’s response and returns an error if the document is not
HTML.

Click here to view code image

gopl.io/ch5/title1

func title(url string) error {
 resp, err := http.Get(url)
 if err != nil {
 return err
 }

 // Check Content-Type is HTML (e.g., "text/html; charset=utf-8").
 ct := resp.Header.Get("Content-Type")
 if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
 resp.Body.Close()
 return fmt.Errorf("%s has type %s, not text/html", url, ct)
 }

 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 return fmt.Errorf("parsing %s as HTML: %v", url, err)
 }

 visitNode := func(n *html.Node) {
 if n.Type == html.ElementNode && n.Data == "title" &&
 n.FirstChild != nil {
 fmt.Println(n.FirstChild.Data)
 }
 }
 forEachNode(doc, visitNode, nil)
 return nil
}

Here’s a typical session, slightly edited to fit:

Click here to view code image

$ go build gopl.io/ch5/title1
$./title1 http://gopl.io
The Go Programming Language
$./title1 https://golang.org/doc/effective_go.html
Effective Go - The Go Programming Language
$./title1 https://golang.org/doc/gopher/frontpage.png
title: https://golang.org/doc/gopher/frontpage.png
 has type image/png, not text/html

Observe the duplicated resp.Body.Close() call, which ensures
that title closes the network connection on all execution
paths, including failures.

As functions grow more complex and have to handle more errors, such duplication
of clean-up logic may become a maintenance problem.

Let’s see how Go’s novel defer mechanism makes things simpler.

Syntactically, a defer statement is an ordinary function or
method call prefixed by the keyword defer.

The function and argument expressions are evaluated when the
statement is executed, but the
actual call is deferred until the function that contains the defer
statement has finished, whether normally, by executing a return
statement or falling off the end, or abnormally, by panicking.

Any number of calls may be deferred; they are executed in the reverse
of the order in which they were deferred.

A defer statement is often used with paired operations like open and close,
connect and disconnect, or lock and unlock to ensure that resources
are released in all cases, no matter how complex the control flow.

The right place for a defer statement that releases a resource
is immediately after the resource has been successfully acquired.

In the title function below, a single deferred call replaces
both previous calls to resp.Body.Close():

Click here to view code image

gopl.io/ch5/title2

func title(url string) error {
 resp, err := http.Get(url)
 if err != nil {
 return err
 }
 defer resp.Body.Close()

 ct := resp.Header.Get("Content-Type")
 if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
 return fmt.Errorf("%s has type %s, not text/html", url, ct)
 }

 doc, err := html.Parse(resp.Body)
 if err != nil {
 return fmt.Errorf("parsing %s as HTML: %v", url, err)
 }

 // ...print doc's title element...

 return nil
}

The same pattern can be used for other resources beside network
connections, for instance to close an open file:

Click here to view code image

io/ioutil

package ioutil

func ReadFile(filename string) ([]byte, error) {
 f, err := os.Open(filename)
 if err != nil {
 return nil, err
 }
 defer f.Close()
 return ReadAll(f)
}

or to unlock a mutex (§9.2):

var mu sync.Mutex
var m = make(map[string]int)

func lookup(key string) int {
 mu.Lock()
 defer mu.Unlock()
 return m[key]
}

The defer statement can also be used to pair “on entry” and “on
exit” actions when debugging a complex function.

The bigSlowOperation function below calls trace
immediately, which does the “on entry” action then returns a
function value that, when called, does the corresponding “on exit”
action.

By deferring a call to the returned function in this way, we can
instrument the entry point and all exit points of a function in a
single statement and even pass values, like the start time,
between the two actions.

But don’t forget the final parentheses in the defer statement,
or the “on entry” action will happen on exit and the on-exit action
won’t happen at all!

Click here to view code image

gopl.io/ch5/trace

func bigSlowOperation() {
 defer trace("bigSlowOperation")() // don't forget the extra parentheses
 // ...lots of work...
 time.Sleep(10 * time.Second) // simulate slow operation by sleeping
}

func trace(msg string) func() {
 start := time.Now()
 log.Printf("enter %s", msg)
 return func() { log.Printf("exit %s (%s)", msg, time.Since(start)) }
}

Each time bigSlowOperation is called,
it logs its entry and exit and the elapsed time between them.
(We used time.Sleep to simulate a slow operation.)

Click here to view code image

$ go build gopl.io/ch5/trace
$./trace
2015/11/18 09:53:26 enter bigSlowOperation
2015/11/18 09:53:36 exit bigSlowOperation (10.000589217s)

Deferred functions run after return statements have
updated the function’s result variables.

Because an anonymous function can access its enclosing function’s
variables, including named results, a deferred anonymous function can
observe the function’s results.

Consider the function double:

Click here to view code image

func double(x int) int {
 return x + x
}

By naming its result variable and adding a defer statement, we
can make the function print its arguments and results each time it is called.

Click here to view code image

func double(x int) (result int) {
 defer func() { fmt.Printf("double(%d) = %d\n", x, result) }()
 return x + x
}

_ = double(4)
// Output:
// "double(4) = 8"

This trick is overkill for a function as simple as double but
may be useful in functions with many return statements.

A deferred anonymous function can even change the values that the
enclosing function returns to its caller:

func triple(x int) (result int) {
 defer func() { result += x }()
 return double(x)
}

fmt.Println(triple(4)) // "12"

Because deferred functions aren’t executed until the very end of a
function’s execution, a defer statement in a loop deserves
extra scrutiny.

The code below could run out of file descriptors since no file will be
closed until all files have been processed:

Click here to view code image

for _, filename := range filenames {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close() // NOTE: risky; could run out of file descriptors
 // ...process f...
}

One solution is to move the loop body, including the defer
statement, into another function that is called on each iteration.

Click here to view code image

for _, filename := range filenames {
 if err := doFile(filename); err != nil {
 return err
 }
}

func doFile(filename string) error {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close()
 // ...process f...
}

The example below is an improved fetch program (§1.5) that writes the HTTP response to a local file instead of
to the standard output.

It derives the file name from the last component of the URL path,
which it obtains using the path.Base function.

Click here to view code image

gopl.io/ch5/fetch

// Fetch downloads the URL and returns the
// name and length of the local file.
func fetch(url string) (filename string, n int64, err error) {
 resp, err := http.Get(url)
 if err != nil {
 return "", 0, err
 }
 defer resp.Body.Close()

 local := path.Base(resp.Request.URL.Path)
 if local == "/" {
 local = "index.html"
 }
 f, err := os.Create(local)
 if err != nil {
 return "", 0, err
 }
 n, err = io.Copy(f, resp.Body)
 // Close file, but prefer error from Copy, if any.
 if closeErr := f.Close(); err == nil {
 err = closeErr
 }
 return local, n, err
}

The deferred call to resp.Body.Close should be familiar by now.

It’s tempting to use a second deferred call, to f.Close, to
close the local file, but this would be subtly wrong because
os.Create opens a file for writing, creating it as needed.

On many file systems, notably NFS, write errors are not reported
immediately but may be postponed until the file is closed.

Failure to check the result of the close operation could cause serious
data loss to go unnoticed.

However, if both io.Copy and f.Close fail, we should
prefer to report the error from io.Copy since it occurred first
and is more likely to tell us the root cause.

Exercise 5.18:
Without changing its behavior, rewrite the fetch function to use
defer to close the writable file.

5.9 Panic

Go’s type system catches many mistakes at compile time, but others,
like an out-of-bounds array access or nil pointer dereference, require
checks at run time.

When the Go runtime detects these mistakes, it panics.

During a typical panic, normal execution stops, all deferred function
calls in that goroutine are executed, and the program crashes with a log message.

This log message includes the panic value, which is usually an error
message of some sort, and, for each goroutine,

a stack trace showing the stack of function calls that were
active at the time of the panic.

This log message often has enough information to diagnose
the root cause of the problem without running the program again, so it
should always be included in a bug report about a panicking program.

Not all panics come from the runtime. The built-in panic function

may be called directly; it accepts any value as an argument. A panic
is often the best thing to do when some “impossible” situation
happens, for instance, execution reaches a case that
logically can’t happen:

Click here to view code image

switch s := suit(drawCard()); s {
case "Spades": // ...
case "Hearts": // ...
case "Diamonds": // ...
case "Clubs": // ...
default:
 panic(fmt.Sprintf("invalid suit %q", s)) // Joker?
}

It’s good practice to assert that the preconditions of a function
hold, but this can easily be done to excess. Unless you can provide a
more informative error message or detect an error sooner, there is
no point asserting a condition that the runtime will check for you.

Click here to view code image

func Reset(x *Buffer) {
 if x == nil {
 panic("x is nil") // unnecessary!
 }
 x.elements = nil
}

Although Go’s panic mechanism resembles exceptions in other
languages, the situations in which panic is used are quite different.

Since a panic causes the program to crash, it is generally used for grave
errors, such as a logical inconsistency in the program; diligent
programmers consider any crash to be proof of a bug in their code. In a
robust program, “expected” errors, the kind that arise from incorrect
input, misconfiguration, or failing I/O, should be handled gracefully; they
are best dealt with using error values.

Consider the function regexp.Compile, which compiles a regular
expression into an efficient form for matching.

It returns an error if called with an ill-formed pattern, but
checking this error is unnecessary and burdensome if the caller knows
that a particular call cannot fail.

In such cases, it’s reasonable for the caller to handle an error by
panicking, since it is believed to be impossible.

Since most regular expressions are literals in the program source
code, the regexp package provides a wrapper
function regexp.MustCompile that does this check:

Click here to view code image

package regexp

func Compile(expr string) (*Regexp, error) { /* ... */ }

func MustCompile(expr string) *Regexp {
 re, err := Compile(expr)
 if err != nil {
 panic(err)
 }
 return re
}

The wrapper function makes it convenient for clients to initialize a
package-level variable with a compiled regular expression, like this:

Click here to view code image

var httpSchemeRE = regexp.MustCompile(`^https?:`) // "http:" or "https:"

Of course, MustCompile should not be called with untrusted input values.

The Must prefix is a common naming convention for functions of
this kind, like template.Must in Section 4.6.

When a panic occurs, all deferred functions are run in reverse order,
starting with those of the topmost function on the stack and
proceeding up to main, as the program below demonstrates:

Click here to view code image

gopl.io/ch5/defer1

func main() {
 f(3)
}

func f(x int) {
 fmt.Printf("f(%d)\n", x+0/x) // panics if x == 0
 defer fmt.Printf("defer %d\n", x)
 f(x - 1)
}

When run, the program prints the following to the standard output:

f(3)
f(2)
f(1)
defer 1
defer 2
defer 3

A panic occurs during the call to f(0), causing the three
deferred calls to fmt.Printf to run.

Then the runtime terminates the program, printing the panic message
and a stack dump to the standard error stream (simplified for clarity):

Click here to view code image

panic: runtime error: integer divide by zero
main.f(0)
 src/gopl.io/ch5/defer1/defer.go:14
main.f(1)
 src/gopl.io/ch5/defer1/defer.go:16
main.f(2)
 src/gopl.io/ch5/defer1/defer.go:16

main.f(3)
 src/gopl.io/ch5/defer1/defer.go:16
main.main()
 src/gopl.io/ch5/defer1/defer.go:10

As we will see soon, it is possible for a function to
recover from a panic so that it does not terminate the program.

For diagnostic purposes, the runtime package lets the
programmer dump the stack using the same machinery.

By deferring a call to printStack in main,

Click here to view code image

gopl.io/ch5/defer2

func main() {
 defer printStack()
 f(3)
}

func printStack() {
 var buf [4096]byte
 n := runtime.Stack(buf[:], false)
 os.Stdout.Write(buf[:n])
}

the following additional text (again simplified for clarity) is
printed to the standard output:

Click here to view code image

goroutine 1 [running]:
main.printStack()
 src/gopl.io/ch5/defer2/defer.go:20
main.f(0)
 src/gopl.io/ch5/defer2/defer.go:27
main.f(1)
 src/gopl.io/ch5/defer2/defer.go:29
main.f(2)
 src/gopl.io/ch5/defer2/defer.go:29
main.f(3)
 src/gopl.io/ch5/defer2/defer.go:29
main.main()
 src/gopl.io/ch5/defer2/defer.go:15

Readers familiar with exceptions in other languages may be
surprised that runtime.Stack can print information about functions that
seem to have already been “unwound.” Go’s panic mechanism runs the
deferred functions before it unwinds the stack.

5.10 Recover

Giving up is usually the right response to a panic, but not always.

It might be possible to recover in some way, or at least clean up the
mess before quitting.

For example, a web server that encounters an unexpected problem could
close the connection rather than leave the client hanging, and
during development, it might report the error to the client too.

If the built-in recover function is called within a deferred
function and the function containing the defer statement is
panicking, recover ends the current state of panic and returns
the panic value.

The function that was panicking does not continue where it left off
but returns normally.

If recover is called at any other time, it has no effect and
returns nil.

To illustrate, consider the development of a parser for a language. Even
when it appears to be working well, given the complexity of its job,
bugs may still lurk in obscure corner cases.

We might prefer that, instead of crashing, the parser turns these
panics into ordinary parse errors, perhaps with an extra message
exhorting the user to file a bug report.

Click here to view code image

func Parse(input string) (s *Syntax, err error) {
 defer func() {
 if p := recover(); p != nil {
 err = fmt.Errorf("internal error: %v", p)
 }
 }()
 // ...parser...
}

The deferred function in Parse recovers from a panic,
using the panic value to construct an error message; a fancier version
might include the entire call stack using runtime.Stack.

The deferred function then assigns to the err result, which is
returned to the caller.

Recovering indiscriminately from panics is a dubious practice because

the state of a package’s variables after a panic is rarely well
defined or documented. Perhaps a critical update to a data structure
was incomplete, a file or network connection was opened but not closed, or
a lock was acquired but not released. Furthermore, by replacing a crash
with, say, a line in a log file, indiscriminate recovery may cause
bugs to go unnoticed.

Recovering from a panic within the same package can help simplify the
handling of complex or unexpected errors, but as a general rule, you
should not attempt to recover from another package’s panic.

Public APIs should report failures as errors.

Similarly, you should not recover from a panic that may pass through a
function you do not maintain, such as a caller-provided callback, since you
cannot reason about its safety.

For example, the net/http package provides a web server that
dispatches incoming requests to user-provided handler functions.

Rather than let a panic in one of these handlers kill the
process, the server calls recover, prints a stack trace, and
continues serving.

This is convenient in practice, but it does risk leaking resources or
leaving the failed handler in an unspecified state that could lead to
other problems.

For all the above reasons, it’s safest to recover selectively if at all.

In other words, recover only from panics that were intended to be
recovered from, which should be rare.

This intention can be encoded by using a distinct, unexported type for the panic
value and testing whether the value returned by recover has that
type. (We’ll see one way to do this in the next example.)

If so, we report the panic as an ordinary error; if not, we
call panic with the same value to resume the state of panic.

The example below is a variation on the title program that
reports an error if the HTML document contains multiple
<title> elements.

If so, it aborts the recursion by calling panic with a value of
the special type bailout.

Click here to view code image

gopl.io/ch5/title3

// soleTitle returns the text of the first non-empty title element
// in doc, and an error if there was not exactly one.
func soleTitle(doc *html.Node) (title string, err error) {
 type bailout struct{}

 defer func() {
 switch p := recover(); p {
 case nil:
 // no panic
 case bailout{}:
 // "expected" panic
 err = fmt.Errorf("multiple title elements")
 default:
 panic(p) // unexpected panic; carry on panicking
 }
 }()

 // Bail out of recursion if we find more than one non-empty title.
 forEachNode(doc, func(n *html.Node) {
 if n.Type == html.ElementNode && n.Data == "title" &&
 n.FirstChild != nil {
 if title != "" {
 panic(bailout{}) // multiple title elements
 }
 title = n.FirstChild.Data
 }
 }, nil)
 if title == "" {
 return "", fmt.Errorf("no title element")
 }
 return title, nil
}

The deferred handler function calls recover,
checks the panic value,
and reports an ordinary error if the value was bailout{}.

All other non-nil values indicate an unexpected panic,
in which case the handler calls panic with that value,
undoing the effect of recover and
resuming the original state of panic.

(This example does somewhat violate our advice about not using panics
for “expected” errors, but it provides a compact illustration of the
mechanics.)

From some conditions there is no recovery.

Running out of memory, for example, causes the Go runtime to terminate
the program with a fatal error.

Exercise 5.19:
Use panic and recover to write a function that contains
 no return statement yet returns a non-zero value.

6. Methods

Since the early 1990s, object-oriented programming (OOP) has been the
dominant programming paradigm in industry and education, and nearly
all widely used languages developed since then have included support
for it.

Go is no exception.

Although there is no universally accepted definition of
object-oriented programming, for our purposes, an object is
simply a value or variable that has methods, and a method is a
function associated with a particular type.

An object-oriented program is one that uses methods to express the
properties and operations of each data structure so that clients need
not access the object’s representation directly.

In earlier chapters, we have made regular use of methods from the
standard library, like the Seconds method of type time.Duration:

Click here to view code image

const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "86400"

and we defined a method of our own in Section 2.5, a
String method for the Celsius type:

Click here to view code image

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }

In this chapter, the first of two on object-oriented programming,
we’ll show how to define and use methods effectively.

We’ll also cover two key principles of object-oriented programming,
encapsulation and composition.

6.1 Method Declarations

A method is declared with a variant of the ordinary function
declaration in which an extra parameter appears before the function
name.

The parameter attaches the function to the type of that parameter.

Let’s write our first method in a simple package for plane geometry:

Click here to view code image

gopl.io/ch6/geometry

package geometry

import "math"

type Point struct{ X, Y float64 }

// traditional function
func Distance(p, q Point) float64 {
 return math.Hypot(q.X-p.X, q.Y-p.Y)
}

// same thing, but as a method of the Point type
func (p Point) Distance(q Point) float64 {
 return math.Hypot(q.X-p.X, q.Y-p.Y)
}

The extra parameter p is called the method’s receiver,
a legacy from early object-oriented languages that described calling a
method as “sending a message to an object.”

In Go, we don’t use a special name like this or self for the
receiver; we choose receiver names just as we would for any other
parameter. Since the receiver name will be frequently used, it’s a
good idea to choose something short and to be consistent across

methods.

A common choice is the first letter of the type name, like p for Point.

In a method call, the receiver argument appears before the method name.

This parallels the declaration, in which the receiver parameter
appears before the method name.

Click here to view code image

p := Point{1, 2}
q := Point{4, 6}
fmt.Println(Distance(p, q)) // "5", function call
fmt.Println(p.Distance(q)) // "5", method call

There’s no conflict between the two declarations of functions called Distance above.
The first declares
a package-level function called geometry.Distance.
The second declares a method of the type
Point, so its name is Point.Distance.

The expression p.Distance is called a selector, because

it selects the appropriate Distance method for the
receiver p of type Point.

Selectors are also used to select fields of struct types, as
in p.X.

Since methods and fields inhabit the same name space, declaring a
method X on the struct type Point would be ambiguous and
the compiler will reject it.

Since each type has its own name space for methods, we can use the
name Distance for other methods so long as they belong to
different types.

Let’s define a type Path that represents a sequence of line
segments and give it a Distance method too.

Click here to view code image

// A Path is a journey connecting the points with straight lines.
type Path []Point

// Distance returns the distance traveled along the path.
func (path Path) Distance() float64 {
 sum := 0.0
 for i := range path {
 if i > 0 {
 sum += path[i-1].Distance(path[i])
 }
 }
 return sum
}

Path is a named slice type, not a struct type like
Point, yet we can still define methods for it. In allowing methods to
be associated with any type, Go

is unlike many other object-oriented languages. It is often
convenient to define additional behaviors for simple types such as
numbers, strings, slices, maps, and sometimes even functions.

Methods may be declared on any named type defined in the same package,
so long as its underlying type is neither a pointer nor an interface.

The two Distance methods have different types. They’re not
related to each other at all, though Path.Distance uses Point.Distance
internally to compute the length of each segment that connects adjacent
points.

Let’s call the new method to compute the perimeter of a right triangle:

	Click here to view code image

perim := Path{
 {1, 1},
 {5, 1},
 {5, 4},
 {1, 1},
}
fmt.Println(perim.Distance()) // "12"

	

[image: Image]

In the two calls above to methods named Distance, the compiler
determines which function to call based on both the method name and
the type of the receiver. In the first, path[i-1] has type Point

so Point.Distance is called; in the second, perim has type
Path, so Path.Distance is called.

All methods of a given type must have unique names, but
different types can use the same name for a method, like the Distance
methods for Point and Path; there’s no need to qualify
function names (for example, PathDistance) to disambiguate.

Here we see the first benefit to using methods over ordinary
functions: method names can be shorter. The benefit is magnified for
calls originating outside the package, since they can use the shorter
name and omit the package name:

Click here to view code image

import "gopl.io/ch6/geometry"

perim := geometry.Path{{1, 1}, {5, 1}, {5, 4}, {1, 1}}
fmt.Println(geometry.PathDistance(perim)) // "12", standalone function
fmt.Println(perim.Distance()) // "12", method of geometry.Path

6.2 Methods with a Pointer Receiver

Because calling a function makes a copy of each argument value, if a
function needs to update a variable, or if an argument is so large
that we wish to avoid copying it, we must pass the address of the
variable using a pointer.

The same goes for methods that need to update the
receiver variable: we attach them to the pointer type, such as *Point.

Click here to view code image

func (p *Point) ScaleBy(factor float64) {
 p.X *= factor
 p.Y *= factor
}

The name of this method is (*Point).ScaleBy. The parentheses are
necessary; without them, the expression would be parsed as
*(Point.ScaleBy).

In a realistic program, convention dictates that if any method of
Point has a pointer receiver, then all methods of Point
should have a pointer receiver, even ones that don’t strictly need it.

We’ve broken this rule for Point so that we can show
both kinds of method.

Named types (Point) and pointers to them (*Point) are the only
types that may appear in a receiver declaration.

Furthermore, to avoid ambiguities, method declarations are not
permitted on named types that are themselves pointer types:

Click here to view code image

type P *int
func (P) f() { /* ... */ } // compile error: invalid receiver type

The (*Point).ScaleBy method can be called by providing a *Point
receiver, like this:

r := &Point{1, 2}
r.ScaleBy(2)
fmt.Println(*r) // "{2, 4}"

or this:

p := Point{1, 2}
pptr := &p
pptr.ScaleBy(2)
fmt.Println(p) // "{2, 4}"

or this:

p := Point{1, 2}
(&p).ScaleBy(2)
fmt.Println(p) // "{2, 4}"

But the last two cases are ungainly.
Fortunately, the language helps us here.
If the receiver p is a variable of type Point but
the method requires a *Point receiver, we can use this shorthand:

p.ScaleBy(2)

and the compiler will perform an implicit &p on the variable.

This

works only for variables, including struct fields like p.X and array
or slice elements like perim[0].

We cannot call a *Point method on a
non-addressable Point receiver, because there’s no way to obtain the
address of a temporary value.

Click here to view code image

Point{1, 2}.ScaleBy(2) // compile error: can't take address of Point literal

But we can call a Point method like Point.Distance with a
*Point receiver, because there is a way to obtain the value from the
address: just load the value pointed to by the receiver. The compiler
inserts an implicit * operation for us. These two function calls are equivalent:

pptr.Distance(q)
(*pptr).Distance(q)

Let’s summarize these three cases again, since they are a frequent
point of confusion. In every valid method call expression, exactly
one of these three statements is true.

Either the receiver argument has the same type as the receiver
parameter, for example both have type T or both have type *T:

Click here to view code image

Point{1, 2}.Distance(q) // Point
pptr.ScaleBy(2) // *Point

Or the receiver argument is a variable of type T and the receiver
parameter has type *T. The compiler implicitly takes the address
of the variable:

p.ScaleBy(2) // implicit (&p)

Or the receiver argument has type *T and the receiver parameter has
type T. The compiler implicitly dereferences the receiver, in
other words, loads the value:

Click here to view code image

pptr.Distance(q) // implicit (*pptr)

If all the methods of a named type T have a receiver type of
T itself (not *T), it is safe to copy
instances of that type; calling any of its methods necessarily
makes a copy.

For example, time.Duration values are liberally copied,
including as arguments to functions.

But if any method has a pointer receiver, you should avoid copying
instances of T because doing so may violate internal invariants.

For example, copying an instance of bytes.Buffer would cause
the original and the copy to alias (§2.3.2)
the same underlying array of bytes.

Subsequent method calls would have unpredictable effects.

6.2.1 Nil Is a Valid Receiver Value

Just as some functions allow nil pointers as arguments, so do some

methods for their receiver, especially if nil is a meaningful zero
value of the type, as with maps and slices. In this simple
linked list of integers, nil represents the empty list:

Click here to view code image

// An IntList is a linked list of integers.
// A nil *IntList represents the empty list.
type IntList struct {
 Value int
 Tail *IntList
}

// Sum returns the sum of the list elements.
func (list *IntList) Sum() int {
 if list == nil {
 return 0
 }
 return list.Value + list.Tail.Sum()
}

When you define a type whose methods allow nil as a receiver value,
it’s worth pointing this out explicitly in its documentation comment,
as we did above.

Here’s part of the definition of the Values type
from the net/url package:

Click here to view code image

net/url

package url

// Values maps a string key to a list of values.
type Values map[string][]string

// Get returns the first value associated with the given key,
// or "" if there are none.
func (v Values) Get(key string) string {
 if vs := v[key]; len(vs) > 0 {
 return vs[0]
 }
 return ""
}

// Add adds the value to key.
// It appends to any existing values associated with key.
func (v Values) Add(key, value string) {
 v[key] = append(v[key], value)
}

It exposes its representation as a map but also provides methods to
simplify access to the map, whose values are slices of strings—it’s
a multimap.

Its clients can use its intrinsic operators (make, slice
literals, m[key], and so on), or its methods, or both, as they prefer:

Click here to view code image

gopl.io/ch6/urlvalues

m := url.Values{"lang": {"en"}} // direct construction
m.Add("item", "1")
m.Add("item", "2")

fmt.Println(m.Get("lang")) // "en"
fmt.Println(m.Get("q")) // ""
fmt.Println(m.Get("item")) // "1" (first value)
fmt.Println(m["item"]) // "[1 2]" (direct map access)

m = nil
fmt.Println(m.Get("item")) // ""
m.Add("item", "3") // panic: assignment to entry in nil map

In the final call to Get, the nil receiver behaves like
an empty map.

We could equivalently have written it as
Values(nil).Get("item")), but nil.Get("item") will not
compile because the type of nil has not been determined.

By contrast, the final call to Add panics as it tries to update a nil map.

Because url.Values is a map type and a map refers to its key/value pairs
indirectly, any updates and deletions that
url.Values.Add makes to the map elements are visible to the
caller.

However, as with ordinary functions, any changes a method makes to the
reference itself, like setting it to nil or making it refer to a
different map data structure, will not be reflected in the caller.

6.3 Composing Types by Struct Embedding

Consider the type ColoredPoint:

Click here to view code image

gopl.io/ch6/coloredpoint

import "image/color"

type Point struct{ X, Y float64 }

type ColoredPoint struct {
 Point
 Color color.RGBA
}

We could have defined ColoredPoint as a struct of three fields, but instead we

embedded a Point to provide the X and Y fields. As we saw in
Section 4.4.3, embedding lets us take a syntactic shortcut to defining
a ColoredPoint that contains all the fields of Point, plus some
more. If we want, we can select the fields of ColoredPoint that were
contributed by the embedded Point without mentioning Point:

var cp ColoredPoint
cp.X = 1
fmt.Println(cp.Point.X) // "1"
cp.Point.Y = 2
fmt.Println(cp.Y) // "2"

A similar mechanism applies to the methods of Point. We can
call methods of the embedded Point field using a receiver of type
ColoredPoint, even though ColoredPoint has no declared methods:

Click here to view code image

red := color.RGBA{255, 0, 0, 255}
blue := color.RGBA{0, 0, 255, 255}
var p = ColoredPoint{Point{1, 1}, red}
var q = ColoredPoint{Point{5, 4}, blue}
fmt.Println(p.Distance(q.Point)) // "5"
p.ScaleBy(2)
q.ScaleBy(2)
fmt.Println(p.Distance(q.Point)) // "10"

The methods of Point have been promoted to ColoredPoint.

In this way, embedding allows complex types with many methods to be
built up by the composition of several fields, each providing a few
methods.

Readers familiar with class-based object-oriented languages may be
tempted to view Point as a base class and ColoredPoint
as a subclass or derived class, or to interpret the relationship
between these types as if a ColoredPoint “is a” Point.
But that would be a mistake.

Notice the calls to Distance above. Distance has a
parameter of type Point, and q is not a Point, so
although q does have an embedded field of that type, we must explicitly
select it.

Attempting to pass q would be an error:

Click here to view code image

p.Distance(q) // compile error: cannot use q (ColoredPoint) as Point

A ColoredPoint is not a Point, but it “has a”
Point, and it has two additional methods Distance and
ScaleBy promoted from Point.

If you prefer to think in terms of implementation, the embedded field
instructs the compiler to generate additional wrapper methods that
delegate to the declared methods, equivalent to these:

Click here to view code image

func (p ColoredPoint) Distance(q Point) float64 {
 return p.Point.Distance(q)
}

func (p *ColoredPoint) ScaleBy(factor float64) {
 p.Point.ScaleBy(factor)
}

When Point.Distance is called by the first of these wrapper methods,
its receiver value is p.Point, not p, and there is no
way for the method to access the ColoredPoint in which
the Point is embedded.

The type of an anonymous field may be a pointer to a named
type, in which case fields and methods are promoted indirectly from
the pointed-to object.

Adding another level of indirection lets us share common structures
and vary the relationships between objects dynamically.

The declaration of ColoredPoint below embeds a *Point:

Click here to view code image

type ColoredPoint struct {
 *Point
 Color color.RGBA
}

p := ColoredPoint{&Point{1, 1}, red}
q := ColoredPoint{&Point{5, 4}, blue}
fmt.Println(p.Distance(*q.Point)) // "5"
q.Point = p.Point // p and q now share the same Point
p.ScaleBy(2)
fmt.Println(*p.Point, *q.Point) // "{2 2} {2 2}"

A struct type may have more than one anonymous field. Had we declared

ColoredPoint as

type ColoredPoint struct {
 Point
 color.RGBA
}

then a value of this type would have all the methods of Point,
all the methods of RGBA, and any additional methods declared on
ColoredPoint directly.

When the compiler resolves a selector such as p.ScaleBy to a
method, it first looks for a directly declared method named
ScaleBy, then for methods promoted once from
ColoredPoint’s embedded fields, then for methods promoted twice
from embedded fields within Point and RGBA, and so on.

The compiler reports an error if the selector was ambiguous because
two methods were promoted from the same rank.

Methods can be declared only on named types (like Point) and
pointers to them (*Point), but thanks to embedding, it’s possible and sometimes useful
for unnamed struct types to have methods too.

Here’s a nice trick to illustrate. This example shows part
of a simple cache implemented using two package-level variables, a
mutex (§9.2) and the map that it guards:

Click here to view code image

var (
 mu sync.Mutex // guards mapping
 mapping = make(map[string]string)
)

func Lookup(key string) string {
 mu.Lock()
 v := mapping[key]
 mu.Unlock()
 return v
}

The version below is functionally equivalent but groups together the
two related variables in a single package-level variable, cache:

Click here to view code image

var cache = struct {
 sync.Mutex
 mapping map[string]string
} {
 mapping: make(map[string]string),
}

func Lookup(key string) string {
 cache.Lock()
 v := cache.mapping[key]
 cache.Unlock()
 return v
}

The new variable gives more expressive names to the variables related
to the cache, and because the sync.Mutex field is embedded within
it, its Lock and Unlock methods are promoted to the unnamed
struct type, allowing us to lock the cache with a
self-explanatory syntax.

6.4 Method Values and Expressions

Usually we select and call a method in the same expression, as
in p.Distance(), but it’s possible to separate these two operations.

The selector p.Distance yields a method value, a

function that binds a method (Point.Distance) to a specific
receiver value p.

This function can then be invoked without a receiver value; it needs
only the non-receiver arguments.

Click here to view code image

p := Point{1, 2}
q := Point{4, 6}

distanceFromP := p.Distance // method value
fmt.Println(distanceFromP(q)) // "5"
var origin Point // {0, 0}
fmt.Println(distanceFromP(origin)) // "2.23606797749979", √5

scaleP := p.ScaleBy // method value
scaleP(2) // p becomes (2, 4)
scaleP(3) // then (6, 12)
scaleP(10) // then (60, 120)

Method values are useful when a package’s API calls for a function
value, and the client’s desired behavior for that function is to call
a method on a specific receiver.

For example, the function time.AfterFunc calls a function value
after a specified delay.

This program uses it to launch the rocket r after 10 seconds:

Click here to view code image

type Rocket struct { /* ... */ }
func (r *Rocket) Launch() { /* ... */ }

r := new(Rocket)
time.AfterFunc(10 * time.Second, func() { r.Launch() })

The method value syntax is shorter:

Click here to view code image

time.AfterFunc(10 * time.Second, r.Launch)

Related to the method value is the method expression.

When calling a method, as opposed to an ordinary function, we must
supply the receiver in a special way using the selector syntax.

A method expression, written T.f or (*T).f
where T is a type, yields a function value with a regular
first parameter taking the place of the receiver, so it can be
called in the usual way.

Click here to view code image

p := Point{1, 2}
q := Point{4, 6}

distance := Point.Distance // method expression
fmt.Println(distance(p, q)) // "5"
fmt.Printf("%T\n", distance) // "func(Point, Point) float64"

scale := (*Point).ScaleBy
scale(&p, 2)
fmt.Println(p) // "{2 4}"
fmt.Printf("%T\n", scale) // "func(*Point, float64)"

Method expressions can be helpful when you need a value to represent a
choice among several methods belonging to the same type so that you
can call the chosen method with many different receivers.

In the following example, the variable op represents either the
addition or the subtraction method of type Point, and
Path.TranslateBy calls it for each point in the Path:

Click here to view code image

type Point struct{ X, Y float64 }

func (p Point) Add(q Point) Point { return Point{p.X + q.X, p.Y + q.Y} }
func (p Point) Sub(q Point) Point { return Point{p.X - q.X, p.Y - q.Y} }

type Path []Point

func (path Path) TranslateBy(offset Point, add bool) {
 var op func(p, q Point) Point
 if add {
 op = Point.Add
 } else {
 op = Point.Sub
 }
 for i := range path {
 // Call either path[i].Add(offset) or path[i].Sub(offset).
 path[i] = op(path[i], offset)
 }
}

6.5 Example: Bit Vector Type

Sets in Go are usually implemented as a map[T]bool, where T is the
element type. A set represented by a map is very flexible
but, for certain problems, a specialized representation may outperform it. For
example, in domains such as dataflow analysis where set
elements are small non-negative integers, sets have many elements, and
set operations like union and intersection are common, a bit vector

is ideal.

A bit vector uses a slice of unsigned integer values or “words,” each
bit of which represents a possible element of the set. The set
contains i if the i-th bit is set. The following program
demonstrates a simple bit vector type with three methods:

Click here to view code image

gopl.io/ch6/intset

// An IntSet is a set of small non-negative integers.
// Its zero value represents the empty set.
type IntSet struct {
 words []uint64
}

// Has reports whether the set contains the non-negative value x.
func (s *IntSet) Has(x int) bool {
 word, bit := x/64, uint(x%64)
 return word < len(s.words) && s.words[word]&(1<<bit) != 0
}

// Add adds the non-negative value x to the set.
func (s *IntSet) Add(x int) {
 word, bit := x/64, uint(x%64)
 for word >= len(s.words) {
 s.words = append(s.words, 0)
 }
 s.words[word] |= 1 << bit
}

// UnionWith sets s to the union of s and t.
func (s *IntSet) UnionWith(t *IntSet) {
 for i, tword := range t.words {
 if i < len(s.words) {
 s.words[i] |= tword
 } else {
 s.words = append(s.words, tword)
 }
 }
}

Since each word has 64 bits, to locate the bit for x, we use the
quotient x/64 as the word index and the remainder x%64 as the bit
index within that word. The UnionWith operation uses the bitwise
OR operator | to compute the union 64 elements at a time.

(We’ll revisit the choice of 64-bit words in Exercise 6.5.)

This implementation lacks many desirable features, some of
which are posed as exercises below, but one is hard to live without:
way to print an IntSet as a string.

Let’s give it a String method as we did with Celsius in
Section 2.5:

Click here to view code image

// String returns the set as a string of the form "{1 2 3}".
func (s *IntSet) String() string {
 var buf bytes.Buffer
 buf.WriteByte('{')
 for i, word := range s.words {
 if word == 0 {
 continue
 }
 for j := 0; j < 64; j++ {
 if word&(1<<uint(j)) != 0 {
 if buf.Len() > len("{") {
 buf.WriteByte(' ')
 }
 fmt.Fprintf(&buf, "%d", 64*i+j)
 }
 }
 }
 buf.WriteByte('}')
 return buf.String()
}

Notice the similarity of the String method above with
intsToString in Section 3.5.4;
bytes.Buffer is often used this way in String methods.

The fmt package treats types with a String method specially
so that values of complicated types can display themselves in a
user-friendly manner.

Instead of printing the raw representation of the value (a struct
in this case), fmt calls the String method.

The mechanism relies on interfaces and type assertions, which we’ll
explain in Chapter 7.

We can now demonstrate IntSet in action:

Click here to view code image

var x, y IntSet
x.Add(1)
x.Add(144)
x.Add(9)
fmt.Println(x.String()) // "{1 9 144}"

y.Add(9)
y.Add(42)
fmt.Println(y.String()) // "{9 42}"

x.UnionWith(&y)
fmt.Println(x.String()) // "{1 9 42 144}"

fmt.Println(x.Has(9), x.Has(123)) // "true false"

A word of caution: we declared String and Has as methods of
the pointer type *IntSet not out of necessity, but for consistency
with the other two methods, which need a pointer receiver because
they assign to s.words.

Consequently, an IntSet value does not
have a String method, occasionally leading to surprises like
this:

Click here to view code image

fmt.Println(&x) // "{1 9 42 144}"
fmt.Println(x.String()) // "{1 9 42 144}"
fmt.Println(x) // "{[4398046511618 0 65536]}"

In the first case, we print an *IntSet pointer, which does have a
String method.

In the second case, we call String() on an
IntSet variable; the compiler inserts the implicit & operation,
giving us a pointer, which has the String method.

But in the third case, because the IntSet value does not have
a String method, fmt.Println prints the representation
of the struct instead. It’s important not to forget the &
operator.

Making String a method of IntSet, not *IntSet,
might be a good idea, but this is a case-by-case judgment.

Exercise 6.1:
Implement these additional methods:

Click here to view code image

func (*IntSet) Len() int // return the number of elements
func (*IntSet) Remove(x int) // remove x from the set
func (*IntSet) Clear() // remove all elements from the set
func (*IntSet) Copy() *IntSet // return a copy of the set

Exercise 6.2:
Define a variadic (*IntSet).AddAll(...int) method that allows a list
of values to be added, such as s.AddAll(1, 2, 3).

Exercise 6.3:
(*IntSet).UnionWith computes the union of two sets using |, the
word-parallel bitwise OR operator.

Implement methods for IntersectWith, DifferenceWith, and
SymmetricDifference for the corresponding set operations.

(The symmetric difference of two sets contains the elements present
in one set or the other but not both.)

Exercise 6.4:
Add a method Elems that returns a slice containing the elements
of the set, suitable for iterating over with a range loop.

Exercise 6.5:
The type of each word used by IntSet is uint64,
but 64-bit arithmetic may
be inefficient on a 32-bit platform. Modify the program to use the
uint type, which is the most efficient unsigned integer type for
the platform.

Instead of dividing by 64, define a constant holding the effective
size of uint in bits, 32 or 64.

You can use the perhaps too-clever expression
32 << (^uint(0) >> 63) for this purpose.

6.6 Encapsulation

A variable or method of an object is said to be encapsulated if
it is inaccessible to clients of the object.

Encapsulation, sometimes called information hiding,
is a key aspect of object-oriented programming.

Go has only one mechanism to
control the visibility of names: capitalized identifiers are exported
from the package in which they are defined, and uncapitalized names
are not.

The same mechanism that limits access to members of a package also
limits access to the fields of a struct or the methods of a type.

As a consequence, to encapsulate an object, we must make it a struct.

That’s the reason the IntSet type from the previous section was
declared as a struct type even though it has only a single field:

type IntSet struct {
 words []uint64
}

We could instead define IntSet as a slice type as follows,
though of course we’d have to replace each occurrence of
s.words by *s in its methods:

type IntSet []uint64

Although this version of IntSet would be essentially
equivalent, it would allow clients from other packages to read and
modify the slice directly.

Put another way, whereas the expression *s could be used in any
package, s.words may appear only in the package that defines
IntSet.

Another consequence of this name-based mechanism is that the unit of
encapsulation is the package, not the type as in many other languages.

The fields of a struct type are visible to all code within the same
package.

Whether the code appears in a function or a method makes no
difference.

Encapsulation provides three benefits.

First, because clients cannot directly modify the object’s variables,
one need inspect fewer statements to understand the possible values
of those variables.

Second, hiding implementation details prevents clients from depending
on things that might change, which gives the designer greater
freedom to evolve the implementation without breaking API compatibility.

As an example, consider the bytes.Buffer type.

It is frequently used to accumulate very short strings, so it is a
profitable optimization to reserve a little extra space in the object
to avoid memory allocation in this common case.

Since Buffer is a struct type, this space takes the form of an
extra field of type [64]byte with an uncapitalized name.

When this field was added, because it was not exported, clients of
Buffer outside the bytes package were unaware of any
change except improved performance.

Buffer and its Grow method are shown below, simplified
for clarity:

Click here to view code image

type Buffer struct {
 buf []byte
 initial [64]byte
 /* ... */
}

// Grow expands the buffer's capacity, if necessary,
// to guarantee space for another n bytes. [...]
func (b *Buffer) Grow(n int) {
 if b.buf == nil {
 b.buf = b.initial[:0] // use preallocated space initially
 }
 if len(b.buf)+n > cap(b.buf) {
 buf := make([]byte, b.Len(), 2*cap(b.buf) + n)
 copy(buf, b.buf)
 b.buf = buf
 }
}

The third benefit of encapsulation, and in many cases the most
important, is that it prevents clients from setting an object’s
variables arbitrarily.

Because the object’s variables can be set only by functions in the
same package, the author of that package can ensure that all those
functions maintain the object’s internal invariants.

For example, the Counter type below permits clients to
increment the counter or to reset it to zero, but not to set it to some
arbitrary value:

Click here to view code image

type Counter struct { n int }

func (c *Counter) N() int { return c.n }
func (c *Counter) Increment() { c.n++ }
func (c *Counter) Reset() { c.n = 0 }

Functions that merely access or modify internal values of a type, such
as the methods of the Logger type from log package,
below, are called getters and setters.

However, when naming a getter method, we usually omit the Get
prefix.

This preference for brevity extends to all methods, not just field
accessors, and to other redundant prefixes as well, such as
Fetch, Find, and Lookup.

Click here to view code image

package log

type Logger struct {
 flags int
 prefix string
 // ...
}

func (l *Logger) Flags() int
func (l *Logger) SetFlags(flag int)
func (l *Logger) Prefix() string
func (l *Logger) SetPrefix(prefix string)

Go style does not forbid exported fields.

Of course, once exported, a field cannot be unexported without an
incompatible change to the API, so the initial choice should be
deliberate and should consider the complexity of the
invariants that must be maintained, the likelihood of future changes,

and the quantity of client code that would be affected by a change.

Encapsulation is not always desirable.

By revealing its representation as an int64 number of
nanoseconds, time.Duration lets us use all the usual
arithmetic and comparison operations with durations, and even to define
constants of this type:

Click here to view code image

const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "86400"

As another example, contrast IntSet with the
geometry.Path type from the beginning of this chapter.

Path was defined as a slice type, allowing its clients to
construct instances using the slice literal syntax, to iterate over
its points using a range loop, and so on, whereas these operations are
denied to clients of IntSet.

Here’s the crucial difference: geometry.Path is intrinsically a
sequence of points, no more and no less, and we don’t foresee adding
new fields to it, so it makes sense for the geometry package to
reveal that Path is a slice.

In contrast, an IntSet merely happens to be represented
as a []uint64 slice.

It could have been represented using []uint, or
something completely different for sets that are sparse or very small,
and it might perhaps benefit from additional features like an extra
field to record the number of elements in the set. For these reasons,
it makes sense for IntSet to be opaque.

In this chapter, we learned how to associate methods with
named types, and how to call those methods.

Although methods are crucial to object-oriented programming, they’re
only half the picture.

To complete it, we need interfaces,
the subject of the next chapter.

7. Interfaces

Interface types express generalizations or abstractions about the
behaviors of other types.

By generalizing, interfaces let us write functions that are more
flexible and adaptable because they are not tied to the details of one
particular implementation.

Many object-oriented languages have some notion of interfaces, but
what makes Go’s interfaces so distinctive is that they are
satisfied implicitly.

In other words, there’s no need to declare all the interfaces that a
given concrete type satisfies; simply possessing the necessary methods
is enough.

This design lets you create new interfaces that are satisfied by
existing concrete types without changing the existing types,
which is particularly useful for types defined in packages that you
don’t control.

In this chapter, we’ll start by looking at the basic mechanics of
interface types and their values.

Along the way, we’ll study several important interfaces from the
standard library.

Many Go programs make as much use of standard interfaces as they
do of their own ones.

Finally, we’ll look at type assertions (§7.10) and type switches (§7.13) and see how they enable a different kind of
generality.

7.1 Interfaces as Contracts

All the types we’ve looked at so far have been concrete types.

A concrete
type specifies the exact representation of its values and exposes the

intrinsic operations of that representation, such as arithmetic for
numbers, or indexing, append, and range for slices. A concrete
type may also provide additional behaviors through its methods.

When you have a value of a concrete type, you know exactly what it
is and what you can do with it.

There is another kind of type in Go called an interface type. An
interface is an abstract type. It doesn’t expose the

representation or internal structure of its values, or the set of
basic operations they support; it reveals only some of their methods.
When you have a value of an interface type, you know nothing about what
it is; you know only what it can do, or more precisely, what
behaviors are provided by its methods.

Throughout the book, we’ve been using two similar functions for string
formatting: fmt.Printf, which writes the result to the standard
output (a file), and fmt.Sprintf, which returns the result as a
string.

It would be unfortunate if the hard part, formatting the result, had
to be duplicated because of these superficial differences in how
the result is used. Thanks to interfaces, it does not.

Both of these functions are, in effect, wrappers around a third function,
fmt.Fprintf, that is agnostic about what happens to the result it
computes:

Click here to view code image

package fmt

func Fprintf(w io.Writer, format string, args ...interface{}) (int, error)

func Printf(format string, args ...interface{}) (int, error) {
 return Fprintf(os.Stdout, format, args...)
}

func Sprintf(format string, args ...interface{}) string {
 var buf bytes.Buffer
 Fprintf(&buf, format, args...)
 return buf.String()
}

The F prefix of Fprintf stands for file and
indicates that the formatted output should be written to the file
provided as the first argument.

In the Printf case, the argument, os.Stdout, is an
*os.File.

In the Sprintf case, however, the argument is not a file, though it
superficially resembles one: &buf is a pointer to a memory
buffer to which bytes can be written.

The first parameter of Fprintf is not a file either.

It’s an io.Writer, which is an interface type with the
following declaration:

Click here to view code image

package io

// Writer is the interface that wraps the basic Write method.
type Writer interface {
 // Write writes len(p) bytes from p to the underlying data stream.
 // It returns the number of bytes written from p (0 <= n <= len(p))
 // and any error encountered that caused the write to stop early.
 // Write must return a non-nil error if it returns n < len(p).
 // Write must not modify the slice data, even temporarily.
 //
 // Implementations must not retain p.
 Write(p []byte) (n int, err error)
}

The io.Writer interface defines the contract between
Fprintf and its callers.

On the one hand, the contract requires that the caller provide a value
of a concrete type like *os.File or *bytes.Buffer that
has a method called Write with the appropriate signature
and behavior.

On the other hand, the contract guarantees that Fprintf will do
its job given any value that satisfies the io.Writer interface.

Fprintf may not assume that it is writing to a file or to
memory, only that it can call Write.

Because fmt.Fprintf assumes nothing about the representation of the
value and relies only on the behaviors guaranteed by the
io.Writer contract, we can safely pass a value of any concrete type that
satisfies io.Writer as the first argument to fmt.Fprintf.

This freedom to substitute one type for another that satisfies the
same interface is called substitutability, and is a hallmark of
object-oriented programming.

Let’s test this out using a new type.

The Write method of the *ByteCounter type below merely
counts the bytes written to it before discarding them.

(The conversion is required to make the types of len(p) and
*c match in the += assignment statement.)

Click here to view code image

gopl.io/ch7/bytecounter

type ByteCounter int

func (c *ByteCounter) Write(p []byte) (int, error) {
 *c += ByteCounter(len(p)) // convert int to ByteCounter
 return len(p), nil
}

Since *ByteCounter satisfies the io.Writer contract, we
can pass it to Fprintf, which does its string formatting oblivious to
this change; the ByteCounter correctly accumulates the
length of the result.

Click here to view code image

var c ByteCounter
c.Write([]byte("hello"))
fmt.Println(c) // "5", = len("hello")

c = 0 // reset the counter
var name = "Dolly"
fmt.Fprintf(&c, "hello, %s", name)
fmt.Println(c) // "12", = len("hello, Dolly")

Besides io.Writer, there is another interface of great importance to the fmt
package.

Fprintf and Fprintln provide a way for types to control
how their values are printed.

In Section 2.5, we defined a String method
for the Celsius type so that temperatures would print as
"100°C", and in Section 6.5 we equipped *IntSet
with a String method so that sets would be rendered using
traditional set notation like "{1 2 3}".

Declaring a String method makes a type satisfy one of the most
widely used interfaces of all, fmt.Stringer:

Click here to view code image

package fmt

// The String method is used to print values passed
// as an operand to any format that accepts a string
// or to an unformatted printer such as Print.
type Stringer interface {
 String() string
}

We’ll explain how the fmt package discovers which values satisfy this
interface in Section 7.10.

Exercise 7.1:
Using the ideas from ByteCounter, implement counters for
words and for lines.

You will find bufio.ScanWords useful.

Exercise 7.2:
Write a function CountingWriter with the signature below that,
given an io.Writer, returns a new Writer that wraps
the original, and a pointer to an int64 variable that at
any moment contains the number of bytes written to the new Writer.

Click here to view code image

func CountingWriter(w io.Writer) (io.Writer, *int64)

Exercise 7.3:
Write a String method for the *tree type in
gopl.io/ch4/treesort (§4.4) that reveals the
sequence of values in the tree.

7.2 Interface Types

An interface type specifies a set of methods that a concrete type must
possess to be considered an instance of that interface.

The io.Writer type is one of the most widely used interfaces
because it provides an abstraction of all the types to which bytes can
be written, which includes files, memory buffers, network connections,
HTTP clients, archivers, hashers, and so on.

The io package defines many other useful interfaces.

A Reader represents any type from which you can read bytes, and
a Closer is any value that you can close, such as a file or a
network connection.

(By now you’ve probably noticed the naming convention for many of Go’s
single-method interfaces.)

Click here to view code image

package io

type Reader interface {
 Read(p []byte) (n int, err error)
}

type Closer interface {
 Close() error
}

Looking farther, we find declarations of new interface types as
combinations of existing ones.

Here are two examples:

Click here to view code image

type ReadWriter interface {
 Reader
 Writer
}

type ReadWriteCloser interface {
 Reader
 Writer
 Closer
}

The syntax used above, which resembles struct embedding, lets us name
another interface as a shorthand for writing out all of its methods.

This is called embedding an interface.

We could have written io.ReadWriter without embedding, albeit
less succinctly, like this:

Click here to view code image

type ReadWriter interface {
 Read(p []byte) (n int, err error)
 Write(p []byte) (n int, err error)
}

or even using a mixture of the two styles:

Click here to view code image

type ReadWriter interface {
 Read(p []byte) (n int, err error)
 Writer
}

All three declarations have the same effect.

The order in which the methods appear is immaterial.

All that matters is the set of methods.

Exercise 7.4:
The strings.NewReader function returns a value that satisfies
the io.Reader interface (and others) by reading from its
argument, a string.

Implement a simple version of NewReader
yourself, and use it to
make the HTML parser (§5.2) take input from a
string.

Exercise 7.5:
The LimitReader function in the io package accepts an
io.Reader r and a number of bytes n, and
returns another Reader that reads from r
but reports an end-of-file condition after n bytes.

Implement it.

Click here to view code image

func LimitReader(r io.Reader, n int64) io.Reader

7.3 Interface Satisfaction

A type satisfies an interface if it possesses all the methods
the interface requires.

For example, an *os.File satisfies io.Reader, Writer,
Closer, and ReadWriter.

A *bytes.Buffer satisfies Reader, Writer,
and ReadWriter, but does not satisfy Closer
because it does not have a Close method.

As a shorthand, Go programmers often say that a concrete type “is a”
particular interface type, meaning that it satisfies the interface.

For example, a *bytes.Buffer is an io.Writer; an
*os.File is an io.ReadWriter.

The assignability rule (§2.4.2) for interfaces is very
simple: an expression may be assigned to an interface only if its type
satisfies the interface. So:

Click here to view code image

var w io.Writer
w = os.Stdout // OK: *os.File has Write method
w = new(bytes.Buffer) // OK: *bytes.Buffer has Write method
w = time.Second // compile error: time.Duration lacks Write method

var rwc io.ReadWriteCloser
rwc = os.Stdout // OK: *os.File has Read, Write, Close methods
rwc = new(bytes.Buffer) // compile error: *bytes.Buffer lacks Close method

This rule applies even when the right-hand side is itself an interface:

Click here to view code image

w = rwc // OK: io.ReadWriteCloser has Write method
rwc = w // compile error: io.Writer lacks Close method

Because ReadWriter and ReadWriteCloser include all
the methods of Writer, any type that satisfies
ReadWriter or ReadWriteCloser necessarily
satisfies Writer.

Before we go further, we should explain one subtlety in what it means
for a type to have a method.

Recall from Section 6.2 that for each
named concrete type T, some of its methods have a receiver of
type T itself whereas others require a *T pointer.

Recall also that it is legal to call a *T method on an argument
of type T so long as the argument is a variable; the
compiler implicitly takes its address.

But this is mere syntactic sugar:
a value of type T does not possess all the
methods that a *T pointer does,
and as a result it might satisfy fewer interfaces.

An example will make this clear.

The String method of the IntSet type
from Section 6.5 requires a pointer receiver,
so we cannot call that method on a non-addressable IntSet value:

Click here to view code image

type IntSet struct { /* ... */ }
func (*IntSet) String() string

var _ = IntSet{}.String() // compile error: String requires *IntSet receiver

but we can call it on an IntSet variable:

Click here to view code image

var s IntSet
var _ = s.String() // OK: s is a variable and &s has a String method

However, since only *IntSet has a String method, only
*IntSet satisfies the fmt.Stringer interface:

Click here to view code image

var _ fmt.Stringer = &s // OK
var _ fmt.Stringer = s // compile error: IntSet lacks String method

Section 12.8 includes a program that
prints the methods of an arbitrary value,
and the godoc -analysis=type tool
(§10.7.4) displays the methods of each type and
the relationship between interfaces and concrete types.

Like an envelope that wraps and conceals the letter it holds, an
interface wraps and conceals the concrete type and value that it
holds.

Only the methods revealed by the interface type may be called,
even if the concrete type has others:

Click here to view code image

os.Stdout.Write([]byte("hello")) // OK: *os.File has Write method
os.Stdout.Close() // OK: *os.File has Close method

var w io.Writer
w = os.Stdout
w.Write([]byte("hello")) // OK: io.Writer has Write method
w.Close() // compile error: io.Writer lacks Close method

An interface with more methods, such as io.ReadWriter, tells us
more about the values it contains, and places greater demands on
the types that implement it, than does an interface with fewer
methods such as io.Reader.

So what does the type interface{}, which has no methods at all, tell
us about the concrete types that satisfy it?

That’s right: nothing.

This may seem useless, but in fact the type interface{}, which is called the
empty interface type, is indispensable.

Because the empty interface type places no demands on the types
that satisfy it, we can assign any value to the empty
interface.

var any interface{}
any = true
any = 12.34
any = "hello"
any = map[string]int{"one": 1}
any = new(bytes.Buffer)

Although it wasn’t obvious, we’ve been using the empty interface type
since the very first example in this book, because it is what allows
functions like fmt.Println, or errorf in Section 5.7, to accept arguments of any type.

Of course, having created an interface{} value containing a
boolean, float, string, map, pointer, or any other type, we can do nothing
directly to the value it holds since the interface has no methods.

We need a way to get the value back out again.

We’ll see how to do that using a type assertion in Section 7.10.

Since interface satisfaction depends only on the methods of the
two types involved, there is no need to declare the relationship
between a concrete type and the interfaces it satisfies.

That said, it is occasionally useful to document and assert the
relationship when it is intended but not otherwise enforced by the
program.

The declaration below asserts at compile time that a value of type
*bytes.Buffer satisfies io.Writer:

Click here to view code image

// *bytes.Buffer must satisfy io.Writer
var w io.Writer = new(bytes.Buffer)

We needn’t allocate a new variable since any value of type
*bytes.Buffer will do, even nil, which we write as
(*bytes.Buffer)(nil) using an explicit conversion.

And since we never intend to refer to w, we can replace it with
the blank identifier.

Together, these changes give us this more frugal variant:

Click here to view code image

// *bytes.Buffer must satisfy io.Writer
var _ io.Writer = (*bytes.Buffer)(nil)

Non-empty interface types such as io.Writer are most often
satisfied by a pointer type, particularly when one or more of the
interface methods implies some kind of mutation to the receiver,
as the Write method does.

A pointer to a struct is an especially common method-bearing type.

But pointer types are by no means the only types that satisfy
interfaces, and even interfaces with mutator methods may be satisfied
by one of Go’s other reference types.

We’ve seen examples of slice types with methods
(geometry.Path, §6.1)
and map types with methods (url.Values, §6.2.1), and later we’ll see a function type with methods
(http.HandlerFunc, §7.7).

Even basic types may satisfy interfaces; as we saw in Section 7.4, time.Duration satisfies
fmt.Stringer.

A concrete type may satisfy many unrelated interfaces.

Consider a program that organizes or sells digitized cultural
artifacts like music, films, and books.

It might define the following set of concrete types:

Album
Book
Movie
Magazine
Podcast
TVEpisode
Track

We can express each abstraction of interest as an interface.

Some properties are common to all artifacts, such as a title, a
creation date, and a list of creators (authors or artists).

type Artifact interface {
 Title() string
 Creators() []string
 Created() time.Time
}

Other properties are restricted to certain types of artifacts.

Properties of the printed word are relevant only to books
and magazines, whereas only movies and TV episodes have a screen
resolution.

Click here to view code image

type Text interface {
 Pages() int
 Words() int
 PageSize() int
}

type Audio interface {
 Stream() (io.ReadCloser, error)
 RunningTime() time.Duration
 Format() string // e.g., "MP3", "WAV"
}

type Video interface {
 Stream() (io.ReadCloser, error)
 RunningTime() time.Duration
 Format() string // e.g., "MP4", "WMV"
 Resolution() (x, y int)
}

These interfaces are but one useful way to group related concrete
types together and express the facets they share in common.

We may discover other groupings later.

For example, if we find we need to handle Audio and Video items
in the same way, we can define a Streamer interface to represent their
common aspects without changing any existing type declarations.

type Streamer interface {
 Stream() (io.ReadCloser, error)
 RunningTime() time.Duration
 Format() string
}

Each grouping of concrete types based on their shared behaviors can
be expressed as an interface type.

Unlike class-based languages, in which the set of interfaces satisfied
by a class is explicit, in Go we can define new abstractions or
groupings of interest when we need them, without modifying the
declaration of the concrete type.

This is particularly useful when the concrete type comes from a
package written by a different author.

Of course, there do need to be underlying
commonalities in the concrete types.

7.4 Parsing Flags with flag.Value

In this section, we’ll see how another standard interface,
flag.Value, helps us define new notations for command-line flags.

Consider the program below, which sleeps for a specified period of time.

Click here to view code image

gopl.io/ch7/sleep

var period = flag.Duration("period", 1*time.Second, "sleep period")

func main() {
 flag.Parse()
 fmt.Printf("Sleeping for %v...", *period)
 time.Sleep(*period)
 fmt.Println()
}

Before it goes to sleep it prints the time period.

The fmt package calls the time.Duration’s String
method to print the period not as a number of nanoseconds, but in a
user-friendly notation:

$ go build gopl.io/ch7/sleep
$./sleep
Sleeping for 1s...

By default, the sleep period is one second, but it can be controlled
through the -period command-line flag.

The flag.Duration function creates a flag variable of type
time.Duration and allows the user to specify the duration
in a variety of user-friendly formats, including the same notation
printed by the String method.

This symmetry of design leads to a nice user interface.

Click here to view code image

$./sleep -period 50ms
Sleeping for 50ms...
$./sleep -period 2m30s
Sleeping for 2m30s...
$./sleep -period 1.5h
Sleeping for 1h30m0s...
$./sleep -period "1 day"
invalid value "1 day" for flag -period: time: invalid duration 1 day

Because duration-valued flags are so useful, this feature is
built into the flag package, but it’s easy to define new
flag notations for our own data types.

We need only define a type that satisfies the flag.Value
interface, whose declaration is below:

Click here to view code image

package flag

// Value is the interface to the value stored in a flag.
type Value interface {
 String() string
 Set(string) error
}

The String method formats the flag’s value for use in
command-line help messages; thus every flag.Value is also a
fmt.Stringer.

The Set method parses its string argument and updates the flag
value.

In effect, the Set method is the inverse of the String
method, and it is good practice for them to use the same notation.

Let’s define a celsiusFlag type that allows a temperature to be
specified in Celsius, or in Fahrenheit with an appropriate conversion.

Notice that celsiusFlag embeds a Celsius
(§2.5),
thereby getting a String method for free.

To satisfy flag.Value, we need only declare the Set method:

Click here to view code image

gopl.io/ch7/tempconv

// *celsiusFlag satisfies the flag.Value interface.
type celsiusFlag struct{ Celsius }

func (f *celsiusFlag) Set(s string) error {
 var unit string
 var value float64
 fmt.Sscanf(s, "%f%s", &value, &unit) // no error check needed
 switch unit {
 case "C", "°C":
 f.Celsius = Celsius(value)
 return nil
 case "F", "°F":
 f.Celsius = FToC(Fahrenheit(value))
 return nil
 }
 return fmt.Errorf("invalid temperature %q", s)
}

The call to fmt.Sscanf parses a floating-point number
(value) and a string (unit) from the input s.

Although one must usually check Sscanf’s error result, in this
case we don’t need to because if there was a problem, no switch case
will match.

The CelsiusFlag function below wraps it all up.

To the caller, it returns a pointer to the Celsius field
embedded within the celsiusFlag variable f.

The Celsius field is the variable that will be updated by the
Set method during flags processing.

The call to Var adds the flag to the application’s set of
command-line flags, the global variable flag.CommandLine.

Programs with unusually complex command-line interfaces may have
several variables of this type.

The call to Var assigns a *celsiusFlag argument to a
flag.Value parameter, causing the compiler to check that
*celsiusFlag has the necessary methods.

Click here to view code image

// CelsiusFlag defines a Celsius flag with the specified name,
// default value, and usage, and returns the address of the flag variable.
// The flag argument must have a quantity and a unit, e.g., "100C".
func CelsiusFlag(name string, value Celsius, usage string) *Celsius {
 f := celsiusFlag{value}
 flag.CommandLine.Var(&f, name, usage)
 return &f.Celsius
}

Now we can start using the new flag in our programs:

Click here to view code image

gopl.io/ch7/tempflag

var temp = tempconv.CelsiusFlag("temp", 20.0, "the temperature")

func main() {
 flag.Parse()
 fmt.Println(*temp)
}

Here’s a typical session:

Click here to view code image

$ go build gopl.io/ch7/tempflag
$./tempflag
20°C
$./tempflag -temp -18C
-18°C
$./tempflag -temp 212°F
100°C
$./tempflag -temp 273.15K
invalid value "273.15K" for flag -temp: invalid temperature "273.15K"
Usage of ./tempflag:
 -temp value
 the temperature (default 20°C)
$./tempflag -help
Usage of ./tempflag:
 -temp value
 the temperature (default 20°C)

Exercise 7.6:
Add support for Kelvin temperatures to tempflag.

Exercise 7.7:
Explain why the help message contains °C when the default
value of 20.0 does not.

7.5 Interface Values

Conceptually, a value of an interface type, or interface
value, has two components, a concrete type and a value of that
type.

These are called the interface’s dynamic type and
dynamic value.

For a statically typed language like Go,
types are a compile-time concept, so a type is not a value.

In our conceptual model, a set of values called type
descriptors provide information about each type, such as its name
and methods.

In an interface value, the type component is represented by
the appropriate type descriptor.

In the four statements below, the variable w takes on
three different values. (The initial and final values are the same.)

var w io.Writer
w = os.Stdout
w = new(bytes.Buffer)
w = nil

Let’s take a closer look at the value and dynamic behavior of w
after each statement.

The first statement declares w:

var w io.Writer

In Go, variables are always initialized to a well-defined value,
and interfaces are no exception.

The zero value for an interface has both its type and value
components set to nil (Figure 7.1).

[image: A nil interface value.]
Figure 7.1.
A nil interface value.

An interface value is described as nil or non-nil based
on its dynamic type, so this is a nil interface value.

You can test whether an interface value is nil
using w == nil or w != nil.

Calling any method of a nil interface value causes a panic:

Click here to view code image

w.Write([]byte("hello")) // panic: nil pointer dereference

The second statement assigns a value of type *os.File to w:

w = os.Stdout

This assignment involves an implicit conversion from a concrete type
to an interface type, and is equivalent to the explicit conversion
io.Writer(os.Stdout).

A conversion of this kind, whether explicit or implicit, captures the
type and the value of its operand.

The interface value’s dynamic type is set to the
type descriptor for the pointer type *os.File, and its dynamic
value holds a copy of os.Stdout, which is a pointer to the
os.File variable representing the standard output of the
process (Figure 7.2).

[image: An interface value containing an *os.File pointer.]
Figure 7.2.
An interface value containing an *os.File pointer.

Calling the Write method on an interface value containing an
*os.File pointer causes the (*os.File).Write method to
be called.

The call prints "hello".

Click here to view code image

w.Write([]byte("hello")) // "hello"

In general, we cannot know at compile time what the dynamic type
of an interface value will be, so a call through an interface must use
dynamic dispatch.

Instead of a direct call, the compiler must generate code to obtain
the address of the method named Write from the type
descriptor, then make an indirect call to that address.

The receiver argument for the call is a copy of the interface’s
dynamic value, os.Stdout.

The effect is as if we had made this call directly:

Click here to view code image

os.Stdout.Write([]byte("hello")) // "hello"

The third statement assigns a value of type *bytes.Buffer to
the interface value:

w = new(bytes.Buffer)

The dynamic type is now *bytes.Buffer and the dynamic value is
a pointer to the newly allocated buffer (Figure 7.3).

[image: An interface value containing a *bytes.Buffer pointer.]
Figure 7.3.
An interface value containing a *bytes.Buffer pointer.

A call to the Write method uses the same mechanism as before:

Click here to view code image

w.Write([]byte("hello")) // writes "hello" to the bytes.Buffer

This time, the type descriptor is *bytes.Buffer, so the
(*bytes.Buffer).Write method is called, with the address of the
buffer as the value of the receiver parameter.

The call appends "hello" to the buffer.

Finally, the fourth statement assigns nil to the interface value:

w = nil

This resets both its components to nil, restoring w to the
same state as when it was declared, which was shown in
Figure 7.1.

An interface value can hold arbitrarily large dynamic values.

For example, the time.Time type, which represents an instant in
time, is a struct type with several unexported fields.

If we create an interface value from it,

var x interface{} = time.Now()

the result might look like Figure 7.4.

Conceptually, the dynamic value always fits inside the interface
value, no matter how large its type.

(This is only a conceptual model;
a realistic implementation is quite different.)

[image: An interface value holding a time.Time struct.]
Figure 7.4.
An interface value holding a time.Time struct.

Interface values may be compared using == and !=.

Two interface values are equal if both are nil, or if their dynamic
types are identical and their dynamic values are equal according to
the usual behavior of == for that type.

Because interface values are comparable, they may be used as
the keys of a map or as the operand of a switch statement.

However, if two interface values are compared and have the same
dynamic type, but that type is not comparable (a slice, for instance),
then the comparison fails with a panic:

Click here to view code image

var x interface{} = []int{1, 2, 3}
fmt.Println(x == x) // panic: comparing uncomparable type []int

In this respect, interface types are unusual. Other types are either
safely comparable (like basic types and pointers) or not comparable at
all (like slices, maps, and functions), but when comparing interface
values or aggregate types that contain interface values, we must be
aware of the potential for a panic.

A similar risk exists when using interfaces as map keys or switch
operands.

Only compare interface values if you are certain that they contain
dynamic values of comparable types.

When handling errors, or during debugging, it is often helpful to
report the dynamic type of an interface value.

For that, we use the fmt package’s %T verb:

Click here to view code image

var w io.Writer
fmt.Printf("%T\n", w) // "<nil>"

w = os.Stdout
fmt.Printf("%T\n", w) // "*os.File"

w = new(bytes.Buffer)
fmt.Printf("%T\n", w) // "*bytes.Buffer"

Internally, fmt uses reflection to obtain the name of the
interface’s dynamic type.

We’ll look at reflection in Chapter 12.

7.5.1 Caveat: An Interface Containing a Nil Pointer Is Non-Nil

A nil
interface value, which contains no value at all, is not the same as
an interface value containing a pointer that happens to be nil.

This subtle distinction creates a trap into which every Go programmer
has stumbled.

Consider the program below.

With debug set to true, the main function collects the
output of the function f in a bytes.Buffer.

Click here to view code image

const debug = true

func main() {
 var buf *bytes.Buffer
 if debug {
 buf = new(bytes.Buffer) // enable collection of output
 }
 f(buf) // NOTE: subtly incorrect!
 if debug {
 // ...use buf...
 }
}

// If out is non-nil, output will be written to it.
func f(out io.Writer) {
 // ...do something...
 if out != nil {
 out.Write([]byte("done!\n"))
 }
}

We might expect that changing debug to false would
disable the collection of the output, but in fact it causes the
program to panic during the out.Write call:

Click here to view code image

if out != nil {
 out.Write([]byte("done!\n")) // panic: nil pointer dereference
}

When main calls f, it assigns a nil pointer of type
*bytes.Buffer to the out parameter,
so the dynamic value of out is nil.

However, its dynamic type is *bytes.Buffer, meaning
that out is a non-nil interface containing a nil pointer
value (Figure 7.5),
so the defensive check out != nil is still true.

[image: A non-nil interface containing a nil pointer.]
Figure 7.5.
A non-nil interface containing a nil pointer.

As before, the dynamic dispatch mechanism determines that
(*bytes.Buffer).Write must be called but this time with a
receiver value that is nil.

For some types, such as *os.File, nil is a valid receiver (§6.2.1), but *bytes.Buffer is not among them.

The method is called, but it panics as it tries to access the buffer.

The problem is that although a nil *bytes.Buffer pointer has
the methods needed to satisfy the interface, it doesn’t satisfy the
behavioral requirements of the interface.

In particular, the call violates the implicit precondition of
(*bytes.Buffer).Write that its receiver is not nil,
so assigning the nil pointer to the interface was a mistake.

The solution is to change the type of buf in main to
io.Writer, thereby avoiding the assignment of the dysfunctional
value to the interface in the first place:

Click here to view code image

var buf io.Writer
if debug {
 buf = new(bytes.Buffer) // enable collection of output
}
f(buf) // OK

Now that we’ve covered the mechanics of interface values, let’s take a
look at some more important interfaces from Go’s standard library.

In the next three sections, we’ll see how interfaces are
used for sorting, web serving, and error handling.

7.6 Sorting with sort.Interface

Like string formatting, sorting is a frequently used operation in
many programs.

Although a minimal Quicksort can be written in about 15 lines, a
robust implementation is much longer, and it is not the kind of
code we should wish to write anew or copy each time we need it.

Fortunately, the sort package provides in-place sorting of any

sequence according to any ordering function.
Its design is rather unusual.

In many languages, the sorting algorithm is associated with the sequence
data type, while the ordering function is associated with the type of
the elements.
By contrast, Go’s sort.Sort function assumes nothing about the
representation of either the sequence or its elements.
Instead, it uses an
interface, sort.Interface, to specify the contract between the

generic sort algorithm and each sequence type that may be sorted.
An implementation of this interface determines both the concrete
representation of the sequence, which is often a slice, and
the desired ordering of its elements.

An in-place sort algorithm needs three things—the length of the
sequence, a means of comparing two elements, and a way to swap two
elements—so they are the three methods of sort.Interface:

Click here to view code image

package sort

type Interface interface {
 Len() int
 Less(i, j int) bool // i, j are indices of sequence elements
 Swap(i, j int)
}

To sort any sequence, we need to define a type that implements these
three methods, then apply sort.Sort to an instance of that
type.

As perhaps the simplest example, consider sorting a slice of
strings.

The new type StringSlice and its Len, Less, and
Swap methods are shown below.

Click here to view code image

type StringSlice []string

func (p StringSlice) Len() int { return len(p) }
func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p StringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

Now we can sort a slice of strings, names, by converting the slice
to a StringSlice like this:

sort.Sort(StringSlice(names))

The conversion yields a slice value with the same length, capacity,

and underlying array as names

but with a type that has the three methods required for sorting.

Sorting a slice of strings is so common that the sort package
provides the StringSlice type, as well as a function called
Strings so that the call above can be simplified to
sort.Strings(names).

The technique here is easily adapted to other sort orders, for
instance, to ignore capitalization or special characters.

(The Go program that sorts index terms and page numbers for this book
does this, with extra logic for Roman numerals.)

For more complicated sorting, we use the same idea, but with more
complicated data structures or more complicated implementations of
the sort.Interface methods.

Our running example for sorting will be a music playlist, displayed as
a table. Each track is a single row, and each column is an attribute
of that track, like artist, title, and running time. Imagine that a
graphical user interface presents the table, and that clicking the
head of a column causes the playlist to be sorted by that attribute;
clicking the same column head again reverses the order. Let’s look at
what might happen in response to each click.

The variable tracks below contains a playlist.

(One of the authors apologizes for the other author’s musical tastes.)

Each element is indirect, a pointer to a Track.

Although the code below would work if we stored the Tracks
directly, the sort function will swap many pairs of elements, so it
will run faster if each element is a pointer, which is a single machine word,
instead of an entire Track, which might be eight words or more.

Click here to view code image

gopl.io/ch7/sorting

type Track struct {
 Title string
 Artist string
 Album string
 Year int
 Length time.Duration
}

var tracks = []*Track{
 {"Go", "Delilah", "From the Roots Up", 2012, length("3m38s")},
 {"Go", "Moby", "Moby", 1992, length("3m37s")},
 {"Go Ahead", "Alicia Keys", "As I Am", 2007, length("4m36s")},
 {"Ready 2 Go", "Martin Solveig", "Smash", 2011, length("4m24s")},
}

func length(s string) time.Duration {
 d, err := time.ParseDuration(s)
 if err != nil {
 panic(s)
 }
 return d
}

The printTracks function prints the playlist as a table.

A graphical display would be nicer, but this little routine uses the
text/tabwriter package to produce a table whose columns are
neatly aligned and padded as shown below.

Observe that *tabwriter.Writer satisfies io.Writer.
It collects each piece of data written to it; its Flush
method formats the entire table and writes it to os.Stdout.

Click here to view code image

func printTracks(tracks []*Track) {
 const format = "%v\t%v\t%v\t%v\t%v\t\n"
 tw := new(tabwriter.Writer).Init(os.Stdout, 0, 8, 2, ' ', 0)
 fmt.Fprintf(tw, format, "Title", "Artist", "Album", "Year", "Length")
 fmt.Fprintf(tw, format, "-----", "------", "-----", "----", "------")
 for _, t := range tracks {
 fmt.Fprintf(tw, format, t.Title, t.Artist, t.Album, t.Year, t.Length)
 }
 tw.Flush() // calculate column widths and print table
}

To sort the playlist by the Artist field, we define a new slice
type with the necessary Len, Less, and Swap methods,
analogous to what we did for StringSlice.

Click here to view code image

type byArtist []*Track

func (x byArtist) Len() int { return len(x) }
func (x byArtist) Less(i, j int) bool { return x[i].Artist < x[j].Artist }
func (x byArtist) Swap(i, j int) { x[i], x[j] = x[j], x[i] }

To call the generic sort routine, we must first convert tracks
to the new type, byArtist, that defines the order:

sort.Sort(byArtist(tracks))

After sorting the slice by artist, the output from printTracks is

Click here to view code image

Title Artist Album Year Length
----- ------ ----- ---- ------
Go Ahead Alicia Keys As I Am 2007 4m36s
Go Delilah From the Roots Up 2012 3m38s
Ready 2 Go Martin Solveig Smash 2011 4m24s
Go Moby Moby 1992 3m37s

If the user requests “sort by artist” a second time, we’ll sort the
tracks in reverse. We needn’t define a new type byReverseArtist
with an inverted Less method, however, since the sort package provides a
Reverse function that transforms any sort order to its inverse.

Click here to view code image

sort.Sort(sort.Reverse(byArtist(tracks)))

After reverse-sorting the slice by artist,
the output from printTracks is

Click here to view code image

Title Artist Album Year Length
----- ------ ----- ---- ------
Go Moby Moby 1992 3m37s
Ready 2 Go Martin Solveig Smash 2011 4m24s
Go Delilah From the Roots Up 2012 3m38s
Go Ahead Alicia Keys As I Am 2007 4m36s

The sort.Reverse function deserves a closer look since it
uses composition (§6.3), which is an important idea.

The sort package defines an unexported type reverse,
which is a struct that embeds a sort.Interface.

The Less method for reverse calls the Less method
of the embedded sort.Interface value, but with the indices
flipped, reversing the order of the sort results.

Click here to view code image

package sort

type reverse struct{ Interface } // that is, sort.Interface

func (r reverse) Less(i, j int) bool { return r.Interface.Less(j, i) }

func Reverse(data Interface) Interface { return reverse{data} }

Len and Swap, the other two methods of reverse,
are implicitly provided by the original sort.Interface value
because it is an embedded field.

The exported function Reverse returns an instance
of the reverse type that contains the original
sort.Interface value.

To sort by a different column, we must define a new type, such as
byYear:

Click here to view code image

type byYear []*Track

func (x byYear) Len() int { return len(x) }
func (x byYear) Less(i, j int) bool { return x[i].Year < x[j].Year }
func (x byYear) Swap(i, j int) { x[i], x[j] = x[j], x[i] }

After sorting tracks by year using
sort.Sort(byYear(tracks)), printTracks shows a
chronological listing:

Click here to view code image

Title Artist Album Year Length
----- ------ ----- ---- ------
Go Moby Moby 1992 3m37s
Go Ahead Alicia Keys As I Am 2007 4m36s
Ready 2 Go Martin Solveig Smash 2011 4m24s
Go Delilah From the Roots Up 2012 3m38s

For every slice element type and every ordering function we need, we
declare a new implementation of sort.Interface.
As you can see, the Len and Swap methods
have identical definitions for all slice types.

In the next example, the concrete type customSort combines a
slice with a function, letting us define a new sort order by writing only
the comparison function.

Incidentally, the concrete types that implement sort.Interface
are not always slices; customSort is a struct type.

Click here to view code image

type customSort struct {
 t []*Track
 less func(x, y *Track) bool
}

func (x customSort) Len() int { return len(x.t) }
func (x customSort) Less(i, j int) bool { return x.less(x.t[i], x.t[j]) }
func (x customSort) Swap(i, j int) { x.t[i], x.t[j] = x.t[j], x.t[i] }

Let’s define a multi-tier ordering function whose primary sort key is
the Title, whose secondary key is the Year, and whose tertiary key
is the running time, Length. Here’s the call to Sort using an
anonymous ordering function:

Click here to view code image

sort.Sort(customSort{tracks, func(x, y *Track) bool {
 if x.Title != y.Title {
 return x.Title < y.Title
 }
 if x.Year != y.Year {
 return x.Year < y.Year
 }
 if x.Length != y.Length {
 return x.Length < y.Length
 }
 return false
}})

And here’s the result. Notice that the tie between the two tracks
titled “Go” is broken in favor of the older one.

Click here to view code image

Title Artist Album Year Length
----- ------ ----- ---- ------
Go Moby Moby 1992 3m37s
Go Delilah From the Roots Up 2012 3m38s
Go Ahead Alicia Keys As I Am 2007 4m36s
Ready 2 Go Martin Solveig Smash 2011 4m24s

Although sorting a sequence of length n requires O(n log n)
comparison operations, testing whether a sequence is already
sorted requires at most n−1 comparisons.

The IsSorted function from the sort package checks this for us.

Like sort.Sort, it abstracts both the sequence and its ordering
function using sort.Interface, but it never calls the
Swap method:

This code demonstrates the IntsAreSorted and Ints
functions and the IntSlice type:

Click here to view code image

values := []int{3, 1, 4, 1}
fmt.Println(sort.IntsAreSorted(values)) // "false"
sort.Ints(values)
fmt.Println(values) // "[1 1 3 4]"
fmt.Println(sort.IntsAreSorted(values)) // "true"
sort.Sort(sort.Reverse(sort.IntSlice(values)))
fmt.Println(values) // "[4 3 1 1]"
fmt.Println(sort.IntsAreSorted(values)) // "false"

For convenience, the sort package provides versions of its
functions and types specialized for []int, []string, and
[]float64 using their natural orderings.

For other types, such as []int64 or []uint,
we’re on our own, though the path is short.

Exercise 7.8:
Many GUIs provide a table widget with a stateful multi-tier sort: the
primary sort key is the most recently clicked column head, the
secondary sort key is the second-most recently clicked column head,
and so on. Define an implementation of sort.Interface for
use by such a table.

Compare that approach with repeated sorting using sort.Stable.

Exercise 7.9:
Use the html/template package (§4.6) to
replace printTracks with a function that displays the tracks as
an HTML table.

Use the solution to the previous exercise to arrange that each click on
a column head makes an HTTP request to sort the table.

Exercise 7.10:
The sort.Interface type can be adapted to other uses.
Write a function

IsPalindrome(s sort.Interface) bool that reports whether
the sequence s is a palindrome, in other words, reversing the
sequence would not change it.

Assume that the elements at indices i and j are
equal if !s.Less(i, j) && !s.Less(j, i).

7.7 The http.Handler Interface

In Chapter 1, we saw a glimpse of how to use
the net/http package to implement web clients

(§1.5) and servers (§1.7).
In this section, we’ll look more closely at the server API, whose
foundation is the http.Handler interface:

Click here to view code image

net/http

package http

type Handler interface {
 ServeHTTP(w ResponseWriter, r *Request)
}

func ListenAndServe(address string, h Handler) error

The ListenAndServe function requires a server address, such
as "localhost:8000", and an instance
of the Handler interface to which all requests should be
dispatched.

It runs forever, or until the server fails (or fails to start) with an
error, always non-nil, which it returns.

Imagine an e-commerce site with a database mapping the items for sale
to their prices in dollars. The program below shows the simplest
imaginable implementation. It models the inventory as a map
type, database, to which we’ve attached a ServeHTTP
method so that it satisfies the http.Handler interface. The
handler ranges over the map and prints the items.

Click here to view code image

gopl.io/ch7/http1

func main() {
 db := database{"shoes": 50, "socks": 5}
 log.Fatal(http.ListenAndServe("localhost:8000", db))
}

type dollars float32

func (d dollars) String() string { return fmt.Sprintf("$%.2f", d) }

type database map[string]dollars

func (db database) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 for item, price := range db {
 fmt.Fprintf(w, "%s: %s\n", item, price)
 }
}

If we start the server,

$ go build gopl.io/ch7/http1
$./http1 &

then connect to it with the fetch program from
Section 1.5 (or a web browser if you prefer), we get
the following output:

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://localhost:8000
shoes: $50.00
socks: $5.00

So far, the server can only list its entire inventory
and will do this for every request, regardless of URL. A more
realistic server defines multiple different URLs, each triggering a
different behavior. Let’s call the existing one /list and add
another one called /price that reports the price of a single
item, specified as a request parameter like /price?item=socks.

Click here to view code image

gopl.io/ch7/http2

func (db database) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 switch req.URL.Path {
 case "/list":
 for item, price := range db {
 fmt.Fprintf(w, "%s: %s\n", item, price)
 }
 case "/price":
 item := req.URL.Query().Get("item")
 price, ok := db[item]
 if !ok {
 w.WriteHeader(http.StatusNotFound) // 404
 fmt.Fprintf(w, "no such item: %q\n", item)
 return
 }
 fmt.Fprintf(w, "%s\n", price)
 default:
 w.WriteHeader(http.StatusNotFound) // 404
 fmt.Fprintf(w, "no such page: %s\n", req.URL)
 }
}

Now the handler decides what logic to execute based on the path
component of the URL, req.URL.Path.

