

MACHINE LEARNING WITH SAS ENTERPRISE MINER

C. Perez

NDICE

introducTION

SAS ENTERPRISE MINER ENVIRONMENT FOR MACHINE LEARNING

1.1 SAS Enterprise MINER Introduction

1.2 Starting with SAS Enterprise Miner

1.2.1 Create a New Project

1.2.2 Project Start Code

1.2.3 Create a New Process Flow Diagram

1.2.4 Create a Data Source

1.2.5 Connect Nodes in Diagram Workspace

1.2.6 Run the Process Flow Diagram

1.2.7 View Results

1.2.8 Create A Model Package

1.3 SAS Enterprise Miner User Interface

1.3.1 Sas Enterprise Miner main menu

1.3.2 The SAS Enterprise Miner Node Toolbar

SUPERVISED LEARNING. Predictive MODELING with sas enterprise miner

2.1 modeling PREDICTIVE Techniques with SAS ENTERPRISE MINER

2.2 Regression node: multiple regression model

2.2.1 Regression Node Data Set Requirements

2.2.2 Regression Node Train Properties: Equation

2.2.3 Regression Node Train Properties: Class Targets

2.2.4 Regression Node Train Properties: Model Options

2.2.5 Regression Node Train Properties: Model Selection

2.2.6 Example 1. Regression

2.2.7 Example 2. Logistic Regression

2.3 Dmine Regression Node

2.3.1 Dmine Regression Node Data Set Requirements

2.4 Partial Least Squares Node

2.4.1 Partial Least Squares Node Algorithm

2.4.2 Partial Least Squares Node Train Properties: Modeling Techniques

2.4.3 Partial Least Squares Node Example

2.5 LARS Node

2.5.1 LARs Node Example

Create the Data Source

Place the Nodes on the Diagram Workspace

Configure the LARs Node

Run the LARs Node

Open the LARs Node Results Window

Examine the Results

SUPERVISED LEARNING. CLASSIFICATION PREDICTIVE TECHNIQUES. DECISION TREES WITH SAS ENTERPRISE MINER

3.1 DECISION TREE NODE

3.1.1 Decision Tree Node Variable Requirements

3.1.2 Results Tables and Plots

3.1.3 Tree Properties Window

3.1.4 Decision Tree Interactive Training

3.1.5 Decision Tree Node Output Data Sources

3.1.6 Example

SUPERVISED LEARNING. NEURAL NETWORKS IN sas enterprise miner

4.1 NEURAL network Description

4.2 NEURAL Networks with SAS ENTERPRISE MINER

4.3
 Optimization and adjustment of models with nets: Neural Network node

4.3.1 Overview of Feedforward Neural Networks

4.3.2 Simple Neural Networks

4.3.3 Perceptrons

4.3.4 Hidden Layers

4.3.5 Multilayer Perceptrons (MLPs)

4.3.6 Radial Basis Function (RBF) Networks

4.3.7 Local Processing Networks

4.3.8 Width and Altitude

4.3.9 Ordinary RBF and Normalized RBF

4.3.10 Error Functions

4.3.11 Initialization

4.3.12 Preliminary Training

4.3.13 Training Techniques

4.3.14 Scoring

4.3.15 Preparing the Data

4.3.16 Objective Functions and Error Functions

4.3.17 Choice of Architecture

4.3.18 Neural Network Node Train Properties

4.3.19 Neural Network Node Results

4.3.20 Example with a Neural Network Model

4.4 AUTONEURAL NODE

4.4.1 Network Architectures

4.4.2 Example using the Search Train Action

4.5 DM Neural node

4.5.1 Variable Requirements for the DMNeural Node

4.5.2 DMNeural Node Train Properties

4.5.3 DMNeural Node rain Properties: DMNeural Network

4.5.4 DMNeural Node Train Properties: Convergence Criteria

4.5.5 DMNeural Node Train Properties: Model Criteria

4.5.6 DMNeural Node Status Properties

4.5.7 DMNeural Node Results

4.6 TWOSTAGE NODE

4.6.1 TwoStage Node Output Data

4.7 SUPPORT VECTOR MACHINE (SVM) NODE

4.7.1 SVM Node Train Properties

4.7.2 SVM Node Train Properties: Regularization Parameter

4.7.3 SVM Node Train Properties: Kernel

4.7.4 SVM Node Train Properties: Cross Validation

4.7.5 SVM Node Train Properties: Sampling

4.7.6 SVM Node Train Properties: Print Options

4.7.7 SVM Node Status Properties

4.7.8 SVM Node Results

4.7.9 SVM Node Example

SUPERVISED LEARNING. NEURAL NETWORK MODELS TO PREDICT RESPONSE

5.1 A Neural Network Model to Predict Response BY EXAMPLES

5.1.1 Input Data Node

5.1.2 Data Partition Node

5.2 Setting the Neural Network Node Properties

5.3 Assessing the Predictive Performance of the Estimated Model

5.4 Receiver Operating Characteristic (ROC) Charts

5.5 How Did the Neural Network Node Pick the Optimum Weights for This Model?

5.6 Scoring a Data Set Using the Neural Network Model

5.7 Score Code

5.8 A Neural Network Model to Predict Loss Frequency in Auto Insurance

5.5.1 Loss Frequency as an Ordinal Target

5.8.1 Target layer combination and activation functions

5.9 DATA PREPARATION

5.9.1 Model selection criterion property

5.9.2 Score ranks in the results window

5.9.3 Scoring a new dataset with the model

5.9.4 Classification of Risks for Rate Setting in Auto Insurance with Predicted Probabilities

SUPERVISED LEARNING. Specific NEURAL NETWORKS TO PREDICT RESPONSES

6.1 Alternative Specifications of the Neural Networks

6.2 Multilayer Perceptron (MLP) Neural Network

6.3 A Radial Basis Function (RBF) Neural Network

6.4 Comparison of Alternative Built-in Architectures of the Neural Network Node

6.4.1 Multilayer Perceptron (MLP) Network

6.4.2 Ordinary Radial Basis Function with Equal Heights and Widths (ORBFEQ)

6.4.3 Ordinary Radial Basis Function with Equal Heights and Unequal Widths (ORBFUN)

6.4.4 Normalized Radial Basis Function with Equal Widths and Heights (NRBFEQ)

6.4.5
 Normalized Radial Basis Function with Equal Heights and Unequal Widths (NRBFEH)

6.4.6
 Normalized Radial Basis Function with Equal Widths and Unequal Heights (NRBFEW)

6.4.7 Normalized Radial Basis Function with Equal Volumes (NRBFEV)

6.4.8 Normalized Radial Basis Function with Unequal Widths and Heights (NRBFUN)

6.4.9 User-Specified Architectures

6.5 AutoNeural Node

6.6 DMNeural Node

6.7 Dmine Regression Node

6.8 Comparing the Models Generated by DMNeural, AutoNeural, and Dmine Regression Nodes

SUPERVISED LEARNING. PREDICTIVE MODELS COMPARISON

7.1 MODELS COMPARISON

7.2 Models for Binary Targets: An Example of Predicting Attrition

7.2.1 Logistic Regression for Predicting Attrition

7.2.2 Decision Tree Model for Predicting Attrition

7.2.3 A Neural Network Model for Predicting Attrition

7.3 Models for Ordinal Targets: An Example of Predicting the Risk of Accident Risk

7.3.1 Lift Charts and Capture Rates for Models with Ordinal Targets

7.3.2 Logistic Regression with Proportional Odds for Predicting Risk in Auto Insurance

7.3.3 Decision Tree Model for Predicting Risk in Auto Insurance

7.3.4 Neural Network Model for Predicting Risk in Auto Insurance

7.3.5 Comparison of All Three Accident Risk Models

7.4 Boosting and Combining Predictive Models

7.5 MODEL VALIDATION

7.5.1 Stochastic Gradient Boosting

7.5.2 An Illustration of Boosting Using the Gradient Boosting Node

7.5.3 The Ensemble Node

7.5.4 Comparing the Gradient Boosting and Ensemble Methods of Combining Models

UNSUPERVISED LEARNING. CLUSTER ANALYSIS WITH NEURAL NETWORKS

8.1 CLUSTER ANALYSIS on ENTERPRISE MINER

8.2 CLUSTER NODE

8.2.1 Cluster Node General Properties

8.2.2 Cluster Node Train Properties

8.2.3 Cluster Node Train Properties: Number of Clusters

8.2.4 Cluster Node Train Properties: Selection Criterion

8.2.5 Cluster Node Score Properties

8.2.6 Cluster Node Report Properties

8.2.7 Cluster Node Status Properties

8.2.8 Cluster Node Results Window

8.2.9 Example

8.3 SOM/KOHONEN NODE

8.3.1 SOM/Kohonen Node Train Properties

8.3.2 SOM/Kohonen Node Train Properties: Segment

8.3.3 SOM/Kohonen Node Train Properties: Seed Options

8.3.4 SOM/Kohonen Node Train Properties: Batch SOM Training

8.3.5 SOM/Kohonen Node Train Properties: Local-Linear Options

8.3.6 SOM/Kohonen Node Train Properties: Nadaraya-Watson Options

8.3.7 SOM/Kohonen Node Train Properties: Kohonen VQ

8.3.8 SOM/Kohonen Node Train Properties: Kohonen

8.3.9 SOM/Kohonen Node Train Properties: Neighborhood Options

8.3.10 SOM/Kohonen Node Results

8.4 VARIABLE CLUSTERING NODE

8.4.1 Variable Clustering Node Algorithm

8.4.2 Variable Clustering Node and Missing Data Set Values

8.4.3 Variable Clustering Node and Large Data Sets

8.4.4 Variable Clustering Node and Variable Roles

8.4.5 Using the Variable Clustering Node

8.4.6 Variable Clustering Node Train Properties

8.4.7 Variable Clustering Node Train Properties: Stopping Criteria Properties

8.4.8 Variable Clustering Node Score Properties

8.4.9 Variable Clustering Node Status Properties

8.4.10 Example

8.4.11 Two Stage Variable Clustering Example

8.4.12 Predictive Modeling with Variable Clustering Example

introducTION

Machine learning
 teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. The algorithms adaptively improve their performance as the number of samples available for learning increases. Machine learning uses two types of techniques: supervised learning, which trains a model on known input and output data so that it can predict future outputs, and unsupervised learning, which finds hidden patterns or intrinsic structures in input data.

[image: D:\MATLAB\2016b\imagenes\MACHINELEANING1_img_0.jpg]

The aim of supervised machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and known responses to the data (output) and trains a model to generate reasonable predictions for the response to new data. Supervised learning uses classification and regression techniques to develop predictive models.

	
Classification
 techniques predict categorical responses, for example, whether an email is genuine or spam, or whether a tumor is cancerous or benign. Classification models classify input data into categories. Typical applications include medical imaging, image and speech recognition, and credit scoring.

	
Regression
 techniques predict continuous responses, for example, changes in temperature or fluctuations in power demand. Typical applications include electricity load forecasting and algorithmic trading.

Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw inferences from datasets consisting of input data without labeled responses.
 Clustering
 is the most common unsupervised learning technique. It is used for exploratory data analysis to find hidden patterns or groupings in data. Applications for clustering include gene sequence analysis, market research, and object recognition.

Choosing the right algorithm can seem overwhelming—there are dozens of supervised and unsupervised machine learning algorithms, and each takes a different approach to learning. There is no best method or one size fits all. Finding the right algorithm is partly based on trial and error—even highly experienced data scientists cannot tell whether an algorithm will work without trying it out. Highly flexible models tend to overfit data by modeling minor variations that could be noise. Simple models are easier to interpret but might have lower accuracy. Therefore, choosing the right algorithm requires trading off one benefit against another, including model speed, accuracy, and complexity. Trial and error is at the core of machine learning—if one approach or algorithm does not work, you tryanother.

[image: D:\MATLAB\2016b\imagenes\MACHINELEANING1_img_1.jpg]

1
 Chapter 1

SAS ENTERPRISE MINER ENVIRONMENT
 FOR MACHINE LEARNING

1.1

SAS Enterprise MINER
 Introduction

SAS Institute implements data mining in
 Enterprise Miner
 software, which will be used in this book, and other procedures and modules (STAT, ETS,...) which will also be used throughout the text. SAS Institute defines the concept of
 Data Mining
 as the process of selecting (
 Selecting
), explore (
 Exploring
), modify (
 Modifying
), modeling (
 Modeling
) and rating (
 Assessment
) large amounts of data with the aim of uncovering unknown patterns which can be used as a comparative advantage with respect to competitors. This process is summarized with the acronym SEMMA which are the initials of the 5 phases which comprise the process of
 Data Mining
 according to SAS Institute. Each of these stages has associated different nodes, as shown below:

	
Phase of selection (Sample)
 :
 carries append data (
 Append Node
), partition of data (
 Data Partition Node
), import data (
 File Import Node
), filter data (
 Filter Node
), associated data source (
 Input Data Source Node
), merge data (
 Merge Node
) and sampling (
 Sample Node
) nodes. See Figures 1-1 and 1-2.

[image:]

Figure 1-1

[image:]

Figure 1-2

	
Phase of exploration (Explore)
 :
 has been associated nodes: Association (
 Association Node
), clustering (
 Cluster Node
), descriptive statistics with DMDB procedure (
 DMDB Node
), graph exploratory analysis (
 Graph Explore Node
), analysis of unions (
 Link Analysis Node
), basket market (
 Basket Market Node
), Graphics (
 Multiplot Node
), path analysis (
 Patch Analysis Node
),
 self-organized neural networks (
 SOM/Kohonen
),
 statistical exploratory analysis (
 StatExplore Node
),
 divides numeric variables into disjoint or hierarchical clusters
 (
 Variable Clustering Node
) and selection of variables (
 Variable Selection Node
). See Figures 1-3 and 1-4.

[image:]

Figure 1-3

[image:]

Figura 1-4

	
Phase of modification (MODIFY)
 :

 Remove variables from data sets or hide variables from the metadata (
 Drop Node
), replace missing values in data sets (
 Impute Node
), model non-linear functions of multiple modes of continuous distribution (
 Interactive Binnig Node
), obtain principal components (
 Principal Components Node
),
 replacement of missing values (
 Replacement Node
),
 create ad hoc sets of rules with user-definable outcomes (
 Rules Builder Node
),
 Definition of variables (
 Data Set Attributes
) and transformation of Variables (
 Transform Variables Node
). See Figures 1-5 and 1-6

[image:]

Figure 1-5

[image:]

Figure 1-6

	
Phase of modeling (Model)
 :
 find better neural network configurations (
 Autoneural Node
), perform decision trees (
 Decision
 Tree Node
), perform regression analysis on data sets that have a binary or interval level target variable (
 Dmine Regression Node
), fit an additive nonlinear model that uses the bucketed principal components as inputs to predict a binary or an interval target variable (
 DMNeural Node
), create new models by combining the posterior probabilities (for class targets) or the predicted values (for interval targets) from multiple predecessor models (
 Ensemble Node
), search for an optimal partition of the data defined in terms of the values of a single variable across Gradient Boosting Machine (
 Gradient Boosting Node
), perform interactive decision trees (
 Interactive Decision Tree Application
), perform both variable selection and model-fitting (
 LARs Node
), use a k-nearest neighbor algorithm to categorize or predict observation (
 Memory Based Reasoning MBR Node
), import and assess a model that was not created by one of the Enterprise Miner modeling nodes (
 Model Import Node
), provides a variety of feedforward networks that are commonly called backpropagation or backprop network (
 Neural Network Node
), use PLS algoritm to model continuous and binary targets (
 Partial Least Squares Node
), fit both linear and logistic regression models (
 Regression node
), improve the classification of rare events (
 Rule Induction Node
), enables to model a class target and an interval target (
 TwoStage Node
). See Figures 1-7 y 1-8.

[image:]

Figure 1-7

[image:]

Figura 1-8

Phase of assessment (Assess)
 :
 provide tabular and graphical information to assist users in determining appropriate probability cutoff point(s) for decision makin
 g
 wit
 h
 binary target models (
 Cutoff Node
), define profiles for a target that produces optimal decisions (
 Decisions Node
), compare the performance of competing models using various benchmarking criteria (
 Model Comparison Node
), manage SAS scoring code that is generated from a trained model or models to save the SAS scoring code to a location on your client computer and to run the SAS scoring code (
 Score Node
) and examine segmented or clustered data and identify factors that differentiate data segments from the population (
 Segment Profile Node
). See Figures 1-9 y 1-10.

[image:]

Figure 1-9

[image:]

Figura 1-10

1.2

Starting with SAS Enterprise Miner

SAS Enterprise Miner software was installed in one of two configurations: Workstation or Enterprise Client. Either configuration provides complete Enterprise Miner capabilities.

The Enterprise Miner Workstation uses SAS services that run on your personal computer or laptop computer. The SAS Deployment Wizard will configure these services during installation.

The Enterprise Client connects to remote SAS servers using the SAS Web Infrastructure Platform (WIP). Your organization’s SAS system administrator must first install Enterprise Miner on a server, and then ensure that the WIP is running before you can log into a client / server session.

In the Workstation configuration, all processing occurs locally and no connections to SAS Metadata Server and SAS Foundation Server are needed.