If the handler doesn’t recognize the path,
it reports an HTTP error to the client by calling
w.WriteHeader(http.StatusNotFound); this must be done before
writing any text to w.

(Incidentally, http.ResponseWriter is another interface.

It augments io.Writer with methods for sending HTTP response
headers.)

Equivalently, we could use the http.Error utility function:

Click here to view code image

msg := fmt.Sprintf("no such page: %s\n", req.URL)
http.Error(w, msg, http.StatusNotFound) // 404

The case for /price calls the URL’s Query method
to parse the HTTP request parameters as a map, or more precisely, a
multimap

of type url.Values (§6.2.1) from
the net/url package. It then finds the first
item parameter and looks up its price. If the item wasn’t
found, it reports an error.

Here’s an example session with the new server:

Click here to view code image

$ go build gopl.io/ch7/http2
$ go build gopl.io/ch1/fetch
$./http2 &
$./fetch http://localhost:8000/list
shoes: $50.00
socks: $5.00
$./fetch http://localhost:8000/price?item=socks
$5.00
$./fetch http://localhost:8000/price?item=shoes
$50.00
$./fetch http://localhost:8000/price?item=hat
no such item: "hat"
$./fetch http://localhost:8000/help
no such page: /help

Obviously we could keep adding cases to ServeHTTP, but in a
realistic application, it’s convenient to define the logic for each
case in a separate function or method. Furthermore, related URLs may
need similar logic; several image files may have URLs of the
form /images/*.png, for instance. For these reasons, net/http
provides ServeMux, a request multiplexer, to simplify

the association between URLs and handlers. A ServeMux
aggregates a collection of http.Handlers into a
single http.Handler.

Again, we see that different types satisfying the same interface are
substitutable: the web server can dispatch requests to any
http.Handler, regardless of which concrete type is behind it.

For a more complex application, several ServeMuxes may be
composed to handle more intricate dispatching requirements. Go
doesn’t have a canonical web framework analogous to Ruby’s Rails or
Python’s Django.

This is not to say that such frameworks don’t exist,
but the building blocks in Go’s standard library are flexible enough
that frameworks are often unnecessary.

Furthermore, although frameworks are convenient in
the early phases of a project, their additional complexity can make
longer-term maintenance harder.

In the program below, we create a ServeMux and use it to
associate the URLs with the corresponding handlers for the /list
and /price operations, which have been split into separate
methods. We then use the ServeMux as the main handler in the
call to ListenAndServe.

Click here to view code image

gopl.io/ch7/http3

func main() {
 db := database{"shoes": 50, "socks": 5}
 mux := http.NewServeMux()
 mux.Handle("/list", http.HandlerFunc(db.list))
 mux.Handle("/price", http.HandlerFunc(db.price))
 log.Fatal(http.ListenAndServe("localhost:8000", mux))
}

type database map[string]dollars

func (db database) list(w http.ResponseWriter, req *http.Request) {
 for item, price := range db {
 fmt.Fprintf(w, "%s: %s\n", item, price)
 }
}

func (db database) price(w http.ResponseWriter, req *http.Request) {
 item := req.URL.Query().Get("item")
 price, ok := db[item]
 if !ok {
 w.WriteHeader(http.StatusNotFound) // 404
 fmt.Fprintf(w, "no such item: %q\n", item)
 return
 }
 fmt.Fprintf(w, "%s\n", price)
}

Let’s focus on the two calls to mux.Handle that register the
handlers.

In the first one, db.list is a method value (§6.4), that is, a value of type

Click here to view code image

func(w http.ResponseWriter, req *http.Request)

that, when called, invokes the database.list method with the
receiver value db.

So db.list is a function that implements handler-like
behavior, but since it has no methods, it doesn’t satisfy the
http.Handler interface and can’t be passed directly to
mux.Handle.

The expression http.HandlerFunc(db.list) is a conversion, not a
function call, since http.HandlerFunc is a type.

It has the following definition:

Click here to view code image

net/http

package http

type HandlerFunc func(w ResponseWriter, r *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
 f(w, r)
}

HandlerFunc demonstrates some unusual features of Go’s
interface mechanism.

It is a function type that has methods and satisfies an interface,
http.Handler.

The behavior of its ServeHTTP method is to call the underlying
function.

HandlerFunc is thus an adapter that lets a function value
satisfy an interface, where the function and the interface’s sole
method have the same signature.

In effect, this trick lets a single type such as database
satisfy the http.Handler interface several different ways: once
through its list method, once through its price method, and so
on.

Because registering a handler this way is so common, ServeMux
has a convenience method called HandleFunc that does it for us,
so we can simplify the handler registration code to this:

Click here to view code image

gopl.io/ch7/http3a

mux.HandleFunc("/list", db.list)
mux.HandleFunc("/price", db.price)

It’s easy to see from the code above how one would construct a program
in which there are two different web servers, listening on different
ports, defining different URLs, and dispatching to different handlers.
We would just construct another ServeMux and make another
call to ListenAndServe, perhaps concurrently.

But in most programs, one web server is plenty.

Also, it’s typical to define HTTP handlers across many files of an
application, and it would be a nuisance if they all had to be explicitly
registered with the application’s ServeMux instance.

So, for convenience, net/http provides a global ServeMux
instance called DefaultServeMux and package-level functions called
http.Handle and http.HandleFunc.

To use DefaultServeMux as the server’s main handler, we
needn’t pass it to ListenAndServe; nil will do.

The server’s main function can then be simplified to

Click here to view code image

gopl.io/ch7/http4

func main() {
 db := database{"shoes": 50, "socks": 5}
 http.HandleFunc("/list", db.list)
 http.HandleFunc("/price", db.price)
 log.Fatal(http.ListenAndServe("localhost:8000", nil))
}

Finally, an important reminder: as we mentioned in Section 1.7, the web server invokes each handler in a new
goroutine, so handlers must take precautions such as locking
when accessing variables that other goroutines, including other
requests to the same handler, may be accessing.

We’ll talk about concurrency in the next two chapters.

Exercise 7.11:
Add additional handlers so that clients can create, read, update, and
delete database entries.

For example, a request of the form
/update?item=socks&price=6 will update the price of an item
in the inventory and report an error if the item does not exist or if
the price is invalid.

(Warning: this change introduces concurrent variable updates.)

Exercise 7.12:
Change the handler for /list to print its output as an HTML
table, not text.

You may find the html/template package (§4.6) useful.

7.8 The error Interface

Since the beginning of this book, we’ve been using and creating values
of the mysterious predeclared error type without explaining what
it really is.

In fact, it’s just an interface type with a single method that returns
an error message:

type error interface {
 Error() string
}

The simplest way to create an error is by calling
errors.New, which returns a new error for a given error
message.

The entire errors package is only four lines long:

Click here to view code image

package errors

func New(text string) error { return &errorString{text} }

type errorString struct { text string }

func (e *errorString) Error() string { return e.text }

The underlying type of errorString is a struct, not a
string, to protect its representation from inadvertent
(or premeditated) updates.

And the reason that the pointer type *errorString, not
errorString alone, satisfies the error interface is so
that every call to New allocates a distinct error
instance that is equal to no other.

We would not want a distinguished error such as io.EOF to
compare equal to one that merely happened to have the same message.

Click here to view code image

fmt.Println(errors.New("EOF") == errors.New("EOF")) // "false"

Calls to errors.New are relatively infrequent because there’s a
convenient wrapper function, fmt.Errorf, that does string
formatting too.

We used it several times in Chapter 5.

Click here to view code image

package fmt

import "errors"

func Errorf(format string, args ...interface{}) error {
 return errors.New(Sprintf(format, args...))
}

Although *errorString may be the simplest type of error,
it is far from the only one.

For example, the syscall package provides Go’s low-level system
call API.

On many platforms, it defines a numeric type Errno that
satisfies error, and on Unix platforms, Errno’s
Error method does a lookup in a table of strings, as shown
below:

Click here to view code image

package syscall

type Errno uintptr // operating system error code

var errors = [...]string{
 1: "operation not permitted", // EPERM
 2: "no such file or directory", // ENOENT
 3: "no such process", // ESRCH
 // ...
}

func (e Errno) Error() string {
 if 0 <= int(e) && int(e) < len(errors) {
 return errors[e]
 }
 return fmt.Sprintf("errno %d", e)
}

The following statement creates an interface value holding the Errno
value 2, signifying the POSIX ENOENT condition:

Click here to view code image

var err error = syscall.Errno(2)
fmt.Println(err.Error()) // "no such file or directory"
fmt.Println(err) // "no such file or directory"

The value of err is shown graphically in Figure 7.6.

[image: An interface value holding a syscall.Errno integer.]
Figure 7.6.
An interface value holding a syscall.Errno integer.

Errno is an efficient representation of system call
errors drawn from a finite set, and it satisfies the standard
error interface.

We’ll see other types that satisfy this interface in Section 7.11.

7.9 Example: Expression Evaluator

In this section, we’ll build an evaluator for simple arithmetic
expressions.

We’ll use an interface, Expr, to represent any expression in
this language.

For now, this interface needs no methods, but we’ll add some later.

Click here to view code image

// An Expr is an arithmetic expression.
type Expr interface{}

Our expression language consists of floating-point literals;
the binary operators +, -, *, and /;
the unary operators -x and +x;
function calls pow(x,y), sin(x), and sqrt(x);
variables such as x and pi;
and of course parentheses and standard operator precedence.

All values are of type float64.

Here are some example expressions:

sqrt(A / pi)
pow(x, 3) + pow(y, 3)
(F - 32) * 5 / 9

The five concrete types below represent particular kinds of expression.

A Var represents a reference to a variable.

(We’ll soon see why it is exported.)

A literal represents a floating-point constant.

The unary and binary types represent operator
expressions with one or two operands, which can be any kind of
Expr.

A call represents a function call;
we’ll restrict its fn field to pow, sin, or
sqrt.

Click here to view code image

gopl.io/ch7/eval

// A Var identifies a variable, e.g., x.
type Var string

// A literal is a numeric constant, e.g., 3.141.
type literal float64

// A unary represents a unary operator expression, e.g., -x.
type unary struct {
 op rune // one of '+', '-'
 x Expr
}

// A binary represents a binary operator expression, e.g., x+y.
type binary struct {
 op rune // one of '+', '-', '*', '/'
 x, y Expr
}

// A call represents a function call expression, e.g., sin(x).
type call struct {
 fn string // one of "pow", "sin", "sqrt"
 args []Expr
}

To evaluate an expression containing variables, we’ll need an
environment that maps variable names to values:

type Env map[Var]float64

We’ll also need each kind of expression to define an Eval
method that returns the expression’s value in a given environment.

Since every expression must provide this method, we add it to the
Expr interface.

The package exports only the types Expr, Env, and
Var; clients can use the evaluator without access to the other
expression types.

Click here to view code image

type Expr interface {
 // Eval returns the value of this Expr in the environment env.
 Eval(env Env) float64
}

The concrete Eval methods are shown below.

The method for Var performs an environment lookup, which
returns zero if the variable is not defined, and
the method for literal simply returns the literal value.

Click here to view code image

func (v Var) Eval(env Env) float64 {
 return env[v]
}

func (l literal) Eval(_ Env) float64 {
 return float64(l)
}

The Eval methods for unary and binary recursively
evaluate their operands, then apply the operation op to them.

We don’t consider divisions by zero or infinity to be errors, since
they produce a result, albeit non-finite.

Finally, the method for call evaluates the arguments to the
pow, sin, or sqrt function, then calls the
corresponding function in the math package.

Click here to view code image

func (u unary) Eval(env Env) float64 {
 switch u.op {
 case '+':
 return +u.x.Eval(env)
 case '-':
 return -u.x.Eval(env)
 }
 panic(fmt.Sprintf("unsupported unary operator: %q", u.op))
}

func (b binary) Eval(env Env) float64 {
 switch b.op {
 case '+':
 return b.x.Eval(env) + b.y.Eval(env)
 case '-':
 return b.x.Eval(env) - b.y.Eval(env)
 case '*':
 return b.x.Eval(env) * b.y.Eval(env)
 case '/':
 return b.x.Eval(env) / b.y.Eval(env)
 }
 panic(fmt.Sprintf("unsupported binary operator: %q", b.op))
}

func (c call) Eval(env Env) float64 {
 switch c.fn {
 case "pow":
 return math.Pow(c.args[0].Eval(env), c.args[1].Eval(env))
 case "sin":
 return math.Sin(c.args[0].Eval(env))
 case "sqrt":
 return math.Sqrt(c.args[0].Eval(env))
 }
 panic(fmt.Sprintf("unsupported function call: %s", c.fn))
}

Several of these methods can fail.

For example, a call expression could have an unknown function
or the wrong number of arguments.

It’s also possible to construct a unary or binary
expression with an invalid operator such as ! or <
(although the Parse function mentioned below will never do this).

These errors cause Eval to panic.

Other errors, like evaluating a Var not present in the environment,
merely cause Eval to return the wrong result.

All of these errors could be detected by inspecting the
Expr before evaluating it.

That will be the job of the Check method,
which we will show soon, but first let’s test Eval.

The TestEval function below is a test of the evaluator.

It uses the testing package, which we’ll explain in Chapter 11, but for now it’s enough to know that calling
t.Errorf reports an error.

The function loops over a table of inputs that defines three
expressions and different environments for each one.

The first expression computes the radius of a circle given its area
A, the second computes the sum of the cubes of two variables
x and y, and the third converts a Fahrenheit temperature
F to Celsius.

Click here to view code image

func TestEval(t *testing.T) {
 tests := []struct {
 expr string
 env Env
 want string
 }{
 {"sqrt(A / pi)", Env{"A": 87616, "pi": math.Pi}, "167"},
 {"pow(x, 3) + pow(y, 3)", Env{"x": 12, "y": 1}, "1729"},
 {"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y": 10}, "1729"},
 {"5 / 9 * (F - 32)", Env{"F": -40}, "-40"},
 {"5 / 9 * (F - 32)", Env{"F": 32}, "0"},
 {"5 / 9 * (F - 32)", Env{"F": 212}, "100"},
 }
 var prevExpr string
 for _, test := range tests {
 // Print expr only when it changes.
 if test.expr != prevExpr {
 fmt.Printf("\n%s\n", test.expr)
 prevExpr = test.expr
 }
 expr, err := Parse(test.expr)
 if err != nil {
 t.Error(err) // parse error
 continue
 }
 got := fmt.Sprintf("%.6g", expr.Eval(test.env))
 fmt.Printf("\t%v => %s\n", test.env, got)
 if got != test.want {
 t.Errorf("%s.Eval() in %s = %q, want %q\n",
 test.expr, test.env, got, test.want)
 }
 }
}

For each entry in the table, the test parses the expression,
evaluates it in the environment, and prints the result.

We don’t have space to show the Parse function here, but
you’ll find it if you download the package using go get.

The go test command (§11.1)
runs a package’s tests:

$ go test -v gopl.io/ch7/eval

The -v flag lets us see the printed output of the test, which
is normally suppressed for a successful test like this one.

Here is the output of the test’s fmt.Printf statements:

Click here to view code image

sqrt(A / pi)
 map[A:87616 pi:3.141592653589793] => 167

pow(x, 3) + pow(y, 3)
 map[x:12 y:1] => 1729
 map[x:9 y:10] => 1729

5 / 9 * (F - 32)
 map[F:-40] => -40
 map[F:32] => 0
 map[F:212] => 100

Fortunately the inputs so far have all been well formed, but our luck
is unlikely to last.

Even in interpreted languages, it is common to check the syntax for
static errors, that is, mistakes that can be detected without
running the program.

By separating the static checks from the dynamic ones, we can detect
errors sooner and perform many checks only once instead of each time
an expression is evaluated.

Let’s add another method to the Expr interface.

The Check method checks for static errors in an expression
syntax tree.

We’ll explain its vars parameter in a moment.

Click here to view code image

type Expr interface {
 Eval(env Env) float64
 // Check reports errors in this Expr and adds its Vars to the set.
 Check(vars map[Var]bool) error
}

The concrete Check methods are shown below.

Evaluation of literal and Var cannot fail, so the
Check methods for these types return nil.

The methods for unary and binary first check that the
operator is valid, then recursively check the operands.

Similarly, the method for call first checks that the function
is known and has the right number of arguments, then recursively
checks each argument.

Click here to view code image

func (v Var) Check(vars map[Var]bool) error {
 vars[v] = true
 return nil
}

func (literal) Check(vars map[Var]bool) error {
 return nil
}

func (u unary) Check(vars map[Var]bool) error {
 if !strings.ContainsRune("+-", u.op) {
 return fmt.Errorf("unexpected unary op %q", u.op)
 }
 return u.x.Check(vars)
}

func (b binary) Check(vars map[Var]bool) error {
 if !strings.ContainsRune("+-*/", b.op) {
 return fmt.Errorf("unexpected binary op %q", b.op)
 }
 if err := b.x.Check(vars); err != nil {
 return err
 }
 return b.y.Check(vars)
}

func (c call) Check(vars map[Var]bool) error {
 arity, ok := numParams[c.fn]
 if !ok {
 return fmt.Errorf("unknown function %q", c.fn)
 }
 if len(c.args) != arity {
 return fmt.Errorf("call to %s has %d args, want %d",
 c.fn, len(c.args), arity)
 }
 for _, arg := range c.args {
 if err := arg.Check(vars); err != nil {
 return err
 }
 }
 return nil
}

var numParams = map[string]int{"pow": 2, "sin": 1, "sqrt": 1}

We’ve listed a selection of flawed inputs and the errors they
elicit, in two groups.

The Parse function (not shown) reports syntax errors and
the Check function reports semantic errors.

Click here to view code image

x % 2 unexpected '%'
math.Pi unexpected '.'
!true unexpected '!'
"hello" unexpected '"'

log(10) unknown function "log"
sqrt(1, 2) call to sqrt has 2 args, want 1

Check’s argument, a set of Vars, accumulates the set

of variable names found within the expression.

Each of these variables must be present in the environment for
evaluation to succeed.

This set is logically the result of the call to Check,
but because the method is recursive, it is more convenient for Check
to populate a set passed as a parameter.

The client must provide an empty set in the initial call.

In Section 3.2, we plotted a function f(x,y) that
was fixed at compile time.

Now that we can parse, check, and evaluate expressions in strings, we can
build a web application that receives an expression at run time from the
client and plots the surface of that function.

We can use the vars set to check that the expression is a
function of only two variables, x and y—three,
actually, since we’ll provide r, the radius, as a convenience.

And we’ll use the Check method to reject ill-formed expressions
before evaluation begins so that we don’t repeat those checks during
the 40,000 evaluations (100×100 cells, each with four corners) of the
function that follow.

The parseAndCheck function combines these parsing and checking
steps:

Click here to view code image

gopl.io/ch7/surface

import "gopl.io/ch7/eval"

func parseAndCheck(s string) (eval.Expr, error) {
 if s == "" {
 return nil, fmt.Errorf("empty expression")
 }
 expr, err := eval.Parse(s)
 if err != nil {
 return nil, err
 }
 vars := make(map[eval.Var]bool)
 if err := expr.Check(vars); err != nil {
 return nil, err
 }
 for v := range vars {
 if v != "x" && v != "y" && v != "r" {
 return nil, fmt.Errorf("undefined variable: %s", v)
 }
 }
 return expr, nil
}

To make this a web application, all we need is the plot
function below, which has the familiar signature of an
http.HandlerFunc:

Click here to view code image

func plot(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 expr, err := parseAndCheck(r.Form.Get("expr"))
 if err != nil {
 http.Error(w, "bad expr: "+err.Error(), http.StatusBadRequest)
 return
 }
 w.Header().Set("Content-Type", "image/svg+xml")
 surface(w, func(x, y float64) float64 {
 r := math.Hypot(x, y) // distance from (0,0)
 return expr.Eval(eval.Env{"x": x, "y": y, "r": r})
 })
}

[image: The surfaces of three functions: (a) sin(-x)*pow(1.5,-r); (b) pow(2,sin(y))*pow(2,sin(x))/12; (c) sin(x*y/10)/10.]
Figure 7.7.
The surfaces of three functions:
(a) sin(-x)*pow(1.5,-r);

(b) pow(2,sin(y))*pow(2,sin(x))/12;
(c) sin(x*y/10)/10.

The plot function parses and checks the expression specified in
the HTTP request and uses it to create an anonymous function of two
variables.

The anonymous function has the same signature as the fixed function
f from the original surface-plotting program, but it evaluates
the user-supplied expression.

The environment defines x, y, and the radius r.

Finally, plot calls surface, which is just the
main function from gopl.io/ch3/surface, modified to take
the function to plot and the output io.Writer as parameters,
instead of using the fixed function f and os.Stdout.

Figure 7.7 shows three surfaces produced by
the program.

Exercise 7.13:
Add a String method to Expr to pretty-print the syntax
tree.

Check that the results, when parsed again, yield an equivalent tree.

Exercise 7.14:
Define a new concrete type that satisfies the Expr interface
and provides a new operation such as computing the minimum value of
its operands.

Since the Parse function does not create instances of this new
type, to use it you will need to construct a syntax tree directly (or
extend the parser).

Exercise 7.15:
Write a program that reads a single expression from the standard
input, prompts the user to provide values for any variables, then
evaluates the expression in the resulting environment.

Handle all errors gracefully.

Exercise 7.16:
Write a web-based calculator program.

7.10 Type Assertions

A type assertion

is an operation applied to an interface value.

Syntactically, it looks like x.(T),
where x is an expression of an interface type
and T is a type, called the “asserted” type.

A type assertion checks that the dynamic type of its operand matches
the asserted type.

There are two possibilities.

First, if the asserted type T is a concrete type, then the type
assertion checks whether x’s dynamic type is identical to
T.

If this check succeeds, the result of the type assertion is x’s
dynamic value, whose type is of course T.

In other words, a type assertion to a concrete type extracts the
concrete value from its operand.

If the check fails, then the operation panics.

For example:

Click here to view code image

var w io.Writer
w = os.Stdout
f := w.(*os.File) // success: f == os.Stdout
c := w.(*bytes.Buffer) // panic: interface holds *os.File, not *bytes.Buffer

Second, if instead the asserted type T is an interface type,
then the type assertion checks whether x’s dynamic type
satisfies T.

If this check succeeds, the dynamic value is not extracted; the result
is still an interface value with the same type and value components,
but the result has the interface type T.

In other words, a type assertion to an interface type changes the type
of the expression, making a different (and usually larger) set of
methods accessible, but it preserves the dynamic type and
value components inside the interface value.

After the first type assertion below, both w and rw
hold os.Stdout so each has a dynamic type of
*os.File, but w, an io.Writer, exposes
only the file’s Write method, whereas rw exposes
its Read method too.

Click here to view code image

var w io.Writer
w = os.Stdout
rw := w.(io.ReadWriter) // success: *os.File has both Read and Write

w = new(ByteCounter)
rw = w.(io.ReadWriter) // panic: *ByteCounter has no Read method

No matter what type was asserted, if the operand is a nil interface
value, the type assertion fails.

A type assertion to a less restrictive interface type (one with fewer
methods) is rarely needed, as it behaves just like an assignment,
except in the nil case.

Click here to view code image

w = rw // io.ReadWriter is assignable to io.Writer
w = rw.(io.Writer) // fails only if rw == nil

Often we’re not sure of the dynamic type of an interface value,
and we’d like to test whether it is some particular type.

If the type assertion appears in
an assignment in which two results are expected, such as the following
declarations, the operation does not panic on failure but instead
returns an additional second result, a boolean indicating success:

Click here to view code image

var w io.Writer = os.Stdout
f, ok := w.(*os.File) // success: ok, f == os.Stdout
b, ok := w.(*bytes.Buffer) // failure: !ok, b == nil

The second result is conventionally assigned to a variable named ok.

If the operation failed, ok is false, and the first result is
equal to the zero value of the asserted type, which in this example is
a nil *bytes.Buffer.

The ok result is often immediately used to decide what to do next.
The extended form of the if statement makes this quite compact:

if f, ok := w.(*os.File); ok {
 // ...use f...
}

When the operand of a type assertion is a variable, rather than invent
another name for the new local variable, you’ll sometimes see the
original name reused, shadowing the original, like this:

if w, ok := w.(*os.File); ok {
 // ...use w...
}

7.11 Discriminating Errors with Type Assertions

Consider the set of errors returned by file operations in the
os package.

I/O can fail for any number of reasons, but three kinds of failure
often must be handled differently: file already exists (for create
operations), file not found (for read operations), and permission
denied.

The os package provides these three helper functions to
classify the failure indicated by a given error value:

Click here to view code image

package os

func IsExist(err error) bool
func IsNotExist(err error) bool
func IsPermission(err error) bool

A naïve implementation of one of these predicates might check
that the error message contains a certain substring,

Click here to view code image

func IsNotExist(err error) bool {
 // NOTE: not robust!
 return strings.Contains(err.Error(), "file does not exist")
}

but because the logic for handling I/O errors can vary from one platform
to another, this approach is not robust and the same failure may be
reported with a variety of different error messages.

Checking for substrings of error messages may be useful during testing
to ensure that functions fail in the expected manner,
but it’s inadequate for production code.

A more reliable approach is to represent structured error values using a
dedicated type.

The os package defines a type called PathError to
describe failures involving an operation on a file path, like
Open or Delete, and a variant called LinkError to
describe failures of operations involving two file paths, like
Symlink and Rename.

Here’s os.PathError:

Click here to view code image

package os

// PathError records an error and the operation and file path that caused it.
type PathError struct {
 Op string
 Path string
 Err error
}

func (e *PathError) Error() string {
 return e.Op + " " + e.Path + ": " + e.Err.Error()
}

Most clients are oblivious to PathError and deal with all
errors in a uniform way by calling their Error methods.

Although PathError’s Error method forms a message
by simply concatenating the fields, PathError’s structure
preserves the underlying components of the error.

Clients that need to distinguish one kind of failure from another can
use a type assertion to detect the specific type of the error; the
specific type provides more detail than a simple string.

Click here to view code image

_, err := os.Open("/no/such/file")
fmt.Println(err) // "open /no/such/file: No such file or directory"
fmt.Printf("%#v\n", err)
// Output:
// &os.PathError{Op:"open", Path:"/no/such/file", Err:0x2}

That’s how the three helper functions work.

For example, IsNotExist, shown below, reports whether an error
is equal to syscall.ENOENT (§7.8)
or to the distinguished error os.ErrNotExist (see
io.EOF in §5.4.2), or is a *PathError whose
underlying error is one of those two.

Click here to view code image

import (
 "errors"
 "syscall"
)

var ErrNotExist = errors.New("file does not exist")

// IsNotExist returns a boolean indicating whether the error is known to
// report that a file or directory does not exist. It is satisfied by
// ErrNotExist as well as some syscall errors.
func IsNotExist(err error) bool {
 if pe, ok := err.(*PathError); ok {
 err = pe.Err
 }
 return err == syscall.ENOENT || err == ErrNotExist
}

And here it is in action:

Click here to view code image

_, err := os.Open("/no/such/file")
fmt.Println(os.IsNotExist(err)) // "true"

Of course, PathError’s structure is lost if the error message
is combined into a larger string, for instance by a call to fmt.Errorf.

Error discrimination must usually be done immediately after the
failing operation, before an error is propagated to the caller.

7.12 Querying Behaviors with Interface Type Assertions

The logic below is similar to the part of the net/http web
server responsible for writing HTTP header fields
such as "Content-type: text/html".

The io.Writer w represents the HTTP response; the bytes
written to it are ultimately sent to someone’s web browser.

Click here to view code image

func writeHeader(w io.Writer, contentType string) error {
 if _, err := w.Write([]byte("Content-Type: ")); err != nil {
 return err
 }
 if _, err := w.Write([]byte(contentType)); err != nil {
 return err
 }
 // ...
}

Because the Write method requires a byte slice, and the value we
wish to write is a string, a []byte(...) conversion is required.

This conversion allocates memory and makes a copy, but the copy is
thrown away almost immediately after. Let’s pretend that this is a
core part of the web server and that our profiling has revealed that this
memory allocation is slowing it down. Can we avoid allocating memory
here?

The io.Writer interface tells us only one fact about the concrete

type that w holds: that bytes may be written to it. If we
look behind the curtains of the net/http package, we see
that the dynamic type that w holds in this program also has a
WriteString method that allows strings to be efficiently written to

it, avoiding the need to allocate a temporary copy. (This may seem
like a shot in the dark, but a number of important types that satisfy
io.Writer also have a WriteString method, including
*bytes.Buffer, *os.File and *bufio.Writer.)

We cannot assume that an arbitrary io.Writer w also has the
WriteString method.
But we can define a new interface that has just this method and use a type
assertion to test whether the dynamic type of w satisfies this new interface.

Click here to view code image

// writeString writes s to w.
// If w has a WriteString method, it is invoked instead of w.Write.
func writeString(w io.Writer, s string) (n int, err error) {
 type stringWriter interface {
 WriteString(string) (n int, err error)
 }
 if sw, ok := w.(stringWriter); ok {
 return sw.WriteString(s) // avoid a copy
 }
 return w.Write([]byte(s)) // allocate temporary copy
}

func writeHeader(w io.Writer, contentType string) error {
 if _, err := writeString(w, "Content-Type: "); err != nil {
 return err
 }
 if _, err := writeString(w, contentType); err != nil {
 return err
 }
 // ...
}

To avoid repeating ourselves, we’ve moved the check into the utility
function writeString, but it is so useful that the standard library
provides it as io.WriteString. It is the recommended way to write a
string to an io.Writer.

What’s curious in this example is that there is no standard interface
that defines the WriteString method and specifies its required
behavior.

Furthermore, whether or not a concrete type satisfies the stringWriter
interface is determined only by its methods, not by any declared
relationship between it and the interface type.

What this means is that the technique above relies on the assumption that
if a type satisfies the interface below,
then WriteString(s) must have the same effect
as Write([]byte(s)).

Click here to view code image

interface {
 io.Writer
 WriteString(s string) (n int, err error)
}

Although io.WriteString documents its assumption, few functions
that call it are likely to document that they too make the same
assumption.

Defining a method of a particular type is taken as an implicit
assent for a certain behavioral contract.

Newcomers to Go, especially those from a background in strongly typed
languages, may find this lack of explicit intention unsettling, but it
is rarely a problem in practice.

With the exception of the empty interface interface{}, interface types are seldom
satisfied by unintended coincidence.

The writeString function above uses a type assertion to see whether a value of a
general interface type also satisfies a more specific interface type,
and if so, it uses the behaviors of the specific interface.

This technique can be put to good use whether or not the queried
interface is standard like io.ReadWriter or user-defined
like stringWriter.

It’s also how fmt.Fprintf distinguishes values that satisfy
error or fmt.Stringer from all other values.

Within fmt.Fprintf, there is a step that converts a single
operand to a string, something like this:

Click here to view code image

package fmt

func formatOneValue(x interface{}) string {
 if err, ok := x.(error); ok {
 return err.Error()
 }
 if str, ok := x.(Stringer); ok {
 return str.String()
 }
 // ...all other types...
}

If x satisfies either of the two interfaces, that determines
the formatting of the value.

If not, the default case handles all other types more or less
uniformly using reflection; we’ll find out how in Chapter 12.

Again, this makes the assumption that any type with a String
method satisfies the behavioral contract of fmt.Stringer, which
is to return a string suitable for printing.

7.13 Type Switches

Interfaces are used in two distinct styles.

In the first style, exemplified by io.Reader,
io.Writer, fmt.Stringer, sort.Interface,
http.Handler, and error,
an interface’s methods express the similarities of
the concrete types that satisfy the interface but hide the
representation details and intrinsic operations of those concrete
types.

The emphasis is on the methods, not on the concrete types.

The second style exploits the ability of an interface value to hold
values of a variety of concrete types and considers the
interface to be the union of those types.

Type assertions are used to discriminate among these types
dynamically and treat each case differently.

In this style, the emphasis is on the concrete types that satisfy the
interface, not on the interface’s methods (if indeed it has any),
and there is no hiding of information.

We’ll describe interfaces used this way as discriminated unions.

If you’re familiar with object-oriented programming, you may recognize
these two styles as subtype polymorphism and ad hoc
polymorphism, but you needn’t remember those terms.

For the remainder of this chapter, we’ll present examples of the second style.

Go’s API for querying an SQL database, like those of

other languages, lets us cleanly separate the fixed part of a query
from the variable parts.

An example client might look like this:

Click here to view code image

import "database/sql"

func listTracks(db sql.DB, artist string, minYear, maxYear int) {
 result, err := db.Exec(
 "SELECT * FROM tracks WHERE artist = ? AND ? <= year AND year <= ?",
 artist, minYear, maxYear)
 // ...
}

The Exec method replaces each '?' in the query string
with an SQL literal denoting the corresponding argument value, which
may be a boolean, a number, a string, or nil.

Constructing queries this way helps avoid SQL injection attacks, in
which an adversary takes control of the query by exploiting
improper quotation of input data.

Within Exec, we might find a function like the one below,
which converts each argument value to its literal SQL notation.

Click here to view code image

func sqlQuote(x interface{}) string {
 if x == nil {
 return "NULL"
 } else if _, ok := x.(int); ok {
 return fmt.Sprintf("%d", x)
 } else if _, ok := x.(uint); ok {
 return fmt.Sprintf("%d", x)
 } else if b, ok := x.(bool); ok {
 if b {
 return "TRUE"
 }
 return "FALSE"
 } else if s, ok := x.(string); ok {
 return sqlQuoteString(s) // (not shown)
 } else {
 panic(fmt.Sprintf("unexpected type %T: %v", x, x))
 }
}

A switch statement simplifies an
if-else chain that performs a series of value equality
tests. An analogous type switch statement
simplifies an if-else chain of type assertions.

In its simplest form, a type switch looks like an ordinary switch
statement in which the operand is x.(type)—that’s literally
the keyword type—and each case has one or more types.

A type switch enables a multi-way branch based on the interface
value’s dynamic type.

The nil case matches if x == nil,
and the default case matches if no other case does.

A type switch for sqlQuote would have these cases:

switch x.(type) {
case nil: // ...
case int, uint: // ...
case bool: // ...
case string: // ...
default: // ...
}

As with an ordinary switch statement (§1.8),
cases are considered in order and,
when a match is found, the case’s body is executed. Case order
becomes significant when one or more case types are interfaces, since
then there is a possibility of two cases matching. The position of
the default case relative to the others is immaterial.

No fallthrough is allowed.

Notice that in the original function, the logic for the bool
and string cases needs access to the value extracted by
the type assertion.

Since this is typical, the type switch statement has an extended form
that binds the extracted value to a new variable within each case:

Click here to view code image

switch x := x.(type) { /* ... */ }

Here we’ve called the new variables x too; as with type
assertions, reuse of variable names is common.

Like a switch statement, a type switch implicitly creates a
lexical block, so the declaration of the new variable called x
does not conflict with a variable x in an outer block.

Each case also implicitly creates a separate lexical block.

Rewriting sqlQuote to use the extended form of type switch
makes it significantly clearer:

Click here to view code image

func sqlQuote(x interface{}) string {
 switch x := x.(type) {
 case nil:
 return "NULL"
 case int, uint:
 return fmt.Sprintf("%d", x) // x has type interface{} here.
 case bool:
 if x {
 return "TRUE"
 }
 return "FALSE"
 case string:
 return sqlQuoteString(x) // (not shown)
 default:
 panic(fmt.Sprintf("unexpected type %T: %v", x, x))
 }
}

In this version, within the block of each single-type
case, the variable x has the same type as the case.

For instance, x has type bool within the bool
case and string within the string case.

In all other cases, x has the (interface) type of the switch
operand, which is interface{} in this example.

When the same action is required for multiple cases, like int
and uint, the type switch makes it easy to combine them.

Although sqlQuote accepts an argument of any type, the
function runs to completion only if the argument’s type matches
one of the cases in the type switch; otherwise it panics with
an “unexpected type” message.

Although the type of x is interface{}, we consider it
a discriminated union of int, uint, bool,
string, and nil.

7.14 Example: Token-Based XML Decoding

Section 4.5 showed how to decode JSON documents into
Go data structures with the Marshal and Unmarshal
functions from the encoding/json package.

The encoding/xml package provides a similar API.

This approach is convenient when we want to construct a representation of
the document tree, but that’s unnecessary for many programs.

The encoding/xml package also provides a lower-level
token-based API for decoding XML.

In the token-based style, the parser consumes the input and produces a
stream of tokens, primarily of four kinds—StartElement,
EndElement, CharData, and Comment—each being
a concrete type in the encoding/xml package.

Each call to (*xml.Decoder).Token returns a token.

The relevant parts of the API are shown here:

Click here to view code image

encoding/xml

package xml

type Name struct {
 Local string // e.g., "Title" or "id"
}

type Attr struct { // e.g., name="value"
 Name Name
 Value string
}

// A Token includes StartElement, EndElement, CharData,
// and Comment, plus a few esoteric types (not shown).
type Token interface{}
type StartElement struct { // e.g., <name>
 Name Name
 Attr []Attr
}
type EndElement struct { Name Name } // e.g., </name>
type CharData []byte // e.g., <p>CharData</p>
type Comment []byte // e.g., <!-- Comment -->

type Decoder struct{ /* ... */ }

func NewDecoder(io.Reader) *Decoder
func (*Decoder) Token() (Token, error) // returns next Token in sequence

The Token interface, which has no methods, is also an example
of a discriminated union.

The purpose of a traditional interface like io.Reader is to
hide details of the concrete types that satisfy it so that new
implementations can be created; each concrete type is treated
uniformly.

By contrast, the set of concrete types that satisfy a discriminated
union is fixed by the design and exposed, not hidden.

Discriminated union types have few methods; functions that operate on
them are expressed as a set of cases using a type switch, with
different logic in each case.

The xmlselect program below
extracts and prints the text found beneath certain elements in an
XML document tree.

Using the API above, it can do its job in a single pass over the input
without ever materializing the tree.

Click here to view code image

gopl.io/ch7/xmlselect

// Xmlselect prints the text of selected elements of an XML document.
package main

import (
 "encoding/xml"
 "fmt"
 "io"
 "os"
 "strings"
)

func main() {
 dec := xml.NewDecoder(os.Stdin)
 var stack []string // stack of element names
 for {
 tok, err := dec.Token()
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Fprintf(os.Stderr, "xmlselect: %v\n", err)
 os.Exit(1)
 }
 switch tok := tok.(type) {
 case xml.StartElement:
 stack = append(stack, tok.Name.Local) // push
 case xml.EndElement:
 stack = stack[:len(stack)-1] // pop
 case xml.CharData:
 if containsAll(stack, os.Args[1:]) {
 fmt.Printf("%s: %s\n", strings.Join(stack, " "), tok)
 }
 }
 }
}

// containsAll reports whether x contains the elements of y, in order.
func containsAll(x, y []string) bool {
 for len(y) <= len(x) {
 if len(y) == 0 {
 return true
 }
 if x[0] == y[0] {
 y = y[1:]
 }
 x = x[1:]
 }
 return false
}

Each time the loop in main encounters a StartElement, it pushes
the element’s name onto a stack, and for each EndElement it pops
the name from the stack.

The API guarantees that the sequence of StartElement and
EndElement tokens will be properly matched, even in ill-formed
documents.

Comments are ignored.

When xmlselect encounters a CharData, it prints the text only
if the stack contains all the elements named by the command-line
arguments, in order.

The command below prints the text of any h2 elements
appearing beneath two levels of div elements.

Its input is the XML specification, itself an XML document.

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://www.w3.org/TR/2006/REC-xml11-20060816 |
 ./xmlselect div div h2
html body div div h2: 1 Introduction
html body div div h2: 2 Documents
html body div div h2: 3 Logical Structures
html body div div h2: 4 Physical Structures
html body div div h2: 5 Conformance
html body div div h2: 6 Notation
html body div div h2: A References
html body div div h2: B Definitions for Character Normalization
...

Exercise 7.17:
Extend xmlselect so that elements may be selected not just by
name, but by their attributes too, in the manner of CSS, so that, for
instance, an element like <div id="page" class="wide">
could be selected by a matching id or class as well
as its name.

Exercise 7.18:

Using the token-based decoder API, write a program that will
read an arbitrary XML document and construct a
tree of generic nodes that represents it.

Nodes are of two kinds: CharData nodes represent text
strings, and Element nodes represent named elements and their
attributes.

Each element node has a slice of child nodes.

You may find the following declarations helpful.

Click here to view code image

import "encoding/xml"

type Node interface{} // CharData or *Element

type CharData string

type Element struct {
 Type xml.Name
 Attr []xml.Attr
 Children []Node
}

7.15 A Few Words of Advice

When designing a new package, novice Go programmers often start by
creating a set of interfaces and only later define the concrete types that
satisfy them.

This approach results in many interfaces, each of which has only a single
implementation.

Don’t do that.

Such interfaces are unnecessary abstractions; they also have a
run-time cost.

You can restrict which methods of a type or fields of a struct are
visible outside a package using the export mechanism (§6.6).

Interfaces are only needed when there are two or more concrete types
that must be dealt with in a uniform way.

We make an exception to this rule when an interface is satisfied
by a single concrete type but that type cannot live in the same
package as the interface because of its dependencies.

In that case, an interface is a good way to decouple two packages.

Because interfaces are used in Go only when they are satisfied by two
or more types, they necessarily abstract away from the details of any
particular implementation.

The result is smaller interfaces with fewer, simpler methods, often
just one as with io.Writer or fmt.Stringer.

Small interfaces are easier to satisfy when new types come along.

A good rule of thumb for interface design is ask only for what you
need.

This concludes our tour of methods and interfaces.

Go has great support for the object-oriented style of programming, but
this does not mean you need to use it exclusively.

Not everything need be an object; standalone functions have their
place, as do unencapsulated data types.

Observe that together, the examples in the first five chapters of this
book call no more than two dozen methods, like input.Scan, as
opposed to ordinary function calls like fmt.Printf.

8. Goroutines and Channels

Concurrent programming, the expression of a program as a composition
of several autonomous activities, has never been more important than
it is today.

Web servers handle requests for thousands of clients at once.

Tablet and phone apps render animations in the user interface while
simultaneously performing computation and network requests in the
background.

Even traditional batch problems—read some data, compute, write some
output—use concurrency to hide the latency of I/O operations and to
exploit a modern computer’s many processors, which every year grow in
number but not in speed.

Go enables two styles of concurrent programming.

This chapter presents goroutines and channels, which support
communicating sequential processes or CSP, a model of concurrency in
which values are passed between independent activities (goroutines)
but variables are for the most part confined to a single activity.

Chapter 9 covers some aspects of
the more traditional model of shared memory multithreading,
which will be familiar if you’ve used threads in other
mainstream languages.

Chapter 9 also points out some
important hazards and pitfalls of concurrent programming that
we won’t delve into in this chapter.

Even though Go’s support for concurrency is one of its great
strengths, reasoning about concurrent programs is inherently harder
than about sequential ones, and intuitions acquired from sequential
programming may at times lead us astray.

If this is your first encounter with concurrency, we recommend
spending a little extra time thinking about the examples in these two
chapters.

8.1 Goroutines

In Go, each concurrently executing activity is called a goroutine.

Consider a program that has two functions, one that does some
computation and one that writes some output, and assume that neither
function calls the other.

A sequential program may call one function and then call the other,
but in a concurrent program with two or more goroutines, calls to
both functions can be active at the same time.

We’ll see such a program in a moment.

If you have used operating system threads or threads in other
languages, then you can assume for now that a goroutine is similar to a
thread, and you’ll be able to write correct programs.

The differences
between threads and goroutines are essentially quantitative, not
qualitative, and will be described in Section 9.8.

When a program starts, its only goroutine is the one that calls
the main function, so we call it the main goroutine.

New goroutines are created by the go statement.

Syntactically, a go statement is an ordinary function or method call
prefixed by the keyword go.

A go statement causes
the function to be called in a newly created goroutine.

The go statement itself completes immediately:

Click here to view code image

f() // call f(); wait for it to return
go f() // create a new goroutine that calls f(); don't wait

In the example below, the main goroutine computes the 45th Fibonacci
number.

Since it uses the terribly inefficient recursive algorithm, it

runs for an appreciable time, during which we’d like to provide the
user with a visual indication that the program is still running, by displaying
an animated textual “spinner.”

Click here to view code image

gopl.io/ch8/spinner

func main() {
 go spinner(100 * time.Millisecond)
 const n = 45
 fibN := fib(n) // slow
 fmt.Printf("\rFibonacci(%d) = %d\n", n, fibN)
}

func spinner(delay time.Duration) {
 for {
 for _, r := range `-\|/` {
 fmt.Printf("\r%c", r)
 time.Sleep(delay)
 }
 }
}

func fib(x int) int {
 if x < 2 {
 return x
 }
 return fib(x-1) + fib(x-2)
}

After several seconds of animation, the fib(45) call
returns and the main function prints its result:

Fibonacci(45) = 1134903170

The main function then returns.

When this happens, all goroutines are abruptly
terminated and the program exits.

Other than by returning from main or exiting the program,
there is no programmatic way for one
goroutine to stop another, but as we will see later,
there are ways to communicate with a goroutine to request that it stop
itself.

Notice how the program is expressed as the composition of two
autonomous activities, spinning and Fibonacci computation.

Each is written as a separate function but both make progress concurrently.

8.2 Example: Concurrent Clock Server

Networking is a natural domain in which to use concurrency since
servers typically handle many connections from their clients at once,
each client being essentially independent of the others.

In this section, we’ll introduce the net package, which
provides the components for building networked client and server
programs that communicate over TCP, UDP, or Unix domain sockets.

The net/http package we’ve been using since Chapter 1 is built on top of functions from the
net package.

Our first example is a sequential clock server that writes the current
time to the client once per second:

Click here to view code image

gopl.io/ch8/clock1

// Clock1 is a TCP server that periodically writes the time.
package main

import (
 "io"
 "log"
 "net"
 "time"
)

func main() {
 listener, err := net.Listen("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 for {
 conn, err := listener.Accept()
 if err != nil {
 log.Print(err) // e.g., connection aborted
 continue
 }
 handleConn(conn) // handle one connection at a time
 }
}

func handleConn(c net.Conn) {
 defer c.Close()
 for {
 _, err := io.WriteString(c, time.Now().Format("15:04:05\n"))
 if err != nil {
 return // e.g., client disconnected
 }
 time.Sleep(1 * time.Second)
 }
}

The Listen function creates a net.Listener, an object
that listens for incoming connections on a network port,
in this case TCP port localhost:8000.

The listener’s Accept method blocks until an incoming connection
request is made, then returns a net.Conn object representing the connection.

The handleConn function handles one complete client connection.

In a loop, it writes the current time, time.Now(), to the client.

Since net.Conn satisfies the io.Writer interface, we can
write directly to it.

The loop ends when the write fails, most likely because the client has
disconnected, at which point handleConn closes its side of the
connection using a deferred call to Close and goes back to
waiting for another connection request.

The time.Time.Format method provides a way to format
date and time information by example.

Its argument is a template indicating how to format a reference time,
specifically Mon Jan 2 03:04:05PM 2006 UTC-0700.

The reference time has eight components (day of the week, month, day of
the month, and so on). Any collection of them can appear in the
Format string in any order and in a number of formats; the
selected components of the
date and time will be displayed in the selected formats.

Here we are just using the hour, minute, and second of the time.

The time package defines templates for many standard
time formats, such as time.RFC1123.

The same mechanism is used in reverse when parsing a time using
time.Parse.

To connect to the server, we’ll need a client program such as nc (“netcat”),
a standard utility program for manipulating network connections:

Click here to view code image

$ go build gopl.io/ch8/clock1
$./clock1 &
$ nc localhost 8000
13:58:54
13:58:55
13:58:56
13:58:57
^C

The client displays the time sent by the server each second
until we interrupt the client with Control-C,
which on Unix systems is echoed as ^C
by the shell.

If nc or netcat is not installed on your system,
you can use telnet or this simple Go version of netcat that
uses net.Dial to connect to a TCP server:

Click here to view code image

gopl.io/ch8/netcat1

// Netcat1 is a read-only TCP client.
package main

import (
 "io"
 "log"
 "net"
 "os"
)

func main() {
 conn, err := net.Dial("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 defer conn.Close()
 mustCopy(os.Stdout, conn)
}

func mustCopy(dst io.Writer, src io.Reader) {
 if _, err := io.Copy(dst, src); err != nil {
 log.Fatal(err)
 }
}

This program reads data from the connection and writes it to the
standard output until an end-of-file condition or an error occurs.

The mustCopy function is a utility used in several examples in
this section.

Let’s run two clients at the same time on different terminals,
one shown to the left and one to the right:

Click here to view code image

$ go build gopl.io/ch8/netcat1
$./netcat1
13:58:54 $./netcat1
13:58:55
13:58:56
^C
 13:58:57
 13:58:58
 13:58:59
 ^C
$ killall clock1

The killall command is a Unix utility that
kills all processes with the given name.

The second client must wait until the first client is finished because
the server is sequential; it deals with only one client at a time.

Just one small change is needed to make the server concurrent: adding
the go keyword to the call to handleConn causes each
call to run in its own goroutine.

Click here to view code image

gopl.io/ch8/clock2

for {
 conn, err := listener.Accept()
 if err != nil {
 log.Print(err) // e.g., connection aborted
 continue
 }
 go handleConn(conn) // handle connections concurrently
}

Now, multiple clients can receive the time at once:

Click here to view code image

$ go build gopl.io/ch8/clock2
$./clock2 &
$ go build gopl.io/ch8/netcat1
$./netcat1
14:02:54 $./netcat1
14:02:55 14:02:55
14:02:56 14:02:56
14:02:57 ^C
14:02:58
14:02:59 $./netcat1
14:03:00 14:03:00
14:03:01 14:03:01
^C 14:03:02
 ^C
$ killall clock2

Exercise 8.1:
Modify clock2 to accept a port number, and
write a program, clockwall, that acts as a client of several
clock servers at once, reading the times from each one and displaying
the results in a table, akin to the wall of clocks seen in some
business offices.

If you have access to geographically distributed computers, run
instances remotely; otherwise run local instances on different ports
with fake time zones.

Click here to view code image

$ TZ=US/Eastern ./clock2 -port 8010 &
$ TZ=Asia/Tokyo ./clock2 -port 8020 &
$ TZ=Europe/London ./clock2 -port 8030 &
$ clockwall NewYork=localhost:8010 London=localhost:8020 Tokyo=localhost:8030

Exercise 8.2:
Implement a concurrent File Transfer Protocol (FTP) server.

The server should interpret commands from each client such as
cd to change directory, ls to list a directory,
get to send the contents of a file, and close to close
the connection.

You can use the standard ftp command as the client, or write
your own.

8.3 Example: Concurrent Echo Server

The clock server used one goroutine per connection.

In this section, we’ll build an echo server that uses multiple
goroutines per connection.

Most echo servers merely write whatever they read, which can be
done with this trivial version of handleConn:

Click here to view code image

func handleConn(c net.Conn) {
 io.Copy(c, c) // NOTE: ignoring errors
 c.Close()
}

A more interesting echo server might simulate the reverberations
of a real echo, with the
response loud at first ("HELLO!"), then moderate
("Hello!") after a delay, then quiet ("hello!") before
fading to nothing, as in this version of handleConn:

Click here to view code image

gopl.io/ch8/reverb1

func echo(c net.Conn, shout string, delay time.Duration) {
 fmt.Fprintln(c, "\t", strings.ToUpper(shout))
 time.Sleep(delay)
 fmt.Fprintln(c, "\t", shout)
 time.Sleep(delay)
 fmt.Fprintln(c, "\t", strings.ToLower(shout))
}

func handleConn(c net.Conn) {
 input := bufio.NewScanner(c)
 for input.Scan() {
 echo(c, input.Text(), 1*time.Second)
 }
 // NOTE: ignoring potential errors from input.Err()
 c.Close()
}

We’ll need to upgrade our client program so that it sends terminal
input to the server while also copying the server response to the
output, which presents another opportunity to use concurrency:

Click here to view code image

gopl.io/ch8/netcat2

func main() {
 conn, err := net.Dial("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 defer conn.Close()
 go mustCopy(os.Stdout, conn)
 mustCopy(conn, os.Stdin)
}

While the main goroutine reads the standard input and sends it to the
server, a second goroutine reads and prints the server’s response.

When the main goroutine encounters the end of the input, for example,
after the user types Control-D (^D) at the terminal
(or the equivalent Control-Z on Microsoft Windows),
the program stops,
even if the other goroutine still has work to do.

(We’ll see how to make the program wait for both sides to finish once
we’ve introduced channels in Section 8.4.1.)

In the session below, the client’s input is left-aligned and the
server’s responses are indented.

The client shouts at the echo server three times:

$ go build gopl.io/ch8/reverb1
$./reverb1 &
$ go build gopl.io/ch8/netcat2
$./netcat2
Hello?
 HELLO?
 Hello?
 hello?
Is there anybody there?
 IS THERE ANYBODY THERE?
Yooo-hooo!
 Is there anybody there?
 is there anybody there?
 YOOO-HOOO!
 Yooo-hooo!
 yooo-hooo!
^D
$ killall reverb1

Notice that the third shout from the client is not dealt with until
the second shout has petered out, which is not very realistic.

A real echo would consist of the composition of the three
independent shouts.

To simulate it, we’ll need more goroutines.

Again, all we need to do is add the go keyword, this time to
the call to echo:

Click here to view code image

gopl.io/ch8/reverb2

func handleConn(c net.Conn) {
 input := bufio.NewScanner(c)
 for input.Scan() {
 go echo(c, input.Text(), 1*time.Second)
 }
 // NOTE: ignoring potential errors from input.Err()
 c.Close()
}

The arguments to the function started by go are evaluated
when the go statement itself is executed; thus input.Text()
is evaluated in the main goroutine.

Now the echoes are concurrent and overlap in time:

$ go build gopl.io/ch8/reverb2
$./reverb2 &
$./netcat2
Is there anybody there?
 IS THERE ANYBODY THERE?

Yooo-hooo!
 Is there anybody there?
 YOOO-HOOO!
 is there anybody there?
 Yooo-hooo!
 yooo-hooo!
^D
$ killall reverb2

All that was required to make the server use concurrency, not just to
handle connections from multiple clients but even within a single
connection, was the insertion of two go keywords.

However in adding these keywords, we had to consider carefully that
it is safe to call methods of net.Conn concurrently,
which is not true for most types.

We’ll discuss the crucial concept of concurrency safety in the
next chapter.

8.4 Channels

If goroutines are the activities of a concurrent Go program,
channels are the connections between them.

A channel is a communication mechanism that lets one goroutine send
values to another goroutine.

Each channel is a conduit for values of a particular type, called the
channel’s element type.

The type of a channel whose elements have type int is written
chan int.

To create a channel, we use the built-in make function:

Click here to view code image

ch := make(chan int) // ch has type 'chan int'

As with maps, a channel is a reference to the data structure
created by make.

When we copy a channel or pass
one as an argument to a function, we are copying a reference, so
caller and callee refer to the same data structure.

As with other reference types, the zero value of a channel is nil.

Two channels of the same type may be compared using ==.

The comparison is true if both are references to the same channel data structure.

A channel may also be compared to nil.

A channel has two principal operations, send and
receive, collectively known as communications.

A send statement transmits a value from one goroutine,
through the channel, to another goroutine executing a
corresponding receive expression.

Both operations are written using the <- operator.

In a send statement, the <- separates the channel
and value operands. In a receive expression, <- precedes
the channel operand. A receive expression whose result is not used
is a valid statement.

Click here to view code image

ch <- x // a send statement

x = <-ch // a receive expression in an assignment statement
<-ch // a receive statement; result is discarded

Channels support a third operation, close, which sets a flag
indicating that no more values will ever be sent on this channel;
subsequent attempts to send will panic.

Receive operations on a closed channel yield the values that have been
sent until no more values are left; any receive operations thereafter complete immediately
and yield the zero value of the channel’s element type.

To close a channel, we call the built-in close function:

close(ch)

A channel created with a simple call to make is
called an unbuffered channel, but

make accepts an optional second argument, an integer

called the channel’s capacity.

If the capacity is non-zero, make creates a buffered channel.

Click here to view code image

ch = make(chan int) // unbuffered channel
ch = make(chan int, 0) // unbuffered channel
ch = make(chan int, 3) // buffered channel with capacity 3

We’ll look at unbuffered channels first and buffered channels in Section 8.4.4.

8.4.1 Unbuffered Channels

A send operation on an unbuffered channel blocks the sending goroutine
until another goroutine executes a corresponding receive on the same channel, at which
point the value is transmitted and both goroutines may continue.

Conversely, if the receive operation was attempted first, the
receiving goroutine is blocked until another goroutine performs a send on the same channel.

Communication over an unbuffered channel causes the
sending and receiving goroutines to synchronize.

Because of this,
unbuffered channels are sometimes called synchronous channels.

When a value is sent on an unbuffered channel, the

receipt of the value happens before the reawakening of the sending
goroutine.

In discussions of concurrency, when we say x happens before y,
we don’t mean merely that x occurs earlier in time than
y; we mean that it is guaranteed to do so and that all its
prior effects, such as updates to variables, are complete and that
you may rely on them.

When x neither happens before y nor after
y, we say that x is concurrent with y.

This doesn’t mean that x and y are necessarily
simultaneous, merely that we cannot assume anything about their
ordering.

As we’ll see in the next chapter, it’s necessary to order certain events
during the program’s execution to avoid the problems that arise when two
goroutines access the same variable concurrently.

The client program in Section 8.3
copies input to the server in its main goroutine, so the client
program terminates as soon as the input stream closes, even if the
background goroutine is still working.

To make the program wait for the background goroutine to complete
before exiting, we use a channel to synchronize the two goroutines:

Click here to view code image

gopl.io/ch8/netcat3

func main() {
 conn, err := net.Dial("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 done := make(chan struct{})
 go func() {
 io.Copy(os.Stdout, conn) // NOTE: ignoring errors
 log.Println("done")
 done <- struct{}{} // signal the main goroutine
 }()
 mustCopy(conn, os.Stdin)
 conn.Close()
 <-done // wait for background goroutine to finish
}

When the user closes the standard input stream,
mustCopy returns and the main goroutine calls
conn.Close(), closing both halves of the network connection.

Closing the write half of the connection causes the server to see an
end-of-file condition.

Closing the read half causes the background goroutine’s call to
io.Copy to return a “read from closed connection” error, which
is why we’ve removed the error logging; Exercise 8.3 suggests
a better solution.

(Notice that the go statement calls a
literal function, a common construction.)

Before it returns, the background goroutine logs a message,
then sends a value on the done channel.

The main goroutine waits until it has received this value before
returning.

As a result, the program always logs the
"done" message before exiting.

Messages sent over channels have two important aspects.

Each message has a value, but sometimes the fact of communication and
the moment at which it occurs are just as important.

We call messages events when we wish to stress this aspect.

When the event carries no additional information, that is, its sole
purpose is synchronization, we’ll emphasize this by using a channel
whose element type is struct{}, though it’s common to
use a channel of bool or int for the same purpose
since done <- 1 is shorter than done <- struct{}{}.

Exercise 8.3:
In netcat3, the interface value conn has the concrete
type *net.TCPConn, which represents a TCP connection.

A TCP connection consists of two halves that may be closed
independently using its CloseRead and CloseWrite
methods.

Modify the main goroutine of netcat3 to close only the write
half of the connection so that the program will continue to print the
final echoes from the reverb1 server even after the standard
input has been closed.

(Doing this for the reverb2 server is harder;
see Exercise 8.4.)

8.4.2 Pipelines

Channels can be used to connect goroutines together so that the output
of one is the input to another. This is called a pipeline.

The program below consists of three goroutines connected by two channels,
as shown schematically in Figure 8.1.

[image: A three-stage pipeline.]
Figure 8.1.
A three-stage pipeline.

The first goroutine, counter, generates the
integers 0, 1, 2, ...,
and sends them over a channel to the second goroutine,
squarer, which receives each value, squares it, and sends the result
over another channel to the third goroutine, printer, which receives the
squared values and prints them.

For clarity of this example, we have intentionally chosen very simple
functions, though of course they are too computationally trivial
to warrant their own goroutines in a realistic program.

Click here to view code image

gopl.io/ch8/pipeline1

func main() {
 naturals := make(chan int)
 squares := make(chan int)

 // Counter
 go func() {
 for x := 0; ; x++ {
 naturals <- x
 }
 }()

 // Squarer
 go func() {
 for {
 x := <-naturals
 squares <- x * x
 }
 }()

 // Printer (in main goroutine)
 for {
 fmt.Println(<-squares)
 }
}

As you might expect, the program prints the infinite series of squares 0, 1,
4, 9, and so on.

Pipelines like this may be found in long-running server programs
where channels are used for lifelong communication between goroutines
containing infinite loops.

But what if we want to send only a finite number of values through the
pipeline?

If the sender knows that no further values will ever be sent on a
channel, it is useful to communicate this fact to the receiver
goroutines so that they can stop waiting.

This is accomplished by closing the channel using
the built-in close function:

close(naturals)

After a channel has been closed, any further send operations on it will
panic.

After the closed channel has been drained,

that is, after the last
sent element has been received, all subsequent receive operations will
proceed without blocking but will yield a zero value.

Closing the naturals channel above would cause the squarer’s
loop to spin as it receives a never-ending stream of zero values,
and to send these zeros to the printer.

There is no way to test directly whether a channel has been closed,
but there is a variant of the receive operation that produces two
results: the received channel element, plus a boolean value,
conventionally called ok, which is true for a successful receive and

false for a receive on a closed and drained channel.

Using this feature, we can modify the squarer’s loop to stop when the
naturals channel is drained and close the squares
channel in turn.

Click here to view code image

// Squarer
go func() {
 for {
 x, ok := <-naturals
 if !ok {
 break // channel was closed and drained
 }
 squares <- x * x
 }
 close(squares)
}()

Because the syntax above is clumsy and this pattern is common, the
language lets us use a range loop to iterate over channels too.

This is a more convenient syntax for receiving all the values
sent on a channel and terminating the loop after the last one.

In the pipeline below, when the counter goroutine finishes its loop
after 100 elements, it closes the naturals channel, causing the
squarer to finish its loop and close the squares channel.

(In a more complex program, it might make sense for the counter and
squarer functions to defer the calls to close at the outset.)

Finally, the main goroutine finishes its loop and the program exits.

Click here to view code image

gopl.io/ch8/pipeline2

func main() {
 naturals := make(chan int)
 squares := make(chan int)

 // Counter
 go func() {
 for x := 0; x < 100; x++ {
 naturals <- x
 }
 close(naturals)
 }()

 // Squarer
 go func() {
 for x := range naturals {
 squares <- x * x
 }
 close(squares)
 }()

 // Printer (in main goroutine)
 for x := range squares {
 fmt.Println(x)
 }
}

You needn’t close every channel when you’ve finished with it.

It’s only necessary to close a channel when it is important to tell
the receiving goroutines that all data have been sent.

A channel that the garbage collector determines to be unreachable
will have its resources reclaimed whether or not it is closed.

(Don’t confuse this with the close operation for open files.
It is important to call the Close method on every file
when you’ve finished with it.)

Attempting to close an already-closed channel causes a panic,
as does closing a nil channel.

Closing channels has another use as a broadcast mechanism, which
we’ll cover in Section 8.9.

8.4.3 Unidirectional Channel Types

As programs grow, it is natural to break up large functions into
smaller pieces. Our previous example used three goroutines,
communicating over two channels, which were local variables of main.

The program naturally divides into three functions:

func counter(out chan int)
func squarer(out, in chan int)
func printer(in chan int)

The squarer function, sitting in the middle of the pipeline, takes
two parameters, the input channel and the output channel. Both have
the same type, but their intended uses are opposite: in is only to
be received from, and out is only to be sent to. The names in and
out convey this intention, but still, nothing prevents
squarer from sending to in or receiving from out.

This arrangement is typical. When a channel is supplied as a
function parameter, it is nearly always with the intent that it be
used exclusively for sending or exclusively for receiving.

To document this intent and prevent misuse, the Go type system
provides unidirectional channel types that expose only one or
the other of the send and receive operations.

The type chan<- int, a send-only channel of
int, allows sends but not receives.

Conversely, the type <-chan int, a receive-only
channel of int, allows receives but not sends.

(The position of the <- arrow relative to the chan
keyword is a mnemonic.)

Violations of this discipline are detected at compile time.

Since the close operation asserts that no more sends will occur on a
channel, only the sending goroutine is in a position to call it, and
for this reason it is a compile-time error to attempt to close a
receive-only channel.

Here’s the squaring pipeline once more, this time with unidirectional
channel types:

Click here to view code image

gopl.io/ch8/pipeline3

func counter(out chan<- int) {
 for x := 0; x < 100; x++ {
 out <- x
 }
 close(out)
}

func squarer(out chan<- int, in <-chan int) {
 for v := range in {
 out <- v * v
 }
 close(out)
}

func printer(in <-chan int) {
 for v := range in {
 fmt.Println(v)
 }
}

func main() {
 naturals := make(chan int)
 squares := make(chan int)

 go counter(naturals)
 go squarer(squares, naturals)
 printer(squares)
}

The call counter(naturals) implicitly converts naturals, a value
of type chan int, to the type of the parameter, chan<- int.

The printer(squares) call does a similar implicit conversion to
<-chan int.

Conversions from bidirectional to unidirectional channel types are
permitted in any assignment.

There is no going back, however: once you have a value of a
unidirectional type such as chan<- int, there is no way to
obtain from it a value of type chan int that refers to the same
channel data structure.

8.4.4 Buffered Channels

A buffered channel has a queue of elements.

The queue’s maximum size is determined when it is created, by the
capacity argument to make.

The statement below creates a buffered channel capable of holding
three string values.

Figure 8.2 is a graphical representation of
ch and the channel to which it refers.

ch = make(chan string, 3)

[image: An empty buffered channel.]
Figure 8.2.
An empty buffered channel.

A send operation on a buffered channel inserts an element at the
back of the queue, and a receive operation removes an element from the front.

If the channel is full, the send operation blocks its goroutine until
space is made available by another goroutine’s receive.

Conversely, if the channel is empty, a receive operation blocks until
a value is sent by another goroutine.

We can send up to three values on this channel without the goroutine blocking:

ch <- "A"
ch <- "B"
ch <- "C"

At this point, the channel is full (Figure 8.3),
and a fourth send statement would block.

[image: A full buffered channel.]
Figure 8.3.
A full buffered channel.

If we receive one value,

fmt.Println(<-ch) // "A"

the channel is neither full nor empty (Figure 8.4), so either a send operation or a
receive operation could proceed without blocking.

In this way, the channel’s buffer decouples the sending and receiving goroutines.

[image: A partially full buffered channel.]
Figure 8.4.
A partially full buffered channel.

In the unlikely event that a program needs to know the channel’s buffer capacity,
it can be obtained by calling the built-in cap
function:

fmt.Println(cap(ch)) // "3"

When applied to a channel, the built-in len function
returns the number of elements currently buffered.

Since in a concurrent program this information is likely to be stale
as soon as it is retrieved, its value is limited, but it could
conceivably be useful during fault diagnosis or performance
optimization.

fmt.Println(len(ch)) // "2"

After two more receive operations the channel is empty again, and a
fourth would block:

fmt.Println(<-ch) // "B"
fmt.Println(<-ch) // "C"

In this example, the send and receive operations were all performed by
the same goroutine, but in real programs they are usually executed by
different goroutines.

Novices are sometimes tempted to use

buffered channels within a single goroutine as a queue, lured by
their pleasingly simple syntax, but this is a mistake. Channels are
deeply connected to goroutine scheduling, and without another
goroutine receiving from the channel, a sender—and perhaps the
whole program—risks becoming blocked forever.

If all you need is a simple queue, make one using a slice.

The example below shows an application of a buffered channel.

It makes parallel requests to three mirrors, that is, equivalent
but geographically distributed servers.

It sends their responses over a buffered channel, then receives and
returns only the first response, which is the quickest one to arrive.

Thus mirroredQuery returns a result even before the two
slower servers have responded.

(Incidentally, it’s quite normal for several goroutines to send values
to the same channel concurrently, as in this example, or to receive
from the same channel.)

Click here to view code image

func mirroredQuery() string {
 responses := make(chan string, 3)
 go func() { responses <- request("asia.gopl.io") }()
 go func() { responses <- request("europe.gopl.io") }()
 go func() { responses <- request("americas.gopl.io") }()
 return <-responses // return the quickest response
}

func request(hostname string) (response string) { /* ... */ }

Had we used an unbuffered channel, the two slower goroutines would
have gotten stuck trying to send their responses on a channel from
which no goroutine will ever receive.

This situation, called a goroutine leak, would be a bug.

Unlike garbage variables, leaked goroutines are not automatically
collected, so it is important to make sure that goroutines terminate
themselves when no longer needed.

The choice between unbuffered and buffered channels, and the choice of
a buffered channel’s capacity, may both affect the correctness of a
program.

Unbuffered channels give stronger synchronization guarantees because
every send operation is synchronized with its corresponding receive;
with buffered channels, these operations are decoupled.

Also, when we know an upper bound on the number of values that will be
sent on a channel, it’s not unusual to create a buffered channel of
that size and perform all the sends before the first value is
received.

Failure to allocate sufficient buffer capacity would
cause the program to deadlock.

Channel buffering may also affect program performance.

Imagine three cooks in a cake shop, one baking, one icing, and one
inscribing each cake before passing it on to the next cook in the
assembly line.

In a kitchen with little space, each cook that has finished
a cake must wait for the next cook to become ready to accept it;
this rendezvous is analogous to communication over an unbuffered channel.

If there is space for one cake between each cook, a cook may place a
finished cake there and immediately start work on the next; this is
analogous to a buffered channel with capacity 1.

So long as the cooks work at about the same rate on average,
most of these handovers proceed quickly, smoothing out
transient differences in their respective rates.

More space between cooks—larger buffers—can smooth out bigger
transient variations in their rates without stalling the assembly
line, such as happens when one cook takes a short break, then later
rushes to catch up.

On the other hand, if an earlier stage of the assembly line is
consistently faster than the following stage, the buffer between them
will spend most of its time full.

Conversely, if the later stage is faster, the buffer will usually be
empty.

A buffer provides no benefit in this case.

The assembly line metaphor is a useful one for channels and
goroutines. For example, if the second stage is more
elaborate, a single cook may not be able to keep up with the supply
from the first cook or meet the demand from the third.

To solve the problem, we could hire another cook to help the second,
performing the same task but working independently. This is analogous
to creating another goroutine communicating over the same channels.

We don’t have space to show it here, but the gopl.io/ch8/cake
package simulates this cake shop, with several parameters you can vary.

It includes benchmarks (§11.4) for a few of
the scenarios described above.

8.5 Looping in Parallel

In this section, we’ll explore some common concurrency patterns for
executing all the iterations of a loop in parallel.

We’ll consider the problem of producing thumbnail-size images from a
set of full-size ones.

The gopl.io/ch8/thumbnail package provides an ImageFile function that can scale a
single image. We won’t show its implementation but it can be downloaded
from gopl.io.

Click here to view code image

gopl.io/ch8/thumbnail

package thumbnail

// ImageFile reads an image from infile and writes
// a thumbnail-size version of it in the same directory.
// It returns the generated file name, e.g., "foo.thumb.jpg".
func ImageFile(infile string) (string, error)

The program below loops over a list of image file
names and produces a thumbnail for each one:

Click here to view code image

gopl.io/ch8/thumbnail

// makeThumbnails makes thumbnails of the specified files.
func makeThumbnails(filenames []string) {
 for _, f := range filenames {
 if _, err := thumbnail.ImageFile(f); err != nil {
 log.Println(err)
 }
 }
}

Obviously the order in which we process the files doesn’t
matter, since each scaling operation is independent of all the others.

Problems like this that consist entirely of subproblems that are
completely independent of each other are described as
embarrassingly parallel.

Embarrassingly parallel problems are the easiest kind to implement
concurrently and enjoy performance that scales linearly with the
amount of parallelism.

Let’s execute all these operations in parallel, thereby hiding the
latency of the file I/O and using multiple CPUs
for the image-scaling computations.

Our first attempt at a concurrent version just adds a go keyword.

We’ll ignore errors for now and address them later.

Click here to view code image

// NOTE: incorrect!
func makeThumbnails2(filenames []string) {
 for _, f := range filenames {
 go thumbnail.ImageFile(f) // NOTE: ignoring errors
 }
}

This version runs really fast—too fast, in fact, since it takes less
time than the original, even when the slice of file names contains only
a single element.

If there’s no parallelism, how can the concurrent version possibly run
faster?

The answer is that makeThumbnails returns before it has finished
doing what it was supposed to do.

It starts all the goroutines, one per file name, but doesn’t wait for
them to finish.

There is no direct way to wait until a goroutine has finished, but we
can change the inner goroutine to report its completion to the outer
goroutine by sending an event on a shared channel.

Since we know that there are exactly len(filenames) inner
goroutines, the outer goroutine need only count that many events
before it returns:

Click here to view code image

// makeThumbnails3 makes thumbnails of the specified files in parallel.
func makeThumbnails3(filenames []string) {
 ch := make(chan struct{})
 for _, f := range filenames {
 go func(f string) {
 thumbnail.ImageFile(f) // NOTE: ignoring errors
 ch <- struct{}{}
 }(f)
 }

 // Wait for goroutines to complete.
 for range filenames {
 <-ch
 }
}

Notice that we passed the value of f as an
explicit argument to the literal function instead of using the
declaration of f from the enclosing for loop:

Click here to view code image

for _, f := range filenames {
 go func() {
 thumbnail.ImageFile(f) // NOTE: incorrect!
 // ...
 }()
}

Recall the problem of loop variable capture inside an anonymous
function, described in Section 5.6.1.

Above, the single variable f is shared by all the
anonymous function values and updated by successive loop iterations.

By the time the new goroutines start executing the literal function,
the for loop may have updated f and started
another iteration or (more likely) finished entirely, so when these
goroutines read the value of f, they all
observe it to have the value of the final element of the slice.

By adding an explicit parameter, we ensure that we use the value of
f that is current when the go statement is executed.

What if we want to return values from each worker goroutine to the
main one?

If the call to thumbnail.ImageFile fails to create a file, it returns
an error.

The next version of makeThumbnails returns the first error it
receives from any of the scaling operations:

Click here to view code image

// makeThumbnails4 makes thumbnails for the specified files in parallel.
// It returns an error if any step failed.
func makeThumbnails4(filenames []string) error {
 errors := make(chan error)

 for _, f := range filenames {
 go func(f string) {
 _, err := thumbnail.ImageFile(f)
 errors <- err
 }(f)
 }

 for range filenames {
 if err := <-errors; err != nil {
 return err // NOTE: incorrect: goroutine leak!
 }
 }

 return nil
}

This function has a subtle bug.

When it encounters the first non-nil error, it returns the error to
the caller, leaving no goroutine draining the errors channel.

Each remaining worker goroutine will block forever when it tries to send a value
on that channel, and will never terminate.

This situation, a goroutine leak (§8.4.4), may
cause the whole program to get stuck or to run out of memory.

The simplest solution is to use a buffered channel with sufficient
capacity that no worker goroutine will block when it sends a message.

(An alternative solution is to create another goroutine to drain
the channel while the main goroutine returns the first error without
delay.)

The next version of makeThumbnails uses a buffered channel to
return the names of the generated image files along with any
errors.

Click here to view code image

// makeThumbnails5 makes thumbnails for the specified files in parallel.
// It returns the generated file names in an arbitrary order,
// or an error if any step failed.
func makeThumbnails5(filenames []string) (thumbfiles []string, err error) {
 type item struct {
 thumbfile string
 err error
 }

 ch := make(chan item, len(filenames))
 for _, f := range filenames {
 go func(f string) {
 var it item
 it.thumbfile, it.err = thumbnail.ImageFile(f)
 ch <- it
 }(f)
 }

 for range filenames {
 it := <-ch
 if it.err != nil {
 return nil, it.err
 }
 thumbfiles = append(thumbfiles, it.thumbfile)
 }

 return thumbfiles, nil
}

Our final version of makeThumbnails, below, returns the total number
of bytes occupied by the new files.

Unlike the previous versions, however, it receives the file names not
as a slice but over a channel of strings, so we cannot predict the
number of loop iterations.

To know when the last goroutine has finished (which may not be the
last one to start), we need to increment a counter before each
goroutine starts and decrement it as each goroutine finishes.

This demands a special kind of counter, one that can be safely
manipulated from multiple goroutines and that provides a way to wait
until it becomes zero.

This counter type is known as sync.WaitGroup, and the code
below shows how to use it:

Click here to view code image

// makeThumbnails6 makes thumbnails for each file received from the channel.
// It returns the number of bytes occupied by the files it creates.
func makeThumbnails6(filenames <-chan string) int64 {
 sizes := make(chan int64)
 var wg sync.WaitGroup // number of working goroutines
 for f := range filenames {
 wg.Add(1)
 // worker
 go func(f string) {
 defer wg.Done()
 thumb, err := thumbnail.ImageFile(f)
 if err != nil {
 log.Println(err)
 return
 }
 info, _ := os.Stat(thumb) // OK to ignore error
 sizes <- info.Size()
 }(f)
 }

 // closer
 go func() {
 wg.Wait()
 close(sizes)
 }()

 var total int64
 for size := range sizes {
 total += size
 }
 return total
}

Note the asymmetry in the Add and Done methods.

Add, which increments the counter, must be called before the
worker goroutine starts, not within it; otherwise we would not be sure
that the Add happens before the “closer” goroutine calls

Wait.

Also, Add takes a parameter, but Done does not;
it’s equivalent to Add(-1).

We use defer to ensure that the counter is decremented even in
the error case.

The structure of the code above is a common and idiomatic pattern for
looping in parallel when we don’t know the number of iterations.

The sizes channel carries each file size back to the main
goroutine, which receives them using a range loop and computes
the sum.

Observe how we create a closer goroutine that waits for the workers
to finish before closing the sizes channel.

These two operations, wait and close, must be concurrent with the
loop over sizes.

Consider the alternatives: if the wait operation were placed in the main goroutine before the
loop, it would never end, and if placed after the loop,
it would be unreachable since with nothing closing the channel, the loop
would never terminate.

[image: The sequence of events in makeThumbnails6.]
Figure 8.5.
The sequence of events in makeThumbnails6.

Figure 8.5 illustrates the sequence of events in
the makeThumbnails6 function.

The vertical lines represent goroutines.

The thin segments indicate sleep, the thick segments activity.

The diagonal arrows indicate events that synchronize one
goroutine with another.

Time flows down.

Notice how the main goroutine spends most of its time in the
range loop asleep, waiting for a worker to send a value or the
closer to close the channel.

Exercise 8.4:
Modify the reverb2 server to use a sync.WaitGroup per
connection to count the number of active echo goroutines.

When it falls to zero, close the write half of the TCP connection as
described in Exercise 8.3.

Verify that your modified netcat3 client from that exercise
waits for the final echoes of multiple concurrent shouts, even after the
standard input has been closed.

Exercise 8.5:
Take an existing CPU-bound sequential program, such as the Mandelbrot
program of Section 3.3 or the 3-D surface computation of
Section 3.2, and execute its main loop in parallel using
channels for communication.

How much faster does it run on a multiprocessor machine?

What is the optimal number of goroutines to use?

8.6 Example: Concurrent Web Crawler

In Section 5.6, we made a simple web crawler
that explored the link graph of the web in breadth-first order.

In this section, we’ll make it concurrent so that independent calls
to crawl can exploit the I/O parallelism available in
the web.

The crawl function remains exactly as it was in
gopl.io/ch5/findlinks3:

Click here to view code image

gopl.io/ch8/crawl1

func crawl(url string) []string {
 fmt.Println(url)
 list, err := links.Extract(url)
 if err != nil {
 log.Print(err)
 }
 return list
}

The main function resembles breadthFirst (§5.6).

As before, a worklist records the queue of items that need processing,
each item being a list of URLs to crawl, but this time, instead of
representing the queue using a slice, we use a channel.

Each call to crawl occurs in its own goroutine and sends the
links it discovers back to the worklist.

Click here to view code image

func main() {
 worklist := make(chan []string)

 // Start with the command-line arguments.
 go func() { worklist <- os.Args[1:] }()

 // Crawl the web concurrently.
 seen := make(map[string]bool)
 for list := range worklist {
 for _, link := range list {
 if !seen[link] {
 seen[link] = true
 go func(link string) {
 worklist <- crawl(link)
 }(link)
 }
 }
 }
}

Notice that the crawl goroutine takes link as an explicit
parameter to avoid the problem of loop variable capture we first saw in Section 5.6.1.

Also notice that the initial send of the command-line arguments
to the worklist must run in its own goroutine to avoid deadlock,

a stuck situation in
which both the main goroutine and a crawler goroutine attempt to send
to each other while neither is receiving.

An alternative solution would be to use a buffered channel.

The crawler is now highly concurrent and prints a storm of URLs, but
it has two problems.

The first problem manifests itself as error messages in the log after
a few seconds of operation:

Click here to view code image

$ go build gopl.io/ch8/crawl1
$./crawl1 http://gopl.io/
http://gopl.io/
https://golang.org/help/

https://golang.org/doc/
https://golang.org/blog/
...
2015/07/15 18:22:12 Get ...: dial tcp: lookup blog.golang.org: no such host
2015/07/15 18:22:12 Get ...: dial tcp 23.21.222.120:443: socket:
 too many open files
...

The initial error message is a surprising report of a DNS lookup
failure for a reliable domain.

The subsequent error message reveals the cause: the program created so
many network connections at once that it exceeded the per-process
limit on the number of open files, causing operations such as DNS
lookups and calls to net.Dial to start failing.

The program is too parallel.

Unbounded parallelism is rarely a good idea since there is always a

limiting factor in the system, such as the number of CPU cores for
compute-bound workloads, the number of spindles and heads for local
disk I/O operations, the bandwidth of the network for streaming
downloads, or the serving capacity of a web service.

The solution is to limit the number of parallel uses of the
resource to match the level of parallelism that is available.

A simple way to do that in our example is to ensure that no more than
n calls to links.Extract are active at once, where
n is comfortably less than the file descriptor limit—20, say.

This is analogous to the way a doorman at a crowded nightclub admits a
guest only when some other guest leaves.

We can limit parallelism using a buffered channel of capacity n to model
a concurrency primitive called a counting semaphore.

Conceptually, each of the n vacant slots in the channel buffer
represents a token entitling the holder to proceed.

Sending a value into the channel acquires a token, and receiving a
value from the channel releases a token, creating a new vacant slot.

This ensures that at most n sends can occur without an intervening receive.

(Although it might be more intuitive to treat filled slots in the
channel buffer as tokens, using vacant slots avoids the need to fill
the channel buffer after creating it.)

Since the channel element type is not important,
we’ll use struct{}, which has size zero.

Let’s rewrite the crawl function so that the call to
links.Extract is bracketed by operations to acquire and release a token,
thus ensuring that at most 20 calls to it are active at one time.

It’s good practice to keep the semaphore operations as close as
possible to the I/O operation they regulate.

Click here to view code image

gopl.io/ch8/crawl2

// tokens is a counting semaphore used to
// enforce a limit of 20 concurrent requests.
var tokens = make(chan struct{}, 20)

func crawl(url string) []string {
 fmt.Println(url)
 tokens <- struct{}{} // acquire a token
 list, err := links.Extract(url)
 <-tokens // release the token

 if err != nil {
 log.Print(err)
 }
 return list
}

The second problem is that the program never terminates, even
when it has discovered all the links reachable from the initial URLs.

(Of course, you’re unlikely to notice this problem unless you choose
the initial URLs carefully or implement the depth-limiting feature of
Exercise 8.6.)

For the program to terminate, we need to break out of the main loop
when the worklist is empty and no crawl goroutines are active.

Click here to view code image

func main() {
 worklist := make(chan []string)
 var n int // number of pending sends to worklist

 // Start with the command-line arguments.
 n++
 go func() { worklist <- os.Args[1:] }()

 // Crawl the web concurrently.
 seen := make(map[string]bool)
 for ; n > 0; n-- {
 list := <-worklist
 for _, link := range list {
 if !seen[link] {
 seen[link] = true
 n++
 go func(link string) {
 worklist <- crawl(link)
 }(link)
 }
 }
 }
}

In this version, the counter n keeps track of the number of sends to the
worklist that are yet to occur.

Each time we know that an item needs to be sent to the worklist, we
increment n, once before we send the initial command-line
arguments, and again each time we start a crawler goroutine.

The main loop terminates when n falls to zero, since there is
no more work to be done.

Now the concurrent crawler runs about 20 times faster than the
breadth-first crawler from Section 5.6, without
errors, and terminates correctly if it should complete its task.

The program below shows an alternative solution to the problem of
excessive concurrency.

This version uses the original crawl function that has no counting semaphore,
but calls it from one of 20 long-lived crawler goroutines, thus
ensuring that at most 20 HTTP requests are active concurrently.

Click here to view code image

gopl.io/ch8/crawl3

func main() {
 worklist := make(chan []string) // lists of URLs, may have duplicates
 unseenLinks := make(chan string) // de-duplicated URLs

 // Add command-line arguments to worklist.
 go func() { worklist <- os.Args[1:] }()

 // Create 20 crawler goroutines to fetch each unseen link.
 for i := 0; i < 20; i++ {
 go func() {
 for link := range unseenLinks {
 foundLinks := crawl(link)
 go func() { worklist <- foundLinks }()
 }
 }()
 }

 // The main goroutine de-duplicates worklist items
 // and sends the unseen ones to the crawlers.
 seen := make(map[string]bool)
 for list := range worklist {
 for _, link := range list {
 if !seen[link] {
 seen[link] = true
 unseenLinks <- link
 }
 }
 }
}

The crawler goroutines are all fed by the same channel,
unseenLinks.

The main goroutine is responsible for de-duplicating items it receives
from the worklist, and then sending each unseen one over the unseenLinks channel to a crawler
goroutine.

The seen map is confined within the main goroutine; that
is, it can be accessed only by that goroutine.

Like other forms of information hiding, confinement helps us
reason about the correctness of a program.

For example, local variables cannot be mentioned by name from outside
the function in which they are declared; variables that do not escape
(§2.3.4) from a function cannot be accessed from
outside that function; and encapsulated fields of an object cannot be
accessed except by the methods of that object.

In all cases, information hiding helps to limit unintended
interactions between parts of the program.

Links found by crawl are sent to the worklist from
a dedicated goroutine to avoid deadlock.

To save space, we have not addressed the problem of termination in
this example.

Exercise 8.6:
Add depth-limiting to the concurrent crawler.

That is, if the user sets -depth=3,
then only URLs reachable by at most three links will be fetched.

Exercise 8.7:

Write a concurrent program that creates a local mirror of a web site,
fetching each reachable page and writing it to a directory on the
local disk.

Only pages within the original domain (for instance, golang.org) should
be fetched.

URLs within mirrored pages should be altered as needed so that they
refer to the mirrored page, not the original.

8.7 Multiplexing with select

The program below does the countdown for a rocket launch.

The time.Tick function returns a channel on which it sends
events periodically, acting like a metronome.

The value of each event is a timestamp, but it is rarely as
interesting as the fact of its delivery.

Click here to view code image

gopl.io/ch8/countdown1

func main() {
 fmt.Println("Commencing countdown.")
 tick := time.Tick(1 * time.Second)
 for countdown := 10; countdown > 0; countdown-- {
 fmt.Println(countdown)
 <-tick
 }
 launch()
}

Now let’s add the ability to abort the launch sequence by pressing the
return key during the countdown.

First, we start a goroutine that tries to read a single byte from
the standard input and, if it succeeds, sends a value on a channel called
abort.

Click here to view code image

gopl.io/ch8/countdown2

abort := make(chan struct{})
go func() {
 os.Stdin.Read(make([]byte, 1)) // read a single byte
 abort <- struct{}{}
}()

Now each iteration of the countdown loop needs to wait for an event to
arrive on one of the two channels: the ticker channel if everything is
fine (“nominal” in NASA jargon) or an abort event if there was an
“anomaly.”

We can’t just receive from each channel because whichever operation
we try first will block until completion.

We need to multiplex these operations, and to do that, we need
a select statement.

select {
case <-ch1:
 // ...
case x := <-ch2:
 // ...use x...
case ch3 <- y:
 // ...
default:
 // ...
}

The general form of a select statement is shown above.

Like a switch statement, it has a number of cases and an
optional default.

Each case specifies a communication (a send or receive
operation on some channel) and an associated block of statements.

A receive expression may appear on its own, as in the first case, or
within a short variable declaration, as in the second case; the second
form lets you refer to the received value.

A select waits until a communication for some case is
ready to proceed.

It then performs that communication and executes the case’s associated
statements; the other communications do not happen.

A select with no cases, select{}, waits forever.

Let’s return to our rocket launch program.

The time.After function immediately returns a channel,
and starts a new goroutine that
sends a single value on that channel after the specified time.

The select statement below waits until the first of two events arrives,
either an abort event or the event indicating that 10 seconds have
elapsed.

If 10 seconds go by with no abort, the launch proceeds.

Click here to view code image

func main() {
 // ...create abort channel...

 fmt.Println("Commencing countdown. Press return to abort.")
 select {
 case <-time.After(10 * time.Second):
 // Do nothing.
 case <-abort:
 fmt.Println("Launch aborted!")
 return
 }
 launch()
}

The example below is more subtle.

The channel ch, whose buffer size is 1, is alternately empty then
full, so only one of the cases can proceed, either the send when
i is even, or the receive when i is odd.

It always prints 0 2 4 6 8.

Click here to view code image

ch := make(chan int, 1)
for i := 0; i < 10; i++ {
 select {
 case x := <-ch:
 fmt.Println(x) // "0" "2" "4" "6" "8"
 case ch <- i:
 }
}

If multiple cases are ready, select picks one at random, which
ensures that every channel has an equal chance of being selected.

Increasing the buffer size of the previous example makes its output
nondeterministic, because when the buffer is neither full nor empty, the
select statement figuratively tosses a coin.

Let’s make our launch program print the countdown.

The select statement below causes each iteration of the
loop to wait up to 1 second for an abort, but no longer.

Click here to view code image

gopl.io/ch8/countdown3

func main() {
 // ...create abort channel...

 fmt.Println("Commencing countdown. Press return to abort.")
 tick := time.Tick(1 * time.Second)
 for countdown := 10; countdown > 0; countdown-- {
 fmt.Println(countdown)
 select {
 case <-tick:
 // Do nothing.
 case <-abort:
 fmt.Println("Launch aborted!")
 return
 }
 }
 launch()
}

The time.Tick function behaves as if it creates a goroutine
that calls time.Sleep in a loop, sending an event each time it
wakes up.

When the countdown function above returns, it stops receiving events
from tick, but the ticker goroutine is still there, trying in
vain to send on a channel from which no goroutine is receiving—a
goroutine leak (§8.4.4).

The Tick function is convenient, but it’s appropriate only
when the ticks will be needed throughout the lifetime of the
application.

Otherwise, we should use this pattern:

Click here to view code image

ticker := time.NewTicker(1 * time.Second)

<-ticker.C // receive from the ticker's channel

ticker.Stop() // cause the ticker's goroutine to terminate

Sometimes we want to try to send or receive on a channel but avoid
blocking if the channel is not ready—a non-blocking
communication.

A select statement can do that too.

A select may have a default, which
specifies what to do when none of the other communications can proceed
immediately.

The select statement below receives a value from the abort
channel if there is one to receive; otherwise it does nothing.

This is a non-blocking receive operation;

doing it repeatedly is called polling a channel.

Click here to view code image

select {
case <-abort:
 fmt.Printf("Launch aborted!\n")
 return
default:
 // do nothing
}

The zero value for a channel is nil.

Perhaps surprisingly, nil channels are sometimes useful.

Because send and receive operations on a nil channel block forever, a
case in a select statement whose channel is nil is never
selected.

This lets us use nil to enable or disable cases that
correspond to features like handling timeouts or cancellation,
responding to other input events, or emitting output.

We’ll see an example in the next section.

Exercise 8.8:
Using a select statement, add a timeout to the echo server from Section 8.3 so that it disconnects any
client that shouts nothing within 10 seconds.

8.8 Example: Concurrent Directory Traversal

In this section, we’ll build a program that reports the disk usage of
one or more directories specified on the command line, like the Unix
du command.

Most of its work is done by the walkDir function below, which
enumerates the entries of the directory dir using the
dirents helper function.

Click here to view code image

gopl.io/ch8/du1

// walkDir recursively walks the file tree rooted at dir
// and sends the size of each found file on fileSizes.
func walkDir(dir string, fileSizes chan<- int64) {
 for _, entry := range dirents(dir) {
 if entry.IsDir() {
 subdir := filepath.Join(dir, entry.Name())
 walkDir(subdir, fileSizes)
 } else {
 fileSizes <- entry.Size()
 }
 }
}

// dirents returns the entries of directory dir.
func dirents(dir string) []os.FileInfo {
 entries, err := ioutil.ReadDir(dir)
 if err != nil {
 fmt.Fprintf(os.Stderr, "du1: %v\n", err)
 return nil
 }
 return entries
}

The ioutil.ReadDir function

returns a slice of os.FileInfo—the same information that a call to
os.Stat returns for a single file.

For each subdirectory, walkDir recursively calls itself, and

for each file, walkDir sends a message on the fileSizes
channel.

The message is the size of the file in bytes.

The main function, shown below, uses two goroutines.

The background goroutine calls walkDir for each directory
specified on the command line and finally closes the fileSizes
channel.

The main goroutine computes the sum of the file sizes it receives from
the channel and finally prints the total.

Click here to view code image

// The du1 command computes the disk usage of the files in a directory.
package main

import (
 "flag"
 "fmt"
 "io/ioutil"
 "os"
 "path/filepath"
)

func main() {
 // Determine the initial directories.
 flag.Parse()
 roots := flag.Args()
 if len(roots) == 0 {
 roots = []string{"."}
 }

 // Traverse the file tree.
 fileSizes := make(chan int64)
 go func() {
 for _, root := range roots {
 walkDir(root, fileSizes)
 }
 close(fileSizes)
 }()

 // Print the results.
 var nfiles, nbytes int64
 for size := range fileSizes {
 nfiles++
 nbytes += size
 }
 printDiskUsage(nfiles, nbytes)
}

func printDiskUsage(nfiles, nbytes int64) {
 fmt.Printf("%d files %.1f GB\n", nfiles, float64(nbytes)/1e9)
}

This program pauses for a long while before printing its result:

$ go build gopl.io/ch8/du1
$./du1 $HOME /usr /bin /etc
213201 files 62.7 GB

The program would be nicer if it kept us informed of its progress.

However, simply moving the printDiskUsage call into the loop
would cause it to print thousands of lines of output.

The variant of du below prints the totals periodically, but
only if the -v flag is specified since not all users will want to
see progress messages.

The background goroutine that loops over roots remains unchanged.

The main goroutine now uses a ticker to generate events every
500ms, and a select statement to wait for either a file
size message, in which case it updates the totals, or a tick
event, in which case it prints the current totals.

If the -v flag is not specified, the tick channel
remains nil, and its case in the select is
effectively disabled.

Click here to view code image

gopl.io/ch8/du2

var verbose = flag.Bool("v", false, "show verbose progress messages")

func main() {
 // ...start background goroutine...

 // Print the results periodically.
 var tick <-chan time.Time
 if *verbose {
 tick = time.Tick(500 * time.Millisecond)
 }
 var nfiles, nbytes int64
loop:
 for {
 select {
 case size, ok := <-fileSizes:
 if !ok {
 break loop // fileSizes was closed
 }
 nfiles++
 nbytes += size
 case <-tick:
 printDiskUsage(nfiles, nbytes)
 }
 }
 printDiskUsage(nfiles, nbytes) // final totals
}

Since the program no longer uses a range loop, the
first select case must explicitly test whether
the fileSizes channel has been closed, using the two-result
form of receive operation.

If the channel has been closed, the program breaks out of the loop.

The labeled break statement breaks out of both
the select and the for loop;

an unlabeled break
would break out of only the select, causing the loop to begin
the next iteration.

The program now gives us a leisurely stream of updates:

$ go build gopl.io/ch8/du2
$./du2 -v $HOME /usr /bin /etc
28608 files 8.3 GB
54147 files 10.3 GB
93591 files 15.1 GB
127169 files 52.9 GB
175931 files 62.2 GB
213201 files 62.7 GB

However, it still takes too long to finish.

There’s no reason why all the calls to walkDir can’t be done
concurrently, thereby exploiting parallelism in the disk system.

The third version of du, below, creates a new goroutine for
each call to walkDir.

It uses a sync.WaitGroup (§8.5)

to count the number of calls to walkDir that are still active, and
a closer goroutine

to close the fileSizes channel when the
counter drops to zero.

Click here to view code image

gopl.io/ch8/du3

func main() {
 // ...determine roots...

 // Traverse each root of the file tree in parallel.
 fileSizes := make(chan int64)
 var n sync.WaitGroup
 for _, root := range roots {
 n.Add(1)
 go walkDir(root, &n, fileSizes)
 }
 go func() {
 n.Wait()
 close(fileSizes)
 }()
 // ...select loop...
}

Click here to view code image

func walkDir(dir string, n *sync.WaitGroup, fileSizes chan<- int64) {
 defer n.Done()
 for _, entry := range dirents(dir) {
 if entry.IsDir() {
 n.Add(1)
 subdir := filepath.Join(dir, entry.Name())
 go walkDir(subdir, n, fileSizes)
 } else {
 fileSizes <- entry.Size()
 }
 }
}

Since this program creates many thousands of goroutines at its peak,
we have to change dirents to use a counting semaphore to prevent it
from opening too many files at once, just as we did for the web
crawler in Section 8.6:

Click here to view code image

// sema is a counting semaphore for limiting concurrency in dirents.
var sema = make(chan struct{}, 20)

// dirents returns the entries of directory dir.
func dirents(dir string) []os.FileInfo {
 sema <- struct{}{} // acquire token
 defer func() { <-sema }() // release token
 // ...

This version runs several times faster than the previous one,
though there is a lot of variability from system to system.

Exercise 8.9:
Write a version of du that computes and periodically displays
separate totals for each of the root directories.

8.9 Cancellation

Sometimes we need to instruct a goroutine to stop what it is doing,
for example, in a web server performing a computation on behalf of a
client that has disconnected.

There is no way for one goroutine to terminate another directly, since
that would leave all its shared variables in undefined states.

In the rocket launch program (§8.7)
we sent a single value on a channel named abort, which the
countdown goroutine interpreted as a request to stop itself.

But what if we need to cancel two goroutines, or an arbitrary number?

One possibility might be to send as many events on the abort
channel as there are goroutines to cancel.

If some of the goroutines have already terminated themselves, however, our
count will be too large, and our sends will get stuck.

On the other hand, if those goroutines have spawned other
goroutines, our count will be too small, and some goroutines will
remain unaware of the cancellation.

In general, it’s hard to know how many goroutines are working on
our behalf at any given moment.

Moreover, when a goroutine receives a value from the abort
channel, it consumes that value so that other goroutines won’t see it.

For cancellation, what we need is a reliable mechanism to
broadcast

an event over a channel so that many goroutines can see
it as it occurs and can later see that it has occurred.

Recall that after a channel has been closed and drained of all sent
values, subsequent receive operations proceed immediately,
yielding zero values.

We can exploit this to create a broadcast mechanism: don’t send a value on
the channel, close it.

We can add cancellation to the du program from the previous
section with a few simple changes.

First, we create a cancellation channel on which no values are ever
sent, but whose closure indicates that it is time for the program to
stop what it is doing.

We also define a utility function, cancelled, that
checks or polls the cancellation state at the instant it is called.

Click here to view code image

gopl.io/ch8/du4

var done = make(chan struct{})

func cancelled() bool {
 select {
 case <-done:
 return true
 default:
 return false
 }
}

Next, we create a goroutine that will read from the standard
input, which is typically connected to the terminal.

As soon as any input is read (for instance, the user presses the return key),
this goroutine broadcasts the cancellation by closing the
done channel.

Click here to view code image

// Cancel traversal when input is detected.
go func() {
 os.Stdin.Read(make([]byte, 1)) // read a single byte
 close(done)
}()

Now we need to make our goroutines respond to the cancellation.

In the main goroutine, we add a third case to the select statement
that tries to receive from the done channel.

The function returns if this case is ever selected, but before it
returns it must first drain the fileSizes channel, discarding
all values until the channel is closed.

It does this to ensure that any active calls to walkDir can run
to completion without getting stuck sending to fileSizes.

Click here to view code image

for {
 select {
 case <-done:
 // Drain fileSizes to allow existing goroutines to finish.
 for range fileSizes {
 // Do nothing.
 }
 return
 case size, ok := <-fileSizes:
 // ...
 }
}

The walkDir goroutine polls the cancellation status when it
begins, and returns without doing anything if the status is set.

This turns all goroutines created after cancellation into no-ops:

Click here to view code image

func walkDir(dir string, n *sync.WaitGroup, fileSizes chan<- int64) {
 defer n.Done()
 if cancelled() {
 return
 }
 for _, entry := range dirents(dir) {
 // ...
 }
}

It might be profitable to poll the cancellation status again within
walkDir’s loop, to avoid creating goroutines after the
cancellation event.

Cancellation involves a trade-off; a quicker response often requires
more intrusive changes to program logic.

Ensuring that no expensive operations ever occur after the
cancellation event may require updating many places in your code, but
often most of the benefit can be obtained by checking for cancellation in
a few important places.

A little profiling of this program revealed that the bottleneck was
the acquisition of a semaphore token in dirents.

The select below makes this operation cancellable
and reduces the typical cancellation latency of the program from
hundreds of milliseconds to tens:

Click here to view code image

func dirents(dir string) []os.FileInfo {
 select {
 case sema <- struct{}{}: // acquire token
 case <-done:
 return nil // cancelled
 }
 defer func() { <-sema }() // release token

 // ...read directory...
}

Now, when cancellation occurs, all the background goroutines quickly
stop and the main function returns.

Of course, when main returns, a program exits, so it can be
hard to tell a main function that cleans up after itself from
one that does not.

There’s a handy trick we can use during testing: if instead of
returning from main in the event of cancellation, we execute a
call to panic, then the runtime will dump the stack of
every goroutine in the program.

If the main goroutine is the only one left, then it has cleaned up
after itself.

But if other goroutines remain, they may not have been properly
cancelled, or perhaps they have been cancelled but the cancellation
takes time; a little investigation may be worthwhile.

The panic dump often contains sufficient
information to distinguish these cases.

Exercise 8.10:
HTTP requests may be cancelled by closing the optional Cancel
channel in the http.Request struct.

Modify the web crawler of Section 8.6 to
support cancellation.

Hint: the http.Get convenience function does not give you an
opportunity to customize a Request.

Instead, create the request using http.NewRequest, set
its Cancel field, then perform the request by calling
http.DefaultClient.Do(req).

Exercise 8.11:
Following the approach of mirroredQuery in Section 8.4.4, implement a variant of fetch that
requests several URLs concurrently.

As soon as the first response arrives, cancel the other requests.

8.10 Example: Chat Server

We’ll finish this chapter with a chat server that lets several
users broadcast textual messages to each other.

There are four kinds of goroutine in this program.

There is one instance apiece of the main and broadcaster
goroutines, and for each client connection there is one
handleConn and one clientWriter goroutine.

The broadcaster is a good illustration of how select is used,
since it has to respond to three different kinds of messages.

The job of the main goroutine, shown below, is to listen for and
accept incoming network connections from clients.

For each one, it creates a new handleConn goroutine, just as
in the concurrent echo server we saw at the start of this chapter.

Click here to view code image

gopl.io/ch8/chat

func main() {
 listener, err := net.Listen("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }

 go broadcaster()
 for {
 conn, err := listener.Accept()
 if err != nil {
 log.Print(err)
 continue
 }
 go handleConn(conn)
 }
}

Next is the broadcaster.

Its local variable clients records the current set of
connected clients.

The only information recorded about each client is the identity of its
outgoing message channel, about which more later.

Click here to view code image

type client chan<- string // an outgoing message channel

var (
 entering = make(chan client)
 leaving = make(chan client)
 messages = make(chan string) // all incoming client messages
)

func broadcaster() {
 clients := make(map[client]bool) // all connected clients
 for {
 select {
 case msg := <-messages:
 // Broadcast incoming message to all
 // clients' outgoing message channels.
 for cli := range clients {
 cli <- msg
 }

 case cli := <-entering:
 clients[cli] = true

 case cli := <-leaving:
 delete(clients, cli)
 close(cli)
 }
 }
}

The broadcaster listens on the global entering and
leaving channels for announcements of arriving and departing
clients.

When it receives one of these events, it updates the
clients set, and if the event was a departure,
it closes the client’s outgoing message channel.

The broadcaster also listens for events on the global messages
channel, to which each client sends all its incoming messages.

When the broadcaster receives one of these events,
it broadcasts the message to every connected client.

Now let’s look at the per-client goroutines.

The handleConn function creates a new outgoing message channel
for its client and announces the arrival of this client to the
broadcaster over the entering channel.

Then it reads every line of text from the client, sending each line
to the broadcaster over the global incoming message channel,
prefixing each message with the identity of its sender.

Once there is nothing more to read from the client, handleConn
announces the departure of the client over the leaving channel
and closes the connection.

Click here to view code image

func handleConn(conn net.Conn) {
 ch := make(chan string) // outgoing client messages
 go clientWriter(conn, ch)

 who := conn.RemoteAddr().String()
 ch <- "You are " + who
 messages <- who + " has arrived"
 entering <- ch

 input := bufio.NewScanner(conn)
 for input.Scan() {
 messages <- who + ": " + input.Text()
 }
 // NOTE: ignoring potential errors from input.Err()

 leaving <- ch
 messages <- who + " has left"
 conn.Close()
}

func clientWriter(conn net.Conn, ch <-chan string) {
 for msg := range ch {
 fmt.Fprintln(conn, msg) // NOTE: ignoring network errors
 }
}

In addition, handleConn creates a clientWriter goroutine
for each client that receives messages broadcast to the client’s
outgoing message channel and writes them to the client’s network
connection.

The client writer’s loop terminates when the broadcaster closes
the channel after receiving a leaving notification.

The display below shows the server in action with two clients in
separate windows on the same computer, using netcat to chat:

Click here to view code image

$ go build gopl.io/ch8/chat
$ go build gopl.io/ch8/netcat3
$./chat &
$./netcat3
You are 127.0.0.1:64208 $./netcat3
127.0.0.1:64211 has arrived You are 127.0.0.1:64211
Hi!
127.0.0.1:64208: Hi! 127.0.0.1:64208: Hi!
 Hi yourself.
127.0.0.1:64211: Hi yourself. 127.0.0.1:64211: Hi yourself.
^C
 127.0.0.1:64208 has left
$./netcat3
You are 127.0.0.1:64216 127.0.0.1:64216 has arrived
 Welcome.
127.0.0.1:64211: Welcome. 127.0.0.1:64211: Welcome.
 ^C
127.0.0.1:64211 has left

While hosting a chat session for n clients, this program
runs 2n+2 concurrently communicating goroutines,
yet it needs no explicit locking operations (§9.2).

The clients map is confined to a single goroutine,
the broadcaster, so it cannot be accessed concurrently.

The only variables that are shared by multiple goroutines are channels
and instances of net.Conn, both of which are concurrency
safe.

We’ll talk more about confinement, concurrency safety, and the
implications of sharing variables across goroutines in the next
chapter.

Exercise 8.12:
Make the broadcaster announce the current set of clients to each new
arrival.

This requires that the clients set and the entering and
leaving channels record the client name too.

Exercise 8.13:
Make the chat server disconnect idle clients, such as those that have
sent no messages in the last five minutes.

Hint: calling conn.Close() in another goroutine unblocks active
Read calls such as the one done by input.Scan().

Exercise 8.14:
Change the chat server’s network protocol so that each client provides
its name on entering.

Use that name instead of the network address when prefixing each message
with its sender’s identity.

Exercise 8.15:
Failure of any client program to read data in a timely manner
ultimately causes all clients to get stuck.

Modify the broadcaster to skip a message rather than wait if a client
writer is not ready to accept it.

Alternatively, add buffering to each client’s outgoing message channel
so that most messages are not dropped; the broadcaster should use a
non-blocking send to this channel.

9. Concurrency with Shared Variables

In the previous chapter, we presented several programs that use
goroutines and channels to express concurrency in a direct and natural
way.

However, in doing so, we glossed over a number of important and subtle
issues that programmers must bear in mind when writing concurrent
code.

In this chapter, we’ll take a closer look at the mechanics of
concurrency.

In particular, we’ll point out some of the problems associated with
sharing variables among multiple goroutines, the analytical
techniques for recognizing those problems, and the patterns
for solving them.

Finally, we’ll explain some of the technical differences between
goroutines and operating system threads.

9.1 Race Conditions

In a sequential program, that is, a program with only one
goroutine, the steps of the program happen in the familiar execution
order determined by the program logic.

For instance, in a sequence of statements, the first one happens
before the second one, and so on.

In a program with two or more goroutines, the steps within each
goroutine happen in the familiar order, but in general we don’t know
whether an event x in one goroutine happens before an event
y in another goroutine, or happens after it, or is simultaneous
with it.

When we cannot confidently say that one event happens before

the other, then the events x and y are
concurrent.

Consider a function that works correctly in a sequential program.

That function is concurrency-safe if it continues to work
correctly even when called concurrently, that is, from two or
more goroutines with no additional synchronization.

We can generalize this notion to a set of collaborating functions,
such as the methods and operations of a particular type.

A type is concurrency-safe if all its accessible methods and
operations are concurrency-safe.

We can make a program concurrency-safe without making every
concrete type in that program concurrency-safe.

Indeed, concurrency-safe types are the exception rather than the rule,
so you should access a variable concurrently only if the documentation
for its type says that this is safe.

We avoid concurrent access to most variables either by
confining them to a single goroutine or by maintaining
a higher-level invariant of mutual exclusion.

We’ll explain these terms in this chapter.

In contrast, exported package-level functions are generally
expected to be concurrency-safe.

Since package-level variables cannot be confined to a single
goroutine, functions that modify them must enforce mutual exclusion.

There are many reasons a function might not work when called
concurrently, including deadlock, livelock, and resource starvation.

We don’t have space to discuss all of them,
so we’ll focus on the most important one,
the race condition.

A race condition is a situation in which the program does not give the
correct result for some interleavings of the operations of multiple
goroutines.

Race conditions are pernicious because they may remain latent in a
program and appear infrequently, perhaps only under heavy load or
when using certain compilers, platforms, or architectures.

This makes them hard to reproduce and diagnose.

It is traditional to explain the seriousness of race conditions
through the metaphor of financial loss, so we’ll consider a simple
bank account program.

Click here to view code image

// Package bank implements a bank with only one account.
package bank

var balance int

func Deposit(amount int) { balance = balance + amount }

func Balance() int { return balance }

(We could have written the body of the Deposit function as
balance += amount, which is equivalent, but the longer form
will simplify the explanation.)

For a program this trivial, we can see at a glance that any sequence
of calls to Deposit and Balance will give the right
answer, that is, Balance will report the sum of all amounts
previously deposited.

However, if we call these functions not in a sequence but
concurrently, Balance is no longer guaranteed to give the right answer.

Consider the following two goroutines, which represent two
transactions on a joint bank account:

Click here to view code image

// Alice:
go func() {
 bank.Deposit(200) // A1
 fmt.Println("=", bank.Balance()) // A2
}()

// Bob:
go bank.Deposit(100) // B

Alice deposits $200, then checks her balance, while Bob deposits $100.

Since the steps A1 and A2 occur concurrently with
B, we cannot predict the order in which they happen.

Intuitively, it might seem that there are only three possible orderings,
which we’ll call “Alice first,” “Bob first,” and “Alice/Bob/Alice.”

The following table shows the value of the balance variable after each
step.

The quoted strings represent the printed balance slips.

Click here to view code image

Alice first Bob first Alice/Bob/Alice
 0 0 0
 A1 200 B 100 A1 200
 A2 "= 200" A1 300 B 300
 B 300 A2 "= 300" A2 "= 300"

In all cases the final balance is $300.

The only variation is whether Alice’s balance slip includes Bob’s
transaction or not, but the customers are satisfied either way.

But this intuition is wrong.

There is a fourth possible outcome, in which Bob’s deposit occurs in
the middle of Alice’s deposit, after the balance has been read
(balance + amount) but before it has been updated
(balance = ...), causing Bob’s transaction to disappear.

This is because Alice’s deposit operation A1 is really a sequence of two
operations, a read and a write; call them A1r and A1w. Here’s
the problematic interleaving:

Click here to view code image

Data race
 0
A1r 0 ... = balance + amount
B 100
A1w 200 balance = ...
A2 "= 200"

After A1r, the expression balance + amount evaluates to
200, so this is the value written during A1w, despite the
intervening deposit.

The final balance is only $200.

The bank is $100 richer at Bob’s expense.

This program contains a particular kind of race condition called a
data race.

A data race occurs whenever two goroutines access the same variable
concurrently and at least one of the accesses is a write.

Things get even messier if the data race involves a variable of a type
that is larger than a single machine word, such as an interface, a string, or a slice.

This code updates x concurrently to two slices of
different lengths:

Click here to view code image

var x []int
go func() { x = make([]int, 10) }()
go func() { x = make([]int, 1000000) }()
x[999999] = 1 // NOTE: undefined behavior; memory corruption possible!

The value of x in the final statement is not defined; it could
be nil, or a slice of length 10, or a slice of length 1,000,000.

But recall that there are three parts to a slice: the pointer, the
length, and the capacity.

If the pointer comes from the first call to make and the length
comes from the second, x would be a chimera, a slice whose
nominal length is 1,000,000 but whose underlying array has only 10
elements.

In this eventuality, storing to element
999,999 would clobber an arbitrary faraway memory location, with
consequences that are impossible to predict and hard to debug and
localize. This semantic minefield is called undefined behavior and

is well known to C programmers; fortunately it is rarely as
troublesome in Go as in C.

Even the notion that a concurrent program is an interleaving of
several sequential programs is a false intuition.

As we’ll see in Section 9.4, data races may
have even stranger outcomes.

Many programmers—even some very clever ones—will occasionally
offer justifications for known data races in their programs: “the
cost of mutual exclusion is too high,” “this logic is only for
logging,” “I don’t mind if I drop some messages,” and so on. The
absence of problems on a given compiler and platform may give them false
confidence. A good rule of thumb is that there is no such thing as a
benign data race.

So how do we avoid data races in our programs?

We’ll repeat the definition, since it is so important:

A data race occurs whenever two goroutines access the same variable
concurrently and at least one of the accesses is a write.

It follows from this definition that there are three ways to avoid a
data race.

The first way is not to write the variable.

Consider the map below, which is lazily populated as each key is
requested for the first time.

If Icon is called sequentially, the program works fine, but if
Icon is called concurrently, there is a data race accessing the
map.

Click here to view code image

var icons = make(map[string]image.Image)

func loadIcon(name string) image.Image

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
 icon, ok := icons[name]
 if !ok {
 icon = loadIcon(name)
 icons[name] = icon
 }
 return icon
}

If instead we initialize the map with all necessary entries before
creating additional goroutines and never modify it again,
then any number of goroutines may
safely call Icon concurrently since each only reads the map.

Click here to view code image

var icons = map[string]image.Image{
 "spades.png": loadIcon("spades.png"),
 "hearts.png": loadIcon("hearts.png"),
 "diamonds.png": loadIcon("diamonds.png"),
 "clubs.png": loadIcon("clubs.png"),
}

// Concurrency-safe.
func Icon(name string) image.Image { return icons[name] }

In the example above, the icons variable is assigned during
package initialization, which happens before the program’s

main function starts running.

Once initialized, icons is never modified.

Data structures that are never modified or are immutable are
inherently concurrency-safe and need no synchronization.

But obviously we can’t use this approach if updates are essential, as
with a bank account.

The second way to avoid a data race is to avoid accessing the variable
from multiple goroutines.

This is the approach taken by many of the programs in the previous
chapter.

For example, the main goroutine in the concurrent web crawler (§8.6) is the sole goroutine that
accesses the seen map, and the broadcaster goroutine in
the chat server (§8.10) is the only
goroutine that accesses the clients map.

These variables are confined to a single goroutine.

Since other goroutines cannot access the variable directly, they must
use a channel to send the confining goroutine a request to query or
update the variable.

This is what is meant by the Go mantra “Do not communicate by sharing
memory; instead, share memory by communicating.”

A goroutine that brokers access to a confined variable using channel
requests is called a monitor goroutine for that variable.

For example, the broadcaster goroutine monitors access to the
clients map.

Here’s the bank example rewritten with the balance variable confined
to a monitor goroutine called teller:

Click here to view code image

gopl.io/ch9/bank1

// Package bank provides a concurrency-safe bank with one account.
package bank

var deposits = make(chan int) // send amount to deposit
var balances = make(chan int) // receive balance

func Deposit(amount int) { deposits <- amount }
func Balance() int { return <-balances }

func teller() {
 var balance int // balance is confined to teller goroutine
 for {
 select {
 case amount := <-deposits:
 balance += amount
 case balances <- balance:
 }
 }
}

func init() {
 go teller() // start the monitor goroutine
}

Even when a variable cannot be confined to a single goroutine for its
entire lifetime, confinement may still be a solution to the problem of
concurrent access.

For example, it’s common to share a variable between goroutines in a
pipeline by passing its address from one stage to the next over a
channel.

If each stage of the pipeline refrains from accessing the variable
after sending it to the next stage, then all accesses to the variable
are sequential.

In effect, the variable is confined to one stage of the pipeline, then
confined to the next, and so on.

This discipline is sometimes called serial confinement.

In the example below, Cakes are serially confined, first to the
baker goroutine, then to the icer goroutine:

Click here to view code image

type Cake struct{ state string }

func baker(cooked chan<- *Cake) {
 for {
 cake := new(Cake)
 cake.state = "cooked"
 cooked <- cake // baker never touches this cake again
 }
}

func icer(iced chan<- *Cake, cooked <-chan *Cake) {
 for cake := range cooked {
 cake.state = "iced"
 iced <- cake // icer never touches this cake again
 }
}

The third way to avoid a data race is to allow many goroutines to access
the variable, but only one at a time.

This approach is known as mutual exclusion and is the subject
of the next section.

Exercise 9.1:
Add a function Withdraw(amount int) bool to the
gopl.io/ch9/bank1 program.

The result should indicate whether the transaction succeeded or failed
due to insufficient funds.

The message sent to the monitor goroutine must contain both the amount
to withdraw and a new channel over which the monitor goroutine can send the
boolean result back to Withdraw.

9.2 Mutual Exclusion: sync.Mutex

In Section 8.6, we used a buffered
channel as a counting semaphore to ensure that no more than 20
goroutines made simultaneous HTTP requests.

With the same idea, we can use a channel of capacity 1 to ensure
that at most one goroutine accesses a shared variable at a time.

A semaphore that counts only to 1 is called a binary semaphore.

Click here to view code image

gopl.io/ch9/bank2

var (
 sema = make(chan struct{}, 1) // a binary semaphore guarding balance
 balance int
)

func Deposit(amount int) {
 sema <- struct{}{} // acquire token
 balance = balance + amount
 <-sema // release token
}

func Balance() int {
 sema <- struct{}{} // acquire token
 b := balance
 <-sema // release token
 return b
}

This pattern of mutual exclusion is so useful that it is
supported directly by the Mutex type from the sync package.

Its Lock method acquires the token (called a lock) and its
Unlock method releases it:

Click here to view code image

gopl.io/ch9/bank3

import "sync"

var (
 mu sync.Mutex // guards balance
 balance int
)

func Deposit(amount int) {
 mu.Lock()
 balance = balance + amount
 mu.Unlock()
}

func Balance() int {
 mu.Lock()
 b := balance
 mu.Unlock()
 return b
}

Each time a goroutine accesses the variables of the bank (just
balance here), it must call the mutex’s Lock method to
acquire an exclusive lock.

If some other goroutine has acquired the lock, this operation will
block until the other goroutine calls Unlock and the lock becomes
available again.

The mutex guards the shared variables.

By convention, the variables guarded by a mutex are declared
immediately after the declaration of the mutex itself.

If you deviate from this, be sure to document it.

The region of code between Lock and Unlock in which a
goroutine is free to read and modify the shared variables is called a
critical section.

The lock holder’s call to Unlock happens before any
other goroutine can acquire the lock for itself.

It is essential that the goroutine release the lock once it is
finished, on all paths through the function, including error paths.

The bank program above exemplifies a common concurrency pattern.

A set of exported functions encapsulates one or more variables
so that the only way to access the variables is through these
functions (or methods, for the variables of an object).

Each function acquires a mutex lock at the beginning and releases it

at the end, thereby ensuring that the shared variables are not
accessed concurrently.

This arrangement of functions, mutex lock, and variables is called a
monitor.

(This older use of the word “monitor” inspired the term “monitor
goroutine.”

Both uses share the meaning of a broker that ensures variables
are accessed sequentially.)

Since the critical sections in the Deposit and Balance
functions are so short—a single line, no branching—calling
Unlock at the end is straightforward.

In more complex critical sections, especially those in which errors
must be dealt with by returning early, it can be hard to tell that
calls to Lock and Unlock are strictly paired on all
paths.

Go’s defer statement comes to the rescue: by deferring a call
to Unlock, the critical section implicitly extends to the end
of the current function, freeing us from having to remember to insert
Unlock calls in one or more places far from the call to
Lock.

func Balance() int {
 mu.Lock()
 defer mu.Unlock()
 return balance
}

In the example above, the Unlock executes after the return
statement has read the value of balance, so the Balance
function is concurrency-safe.

As a bonus, we no longer need the local variable b.

Furthermore, a deferred Unlock will run even if the critical
section panics, which may be important in programs that make use of
recover (§5.10).

A defer is marginally more expensive than an explicit
call to Unlock, but not enough to justify less clear code. As
always with concurrent programs, favor clarity and resist premature
optimization.

Where possible, use defer and let critical sections extend to
the end of a function.

Consider the Withdraw function below.

On success, it reduces the balance by the specified amount and returns
true.

But if the account holds insufficient funds for the transaction, Withdraw
restores the balance and returns false.

Click here to view code image

// NOTE: not atomic!
func Withdraw(amount int) bool {
 Deposit(-amount)
 if Balance() < 0 {
 Deposit(amount)
 return false // insufficient funds
 }
 return true
}

This function eventually gives the correct result, but it has a nasty
side effect.

When an excessive withdrawal is attempted, the balance transiently
dips below zero.

This may cause a concurrent withdrawal for a modest sum to be
spuriously rejected.

So if Bob tries to buy a sports car,
Alice can’t pay for her morning coffee.

The problem is that Withdraw is not atomic:

it consists
of a sequence of three separate operations, each of which acquires
and then releases the mutex lock, but nothing locks the whole sequence.

Ideally, Withdraw should acquire the mutex lock once around the
whole operation.

However, this attempt won’t work:

Click here to view code image

// NOTE: incorrect!
func Withdraw(amount int) bool {
 mu.Lock()
 defer mu.Unlock()
 Deposit(-amount)
 if Balance() < 0 {
 Deposit(amount)
 return false // insufficient funds
 }
 return true
}

Deposit tries to acquire the mutex lock a second
time by calling mu.Lock(), but because mutex locks are not
re-entrant—it’s not possible to lock a mutex that’s already
locked—this leads to a deadlock where nothing can proceed, and
Withdraw blocks forever.

There is a good reason Go’s mutexes are not re-entrant.

The purpose of a mutex is to ensure that certain invariants of the
shared variables are maintained at critical points during program
execution.

One of the invariants is “no goroutine is accessing the shared
variables,” but there may be additional invariants specific to the data
structures that the mutex guards.

When a goroutine acquires a mutex lock, it may assume that the
invariants hold.

While it holds the lock, it may update the shared variables so that
the invariants are temporarily violated.

However, when it releases the lock, it must guarantee that order has
been restored and the invariants hold once again.

Although a re-entrant mutex would ensure that no other goroutines are
accessing the shared variables, it cannot protect the additional
invariants of those variables.

A common solution is to divide a function such as Deposit into
two: an unexported function, deposit, that assumes the lock is
already held and does the real work, and an exported function
Deposit that acquires the lock before calling deposit.

We can then express Withdraw in terms of deposit like
this:

Click here to view code image

func Withdraw(amount int) bool {
 mu.Lock()
 defer mu.Unlock()
 deposit(-amount)
 if balance < 0 {
 deposit(amount)
 return false // insufficient funds
 }
 return true
}

func Deposit(amount int) {
 mu.Lock()
 defer mu.Unlock()
 deposit(amount)
}

func Balance() int {
 mu.Lock()
 defer mu.Unlock()
 return balance
}

// This function requires that the lock be held.
func deposit(amount int) { balance += amount }

Of course, the deposit function shown here is so trivial that a
realistic Withdraw function wouldn’t bother calling it, but
nonetheless it illustrates the principle.

Encapsulation (§6.6), by reducing unexpected
interactions in a program, helps us maintain data structure
invariants.

For the same reason, encapsulation also helps us maintain concurrency
invariants.

When you use a mutex, make sure that both it and the variables it
guards are not exported, whether they are package-level variables or
the fields of a struct.

9.3 Read/Write Mutexes: sync.RWMutex

In a fit of anxiety after seeing his $100 deposit vanish without a trace,
Bob writes a program to check his bank balance
hundreds of times a second. He runs it at home, at work, and on his
phone. The bank notices that the increased traffic is delaying deposits
and withdrawals, because all the Balance requests run sequentially,
holding the lock exclusively and temporarily preventing other goroutines from
running.

Since the Balance function only needs to read the state of the
variable, it would in fact be safe for multiple Balance calls to run
concurrently, so long as no Deposit or Withdraw call is running.

In this
scenario we need a special kind of lock that allows read-only
operations to proceed in parallel with each other, but write
operations to have fully exclusive access. This lock is called a
multiple readers, single writer lock, and in Go it’s
provided by sync.RWMutex:

var mu sync.RWMutex
var balance int

func Balance() int {
 mu.RLock() // readers lock
 defer mu.RUnlock()
 return balance
}

The Balance function now calls the RLock and
RUnlock methods to acquire and release a readers or
shared lock.

The Deposit function, which is unchanged, calls the
mu.Lock and mu.Unlock methods to acquire and release a
writer or exclusive lock.

After this change, most of Bob’s Balance
requests run in parallel with each other and finish more quickly. The
lock is available for more of the time, and Deposit
requests can proceed in a timely manner.

RLock can be used only if there are no
writes to shared variables in the critical section.

In general, we should not assume that logically read-only
functions or methods don’t also update some variables.

For example, a method that appears to be a simple accessor might also
increment an internal usage counter, or update a cache so that repeat
calls are faster.

If in doubt, use an exclusive Lock.

It’s only profitable to use an RWMutex when most of the
goroutines that acquire the lock are readers, and the lock is under
contention, that is, goroutines routinely have to wait to
acquire it.

An RWMutex requires more complex internal bookkeeping, making
it slower than a regular mutex for uncontended locks.

9.4 Memory Synchronization

You may wonder why the Balance method needs mutual exclusion,
either channel-based or mutex-based.

After all, unlike Deposit, it consists only of a single
operation, so there is no danger of another goroutine executing “in the
middle” of it.

There are two reasons we need a mutex.

The first is that it’s equally important that Balance not
execute in the middle of some other operation like Withdraw.

The second (and more subtle) reason is that synchronization is about
more than just the order of execution of multiple goroutines;
synchronization also affects memory.

In a modern computer there may be dozens of processors, each with its
own local cache of the main memory.

For efficiency, writes to memory are buffered within each processor
and flushed out to main memory only when necessary.

They may even be committed to main memory in a
different order than they were written by the writing goroutine.

Synchronization primitives like channel communications and mutex
operations cause the processor to flush out and commit all its
accumulated writes so that the effects of goroutine execution up to
that point are guaranteed to be visible to goroutines running on other
processors.

Consider the possible outputs of the following snippet of code:

Click here to view code image

var x, y int
go func() {
 x = 1 // A1
 fmt.Print("y:", y, " ") // A2
}()
go func() {
 y = 1 // B1
 fmt.Print("x:", x, " ") // B2
}()

Since these two goroutines are concurrent and access shared variables
without mutual exclusion, there is a data race, so we should not be

surprised that the program is not deterministic.

We might expect it to print any one of these four results, which
correspond to intuitive interleavings of the labeled statements of the
program:

y:0 x:1
x:0 y:1
x:1 y:1
y:1 x:1

The fourth line could be explained by the sequence A1,B1,A2,B2
or by B1,A1,A2,B2, for example.

However, these two outcomes might come as a surprise:

x:0 y:0
y:0 x:0

but depending on the compiler, CPU, and many other factors, they can
happen too. What possible interleaving of the four statements could
explain them?

Within a single goroutine, the effects of each statement are
guaranteed to occur in the order of execution; goroutines are
sequentially consistent. But in the absence of explicit synchronization

using a channel or mutex, there is no guarantee that events are
seen in the same order by all goroutines. Although goroutine A must
observe the effect of the write x = 1 before it reads the value of
y, it does not necessarily observe the write to y done by
goroutine B, so A may print a stale
value of y.

It is tempting to try to understand concurrency as if it corresponds
to some interleaving of the statements of each goroutine, but
as the example above shows, this is not how a modern compiler or CPU
works.

Because the assignment and the Print refer to different
variables, a compiler may conclude that the order of the two
statements cannot affect the result, and swap them.

If the two goroutines execute on different CPUs, each with its own
cache, writes by one goroutine are not visible to the other
goroutine’s Print until the caches are synchronized with main
memory.

All these concurrency problems can be avoided by the consistent use of
simple, established patterns.

Where possible, confine variables to a single goroutine;
for all other variables, use mutual exclusion.

9.5 Lazy Initialization: sync.Once

It is good practice to defer an expensive initialization step until
the moment it is needed.

Initializing a variable up front increases the
start-up latency of a program and is unnecessary if execution
doesn’t always reach the part of the program that uses that variable.

Let’s return to the icons variable we saw earlier in the chapter:

Click here to view code image

var icons map[string]image.Image

This version of Icon uses lazy initialization:

Click here to view code image

func loadIcons() {
 icons = map[string]image.Image{
 "spades.png": loadIcon("spades.png"),
 "hearts.png": loadIcon("hearts.png"),
 "diamonds.png": loadIcon("diamonds.png"),
 "clubs.png": loadIcon("clubs.png"),
 }
}

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
 if icons == nil {
 loadIcons() // one-time initialization
 }
 return icons[name]
}

For a variable accessed by only a single goroutine, we can use the
pattern above, but this pattern is not safe if Icon is called
concurrently.

Like the bank’s original Deposit function, Icon consists
of multiple steps: it tests whether icons is nil, then it loads
the icons, then it updates icons to a non-nil value.

Intuition might suggest that the worst possible outcome of the
race condition above is that the loadIcons function is called
several times.

While the first goroutine is busy loading the icons, another goroutine
entering Icon would find the variable still equal to nil, and
would also call loadIcons.

But this intuition is also wrong.

(We hope that by now you are developing a new intuition about
concurrency, that intuitions about concurrency are not to be trusted!)

Recall the discussion of memory from Section 9.4. In the absence of explicit
synchronization, the compiler and CPU are free to reorder accesses to
memory in any number of ways, so long as the behavior of each
goroutine is sequentially consistent.

One possible reordering of the statements of loadIcons is shown
below.

It stores the empty map in the icons variable before populating
it:

Click here to view code image

func loadIcons() {
 icons = make(map[string]image.Image)
 icons["spades.png"] = loadIcon("spades.png")
 icons["hearts.png"] = loadIcon("hearts.png")
 icons["diamonds.png"] = loadIcon("diamonds.png")
 icons["clubs.png"] = loadIcon("clubs.png")
}

Consequently, a goroutine finding icons to be non-nil may not assume
that the initialization of the variable is complete.

The simplest correct way to ensure that all goroutines observe the
effects of loadIcons is to synchronize them using a mutex:

Click here to view code image

var mu sync.Mutex // guards icons
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {
 mu.Lock()
 defer mu.Unlock()
 if icons == nil {
 loadIcons()
 }
 return icons[name]
}

However, the cost of enforcing mutually exclusive access to
icons is that two goroutines cannot access the variable
concurrently, even once the variable has been safely initialized and
will never be modified again.

This suggests a multiple-readers lock:

Click here to view code image

var mu sync.RWMutex // guards icons
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {
 mu.RLock()
 if icons != nil {
 icon := icons[name]
 mu.RUnlock()
 return icon
 }
 mu.RUnlock()

 // acquire an exclusive lock
 mu.Lock()
 if icons == nil { // NOTE: must recheck for nil
 loadIcons()
 }
 icon := icons[name]
 mu.Unlock()
 return icon
}

There are now two critical sections.

The goroutine first acquires a reader lock, consults the map, then
releases the lock. If an entry was found (the common case), it
is returned.

If no entry was found, the goroutine acquires a writer lock.

There is no way to upgrade a shared lock to an exclusive one without

first releasing the shared lock, so we must recheck the icons
variable in case another goroutine already initialized it in the
interim.

The pattern above gives us greater concurrency but is complex
and thus error-prone.

Fortunately, the sync package provides a specialized solution
to the problem of one-time initialization: sync.Once.

Conceptually, a Once consists of a mutex and a boolean variable
that records whether initialization has taken place; the mutex guards
both the boolean and the client’s data structures.

The sole method, Do, accepts the initialization
function as its argument.

Let’s use Once to simplify the Icon function:

Click here to view code image

var loadIconsOnce sync.Once
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {
 loadIconsOnce.Do(loadIcons)
 return icons[name]
}

Each call to Do(loadIcons) locks the mutex and checks the
boolean variable.

In the first call, in which the variable is false, Do calls
loadIcons and sets the variable to true.

Subsequent calls do nothing, but the mutex synchronization ensures
that the effects of loadIcons on memory (specifically,
icons) become visible to all goroutines.

Using sync.Once in this way, we can avoid sharing variables
with other goroutines until they have been properly constructed.

Exercise 9.2:
Rewrite the PopCount example from
Section 2.6.2 so that it
initializes the lookup table using sync.Once the first time it
is needed.

(Realistically, the cost of synchronization would be prohibitive for a
small and highly optimized function like PopCount.)

9.6 The Race Detector

Even with the greatest of care, it’s all too easy to make concurrency
mistakes.

Fortunately, the Go runtime and toolchain are equipped with a
sophisticated and easy-to-use dynamic analysis tool, the race detector.

Just add the -race flag to your go build, go run,
or go test command.

This causes the compiler to build a modified version of your
application or test with additional instrumentation
that effectively records all accesses to shared variables
that occurred during execution, along with the identity of the
goroutine that read or wrote the variable.

In addition, the modified program records all synchronization events,
such as go statements, channel operations, and calls to
(*sync.Mutex).Lock, (*sync.WaitGroup).Wait, and so on.

(The complete set of synchronization events is specified by the The
Go Memory Model document that accompanies the language specification.)

The race detector studies this stream of events, looking for cases in which one
goroutine reads or writes a shared variable that was most recently written by a
different goroutine without an intervening synchronization operation.

This indicates a concurrent access to the shared variable, and thus a
data race.

The tool prints a report that includes the identity of the variable,
and the stacks of active function calls in the reading goroutine and
the writing goroutine.

This is usually sufficient to pinpoint the problem.

Section 9.7 contains an example of the race detector in action.

The race detector reports all data races that were actually executed.

However, it can only detect race conditions that occur during a run;
it cannot prove that none will ever occur.

For best results, make sure that your tests exercise your packages
using concurrency.

Due to extra bookkeeping, a program built with race detection
needs more time and memory to run, but the overhead is tolerable
even for many production jobs.

For infrequently occurring race conditions, letting the race detector
do its job can save hours or days of debugging.

9.7 Example: Concurrent Non-Blocking Cache

In this section, we’ll build a concurrent non-blocking cache,
an abstraction that solves a problem that arises often in real-world
concurrent programs but is not well addressed by existing libraries.

This is the problem of memoizing a function, that is, caching
the result of a function so that it need be computed only once.

Our solution will be concurrency-safe and will avoid the
contention associated with designs based on a single lock for the
whole cache.

We’ll use the httpGetBody function below as an example of the
type of function we might want to memoize.

It makes an HTTP GET request and reads the request body.

Calls to this function are relatively expensive, so we’d like to avoid
repeating them unnecessarily.

Click here to view code image

func httpGetBody(url string) (interface{}, error) {
 resp, err := http.Get(url)
 if err != nil {
 return nil, err
 }
 defer resp.Body.Close()
 return ioutil.ReadAll(resp.Body)
}

The final line hides a minor subtlety.

ReadAll

returns two results, a []byte and an
error, but since these are assignable to the declared result
types of httpGetBody—interface{} and error,
respectively—we can return the result of the call without further
ado.

We chose this return type for httpGetBody so that it conforms
to the type of functions that our cache is designed to memoize.

Here’s the first draft of the cache:

Click here to view code image

gopl.io/ch9/memo1

// Package memo provides a concurrency-unsafe
// memoization of a function of type Func.
package memo

// A Memo caches the results of calling a Func.
type Memo struct {
 f Func
 cache map[string]result
}

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

type result struct {
 value interface{}
 err error
}

func New(f Func) *Memo {
 return &Memo{f: f, cache: make(map[string]result)}
}

// NOTE: not concurrency-safe!
func (memo *Memo) Get(key string) (interface{}, error) {
 res, ok := memo.cache[key]
 if !ok {
 res.value, res.err = memo.f(key)
 memo.cache[key] = res
 }
 return res.value, res.err
}

A Memo instance holds the function f to memoize, of type
Func, and the cache, which is a mapping from strings
to results.

Each result is simply the pair of results returned by a call to
f—a value and an error.

We’ll show several variations of Memo as the design progresses,
but all will share these basic aspects.

An example of how to use Memo appears below.

For each element in a stream of incoming URLs, we call Get,
logging the latency of the call and the amount of data it returns:

Click here to view code image

m := memo.New(httpGetBody)
for url := range incomingURLs() {
 start := time.Now()
 value, err := m.Get(url)
 if err != nil {
 log.Print(err)
 }
 fmt.Printf("%s, %s, %d bytes\n",
 url, time.Since(start), len(value.([]byte)))
}

We can use the testing package (the topic of Chapter 11)
to systematically investigate the effect of memoization.

From the test output below, we see that the URL stream contains
duplicates, and that although the first call to (*Memo).Get
for each URL takes
hundreds of milliseconds, the second request returns the same amount
of data in under a millisecond.

Click here to view code image

$ go test -v gopl.io/ch9/memo1
=== RUN Test
https://golang.org, 175.026418ms, 7537 bytes
https://godoc.org, 172.686825ms, 6878 bytes
https://play.golang.org, 115.762377ms, 5767 bytes
http://gopl.io, 749.887242ms, 2856 bytes

https://golang.org, 721ns, 7537 bytes
https://godoc.org, 152ns, 6878 bytes
https://play.golang.org, 205ns, 5767 bytes
http://gopl.io, 326ns, 2856 bytes
--- PASS: Test (1.21s)
PASS
ok gopl.io/ch9/memo1 1.257s

This test executes all calls to Get sequentially.

Since HTTP requests are a great opportunity for parallelism, let’s
change the test so that it makes all requests concurrently.

The test uses a sync.WaitGroup to wait until the last request

is complete before returning.

Click here to view code image

m := memo.New(httpGetBody)
var n sync.WaitGroup
for url := range incomingURLs() {
 n.Add(1)
 go func(url string) {
 start := time.Now()
 value, err := m.Get(url)
 if err != nil {
 log.Print(err)
 }
 fmt.Printf("%s, %s, %d bytes\n",
 url, time.Since(start), len(value.([]byte)))
 n.Done()
 }(url)
}
n.Wait()

The test runs much faster, but unfortunately it is unlikely to work
correctly all the time.

We may notice unexpected cache misses, or cache hits that return
incorrect values, or even crashes.

Worse, it is likely to work correctly some of the time, so we
may not even notice that it has a problem.

But if we run it with the -race flag,

the race detector (§9.6) often prints
a report such as this one:

Click here to view code image

$ go test -run=TestConcurrent -race -v gopl.io/ch9/memo1
=== RUN TestConcurrent
...
WARNING: DATA RACE
Write by goroutine 36:
 runtime.mapassign1()
 ~/go/src/runtime/hashmap.go:411 +0x0
 gopl.io/ch9/memo1.(*Memo).Get()
 ~/gobook2/src/gopl.io/ch9/memo1/memo.go:32 +0x205
 ...

Previous write by goroutine 35:
 runtime.mapassign1()
 ~/go/src/runtime/hashmap.go:411 +0x0
 gopl.io/ch9/memo1.(*Memo).Get()
 ~/gobook2/src/gopl.io/ch9/memo1/memo.go:32 +0x205
...
Found 1 data race(s)
FAIL gopl.io/ch9/memo1 2.393s

The reference to memo.go:32 tells us that two goroutines have
updated the cache map without any intervening synchronization.

Get is not concurrency-safe: it has a data race.

Click here to view code image

28 func (memo *Memo) Get(key string) (interface{}, error) {
29 res, ok := memo.cache[key]
30 if !ok {
31 res.value, res.err = memo.f(key)
32 memo.cache[key] = res
33 }
34 return res.value, res.err
35 }

The simplest way to make the cache concurrency-safe is to use

monitor-based synchronization.

All we need to do is add a mutex to the Memo, acquire the
mutex lock at the start of Get, and release it before
Get returns, so that the two cache operations occur
within the critical section:

Click here to view code image

gopl.io/ch9/memo2

type Memo struct {
 f Func
 mu sync.Mutex // guards cache
 cache map[string]result
}

// Get is concurrency-safe.
func (memo *Memo) Get(key string) (value interface{}, err error) {
 memo.mu.Lock()
 res, ok := memo.cache[key]
 if !ok {
 res.value, res.err = memo.f(key)
 memo.cache[key] = res
 }
 memo.mu.Unlock()
 return res.value, res.err
}

Now the race detector is silent, even when running the tests
concurrently.

Unfortunately this change to Memo reverses our earlier performance
gains.

By holding the lock for the duration of each call to f,
Get serializes all the I/O operations we intended to
parallelize.

What we need is a non-blocking cache,

one that does
not serialize calls to the function it memoizes.

In the next implementation of Get, below, the calling goroutine
acquires the lock twice: once for the lookup, and then a second time
for the update if the lookup returned nothing.

In between, other goroutines are free to use the cache.

Click here to view code image

gopl.io/ch9/memo3

func (memo *Memo) Get(key string) (value interface{}, err error) {
 memo.mu.Lock()
 res, ok := memo.cache[key]
 memo.mu.Unlock()
 if !ok {
 res.value, res.err = memo.f(key)

 // Between the two critical sections, several goroutines
 // may race to compute f(key) and update the map.
 memo.mu.Lock()
 memo.cache[key] = res
 memo.mu.Unlock()
 }
 return res.value, res.err
}

The performance improves again, but now we notice that some URLs are being
fetched twice.

This happens when two or more goroutines call Get for the same
URL at about the same time.

Both consult the cache, find no value there, and then call the slow
function f.

Then both of them update the map with the result they obtained.

One of the results is overwritten by the other.

Ideally we’d like to avoid this redundant work.

This feature is sometimes called duplicate suppression.

In the version of Memo below, each map element is a pointer to
an entry struct.

Each entry contains the memoized result of a call to the
function f, as before, but it additionally contains a channel
called ready.

Just after the entry’s result has been set, this channel will
be closed, to broadcast (§8.9)

to any other goroutines that it is now
safe for them to read the result from the entry.

Click here to view code image

gopl.io/ch9/memo4

type entry struct {
 res result
 ready chan struct{} // closed when res is ready
}

func New(f Func) *Memo {
 return &Memo{f: f, cache: make(map[string]*entry)}
}

type Memo struct {
 f Func
 mu sync.Mutex // guards cache
 cache map[string]*entry
}

func (memo *Memo) Get(key string) (value interface{}, err error) {
 memo.mu.Lock()
 e := memo.cache[key]
 if e == nil {
 // This is the first request for this key.
 // This goroutine becomes responsible for computing
 // the value and broadcasting the ready condition.
 e = &entry{ready: make(chan struct{})}
 memo.cache[key] = e
 memo.mu.Unlock()

 e.res.value, e.res.err = memo.f(key)

 close(e.ready) // broadcast ready condition
 } else {
 // This is a repeat request for this key.
 memo.mu.Unlock()

 <-e.ready // wait for ready condition
 }
 return e.res.value, e.res.err
}

A call to Get now involves acquiring the mutex lock that guards
the cache map, looking in the map for a pointer to an existing
entry, allocating and inserting a new entry if none was found,
then releasing the lock.

If there was an existing entry, its value is not necessarily ready
yet—another goroutine could still be calling the slow function
f—so the calling goroutine must wait for the entry’s “ready”
condition before it reads the entry’s result.

It does this by reading a value from the ready channel,
since this operation blocks until the channel is closed.

If there was no existing entry, then by inserting a new “not ready”
entry into the map, the current goroutine becomes responsible for
invoking the slow function, updating the entry, and
broadcasting the readiness of the new entry to any other goroutines
that might (by then) be waiting for it.

Notice that the variables e.res.value and e.res.err in
the entry are shared among multiple goroutines. The goroutine
that creates the entry sets their values, and other goroutines
read their values once the “ready” condition has been broadcast.

Despite being accessed by multiple goroutines, no mutex lock is necessary.

The closing of the ready
channel happens before any other goroutine receives the

broadcast event, so the write to those variables in the first
goroutine happens before they are read by subsequent goroutines.

There is no data race.

Our concurrent, duplicate-suppressing, non-blocking cache is complete.

The implementation of Memo above uses a mutex to guard a map
variable that is shared by each goroutine that calls Get.

It’s interesting to contrast this design with an alternative
one in which the map variable is confined to a monitor
goroutine to which callers of Get must send a message.

The declarations of Func, result, and entry
remain as before:

Click here to view code image

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

// A result is the result of calling a Func.
type result struct {
 value interface{}
 err error
}

type entry struct {
 res result
 ready chan struct{} // closed when res is ready
}

However, the Memo type now consists of a channel, requests,
through which the caller of Get communicates with the monitor
goroutine.

The element type of the channel is a request.

Using this structure, the caller of Get sends the monitor
goroutine both the key, that is, the argument to the memoized function,
and another channel, response, over which the result should
be sent back when it becomes available.

This channel will carry only a single value.

Click here to view code image

gopl.io/ch9/memo5

// A request is a message requesting that the Func be applied to key.
type request struct {
 key string
 response chan<- result // the client wants a single result
}

type Memo struct{ requests chan request }

// New returns a memoization of f. Clients must subsequently call Close.
func New(f Func) *Memo {
 memo := &Memo{requests: make(chan request)}
 go memo.server(f)
 return memo
}

func (memo *Memo) Get(key string) (interface{}, error) {
 response := make(chan result)
 memo.requests <- request{key, response}
 res := <-response
 return res.value, res.err
}

func (memo *Memo) Close() { close(memo.requests) }

The Get method, above, creates a response channel, puts it in
the request, sends it to the monitor goroutine, then immediately
receives from it.

The cache variable is confined to the monitor
goroutine (*Memo).server, shown below.

The monitor reads requests in a loop until the request channel is
closed by the Close method.

For each request, it consults the cache, creating and inserting a new
entry if none was found.

Click here to view code image

func (memo *Memo) server(f Func) {
 cache := make(map[string]*entry)
 for req := range memo.requests {
 e := cache[req.key]
 if e == nil {
 // This is the first request for this key.
 e = &entry{ready: make(chan struct{})}
 cache[req.key] = e
 go e.call(f, req.key) // call f(key)
 }
 go e.deliver(req.response)
 }
}

func (e *entry) call(f Func, key string) {
 // Evaluate the function.
 e.res.value, e.res.err = f(key)
 // Broadcast the ready condition.
 close(e.ready)
}

func (e *entry) deliver(response chan<- result) {
 // Wait for the ready condition.
 <-e.ready
 // Send the result to the client.
 response <- e.res
}

In a similar manner to the mutex-based version, the first request for a
given key becomes responsible for calling the function f on
that key, storing the result in the entry, and broadcasting the
readiness of the entry by closing the ready channel.

This is done by (*entry).call.

A subsequent request for the same key finds the existing entry in the
map, waits for the result to become ready, and sends the result
through the response channel to the client goroutine that called
Get.

This is done by (*entry).deliver.

The call and deliver methods must be called in their own
goroutines to ensure that the monitor goroutine does not stop
processing new requests.

This example shows that it’s possible to build many concurrent
structures using either of the two approaches—shared variables and
locks, or communicating sequential processes—without excessive
complexity.

It’s not always obvious which approach is preferable in a given
situation, but it’s worth knowing how they correspond. Sometimes
switching from one approach to the other can make your code simpler.

Exercise 9.3:
Extend the Func type and the (*Memo).Get method so that
callers may provide an optional done channel through which they
can cancel the operation (§8.9).

The results of a cancelled Func call should not be cached.

9.8 Goroutines and Threads

In the previous chapter we said that the difference between goroutines
and operating system (OS) threads could be ignored until later.
Although the differences between them are essentially quantitative, a
big enough quantitative difference becomes a qualitative one, and so
it is with goroutines and threads. The time has now come to
distinguish them.

9.8.1 Growable Stacks

Each OS thread has a fixed-size block of memory (often as large as 2MB)
for its stack, the work area where it saves the local variables of

function calls that are in progress or temporarily suspended while
another function is called.

This fixed-size stack is simultaneously too much and too little.

A 2MB stack would be a huge waste of memory for a little goroutine,
such as one that merely waits for a WaitGroup then closes a channel.

It’s not uncommon for a Go program to create hundreds of thousands of
goroutines at one time, which would be impossible with stacks this
large.

Yet despite their size, fixed-size stacks are not always big enough
for the most complex and deeply recursive of functions.

Changing the fixed size can improve space efficiency and allow more
threads to be created, or it can enable more deeply recursive
functions, but it cannot do both.

In contrast, a goroutine starts life with a small stack, typically 2KB.

A goroutine’s stack, like the stack of an OS thread, holds the local
variables of active and suspended function calls, but unlike an OS
thread, a goroutine’s stack is not fixed; it grows and shrinks as needed.

The size limit for a goroutine stack may be as much as 1GB, orders
of magnitude larger than a typical fixed-size thread stack, though of
course few goroutines use that much.

Exercise 9.4:
Construct a pipeline that connects an arbitrary number of
goroutines with channels.

What is the maximum number of pipeline stages you can create without
running out of memory?

How long does a value take to transit the entire pipeline?

9.8.2 Goroutine Scheduling

OS threads are scheduled by the OS kernel.

Every few milliseconds, a hardware timer interrupts the processor, which
causes a kernel function called the scheduler to be invoked.

This function suspends the currently executing thread and saves its
registers in memory, looks over the list of threads and decides which
one should run next, restores that thread’s registers from memory,
then resumes the execution of that thread.

Because OS threads are scheduled by the kernel, passing control from
one thread to another requires a full context switch, that is, saving

the state of one user thread to memory, restoring the state of
another, and updating the scheduler’s data structures. This operation
is slow, due to its poor locality and the number of memory accesses
required, and has historically only gotten worse as the number of CPU cycles
required to access memory has increased.

The Go runtime contains its own scheduler that uses a technique known

as m:n scheduling, because it multiplexes (or schedules) m

goroutines on n OS threads. The job of the Go scheduler is
analogous to that of the kernel scheduler, but it is concerned only
with the goroutines of a single Go program.

Unlike the operating system’s thread scheduler, the Go
scheduler is not invoked periodically by a hardware timer, but
implicitly by certain Go language constructs.

For example, when a goroutine calls time.Sleep or blocks in a
channel or mutex operation, the scheduler puts it to sleep and runs
another goroutine until it is time to wake the first one up.

Because it doesn’t need a switch to kernel context,
rescheduling a goroutine is much cheaper than rescheduling a thread.

Exercise 9.5:
Write a program with two goroutines that send messages back and
forth over two unbuffered channels in ping-pong fashion.

How many communications per second can the program sustain?

9.8.3 GOMAXPROCS

The Go scheduler uses a parameter called GOMAXPROCS to
determine how many OS threads may be actively executing Go code
simultaneously.

Its default value is the number of CPUs on the machine, so on a
machine with 8 CPUs, the scheduler will schedule Go code on up to 8 OS
threads at once.

(GOMAXPROCS is the n in m:n scheduling.)

Goroutines that are sleeping or blocked in a communication do not need
a thread at all.

Goroutines that are blocked in I/O or other system calls or are
calling non-Go functions, do need an OS thread, but GOMAXPROCS
need not account for them.

You can explicitly control this parameter using the
GOMAXPROCS environment variable or the
runtime.GOMAXPROCS function.

We can see the effect of GOMAXPROCS on this little program, which
prints an endless stream of zeros and ones:

Click here to view code image

for {
 go fmt.Print(0)
 fmt.Print(1)
}

$ GOMAXPROCS=1 go run hacker-cliché.go
111111111111111111110000000000000000000011111...

$ GOMAXPROCS=2 go run hacker-cliché.go
010101010101010101011001100101011010010100110...

In the first run, at most one goroutine was executed at a time.

Initially, it was the main goroutine, which prints ones.

After a period of time, the Go scheduler put it to sleep and woke up
the goroutine that prints zeros, giving it a turn to run on the OS thread.

In the second run, there were two OS threads available, so both
goroutines ran simultaneously, printing digits at about the same rate.

We must stress that many factors are involved in goroutine scheduling,
and the runtime is constantly evolving, so your results may differ
from the ones above.

Exercise 9.6:
Measure how the performance of a compute-bound parallel program
(see Exercise 8.5) varies with GOMAXPROCS.

What is the optimal value on your computer?

How many CPUs does your computer have?

9.8.4 Goroutines Have No Identity

In most operating systems and programming languages that support
multithreading, the current thread has a distinct identity that can be
easily obtained as an ordinary value, typically an integer or pointer.
This makes it easy to build an abstraction called thread-local
storage,

which is essentially a global map keyed by thread identity,
so that each thread can store and retrieve values independent of
other threads.

Goroutines have no notion of identity that is accessible to the
programmer.

This is by design, since thread-local storage tends to be abused.

For example, in a web server implemented in a language with thread-local storage, it’s
common for many functions to find information about the HTTP request
on whose behalf they are currently working by looking in that storage.

However, just as with programs that rely excessively on global variables,
this can lead to an unhealthy “action at a distance” in which the
behavior of a function is not determined by its arguments alone, but
by the identity of the thread in which it runs.

Consequently, if the identity of the thread should change—some
worker threads are enlisted to help, say—the function misbehaves
mysteriously.

Go encourages a simpler style of programming in which parameters
that affect the behavior of a function are explicit.

Not only does this make programs easier to read, but it lets us
freely assign subtasks of a given function to many different
goroutines without worrying about their identity.

You’ve now learned about all the language features you need for
writing Go programs.

In the next two chapters, we’ll step back to look at some of the
practices and tools that support programming in the large:
how to structure a project as a set of packages, and how to obtain,
build, test, benchmark, profile, document, and share those packages.

10. Packages and the Go Tool

A modest-size program today might contain 10,000 functions. Yet its author
need think about only a few of them and design even fewer, because
the vast majority were written by others and made available for reuse
through packages.

Go comes with over 100 standard packages
that provide the foundations for most applications. The Go community,
a thriving ecosystem of package design, sharing, reuse, and
improvement, has published many more, and you can find a searchable
index of them at http://godoc.org.

In this chapter, we’ll show how
to use existing packages and create new ones.

Go also comes with the go tool, a sophisticated but
simple-to-use command for managing workspaces of Go packages.

Since the beginning of the book,
we’ve been showing how to use the go tool
to download, build, and run example programs.

In this chapter, we’ll look at the tool’s underlying concepts and
tour more of its capabilities, which include printing documentation
and querying metadata about the packages in the workspace.

In the next chapter we’ll explore its testing features.

10.1 Introduction

The purpose of any package system is to make the
design and maintenance of large programs practical by grouping related
features together into units that can be easily understood and changed,
independent of the other packages of the program. This
modularity allows packages to be shared and reused

by different projects, distributed within an organization, or made
available to the wider world.

Each package defines a distinct name space that encloses its

identifiers.

Each name is associated with a particular package, letting us
choose short, clear names for the types, functions, and so on that we
use most often, without creating conflicts with other parts of
the program.

Packages also provide encapsulation by controlling which names
are visible or exported outside the package.

Restricting the visibility of package members hides the helper
functions and types behind the package’s API, allowing the

package maintainer to change the implementation with confidence
that no code outside the package will be affected.

Restricting visibility also hides variables so that clients can access and update
them only through exported functions that preserve internal
invariants or enforce mutual exclusion in a concurrent program.

When we change a file, we must recompile the file’s package and
potentially all the packages that depend on it.

Go compilation is notably faster than most other compiled languages, even
when building from scratch.

There are three main reasons for the compiler’s speed.

First, all imports must be explicitly listed at the beginning of each
source file, so the compiler does not have to read and process an
entire file to determine its dependencies.

Second, the dependencies of a package form a directed acyclic graph,
and because there are no cycles, packages can be compiled separately
and perhaps in parallel.

Finally, the object file for a compiled Go package records export
information not just for the package itself, but for its dependencies
too. When compiling a package, the compiler must read one object
file for each import but need not look beyond these files.

10.2 Import Paths

Each package is identified by a unique string
called its import path.

Import paths are the strings that appear in import
declarations.

Click here to view code image

import (
 "fmt"
 "math/rand"
 "encoding/json"

 "golang.org/x/net/html"

 "github.com/go-sql-driver/mysql"
)

As we mentioned in Section 2.6.1, the Go language
specification doesn’t define the meaning of these strings or how to
determine a package’s import path, but leaves these issues to the
tools.

In this chapter, we’ll take a detailed look at how the go tool
interprets them, since that’s what the majority of Go programmers use
for building, testing, and so on.

Other tools do exist, though.

For example, Go programmers using Google’s internal multi-language
build system follow different rules for naming and locating packages,
specifying tests, and so on, that more closely match the conventions
of that system.

For packages you intend to share or publish, import paths should be
globally unique. To avoid conflicts, the import paths of all packages
other than those from the standard library should start with the
Internet domain name of the organization that owns or hosts the
package; this also makes it possible to find packages.

For example, the declaration above imports an HTML parser maintained
by the Go team and a popular third-party MySQL database driver.

10.3 The Package Declaration

A package declaration is required at the start of every Go source file.

Its main purpose is to determine the default identifier for that package
(called the package name) when it is imported by another
package.

For example, every file of the math/rand package starts with
package rand, so when you import this package, you can access

its members as rand.Int, rand.Float64, and so on.

package main

import (
 "fmt"
 "math/rand"
)

func main() {
 fmt.Println(rand.Int())
}

Conventionally, the package name is the last segment of the
import path, and as a result, two packages may have the same name
even though their import paths necessarily differ. For example, the
packages whose import paths are math/rand and crypto/rand
both have the name rand.
We’ll see how to use both in the same program in a moment.

There are three major exceptions to the “last segment” convention.
The first is that a
package defining a command (an executable Go program) always has the
name main, regardless of the package’s import path.

This is a
signal to go build (§10.7.3)
that it must invoke the linker to make an
executable file.

The second exception is that some files in the directory may have the suffix
_test on their package name if the file name ends with
_test.go. Such a directory may define two packages: the

usual one, plus another one called an external test package. The
_test suffix signals to go test that it must build both
packages, and it indicates which files belong to each package.

External test packages are used to avoid cycles in the import graph
arising from dependencies of the test; they are covered in more detail
in Section 11.2.4.

The third exception is that some tools for dependency management
append version number suffixes to package import paths, such as
"gopkg.in/yaml.v2".

The package name excludes the suffix, so in this case it would be just
yaml.

10.4 Import Declarations

A Go source file may contain zero or more import declarations

immediately after the package declaration and before the first
non-import declaration. Each import declaration may specify the
import path of a single package, or multiple packages in a
parenthesized list.

The two forms below are equivalent but the second form is more common.

import "fmt"
import "os"

import (
 "fmt"
 "os"
)

Imported packages may be grouped by introducing blank lines; such
groupings usually indicate different domains. The order is not
significant, but by convention the lines of each group are sorted
alphabetically. (Both gofmt and goimports will group and sort for you.)

import (
 "fmt"
 "html/template"
 "os"

 "golang.org/x/net/html"
 "golang.org/x/net/ipv4"
)

If we need to import two packages whose names are the same,
like math/rand and crypto/rand, into a third package,
the import declaration must specify an alternative
name for at least one of them to avoid a conflict.
This is called a renaming import.

Click here to view code image

import (
 "crypto/rand"
 mrand "math/rand" // alternative name mrand avoids conflict
)

The alternative name affects only the importing file. Other files,
even ones in the same package, may import the package using its default name,
or a different name.

A renaming import may be useful even when there is no conflict.

If the name of the imported package is unwieldy, as is sometimes the
case for automatically generated code, an abbreviated name may be more
convenient.

The same short name should be used consistently to avoid confusion.

Choosing an alternative name can help avoid conflicts with common local variable names.

For example, in a file with many local variables named path,
we might import the standard "path" package as pathpkg.

Each import declaration establishes a dependency from the current
package to the imported package. The go build tool reports an error

if these dependencies form a cycle.

10.5 Blank Imports

It is an error to import a package into a file but not refer to the
name it defines within that file.

However, on occasion we must import a package merely for the side
effects of doing so: evaluation of the initializer expressions of its
package-level variables and execution of its init functions
(§2.6.2).

To suppress the “unused import” error we would otherwise encounter, we
must use a renaming import in which the alternative name is _, the
blank identifier.

As usual, the blank identifier can never be referenced.

Click here to view code image

import _ "image/png" // register PNG decoder

This is known as a blank import. It is most often used to implement
a compile-time mechanism whereby the main program can enable
optional features by blank-importing additional packages.

First we’ll see how to use it, then we’ll see how it works.

The standard library’s image package exports a Decode
function that reads bytes from an io.Reader, figures out which image
format was used to encode the data, invokes the appropriate decoder,
then returns the resulting image.Image.

Using image.Decode, it’s easy to build a simple image converter
that reads an image in one format and writes it out in another:

Click here to view code image

gopl.io/ch10/jpeg

// The jpeg command reads a PNG image from the standard input
// and writes it as a JPEG image to the standard output.
package main

import (
 "fmt"
 "image"
 "image/jpeg"
 _ "image/png" // register PNG decoder
 "io"
 "os"
)

func main() {
 if err := toJPEG(os.Stdin, os.Stdout); err != nil {
 fmt.Fprintf(os.Stderr, "jpeg: %v\n", err)
 os.Exit(1)
 }
}

func toJPEG(in io.Reader, out io.Writer) error {
 img, kind, err := image.Decode(in)
 if err != nil {
 return err
 }
 fmt.Fprintln(os.Stderr, "Input format =", kind)
 return jpeg.Encode(out, img, &jpeg.Options{Quality: 95})
}

If we feed the output of
gopl.io/ch3/mandelbrot (§3.3)
to the converter program, it detects
the PNG input format and writes a JPEG version of Figure 3.3.

Click here to view code image

$ go build gopl.io/ch3/mandelbrot
$ go build gopl.io/ch10/jpeg
$./mandelbrot | ./jpeg >mandelbrot.jpg
Input format = png

Notice the blank import of image/png.

Without that line, the program compiles and links as usual
but can no longer recognize or decode input in PNG format:

Click here to view code image

$ go build gopl.io/ch10/jpeg
$./mandelbrot | ./jpeg >mandelbrot.jpg
jpeg: image: unknown format

Here’s how it works.

The standard library provides decoders for GIF, PNG, and JPEG, and
users may provide others, but to keep executables small, decoders are
not included in an application unless explicitly requested.

The image.Decode function consults a table of supported formats.

Each entry in the table specifies four things: the name of the format;
a string that is a prefix of all images encoded this way, used to
detect the encoding; a function Decode that decodes an encoded
image; and another function DecodeConfig that decodes only the
image metadata, such as its size and color space.

An entry is added to the table by calling image.RegisterFormat,

typically from within the package initializer of the supporting
package for each format, like this one in image/png:

Click here to view code image

package png // image/png

func Decode(r io.Reader) (image.Image, error)
func DecodeConfig(r io.Reader) (image.Config, error)

func init() {
 const pngHeader = "\x89PNG\r\n\x1a\n"
 image.RegisterFormat("png", pngHeader, Decode, DecodeConfig)
}

The effect is that an application need only blank-import the
package for the format it needs to make the image.Decode
function able to decode it.

The database/sql package uses a similar mechanism to let
users install just the database drivers they need.

For example:

Click here to view code image

import (
 "database/mysql"
 _ "github.com/lib/pq" // enable support for Postgres
 _ "github.com/go-sql-driver/mysql" // enable support for MySQL
)

db, err = sql.Open("postgres", dbname) // OK
db, err = sql.Open("mysql", dbname) // OK
db, err = sql.Open("sqlite3", dbname) // returns error:
 unknown driver "sqlite3"

Exercise 10.1:
Extend the jpeg program so that it converts any supported input
format to any output format, using image.Decode to detect the
input format and a flag to select the output format.

Exercise 10.2:
Define a generic archive file-reading function capable of reading ZIP
files (archive/zip) and POSIX tar files (archive/tar).

Use a registration mechanism similar to the one described above so
that support for each file format can be plugged in using blank
imports.

10.6 Packages and Naming

In this section, we’ll offer some advice on how to follow Go’s
distinctive conventions for naming packages and their members.

When creating a package, keep its name short, but not so short as to
be cryptic.

The most frequently used packages in the standard library are named
bufio, bytes, flag, fmt, http,
io, json, os, sort, sync, and
time.

Be descriptive and unambiguous where possible.

For example, don’t name a utility package util when a name such
as imageutil or ioutil is specific yet still concise.

Avoid choosing package names that are commonly used for related local
variables, or you may compel the package’s clients to use
renaming imports, as with the path package.

Package names usually take the singular form.

The standard packages bytes, errors, and strings
use the plural to avoid hiding the corresponding predeclared
types and, in the case of go/types, to avoid conflict with a
keyword.

Avoid package names that already have other connotations.

For example, we originally used the name temp for the
temperature conversion package in Section 2.5, but
that didn’t last long.

It was a terrible idea because “temp” is an almost universal synonym
for “temporary.”

We went through a brief period with the name temperature, but
that was too long and didn’t say what the package did.

In the end, it became tempconv, which is shorter and parallel
with strconv.

Now let’s turn to the naming of package members.

Since each reference to a member of another package uses a qualified
identifier such as fmt.Println, the burden of describing the package
member is borne equally by the package name and the member name.

We need not mention the concept of formatting in Println
because the package name fmt does that already.

When designing a package, consider how the two parts of a
qualified identifier work together, not the member name alone.

Here are some characteristic examples:

Click here to view code image

bytes.Equal flag.Int http.Get json.Marshal

We can identify some common naming patterns. The strings package

provides a number of independent functions for manipulating strings:

Click here to view code image

package strings

func Index(needle, haystack string) int

type Replacer struct{ /* ... */ }
func NewReplacer(oldnew ...string) *Replacer

type Reader struct{ /* ... */ }
func NewReader(s string) *Reader

The word string does not appear in any of their names. Clients refer to
them as strings.Index, strings.Replacer, and so on.

Other packages that we might describe as single-type packages,
such as html/template and
math/rand, expose one principal data type plus its methods, and often a
New function to create instances.

package rand // "math/rand"

type Rand struct{ /* ... */ }
func New(source Source) *Rand

This can lead to repetition, as in template.Template or
rand.Rand, which is why the names of these kinds of packages
are often especially short.

At the other extreme, there are packages like net/http that
have a lot of names without a lot of structure, because they perform a
complicated task.

Despite having over twenty types and many more functions, the package’s most
important members have the simplest names:
Get, Post, Handle, Error, Client,
Server.

10.7 The Go Tool

The rest of this chapter concerns the go tool, which is used
for downloading, querying, formatting, building, testing, and
installing packages of Go code.

The go tool combines the features of a diverse set of tools
into one command set.

It is a package manager (analogous to apt or rpm) that answers
queries about its inventory of packages, computes their dependencies,
and downloads them from remote version-control systems.

It is a build system that computes file dependencies and invokes
compilers, assemblers, and linkers, although it is intentionally less
complete than the standard Unix make.

And it is a test driver, as we will see in Chapter 11.

Its command-line interface uses the “Swiss army knife” style, with over

a dozen subcommands, some of which we have already seen, like
get, run, build, and fmt.

You can run go help to see the index of its

built-in documentation, but for reference, we’ve listed the most
commonly used commands below:

Click here to view code image

$ go
...
 build compile packages and dependencies
 clean remove object files
 doc show documentation for package or symbol
 env print Go environment information
 fmt run gofmt on package sources
 get download and install packages and dependencies
 install compile and install packages and dependencies
 list list packages
 run compile and run Go program
 test test packages
 version print Go version
 vet run go tool vet on packages

Use "go help [command]" for more information about a command.
...

To keep the need for configuration to a minimum, the go tool
relies heavily on conventions.

For example, given the name of a Go source file, the tool can find its
enclosing package, because each directory contains a single package
and the import path of a package corresponds to the directory
hierarchy in the workspace.

Given the import path of a package, the tool can find the
corresponding directory in which it stores object files.

It can also find the URL of the server that hosts the
source code repository.

10.7.1 Workspace Organization

The only configuration most users ever need is the
GOPATH environment variable, which specifies the root of the
workspace.

When switching to a different workspace, users update the value of
GOPATH.

For instance, we set GOPATH to $HOME/gobook while
working on this book:

$ export GOPATH=$HOME/gobook
$ go get gopl.io/...

After you download all the programs for this book using the command
above, your workspace will contain a hierarchy like this one:

GOPATH/
 src/
 gopl.io/
 .git/
 ch1/
 helloworld/
 main.go
 dup/
 main.go
 ...
 golang.org/x/net/
 .git/
 html/
 parse.go
 node.go
 ...
 bin/
 helloworld
 dup
 pkg/
 darwin_amd64/
 ...

GOPATH has three subdirectories.

The src subdirectory holds source code.

Each package resides in a directory whose name relative to
$GOPATH/src is the package’s import path, such as
gopl.io/ch1/helloworld.

Observe that a single GOPATH workspace contains multiple
version-control repositories beneath src, such as
gopl.io or golang.org.

The pkg subdirectory is where the build tools store compiled
packages, and the bin subdirectory holds executable programs like
helloworld.

A second environment variable, GOROOT, specifies the root
directory of the Go distribution, which provides all the packages of
the standard library.

The directory structure beneath GOROOT resembles that of
GOPATH, so, for example, the source files of the fmt
package reside in the $GOROOT/src/fmt directory.