In the Enterprise Client configuration, the Web Infrastructure Platform (WIP) functions as a bridge between the clients and the servers. Multiple clients can connect to multiple servers. This is the preferred configuration for distributed client/server computing. The WIP must be configured. This task is usually carried out by your SAS system administrators. The clients communicate with the WIP using the HTTP protocol.

To access
 Enterprise Miner
 simply type in Windows programs
 SAS Enterprise Miner 13.1
 or
 SAS Enterprise Miner Worksatation 11-1
 (Figure 1-11).

[image:]

Figure 1-11

1.2.1

Create a New Project

 After you launch your Enterprise Miner 13.1 session, you can create a new project.

	
 From the application main menu, select
 File→New→ Project
 .

The Create New Project window opens (Figure 1-12):

[image:]

Figure 1-12

Select an available server for your project. Click
 Next
 .

	
 Type the name of your project in the
 Project Name
 field, and specify the server directory that you want to use for your project in the
 SAS Server Directory
 field (Figure 1-13).

[image:]

Figure 1-13

Click
 Next
 .

	
 Use the
 Browse
 button to select and specify the location for your project’s SAS Folders on the server. Your server folders will vary from the folders that are displayed in the example below (Figure 1-14).

[image:]

Figure 1-14

Click
 Next
 .

	
 Review the project information you have just specified in the
 New Project Information
 table (Figure 1-15). Use the
 Back
 button if you need to make changes. When you are ready to create your Enterprise Miner project, click
 Finish
 .

[image:]

Figure 1-15

1.2.2

Project Start Code

 You can specify SAS code that you want to run every time you start your Enterprise Miner project. This is called project start code.

	
 Select your newly created project in the Enterprise Miner Project Navigator. The project properties panel displays below (Figure 1-16).

[image:]

Figure 1-16

Click the ellipsis button [...] to the right of the Project Start Code property to open the Project Start Code window.

	
 Use the space in this window to enter any SAS code that you want to run each time the project starts, such as LIBNAME statements, grid computing settings, and so on (Figure 1-17).

[image:]

Figure 1-17

When you have finished entering all of the project start code you want, click
 Run Now
 . You can select the Log tab to view the results of your start code. When you are satisfied with your start code, click
 OK
 to close the window.

Note:
 You can modify your project start code by repeating the previous steps at any time.

1.2.3

Create a New Process Flow Diagram

 To create a new diagram, select
 File→New→Diagram
 from the main menu. Type a name for your diagram in the Create New Diagram window and click
 OK
 to create the diagram. The new diagram opens in the Diagram Workspace.

1.2.4

Create a Data Source

 To create a data source, select
 File→NewData →Source
 from the main menu. The Data Source Wizard opens. You use the Data Source to set up and configure external data tables for use with Enterprise Miner.

SAS Enterprise Miner includes some example data sources that are already set up and ready for you to use. We will add the sample data sources to the
 Data Sources
 folder in your Project Navigator.

	
 From the Enterprise Miner main menu, select
 Help → Generate Sample Data Sources
 (Figure 1-18).

[image:]

Figure 1-18

	
 The Generate Sample Data Sources window opens. This window contains representative data sets from the SAMPSIO data library that ships with Enterprise Miner (Figure 1-19). The various data sets are useful for different types of data mining analyses.

[image:]

Figure 1-19

By default, all sample data sets are selected for creation. Click
 OK
 to close the window and to create the sample data sources.

	
 Go to your Project Navigator tree and open the
 Data Sources
 folder (Figure 1-20). You will see the newly created example Enterprise Miner data sources from the SAMPSIO library inside.

[image:]

Figure 1-20

When a data source is selected in the Project Navigator, the data source attributes are displayed in the Properties Panel. To use a data source in your process flow diagram, select the data source (this example uses the Home Equity data source) in the Project Panel and drag it to the Diagram Workspace.

1.2.5

Connect Nodes in Diagram Workspace

 Connect data mining tool nodes in the Diagram Workspace to create a logical process flow for your data mining project. When you create a process flow, follow the SEMMA (Sample, Explore, Modify, Model, Assess) data mining methodology. Information flows from node to node in the direction of the connecting arrows. The following example connects the Home Equity data sourdce node to the Sample node.

	
 Drag the Home Equity data source from the
 Data Sources
 folder of your Project Navigator onto your Diagram Workspace. Then, from the Sample tab of your Enterprise Miner node tool bar, drag a Sample node onto the workspace (Figure 1-21).

[image:]

Figure 1-21

	
 To connect the nodes, move the pointer to the right edge of the Input Data node icon. The pointer icon changes from an arrow to a pencil (Figure 1-22).

[image:]

Figure 1-22

	
 Drag the pointer to the left edge of the Sampling node. Release the pointer, and the nodes are connected (Figure 1-23).

[image:]

Figure 1-23

1.2.6

Run the Process Flow Diagram

 To generate results from a process flow diagram in your Diagram Workspace, you must run the process flow path to execute the code that is associated with each node. Right-click the node from which you want to run the flow (normally, a terminal node) and select Run from the pop-up menu (Figure 1-24).

[image:]

Figure 1-24

1.2.7

View Results

 To view the results of a completed run, right-click the node that you ran and select Results from the pop-up menu. You can view the results of the node run from the Results window that opens (Figure 1-25).

[image:]

Figure 1-25

1.2.8

Create A Model Package

 You can export the contents of your model to comparable Enterprise Miner environments using an Enterprise Miner model package. To save your process flow diagram as a model package, right-click the last node in your model, and from the menu, select
 Create Model Package
 (figure 1-26).

[image:]

Figure 1-26

When the Input window opens, specify a name for your model package and click
 OK
 (Figure 1-27).

[image:]

Figure 1-27

Your model is now saved inside the Model Packages folder of your Project Navigator (Figure 1-28).

[image:]

Figure 1-28

1.3

SAS Enterprise Miner User Interface

The Figure 1-29 shows the SAS enterprise miner user interface.

[image:]

Figure 1-29

The key elements are as follows:

 Toolbar:
 The SAS Enterprise Miner Toolbar is a graphic set of node buttons and tools that you use to build process flow diagrams in the Diagram Workspace. The text name of any node or tool button is displayed when you position your mouse pointer over the button.

 Toolbar Shortcut Buttons
 : The SAS Enterprise Miner toolbar shortcut buttons are a graphic set of user interface tools that you use to perform common computer functions and frequently used SAS Enterprise Miner operations. The text name of any tool button is displayed when you position your mouse pointer over the button.

 Project Panel:
 Use the Project Panel to manage and view data sources, diagrams, results, and project users.

 Properties Panel:
 Use the Properties Panel to view and edit the settings of data sources, diagrams, nodes, results, and users.

 Diagram Workspace:
 Use the Diagram Workspace to build, edit, run, and save process flow diagrams. In this workspace, you graphically build, order, and sequence the nodes that you use to mine your data and generate reports.

 Property Help Panel:
 The Help Panel displays a short description of the property that you select in the Properties Panel. Extended help can be found in the Help main menu.

 SAS Enterprise Miner behaves like most Windows applications:

	
Panels can be resized by dragging the edge of the panel.

	
Windows within the Diagram Workspace can be resized by dragging window corners.

	
Windows can be minimized, maximized, and closed by using the three control buttons in the upper right corner of all windows.

	
A single click with the left mouse button selects objects in the Diagram Workspace.

	
Right-clicking an object opens a pop-up menu of actions, if any are associated with that object.

	
Text-based application menus can be activated by pressing the <ALT> key in combination with the underscored letter in the menu name.

	
The name or function of most buttons appears in text if you position your mouse pointer over the button. To change the behavior of tooltips in SAS Enterprise Miner, select
 Options
 [image: Descripcin: then select]
 Preferences
 . Then use the
 Property Sheet Tooltips
 and the
 Tools Palette Tooltips
 properties to configure the tooltip behavior.

Note:
 The Nodes Toolbar and the Toolbar Shortcut Buttons together are collectively called the Tools Palette.

1.3.1

Sas Enterprise Miner
 main menu

Enterprise Miner
 contains a menu that lets you select and execute common tasks.
 This menu (top of Figure 1-13) presents the options
 File, Edit, View, Options, Actions, Windows
 and
 Help
 whose sub-items and purposes will be explored below.

 File

	
New

	
Project
 — creates a new project.

	
Diagram
 — creates a new diagram.

	
Data Source
 — creates a new data source using the Data Source wizard.

	
Library
 — creates, modifies, or deletes a Library using the Library wizard.

	
Open Project
 — opens an existing project. You can also create a new project from the Open Project window.

	
Recent Projects
 — lists the projects on which you were most recently working.

	
Open Model
 — opens a model package SPK file that you have previously created.

	
Open Model Package
 — opens a window that you can use to view and compare model packages.

	
Register Model
 — registers model.

	
Open Diagram
 — opens the diagram that you select in the Project Panel.

	
Close Diagram
 — closes the open diagram that you select in the Project Panel.

	
Close this Project
 — closes the current project.

	
Import Diagram from XML
 — imports a diagram that has been defined by an XML file.

	
Save Diagram
 — saves a diagram as an image (BMP or GIF) or as an XML file.

	
Print Diagram
 — prints the contents of the window that is open in the Diagram Workspace.

	
Print Preview Diagram
 — creates an onscreen preview of the contents of the window that is selected for printing.

	
Delete this Project
 — deletes the current project.

	
Exit
 — ends the SAS Enterprise Miner session and closes the window.

 Edit

	
Cut
 — deletes the selected item and copies it to the clipboard.

	
Copy
 — copies the selected node to the clipboard.

	
Paste
 — pastes a copied object from the clipboard.

	
Delete
 — deletes the selected diagram, data source, or node.

	
Rename
 — renames the selected diagram, data source, or node.

	
Duplicate
 — creates a copy of the selected data source.

	
Select All
 — selects all of the nodes in the open diagram.

	
Clear All
 — clears text from the Program Editor.

	
Find/Replace
 — opens the Find/Replace window so that you can search for and replace text in the Program Editor, Log, and Results windows

	
Go To Line
 — opens the Go To Line window. Enter the line number on which you want to enter text.

	
Layout

	
Horizontally
 — creates an ordered, horizontal arrangement of the layout of nodes that you have placed in the Diagram Workspace.

	
Vertically
 — creates an ordered, vertical arrangement of the layout of nodes that you have placed in the Diagram Workspace.

	
Zoom
 — increases or decreases the size of the process flow diagram within the diagram window by the amount that you choose.

	
Copy Diagram to Clipboard
 — copies an image of the current process flow diagram in the Diagram Workspace to the Windows clipboard.

 View

	
Program Editor
 — opens a SAS Program Editor window in which you can enter SAS code.

	
Project Log
 — opens a Project Log window.

	
Explorer
 — opens a SAS Explorer window. You use the Explorer window to view SAS Libraries and their tables.

	
Metadata
 — opens a SAS Explorer window that you can use to open metadata information for projects and results.

	
Refresh Project
 — updates the selected project tree to incorporate any changes that were made to the project from outside the SAS Enterprise Miner user interface.

 Actions

	
Add Node
 — adds a node that you select to the Diagram Workspace.

	
Select Nodes
 — opens the Select Nodes Window.

	
Connect Nodes
 — opens the Connect Nodes Window. You must select a node in the Diagram Workspace to make this menu item available. You can connect the node that you select to any nodes that have been placed in your Diagram Workspace.

	
Disconnect Nodes
 — opens the Disconnect Nodes window. You must select a node in the Diagram Workspace to make this menu item available. You can disconnect the node that you select from any nodes that are connected to the selected node in your Diagram Workspace.

	
Update
 — updates the selected node to incorporate any changes that you have made.

	
Run
 — runs the selected node and any predecessor nodes in the process flow that have not been executed, or submits any code that you type in the Program Editor window.

	
Stop Run
 — interrupts a currently running process flow.

	
Stop Code
 — interrupts currently running code.

	
View Results
 — opens the Results window for the selected node.

	
Create Model Package
 — generates a mining model package.

	
Export Path as SAS Program
 — saves the path that you select as a SAS program. In the window that opens, you can specify the location to which you want to save the file, and whether you want the code to run the path or create a model package.

 Options

	
Preferences
 — opens the Preferences window. Use the following options to change the user interface:

 User Interface

	
Property Sheet Tooltips
 — This setting specifies whether tooltips are displayed on various property sheets that appear throughout the user interface.

	
Tools Palette Tooltips
 — This setting specifies whether tooltips display the tool name only, display the tool name and a description, or suppress tooltips for the tool buttons in the tools palette.

	
Open Last Opened Project Automatically
 — specifies whether SAS Enterprise Miner should open the last opened project when you log on.

	
Open Last Viewed Diagram Automatically
 — specifies whether SAS Enterprise Miner should open the last viewed diagram when you log on. You must specify
 Yes
 in both this property and
 Open Last Opened Project Automatically
 to automatically open the last viewed diagram.

	
Number of Recent Projects
 — specifies the number of projects that appears in the
 Recent Projects
 list.

 Interactive Sampling

	
Sample Method
 — specifies whether default samples are made from the top of the data set or are drawn at random when exploring data.

	
Fetch Size
 — specifies the amount of data to fetch during interactive sampling. You can choose from
 Default
 (2000 observations) or
 Max
 (all observations).

	
Random Seed
 — lets you specify the default value for Random Seed entries.

 Model Package Options

	
Generate C Score Code
 — specifies whether to generate and add C Score code to reports and Results packages

	
Generate Java Score Code
 — specifies whether to generate and add Java Score code to Results packages

	
Java Score Code Package
 — specifies the Java package name to be used when SAS Enterprise Miner is configured to generate and add Java Score code to Results packages.

 Run Options

	
Grid processing
 — specifies whether to use grid processing when available or to never use grid processing. If you enable Grid processing for a SAS Enterprise Miner project, you must specify a project location that is common to all Grid nodes.

 Results Options

	
Log/Output Line Numbers
 — specifies the number of lines that are displayed in any logs or outputs.

 Window

	
Tile
 — displays windows in the Diagram Workspace so that all windows are visible at the same time.

	
Cascade
 — displays windows in the Diagram Workspace so that windows overlap.

Help

	
Contents
 — opens the SAS Enterprise Miner Help window, which enables you to view all the SAS Enterprise Miner Reference Help.

	
Component Properties
 — opens a table that displays the component properties of each tool.

	
Generate Sample Data Sources
 — creates sample data sources that you can access from the Data Sources folder.

	
Configuration
 — displays the current system configuration of your SAS Enterprise Miner session.

	
About
 — displays information about the version of SAS Enterprise Miner that you are using.

1.3.2

The SAS Enterprise Miner Node Toolbar

The SAS Enterprise Miner Node Toolbar is located directly above the Diagram Workspace. It is a tabbed graphic collection of SAS Enterprise Miner nodes and tools that you use to build process flow diagrams (Figure 1-30).

[image:]

Figure 1-30

If you position your mouse pointer over a Toolbar button, a text ToolTip appears and displays the node or tool name.

To use a Toolbar node in a process flow diagram, click the node button and drag it into the Diagram Workspace. The Toolbar button remains in place and the node in the Diagram Workspace is ready to be connected and configured for use in your process flow diagram.

SAS Text Miner and Credit Scoring for SAS Enterprise Miner are not included with the base version of SAS Enterprise Miner. If your site has not licensed Credit Scoring for SAS Enterprise Miner and SAS Text Miner, those data mining tools do not appear in your SAS Enterprise Miner software.

2
 Chapter 2

SUPERVISED LEARNING. Predictive MODELING with sas enterprise miner

2.1

modeling PREDICTIVE Techniques with SAS ENTERPRISE MINER

Enterprise Miner
 of SAS Institute software implements the phase of modeling on the stage model (
 Model
) SEMMA methodology. This stage contains the nodes to find better neural network configurations (
 Autoneural Node
), perform decision trees (
 Decision
 Tree Node
), perform regression analysis on data sets that have a binary or interval level target variable (
 Dmine Regression Node
), fit an additive nonlinear model that uses the bucketed principal components as inputs to predict a binary or an interval target variable (
 DMNeural Node
), create new models by combining the posterior probabilities (for class targets) or the predicted values (for interval targets) from multiple predecessor models (
 Ensemble Node
), search for an optimal partition of the data defined in terms of the values of a single variable across Gradient Boosting Machine (
 Gradient Boosting Node
), perform interactive decision trees (
 Interactive Decision Tree Application
), perform both variable selection and model-fitting (
 LARs Node
), use a k-nearest neighbor algorithm to categorize or predict observation (
 Memory Based Reasoning MBR Node
), import and assess a model that was not created by one of the Enterprise Miner modeling nodes (
 Model Import Node
), provides a variety of feedforward networks that are commonly called backpropagation or backprop network (
 Neural Network Node
), use PLS algoritm to model continuous and binary targets (
 Partial Least Squares Node
), fit both linear and logistic regression models (
 Regression node
), improve the classification of rare events (
 Rule Induction Node
), enables to model a class target and an interval target (
 TwoStage Node
). See Figure 2-1.

[image:]

Figure 2-1

The
 AutoNeural
 node can be used to automatically configure a neural network. The
 AutoNeural
 node implements a search algorithm to incrementally select activation functions for a variety of multilayer networks.

[image:]

The
 Decision Tree
 node enables you to fit decision tree models to your data. The implementation includes features that are found in a variety of popular decision tree algorithms (for example, CHAID, CART, and C4.5). The node supports both automatic and interactive training. When you run the Decision Tree node in automatic mode, it automatically ranks the input variables based on the strength of their contribution to the tree. This ranking can be used to select variables for use in subsequent modeling. You can override any automatic step with the option to define a splitting rule and prune explicit tools or subtrees. Interactive training enables you to explore and evaluate data splits as you develop them.

[image:]

The
 Dmine Regression
 node enables you to compute a forward stepwise, least squares regression model. In each step, the independent variable that contributes maximally to the model R-square value is selected. The tool can also automatically bin continuous terms.

[image:]

The
 DMNeural
 node is another modeling node that you can use to fit an additive nonlinear model. The additive nonlinear model uses bucketed principal components as inputs to predict a binary or an interval target variable with automatic selection of an activation function.

[image:]

The
 Ensemble
 node enables you to create new models by combining the posterior probabilities (for class targets) or the predicted values (for interval targets) from multiple predecessor models.

[image:]

The
 Gradient Boosting
 node uses tree boosting to create a series of decision trees that together form a single predictive model. Each tree in the series is fit to the residual of the prediction from the earlier trees in the series. The residual is defined in terms of the derivative of a loss function. For squared error loss with an interval target, the residual is simply the target value minus the predicted value. Boosting is defined for binary, nominal, and interval targets.

[image:]

The
 LARS
 node enables you to use Least Angle Regression algorithms to perform variable selection and model fitting tasks. The
 LARs
 node can produce models that range from simple intercept models to complex multivariate models that have many inputs. When the
 LARs
 node is used to perform model fitting, it uses criteria from either least angle regression or the LASSO regression to choose the optimal model.

[image:]

The
 MBR
 (Memory-Based Reasoning) node enables you to identify similar cases and to apply information that is obtained from these cases to a new record. The
 MBR
 node uses k-nearest neighbor algorithms to categorize or predict observations.

[image:]

The
 Model Import
 node enables you to import models into the SAS Enterprise Miner environment that were not created by SAS Enterprise Miner. For example, models that were created by using SAS PROC LOGISTIC can now be run, assessed, and modified in SAS Enterprise Miner.

[image:]

The
 Neural Network
 node enables you to construct, train, and validate multilayer feedforward neural networks. Users can select from several predefined architectures or manually select input, hidden, and target layer functions and options.

[image:]

The
 Partial Least Squares
 node is a tool for modeling continuous and binary targets based on SAS/STAT PROC PLS. The
 Partial Least Squares
 node produces DATA step score code and standard predictive model assessment results.

[image:]

The
 Regression
 node enables you to fit both linear and logistic regression models to your data. You can use continuous, ordinal, and binary target variables. You can use both continuous and discrete variables as inputs. The node supports the stepwise, forward, and backward selection methods. A point-and-click interaction builder enables you to create higher-order modeling terms.

[image:]

The
 Rule Induction
 node enables you to improve the classification of rare events in your modeling data. The
 Rule Induction
 node creates a Rule Induction model that uses split techniques to remove the largest pure split node from the data. Rule Induction also creates binary models for each level of a target variable and ranks the levels from the most rare event to the most common. After all levels of the target variable are modeled, the score code is combined into a SAS DATA step.

[image:]

The
 SVM
 node uses supervised machine learning to perform binary classification problems, including polynomial, radial basis function, and sigmoid nonlinear kernels. The standard SVM problem solves binary classification problems by constructing a set of hyperplanes that maximize the margin between two classes. The
 SVM
 node does not support multi-class problems or support vector regression.

[image:]

The
 TwoStage
 node enables you to compute a two-stage model for predicting a class and interval target variables at the same time. The interval target variable is usually a value that is associated with a level of the class target.

[image:]

 In this chapter we will take care of the
 Regression
 node, which allows you to adjust the most common types of regression models, such as multiple regression and logistic regression.

2.2

Regression node: multiple
 regression model

 The Regression node belongs to the Model category in the SAS data mining process of Sample, Explore, Modify, Model, Assess (SEMMA).

You use the Regression node to fit both linear and logistic regression models to a predecessor data set in an Enterprise Miner process flow. Linear regression attempts to predict the value of an interval target as a linear function of one or more independent inputs. Logistic regression attempts to predict the probability that a binary or ordinal target will acquire the event of interest as a function of one or more independent inputs.

You can also use the Neural Network node to build regression models. In this case, you should configure the network to have direct connections between the input units and the output unit(s), without including any hidden units. Direct connections define linear layers, whereas hidden neurons define nonlinear layers. The Neural Network node supports more link functions (such as, identity, logit, log, square root, and reciprocal), and more error functions (such as, normal, poison, and gamma) than does the Regression node, as well as robust estimation capabilities (such as, Cauchy, Logistic, and Huber).

The Regression node uses an identity link function and a normal distribution error function for linear regression. The Regression node uses either a logit, complementary log-log, or probit link function and a binomial distribution error function for a logistic regression analysis. A disadvantage in using the Neural Network node for a regression analysis is that it does not provide p-values for testing the significance of the parameter estimates.

Prior to running the Regression node, you must use an Input Data node to designate the input (right-hand or independent) variables for the input data set, and target (left-hand or response) variable (or variables).

The Regression node supports binary, interval, nominal, and ordinal target variables. An example of a binary target variable is "purchase" or "no-purchase", which is often used for modeling customer profiles. An example of an interval target variable is value of purchase, which is useful for modeling the best customers for particular products, catalogs, or sales campaigns. An example of an ordinal target is sales volume, which may contain a few discrete values such as "low", "medium", and "high".

Your input variables can be continuous (interval) or discrete (binary or nominal). The Regression node treats ordinal input variables as nominal; it does not preserve the ordering of the levels. If you defined more than one target variable, then the Target Selector window opens when you open the node, prompting you to select a single target variable for modeling.

The Regression node supports forward, backward, and stepwise selection methods. Data sets that have a role of score are automatically scored when you train the model.

See the Predictive Modeling section for information that applies to all of the predictive modeling nodes.

2.2.1

Regression Node Data Set Requirements

 The input data should have the following data structure:

	
One observation per customer.

	
An interval, ordinal, or binary target (response) variable. The Regression node does not support nominal targets with more than two levels. You can model more than one target variable by incorporating a Group Processing node into the process flow, but the Regression node does not support multivariate analyses.

	
Input variables, which can contain Id (identification) variables, demographic data, history of previous purchases, and so forth.

The data set can also have cross-sectional data, which are data collected across multiple customers, products, geographic regions, and so on, but typically not across multiple time periods.

	

 Customer

	

 Purchase

	

 Amount

	

 Salary

	

 Age

	

 Martial

	

 Own-Rent

	

 John Doe

	

 1

	

 500

	

 50,000

	

 31

	

 Single

	

 1

	

 Jean Hall

	

 1

	

 2000

	

 56,000

	

 28

	

 Married

	

 2

	

 Mark Price

	

 0

	

 .

	

 68,000

	

 33

	

 Married

	

 2

	

 Cathy Harp

	

 0

	

 0

	

 22,000

	

 43

	

 Single

	

 1

 Before you build a regression model with the Regression node, you may need to perform one or more of the following data mining tasks:

	
Sample the Input Data Source — Use the Sampling node to create a sample from your input data source. Sampling is recommended for extremely large databases because it can tremendously decrease model training time. If the sample is sufficiently representative, then relationships found in the sample can be expected to generalize the complete data set.

	
Create Partitioned Data Sets — Use the Data Partition node to split the sample into training, validation, and test data sets. The training data set is used to calculate the regression equation. The validation data set can be used to fine-tune stepwise regression models (prevent the models from over-fitting the training data). The validation data set is also used by default for model assessment. The test data set can be used to obtain an unbiased estimate of the generalization error of a model.

	
Use Only the Important Variables — When your data set has a large number of inputs, it is tempting to use most or all of the inputs. However, it is often better to use only a small number of important inputs, which can greatly reduce the time that is required to train the regression model as well as improve the prediction results. If you know from your business expertise that an input is not useful in predicting the target, then exclude it from the regression analysis. The Multiplot node enables you to create exploratory plots that can help you identify important inputs (predictors). You can also use the Variable Selection node to reject inputs that are unrelated to the target.

	
Transform Data and Filter Outliers — The regression parameter estimates tend to be more stable and produce better predicted values when an appropriate transformation (for example, taking the log of an input to stabilize its variance) and/or filtering method is applied to noisy inputs. The Transform Variables node enables you to apply several transformations to a variable, such as log, exponential, square root, inverse, and square.

	
Use Other Modeling Nodes — For some problems, a traditional regression model may not be the best analytical tool. Greater predictive accuracy may be achieved using either the Tree node or the Neural Network node. Cross-model assessment can be performed with the Model Control node to help you choose the best model for scoring new data.

2.2.2

Regression Node Train Properties: Equation

 Users can support two-factor interactions, polynomial terms, and terms specified in an interaction data set in regression analysis by using the Equation properties.

 The following properties are available:

	
Main Effects
 — Set the Main Effects property of the Regression node to
 No
 if you want to suppress the input and rejected variables with status of Use in the regression analysis. The default setting for this property is
 Yes
 .

	
Two-Factor Interactions
 — Set the Two-Factor Interactions property of the Regression node to
 Yes
 if you want to include all two-factor interactions for class variables that have a status of Use. The default setting for this property is
 No
 .

	
Polynomial Terms
 — Set the Polynomial Terms property of the Regression node to
 Yes
 if you want to include polynomial terms for interval variables with status of Use in the regression analysis. When this property is set to
 Yes
 , you must specify an integer value for the Polynomial Degree property. The default setting for Polynomial Terms is
 No
 .

	
Polynomial Degree
 —When the Polynomial Terms property of the Regression node is set to
 Yes
 , use the Polynomial Degree property to specify the highest degree of polynomial terms (for interval variables with status set to
 Use
) to be included in the regression analysis. The Polynomial Degree property can be set to 2 or 3.

	
User Terms
 — Set the User Terms property of the Regression node to
 Yes
 if you want to create a Terms data set using the Term Editor. The default state for this Boolean property is
 No
 .

	
Term Editor
 —First set the User Terms property to
 Yes
 and then click the
 [image:]
 button in the Term Editor property to open the Terms Window. Use the Term Editor to order and specify variable interaction terms in a data set for regression analysis. The Term Editor supports two factor interactions for class variables and polynomial terms for interval variables. Only variables with a status of
 Use
 are displayed in the Term Editor.

To create an interaction term, select the applicable target variable from the Target drop-down list, and then use the arrows to transfer the interaction term variable components from the Variables to the Terms list (Figure 2-2). Click the Save button to create the interaction term in the upper table. Populate the Terms list with the same variable twice to create degreed polynomial terms such as (CLNO).

[image:]

Figure 2-2

If you have more than one interaction term, you can order the terms by using the arrows to the right of the interaction terms list. Use the delete X button beneath the arrows to remove interaction terms from the list.

If all Boolean Regression Node Equation properties are set to No, then a simple intercept model is used.

2.2.3

Regression Node Train Properties: Class Targets

	
 Regression Type
 — Use the Regression Type property of the Regression node to specify the type of regression that you want to run.

	
Logistic Regression
 — the default regression type for binary or ordinal targets. Logistic regression attempts to predict the probability that a binary or ordinal target will acquire the event of interest as a function of one or more independent inputs. For binary or ordinal targets, the default type is Logistic Regression.

	
Linear Regression
 — the default regression type for interval targets. Linear regression attempts to predict the value of a continuous target as a linear function of one or more independent inputs. For interval targets, the default type is Linear Regression.

	
Link Function
 — Use the Link Function property of the Regression node to specify the link function that you want to use in your regression analysis. Link functions link the response mean to the linear predictor. In a linear regression, the identity link function g(M) = Xβ is used.

 In a Logistic regression, you can select one of the link functions:

	
Cloglog
 — Specifies the complementary log-log function which is the inverse of the cumulative extreme-value function.

[image:]

	
Logit
 — (default) Specifies the inverse of the cumulative logistic distribution function.

[image: Descripcin: g(M) = log(M/ (1 — M))]
 [image:]

	
Probit
 — Specifies the inverse of the cumulative standard normal distribution.

[image: Descripcin: g(M) = 1/Θ(M)]
 [image:]

2.2.4

Regression Node Train Properties: Model Options

	
 Suppress Intercept
 — Set the Suppress Intercept property of the Regression node to
 Yes
 to suppress intercepts when you are coding class variables. The Suppress Intercept property is ignored for ordinal targets. The default setting for the Suppress Intercept property is
 No
 .

	
Input Coding
 — Use the Input Coding property of the Regression node to specify the method that you want to use to code class variables.

	
GLM
 — The non-full-rank General Linear Models (GLM) coding uses parameters to estimate the difference between each level and a reference level. The reference level is the last level when the levels are sorted in ascending numeric or alphabetic order. The last parameter is constrained to be 0 with GLM coding. This coding is also known as dummy coding. The dummy indicator variables for an effect are coded as 1 except for the last level, which is coded as 0. The parameter estimate for a given effect level is equal to the estimate of the effect minus the estimate of the last effect level.

	
Deviation
 — The Deviation from mean coding uses parameters to estimate the difference between each level and the average across each level. The parameters for all levels are constrained to sum to 0. This coding is also known as effects coding. Deviation is the default coding method.

2.2.5

Regression Node Train Properties: Model Selection

	
 Selection Model
 — Use the Selection Model property of the Regression node to specify the model selection method that you want to use during training.

 You can choose from the following effect selection methods:

	
Backward
 — begins with all candidate effects in the model and removes effects until the Stay Significance Level or the Stop Criterion is met.

	
Forward
 — begins with no candidate effects in the model and adds effects until theEntry Significance Level or the Stop Criterion is met.

	
Stepwise
 — begins as in the forward model but may remove effects already in the model. Continues until Stay Significance Level or Stepwise Stopping Criteria are met.

	
None
 — (default setting) all inputs are used to fit the model.

	
Selection Criterion
 — If you choose the forward, backward, or stepwise selection method for the Selection Model property, you should also set the Selection Criteria property to specify the criterion for choosing the final model. The available criteria are

	
Default
 — Uses Profit/Loss with training data, Profit/Loss with validation data, and None with raw or test data.

	
None
 — Chooses standard variable selection based on the entry and/or stay p-values.

	
Akaike's Information Criterion (AIC)
 — The model with the smallest criterion value is chosen.

	
Schwarz's Bayesian Criterion (SBC)
 — The model with the smallest criterion value is chosen.

	
Validation Error
 — the error rate for the validation data set. The error is the sum of square errors for least-square regression and negative log-likelihood for logistic regression. The model with the smallest error rate is chosen.

	
Validation Misclassification
 — the misclassification rate for the validation data set. The model with the smallest misclassification rate is chosen.

	
Cross-Validation Error
 — the error rate for cross validation. The error is the sum of square errors for least-square regression and negative log-likelihood for logistic regression. The model with the smallest error rate is chosen.

	
Cross-Validation Misclassification
 — the misclassification rate for cross validation. The model with the smallest misclassification rate is chosen.

	
Profit/Loss
 — Profit/Loss with training data.

	
Validation Profit/Loss
 — Profit/Loss with validation data.

	
Cross Validation Profit/Loss
 — Cross Validation Profit/Loss.

2.2.6

Example 1. Regression

A financial services company offers a home equity line of credit to its clients. The company has extended several thousand lines of credit in the past, and many of these accepted applicants (approximately 20%) have defaulted on their loans. By using geographic, demographic, and financial variables, the company wants to build a model to predict whether an applicant will default.

After analyzing the data, the company selected a subset of 12 predictor (or input) variables to model whether each applicant defaulted. The response (or target) variable BAD indicates whether an applicant defaulted on the home equity line of credit. These variables, along with their model role, measurement level, and description are shown in the following table.

[image:]

The SAMPSIO.HMEQ data set contains 5,960 observations for building and comparing competing models. The data set is split into training, validation, and test data sets for analysis.

To begin analyzing HMEQ, you must first add the data source to your project. In the Project Panel, right-click
 Data Sources
 and click
 Create Data Source
 . This opens the Data Source Wizard. Follow the steps below to complete the Data Source Wizard.

In the Data Source Wizard — Metadata Source window,
 SAS Table
 is automatically selected for the
 Source
 field. Click
 Next
 .

In the Data Source Wizard — Select a SAS Table window, ente
 r
 SAMPSIO.HMEQ
 in th
 e
 Table
 field. Click
 Next
 .

The Data Source Wizard — Table Information window displays some summary information about the HMEQ data set. Click
 Next
 .

In the Data Source Wizard — Metadata Advisor Options window, the
 Basic
 advisor is automatically selected. Click
 Next
 .

In the Data Source Wizard — Column Metadata window, make the following changes to the
 Role
 and
 Level
 for each variable listed (Figure 2-3).

BAD — Set the
 Role
 to
 Target
 . Set the
 Level
 to
 Binary
 .

DELINQ — Set the
 Level
 to
 Ordinal

REASON — Set the
 Level
 to
 Binary
 .