Users never need to set GOROOT since, by default, the
go tool will use the location where it was installed.

The go env command prints the effective values of the

environment variables relevant to the toolchain, including the default
values for the missing ones.

GOOS specifies the target operating system
(for example, android, linux, darwin, or windows)
and GOARCH specifies the target processor architecture,
such as amd64, 386, or arm.

Although GOPATH is the only variable you must set,
the others occasionally appear in our explanations.

$ go env
GOPATH="/home/gopher/gobook"
GOROOT="/usr/local/go"
GOARCH="amd64"
GOOS="darwin"
...

10.7.2 Downloading Packages

When using the go tool, a package’s import path indicates not only
where to find it in the local workspace, but where to find it on the
Internet so that go get can retrieve and update it.

The go get command can download a single package

or an entire subtree
or repository using the ... notation, as in the previous
section.

The tool also computes and downloads all the dependencies of the
initial packages, which is why the golang.org/x/net/html
package appeared in the workspace in the previous example.

Once go get has downloaded the packages, it builds them and
then installs the libraries and commands.

We’ll look at the details in the next section, but an example will
show how straightforward the process is.

The first command below gets the golint tool,

which checks for common style problems in Go source code.

The second command runs golint on gopl.io/ch2/popcount from
Section 2.6.2.

It helpfully reports that we have forgotten to write a doc comment for
the package:

Click here to view code image

$ go get github.com/golang/lint/golint
$ $GOPATH/bin/golint gopl.io/ch2/popcount
src/gopl.io/ch2/popcount/main.go:1:1:
 package comment should be of the form "Package popcount ..."

The go get command has support for popular code-hosting sites like GitHub,
Bitbucket, and Launchpad and can make the appropriate requests to
their version-control systems.

For less well-known sites, you may have to indicate which
version-control protocol to use in the import path, such as
Git or Mercurial. Run go help importpath for the details.

The directories that go get creates are true clients of the remote
repository, not just copies of the files, so you can use
version-control commands to see a diff of local edits you’ve made or
to update to a different revision.

For example, the golang.org/x/net directory is a Git client:

Click here to view code image

$ cd $GOPATH/src/golang.org/x/net
$ git remote -v
origin https://go.googlesource.com/net (fetch)
origin https://go.googlesource.com/net (push)

Notice that the apparent domain name in the package’s import path,
golang.org, differs from the actual domain name of the Git
server, go.googlesource.com.

This is a feature of the go tool that lets packages use a custom
domain name in their import path while being hosted by a generic
service such as googlesource.com or github.com.

HTML pages beneath https://golang.org/x/net/html include the
metadata shown below, which redirects the go tool to the Git
repository at the actual hosting site:

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch https://golang.org/x/net/html | grep go-import
<meta name="go-import"
 content="golang.org/x/net git https://go.googlesource.com/net">

If you specify the -u flag, go get will ensure that all

packages it visits, including dependencies, are updated to their
latest version before being built and installed.

Without that flag, packages that already exist locally will not be
updated.

The go get -u command generally retrieves the latest version of
each package, which is convenient when you’re getting started but may
be inappropriate for deployed projects, where precise control of
dependencies is critical for release hygiene.

The usual solution to this problem is to vendor the code, that
is, to make a persistent local copy of all the necessary dependencies,

and to update this copy carefully and deliberately.

Prior to Go 1.5, this required changing those packages’ import
paths, so our copy of golang.org/x/net/html would become
gopl.io/vendor/golang.org/x/net/html.

More recent versions of the go tool support vendoring directly,
though we don’t have space to show the details here.

See Vendor Directories in the output of the
go help gopath command.

Exercise 10.3:
Using fetch http://gopl.io/ch1/helloworld?go-get=1, find out which
service hosts the code samples for this book.

(HTTP requests from go get include the go-get parameter
so that servers can distinguish them from ordinary browser requests.)

10.7.3 Building Packages

The go build

command compiles each argument package. If the package
is a library, the result is discarded; this merely checks that the
package is free of compile errors.

If the package is named main, go build
invokes the linker to create an executable in the current directory; the
name of the executable is taken from the last segment of the package’s
import path.

Since each directory contains one package, each
executable program, or command in Unix terminology, requires
its own directory.

These directories are sometimes children of a directory named cmd,
such as the golang.org/x/tools/cmd/godoc command which serves
Go package documentation through a web interface
(§10.7.4).

Packages may be specified by their import paths, as
we saw above, or by a relative directory name, which must start with a
. or .. segment even if this would not ordinarily be required.

If no argument is provided, the current directory is assumed.

Thus the following commands build the same package,
though each writes the executable to the directory in which go build
is run:

Click here to view code image

$ cd $GOPATH/src/gopl.io/ch1/helloworld
$ go build

and:

Click here to view code image

$ cd anywhere
$ go build gopl.io/ch1/helloworld

and:

Click here to view code image

$ cd $GOPATH
$ go build ./src/gopl.io/ch1/helloworld

but not:

Click here to view code image

$ cd $GOPATH
$ go build src/gopl.io/ch1/helloworld
Error: cannot find package "src/gopl.io/ch1/helloworld".

Packages may also be specified as a list of file names, though this
tends to be used only for small programs and one-off experiments. If
the package name is main, the executable name comes from the
basename of the first .go file.

Click here to view code image

$ cat quoteargs.go
package main

import (
 "fmt"
 "os"
)

func main() {
 fmt.Printf("%q\n", os.Args[1:])
}
$ go build quoteargs.go
$./quoteargs one "two three" four\ five
["one" "two three" "four five"]

Particularly for throwaway programs like this one, we want to run
the executable as soon as we’ve built it. The go run command
combines these two steps:

Click here to view code image

$ go run quoteargs.go one "two three" four\ five
["one" "two three" "four five"]

The first argument that doesn’t end in .go is assumed to be the
beginning of the list of arguments to the Go executable.

By default, the go build command builds the requested package and
all its dependencies, then throws away all the compiled code
except the final executable, if any.

Both the dependency analysis and the compilation are surprisingly
fast, but as projects grow to dozens of packages and hundreds of
thousands of lines of code, the time to recompile dependencies can
become noticeable, potentially several seconds, even when those
dependencies haven’t changed at all.

The go install command is very similar to go build,
except that it saves the compiled code for each
package and command instead of throwing it away.

Compiled packages are saved beneath the $GOPATH/pkg directory
corresponding to the src directory in which the source resides,
and command executables are saved in the $GOPATH/bin directory.

(Many users put $GOPATH/bin on their executable search path.)

Thereafter, go build and go install do not run the
compiler for those packages and commands if they have not changed,
making subsequent builds much faster.

For convenience, go build -i installs the packages that are
dependencies of the build target.

Since compiled packages vary by platform and architecture,
go install saves them beneath a subdirectory whose name
incorporates the values of the GOOS and GOARCH
environment variables.

For example, on a Mac the golang.org/x/net/html package is
compiled and installed in the file golang.org/x/net/html.a
under $GOPATH/pkg/darwin_amd64.

It is straightforward to cross-compile a Go program, that is,
to build an executable intended for a different operating system or
CPU.

Just set the GOOS or GOARCH variables during the build.

The cross program prints the operating system and
architecture for which it was built:

Click here to view code image

gopl.io/ch10/cross

func main() {
 fmt.Println(runtime.GOOS, runtime.GOARCH)
}

The following commands produce 64-bit and 32-bit executables respectively:

Click here to view code image

$ go build gopl.io/ch10/cross
$./cross
darwin amd64
$ GOARCH=386 go build gopl.io/ch10/cross
$./cross
darwin 386

Some packages may need to compile different versions of the code for
certain platforms or processors, to deal with low-level portability
issues or to provide optimized versions of important routines, for
instance.

If a file name includes an operating system or processor architecture name
like net_linux.go or asm_amd64.s, then the go
tool will compile the file only when building for that target.

Special comments called build tags give more fine-grained
control.

For example, if a file contains this comment:

// +build linux darwin

before the package declaration (and its doc comment),
go build will compile it only when building for Linux or Mac
OS X, and this comment says never to compile the file:

// +build ignore

For more details, see the Build Constraints section of the
go/build package’s documentation:

$ go doc go/build

10.7.4 Documenting Packages

Go style strongly encourages good documentation of package APIs.

Each declaration of an exported package member and the package
declaration itself should be immediately preceded by a comment
explaining its purpose and usage.

Go doc comments are always complete sentences, and the first

sentence is usually a summary that starts with the name being declared.

Function parameters and other identifiers are mentioned without
quotation or markup.

For example, here’s the doc comment for fmt.Fprintf:

Click here to view code image

// Fprintf formats according to a format specifier and writes to w.
// It returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (int, error)

The details of Fprintf’s formatting are explained in a doc
comment associated with the fmt package itself.

A comment immediately preceding a package declaration is
considered the doc comment for the package as a whole.

There must be only one, though it may appear in any file.

Longer package comments may warrant a file of their own;
fmt’s is over 300 lines.

This file is usually called doc.go.

Good documentation need not be extensive, and documentation is no
substitute for simplicity.

Indeed, Go’s conventions favor brevity and simplicity in
documentation as in all things, since documentation, like code,
requires maintenance too.

Many declarations can be explained in one well-worded
sentence, and if the behavior is truly obvious, no comment is needed.

Throughout the book, as space permits, we’ve preceded many
declarations by doc comments, but you will find better examples as you
browse the standard library.

Two tools can help you do that.

The go doc tool prints the declaration and doc comment of the
entity specified on the command line, which may be a package:

Click here to view code image

$ go doc time
package time // import "time"

Package time provides functionality for measuring and displaying time.

const Nanosecond Duration = 1 ...
func After(d Duration) <-chan Time
func Sleep(d Duration)
func Since(t Time) Duration
func Now() Time
type Duration int64
type Time struct { ... }
...many more...

or a package member:

Click here to view code image

$ go doc time.Since
func Since(t Time) Duration

 Since returns the time elapsed since t.
 It is shorthand for time.Now().Sub(t).

or a method:

Click here to view code image

$ go doc time.Duration.Seconds
func (d Duration) Seconds() float64

 Seconds returns the duration as a floating-point number of seconds.

The tool does not need complete import paths or correct identifier
case.

This command prints the documentation of
(*json.Decoder).Decode from the encoding/json package:

Click here to view code image

$ go doc json.decode
func (dec *Decoder) Decode(v interface{}) error

 Decode reads the next JSON-encoded value from its input and stores
 it in the value pointed to by v.

The second tool, confusingly named godoc,
serves cross-linked HTML pages that
provide the same information as go doc and much more.

The godoc server at https://golang.org/pkg covers the
standard library.

Figure 10.1 shows the documentation for the
time package, and in Section 11.6 we’ll see
godoc’s interactive display of example programs.

The godoc server at https://godoc.org has a searchable
index of thousands of open-source packages.

[image: The time package in godoc.]
Figure 10.1.
The time package in godoc.

You can also run an instance of godoc in your workspace if you
want to browse your own packages.

Visit http://localhost:8000/pkg in your browser while running this
command:

$ godoc -http :8000

Its -analysis=type and -analysis=pointer flags augment
the documentation and the source code with the results of advanced
static analysis.

10.7.5 Internal Packages

The package is the most important mechanism for encapsulation
in Go programs. Unexported identifiers are visible only within the same
package, and exported identifiers are visible to the world.

Sometimes, though, a middle ground would be helpful, a way to define
identifiers that are visible to a small set of trusted packages, but
not to everyone.

For example, when we’re breaking up a large package into more
manageable parts, we may not want to reveal the interfaces between
those parts to other packages.

Or we may want to share utility functions across several packages of a
project without exposing them more widely.

Or perhaps we just want to experiment with a new package without
prematurely committing to its API, by putting it “on probation” with a
limited set of clients.

To address these needs, the go build tool treats a package specially
if its import path contains a path segment named internal.

Such packages are called internal packages.

An internal package may be imported only by another package that is
inside the tree rooted at the parent of the internal directory.

For example, given the packages below,
net/http/internal/chunked can be imported from
net/http/httputil or net/http, but not from
net/url.

However, net/url may import net/http/httputil.

net/http
net/http/internal/chunked
net/http/httputil
net/url

10.7.6 Querying Packages

The go list tool reports information about available packages.

In its simplest form, go list tests whether a package is present in
the workspace and prints its import path if so:

Click here to view code image

$ go list github.com/go-sql-driver/mysql
github.com/go-sql-driver/mysql

An argument to go list may contain the “...” wildcard,
which matches any substring of a package’s import path.

We can use it to enumerate all the packages within a Go workspace:

$ go list ...
archive/tar
archive/zip
bufio
bytes
cmd/addr2line
cmd/api
...many more...

or within a specific subtree:

$ go list gopl.io/ch3/...
gopl.io/ch3/basename1
gopl.io/ch3/basename2
gopl.io/ch3/comma
gopl.io/ch3/mandelbrot
gopl.io/ch3/netflag
gopl.io/ch3/printints
gopl.io/ch3/surface

or related to a particular topic:

$ go list ...xml...
encoding/xml
gopl.io/ch7/xmlselect

The go list command obtains the complete metadata for each package, not
just the import path, and makes this information available to users or
other tools in a variety of formats.

The -json flag causes go list to print the entire record
of each package in JSON format:

Click here to view code image

$ go list -json hash
{
 "Dir": "/home/gopher/go/src/hash",
 "ImportPath": "hash",
 "Name": "hash",
 "Doc": "Package hash provides interfaces for hash functions.",
 "Target": "/home/gopher/go/pkg/darwin_amd64/hash.a",
 "Goroot": true,
 "Standard": true,
 "Root": "/home/gopher/go",
 "GoFiles": [
 "hash.go"
],
 "Imports": [
 "io"
],
 "Deps": [
 "errors",
 "io",
 "runtime",
 "sync",
 "sync/atomic",
 "unsafe"
]
}

The -f flag lets users customize the output format using the
template language of package text/template
(§4.6).

This command prints the transitive dependencies of the
strconv package, separated by spaces:

Click here to view code image

$ go list -f '{{join .Deps " "}}' strconv
errors math runtime unicode/utf8 unsafe

and this command prints the direct imports of each package in the
compress subtree of the standard library:

Click here to view code image

$ go list -f '{{.ImportPath}} -> {{join .Imports " "}}' compress/...
compress/bzip2 -> bufio io sort
compress/flate -> bufio fmt io math sort strconv
compress/gzip -> bufio compress/flate errors fmt hash hash/crc32 io time
compress/lzw -> bufio errors fmt io
compress/zlib -> bufio compress/flate errors fmt hash hash/adler32 io

The go list command is useful for both one-off interactive queries
and for build and test automation scripts.

We’ll use it again in Section 11.2.4.

For more information, including the set of available fields and their
meaning, see the output of go help list.

In this chapter, we’ve explained all the important subcommands of the
go tool—except one.

In the next chapter, we’ll see how the go test command is used
for testing Go programs.

Exercise 10.4:
Construct a tool that reports the set of all packages in the workspace
that transitively depend on the packages specified by the arguments.

Hint: you will need to run go list twice, once for the initial
packages and once for all packages.

You may want to parse its JSON output using
the encoding/json package (§4.5).

11. Testing

Maurice Wilkes, the developer of EDSAC, the first stored-program

computer, had a startling insight while climbing the stairs of his
laboratory in 1949. In Memoirs of a Computer Pioneer, he recalled,
“The realization came over me with full force that a good part of the
remainder of my life was going to be spent in finding errors in my own
programs.” Surely every programmer of a stored-program computer since then
can sympathize with Wilkes, though perhaps not without some bemusement
at his naïveté about the difficulties of software construction.

Programs today are far larger and more complex than in Wilkes’s time, of course, and a
great deal of effort has been spent on techniques to make this
complexity manageable. Two techniques in particular stand out for their
effectiveness. The first is routine peer review of programs before
they are deployed. The second, the subject of this chapter, is
testing.

Testing, by which we implicitly mean automated testing, is the
practice of writing small programs that check that the code under test

(the production code) behaves as expected for certain inputs, which
are usually either carefully chosen to exercise certain features or randomized
to ensure broad coverage.

The field of software testing is enormous. The task of testing
occupies all programmers some of the time and some programmers all of
the time. The literature on testing includes thousands of
printed books and millions of words of blog posts. In every
mainstream programming language, there are dozens of software packages
intended for test construction, some with a great deal of theory, and
the field seems to attract more than a few prophets with cult-like
followings. It is almost enough to convince programmers that to
write effective tests they must acquire a whole new set of skills.

Go’s approach to testing can seem rather low-tech in comparison.
It relies on one command, go test, and a set of conventions for

writing test functions that go test can run. The
comparatively lightweight mechanism is effective for pure testing,
and it extends naturally to benchmarks
and systematic examples for documentation.

In practice, writing test code is not much different from writing
the original program itself. We write short functions that focus
on one part of the task. We have to be careful of boundary conditions,
think about data structures, and reason about what results a
computation should produce from suitable inputs.

But this is the same process as writing ordinary Go code;
it needn’t require new notations, conventions, and tools.

11.1 The go test Tool

The go test subcommand is a test driver for Go packages that are organized
according to certain conventions. In a package directory, files whose
names end with _test.go are not part of the package ordinarily built

by go build but are a part of it when built by go test.

Within *_test.go files, three kinds of functions are treated
specially: tests, benchmarks, and examples. A test function, which is a
function whose name begins with Test, exercises some program logic

for correct behavior; go test calls the test function and reports
the result, which is either
PASS or FAIL. A benchmark function has a name beginning with Benchmark and
measures the performance of some operation; go test reports the mean execution time of the
operation. And an example function, whose name starts with
Example, provides machine-checked documentation.
We will cover tests in detail in Section 11.2, benchmarks in
Section 11.4, and examples in Section 11.6.

The go test tool scans the *_test.go files for these special

functions, generates a temporary main package that calls them all in
the proper way, builds and runs it, reports the results, and then cleans
up.

11.2 Test Functions

Each test file must import the testing package.
Test functions have the following signature:

func TestName(t *testing.T) {
 // ...
}

Test function names must begin with Test;
the optional suffix Name must begin with
a capital letter:

Click here to view code image

func TestSin(t *testing.T) { /* ... */ }
func TestCos(t *testing.T) { /* ... */ }
func TestLog(t *testing.T) { /* ... */ }

The t parameter provides methods for reporting test failures and
logging additional information. Let’s define an example package
gopl.io/ch11/word1, containing a single function IsPalindrome
that reports whether a string reads the same forward and backward.
(This implementation tests every byte twice if the string is a
palindrome; we’ll come back to that shortly.)

Click here to view code image

gopl.io/ch11/word1

// Package word provides utilities for word games.
package word

// IsPalindrome reports whether s reads the same forward and backward.
// (Our first attempt.)
func IsPalindrome(s string) bool {
 for i := range s {
 if s[i] != s[len(s)-1-i] {
 return false
 }
 }
 return true
}

In the same directory, the file word_test.go contains two test

functions named TestPalindrome and TestNonPalindrome.
Each checks that IsPalindrome gives the
right answer for a single input and reports failures using t.Error:

Click here to view code image

package word

import "testing"

func TestPalindrome(t *testing.T) {
 if !IsPalindrome("detartrated") {
 t.Error(`IsPalindrome("detartrated") = false`)
 }
 if !IsPalindrome("kayak") {
 t.Error(`IsPalindrome("kayak") = false`)
 }
}

func TestNonPalindrome(t *testing.T) {
 if IsPalindrome("palindrome") {
 t.Error(`IsPalindrome("palindrome") = true`)
 }
}

A go test (or go build) command with no package
arguments operates on the package in the current directory.

We can build and run the tests with the following command.

Click here to view code image

$ cd $GOPATH/src/gopl.io/ch11/word1
$ go test
ok gopl.io/ch11/word1 0.008s

Satisfied, we ship the program, but no sooner have the launch party
guests departed than the bug reports start to arrive. A French user
named Noelle Eve Elleon complains that IsPalindrome doesn’t recognize
“été.” Another, from Central America, is disappointed that it rejects “A man, a plan, a
canal: Panama.” These specific and small bug reports naturally lend
themselves to new test cases.

Click here to view code image

func TestFrenchPalindrome(t *testing.T) {
 if !IsPalindrome("été") {
 t.Error(`IsPalindrome("été") = false`)
 }
}

func TestCanalPalindrome(t *testing.T) {
 input := "A man, a plan, a canal: Panama"
 if !IsPalindrome(input) {
 t.Errorf(`IsPalindrome(%q) = false`, input)
 }
}

To avoid writing the long input string twice, we use Errorf,
which provides formatting like Printf.

When the two new tests have been added, the go test command fails with
informative error messages.

Click here to view code image

$ go test
--- FAIL: TestFrenchPalindrome (0.00s)
 word_test.go:28: IsPalindrome("été") = false
--- FAIL: TestCanalPalindrome (0.00s)
 word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false
FAIL
FAIL gopl.io/ch11/word1 0.014s

It’s good practice to write the test first and observe that it
triggers the same failure described by the user’s bug report. Only
then can we be confident that whatever fix we come up with addresses
the right problem.

As a bonus, running go test is usually quicker than manually going

through the steps described in the bug report, allowing us to iterate
more rapidly. If the test suite contains many slow tests, we may make
even faster progress if we’re selective about which ones we run.

The -v flag prints the name and execution time of each test in
the package:

Click here to view code image

$ go test -v
=== RUN TestPalindrome
--- PASS: TestPalindrome (0.00s)
=== RUN TestNonPalindrome
--- PASS: TestNonPalindrome (0.00s)
=== RUN TestFrenchPalindrome
--- FAIL: TestFrenchPalindrome (0.00s)
 word_test.go:28: IsPalindrome("été") = false
=== RUN TestCanalPalindrome
--- FAIL: TestCanalPalindrome (0.00s)
 word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false
FAIL
exit status 1
FAIL gopl.io/ch11/word1 0.017s

and the -run flag, whose argument is a regular expression, causes

go test to run only those tests whose function name matches the
pattern:

Click here to view code image

$ go test -v -run="French|Canal"
=== RUN TestFrenchPalindrome
--- FAIL: TestFrenchPalindrome (0.00s)
 word_test.go:28: IsPalindrome("été") = false
=== RUN TestCanalPalindrome
--- FAIL: TestCanalPalindrome (0.00s)
 word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false
FAIL
exit status 1
FAIL gopl.io/ch11/word1 0.014s

Of course, once we’ve gotten the selected tests to pass, we should
invoke go test with no flags to run the entire test suite one last
time before we commit the change.

Now our task is to fix the bugs.
A quick investigation reveals the cause of the first bug to be
IsPalindrome’s use of byte sequences, not rune sequences, so that
non-ASCII characters such as the é in "été" confuse it.

The second bug arises
from not ignoring spaces, punctuation, and letter case.

Chastened, we rewrite the function more carefully:

Click here to view code image

gopl.io/ch11/word2

// Package word provides utilities for word games.
package word

import "unicode"

// IsPalindrome reports whether s reads the same forward and backward.
// Letter case is ignored, as are non-letters.
func IsPalindrome(s string) bool {
 var letters []rune
 for _, r := range s {
 if unicode.IsLetter(r) {
 letters = append(letters, unicode.ToLower(r))
 }
 }
 for i := range letters {
 if letters[i] != letters[len(letters)-1-i] {
 return false
 }
 }
 return true
}

We also write a more comprehensive set of test cases that combines all the
previous ones and a number of new ones into a table.

Click here to view code image

func TestIsPalindrome(t *testing.T) {
 var tests = []struct {
 input string
 want bool
 }{
 {"", true},
 {"a", true},
 {"aa", true},
 {"ab", false},
 {"kayak", true},
 {"detartrated", true},
 {"A man, a plan, a canal: Panama", true},
 {"Evil I did dwell; lewd did I live.", true},
 {"Able was I ere I saw Elba", true},
 {"été", true},
 {"Et se resservir, ivresse reste.", true},
 {"palindrome", false}, // non-palindrome
 {"desserts", false}, // semi-palindrome
 }
 for _, test := range tests {
 if got := IsPalindrome(test.input); got != test.want {
 t.Errorf("IsPalindrome(%q) = %v", test.input, got)
 }
 }
}

Our new tests pass:

Click here to view code image

$ go test gopl.io/ch11/word2
ok gopl.io/ch11/word2 0.015s

This style of table-driven testing is very common in Go. It is

straightforward to add new table entries as needed, and since the
assertion logic is not duplicated, we can invest more effort in
producing a good error message.

The output of a failing test does not include the entire
stack trace at the moment of the call to t.Errorf. Nor does

t.Errorf cause a panic or stop the execution of the test, unlike
assertion failures in many test frameworks for other languages. Tests
are independent of each other. If an
early entry in the table causes the test to fail, later table entries
will still be checked, and thus we may learn about multiple failures
during a single run.

When we really must stop a test function, perhaps because some
initialization code failed or to prevent a failure already reported
from causing a confusing cascade of others, we use t.Fatal or
t.Fatalf.

These must be called from the same goroutine as the Test function, not
from another one created during the test.

Test failure messages are usually of the form "f(x) = y, want z",

where f(x) explains the attempted operation and its input, y is the
actual result, and z the expected result. Where convenient, as in
our palindrome example, actual Go syntax is used for the f(x) part.
Displaying x is particularly important in a table-driven test, since
a given assertion is executed many times with different values.

Avoid boilerplate and redundant information.

When testing a boolean function such as IsPalindrome, omit the
want z part since it adds no information.

If x, y, or z is lengthy, print a concise summary
of the relevant parts instead.

The author of a test should strive to help
the programmer who must diagnose a test failure.

Exercise 11.1:
Write tests for the charcount program in Section 4.3.

Exercise 11.2:
Write a set of tests for IntSet (§6.5)
that checks that its behavior after each operation is
equivalent to a set based on built-in maps.

Save your implementation for benchmarking in Exercise 11.7.

11.2.1 Randomized Testing

Table-driven tests are convenient for checking that a function works
on inputs carefully selected to exercise interesting cases in the
logic. Another approach, randomized testing, explores a broader

range of inputs by constructing inputs at random.

How do we know what output to expect from our function, given a random
input? There are two strategies. The first is to write an
alternative implementation of the function that uses a less efficient
but simpler and clearer algorithm, and check that both implementations
give the same result. The second is to create input values according
to a pattern so that we know what output to expect.

The example below uses the second approach: the randomPalindrome
function generates words that are known to be palindromes by construction.

Click here to view code image

import "math/rand"

// randomPalindrome returns a palindrome whose length and contents
// are derived from the pseudo-random number generator rng.
func randomPalindrome(rng *rand.Rand) string {
 n := rng.Intn(25) // random length up to 24
 runes := make([]rune, n)
 for i := 0; i < (n+1)/2; i++ {
 r := rune(rng.Intn(0x1000)) // random rune up to '\u0999'
 runes[i] = r
 runes[n-1-i] = r
 }
 return string(runes)
}

func TestRandomPalindromes(t *testing.T) {
 // Initialize a pseudo-random number generator.
 seed := time.Now().UTC().UnixNano()
 t.Logf("Random seed: %d", seed)
 rng := rand.New(rand.NewSource(seed))

 for i := 0; i < 1000; i++ {
 p := randomPalindrome(rng)
 if !IsPalindrome(p) {
 t.Errorf("IsPalindrome(%q) = false", p)
 }
 }
}

Since randomized tests are nondeterministic, it is critical that the
log of the failing test record sufficient information to reproduce
the failure. In our example, the input p to IsPalindrome tells us
all we need to know, but for functions that accept more complex
inputs, it may be simpler to log the seed of the pseudo-random number
generator (as we do above) than to dump the entire input data
structure. Armed with that seed value, we can easily modify the test
to replay the failure deterministically.

By using the current time as a source of randomness, the test
will explore novel inputs each time it is run, over the entire course
of its lifetime. This is especially valuable if your project uses an
automated system to run all its tests periodically.

Exercise 11.3:
TestRandomPalindromes only tests palindromes.

Write a randomized test that generates and verifies non-palindromes.

Exercise 11.4:
Modify randomPalindrome to exercise IsPalindrome’s
handling of punctuation and spaces.

11.2.2 Testing a Command

The go test tool is useful for testing library packages, but with a little
effort we can use it to test commands as well.

A package named main ordinarily produces an executable program,
but it can be imported as a library too.

Let’s write a test for the echo program of Section 2.3.2.
We’ve split the program into two functions: echo does the real work, while
main parses and reads the flag values and reports any errors returned
by echo.

Click here to view code image

gopl.io/ch11/echo

// Echo prints its command-line arguments.
package main

import (
 "flag"
 "fmt"
 "io"
 "os"
 "strings"
)

var (
 n = flag.Bool("n", false, "omit trailing newline")
 s = flag.String("s", " ", "separator")
)

var out io.Writer = os.Stdout // modified during testing

func main() {
 flag.Parse()
 if err := echo(!*n, *s, flag.Args()); err != nil {
 fmt.Fprintf(os.Stderr, "echo: %v\n", err)
 os.Exit(1)
 }
}

func echo(newline bool, sep string, args []string) error {
 fmt.Fprint(out, strings.Join(args, sep))
 if newline {
 fmt.Fprintln(out)
 }
 return nil
}

From the test, we will call echo with a variety of arguments and

flag settings and check that it prints the correct output in each
case, so we’ve added parameters to echo to reduce its dependence
on global variables. That said, we’ve also introduced another global
variable, out, the io.Writer to which the result will be written.

By having echo write through this variable, not directly to
os.Stdout, the tests can substitute a different Writer
implementation that records what was written for later inspection.

Here’s the test, in file echo_test.go:

Click here to view code image

package main

import (
 "bytes"
 "fmt"
 "testing"
)

func TestEcho(t *testing.T) {
 var tests = []struct {
 newline bool
 sep string
 args []string
 want string
 }{
 {true, "", []string{}, "\n"},
 {false, "", []string{}, ""},
 {true, "\t", []string{"one", "two", "three"}, "one\ttwo\tthree\n"},
 {true, ",", []string{"a", "b", "c"}, "a,b,c\n"},
 {false, ":", []string{"1", "2", "3"}, "1:2:3"},
 }

 for _, test := range tests {
 descr := fmt.Sprintf("echo(%v, %q, %q)",
 test.newline, test.sep, test.args)

 out = new(bytes.Buffer) // captured output
 if err := echo(test.newline, test.sep, test.args); err != nil {
 t.Errorf("%s failed: %v", descr, err)
 continue
 }
 got := out.(*bytes.Buffer).String()
 if got != test.want {
 t.Errorf("%s = %q, want %q", descr, got, test.want)
 }
 }
}

Notice that the test code is in the same package as the production code.
Although the package name is main and it defines a main function,
during testing this package acts as a library that exposes the
function TestEcho to the test driver; its main function is
ignored.

By organizing the test as a table, we can easily add new
test cases. Let’s see what happens when the test fails, by
adding this line to the table:

Click here to view code image

{true, ",", []string{"a", "b", "c"}, "a b c\n"}, // NOTE: wrong expectation!

go test prints

Click here to view code image

$ go test gopl.io/ch11/echo
--- FAIL: TestEcho (0.00s)
 echo_test.go:31: echo(true, ",", ["a" "b" "c"]) = "a,b,c", want "a b c\n"
FAIL
FAIL gopl.io/ch11/echo 0.006s

The error message describes the attempted operation
(using Go-like syntax), the actual behavior, and the expected behavior, in
that order. With an informative error message such as this, you may have a
pretty good idea about the root cause before you’ve even located the
source code of the test.

It’s important that code being tested not call log.Fatal or os.Exit,
since these will stop the process in its tracks; calling these
functions should be regarded as the exclusive right of main. If
something totally unexpected happens and a function panics, the test driver will
recover, though the test will of course be considered a failure. Expected
errors such as those resulting from bad user input, missing files, or
improper configuration should be reported by returning a
non-nil error value.

Fortunately (though unfortunate as an illustration), our echo
example is so simple that it will never return a non-nil error.

11.2.3 White-Box Testing

One way of categorizing tests is by the level of knowledge they require of the
internal workings of the package under test.

A black-box test

assumes nothing about the package other than what is exposed by its

API and specified by its documentation; the package’s internals are
opaque.

In contrast, a white-box test

has privileged access to the internal functions and data structures of
the package and can make observations and changes that an ordinary
client cannot.

For example, a white-box test can check that the
invariants of the package’s data types are maintained after every
operation.

(The name white box is traditional,
but clear box would be more accurate.)

The two approaches are complementary. Black-box tests are usually
more robust, needing fewer updates as the software evolves. They also
help the test author empathize with the client of the package and can
reveal flaws in the API design. In contrast, white-box tests can
provide more detailed coverage of the trickier parts of the
implementation.

We’ve already seen examples of both kinds.

TestIsPalindrome calls only the exported function
IsPalindrome and is thus a black-box test.

TestEcho calls the echo function and updates the global
variable out, both of which are unexported, making it a
white-box test.

While developing TestEcho, we modified the echo function to
use the package-level variable out when writing its output, so
that the test could replace the standard output with an alternative
implementation that records the data for later inspection.

Using the same technique, we can replace other parts of the production
code with easy-to-test “fake” implementations.

The advantage of fake implementations is that they can be simpler to
configure, more predictable, more reliable, and easier to observe.

They can also avoid undesirable side effects such as updating a
production database or charging a credit card.

The code below shows the quota-checking logic in a web service that
provides networked storage to users. When users exceed 90% of their
quota, the system sends them a warning email.

Click here to view code image

gopl.io/ch11/storage1

package storage

import (
 "fmt"
 "log"
 "net/smtp"
)

var usage = make(map[string]int64)
func bytesInUse(username string) int64 { return usage[username] }

// Email sender configuration.
// NOTE: never put passwords in source code!
const sender = "notifications@example.com"
const password = "correcthorsebatterystaple"
const hostname = "smtp.example.com"

const template = `Warning: you are using %d bytes of storage,
%d%% of your quota.`

func CheckQuota(username string) {
 used := bytesInUse(username)
 const quota = 1000000000 // 1GB
 percent := 100 * used / quota
 if percent < 90 {
 return // OK
 }
 msg := fmt.Sprintf(template, used, percent)
 auth := smtp.PlainAuth("", sender, password, hostname)
 err := smtp.SendMail(hostname+":587", auth, sender,
 []string{username}, []byte(msg))
 if err != nil {
 log.Printf("smtp.SendMail(%s) failed: %s", username, err)
 }
}

We’d like to test it, but we don’t want the test to send out real
email. So we move the email logic into its own function and store
that function in an unexported package-level variable, notifyUser.

Click here to view code image

gopl.io/ch11/storage2

var notifyUser = func(username, msg string) {
 auth := smtp.PlainAuth("", sender, password, hostname)
 err := smtp.SendMail(hostname+":587", auth, sender,
 []string{username}, []byte(msg))
 if err != nil {
 log.Printf("smtp.SendEmail(%s) failed: %s", username, err)
 }
}

func CheckQuota(username string) {
 used := bytesInUse(username)
 const quota = 1000000000 // 1GB
 percent := 100 * used / quota
 if percent < 90 {
 return // OK
 }
 msg := fmt.Sprintf(template, used, percent)
 notifyUser(username, msg)
}

We can now write a test that substitutes a simple fake
notification mechanism instead of sending real email. This one records the
notified user and the contents of the message.

Click here to view code image

package storage

import (
 "strings"
 "testing"
)

func TestCheckQuotaNotifiesUser(t *testing.T) {
 var notifiedUser, notifiedMsg string
 notifyUser = func(user, msg string) {
 notifiedUser, notifiedMsg = user, msg
 }

 const user = "joe@example.org"
 usage[user]= 980000000 // simulate a 980MB-used condition

 CheckQuota(user)
 if notifiedUser == "" && notifiedMsg == "" {
 t.Fatalf("notifyUser not called")
 }
 if notifiedUser != user {
 t.Errorf("wrong user (%s) notified, want %s",
 notifiedUser, user)
 }
 const wantSubstring = "98% of your quota"
 if !strings.Contains(notifiedMsg, wantSubstring) {
 t.Errorf("unexpected notification message <<%s>>, "+
 "want substring %q", notifiedMsg, wantSubstring)
 }
}

There’s one problem: after this test function has returned,
CheckQuota no longer works as it should because it’s still using the
test’s fake implementation of notifyUsers. (There is always a risk
of this kind when updating global variables.) We must modify the test
to restore the previous value so that subsequent tests observe no
effect, and we must do this on all execution paths, including test
failures and panics. This naturally suggests defer.

Click here to view code image

func TestCheckQuotaNotifiesUser(t *testing.T) {
 // Save and restore original notifyUser.
 saved := notifyUser
 defer func() { notifyUser = saved }()

 // Install the test's fake notifyUser.
 var notifiedUser, notifiedMsg string
 notifyUser = func(user, msg string) {
 notifiedUser, notifiedMsg = user, msg
 }
 // ...rest of test...
}

This pattern can be used to temporarily save and restore all kinds of
global variables, including command-line flags, debugging options, and

performance parameters; to install and remove hooks that cause the
production code to call some test code when something interesting
happens; and to coax the production code into rare but important
states, such as timeouts, errors, and even specific interleavings of
concurrent activities.

Using global variables in this way is safe only because go test does
not normally run multiple tests concurrently.

11.2.4 External Test Packages

Consider the packages net/url, which provides a URL parser, and
net/http, which provides a web server and HTTP client library.

As we might expect, the higher-level net/http depends on the
lower-level net/url.

However, one of the tests in net/url is an example
demonstrating the interaction between URLs and the HTTP client
library.

In other words, a test of the lower-level package imports the
higher-level package.

[image: A test of net/url depends on net/http.]
Figure 11.1.
A test of net/url depends on net/http.

Declaring this test function in the net/url package would
create a cycle in the package import graph, as depicted by the upwards
arrow in Figure 11.1,
but as we explained in Section 10.1,
the Go specification forbids import cycles.

We resolve the problem by declaring the test function in an
external test package, that is, in a file in the net/url
directory whose package declaration reads package url_test.

The extra suffix _test is a signal to go test that it
should build an additional package containing just these files and
run its tests.

It may be helpful to think of this external test package as if it had
the import path net/url_test,
but it cannot be imported under this or any other name.

Because external tests live in a separate package, they may import
helper packages that also depend on the package being tested; an
in-package test cannot do this.

In terms of the design layers, the external test package is logically
higher up than both of the packages it depends upon,
as shown in Figure 11.2.

[image: External test packages break dependency cycles.]
Figure 11.2.
External test packages break dependency cycles.

By avoiding import cycles, external test packages allow tests,
especially integration tests

(which test the interaction of several components), to import other
packages freely, exactly as an application would.

We can use the go list tool

to summarize which Go source files in a
package directory are production code, in-package tests, and external
tests.

We’ll use the fmt package as an example.

GoFiles is the list of files that contain the production code;
these are the files
that go build will include in your application:

Click here to view code image

$ go list -f={{.GoFiles}} fmt
[doc.go format.go print.go scan.go]

TestGoFiles is the list of files that also belong to the fmt package, but
these files, whose names all end in _test.go, are included only
when building tests:

Click here to view code image

$ go list -f={{.TestGoFiles}} fmt
[export_test.go]

The package’s tests would usually reside in these files, though
unusually fmt has none; we’ll explain the purpose of
export_test.go in a moment.

XTestGoFiles is the list of files that constitute the external test package,
fmt_test, so these files must import the fmt package in
order to use it.

Again, they are included only during testing:

Click here to view code image

$ go list -f={{.XTestGoFiles}} fmt
[fmt_test.go scan_test.go stringer_test.go]

Sometimes an external test package may need privileged access to
the internals of the package under test, if for example a white-box
test must live in a separate package to avoid an import cycle.

In such cases, we use a trick: we add declarations to an in-package
_test.go file to expose the necessary internals to the
external test.

This file thus offers the test a “back door” to the package.

If the source file exists only for this purpose and contains no tests
itself, it is often called export_test.go.

For example, the implementation of the fmt package needs the
functionality of unicode.IsSpace as part of fmt.Scanf.

To avoid creating an undesirable dependency, fmt does not import the
unicode package and its large tables of data; instead, it
contains a simpler implementation, which it calls isSpace.

To ensure that the behaviors of fmt.isSpace and
unicode.IsSpace do not drift apart, fmt prudently
contains a test.

It is an external test, and thus it cannot access isSpace directly, so
fmt opens a back door to it by declaring an exported variable
that holds the internal isSpace function.

This is the entirety of the fmt package’s
export_test.go file.

package fmt

var IsSpace = isSpace

This test file defines no tests; it just declares the exported symbol
fmt.IsSpace for use by the external test.

This trick can also be used whenever an external test needs to use some
of the techniques of white-box testing.

11.2.5 Writing Effective Tests

Many newcomers to Go are surprised by the minimalism of Go’s testing
framework. Other languages’ frameworks provide mechanisms for
identifying test functions (often using reflection or metadata), hooks
for performing “setup” and “teardown” operations before and after
the tests run, and libraries of utility functions for asserting common
predicates, comparing values, formatting error messages, and aborting
a failed test (often using exceptions). Although these mechanisms can
make tests very concise, the resulting tests often seem like they
are written in a foreign language. Furthermore, although they may
report PASS or FAIL correctly, their manner may be unfriendly to
the unfortunate maintainer, with cryptic failure messages like
"assert: 0 == 1" or page after page of stack traces.

Go’s attitude to testing stands in stark contrast. It expects test
authors to do most of this work themselves, defining functions to
avoid repetition, just as they would for ordinary programs. The
process of testing is not one of rote form filling; a test has a user
interface too, albeit one whose only users are also its maintainers.
A good test does not explode on failure but prints a clear and
succinct description of the symptom of the problem, and perhaps other
relevant facts about the context. Ideally, the maintainer should not
need to read the source code to decipher a test failure. A good test
should not give up after one failure but should try to report several
errors in a single run, since the pattern of failures may itself be
revealing.

The assertion function below compares two values, constructs a generic
error message, and stops the program. It’s easy to use and it’s
correct, but when it fails, the error message is almost useless. It
does not solve the hard problem of providing a good user interface.

Click here to view code image

import (
 "fmt"
 "strings"
 "testing"
)

// A poor assertion function.
func assertEqual(x, y int) {
 if x != y {
 panic(fmt.Sprintf("%d != %d", x, y))
 }
}

func TestSplit(t *testing.T) {
 words := strings.Split("a:b:c", ":")
 assertEqual(len(words), 3)
 // ...
}

In this sense, assertion functions suffer from premature
abstraction:

by treating the failure of this particular test as a
mere difference of two integers, we forfeit the opportunity to provide
meaningful context. We can provide a better message by starting from
the concrete details, as in the example below. Only once
repetitive patterns emerge in a given test suite is it time to
introduce abstractions.

Click here to view code image

func TestSplit(t *testing.T) {
 s, sep := "a:b:c", ":"
 words := strings.Split(s, sep)
 if got, want := len(words), 3; got != want {
 t.Errorf("Split(%q, %q) returned %d words, want %d",
 s, sep, got, want)
 }
 // ...
}

Now the test reports the function that was called, its inputs, and
the significance of the result; it explicitly identifies the actual
value and the expectation; and it continues to execute even if this
assertion should fail. Once we’ve written a test like this, the
natural next step is often not to define a function to replace the
entire if statement, but to execute the test in a loop in which s,
sep, and want vary,
like the table-driven test of IsPalindrome.

The previous example didn’t need any utility functions, but of
course that shouldn’t stop us from introducing functions when they
help make the code simpler.

(We’ll look at one such utility function, reflect.DeepEqual, in
Section 13.3.)

The key to a good test is to start by
implementing the concrete behavior that you want and only then use
functions to simplify the code and eliminate repetition. Best results
are rarely obtained by starting with a library of abstract, generic
testing functions.

Exercise 11.5:
Extend TestSplit to use a table of inputs and expected outputs.

11.2.6 Avoiding Brittle Tests

An application that often fails when it encounters new but valid
inputs is called buggy; a test that spuriously fails when a sound
change was made to the program is called brittle. Just as a buggy

program frustrates its users, a brittle test exasperates its
maintainers. The most brittle tests, which fail for almost any change
to the production code, good or bad, are sometimes called change
detector or status quo tests, and the time spent dealing with them
can quickly deplete any benefit they once seemed to provide.

When a function under test produces a complex output such as a long
string, an elaborate data structure, or a file, it’s tempting to check
that the output is exactly equal to some “golden” value that was
expected when the test was written. But as the program evolves,
parts of the output will likely change, probably in good ways,
but change nonetheless. And it’s not just the output; functions with
complex inputs often break because the input used in a test is no
longer valid.

The easiest way to avoid brittle tests is to check only the properties
you care about. Test your program’s simpler and more stable interfaces in
preference to its internal functions. Be selective in your
assertions. Don’t check for exact string matches, for example, but
look for relevant substrings that will remain unchanged as the
program evolves. It’s often worth writing a substantial function to
distill a complex output down to its essence so that assertions will be
reliable.

Even though that may seem like a lot of up-front effort, it can pay
for itself quickly in time that would otherwise be spent fixing
spuriously failing tests.

11.3 Coverage

By its nature, testing is never complete. As the influential computer
scientist Edsger Dijkstra put it, “Testing

shows the presence, not the absence of bugs.” No quantity of tests
can ever prove a package free of bugs. At best, they increase our
confidence that the package works well in a wide range of important
scenarios.

The degree to which a test suite exercises the package under test is

called the test’s coverage. Coverage can’t be quantified
directly—the dynamics of all but the most trivial programs are
beyond precise measurement—but there are heuristics that can help us
direct our testing efforts to where they are more likely to be useful.

Statement coverage is the simplest and most widely used of these

heuristics. The statement coverage of a test suite is the fraction of
source statements that are executed at least once during the test.

In this section, we’ll use Go’s cover tool, which is integrated
into go test, to measure statement coverage and help
identify obvious gaps in the tests.

The code below is a table-driven test for the expression evaluator we
built back in Chapter 7:

Click here to view code image

gopl.io/ch7/eval

func TestCoverage(t *testing.T) {
 var tests = []struct {
 input string
 env Env
 want string // expected error from Parse/Check or result from Eval
 }{
 {"x % 2", nil, "unexpected '%'"},
 {"!true", nil, "unexpected '!'"},
 {"log(10)", nil, `unknown function "log"`},
 {"sqrt(1, 2)", nil, "call to sqrt has 2 args, want 1"},
 {"sqrt(A / pi)", Env{"A": 87616, "pi": math.Pi}, "167"},
 {"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y": 10}, "1729"},
 {"5 / 9 * (F - 32)", Env{"F": -40}, "-40"},
 }

 for _, test := range tests {
 expr, err := Parse(test.input)
 if err == nil {
 err = expr.Check(map[Var]bool{})
 }
 if err != nil {
 if err.Error() != test.want {
 t.Errorf("%s: got %q, want %q", test.input, err, test.want)
 }
 continue
 }

 got := fmt.Sprintf("%.6g", expr.Eval(test.env))
 if got != test.want {
 t.Errorf("%s: %v => %s, want %s",
 test.input, test.env, got, test.want)
 }
 }
}

First, let’s check that the test passes:

Click here to view code image

$ go test -v -run=Coverage gopl.io/ch7/eval
=== RUN TestCoverage
--- PASS: TestCoverage (0.00s)
PASS
ok gopl.io/ch7/eval 0.011s

This command displays the usage message of the coverage tool:

Click here to view code image

$ go tool cover
Usage of 'go tool cover':
Given a coverage profile produced by 'go test':
 go test -coverprofile=c.out

Open a web browser displaying annotated source code:
 go tool cover -html=c.out
...

The go tool command runs one of the executables from the Go
toolchain. These programs live in the directory
$GOROOT/pkg/tool/${GOOS}_${GOARCH}. Thanks to go build, we
rarely need to invoke them directly.

Now we run the test with the -coverprofile flag:

Click here to view code image

$ go test -run=Coverage -coverprofile=c.out gopl.io/ch7/eval
ok gopl.io/ch7/eval 0.032s coverage: 68.5% of statements

This flag enables the collection of coverage data by
instrumenting the production code.

That is, it modifies a copy of the source code so that before each
block of statements is executed, a boolean variable is set, with one
variable per block.

Just before the modified program exits, it writes the value of each
variable to the specified log file c.out and prints a summary of the
fraction of statements that were executed.

(If all you need is the summary, use go test -cover.)

If go test is run with the -covermode=count flag, the
instrumentation for each block increments a
counter instead of setting a boolean. The resulting log of execution counts of each block
enables quantitative comparisons between “hotter” blocks,
which are more frequently executed, and “colder” ones.

Having gathered the data, we run the cover tool, which
processes the log, generates an HTML report, and opens it in a new
browser window (Figure 11.3).

$ go tool cover -html=c.out

[image: A coverage report.]
Figure 11.3.
A coverage report.

Each statement is colored green if it was covered or red if it
was not covered. For clarity, we’ve shaded the background of
the red text.

We can see immediately that none of our inputs
exercised the unary operator Eval method.

If we add this new test case to the table
and re-run the previous two commands, the unary expression code
becomes green:

Click here to view code image

{"-x * -x", eval.Env{"x": 2}, "4"}

The two panic statements remain red, however.

This should not be surprising, because these statements are supposed
to be unreachable.

Achieving 100% statement coverage sounds like a noble goal, but it is not
usually feasible in practice, nor is it likely to be a good use of effort.

Just because a statement is executed does not mean it is bug-free;
statements containing complex expressions must be executed many times
with different inputs to cover the interesting cases.

Some statements, like the panic statements above, can never be
reached.

Others, such as those that handle esoteric errors, are hard to
exercise but rarely reached in practice.

Testing is fundamentally a pragmatic endeavor, a trade-off between the
cost of writing tests and the cost of failures that could have been
prevented by tests. Coverage tools can help identify the weakest
spots, but devising good test cases demands the same rigorous thinking
as programming in general.

11.4 Benchmark Functions

Benchmarking is the practice of measuring the performance of a program
on a fixed workload.

In Go, a benchmark function looks like a test function, but with the

Benchmark prefix and a *testing.B parameter that

provides most
of the same methods as a *testing.T, plus a few extra related to performance
measurement.

It also exposes an integer field N, which specifies the number
of times to perform the operation being measured.

Here’s a benchmark for IsPalindrome that calls it N times in
a loop.

Click here to view code image

import "testing"

func BenchmarkIsPalindrome(b *testing.B) {
 for i := 0; i < b.N; i++ {
 IsPalindrome("A man, a plan, a canal: Panama")
 }
}

We run it with the command below.

Unlike tests, by default no benchmarks are run.
The argument to the -bench flag selects which benchmarks to run. It
is a regular expression matching the names of Benchmark functions,

with a default value that matches none of them. The “.” pattern causes it to
match all benchmarks in the word package, but since there’s only
one, -bench=IsPalindrome would have been equivalent.

Click here to view code image

$ cd $GOPATH/src/gopl.io/ch11/word2
$ go test -bench=.
PASS
BenchmarkIsPalindrome-8 1000000 1035 ns/op
ok gopl.io/ch11/word2 2.179s

The benchmark name’s numeric suffix, 8 here, indicates the
value of GOMAXPROCS, which is important for concurrent
benchmarks.

The report tells us that each call to IsPalindrome took about 1.035
microseconds, averaged over 1,000,000 runs. Since the benchmark
runner initially has no idea how long the operation takes, it makes
some initial measurements using small values of N and then
extrapolates to a value large enough for a stable timing
measurement to be made.

The reason the loop is implemented by the benchmark function,
and not by the calling code in the test driver, is so that the benchmark
function has the opportunity to execute any necessary one-time setup
code outside the loop without this adding to the measured time of each
iteration. If this setup code is still perturbing the results, the
testing.B parameter provides methods to stop, resume, and reset the timer,
but these are rarely needed.

Now that we have a benchmark and tests, it’s easy to try out ideas for
making the program faster. Perhaps the most obvious optimization is
to make IsPalindrome’s second loop stop checking at the midpoint, to
avoid doing each comparison twice:

Click here to view code image

n := len(letters)/2
for i := 0; i < n; i++ {
 if letters[i] != letters[len(letters)-1-i] {
 return false
 }
}
return true

But as is often the case, an obvious optimization doesn’t always
yield the expected benefit. This one delivered a mere 4% improvement
in one experiment.

Click here to view code image

$ go test -bench=.
PASS
BenchmarkIsPalindrome-8 1000000 992 ns/op
ok gopl.io/ch11/word2 2.093s

Another idea is to pre-allocate a sufficiently large array for use by
letters, rather than expand it by successive calls to append.
Declaring letters as an array of the right size, like this,

Click here to view code image

letters := make([]rune, 0, len(s))
for _, r := range s {
 if unicode.IsLetter(r) {
 letters = append(letters, unicode.ToLower(r))
 }
}

yields an improvement of nearly 35%, and the benchmark runner now
reports the average over 2,000,000 iterations.

Click here to view code image

$ go test -bench=.
PASS
BenchmarkIsPalindrome-8 2000000 697 ns/op
ok gopl.io/ch11/word2 1.468s

As this example shows, the fastest program is often the one that makes
the fewest memory allocations. The -benchmem command-line flag

will include memory allocation statistics in its report.

Here we compare the number of allocations before the optimization:

Click here to view code image

$ go test -bench=. -benchmem
PASS
BenchmarkIsPalindrome 1000000 1026 ns/op 304 B/op 4 allocs/op

and after it:

Click here to view code image

$ go test -bench=. -benchmem
PASS
BenchmarkIsPalindrome 2000000 807 ns/op 128 B/op 1 allocs/op

Consolidating the allocations in a single
call to make eliminated 75% of the allocations and halved the quantity
of allocated memory.

Benchmarks like this tell us the absolute time required for a given
operation, but in many settings the interesting performance questions
are about the relative timings of two different operations.

For example, if a function takes 1ms to process 1,000 elements, how
long will it take to process 10,000 or a million?
Such comparisons reveal the asymptotic growth of the running time of
the function.

Another example: what is the best size for an I/O buffer?
Benchmarks of application throughput over a range of sizes can help us
choose the smallest buffer that delivers satisfactory performance.

A third example: which algorithm performs best for a given job?
Benchmarks that evaluate two different algorithms on the same input
data can often show the strengths and weaknesses of each one on important or
representative workloads.

Comparative benchmarks are just regular code. They typically take the form of a single
parameterized function, called from several Benchmark functions
with different values, like this:

Click here to view code image

func benchmark(b *testing.B, size int) { /* ... */ }
func Benchmark10(b *testing.B) { benchmark(b, 10) }
func Benchmark100(b *testing.B) { benchmark(b, 100) }
func Benchmark1000(b *testing.B) { benchmark(b, 1000) }

The parameter size, which specifies the size of the input, varies
across benchmarks but is constant within each benchmark.

Resist the temptation to use the parameter b.N as the input
size.

Unless you interpret it as an iteration count for a fixed-size
input, the results of your benchmark will be meaningless.

Patterns revealed by comparative benchmarks are particularly useful
during program design, but we don’t throw the benchmarks away when the
program is working.

As the program evolves, or its input grows, or it is deployed on new
operating systems or processors with different characteristics, we can
reuse those benchmarks to revisit design decisions.

Exercise 11.6:
Write benchmarks to compare the PopCount implementation
in Section 2.6.2 with your solutions to
Exercise 2.4 and Exercise 2.5.
At what point does the table-based approach break even?

Exercise 11.7:
Write benchmarks for Add, UnionWith, and other
methods of *IntSet (§6.5) using large
pseudo-random inputs.

How fast can you make these methods run?

How does the choice of word size affect performance?

How fast is IntSet compared to a set implementation based on
the built-in map type?

11.5 Profiling

Benchmarks are useful for measuring the performance of specific
operations, but when we’re trying to make a slow program faster,
we often have no idea where to begin.

Every programmer knows Donald Knuth’s aphorism about premature
optimization, which appeared in “Structured Programming with go to
Statements” in 1974.

Although often misinterpreted to mean performance doesn’t matter, in
its original context we can discern a different meaning:

There is no doubt that the grail of efficiency leads to abuse.

Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact
when debugging and maintenance are considered.

We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil.

Yet we should not pass up our opportunities
in that critical 3%.

A good programmer will not be lulled into complacency by such
reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified.

It is often a mistake to make a priori judgments about what parts of a
program are really critical, since the universal experience of
programmers who have been using measurement tools has been that their
intuitive guesses fail.

When we wish to look carefully at the speed of our programs, the best
technique for identifying the critical code is profiling.

Profiling is an automated approach to performance measurement based on
sampling a number of profile events during execution, then
extrapolating from them during a post-processing step;
the resulting statistical summary is called a profile.

Go supports many kinds of profiling, each concerned with a different
aspect of performance, but all of them involve recording
a sequence of events of interest, each of which has an accompanying
stack trace—the stack of function calls active at the moment of
the event.

The go test tool has built-in support for several
kinds of profiling.

A CPU profile identifies the functions whose execution requires
the most CPU time.

The currently running thread on each CPU is interrupted periodically
by the operating system every few milliseconds, with each interruption
recording one profile event before normal execution resumes.

A heap profile identifies the statements responsible for
allocating the most memory.

The profiling library samples calls to the internal memory allocation routines so
that on average, one profile event is recorded per 512KB of allocated
memory.

A blocking profile identifies the operations responsible for
blocking goroutines the longest, such as system calls, channel
sends and receives, and acquisitions of locks.

The profiling library records an event every time a goroutine is
blocked by one of these operations.

Gathering a profile for code under test is as easy as
enabling one of the flags below.

Be careful when using more than one flag at a time, however: the machinery
for gathering one kind of profile may skew the results of others.

Click here to view code image

$ go test -cpuprofile=cpu.out
$ go test -blockprofile=block.out
$ go test -memprofile=mem.out

It’s easy to add profiling support to non-test
programs too, though the details of how we do that vary between
short-lived command-line tools and long-running server applications.

Profiling is especially useful in long-running applications, so the
Go runtime’s profiling features can be enabled under programmer
control using the runtime API.

Once we’ve gathered a profile, we need to analyze it using the
pprof tool.

This is a standard part of the Go distribution, but since it’s not an

everyday tool, it’s accessed indirectly using go tool pprof.

It has dozens of features and options, but basic use
requires only two arguments, the executable that produced the profile and
the profile log.

To make profiling efficient and to save space, the log
does not include function names; instead, functions are identified by
their addresses.
This means that pprof needs the executable in order to make
sense of the log.

Although go test usually discards the test executable once the
test is complete, when profiling is enabled it saves the
executable as foo.test, where foo is
the name of the tested package.

The commands below show how to gather and display a simple CPU profile.

We’ve selected one of the benchmarks from the net/http package.

It is usually better to profile specific benchmarks that have been
constructed to be representative of workloads one cares about.

Benchmarking test cases is almost never representative, which is why
we disabled them by using the filter -run=NONE.

Click here to view code image

$ go test -run=NONE -bench=ClientServerParallelTLS64 \
 -cpuprofile=cpu.log net/http
PASS
BenchmarkClientServerParallelTLS64-8 1000
 3141325 ns/op 143010 B/op 1747 allocs/op
ok net/http 3.395s

$ go tool pprof -text -nodecount=10 ./http.test cpu.log
2570ms of 3590ms total (71.59%)
Dropped 129 nodes (cum <= 17.95ms)
Showing top 10 nodes out of 166 (cum >= 60ms)
 flat flat% sum% cum cum%
 1730ms 48.19% 48.19% 1750ms 48.75% crypto/elliptic.p256ReduceDegree
 230ms 6.41% 54.60% 250ms 6.96% crypto/elliptic.p256Diff
 120ms 3.34% 57.94% 120ms 3.34% math/big.addMulVVW
 110ms 3.06% 61.00% 110ms 3.06% syscall.Syscall
 90ms 2.51% 63.51% 1130ms 31.48% crypto/elliptic.p256Square
 70ms 1.95% 65.46% 120ms 3.34% runtime.scanobject
 60ms 1.67% 67.13% 830ms 23.12% crypto/elliptic.p256Mul
 60ms 1.67% 68.80% 190ms 5.29% math/big.nat.montgomery
 50ms 1.39% 70.19% 50ms 1.39% crypto/elliptic.p256ReduceCarry
 50ms 1.39% 71.59% 60ms 1.67% crypto/elliptic.p256Sum

The -text flag specifies the output format, in this case, a
textual table with one row per function, sorted so the “hottest”
functions—those that consume the most CPU cycles—appear first.

The -nodecount=10 flag limits the result to 10 rows.

For gross performance problems, this textual format may be enough to
pinpoint the cause.

This profile tells us that elliptic-curve cryptography is
important to the performance of this particular HTTPS benchmark.

By contrast, if a profile is dominated by memory allocation functions from the
runtime package, reducing memory consumption may be a
worthwhile optimization.

For more subtle problems, you may be better off
using one of pprof’s graphical displays.

These require GraphViz, which can be downloaded
from www.graphviz.org.

The -web flag then
renders a directed graph of the functions of the program, annotated
by their CPU profile numbers and colored to indicate the hottest
functions.

We’ve only scratched the surface of Go’s profiling tools here. To
find out more, read the “Profiling Go Programs”
article on the Go Blog.

11.6 Example Functions

The third kind of function treated specially by go test is an
example function, one whose name starts with Example. It has

neither parameters nor results. Here’s an example function for
IsPalindrome:

Click here to view code image

func ExampleIsPalindrome() {
 fmt.Println(IsPalindrome("A man, a plan, a canal: Panama"))
 fmt.Println(IsPalindrome("palindrome"))
 // Output:
 // true
 // false
}

[image: An interactive example of strings.Join in godoc.]
Figure 11.4.
An interactive example of strings.Join in godoc.

Example functions serve three purposes.

The primary one is documentation: a good example can be a more
succinct or intuitive way to convey the behavior of a library function
than its prose description, especially when used as a reminder or
quick reference.

An example can also demonstrate the interaction between several types
and functions belonging to one API, whereas prose documentation must
always be attached to one place, like a type or function declaration
or the package as a whole.

And unlike examples within comments, example functions are real Go
code, subject to compile-time checking, so they don’t become stale as
the code evolves.

Based on the suffix of the Example function, the web-based
documentation server godoc associates example
functions with the function or package they exemplify, so
ExampleIsPalindrome would be shown with the documentation for
the IsPalindrome function, and an example function called just
Example would be associated with the word package as a whole.

The second purpose is that examples are executable tests run by
go test. If the
example function contains a final // Output: comment like

the one above, the test driver will
execute the function and check that what it printed to its standard
output matches the text within the comment.

The third purpose of an example is hands-on experimentation.

The godoc server at golang.org uses the Go Playground to let the user edit
and run each

example function from within a web browser, as shown in Figure 11.4.

This is often the fastest way to get a feel for a particular function
or language feature.

The final two chapters of the book examine the reflect and
unsafe packages, which few Go programmers regularly use—and
even fewer need to use.

If you haven’t written any substantial Go programs yet,
now would be a good time to do that.

12. Reflection

Go provides a mechanism to update variables
and inspect their values at run time,
to call their methods, and to apply
the operations intrinsic to their representation, all without knowing
their types at compile time. This mechanism is called reflection.

Reflection also lets us treat types themselves as first-class values.

In this chapter, we’ll explore Go’s reflection features to see how
they increase the expressiveness of the language, and in particular
how they are crucial to the implementation of two important APIs:
string formatting provided by fmt, and protocol encoding provided by
packages like encoding/json and encoding/xml.

Reflection is also essential to the template mechanism provided by the
text/template and html/template packages we saw in
Section 4.6.

However, reflection is complex to reason about and not for casual use, so although these
packages are implemented using reflection, they do not expose
reflection in their own APIs.

12.1 Why Reflection?

Sometimes we need to write a function capable of dealing uniformly
with values of types that don’t satisfy a common interface, don’t have
a known representation, or don’t exist at the time we design the
function—or even all three.

A familiar example is the formatting
logic within fmt.Fprintf, which can usefully print an arbitrary
value of any type, even a user-defined one. Let’s try to implement a
function like it using what we know already.

For simplicity, our function will accept one argument and will return
the result as a string like fmt.Sprint does, so we’ll call it
Sprint.

We start with a type switch that tests whether the argument defines
a String method, and call it if so.

We then add switch cases that test the value’s dynamic type against
each of the basic types—string, int, bool, and
so on—and perform the appropriate formatting operation in each case.

Click here to view code image

func Sprint(x interface{}) string {
 type stringer interface {
 String() string
 }
 switch x := x.(type) {
 case stringer:
 return x.String()
 case string:
 return x
 case int:
 return strconv.Itoa(x)
 // ...similar cases for int16, uint32, and so on...
 case bool:
 if x {
 return "true"
 }
 return "false"
 default:
 // array, chan, func, map, pointer, slice, struct
 return "???"
 }
}

But how do we deal with other types, like []float64,
map[string][]string, and so on?

We could add more cases, but the number of such types is infinite.
And what about named types, like url.Values?

Even if the type switch had a case for its underlying type
map[string][]string, it wouldn’t match url.Values
because the two types are not identical, and the type switch cannot
include a case for each type like url.Values because that would
require this library to depend upon its clients.

Without a way to inspect the representation of values of
unknown types, we quickly get stuck. What we need is reflection.

12.2 reflect.Type and reflect.Value

Reflection is provided by the reflect package.

It defines two important types, Type and Value.

A Type represents a Go type.

It is an interface with many methods for discriminating among types
and inspecting their components, like the fields of a struct or the
parameters of a function.

The sole implementation of reflect.Type is the type
descriptor (§7.5), the same entity that identifies the
dynamic type of an interface value.

The reflect.TypeOf function accepts any interface{}
and returns its dynamic type as a reflect.Type:

Click here to view code image

t := reflect.TypeOf(3) // a reflect.Type
fmt.Println(t.String()) // "int"
fmt.Println(t) // "int"

The TypeOf(3) call above assigns the value 3 to the
interface{} parameter.

Recall from Section 7.5 that an assignment from a
concrete value to an interface type performs an implicit interface
conversion, which creates an interface value consisting of two
components: its dynamic type is the operand’s type (int)
and its dynamic value is the operand’s value (3).

Because reflect.TypeOf returns an interface value’s dynamic type,
it always returns a concrete type.

So, for example, the code below prints "*os.File", not
"io.Writer".

Later, we will see that reflect.Type is capable of representing
interface types too.

Click here to view code image

var w io.Writer = os.Stdout
fmt.Println(reflect.TypeOf(w)) // "*os.File"

Notice that reflect.Type satisfies fmt.Stringer.

Because printing the dynamic type of an interface value is useful
for debugging and logging, fmt.Printf provides a shorthand,
%T, that uses reflect.TypeOf internally:

fmt.Printf("%T\n", 3) // "int"

The other important type in the reflect package is Value.

A reflect.Value can hold a value of any type.

The reflect.ValueOf function accepts any interface{} and
returns a reflect.Value containing the interface’s dynamic
value.

As with reflect.TypeOf, the results of reflect.ValueOf
are always concrete, but a reflect.Value can hold interface
values too.

Click here to view code image

v := reflect.ValueOf(3) // a reflect.Value
fmt.Println(v) // "3"
fmt.Printf("%v\n", v) // "3"
fmt.Println(v.String()) // NOTE: "<int Value>"

Like reflect.Type, reflect.Value also satisfies
fmt.Stringer, but unless the Value holds a string, the
result of the String method reveals only the type.

Instead, use the fmt package’s %v verb, which treats
reflect.Values specially.

Calling the Type method on a Value returns its type
as a reflect.Type:

Click here to view code image

t := v.Type() // a reflect.Type
fmt.Println(t.String()) // "int"

The inverse operation to reflect.ValueOf is the reflect.Value.Interface

method. It returns an interface{} holding the same concrete
value as the reflect.Value:

Click here to view code image

v := reflect.ValueOf(3) // a reflect.Value
x := v.Interface() // an interface{}
i := x.(int) // an int
fmt.Printf("%d\n", i) // "3"

A reflect.Value and an interface{} can both hold
arbitrary values.

The difference is that an empty interface hides the representation and

intrinsic operations of the value it holds and exposes none of its
methods, so unless we know its dynamic type and use a type assertion
to peer inside it (as we did above), there is little we can do to the
value within.

In contrast, a Value has many methods for inspecting its
contents, regardless of its type.

Let’s use them for our second attempt at a general formatting
function, which we’ll call format.Any.

Instead of a type switch, we use reflect.Value’s
Kind method to discriminate the cases.

Although there are infinitely many types,
there are only a finite number of kinds of type: the basic types
Bool, String, and all the numbers; the aggregate types Array and
Struct; the reference types Chan, Func, Ptr,
Slice, and Map; Interface types; and finally Invalid, meaning no value at all.
(The zero value of a reflect.Value has kind Invalid.)

Click here to view code image

gopl.io/ch12/format

package format

import (
 "reflect"
 "strconv"
)

// Any formats any value as a string.
func Any(value interface{}) string {
 return formatAtom(reflect.ValueOf(value))
}

// formatAtom formats a value without inspecting its internal structure.
func formatAtom(v reflect.Value) string {
 switch v.Kind() {
 case reflect.Invalid:
 return "invalid"
 case reflect.Int, reflect.Int8, reflect.Int16,
 reflect.Int32, reflect.Int64:
 return strconv.FormatInt(v.Int(), 10)
 case reflect.Uint, reflect.Uint8, reflect.Uint16,
 reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 return strconv.FormatUint(v.Uint(), 10)
 // ...floating-point and complex cases omitted for brevity...
 case reflect.Bool:
 return strconv.FormatBool(v.Bool())
 case reflect.String:
 return strconv.Quote(v.String())
 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Slice, reflect.Map:
 return v.Type().String() + " 0x" +
 strconv.FormatUint(uint64(v.Pointer()), 16)
 default: // reflect.Array, reflect.Struct, reflect.Interface
 return v.Type().String() + " value"
 }
}

So far, our function treats each value as an indivisible thing with no
internal structure—hence formatAtom.

For aggregate types (structs and arrays) and interfaces it prints only
the type of the value,
and for reference types (channels, functions, pointers, slices, and maps),
it prints the type and the reference address in hexadecimal.

This is less than ideal but still a major improvement,
and since Kind is
concerned only with the underlying representation,
format.Any works for named types too. For example:

Click here to view code image

var x int64 = 1
var d time.Duration = 1 * time.Nanosecond
fmt.Println(format.Any(x)) // "1"
fmt.Println(format.Any(d)) // "1"
fmt.Println(format.Any([]int64{x})) // "[]int64 0x8202b87b0"
fmt.Println(format.Any([]time.Duration{d})) // "[]time.Duration 0x8202b87e0"

12.3 Display, a Recursive Value Printer

Next we’ll take a look at how to improve the display of composite
types. Rather than try to copy fmt.Sprint exactly,
we’ll build a debugging utility function called Display that,
given an arbitrarily complex value x, prints the complete
structure of that value, labeling each element
with the path by which it was found.

Let’s start with an example.

Click here to view code image

e, _ := eval.Parse("sqrt(A / pi)")
Display("e", e)

In the call above, the argument to Display is a syntax
tree from the expression evaluator in Section 7.9.

The output of Display is shown below:

Click here to view code image

Display e (eval.call):
e.fn = "sqrt"
e.args[0].type = eval.binary
e.args[0].value.op = 47
e.args[0].value.x.type = eval.Var
e.args[0].value.x.value = "A"
e.args[0].value.y.type = eval.Var
e.args[0].value.y.value = "pi"

Where possible, you should avoid exposing reflection in the API of a package.

We’ll define an unexported function
display to do the real work of the recursion, and
export Display, a simple wrapper around it that accepts
an interface{} parameter:

Click here to view code image

gopl.io/ch12/display

func Display(name string, x interface{}) {
 fmt.Printf("Display %s (%T):\n", name, x)
 display(name, reflect.ValueOf(x))
}

In display, we’ll use the formatAtom function we
defined earlier to print elementary values—basic types, functions,
and channels—but we’ll use the methods of reflect.Value to
recursively display each component of a more complex type.

As the recursion descends, the
path string, which initially describes the starting value
(for instance, "e"), will be augmented to indicate how we reached the current
value (for instance, "e.args[0].value").

Since we’re no longer pretending to implement fmt.Sprint, we will
use the fmt package to keep our example short.

Click here to view code image

func display(path string, v reflect.Value) {
 switch v.Kind() {
 case reflect.Invalid:
 fmt.Printf("%s = invalid\n", path)
 case reflect.Slice, reflect.Array:
 for i := 0; i < v.Len(); i++ {
 display(fmt.Sprintf("%s[%d]", path, i), v.Index(i))
 }
 case reflect.Struct:
 for i := 0; i < v.NumField(); i++ {
 fieldPath := fmt.Sprintf("%s.%s", path, v.Type().Field(i).Name)
 display(fieldPath, v.Field(i))
 }
 case reflect.Map:
 for _, key := range v.MapKeys() {
 display(fmt.Sprintf("%s[%s]", path,
 formatAtom(key)), v.MapIndex(key))
 }
 case reflect.Ptr:
 if v.IsNil() {
 fmt.Printf("%s = nil\n", path)
 } else {
 display(fmt.Sprintf("(*%s)", path), v.Elem())
 }
 case reflect.Interface:
 if v.IsNil() {
 fmt.Printf("%s = nil\n", path)
 } else {
 fmt.Printf("%s.type = %s\n", path, v.Elem().Type())
 display(path+".value", v.Elem())
 }
 default: // basic types, channels, funcs
 fmt.Printf("%s = %s\n", path, formatAtom(v))
 }
}

Let’s discuss the cases in order.

Slices and arrays: The logic is the same for both. The Len
method returns the number of elements of a slice or array value, and
Index(i) retrieves the element at index i, also as a reflect.Value; it
panics if i is out of bounds. These are analogous to the built-in
len(a) and a[i] operations on sequences.

The display function recursively invokes itself on each element
of the sequence, appending the subscript notation "[i]" to the
path.

Although reflect.Value has many methods, only a few are safe to
call on any given value.

For example, the Index method may be called on values of kind
Slice, Array, or String, but panics for any other
kind.

Structs: The NumField method reports the number of fields in
the struct, and Field(i) returns the value of the i-th field as a
reflect.Value.

The list of fields includes ones promoted from anonymous fields.

To append the field selector notation ".f" to the path, we must
obtain the reflect.Type of the struct and access the name of its
i-th field.

Maps: The MapKeys method returns a slice of
reflect.Values, one per map key.

As usual when iterating over a map, the order is undefined.

MapIndex(key) returns the value corresponding to key.

We append the subscript notation "[key]" to the path.

(We’re cutting a corner here.

The type of a map key isn’t restricted to the types formatAtom
handles best; arrays, structs, and interfaces can also be valid map
keys.

Extending this case to print the key in full is Exercise 12.1.)

Pointers: The Elem method returns the variable
pointed to by a pointer, again as a reflect.Value.

This operation would be safe even if the pointer value is nil, in
which case the result would have kind Invalid, but we use
IsNil to detect nil pointers explicitly so we can print a more
appropriate message.

We prefix the path with a "*" and parenthesize it to avoid ambiguity.

Interfaces: Again, we use IsNil to test whether
the interface is nil, and if not, we retrieve its dynamic value using
v.Elem() and print its type and value.

Now that our Display function is complete, let’s put it to work.

The Movie type below is a slight variation on the one in Section 4.5:

Click here to view code image

type Movie struct {
 Title, Subtitle string
 Year int
 Color bool
 Actor map[string]string
 Oscars []string
 Sequel *string
}

Let’s declare a value of this type and see what Display does with it:

Click here to view code image

strangelove := Movie{
 Title: "Dr. Strangelove",
 Subtitle: "How I Learned to Stop Worrying and Love the Bomb",
 Year: 1964,
 Color: false,
 Actor: map[string]string{
 "Dr. Strangelove": "Peter Sellers",
 "Grp. Capt. Lionel Mandrake": "Peter Sellers",
 "Pres. Merkin Muffley": "Peter Sellers",
 "Gen. Buck Turgidson": "George C. Scott",
 "Brig. Gen. Jack D. Ripper": "Sterling Hayden",
 `Maj. T.J. "King" Kong`: "Slim Pickens",
 },

 Oscars: []string{
 "Best Actor (Nomin.)",
 "Best Adapted Screenplay (Nomin.)",
 "Best Director (Nomin.)",
 "Best Picture (Nomin.)",
 },
}

The call Display("strangelove", strangelove) prints:

Click here to view code image

Display strangelove (display.Movie):
strangelove.Title = "Dr. Strangelove"
strangelove.Subtitle = "How I Learned to Stop Worrying and Love the Bomb"
strangelove.Year = 1964
strangelove.Color = false
strangelove.Actor["Gen. Buck Turgidson"] = "George C. Scott"
strangelove.Actor["Brig. Gen. Jack D. Ripper"] = "Sterling Hayden"
strangelove.Actor["Maj. T.J. \"King\" Kong"] = "Slim Pickens"
strangelove.Actor["Dr. Strangelove"] = "Peter Sellers"
strangelove.Actor["Grp. Capt. Lionel Mandrake"] = "Peter Sellers"
strangelove.Actor["Pres. Merkin Muffley"] = "Peter Sellers"
strangelove.Oscars[0] = "Best Actor (Nomin.)"
strangelove.Oscars[1] = "Best Adapted Screenplay (Nomin.)"
strangelove.Oscars[2] = "Best Director (Nomin.)"
strangelove.Oscars[3] = "Best Picture (Nomin.)"
strangelove.Sequel = nil

We can use Display to display the internals of library types, such
as *os.File:

Click here to view code image

Display("os.Stderr", os.Stderr)
// Output:
// Display os.Stderr (*os.File):
// (*(*os.Stderr).file).fd = 2
// (*(*os.Stderr).file).name = "/dev/stderr"
// (*(*os.Stderr).file).nepipe = 0

Notice that even unexported fields are visible to reflection.

Beware that the particular output of this example may vary across
platforms and may change over time as libraries evolve.

(Those fields are private for a reason!)

We can even apply Display to a reflect.Value and watch
it traverse the internal representation of the type descriptor
for *os.File.

The output of the call Display("rV", reflect.ValueOf(os.Stderr))
is shown below, though of course your
mileage may vary:

Click here to view code image

Display rV (reflect.Value):
(*rV.typ).size = 8
(*rV.typ).hash = 871609668
(*rV.typ).align = 8
(*rV.typ).fieldAlign = 8
(*rV.typ).kind = 22
(*(*rV.typ).string) = "*os.File"

Click here to view code image

(*(*(*rV.typ).uncommonType).methods[0].name) = "Chdir"
(*(*(*(*rV.typ).uncommonType).methods[0].mtyp).string) = "func() error"
(*(*(*(*rV.typ).uncommonType).methods[0].typ).string) = "func(*os.File) error"
...

Observe the difference between these two examples:

var i interface{} = 3

Display("i", i)
// Output:
// Display i (int):
// i = 3

Display("&i", &i)
// Output:
// Display &i (*interface {}):
// (*&i).type = int
// (*&i).value = 3

In the first example, Display calls reflect.ValueOf(i),
which returns a value of kind Int.

As we mentioned in Section 12.2,
reflect.ValueOf always returns a Value of a concrete type
since it extracts the contents of an interface value.

In the second example, Display calls reflect.ValueOf(&i),
which returns a pointer to i, of kind Ptr.

The switch case for Ptr calls Elem on this value,
which returns a Value representing the variable
i itself, of kind Interface.

A Value obtained indirectly, like this one, may
represent any value at all, including interfaces.

The display function calls itself recursively and this time,
it prints separate components for the interface’s dynamic type and value.

As currently implemented, Display will never terminate if it
encounters a cycle in the object graph, such as this linked list that
eats its own tail:

Click here to view code image

// a struct that points to itself
type Cycle struct{ Value int; Tail *Cycle }
var c Cycle
c = Cycle{42, &c}
Display("c", c)

Display prints this ever-growing expansion:

Click here to view code image

Display c (display.Cycle):
c.Value = 42
(*c.Tail).Value = 42
(*(*c.Tail).Tail).Value = 42
(*(*(*c.Tail).Tail).Tail).Value = 42
...ad infinitum...

Many Go programs contain at least some cyclic data. Making Display

robust against such cycles is tricky, requiring additional
bookkeeping to record the set of references that have been followed
so far; it is costly too.

A general solution requires unsafe language features,
as we will see in Section 13.3.

Cycles pose less of a problem for fmt.Sprint because it rarely
tries to print the complete structure.
For example, when it encounters a pointer, it breaks the recursion by
printing the pointer’s numeric value.
It can get stuck trying to print a slice or map that contains itself
as an element, but
such rare cases do not warrant the considerable extra trouble of
handling cycles.

Exercise 12.1:
Extend Display so that it can display maps whose keys
are structs or arrays.

Exercise 12.2:
Make display safe to use on cyclic data structures by
bounding the number of steps it takes before abandoning the
recursion.

(In Section 13.3, we’ll see another way to
detect cycles.)

12.4 Example: Encoding S-Expressions

Display is a debugging routine for displaying
structured data, but it’s not far short of being able to
encode or marshal arbitrary Go objects as messages in a
portable notation suitable for inter-process communication.

As we saw in Section 4.5, Go’s standard library
supports a variety of formats, including JSON, XML, and ASN.1.

Another notation that is still widely used is
S-expressions, the syntax of Lisp.

Unlike the other notations, S-expressions are not supported by the Go
standard library, not least because they have no universally
accepted definition, despite several attempts at standardization and
the existence of many implementations.

In this section, we’ll define a package that encodes arbitrary Go
objects using an S-expression notation that supports the
following constructs:

Click here to view code image

42 integer
"hello" string (with Go-style quotation)
foo symbol (an unquoted name)
(1 2 3) list (zero or more items enclosed in parentheses)

Booleans are traditionally encoded using the symbol t for true,
and the empty list () or the symbol nil for false, but
for simplicity, our implementation ignores them.

It also ignores channels and functions, since their state is opaque to
reflection.

And it ignores real and complex floating-point numbers and
interfaces.

Adding support for them is Exercise 12.3.

We’ll encode the types of Go using S-expressions as follows.

Integers and strings are encoded in the obvious way.

Nil values are encoded as the symbol nil.

Arrays and slices are encoded using list notation.

Structs are encoded as a list of field bindings, each field binding
being a two-element list whose first element (a symbol) is the field
name and whose second element is the field value.

Maps too are encoded as a list of pairs, with each pair being
the key and value of one map entry.

Traditionally, S-expressions represent lists of key/value pairs using
a single cons cell (key . value) for each pair, rather
than a two-element list, but to simplify the decoding we’ll ignore
dotted list notation.

Encoding is done by a single recursive function, encode, shown
below.

Its structure is essentially the same as that of Display in the
previous section:

Click here to view code image

gopl.io/ch12/sexpr

func encode(buf *bytes.Buffer, v reflect.Value) error {
 switch v.Kind() {
 case reflect.Invalid:
 buf.WriteString("nil")

 case reflect.Int, reflect.Int8, reflect.Int16,
 reflect.Int32, reflect.Int64:
 fmt.Fprintf(buf, "%d", v.Int())

 case reflect.Uint, reflect.Uint8, reflect.Uint16,
 reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 fmt.Fprintf(buf, "%d", v.Uint())

 case reflect.String:
 fmt.Fprintf(buf, "%q", v.String())

 case reflect.Ptr:
 return encode(buf, v.Elem())

 case reflect.Array, reflect.Slice: // (value ...)
 buf.WriteByte('(')
 for i := 0; i < v.Len(); i++ {
 if i > 0 {
 buf.WriteByte(' ')
 }
 if err := encode(buf, v.Index(i)); err != nil {
 return err
 }
 }
 buf.WriteByte(')')

 case reflect.Struct: // ((name value) ...)
 buf.WriteByte('(')
 for i := 0; i < v.NumField(); i++ {
 if i > 0 {
 buf.WriteByte(' ')
 }
 fmt.Fprintf(buf, "(%s ", v.Type().Field(i).Name)
 if err := encode(buf, v.Field(i)); err != nil {
 return err
 }
 buf.WriteByte(')')
 }
 buf.WriteByte(')')

 case reflect.Map: // ((key value) ...)
 buf.WriteByte('(')
 for i, key := range v.MapKeys() {
 if i > 0 {
 buf.WriteByte(' ')
 }
 buf.WriteByte('(')
 if err := encode(buf, key); err != nil {
 return err
 }
 buf.WriteByte(' ')
 if err := encode(buf, v.MapIndex(key)); err != nil {
 return err
 }
 buf.WriteByte(')')
 }
 buf.WriteByte(')')

 default: // float, complex, bool, chan, func, interface
 return fmt.Errorf("unsupported type: %s", v.Type())
 }
 return nil
}

The Marshal function wraps the encoder in an API similar to
those of the other encoding/... packages:

Click here to view code image

// Marshal encodes a Go value in S-expression form.
func Marshal(v interface{}) ([]byte, error) {
 var buf bytes.Buffer
 if err := encode(&buf, reflect.ValueOf(v)); err != nil {
 return nil, err
 }
 return buf.Bytes(), nil
}

Here’s the output of Marshal applied to the strangelove
variable from Section 12.3:

Click here to view code image

((Title "Dr. Strangelove") (Subtitle "How I Learned to Stop Worrying and Lo
ve the Bomb") (Year 1964) (Actor (("Grp. Capt. Lionel Mandrake" "Peter Sell
ers") ("Pres. Merkin Muffley" "Peter Sellers") ("Gen. Buck Turgidson" "Geor
ge C. Scott") ("Brig. Gen. Jack D. Ripper" "Sterling Hayden") ("Maj. T.J. \
"King\" Kong" "Slim Pickens") ("Dr. Strangelove" "Peter Sellers"))) (Oscars
("Best Actor (Nomin.)" "Best Adapted Screenplay (Nomin.)" "Best Director (N
omin.)" "Best Picture (Nomin.)")) (Sequel nil))

The whole output appears on one long line with minimal spaces,
making it hard to read.

Here’s the same output manually formatted according to S-expression
conventions.

Writing a pretty-printer for S-expressions is left as
a (challenging) exercise; the download from gopl.io includes
a simple version.

Click here to view code image

((Title "Dr. Strangelove")
 (Subtitle "How I Learned to Stop Worrying and Love the Bomb")
 (Year 1964)
 (Actor (("Grp. Capt. Lionel Mandrake" "Peter Sellers")
 ("Pres. Merkin Muffley" "Peter Sellers")
 ("Gen. Buck Turgidson" "George C. Scott")
 ("Brig. Gen. Jack D. Ripper" "Sterling Hayden")
 ("Maj. T.J. \"King\" Kong" "Slim Pickens")
 ("Dr. Strangelove" "Peter Sellers")))
 (Oscars ("Best Actor (Nomin.)"
 "Best Adapted Screenplay (Nomin.)"
 "Best Director (Nomin.)"
 "Best Picture (Nomin.)"))
 (Sequel nil))

Like the fmt.Print, json.Marshal, and Display
functions, sexpr.Marshal will loop forever if called with
cyclic data.

In Section 12.6, we’ll sketch out the
implementation of the corresponding S-expression decoding function, but
before we get there, we’ll first need to understand how reflection can
be used to update program variables.

Exercise 12.3:
Implement the missing cases of the encode function.

Encode booleans as t and nil, floating-point
numbers using Go’s notation, and complex numbers like 1+2i as
#C(1.0 2.0).

Interfaces can be encoded as a pair of a type name and a value, for
instance ("[]int" (1 2 3)), but beware that this notation is
ambiguous: the reflect.Type.String method may return the same
string for different types.

Exercise 12.4:
Modify encode to pretty-print the S-expression in the
style shown above.

Exercise 12.5:
Adapt encode to emit JSON instead of S-expressions.
Test your encoder using the standard decoder, json.Unmarshal.

Exercise 12.6:
Adapt encode so that, as an optimization, it does not encode a
field whose value is the zero value of its type.

Exercise 12.7:
Create a streaming API for the S-expression decoder, following
the style of json.Decoder (§4.5).

12.5 Setting Variables with reflect.Value

So far, reflection has only interpreted values in our program in
various ways. The point of this section, however, is to change them.

Recall that some Go expressions like x, x.f[1], and *p
denote variables, but others like x + 1 and f(2) do not.

A variable is an addressable storage location that contains a

value, and its value may be updated through that address.

A similar distinction applies to reflect.Values. Some are
addressable; others are not. Consider the following declarations:

Click here to view code image

x := 2 // value type variable?
a := reflect.ValueOf(2) // 2 int no
b := reflect.ValueOf(x) // 2 int no
c := reflect.ValueOf(&x) // &x *int no
d := c.Elem() // 2 int yes (x)

The value within a is not addressable. It is merely a copy of the
integer 2. The same is true of b. The value within c is also
non-addressable, being a copy of the pointer value &x. In fact, no
reflect.Value returned by reflect.ValueOf(x) is addressable.

But d, derived from c by dereferencing
the pointer within it, refers to a variable and is thus addressable.

We can use this approach, calling
reflect.ValueOf(&x).Elem(), to obtain an addressable
Value for any variable x.

We can ask
a reflect.Value whether it is addressable through its CanAddr method:

Click here to view code image

fmt.Println(a.CanAddr()) // "false"
fmt.Println(b.CanAddr()) // "false"
fmt.Println(c.CanAddr()) // "false"
fmt.Println(d.CanAddr()) // "true"

We obtain an addressable reflect.Value whenever we
indirect through a pointer, even if we started from a
non-addressable Value.

All the usual rules for addressability have analogs for
reflection. For example, since the slice indexing
expression e[i] implicitly follows a pointer, it is addressable
even if the expression e is not. By analogy,
reflect.ValueOf(e).Index(i) refers to a variable,
and is thus addressable even if reflect.ValueOf(e) is not.

To recover the variable from an addressable reflect.Value
requires three steps.

First, we call Addr(), which returns a Value holding a
pointer to the variable.

Next, we call Interface() on this Value, which returns
an interface{} value containing the pointer.

Finally, if we know the type of the variable, we can use a type
assertion to retrieve the contents of the interface as an ordinary
pointer.

We can then update the variable through the pointer:

Click here to view code image

x := 2
d := reflect.ValueOf(&x).Elem() // d refers to the variable x
px := d.Addr().Interface().(*int) // px := &x
*px = 3 // x = 3
fmt.Println(x) // "3"

Or, we can update the variable referred to by an
addressable reflect.Value directly, without using a pointer, by calling
the reflect.Value.Set method:

d.Set(reflect.ValueOf(4))
fmt.Println(x) // "4"

The same checks for assignability that are ordinarily performed by the
compiler are done at run time by the Set methods.

Above, the variable and the value both
have type int, but if the variable had been an int64,
the program would panic, so it’s crucial to make sure the value is
assignable to the type of the variable:

Click here to view code image

d.Set(reflect.ValueOf(int64(5))) // panic: int64 is not assignable to int

And of course calling Set on a non-addressable
reflect.Value panics too:

Click here to view code image

x := 2
b := reflect.ValueOf(x)
b.Set(reflect.ValueOf(3)) // panic: Set using unaddressable value

There are variants of Set specialized for certain groups of
basic types: SetInt, SetUint, SetString,
SetFloat, and so on:

Click here to view code image

d := reflect.ValueOf(&x).Elem()
d.SetInt(3)
fmt.Println(x) // "3"

In some ways these methods are more forgiving.

SetInt, for example, will succeed so long as the variable’s
type is some kind of signed integer, or even a named type whose
underlying type is a signed integer, and if the value is too large it
will be quietly truncated to fit.

But tread carefully: calling SetInt on a reflect.Value that
refers to an interface{} variable will panic, even though
Set would succeed.

Click here to view code image

x := 1
rx := reflect.ValueOf(&x).Elem()
rx.SetInt(2) // OK, x = 2
rx.Set(reflect.ValueOf(3)) // OK, x = 3
rx.SetString("hello") // panic: string is not assignable to int
rx.Set(reflect.ValueOf("hello")) // panic: string is not assignable to int

var y interface{}
ry := reflect.ValueOf(&y).Elem()
ry.SetInt(2) // panic: SetInt called on interface Value
ry.Set(reflect.ValueOf(3)) // OK, y = int(3)
ry.SetString("hello") // panic: SetString called on interface Value
ry.Set(reflect.ValueOf("hello")) // OK, y = "hello"

When we applied Display to os.Stdout, we found that
reflection can read the values of unexported struct fields that are
inaccessible according to the usual rules of the language, like
the fd int field of an os.File struct on a Unix-like
platform.

However, reflection cannot update such values:

Click here to view code image

stdout := reflect.ValueOf(os.Stdout).Elem() // *os.Stdout, an os.File var
fmt.Println(stdout.Type()) // "os.File"
fd := stdout.FieldByName("fd")
fmt.Println(fd.Int()) // "1"
fd.SetInt(2) // panic: unexported field

An addressable reflect.Value records whether it was obtained by
traversing an unexported struct field and, if so, disallows modification.

Consequently, CanAddr is not usually the right check to use
before setting a variable.

The related method CanSet reports whether a
reflect.Value is addressable and settable:

Click here to view code image

fmt.Println(fd.CanAddr(), fd.CanSet()) // "true false"

12.6 Example: Decoding S-Expressions

For each Marshal function provided by the standard library’s
encoding/... packages, there is a corresponding
Unmarshal function that does decoding.

For example, as we saw in Section 4.5, given a byte slice
containing JSON-encoded data for our Movie type (§12.3), we can decode it like this:

Click here to view code image

data := []byte{/* ... */}
var movie Movie
err := json.Unmarshal(data, &movie)

The Unmarshal function uses reflection to modify the fields of
the existing movie variable, creating new maps, structs, and
slices as determined by the type Movie and the content of the
incoming data.

Let’s now implement a simple Unmarshal function for
S-expressions, analogous to the standard json.Unmarshal
function used above, and the inverse of our earlier
sexpr.Marshal.

We must caution you that a robust and general implementation requires
substantially more code than will comfortably fit in this example,
which is already long, so we have taken many shortcuts.

We support only a limited subset of S-expressions and do not handle
errors gracefully.

The code is intended to illustrate reflection, not parsing.

The lexer uses the Scanner type from the text/scanner package

to break an input stream into a sequence of tokens such as
comments, identifiers, string literals, and numeric literals.

The scanner’s Scan method advances the scanner and returns the
kind of the next token, which has type rune.

Most tokens, like '(', consist of a single rune, but the
text/scanner package represents the kinds of the
multi-character tokens Ident, String, and Int
using small negative values of type rune.

Following a call to Scan that returns one of these kinds of
token, the scanner’s TokenText method returns the text of the
token.

Since a typical parser may need to inspect the current token several
times, but the Scan method advances the scanner, we wrap the
scanner in a helper type called lexer that keeps track of the
token most recently returned by Scan.

Click here to view code image

gopl.io/ch12/sexpr

type lexer struct {
 scan scanner.Scanner
 token rune // the current token
}

func (lex *lexer) next() { lex.token = lex.scan.Scan() }
func (lex *lexer) text() string { return lex.scan.TokenText() }

func (lex *lexer) consume(want rune) {
 if lex.token != want { // NOTE: Not an example of good error handling.
 panic(fmt.Sprintf("got %q, want %q", lex.text(), want))
 }
 lex.next()
}

Now let’s turn to the parser.

It consists of two principal functions.

The first of these, read, reads the S-expression that starts with the
current token and updates the variable referred to by the
addressable reflect.Value v.

Click here to view code image

func read(lex *lexer, v reflect.Value) {
 switch lex.token {
 case scanner.Ident:
 // The only valid identifiers are
 // "nil" and struct field names.
 if lex.text() == "nil" {
 v.Set(reflect.Zero(v.Type()))
 lex.next()
 return
 }
 case scanner.String:
 s, _ := strconv.Unquote(lex.text()) // NOTE: ignoring errors
 v.SetString(s)
 lex.next()
 return
 case scanner.Int:
 i, _ := strconv.Atoi(lex.text()) // NOTE: ignoring errors
 v.SetInt(int64(i))
 lex.next()
 return
 case '(':
 lex.next()
 readList(lex, v)
 lex.next() // consume ')'
 return
 }
 panic(fmt.Sprintf("unexpected token %q", lex.text()))
}

Our S-expressions use identifiers for two distinct purposes,
struct field names and the nil value for a pointer.

The read function only handles the latter case.

When it encounters the scanner.Ident "nil", it sets
v to the zero value of its type using the reflect.Zero
function.

For any other identifier, it reports an error.

The readList function, which we’ll see in a moment, handles
identifiers used as struct field names.

A '(' token indicates the start of a list.

The second function, readList, decodes a list into a variable
of composite type—a map, struct, slice, or array—depending on what
kind of Go variable we’re currently populating.

In each case, the loop keeps parsing items until it encounters the
matching close parenthesis, ')', as detected by the
endList function.

The interesting part is the recursion.

The simplest case is an array.

Until the closing ')' is seen, we use Index
to obtain the variable for each array element and make a recursive
call to read to populate it.

As in many other error cases, if the input data causes the decoder to
index beyond the end of the array, the decoder panics.

A similar approach is used for slices, except we must create a new
variable for each element, populate it, then append it to the slice.

The loops for structs and maps must parse a (key value) sublist
on each iteration.

For structs, the key is a symbol identifying the field.

Analogous to the case for arrays, we obtain the existing variable for
the struct field using FieldByName and make a recursive call to
populate it.

For maps, the key may be of any type, and analogous to the
case for slices, we create a new variable, recursively populate it,
and finally insert the new key/value pair into the map.

Click here to view code image

func readList(lex *lexer, v reflect.Value) {
 switch v.Kind() {
 case reflect.Array: // (item ...)
 for i := 0; !endList(lex); i++ {
 read(lex, v.Index(i))
 }

 case reflect.Slice: // (item ...)
 for !endList(lex) {
 item := reflect.New(v.Type().Elem()).Elem()
 read(lex, item)
 v.Set(reflect.Append(v, item))
 }

 case reflect.Struct: // ((name value) ...)
 for !endList(lex) {
 lex.consume('(')
 if lex.token != scanner.Ident {
 panic(fmt.Sprintf("got token %q, want field name", lex.text()))
 }
 name := lex.text()
 lex.next()
 read(lex, v.FieldByName(name))
 lex.consume(')')
 }

 case reflect.Map: // ((key value) ...)
 v.Set(reflect.MakeMap(v.Type()))
 for !endList(lex) {
 lex.consume('(')
 key := reflect.New(v.Type().Key()).Elem()
 read(lex, key)
 value := reflect.New(v.Type().Elem()).Elem()
 read(lex, value)
 v.SetMapIndex(key, value)
 lex.consume(')')
 }

 default:
 panic(fmt.Sprintf("cannot decode list into %v", v.Type()))
 }
}

func endList(lex *lexer) bool {
 switch lex.token {
 case scanner.EOF:
 panic("end of file")
 case ')':
 return true
 }
 return false
}

Finally, we wrap up the parser in an exported function
Unmarshal, shown below, that hides some of the rough edges of
the implementation.

Errors encountered during parsing result in a panic, so
Unmarshal uses a deferred call to recover from the panic
(§5.10) and
return an error message instead.

Click here to view code image

// Unmarshal parses S-expression data and populates the variable
// whose address is in the non-nil pointer out.
func Unmarshal(data []byte, out interface{}) (err error) {
 lex := &lexer{scan: scanner.Scanner{Mode: scanner.GoTokens}}
 lex.scan.Init(bytes.NewReader(data))
 lex.next() // get the first token
 defer func() {
 // NOTE: this is not an example of ideal error handling.
 if x := recover(); x != nil {
 err = fmt.Errorf("error at %s: %v", lex.scan.Position, x)
 }
 }()
 read(lex, reflect.ValueOf(out).Elem())
 return nil
}

A production-quality implementation should never panic for any input
and should report an informative error for every mishap, perhaps with a
line number or offset.

Nonetheless, we hope this example conveys some idea of what’s
happening under the hood of the packages like encoding/json,
and how you can use reflection to populate data structures.

Exercise 12.8:
The sexpr.Unmarshal function, like json.Marshal,
requires the complete input in a byte slice before it can begin
decoding.

Define a sexpr.Decoder type that, like json.Decoder,
allows a sequence of values to be decoded from an io.Reader.

Change sexpr.Unmarshal to use this new type.

Exercise 12.9:

Write a token-based API for decoding S-expressions, following the
style of xml.Decoder (§7.14).

You will need five types of tokens: Symbol, String,
Int, StartList, and EndList.

Exercise 12.10:
Extend sexpr.Unmarshal to handle the booleans, floating-point
numbers, and interfaces encoded by your solution to Exercise 12.3.

(Hint: to decode interfaces, you will need a mapping from the name of
each supported type to its reflect.Type.)

12.7 Accessing Struct Field Tags

In Section 4.5 we used struct field tags to modify the
JSON encoding of Go struct values. The json field tag lets us
choose alternative field names and suppress the output
of empty fields.

In this section, we’ll see how to access field tags using reflection.

In a web server, the first thing most HTTP handler functions do is
extract the request parameters into local variables.

We’ll define a utility function, params.Unpack,
that uses struct field tags to make writing HTTP handlers
(§7.7) more convenient.

First, we’ll show how it’s used.

The search function below is an HTTP handler.

It defines a variable called data of an anonymous struct type
whose fields correspond to the HTTP request parameters.

The struct’s field tags specify the parameter names, which are often
short and cryptic since space is precious in a URL.

The Unpack function populates the struct from the request so
that the parameters can be accessed conveniently and with an
appropriate type.

Click here to view code image

gopl.io/ch12/search

import "gopl.io/ch12/params"

// search implements the /search URL endpoint.
func search(resp http.ResponseWriter, req *http.Request) {
 var data struct {
 Labels []string `http:"l"`
 MaxResults int `http:"max"`
 Exact bool `http:"x"`
 }
 data.MaxResults = 10 // set default
 if err := params.Unpack(req, &data); err != nil {
 http.Error(resp, err.Error(), http.StatusBadRequest) // 400
 return
 }

 // ...rest of handler...
 fmt.Fprintf(resp, "Search: %+v\n", data)
}

The Unpack function below does three things.

First, it calls req.ParseForm() to parse the request.

Thereafter, req.Form contains all the parameters, regardless of
whether the HTTP client used the GET or the POST request method.

Next, Unpack builds a mapping from the effective name of
each field to the variable for that field. The effective name may
differ from the actual name if the field has a tag.

The Field method of reflect.Type

returns a reflect.StructField that provides information about the
type of each field such as its name, type, and optional tag.

The Tag field is a reflect.StructTag,

which is a string type that provides a Get
method to parse and extract the substring for a particular
key, such as http:"..." in this case.

Click here to view code image

gopl.io/ch12/params

// Unpack populates the fields of the struct pointed to by ptr
// from the HTTP request parameters in req.
func Unpack(req *http.Request, ptr interface{}) error {
 if err := req.ParseForm(); err != nil {
 return err
 }

 // Build map of fields keyed by effective name.
 fields := make(map[string]reflect.Value)
 v := reflect.ValueOf(ptr).Elem() // the struct variable
 for i := 0; i < v.NumField(); i++ {
 fieldInfo := v.Type().Field(i) // a reflect.StructField
 tag := fieldInfo.Tag // a reflect.StructTag
 name := tag.Get("http")
 if name == "" {
 name = strings.ToLower(fieldInfo.Name)
 }
 fields[name] = v.Field(i)
 }

 // Update struct field for each parameter in the request.
 for name, values := range req.Form {
 f := fields[name]
 if !f.IsValid() {
 continue // ignore unrecognized HTTP parameters
 }
 for _, value := range values {
 if f.Kind() == reflect.Slice {
 elem := reflect.New(f.Type().Elem()).Elem()
 if err := populate(elem, value); err != nil {
 return fmt.Errorf("%s: %v", name, err)
 }
 f.Set(reflect.Append(f, elem))
 } else {
 if err := populate(f, value); err != nil {
 return fmt.Errorf("%s: %v", name, err)
 }
 }
 }
 }
 return nil
}

Finally, Unpack iterates over the name/value pairs of the HTTP
parameters and updates the corresponding struct fields.

Recall that the same parameter name may appear more than once.

If this happens, and the field is a slice, then all the values of that
parameter are accumulated into the slice. Otherwise, the field is
repeatedly overwritten so that only the last value has any effect.

The populate function takes care of setting a single field
v (or a single element of a slice field) from a parameter
value.

For now, it supports only strings, signed integers, and booleans.

Supporting other types is left as an exercise.

Click here to view code image

func populate(v reflect.Value, value string) error {
 switch v.Kind() {
 case reflect.String:
 v.SetString(value)

 case reflect.Int:
 i, err := strconv.ParseInt(value, 10, 64)
 if err != nil {
 return err
 }
 v.SetInt(i)

 case reflect.Bool:
 b, err := strconv.ParseBool(value)
 if err != nil {
 return err
 }
 v.SetBool(b)

 default:
 return fmt.Errorf("unsupported kind %s", v.Type())
 }
 return nil
}

If we add the server handler to a web server, this might be a
typical session:

Click here to view code image

$ go build gopl.io/ch12/search
$./search &
$./fetch 'http://localhost:12345/search'
Search: {Labels:[] MaxResults:10 Exact:false}
$./fetch 'http://localhost:12345/search?l=golang&l=programming'
Search: {Labels:[golang programming] MaxResults:10 Exact:false}
$./fetch 'http://localhost:12345/search?l=golang&l=programming&max=100'
Search: {Labels:[golang programming] MaxResults:100 Exact:false}
$./fetch 'http://localhost:12345/search?x=true&l=golang&l=programming'
Search: {Labels:[golang programming] MaxResults:10 Exact:true}
$./fetch 'http://localhost:12345/search?q=hello&x=123'
x: strconv.ParseBool: parsing "123": invalid syntax
$./fetch 'http://localhost:12345/search?q=hello&max=lots'
max: strconv.ParseInt: parsing "lots": invalid syntax

Exercise 12.11:
Write the corresponding Pack function.

Given a struct value, Pack should return a URL incorporating
the parameter values from the struct.

Exercise 12.12:
Extend the field tag notation to express parameter validity requirements.

For example, a string might need to be a valid email
address or credit-card number, and an integer might need to
be a valid US ZIP code.

Modify Unpack to check these requirements.

Exercise 12.13:
Modify the S-expression encoder (§12.4)
and decoder (§12.6) so that they honor
the sexpr:"..." field tag in a similar manner to
encoding/json (§4.5).

12.8 Displaying the Methods of a Type

Our final example of reflection uses reflect.Type to print the
type of an arbitrary value and enumerate its methods:

Click here to view code image

gopl.io/ch12/methods

// Print prints the method set of the value x.
func Print(x interface{}) {
 v := reflect.ValueOf(x)
 t := v.Type()
 fmt.Printf("type %s\n", t)

 for i := 0; i < v.NumMethod(); i++ {
 methType := v.Method(i).Type()
 fmt.Printf("func (%s) %s%s\n", t, t.Method(i).Name,
 strings.TrimPrefix(methType.String(), "func"))
 }
}

Both reflect.Type and reflect.Value have a method called
Method.

Each t.Method(i)
call returns an instance of reflect.Method, a struct type
that describes the name and type of a single method.

Each v.Method(i) call returns a reflect.Value
representing a method value (§6.4), that is, a method bound to its
receiver.

Using the reflect.Value.Call method (which we don’t have space
to show here), it’s possible to call Values of kind Func
like this one, but this program needs only its Type.

Here are the methods belonging to two types, time.Duration and
*strings.Replacer:

Click here to view code image

methods.Print(time.Hour)
// Output:
// type time.Duration
// func (time.Duration) Hours() float64
// func (time.Duration) Minutes() float64
// func (time.Duration) Nanoseconds() int64
// func (time.Duration) Seconds() float64
// func (time.Duration) String() string

methods.Print(new(strings.Replacer))
// Output:
// type *strings.Replacer
// func (*strings.Replacer) Replace(string) string
// func (*strings.Replacer) WriteString(io.Writer, string) (int, error)

12.9 A Word of Caution

There is a lot more to the reflection API than we have space to show,
but the preceding examples give an idea of what is possible.

Reflection is a powerful and expressive tool, but it should be used with
care, for three reasons.

The first reason is that reflection-based code can be fragile.

For every mistake that would cause a compiler to report a
type error, there is a corresponding way to misuse reflection, but
whereas the compiler reports the mistake at build time, a reflection
error is reported during execution as a panic, possibly long after the program
was written or even long after it has started running.

If the readList function (§12.6),
for example, should read a string from the input while populating a
variable of type int, the call to
reflect.Value.SetString will panic.

Most programs that use reflection have similar hazards, and
considerable care is required to keep track of the type,
addressability, and settability of each reflect.Value.

The best way to avoid this fragility is to ensure that the use of
reflection is fully encapsulated within your package and, if possible,
avoid reflect.Value in favor of

specific types in your package’s API, to restrict inputs to legal
values. If this is not possible, perform additional dynamic checks
before each risky operation.

As an example from the standard library, when fmt.Printf
applies a verb to an inappropriate operand, it does not panic
mysteriously but prints an informative error message. The program
still has a bug, but it is easier to diagnose.

Click here to view code image

fmt.Printf("%d %s\n", "hello", 42) // "%!d(string=hello) %!s(int=42)"

Reflection also reduces the safety and accuracy of automated
refactoring and analysis tools, because they can’t determine
or rely on type information.

The second reason to avoid reflection is that since types serve as a
form of documentation
and the operations of reflection cannot be subject to static type checking,
heavily reflective code is often hard to understand. Always carefully
document the expected types and other invariants of functions

that accept an interface{} or a reflect.Value.

The third reason is that reflection-based functions may be one or
two orders of magnitude slower than code specialized for a particular
type. In a typical program, the majority of functions are not
relevant to the overall performance, so it’s fine to use reflection
when it makes the program clearer.

Testing is a particularly good fit for reflection since most tests use
small data sets.

But for functions on the critical path, reflection is best avoided.

13. Low-Level Programming

The design of Go guarantees a number of safety properties that limit
the ways in which a Go program can “go wrong.” During compilation,
type checking detects most attempts to apply an operation to a
value that is inappropriate for its type, for instance, subtracting one
string from another.

Strict rules for type conversions prevent direct access to the
internals of built-in types like strings, maps, slices, and
channels.

For errors that cannot be detected statically, such as out-of-bounds
array accesses or nil pointer dereferences, dynamic checks ensure that
the program immediately terminates with an informative error whenever
a forbidden operation occurs. Automatic memory management (garbage

collection) eliminates “use after free” bugs, as
well as most memory leaks.

Many implementation details are inaccessible to Go programs.
There is no way to discover the memory layout of an aggregate type
like a struct, or the machine code for a function, or the identity
of the operating system thread on which the current goroutine is
running. Indeed, the Go scheduler freely moves goroutines from
one thread to another. A pointer identifies a variable without
revealing the variable’s numeric address. Addresses may change as the
garbage collector moves variables; pointers are transparently updated.

Together, these features make Go programs, especially failing
ones, more predictable and less mysterious than programs in C, the
quintessential low-level language. By hiding the underlying details,
they also make Go programs highly portable, since the language
semantics are largely independent of any particular compiler,
operating system, or CPU architecture.

(Not entirely independent: some details leak through, such as the word
size of the processor, the order of evaluation of certain expressions,
and the set of implementation restrictions imposed by the compiler.)

Occasionally, we may choose to forfeit some of these helpful
guarantees to achieve the highest possible performance, to
interoperate with libraries written in other languages, or to
implement a function that cannot be expressed in pure Go.

In this chapter, we’ll see how the unsafe package lets us step

outside the usual rules, and how to use the cgo tool to create Go bindings
for C libraries and operating system calls.

The approaches described in this chapter should not be used frivolously.

Without careful attention to detail, they may cause the kinds of
unpredictable, inscrutable, non-local failures with which C
programmers are unhappily acquainted.

Use of unsafe also voids Go’s warranty of compatibility with future
releases, since, whether intended or inadvertent, it is easy to depend
on unspecified implementation details that may change unexpectedly.

The unsafe package is rather magical. Although it appears to be a
regular package and is imported in the usual way, it is actually
implemented by the compiler.

It provides access to a number of built-in language features that are
not ordinarily available because they expose details of Go’s memory
layout.

Presenting these features as a separate package makes the rare
occasions on which they are needed more conspicuous. Also, some
environments may restrict
the use of the unsafe package for security reasons.

Package unsafe is used extensively within low-level packages like
runtime, os, syscall, and net that interact
with the operating system, but is almost never needed by ordinary
programs.

13.1 unsafe.Sizeof, Alignof, and Offsetof

The unsafe.Sizeof function reports the size in bytes

of the representation of its operand,
which may be an expression of any type; the expression is not
evaluated.

A call to Sizeof is a constant expression of type
uintptr,

so the result may be used as the dimension of an array
type, or to compute other constants.

Click here to view code image

import "unsafe"

fmt.Println(unsafe.Sizeof(float64(0))) // "8"

Sizeof reports only the size of the fixed part of each data
structure, like the pointer and length of a string, but not
indirect parts like the contents of the string.

Typical sizes for all non-aggregate Go types are shown
below, though the exact sizes may vary by toolchain.
For portability, we’ve given the sizes of reference types (or types
containing references) in terms of words, where a word is 4 bytes on a
32-bit platform and 8 bytes on a 64-bit platform.

Computers load and store values from memory most efficiently when
those values are properly aligned. For example, the address of a
value of a two-byte type such as int16 should be an even number, the
address of a four-byte value such as a rune should be a multiple of
four, and the address of an eight-byte value such as a float64,
uint64, or 64-bit pointer should be a multiple of eight. Alignment
requirements of higher multiples are unusual, even for larger data
types such as complex128.

For this reason, the size of a value of an aggregate type (a struct or
array) is at least the sum of the sizes of its fields or elements but
may be greater due to the presence of “holes.” Holes are unused

spaces added by the compiler to ensure that the following field or
element is properly aligned relative to the start of the struct or
array.

	Type

	Size

	bool

	1 byte

	intN, uintN, floatN, complexN

	N / 8 bytes (for example, float64 is 8 bytes)

	int, uint, uintptr

	1 word

	*T

	1 word

	string

	2 words (data, len)

	[]T

	3 words (data, len, cap)

	map

	1 word

	func

	1 word

	chan

	1 word

	interface

	2 words (type, value)

The language specification does not guarantee that the order
in which fields are declared is the order in which they are laid out
in memory, so in theory a compiler is free to rearrange them, although
as we write this, none do.

If the types of a struct’s fields are of different sizes, it may be
more space-efficient to declare the fields in an order that packs them
as tightly as possible.

The three structs below have the same fields, but the first requires
up to 50% more memory than the other two:

Click here to view code image

 // 64-bit 32-bit
struct{ bool; float64; int16 } // 3 words 4 words
struct{ float64; int16; bool } // 2 words 3 words
struct{ bool; int16; float64 } // 2 words 3 words

The details of the alignment algorithm are beyond the scope of this
book, and it’s certainly not worth worrying about every struct, but efficient packing
may make frequently allocated data structures more compact and therefore faster.

The unsafe.Alignof function reports the required alignment of
its argument’s type.

Like Sizeof, it may be applied to an expression of any type, and it
yields a constant. Typically, boolean and numeric types are aligned to
their size (up to a maximum of 8 bytes) and all other types are
word-aligned.

The unsafe.Offsetof function, whose operand must be a field

selector x.f, computes the offset of field f relative to the
start of its enclosing struct x, accounting for holes, if any.

Figure 13.1 shows a struct variable x and its memory layout

on typical 32- and 64-bit Go implementations. The gray regions are holes.

var x struct {
 a bool
 b int16
 c []int
}

[image: Holes in a struct.]
Figure 13.1.
Holes in a struct.

The table below shows the results of applying the three unsafe
functions to x itself and to each of its three fields:

Click here to view code image

Typical 32-bit platform:
Sizeof(x) = 16 Alignof(x) = 4
Sizeof(x.a) = 1 Alignof(x.a) = 1 Offsetof(x.a) = 0
Sizeof(x.b) = 2 Alignof(x.b) = 2 Offsetof(x.b) = 2
Sizeof(x.c) = 12 Alignof(x.c) = 4 Offsetof(x.c) = 4

Typical 64-bit platform:
Sizeof(x) = 32 Alignof(x) = 8
Sizeof(x.a) = 1 Alignof(x.a) = 1 Offsetof(x.a) = 0
Sizeof(x.b) = 2 Alignof(x.b) = 2 Offsetof(x.b) = 2
Sizeof(x.c) = 24 Alignof(x.c) = 8 Offsetof(x.c) = 8

Despite their names, these functions are not in fact unsafe, and they
may be helpful for understanding the layout of raw memory in a
program when optimizing for space.

13.2 unsafe.Pointer

Most pointer types are written *T, meaning “a pointer to a variable
of type T.” The unsafe.Pointer type is a special kind of pointer that can

hold the address of any variable. Of course, we can’t indirect through an
unsafe.Pointer using *p because we don’t know what type that
expression should have. Like ordinary pointers, unsafe.Pointers are
comparable and may be compared with nil, which is the zero value of

the type.

An ordinary *T pointer may be converted to an
unsafe.Pointer, and an unsafe.Pointer may be converted back
to an ordinary pointer, not necessarily of the same type *T.

By converting a *float64 pointer to a *uint64, for
instance, we can inspect the bit pattern of a floating-point variable:

Click here to view code image

package math

func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }

fmt.Printf("%#016x\n", Float64bits(1.0)) // "0x3ff0000000000000"

Through the resulting pointer, we can update the bit pattern too.

This is harmless for a floating-point variable since any bit pattern is
legal, but in general, unsafe.Pointer conversions let us write
arbitrary values to memory and thus subvert the type system.

An unsafe.Pointer may also be converted to a uintptr
that holds the pointer’s numeric value, letting us perform arithmetic
on addresses.

(Recall from Chapter 3 that a uintptr is an
unsigned integer wide enough to represent an address.)

This conversion too may be applied in reverse, but again, converting
from a uintptr to an unsafe.Pointer may subvert the type
system since not all numbers are valid addresses.

Many unsafe.Pointer values are thus intermediaries for converting
ordinary pointers to raw numeric addresses and back again. The
example below takes the address of variable x, adds the offset of
its b field, converts the resulting address to *int16, and through
that pointer updates x.b:

Click here to view code image

gopl.io/ch13/unsafeptr

var x struct {
 a bool
 b int16
 c []int
}

// equivalent to pb := &x.b
pb := (*int16)(unsafe.Pointer(
 uintptr(unsafe.Pointer(&x)) + unsafe.Offsetof(x.b)))
*pb = 42

fmt.Println(x.b) // "42"

Although the syntax is cumbersome—perhaps no bad thing since these
features should be used sparingly—do not be tempted to introduce
temporary variables of type uintptr to break the lines. This
code is incorrect:

Click here to view code image

// NOTE: subtly incorrect!
tmp := uintptr(unsafe.Pointer(&x)) + unsafe.Offsetof(x.b)
pb := (*int16)(unsafe.Pointer(tmp))
*pb = 42

The reason is very subtle.

Some garbage collectors move variables around in memory to
reduce fragmentation or bookkeeping.

Garbage collectors of this kind are known as moving GCs.

When a variable is moved, all pointers that hold the address of the
old location must be updated to point to the new one.

From the perspective of the garbage collector, an unsafe.Pointer is a
pointer and thus its value must change as the variable moves, but a
uintptr is just a number so its value must not change. The
incorrect code above hides a pointer

from the garbage collector in
the non-pointer variable tmp. By the time the second statement
executes, the variable x could have moved and the number in tmp
would no longer be the address &x.b. The third statement clobbers
an arbitrary memory location with the value 42.

There are myriad pathological variations on this theme. After this
statement has executed:

Click here to view code image

pT := uintptr(unsafe.Pointer(new(T))) // NOTE: wrong!

there are no pointers that refer to the variable created by new, so
the garbage collector is entitled to recycle its storage when this statement
completes, after which pT contains the address where the variable was but
is no longer.

No current Go implementation uses a moving garbage collector (though
future implementations might), but this is no reason for
complacency: current versions of Go do move some variables
around in memory. Recall from Section 5.2 that goroutine stacks
grow as needed. When this happens, all variables on the old stack may
be relocated to a new, larger stack, so we cannot rely on the numeric

value of a variable’s address remaining unchanged throughout its
lifetime.

At the time of writing, there is little clear guidance on what Go
programmers may rely upon after an unsafe.Pointer to uintptr
conversion (see Go issue 7192),

so we strongly recommend

that you assume the bare minimum. Treat all uintptr values as if
they contain the former address of a variable, and minimize the
number of operations between converting an unsafe.Pointer to a
uintptr and using that uintptr. In our first example above, the
three operations—conversion to a uintptr, addition of the field
offset, conversion back—all appeared within a single expression.

When calling a library function that returns a uintptr, such as
those below from the reflect package, the result should be
immediately converted to an unsafe.Pointer to ensure that it
continues to point to the same variable.

Click here to view code image

package reflect

func (Value) Pointer() uintptr
func (Value) UnsafeAddr() uintptr
func (Value) InterfaceData() [2]uintptr // (index 1)

13.3 Example: Deep Equivalence

The DeepEqual function from the reflect package reports
whether two values are “deeply” equal.

DeepEqual compares basic values as if by the built-in ==
operator; for composite values, it traverses them recursively,
comparing corresponding elements.

Because it works for any pair of values, even ones that are not
comparable with ==, it finds widespread use in tests.

The following test uses DeepEqual to compare two []string values:

Click here to view code image

func TestSplit(t *testing.T) {
 got := strings.Split("a:b:c", ":")
 want := []string{"a", "b", "c"};
 if !reflect.DeepEqual(got, want) { /* ... */ }
}

Although DeepEqual is convenient, its distinctions can seem arbitrary.

For example, it doesn’t consider a nil map equal to a non-nil empty
map, nor a nil slice equal to a non-nil empty one:

Click here to view code image

var a, b []string = nil, []string{}
fmt.Println(reflect.DeepEqual(a, b)) // "false"

var c, d map[string]int = nil, make(map[string]int)
fmt.Println(reflect.DeepEqual(c, d)) // "false"

In this section we’ll define a function Equal that compares
arbitrary values.

Like DeepEqual, it compares slices and maps based on their
elements, but unlike DeepEqual, it considers a nil slice (or
map) equal to a non-nil empty one.

The basic recursion over the arguments can be done with reflection,
using a similar approach to the Display program
we saw in Section 12.3.

As usual, we define an unexported function, equal, for the
recursion. Don’t worry about the seen parameter just yet.

For each pair of values x and y to be compared,
equal checks that both (or neither) are valid and checks
that they have the same type.

The result of the function is defined as a set of switch cases that
compare two values of the same type.

For reasons of space, we’ve omitted several cases since the pattern
should be familiar by now.

Click here to view code image

gopl.io/ch13/equal

func equal(x, y reflect.Value, seen map[comparison]bool) bool {
 if !x.IsValid() || !y.IsValid() {
 return x.IsValid() == y.IsValid()
 }
 if x.Type() != y.Type() {
 return false
 }

 // ...cycle check omitted (shown later)...

 switch x.Kind() {
 case reflect.Bool:
 return x.Bool() == y.Bool()

 case reflect.String:
 return x.String() == y.String()

 // ...numeric cases omitted for brevity...

 case reflect.Chan, reflect.UnsafePointer, reflect.Func:
 return x.Pointer() == y.Pointer()

 case reflect.Ptr, reflect.Interface:
 return equal(x.Elem(), y.Elem(), seen)

 case reflect.Array, reflect.Slice:
 if x.Len() != y.Len() {
 return false
 }
 for i := 0; i < x.Len(); i++ {
 if !equal(x.Index(i), y.Index(i), seen) {
 return false
 }
 }
 return true

 // ...struct and map cases omitted for brevity...
 }
 panic("unreachable")
}

As usual, we don’t expose the use of reflection in the API, so the
exported function Equal must call reflect.ValueOf on
its arguments:

Click here to view code image

// Equal reports whether x and y are deeply equal.
func Equal(x, y interface{}) bool {
 seen := make(map[comparison]bool)
 return equal(reflect.ValueOf(x), reflect.ValueOf(y), seen)
}

type comparison struct {
 x, y unsafe.Pointer
 t reflect.Type
}

To ensure that the algorithm terminates even for cyclic data
structures, it must record which pairs of variables it has already
compared and avoid comparing them a second time.

Equal allocates a set of comparison structs, each
holding the address of two variables (represented as
unsafe.Pointer values) and the type of the comparison.

We need to record the type in addition to the addresses because
different variables can have the same address.

For example, if x and y are both arrays, x and
x[0] have the same address, as do y and y[0], and
it is important to distinguish whether we have compared x and
y or x[0] and y[0].

Once equal has established that its arguments have the same
type, and before it executes the switch, it checks whether it is
comparing two variables it has already seen and, if so, terminates the
recursion.

Click here to view code image

// cycle check
if x.CanAddr() && y.CanAddr() {
 xptr := unsafe.Pointer(x.UnsafeAddr())
 yptr := unsafe.Pointer(y.UnsafeAddr())
 if xptr == yptr {
 return true // identical references
 }
 c := comparison{xptr, yptr, x.Type()}
 if seen[c] {
 return true // already seen
 }
 seen[c] = true
}

Here’s our Equal function in action:

Click here to view code image

fmt.Println(Equal([]int{1, 2, 3}, []int{1, 2, 3})) // "true"
fmt.Println(Equal([]string{"foo"}, []string{"bar"})) // "false"
fmt.Println(Equal([]string(nil), []string{})) // "true"
fmt.Println(Equal(map[string]int(nil), map[string]int{})) // "true"

It even works on cyclic inputs similar to the one
that caused the Display function from
Section 12.3 to get stuck in a loop:

Click here to view code image

// Circular linked lists a -> b -> a and c -> c.
type link struct {
 value string
 tail *link
}
a, b, c := &link{value: "a"}, &link{value: "b"}, &link{value: "c"}
a.tail, b.tail, c.tail = b, a, c
fmt.Println(Equal(a, a)) // "true"
fmt.Println(Equal(b, b)) // "true"
fmt.Println(Equal(c, c)) // "true"
fmt.Println(Equal(a, b)) // "false"
fmt.Println(Equal(a, c)) // "false"

Exercise 13.1:
Define a deep comparison function that considers numbers (of any type)
equal if they differ by less than one part in a billion.

Exercise 13.2:
Write a function that reports whether its argument is a cyclic data
structure.

13.4 Calling C Code with cgo

A Go program might need to use a
hardware driver implemented in C, query an embedded
database implemented in C++, or use some linear algebra routines
implemented in Fortran. C has long been the lingua franca of
programming, so many packages intended for widespread use export a
C-compatible API, regardless of the language of their implementation.

In this section, we’ll build a simple data compression program that
uses cgo, a tool that creates Go bindings for C functions.

Such tools are called foreign-function interfaces (FFIs), and

cgo is not the only one for Go programs.

SWIG (swig.org) is another; it provides more complex
features for integrating with C++ classes, but we won’t show it here.

The compress/... subtree of the standard library provides
compressors and decompressors for popular compression algorithms,
including LZW (used by the Unix compress command) and DEFLATE
(used by the GNU gzip command).

The APIs of these packages vary slightly in details, but they all
provide a wrapper for an io.Writer that compresses the data
written to it, and a wrapper for an io.Reader that decompresses
the data read from it. For example:

Click here to view code image

package gzip // compress/gzip

func NewWriter(w io.Writer) io.WriteCloser
func NewReader(r io.Reader) (io.ReadCloser, error)

The bzip2 algorithm, which is based on the elegant Burrows-Wheeler
transform, runs slower than gzip but yields significantly better
compression. The compress/bzip2 package provides a decompressor

for bzip2, but at the moment the package provides no compressor.

Building one from scratch is a substantial undertaking, but there is a
well-documented and high-performance open-source C
implementation, the libbzip2 package from bzip.org.

If the C library were small, we would just port it to pure Go, and if
its performance were not critical for our purposes, we would be better
off invoking a C program as a helper subprocess using the
os/exec package.

It’s when you need to use a complex, performance-critical library with
a narrow C API that it may make sense to wrap it using cgo.

For the rest of this chapter, we’ll work through an example.

From the libbzip2 C package, we need the bz_stream
struct type, which holds the input and output buffers, and three C
functions: BZ2_bzCompressInit, which allocates the stream’s
buffers; BZ2_bzCompress, which compresses data from the input
buffer to the output buffer; and BZ2_bzCompressEnd, which
releases the buffers.

(Don’t worry about the mechanics of the libbzip2 package; the
purpose of this example is to show how the parts fit together.)

We’ll call the BZ2_bzCompressInit and BZ2_bzCompressEnd
C functions directly from Go, but for BZ2_bzCompress, we’ll
define a wrapper function in C, to show how it’s done.

The C source file below lives alongside the Go code in our package:

Click here to view code image

gopl.io/ch13/bzip

/* This file is gopl.io/ch13/bzip/bzip2.c, */
/* a simple wrapper for libbzip2 suitable for cgo. */
#include <bzlib.h>

int bz2compress(bz_stream *s, int action,
 char *in, unsigned *inlen, char *out, unsigned *outlen) {
 s->next_in = in;
 s->avail_in = *inlen;
 s->next_out = out;
 s->avail_out = *outlen;
 int r = BZ2_bzCompress(s, action);
 *inlen -= s->avail_in;
 *outlen -= s->avail_out;
 return r;
}

Now let’s turn to the Go code, the first part of which is shown below.

The import "C" declaration is special.

There is no package C, but this import causes go build
to preprocess the file using the cgo tool before the Go
compiler sees it.

Click here to view code image

// Package bzip provides a writer that uses bzip2 compression (bzip.org).
package bzip

/*
#cgo CFLAGS: -I/usr/include
#cgo LDFLAGS: -L/usr/lib -lbz2
#include <bzlib.h>
int bz2compress(bz_stream *s, int action,
 char *in, unsigned *inlen, char *out, unsigned *outlen);
*/
import "C"

import (
 "io"
 "unsafe"
)

type writer struct {
 w io.Writer // underlying output stream
 stream *C.bz_stream
 outbuf [64 * 1024]byte
}

// NewWriter returns a writer for bzip2-compressed streams.
func NewWriter(out io.Writer) io.WriteCloser {
 const (
 blockSize = 9
 verbosity = 0
 workFactor = 30
)
 w := &writer{w: out, stream: new(C.bz_stream)}
 C.BZ2_bzCompressInit(w.stream, blockSize, verbosity, workFactor)
 return w
}

During preprocessing, cgo generates a temporary package that contains
Go declarations corresponding to all the C functions and types used by
the file, such as C.bz_stream and C.BZ2_bzCompressInit.

The cgo tool discovers these types by invoking the C compiler
in a special way on the contents of the comment that precedes the
import declaration.

The comment may also contain #cgo directives that specify extra
options to the C toolchain.

The CFLAGS and LDFLAGS values contribute extra arguments
to the compiler and linker commands so that they can locate the
bzlib.h header file and the libbz2.a archive library.

The example assumes that these are installed beneath /usr on
your system. You may need to alter or delete these flags for your
installation.

NewWriter makes a call to the C function
BZ2_bzCompressInit to initialize the buffers for the stream.

The writer type includes another buffer that will be used to
drain the decompressor’s output buffer.

The Write method, shown below, feeds the uncompressed
data to the compressor, calling the function bz2compress
in a loop until all the data has been consumed.

Observe that the Go program may access C types like
bz_stream, char, and uint, C functions like
bz2compress, and even object-like C preprocessor macros such as
BZ_RUN, all through the C.x notation.

The C.uint type is distinct from Go’s uint type, even if
both have the same width.

Click here to view code image

func (w *writer) Write(data []byte) (int, error) {
 if w.stream == nil {
 panic("closed")
 }
 var total int // uncompressed bytes written

 for len(data) > 0 {
 inlen, outlen := C.uint(len(data)), C.uint(cap(w.outbuf))
 C.bz2compress(w.stream, C.BZ_RUN,
 (*C.char)(unsafe.Pointer(&data[0])), &inlen,
 (*C.char)(unsafe.Pointer(&w.outbuf)), &outlen)
 total += int(inlen)
 data = data[inlen:]
 if _, err := w.w.Write(w.outbuf[:outlen]); err != nil {
 return total, err
 }
 }
 return total, nil
}

Each iteration of the loop passes bz2compress the address and length of
the remaining portion of data, and the address and capacity of
w.outbuf.

The two length variables are passed by their addresses, not their
values, so that the C function can update them to indicate how much
uncompressed data was consumed and how much compressed data was
produced.

Each chunk of compressed data is then written to the underlying io.Writer.

The Close method has a similar structure to Write,
using a loop to flush out any remaining compressed data from the
stream’s output buffer.

Click here to view code image

// Close flushes the compressed data and closes the stream.
// It does not close the underlying io.Writer.
func (w *writer) Close() error {
 if w.stream == nil {
 panic("closed")
 }
 defer func() {
 C.BZ2_bzCompressEnd(w.stream)
 w.stream = nil
 }()
 for {
 inlen, outlen := C.uint(0), C.uint(cap(w.outbuf))
 r := C.bz2compress(w.stream, C.BZ_FINISH, nil, &inlen,
 (*C.char)(unsafe.Pointer(&w.outbuf)), &outlen)
 if _, err := w.w.Write(w.outbuf[:outlen]); err != nil {
 return err
 }
 if r == C.BZ_STREAM_END {
 return nil
 }
 }
}

Upon completion, Close calls C.BZ2_bzCompressEnd to
release the stream buffers, using defer to ensure that this
happens on all return paths.

At this point the w.stream pointer is no longer safe to
dereference.

To be defensive, we set it to nil, and add explicit nil checks to each
method, so that the program panics if the user mistakenly calls a
method after Close.

Not only is writer not concurrency-safe, but

concurrent calls to Close and Write could cause the
program to crash in C code. Fixing this is Exercise 13.3.

The program below, bzipper, is a bzip2 compressor command that
uses our new package.

It behaves like the bzip2 command present on many Unix systems.

Click here to view code image

gopl.io/ch13/bzipper

// Bzipper reads input, bzip2-compresses it, and writes it out.
package main

import (
 "io"
 "log"
 "os"

 "gopl.io/ch13/bzip"
)

func main() {
 w := bzip.NewWriter(os.Stdout)
 if _, err := io.Copy(w, os.Stdin); err != nil {
 log.Fatalf("bzipper: %v\n", err)
 }
 if err := w.Close(); err != nil {
 log.Fatalf("bzipper: close: %v\n", err)
 }
}

In the session below, we use bzipper to compress
/usr/share/dict/words, the system dictionary, from 938,848 bytes
to 335,405 bytes—about a third of its original size—then
uncompress it with the system bunzip2 command.

The SHA256 hash is the same before and after, giving us
confidence that the compressor is working correctly.

(If you don’t have sha256sum on your system, use your solution
to Exercise 4.2.)

Click here to view code image

$ go build gopl.io/ch13/bzipper
$ wc -c < /usr/share/dict/words
938848
$ sha256sum < /usr/share/dict/words
126a4ef38493313edc50b86f90dfdaf7c59ec6c948451eac228f2f3a8ab1a6ed -
$./bzipper < /usr/share/dict/words | wc -c
335405
$./bzipper < /usr/share/dict/words | bunzip2 | sha256sum
126a4ef38493313edc50b86f90dfdaf7c59ec6c948451eac228f2f3a8ab1a6ed -

We’ve demonstrated linking a C library into a Go program.
Going in the other direction, it’s also
possible to compile a Go program as a static archive that can be linked
into a C program or as a shared library that can be dynamically
loaded by a C program.

We’ve only scratched the surface of cgo here, and there is
much more to say about memory management, pointers, callbacks, signal
handling, strings, errno, finalizers, and the relationship between
goroutines and operating system threads, much of it very subtle.

In particular, the rules for correctly passing pointers from Go to C
or vice versa are complex, for reasons similar to those we discussed
in Section 13.2, and not yet authoritatively specified.

For further reading, start with https://golang.org/cmd/cgo.

Exercise 13.3:
Use sync.Mutex to make bzip2.writer safe for
concurrent use by multiple goroutines.

Exercise 13.4:
Depending on C libraries has its drawbacks.

Provide an alternative pure-Go implementation of bzip.NewWriter
that uses the os/exec package to run /bin/bzip2 as a
subprocess.

13.5 Another Word of Caution

We ended the previous chapter with a warning about the
downsides of the reflection interface.

That warning applies with even more force to
the unsafe package described in this chapter.

High-level languages insulate programs and programmers not only
from the arcane specifics of individual computer instruction sets,
but from dependence on irrelevancies like where in memory a
variable lives, how big a data type is, the details of structure
layout, and a host of other implementation details.

Because of that insulating layer, it’s possible to write programs
that are safe and robust and that will run on any operating system
without change.

The unsafe package lets programmers reach through the
insulation to use some crucial but otherwise inaccessible
feature, or perhaps to achieve higher performance.

The cost is usually to portability and safety, so one
uses unsafe at one’s peril.

Our advice on how and when to use unsafe parallels Knuth’s
comments on premature optimization, which we quoted in Section 11.5.

Most programmers will never need to use unsafe at all.

Nevertheless, there will occasionally be situations where some critical
piece of code can be best written using unsafe.

If careful study and measurement indicates that unsafe really is
the best approach, restrict it to as small a region as possible, so that
most of the program is oblivious to its use.

For now, put the last two chapters in the back of your mind.
Write some substantial Go programs.

Avoid reflect and
unsafe; come back to these chapters only if you must.

Meanwhile, happy Go programming.

We hope you enjoy writing Go as much as we do.

Index

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z

, -= , etc., assignment operator +=, 1.2

-= , etc., assignment operator += , , 1.2

| in template, 4.6

. in template, dot , 4.6

:= short variable declaration, 1.2, 2.3.1, 2.7

&, address-of operator, 1.8, 2.3.2, 2.3.2, 2.3.2, 4.3, 6.2, 6.5

&^, AND-NOT operator, 3.1

... argument, 5.6, 5.7

... array length, 4.1

` backquote character, 3.5.1

&^, bit-clear operator, 3.1

^, bitwise complement operator, 3.1

|, bitwise OR operator, 6.5, 6.5

_, blank identifier, 1.2, 2.4.1, 4.3, 5.1, 5.3, 10.5

// comment, 1.2

// comment, 1.8

==, comparison operator, 2.5, 3.4

--, decrement statement, 1.2, 2.4

, etc., assignment operator += , -=, 1.2

^, exclusive OR operator, 3.1

&, implicit, 6.2, 6.5

*, indirection operator, 1.8, 2.3.2

<<, left shift operator, 3.1

!, negation operator, 3.4

// Output comment, 11.6

... parameter, 4.2.1, 5.7, 5.7, 7.1

... path, 10.7.2, 10.7.6

' quote character, 3.1

%, remainder operator, 3.1, 6.5

>>, right shift operator, 3.1

&&, short-circuit AND operator, 3.4

||, short-circuit OR operator, 3.4

-, unary operator, 3.1

[image: Image], Unicode replacement character , 3.5.3, 4.3

+= , -= , etc., assignment operator, 1.2

+, string concatenation operator, 1.2, 3.5

+, unary operator, 3.1

++, increment statement, 1.2, 2.4, 4.3

+build comments, 10.7.3

A

Abstract Syntax Notation One (ASN.1), 4.5

abstract type, 1.8, 7.1

abstraction, premature, 7.15, 11.2.5, 11.2.5

ad hoc polymorphism, 7.13

address of local variable, 2.3.2, 2.3.4

address of struct literal, 4.4.1

addressable expression, 6.2, 12.5

addressable value, 2.3.2

address-of operator &, 1.8, 2.3.2, 2.3.2, 2.3.2, 4.3, 6.2, 6.5

aggregate type, 4, 4.4

Alef programming language, Preface

algorithm, breadth-first search, 5.6, 8.6

algorithm, depth-first search, 5.6

algorithm, Fibonacci, 2.4.1, 8.1

algorithm, GCD, 2.4.1

algorithm, insertion sort, 4.4

algorithm, Lissajous, 1.4

algorithm, slice rotation, 4.2

algorithm, topological sort, 5.6

aliasing, pointer, 2.3.2

alignment, 13.1

allocation, heap, 2.3.4

allocation, memory, 2.3.4, 2.3.4, 3.5.4, 4.2.1, 6.6, 7.12, 11.4

allocation, stack, 2.3.4

anchor element, HTML, 5.2

AND operator &&, short-circuit, 3.4

AND-NOT operator &^, 3.1

animation, GIF, 1.4

anonymous function, 1.7, 5.6, 5.6, 8.5

anonymous function, defer, 5.8

anonymous function, recursive, 5.6

anonymous struct field, 4.4.3, 4.4.3, 4.4.3, 6.3

API, encoding, 7.14, 12.4

API, error, 5.4, 5.10

API, package, 10.1, 10.7.4, 11.2.3, 12.3, 12.9

API, runtime, 11.5

API, SQL, 7.13

API, system call, 7.8

API, template, 4.6

API, token-based decoder, 7.14, 7.14, 12.6

APL programming language, Preface

append built-in function, 4.2.1, 4.2.1, 4.2.1

appendInt example, 4.2.1

argument, ..., 5.6, 5.7

argument, command-line, 1.2, 1.6, 2.3.2, 2.6.1, 7.4, 7.4, 10.7, 11.2.3

argument, function, 5.1

argument, pointer, 2.3.2, 4.1

argument, slice, 4.2

arithmetic expression evaluator, 7.9

array comparison, 4.1

array length, ..., 4.1

array literal, 4.1, 4.1, 4.2

array type, 4.1

array, underlying, 4.2, 4.2, 4.2.1, 7.6

array zero value, 4.1

ASCII, 3.1, 3.5, 3.5.1, 3.5.2, 11.2

ASN.1 (Abstract Syntax Notation One), 4.5

assembly line, cake, 8.4.4

assertion function, 11.2.5

assertion, interface type, 7.12, 7.12

assertion, test, 11.2

assertion, type, 7.10, 7.13

assignability, 2.4.2, 2.4.2, 7.3

assignability, interface, 7.3

assignment, implicit, 2.4.2

assignment, multiple-value, 2.4.1

assignment operator += , -= , etc., 1.2

assignment operators, 2.4, 3.1

assignment statement, 1.2, 1.2, 2.4, 3.1, 4.3, 7.1

assignment, tuple, 2.3.1, 2.4.1

associativity, operator, 3.1

atomic operation, 9.2

attack, HTML injection, 4.6

attack, SQL injection, 7.13

autoescape example, 4.6

B

back-door, package, 11.2.4

back-off, exponential, 5.4.1

backquote character, `, 3.5.1

bank example package, 9.1, 9.1, 9.2

bare return, 5.3

basename example, 3.5.4, 3.5.4

behavior, undefined, 9.1

Benchmark function, 11.1, 11.4

bidirectional to unidirectional channel conversion, 8.4.3

binary operators, table of, 3.1

binary semaphore, 9.2

binary tree, 4.4

bit vector, 6.5

bit-clear operator &^, 3.1

bit-set data type, 3.6.1

bitwise complement operator ^, 3.1

bitwise operators, table of, 3.1

bitwise OR operator |, 6.5, 6.5

black-box test, 11.2.3

blank identifier _, 1.2, 2.4.1, 4.3, 5.1, 5.3, 10.5

blank import, 10.5

block, file, 2.7

block, lexical, 2.7, 5.1, 5.6, 5.6.1, 7.13

block, local, 2.7

block, package, 2.7

block, universe, 2.7

blocking profile, 11.5

Blog, Go, Preface, 11.5

boiling example, 2.2

bool type, 3.4

boolean constant, false, 3.4

boolean constant, true, 3.4

boolean zero value, 2.3

breadthFirst function, 5.6

breadth-first search algorithm, 5.6, 8.6

break statement, labeled, 8.8

break statement, 1.8, 2.7

brittle test, 11.2.6

broadcast, 8.9, 8.10, 9.7

Brooks, Fred, Preface

btoi function, 3.4

buffered channel, 8.4, 8.4.4

bufio package, 1.3

bufio.NewReader function, 4.3

bufio.NewScanner function, 1.3

(*bufio.Reader).ReadRune method, 4.3, 4.3

bufio.Scanner type, 1.3

(*bufio.Scanner).Err method, 4.3

(*bufio.Scanner).Scan method, 1.3

(*bufio.Scanner).Split method, 4.3

bufio.ScanWords function, 4.3

build constraints, 10.7.3

build tags, 10.7.3

building packages, 10.7.3

built-in function, append, 4.2.1, 4.2.1, 4.2.1

built-in function, cap, 4.2, 8.4.4

built-in function, close, 8.4, 8.4.2, 8.9

built-in function, complex, 3.3

built-in function, copy, 4.2.1

built-in function, delete, 4.3

built-in function, imag, 3.3

built-in function, len, 1.2, 3.1, 3.5, 3.5, 4.1, 4.2, 8.4.4

built-in function, make, 1.3, 1.6, 4.2, 4.3, 8.4

built-in function, new, 2.3.3

built-in function, panic, 5.9, 5.9

built-in function, real, 3.3

built-in function, recover, 5.10

built-in interface, error, 7.8, 7.8

built-in type, error, 1.3, 5.4, 5.9, 7.8

byte slice to string conversion, 3.5.4

byte type, 3.1

ByteCounter example, 7.1

bytes package, 3.5.4, 3.5.4

bytes.Buffer type, 3.5.4, 6.6, 7.1, 7.5.1

(*bytes.Buffer).Grow method, 6.6

(*bytes.Buffer).WriteByte method, 3.5.4

(*bytes.Buffer).WriteRune method, 3.5.4

(*bytes.Buffer).WriteString method, 3.5.4

bytes.Equal function, 4.2

bzip C code, 13.4

bzip example package, 13.4

bzipper example, 13.4

C

C programming language, Preface, Preface, 1.1, 1.2, 3.1, 9.1, 13.4

C++ programming language, Preface, Preface, 13.4

cache, concurrent non-blocking, 9.7

cache, non-blocking, 9.7

cake assembly line, 8.4.4

call by reference, 4.1

call by value, 4.1, 5.1, 6.2

call, interface method, 7.5

call, ok value from function, 5.4

calling C from Go, 13.4

camel case, 2.1

cancellation, 8.9, 8.9

cancellation of HTTP request, 8.9

cap built-in function, 4.2, 8.4.4

capacity, channel, 8.4, 8.4.4, 8.4.4

capacity, slice, 4.2, 4.2.1

capturing iteration variable, 5.6.1

capturing loop variable, 5.6.1, 8.5, 8.6

case in type switch, 7.13

case, select, 8.7

Celsius type, 2.5

CelsiusFlag function, 7.4

cf example, 2.6.1

cgo tool, 13.4, 13.4

<-ch, channel receive, 1.6, 8.4, 8.4.4

ch<-, channel send, 1.6, 8.4, 8.4.4

chaining, method, 4.6

<-chan T, receive-only channel type , 8.4.3

chan<- T, send-only channel type , 8.4.3

chan type, 8.4

channel, buffered, 8.4, 8.4.4

channel capacity, 8.4, 8.4.4, 8.4.4

channel close, 8.4.2, 8.9

channel, closing a, 8.4

channel communication, 8.4, 8.7

channel comparison, 8.4

channel conversion, bidirectional to unidirectional, 8.4.3

channel, draining a, 8.4.2, 8.9

channel, make, 1.6, 8.4

channel, nil, 8.7, 8.8

channel, polling, 8.7

channel, range over, 8.4.2

channel receive <-ch, 1.6, 8.4, 8.4.4

channel receive, non-blocking, 8.7

channel receive, ok value from, 8.4.2

channel send ch<-, 1.6, 8.4, 8.4.4

channel, synchronous, 8.4.1

channel type, 1.6

channel type <-chan T, receive-only, 8.4.3

channel type chan<- T, send-only, 8.4.3

channel type, unidirectional, 8.4.3, 8.4.3, 8.4.3

channel, unbuffered, 8.4, 8.4.1

channel zero value, 8.4, 8.7

character conversion, 3.5.4

character test, 3.5.4

charcount example, 4.3

chat example, 8.10

chat server, 8.10

CheckQuota function, 11.2.3, 11.2.3

client, email, 11.2.3

client, SMTP, 11.2.3

clock example, 8.2, 8.2

clock server, concurrent, 8.2

close built-in function, 8.4, 8.4.2, 8.9

close, channel, 8.4.2, 8.9

closer goroutine, 8.5, 8.8

closing a channel, 8.4

closure, lexical, 5.6

cmplx.Sqrt function, 3.3

code format, 1.1, 1.2, 1.3, 2.7

code point, Unicode, 3.5.2

code, production, 11

ColoredPoint example, 6.3

comma example, 3.5.4

command, testing a, 11.2.2

command-line argument, 1.2, 1.6, 2.3.2, 2.6.1, 7.4, 7.4, 10.7, 11.2.3

comment, //, 1.2

comment, //, 1.8

comment, // Output, 11.6

comment, doc, 2.6, 10.7.4

comments, +build, 10.7.3

communicating sequential processes (CSP), Preface, 8

communication, channel, 8.4, 8.7

comparability, 1.3, 2.4.2, 2.5, 3.1, 4.2, 4.3, 4.3, 4.4.2

comparison, array, 4.1

comparison, channel, 8.4

comparison, function, 5.5

comparison, interface, 7.5

comparison, map, 4.3

comparison operator ==, 2.5, 3.4

comparison operators, 2.5, 4.3

comparison operators, table of, 3.1

comparison, slice, 4.2

comparison, string, 3.5

comparison, struct, 4.4.2

compilation, separate, 10.1

complement operator ^, bitwise, 3.1

complex built-in function, 3.3

complex type, 3.3

composite literal, 1.4

composite type, Preface, 1.4, 4

composition, parallel, 8.3

composition, type, Preface, 4.4.3, 6.3, 7.6

compress/bzip2 package, 13.4

compression, 13.4

conceptual integrity, Preface

concrete type, 1.8, 7.1, 7.13, 7.14

concurrency, 1.6, 8, 9

concurrency, excessive, 8.6, 8.6

concurrency safe, 9.7

concurrency safety, 8.10, 9.1, 9.7, 13.4

concurrency with shared variables, 9

concurrent clock server, 8.2

concurrent directory traversal, 8.8

concurrent echo server, 8.3

concurrent non-blocking cache, 9.7

concurrent web crawler, 8.6

confinement, serial, 9.1

confinement, variable, 9.1

consistency, sequential, 9.4, 9.5

const declaration, 1.4, 3.6

constant, false boolean, 3.4

constant generator, iota, Preface, 3.6.1

constant, time.Minute, 3.6

constant, time.Second, 6.4

constant, true boolean, 3.4

constant types, untyped, 3.6.2

constants, precision of, 3.6.2

constraints, build, 10.7.3

contention, lock, 9.3, 9.7

context switch, 9.8.2

continue statement, labeled, 8.8

continue statement, 1.8, 2.7

contracts, interfaces as, 7.1

control flow, 2.7

conversion, bidirectional to unidirectional channel, 8.4.3

conversion, byte slice to string, 3.5.4

conversion, character, 3.5.4

conversion, implicit, 3.6.2

conversion, narrowing, 2.5, 3.1

conversion, numeric, 3.6.2

conversion operation, 2.5, 3.1, 3.1, 3.1, 3.4, 3.5.3, 3.6.2, 3.6.2, 7.1, 7.6, 7.7, 7.12, 8.4.3, 13, 13.2