Click
 Next
 .

[image:]

Figure 2-3

In the Data Source Wizard — Decision Configuration window,
 No
 is automatically selected. This indicates that SAS Enterprise Miner will not conduct decision processing for this data source. Click
 Next
 .

In the Data Source Wizard — Create Sample window,
 No
 is automatically selected. This indicates that a sample is not created. Instead, the entire data set is used for analysis. Click
 Next
 .

In the Data Source Wizard — Data Source Attributes window, you can rename the data source, change its role, segment the data source, or add notes to the data source. Set the
 Role
 of the data source to
 Train
 . Click
 Next
 .

The Data Source Wizard — Summary window provides a summary of the data source. To create the data source, click
 Finish
 .

Adding the Nodes

Begin building the first process flow diagram to analyze this data. Use the SAS Enterprise Miner toolbar to access the nodes that are used in your process flow diagram.

To add the input data, drag the HMEQ data set from the
 Data Sources
 section of the Project Panel to the diagram workspace. Because this is a predictive modeling process flow diagram, you will add a Data Partition node. From the
 Sample
 tab of the toolbar, drag a
 Data Partition
 node to the diagram workspace. You can also add a node by right-clicking in the diagram workspace and selecting
 Add Node
 . The nodes in the
 Add Node
 menu are grouped in the same categories as the tabs in the toolbar.

Click the
 Data Partition
 node to select it. Your process flow diagram should resemble the above image. Note the border around the
 Data Partition
 node, which indicates that the node is selected. To deselect every node, click any open space in the project workspace.

Connect your
 HMEQ
 node to the
 Data Partition
 node.

[image:]

All analysis packages must determine how to use variables in the analysis. SAS Enterprise Miner uses metadata in order to make a preliminary assessment of how to use each variable. SAS Enterprise Miner computes simple descriptive statistics that you can access in the Variables window.

To view the variables and their metadata, right-click the
 HMEQ
 node and select
 Edit Variables
 . In the Variables window (Figure 2-4), you can evaluate and update the assignments that were made when the data source was added to your project. The image below shows only the default metadata information. Use the
 Columns
 check boxes to view more metadata information for each variable.

[image:]

Figure 2-4

Notice that the column
 Name
 has a gray background, which indicates that you cannot edit the values in this column. Variable names must conform to the same naming standards that were described earlier for libraries.

The first variable listed is BAD. Although BAD is a numeric variable, it is assigned the
 Level
 of
 Binary
 because it has only two distinct nonmissing values.

The variables LOAN, MORTDUE, and VALUE are assigned the
 Level
 of
 Interval
 because they are numeric variables with more than 10 distinct values.

The variables REASON and JOB are both character variables. However, you set their
 Level
 to different values. Because REASON has only two distinct, nonmissing values, it is best modeled as a
 Binary
 variable. JOB is best modeled as a
 Nominal
 variable because it is a character variable with more than two distinct, non-missing values.

Two other values for
 Level
 are available,
 Unary
 and
 Ordinal
 . A unary variable is a variable that has only one value. An ordinal variable is a numeric variable where the relative order of each value is important. SAS Enterprise Miner automatically assigns numeric variables with more than 2 and fewer than 10 unique values a
 Level
 of
 Ordinal
 . Ordinal variables often contain counts, such as the number of children.

Inspecting the Default Settings of the Data Partition Node

In your diagram workspace, select the
 Data Partition
 node. The default
 Partitioning Method
 for the
 Data Partition
 node is stratified because BAD is a class variable. The available methods for partitioning are as follows:

Simple Random — Every observation in the data set has the sample probability to be selected for a specific partition.

Stratified — When you use stratified partitioning, specific variables form strata (or subgroups) of the total population. Within each stratum, all observations have an equal probability of being assigned to one of the partitioned data sets.

Cluster — When you use cluster partitioning, distinct values of the cluster variable are assigned to the various partitions using simple random partitioning. Note that with this method, the partition percentages apply to the values of the cluster variable, and not to the number of observations that are in the partition data sets

Use the
 Random Seed
 property to specify the seed value for random numbers that generated to create the partitions. If you use the same data set and the same
 Random Seed
 , excluding the seed value 0, in different process flow diagrams, your partitioning results will be identical. Note that re-sorting the data results in a different ordering of the data, and there a different partitioning of the data. This can lead to slightly different modeling results.

The
 Data Set Allocations
 property subgroup enables you to specify what percentage of the input data set is included in each partition. These values must sum to 100.

For this example, use the default settings (Figure 2-5).

[image:]

Figure 2-5

Fitting and Evaluating a Regression Model with Data Replacement

Now that you have decided how the input data is partitioned, you are ready to add a modeling node to the process flow diagram. On the
 Model
 tab, drag a
 Regression
 node to the diagram workspace. Connect the
 Data Partition
 node to the
 Regression
 node.

[image:]

Modeling nodes, such as the
 Regression
 node, require a target variable. The
 Regression
 node fits models for interval, ordinal, nominal, and binary target variables. Because the target variable BAD is a binary variable, the default model is a binary logistic regression model with main effects for each input variable. By default, the node codes your grouping variables with deviation coding. You can specify GLM coding if desired.

In your process flow diagram, right-click the
 Regression
 node and click
 Run
 . In the Confirmation window, click
 Yes
 . After the node has successfully run, click
 Results
 in the Run Status window.

The Effects Plot window (Figure 2-6) contains a bar chart of the absolute value of the model effects. The greater the absolute value, the more important that variable is to the regression model. In this example, the most important variables, and thus best predictor variables, are DELINQ, JOB, NINQ, and DEROG.

[image:]

Figure 2-6

The Score Rankings Overlay window (Figure 2-7) enables you to view assessment charts. The default chart is the
 Cumulative Lift
 chart. Open the drop-down menu in the upper left corner of the Score Rankings Overlay window and click
 Cumulative % Response
 . This chart arranges the observations into deciles based on their predicted probability of response. It then plots the actual percentage of respondents.

[image:]

Figure 2-7

In this example, the individuals are sorted in descending order of their predicted probability of defaulting on a loan. The plotted values are the cumulative actual probabilities of loan defaults. The Score Rankings Overlay window displays information for both the training and the validation data sets. If the model is useful, the proportion of individuals that defaulted on a load is relatively high in the top deciles and the plotted curve is decreasing. Because this curve steadily increases throughout the middle deciles, the default regression model is not useful.

Recall that the variable DEBTINC has a high percentage of missing values. Because of this, it is not appropriate to apply a default regression model directly to the training data. Regression models ignore observations that have a missing value for at least one input variable. Therefore, you should consider variable imputation before fitting a regression model. Use the Impute node to impute missing values in the input data set.

Data Imputation

The Impute node enables you to impute missing values in the input data set. Imputation is necessary to ensure that every observation in the training data is used when you build a regression or neural network model. Tree models are able to handle missing values directly. But regression and neural network models ignore incomplete observations. It is more appropriate to compare models that are built on the same set of observations. You should perform variable replacement or imputation before fitting any regression or neural network model that you want to compare to a tree model.

The Impute node enables you to specify an imputation method that replaces every missing value with some statistic. By default, interval input variables are replaced by the mean of that variable. Class input variables are replaced by the most frequent value for that variable. This example will use those default values.

On the
 Modify
 tab, drag an
 Impute
 node to your diagram workspace. Connect the
 Data Partition
 node to the
 Impute
 node as shown in the diagram below.

[image:]

The default imputation method for class variables is
 Count
 . This means that missing values are assigned the modal value for each variable. If the modal value is missing, then SAS Enterprise Miner uses the second most frequently occurring level.

The complete set of imputation methods for class variables is as follows:

Count
 — Use the Count setting to replace missing class variable values with the most frequently occurring class variable value.

Default Constant Value
 — Use the Default Constant setting to replace missing class variable values with the value that you enter in the Default Character Value property.

Distribution
 — Use the Distribution setting to replace missing class variable values with replacement values that are calculated based on the random percentiles of the variable's distribution. In this case, the assignment of values is based on the probability distribution of the nonmissing observations. The distribution imputation method typically does not change the distribution of the data very much.

Tree
 — Use the Tree setting to replace missing class variable values with replacement values that are estimated by analyzing each input as a target. The remaining input and rejected variables are used as predictors. Use the Variables window to edit the status of the input variables. Variables that have a model role of target cannot be used to impute the data. Because the imputed value for each input variable is based on the other input variables, this imputation technique might be more accurate than simply using the variable mean or median to replace the missing Š_V[U˙_Œ}hŒ1ˆJ/vcUwA

Tree Surrogate
 — Use the Tree Surrogate setting to replace missing class variable values by using the same algorithm as Tree Imputation, except with the addition of surrogate splitting rules. A surrogate rule is a backup to the main splitting rule. When the main splitting rule relies on an input whose value is missing, the next surrogate is invoked. If missing values prevent the main rule and all the surrogates from applying to an observation, the main rule assigns the observation to the branch that is assigned to receive missing values.

None
 — Missing class variable values are not imputed under the None setting.

The following imputation methods are available for interval target variables:

Mean
 — Use the Mean setting to replace missing interval variable values with the arithmetic average, calculated as the sum of all values divided by the number of observations. The mean is the most common measure of a variable's central tendency. It is an unbiased estimate of the population mean. The mean is the preferred statistic to use to replace missing values if the variable values are at least approximately symmetric (for example, a bell-shaped normal distribution). Mean is the default setting for the Default Input Method for interval variables.

Median
 — Use the Mean setting to replace missing interval variable values with the 50th percentile, which is either the middle value or the arithmetic mean of the two middle values for a set of numbers arranged in ascending order. The mean and median are equal for a symmetric distribution. The median is less sensitive to extreme values than the mean or midrange. Therefore, the median is preferable when you want to impute missing values for variables that have skewed distributions. The median is also useful for ordinal data.

Midrange
 — Use the Midrange setting to replace missing interval variable values with the maximum value for the variable plus the minimum value for the variable divided by two. The midrange is a rough measure of central tendency that is easy to calculate.

Distribution
 — Use the Distribution setting to replace missing interval variable values with replacement values that are calculated based on the random percentiles of the variable's distribution. The assignment of values is based on the probability distribution of the nonmissing observations. This imputation method typically does not change the distribution of the data very much.

Tree
 — Use the Tree setting to replace missing interval variable values with replacement values that are estimated by analyzing each input as a target. The remaining input and rejected variables are used as predictors. Use the Variables window to edit the status of the input variables. Variables that have a model role of target cannot be used to impute the data. Because the imputed value for each input variable is based on the other input variables, this imputation technique might be more accurate than simply using the variable mean or median to replace the missing tree values.

Tree Surrogate
 — Use the Tree Surrogate setting to replace missing interval variable values by using the same algorithm as Tree Imputation, except with the addition of surrogate splitting rules. A surrogate rule is a backup to the main splitting rule. When the main splitting rule relies on an input whose value is missing, the next surrogate is invoked. If missing values prevent the main rule and all the surrogates from applying to an observation, the main rule assigns the observation to the branch that is assigned to receive missing values.

Mid-Minimum Spacing
 — Use the Mid-Minimum setting to replace missing interval variable values with mid-minimum spacing. The mid-minimum spacing method uses a numeric constant to specify the proportion of the data to be contained in the spacing.

Tukey's Biweight
 — Use the Tukey's Biweight setting to replace missing interval variable values with the Tukey's Biweight robust M-estimator value.

Huber
 — Use the Huber setting to replace missing interval variable values with the Huber's robust M-estimator value.

Andrew's Wave
 — Use the Andrew's Wave setting to replace missing interval variable values with the Andrew's Wave robust M-estimator value.

Default Constant
 — Use the Default Constant Value setting to replace missing interval variable values with the value that you enter in the Default Character Value property.

None
 — Specify the None setting if you do not want to replace missing interval variable values.

Select the
 Impute
 node and find the
 Indicator Variables
 property subgroup in the properties panel. Set the value of
 Type
 to
 Single
 to create a single indicator variable that indicates whether any variable was imputed for each observation. Set the value of
 Type
 to
 Unique
 to create an indicator variable for each original variable that identifies if that specific variable was imputed.

For this example, set the value of
 Type
 to
 None
 .

An indicator variable is a special variable that is created automatically by SAS Enterprise Miner. The value of this variable is 1 when an observation contained a missing value and 0 otherwise. The Regression and Neural Network nodes can use the indicator variables to identify observations that had missing values before the imputation.

Fitting and Evaluating a Regression Model with Data Imputation

Next, you will build a new regression model based on the imputed data set. From the
 Model
 tab, drag a
 Regression
 node to your diagram workspace. Connect the
 Impute
 node to the new
 Regression
 node.

[image:]

Right-click the
 Regression (2)
 node and click
 Run
 . In the Confirmation window, click
 Yes
 . After the node has successfully run, click
 Results
 in the Run Status window.

In the Score Rankings Overlay window (Figure 2-8), click
 Cumulative % Response
 on the drop-down menu in the upper left corner. Notice that this model shows a smooth decrease in the cumulative percent response, which contrasts with the previous model. This indicates that the new model is much better than the first model at predicting who will default on a loan.

[image:]

Figure 2-8

The discussion of the remaining charts refers to those who defaulted on a loan as defaults or respondents. This is because the target level of interest is BAD=1.

Position the mouse over a point on the
 Cumulative % Response
 plot to see the cumulative percent response for that point on the curve. Notice that at the first decile (the top 10% of the data), approximately 69% of the loan recipients default on their loan.

On the drop-down menu in the upper left corner of the Score Rankings Overlay window, click
 % Response
 (Figure 2-9). This chart shows the non-cumulative percentage of loan recipients that defaulted at each level of the input data.

[image:]

Figure 2-9

On the drop-down menu, click
 Cumulative Lift
 (Figure 2-10).

[image:]

Figure 2-10

Lift charts plot the same information about a different scale. As discussed earlier, the overall response rate is approximately 20%. You calculate lift by dividing the response rate in a given group by the overall response rate. The percentage of respondents in the first decile was approximately 69%, so the lift for that decile is approximately 69/20 = 3.45. Position the cursor over the cumulative lift chart at the first decile to see that the calculated lift for that point is 3.4. This indicates that the response rate in the first decile is more than three times greater than the response rate in the population.

Instead of asking the question, “What percentage of those in a bin were defaulters?”, you could ask the question, “What percentage of the total number of defaulters are in a bin?” The latter question can be evaluated by using the
 Cumulative % Captured Response
 curve. Click
 Cumulative % Captured Response
 on the drop-down men (Figure 2-11).

[image:]

Figure 2-11

You can calculate lift from this chart as well. If you were to take a random sample of 10% of the observations, you would expect to capture 10% of the defaulters. Likewise, if you take a random sample of 20% of the data, you would expect to capture 20% of the defaulters. To calculate lift, divide the proportion of the defaulters that were captured by the percentage of those whom you have chosen for action (rejection of the loan application).

Note that at the 20th percentile, approximately 55% of those who defaulted are identified. At the 30th percentile, approximately 68% of those who defaulted are identified. The corresponding lift values for those two percentiles are approximately 2.75 and 2.27, respectively. Observe that lift depends on the proportion of those who have been chosen for action. Lift generally decreases as you choose larger proportions of the data for action. When you compare two models on the same proportion of the data, the model that has the higher lift is often preferred, excluding issues that involve model complexity and interpretability.

Note:
 A model that performs best in one decile might perform poorly in other deciles. Therefore, when you compare competing models, your choice of the final model might depend on the proportion of individuals that you have chosen for action.

As with the initial
 Regression
 node results, you can view the Effects Plot for this model. Note that in this model, the most important variables are DELINQ, JOB, DEROG, NINQ, and REASON.

2.2.7

Example 2. Logistic Regression

In SAS Enterprise Miner, however, models such as regressions and neural networks ignore altogether observations that contain missing values, which reduces the size of the training data set. Less training data can substantially weaken the predictive power of these models. To overcome this obstacle of missing data, you can impute missing values before you fit the models.

Impute data

It is a particularly good idea to impute missing values before fitting a model that ignores observations with missing values if you plan to compare those models with a decision tree. Model comparison is most appropriate between models that are fit with the same set of observations.

To use the Impute node to impute missing values:

Select the
 Modify
 tab on the Toolbar.

Select the
 Impute
 node icon. Drag the node into the Diagram Workspace.

[image:]

Select the
 Impute
 node. In the Properties Panel, scroll down to view the
 Train
 properties:

For class variables, click on the value of
 Default Input Method
 and select
 Tree Surrogate
 from the drop-down menu that appears.

For interval variables, click on the value of
 Default Input Method
 and select
 Median
 from the drop-down menu that appears.

The default input method specifies which default statistic to use to impute missing values. In this example, the values of missing interval variables are replaced by the median of the nonmissing values. This statistic is less sensitive to extreme values than the mean or midrange and is therefore useful for imputation of missing values from skewed distributions. The values of missing class variables, in this example, are imputed using predicted values from a decision tree. For each class variable, SAS Enterprise Miner builds a decision tree (in this case, potentially using surrogate splitting rules) with that variable as the target and the other input variables as predictors.