conversion, rune slice to string, 3.5.3

conversion, rune to string, 3.5.3

conversion, string, 3.5.4

conversion, string to byte slice, 2.5, 3.5.4

conversion, string to rune slice, 3.5.3, 4.2.1

conversion, unsafe.Pointer, 13.2

copy built-in function, 4.2.1

countdown example, 8.7, 8.7, 8.7, 8.7

counting semaphore, 8.6

coverage, statement, 11.3, 11.3

coverage, test, 11.3

coverage_test example, 11.3

CPU profile, 11.5

crawl example, 8.6, 8.6, 8.6, 8.6

crawler, concurrent web, 8.6

crawler, web, 5

critical section, 9.2, 9.5, 9.7

cross-compilation, 10.7.3

cryptography, 3.1, 4.1, 5.2, 11.5

crypto/sha256 package, 4.1

customSort example, 7.6

cyclic data structure, 12.3

cyclic test dependency, 11.2.4

D

data race, 9.1, 9.4, 9.7

data structure, cyclic, 12.3

data structure, recursive, 4.4, 4.4, 4.5

data type, bit-set, 3.6.1

database driver, MySQL, 10.2

database/sql package, 7.13, 10.5

daysAgo function, 4.6

deadbeef, 3.1, 3.6.2

deadlock, 8.4.4, 8.6, 9.2

declaration, const, 1.4, 3.6

declaration, func, 1.1, 2.2, 5.1

declaration, import, 1.1, 2.2, 2.6.1, 10.2, 10.4, 13.4

declaration, method, 2.5, 6.1

declaration, package, 1.1, 2.2, 2.6, 10.3

declaration, package-level, 2.2

declaration scope, 2.7, 5.6

declaration, shadowing, 2.7, 2.7, 7.10, 7.13

declaration, short variable, 1.2, 1.2, 2.3.1, 2.3.1

declaration statement, short variable, 1.2

declaration, struct, 4.4

declaration, type, 2.5

declaration, var, 1.2, 2.3

declarations, order of, 2.7

decode example, S-expression, 12.6

decoder API, token-based, 7.14, 7.14, 12.6

decoding, S-expression, 12.6

decoding, XML, 7.14

decrement statement --, 1.2, 2.4

dedup example, 4.3

deep equivalence, 4.2, 11.2.5, 13.3

default case in select, 8.7

default case in switch, 1.8

default case in type switch, 7.13

defer anonymous function, 5.8

defer example, 5.9, 5.9

defer statement, 5.8, 5.9, 9.2

deferred function call, 5.8

delete built-in function, 4.3

depth-first search algorithm, 5.6

dereference, implicit, 6.2

diagram, helloworld substring, 3.5.3

diagram, pipeline, 8.4.2

diagram, slice capacity growth, 4.2.1

diagram, slice of months, 4.2

diagram, string sharing, 3.5

diagram, struct hole, 13.1

diagram, thumbnail sequence, 8.5

digital artifact example, 7.3

Dijkstra, Edsger, 11.3

Dilbert, 4.4

directed acyclic graph, 5.6, 10.1

directory traversal, concurrent, 8.8

discriminated union, 7.13, 7.13, 7.14

display example, 12.3

Display function, 12.3

display function, 12.3

displaying methods of a type, 12.8

Distance function, 6.1

doc comment, 2.6, 10.7.4

doc.go doc comment file, 2.6, 10.7.4

documentation, package, 10.7.4

domain name, import path, 10.2

dot . in template, 4.6

downloading packages, 10.7.2

Dr. Strangelove, 12.3

draining a channel, 8.4.2, 8.9

du example, 8.8, 8.8, 8.8

dup example, 1.3, 1.3, 1.3

duplicate suppression, 9.7

dynamic dispatch, 7.5

dynamic type, interface, 7.5

E

echo example, 1.2, 1.2, 2.3.2, 11.2.2

echo server, concurrent, 8.3

echo test, 11.2.2

echo_test.go, 11.2.2

effective tests, writing, 11.2.5, 11.2.6

email client, 11.2.3

embarrassingly parallel, 8.5

embedded struct field, 6.3

embedding, interface, 7.2

embedding, struct, 4.4.3, 6.3

Employee struct, 4.4

empty select statement, 8.7

empty interface type, 7.3

empty string, 1.2, 1.2, 2.3

empty struct, 4.4

encapsulation, 6.6, 10.1

encoding API, 7.14, 12.4

encoding, S-expression, 12.4, 12.4

encoding/json package, 4.5

encoding/xml package, 4.5, 7.14

end of file (EOF), 5.4.2

enum, 3.6.1

environment variable, GOARCH, 10.7.1, 10.7.3

environment variable, GOMAXPROCS, 9.8.3, 11.4

environment variable, GOOS, 10.7.1, 10.7.3

environment variable, GOPATH, Preface, 10.7.1, 10.7.3

environment variable, GOROOT, 10.7.1

equal function, 4.2, 4.3

equality, pointer, 2.3.2

equivalence, deep, 4.2, 11.2.5, 13.3

error API, 5.4, 5.10

error built-in interface, 7.8, 7.8

error built-in type, 1.3, 5.4, 5.9, 7.8

error.Error method, 7.8

errorf function, 5.7

error-handling strategies, 5.4.1, 5.10, 11.2.2, 11.2.5

errors package, 7.8

errors.New function, 7.8

escape, hexadecimal, 3.5.1

escape, HTML, 4.6

escape, octal, 3.5.1

escape sequence, 1.3

escape sequences, table of, 3.5.1

escape, Unicode, 3.5.3, 4.5

escape, URL, 4.5

escaping variables, 2.3.4

eval example, 7.9, 7.9

event multiplexing, 8.7

events, 8.4.1, 8.7

example, appendInt, 4.2.1

example, autoescape, 4.6

example, basename, 3.5.4, 3.5.4

example, boiling, 2.2

example, ByteCounter, 7.1

example, bzipper, 13.4

example, cf, 2.6.1

example, charcount, 4.3

example, chat, 8.10

example, clock, 8.2, 8.2

example, ColoredPoint, 6.3

example, comma, 3.5.4

example, countdown, 8.7, 8.7, 8.7, 8.7

example, coverage_test, 11.3

example, crawl, 8.6, 8.6, 8.6, 8.6

example, customSort, 7.6

example, dedup, 4.3

example, defer, 5.9, 5.9

example, digital artifact, 7.3

example, display, 12.3

example, du, 8.8, 8.8, 8.8

example, dup, 1.3, 1.3, 1.3

example, echo, 1.2, 1.2, 2.3.2, 11.2.2

example, eval, 7.9, 7.9

example, fetch, 1.5, 5.8

example, fetchall, 1.6

example, findlinks, 5.2, 5.3, 5.6

example, ftoc, 2.2

Example function, 11.1, 11.6

example, github, 4.5, 4.5

example, graph, 4.3

example, helloworld, 1.1, 1.1

example, http, 7.7, 7.7, 7.7, 7.7

example, intset, 6.5, 6.5

example, issues, 4.5

example, issueshtml, 4.6

example, issuesreport, 4.6

example, jpeg, 10.5

example, lissajous, 1.4, 1.7, 2.3.4

example, mandelbrot, 3.3

example, memo, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7

example, methods, 12.8

example, movie, 4.5, 4.5

example, netcat, 8.2, 8.3, 8.4.1

example, netflag, 3.6.1

example, nonempty, 4.2.2

example, outline, 5.2, 5.5

example package, bank, 9.1, 9.1, 9.2

example package, bzip, 13.4

example package, format, 12.2

example package, geometry, 6.1

example package, http, 7.7

example package, links, 5.6

example package, memo, 9.7

example package, params, 12.7

example package, storage, 11.2.3, 11.2.3

example package, tempconv, 2.6

example package, thumbnail, 8.5

example, palindrome, 11.2, 11.2, 11.2.1

example, params, 12.7

example, Parse, 5.10

example, pipeline, 8.4.2, 8.4.2, 8.4.3

example, playlist, 7.6

example, rev, 4.2

example, reverb, 8.3, 8.3

example, server, 1.7, 1.7, 1.7

example, sexpr, 12.4

example, S-expression decode, 12.6

example, sha256, 4.1

example, sleep, 7.4

example, spinner, 8.1

example, squares, 5.6

example, sum, 5.7

example, surface, 3.2, 7.9

example, tempconv, 2.5, 7.4, 10.6

example, temperature conversion, 2.2

example, tempflag, 7.4

example, test of word, 11.2

example, thumbnail, 8.5, 8.5, 8.5

example, title, 5.10

example, topoSort, 5.6

example, trace, 5.8

example, treesort, 4.4

example, urlvalues, 6.2.1

example, wait, 5.4.1

example, word, 11.2, 11.2, 11.2.1

example, xmlselect, 7.14

exception, 5.4, 5.9

excessive concurrency, 8.6, 8.6

exclusion, mutual, 9.1, 9.2, 9.4

exclusive lock, 9.2, 9.3, 9.5

exclusive OR operator ^, 3.1

exponential back-off, 5.4.1

export of struct field, 4.4, 4.4.3, 4.5, 4.5, 6.6

export_test.go file, 11.2.4

Expr.Check method, 7.9

expression, addressable, 6.2, 12.5

expression evaluator, 7.9

expression, method, 6.4

expression, receive, 8.4

Expr.Eval method, 7.9

extending a slice, 4.2

Extensible Markup Language (XML), 4.5

external test package, 10.3, 11.2.4

F

Fahrenheit type, 2.5

failure message, test, 11.2

fallthrough statement, 1.8, 7.13

false boolean constant, 3.4

fetch example, 1.5, 5.8

fetchall example, 1.6

fib function, 2.4.1, 8.1

Fibonacci algorithm, 2.4.1, 8.1

field, anonymous struct, 4.4.3, 4.4.3, 4.4.3, 6.3

field, embedded struct, 6.3

field, export of struct, 4.4, 4.4.3, 4.5, 4.5, 6.6

field order, struct, 4.4, 13.1

field selector, 6.1

field, struct, 1.4, 4.4

field tag, omitempty, 4.5

field tag, struct, 4.5, 12.7

figure, Lissajous, 1.4

figure, Mandelbrot, 3.3

figure, three-D surface, 3.2, 7.9

file block, 2.7

file, export_test.go, 11.2.4

file name, Microsoft Windows, 3.5.4

file name, POSIX, 3.5.4

file, _test.go, 10.3, 11.1, 11.2

File Transfer Protocol (FTP), 8.2

findlinks example, 5.2, 5.3, 5.6

fixed-size stack, 5.2

flag, go list -f, 11.2.4

flag, go -race, 9.6

flag, go test -race, 9.7

flag, go test -run, 11.2

flag, go test -v, 11.2

flag, go tool -bench, 11.4

flag, go tool -benchmem, 11.4

flag, go tool -covermode, 11.3

flag, go tool -coverprofile, 11.3

flag, go tool -cpuprofile, 11.5

flag, go tool -nodecount, 11.5

flag, go tool -text, 11.5

flag, go tool -web, 11.5

flag, godoc -analysis, 7.3

flag package, 2.3.2, 7.4

flag.Args function, 2.3.2

flag.Bool function, 2.3.2

flag.Duration function, 7.4

flag.Parse function, 2.3.2

flag.String function, 2.3.2

flag.Value interface, 7.4, 7.4

floating-point number, 3.2

floating-point precision, 3.2, 3.2, 3.3, 3.6.2

floating-point truncation, 2.5, 3.1

fmt package, 1.1

fmt.Errorf function, 5.4.1, 7.8

fmt.Fprintf function, 7.1

fmt.Printf function, 1.3

fmt.Println function, 1.1

fmt.Scanf function, 3.5.5

fmt.Sscanf function, 7.4

fmt.Stringer interface, 7.4, 7.12

for scope, 2.7

for statement, 1.2

forEachNode function, 5.5

foreign-function interface (FFI), 13.4

format, code, 1.1, 1.2, 1.3, 2.7

format example package, 12.2

formatAtom function, 12.2

framework, web, 7.7

ftoc example, 2.2

func declaration, 1.1, 2.2, 5.1

function, anonymous, 1.7, 5.6, 5.6, 8.5

function, append built-in, 4.2.1, 4.2.1, 4.2.1

function argument, 5.1

function, assertion, 11.2.5

function, Benchmark, 11.1, 11.4

function body, missing, 5.1

function, breadthFirst, 5.6

function, btoi, 3.4

function, bufio.NewReader, 4.3

function, bufio.NewScanner, 1.3

function, bufio.ScanWords, 4.3

function, bytes.Equal, 4.2

function call, deferred, 5.8

function call, ok value from, 5.4

function, cap built-in, 4.2, 8.4.4

function, CelsiusFlag, 7.4

function, CheckQuota, 11.2.3, 11.2.3

function, close built-in, 8.4, 8.4.2, 8.9

function, cmplx.Sqrt, 3.3

function comparison, 5.5

function, complex built-in, 3.3

function, copy built-in, 4.2.1

function, daysAgo, 4.6

function, delete built-in, 4.3

function, Display, 12.3

function, display, 12.3

function, Distance, 6.1

function, equal, 4.2, 4.3

function, errorf, 5.7

function, errors.New, 7.8

function, Example, 11.1, 11.6

function, fib, 2.4.1, 8.1

function, flag.Args, 2.3.2

function, flag.Bool, 2.3.2

function, flag.Duration, 7.4

function, flag.Parse, 2.3.2

function, flag.String, 2.3.2

function, fmt.Errorf, 5.4.1, 7.8

function, fmt.Fprintf, 7.1

function, fmt.Printf, 1.3

function, fmt.Println, 1.1

function, fmt.Scanf, 3.5.5

function, fmt.Sscanf, 7.4

function, forEachNode, 5.5

function, formatAtom, 12.2

function, gcd, 2.4.1

function, handler, 1.7, 1.7, 5.10, 7.7, 7.7, 7.7, 12.7

function, html.Parse, 5.2, 5.3

function, http.DefaultServeMux, 7.7

function, http.Error, 7.7

function, http.Get, 1.5, 1.6

function, http.Handle, 7.7

function, http.HandleFunc, 1.7, 1.7, 7.7

function, http.ListenAndServe, 1.7, 7.7

function, http.NewRequest, 8.9

function, http.ServeMux, 7.7

function, hypot, 5.1

function, imag built-in, 3.3

function, image.Decode, 10.5

function, image.RegisterFormat, 10.5

function, incr, 2.3.2

function, init, 2.6.2, 2.7

function, intsToString, 3.5.4

function, io.Copy, 1.5, 1.6

function, ioutil.ReadAll, 1.5, 9.7

function, ioutil.ReadDir, 8.8

function, ioutil.ReadFile, 1.3, 5.8

function, io.WriteString, 7.12

function, itob, 3.4

function, json.Marshal, 4.5

function, json.MarshalIndent, 4.5

function, json.NewDecoder, 4.5

function, json.NewEncoder, 4.5

function, json.Unmarshal, 4.5, 4.6

function, len built-in, 1.2, 3.1, 3.5, 3.5, 4.1, 4.2, 8.4.4

function, links.Extract, 5.6

function literal, 1.7, 5.6, 8.4.1

function, log.Fatalf, 2.7, 5.4.1

function, main, 1.1, 11.2.2

function, make built-in, 1.3, 1.6, 4.2, 4.3, 8.4

function, math.Hypot, 6.1

function, math.Inf, 3.2

function, math.IsInf, 3.2

function, math.IsNaN, 3.2

function, math.NaN, 3.2

function, multi-valued, 1.3, 2.3, 2.4.1, 4.3, 5.3, 5.3

function, mustCopy, 8.2

function, net.Dial, 8.2

function, net.Listen, 8.2

function, new built-in, 2.3.3

function, nil, 5.5

function, os.Close, 1.3

function, os.Exit, 1.5, 2.3.2, 2.7

function, os.Getwd, 2.7

function, os.IsExist, 7.11

function, os.IsNotExist, 7.11

function, os.IsPermission, 7.11

function, os.Open, 1.3

function, os.Stat, 8.8

function, panic built-in, 5.9, 5.9

function parameter, 5.1

function, params.Unpack, 12.7

function, png.Encode, 3.3

function, PopCount, 2.6.2

function, real built-in, 3.3

function, recover built-in, 5.10

function, recursive anonymous, 5.6

function, reflect.TypeOf, 12.2

function, reflect.ValueOf, 12.2, 12.2, 12.3

function, reflect.Zero, 12.6

function, regexp.Compile, 5.9

function, regexp.MustCompile, 5.9

function result list, 5.1

function, runtime.Stack, 5.9

function, SearchIssues, 4.5

function, sexpr.Marshal, 12.4

function, sexpr.readList, 12.6

function, sexpr.Unmarshal, 12.6

function signature, 5.1

function, sort.Float64s, 7.6

function, sort.Ints, 7.6

function, sort.IntsAreSorted, 7.6

function, sort.Reverse, 7.6

function, sort.Strings, 4.3, 5.6, 7.6

function, Sprint, 12.1

function, sqlQuote, 7.13, 7.13

function, strconv.Atoi, 1.7, 3.5.5

function, strconv.FormatInt, 3.5.5

function, strconv.Itoa, 3.5.5

function, strconv.ParseInt, 3.5.5

function, strconv.ParseUint, 3.5.5

function, strings.Contains, 3.5.3

function, strings.HasPrefix, 3.5.3

function, strings.HasSuffix, 3.5.3

function, strings.Index, 10.6

function, strings.Join, 1.2, 1.3

function, strings.Map, 5.5

function, strings.NewReader, 10.6

function, strings.NewReplacer, 10.6

function, strings.Split, 1.3

function, strings.ToLower, 3.5.4

function, strings.ToUpper, 3.5.4

function, template.Must, 4.6

function, template.New, 4.6

function, Test, 11.1

function, time.After, 8.7

function, time.AfterFunc, 6.4

function, time.Now, 8.2

function, time.Parse, 8.2

function, time.Since, 4.6

function, time.Tick, 8.7, 8.7

function, title, 5.8, 5.8

function type, 5.1, 5.1

function, unicode.IsDigit, 3.5.4

function, unicode.IsLetter, 3.5.4

function, unicode.IsLower, 3.5.4

function, unicode.IsSpace, 4.2.2

function, unicode.IsUpper, 3.5.4

function, unsafe.AlignOf, 13.1

function, unsafe.Offsetof, 13.1

function, unsafe.Sizeof, 13.1

function, url.QueryEscape, 4.5

function, utf8.DecodeRuneInString, 3.5.3

function, utf8.RuneCountInString, 3.5.3

function value, 5.5

function, variadic, 5.7, 7.1

function, visit, 5.2

function, WaitForServer, 5.4.1

function, walkDir, 8.8

function zero value, 5.5

G

garbage collection, Preface, Preface, 1.2, 2.3.4, 8.4.2, 13, 13.2

garbage collector, moving, 13.2

GCD algorithm, 2.4.1

gcd function, 2.4.1

geometry example package, 6.1

geometry.Point.Distance method, 6.1

getter method, 6.6

GIF animation, 1.4

github example, 4.5, 4.5

GitHub issue tracker, 4.5

Go Blog, Preface, 11.5

go build, 1.1, 10.4, 10.7.3, 10.7.3

go doc, 10.7.4

go doc tool, 1.8

go env, 10.7.1

go get, Preface, 1.1, 10.7.2, 10.7.2

go help, 10.7

go install, 10.7.3

Go issue, 4.5, 4.5, 13.2

go list, 10.7.6, 11.2.4

go list -f flag, 11.2.4

Go Playground, Preface, 11.6

go -race flag, 9.6

go run, 1.1, 10.7.3

go statement, 1.6, 8.1

go test, 11, 11.1, 11.1, 11.2

go test -race flag, 9.7

go test -run flag, 11.2

go test -v flag, 11.2

go tool, 1.1, 2.6.1, 2.6.2, 10.7

go tool -bench flag, 11.4

go tool -benchmem flag, 11.4

go tool cover, 11.3, 11.3, 11.3

go tool -covermode flag, 11.3

go tool -coverprofile flag, 11.3

go tool -cpuprofile flag, 11.5

go tool -nodecount flag, 11.5

go tool pprof, 11.5

go tool -text flag, 11.5

go tool -web flag, 11.5

GOARCH environment variable, 10.7.1, 10.7.3

godoc -analysis flag, 7.3

godoc tool, Preface, 1.8, 10.7.4, 11.6

gofmt tool, 1.1, 1.2, 2.6.1, 10.4

goimports tool, 1.1, 2.6.1, 10.4

golang.org/x/net/html package, 5.2

golint tool, 10.7.2

GOMAXPROCS environment variable, 9.8.3, 11.4

GOOS environment variable, 10.7.1, 10.7.3

GOPATH environment variable, Preface, 10.7.1, 10.7.3

gopl.io repository, Preface

GOROOT environment variable, 10.7.1

goroutine, 1.6, 8.1, 8.4.4, 8.5

goroutine, closer, 8.5, 8.8

goroutine identity, 9.8.4

goroutine leak, 8.4.4, 8.5, 8.7

goroutine, monitor, 9.1, 9.7

goroutine multiplexing, 9.8.2

goroutine vs. OS thread, 9.8

goto statement, 1.8

graph example, 4.3

GraphViz, 11.5

Griesemer, Robert, Preface

growth, stack, 5.2, 9.8.1, 13.2

guarding mutex, 9.2

H

half-open interval, 1.2

handler function, 1.7, 1.7, 5.10, 7.7, 7.7, 7.7, 12.7

“happens before” relation, 8.4.1, 9.1, 9.1, 9.7

“has a” relationship, 6.3

hash table, 1.3, 4.3

Haskell programming language, Preface

heap allocation, 2.3.4

heap profile, 11.5

heap variable, 2.3.4

helloworld substring diagram, 3.5.3

helloworld example, 1.1, 1.1

hexadecimal escape, 3.5.1

hexadecimal literal, 3.1

hidden pointer, 13.2

Hoare, Tony, Preface

hole, struct, 13.1

HTML anchor element, 5.2

HTML escape, 4.6

HTML injection attack, 4.6

HTML metacharacter, 4.6

HTML parser, 5.2

html.Parse function, 5.2, 5.3

html/template package, 4.6, 4.6

http example, 7.7, 7.7, 7.7, 7.7

http example package, 7.7

HTTP GET request, 1.7, 5.3, 9.7, 12.7

HTTP POST request, 12.7

HTTP request, cancellation of, 8.9

HTTP request multiplexer, 7.7

(*http.Client).Do method, 8.9

http.DefaultClient variable, 8.9

http.DefaultServeMux function, 7.7

http.Error function, 7.7

http.Get function, 1.5, 1.6

http.Handle function, 7.7

http.HandleFunc function, 1.7, 1.7, 7.7

http.Handler interface, 7.7, 7.7

http.HandlerFunc type, 7.7, 7.9

http.ListenAndServe function, 1.7, 7.7

http.NewRequest function, 8.9

http.Request type, 1.7, 8.9

(*http.Request).ParseForm method, 1.7, 12.7

http.ResponseWriter type, 1.7, 1.7, 7.7, 7.7

http.ServeMux function, 7.7

hypot function, 5.1

I

identifier _, blank, 1.2, 2.4.1, 4.3, 5.1, 5.3, 10.5

identifier, qualified, 2.6, 2.6.1

identity, goroutine, 9.8.4

IEEE 754 standard, 3.2, 3.2

if, initialization statement in, 1.7, 7.10

if-else scope, 2.7

if-else statement, 1.3, 1.7, 2.7

imag built-in function, 3.3

image manipulation, 5.2

image package, 3.3, 10.5

image/color package, 1.4

image.Decode function, 10.5

image/png package, 10.5

image.RegisterFormat function, 10.5

imaginary literal, 3.3

immutability, 9.1

immutability, string, 3.5, 3.5.4

implementation with slice, stack, 4.2.2, 7.14

implicit &, 6.2, 6.5

implicit assignment, 2.4.2

implicit conversion, 3.6.2

implicit dereference, 6.2

import, blank, 10.5

import declaration, 1.1, 2.2, 2.6.1, 10.2, 10.4, 13.4

import path, 10.2, 10.2

import path domain name, 10.2

import, renaming, 10.4

incr function, 2.3.2

increment statement ++, 1.2, 2.4, 4.3

index operation, string, 3.5

indirection operator *, 1.8, 2.3.2

infinite loop, 1.2, 5.1, 8.4.2

information hiding, 6.6, 10.1

init function, 2.6.2, 2.7

initialization, lazy, 9.5

initialization, package, 2.6.2

initialization statement in if, 1.7, 7.10

initialization statement in switch, 1.8

initializer list, 2.3

injection attack, HTML, 4.6

injection attack, SQL, 7.13

in-place slice techniques, 4.2.2

insertion sort algorithm, 4.4

int type, 3.1

integer literal, 3.1

integer overflow, 3.1, 4.5

integer, signed, 3.1, 3.1

integer, unsigned, 3.1, 3.1

integration test, 11.2.4

interface assignability, 7.3

interface comparison, 7.5

interface dynamic type, 7.5

interface embedding, 7.2

interface, error built-in, 7.8, 7.8

interface, flag.Value, 7.4, 7.4

interface, fmt.Stringer, 7.4, 7.12

interface, http.Handler, 7.7, 7.7

interface, io.Closer, 7.2

interface, io.Reader, 7.2

interface, io.Writer, 1.4, 1.7, 7.1, 7.2, 7.5.1, 7.12, 7.12, 11.2.2

interface, JSON, 4.5

interface method call, 7.5

interface, nil, 7.5

interface pitfall, 7.5.1

interface, ReadWriteCloser, 7.2

interface, ReadWriter, 7.2

interface satisfaction, 7, 7.3

interface, sort.Interface, 7.6

interface{} type, 5.7

interface type, 7.1, 7.2

interface{} type, 7.3, 12.2, 12.2

interface type assertion, 7.12, 7.12

interface type, empty, 7.3

interface value, 7.5

interface with nil pointer, 7.5.1

interface zero value, 7.5

interfaces as contracts, 7.1

internal package, 10.7.5

intset example, 6.5, 6.5

intsToString function, 3.5.4

invariants, 6.2, 6.6, 6.6, 9.2, 10.1, 11.2.3, 12.9

io package, 7.2

io.Closer interface, 7.2

io.Copy function, 1.5, 1.6

io.Discard stream, 1.7

io.Discard variable, 1.6

io.EOF variable, 5.4.2

io/ioutil package, 1.5, 5.8

io.Reader interface, 7.2

iota constant generator, Preface, 3.6.1

ioutil.ReadAll function, 1.5, 9.7

ioutil.ReadDir function, 8.8

ioutil.ReadFile function, 1.3, 5.8

io.Writer interface, 1.4, 1.7, 7.1, 7.2, 7.5.1, 7.12, 7.12, 11.2.2

io.WriteString function, 7.12

“is a” relationship, 6.3, 7.3

issue, Go, 4.5, 4.5, 13.2

issue tracker, GitHub, 4.5

issues example, 4.5

issueshtml example, 4.6

issuesreport example, 4.6

iteration order, map, 4.3

iteration variable, capturing, 5.6.1

itob function, 3.4

J

Java programming language, Preface

JavaScript Object Notation (JSON), 4.5, 12.4

JavaScript programming language, Preface, 4.5

jpeg example, 10.5

JSON interface, 4.5

JSON interface, Open Movie Database, 4.5

JSON interface, xkcd, 4.5

JSON, marshaling, 4.5

JSON, unmarshaling, 4.5

json.Decoder type, 4.5

json.Encoder type, 4.5

json.Marshal function, 4.5

json.MarshalIndent function, 4.5

json.NewDecoder function, 4.5

json.NewEncoder function, 4.5

json.Unmarshal function, 4.5, 4.6

K

keyword, type, 7.13

keywords, table of, 2.1

Knuth, Donald, 11.5

L

label scope, 2.7

label, statement, 2.7

labeled break statement, 8.8

labeled continue statement, 8.8

labeled statement, 2.7

layout, memory, 13, 13.1, 13.1

lazy initialization, 9.5

leak, goroutine, 8.4.4, 8.5, 8.7

left shift operator <<, 3.1

len built-in function, 1.2, 3.1, 3.5, 3.5, 4.1, 4.2, 8.4.4

lexical block, 2.7, 5.1, 5.6, 5.6.1, 7.13

lexical closure, 5.6

lifetime, variable, 2.3.4, 2.7, 5.6

links example package, 5.6

links.Extract function, 5.6

Lisp programming language, 12.4

Lissajous algorithm, 1.4

lissajous example, 1.4, 1.7, 2.3.4

Lissajous figure, 1.4

list, initializer, 2.3

literal, array, 4.1, 4.1, 4.2

literal, composite, 1.4

literal, function, 1.7, 5.6, 8.4.1

literal, hexadecimal, 3.1

literal, imaginary, 3.3

literal, integer, 3.1

literal, map, 4.3

literal, octal, 3.1

literal, raw string, 3.5.1

literal, rune, 3.1

literal, slice, 2.4.2, 4.2

literal, string, 3.5.1

literal, struct, 1.4, 4.4.1, 4.4.3

local block, 2.7

local variable, 2.2, 5.6.1

local variable, address of, 2.3.2, 2.3.4

local variable scope, 5.6

locating packages, 10.7.1

lock contention, 9.3, 9.7

lock, exclusive, 9.2, 9.3, 9.5

lock, mutex, 4.4, 9.2, 9.2, 11.5

lock, non-reentrant, 9.2

lock, readers, 9.3

lock, shared, 9.3

lock, writer, 9.3

log package, 2.7, 5.4.1, 6.6

log.Fatalf function, 2.7, 5.4.1

lookup m[key], map, 4.3

lookup, ok value from map, 4.3

loop, infinite, 1.2, 5.1, 8.4.2

loop, range, 1.2, 1.3

loop variable, capturing, 5.6.1, 8.5, 8.6

loop variable scope, 5.6.1, 8.5

loop, while, 1.2

M

main function, 1.1, 11.2.2

main, package, 1.1, 10.3, 11.2.2

make built-in function, 1.3, 1.6, 4.2, 4.3, 8.4

make channel, 1.6, 8.4

make map, 1.3, 1.6, 4.3

make slice, 4.2, 11.4

mandelbrot example, 3.3

Mandelbrot figure, 3.3

Mandelbrot set, 3.3

map as set, 4.3, 7.9

map comparison, 4.3

map element, nonexistent, 4.3, 4.3

map iteration order, 4.3

map literal, 4.3

map lookup m[key], 4.3

map lookup, ok value from, 4.3

map, make, 1.3, 1.6, 4.3

map, nil, 4.3

map, range over, 4.3

map type, 1.3, 4.3

map with slice key, 4.3

map zero value, 4.3

marshaling JSON, 4.5

math package, 1.4, 3.2

math/big package, 3.3

math/cmplx package, 3.3

math.Hypot function, 6.1

math.Inf function, 3.2

math.IsInf function, 3.2

math.IsNaN function, 3.2

math.NaN function, 3.2

math/rand package, 10.3, 11.2.1

memo example, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7

memo example package, 9.7

memoization, 9.7

memory allocation, 2.3.4, 2.3.4, 3.5.4, 4.2.1, 6.6, 7.12, 11.4

memory layout, 13, 13.1, 13.1

metacharacter, HTML, 4.6

method, (*bufio.Reader).ReadRune, 4.3, 4.3

method, (*bufio.Scanner).Err, 4.3

method, (*bufio.Scanner).Scan, 1.3

method, (*bufio.Scanner).Split, 4.3

method, (*bytes.Buffer).Grow, 6.6

method, (*bytes.Buffer).WriteByte, 3.5.4

method, (*bytes.Buffer).WriteRune, 3.5.4

method, (*bytes.Buffer).WriteString, 3.5.4

method call, interface, 7.5

method chaining, 4.6

method declaration, 2.5, 6.1

method, error.Error, 7.8

method, Expr.Check, 7.9

method expression, 6.4

method, Expr.Eval, 7.9

method, geometry.Point.Distance, 6.1

method, getter, 6.6

method, (*http.Client).Do, 8.9

method, (*http.Request).ParseForm, 1.7, 12.7

method name, 6.1

method, net.Conn.Close, 8.2

method, net.Listener.Accept, 8.2

method, (*os.File).Write, 7.5

method, path.Distance, 6.1

method promotion, 6.3

method receiver name, 6.1

method receiver parameter, 6.1

method receiver type, 6.1

method, reflect.Type.Field, 12.7

method, reflect.Value.Addr, 12.5

method, reflect.Value.CanAddr, 12.5

method, reflect.Value.Interface, 12.2, 12.5

method, reflect.Value.Kind, 12.2

method selector, 6.1

method, setter, 6.6

method, String, 2.5, 6.5, 12.1

method, (*sync.Mutex).Lock, 1.7, 5.8, 9.2

method, (*sync.Mutex).Unlock, 1.7, 5.8, 9.2

method, (*sync.Once).Do, 9.5

method, (*sync.RWMutex).RLock, 9.3

method, (*sync.RWMutex).RUnlock, 9.3

method, (*sync.WaitGroup).Add, 8.5

method, (*sync.WaitGroup).Done, 8.5

method, template.Funcs, 4.6

method, template.Parse, 4.6

method, (*testing.T).Errorf, 7.9, 11.2, 11.2

method, (*testing.T).Fatal, 11.2

method, time.Time.Format, 8.2

method value, 6.4

method, (*xml.Decoder).Token, 7.14

methods example, 12.8

methods of a type, displaying, 12.8

Microsoft Windows file name, 3.5.4

missing function body, 5.1

m[key], map lookup, 4.3

mobile platforms, 5.2

Modula-2 programming language, Preface

modularity, 10.1

monitor, 9.2, 9.7

monitor goroutine, 9.1, 9.7

movie example, 4.5, 4.5

moving garbage collector, 13.2

multimap, 6.2.1, 7.7

multiple-value assignment, 2.4.1

multiplexer, HTTP request, 7.7

multiplexing, event, 8.7

multiplexing, goroutine, 9.8.2

multithreading, shared-memory, 8, 9

multi-valued function, 1.3, 2.3, 2.4.1, 4.3, 5.3, 5.3

mustCopy function, 8.2

mutex, 5.8, 6.3, 8.10, 9.5

mutex, guarding, 9.2

mutex lock, 4.4, 9.2, 9.2, 11.5

mutex, read/write, 9.3, 9.3

mutual exclusion, 9.1, 9.2, 9.4

MySQL database driver, 10.2

N

name, method, 6.1

name, method receiver, 6.1

name, package, 2.1, 2.6.1

name, parameter, 5.1

name space, 2.6, 6.1, 10.1

named result, 5.1, 5.3

named result zero value, 5.1, 5.3

named type, 1.8, 2.5, 2.5, 4.4.3, 6.1

naming convention, 2.1, 6.6, 7.2, 10.6

naming, package, 10.6

NaN (not a number), 3.2, 4.3

narrowing conversion, 2.5, 3.1

negation operator !, 3.4

net package, 8.2

netcat example, 8.2, 8.3, 8.4.1

net.Conn type, 8.2

net.Conn.Close method, 8.2

net.Dial function, 8.2

netflag example, 3.6.1

net/http package, 1.5, 7.7

net.Listen function, 8.2

net.Listener type, 8.2

net.Listener.Accept method, 8.2

net/smtp package, 11.2.3

net/url package, 6.2.1

networking, 5.2, 8.2

new built-in function, 2.3.3

new, redefining, 2.3.3

nil channel, 8.7, 8.8

nil function, 5.5

nil interface, 7.5

nil map, 4.3

nil pointer, 2.3.2

nil pointer, interface with, 7.5.1

nil receiver, 6.2.1, 7.5.1

nil slice, 4.2

non-blocking cache, 9.7

non-blocking cache, concurrent, 9.7

non-blocking channel receive, 8.7

non-blocking select, 8.7

nonempty example, 4.2.2

nonexistent map element, 4.3, 4.3

non-reentrant lock, 9.2

non-standard package, 5.2

number, floating-point, 3.2

number zero value, 1.2, 2.3

numeric conversion, 3.6.2

numeric precision, 3.1, 3.6.2

numeric type, 3.1

O

Oberon programming language, Preface

object, 6.1

object-oriented programming (OOP), 6, 6.6

octal escape, 3.5.1

octal literal, 3.1

ok value, 2.4.1

ok value from channel receive, 8.4.2

ok value from function call, 5.4

ok value from map lookup, 4.3

ok value from type assertion, 7.10

omitempty field tag, 4.5

Open Movie Database JSON interface, 4.5

operation, atomic, 9.2

operation, conversion, 2.5, 3.1, 3.1, 3.1, 3.4, 3.5.3, 3.6.2, 3.6.2, 7.1, 7.6, 7.7, 7.12, 8.4.3, 13, 13.2

operator &, address-of, 1.8, 2.3.2, 2.3.2, 2.3.2, 4.3, 6.2, 6.5

operator &^, AND-NOT, 3.1

operator &^, bit-clear, 3.1

operator ^, bitwise complement, 3.1

operator |, bitwise OR, 6.5, 6.5

operator ==, comparison, 2.5, 3.4

operator ^, exclusive OR, 3.1

operator *, indirection, 1.8, 2.3.2

operator <<, left shift, 3.1

operator !, negation, 3.4

operator %, remainder, 3.1, 6.5

operator >>, right shift, 3.1

operator &&, short-circuit AND, 3.4

operator ||, short-circuit OR, 3.4

operator -, unary, 3.1

operator += , -= , etc., assignment, 1.2

operator +, string concatenation, 1.2, 3.5

operator +, unary, 3.1

operator associativity, 3.1

operator precedence, 3.1, 3.4

operator s[i:j], slice, 4.2, 4.2

operator s[i:j], substring, 3.5, 4.2

operators, assignment, 2.4, 3.1

operators, comparison, 2.5, 4.3

operators, table of binary, 3.1

operators, table of bitwise, 3.1

operators, table of comparison, 3.1

optimization, 9.2, 11.4, 11.5

optimization, premature, 11.5

OR operator ||, short-circuit, 3.4

order of declarations, 2.7

order, struct field, 4.4, 13.1

organization, workspace, 10.7.1

os package, 1.2, 7.11

OS thread vs. goroutine, 9.8

os.Args variable, 1.2

os.Close function, 1.3

os.Exit function, 1.5, 2.3.2, 2.7

*os.File type, 1.3, 1.3, 7.1, 7.3, 7.5.1, 12.3

os.FileInfo type, 8.8

(*os.File).Write method, 7.5

os.Getwd function, 2.7

os.IsExist function, 7.11

os.IsNotExist function, 7.11

os.IsPermission function, 7.11

os.LinkError type, 7.11

os.Open function, 1.3

os.PathError type, 7.11

os.Stat function, 8.8

outline example, 5.2, 5.5

overflow, integer, 3.1, 4.5

overflow, stack, 5.2

P

package API, 10.1, 10.7.4, 11.2.3, 12.3, 12.9

package back-door, 11.2.4

package, bank example, 9.1, 9.1, 9.2

package block, 2.7

package, bufio, 1.3

package, bytes, 3.5.4, 3.5.4

package, bzip example, 13.4

package, compress/bzip2, 13.4

package, crypto/sha256, 4.1

package, database/sql, 7.13, 10.5

package declaration, 1.1, 2.2, 2.6, 10.3

package documentation, 10.7.4

package, encoding/json, 4.5

package, encoding/xml, 4.5, 7.14

package, errors, 7.8

package, external test, 10.3, 11.2.4

package, flag, 2.3.2, 7.4

package, fmt, 1.1

package, format example, 12.2

package, geometry example, 6.1

package, golang.org/x/net/html, 5.2

package, html/template, 4.6, 4.6

package, http example, 7.7

package, image, 3.3, 10.5

package, image/color, 1.4

package, image/png, 10.5

package initialization, 2.6.2

package, internal, 10.7.5

package, io, 7.2

package, io/ioutil, 1.5, 5.8

package, links example, 5.6

package, log, 2.7, 5.4.1, 6.6

package main, 1.1, 10.3, 11.2.2

package, math, 1.4, 3.2

package, math/big, 3.3

package, math/cmplx, 3.3

package, math/rand, 10.3, 11.2.1

package, memo example, 9.7

package name, 2.1, 2.6.1

package naming, 10.6

package, net, 8.2

package, net/http, 1.5, 7.7

package, net/smtp, 11.2.3

package, net/url, 6.2.1

package, non-standard, 5.2

package, os, 1.2, 7.11

package, params example, 12.7

package, path, 3.5.4

package, path/filepath, 3.5.4

package, reflect, 12.2

package, regexp, 5.9

package, runtime, 5.9

package, sort, 4.3, 7.6, 7.6

package, storage example, 11.2.3, 11.2.3

package, strconv, 1.7, 3.5.4, 3.5.5

package, strings, 1.2, 3.5.4, 3.5.4, 10.6

package, sync, 8.5, 9.2

package, syscall, 7.8, 7.11

package, tempconv example, 2.6

package, testing, 10.3, 11.2

package, text/scanner, 12.6

package, text/tabwriter, 7.6

package, text/template, 4.6, 10.7.6

package, thumbnail example, 8.5

package, time, 1.6, 3.6.1, 7.5

package, unicode, 3.5.4

package, unicode/utf8, 3.5.3

package, unsafe, 13

package-level declaration, 2.2

packages, building, 10.7.3

packages, downloading, 10.7.2

packages, locating, 10.7.1

packages, querying, 10.7.6

palindrome, 7.6

palindrome example, 11.2, 11.2, 11.2.1

panic, 3.5, 5.10, 8.9

panic built-in function, 5.9, 5.9

paradoxical race, 9.4

parallel composition, 8.3

parallel, embarrassingly, 8.5

parallelism, 8

parameter, ..., 4.2.1, 5.7, 5.7, 7.1

parameter, function, 5.1

parameter, method receiver, 6.1

parameter name, 5.1

parameter passing, 5.1

parameter, unused, 5.1

params example, 12.7

params example package, 12.7

params.Unpack function, 12.7

parentheses, 1.2, 1.2, 1.3, 3.1, 3.4, 5.1, 5.8, 6.2, 10.4, 12.3, 12.6

Parse example, 5.10

parser, HTML, 5.2

Pascal programming language, Preface

path, ..., 10.7.2, 10.7.6

path package, 3.5.4

path.Distance method, 6.1

path/filepath package, 3.5.4

Pike, Rob, Preface, Preface, Preface, 3.5.3, 4.5

pipeline, 8.4.2

pipeline diagram, 8.4.2

pipeline example, 8.4.2, 8.4.2, 8.4.3

pitfall, interface, 7.5.1

pitfall, scope, 5.6.1

platforms, mobile, 5.2

Playground, Go, Preface, 11.6

playlist example, 7.6

png.Encode function, 3.3

pointer, 1.8, 2.3.2, 2.3.3

pointer aliasing, 2.3.2

pointer argument, 2.3.2, 4.1

pointer equality, 2.3.2

pointer, hidden, 13.2

pointer, nil, 2.3.2

pointer receiver, 6.2, 6.5

pointer to struct, 4.4, 4.4.1

pointer zero value, 2.3.2

polling channel, 8.7

polymorphism, ad hoc, 7.13

polymorphism, subtype, 7.13

PopCount function, 2.6.2

Portable Network Graphics (PNG), 3.3

POSIX file name, 3.5.4

POSIX standard, Preface, 3.1, 3.5.4, 7.8

precedence, operator, 3.1, 3.4

precision, floating-point, 3.2, 3.2, 3.3, 3.6.2

precision, numeric, 3.1, 3.6.2

precision of constants, 3.6.2

predeclared names, table of, 2.1

premature abstraction, 7.15, 11.2.5, 11.2.5

premature optimization, 11.5

Printf %%, 1.3

Printf verbs, table of, 1.3

Printf %b, 1.3, 3.1, 3.5.5

Printf %c, 1.3, 3.1

Printf %d, 1.3, 3.1

Printf %e, 1.3, 3.2

Printf %f, 1.3, 3.2

Printf %g, 1.3, 3.2

Printf %[n], 3.1

Printf %o, 1.3, 3.1

Printf %q, 1.3, 3.1, 4.3

Printf %s, 1.3

Printf %*s, 5.5, 5.5

Printf %T, 1.3

Printf %t, 1.3

Printf %T, 3.6.2

Printf %t, 4.1

Printf %T, 4.1, 7.5, 12.2

Printf %v, 1.3, 1.3

Printf %#v, 4.4.3, 7.11

Printf %x, 1.3, 3.1

Printf %#x, 3.1

Printf % x, 3.5.3

Printf %x, 4.1

production code, 11

profile, blocking, 11.5

profile, CPU, 11.5

profile, heap, 11.5

profiling, 11.5

programming language, Alef, Preface

programming language, APL, Preface

programming language, C, Preface, Preface, 1.1, 1.2, 3.1, 9.1, 13.4

programming language, C++, Preface, Preface, 13.4

programming language, Haskell, Preface

programming language, Java, Preface

programming language, JavaScript, Preface, 4.5

programming language, Lisp, 12.4

programming language, Modula-2, Preface

programming language, Oberon, Preface

programming language, Pascal, Preface

programming language, Python, Preface, 7.7

programming language, Ruby, Preface, 7.7

programming language, Scheme, Preface

programming language, Squeak, Newsqueak, Preface

promotion, method, 6.3

protocol buffers, 4.5

Python programming language, Preface, 7.7

Q

qualified identifier, 2.6, 2.6.1

querying packages, 10.7.6

quote character, ', 3.1

R

race condition, 1.7, 9.1, 9.1, 9.1

race detector, 9.6, 9.7

race, paradoxical, 9.4

randomized testing, 11.2.1

range over channel, 8.4.2

range over map, 4.3

range over string, 3.5.3, 4.2.1

range loop, 1.2, 1.3

{{range}} template action, 4.6

raw string literal, 3.5.1

reachability, 2.3.4

read, stale, 9.4

readers lock, 9.3

read/write mutex, 9.3, 9.3

ReadWriteCloser interface, 7.2

ReadWriter interface, 7.2

real built-in function, 3.3

receive <-ch, channel, 1.6, 8.4, 8.4.4

receive expression, 8.4

receive, non-blocking channel, 8.7

receive, ok value from channel, 8.4.2

receive-only channel type <-chan T, 8.4.3

receiver name, method, 6.1

receiver, nil, 6.2.1, 7.5.1

receiver parameter, method, 6.1

receiver, pointer, 6.2, 6.5

receiver type, method, 6.1

recover built-in function, 5.10

recursion, 5.2, 5.2, 8.8, 12.3, 12.4, 12.6, 13.3

recursive anonymous function, 5.6

recursive data structure, 4.4, 4.4, 4.5

recursive type, 2.7

redefining new, 2.3.3

reference, call by, 4.1

reference identity, 4.2

reference type, 1.3, 1.3, 4.3, 5.1

reflect package, 12.2

reflection, 12, 12.9, 13.3

reflect.StructTag type, 12.7

reflect.Type type, 12.2

reflect.Type.Field method, 12.7

reflect.TypeOf function, 12.2

reflect.Value type, 12.2, 12.5

reflect.Value zero value, 12.2

reflect.Value.Addr method, 12.5

reflect.Value.CanAddr method, 12.5

reflect.Value.Interface method, 12.2, 12.5

reflect.Value.Kind method, 12.2

reflect.ValueOf function, 12.2, 12.2, 12.3

reflect.Zero function, 12.6

regexp package, 5.9

regexp.Compile function, 5.9

regexp.MustCompile function, 5.9

regular expression, 3.5.1, 5.9, 5.9, 11.2, 11.4

relation, “happens before”, 8.4.1, 9.1, 9.1, 9.7

relationship, “has a”, 6.3

relationship, “is a”, 6.3, 7.3

remainder operator %, 3.1, 6.5

renaming import, 10.4

rendezvous, 8.4.4

replacement character [image: Image], Unicode, 3.5.3, 4.3

repository, gopl.io, Preface

request, HTTP GET, 1.7, 5.3, 9.7, 12.7

request, HTTP POST, 12.7

request multiplexer, HTTP, 7.7

result list, function, 5.1

result, named, 5.1, 5.3

return, bare, 5.3

return statement, 2.2, 5.1, 5.3

rev example, 4.2

reverb example, 8.3, 8.3

right shift operator >>, 3.1

Ruby programming language, Preface, 7.7

rune literal, 3.1

rune slice to string conversion, 3.5.3

rune to string conversion, 3.5.3

rune type, 3.1, 3.5.2

runtime API, 11.5

runtime package, 5.9

runtime scheduler, 9.8.2

runtime.Stack function, 5.9

S

satisfaction, interface, 7, 7.3

Scalable Vector Graphics (SVG), 3.2

scheduler, runtime, 9.8.2

Scheme programming language, Preface

scope, declaration, 2.7, 5.6

scope, for, 2.7

scope, if-else, 2.7

scope, label, 2.7

scope, local variable, 5.6

scope, loop variable, 5.6.1, 8.5

scope pitfall, 5.6.1

scope, short variable declaration, 1.7, 2.7

scope, switch, 2.7

search algorithm, breadth-first, 5.6, 8.6

search algorithm, depth-first, 5.6

SearchIssues function, 4.5

select statement, empty , 8.7

select case, 8.7

select, default case in, 8.7

select, non-blocking, 8.7

select statement, 8.7, 8.7

select{} statement, 8.7

selective recovery, 5.10

selector, field, 6.1

selector, method, 6.1

semaphore, binary, 9.2

semaphore, counting, 8.6

semicolon, 1.1, 1.2

send ch<-, channel, 1.6, 8.4, 8.4.4

send statement, 8.4

send-only channel type chan<- T, 8.4.3

separate compilation, 10.1

sequence diagram, thumbnail, 8.5

sequential consistency, 9.4, 9.5

serial confinement, 9.1

server, chat, 8.10

server, concurrent clock, 8.2

server, concurrent echo, 8.3

server example, 1.7, 1.7, 1.7

set, map as, 4.3, 7.9

setter method, 6.6

sexpr example, 12.4

S-expression decode example, 12.6

S-expression decoding, 12.6

S-expression encoding, 12.4, 12.4

sexpr.Marshal function, 12.4

sexpr.readList function, 12.6

sexpr.Unmarshal function, 12.6

sha256 example, 4.1

SHA256 message digest, 4.1

shadowing declaration, 2.7, 2.7, 7.10, 7.13

shared lock, 9.3

shared variables, 9

shared variables, concurrency with, 9

shared-memory multithreading, 8, 9

shift operator <<, left, 3.1

shift operator >>, right, 3.1

short variable declaration, 1.2, 1.2, 2.3.1, 2.3.1

short variable declaration scope, 1.7, 2.7

short variable declaration statement, 1.2

short-circuit AND operator &&, 3.4

short-circuit evaluation, 3.4

short-circuit OR operator ||, 3.4

signature, function, 5.1

signed integer, 3.1, 3.1

s[i:j], slice operator, 4.2, 4.2

s[i:j], substring operator, 3.5, 4.2

simple statement, 1.2, 1.7

Sizeof table, 13.1

sleep example, 7.4

slice, 1.2

slice argument, 4.2

slice capacity, 4.2, 4.2.1

slice capacity growth diagram, 4.2.1

slice comparison, 4.2

slice, extending a, 4.2

slice key, map with, 4.3

slice literal, 2.4.2, 4.2

slice, make, 4.2, 11.4

slice, nil, 4.2

slice of months diagram, 4.2

slice operator s[i:j], 4.2, 4.2

slice rotation algorithm, 4.2

slice techniques, in-place, 4.2.2

slice type, 4.2

slice used as stack, 5.2

slice, zero length, 4.2

slice zero value, 3.5.4, 4.2

SMTP client, 11.2.3

socket, TCP, 8.2

socket, UDP, 8.2

socket, Unix domain, 8.2

sort algorithm, topological, 5.6

sort package, 4.3, 7.6, 7.6

sort.Float64s function, 7.6

sort.Interface interface, 7.6

sort.Ints function, 7.6

sort.IntsAreSorted function, 7.6

sort.IntSlice type, 7.6

sort.Reverse function, 7.6

sort.Strings function, 4.3, 5.6, 7.6

spinner example, 8.1

Sprint function, 12.1

SQL API, 7.13

SQL injection attack, 7.13

sqlQuote function, 7.13, 7.13

squares example, 5.6

Squeak, Newsqueak programming language, Preface

stack allocation, 2.3.4

stack, fixed-size, 5.2

stack growth, 5.2, 9.8.1, 13.2

stack implementation with slice, 4.2.2, 7.14

stack overflow, 5.2

stack, slice used as, 5.2

stack trace, 5.9, 8.9

stack variable, 2.3.4

stack, variable-size, 5.2

stale read, 9.4

standard, IEEE 754, 3.2, 3.2

standard, POSIX, Preface, 3.1, 3.5.4, 7.8

standard, Unicode, 1.1, 2.1, 3.1, 3.5.1, 3.5.2, 3.5.3, 3.5.3, 4.3

statement --, decrement, 1.2, 2.4

statement ++, increment, 1.2, 2.4, 4.3

statement, assignment, 1.2, 1.2, 2.4, 3.1, 4.3, 7.1

statement, break, 1.8, 2.7

statement, continue, 1.8, 2.7

statement coverage, 11.3, 11.3

statement, defer, 5.8, 5.9, 9.2

statement, fallthrough, 1.8, 7.13

statement, for, 1.2

statement, go, 1.6, 8.1

statement, goto, 1.8

statement, if-else, 1.3, 1.7, 2.7

statement label, 2.7

statement, labeled, 2.7

statement, return, 2.2, 5.1, 5.3

statement, select, 8.7, 8.7

statement, select{}, 8.7

statement, send, 8.4

statement, short variable declaration, 1.2

statement, simple, 1.2, 1.7

statement, switch, 1.8, 2.7

statement, tagless switch, 1.8

statement, type switch, 7.13, 7.13, 7.14, 12.1

statement, unreachable, 5.1

storage example package, 11.2.3, 11.2.3

Strangelove, Dr., 12.3

strategies, error-handling, 5.4.1, 5.10, 11.2.2, 11.2.5

strconv package, 1.7, 3.5.4, 3.5.5

strconv.Atoi function, 1.7, 3.5.5

strconv.FormatInt function, 3.5.5

strconv.Itoa function, 3.5.5

strconv.ParseInt function, 3.5.5

strconv.ParseUint function, 3.5.5

stream, io.Discard, 1.7

string comparison, 3.5

string concatenation operator +, 1.2, 3.5

string conversion, 3.5.4

string immutability, 3.5, 3.5.4

string index operation, 3.5

string literal, 3.5.1

string literal, raw, 3.5.1

String method, 2.5, 6.5, 12.1

string, range over, 3.5.3, 4.2.1

string sharing diagram, 3.5

string test, 3.5.4

string to byte slice conversion, 2.5, 3.5.4

string to rune slice conversion, 3.5.3, 4.2.1

string zero value, 1.2, 1.2, 2.3

strings package, 1.2, 3.5.4, 3.5.4, 10.6

strings.Contains function, 3.5.3

strings.HasPrefix function, 3.5.3

strings.HasSuffix function, 3.5.3

strings.Index function, 10.6

strings.Join function, 1.2, 1.3

strings.Map function, 5.5

strings.NewReader function, 10.6

strings.NewReplacer function, 10.6

strings.Reader type, 10.6

strings.Replacer type, 10.6

strings.Split function, 1.3

strings.ToLower function, 3.5.4

strings.ToUpper function, 3.5.4

struct comparison, 4.4.2

struct declaration, 4.4

struct embedding, 4.4.3, 6.3

struct, Employee, 4.4

struct, empty, 4.4

struct field, 1.4, 4.4

struct field, anonymous, 4.4.3, 4.4.3, 4.4.3, 6.3

struct field, embedded, 6.3

struct field, export of, 4.4, 4.4.3, 4.5, 4.5, 6.6

struct field order, 4.4, 13.1

struct field tag, 4.5, 12.7

struct hole, 13.1

struct hole diagram, 13.1

struct literal, 1.4, 4.4.1, 4.4.3

struct literal, address of, 4.4.1

struct, pointer to, 4.4, 4.4.1

struct type, 1.4, 1.8, 4.4

struct{} type, 8.4.1, 8.6, 8.8

struct type, unnamed, 6.3

struct zero value, 4.4

substitutability, 7.7

substring operator s[i:j], 3.5, 4.2

subtype polymorphism, 7.13

sum example, 5.7

surface example, 3.2, 7.9

surface figure, three-D, 3.2, 7.9

SVG, 3.2

SWIG, 13.4

Swiss army knife, 10.7

switch, case in type , 7.13

switch, context, 9.8.2

switch, default case in, 1.8

switch, default case in type , 7.13

switch, initialization statement in, 1.8

switch scope, 2.7

switch statement, 1.8, 2.7

switch statement, tagless, 1.8

switch statement, type, 7.13, 7.13, 7.14, 12.1

sync package, 8.5, 9.2

synchronous channel, 8.4.1

sync.Mutex type, 9.2, 9.5

(*sync.Mutex).Lock method, 1.7, 5.8, 9.2

(*sync.Mutex).Unlock method, 1.7, 5.8, 9.2

sync.Once type, 9.5

(*sync.Once).Do method, 9.5

sync.RWMutex type, 9.3, 9.5

(*sync.RWMutex).RLock method, 9.3

(*sync.RWMutex).RUnlock method, 9.3

sync.WaitGroup type, 8.5, 8.8, 9.7

(*sync.WaitGroup).Add method, 8.5

(*sync.WaitGroup).Done method, 8.5

syscall package, 7.8, 7.11

syscall.Errno type, 7.8, 7.8

system call API, 7.8

T

table of binary operators, 3.1

table of bitwise operators, 3.1

table of comparison operators, 3.1

table of escape sequences, 3.5.1

table of keywords, 2.1

table of predeclared names, 2.1

table of Printf verbs, 1.3

table of UTF-8 encodings, 3.5.3

table, Sizeof, 13.1

table-driven testing, 7.9, 11.2, 11.3

tag, struct field, 4.5, 12.7

tagless switch statement, 1.8

tags, build, 10.7.3

TCP socket, 8.2

techniques, in-place slice, 4.2.2

tempconv example, 2.5, 7.4, 10.6

tempconv example package, 2.6

temperature conversion example, 2.2

tempflag example, 7.4

template, | in, 4.6

template action, {{range}}, 4.6

template API, 4.6

template, dot . in, 4.6

template.Funcs method, 4.6

template.HTML type, 4.6

template.Must function, 4.6

template.New function, 4.6

template.Parse method, 4.6

test assertion, 11.2

test, black-box, 11.2.3

test, brittle, 11.2.6

test, character, 3.5.4

test coverage, 11.3

test dependency, cyclic, 11.2.4

test, echo, 11.2.2

test failure message, 11.2

Test function, 11.1

test, integration, 11.2.4

test of word example, 11.2

test package, external, 10.3, 11.2.4

test, string, 3.5.4

test, white-box, 11.2.3

_test.go file, 10.3, 11.1, 11.2

testing a command, 11.2.2

testing package, 10.3, 11.2

testing, randomized, 11.2.1

testing, table-driven, 7.9, 11.2, 11.3

testing.B type, 11.4

testing.T type, 11.2

(*testing.T).Errorf method, 7.9, 11.2, 11.2

(*testing.T).Fatal method, 11.2

tests, writing effective, 11.2.5, 11.2.6

text/scanner package, 12.6

text/tabwriter package, 7.6

text/template package, 4.6, 10.7.6

Thompson, Ken, Preface, 3.5.3

thread, 8.1, 9.8.1

thread-local storage, 9.8.4

three-D surface figure, 3.2, 7.9

thumbnail example, 8.5, 8.5, 8.5

thumbnail example package, 8.5

thumbnail sequence diagram, 8.5

time package, 1.6, 3.6.1, 7.5

time.After function, 8.7

time.AfterFunc function, 6.4

time.Duration type, 3.6, 7.4

time.Minute constant, 3.6

time.Now function, 8.2

time.Parse function, 8.2

time.Second constant, 6.4

time.Since function, 4.6

time.Tick function, 8.7, 8.7

time.Time type, 4.6

time.Time.Format method, 8.2

title example, 5.10

title function, 5.8, 5.8

token-based decoder API, 7.14, 7.14, 12.6

token-based XML decoding, 7.14

tool, cgo, 13.4, 13.4

tool, go, 1.1, 2.6.1, 2.6.2, 10.7

tool, go doc, 1.8

tool, godoc, Preface, 1.8, 10.7.4, 11.6

tool, gofmt, 1.1, 1.2, 2.6.1, 10.4

tool, goimports, 1.1, 2.6.1, 10.4

tool, golint, 10.7.2

topological sort algorithm, 5.6

topoSort example, 5.6

trace example, 5.8

trace, stack, 5.9, 8.9

tree, binary, 4.4

treesort example, 4.4

true boolean constant, 3.4

truncation, floating-point, 2.5, 3.1

tuple assignment, 2.3.1, 2.4.1

type <-chan T, receive-only channel, 8.4.3

type chan<- T, send-only channel, 8.4.3

type switch, case in, 7.13

type switch, default case in, 7.13

type, abstract, 1.8, 7.1

type, aggregate, 4, 4.4

type, array, 4.1

type assertion, 7.10, 7.13

type assertion, interface, 7.12, 7.12

type assertion, ok value from, 7.10

type, bool, 3.4

type, bufio.Scanner, 1.3

type, byte, 3.1

type, bytes.Buffer, 3.5.4, 6.6, 7.1, 7.5.1

type, Celsius, 2.5

type, chan, 8.4

type, channel, 1.6

type, complex, 3.3

type, composite, Preface, 1.4, 4

type composition, Preface, 4.4.3, 6.3, 7.6

type, concrete, 1.8, 7.1, 7.13, 7.14

type declaration, 2.5

type, displaying methods of a, 12.8

type, empty interface, 7.3

type, error built-in, 1.3, 5.4, 5.9, 7.8

type, Fahrenheit, 2.5

type, function, 5.1, 5.1

type, http.HandlerFunc, 7.7, 7.9

type, http.Request, 1.7, 8.9

type, http.ResponseWriter, 1.7, 1.7, 7.7, 7.7

type, int, 3.1

type, interface{}, 5.7

type, interface, 7.1, 7.2

type, interface{}, 7.3, 12.2, 12.2

type, interface dynamic, 7.5

type, json.Decoder, 4.5

type, json.Encoder, 4.5

type keyword, 7.13

type, map, 1.3, 4.3

type, method receiver, 6.1

type mismatch, 3.1

type, named, 1.8, 2.5, 2.5, 4.4.3, 6.1

type, net.Conn, 8.2

type, net.Listener, 8.2

type, numeric, 3.1

type, *os.File, 1.3, 1.3, 7.1, 7.3, 7.5.1, 12.3

type, os.FileInfo, 8.8

type, os.LinkError, 7.11

type, os.PathError, 7.11

type, recursive, 2.7

type, reference, 1.3, 1.3, 4.3, 5.1

type, reflect.StructTag, 12.7

type, reflect.Type, 12.2

type, reflect.Value, 12.2, 12.5

type, rune, 3.1, 3.5.2

type, slice, 4.2

type, sort.IntSlice, 7.6

type, strings.Reader, 10.6

type, strings.Replacer, 10.6

type, struct, 1.4, 1.8, 4.4

type, struct{}, 8.4.1, 8.6, 8.8

type switch statement, 7.13, 7.13, 7.14, 12.1

type, sync.Mutex, 9.2, 9.5

type, sync.Once, 9.5

type, sync.RWMutex, 9.3, 9.5

type, sync.WaitGroup, 8.5, 8.8, 9.7

type, syscall.Errno, 7.8, 7.8

type, template.HTML, 4.6

type, testing.B, 11.4

type, testing.T, 11.2

type, time.Duration, 3.6, 7.4

type, time.Time, 4.6

type, uint, 3.1

type, uintptr, 3.1, 13.1, 13.2

type, underlying, 2.5

type, unidirectional channel, 8.4.3, 8.4.3, 8.4.3

type, unnamed struct, 6.3

type, unsafe.Pointer, 13.2

type, url.URL, 7.7

types, untyped constant, 3.6.2

U

UDP socket, 8.2

uint type, 3.1

uintptr type, 3.1, 13.1, 13.2

unary operator -, 3.1

unary operator +, 3.1

unbuffered channel, 8.4, 8.4.1

undefined behavior, 9.1

underlying array, 4.2, 4.2, 4.2.1, 7.6

underlying type, 2.5

Unicode code point, 3.5.2

Unicode escape, 3.5.3, 4.5

unicode package, 3.5.4

Unicode replacement character [image: Image], 3.5.3, 4.3

Unicode standard, 1.1, 2.1, 3.1, 3.5.1, 3.5.2, 3.5.3, 3.5.3, 4.3

unicode.IsDigit function, 3.5.4

unicode.IsLetter function, 3.5.4

unicode.IsLower function, 3.5.4

unicode.IsSpace function, 4.2.2

unicode.IsUpper function, 3.5.4

unicode/utf8 package, 3.5.3

unidirectional channel type, 8.4.3, 8.4.3, 8.4.3

union, discriminated, 7.13, 7.13, 7.14

universe block, 2.7

Unix domain socket, 8.2

unmarshaling JSON, 4.5

unnamed struct type, 6.3

unnamed variable, 2.3.3, 4.2

unreachable statement, 5.1

unsafe package, 13

unsafe.AlignOf function, 13.1

unsafe.Offsetof function, 13.1

unsafe.Pointer conversion, 13.2

unsafe.Pointer type, 13.2

unsafe.Pointer zero value, 13.2

unsafe.Sizeof function, 13.1

unsigned integer, 3.1, 3.1

untyped constant types, 3.6.2

unused parameter, 5.1

URL, 5.2

URL escape, 4.5

url.QueryEscape function, 4.5

url.URL type, 7.7

urlvalues example, 6.2.1

UTF-8, 3.5.1, 3.5.3, 4.3

UTF-8 encodings, table of, 3.5.3

utf8.DecodeRuneInString function, 3.5.3

utf8.RuneCountInString function, 3.5.3

utf8.UTFMax value, 4.3

V

value, addressable, 2.3.2

value, call by, 4.1, 5.1, 6.2

value, function, 5.5

value, interface, 7.5

value, method, 6.4

value, utf8.UTFMax, 4.3

var declaration, 1.2, 2.3

variable confinement, 9.1

variable, heap, 2.3.4

variable, http.DefaultClient, 8.9

variable, io.Discard, 1.6

variable, io.EOF, 5.4.2

variable lifetime, 2.3.4, 2.7, 5.6

variable, local, 2.2, 5.6.1

variable, os.Args, 1.2

variable, stack, 2.3.4

variable, unnamed, 2.3.3, 4.2

variables, escaping, 2.3.4

variables, shared, 9

variable-size stack, 5.2

variadic function, 5.7, 7.1

vector, bit, 6.5

vendoring, 10.7.2

visibility, 2.1, 2.2, 2.6, 6.6, 10.7.5

visit function, 5.2

W

wait example, 5.4.1

WaitForServer function, 5.4.1

walkDir function, 8.8

web crawler, 5

web crawler, concurrent, 8.6

web framework, 7.7

while loop, 1.2

white-box test, 11.2.3

Wilkes, Maurice, 11

Wirth, Niklaus, Preface

word example, 11.2, 11.2, 11.2.1

word example, test of, 11.2

workspace organization, 10.7.1

writer lock, 9.3

writing effective tests, 11.2.5, 11.2.6

X

xkcd JSON interface, 4.5

XML decoding, 7.14

XML (Extensible Markup Language), 4.5

(*xml.Decoder).Token method, 7.14

xmlselect example, 7.14

Y

Z

zero length slice, 4.2

zero value, array, 4.1

zero value, boolean, 2.3

zero value, channel, 8.4, 8.7

zero value, function, 5.5

zero value, interface, 7.5

zero value, map, 4.3

zero value, named result, 5.1, 5.3

zero value, number, 1.2, 2.3

zero value, pointer, 2.3.2

zero value, reflect.Value, 12.2

zero value, slice, 3.5.4, 4.2

zero value, string, 1.2, 1.2, 2.3

zero value, struct, 4.4

zero value, unsafe.Pointer, 13.2

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

images/00503.jpeg
'

handleConn(conn) // handle one connection at a time

}

func handleConn(c net.Conn) {
defer c.Close()

for {
_, err := io.WriteString(c, time.Now().Format(*15:04:05\n"))
if err 1= nil {
return // e.g., client disconnected
}

time.Sleep(1 * time.Second)

images/00502.jpeg
gopl.lo/ch8/clockl

// Clockl is a TCP server that periodically writes the time.
package main

import (

e
“time"

)

func main() {

listener, err := net.Listen("tcp", "localhost:806e"
if err 1= nil {

log.Fatal(err)

}

for {
conn, err := listener.Accept(
if err 1= nil {

log.Print(err) // e.g., connection aborted
continue

images/00505.jpeg
jopi . 10/ch8/netcatl
// Netcatl is a read-only TCP client.
package main
import (
"ion

“Tog"

)

func main() {
conn, err

if err I= nil
log.Fatal(err)

net.Dial("tcp", "localhost:8060")

defer conn.Close()
mustCopy(os.Stdout, conn)
}

func mustCopy(dst io.Writer, src io.Reader) {
_, err := io.Copy(dst, src); err 1= nil {
log.Fatal(err)

images/00504.jpeg
gopl /ch8/netcatl
// Netcatl is a read-only TCP client.
package main

import (
o
"log"
"net"
Sogh
)

func main() {
conn, err := net.Dial("tcp", "localhost:806e")
if err 1= nil {
log.Fatal(err)

Y
defer conn.Close()
mustCopy(os .Stdout, conn)

}

func mustCopy(dst io.Writer, src io.Reader) {
if _, err := io.Copy(dst, src); err != nil {
log.Fatal(err)

}

images/00501.jpeg
EPS. 3 0 SO0 S R
func main() {
go spinner(16@ * time.Millisecond)
const n = 45
FibN := fib(n) // slow
fmt.Printf("\rFibonacci(%d) = %d\n", n, FibN)

}

func spinner(delay time.Duration) {
for {
for _, r := range “-\|/" {
Ft.Printf("\r¥c", r)
time. Sleep(delay)

}

func fib(x int) int {
if x <2
return x

Y
return fib(x-1) + fib(x-2)

images/00500.jpeg
) // call £(); wait for 1t to return
go f() // create a new goroutine that calls f(); don't wait

images/00187.jpeg
const (

KiB
MiB
GiB
TiB
PiB
EiB
ziB
YiB

1 << (10 * iota)

11
11
11
11
11
11
11
11

1024

1048576

1073741824

1099511627776 (exceeds 1 << 32)
1125899906842624

1152921504606846976

1180591620717411303424 (exceeds 1 << 64)
1208925819614629174706176

images/00186.jpeg
fopi.2o/chd/nettlag
func IsUp(v Flags) bool { return v&Flagp == FlagUp }
func TurnDown(v *Flags) { *v &= FlagUp }
func SetBroadcast(v *Flags) { *v |= FlagBroadcast }
func TsCast(v Flags) bool ~ { return v&(FlagBroadcast|FlagMulticast) != 0)

func main() {
var v Flags = Flaghulticast | Flagup

fmt.Printf("%b %t\n", v, IsUp(v)) // "10001 true"
‘TurnDown (&v)

fmt.Printf("%b %t\n", v, IsUp(v)) // "10000 false"
SetBroadcast(8v)

fmt.Printf("%b %t\n", v, IsUp(v)) // “10010 false"
fmt.Printf("Xo %t\n", v, IsCast(v)) // 16010 true"

images/00189.jpeg
var ¥ tloatos = 212

fmt.Println((f - 32) * 5 / 9) // "100"; (f - 32) * 5 is a floated
fnt.Println(5 / 9 * (f - 32)) // "0"; 5/9 is an untyped integer, @
fmt.Println(5.0 / 9.0 * (f - 32)) // "100"; 5.0/9.0 is an untyped float

images/00188.jpeg
const P164 floaté4 = math.Pi

var x float32 = float32(Pi64)
var y floaté4 = Pi64
var z complex128 = complex128(Pi64)

images/00183.jpeg
const noDelay time.Duration = @

const timeout = 5 * time.Minute

fmt. Printf("%T %[1]v\n", nobelay) // "time.Duration @"
fmt. Printf("%T %[1]v\n", timeout) // "time.Duration 5m@s
fmt. Printf("%T %[1]v\n", time.Minute) // "time.Duration 1m@s

images/00182.jpeg
const IPvdlen = 4

// parseIPva parses an IPv4 address (d.d.d.d).
func parseIPva(s string) IP {

var p [IPvdLen]byte

1.

images/00185.jpeg
type Flags uint

const (
FlagUp Flags = 1 << dota // is up
FlagBroadcast /1 supports broadcast access capability
FlagLoopback // 1s a loopback interface
FlagPointToPoint // belongs to a point-to-point link

FlagMulticast // supports multicast access capability

images/00184.jpeg
const (

)
fmt.Println(a, b, ¢, d) // "1 1 2 2"

images/00181.jpeg
const (
e = 2.71828182845904523536028747135266249775724709369995957496696 763
pi = 3.14159265358979323846264338327950288419716939937510582097494459

images/00180.jpeg
const pi1 = 3.14159 // approximately; math.Pl1 1s a better approximation

images/00176.jpeg
123
fmt.Sprintf("%d", x)
A4 Println(y, strconv.Itoa(x)) // "123 123

images/00175.jpeg
gopl.io/ch3/printints
// intsTostring is like fmt.Sprintf(values) but adds commas.
func intsTostring(values []int) string {
var buf bytes.Buffer
buf.WriteByte('[')
for 1, v := range values {
ifi>e{
buf.Writestring(", ")
}
fut.Fprintf(8buf, "%d", v)

}

buf.WriteByte(']")

return buf.String()
}

func main() {
fmt.Println(intsToString([1int{1, 2, 3})) // "[1, 2, 3]"
}

images/00178.jpeg

images/00177.jpeg
fmt.Println(strconv.FormatInt(intéd4(x), 2)) // "1111011

images/00172.jpeg
gopl.1o/ch3/comma
// comma inserts commas in a non-negative decimal integer string.
func comma(s string) string {

n := len(s)
if n <=3 {

return s
}

return comma(s[:n-3]) + *," + sn-3:]

images/00171.jpeg
gopl.io/ch3/basename2
func basename(s string) string {
slash := strings.lastIndex(s, "/") // -1 if
s = s[slash+1:]
if dot := strings.LastIndex(s, "."); dot >= @ {
s = s[:dot]

" not found

}

return s

images/00174.jpeg
func
func
func
func
func
func

Contains(b, subslice [Jbyte) bool
Count(s, sep []byte) int

Fields(s [Jbyte) [][Jbyte
HasPrefix(s, prefix []byte) bool
Index(s, sep [lbyte) int

Join(s [1[]byte, sep [Ibyte) []byte

images/00173.jpeg
func
func
func
func
func
func

Contains(s, substr string) bool
Count(s, sep string) int

Fields(s string) []string
HasPrefix(s, prefix string) bool
Index(s, sep string) int

Join(a []string, sep string) string

images/00179.jpeg
// x 1s an 1int
10, 64) // base 10, up to 64 bits

images/00170.jpeg
gopl.io/ch3/basenamel
// basename removes directory components and a .suffix.
// e.g., a=>a, a.go => a, a/b/c.go => ¢, a/b.c.go => b.c
func basename(s string) string {
// Discard last '/' and everything before.

s = s[i+1:]
break

Y
Y
// Preserve everything before last '.
for 1 := len(s) - 1; i >= 8; i-- {
if s[i]

return s

images/00165.jpeg
// “program” in Japanese katakana

s 1= "JOUSA"

fmt.Printf("% x\n", s) // "e3 83 97 e3 83 ad e3 82 b0 e3 83 a9 e3 83 ae"
r := [Jrune(s)
fmt . Printf("%x\n"

r) // "[30ed7 30ed 30be 30e9 30e0]"

images/00164.jpeg
for 1, r := range "Hello, t#%" {
fmt.Printf("%d\t%q\t%d\n", i, r, r)

}

images/00167.jpeg
fmt.Printin(string(65)) 1
fmt. Println(string(@xdeac)) // "

images/00166.jpeg

images/00161.jpeg
func Contains(s, substr string) bool {
for 1 := 0; i < len(s); i++ {
if HasPrefix(s[i:], substr) {
return true
}

return false

images/00160.jpeg
func Hassuffix(s, suffix string) b
return len(s) >= len(suffix) by s[len(s) len(suffix):] == suffix

images/00163.jpeg
for 1 :=8; 1 < len(s); {
r, size := utf8.DecodeRuneInstring(s[i:])
fmt.Printf("%d\t%c\n", i, r)
i 4= size

images/00162.jpeg
import “unicode/utf8”

s := "Hello, t®"
fmt.Println(len(s))
fmt.Println(utf8.RuneCountInString(s)) // "9"

images/00169.jpeg
fmt.. Print1n(basename("c.d. go")) .
fmt. Println(basename("abc")) /] “abc

images/00168.jpeg

images/00154.jpeg
fmt.Println(s(:5]) // “hello™
fmt.Println(s[7:]) // "world"
fmt.Println(s[:]) // "hello, world

images/00153.jpeg

images/00156.jpeg
fmt.Printin(s) // "left toot, right foot
fmt. Println(t) // "left foot"

images/00155.jpeg

images/00150.jpeg
// btol returns 1 1f b 1s true and @ 1f false.
func btoi(b bool) int {
if b {
return 1
}

return @

images/00152.jpeg
s ello, world™
fmt.Println(len(s)) 7 Yt
fmt.Println(s[@], s[7]) // "1@4 119" ('h' and 'w')

images/00151.jpeg
1tob reports whether 1 1s non-zero.
func itob(i int) bool { return i != @ }

images/00158.jpeg
const GoUsage = Go 1s a tool for managing Go source code.

Usage:
go command [arguments]

images/00157.jpeg
s(@] = 'L" // compile error: cannot assign to s| 9]

images/00159.jpeg
func HasPrefix(s, prefix string) bool
return len(s) >= len(prefix) 8& 5[len(prefix)] == prefix
}

images/00143.jpeg
w.Header().Set("

image/svg+xml"™)

images/00142.jpeg
tyle='stroke: grey; fill: white; stroke-width: 0.7°
“width="%d' height='%d">", width, height)

for 1 1= 05 1 < cells; i+ {
for § 1= 05 3 < cells; J++ {

ax, ay := corner(is1, J)

bx, by := corner(i, 3)

ox, cy = corner(i, 3+1)

dx, dy := corner(i+1, j+1)

nt.Printf("<polygon points="%g,%g %g,% %g,%g ¥g,%g'/>\n",
ax, ay, bx, by, cx, cy, dx, dy)

¥
b
ft.Println("</svg>")
 §

func corner(i, j int) (floates, floated) {
// Find point (x,y) at corner of cell (i,3).
X := xyrange * (floated(i)/cells - 0.5)
y i= xyrange * (floated(j)/cells - 0.5)

1/ Compute surface height z.
z 1= £(x, y)

11 Project (x,y,2) isometrically onto 2-D SVG canvas (sx,sy).
X 1= width/2 + (x-y)*cos3e*xyscale

sy t= height/2 + (xsy)*sin3e*xyscale - z¥zscale

return sx, sy

}

func £(x, y floatsd) float6s {
r := math.Hypot(x, y) // distance from (@,0)
return math.Sin(r) / ¢

images/00145.jpeg

images/00144.jpeg
var
var
fmt
fmt
fmt

X complex128
y complex128
.Println(x*y)
.Println(real(x*y))
.Println(imag(x*y))

complex(1, 2) // 1+21
complex(3, 4) // 3+4i

images/00141.jpeg
ops.2o/chd/surtece

// Surface computes an SVG rendering of a 3-D surface function.

package main

import (
“fme
“math"

)

const (
width, height = 660, 320 /"
cells 100 /"
xyrange 30.0 /"
xyscale ddth / 2 / xyrange //
2scale eight * 0.4 /"
angle ath.Pi / 6 /"

)

canvas size in pixels
nunber of grid cells

axis ranges (-xyrange. .+xyrange)
pixels per x or y unit

pixels per z unit

angle of x, y axes (=30°)

var sin30, cos30 = math.Sin(angle), math.Cos(angle) // sin(30°), cos(36°)

func main() {

fmt.Printf("<svg xmlns="http://www.w3.org/2000/svg"

images/00140.jpeg
func compute() (value floaté4, ok bool) {
14 5
if failed {
return @, false

}

return result, true

images/00147.jpeg
gopl.io/ch3/mandelbrot
// Mandelbrot emits a PNG image of the Mandelbrot fractal.
package main

import (
"image”
“image/color"
“image/png"
“math/cmplx"
“os"

)

func main() {
const (
xmin, ymin, xmax, ymax
width, height

=2, =2, 42, 42
1024, 1024

)

img := image.NewRGBA(image.Rect(8, @, width, height))
for py := 8; py < height; py++ {

y := float64(py)/height* (ymax-ymin) + ymin

for px := 8; px < width; px++ {

images/00146.jpeg

images/00149.jpeg
if 'a' <=c&& c<="2" ||
A<= c8& c <=2 ||
@' <= c8& <= '9' {

// ...ASCIT letter or digit...

images/00148.jpeg
float64(px) /width*(xmax-xmin) + xmin

z := complex(x, y)

/1 Inage point (px, py) represents complex value z.
img.Set(px, py, mandelbrot(z))

}
}
png.Encode(os.Stdout, img) // NOTE: ignoring errors
3

func mandelbrot (z complex128) color.Color {
const iterations = 200
const contrast = 15

var v complex128
for n := uint8(8); n < iterations; n++ {
V=vito+z
if cmplx.Abs(v) > 2 {
return color.Gray{255 - contrast*n}

3
¥

return color.Black

images/00132.jpeg
0 := 0666

fmt. Printf("%d %[1]o %#[1]o\n", o) // "438 666 0666"
x := int64(@xdeadbeef)

fmt. Printf("%d %[1]x %#[1]x KH[1]X\n", x)

// Output:

// 3735928559 deadbeef Oxdeadbeef OXDEADBEEF

images/00131.jpeg
r i= 1lel0® // a floated
i := int(f) // result is implementation-dependent

images/00134.jpeg

images/00133.jpeg
unicode
newline := "\n'

fmt.Printf("%d %[1]c %[1]q\n", ascii) // "97 a 'a'"
fmt.Printf("%d %[1]c %[1]q\n", unicode) // "22269 @ '®'"
fmt.Printf("%d %[1]1q\n", newline) FF Rt

images/00130.jpeg
= 3.141 // a tloatée4

i:= int(f)

fmt.Println(f, 1) // "3.141 3"
f = 1.99

fmt. Println(int (f)) //

images/00139.jpeg
nan, nan < nan, nan > nan) // "false false false"

images/00136.jpeg
6.02214129e23
6.62606957e-34

const Avogadro
canat Dlanck

images/00135.jpeg
const e = 2.71828 // (approximately)

images/00138.jpeg
var z tloate4
fmt.Println(z, -z, 1/z, -1/z, z/z) // "@ -@ +Inf -Inf NaN

images/00137.jpeg
for x :=8; x < 8; x++ {
ft.Printf("x = %d ' = %8.3f\n", x, math.Exp(float64(x)))
}

images/00121.jpeg
var cwd string

func init() {
cwd, err os.Getwd() // NOTE: wrong!
if err 1= nil {
log.Fatalf("os.Getwd failed: %v", err)

log.Printf("Working directory = %s", cwd)

images/00120.jpeg
var cwd string

func init() {
cwd, err := os.Getwd() // compile error: unused: cwd
if err 1= nil {
log.Fatalf("os.Getwd failed: %v", err)
}

images/00123.jpeg

images/00122.jpeg
var cwd string

func init() {
var err error
cwd, err = os.Getwd()
if err 1= nil {
log.Fatalf("os.Getwd failed: %v*, err)
}

images/00129.jpeg
var compote = int(apples) + int(oranges)

images/00128.jpeg
invalid

images/00125.jpeg
var
var

ft.
ft.

fmt.
fmt.
fmt.
fmt.

for

}

ft.
fmt.

x uint8 = 1<<1 |
y uintg = 1< |

Printf("%e8b\n"
Printf("%e8b\n",

Printf("%e8b\n",
Printf("%e8b\n",
Printf("%e8b\n",
Printf("%e8b\n", x&"y) //
i := uint(@); i < 8; i++ {
if x&(1<<i) != @ { // memt

fmt.Println(i) // "1"

1<<5
12

x)
¥
x&y)
xly)
xvy) M/

"
"

1"
1"

the
the

the
the
the
the

"00100010" ,
"00000110",

"60006010" ,
"60100110",
"60100160",
"00100000" ,

}
Printf("%08b\n", x<<1) // "01000100", the
Printf("%08b\n", x>>1) // "00010001", the

set {1, 5}
set {1, 2}

intersection {1}

union {1, 2, 5}

symetric difference {2, 5)
difference {5}

set {2, 6}
set {0, 4}

images/00124.jpeg
var
fmt

var
fmt

u uint8 = 25
.Println(u, u+l, u*u) // "255 6 1"
i int8 = 127
LPrintln(i, i+1, i*i) // "127 -128

images/00127.jpeg
var apples 1int32 = 1
var oranges int16 = 2
var compote int = apples + oranges // compile error

images/00126.jpeg
medals
for 1 := len(nedals) - 1; i
fmt.Println(medals[i]) // “bronze", “silver", "gold"

ze"}

}

images/00110.jpeg
fmt.Println(tempconv.CToF(tempconv.BoilingC)) // "212°F"

images/00594.jpeg
func (memo *Memo) server(f Func) {

cache := make(map[string]*entry)
for req := range memo.requests {
e := cache[req.key]

nil {
// This is the first request for this key.
e = &entry{ready: make(chan struct{})}
cache[req.key] = e

go e.call(f, req.key) // call f(key)

go e.deliver(req.response)

}

func (e *entry) call(f Func, key string) {
// Evaluate the function.
e.res.value, e.res.err = f(key)
// Broadcast the ready condition.
close(e. ready)

}

func (e *entry) deliver(response chan<- result) {
// Wait for the ready condition.
<-e.ready
// Send the result to the client.
response <- e.res

images/00593.jpeg
gop1.10/ch9/memos
/1 A request is a message requesting that the Func be applied to key.
type request struct {
key string
response chanc- result // the client wants a single result
}

type Memo struct{ requests chan request }

/1 New returns a memoization of f. Clients must subsequently call Close.
func New(f Func) *Memo {

memo 1= &Memo{requests: make(chan request)}

g0 meno. server(f)

return meno

}

func (memo *Memo) Get(key string) (interface(}, error) {
response := make(chan result)
memo.requests <- request{key, response}
res := <-response
return res.value, res.err

}

func (memo *Memo) Close() { close(memo.requests) }

images/00112.jpeg
var a = b + c // a 1nitialized third, to 3
var b = f() // b initialized second, to 2, by calling f
var ¢ = 1 // ¢ initialized first, to 1

func () int { return c + 1 }

images/00596.jpeg
import (
S8
“math/rand"
“encoding/json"

"golang.org/x/net/html"
“github. con/go-sql-driver/mysql”

images/00111.jpeg
gopl.io/ch2/ct
// Cf converts its numeric argument to Celsius and Fahrenheit.
package main
import (
ot

os"
"strconv"

“gopl.io/ch2/tempconv"
)

func main() {
for _, arg := range os.Args[1:] {

t, err := strconv.ParseFloat(arg, 64)

if err 1= nil {
fmt.Fprintf(os.Stderr, "cf: %v\n", err)
os.Exit(1)

tempconv. Fahrenheit(t)
tempconv.Celsius(t)
mt.Printf("%s = %s, %s = %s\n",

, tempconv.FToC(f), ¢, tempconv.CToF(c))

40 he

images/00595.jpeg
for {
go fnt.Print(e)
ft.Print(1)

}

$ GOMAXPROCS=1 go run hacker-cliché.go
111111111111111111110606006000000000000011111 .

$ GOMAXPROCS=2 go run hacker-cliché.go
010101010101010101011001100101011010010160110 .

images/00590.jpeg
gopl.1o/ch9/memod
type entry struct {

res result
ready chan struct{} // closed when res is ready

}

Func New(f Func) *Memo {
return &Memo{f: f, cache: make(map[string]*entry)}

}

type Memo struct {
> Func
mu sync.Mutex // guards cache
cache map[string]*entry

}

func (memo *Memo) Get(key string) (value interface{}, err error) {
memo.mu.Lock()

images/00592.jpeg
// Func 1s the type of the function to memoize.
type Func func(key string) (interface{}, error)

// A result is the result of calling a Func.
type result struct {

value interface{}

err error

}

type entry struct {
res result
ready chan struct{} // closed when res is ready

images/00591.jpeg
e := memo.cache[key]
if e == nil {
// This is the first request for this key.
// This goroutine becomes responsible for computing
// the value and broadcasting the ready condition.
e = Bentry{ready: make(chan struct{})}
memo. cache[key] = e
memo.mu. Unlock()

e.res.value, e.res.err = memo.f(key)

close(e.ready) // broadcast ready condition

} else {
// This is a repeat request for this key.

meno.mu. Unlock()

<-e.ready // wait for ready condition
}

return e.res.value, e.res.err

images/00118.jpeg
T, e
return err

S.UpeniTEme); 8T I8 Ml | /7 complis ervor: unused: T

}
f.ReadByte() // compile error: undefined f
f.Close() // compile error: undefined f

images/00117.jpeg
1t x = ¥(); x

fmt.Println(x)

} else if y := g(x); x = y {
fnt.Println(x, y)

} else {

fnt.Println(x, y)

fmt.Println(x, y) // compile error: x and y are not visible here

images/00119.jpeg
1t f, err := os.Open(fname); err != nil {

return err
} else {
// £ and err are visible here too
.ReadByte()
£.Close()

images/00114.jpeg
func () {}
var g = "g"
func main() {

£ 1=

fmt.Println(f) // "f"; local var f shadows package-level func f

fmt.Println(g) // "g"; package-level var

fmt.Println(h) // compile error: undefined: h

images/00598.jpeg
import _ "image/png” // reglster PNG decoder

images/00113.jpeg
gopl.io/ch2/popcount
package popcount
/1 peli] is the population count of i.
var pc [256]byte
func init() {
for i := range pc {
peli] = pc[i/2] + byte(i&1)

}

/1 PopCount returns the population count (number of set bits) of x.
func PopCount(x uint64) int {
return int(pc[byte(x>>(0*8))] +

pelbyte(x>>(1%8))] +
pelbyte(x>>(2*8))]
pebyte(x>>(3*8))]
pelbyte(x>>(4*8))]
pc[byte(x>>(5*8))]
pc[byte(x>>(6*8))]
pc[byte(x>>(7*8))])

R

images/00597.jpeg
import (
“crypto/rand”
mrand "math/rand" // alternative name mrand avoids conflict

images/00116.jpeg
func main() {
x := "hello"
for _, x := range x {
X:=x+'A - 'a
fmt.Printf("%c", x) // "HELLO" (one letter per iteration)

images/00115.jpeg
func main() {

x := “hello!"
for i 1= 0; i < len(x); i++ {

x = x[i]

1=
x + 'A" a'
fmt.Printf("%c", x) // "HELLO" (one letter per iteration)

}

1

images/00599.jpeg
gopl.io/chié/jpeg
/1 The jpeg command reads a PNG image from the standard input
// and writes it as a JPEG image to the standard output.
package main

import (
"t
"image"
“image/jpeg"
"image/png" // register PNG decoder

func main() {
if err := toJPEG(0s.Stdin, os.Stdout); err != nil {
fmt.Fprintf(os.Stderr, "jpeg: %v\n", err)
0s.Exit(1)

}

func toJPEG(in io.Reader, out io.Writer) error {
ing, kind, err := image.Decode(in)
if err 1= nil {
return err

fnt.Fprintln(os.Stderr, "Input format =", kind)
return jpeg.Encode(out, img, &jpeg.Options{Quality: 95})

images/00583.jpeg
memo . New(httpGetBody)
ange incomingURLs() {
start := time.Now()

value, err := m.Get(url)

if err 1= nil {
log.Print(err)

m
for url

}
fmt.Printf("%s, %s, %d bytes\n",
url, time.Since(start), len(value.([]byte)))

images/00582.jpeg
gopl.io/ch9/memol
// Package memo provides a concurrency-unsafe
// memoization of a function of type Func.
package memo

// A Memo caches the results of calling a Func.
type Memo struct {

£ Func

cache map[string]result

}

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

type result struct {
value interface{}
err error

}

func New(f Func) *Memo {
return &Memo{f: f, cache: make(map[string]result)}

}

// NOTE: not concurrency-safe!
func (memo *Memo) Get(key string) (interface(}, error) {
res, ok := memo.cache[key]
if tok {
res.value, res.err = memo.f(key)
meno. cache[key] = res
Y

return res.value, res.err

images/00101.jpeg

images/00585.jpeg
m := memo.New(httpGetBody)
var n sync.WaitGroup
for url := range incomingURLs() {
n.Add(1)
go func(url string) {
start := time.Now()
value, err := m.Get(url)
if err 1= nil {
log.Print(err)

}
fut.Printf("%s, %s, %d bytes\n",
url, time.Since(start), len(value.([]byte)))
n.Done()
}url)
}
n.Wait()

images/00100.jpeg
-Copy(dst, src) // discard byte count
T // check type but discard result

images/00584.jpeg
$ go test -v gopl.io/ch9/memol

RUN Test

https://golang.org, 175.026418ms, 7537 bytes
https://godoc.org, 172.686825ms, 6878 bytes
https://play.golang.org, 115.762377ms, 5767 bytes
http://gopl.io, 749.887242ms, 2856 bytes

https://golang.org, 72Ins, 7537 bytes
https://godoc.org, 152ns, 6878 bytes
https://play.golang.org, 205ns, 5767 bytes
http://gopl.io, 326ns, 2856 bytes

--- PASS: Test (1.21s)

PASS

ok gopl.io/ch9/memol 1.257s

images/00581.jpeg
func httpGetBody(url string) (interface{}, error) {
resp, err := http.Get(url)
if err 1= nil {
return nil, err

}
defer resp.Body.Close()
return ioutil.ReadAll(resp.Body)

images/00580.jpeg
var loadIconsOnce sync.Once
var icons map[string]image.Inage

// Concurrency-safe.
func Icon(name string) image.Image {
1oadIconsOnce.Do(loadIcons)

return icons[name]

images/00107.jpeg
D2 A0/ I/ SONPCOIN.

/1 Package tempconv performs Celsius and Fahrenheit conversions.
package tempconv

import "fmt"

type Celsius float6s
type Fahrenheit floatéd

const (
AbsolutezeroC Celsius = -273.15
FreezingC Celsius = 0
BoilingC Celsius = 1

)

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c))
func (f Fahrenheit) String() string { return fmt.Sprintf("%g°F",) }

images/00106.jpeg
fmt.
fmt
fmt
fmt.
fmt.
fmt.

FToC(212.0)

-println(c.String()) //
Printf("%\n", c) //
Printf("%s\n", ¢) //
Println(c) 1
-Printf("%g\n", ¢) //
.Println(float64(c)) //

»1000C"
"100°C"; no need to call String explicitly
»100°C"

"100°C"

"100"; does not call String

"100"; does not call String

images/00109.jpeg
fmt.Printf("Brrrr! X2v\n", tempconv.AbsoluteZeroC) // "Brrrr! -273.15°C"

images/00108.jpeg
package tempconv

// CToF converts a Celsius temperature to Fahrenheit.
func CToF(c Celsius) Fahrenheit { return Fahrenheit(c*e/s + 32) }

// FToC converts a Fahrenheit temperature to Celsius.
func FToC(f Fahrenheit) Celsius { return Celsius((f - 32) * 5 / 9) }

images/00103.jpeg
HC. Pranti(Ag\n', Bodlingi-Freezingt) // "188" ¢
boilingF := CTOF(BoilingC)

fnt. Printf("%g\n", boilingF-CToF (FreezingC)) // "180" °F

fmt. Printf("%g\n", boilingF-FreezingC) 1/ compile error: type mismatch

images/00587.jpeg
28
29
30
31
32
33
34
35

func (memo *Memo) Get(key str:
res, ok := memo.cache[key
if lok {
res.value, res.err =
meno. cache[key] = res
}

return res.value, res.err

ing) (interface{}, error) {

1

memo. £(key)

images/00102.jpeg
Eps. 0/ Chi/ Conpeonve
/1 Package tempconv performs Celsius and Fahrenheit temperature computations.
package tempconv
import "fmt"

type Celsius floates
type Fahrenheit float6s

const (
AbsolutezeroC Celsius = -273.15
FreezingC Celsius = @
BoilingC Celsius = 100

)

func CToF(c Celsius) Fahrenheit { return Fahrenheit(c*9/s + 32) }
func FToC(f Fahrenheit) Celsius { return Celsius((f - 32) * 5 / 9) }

images/00586.jpeg
$ go test -run=TestConcurrent -race -v gopl.io/ch9/memol
RUN TestConcurrent

WARNING: DATA RACE
Write by goroutine 36:
runtime.mapassignl()
/go/src/runtime/hashmap.go:411 +0x0
gopl.io/ch9/memol. (*Memo) .Get ()
~/gobook2/ src/gopl.io/ch9/memol /memo.go:32 +0x265

Previous write by goroutine 35:
runtime.mapassignl()
go/src/runtime/hashmap.go:411 +0xe
gopl.io/ch9/memol. (*Memo) .Get ()
~/gobook2/ src/gopl.io/ch9/memol /memo.go:32 +0x265

Found 1 data race(s)
FAIL gopl.io/ch9/memol 2.393s

images/00105.jpeg

images/00589.jpeg
0PSSOV CUR w0l
func (memo *Memo) Get(key string) (value interface(}, err error) {
meno.mu. Lock()
res, ok := memo.cache[key]
memo.mu.Unlock()
if lok {
res.value, res.err = memo.f(key)

// Between the two critical sections, several goroutines
/1 may race to compute f(key) and update the map.
memo.mu. Lock()
meno.cache[key] = res
memo.mu. Unlock()

}

return res.value, res.err

images/00104.jpeg
var
var
fmt
fmt
fmt
fmt

¢ Celsius
 Fahrenheit
.Println(c
.Println(f >
.Println(c =
.Println(c

0) 1
o) 1
) 11

Celsius(f)) //

"true"
"true"

compile error: type

"tru

1

mismatch

images/00588.jpeg
RS S
type Memo struct {
£ Func
mu sync.Mutex // guards cache
cache map[string]result
X

/1 Get is concurrency-safe.
func (memo *Memo) Get(key string) (value interface{}, err error) {
memo.mu. Lock()
res, ok := memo.cache[key]
if lok {
res.value, res.err = memo.f(key)
meno.cache[key] = res

}
meno.mu. Unlock()
return res.value, res.err

images/00572.jpeg
NOTI incorrect!
func Withdraw(amount int) bool {
mu. Lock()
defer mu.Unlock()
Deposit(-amount)
if Balance() < @ {
Deposit(amount)
return false // insufficient funds

}

return true

images/00571.jpeg
NOTE: not atomic!
func Withdraw(amount int) bool {
Deposit(-amount)
if Balance() < @ {
Deposit(amount)
return false // insufficient funds

}

return true

images/00574.jpeg
var x, y int
go func() {
x=1 /1 M
fmt.Print("y:", y, " ") // A2
YO
go func() {
y=1 // B1
fmt.Print("x:", x, " ") // B2
YO

images/00573.jpeg
func Withdraw(amount int) bool {
mu. Lock()
defer mu.Unlock()
deposit(-amount)
if balance < @ {
deposit(amount)
return false // insufficient funds

}
return true

}

func Deposit(amount int) {
mu. Lock()
defer mu.Unlock()
deposit(amount)

}

func Balance() int {
mu. Lock()
defer mu.Unlock()
return balance

}

// This function requires that the lock be held.
func deposit(amount int) { balance += amount }

images/00570.jpeg
gopl.io/chS9/bank3
import "sync"

var (
mu sync.Mutex // guards balance
balance int

)

func Deposit(amount int) {
mu. Lock()
balance = balance + amount
mu.Unlock()

}

func Balance() int {
mu. Lock()
b := balance
mu.Unlock()
return b

images/00579.jpeg
var mu sync.RWMutex // guards icons
var icons map[string]image.Inage

// Concurrency-safe.
func Icon(name string) image.Image {
mu. RLock()
if dcons != nil {
icon := icons[name]
mu.RUnlock()
return icon
}
mu.RUnlock()

// acquire an exclusive lock

nu. Lock()

if dcons == nil { // NOTE: must recheck for nil
loadIcons()

}

icon := icons[name]

mu.Unlock()

return icon

images/00576.jpeg
func loadIcons() {

icons = map[string]image. Image{
“spades.. pnj loadIcon("spades.png"),
hearts.png": loadIcon("hearts.png"),

diamonds.png": loadIcon("diamonds.png"),
“clubs.png": loadIcon("clubs.png"),

}

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
if icons == nil {
loadIcons() // one-time initialization
}

return icons[name]

images/00575.jpeg
var 1icons map|string|image.Image

images/00578.jpeg
var mu sync.Mutex // guards icons
var icons map[string]image.Inage

// Concurrency-safe.
func Icon(name string) image.Image {

mu. Lock()
defer mu.Unlock()
if dcons == nil {

loadIcons()
}

return icons[name]

images/00577.jpeg
func loadIcons() {
icons = make(map[string]image.Inage)

icons["spades.png"] = loadIcon("spades.png")
icons["hearts.png"] = loadIcon("hearts.png")
icons["diamonds.png"] = loadIcon("diamonds.png")

icons["clubs.png"] = loadIcon("clubs.png")

images/00561.jpeg
/1 Alic
go func() {
bank.Deposit(200) /1 M
fmt.Println("=", bank.Balance()) // A2

1{0)

// Bob:
g0 bank.Deposit (100) // B

images/00560.jpeg
// Package bank 1implements a bank with only one account
package bank

var balance int
func Deposit(amount int) { balance = balance + amount }

func Balance() int { return balance }

images/00563.jpeg
Data race

]
Alr [
B 100
Alw 200

A2 "= 200"

. = balance + amount

balance = ...

images/00562.jpeg
Alice first Bob first Alice/Bob/Alice

[] [
Al 200 B 100 Al 200
A2 "= 200" Al 300 B 300
B 300 A2 "= 300" A2 "= 300

images/00569.jpeg
fops. 30/ CRl/Dank3
var (
sema = make(chan struct{}, 1) // a binary semaphore guarding balance
balance int
)

func Deposit(amount int) {
sema <- struct{}{} // acquire token
balance = balance + amount
<-sema // release token

}

func Balance() int {
sema <- struct(}{} // acquire token
:= balance
<-sema // release token
return b

images/00568.jpeg
type Cake struct{ state string }

func baker(cooked chan<- *Cake) {

for {
cake := new(Cake)
cake.state = "cooked"
cooked <- cake // baker never touches this cake agair
}
}
func icer(iced chan<- *Cake, cooked <-chan *Cake) {
for cake := range cooked {
cake.state = "iced"
iced <- cake // icer never touches this cake again
}

images/00565.jpeg
var 1icons = make(map[string]image.Image)
func loadIcon(name string) image.Image

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
icon, ok := icons[name]
if tok {
icon = loadIcon(name)
icons[name] = icon
}

return icon

images/00564.jpeg
var x [Jint
go func() { x = make([Jint, 10) }()

go func() { x = make([]int, 1000000) }()

x[999999] = 1 // NOTE: undefined behavior; memory corruption possiblel

images/00567.jpeg
gopl.io/ch9/bankl
// Package bank provides a concurrency-safe bank with one account.
package bank

var deposits
var balances

make(chan int) // send amount to deposit
make(chan int) // receive balance

func Deposit(amount int) { deposits <- amount }
func Balance() int { return <-balances }

func teller() {
var balance int // balance is confined to teller goroutine
for {
select {
case amount := <-deposits:
balance += amount
case balances <- balance:

}

i

func nit() {
go teller() // start the monitor goroutine
3 2

images/00566.jpeg
var 1icons = map[string]image.Image{

“spades.png": loadIcon("spades.png"),
“hearts.png": loadIcon("hearts.png"),
“diamonds.png": loadIcon("diamonds.png"),
“clubs.png": loadIcon("clubs.png"),

}

// Concurrency-safe.
func Icon(name string) image.Image { return icons[name]

images/00550.jpeg
/ sema 1s a counting semaphore for limiting concurrency i1n dirents.
var sema = make(chan struct{}, 20)

// dirents returns the entries of directory dir.
func dirents(dir string) [Jos.FileInfo {
sema <- struct{}{} /7 acquire token
defer func() { <-sema }() // release token
"

images/00552.jpeg
// Cancel traversal when 1nput 1s detected.

go func() {
os.Stdin.Read(make([]byte, 1)) // read a single byte
close(done)

YO

images/00551.jpeg
gopl.io/ch8/du4
var done = make(chan struct{})

func cancelled() bool {
select {
case <-done:
return true
default:
return false

images/00558.jpeg
func handleConn(conn net.Conn) {
ch := make(chan string) // outgoing client messages
go clientWriter(conn, ch)

who := conn.RemoteAddr ().String()
ch <- "You are " + who

messages <- who + " has arrived"
entering <- ch

input := bufio.Newscanner(conn)

for input.Scan() {
messages <- who +

+ input.Text()
Y

// NOTE: ignoring potential errors from input.Err()

leaving <- ch
messages <- who + " has left"
conn.Close()

Y

func clientWriter(conn net.Conn, ch <-chan string) {
for msg := range ch {
fmt.Fprintln(conn, msg) // NOTE: ignoring network errors

}

images/00557.jpeg
type client chan<- string // an outgolng message channel

var (
entering = make(chan client)
leaving = make(chan client)
messages = make(chan string) // all incoming client messages
)
func broadcaster() {
clients := make(map[client]bool) // all connected clients
for {
select {
case msg := <-messages:
// Broadcast incoming message to all
// clients' outgoing message channels.
for cli := range clients {
cli <- msg
}
case cli := <-entering:
clients[cli] = true
case cli := <-leaving:
delete(clients, cli)
close(cli)
}
}

images/00559.jpeg
$ go build gopl
$ go build gopl
$./chat &

$./netcat3
You are 127.0.0
127.0.0.1:64211
it

127.0.0.1:64208:

127.0.0.1:64211:

rC

$./netcat3
You are 127..0

127.0.0.1:64211:

127.0.0.1:64211

-1o/ch8/chat
-io/chg/netcat3

.1:64208
has arrived
Hil

Hi yourself.

.1:64216
Welcome.

has left

$./netcat3
You are 127.0.0.1:64211

127.0.6.1:64208: Hil
Hi yourself.
127.0.0.1:64211: Hi yourself.

127.0.0.1:64208 has left

127.0.0.1:64216 has arrived
Welcome.

127.0.0.1:64211: Welcome.
~C

images/00554.jpeg
func walkDir(dir string, n "sync.WaitGroup, fileSizes chan<- 1nt64) {
defer n.Done()
if cancelled() {

return

¥

for _, entry := range dirents(dir) {
7

¥

images/00553.jpeg
for {
select {
case <-done:
// Drain fileSizes to allow existing goroutines to finish.
for range fileSizes {
// Do nothing.
3}

return
case size, ok
" o...

<-fileSizes:

images/00556.jpeg
gopl /ch8/chat
func main() {
listener, err :

net.Listen("tcp”, "localhost:8000")

if err 1= nil {
log.Fatal(err)

}

go broadcaster()

for {
conn, err := listener.Accept()
if err 1= nil {

log.Print(err)

continue

}

go handleConn(conn)

images/00555.jpeg
func dirents(dir string) [Jos.FilelInfo {
select {
case sema <- struct{}{}: // acquire token
case <-done:
return nil // cancelled

Y
defer func() { <-sema }() // release toker

// ...read directory...

images/00541.jpeg
gopl.io/ch8/countdown3
func main() {
// ...create abort channel...

fmt.Println("Conmencing countdown. Press return to abort.")
tick := time.Tick(1 * time.Second)
for countdown := 10; countdown > @; countdown-- {
fmt.Println(countdown)
select {
case <-tick:
// Do nothing.
case <-abort:
fmt.Println("Launch aborted!")
return

}

¥
launch()

images/00540.jpeg
ch := make(chan 1nt, 1)
for 1 := 0; 1 < 10 i++ {
select {
case x := <-ch:

fmt.Println(x) // "@"
case ch <- i:

}

images/00547.jpeg
Pl . la/che/aus
var verbose = flag.Bool("v", false, “show verbose progress messages"

func main() {
/I ...start background goroutine.

/1 Print the results periodically.
var tick <-chan time.Time
if *verbose {

tick = time.Tick(500 * time.Millisecond)

¥
var nfiles, nbytes inte4
loop:
for {
select {
case size, ok := <-filesizes:
if lok {
break loop // filesizes was closed
1
nfiles++
nbytes += size
case <-tick
printbiskusage(nfiles, nbytes)
}
¥

printDiskUsage(nfiles, nbytes) // final totals

images/00546.jpeg
¥

close(filesizes)

10

// Print the results.

var nfiles, nbytes inté4

for size := range filesizes {
nfilest+
nbytes += size

}

printbiskUsage(nfiles, nbytes)

}

func printDiskUsage(nfiles, nbytes int64) {
fmt.Printf("%d files %.1f GB\n", nfiles, float64(nbytes)/1e9)

}

images/00549.jpeg
// sema 1s a counting semaphore for limiting concurrency in dirents.
var sema = make(chan struct{}, 20)

// dirents returns the entries of directory dir.
func dirents(dir string) [Jos.FileInfo {
sema <- struct{}{} // acquire token
defer func() { <-sema }() // release token
B s

images/00548.jpeg
fopl.1o/ché/cul

func main() {
// ...determine roots...

// Traverse each root of the file tree in parallel.
fileSizes := make(chan int6d)
var n sync.WaitGroup
for _, root := range roots {
n.Add(1)
go walkDir(root, &n, fileSizes)

}
go func() {
n.Wait()
close(filesizes)
10
7/ ...select loop...

b

func walkDir(dir string, n *sync.WaitGroup, filesizes chan<- int64) {
defer n.Done()
for _, entry := range dirents(dir) {
if entry.IsDir() {
n.Add(1)
subdir := filepath.Join(dir, entry.Name())
g0 walkDir(subdir, n, filesizes)
} else {
fileSizes <- entry.Size()
}

images/00543.jpeg
select {

case <-abort:
£mt.Printf("Launch aborted!\n")
return

default:
// do nothing

images/00542.jpeg
ticker :

‘time.NewTicker(1l * time.Second)
<-ticker.C // receive from the ticker's channel

ticker.Stop() // cause the ticker's goroutine to terminate

images/00545.jpeg
// The dul command computes the disk usage ot the flles in a directory.
package main

import (

“flag"

fmt"
io/ioutil”

0"
“path/filepath”

)

func main() {
// Deternine the initial directories.
flag.Parse()
roots := flag.Args()
if len(roots) == @ {
roots = []string(*."}
¥

// Traverse the file tree.
fileSizes := make(chan int64)
go func() {
for _, root := range roots {
walkDir(root, fileSizes)

images/00544.jpeg
gopl /ch8/dul
// walkpir recursively walks the file tree rooted at dir
// and sends the size of each found file on fileSizes.
func walkDir(dir string, fileSizes chan<- int64) {
for _, entry := range dirents(dir) {
if entry.IsDir() {
subdir := filepath.Join(dir, entry.Name())
walkDir(subdir, fileSizes)
} else {
fileSizes <- entry.Size()

}
}

// dirents returns the entries of directory dir.

func dirents(dir string) [Jos.FileInfo {
entries, err := ioutil.Readdir(dir)

if err I= nil {
fmt.Fprintf(os.Stderr, "dul: %v\n", err)

return nil

}

return entries

images/00539.jpeg
func main() {
// ...create abort channel...

fmt.Println("Conmencing countdown. Press return to abort.")
select {
case <-time.After(10 * time.Second):
// Do nothing.
case <-abort:
fmt.Println("Launch aborted!")
return
¥

launch()

images/00530.jpeg
// MEKOTIUNONE1130 hakes Thusbnalls Tor sach Tils received Trom the chamel.
// Tt returns the number of bytes occupied by the files it creates.
func makeThumbnailsé(filenanes <-chan string) inté4 {
sizes := make(chan int64)
var wg sync.WaitGroup // number of working goroutines
for £ := range filenames {
wg.Add(1)
/1 worker
g0 func(f string) {
defer wg.Done()
thunb, err := thunbnail.InageFile(f)
if err 1= nil {
1og.Println(err)
return

}
info, _ := os.Stat(thunb) // OK to ignore error
sizes <- info.size()
HH
}
11 closer
g0 func() {
wg.Wait()
close(sizes)
10
var total intés
for size := range sizes {
total += size

}

return total

images/00536.jpeg
worklist := make(chan [Jstring) // lists of URLs, may have duplicates
unseenLinks := make(chan string) // de-duplicated URLs

1/ Add command-line arguments to worklist.
g0 func() { worklist <- os.Args[1:] }()
// Create 20 crawler goroutines to fetch each unseen link.
for 1 1= 0; 1 < 205 i++ {
g0 func() {
for link := range unseenLinks {
FoundLinks := crawl(1ink)
g0 func() { worklist <- foundLinks }()

Y
10
}

/7 The main goroutine de-duplicates worklist items
/1 and sends the unseen ones to the crawlers.
seen := make(map[string]bool)
for list := range worklist {
for _, link := range list {
if 1seen[link] {
seen[Link] = true
unseentinks <- link

images/00535.jpeg
func main() {
worklist := make(chan []string;
var n int // number of pending sends to worklist

// Start with the command-line arguments.
e+
go func() { worklist <- os.Args[1:] }(

// Crawl the web concurrently.
seen := make(map[string]bool)
for ; n > @; n-- {
list := <-worklist
for _, link := range list {
if Iseen[link] {
seen[link] = true
et
go func(link string) {
worklist <- crawl(link)
}(Link)

images/00538.jpeg
gopl.io/ch8/countdown2
abort := make(chan struct{})
go func() {
os.Stdin.Read(make([]byte, 1)) // read a single byte
abort <- struct{}{}
YO

images/00537.jpeg
gopl.1o/ch8/countdownl

func main() {
fmt.Println("Commencing countdown.")
tick := time.Tick(1 * time.Second)
for countdown := 10; countdown > @; countdown-- {
fnt.Println(countdown)
<-tick

}
launch()

images/00532.jpeg
func main() {
worklist := make(chan []string;

// Start with the command-line arguments.
go func() { worklist <- os.Args[1:] }(

// Crawl the web concurrently.

seen := make(map[string]bool)

for list := range worklist {

for _, link := range list {
if 1seen[link] {
seen[link] = true
go func(link string) {
worklist <- crawl(link)

}(Link)

images/00531.jpeg
gopl.io/ch8/crawll
func crawl(url string) [Jstring {
fmt.Println(url)
list, err := links.Extract(url)
if err 1= nil {
log.Print(err)

return list

images/00534.jpeg
gopl.io/ch8/crawi2

// tokens is a counting semaphore used to
// enforce a limit of 20 concurrent requests
var tokens = make(chan struct{}, 20)

func crawl(url string) []string {
£mt.Println(url)
tokens <- struct{}{} // acquire a token
list, err := links.Extract(url)
<-tokens // release the token

if err 1= nil {
log.Print(err)
Y

return list

images/00533.jpeg
$ go build gopl.io/ch8/crawll
$./crawll http://gopl.io/
nttp://gopl.io/
https://golang.org/help/

nttps://golang. org/doc/
nttps://golang.org/blog/
2015/07/15 18:22:12 Get ..
2615/07/15 18:22:12 Get

dial tcp: lookup blog.golang.org: no such host
: dial tep 23.21.222.120:443: socket:
oo many open files

images/00529.jpeg
// makeThumbnailss makes thumbnails for the specitied files in paralliel.
// Tt returns the generated file names in an arbitrary order,
// or an error if any step failed.
func makeThumbnailss(filenames []string) (thumbfiles []string, err error) {
type item struct {
thunbfile string
err error

be

ch := make(chan item, len(filenames))
for _, f := range filenames {
g0 func(f string) {
var it item
it.thunbfile, it.err = thumbnail.ImageFile(f)
ch <= it
HH

}

for range filenanes {
it := <-ch
if it.err 1= nil {
return nil, it.err

}
thumbfiles = append(thumbfiles, it.thumbfile)

}

return thumbfiles, nil

images/00528.jpeg
// makeThumbnalils4 makes thumbnalls for the specified files in parallel.
// Tt returns an error if any step failed.
func makeThumbnailsd(filenames []string) error {

errors := make(chan error)

for _, f := range filenames {
g0 func(f string) {
_, err := thumbnail.ImageFile(f)
errors <- err
3
}

for range filenames {

if err := <-errors; err I= nil {
return err // NOTE: incorrect: goroutine leak!
}
}
return nil

images/00525.jpeg
// NOTE: 1ncorrect!
func makeThumbnails2(filenames [Jstring) {
for _, := range filenames {
go thumbnail.ImageFile(f) // NOTE: ignoring errors
}

images/00524.jpeg
gopl.io/ch8/thumbnail
// makeThumbnails makes thumbnails of the specified files.
func makeThumbnails(filenames [Jstring) {

for _, f := range filenames {
if _, err := thumbnail.ImageFile(f); err != nil {
log.Println(err)
}
}

images/00527.jpeg
for

range filenames {

™ func() {
thumbnail.ImageFile(f) // NOTE: incorrect!
1 ...

YO

images/00526.jpeg
// makeThumbnalls3 makes thumbnails of the specified files 1in parallel.
func makeThumbnails3(filenames []string) {
ch := make(chan struct{})
for _, £ := range filenames {
g0 func(f string) {
thumbnail.ImageFile(f) // NOTE: ignoring errors
ch <= struct{}{}
)
}

/1 wait for goroutines to complete.
for range filenames {

<-ch
}

images/00521.jpeg
gopl.io/ch8/pipeline3
func counter(out chan<- int) {
for x t= 8 X < 100; x++ {

out <- x
}
close(out)
}
func squarer(out chan<- int, in <-chan int) {
for v := range in {
out <- v * v
}
close(out)
}
func printer(in <-chan int) {
for v := range in {
fnt.Println(v)
}
}
func main() {
naturals := make(chan int)
squares := make(chan int)

go counter(naturals)
go squarer(squares, naturals)
printer(squares)

images/00520.jpeg
gopl.io/ch8/pipeline2
func main() {

naturals := make(chan int)
squares := make(chan int)
// Counter
go func() {

for x 1= 05 x < 100; X+ {
naturals <- x

close(naturals)
10)

// Squarer
go func() {
for x := range naturals {
squares <- X * X

close(squares)
10)
// Printer (in main goroutine)

for x := range squares {
fmt.Println(x)

}

images/00523.jpeg
gopl.io/ch8/thumbnail
package thumbnail
// ImageFile reads an image from infile and writes
// a thumbnail-size version of it in the same directory.

// Tt returns the generated file name, e.g., "foo.thumb.jpg".
func ImageFile(infile string) (string, error)

images/00522.jpeg
func mirroredQuery() string {

responses
go func() { responses
go func() { responses
go func() { responses
return <-responses //

}

= make(chan string, 3)

<- request("asia.gopl.io") }(
<- request("europe.gopl.io") }(

<- request("americas.gopl.io") }()
return the quickest response

func request(hostname string) (response string) { /* ... */)

images/00518.jpeg
gopl /ch8/pipelinel
func main() {

naturals := make(chan int)
squares := make(chan int)
// Counter
go func() {
for x = @; ; x++ {
naturals <- x
Y
10)
// Squarer
go func() {
for {
X := <-naturals
squares <- X * X
}
10)
// Printer (in main goroutine)
for {

fnt.Println(<-squares)

¥

images/00517.jpeg
gopl.io/ch8/netcat3
func main() {
conn, err := net.Dial("tcp", "localhost:800e")
if err 1= nil {
log.Fatal(err)

Y
done := make(chan struct{})
go func() {
i0.Copy(os.Stdout, conn) // NOTE: ignoring errors
log.Println("done")
done <- struct{}{} // signal the main goroutine
10)
mustCopy(conn, os.Stdin)
conn.Close()
<-done // wait for background goroutine to finish

images/00519.jpeg
// Squarer

go func() {
for {
X, ok := <-naturals
if tok {

break // channel was closed and drained
}

squares <- x * x

close(squares)

YO

images/00514.jpeg
make(chan int) // ch has type "'chan int’

images/00513.jpeg
gopl.io/ch8/reverb2
func handleConn(c net.Conn) {
input := bufio.NewScanner(c)
for input.Scan() {
go echo(c, input.Text(), 1*time.Second)

Y
// NOTE: ignoring potential errors from input.Err()
c.Close()

images/00516.jpeg
make(chan int) // unbuffered channel
ch = make(chan int, @) // unbuffered channel
ch = make(chan int, 3) // buffered channel with capacity 3

images/00515.jpeg
ch <- x // a send statement

X = <-ch // a receive expression in an assignment statement
<-ch // a receive statement; result is discarded

images/00510.jpeg
func handleConn(c net.Conn) {
i0.Copy(c, c) // NOTE: ignoring errors
c.Close()

images/00512.jpeg
gopl.io/ch8/netcat2
func main() {
conn, err := net.Dial("tcp", "localhost:8060")
if err 1= nil {
log.Fatal(err)

}

defer conn.Close()

go mustCopy (os.Stdout, conn)
mustCopy(conn, os.Stdin)

images/00511.jpeg
gopl.io/ch8/reverbl

func echo(c net.Conn, shout string, delay time.Duration) {
fmt.Fprintln(c, "\t", strings.ToUpper(shout))

time.Sleep(delay)
#mt.Fprintln(c, "\t", shout)
time.Sleep(delay)
fmt.Fprintln(c, "\t", strings.ToLower(shout))
}
func handleConn(c net.Conn) {

input := bufio.NewScanner(c)
for input.Scan() {

echo(c, input.Text(), 1*time.Second)
}

// NOTE: ignoring potential errors from input.Err()
c.Close()

images/00507.jpeg
gopl.io/ch8/clock2
for {
conn, err := listener.Accept()
if err 1= nil {
log.Print(err) // e.g., connection aborted
continue

}

go handleConn(conn) // handle connections concurrently

images/00506.jpeg
$ go build gopl.io/ch8/netcatl

$./netcatl

13:58:54 $./netcat1

13:58:55

13:58:56

"C
13:58:57
13:58:58
13:58:59

~C
$ killall clockl

images/00509.jpeg
$ TZ=US/Eastern ./clock2 -port 8010 &
$ TZ=Asia/Tokyo ./clock2 -port 8020 &
$ TZ=Europe/London ./clock2 -port 8030 &
$ clockwall NewYork=localhost:8010 London=localhost:8020 Tokyo=localhost:8030

images/00508.jpeg
$ go build gopl.io/ch8/clock2

$.

/clock2 &

$ go build gopl.io/ch8/netcatl

$

AC

./netcatl
14.
14.
14.
14.
14.
14.
14:
14:

02:54 $./netcatl
02:55
02:56
02:57
02:58
02:59
03:00
03:01

$ killall clock2

cover.jpeg
The GO

Programmin
Lan%gruage ;

Alan A. A. Donovan
Brian W. Kernighan

images/00002.jpeg
ALGOL 60
(Backusetal. 1960)

Pascal
Wirth, 1970)
c
(witchie 1972)
=3
dula-2
(Hoare, 1978) Wirth, 1980)

Squeak

(Cardell. ike, 19851

Wirth . Gutknecht,
1986)

Newsqueak i
Object Oberon
(P, 1989) (Mbssenbsk Temp!
6 Grlesemer, 1990)
Alef

(Winterbottom. 1992)

Go
(Griesemer, Pike & Thompson, 2009)

images/00001.jpeg
vy Addison-Wesley

images/00004.jpeg

images/00003.jpeg

images/00006.jpeg
issajous 201201) :

ot
A
IO

|
)

images/00005.jpeg
ocahosta000
€ C # [localnost8000

URLPath = */"

images/00008.jpeg

images/00007.jpeg

images/00009.jpeg
o 0

A0
AR5
H ..u“"““.z
S0
XX

%
0
g

X
XXX

XXX
o

%
UEXKX
X

0

0
e
XX
o

%
XX

X
X

2-Disometric projection

3-D function space

2-Dgridcells

images/00495.jpeg
encoding/ml
package xnl

type Name struct {
Local string // e.g., "Title" or "id"

}

type Attr struct { // e.g., name="value"
Name Name
Value string

}

/1 A Token includes StartElement, EndElement, CharData,
/7 and Comment, plus a few esoteric types (not shown).
type Token interface(}
type Startelement struct { // e.g., <name>

Name Name

Attr [JAttr

}

type EndElement struct { Name Name } // e.g., </name>

type CharData [Jbyte 11 e.g., <p>CharData</p>
type Comment []byte // e.g., <!-- Comment -->

type Decoder struct{ /* ... */ }

func NewDecoder (10.Reader) *Decoder
func (*Decoder) Token() (Token, error) // returns next Token in sequence

images/00494.jpeg
func sqlQuote(x intertace{}) string {
switch x := x.(type) {
case nil:
return "NULL"
case int, uint:
return fmt.Sprintf("%d", x) // x has type interface{} here.
case bool:
if x {
return "TRUE"

Y
return “FALSE"

case string:

return sqlQuoteString(x) // (not shown)
default:

panic(fnt.Sprintf("unexpected type ¥T: %v*, x, x))
}

images/00497.jpeg
}

// containsAll reports whether x contains the elements of y, in order.
func containsAll(x, y []string) bool {
for len(y) <= len(x) {
if len(y) == 0 {
return true

}

if x[e] == y[e] {
y =yl[1:]

}

x = x[1:]

}

return false

images/00496.jpeg
P2 to/ch/amireiecs
// Xmlselect prints the text of selected elements of an XML document.
package main

import (
“encoding/xml"
“fmt"
“to"
nos"
"strings"

)

func main() {
dec := xnl.Newbecoder(os.Stdin)
var stack []string // stack of element names
for {
tok, err
if err
break
} else if err 1= nil {
fnt.Fprintf(os.Stderr, "xmlselect: %v\n", err)
0s.Exit(1)

dec.Token()
10.EOF {

3
switch tok := tok.(type) {
case xnl.StartElement:
stack = append(stack, tok.Name.Local) // push
case xnl.Endelenent :
stack = stack[
case xnl.CharData:
if containsAll(stack, os.Args[1:]) {
fmt.Printf("%s: ¥s\n", strings.Join(stack,

en(stack)-1] // pop

), tok)

images/00491.jpeg
import "database/sql”

func listTracks(db sql.DB, artist string, minvear, maxvear int) {
result, err := db.Exec(
“SELECT * FROM tracks WHERE artist
artist, minvear, maxYear)
Jhnw

2 AND ?

year AND year <= 2",

images/00490.jpeg
package fmt

func formatOnevalue(x interface{}) string {
if err, ok := x.(error); ok {
return err.Error()

}

if str, ok := x.(Stringer); ok {
return str.String()

Y

// ...all other types...

images/00493.jpeg

images/00492.jpeg
func sqlQuote(x 1intertface{}) string {
if x == nil {
return "NULL"

} else if _, ok := x.(int); ok {
return fmt.Sprintf("%d", x)
else if _, ok := x.(uint); ok {
return fmt.Sprintf("%d", x)
else if b, ok := x.(bool); ok {

if b {
return "TRUE"

¥
return "FALSE"
else if s, ok := x.(string); ok {
return sqlQuoteString(s) // (not shown)
else {
panic(fmt.Sprintf("unexpected type %T: %v", x, x))

images/00499.jpeg
import “encoding/xml™
type Node interface{} // CharData or *Element
type CharData string

type Element struct {
Type xml.Name
Attr [Ixml.Attr
Children [INode

images/00498.jpeg
$ go build gopl.io/chl/fetch
$./fetch http://www.w3
./xmlselect div div

html body
html body
html body
html body
html body
html body
html body
html body

div
div
div
div
div
div
div
div

div
div
div
div
div
div
div
div

h2:
h2:
h2:
h2:
h2:
h2:
h2:
h2:

TEavAwN R

.org/TR/2006/REC-xm111-20060816 |

h2

Introduction

Documents

Logical Structures

Physical Structures

Conformance

Notation

References

Definitions for Character Normalizatior

images/00484.jpeg
—» err := os.Open("/no/such/file”)

fmt.Println(err) // “open /no/such/file: No such file or directory
fmt . Printf("%#v\n", err)

// Output:

// &os.PathError{0;

open”, Path:"/no/such/file", Err:0x2}

images/00483.jpeg
package os

// PathError records an error and the operation and file path that caused it.
type PathError struct {

Op string
Path string
Err error
}
func (e *Pathrror) Error() string {
return e.0p + " " + e.Path + ": " + e.Err.Error()

}

images/00486.jpeg
_» err := os.Open("/no/such/file”)
fmt.Println(os.IsNotExist(err)) // "tru

images/00485.jpeg
import (
"errors”
"syscall"

)
var ErrNotExist = errors.New("file does not exist")

// TsNotExist returns a boolean indicating whether the error is known to
// report that a file or directory does not exist. It is satisfied by
// ErrNotexist as well as some syscall errors.
func IsNotExist(err error) bool {

if pe, ok := err.(*PathError); ok {

err = pe.Err
¥
return err

syscall.ENOENT || err == ErrNotExist

images/00480.jpeg
var w 1o.Writer = os.Stdout
f, ok := w.(*os.File) // success: ok, f
b, ok := w.(*bytes.Buffer) // failure: lok, b

os.Stdout
nil

images/00482.jpeg
func IsNotExist(err error) bool {
// NOTE: not robust!
return strings.Contains(err.Error(), "file does not exist")

images/00481.jpeg
package os

func IsExist(err error) bool
func IsNotExist(err error) bool
func IsPermission(err error) bool

images/00488.jpeg
// writeString writes s to w.
// I w has a WriteString method, it is invoked instead of w.Write.
func writeString(w io.Writer, s string) (n int, err error) {
type stringWriter interface {
Writestring(string) (n int, err error)
¥

if sw, ok := w.(stringWriter); ok {
return sw.WriteString(s) // avoid a copy
¥

return w.Write([]byte(s)) // allocate temporary copy
}

func writeHeader(w io.Writer, contentType string) error {
if _, err := writeString(w, "Content-Type: "); err I= nil {

return err

}

if _, err := writestring(w, contentType); err = nil {
return err

}

I v

images/00487.jpeg
func writeHeader(w lo.Writer, contentType string) error {
if _, err := w.Write([Jbyte("Content-Type: ")); err != nil {
return err

if _, err w.Write([Jbyte(contentType)); err != nil {
return err

V7

images/00489.jpeg
interface {
io.Writer
Writestring(s string) (n int, err error)

images/00473.jpeg
)

func (c call) Check(vars map[Var]bool) error {
arity, ok := numParams([c.fn]
if tok {
return fmt.Errorf("unknown function %q", c.fn)
}
if len(c.args) != arity {
return fmt.Errorf("call to %s has %d args, want %d"
c.fn, len(c.args), arity)

}
for _, arg := range c.args {
if err := arg.Check(vars); err != nil {
return err
}
}

return nil
¥

var numParams = map[string]int{"pow

images/00472.jpeg
func (v Var) Check(vars map[Varjbool) error {
vars[v] = true
return nil

}

func (literal) Check(vars map[Var]bool) error {
return nil

¥

func (u unary) Check(vars map[Var]bool) error {
if Istrings.ContainsRune("+-", u.op) {
return fmt.Errorf("unexpected unary op %", u.op)
}
return u.x.Check(vars)

}

func (b binary) Check(vars map[Var]bool) error {
if Istrings.ContainsRune("+-*/", b.op) {
return fmt.Errorf("unexpected binary op %q", b.op)

}

if err := b.x.Check(vars); err != nil {
return err

}

return b.y.Check(vars)

images/00475.jpeg
gopl.io/ch7/surface
import "gopl.io/ch7/eval"

func parseAndCheck(s string) (eval.Expr, error) {

if s == " {
return nil, fmt.Errorf("empty expression")

}

expr, err := eval.Parse(s)

if err 1= nil {
return nil, err

}
vars := make(map[eval.Var]bool)
if err := expr.Check(vars); err I= nil {
return nil, err
}
for v := range vars {
if v ol= X" 8& v 1= "y" 8& v ! {
return nil, fmt.Errorf("undefined variable: %s", v)
¥
}

return expr, nil

images/00474.jpeg
X% 2
math.Pi
Itrue
"hello"

log(10)
sqrt (1, 2)

unexpected
unexpected .
unexpected 1"
unexpected "

unknown function "log"
call to sqrt has 2 args, want

images/00471.jpeg
type Expr interface {
Eval(env Env) floatss
// Check reports errors in this Expr and adds its Vars to the set.
Check(vars map[Var]bool) error

images/00470.jpeg
sqrt(A / p1)
map[A:87616 pi:

.141592653589793] => 167
pow(x, 3) + pow(y, 3)

map[x:12 y:1] => 1729

map[x:9 y:16] => 1729

5 / 9% (F - 32)

map[F:-40] => -40
map[F:32] => 6
map[F:212] => 100

images/00477.jpeg
. (*0s.File) 11 success: £ stdout
w. (*bytes.Buffer) // panic: interface holds *os.File, not *bytes.Buffer

images/00476.jpeg
func plot(w http.ResponseWriter, r *http.Request) {
r.ParseForm()

expr, err := parseAndCheck(r.Form.Get("expr"))

if err 1= nil {
http.Error(w, "bad expr: "+err.Error(), http.StatusBadRequest)
return

}
w.Header().Set("Content-Type", "image/svg+xml")
surface(w, func(x, y float64) floats {
r := math.Hypot(x, y) // distance from (@,0:
return expr.Eval(eval.Env{"x": x, "y": y, "

b

images/00479.jpeg
rw

rw. (io.Writer) // fails only if rw

// 1o.ReadwWriter 1s assignable to lo.Writer
nil

images/00478.jpeg
var w io.Writer
W = 0s.Stdout
rw := w.(io.ReadWriter) // success: *os.File has both Read and Write

W = new(ByteCounter)
rw = w.(io.ReadWriter) // panic: *ByteCounter has no Read method

images/00462.jpeg
package syscall
type Errno uintptr // operating system error code

var errors = [...]string{

1: “operation not permitted”, // EPERM
2: "no such file or directory”, // ENOENT
3: "no such process", /1 ESRCH
/7

}

func (e Errno) Error() string {
if @ <= int(e) && int(e) < len(errors) {
return errors[e]
}
return fmt. Sprintf(“errno %d", e)

images/00461.jpeg
package fmt

import “errors"

func Errorf(format string, args ...interface{}) error {
return errors.New(Sprintf(fornat, args...))

}

images/00464.jpeg
// An Expr 1s an arithmetic expression.
type Expr interface{}

images/00463.jpeg
var err error = syscall.Errno(2)
fmt.Println(err.Error()) // "no such file or directory
fmt. Println(err) // "no such file or directory

images/00460.jpeg

images/00469.jpeg
func TestEval(t *testing.T) {
tests := []struct {
expr string
env Env
want string

H

{"sqrt(A / pi)", Env{"A":
{"pow(x, 3) + pow(y, 3)", Env{"x
{"pow(x, 3) + pow(y,
{35:4'9.% (F -:32)%,
{"s /9% (F-32)",
fia 8 20 (8 -

1}, "1729"},
10}, "1729"},

var prevExpr string
for _, test := range tests {
// Print expr only when it changes.
if test.expr = prevexpr {
fmt.Printf("\n%s\n", test.expr)
prevExpr = test.expr

expr, err := Parse(test.expr)
if err 1= nil {
t.Error(err) // parse error
continue

got := fmt.Sprintf("%.6g", expr.Eval(test.env))
fmt.Printf("\t& => %s\n", test.env, got)
if got != test.want {
t.Errorf("%s.Eval() in %s = %g, want %q\n",
test.expr, test.env, got, test.want)

images/00466.jpeg
type Expr intertace {
// Eval returns the value of this Expr in the environment env.
Eval(env Env) float64

images/00465.jpeg
gopl.io/ch7/eval
// A Var identifies a variable, e.g., x.
type Var string

// A literal is a numeric constant, e.g., 3.141.
type literal float6s

// A unary represents a unary operator expression, e.g., -X.
type unary struct {

op rune // one of '+, '-*

x Expr

}

/1 A binary represents a binary operator expression, e.g., X+y.
type binary struct {

op rune // one of '+', '-', "*', /'

X, y Expr
¥

// A call represents a function call expression, e.g., sin(x).
type call struct {

0 string // one of "pow", "sin”, "sqrt"

args [JExpr

images/00468.jpeg
func (u unary) Eval(env Env) floaté4 {

switch u.op {
case '+
return +u.x.Eval(env)

case

}

panic(fmt.Sprintf("unsupported unary operator: %q", u.op))

return -u.x.Eval(env)

¥
func (b binary) Eval(env Env) float64 {
switch b.op {
case '+
return b.x.Eval(env) + b.y.Eval(env)

case '-':

return b.x.Eval(env) - b.y.Eval(env)
case '*':

return b.x.Eval(env) * b.y.Eval(env)
case '/':

return b.x.Eval(env) / b.y.Eval(env)
}
panic(fnt.Sprintf("unsupported binary operator: %q", b.op))
}
func (c call) Eval(env Env) float64 {
switch c.fn {
case "pow
return math.Pow(c.args[6].Eval(env), c.args[1].Eval(env))
case "sin":
return math.Sin(c.args[6].Eval(env))
case "sqrt":
return math.Sqrt(c.args[@].Eval(env))

}
panic(fmt.Sprintf("unsupported function call: %s", c.fn))

images/00467.jpeg
func (v Var) Eval(env Env) floaté4 {
return env[v]

}

func (1 literal) Eval(_ Env) float64 {
return float64(1)

}

images/00451.jpeg
Bop:.10/chi/httpd
func (db database) ServeHTTP(w http.Responseuriter, req *http.Request) {
switch req.URL.Path {
case "/list":
for item, price := range db {
fnt.Fprintf(w, "%s: %s\n", item, price)
}
case "/price”
item := req.URL.Query().Get("item")
price, ok := db[item]
if ok {
W.Wri teHeader (http. StatusNotFound) // 404
#mt.Fprintf(w, "no such item: %q\n", item)
return

}
mt Fprintf(w, "¥s\n", price)
default:
w.WriteHeader (ttp. StatusNotFound) // 464
fnt.Fprintf(w, “no such page: %s\n", req.URL)

images/00450.jpeg
$ go build gopl.io/chl/fetch

$./fetch http://localhost :8000
shoes: $50.00

socks: $5.00

images/00453.jpeg
$ go build gopl.io/ch7/http2

$ go build gopl.io/chl/fetch

$./http2 &

$./fetch http://localhost :8000/1ist

shoes: $50.00

socks: $5.00

$./fetch http://localhost :8000/price ?item=socks
$5.00

$./fetch http://localhost :8000/price ?item=shoes
$50.00

$./fetch http://localhost :8000/priceitem=hat
no such item: "hat"

$./fetch http://localhost :8000/help

no such page: /help

images/00452.jpeg
msg := fmt.Sprintf("no such page: %s\n”, req.URL)
http.Error(w, msg, http.StatusNotFound) // 404

images/00459.jpeg
package errors
func New(text string) error { return errorString{text} }
type errorString struct { text string }

func (e *errorString) Error() string { return e.text }

images/00458.jpeg
R 20V CRT/OEtpd
func main() {
db := database{"shoes": 50, "socks": 5}
http.HandleFunc("/1ist", db.list)
http.HandleFunc("/price”, db.price)
log.Fatal(http. ListenAndServe("localhost:8000", nil))

images/00455.jpeg
func(w http.ResponseWriter, req *http.Request)

images/00454.jpeg
gopl.lo/chi/mitps
func main() {

}

db := database{"shoes": 50, "socks": 5}

mux := http.NewServeMux()

mux.Handle("/1ist", http.HandlerFunc(db.list))
mux.Handle("/price”, http.HandlerFunc(db.price))
log.Fatal(http.ListenAndServe("localhost:8000", mux))

type database map[string]dollars

func (db database) list(w http.ResponseWriter, req *http.Request) {

}

for item, price := range db {
fmt.Fprintf(w, "¥s: %s\n", item, price)
}

func (db database) price(w http.ResponseWriter, req *http.Request) {

item := req.URL.Query().Get("iten")

price, ok := db[iten]

if lok {
w.WriteHeader (http. StatusNotFound) // 484
fmt.Fprintf(w, "no such item: %q\n", item)
return

}

fmt.Fprintf(w, "%s\n", price)

images/00457.jpeg
gopl.io/ch7/http3a
mux. HandleFunc("/1ist"
mux. HandleFunc("/price"

db.list)
db.price)

images/00456.jpeg
net/http
package http
type HandlerFunc func(w ResponseWriter, r *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}

images/00440.jpeg
Go

Ready 2 Go
Go

Go Ahead

Moby
Martin Solveig
Delilah

Alicia Keys

Moby

Smash

From the Roots Up
As I Am

Year

1992
2011
2012
2007

images/00442.jpeg
type byYear []*Track

func (x byYear) Len() int { return len(x) }
func (x byvear) Less(i, j int) bool { return x[i].Year < x[j].Year)
func (x byYear) Swap(i, j int) { x[11, x[3] = x[§], x[i] }

images/00441.jpeg
package sort
type reverse struct{ Interface } // that is, sort.Interface
func (r reverse) Less(i, j int) bool { return r.Interface.less(j, i) }

func Reverse(data Interface) Interface { return reverse{data} }

images/00448.jpeg
package http

type Handler interface {
ServeHTTP(w ResponseWriter, r *Request)

}

func ListenAndServe(address string, h Handler) error

images/00447.jpeg
values := []int{3, 1, 4, 1}
fmt.Println(sort.IntsAreSorted(values)) // "false"
sort.Ints(values)

fmt . Println(values) //"[113 4]
fmt.Println(sort.IntsAreSorted(values)) // "true"
sort .Sort(sort. Reverse(sort. IntSlice(values)))

fmt . Println(values) // "[4 31 1]"
fmt.Println(sort.IntsAreSorted(values)) // "false"

images/00449.jpeg
SRR
func main() {
db := database{"shoes": 50, "socks": 5}

log.Fatal(http. ListenAndServe("localhost:8000", db))
}

type dollars float32

func (d dollars) String() string { return fmt.Sprintf("$%.2f", d) }

type database map[string]dollars
func (db database) ServeHTTP(w http.ResponseWriter, req *http.Request) {

for item, price := range db {
fmt.Fprintf(w, "%s: %s\n", item, price)
Y

images/00444.jpeg
type customSort struct {
t [I*Track
less func(x, y *Track) bool

Y

func (x customSort) Len() int { return len(x.t) }
func (x customsort) Less(i, j int) bool { return x.less(x.t[1], x.t[3]) }
func (x customSort) Swap(i, § int) { x.t[i], x.t[§] = x.t[§], x.t[i] }

images/00443.jpeg
Go Ahead
Ready 2 Go
Go

Moby

Alicia Keys
Martin Solveig
Delilah

Smash
From the Roots Up

Year
1992
2007
2011
2012

images/00446.jpeg
Go Ahead
Ready 2 Go

Artist Album

Moby Moby

Delilah From the Roots Up
Alicia Keys As I An

Martin Solveig Smash

Year
1992
2012
2007
2011

images/00445.jpeg
sort.Sort(customSort{tracks, func(x, y *Track) bool {
if x.Title != y.Title {
return x.Title < y.Title

}

if x.Year != y.Year {
return x.Year < y.Year

3}

if x.length != y.Length {
return x.Length < y.Length
}

return false

)

images/00431.jpeg
if out I= nil {
out.Write([Jbyte("done!\n")) // panic: nil pointer dereference
}

images/00430.jpeg
const debug = true

func main() {
var buf *bytes.Buffer
if debug {
buf = new(bytes.Buffer) // enable collection of output

£(buf) // NOTE: subtly incorrect!
if debug {
// ...use buf...
}
}

// Tf out is non-nil, output will be written to it.
func f(out io.Writer) {
// ...do something. ..
if out I= nil {
out.Write([byte("done!\n"))
}

images/00437.jpeg
type byArtist []"Track

func (x byArtist) Len() int { return len(x) }
func (x byArtist) Less(i, j int) bool { return x[i].Artist < x[j].Artist)
func (x byArtist) Swap(i, j int) { x[1), x[3] = x[4], x[i] }

images/00436.jpeg
THNC PraqcirmcKsioracks | 1Virack; 1
const format = "XV\tEV\EAV\tAV\tHV\E\n"
tu := new(taburiter.Writer).Init(os.Stdout, 0, 8, 2, * ', ©)
fntFprintf(tw, format, "Title", "Artist”, "Albun", "Year", "Length")
FmtFprintf (tw, format, *-----", "-----", * BERH -
for _, t := range tracks {

Fut.Fprintf(tw, format, t.Title, t.Artist, t.Albun, t.vear, t.Length)

¥

tw.Flush() // calculate column widths and print table

images/00439.jpeg
sort.Sort(sort.Reverse(byArtist(tracks)))

images/00438.jpeg
Ready 2 Go
Go

Alicia Keys
Delilah

Martin Solveig
Moby

As I Am
From the Roots Up
Smash
Moby

Year
2007
2012
2011
1992

images/00433.jpeg
package sort

type Interface interface {
Len() int
Less(i, j int) bool // i, j are indices of sequence elements
swap(i, 3 int)

images/00432.jpeg
var buf lo.Writer
if debug {
buf = new(bytes.Buffer) // enable collection of output

}
f(buf) // OK

images/00435.jpeg
S 1/ chiysoreiog
type Track struct {

}

Title string
Artist string

Albun string

Year int

Length time.Duration

var tracks = []*Track{

}

Delilah”, "From the Roots Up", 2012, length("3m38s")}
{"Go", "Moby", "Moby", 1992, length("3m37s")}

{"Go Ahead", "Alicia Keys", "As I An", 2007, length("4m36s")}
{"Ready 2 Go", "Martin Solveig", "Smash", 2011, length("4n24s")}

func length(s string) time.Duration {

d, err := time.Parseburation(s)
if err 1= nil {

panic(s)
i

return d

images/00434.jpeg
type
func
func
func

StringSlice []string
(p stringslice) Len() int

{ return len(p) }

(p Stringslice) Less(i, j int) bool { return p[i] < p[j] }

(p StringSlice) Swap(i, § int)

{ p[i], p[3] = p[3], pl[i] }

images/00429.jpeg
var

fmt.

LPrintf("%T\n"

W lo.Writer
Printf("%T\n", w) // "<nil>"

os.Stdout

LPrintf("%T\n", w) // "*os.File"

new(bytes.Buffer)
W) // "*bytes.Buffer"

images/00420.jpeg
gopl.io/ch7/tempconv

/1 *celsiusFlag satisfies the flag.Value interface.
type celsiusFlag struct{ Celsius }

func (f *celsiusFlag) Set(s string) error {

var unit string

var value floatéd

fmt.Sscanf(s, "%f%s", &value, &unit) // no error check needed

switch unit {

case "C", "°C":
f.Celsius = Celsius(value)
return nil

case "F", "°F":
f.Celsius = FToC(Fahrenheit(value))
return nil

}

return fmt.Errorf("invalid temperature %q", s)

images/00426.jpeg

images/00425.jpeg

images/00428.jpeg
var x 1intertace: () LJint{1, 2, 3}
fmt. Println(x panic: comparing uncomparable type [Jint

images/00427.jpeg

images/00422.jpeg
gopl.io/ch7/tempflag
var temp = tempconv.CelsiusFlag(“temp", 20.6, “the temperature”)
func main() {

flag.Parse()
fmt.Println(*temp)

images/00421.jpeg
// CelslusFlag defines a Celslus tlag with the specified name,
// default value, and usage, and returns the address of the lag variable.
// The flag argument must have a quantity and a unit, e.g., "168C".
func CelsiusFlag(name string, value Celsius, usage string) *Celsius {

f := celsiusFlag{value}

flag.ConmandLine.Var (&F, name, usage)

return &.Celsius

images/00424.jpeg

images/00423.jpeg
$ go build gopl.io/ch7/tempflag
$./tempflag
20°C
$./tempflag -temp -18C
-18°C
$./tempflag -temp 212°F
100°C
$./tempflag -temp 273.15K
invalid value "273.15K" for flag -temp: invalid temperature "273.15K"
Usage of ./tempflag:
-temp value
the temperature (default 20°C)
$./tempflag -help
Usage of ./tempflag:
~temp value
the temperature (default 20°C)

images/00419.jpeg
package ftlag

// Value is the interface to the value stored in a flag.
type Value interface {

String() string

Set(string) error

images/00418.jpeg
$./sleep -period Sems
Sleeping for 5@ms...

$./sleep -period 2m30s

Sleeping for 2m30s. ..

$./sleep -period 1.5h

Sleeping for 1h30m@s.

$./sleep -period "1 day"

fnvalid value "1 day" for flag -perios

time: invalid duration 1 day

images/00415.jpeg
// *bytes.Buffer must satisfy lo.Writer
var _ io.Writer = (*bytes.Buffer)(nil)

images/00414.jpeg
// *bytes.Buffer must satisfy lo.Writer

var w io.Writer

new(bytes.Buffer)

images/00417.jpeg
gopl.1o/ch7/sleep
var period = flag.Duration("period”, 1*time.Second, "sleep period")

func main() {
flag.Parse()
fmt.Printf("Sleeping for %v.
time.Sleep(*period)
fmt.Println()

, *period)

images/00416.jpeg
type Text interface {
Pages() int
Words() int
Pagesize() int

}

type Audio interface {
Stream() (io.ReadCloser, error)
RunningTime() time.Duration
Format() string // e.g., "MP3", "WAV

}

type Video interface {
Stream() (io.ReadCloser, error)
RunningTime() time.Duration
Format() string // e.g., "MP4", "WMV'
Resolution() (x, y int)

images/00411.jpeg
var s Intset
var = s.String() // OK: s is a variable and &s has a String method

images/00410.jpeg
type IntSet struct { /¥ ... %/ |
func (*IntSet) String() string

var _ = IntSet{}.String() // compile error: String requires *IntSet receiver

images/00413.jpeg
0s.Stdout.Write([Joyte("hello™)) // OK: “os.File has Write method
os.Stdout . Close () /1 OK: *os.File has Close method

var w io.Writer

W = 0s.Stdout

w.Write([Jbyte("hello")) // OK: io.Writer has Write method

w.Close() // compile error: io.Writer lacks Close method

images/00412.jpeg
fmt.Stringer

IntSet lacks String method

images/00408.jpeg
W 1o.Writer

os.Stdout // OK: *os.File has Write method

new(bytes.Buffer) // OK: *bytes.Buffer has Write method

time.Second // compile error: time.Duration lacks Write method

var rwc io.ReadWriteCloser
rwc = 0s.Stdout /1 OK: *os.File has Read, Write, Close methods
rwc = new(bytes.Buffer) // compile error: *bytes.Buffer lacks Close method

images/00407.jpeg
func LimitReader(r io.Reader, n 1int64) 1o.Reader

images/00409.jpeg
W = rwc // OK: 1lo.ReadWriteCloser has Write method
rWC = W // compile error: io.Writer lacks Close method

images/00404.jpeg
type ReadWriter interface {
Reader
writer

}

type ReadWriteCloser interface {
Reader
writer
Closer

images/00403.jpeg
package 1o

type Reader interface {
Read(p [Jbyte) (n int, err error)

type Closer interface {
Close() error

}

images/00406.jpeg
type ReadWriter interface {
Read(p [Jbyte) (n int, err error)
writer

images/00405.jpeg
type ReadWriter interface {
Read(p [Jbyte) (n int, err error)
write(p [byte) (n int, err error)

images/00400.jpeg
var c ByteCounter
c.Write([]byte("hello"))
fmt.Println(c) // "5", = len("hello")

c = @ // reset the counter

var name = "Dolly"

fmt. Fprintf(&c, "hello, %s", name)
fmt.Println(c) // "12", = len("hello, Dolly")

images/00402.jpeg
func CountingWriter(w i1o.Writer) (1o0.Writer, *inté64)

images/00401.jpeg
package fmt

// The String method is used to print values passed
// as an operand to any format that accepts a string
// or to an unformatted printer such as Print.
type Stringer interface {

String() string
}

images/00744.jpeg
$ go build gopl.io/ch13/bzipper
$ wc -c < /usr/share/dict/words

938848

$ sha256sum < /usr/share/dict/words
126a4ef38493313edc50b86F90dFdaF7c59e c6c948451eac228F 2 3a8ablabed -
$./bzipper < /usr/share/dict/words | wc -c

335405

$./bzipper < /usr/share/dict/words | bunzip2 | sha2sesum
126ad4ef38493313edc50b86F90dfdaf7c59% e c6c948451eac228F2F3a8ablabed -

images/00741.jpeg
func (w *writer) Write(data []byte) (int, error) {
if w.stream == nil {
panic("closed")
}

var total int // uncompressed bytes written

for len(data) > @ {

inlen, outlen := C.uint(len(data)), C.uint(cap(w.outbuf))

C.bz2compress(w.stream, C.BZ_RUN,
(*C.char)(unsafe .Pointer(&data[@])), &inlen,
(*C.char)(unsafe . Pointer(&w.outbuf)), &outlen)

total += int(inlen)

data = data[inlen:]

if _, err := w.w.Write(w.outbuf[:outlen]); err != nil {
return total, err

}

}

return total, nil

images/00740.jpeg
// Package bzlp provides a writer that uses bzlp2 compression (bzip.org).
package bzip

-1/usr/include

#cgo LDFLAGS: -L/usr/1ib -1bz2

#include <bzlib.h>

int bz2compress (bz_stream *s, int action,

char *in, unsigned *inlen, char *out, unsigned *outlen);

*/
import "C"
import (
o
“unsafe”
)
type writer struct {
W io.Writer // underlying output stream
stream *C.bz_stream
outbuf [64 * 1024]byte
}

// Newwriter returns a writer for bzip2-compressed streams.
func NewWriter(out io.Writer) io.WriteCloser {

const (
blocksize =9
verbosity =
workFactor = 30
)

W := gwriter{w: out, stream: new(C.bz_stream)}
C.BZ2_bzCompressInit(w.stream, blocksize, verbosity, workFactor)
return w

images/00743.jpeg
gopl.io/chi3/bzipper
/1 Bzipper reads input, bzip2-compresses it, and writes it out.
package main

import (

“gopl.i0/ch13/bzip"
)

func main() {
w := bzip.Newhriter(os. Stdout)
if _, err := i0.Copy(w, 0s.Stdin); err = nil {
log.Fatalf("bzipper: %\n", err)

if err := w.Close(); err != nil {
log.Fatalf("bzipper: close: %v\n", err)
5

images/00742.jpeg
// Close flushes the compressed data and closes the stream.
// Tt does not close the underlying io.Writer
func (w *writer) Close() error {
if w.stream == nil {
panic("closed")

3
defer func() {
C.BZ2_bzCompressEnd (w. stream)
w.stream = nil
30
for {
inlen, outlen := C.uint(e), C.uint(cap(w.outbuf))
r := C.bz2compress(w.stream, C.BZ_FINISH, nil, &inlen,
(*C.char) (unsafe.Pointer(&w.outbuf)), &outlen)
if _, err := w.w.Write(w.outbuf[:outlen]); err != nil {
return err

if r == C.BZ_STREAM_END {
return nil

}

images/00738.jpeg
package gzip // compress/gzip

func Newdriter(w io.Writer) io.WriteCloser
func NewReader(r io.Reader) (io.ReadCloser, error)

images/00737.jpeg
// Circular linked lists a -> b -> a and ¢ -> ¢
type link struct {

value string

tail *link

"}, &link{value:
atail, b.tail, c.tail = b, a, ¢
fmt.Println(Equal(a, a)) // "true"
fmt.Println(Equal(b, b)) // "true"
fmt.Println(Equal(c, c)) // "true"
fmt.Println(Equal(a, b)) // "false"
fmt.Println(Equal(a, c)) // "false"

&link{value: "c"}

images/00739.jpeg
gopl.1o/chi3/ozip
/* This file is gopl.io/ch13/bzip/bzip2.c, */
/* a simple wrapper for 1ibbzip2 suitable for cgo. */
#include <bzlib.h>

int bz2compress (bz_stream *s, int action,
char *in, unsigned *inlen, char *out, unsigned *outlen) {

s->next_in = in;
s->avail in = *inlen;
s5->next_out = out;
s->avail out = *outlen;
int r = Bz2_bzCompress(s, action);
*inlen -= s->avail_in,
*outlen -= s->avail_out;
return r;

images/00734.jpeg
// Equal reports whether x and y are deeply equal
func Equal(x, y interface{}) bool {
seen := make(map[comparison]bool)
return equal(reflect.ValueOf(x), reflect.Valueof(y), seen)

}

type comparison struct {
X, y unsafe.Pointer
t reflect.Type

images/00733.jpeg
case reflect.Chan, reflect.UnsafePointer, reflect.Func:
return x.Pointer() == y.Pointer()

case reflect.Ptr, reflect.Interface:
return equal(x.Elem(), y.Elem(), seen)

case reflect.Array, reflect.Slice:
if x.Len() != y.Len() {
return false

}
for 1 := 0; i < x.Len(); i++ {
if lequal(x.Index(i), y.Index(i), seen) {
return false
X
}

return true

// ...struct and map cases omitted for brevity...
}

panic("unreachable")

images/00736.jpeg
fmt.Printin(Equal([jint{1, 2, 3}, []int{l, 2, 3})) 1
fmt. Println(Equal([]string("foo"}, [Jstring{"bar"})) "
fmt.Println(Equal([]string(nil), [Jstring{})) Vi
fmt. Println(Equal(map[stringlint(nil), map[stringlint{})) //

images/00735.jpeg
// cycle check
if x.CanAddr() && y.CanAddr() {
xptr := unsafe.Pointer (x.UnsafeAddr())
yptr := unsafe.Pointer (y.UnsafeAddr())
if xptr == yptr {
return true // identical references

¢ := comparison{xptr, yptr, x.Type()}
if seen[c] {

return true // already seen
}

seen[c] = true

images/00730.jpeg
func TestSplit(t *testing.T) {

[]string{"a", "
if !reflect. DEEquual(got, want) {/* ... %}

images/00732.jpeg
gopl.io/chi3/equal
func equal(x, y reflect.Value, seen map[comparison]bool) bool {
if Ix.Isvalid() || !y.Isvalid() {
return x.IsValid() y.IsValid()

}

if x.Type() != y.Type() {
return false

}

// ...cycle check omitted (shown later)...

switch x.Kind() {
case reflect.Bool:
return x.Bool() == y.Bool()

case reflect.String:
return x.String() == y.String()

// ...numeric cases omitted for brevity...

images/00731.jpeg
var

fmt.

var

fmt.

a, b []string = nil, []string{}
println(reflect.DeepEqual(a, b)) // "false"

¢, d map[stringint = nil, make(map[string]int)
Println(reflect.DeepEqual(c, d)) // "false"

images/00727.jpeg
// NOTE: subtly incorrect!

tmp := uintptr(unsafe.Pointer(8x)) + unsafe.Offsetof(x.b)
pb := (*int16)(unsafe.Pointer(tmp))

*pb = 42

images/00726.jpeg
gopl.io/chi3/unsafeptr
var x struct {
a bool
b int16
¢ [lint
}
// equivalent to pb := &x.b
pb := (*int16)(unsafe.Pointer(
uintptr(unsafe.Pointer(8x)) + unsafe.0ffsetof(x.b)))
*pb = 42
p

fmt.Println(x.b) // “42"

images/00729.jpeg
package reflect

func (Value) Pointer() uintptr

func (Value) UnsafeAddr() uintptr

func (Value) InterfaceData() [2]uintptr // (index 1)

images/00728.jpeg
ulintptr(unsate.Pointer(new(T))) // NOTE: wrong!

images/00723.jpeg
// 64-bit 32-bit
struct{ bool; float64; int16 } // 3 words 4 words
struct{ float64; int16; bool } // 2 words 3 words
struct{ bool; int16; float64 } // 2 words 3 words

images/00722.jpeg
import “unsafe”

fmt.Println(unsafe.Sizeof(float64(0))) // "8"

images/00011.jpeg

images/00725.jpeg
package math
func Floateabits(f floated) uintéd { return *(*uinté4)(unsafe.Pointer(&f)))
fmt. Printf("%#016x\n", Float64bits(1.0)) // "@x3ff0000000000000"

images/00010.jpeg

images/00724.jpeg
Typical 32-bit platform:

sizeof(x)
sizeof(x.a)
Sizeof(x.b)
sizeof(x.c)

16
1
2
12

Alignof(x)
Alignof(x.a) =
Alignof(x.b)
Alignof(x.c)

Typical 64-bit platform:

sizeof(x)
Sizeof(x.a)
Sizeof(x.b)
sizeof(x.c)

32
1
2
24

Alignof(x)
Alignof(x.a)
Alignof(x.b) =
Alignof(x.c)

FVETN

8
1
2
8

Offsetof(x
Offsetof(x
Offsetof(x

Offsetof(x
Offsetof(x
Offsetof(x

.a)
.b)
Q)

.a)
.b)

.¢)

images/00013.jpeg
#

CLLL L L Tel=l=]e =[]

#R

“Hello,

for 1, r := range "Hello, HS
Fat.printF("Sd\KQ\tXA\", 1, F, 1)

UTF-8 encoding

ioroor
e w7
1 e’ 1e1
2 1 1
3 1 18
2 et
s, 4
6 o3
7 #1999
1 R 30028

images/00012.jpeg

images/00015.jpeg

images/00721.jpeg
fmt.Printf("%Ad ®s\n" ', "hello”, 42) // "»!'d(strinj

images/00014.jpeg

images/00720.jpeg
methods.Print(time.Hour)

// Output:

// type time.Duration

// func (time.Duration) Hours() floated

// func (time.Duration) Minutes() floatss
// func (time.Duration) Nanoseconds() inté4
// func (time.Duration) Seconds() floatsa
// func (time.Duration) String() string

methods .Print(new(strings.Replacer))

// Output:

// type *strings.Replacer

// func (*strings.Replacer) Replace(string) string

// func (*strings.Replacer) WriteString(io.Wwriter, string) (int, error)

images/00719.jpeg
BB, ARDIUNSENCE
// Print prints the method set of the value x.
func Print(x interface{}) {
v := reflect.ValueOf(x)
t := v.Type()
fmt.Printf(“type %s\n", t)

for i := @; i < v.NumMethod(); i++ {
methType := v.Method(i).Type()
fmt.Printf("func (%s) %s¥%s\n", t, t.Method(i).Name,
strings.TrimPrefix(methType.String(), "func"))

images/00716.jpeg
}

// Update struct field for each parameter in the request.
for name, values := range req.Form {
£ := fields[name]
if 1£.Isvalid() {
continue // ignore unrecognized HTTP parameters
}

for _, value := range values {
if f.Kind() == reflect.Slice {
elen := reflect.New(f.Type().Elen()).Elen()
if err := populate(elem, value); err != nil {
return fmt.Errorf("%s: %", name, err)

}
f.Set(reflect.Append(, elem))
} else {
if err := populate(f, value); err != nil {
return fnt.Errorf("%s: %", name, err)

}

return nil

images/00715.jpeg
gopl.io/chi2/params
// Unpack populates the fields of the struct pointed to by ptr
/1 from the HTTP request parameters in req.
func Unpack(req *http.Request, ptr interface{}) error {
if err := req.Parseform(); err != nil {
return err
}

// Build map of fields keyed by effective name.
fields := make(map[string]reflect.Value)
v := reflect.ValueOf(ptr).Elem() // the struct variable
for i = 0; i < v.NumField(); i++ {
fieldInfo := v.Type().Field(i) // a reflect.StructFielc

tag fieldInfo.Tag // a reflect.StructTag
name := tag.Get("http")
if name == "" {

name = strings.ToLower(fieldInfo.Name)

i/
fields[name] = v.Field(i)

images/00718.jpeg
$ go build gopl.io/ch12/search
$./search &

$./fetch 'http://localhost:12345/search’

Search: {Labels:[] MaxResults:10 Exact:false}

§ ./fetch 'http://localhost:12345/search?1=golang&l=programming"
Search: {Labels:[golang programming] MaxResults:16 Exact:false}

$./fetch 'http://localhost:12345/search?1=golang&l=programming&max=100'
Search: {Labels:[golang programming] MaxResult:
$./fetch 'http://localhost:12345/searchx=true&
Search: {Labels:[golang programming] MaxResults:1@ Exact:true}
$./fetch 'http://localhost:12345/search?q=hellogx=123"
strconv.ParseBool: parsing "123": invalid syntax

$./fetch 'http://localhost:12345/search?q=hello&max=lots"
max: strconv.ParseInt: parsing "lots": invalid syntax

images/00717.jpeg
func populate(v reflect.Value, value string) error {
switch v.Kind() {
case reflect.String:
v.Setstring(value)

case reflect.Int:
i, err := strconv.ParseInt(value, 10, 64)
if err 1= nil {
return err

¥

v.SetInt (i)

case reflect.Bool:
b, err := strconv.ParseBool(value)
if err 1= nil {
return err

¥
v.SetBool(b)
default:

return fmt.Errorf("unsupported kind %s", v.Type())
}

return nil

images/00712.jpeg
FRER TRTARCEMMEE. /7.4 LX0Y VRELE) s i)
v.Set(reflect MakeMap(v.Type()))
for lendList(lex) {
lex.consume(" (")
key := reflect.New(v.Type().Key()).Elen()
read(lex, key)
value := reflect.New(v.Type().Elem()).Elem()
read(lex, value)
v.SetMapIndex(key, value)
lex.consume(')")

¥

default:
panic(fnt.Sprintf(*cannot decode list into %v", v.Type()))
}

}

func endList(lex *lexer) bool {
switch lex. token {
case scanner.EOF:
panic("end of file")
case ')’
return true

}

return false

images/00711.jpeg
CUNE COMMLELLARE “ARENES ¥ TETIACL.YRM)
switeh v.Kind() {
case reflect.Array: // (item ...)
for 1 := 6; lendList(lex); i++ {
read(lex, v.Index(i))

}

case reflect.Slice: // (item ...)
for lendList(lex) {
item := reflect.New(v.Type().Elem()).Elem()
read(lex, item)
v.set (reflect. Append(v, item))

}

case reflect.Struct: // ((name value) ...)
for lendList(lex) {
lex.consume(" (')
if lex.token 1= scanner.Ident {
panic(ft.Sprintf("got token %q, want field name”, lex.text()))

}
name := lex.text()
lex.next()

read(lex, v.FieldByNane(name))
lex.consume(")")

images/00714.jpeg
gopi.1o/chi2/search
import “gopl.io/ch12/params"

/1 search implements the /search URL endpoint.
func search(resp http.Responselriter, req *http.Request) {
var data struct {
Labels [Jstring “http
MaxResults int “http.
Exact bool *http:

}
data.MaxResults = 10 // set default

if err := params.Unpack(req, &data); err 1= nil {
http.Error(resp, err.Error(), http.StatusBadRequest) // 400
return

}

// ...rest of handler...
fmt.Fprintf(resp, "Search: %+v\n", data)

images/00713.jpeg
// Unmarshal parses S-expression data and populates the variable
// whose address is in the non-nil pointer out.
func Unmarshal(data [Jbyte, out interface{}) (err error) {
lex := &lexer{scan: scanner.Scanner{Mode: scanner.GoTokens}}
lex.scan. Init(bytes.NewReader(data))
lex.next() // get the first token
defer func() {
// NOTE: this is not an example of ideal error handling.
if x := recover(); x != nil {
err = fmt.Errorf("error at %s: %v", lex.scan.Position, x)

¥
10
read(lex, reflect.ValueOf(out).Elem())
return nil

images/00710.jpeg
func read(lex *lexer, v reflect.value) {
switch lex.token {
case scanner.Ident:
// The only valid identifiers are
// "nil" and struct field names.
if lex.text() == "nil" {
v.Set (reflect.Zero(v.Type()))
lex.next()
return

}
case scanner.String:
s, _ i= strconv.Unquote(lex.text()) // NOTE: ignoring errors
v.SetString(s)
lex.next ()
return
case scanner.Int:
i, _ := strconv.Atoi(lex.text()) // NOTE: ignoring errors
v.SetInt(int64(i))
lex.next ()
return
case '(':
lex.next ()
readList (lex, v)
lex.next() // consume ')’
return

)
panic(fmt.Sprintf("unexpected token %q", lex.text()))

images/00709.jpeg
B o A .
type lexer struct {
scan scanner.Scanner
token rune // the current token
}
fune (lex *lexer) next() { lex.token = lex.scan.Scan() }
func (lex *lexer) text() string { return lex.scan.TokenText() }

func (lex *lexer) consume(want rune) {
if lex.token != want { // NOTE: Not an example of good error handling.
panic(fmt.Sprintf("got %q, want %q", lex.text(), want))

}

lex.next()

images/00708.jpeg
data Llbyte{/*
var movie Movie
err := json.Unmarshal(data, &movie)

1 5 &

images/00705.jpeg
+

rx := reflect.Valueof(&x) .Elem()

rx.SetInt(2) 110K, x =2

rx.Set(reflect.Valueof(3)) 110K, x =3

rx.Setstring("hello") 7/ panic: string is not assignable to int

x.Set(reflect.Valuef("hello")) // panic: string is not assignable to int

var y interface(}
ry := reflect.Valueof(8y) .Elen()

ry.SetInt(2) 7/ panic: Setint called on interface Value
ry.Set(reflect.Valueof(3)) 11 0K, y = int(3)
ry.Setstring(“hello") 71 panic: setstring called on interface Value

ry.Set(reflect.ValueOf("hello")) // OK, y = "hello"

images/00704.jpeg
d := reflect.ValueOf(&x).Elem()
d.SetInt(3)
fmt. Println(x) //

images/00707.jpeg

images/00706.jpeg
Stdout := reflect.ValueOf(os.Stdout).Elem() // “os.S5tdout, an os.File var
. Print1n(stdout. Type()) /1 "os.File"
fd := stdout.FieldByName("fd")

. Println(fd. Int()) // "1
fd.SetInt(2) // panic: unexported field

images/00031.jpeg

images/00701.jpeg
<
reflect.ValueOf(&x).Elem() // d refers to the variable x
d.Addr(). Interface() . (*int) &x

*px = 3

fmt. Println(x)

images/00030.jpeg
value

images/00700.jpeg
tmt.Printlin(a.CanAddr()) // "fals:
fmt.Println(b.CanAddr()) // "fals
fmt.Println(c.CanAddr()) // "false
fmt.Println(d.CanAddr()) // "true"

images/00033.jpeg

images/00703.jpeg
<
= reflect.ValueOf(x)
b.Set(reflect.ValueOf(3)) // panic: Set using unaddressable value

images/00032.jpeg
=

|

Counter |

Printer
Savares

Tt |

images/00702.jpeg
d.Set(reflect.ValueOf(1nt64(5))) // panic

int64 1s not assignable to int

images/00035.jpeg

images/00034.jpeg

images/00037.jpeg
€ C ooy

ThoGo Progranming Langse (e e G EIEED
Package time

irort “tine

images/00036.jpeg
main

- rangeloop

workers

images/00028.jpeg
type | time.Time

value [_ewsrommriz

[esecs_ssrananss

e o

images/00027.jpeg
bytes.Buffer

data [Joyte

images/00029.jpeg
value nil

images/00020.jpeg

images/00022.jpeg
€ Coa L sesmamegomarsss

2issues

+ Swe ver T
2133 dowed ukal it scape s s Sl 2zl
10535 open dvyukov a/neyhunk void clement <link> has hild nodes

images/00021.jpeg
scn

17 issues

AN
ERSTRRRRb I
NETEEETEEE

images/00024.jpeg

images/00023.jpeg
€ C A | tlesmomeigopharigobonk/autosscaparnim
A <boHelloielb>

B Hello!

images/00026.jpeg
os.File

fd int = 1 (stdout)

tyve

value

images/00025.jpeg
type

nil

nil

images/00017.jpeg

images/00016.jpeg
Q2 = months(a:7]

- caps9

nonths

“January”

“February”

“March”

“September”

“October”

“November”

“December”

summer = months[6:9]

images/00019.jpeg

images/00018.jpeg
y = appendInt(x, 3)

images/00051.jpeg
line := input.Text()
counts[line] = counts[line] + 1

images/00050.jpeg
gopl.io/chl/dupl
// Dupl prints the text of each line that appears more thar

// once in the standard input, preceded by its count
package main

import (
“bufio"
St
nagh

)

func main() {
counts := make(map[string]int)
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
counts[input.Text()J++

Y
// NOTE: ignoring potential errors from input.Err()
for line, n := range counts {
ifns>1{
fmt.Printf("%d\t%s\n", n, line)

}

images/00053.jpeg
el /cijone
// Dup2 prints the count and text of lines that appear more than once
// in the input. It reads from stdin or from a list of named files.
package main

import (

)

func main() {
counts := make(map[string]int)
files := os.Args[1:]

if len(files) == © {
countLines(os.Stdin, counts)

} else {
for _, arg := range files {
f, err := 0s.Open(arg)

if err 1= nil {

fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
continue

images/00052.jpeg
input

bufio.NewScanner(os.Stdin)

images/00055.jpeg
gopl.io/chl/dup3
package main

import (
et
“jo/ioutil"

“strings"
)
func main() {
counts := make(map[string]int)
for _, filename := range os.Args[1:] {

data, err := ioutil.ReadFile(filename)
if err 1= nil {
fnt.Fprintf(os.Stderr, "dup3: %v\n", err)

continue
}
for _, line := range strings.Split(string(data), "\n") {
counts[line]++
)
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}

images/00054.jpeg
i
countLines(f, counts)
£.Close()
}
¥
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line
}

}
func_countlines(*os.File, counts map[string]int) {
input bufio.NewScanner(f)
for input.Scan() {
counts[input.Text()J++
i

7/ NOTE: ignoring potential errors from input.Err()

images/00057.jpeg
func lissajous(out io.Writer) {

const (
cycles =5 // number of complete x oscillator revolutions
res 0.001 // angular resolution

size =100 // image canvas covers [-size..+size]

nframes = 64 // number of animation frames
delay =8 // delay between frames in 16ms units
)
freq := rand.Floatsa() * 3.0 // relative frequency of y oscillator
anin := gif.GIF{LoopCount: nframes}
phase := 6.0 // phase difference
for 1 := 0; 1 < nframes; i++ {
rect := image.Rect(®, 0, 2*size+l, 2*size+l)
img := image.Newpaletted(rect, palette)
for t = 0.0; t < cycles*2*math.Pi; t += res {

math.sin(t)
y := math.Sin(t*freq + phase)
img.SetColorIndex(size+int (x*size+8.5), sizerint(y*size+0.5),
blackIndex)
}
phase += 0.1
anim.Delay
anim. Inage

append (anim.Delay, delay)
append (anim. Inage,, img)

Y
gif .EncodeAll(out, anim) // NOTE: ignoring encoding errors

images/00056.jpeg
gopl.10/chi/lissajous
11 Lissajous generates GIF animations of random Lissajous figures.
package main

import (
"inage"
"inage/color"
"inage/gif"
“jor
“math"
“math/rand"
s
)
var palette = []color.Color{color.hite, color.Black}
const (
whiteIndex = @ // first color in palette
blackIndex = 1 // next color in palette
)
func main() {
1issajous(os. Stdout)

3

images/00059.jpeg
o
// Fetch prints the content found at a URL.
package main

t/http"

func main() {
for _, url := range os.Args[1:] {

resp, err := http.Get(url)

if err 1= nil {
fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
os.Exit(1)

}

b, err := ioutil.ReadAll(resp.Body)

resp.Body.Close()

if err 1= nil {
fmt.Fprintf(os.Stderr, "fetch: reading %s: %\n", url, err)
o0s.Exit(1)

}

fmt.Printf("%s", b)

images/00058.jpeg
$ go build gopl.io/chl/lissajous
¢ ./lissajous >out.gif

images/00049.jpeg
gopl.io/chl/echo3
func main() {
fmt.Println(strings.Join(os.Args[1:], * "))
}

images/00040.jpeg
covagarimt x
© i fies/momelgopher/gobook/coverage.htmi

wosllochmalenigo 88% ¢ not tracked not covered covered

func (u unary) Eval(env Env) floatéd {
switch u.op {
case '+'

return +u.x.Eval (env)
case '~
return ~u.x.Eval(env)

b
Panic(fnt.Sprintf("unsupported unary operatoy
3

func (b binary) Eval(env Env) float6d {
switch b.op {
case '+'i

x.Eval(env) + b.y.Eval (env)

case '=':
return b.x.Eval(env) - b.y.Eval(env)
case '¥':
return b.x.Eval(env) * b.
case /"1
return b.x.Eval(env) / b.y.Eval(env)

3
panic(fat.Sprintf(“unsupported binary operator: %q", b.op))

- Evall (env)

images/00042.jpeg
3 NN Y N
c(data) c(data)
< (len) c(len)
cleap) clcap)
(32-bit) (64-bit)

images/00041.jpeg
func Join

func Join(a (Jstring, sep string) string

s is placed betwsen slements n the resuling sting.
~ Example

“strings”

)

func matn() {

[string*foo", “bar*, "baz'}
5 fot_println(stringsJoin(s, *, "))

foo, bar, baz

Progran exited

([un] (Fomat] [‘shae]

images/00044.jpeg
gopl.io/chi/helloworld
package main
import "fmt"
func main() {

fmt.Println("Hello, t®")
}

images/00043.jpeg
$ export GOPATH=$HOME/gobook # choose workspace directory
$ go get gopl.io/chl/helloworld # fetch, build, install

$ $GOPATH/bin/helloworld # run

Hello, %

images/00046.jpeg
gopl.io/chi/echol
// Echol prints its command-line arguments.
package main

import (
et
Bkt
)

func main() {
var s, sep string
for 1 := 1; i < len(os.Args); i++ {
s += sep + os.Args[i]
sep =" "

}
fut.Println(s)

images/00045.jpeg
$ go get golang.org/x/tools/cmd/goimports

images/00048.jpeg
gopl.io/ch1/echo2

// Echo2 prints its command-line arguments.
package main

import (
s
nagh
)

func main() {
s, sep
for _, arg
s
sep =

range os.Args[1:] {
sep + arg

}
fnt.Println(s)

images/00047.jpeg
for initialization; condition; post {
// zero or more statements

}

images/00039.jpeg
net/url_test
net/http

images/00038.jpeg
net/http

images/00071.jpeg
handler := func(w http.ResponseWriter, r *http.Request) {
lissajous (w)

}
http .HandleFunc

"/" handler)

images/00070.jpeg
GET /iququery HITP/1.1
Header["Accept-Encoding"] = ["gzip, deflate, sdch”]
Header|"Accept-Language"] = ["en-US, en;q=0.8"]

Header|"Connection"] = ["keep-alive"]

Header["Accept"] = ["text/htnl,application/xhtml+xml,application/xul; ..."]
Header["User-Agent"] = ["Mozilla/5.0 (Macintosh; Intel Mac 05 X 10_7_5)..
Host = "localhost:8000"

RemoteAddr = "127.0.0.1:59911"

Form["q"] = [“query"]

images/00073.jpeg
switch coinflip() {
case "heads":
heads++
case "tails":
tails++
default:
fmt.Println("landed on edge!")

images/00072.jpeg
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
lissajous(w)
3]

images/00075.jpeg
%d decimal integer

%x, %o, ¥b integer in hexadecimal, octal, binary

%, %g, %e floating-point number: 3.141593 3.141592653589793 3.141593¢+00
3 boolean: true or false

% rune (Unicode code point)

%s strin

2 quoted string "abc* or rune ‘c*
% any value in a natural format
%T type of any value

%% literal percent sign (no operand)

images/00074.jpeg
$ go doc http.ListenAndServe
package http // import “net/http"

func ListenAndServe(addr string, handler Handler) error

ListenAndServe listens on the TCP network address addr and then
calls Serve with handler to handle requests on incoming connections.

images/00077.jpeg
gopl.io/ch2/boiling
// Boiling prints the boiling point of water
package main

import "fmt"
const boilingF = 212.0

func main() {
var £ = boilingF
varc= (f-32) *5/9
fnt.Printf("boiling point = %g°F or %g°C\n", f, c)
// Output:
// boiling point = 212°F or 180°C

images/00076.jpeg
break
case
chan
const
continue

default
defer

else
fallthrough
for

func
go
goto
if
import

interface
map
package
range
return

select
struct
switch
type
var

images/00079.jpeg
// 1int, 1nt, 1int
" // bool, float64, string

images/00078.jpeg
1op2.Jo/cal/Tioc
/1 Ftoc prints two Fahrenheit-to-Celsius conversions.
package main

import “fmt"

func main() {
const Freezingf, boilingf = 32.6, 212.0
fnt.Printf("Xg°F = %g°C\n", freezingF, fToC(freezingF)) // "32°F = 6°C"
ft_Printf("%geF = %g°C\n", boilingF, FToC(boilingF)) // "212°F = 100°C"

}

func £ToC(f floates) floates {
return (F - 32) *5/9

3}

images/00060.jpeg
$ go build gopl.io/chl/fetch

$./fetch http://gopl.io

<html>

<head>

ctitle>The Go Programming Language</titles

images/00062.jpeg
(o PR Lot
/1 Fetchall fetches URLs in parallel and reports their times and sizes.
package main

)
func main() {
start := time.Now()
ch := make(chan string)

for _, url := range os.Args[1:] {
go fetch(url, ch) // start a goroutine

}

for range 0s.Args[1:] {
fmt.Println(<-ch) // receive from channel ch

images/00061.jpeg
$./fetch http://bad.gopl.io
fetch: Get http://bad.gopl. i

dial tep: lookup bad.gopl.io: no such host

images/00064.jpeg
$ go build gopl.io/chl/fetchall
$./fetchall https://golang.org http://gopl.io https://godoc.org

0.14s 6852 https://godoc.org
0.165 7261 https://golang.org
0.485 2475 http://gopl.io

0.48s elapsed

images/00063.jpeg
2
fmt.Printf("%.2fs elapsed\n”, time.Since(start).Seconds())

}

func fetch(url string, ch chan<- string) {
start := time.Now()
resp, err := http.Get(url)
if err 1= nil {
ch < fmt.Sprint(err) // send to channel ch
return

¥

nbytes, err := io.Copy(ioutil.Discard, resp.Body)
resp.Body.Close() // don't leak resources
if err 1= nil {
ch <- fmt.Sprintf("while reading %s: %v", url, err)
return

¥
secs := time.Since(start).Seconds ()
ch <- fmt.Sprintf("%.2fs %7d %s", secs, nbytes, url)

images/00066.jpeg
$ go run src/gopl.io/chl/serverl/main.go &

images/00065.jpeg
gopl.lo/chi/serverl
// Serverl is a minimal "echo" server.
package main

import (
et
"log"
“net/http"
)

func main() {
http.HandleFunc("/", handler) // each request calls handler
log.Fatal (http. ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the request URL r.