In the Diagram Workspace, right-click the
 Impute
 node, and select
 Run
 from the resulting menu. Click
 Yes
 in the Confirmation window that opens.

In the window that appears when processing completes, click
 OK
 .

Note:
 In the data that is exported from the Impute node, a new variable is created for each variable for which missing values are imputed. The original variable is not overwritten. Instead, the new variable has the same name as the original variable but is prefaced with IMP_. The original version of each variable also exists in the exported data and has the role
 Rejected
 . In this example, SES and URBANICITY have values that are replaced and then imputed. Therefore, in addition to the original version, each of these variables has a version in the exported data that is prefaced by IMP_REP_.

Transform Variables

Sometimes, input data is more informative on a scale other than that from which it was originally collected. For example, variable transformations can be used to stabilize variance, remove nonlinearity, improve additivity, and counter non-normality. Therefore, for many models, transformations of the input data (either dependent or independent variables) can lead to a better model fit. These transformations can be functions of either a single variable or of more than one variable.

To use the Transform Variables node to make variables better suited for logistic regression models and neural networks:

From the
 Modify
 tab on the Toolbar, select the
 Transform Variables
 node icon. Drag the node into the Diagram Workspace.

Connect the
 Impute
 node to the
 Transform Variables
 node.

[image:]

Select the
 Transform Variables
 node. In the Properties Panel, scroll down to view the
 Train
 properties, and click on the ellipses that represent the value of
 Formulas
 . The Formulas window appears.

[image:]

 Figure 2-12

In the variables table, click the
 Role
 column heading to sort the variables in ascending order by their role.

You can select any row in the variable table to display the histogram of a variable in the panel above. Look at the histograms for all variables that have the role
 Input
 . Notice that several variables have skewed distributions.

Close the Formulas window.

In the Properties Panel, scroll down to view the
 Train
 properties, and click on the ellipses that represent the value of
 Variables
 . The Variables — Trans window appears.

The common log transformation is often used to control skewness. Select the transformation
 Method
 for the following interval variables and select
 Log 10
 from the drop-down menu that appears:

FILE_AVG_GIFT

LAST_GIFT_AMT

LIFETIME_AVG_GIFT_AMT

LIFETIME_GIFT_AMOUNT

You can hold down the Ctrl key to select multiple rows. Then, when you select a new
 Method
 for one of the selected variables, the new method will apply to all of the selected variables.

Select the transformation
 Method
 for the following interval variables and select
 Optimal Binning
 from the drop-down menu that appears:

LIFETIME_CARD_PROM

LIFETIME_GIFT_COUNT

MEDIAN_HOME_VALUE

MEDIAN_HOUSEHOLD_INCOME

PER_CAPITA_INCOME

RECENT_RESPONSE_PROP

RECENT_STAR_STATUS

The optimal binning transformation is useful when there is a nonlinear relationship between an input variable and the target. For more information about this transformation, see the SAS Enterprise Miner Help.

Click
 OK
 .

In the Diagram Workspace, right-click the Transform Variables node, and select
 Run
 from the resulting menu. Click
 Yes
 in the Confirmation window that opens.

In the window that appears when processing completes, click
 OK
 .

Analyze with a Logistic Regression Model

As part of your analysis you have decided to include a logistic regression as one of the parametric models.

To use the Regression node to fit a logistic regression model:

Select the Model tab on the Toolbar.

Select the Regression node icon. Drag the node into the Diagram Workspace.

Connect the Transform Variables node to the Regression node.

[image:]

 To examine histograms of the imputed and transformed input variables, right-click the Regression node and select
 Update
 . In the diagram workspace, select the Regression node. In the Properties Panel, scroll down to view the Train properties, and click on the ellipses that represent the value of
 Variables
 . The Variables — Reg window appears.

Select all variables that have the prefix LG10_. Click
 Explore
 . The Explore window appears (Figure 2-13).

[image:]

Figure 2-13

You can select a bar in any histogram, and the observations that are in that bucket are highlighted in the EMWS.Trans_TRAIN data set window and in the other histograms. Close the Explore window to return to the Variables — Reg window.

(Optional) You can explore the histograms of other input variables.

Close the Variables — Reg window.

In the Properties Panel, scroll down to view the Train properties. Click on the
 Selection Model
 property in the
 Model Selection
 subgroup, and select
 Stepwise
 from the drop-down menu that appears. This specification causes SAS Enterprise Miner to use stepwise variable selection to build the logistic regression model.

Note:
 The Regression node automatically performs logistic regression if the target variable is a class variable that takes one of two values. If the target variable is a continuous variable, then the Regression node performs linear regression.

In the Diagram Workspace, right-click the Regression node, and select
 Run
 from the resulting menu. Click
 Yes
 in the Confirmation window that opens.

In the window that appears when processing completes, click
 Results
 . The Results window appears.

Maximize the Output window. This window details the variable selection process. Lines 401 – 424 list a summary of the steps that were taken.

Minimize the Output window and maximize the Score Rankings Overlay window. From the drop-down menu, select
 Cumulative Total Expected Profit
 (Figure 2-14).

[image:]

Figure 2-14

The data that is used to construct this plot is ordered by expected profit. For this example, you have defined a profit matrix. Therefore, expected profit is a function of both the probability of donation for an individual and the profit associated with the corresponding outcome. A value is computed for each decision from the sum of the decision matrix values multiplied by the classification probabilities and minus any defined cost. The decision with the greatest value is selected, and the value of that selected decision for each observation is used to compute overall profit measures.

The plot represents the cumulative total expected profit that results from soliciting the best
 n
 % of the individuals (as determined by expected profit) on your mailing list. For example, if you were to solicit the best 40% of the individuals, the total expected profit from the validation data would be approximately $1850. If you were to solicit everyone on the list, then based on the validation data, you could expect approximately $2250 profit on the campaign.

Close the Results window.

2.3

Dmine Regression Node

 The Dmine Regression node performs the following tasks:

	
Computes a forward stepwise least-squares regression. In each step, an independent variable is selected that contributes maximally to the model R-square value.

	
Optionally computes all 2-way interactions of classification variables.

	
Optionally uses AOV16 variables to identify non-linear relationships between interval variables and the target variable.

	
Optionally uses group variables to reduce the number of levels of classification variables.

	
For a binary target (class response variable), a fast algorithm for (approximate) logistic regression is computed. The independent variable is the prediction from the former least squares regression. Since only one regression variable is used in the logistic regression, only two parameters are estimated, the intercept and slope. The range of predicted values is divided into a number of equidistant intervals (knots), on which the logistic function is interpolated.

2.3.1

Dmine Regression Node Data Set Requirements

 The Dmine Regression node performs a regression analysis on data sets that have a binary or interval level target variable. If you want to create a regression model on data that contains a nominal or ordinal target, then you should use the Regression node.

The manner is which missing values are handled depends on the type of variable.

	
Missing values in the categorical input variable are treated as an additional category.

	
Missing values in an interval input variable are replaced by the mean of that variable. If there is a variable that is assigned the role of FREQ, the weighted mean of the interval input variable is used.

	
Observations that have missing values in the target variables are excluded from the analysis.

2.4

Partial Least Squares Node

 The Partial Least Squares (PLS) node is located on the Model tab of the Enterprise Miner tools bar. Partial least squares is a tool that you can use to model continuous and binary targets. The SAS Enterprise Miner PLS node is based on SAS/STAT PROC PLS. The Enterprise Miner PLS node produces data step score code and standard predictive model assessment results.

Data mining problems that might traditionally be approached using multiple linear regression techniques become more difficult when there are many input variables or there is significant collinearity between variables. In these instances, regression models tend to overfit the training data and do not perform well when modeling other data. Often this is the case when just a few latent variables among the many input variables are responsible for most of the variation in response, or target variable values.

Partial least squares is a tool that is useful for extracting the latent input variables that account for the greatest variation in the predicted target. To many data miners, PLS means "projection to latent structures". While PLS is useful for identifying latent variables from a pool of many, the analytical results of the PLS tool are not useful for identifying variables of minor or no importance. Those tasks should be performed using other Enterprise Miner data mining tools, such as the Variable Selection node.

It is difficult to identify the weighting of the latent input predictor variables that PLS uses, because they are based on cross-product relations with the target variable, instead of the covariances between the input variables themselves as is more commonly seen in common factor analysis.

2.4.1

Partial Least Squares Node Algorithm

 The PLS algorithm is a multivariate extension of a multiple linear regression that was developed by Herman Wold in the 1960s as an econometric technique. Since then, PLS has been widely used in industrial modeling and process control systems where processes can have hundreds of input variables and scores of outputs. PLS is used today in data mining projects for marketing, social sciences, and education.

The PLS algorithm reduces the set of variables (both input and target) to principal component matrices. The input variable components are used to predict the scores on the target variable components, then the target variable component scores are used to predict the value of the target variable.

Why does this the PLS linear method work when collinearity exists between input variables? Because the principal component scores for the target variable are linear combinations of the original input variables, no correlation exists between the component score variables that become inputs in the predictive model.

2.4.2

Partial Least Squares Node Train Properties: Modeling Techniques

	
 Regression Model
 — Use the Regression Model property to specify the method to be used for general factor extraction.

	
PLS
 — performs general factor extraction using the original Partial Least Squares (PLS) method of Wold (1966). PLS is the default setting for the Regression Model property.

	
PCR
 — performs general factor extraction using principal components regression. Traditional PCR methods use the first k components (first by having the highest eigenvalues) to predict the response variable.

	
SIMPLS
 — performs general factor extraction using the SIMPLS method of de Jong (1993). When you have a single target variable, SIMPLS is identical to PLS. When you have many target variables, SIMPLS is computationally much more efficient. PLS and SIMPLS results are usually very similar.

	
PLS Algorithm
 — When the Regression Model property is set to PLS or SIMPLS, use the PLS Algorithm property to specify the algorithm that you want to use to derive the extracted partial least squares factors.

	
NIPALS
 — requests the nonlinear iterative partial least squares (NIPALS) algorithm. NIPALS is the default setting for the PLS Algorithm property.

	
SVD
 — bases the PLS factor extraction on the Singular Value Decomposition (SVD) of X'Y. SVD is the most accurate but least computationally efficient approach.

	
Eigenvalue
 — bases the PLS factor extraction on the Eigenvalue (EIG) decomposition of Y'XX'Y

	
RLGW
 — bases the PLS factor extraction on an iterative approach that is efficient when there are many predictors (Rannar et al. 1994).

	
Maximum Iteration
 — When the PLS Algorithm property is set to NIPALS or RLGW, use the Maximum Iteration property to specify the maximum number of iterations that are allowed for the NIPALS or RLGW algorithms. The Maximum Iteration property accepts integer inputs, and the default value is 200.

	
Epsilon
 — When the PLS Algorithm property is set to NIPALS or RLGW, use the Epsilon property to specify the convergence criterion for the NIPALS or RLGW algorithms. The Epsilon property accepts real number inputs, and the default value is 1E-12.

2.4.3

Partial Least Squares Node Example

 This example performs a partial least squares regression on an example SAS data set composed of training metadata about applicants for credit. The training data has a binary target variable named GOOD_BAD. The GOOD_BAD status indicates whether the individual in the training data defaulted on his loan. The example uses partial least squares regression to create a model that uses a combination of latent vectors to predict the good risks among a pool of credit applicants.

This example will create the process flow diagram shown below.

[image:]

Next, you will need to create the German Credit data set. To create the German Credit data set, select
 Help
 [image: Descripcin: then select]
 Generate Sample Data Sources...
 from the main menu. Select only the German Credit data set, as shown in the image below (Figure 2-15).

[image:]

Figue 2-15

 Use the
 Variables
 property to ensure that the following conditions are met:

	
The role of the variable GOOD_BAD is
 Target
 and its
 Level
 is set to
 Binary
 .

	
The measurement level for the input variable PURPOSE is set to
 Nominal
 .

Add the German Credit data set to your project diagram workspace. Then, add a Data Partition node, located in the Sample tab, to the diagram workspace.

 Specify the following settings in the Data Set Percentages section of the Partition Node properties panel:

	
Set the percentage for the
 Training
 property to 70.0

	
Set the percentage for the
 Validation
 property to 30.0

	
Set the percentage for the
 Test
 property to 0.0

Add a Partial Least Squares node, located in the Model tab, to the diagram.

 Specify the following setting in the Variable Selection section of the Partial Least Squares properties panel:

	
Set the
 Export Selected Variables
 property to
 Yes
 .

The Partial Least Squares node is configured by default to use the NIPALS algorithm to create a partial least squares model. The model generates model weight and loading tables for each variable, according to the number of exported factors. The model also calculates coefficient values for standardized parameter estimates and variable importance scores. The standardized parameter estimates and variable importance scores can be used to select the variables that best explain variation in the target variable GOOD_BAD. The model exports the best predictor variables to a subsequent modeling node, such as a Decision Tree, for further analysis.

In this example, the Variable Selection Criterion setting specifies
 Both
 . The Both setting means that the model selects variables based on performance criteria from either of two measures. Variables will be selected that have Variable Importance for Projection scores that are greater than the threshold value that is specified in the Partial Least Square node's VIP Cutoff property. Variables will also be selected if their Standardized Parameter Estimate score exceeds the threshold specified in the Para. Est. Cutoff property.

Right-click the Partial Least Squares node and select
 Run
 . After the process flow diagram completes successfully, select
 Results
 in the Run Status window.

The Partial Least Squares Results window displays bar charts for Absolute Standardized Parameter Estimates and Variable Importance for Projection (Figure 2-16). The Variable Selection table provides Standardized Parameter Estimate and Variable Importance for Projection scores for each variable. Summary columns indicate whether the variable was rejected, based on both performance measure thresholds. If a variable was not rejected by both of the variable selection criteria, the variable is assigned a Role of Input and exported to the successor node.

[image:]

Figure 2-16

In the Variable Selection table of the Partial Least Squares Results window, click on the Role column heading to sort it alphabetically. View the grouping of variables with a Role of Input, then drag your mouse pointer down the rows to highlight all of them. As each variable is highlighted, its corresponding measurement graphic in the Absolute Standardized Parameter Estimates and Variable Importance for Projection is also highlighted (Figure 2-17). You can select and deselect variables in the table to find their corresponding plot graphics, or you can hover your mouse pointer over a plot graphic to view its pop-up information.

[image:]

Figure 2-17

 In the sorted Variable Selection table, the following variables from the input data set SAMPSIO.DMAGECR are selected for use as input variables:

	
amount

	
checking

	
duration

	
history

	
installp

	
purpose3

	
savings

Each of the selected input variables exceeded the minimum threshold value for at least one of the two specified Variable Selection performance measures.

You can verify that the Partial Least Squares node exports the correct variable by adding and connecting a successor node to the diagram, such as the Decision Tree node shown below.

[image:]

It is not necessary to run the newly added node. After you connect the successor node, right-click the node and select Edit Variables. When the Edit Variables window of the successor node opens, it will display the variables that the Partial Least Squares node exported. Here we can see the variables that the Decision Tree imports are indeed the same variables that the Partial Least Squares node chose to export as sources of variation in predicted target variable values. Subsequent modeling nodes will further investigate relationships between the input and target variables.

2.5

LARS Node

 The LARs node is located on the Model tab of the Enterprise Miner toolbar. LARs is an abbreviation for the Least Angle Regression algorithm that this data mining tool uses. Data mining databases usually contain a large number of potential model inputs (independent or explanatory variables) that can be used to predict the value of a given target (a dependent or response variable). The LARs node can perform both variable selection and model-fitting tasks. When used for variable selection, the LARs node selects the variables in a continuous fashion, as coefficients for each selected variable grow from zero to the variable's least square estimates.

The LARs node can produce models that range from simple intercept models to least square regression models with many input variables. You specify the model selection criteria that you want to use to choose the optimal model. The LARs node sets the role of input variables that were excluded in the optimal model to rejected. Input variables that the LARs node rejects can be passed to subsequent modeling nodes, but their rejected status means that they will not be used as model inputs in successor nodes.

When using the LARs node to perform model fitting, LARs uses criteria from either least angle regression or the LASSO regression to choose the optimal model.

2.5.1

LARs Node Example

Create the Data Source

 This example uses the sample SAS data set SAMPSIO.DMAGECR. You must use the SAMPSIO.DMAGECR data set to create an Enterprise Miner Data Source. Right-click the Data Sources folder in the Project Navigator and select
 Create Data Source
 to launch the Data Source wizard.

	
 Choose
 SAS Table
 as your metadata source and click
 Next
 .

	
 Ente
 r
 SAMPSIO.DMAGEC
 R
 in the Table field and click
 Next
 .

	
 Continue to the Metadata Advisor step and choose the
 Advanced Metadata Advisor
 .

	
 In the Column Metadata window, set the role of the variable AMOUNT to
 Target
 , set the level of CHECKING, INSTALLP, and SAVINGS to
 Interval
 , and set the role of GOOD_BAD to
 Rejected
 . Click
 Next
 .

	
 There is no Decision Processing. Click
 Next
 .

	
 Click
 Finish
 .

Place the Nodes on the Diagram Workspace

 Drag the DMAGECR data source that you just created from the
 Data Sources
 folder of the Project Navigator onto the Diagram Workspace. Next, drag a LARs node from the
 Model
 folder onto the Diagram Workspace and connect the two nodes.

[image:]

Configure the LARs Node

 Click the LARs node in the Diagram Workspaceto select it. Then, set the
 Use Class Inputs
 property in the LARs node Properties panel to
 No
 .

Run the LARs Node

 Right-click the LARs node in the Diagram Workspace and select
 Run
 .

Open the LARs Node Results Window

 After the LARs node successfully runs, select
 Results
 when the Run Status window reports that the run has completed.

Examine the Results

 The Results — LARS window appears. The Results — LARS window displays a line plot of the scoring ranking overlay, a bar chart of the absolute value of the standardized coefficients, a line plot of a variety of fit statistics, a table of the selected variables and their coefficients, a line plot of the coefficient paths, a table of the fit statistics for the target variables and the SAS output.

[image:]

Figure 2-18

	
Score Ranking Overlay Plot
 — displays the comparison of the means of the predicted and the target variables at a series of percentiles of the training data and the validation data. It also displays the maximum and minimum values of the predicted and the target variables.

	
Parameter Estimates Plot
 — This bar chart displays the absolute values of the standardized coefficients. In this plot, we can see that only AGE, DURATION, INSTALLP, and SAVINGS have nonzero coefficients. The sign of INSTALLP is minus, and the signs of all the other nonzero coefficients are plus.

	
Iteration Plot
 — This plot displays the stepwise change of different fit statistics during the steps in the LAR algorithm. The pattern is obvious. The SBC value decreases quickly, and then rises gradually. The minimum value is realized during step 4. Therefore, the optimal model, based on the SBC criterion, is the model at step 4. The vertical line in the plot indicates the step that corresponds to the optimal model.

	
Selected Variables Table
 — lists the variables that were chosen as model predictors based on SBC criterion scores and parameter estimates of the selected variables.

	
Coefficient Path Plot
 — displays the stepwise change in value of input variable coefficients as variables enter and exit the model. The vertical line indicates the step that corresponds to the optimal model. In this example, only four predictor variables are identified in the optimal model. All other input variables have coefficients of zero.

	
Fit Statistics Table
 — displays a list of training data fit statistics for the target variable AMOUNT.

	
SAS Output Window
 — The SAS Output window for the LARs node displays the following charts:

	
Variable Summary
 — The Variable Summary of the LARS Output window breaks down the input variables by Role, Level, and Count.

	
Predicted and Decision Variables
 — This table provides the model fitting information.

	
The GLMSelect Procedure
 — GLMSelect is the SAS procedure that implements the LAR or LASSO variable selection. The GLMSelect output includes the ANOVA table and the parameter estimates table of the selected variables at each step as the variables enter or exit the model as well as the reprint of the ANOVA table and the parameter estimate table for the optimal model.

Note:
 There is a selection summary table in the LARs Results that gives the sequence of the variables as they enter the model. During LASSO variable selection, variables can exit the model at some steps.

	
Fit Statistics
 — The set of fit statistics that are displayed in the Results window.

	
Assessment Score Rankings
 — the data that was used to generate the score ranking overlay plot.

CHAPTER 3

SUPERVISED LEARNING. CLASSIFICATION PREDICTIVE TECHNIQUES. DECISION TREES WITH SAS ENTERPRISE MINER

3.1

DECISION TREE NODE

 The
 Decision Tree
 node is located in the Model folder of the SAS Enterprise Miner toolbar (Figure 3-1). predictive modeling, the decision is the predicted value.

[image:]

Figure 3-1

An empirical tree represents a segmentation of the data that is created by applying a series of simple rules. Each rule assigns an observation to a segment based on the value of one input. One rule is applied after another, resulting in a hierarchy of segments within segments. The hierarchy is called a tree, and each segment is called a node. The original segment contains the entire data set and is called the root node of the tree. A node with all its successors forms a branch of the node that created it. The final nodes are called leaves. For each leaf, a decision is made and applied to all observations in the leaf. The type of decision depends on the context. In

You use the
 Decision Tree
 node to create decision trees that do one of the following tasks:

	
classify observations based on the values of nominal, binary, or ordinal targets

	
predict outcomes for interval targets

	
predict the appropriate decision when you specify decision alternatives

An advantage of the
 Decision Tree
 node over other modeling nodes, such as the
 Neural Network
 node, is that it produces output that describes the scoring model with interpretable English rules. The
 Decision Tree
 node also produces detailed score code output that completely describes the scoring algorithm in detail. For example, the English rules for a model might describe the rules, "If monthly mortgage-to-income ratio is less than 28% and months posted late is less than 1 and salary is greater than $30,000, then issue a gold card."

Another advantage of the
 Decision Tree
 node is the treatment of missing data. The search for a splitting rule uses the missing values of an input. Surrogate rules are available as backup when missing data prohibits the application of a splitting rule.

Note:
 English rules are useful for understanding the structure of a decision tree. But using the English rules set as the sole basis for a scoring algorithm is not recommended. The English rules output does not completely describe how the
 Decision Tree
 node handles missing and unknown data values in your scoring model. If you want to export the logic in your scoring model for use in an external application, you should use the output score code from the Decision Tree Results.

Decision trees produce a set of rules that can be used to generate predictions for a new data set. This information can then be used to drive business decisions. For example, in database marketing, decision trees can be used to develop customer profiles that help marketers target promotional mailings in order to generate a higher response rate.

The SAS implementation of decision trees finds multi-way splits based on nominal, ordinal, and interval inputs. You choose the splitting criteria and other options that determine the method of tree construction. The options include the popular features of CHAID (Chi-square automatic interaction detection), and those described in
 Classification and Regression Trees
 . (See L. Breiman, J.H. Friedman, R. A. Olsen, and C. J. Stone, 1983-).

Prior probabilities and frequencies enable you to use the training data in different proportions than in the populations on which predictions are made. For example, if fraud occurs in 1% of transactions, then one-tenth of the non-fraud data is often adequate to develop the model using prior probabilities that adjust the 10-to-1 ratio in the training data to the 100-to-1 ratio in the general population. You specify the prior vector as part of the target profile for the categorical target.

The criterion for evaluating a splitting rule can be based either on a statistical significance test, namely an F test or a Chi-square test, or on the reduction in variance, entropy, or Gini impurity measure. The F test and Chi-square test accept a p-value input as a stopping rule. All criteria allow the creation of a sequence of subtrees. You can use validation data to select the best subtree.

3.1.1

Decision Tree Node Variable Requirements

 The
 Decision Tree
 node requires at least one target (response) variable and at least one input (independent explanatory) variable. You can also specify cost and frequency variables. Multiple target variables, multiple input variables, multiple cost variables, and a single frequency variable are allowed for the
 Decision Tree
 node. The target, input, cost, and frequency variables are mutually exclusive variables.

The node supports all target measurement levels (nominal, binary, ordinal, or interval). Cost and frequency variables must be interval variables.

A frequency variable represents the frequency of occurrence for other values in each observation. If the value of a frequency variable is missing or less than 0, then the observation is not used in the analysis. Frequency variable values are not truncated. You assign the frequency model role to the appropriate variable when you create a data source.

 Decision trees are commonly used for interactive segmentation, usually market segmentation, sometimes followed by predictive modeling in the segments. With multiple targets, the user can select a different target in a leaf that has become sufficiently homogeneous with respect to the original target. Theuser ends up with one set of rules to display or score new data with later, instead of having to piece together rules from separate trees.

In contrast to segmentation, statisticians use trees as a predictive model in itself. SAS decision trees with multiple targets are not suitable for this because the split search only looks at one of the targets.

In order to use multiple targets, you set the Use Multiple Targets property to Yes. When multiple target variables are used, you use the Variables property of the
 Decision Tree
 node to specify which target variable is to be used as the decision variable for the root node of the tree. You do this by setting the Use property to Yes. All other target variables must have their Use property set to No. You can switch targets by clicking on a leaf and then clicking the Switch Targets icon that appears on the toolbar of the Interactive Decision Tree window. When multiple targets are used, Assessment Plots and Assessment Tables are not available.

3.1.2

Results Tables and Plots

Fit statistics table

 The Fit Statistics table displays the following statistics for the training, validation, and test data sets (if available):

	
NOBS — Sum of Frequencies

	
SUMW — Sum of Case Weights Times Freq

	
MISC — Misclassification Rate

	
MAX — Maximum Absolute Error

	
SSE — Sum of Square Errors

	
ASE — Average Sum of Squares

	
RASE — Root Average Sum of Squares

	
DIV — Divisor for ASE

	
DFT — Total Degrees of Freedom

	
APROF — Average Profit for Target

	
PROF — Total Profit for Target

	
PASE — Average Squared Error with Priors

	
PMISC — Misclassification Rate with Priors

Classification Chart

 The Classification chart displays a stacked bar chart of the classification results for a categorical target variable. The following display shows an example of the Classification Table chart (3-21)-

[image:]

Figure 3-21

The horizontal axis displays the target levels that observations actually belong to. The color of the stacked bars identifies the target levels that observations are classified into. The height of the stacked bars represents the percentage of total observations.

Score Rankings Overlay Chart

The Score Ranking Overlay chart enables you to overlay training and validation plots for the following statistics on the vertical axis. These statistics are computed based on the model that you create, the random baseline model, and the exact model.

	
Cumulative Lift

	
Lift

	
Gain

	
% Response

	
Cumulative % Response

	
% Captured Response

	
Cumulative % Captured Response

	
Total Profit

	
Total Expected Profit

	
Cumulative Expected Profit

	
Cumulative Total Expected Profit

	
Mean Expected Profit

The horizontal axis of a Score Rankings chart displays the groups (percentile) of observations (Figure 3-22).

[image:]

Figure 3-22

When there is no validation data set, the score rankings overlay simply overlays cumulative, baseline, and best plots of the training data for each statistic.

Score Rankings Matrix

 The score rankings matrix plot (Figure 3-23) overlays the selected statistics for standard, baseline, and best models in a lattice that is defined by the training and validation data sets. The example below plots model cumulative lift, base model cumulative lift, and the best cumulative lift across percentiles. Plots can also be created for report variables. In order for the score matrix plots to be generated, a
 Data Partition
 node must be included in your process flow diagram to create a validation sample.

 [image:]

Figure 3-23

Score Distribution Plot

 The Score Distribution chart (Figure 3-24) plots the proportions of events (by default), nonevents, and other values on the vertical axis. The values on the horizontal axis represent the model score of a bin. The model score depends on the prediction of the target and the number of buckets used.

For categorical targets, observations are grouped into bins, based on the posterior probabilities of the event level and the number of buckets. For interval targets, observations are grouped into bins, based on the actual predicted values of the target.

The Score Distribution chart of a useful model shows a higher percentage of events for higher model score and a higher percentage of nonevents for lower model scores.

[image:]

Figure 3-24

Leaf Statistics Plot

 The Leaf Statistics plot (Figure 3-25) displays a bar chart of summary statistics for the leaves of the currently selected subtree.

[image:]

Figure 3-25

If you select the Leaf Statistics plot in the Decision Tree Results window, you can view the Leaf Statistics table by selecting
 View
 [image: Descripcin: then select]
 Table
 from the Results main menus.

The information that is provided in this plot depends on whether the target variable is categorical or interval.

English Rules Window

 The English Rules window displays the interpretable node definition for the leaf nodes in a tree model.

[image:]

Figure 3-25

To display the English Rules for the selected node, select
 Edit
 [image: Descripcin: then select]
 Tools
 [image: Descripcin: then select]
 Display English Rules
 from the Results window menu. The English Rules window is unavailable when there are multiple targets.

Tree Plot

 A decision tree contains the following items:

	
Root node
 — the top node of a vertical tree that contains all observations.

	
Internal nodes
 — non-terminal nodes that contain the splitting rule. This includes the root node.

	
Leaf nodes
 — terminal nodes that contain the final classification for a set of observations.

 A default decision tree has the following properties:

	
It is displayed in vertical orientation.

	
The nodes are colored by the proportion of a categorical target value or the average of an interval target.

	
The line width is proportional to the ratio of the number of observations in the branch to the number of observations in the root node.

	
The line color is constant.

You can select one or more nodes in a tree plot by doing one of the following:

	
clicking or CTRL-clicking the nodes

	
pressing the left mouse button and dragging the mouse to define a rectangle that contains the node or nodes that you want to select.

When you move your mouse pointer over a node of a tree, a text box displays information about the node. To display node text in the nodes of a tree, right-click in the tree and select
 View
 [image: Descripcin: then select]
 Node Text
 .

The node text that is displayed in a tree depends on the target variable. For a categorical target variable, the text box contains separate rows for each target value and each decision. It provides information about the percentage of observations in a node for each target value. If the target is interval, the text box displays the number of observations in a node and the average value of the model assessment measure.

To zoom in or zoom out in the tree, right-click in the tree, select
 View
 , and then select the percentage that you want.

Treemap Plot

 The Treemap plot displays a compact graphical display of the tree, which is similar to the tree in the Decision Tree window.

 A default tree in the Treemap plot has the following properties:

	
The nodes are colored by the proportion of a categorical target value or the average of an interval target.

	
The node width is proportional to the number of observations in the node.

Selecting a node in the Treemap window automatically selects the same node in the Tree window.

Iteration Plot

 The Iteration Plot window (Figure 3-26) displays plots for different subtrees. The horizontal axis displays the number of leaves in a subtree. A reference line is drawn to indicate which subtree was selected as the final model.

[image:]

Figure 3-26

 Use the Select Chart list to choose from the following values that you can plot:

	
Average Squared Error

	
Misclassification Rate

	
Sum of Squared Errors

	
Maximum Absolute Error

	
Subtree Assessment

	
Average Profit (if decisions are defined)

	
Total Profit (if decisions are defined)

The iteration plot is unavailable when there are multiple targets.

Variable Importance Table

 Open the Results window of the
 Decision Tree
 node by right-clicking the node and selecting Results from the pop-up menu. Within the results output, select
 View
 and then
 Model
 from the pop-up menu. The Variable Importance table is accessed by next selecting
 Variable Importance
 from the pop-up menu. This table contains a measure of the relative importance of each input variable in the selected subtree.

 The table contains the following columns:

	
Variable Name: The name of the selected variable.

	
Label: The label given by the user for the selected variable.

	
Number of Splitting Rules: The number of splitting rules that use the selected variable.

	
Number of Surrogate Rules: the number of surrogate rules that use the selected variable if surrogate rules were generated.

	
Importance: The observed value of the Variable Importance statistic for the training data set.

	
Validation Importance: The observed value of the Variable Importance statistic for the validation data set.

	
Ratio of Validation to Training Importance: The observed ratio of the Validation Variable Importance statistic to the Training Variable Importance statistic. A small ratio indicates a variable used in overly optimistic splitting rules. This value is set to missing if Training Importance is less than 0.0001.

3.1.3

Tree Properties Window

Graph Properties

 You use the
 Graph
 properties (Figure 3-27) of the Properties window to change the style of the tree plot and to control whether chart tips are displayed. To access the Properties — Graph window, right click anywhere in the Tree window and select
 Graph Properties
 .

[image:]

Figure 3-27

Tree Properties

 You use the
 Tree
 properties of the Properties window (Figure 3-28) to specify the orientation of the tree and the following properties of the branches of a tree:

	
Orientation
 — specifies whether to display the tree plot in the horizontal or the default vertical orientation.

	
Branches
 — specifies the style of branch that appears between nodes in your tree plots. Available values are Manhattan, Straight, and Triangle. Manhattan uses orthogonal lines to display branches. Strait uses diagonal lines to display branches. Triangle shows the branches between nodes as solid triangles. The triangle apex begins at the parent node, and the triangle base abuts the successor node. If you select
 Triangle
 as your Branch Style, the Branch Width setting does not change the appearance of the tree.

	
Text visible
 — Select the
 Text Visible
 check box if you want to display the splitting rule. When you enable the Text visible setting, you can click
 Text Options
 to configure the font, size, color, and style of the text.

	
Branch Width
 — The Branch Width setting does not change the appearance of the tree when you use the triangle branch style. If you specify
 Fixed
 , the widths of all branches are fixed. You specify the line width by using the list. If you specify
 Proportional
 , the width of the branch is proportional to the ratio of the number of observations in the branch to the number of observations in the root node. If you specify
 User Defined Variable
 , the width of the branch is determined by a user-defined variable.

	
Color
 — Select
 Solid
 to use a solid color for branches in the tree. Click
 [image:]
 to choose a different color. The Link Color window appears on the
 Swatch
 tab. The
 Swatch
 tab is a color swatch pallet. Click a swatch cell to choose a new color. If you prefer, you can fine-tune your color selection with the tools on the
 RGB
 and
 HSB
 tabs of the Link Color window. The
 RGB
 (Red-Green-Blue) tab contains a gradient RGB color tool. The
 HSB
 (Hue-Saturation-Brightness) tab contains color attribute settings.

[image:]

Figure 3-28

Nodes Properties

 You use the
 Nodes
 properties of the Properties window (Figure 3-29) to specify the following properties of the tree nodes:

[image:]

Figure 3-29

Text
 — Use the Text setting to configure how nodes are labeled in your tree plot. Select
 Labels and Values
 to display variable labels and values for each node. Select
 Values Only
 to display only variable values for each node. Select
 No Text
 to hide all text for the nodes.