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "URL.Path = %q\n", r.URL.Path)

3}

images/00068.jpeg
gopl.io/chl/server2

// Server2 is a minimal "echo" and counter server.
package main

import (
.t
"log"
"net/http"
"sync"

)

var mu sync.Mutex
var count int

func main() {
http.HandleFunc("/", handler)
http.HandleFunc("/count”, counter)
log.Fatal(http. ListenAndServe("localhost:8008", nil))
}

// handler echoes the Path component of the requested URL
func handler(w http.ResponseWriter, r *http.Request) {
mu. Lock()
count++
mu.Unlock()
fmt.Fprintf(w, "URL.Path = %q\n", r.URL.Path)
}

// counter echoes the number of calls so far.

func counter(w http.ResponseWriter, r *http.Request) {
mu. Lock()
fmt. Fprintf (w, "Count %d\n", count)
mu.Unlock()

images/00067.jpeg
$ go build gopl.io/chl/fetch

$./fetch http://localhost :8000
URL.Path = "/"

$./fetch http://localhost :8000/help
URL.Path = "/help"

images/00069.jpeg
gopl.io/chl/server3
// handler echoes the HTTP request.
func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL, r.Proto)
for k, v := range r.Header {
fmt.Fprintf(w, "Header[%q] = %q\n", k, v)

}

fmt.Fprintf(w, "Host = %q\n", r.Host)

fmt.Fprintf(w, "RemoteAddr = %q\n", r.RemoteAddr)

if err := r.ParseForm(); err != nil {
log.Print(err)

}
for k, v := range r.Form {

fut.Fprintf(w, "Form[%q] = %q\n", k, v)
}

images/00091.jpeg
p := new(int) // p, of type "int, points to an unnamed int variable
fmt.Println(*p) // "@"

=2 7
fmt. Println(*p) //

s the unnamed int to 2

images/00090.jpeg
$ go build gopl.io/ch2/echo4
$./echo4 a bc def
a bc def
$./echo4 -s / a bc def
a/bc/def
$./echod -n a bc def
a bc def$
$./echod -help
Usage of ./echod:
-n omit trailing newline
-s string
separator (default "

images/00093.jpeg
func delta(old, new int) int { return new - old }

images/00092.jpeg
func newInt() *int { func newInt() *int {
return new(int) var dummy int
} return &dummy

images/00095.jpeg
var global *int

func £() {
var x int
x=1
global = 8x

func g() {
new(int)

images/00094.jpeg
0.9; t < cycles®™2™math.P1; t += res {

math.Sin(t)

math.Sin(t*freq + phase)
img.SetColorIndex(size+int(x*size+@.5), size+int(y*size+9.5),
blackIndex)

images/00097.jpeg
// same as v = v + 1; v becomes 2
v-- // same as v = v - 1; v becomes 1 again

images/00096.jpeg
x =1 // named variable
*p = true // indirect variable

person.name = "bob" // struct field

count[x] = count[x] * scale // array or slice or map element

images/00099.jpeg
// map lookup
/1 type assertion
7/ channel receive

images/00098.jpeg
f, err // function call returns two values

images/00080.jpeg
var ¥, err = os.Open(name) // os.0Open returns a file and an error

images/00082.jpeg
= 1lee // an int
var boiling float64 = 100 // a float64

var names []string
var err error
var p Point

images/00081.jpeg
anim := gif.GIF{LoopCount: nframes}
freq := rand.Float64() * 3.0
£ 'u 8.0

images/00084.jpeg
f, err
JT wss
£ err

os.Open(1infile)

0s.Create(outfile) // compile error: no new variables

images/00083.jpeg

images/00086.jpeg
nil) // "true false false'

images/00085.jpeg
x =1

p = & // p, of type *int, points to x
fmt.Println(*p) // "1"

=2 // equivalent to x = 2

fmt.Println(x) // "2"

images/00088.jpeg
func incr(p *int) 1int {
*p++ // increments what p points to; does not change p

return *p
}
v i= 1
incr (&v) // side effect: v is now 2

fmt. Println(incr(&v)) // "3" (and v is 3)

images/00087.jpeg

images/00089.jpeg
gopl.io/ch2/echod

// Echo4 prints its command-line arguments.
package main

import (
"flag"
ot
“strings"
)

var n = flag.Bool("n", false, "omit trailing newline

var sep = flag.String("s", " ", "separator")

func main() {
flag.Parse()
fnt.Print(strings.Join(flag.Args(), *sep))
if 1t {
fmt.Println()
}

images/00396.jpeg

images/00395.jpeg
package log

type Logger struct {
flags int
prefix string
I v

func (1 *Logger) Flags() int
func (1 *Logger) SetFlags(flag int)

func (1 *Logger) Prefix() string

func (1 *Logger) SetPrefix(prefix string’

images/00398.jpeg
Package 1o

// Writer is the interface that wraps the basic Write method.
type Writer interface {
// vrite writes len(p) bytes from p to the underlying data stream.
// 1t returns the number of bytes written from p (8 <= n <= len(p))
/7 and any error encountered that caused the write to stop early.
// Write must return a non-nil error if it returns n < len(p).
/7 virite must not modify the slice data, even temporarily.
1"
// Inplementations must not retain p.
Write(p [Jbyte) (n int, err error)

images/00397.jpeg
package fmt
func Fprintf(w io.Writer, format string, args ...interface{}) (int, error)

func Printf(format string, args ...interface(}) (int, error) {
return Fprintf(os.Stdout, format, args...)
}

func Sprintf(format string, args ...interface{}) string {
var buf bytes.Buffer
Fprintf(&buf, format, args.
return buf. String()

images/00392.jpeg
func
func
func
func

(*IntSet) Len() int 1
(*Intset) Remove(x int) //
(*IntSet) Clear() 1/
(*IntSet) Copy() *IntSet //

return the number of elements
remove x from the set

remove all elements from the set
return a copy of the set

images/00391.jpeg
fmt.Println(&x) /7741 9 42 144}
fmt.Println(x.String()) // "{1 9 42 144}"
fmt. Print1ln(x) // "{[4398046511618 @ 65536]}

images/00394.jpeg
type Counter struct { n int }

func (c *Counter) N() int { return c.n)
func (c *Counter) Increment() { c.n++ }
func (c *Counter) Reset() ficin s oy

images/00393.jpeg
type Bufter struct {
buf [Jbyte
initial [64]byte
IE s 8

}

// Grow expands the buffer's capacity, if necessary,
// to guarantee space for another n bytes. [...]
func (b *Buffer) Grow(n int) {
if b.buf == nil {
b.buf = b.initial[:] // use preallocated space initially

}

if len(b.buf)+n > cap(b.buf) {
buf := make([Jbyte, b.Len(), 2*cap(b.buf) + n)
copy(buf, b.buf)
b.buf = buf

images/00399.jpeg
gopl.io/ch7/bytecounter
type ByteCounter int

func (c *ByteCounter) Write(p [Jbyte) (int, error) {
*c += ByteCounter(len(p)) // convert int to ByteCounter
return len(p), nil

images/00390.jpeg
var X, y lntset
x.Add(1)

x.Add(144)

x.Add(9)

fmt.Println(x.String()) // "{1 9 144}"

y.Add(9)

y.Add(42)

fmt.Println(y.String()) // "{9 42}"
x.UnionWith(8y)

fmt.Println(x.String()) // "{1 9 42 144}"

fmt.Println(x.Has(9), x.Has(123)) // “"true fals

images/00385.jpeg
time .AfterFunc(10@ * time.Second, r.Launch)

images/00384.jpeg
type Rocket struct { /* ... */ }
func (r *Rocket) Launch() { /* ... */ }

r := new(Rocket)
time.AfterFunc(10 * time.Second, func() { r.Launch() })

images/00387.jpeg
type Polnt struct{ X, Y float64 }

func (p Point) Add(q Point) Point { return Point{p.X + .X, p.Y + a.Y})
func (p Point) Sub(q Point) Point { return Point{p.X - .X, p.Y - q.Y})

type Path [JPoint

func (path Path) TranslateBy(offset Point, add bool) {
var op func(p, q Point) Point
if add {
op
} else
op

Point.Add

Point.Sub
}
for 1 := range path {
// Call either path[1].Add(offset) or path[1].Sub(offset).
path[i] = op(path[i], offset)

images/00386.jpeg
Point{l, 2}
Point{4, 6}

q

distance := Point.Distance // method expression
fmt.Println(distance(p, 4)) // "5"
fmt.Printf("%T\n", distance) // "func(Point, Point) float64

scale := (*Point).ScaleBy
scale(8&p, 2)
fmt. Print1n(p)
fmt. Printf("%T\n

11 {2 4"
scale) // "func(*Point, float64)"

images/00381.jpeg
var (
mu sync.Mutex // guards mapping
mapping = make(map[string]string)

func Lookup(key string) string {
nu. Lock()
v := mapping[key]
mu.Unlock()
return v

images/00380.jpeg
type ColoredPoint struct {
*point
Color color.RGBA

Coloredpoint{8Point{(1, 1}, red}

Coloredpoint{gPoint{s, 4}, blue}
Ft.Print1n(p.Distance(*q.Point)) // "s"

q.Point = p.Point /1 p and g now share the same Point
p.ScaleBy(2)

fmt.Println(*p.Point, *q.Point) // "{2 2} {2 2}"

}
P
q

images/00383.jpeg
p := Polnt{l, 2}

q := Point{4, 6}

distanceFromP := p.Distance // method value
fmt . Print1n(distanceFromP (q)) 11 5"

var origin Point /1 {0, @}

fmt . Print1n(distanceFromP (origin)) // "2.23666797749979", /5

scaleP := p.ScaleBy // method value
scaleP(2) // p becomes (2, 4)
scaleP(3) 1 then (6, 12)
scaleP(10) 7/l then (60, 120)

images/00382.jpeg
var cache = struct {
sync.Mutex
mapping map[string]string
o
mapping: make(map[string]string),

}

func Lookup(key string) string {
cache. Lock()
v := cache.mapping[key]
cache.Unlock()
return v

images/00389.jpeg
// String returns the set as a string of the form "{1 2 3}".
func (s *IntSet) String() string {
var buf bytes.Buffer
buf.WriteByte('{')
for i, word := range s.words {
if word == @ {
continue

3
for § = 0; 3 < 645 J+ {
if worda(1<<uint () !
1if buf.Len() > len(
buf.WriteByte("

}
fmt.Fprintf(8buf, "%d", 64*i+j)
}

}
buf.WriteByte('}')
return buf.String()

images/00388.jpeg
gopl.io/ché/intset
// An IntSet is a set of small non-negative integers.
// Its zero value represents the empty set.
type Intset struct {
words [Juint64
}

// Has reports whether the set contains the non-negative value x.
func (s *IntSet) Has(x int) bool {

word, bit := x/64, uint(x%64)

return word < len(s.words) 8& s.words[word]&(1<<bit) != @

}

// Add adds the non-negative value x to the set.
func (s *IntSet) Add(x int) {

word, bit := x/64, uint(x¥64)

for word >= len(s.words) {

s.words = append(s.words, 6)

}

s.words[word] |= 1 << bit
}

// UnionWith sets s to the union of s and t.
func (s *IntSet) UnionWith(t *IntSet) {
for i, tword := range t.words {
if i < len(s.words) {
s.words[i] |= tword
} else {
s.words = append(s.words, tword)

}

images/00374.jpeg
net/url
package url

// Values maps a string key to a list of values.
type Values map[string][]string

// Get returns the first value associated with the given key,
// or "" if there are none.
func (v Values) Get(key string) string {
if vs 1= v[key]; len(vs) > 0 {
return vs[o]
¥

return

}

// Add adds the value to key.
/1 Tt appends to any existing values associated with key.
func (v Values) Add(key, value string) {

vkey] = append(v[key], value)

images/00373.jpeg
// An IntList 1s a linked list of integers.
// A nil *Intlist represents the empty list.
type IntlList struct {

Value int

Tail *Intlist

}

// Sum returns the sum of the list elements.
func (list *IntList) Sum() int {
if list == nil {
return @

}

return list.Value + list.Tail.Sum()

images/00376.jpeg
gopl.io/ch6/coloredpoint
import “image/color”
type Point struct{ X, Y float64 }

type ColoredPoint struct {
Point
Color color.RGBA

images/00375.jpeg
gopl.1o/ché/urivaives
m := url.values{"lang": {"en"}} // direct construction
m.Add("item", "1"
m.Add("item", "2")

nt. Println(m.Get("lang"))
nt. Println(m.Get("q"))

fmt.Println(m.Get("item")) // "1 (first value)
fnt.Println(m["iten"]) /7 "[12]" (direct map access)
n = nil

fmt.Println(m.Get("item")) // "*

m.Add("item", "3") // panic

assignment to entry in nil map

images/00370.jpeg
Point{l, 2};.S5ScaleBy(2) // compile error: can t take address of Point literal

images/00372.jpeg
pptr.Distanc
e(q) // implic1i
plicit (*pptr)

images/00371.jpeg
Polint{l, 2;.Distance(q) // Point
hptr.ScaleBy(2) // *Point

images/00378.jpeg
p.Distance(q) // compile error: cannot use q (ColoredPolint) as Point

images/00377.jpeg
red
blue

color.RGBA{255, @, @, 255}
color.RGBA{8, ©, 255, 255}

var p = ColoredPoint{Point{1, 1}, red}
var q = ColoredPoint{Point{5, 4}, blue}
fmt.Println(p.Distance(q.Point)) // "5"
p.ScaleBy(2)

q.ScaleBy(2)
fmt.Println(p.Distance(q.Point)) // "1

images/00379.jpeg
func (p ColoredPoint) Distance(q Point) floaté4 {
return p.Point.Distance(q)
}

func (p *ColoredPoint) ScaleBy(factor float64) {
p.Point.ScaleBy(factor)
}

images/00363.jpeg
gopl.io/ché/geometry
package geometry

import “"math"
type Point struct{ X, Y float64 }

// traditional function
func Distance(p, q Point) floaté4 {

return math.Hypot(q.X-p.X, q.Y-p.Y)
}

// same thing, but as a method of the Point type

func (p Point) Distance(q Point) floatés {
return math.Hypot(q.X-p.X, q.Y-p.Y)

3

images/00362.jpeg

images/00365.jpeg
// A Path 1s a journey connecting the points with straight lines.
type Path [JPoint

// Distance returns the distance traveled along the path.
func (path Path) Distance() floatéd {
sum
for i = range path {
ifi>0{
sum += path[i-1].Distance(path[1])

}
}

return sum

images/00364.jpeg
Point{l, 2}
q := Point{4, 6}
fmt. Print1n(Distance(p, q)) // "
fmt. Println(p.Distance(q)) // "

function call
method call

images/00361.jpeg
const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "8640«

images/00360.jpeg
fop--2o/chi/eit a3
/1 soleTitle returns the text of the first non-empty title element
/1 in doc, and an error if there was not exactly one.
func soleTitle(doc *html.Node) (title string, err error) {
type bailout struct{}

defer func() {

switch p
case nil

/1 no panic
case bailout{}:

// “expected” panic

err = fmt.Errorf("multiple title elements")
default:

panic(p) // unexpected panic; carry on panicking
3

10
// Bail out of recursion if we find more than one non-empty title.
for€achNode (doc, func(n *html.Node) {
if n.Type == html.ElementNode & n.Data
n.Firstchild != nil {
if title 1= " {
panic(bailout{}) // multiple title elements

recover(); p {

title" &&

}
title = n.FirstChild.Data
}
}, nil)
if title == "* {
return "", fmt.Errorf("no title element"

¥
return title, nil

images/00367.jpeg
import “gopl.lo/ch6/geometry”

perim := geometry.Path{{1, 1}, {5, 1}, {5, 4}, {1, 1)}
ft . Print1n(geometry.PathDistance(perim)) // "12", standalone function
fmt. Println(perim.Distance()) // "12", method of geometry.Path

images/00366.jpeg
perim := Path{
{1, 1},
{5, 1},
{5, 4},
{1, 1},
}
fmt.Println(perim.Distance()) // "12

images/00369.jpeg
type P *int
func (P) £() { /* */ } // compile erroi

invalid receiver type

images/00368.jpeg
func (p *Point) ScaleBy(tactor floaté4) {
p.X *= factor
p.Y *= factor

images/00352.jpeg
func Reset(x *Buffer) {
if x == nil {
panic("x is nil") // unnecessary!

x.elements = nil

images/00351.jpeg
switch s

suit(drawCard()); s {

case "Spades”: // ...
case "Hearts": //
case "Diamonds": //
case "Clubs": /oo
default:

panic(fmt.Sprintf("invalid suit %q", s)) // Joker?

images/00354.jpeg
var httpSchemeRE = regexp.MustCompile(“https?:) // "http:” or "https:

images/00353.jpeg
package regexp
func Compile(expr string) (*Regexp, error) { /* ... */ }
func MustCompile(expr string) *Regexp {

re, err := Compile(expr)

if err 1= nil {
panic(err)

}

return re

images/00350.jpeg
gopl.io/ch5/fetch

// Fetch downloads the URL and returns the

// name and length of the local file.

func fetch(url string) (filename string, n intéd, err error) {
resp, err := http.Get(url)
if err 1= nil {

return "*, 0, err

}

defer resp.Body.Close()

local := path.Base(resp.Request.URL.Path)
if local {
local ndex.html"

3
f, err := os.Create(local)
if err 1= nil {
return ", @, err
}
n, err = io.Copy(f, resp.Body)
// Close file, but prefer error from Copy, if any.
if closeErr := f.Close(); err == nil {
err = closeErr

}

return local, n, err

images/00359.jpeg
func Parse(input string) (s *Syntax, err error) {
defer func() {
if p := recover(); p != nil {
err = fmt.Errorf("internal error: %v", p)

}
10

/1 ...parser...

images/00356.jpeg
panic: runtime error: integer divide by zero
main. (@)

src/gopl.io/ch5/deferl/defer.go:14
main. (1)

src/gopl.io/ch5/deferl/defer.go:16
main.(2)

src/gopl.io/ch5/deferl/defer.go:16
main.(3)

src/gopl.io/ch5/deferl/defer.go:16
main.main()

src/gopl.io/chS/deferl/defer.g

images/00355.jpeg
gopl.io/ch5/deferl
func main() {
£(3)
}

func £(x int) {
fmt.Printf("F(%d)\n", x+0/x) // panics if x
defer fmt.Printf("defer %d\n", x)
f(x - 1)

images/00358.jpeg
goroutine 1

Lrunningj:

main.printstack()

src/gopl
main. (@)

src/gopl.

main. (1)

src/gopl.

main.(2)

src/gopl.

main.(3)

src/gopl.

main.main()

sre/gopl.

.io/chs/defer2/defer.

io/chs/defer2/defer.
io/chs/defer2/defer.
io/chs/defer2/defer.
io/chs/defer2/defer.

io/chs/defer2/defer.

go:

go:

go:

go:

go:

20

27

29

29

29

115

images/00357.jpeg
gopl.io/ch5/defer2
func main() {
defer printstack()
(3)

func printstack() {
var buf [4696]byte
n := runtime.Stack(buf[:], false)
os.Stdout .Write(buf[:n])

images/00341.jpeg
$ go build gopl.io/ch5/titlel

$./titlel http://gopl.io

The Go Programming Language

$./titlel https://golang.org/doc/effective_go.html

Effective Go - The Go Programming Language

$./titlel https://golang.org/doc/gopher/frontpage.png

title: https://golang.org/doc/gopher/frontpage.png
has type image/png, not text/html

images/00340.jpeg
gopl.io/ch5/titlel
func title(url string) error {
resp, err := http.Get(url)
if err 1= nil {
return err

}

// Check Content-Type is HTML (e.g., "text/html; charset-utf-8")
ct := resp.Header.Get("Content-Type"
if ct 1= “text/html" 8& !strings.HasPrefix(ct,
resp.Body.Close()
return fmt.Errorf("%s has type %s, not text/html”, url, ct)

ext/html;") {

}

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err 1= nil {
return fmt.Errorf("parsing %s as HTML: %v", url, err)

}

visitNode := func(n *html.Node) {
if n.Type == html.ElenentNode 8& n.Data
n.Firstchild 1= nil {
fnt.Println(n.Firstchild.Data)

"title" &&

¥
}
forEachNode (doc, visitNode, nil
return nil

images/00343.jpeg
io/ioutil

package ioutil

func ReadFile(filename string) ([lbyte, error) {
£, err := o0s.Open(filename)
if err 1= nil {
return nil, err

Y
defer .Close()
return ReadALl(f)

images/00342.jpeg
gopl.io/ch5/title2
func title(url string) error {
resp, err := http.Get(url)
if err 1= nil {
return err
}

defer resp.Body.Close()

ct

resp. Header .Get("Content-Type")

if ct 1= "text/html" 8& Istrings.HasPrefix(ct, "text/html;") {
return fmt.Errorf("%s has type %s, not text/html", url, ct)

¥

doc, err := html.Parse(resp.Body)

if err 1= nil {

return fmt.Errorf("parsing %s as HTML: %v", url, err)

¥
// ...print doc's title element...

return nil

images/00349.jpeg
for _, filename := range filenames {
if err := doFile(filename); err != nil {
return err
}

}

func doFile(filename string) error {
£, err := o0s.Open(filename)
if err 1= nil {
return err

}
defer .Close()
// ...process f...

images/00348.jpeg
for _, filename := range ftilenames {
¥, err := 0s.Open(filenane)
if err 1= nil {
return err
}

defer f.Close() // NOTE: risky; could run out of file descriptors
/1 ...process ...

images/00345.jpeg
$ go build gopl.io/ch5/trace

$./trace

2015/11/18 9:53:26 enter bigSlowoperation

2015/11/18 ©9:53:36 exit bigSlowOperation (10.800589217s)

images/00344.jpeg
gops.10/chs/trace
func bigslowoperation() {

defer trace("bigSlowoperation”)() // don't forget the extra parentheses
11 ...1ots of work...

time.Sleep(10 * time.Second) // simulate slow operation by sleeping
}

func trace(msg string) func() {
start := time.Now()
10g.Printf("enter %s", msg)
return func() { log.Printf("exit %s (%s)", msg, time.since(start)) }

images/00347.jpeg
func triple(x int) (result int) {
defer func() { result += x }()
return double(x)

}
fmt.Println(triple(4)) // "

images/00346.jpeg
func double(x 1int) (result int) {
defer func() { fmt.Printf("double(%d) = %d\n", x, result) }()
return x + x

¥

_ = double(4)

// Output:

// "double(4) 8"

images/00330.jpeg
var rmdirs [Jfunc()
for _ range tempdirs() {
d // NOTE: necessary!
os.MkdirAll(dir, 6755) // creates parent directories too
rndirs = append(rmdirs, func() {

os.RemoveAll(dir)

D

// ...do some work...

for _, rmdir := range rmdirs {
rmdir() // clean up

images/00332.jpeg
for _, dir := range tempDirs() {

dir // declares inner dir, initialized to outer dir

images/00331.jpeg
var rmdirs [Jfunc()
for _, dir := range tempDirs() {
0s.MkdirAll(dir, @755)
rndirs = append(rmdirs, func() {
os.RemoveAll(dir) // NOTE: incorrect!

D

images/00338.jpeg
func errort(linenum int, format string, args .
fnt . Fprint# (os.Stderr, “Line %d: ", linenum)
fmt . Fprintf (os.Stderr, format, args...)
fnt . Fprint1n(os.Stderr)

interface{}) {

}

linenum, name := 12, "count”
errorf(linenum, "undefined: %s", name) // "Line 12: undefined: count”

images/00337.jpeg
func f(...1nt) {}
func g([lint) {}

fmt.Printf("%T\n", £) // "func(...int)"
fmt. Printf("%T\n", g) // "func([]lint)"

images/00339.jpeg
func ElementsByTagName(doc *html.Node, name ...string) []¥html.Node

images
headings

ElementsByTagName(doc, "img"
ElementsByTagName(doc, "hi'

“h2", "h3®, "ha"

images/00334.jpeg
gopl.1o/chs/sum

func sum(vals ...int) int {
total]
for _, val := range vals {
total += val

}

return total

images/00333.jpeg
var rmdirs [Jfunc()
dirs := tempDirs()
for i := 0; i < len(dirs); i++ {
os.MkdirAll(dirs[i], 8755) // OK
rndirs = append(rmdirs, func() {
os.RemoveAll(dirs[i]) // NOTE: incorrect!

b

images/00336.jpeg
values := []int{l, 2, 3, 4}
fmt.Println(sum(values...)) // "1

images/00335.jpeg
fmt.Printin(sum()) e
fmt.Println(sum(3)) "
fmt.Println(sum(1, 2, 3, 4)) // "

images/00321.jpeg
gop:- 1o/chs/toposort
/1 prereqs maps computer science courses to their prerequisites.
var preregs = map[string][]string{
"algorithms": {"data structures"},
“calculy: {"linear algebra"},

“compilers”: {
“data structures”,
“formal languages”,
“computer organization”,

b
“data structures”: {"discrete math"},
“databases" : {"data structures"},

“discrete math” {"intro to programming"},

{"discrete math"},

“networks" {"operating systens"},

“operating systems {"data structures”, “computer organization"},
“programming languages”: {"data structures”, "computer organization"},

images/00320.jpeg
gopl.io/ch5/squares
// squares returns a function that returns
// the next square number each time it is called.
func squares() func() int {

var x int
return func() int {
X+
return x * x
}
}
func main() {
£ := squares()

fmt.Println(£()) //
fmt.Println(£()) //
fmt.Println(£()) //
fmt.Println(f()) // "16"

images/00327.jpeg
func crawl(url string) []string {
fnt.Println(url)
list, err := links.Extract(url)
if err 1= nil {
log.Print(err)

return list

images/00326.jpeg
gopl.io/ch5/findlinks3
// breadthFirst calls f for each item in the worklist.
7/ Any itens returned by f are added to the worklist.
/1 is called at most once for each item.
func breadthFirst(f func(iten string) [Jstring, worklist []string) {
seen := make(map[string]bool)
for len(worklist) > © {
items := worklist
worklist = nil
for _, item := range items {
if Iseen[iten] {
seen[item] = true
worklist = append(worklist, (item)...)

images/00329.jpeg
$ go build gopl.io/ch5/findlinks3
$./findlinks3 https://golang.org

https:
https:
https:
https:
https:
https:
+//ww . youtube.. com/watch?v=XCsLBIYtqCs

https

//golang.org/
//golang. org/doc/

/1golang. org/pkg/
//golang.org/project/
//code.google. con/p/go-tour/
//golang. org/doc/code. html

http://research.swtch.com/gotour

https:

//vimeo.com/53221560

images/00328.jpeg
func main() {
// Crawl the web breadth-first,
// starting from the command-line arguments.
breadthFirst(crawl, os.Args[1:])

images/00323.jpeg
visitAll := func(items {]string) {
oo
visitAll(m[item]) // compile error: undefined: visitAll
/oo

images/00322.jpeg
func main() {
for 1, course := range toposort(preregs) {
fmt.Printf("%d:\t4s\n", i+1, course)

}
¥

func topoSort(m map[string][]string) []string {
var order []string
seen := make(map[string]bool)
var visitAll func(items []string

visitAll = func(items []string) {
for _, item := range items {
if Iseen[item] {
seen[iten] = true
visitAll(m[item])
order = append(order, item)

}

var keys []string
for key := range m {
keys = append(keys, key)

}
sort.Strings(keys)
visitAll(keys)
return order

images/00325.jpeg
return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)
¥

var links []string
visitNode := func(n *html.Node) {
if n.Type html.ElementNode && n.Data
for _, a := range n.Attr {
if a.Key 1= "href* {
continue
}

Link, err := resp.Request.URL.Parse(a.Val)
if err 1= nil {
continue // ignore bad URLs

}
Links = append(links, Link.String())

+
¥
forEachNode (doc, visitNode, nil)
return links, nil

images/00324.jpeg
gopl.1o/chs/1nks
/1 Package links provides a link-extraction function
package links

import (
fat"
“net/http"

“golang.org/x/net/html"
)

7/ Extract makes an HTTP GET request to the specified URL, parses
// the response as HTML, and returns the links in the HTML document.
func Extract(url string) ([]string, error) {
resp, err := http.Get(url)
if err 1= nil {
return nil, err

}
if resp.StatusCode != http.StatusoK {

resp.Body.Close()

return nil, fmt.Errorf("getting %s: %s", url, resp.Status.
i

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err 1= nil {

images/00319.jpeg
strings.Map(func(r rune) rune { return r + 1 }, "HAL-9000")

images/00310.jpeg
in :

bufio.NewReader(os.5tdin)

for {
r, _, err := in.ReadRune()
if err == i0.EOF {

break // finished reading

if err 1= nil {
return fmt.Errorf("read failed: %v", err)
Y

/l ...user...

images/00316.jpeg
forEachNode(doc, startElement, endElement)

images/00315.jpeg
var depth 1int

func startElement(n *html.Node) {
if n.Type == html.ElementNode {
fmt.Printf("%*s<%s>\n", depth*2, "*, n.Data)
depth+

}

func endElement(n *html.Node) {
if n.Type == html.ElementNode {
depth--
fmt.Printf("%*s</%s>\n", depth*2,

n.Data)

images/00318.jpeg
func ElementByID(doc *html.Node, id string) *html.Node

images/00317.jpeg
$ go build gopl.io/ch5/outline2
$./outline2 http://gopl.io
<html>
<head>
<meta>
</meta>
<title>
</title>
<style>
</style>
</head>
<body>
<table>
<tbody>
<tr>
<td>
<a>

images/00312.jpeg
var f func(int) int
£(3) // panic: call of nil function

images/00311.jpeg
func square(n int) int { returnn % n }
func negative(n int) int { return -n }
func product(m, n int) int { return m * n }

square
fmt.Println(f(3)) // "9"

= negative
ft.println(£(3)) //
fmt.Printf("XT\n", f) //

int"

assign f(int, int) int to f(int) int

= product. 7/ compile erro

images/00314.jpeg
s .30/ CR NI INNE
/1 forEachNode calls the functions pre(x) and post(x) for each node
// x in the tree rooted at n. Both functions are optional.
/1 pre is called before the children are visited (preorder) and
/1 post is called after (postorder)
func forEachNode(n *html.Node, pre, post func(n *html.Node)) {
if pre 1= nil {

pre(n)

}

for ¢ n.FirstChild; c nil; ¢ = c.NextSibling {
forEachNode(c, pre, post)

}

if post 1= nil {
post(n)

}

images/00313.jpeg
func addl(r rune) rune { return r + 1 }

fmt.Println(strings.Map(addl, "HAL-90@@")) // "IBM.:111'
fmt.Println(strings.Map(add1, "VMS")) // "WNT"

fmt.Println(strings.Map(add1, // "Benj

images/00309.jpeg
package 1o
import “errors"

// EOF is the error returned by Read when no more input is available.
var EOF = errors.New("EOF")

images/00308.jpeg
dir, err := loutil.TempDir("", "scratch”)
if err 1= nil {

return fmt.Errorf("failed to create temp dir: %v", err)

}
// ...use temp dir...
os.RemoveAll(dir) // ignore errors; $TMPDIR is cleaned periodically

images/00305.jpeg
2006/01/02 15:04:05 Site 1s dowr

no such domain: bad.gopl.1io

images/00304.jpeg
1f err := WaltForServer(url); err != nil {
log.Fatalf("site is down: %v\n", err)

}

images/00307.jpeg
if err := Ping(); err i= nil {
fmt.Fprintf (os.Stderr, "ping failed: %v; networking disabled\n”, err)
}

images/00306.jpeg
1f err := Ping(); err = nil {
log.Printf("ping failed: %v; networking disabled”, err)
}

images/00301.jpeg
genesls: crashed: no parachute: G-switch faliled: bad relay orientation

images/00300.jpeg
doc, err := html.Parse(resp.Body)
resp.Body.Close ()
if err 1= nil {
return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)

}

images/00303.jpeg
// (In function main.)

if err := WaitForserver(url); err != nil {
fnt.Fprintf (os.Stderr, "Site is down: %v\n", err)
os.Exit(1)

images/00302.jpeg
gops.20/chS/weit
// WaitForserver attempts to contact the server of a URL.
// Tt tries for one minute using exponential back-off.
// Tt reports an error if all attempts fail.
func WaitForserver(url string) error {
const timeout = 1 * time.Minute
deadline := tine.Now().Add(timeout)
for tries 1= 0; tine.Now().Before(deadline); tries++ {
_, err := http.Head(url)
if err == nil {
return nil // success

¥
1og.Printf("server not responding (%s); retrying...", err)
time.Sleep(tine.Second << uint(tries)) // exponential back-off

}

return fut. Errorf("server %s failed to respond after %s”, url, timeout)

images/00624.jpeg
$ go list -json hash
{
"Dir": "/home/gopher/go/src/hash"
ImportPath”: “"hash",
"hash",
: "Package hash provides interfaces for hash functions.",

: true,
/home/gopher/go",

“Deps": [
“errors",
"io",
“runtine",
"sync",
“sync/atomic",
“unsafe"

images/00623.jpeg
$ go list github.com/go-sql-driver/mysql
github.com/go-sql-driver/mysql

images/00626.jpeg
$ go list -f "{{.ImportPath}} -> {{join .Imports " "}}"' compress/.
compress/bzip2 -> bufio io sort

compress/flate -> bufio fmt io math sort strconv

compress/gzip -> bufio compress/flate errors fmt hash hash/crc32 io time
compress/lzw -> bufio errors fmt io

compress/z1ib -> bufio compress/flate errors fmt hash hash/adler32 io

images/00625.jpeg
$ go list -f "{{join .Deps " "}}" strconv
errors math runtime unicode/utf8 unsafe

images/00620.jpeg
$ go doc time.Since
func Since(t Time) Duration

Since returns the time elapsed since t.
It is shorthand for time.Now().Sub(t).

images/00622.jpeg
$ go doc json.decode
func (dec *Decoder) Decode(v interface(}) error

Decode reads the next JSON-encoded value from its input and stores
it in the value pointed to by v.

images/00621.jpeg
$ go doc time.Duration.Seconds
func (d Duration) Seconds() float64

Seconds returns the duration as a floating-point number of seconds.

images/00617.jpeg
$ go build gopl.io/chl@/cross

$./cross

darwin amdé4

$ GOARCH=386 go build gopl.io/ch1e/cross
$./cross

darsidn 386

images/00616.jpeg
gopl /chi@/cross
func main() {
fmt.Println(runtime.GOOS, runtime.GOARCH)
}

images/00619.jpeg
$ go doc time
package time // import “time"

Package time provides functionality for measuring and displaying time.

const Nanosecond Duration = 1 ...
func After(d Duration) <-chan Time
func Sleep(d Duration)

func Since(t Time) Duration

func Now() Time

type Duration inted

type Time struct { ... }

many more. ..

images/00618.jpeg
// Fprintf formats according to a format specifier and writes to w.
// Tt returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (int, error)

images/00613.jpeg
$ cd $GOPATH
$ go build src/gopl.io/ch1/helloworld
Error: cannot find package "src/gopl.io/ch1/helloworld"

images/00612.jpeg
$ cd $GOPATH
$ go build ./src/gopl.io/chl/helloworld

images/00615.jpeg
0 one "two three" four\ five
four five"]

$ go run quoteargs

images/00614.jpeg
$ cat quoteargs.go
package main

import (
"t
e
)

func main() {
fmt.Printf("%q\n", os.Args[1:]

}

$ go build quoteargs.go

$./quoteargs one

four\ five

1

images/00611.jpeg
$ cd anywhere
$ go build gopl.io/ch1l/helloworld

images/00610.jpeg
$ cd $GOPATH/src/gopl.io/chl/helloworld
$ go build

images/00609.jpeg
$ go build gopl.io/chl/fetch
$./fetch https://golang.org/x/net/html | grep go-import
<meta name="go-import"

content="golang.org/x/net git https://go.googlesource.com/net">

images/00606.jpeg
5 go

build
clean
doc

env

ft

get
install
list
run
test
version
vet

compile packages and dependencies
remove object files

show documentation for package or symbol
print Go environment information

run gofmt on package sources

download and install packages and dependencies
compile and install packages and dependencies
list packages

compile and run Go program

test packages

print Go version

run go tool vet on packages

Use "go help [command]" for more information about a command

images/00605.jpeg
package strings

func

type
func

type
func

Index(needle, haystack string) int

Replacer struct{ /* ... */ }
NewReplacer(oldnew ...string) *Replacer
Reader struct{ /* ... */ }

NewReader(s string) *Reader

images/00608.jpeg
$ cd $GOPATH/src/golang.org/x/net

$ git remote -v

origin https://go.googlesource.com/net (fetch)
origin https://go.googlesource.com/net (push)

images/00607.jpeg
$ go get github.com/golang/lint/golint

$ $GOPATH/bin/golint gopl.io/ch2/popcount

src/gopl.io/ch2/popcount/main.go:1:1:
package comment should be of the form "Package popcount .

images/00602.jpeg
package png // 1image/png

func Decode(r io.Reader) (image.Image, error)
func DecodeConfig(r io.Reader) (image.Config, error)

func init() {
const pngHeader = "\xB9PNG\r\n\xda\n"
image.RegisterFormat("png", pngHeader, Decode, DecodeConfig)

images/00601.jpeg
$ go build gopl.io/chl@/jpeg
$./mandelbrot | ./jpeg >mandelbrot.jpg
unknown format

images/00604.jpeg
bytes.Equal flag.Int http.Get Jjson.Marshal

images/00603.jpeg
import (

“database/mysql”
ithub. con/11b/pq" /1 enable support for Postgres
_ "github. com/go-sql-driver/mysql” // enable support for MySQL

)

db, err = sql.Open(“postgres”, dbname) // OK

db, err = sql.Open("mysql", dbname) // OK

db, err = sql.Open("sqlite3", dbname) // returns error:

unknown driver "sqlite3"

images/00600.jpeg
$ go build gopl.io/ch3/mandelbrot

$ go build gopl.io/ch1e/jpeg

$./mandelbrot | ./jpeg >mandelbrot.jpg
Input format = png

images/00198.jpeg
type Currency int

const (
USD Currency = iota
EUR
GBP
RMB
)

symbol := [...]string{USD: "$", EUR: "€", GBP: "£", RMB: "¥"}

fmt.Print1n(RMB, symbol[RMB]) // "3 ¥"

images/00197.jpeg
13)intil, 2, 3}
[41int{1, 2. 3, 4} // complle error: cannot assign [41int to [31int

images/00199.jpeg
L2]int{l, 2}
[...Jint{1, 2}
[2)int{1, 3}
fnt.Printin(a == b, a
[3]int{1, 2}
fwt.Println(a

¢, b ==c) // "true false false"

d) // compile error: cannot compare [2]int

[3]int

images/00194.jpeg
23000000 runes0-127 (ASCIT)

11030000 10X0000XX 128-2047 (values <128 unused)

11103000 10300000 10X0CKXX 2048-65535 (values <2048 unused)
111203xx 10x300XX 10x000xxK 10x300xx 63536-0x10ffff ~ (other values unused)

images/00193.jpeg
fmt.Printf("%T\n", @) /7 "1int?
fmt. Printf("%T\n", 0.0) // "float6a"
fmt. Printf("%T\n", 01) /1 "complex128"
fmt. Printf("%T\n", '\000') // "int32" (rune)

images/00196.jpeg
= [...]1nt{d, 2,
B Printf("%T\n", q) // "[3]int"

images/00195.jpeg
var a [3]int // array of 3 integers
fmt.Print1n(a[0]) // print the first element
fmt.Println(a[len(a)-1]) // print the last element, a[2]

// Print the indices and elements.
for 1, v := range a {
fmt.Printf("%d %d\n", i, v)

}
// Print the elements only.
for _, v := range a {

Ft.Printf("%d\n", v)
}

images/00190.jpeg
+ floaté4 = 3 + 01 //
b 11
le123 1"
ot /!

untyped complex -> floaté4
untyped integer -> float64
untyped floating-point -> float6d
untyped rune -> float64

images/00192.jpeg
Lo L

oi

/1

"\eee' //
= 0.0

11
/!

untyped 1integer;
untyped rune;

untyped floating-point;
untyped complex;

implicit int(e)
implicit rune('\eee')
implicit float64(@.0)
implicit complex128(@i)

images/00191.jpeg
const (

deadbeef = xdeadbeef // untyped int with value 3735928559

a = uint32(deadbeef) // uint32 with value 3735928559
float32(deadbeef) // float32 with value 3735928576 (rounded up)
¢ = floatsa(deadbeef) // floatss with value 3735928559 (exact)
d = int32(deadbeef) // compile error: constant overflows int32
e = float64(1e309) // compile error: constant overflows floatéd
£ = vint(-1) // compile error: constant underflows uint

images/00297.jpeg
func Size(rect image.Rectangle) (width, height 1int)
func split(path string) (dir, file string)
func HourMinSec(t time.Time) (hour, minute, second int)

images/00296.jpeg
func findLinksLog(url string) ([]string, error) {

log.Printf("findLinks %s", url)
return findLinks(url)

images/00299.jpeg
value, ok := cache.Lookup(key)
if 1ok {
/1 ...cache[key] does not exist...

}

images/00298.jpeg
// CountwWordsAndImages does an HTTP GET request for the HTML
// document url and returns the number of words and images in it.
func CountWordsAndImages(url string) (words, images int, err error) {

resp, err := http.Get(url)
if err 1= nil {
return
}
doc, err := html.Parse(resp.Body)

resp.Body.Close()
if err 1= nil {
err = fmt.Errorf("parsing HTML: %s*, err)
return
}
words, images = countWordsAndImages (doc)
return

}
func countWordsAndImages(n *html.Node) (words, images int) { /* ... */ }

images/00293.jpeg
$ go build gopl.io/ch5/outline
$./fetch https://golang.org | ./outline
[htm1]

[html head]

[html head meta]

[html head title]

[html head link]

[html body]

[html body div]

[html body div]

[html body div div]

[html body div div form]

[html body div div form div]
[html body div div form div a]

images/00292.jpeg
gopl.io/ch5/outline

func main() {

doc, err := html.Parse(os.Stdin)

if err 1= nil {
fut.Fprintf(os.Stderr, “outline: %v\n", err)
os.Exit(1)

Y
outline(nil, doc)

}
func outline(stack []string, n *html.Node) {

if n.Type == html.ElementNode {
stack = append(stack, n.Data) // push tag
fnt.Println(stack)

}

for ¢ := n.FirstChild; c != nil; c = c.NextSibling {
outline(stack, c)

}

images/00295.jpeg

images/00294.jpeg
gopl.1o/ch5/findlinks2
func main() {
for _, url := range os.Args[1:] {
links, err := findLinks(url)
if err 1= nil {
fnt.Fprintf(os.Stderr, "findlinks2: %v\n", err)

continue

}

for _, link := range links {
Fmt.Println(link)

}

Y

// findLinks performs an HTTP GET request for url, parses the
/1 response as HTHL, and extracts and returns the links.
func findLinks(url string) ([]string, error) {
resp, err := http.Get(url)
if err 1= nil {
return nil, err
}

if resp.StatusCode |
resp.Body.Close()
return nil, fmt.Errorf("getting %s: %s", url, resp.Status)

http.Statusok {

}
doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err 1= nil {
return nil, fat.Errorf("parsing %s as HTML: %v", url, err)

}
return visit(nil, doc), nil

images/00291.jpeg
$ go build gopl.io/chl/fetch

$ go build gopl.io/ch5/findlinks1

$./fetch https://golang.org | ./findlinksl
#

/doc/

/pkg/

/help/

/blog/
http://play.golang.org/
//tour.golang.org/
https://golang.org/d1/
//blog.golang.org/
/LICENSE

/doc /tos .html
http://www.google.com/intl/en/policies/privacy/

images/00290.jpeg
// visit appends to links each link found in n and returns the result.
func visit(links [Jstring, n *html.Node) []string {
if n.Type == html.ElementNode && n.Data L
for _, a -ange n.Attr {
if a.Key == "href" {
Links = append(links, a.val)

¥
}
}
for ¢ := n.FirstChild; c I= nil; c = c.NextSibling {
links = visit(links, c)

}
return links

images/00286.jpeg
func add(x 1int, y 1int) int { return x +y }
func sub(x, y int) (z int) { z = x - y; return }
func first(x int, _ int) int { return x }
func zero(int, int) int { return @ }

fmt.Printf("%T\n", add) // "func(int, int) int"
fmt. Printf("%T\n", sub) // "func(int, int) int"
fmt.Printf("%T\n", first) // "func(int, int) int"
fmt.Printf("%T\n", zero) // "func(int, int) int"

images/00285.jpeg
func (1, J, k 1nt, s, t string) ;1Y
func f(i int, § int, k int, s string, t string) { /*

images/00288.jpeg
golang.org/x/net/html
package html

type Node struct {
Type NodeType
Data string
Attr [JAttribute
FirstChild, NextSibling *Node

}

type NodeType int32

const (
ErrorNode NodeType = iota
TextNode
DocumentNode
ElementNode
CommentNode
DoctypeNode

)

type Attribute struct {
Key, Val string

}

func Parse(r io.Reader) (*Node, error)

images/00287.jpeg
package math

func Sin(x float64) float64 // implemented in assembly language

images/00282.jpeg
ORS00 SRFRUSORIENDE
func main() {
const templ = “<p>A: {{.A}}</p><p>B: {{.B}}</p>
t := template.Must(template.New("escape").Parse(templ))
var data struct {
A string // untrusted plain text
B template.HTML // trusted HTML

}
data.A = "Hello!"

data.B b>Hello!"
if err := t.Execute(os.Stdout, data); err != nil {
log.Fatal(err)

images/00281.jpeg
$./issueshtml repo:golang/go 3133 10535 >issues2.html

images/00284.jpeg
func hypot(x, y floaté4) tloatés {
return math.Sqrt(x*x + y*y)
}

fmt.Println(hypot(3, 4)) //

images/00283.jpeg
func name(parameter-1ist) (result-list) {

body
}

images/00289.jpeg
0P, 20/ CND/ T NG INKES

// Findlinks1 prints the links in an HTML document read from standard input.
package main

import (
B
izs

“golang.org/x/net/html"
)

func main() {
doc, err := html.Parse(os.Stdin)
if err 1= nil {
#nt.Fprintf(os.Stderr, “findlinksl: %v\n", err)
05.Exit(1)

]

for _, link := range visit(nil, doc) {
Fnt.Printin(link)

}

images/00280.jpeg
gup] 1o/ch4/issueshtml
"t

hte

4son encoder >3

images/00275.jpeg
func daysAgo(t time.Time) 1int {
return int(time.Since(t).Hours() / 24)
}

images/00274.jpeg
ORS00 SOR SRENORINPS
const templ = " {{.TotalCount}} issues
{{range .Items}}-
Number: {{.Number}}
user: {{.User.Login}}
Title: {{.Title | printf "%.64s"}}
Age: {{.Createdat | daysAgo}} days
{{end}}"

images/00277.jpeg
var report = template.Must(template.New("1issuelist”).
Funcs(template. FuncMap{"daysAgo": daysAgo}).
Parse(templ))

func main() {
result, err :

if err 1= nil {
log.Fatal(err)

github. SearchIssues(os.Args[1:])

}

if err := report.Execute(os.Stdout, result); err != nil {
log.Fatal(err)

}

images/00276.jpeg
report, err := template.New('report”).
Funcs(template. FuncMap{"daysAgo": daysAgo}).
Parse(templ)

if err 1= nil {
log.Fatal(err)

}

images/00271.jpeg
Pl Ch/N e
package github

import (
“encoding/json"
“fmt”
“net/http"
"net/url"
“strings"

)

// searchIssues queries the GitHub issue tracker.
func SearchIssues(terms []string) (*IssuesSearchResult, error) {
q := url.QueryEscape(strings.Join(terms, * "))
resp, err := http.Get(IssuesURL + "2q=" + q)
if err 1= nil {
return nil, err

}

/1 e must close resp.Body on all execution paths.
/1 (Chapter 5 presents 'defer’, which makes this simpler.)
if resp.StatusCode != http.StatusoK {
resp.Body.Close()
return nil, fmt.Errorf("search query failed: ¥s", resp.Status)

B

var result IssuessearchResult
if err := json.Newbecoder(resp.Body) .Decode(&result); err 1= nil {
resp.Body.Close()
return nil, err

X
resp.Body.Close()
return &result, nil

images/00270.jpeg
gopl.io/ch4/github
/1 Package github provides a Go API for the GitHub issue tracker.
/1 See https://developer.github.con/v3/search/#search-issues.
package github
import “time"
const IssuesURL = "https://api.github.com/search/issues"

type IssuesSearchResult struct {
TotalCount int “json:"total_count""
Items [1*Issue

}

type Issue struct {
Number int
HTMLURL string “json:"html_url"

Title string

State string

User *User

CreatedAt time.Time “json:"created_at"®
Body string // in Markdown format

)
type User struct {
Login string
HTMLURL string "json:"html_url"

images/00273.jpeg
$ go build gopl.io/ch4/issues
$./issues repo:golang/go is:open json decoder
13 issues:

#5680
#6050
#8658
#8462
#5901
#9812
#7872
#9650
#6716
#6901
#6384
#6647
#4237

eaigner
gopherbot
gopherbot
kortschak
rsc
Klauspost
extenpora
cespare
gopherbot
lukescott
Joeshaw
btracey
gjemiller

encoding/json:
encoding/son
encoding/json
encoding/3son
encoding/json:
encoding/json:
encoding/json:
encoding/json:
encoding/json:
encoding/json,
encoding/json:

set key converter on en/decoder
provide tokenizer

use bufio

UnnarshalText confuses json.Unmarshal
allow override type marshaling

string tag not symmetric

Encoder internally buffers full output
Decoding gives errphase when unmarshalin
include field name in unmarshal error me
encoding/xml: option to treat unknown fi
encode precise floating point integers u

x/tools/cnd/godoc: display type kind of each named type
encoding/base64: URLEncoding padding is optional

images/00272.jpeg
gopl U
// Issues prints a table of GitHub issues matching the search terms.
package main
import (

“fmt"

“os’
“gopl.10/cha/github"

)

func main() {
result, err := github.SearchIssues(os.Args[1:])
if err 1= nil {
log.Fatal(err)
}
fmt.Printf("%d issues:\n", result.TotalCount)
for _, item := range result.Items {
Fnt.Printf("#%-5d %9.95 %.55s\n",
item.Nunber, item.User.login, item.Title)

images/00279.jpeg
gopl.io/ch4/issueshtml
import "html/template”

var issuelist = template.Must(template.New("issuelist").Parse(
<h1>{{.TotalCount}} issues</hl>
<table>
<tr style='text-align: left'>
<th>#c/th>
<th>State</th>
<th>User</th>
<th>Title</th>
</tr>
{{range .Items}}
<tr>
<td>{{.Nunber}}</td>
<td>{{.State} }</td>
{{.User HTMLURL}}'>{{.User. Login} }</td>
{{.HTMLURL} }'>{{. Title}}</td>

</table>
o -}

images/00278.jpeg
$ go build gopl.io/ch4/issuesreport
$./issuesreport repo:golang/go is:open json decoder
13 issues:

Number: 5680

User: eaigner
Title: encoding/json: set key converter on en/decoder
Age 750 days

: 6650
gopherbot
encoding/json: provide tokenizer
695 days

images/00264.jpeg
data, err := json.Marshal(movies)
if err 1= nil {
log.Fatalf("JSON marshaling failed: %s", err)

¥
fmt. Printf("%s\n

data)

images/00263.jpeg
Ay e
type Movie struct {
Title string
Year int json:“released"’
Color bool " json:“color,omitenpty”
Actors []string

var movies = [JMovie{
{Title: "Casablanca”, Year: 1942, Color: false,
Actors: []string{"Hunphrey Bogart", "Ingrid Bergman"}},
{Title: "Cool Hand Luke", Year: 1967, Color: true,
Actors: []string{"Paul Newman"}},
{Title: "Bullitt", Year: 1968, Color: true,
Actors: []string{"Steve McQueen", "Jacqueline Bisset"}},
1.

images/00266.jpeg
data, err := json.Marshallndent(movies
if err 1= nil {
log.Fatalf("JSON marshaling failed: %s", err)

}
fmt. Printf("%s\n

data)

images/00265.jpeg
eleased” :1942, "Actors " :| "Humphrey Bogart”, Ingr
},{"Title":"Cool Hand Luke","released":1967,"color" :true, "Ac
tors”:["Paul Newman"]},{"Title":"Bullitt","released":1968, "color" :true,"
Actors”:["Steve McQueen","Jacqueline Bisset"]}]

images/00260.jpeg
0P Jo/ché/entes
w = uheel{Circle{Point{(8, 8}, 5}, 20}
w = wheel{
circle: Circle{
Point: Point{X: 8, Y: 8},
Radius: 5,
b
Spokes: 20, // NOTE: trailing comma necessary here (and at Radius)
3
fmt. Printf("%#v\n", w)
/1 output:
/1 wheel{Circle:Circle{Point:Point{X:8, Y:8}, Radius:5}, Spokes:20}
WX = 42

fmt. Printf("%#v\n", w)
/1 Output:
// Wheel{Circle:Circle{Point:Point{X:42, Y:8}, Radius:5}, Spokes:20}

images/00262.jpeg
boolean
number
string
array
object

true

-273.15

She said \"Hello, ##\
["gold", "silver", "bronze"

1980,
event": "archery",
medals": ["gold",

silver"

ronze"]}

images/00261.jpeg
w.X = 8 // equivalent to w.circle.point.X = 8

images/00268.jpeg

images/00267.jpeg
released" :
“Actor:
“Humphrey Bogart",
“Ingrid Bergman"

"Title": "Cool Hand Luke",
“released": 1967,
“color": true,
"Actors”: [
“Paul Newman"

"Title":
"released

ullitt”,
1968,
true,
"Actors”: [
"Steve McQueen"
"Jacqueline Bisset"

images/00269.jpeg
var titles []struct{ Title string }

if err := json.Unmarshal(data, &titles); err != nil {
log.Fatalf("JSON unmarshaling failed: %s", err)

}

fmt. Println(titles) // "[{Casablanca} {Cool Hand Luke} {Bullitt}]

images/00253.jpeg
func Scale(p Point, factor int) Point {
return Point{p.X * factor, p.Y * factor}
}

fmt.Println(Scale(Point{1, 2}, 5)) // "{5 10}

images/00252.jpeg
package p
type T struct{ a, b int } // a and b are not exported

package q
import "p"
var _ = p.T{a: 1, b: 2} // compile error: can't reference a, b

var _ = p.T{1, 2} // compile error: can't reference a, b

images/00255.jpeg
func AwardAnnualRaise(e *Employee) {
e.Salary = e.Salary * 105 / 100
}

images/00254.jpeg
func Bonus(e *Employee, percent int) int {
return e.Salary * percent / 100
}

images/00251.jpeg
anim

gif.GIF{LoopCount: nframes}

images/00250.jpeg
make(map[stringjstruct{}) // set of strings

if _, ok := seen[s]; lok {
seen[s] = struct{}{}
// ...first time seeing s...

images/00257.jpeg
type address struct {
hostname string
port int

}

hits := make(map[address]int)
hits[address{"golang.org", 443}]++

images/00256.jpeg
type Point struct{ X, Y int }

p := Point{1, 2}
q := Point{2, 1}
fmt. Println(p.X
fmt. Println(p

q.X 8& p.Y

q.Y) // “false"
J/ "false"

images/00259.jpeg
sl losbo st b 3
= Wheel{X:

5 s, 20} £ CORPLES WTOF:
¥: 8, Radius: S, Spokes: 20} // compile error

images/00258.jpeg
var w Wheel

WX = 8 // equivalent to w.Circle.Point.X =
WY = 8 // equivalent to w.Circle.Point.Y
w.Radius = 5 // equivalent to w.Circle.Radius = 5
w.Spokes = 20

8
8

images/00242.jpeg
var graph = make(map[string]map[string]bool)

func addedge(from, to string) {
edges := graph[from]
if edges == nil {
edges = make(map[string]bool)
graph[from] = edges

edges[to] = true

func hasEdge(from, to string) bool {
return graph[from][to]
Y

images/00241.jpeg
v

images/00244.jpeg

images/00243.jpeg
dilbert.Salary

5000 // demoted, for writing too few lines of code

images/00240.jpeg
5

if err 1= nil {
fnt.Fprintf(os.Stderr, "charcount: %v\n", err)
os.Exit(1)

¥

if r == unicode.ReplacementChar 8& n
invalide+
continue

1{

¥
counts[r]+
utflen[n]++

¥

it Printf("rune\tcount\n")

for ¢, n := range counts {
#nt.Printf("%a\tkd\n", c, n)

}

#ntPrint("\nlen\tcount\n")

for 1, n := range utflen {
ifisre

fmt.Printf("%d\txd\n", 1, n)

}

}

if dnvalid > @ {
fmt.Printf("\n%d invalid UTF-8 characters\n”, invalid)
3

images/00249.jpeg
}

func add(t *tree, value int) *tree {
if t == nil {
// Equivalent to return &tree{value: value}.
t = new(tree)
t.value = value
return t

if value < t.value {

t.left = add(t.left, value)
} else {

t.right = add(t.right, value,

return t

images/00246.jpeg
(*employeeOfTheMonth).Position

(proactive team player)

images/00245.jpeg
var employeeOfTheMonth *Employee = &dilbert
employeeOfTheMonth.Position (proactive team player

images/00248.jpeg
gopl.io/ch4/treesort
type tree struct {
value int
left, right *tree
}

// sort sorts values in place.
func Sort(values [Jint) {
var root *tree
for _, v := range values {
root = add(root, v)

appendValues(values[:0], root)

¥

// appendvalues appends the elements of t to values in order
// and returns the resulting slice
func appendvalues(values []int, t *tree) [Jint {
if t 1= nil {
values = appendvalues(values, t.left)
values = append(values, t.value)
values = appendValues(values, t.right)

return values

images/00247.jpeg
PG BpIOySeRyIINIG IL) TERpioyee 1 /T e T
fnt . Print1n(EmployeeByID(dilbert .ManagerID) .Position) // "Pointy-haired boss"

id := dilbert.ID
EmployeeByID(id).Salary = @ // fired for... no real reason

images/00231.jpeg

images/00230.jpeg
import “sort”

var names []string
for name := range ages {
names = append(names, name)

}

sort.Strings(names)

for _, name := range names {
Ft.Printf("%s\t%d\n", name, ages[name])

}

images/00233.jpeg
ages| carol” | = 21 // pani

assignment to entry 1in nil map

images/00232.jpeg
var ages map[stringjint
fmt.Println(ages == nil) // "true"
fmt. Println(len(ages)

images/00239.jpeg
gop.2o/ché/charcount

/1 Charcount computes counts of Unicode characters.
package main

import (
“bufio”

i

lo"

o5t

inicode"

“unicode/ut8"

)

func main() {
counts := make(map[rune]int) // counts of Unicode characters
var utflen [utf8.UTFMax + 1]int // count of lengths of UTF-8 encodings
invalid := 0 // count of invalid UTF-8 characters

in = bufio.NewReader (os.Stdin)
for {
r, n, err := in.ReadRune() // returns rune, nbytes, error
if err == 10.EOF {
break

images/00238.jpeg
var m = make(map[string]int)
func k(list []string) string { return fmt.Sprintf("%q", list))}

func Add(list []string) { mlk(list)]++ }
func Count(list []string) int { return m[k(list)] }

images/00235.jpeg
func equal(x, y map[string]int) bool {
if len(x) != len(y) {
return false

}
for k, xv := range x {
if yv, ok := y[kl; lok || yv I= xv {
return false
}
}

return true

images/00234.jpeg
if 1ok { /* "bob" is not a key in this map; age

images/00237.jpeg
gopl.io/ch4/dedup
func main() {
seen := make(map[string]bool) // a set of strings
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
line := input.Text()
if Iseen[line] {
seen[line] = true

fnt.Println(line)
}

}

if err := input.Err(); err != nil {
fmt.Fprintf(os.Stderr, "dedup: %v\n", err)
os.Exit(1)

¥

images/00236.jpeg
// True 1f equal 1s written incorrectly.
equal(map[string]int{"A": @}, map[stringlint{

42})

images/00220.jpeg

images/00222.jpeg
func remove(slice [Jint, 1 int) []int {
copy(slice[i:], slice[i+1:])
return slice[:len(slice)-1]

}

func main() {
s := [Jint{s, 6, 7, 8, 9}
£mt.Println(remove(s, 2)) // "[5 6 8 9]"

images/00221.jpeg

images/00228.jpeg
&ages| "bob” | // compile error: cannot take address of map element

images/00227.jpeg

images/00229.jpeg
for name, age := range ages {
ft.Printf("%s\t%d\n", name, age)

}

images/00224.jpeg
ages

make(map|string|int) // mapping from strings to ints

images/00223.jpeg
func remove(slice [Jint, 1 int) []int {
slice[] = slice[len(slice)-1]
return slice[:len(slice)-1]

}

func main() {
s := [lint{5, 6, 7, 8, 9}
fmt.Println(remove(s, 2)) // "[5 6 9 8]

images/00226.jpeg

images/00225.jpeg
ages|alice’] = 32
fmt.Println(ages["alice"]) // "32

images/00693.jpeg
gopl.io/chiz2/sexpr
func encode(buf *bytes.Buffer, v reflect.Value) error {
switch v.Kind() {
case reflect.Invalid:
buf .WriteString("nil")

case reflect.Int, reflect.Ints, reflect.Int16,
reflect.Int32, reflect.Int64:
fmt.Fprintf(buf, "%d", v.Int())

case reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64, reflect.Uintptr:
fmt.Fprintf(buf, "%d", v.Uint())

case reflect.String:
fmt.Fprintf(buf, "%q", v.String())

case reflect.Ptr:
return encode(buf, v.Elem())

case reflect.Array, reflect.Slice: // (value ...)

buf.WriteByte(' (")
for i = 05 1 < v.len(); it+ {
ifise(
buf.WriteByte("
3.
if err encode (buf, v.Index(i)); err != nil {

return err
}

}
buf.WriteByte(')")

images/00692.jpeg
42 integer

“hello” string (with Go-style quotation)

foo symbol (an unquoted name)

123) 1ist (zero or more items enclosed in parentheses)

images/00211.jpeg
var runes []jrune
for _,
runes

append(runes, r)
}
fmt . Printf("%q\n", runes) //

range "Hello, tR" {

['H' ‘e’

images/00695.jpeg
buf.WriteByte('(")

if err := encode(buf, key); err != nil {
return err

}

buf .WriteByte(* ')

if err := encode(buf, v.MapIndex(key)); err != nil {
return err

}

buf.WriteByte(')")

}
buf.WriteByte(')")

default: // float, complex, bool, chan, func, interface
return fmt.Errorf("unsupported type: %s”, v.Type())
}

return nil

images/00210.jpeg
make([]T, len)
nake([1T, len, cap) // same as make([]T, cap)[:len]

images/00694.jpeg
case reflect.Struct: // ((name value) ...)
buf.WriteByte(' (")
for i := 0; i < v.NumField(); i++ {
ifi>e{
buf.WriteByte(' ')

}

fmt.Fprintf(buf, "(%s ", v.Type().Field(i).Name)

if err := encode(buf, v.Field(i)); err != nil {
return err

}
buf.WriteByte(*)")
ik
buf.WriteByte(')")

case reflect.Map: // ((key value) ...)
buf WriteByte(' (')
for 1, key := range v.MapKeys() {
ifi>e{
buf.WriteByte(' ')
G §

images/00691.jpeg
Display c (d)splay Cycle):
c.Value
(*cATall)AValuE - a2

(*(*c.Tail).Tail).Value = 42

(*(*(*c.Tail).Tail).Tail).Value = 42

ad infinitum.

images/00690.jpeg
a struct that points to 1itself
type Cycle struct{ Value int; Tail *Cycle)
var ¢ Cycle

¢ = Cycle{42, &}

images/00217.jpeg
LJstring{ one”, "", "three"}
fmt.Printf("%q\n", nonempty(data)) // "["on
fmt . Printfi // " ["on

+ three"]"

images/00216.jpeg
gopl.io/ch4/nonempty
// Nonempty is an example of an in-place slice algorithm.
package main

import "fmt"

// nonempty returns a slice holding only the non-empty strings.
/1 The underlying array is modified during the call.
func nonempty(strings []string) [Jstring {

1]
for _, s := range strings {
ifs 1=
strings[i] = s
14+
}

)

return strings[:i]

images/00219.jpeg
stack = append(stack, v) // push v

images/00218.jpeg
func nonempty2(strings {]string) []string {

out := strings[:0] // zero-length slice of original
for _, s := range strings {

if s

out = append(out, s)
¥
}

return out

images/00213.jpeg
func main() {
var x, y [lint
i:=0; i< 10; i++ {
appendInt(x, 1)
rintf("%d cap=¥d\t%v\n"

i, cap(y), y)

P
X

images/00697.jpeg
((Title "Or. Strangelove) (Subtitie "How 1 Learned to Stop Worrying and Lo
ve the Bomb") (Year 1964) (Actor (("Grp. Capt. Lionel Mandrake" "Peter Sell
ers”) ("Pres. Merkin Muffley" "Peter Sellers”) (“"Gen. Buck Turgidson” "Geor
ge C. Scott") ("Brig. Gen. Jack D. Ripper” "Sterling Hayden®) (“Maj. T.J. \
"King\" Kong" "Slim Pickens") ("Dr. Strangelove" "Peter Sellers"))) (Oscars
(“Best Actor (Nomin.)" "Best Adapted Screenplay (Nomin.)" “Best Director (N
omin.)" "Best Picture (Nomin.)")) (Sequel nil))

images/00212.jpeg
gopl.io/ch4/append
func appendInt(x [Jint, y int) [Jint {
var z [Jint
zlen := len(x) + 1
if zlen <= cap(x) {
// There is room to grow. Extend the slice.
z = x[:zlen]
} else {
// There is insufficient space. Allocate a new array.
// Grow by doubling, for amortized linear complexity.
zcap := zlen
if zcap < 2*len(x) {
zcap = 2 * len(x)

z = make([]int, zlen, zcap)
copy(z, x) // a built-in function; see text

}
z[len(x)] = y
return z

images/00696.jpeg
// Marshal encodes a Go value in S5-expression form.
func Marshal(v interface{}) ([lbyte, error) {
var buf bytes.Buffer
if err := encode(8buf, reflect.ValueOf(v)); err != nil
return nil, err

return buf.Bytes(), nil

images/00215.jpeg
func appendInt(x []Jint, y ...1nt) []int {
var z [Jint
zlen := len(x) + len(y)
// ...expand z to at least zlen...
copy(z[len(x):], y)
return z

images/00699.jpeg
an oo x

L 4
reflect.Valueof(2)
reflect.ValueOf(x)
reflect.ValueOf (8x)
c.Elem()

/1 value
112
112
/1 &
// 2

type
int
int
*int

variable?
no

no

no

yes (x)

images/00214.jpeg
x [jint
append(x, 1)

= append(x, 2, 3)

= append(x, 4, 5, 6)

= append(x, x...) // append the slice x
.Println(x) // "[123456123456]

images/00698.jpeg
((Title "Dr. Strangelove”)

(Subtitle "How I Learned to Stop Worrying and Love the Bomb")

(Year 1964)

(Actor (("Grp. Capt. Lionel Mandrake" "Peter Sellers")
("Pres. Merkin Muffley" "Peter Sellers")
("Gen. Buck Turgidson" "George C. Scott")
("Brig. Gen. Jack D. Ripper" "Sterling Hayden")
("Maj. T.3. \"King\" Kong" "Slim Pickens")
("Dr. Strangelove” "Peter Sellers")))

(Oscars ("Best Actor (Nomin.)"
"Best Adapted Screenplay (Nomin.)"
"Best Director (Nomin.)
"Best Picture (Nomin.)"))

(Sequel nil))

images/00209.jpeg
var s [Jint // len(s) s == nil
s = nil // len(s) s == nil
s = [Jint(nil) // len(s) s == nil
s = []int{} // len(s) s 1= nil

images/00682.jpeg
func display(path string, v retlect.Value) {
switch v.kind() {
case reflect.Invalid:
mt.Printf("%s = invalid\n", path)
case reflect.Slice, reflect.Array:
for i := @; i < v.len(); i++ {
display(fmt.Sprintf("%s[%d]", path, i), v.Index(i))

}
case reflect.Struct:
for 1 := 0; 1 < v.NumField(); i++ {
fieldPath := fmt.Sprintf("%s.Xs", path, v.Type().Field(i).Name)
display(fieldpath, v.Field(i))

1
case reflect.Map:
for _, key := range v.MapKeys() {
Gisplay(fmt.Sprintf("%s[%s]", path,
formatAtom(key)), v.MapIndex(key))

images/00681.jpeg
gopl /chi2/display
func Display(name string, x interface{}) {
fmt.Printf("Display %s (%T):\n", name, x)
display(name, reflect.Valueof(x))

images/00200.jpeg
RS
import "crypto/sha2s6"

func main() {
1 := sha256.5um256([Jbyte("x"))
€2 := sha256.5um256([Jbyte("X"))
it Printf("H\n%x\n¥t\n¥T\n", c1, c2, c1
/1 output:
/1 24711642b726b64401627cagfbac32£5c8530Fb1903c4dbO22587179214881
/1 4b68ab3847Feda7dec62c1bcbeebfa3seab7351edse78faddadeasdf64bse1s
/1 false
11 [32]uints

2, c1)

images/00684.jpeg
type Movie struct {
Title, Subtitle string

Year int

Color bool

Actor map[string]string
Oscars [1string

Sequel *string

images/00683.jpeg
¥
case reflect.ptr:
if V.ISNL() {
it Printf("%s
} else {
display(fmt.Sprintf("(*%s)", path), v.Elen())
}

case reflect.Interface:
if v.IsNiL() {
fnt.Printf("%s = nil\n", path)
} else {
fmt.Printf("%s.type = %s\n", path, v.Elen().Type())
display(path+".value”, v.Elen())

nil\n", path)

}
default: // basic types, channels, funcs
fnt.Printf("¥%s = %s\n", path, formatAtom(v))
}

images/00680.jpeg
Display e (eval.call):
fn = "sqrt”
args[@].type = eval.binary
args[e].value.op = 47
args[@].value.x.type = eval.Var
args[0].value.x.value g
args[@].value.y.type = eval.Var
args[0].value.y.value

ol il M s s i

images/00206.jpeg
a := [...]Jint{0, 1, 2, 3, 4, 5}
reverse(a[:])
fmt.Println(a) // "[5 4 3 2 1 0]"

images/00205.jpeg
gopl.io/chd4/rev
// reverse reverses a slice of ints in place.
func reverse(s [Jint) {
for 1, j := 0, len(s)-1; i < 35 i, J = i+1, 3-1 {
s[il, s[3] = s[3], s[i]

images/00689.jpeg
// a struct that points to itself

type Cycle struct{ Value int; Tail *Cycle)}
var ¢ Cycle

c = Cycle{42, &c}

images/00208.jpeg
func equal(x, y []string) bool {
if len(x) != len(y) {
return false

}
for 1 := range x {
if x[1] != y[i] {
return false
}
}

return true

images/00207.jpeg
s = []int{e, 1, 2, 3, 4, 5}

// Rotate s left by two positions.
reverse(s[:2])

reverse(s[2:])

reverse(s)

fmt.Println(s) // "[23 4 5 @ 1]"

images/00202.jpeg
Q2 := months[4:7]

summer := months[6:9]
fmt . Print1n(Q2) /1
fmt. Print1n(summer) //

images/00686.jpeg
Display strangelove (display.Movie):

strangelove.Title = “Or. Strangelove"

strangelove.Subtitle = "How I Learned to Stop Worrying and Love the Bomb"
strangelove.Year = 1964

strangelove.Color = false

strangelove.Actor["Gen. Buck Turgidson"] = "George C. Scott”
strangelove.Actor["Brig. Gen. Jack D. Ripper"] = "Sterling Hayden"
strangelove.Actor["Maj. T.J. \"King\" Kong"] = "Slim Pickens"
strangelove.Actor["Dr. Strangelove"] = "Peter Sellers”
strangelove.Actor["Grp. Capt. Lionel Mandrake"] = "Peter Sellers"
strangelove.Actor["Pres. Merkin Muffley"] = "Peter Sellers”
strangelove.Oscars[0] = "Best Actor (Nomin.)
strangelove.Oscars[1] = "Best Adapted Screenplay (Nomin.)"
strangelove.Oscars[2] = "Best Director (Nomin.)"
strangelove.Oscars[3] = "Best Picture (Nomin.)"
strangelove.Sequel = nil

images/00201.jpeg
months

Jstring{l: "January”, /* ... */, 12: "December”}

images/00685.jpeg
strangelove := Movie{
Title: "Dr. Strangelove",
Subtitle: "How I Learned to Stop Worrying and Love the Bomb",
Year: 1964,
Colo false,

map[string]string{
Dr. Strangelove "Peter Sellers",
“Grp. Capt. Lionel Mandrake": “Peter Sellers”,
: “peter Sellers”,
“Gen. Buck Turgidso “George C. Scott”
“Brig. Gen. : "Sterling Hayden",
“Maj. T.3. "King" Kong': “Slim Pickens”,

b

Oscars: []string{
“Best Actor (Nomin.)",
“Best Adapted Screenplay (Nomin.)",
"Best Director (Nomin.)",
“Best Picture (Nomin.)",

b

images/00204.jpeg
fmt.Printin(summer(:20]) // panic: out ot range

endlesssunmer := summer[:5] // extend a slice (within capacity)
fwt.Println(endlessSummer) // “[June July August September October]”

images/00688.jpeg
DEEPIRY E¥ (APRTiSce-Value) !
(*rV.typ).size = 8
(*rV.typ).hash = 871669668
(*rV.typ).align = 8
(*rV.typ). fieldalign
(*rV.typ).kind = 22
(*(*rV.typ).string) = "*os.File"

(*(*(*rV..typ) .uncomonType) .methods[] .nane) = "Chdi
(*(*(*(*rV. typ) .uncomnonType) .nethods[@] .mtyp) . string)
(*(*(*(*rV.typ) .uncommonType) .methods[6] . typ) .string)

8

func() error”
‘func(*os.File) error

images/00203.jpeg
for _, s := range summer {
for range Q2 {
a{
fnt.Printf("%s appears in both\n", s)

images/00687.jpeg
Display(“os.5tderr”, os.Stderr)

// Output:

// Display os.Stderr (*os.File):

// (*(*os.Stderr).file).fd = 2

// (*(*os.Stderr).file).name = "/dev/stderr"
// (*(*os.Stderr).file).nepipe = @

images/00671.jpeg
func Sprint(x interface{}) string {
type stringer interface {
String() string
}
switch x := x.(type) {
case stringer:
return x.String()
case string:
return x
case int:
return strconv. Itoa(x)
// ...similar cases for int16, uint32, and so on...

case bool:
if x {
return "true"
}
return "false"
default:
// array, chan, func, map, pointer, slice, struct
return

images/00670.jpeg
func ExampleIsPalindrome() {
fnt.Println(IsPalindrome("A man, a plan, a canal: Panama"))
fmt.Println(IsPalindrome("palindrome"))
// Output:
/1 true
/1 false

images/00673.jpeg
var w 1o.
fmt. Pr)ntln(reflect Typeof(w)) // "*os.File'

images/00672.jpeg
t := reflect.TypeOf(3) // a reflect.Type
fmt. Println(t.String()) // "int"
fmt. Println(t) 7/l

images/00679.jpeg

images/00678.jpeg
VI X intos = 1
var d time.Duration = 1 * time.Nanosecond
fmt. Print1n(format.Any(x)) /1"
ft . Println(format.Any(d)))
fnt. Println(fornat. Any([] int64{x})) /1 "[]int64 6x8202087b0"
fmt. Print1n(format.Any([]time.Duration{d})) // “[]time.Duration @x8202b87e@"

images/00675.jpeg
B

// a reflect.Type
fmt. Pr)ntln(t String()) // "int"

images/00674.jpeg
v := reflect.valueOf(3) // a reflect.Value
fmt. Print1n(v) 11 "3

fmt.Printf("%v\n", v) //
fmt. Println(v.String()) //

images/00677.jpeg
gop-.
package format
imp

LR r T O

ort (
“reflect”
"strconv"
)
// Any formats any value as a smng.
func Any(value interface(}) stri
return formataton(reflect. vuueof(value))

// Formataton formats a value without inspecting its internal structure.
func formatAton(v reflect.Value) string {
switch v.Kind() {
case reflect.Invalid:
return "invalid®
case reflect.Int, reflect.Ints, reflect.Intls,
reflect. Int32, reflect. Int
return strconv.FormatInt(v. xnt(). 10)
case reflect.Uint, reflect.Uints, reflect.Uintl
reflect.Uint32, reflect.Uintéd, reflect.Uintptr:
return strconv.FormatUint(v.Uint(), 10)
11 ...floating-point and complex cases omitted for brevity...
case reflect.Bool:
return strconv. FormatBool(v.Bool())
case reflect.string:
return strconv.Quote(v.string())
s SRRCE O, RSFIRCHLEE EarTiceIekT (RTACEISI] ARy
return v.Type().String() + *
strconv. Formawint(uin(u(v Vomer()), 16)
default: // reflect.Array, reflect.struct, reflect.Interface
return v.Type().String() + * value"

images/00676.jpeg
reflect.value0Ot(3) // a reflect.value
v.Interface() // an lnterface()
int)

fmt. Printf("%d\n"

images/00660.jpeg
$ cd $GOPATH/src/gopl.io/chll/word2

$ go test -bench=.

PASS

BenchmarkIsPalindrome-8 1000000 1035 ns/op
ok gopl.io/ch11/word2 2.179s

images/00662.jpeg
$ go test -bench=
PASS
BenchmarkIsPalindrome-8 1600000 992 ns/op
ok gopl.io/ch11/word2 2.093s

images/00661.jpeg
n := len(letters)/2
for 1 := 0; 1 < n; is+ {
if letters[i] != letters[len(letters)-1-i] {
return false

}
¥

return true

images/00668.jpeg
$ go test -cpuprofile=cpu.out
$ go test -blockprofile=block.out
$ go test -memprofile=mem.out

images/00667.jpeg
func
func
func
func

benchmark(b *testing.B, size int) { /* ... */ }
Benchmark1@(b *testing.B) { benchmark(b, 16) }
Benchmark106(b *testing.B) { benchmark(b, 100) }
Benchmark100@(b *testing.B) { benchmark(b, 1000) }

images/00669.jpeg
$ go test -run=NONE -bench=ClientServerParallelTLS64 \
-cpuprofile=cpu.log net/http

PASS

BenchmarkClientServerParal1elTLS64-8 1060
3141325 ns/op 143010 B/op 1747 allocs/op

ok net/http 3.3955

$ go tool pprof -text -nodecount=10 ./http.test cpu.log
2570ms of 3596ms total (71.59%)
bropped 129 nodes (cum <= 17.95ms)
Showing top 10 nodes out of 166 (cum >= 6oms)
flat flat% sumX cum cun¥
1736ms 48.19% 48.19% 1750ms 48.75% crypto/elliptic.p256ReduceDegree
230ms 6.41% 54.66% 25ems 6.96% crypto/elliptic.p256Diff
126ms 3.34% 57.94% 12ems 3.34% math/big.addMulVVW
llems 3.06% 61.60% 1lems 3.06% syscall.Syscall
9ems 2.51% 63.51% 1136ms 31.48% crypto/elliptic.p256Square
7ems 1.95% 65.46% 12ems 3.34% runtime.scanobject
6ems 1.67% 67.13% 83ems 23.12% crypto/elliptic.p256Mul
60ms 1.67% 68.80% 19ms 5.29% math/big.nat.montgomery
sems 1.39% 70.19% Sems 1.39% crypto/elliptic.p256ReduceCarry
Sems 1.39% 71.59% 66ms 1.67% crypto/elliptic.p256Sum

images/00664.jpeg
$ go test -bench=.

PASS

BenchmarkIsPalindrome-8 2000000 697 ns/op
ok gopl.io/ch11/word2 1.468s

images/00663.jpeg
make([Jrune, @, len(s))
range s {
if unicode. IsLetter(r) {

letters = append(letters, unicode.ToLower(r))

}

images/00666.jpeg
$ go test -bench=. -benchmem
PASS

BenchmarkIsPalindrome 2000000 807 ns/op 128 B/op 1 allocs/op

images/00665.jpeg
$ go test -bench=. -benchmem
PASS

BenchmarkIsPalindrome 1000000 1026 ns/op 304 B/op 4 allocs/op

images/00651.jpeg
import (
et
“strings"
"testing"
)

// A poor assertion function.
func assertEqual(x, y int) {
if x 1=y {
panic(fmt.Sprintf("%d 1= %d", x, ¥))
}
}

func TestSplit(t *testing.T) {
words := strings.Split("
assertEqual (len(words), 3)
/"

b

images/00650.jpeg
$ go list -f={{.XTestGoFiles}} fmt
[fmt test.go scan test.go stringer test.go]

images/00657.jpeg
$ go test -run=Coverage -coverprofile=c.out gopl.io/ch7/eval
ok gopl.io/ch7/eval 9.032s coverage: 68.5% of statements

images/00656.jpeg
$ go tool cover

Usage of 'go tool cover

Given a coverage profile produced by 'go test':
go test -coverprofile=c.out

Open a web browser displaying annotated source code:
go tool cover -html=c.out

images/00659.jpeg
import "testing"

func BenchmarkIsPalindrome(b *testing.B) {
for 1 := 0; i < b.N; i+t {
IsPalindrome("A man, a plan, a canal: Panama"

}

images/00658.jpeg

images/00653.jpeg
gop2.1o0/ch7/eval
func TestCoverage(t *testing.T) {
var tests = []struct {
input string
env Env
want string // expected error from Parse/Check or result from Eval

H
nil, "unexpected ‘%"
nil, “unexpected ‘1"
nil, “unknown function "log™},
sart(1, 2)", nil, “call to sqrt has 2 args, want 1'},
"pi": math.Pi}, "167"},
Pou(x, 3) + pouly, 3)", Env{"X": 9, "y": 10}, "1729"},
('S /9% (F - 32)", Env{"F": -40}, "-40"},
}

for _, test := range tests {
expr, err := Parse(test.input)
if err == nil {
err = expr.Check(map[Var]bool{})

images/00652.jpeg
func TestSplit(t *test)ng 7)1
s, sep
words = strings.Split(s, sep)
if got, want := len(words), 3; got != want {
t.Errorf("Split(%q, %q) returned %d words, want %d",
s, sep, got, want)

images/00655.jpeg
$ go test -v -run=Coverage gopl.io/ch7/eval
RUN TestCoverage
PASS: TestCoverage (@.00s)

PASS
ok gopl.io/ch7/eval ©.011s

images/00654.jpeg
&
if err 1= nil {

if err.Error() 1= test.uwant {

t.Errorf("%s: got %q, want %q", test.input, err, test.want)
}
continue

}

got = fmt.Sprintf("%.6g", expr.Eval(test.env))

if got 1= test.want {

t.Errorf("%s: %v => %s, want %s",
test.input, test.env, got, test.want)

images/00649.jpeg
$ go list -f={{.TestGoFiles}} fmt
[export test.go]

images/00640.jpeg
package main

import. (
“bytes”
fmt"
“testing"
)

func TestEcho(t *testing.T) {
var tests = []struct {
newline bool

sep string
args []string
want string

H
{true, "", []string{}, "\n"},
{false, "", []string{(}, "
{true, "\t", [Jstring{"one", "two'
{true, ",", [Jstring{"a", "
{false, ":", []string("1", "

“three"}, "one\ttwo\tthree\n"},
"c"}, "a,b,c\n"},
> "3") "1:2:3),

images/00646.jpeg
package storage

import (
"strings"
“testing”
)

func TestCheckQuotaNotifiesuser(t *testing.T) {
var notifieduser, notifiedhsg string
notifyUser = func(user, msg string) {
notifieduser, notifieddsg = user, msg

}

const user = "joegexanple.org”

S o B O P S T Y
CheckQuota(user)

if notifieduser == "" 8 notifiedusg
t.Fatalf("notifyUser not called”)

A

¥
if notifieduser 1= user {
t.Errorf("wrong user (%s) notified, want %s",
notifieduser, user)
¥
const wantSubstring = "98% of your quota”
if Istrings.Contains(notifiedMsg, wantsubstring) {
.Errorf("unexpected notification message <<¥s>>, "+
“want substring %q", notifiedMsg, wantsubstring)

images/00645.jpeg
gopi.lo/chil/storaged
var notifyUser = func(username, msg string) {
auth := smtp.PlainAuth("", sender, password, hostname)
err := smtp.SendMail(hostname+":587", auth, sender,
[Istring{usernane}, []byte(nsg))
if err 1= nil {
log.Printf("sntp.SendEnail(%s) failed: ¥s", username, err)

}
}

func CheckQuota (usernane string) {
used := bytesInUse(username)
const quota = 1000000000 // 1GB
percent := 100 * used / quota
if percent < 90 {
return // 0K

}
msg := fnt.Sprintf(tenplate, used, percent)

notifyUser(usernane, msg)

images/00648.jpeg
$ go list -f={{.GoFiles}} fmt
[doc.go format.go print.go scan.go]

images/00647.jpeg
func TestCheckQuotaNotifiesUser(t *testing.T) {
// Save and restore original notifyUser.
saved := notifyUser
defer func() { notifyUser = saved }()

// Install the test's fake notifyUser.

var notifieduser, notifiedMsg string

notifyUser = func(user, msg string) {
notifiedUser, notifiedMsg = user, msg

}
/1 ...rest of test.

images/00642.jpeg
{true, ",", L]string{ a",

, abc\n'}, // NOTE: wrong expectation!

images/00641.jpeg
for _, test := range tests {
descr := fmt.Sprintf("echo(%v, %a, %a)",
test.newline, test.sep, test.args)

out = new(bytes.Buffer) // captured output

if err := echo(test.newline, test.sep, test.args); err != nil {
t.Errorf("%s failed: %", descr, err)
continue

}

got := out.(*bytes.Buffer).String()

if got I= test.want {
t.Errorf("%s = %q, want %q", descr, got, test.want)

}

images/00644.jpeg
RSSO/ ST SAOvRESS
package storage

import (
fat”
“log"
“net/sntp"
)

var usage = make(map[string]int6a)

func bytesTnUse(username string) inteé { return usage[username])

/1 Enail sender configuration.
/1 NOTE: never put passwords in source code!
const sender = "notifications@exanple.con"
const password = "correcthorsebatterystaple”
const hostname = "sntp.exanple.con”

const template = “Warning: you are using %d bytes of storage,
%d%% of your quota.

func CheckQuota(username string) {
used := bytesInuse(usernane)
const quota = 1000000000 // 168
percent := 160 * used / quota
if percent < 90 {
return // 0K

¥

nsg := fat.Sprintf(template, used, percent)

auth i= sntp.PlainAuth("", sender, password, hostnane)

err := sntp.SendMail(hostnanes”:587", auth, sender,
[Jstring(usernane}, [lbyte(nsg))

if err 1= nil (
log.Printf("sntp.Sendwail(¥s) failed: %s, usernane, err)

¥

images/00643.jpeg
$ go test gopl.io/chll/echo
- FAIL: Testcho (0.005)

echo_test.go:31: echo(true, ",”, ["a" "b" "c"]) = "a,b,c”, want "a b c\n”
FAIL
FAIL gopl.io/chll/echo ©.006s

images/00639.jpeg
gopl.io/chli/echo

// Echo prints its command-line arguments.
package main

import (
"Flag"
5o
“strings"
)
var (
n = flag.Bool("n", false, "omit trailing newline")
s = flag.String("s", " ", "separator")
)

var out io.Writer = os.Stdout // modified during testing

func main() {
flag.Parse()
if err := echo(!*n, *s, flag.Args()); err != nil {
fut.Fprintf(os.Stderr, “echo: %v\n", err)
os.Exit(1)

}

func echo(newline bool, sep string, args []string) error {
fnt.Fprint(out, strings.Join(args, sep))
if newline {
fut.Fprintln(out)
}

return nil

images/00638.jpeg
import “math/rand™

// randonPalindrome returns a palindrome whose length and contents
// are derived from the pseudo-random number generator rng.
func randomPalindrome(rng *rand.Rand) string {

n := rng.Intn(25) // random length up to 24

runes := make([]rune, n)
for 1 := 0; 1 < (n+1)/2; 4+ {
r := rune(rng.Intn(@x1000)) // random rune up to '\u@999"

runes[i] = r
runes[n-1-i] = r

}

return string(runes)

}

func TestRandomPalindromes(t *testing.T) {
// Initialize a pseudo-random number generator.
seed := time.Now().UTC().UnixNano()

t.Logf("Random seed: %d", seed)

rng := rand.New(rand.NewSource(seed))

for i i< 1000; i++ {
p := randomPalindrome(rng)
if 1IsPalindrome(p) {

t.Errorf("IsPalindrome(%q) = false", p)

}

}

images/00635.jpeg
RS- Sorcntiivenes
/1 Package word provides utilities for word games.
package word

import "unicode”

// Ispalindrone reports whether s reads the same forward and backward.
/1 Letter case is ignored, as are non-letters.
func IsPalindrome(s string) bool {
var letters [Jrune
for _, r = range s {
if unicode.IsLetter(r) {
letters = append(letters, unicode.ToLower(r))
}

}
for i := range letters {
if letters[i] I= letters[len(letters)-1-i] {
return false
}

Y

return true

images/00634.jpeg
$ go test -v -run="French|Canal
RUN TestFrenchPalindrome
FAIL: TestFrenchPalindrone (0.00s)

word_test.go:28: IsPalindrome("été") = false

RUN TestCanalPalindrome

FAIL: TestCanalPalindrome (9.00s)

word_test.go:35: IsPalindrome(*A man, a plan, a canal: Panama") = false
FAIL

exit status 1

FAIL gopl.io/chll/wordl ©.014s

images/00637.jpeg
$ go test gopl.io/chll/word2
ok gopl.io/ch11/word2 0.015s

images/00636.jpeg
func TestIsPalindrome(t *testing.T) {
var tests = []struct {
input string
want bool

H
, true},
{"a", true},
{"aa", true},
{"ab", false},
{"kayak", true},
{"detartrated", true},
{"A man, a plan, a canal: Panama", true},
{"Evil I did dwell; lewd did I live.", true},
{"Able was I ere I saw Elba", true},
{"6te", true},
{"Et se resservir, ivresse reste.", true},
{"palindrome”, false}, // non-palindrome
{"desserts", false}, // semi-palindrome
}

for _, test := range tests {
if got := IsPalindrome(test.input); got != test.want {
t.Errorf("IsPalindrome(%q) = %v", test.input, got)

}

images/00631.jpeg
func TestFrenchPallindrome(t *testing.T) {
if 1IsPalindrome("été") {
t.Error(" IsPalindrome("été") = false')
}
}

func TestCanalPalindrome(t *testing.T) {
input := "A man, a plan, a canal: Panama"
if !IsPalindrome(input) {
t.Errorf(* IsPalindrome(%q) = false’, input)

}

images/00630.jpeg
$ cd $GOPATH/src/gopl.io/chll/wordl
$ go test
ok gopl.io/chll/wordl ©.008s

images/00633.jpeg
$ go test -v

RUN TestPalindrome

PASS: Testpalindrome (6.605)

RUN TestNonpalindrome

PASS: TestNonPalindrone (0.00s)

RUN TestFrenchpalindrome

FAIL: TestFrenchPalindrone (6.60s)
word_test.go:28: IsPalindrome("été") = false
RUN TestCanalPalindrome

FAIL: TestCanalPalindrome (6.60s)
word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama")
FAIL

exit status 1

FAIL gopl.io/chll/wordl ©.017s

false

images/00632.jpeg
$ go test
- FAIL: TestFrenchpalindrome (8.00s)

word_test.go:28: IsPalindrome("6té") = false
- FAIL: TestCanalPalindrome (6.6s)

word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false
FAIL
FAIL gopl.io/chll/wordl ©.014s

images/00628.jpeg
0Pt oy cati/vonat
/1 Package word provides utilities for word games.
package word

/1 IsPalindrome reports whether s reads the same forward and backward.
/1 (Our first attempt.)
func IsPalindrome(s string) bool {
for 1 := range s {
if s[i] != s[len(s)-1-i] {
return false
}

Y

return true

images/00627.jpeg
func TestSin(t *testing.T) { /* .
func TestCos(t *testing.T) { /* .
func TestlLog(t *testing.T) { /* .

images/00629.jpeg
package word
import "testing”

func TestPalindrome(t *testing.T) {
if !IsPalindrome("detartrated”) {
t.Error(" IsPalindrome("detartrated") = false')
}
if 1IsPalindrome("kayak") {
t.Error(" IsPalindrome("kayak") = false’)
}
}

func TestNonPalindrome(t *testing.T) {
if Ispalindrome("palindrome") {
t.Error(" IsPalindrome("palindrome") = true’)

}