	
Show extended node text
 — Select the check box if you want to display the maximum information about a node. For example, with a binary target, when the check box is selected, each node displays the name of the target, The percentage of ones, the percentage of zeros, and the number of observations. When the check box is deselected, the percentage of ones is not displayed, because this can be inferred from the percentage of zeros.

	
Text Options
 — Use the Text Options setting to configure how node text appears in your tree plot. Click
 Text Options
 to open the Node Text Options window. The Node Text Options window contains tabbed settings for the text font, size, color, style, and transparency. Close the Node Text Options window to return to the
 Nodes
 tab of the Tree Properties window.

	
Background
 — Choose between two settings to configure the coloring or shading of node boxes in your tree plot. Use the
 Background
 setting to a solid color for the node boxes in the tree plot. Click
 [image:]
 to choose a different color. The Background Attributes window opens to a pallet display of color swatches. Choose a color scheme for your node box backgrounds.

	
Node Outline Width
 — Use the Node Outline Width setting to specify the width of the node border. Use the drop-down list to choose a width for the node borders in your tree plot.

	
Flagged Node Outline Width
 — Use the Flagged Node Outline Width setting to specify the width of flagged node borders. Use the list to choose a width for the flagged node borders in your tree plot.

	
Flagged Node Background
 — Use the Flagged Node Background setting to a solid color for the flagged node boxes in the tree plot. Click on the ellipsis icon to the right of the color bar if you want to choose a different color. The Flagged Node Color window opens to a pallet display of color swatches. Choose a color scheme for your node box backgrounds and close the Flagged Node Color window to return to the
 Nodes
 tab of the Properties window.

	
Text Options
 — enables you to configure how text appears in flagged nodes in your tree plot. Click
 Text Options
 to open the Flagged Node Text Options window. The Flagged Node Text Options window contains tabbed settings for text font, size, color, style, and transparency. Close the Flagged Node Text Options window to return to the
 Nodes
 tab of the Tree Properties window.

Title/Footnote Properties

 You use the
 Title/Footnote
 tab of the Properties window (Figure 3-30) to specify graph titles, subtitles, and footnotes:

[image:]

Figure 3-30

To specify a graph title, subtitle, or footnote, select the corresponding check box to enable the Text field. Enter your text in the field. Select the corresponding
 Text options
 button to specify the text font, size, style, color, and other text parameters.

3.1.4

Decision Tree Interactive Training

 To launch an interactive training session in Enterprise Miner, click the
 [image:]
 button at the right of the Interactive property in the properties panel.

3.1.5

Decision Tree Node Output Data Sources

 After the
 Decision Tree
 node has run, with the node selected in the Diagram Workspace, select the
 [image:]
 button to the right of the Exported Data property in the node properties panel. This opens the Exported Data — Decision Tree window (Figure 3-31).

[image:]

Figure 3-31

You can select any output data source that has existing data, and examine it further.

	
Browse
 opens a window where you can browse the data set.

	
Explore
 opens the Explore window, where you can sample and plot the data.

	
Properties
 opens the Properties window for the data set. The Properties window contains a
 Table
 tab and a
 Variables
 tab. The tabs contain summary information (metadata) about the table and variables.

3.1.6

Example

You enable SAS Enterprise Miner to automatically train a full decision tree and to automatically prune the tree to an optimal size. When training the tree, you select split rules at each step to maximize the split decision logworth. Split decision logworth is a statistic that measures the effectiveness of a particular split decision at differentiating values of the target variable. You interactively train a decision tree. At each step, you select from a list of candidate rules to define the split rule that you deem to be the best.

Automatically Train and Prune a Decision Tree

Decision tree models are advantageous because they are conceptually easy to understand, yet they readily accommodate nonlinear associations between input variables and one or more target variables. They also handle missing values without the need for imputation. Therefore, you decide to first model the data using decision trees.

SAS Enterprise Miner enables you to build a decision tree in two ways: automatically and interactively. You will begin by letting SAS Enterprise Miner automatically train and prune a tree.

To use the
 Decision Tree
 node to automatically train and prune a decision tree:

Select the
 Model
 tab on the Toolbar.

Select the
 Decision Tree
 node icon. Drag the node into the Diagram Workspace.

Connect the
 Data Input
 node to the
 Decision Tree
 node.

[image:]

Select the
 Decision Tree
 node. In the Properties Panel, scroll down to view the
 Train
 properties:

Click on the value of the
 Maximum Depth
 splitting rule property, and enter
 10
 . This specification enables SAS Enterprise Miner to train a tree that includes up to ten generations of the root node. The final tree in this example, however, will have fewer generations due to pruning.

Click on the value of the
 Leaf Size
 node property, and enter
 8
 . This specification constrains the minimum number of training observations in any leaf to eight.

Click on the value of the
 Number of Surrogate Rules
 node property, and enter
 4
 . This specification enables SAS Enterprise Miner to use up to four surrogate rules in each non-leaf node if the main splitting rule relies on an input whose value is missing.

Note:
 The
 Assessment Measure
 subtree property is automatically set to
 Decision
 because you defined a profit matrix in “Create a Data Source” on page 13. Accordingly, the Decision Tree node will build a tree that maximizes profit in the validation data.

In the Diagram Workspace, right-click the Decision Tree node, and select
 Run
 from the resulting menu. Click
 Yes
 in the Confirmation window that opens.

In the window that appears when processing completes, click
 Results
 . The Results window appears.

On the
 View
 menu, select
 Model

 Node Rules
 . The English Rules window appears.

Expand the Node Rules window. This window contains the IF-THEN logic that distributes observations into each leaf node of the decision tree (Figure 3-32).

[image:]

Figure 3-32

In the Output window, the
 Tree Leaf Report
 indicates that there are seven leaf nodes in this tree. For each leaf node, the following information is listed:

node number

number of training observations in the node

percentage of training observations in the node with TARGET_B=1 (did donate), adjusted for prior probabilities

percentage of training observations in the node with TARGET_B=0 (did not donate), adjusted for prior probabilities

This tree has been automatically pruned to an optimal size. Therefore, the node numbers that appear in the final tree are not sequential. In fact, they reflect the positions of the nodes in the full tree, before pruning.

Close the Results window.

Interactively Train a Decision Tree

To use the Decision Tree node to interactively train and prune a decision tree:

From the
 Model
 tab on the Toolbar, select the
 Decision Tree
 node icon. Drag the node into the Diagram Workspace.

In the Diagram Workspace, right-click the
 Decision Tree
 node, and select
 Rename
 from the resulting menu. Enter
 Interactive Decision Tree
 and then click
 OK
 in the window that opens.

Connect the Control Point node to the Interactive Decision Tree node.

[image:]

Select the
 Interactive Decision Tree
 node. In the Properties Panel, in the
 Train
 properties group, click on the ellipses that represent the value of
 Interactive
 . The Interactive Decision Tree window appears.

Select the root node (at this point, the only node in the tree), and then from the
 Action
 menu, select
 Split Node
 . The Split Node window appears (Figure 3-33) that lists the candidate splitting rules ranked by logworth (-Log(p)). The FREQUENCY_STATUS_97NK rule has the highest logworth. Ensure that this row is selected, and click
 OK
 .

[image:]

Figure 3-33

The tree now has two additional nodes. Select the lower left node (where FREQUENCY_STATUS_97NK is 3 or 4), and then from the
 Action
 menu, select
 Split Node
 . In the Split Node window that opens (Figure 3-34), select MONTHS_SINCE_LAST_GIFT, which ranks second in logworth, and click
 Edit Rule
 to manually specify the split point for this rule. The Interval Split Rule window appears.

Enter
 8
 as the
 New split point
 , and click
 Add Branch
 . Then, select Branch 3 (>= 8.5) and click
 Remove Branch
 . Click
 OK
 .

[image:]

Fgure 3-34

Ensure that MONTHS_SINCE_LAST_GIFT is selected in the Split Node window, and click
 OK
 .

Select the first generation node that you have not yet split (where FREQUENCY_STATUS_97NK is 1, 2, or Missing). From the
 Action
 menu, select
 Split Node
 . In the Split Node window that opens, ensure that PEP_STAR is selected, and click
 OK
 .

The tree now has seven nodes, four of which are leaf nodes. The nodes are colored from light to dark, corresponding to low to high percentages of correctly classified observations (Figure 3-35).

[image:]

Figure 3-35

Select the lower right node (where FREQUENCY_STATUS_97NK is 1, 2, or Missing and PEP_STAR is 0 or Missing). From the
 Action
 menu, select
 Train Node
 . This selection causes SAS Enterprise Miner to continue adding generations of this node until a stopping criterion is met. For more information about stopping criteria for decision trees, see the SAS Enterprise Miner Help.

Note:
 In the Interactive Decision Tree window, you can prune decision trees. However, in this example, you will leave the tree in its current state.

Close the Interactive Decision Tree window.

4
 Chapter 4

SUPERVISED LEARNING. NEURAL NETWORKS IN sas enterprise miner

4.1

NEURAL network Description

A
 neural network
 can be defined as a set of highly interconnected elements of information processing, which are able to learn the information that feeds them. The main feature of this new technology of neural networks is that it can apply to a large number of problems that can range from complex problems to theoretical sophisticated models such as image recognition, voice recognition, financial analysis, analysis and filtering of signals, etc. In this chapter we will see applications of neural networks for the improvement of the techniques of classification, discrimination, prediction, etc.

Neural networks are trying to emulate the nervous system, in a way which are able to reproduce some of the major tasks that develops the human brain, to reflect the fundamental characteristics of the same behavior. They really try to model neural networks is one of the physiological structures of the brain, Neuron and support groups structured and interlinked of several of them, known as networks of neurons. In this way, they build systems that present a certain degree of intelligence. However, we must insist on the fact that artificial neural systems, like any other tool built by man, have limitations and have only a superficial resemblance to their biological counterparts. Neural networks, in relation to the processing of information, inherited three basic characteristics of networks of biological neurons: massive parallelism, nonlinear response of neurons against the received inputs and processing information through multiple layers of neurons.

One of the main properties of these models is their ability to learn and generalize from real-life examples. I.e., the network learns to recognize the relationship (which does not cease to be equivalent to estimate a functional dependence) that exists between the set of inputs provided as examples and their corresponding outputs, so that, after learning, when the network presents you a new entry (even if it is incomplete or possess any error), based on the functional relationship established in the sameIt's able to generalize it offering a way out. As a result, can be defined an artificial neural network as an intelligent system able to not only learn, but also to generalise.

A neural network consists of processing units that are called neurons or nodes. These nodes are organized into groups that are called "layers". There are usually three types of layers: an input layer, one or more hidden layers and a layer of output. Connections are established between adjacent nodes in each layer. The input layer, which presents data to the network, consists of input nodes that receive the information directly from the outside. Output layer represents the response of the network to a given as this information transferred to outside input. Hidden or intermediate layers are responsible for processing information and interposed between the input and output layers are the only ones who have no connection with the outside.

4.2

NEURAL Networks with SAS ENTERPRISE MINER

SAS Enterprise Miner allows to work with neural networks through multiple nodes located
 in the category
 Model
 (Figure 4-1)
 .

[image:]

Figure 4-1

The
 AutoNeural
 node can be used to automatically configure a neural network. The
 AutoNeural
 node implements a search algorithm to incrementally select activation functions for a variety of multilayer networks.

[image:]

The
 DMNeural
 node is another modeling node that you can use to fit an additive nonlinear model. The additive nonlinear model uses bucketed principal components as inputs to predict a binary or an interval target variable with automatic selection of an activation function.

[image:]

The
 Neural Network
 node enables you to construct, train, and validate multilayer feedforward neural networks. Users can select from several predefined architectures or manually select input, hidden, and target layer functions and options.

[image:]

The
 SVM
 node uses supervised machine learning to perform binary classification problems, including polynomial, radial basis function, and sigmoid nonlinear kernels. The standard SVM problem solves binary classification problems by constructing a set of hyperplanes that maximize the margin between two classes. The
 SVM
 node does not support multi-class problems or support vector regression.

[image:]

The
 TwoStage
 node enables you to compute a two-stage model for predicting a class and interval target variables at the same time. The interval target variable is usually a value that is associated with a level of the class target. This node allows you to use neural networks for general a model in c stages in order to predict a class variable and a continuous variable. You can use the perceptron multilayer, generalized linear models and radial basis functions.

[image:]

SAS Enterprise Miner also allows you to work with neural networks through the node
 SOM/Kohonen
 , overlooking classification tasks. This node is located in the category
 Modify
 (Figure 4-29).

[image:]

Figure 4-2

4.3

Optimization and adjustment of models with nets: Neural Network
 node

The
 Neural Network
 node allows you to use neural networks for the optimization and adjustment of models through Multilayer Perceptrons, radial basis functions and generalized linear models. As shown in Figure 4-1, is located in the
 Model
 of the SAS Enterprise Miner menu category.

Artificial neural networks were originally developed by researchers who were trying to mimic the neurophysiology of the human brain. By combining many simple computing elements (neurons or units) into a highly interconnected system, these researchers hoped to produce complex phenomena such as intelligence. In recent years, neural network researchers have incorporated methods from statistics and numerical analysis into their networks. While there is considerable controversy over whether artificial neural networks are really intelligent, there is no doubt that they have developed into very useful statistical models. More specifically, feedforward neural networks are a class of flexible nonlinear regression, discriminant, and data reduction models. By detecting complex nonlinear relationships in data, neural networks can help to make predictions about real-world problems.

 Neural networks are especially useful for prediction problems where:

	
no mathematical formula is known that relates inputs to outputs.

	
prediction is more important than explanation.

	
there is a lot of training data.

Common applications of neural networks include credit risk assessment, direct marketing, and sales prediction.

The Neural Network node provides a variety of feedforward networks that are commonly called
 backpropagation
 or
 backprop
 networks. This terminology causes much confusion. Strictly speaking,
 backpropagation
 refers to the method for computing the error gradient for a feedforward network, a straightforward application of the chain rule of elementary calculus. By extension,
 backprop
 refers to various training methods that use backpropagation to compute the gradient. By further extension, a
 backprop
 network is a feedforward network trained by any of various gradient-descent techniques.
 Standard backprop
 is a euphemism for the
 generalized delta rule
 , the training technique that was popularized by Rumelhart, Hinton, and Williams in 1986 and which remains the most widely used supervised training method for feedforward neural nets. Standard backprop is also one of the most difficult to use, tedious, and unreliable training methods. Unlike the other training methods in the Neural Network node, standard backprop comes in two varieties.

	
Batch backprop, like conventional optimization techniques, reads the entire data set, updates the weights, reads the entire data set, updates the weights, and so on.

	
Incremental backprop reads one case, updates the weights, reads one case, updates the weights, and so on.

Batch backprop is one of the slowest training methods. Although the Neural Network node provides an option for batch backprop, it is recommended that you never use it for serious work. Incremental backprop can be useful for very large, redundant data sets, if you are skilled at setting the learning rate and momentum appropriately.

Fortunately, there is no need to suffer through the slow convergence and the tedious tuning of standard backprop. Much of the neural network research literature is devoted to attempts to speed up backprop. Most of these methods are inconsequential; two that are effective are Quickprop and RPROP, both of which are available in the Neural Network node. In addition, the Neural Network node provides a variety of conventional methods for nonlinear optimization that have been developed by numerical analysts over the past several centuries and that are usually faster and more reliable than the algorithms from the neural network literature.

Up until the early 1990s, neural networks were often viewed as alternatives to statistical methods. Some researchers made outlandish claims that neural networks could be used to analyze data with no expertise required on the part of the analyst. These unjustifiable claims, combined with the unreliability of early algorithms such as standard backprop, led to a backlash in which many people, especially statisticians, dismissed neural networks as entirely worthless for data analysis. But in recent years, it has been widely recognized that many kinds of neural networks are statistical methods, and that when neural networks are trained via reliable methods such as conventional optimization techniques or Bayesian learning, the results are just as valid as those obtained by many nonlinear or nonparametric statistical methods.

Neural networks, like other statistical methods, cannot magically create information out of nothing — the rule "garbage in, garbage out" still applies. The predictive ability of a neural network depends in part on the quality of the training data. It is also important for the analyst to have some knowledge of the subject matter, especially for selecting inputs and choosing an appropriate error function. Experienced neural network users typically try several architectures to determine the best network for a specific data set. The design process and the training process are both iterative.

4.3.1

Overview of Feedforward Neural Networks

Units and connections

 A neural network consists of units (neurons) and connections between those units. There are three kinds of units.

	
Input Units obtain the values of input variables and optionally standardize those values.

	
Hidden Units perform internal computations, providing the nonlinearity that makes neural networks powerful.

	
Output Units compute predicted values and compare those predicted values with the values of the target variables.

Units pass information to other units through connections. Connections are directional and indicate the flow of computation within the network. Connections cannot form loops, since the Neural Network node allows only feedforward networks.

 The following restrictions apply to feedforward networks:

	
Input units can be connected to hidden units or to output units.

	
Hidden units can be connected to other hidden units or to output units.

	
Output units cannot be connected to other units.

	
Due to limitations in the SAS supervisor, the total number of connections in a network cannot exceed roughly 32,000.

Predicted Values and Error Functions

 Each unit produces a single computed value. For input and hidden units, this computed value is passed along the connections to other hidden or output units. For output units, the computed value is what statisticians call a predicted value. The predicted value is compared with the target value to compute the error function, which the training methods attempt to minimize.

Weight, Bias, and Altitude

 Most connections in a network have an associated numeric value called a weight or parameter estimate. The training methods attempt to minimize the error function by iteratively adjusting the values of the weights. Most units also have one or two associated numeric values called the bias and altitude, which are also estimated parameters adjusted by the training methods.

Combination Functions

 Hidden and output units use two functions to produce their computed values. First, all the computed values from previous units feeding into the given unit are combined into a single value using a combination function. The combination function uses the weights, bias, and altitude. Two general kinds of combination function are commonly used.

	
Linear Combination Functions — compute a linear combination of the weights and the values feeding into the unit and then add the bias value (the bias acts like an intercept).

	
Radial Combination Functions — compute the squared Euclidean distance between the vector of weights and the vector of values feeding into the unit and then multiply by the squared bias value (the bias acts as a scale factor or inverse width).

There is also an additive combination function that uses no weights or bias.

Activation Functions

 The value produced by the combination function is transformed by an
 activation function
 , which involves no weights or other estimated parameters. Several general kinds of activation functions are commonly used.

	
Identity Function is also called a linear function. It does not change the value of the argument, and its range is potentially is unbounded.

	
Sigmoid Functions are S-shaped functions such as the logistic and hyperbolic tangent functions that produce bounded values within a range of 0 to 1 or -1 to 1.

	
Softmax Function is called a multiple logistic function by statisticians and is a generalization of the logistic function that affects several units together, forcing the sum of their values to be one.

	
Value Functions are bounded bell-shaped functions such as the Gaussian function.

	
Exponential and Reciprocal Functions are bounded below by zero but unbounded above.

Network Layers

 A network may contain many units, perhaps several hundred. The units are grouped into layers to make them easier to manage. Enterprise Miner supports multiple input layers, a hidden layer, and multiple output layers. In the Neural Network node, when you connect two layers, every unit in the first layer is connected to every unit in the second layer.

All the units in a given layer share certain characteristics. For example, all the input units in a given layer have the same measurement level and the same method of standardization. All the units in a given hidden layer have the same combination function and the same activation function. All the units in a given output layer have the same combination function, activation function, and error function.

4.3.2

Simple Neural Networks

 The simplest neural network has a single input unit (independent variable), a single target (dependent variable), and a single output unit (predicted values).

[image:]

Figure 4-3

In Figure 4-3 the slash inside the box represents a linear (or identity) output activation function. In statistical terms, this network is a simple linear regression model. If the output activation function were a logistic function, then this network would be a logistic regression model.

4.3.3

Perceptrons

 One of the earliest neural network architectures was the
 perceptron
 , which is a type of linear discriminant model. A perceptron uses a linear combination of inputs for the combination function. Originally, perceptrons used a threshold (Heaviside) activation function, but training a network with threshold activation functions is computationally difficult. In current practice, the activation function is almost always a logistic function, which makes a perceptron equivalent in functional form to a logistic regression model.

As an example, a perceptron might have two inputs and a single output (Figure 4-4).

[image:]

Figure 4-4

In neural network terms, the diagram shows two inputs connected to a single output with a logistic activation function (represented by the sigmoid curve in the box). In statistical terms, this diagram shows a logistic regression model with two independent variables and one dependent variable.

4.3.4

Hidden Layers

 Neural networks may apply additional transformations via a hidden layer. Typically, each input unit is connected to each unit in the hidden layer, and each hidden unit is connected to each output unit. The hidden units combine the input values and apply an activation function, which may be nonlinear. Then the values that were computed by the hidden units are combined at the output units, where an additional (possibly different) activation function is applied. If such a network uses linear combination functions and sigmoid activation functions, it is called a multilayer perceptron or MLP. It is also possible to use other combination functions and other activation functions to connect layers in many other ways. A network with three hidden units with different activation functions is shown in the following diagram (Figure 4-5).

[image:]

Figure 4-5

4.3.5

Multilayer Perceptrons (MLPs)

 The most popular form of neural network architecture is the
 multilayer perceptron
 (MLP), which is the default architecture in the Neural Network node. A multilayer perceptron

	
has any number of inputs.

	
has a hidden layer with any number of units.

	
uses linear combination functions in the hidden and output layers.

	
uses sigmoid activation functions in the hidden layers.

	
has any number of outputs with any activation function.

	
has connections between the input layer and the first hidden layer, between the hidden layers, and between the last hidden layer and the output layer.

The Neural Network node supports many variations of this general form. For example, you can add direct connections between the inputs and outputs, or you can cut the default connections and add new connections of your own.

Given enough data, enough hidden units, and enough training time, an MLP with one hidden layer can learn to approximate virtually any function to any degree of accuracy. (A statistical analogy is approximating a function with nth order polynomials.) For this reason, MLPs are known as universal approximators, and can be used when you have little prior knowledge of the relationship between inputs and targets.

4.3.6

Radial Basis Function (RBF) Networks

 A Radial Basis Function Network

	
has any number of inputs.

	
typically has a hidden layer with any number of units.

	
uses radial combination functions in the hidden layer, based on the squared Euclidean distance between the input vector and the weight vector.

	
typically uses exponential or softmax activation functions in the hidden layer, in which case the network is a Gaussian RBF network.

	
uses linear combination functions in the output layer.

	
has any number of outputs with any activation function.

	
has connections between the input layer and the hidden layer, and between the hidden layer and the output layer.

4.3.7

Local Processing Networks

MLPs are said to be
 distributed-processing
 networks because the effect of a hidden unit can be distributed over the entire input space. On the other hand, Gaussian RBF networks are said to be
 local-processing
 networks because the effect of a hidden unit is usually concentrated in a local area centered at the weight vector.

4.3.8

Width and Altitude

The hidden layer of an RBF network does not have anything that's exactly the same as the bias term in an MLP. Instead, RBFs have a width associated with each hidden unit or with the entire hidden layer. Instead of adding the width in the combination function like a bias, you divide the Euclidean distance by the width. Since dividing by a width of zero would produce undefined results, the Neural Network node has a different parameterization using the square root of the reciprocal of the width. In the names of the weights, the square root of the reciprocal of the width is called the "bias" for lack of an appropriate term, although it does not have the usual interpretation of a bias.

Some radial combination functions have another parameter called the altitude of the unit. The altitude is the maximum height of the Gaussian curve above the horizontal axis.

4.3.9

Ordinary RBF and Normalized RBF

There are two distinct types of Gaussian RBF architectures. The first type, the ordinary RBF (ORBF) network, uses the exponential activation function, so the activation of the unit is a Gaussian "bump" as a function of the inputs. The second type, the normalized RBF (NRBF) network, uses the softmax activation function, so the activations of all the hidden units are normalized to sum to one. While the distinction between these two types of Gaussian RBF architectures is sometimes mentioned in the NN literature, its importance has rarely been appreciated except by Tao (1993) and Werntges (1993).

The output activation function in RBF networks is customarily the identity. Using an identity output activation function is a computational convenience in training, but it is possible and often desirable to use other output activation functions just as you would in an MLP. The Neural Network node sets the default output activation function for RBF networks the same way it does for MLPs.

4.3.10

Error Functions

 A network is trained by minimizing an error function (also called an estimation criterion or Lyapunov function). Most error functions are based on the maximum likelihood principle, although computationally it is the negative log likelihood that is minimized. The likelihood is based on a family of error (noise) distributions for which the resulting estimator has various optimality properties. M estimators are formally similar to maximum likelihood estimators, but for certain kinds called redescending M estimators, no proper error distribution exists.

Some of the more commonly used error functions are

	
Normal distribution
 — also called the least-squares or mean-squared-error criterion. Suitable for unbounded interval targets with constant conditional variance, no outliers, and a symmetric distribution. Can also be used for categorical targets with outliers.

	
Huber M-estimator
 — Suitable for unbounded interval targets with outliers or with a moderate degree of inequality of the conditional variance but a symmetric distribution. Can also be used for categorical targets when you want to predict the mode rather than the posterior probability.

	
Redescending M estimators
 — Suitable for unbounded interval targets with severe outliers. Can also be used for predicting one mode of a multimodal distribution. Includes biweight and wave estimators.

	
Gamma distribution
 — Suitable for skewed, positive interval targets where the conditional standard deviation is proportional to the conditional mean.

	
Poisson distribution
 — Suitable for skewed, nonnegative interval targets, especially counts of rare events, where the conditional variance is proportional to the conditional mean.

	
Bernoulli distribution
 — Suitable for a target that takes only the values zero and one. Same as a binomial distribution with one trial.

	
Entropy
 — Cross or relative entropy for independent interval targets with values between zero and one inclusive.

	
Multiple Bernoulli
 — Suitable for categorical (nominal or ordinal) targets.

	
Multiple Entropy
 — Cross or relative entropy for interval targets that sum to one and have values between zero and one inclusive. Also called Kullback-Leibler divergence.

For a categorical target variable, the default error function is multiple Bernoulli. For interval targets, the default error function is normal.

4.3.11

Initialization

 The results of training a neural network with hidden units may depend on the initial values of the weights. For MLPs, there is no known rational method for computing initial weights, so random initial weights are used. The Neural Network node supplies pseudo-random initial weights.

By default, all output connection weights are initialized to zero, and output biases are initialized by applying the inverse of the activation function to the mean of the target variable.

For units with a linear combination function, the random initial weights are adjusted by dividing by the square root of the fan-in of the unit (the number of connections coming into the unit).

4.3.12

Preliminary Training

 Local minima are a common problem with nonlinear networks. The simplest way to deal with local minima is to train the network for a few iterations from each of a large number (perhaps 10, 100, or 1000) of random initializations. The Neural Network node selects the best estimates obtained during these preliminary runs to be used for subsequent training.

4.3.13

Training Techniques

 The Neural Network node provides a wide variety of training techniques, including both conventional optimization techniques and techniques from the neural network literature. The conventional optimization techniques are well-proven algorithms that are described in detail in the documentation for the NLP Procedure in the SAS/OR product.

 The most popular conventional optimization techniques include the following:

	
Default — The default method selects the best training technique for you based on the weights that are applied at execution.

	
Trust-Region — The Trust-Region method is recommended for small and medium optimization problems with up to 40 parameters.

	
Levenberg-Marquardt — is very fast and reliable for small least-squares networks, but requires a large amount of memory (quadratic in the number of estimated parameters).

	
Quasi-Newton techniques — are good for medium-sized networks. They require quadratic memory, but only about half as much as Levenberg-Marquardt. Quasi-Newton techniques usually require more iterations than Levenberg-Marquardt but each iteration requires less floating-point computation.

	
Conjugate gradient techniques — are good for large networks when there is not enough memory for the above techniques — memory requirements are only linear. They usually require more iterations than either of the above techniques, but each iteration requires less floating-point computation. Conjugate gradient techniques may be a good choice if you have a very fast disk drive.

The Neural Network node also provides three training techniques popular in the neural network literature, all of which have linear memory requirements.

	
Standard batch backprop — is the most popular training method of all, but it is slow, unreliable, and requires the user to tune the learning rate manually, which can be a tedious process.

	
Quickprop — usually requires more iterations than conjugate gradient methods, but each iteration is very fast. Quickprop is a Newton-like method but uses a diagonal approximation to the Hessian matrix. It is much faster and more reliable than standard batch backprop and requires little tuning.

	
RPROP — usually requires more iterations than conjugate gradient methods, but each iteration is very fast. RPROP uses a separate learning rate for each weight, and adapts all the learning rates during training. RPROP is the most stable of all the "prop" techniques and rarely requires any tuning.

For all of the conventional optimization techniques, the objective function decreases on each iteration until a local minimum is reached, at which point the algorithm terminates. For the "prop" techniques, the objective function may go down and up repeatedly during training. For standard backprop, if you specify a learning rate that is too high, the weights will diverge and the objective function will increase without limit.

4.3.14

Scoring

 After developing a trained network that meets your requirements, you can use the network to make predictions for various data sets. The Neural Network node allows you to score the training, validation, test, and score data sets in conjunction with training.

4.3.15

Preparing the Data

Preprocess the data

 Before you train a neural network, you may want to consider the following data mining tasks:

	
Sample the Input Data — The Sampling node enables you to extract a sample of your input data. Sampling is recommended for extremely large data bases, because it can tremendously decrease training time. If the sample is sufficiently representative, then relationships found in the sample can be expected to generalize to the complete data set.

	
Create Partitioned Data Sets — The Data Partition node enables you to split the sample into training, validation, and test data sets. The training data set is used to learn the network weights. The validation data set is used to choose among various network architectures. The validation data set is also used by the Model Comparison node for model assessment. The test set is used to obtain a final, unbiased estimate of generalization error.

	
Use Only the Important Variables — When your data set has a large number of inputs, it is tempting to use most or all of the inputs. However, it is often better to use only a small number of important inputs, which can greatly reduce the time required to train the network, as well as improving the prediction results. Twenty to thirty inputs may be better than three hundred. If you know from your business expertise that an input is not useful in predicting the target, then exclude it from the regression analysis. The Explore window and the Multiplot node enable you to create exploratory plots that can help you identify important inputs (predictors). You can also use the Variable Selection node to remove unpromising inputs.

When many inputs are available, the choice of network architecture is especially important. For example, MLPs tend to be better at ignoring irrelevant inputs than are some RBF networks. Having many inputs also reduces the number of hidden units you can use, since the number of weights connecting an input layer and a hidden layer is equal to the product of the number of units in each. For example, if you have five inputs, using 100 hidden units may be quite practical. But if you have 100 inputs and try to use 100 hidden units, you will have over 10,000 weights in the network and training will take a very long time.

	
Transform Data and Filter Outliers — Since neural networks can learn nonlinear functions, they are not as sensitive to transformations of the input variables as are regression models. Nevertheless, the use of appropriate input transformations can improve generalization and speed up training. Outliers in the input variables are of special concern because they can have undue influence on predictions, just like high-leverage points in linear regression.

On the other hand, transformations of the target variables are just as important for neural networks as for regression. For example, if you are using least-squares estimation, transforming the target variables to have conditional normal distributions with constant variance can improve generalization. More important, transformation of targets changes the relative importance of errors depending on the target value.

For example, suppose you are trying to predict the price of some commodity. If the price of the commodity is 10 (in whatever currency unit) and the output of the net is 5 or 15, yielding a difference of 5, that is a huge error. If the price of the commodity is 1000 and the output of the net is 995 or 1005, yielding the same difference of 5, that is a tiny error. You do not want the network to treat those two differences as equally important. By taking logarithms, you are effectively measuring errors in terms of ratios rather than differences, since a difference between two logs corresponds to the ratio of the original values. This has approximately the same effect as looking at percentage differences, abs(target-output)/target or abs(target-output)/output, rather than simple differences.

The Transform Variables node enables you to apply several transformations to a variable, such as log, exponential, square root, inverse, and square. The node also includes three power transformations (maximize normality, maximize correlation with the target, and equalize spread with target levels) plus an optimal binning for relationship to target transformation.

	
Impute Missing Values — The Neural Network node omits cases from training if any of the inputs are missing or if all of the targets are missing. Hence you may want to replace missing data with imputed values. The Impute node enables you to replace interval missing values with the input's mean, median, or midrange. You can also use a robust M-estimator to impute missing values. Missing values of a categorical input can be replaced with the mode. The node also includes a tree-based imputation method for replacing missing values. In addition to imputing missing values, if an input has many missing values (more than five to twenty times the number of hidden units), it is often useful to generate a dummy variable that has the value 1 when the corresponding input variable is missing, and the value 0 otherwise. Then both the original input variable and the dummy variable can be used as inputs to the network.

	
Use Other Modeling Nodes — For some problems, a neural network may not be the best analytical tool. If the input-output function is approximately linear and the data are noisy, linear regression may produce better generalization. If few of the input variables are relevant or you want an interpretable prediction rule, tree-based models may be preferable. Cross-model assessment can be performed with the Model Comparison node to help you choose the best model for scoring new data.

Specify the Input Data Sets

 Input data sets are supplied to the Neural Network node from an Input Data node. When you are ready to train the neural network, you select the training, validation, and test data sets in the Imported Data property of the Neural Network node. You can also set the score data set, which is not required to contain the target variable.

The purposes of the training, validation, and test sets are described by Bishop (1995) in the following quote.

"Since our goal is to find the network having the best performance on new data, the simplest approach to the comparison of different networks is to evaluate the error function using data which is independent of that used for training. Various networks are trained by minimization of an appropriate error function defined with respect to a training data set. The performance of the networks is then compared by evaluating the error function using an independent validation set, and the network having the smallest error with respect to the validation set is selected. This approach is called the hold out method. Since this procedure can itself lead to some overfitting to the validation set, the performance of the selected network should be confirmed by measuring its performance on a third independent set of data called a test set."

Specify the Inputs and the Targets

 Variables are assigned roles and measurement levels in the Input Data node. For neural networks, variable roles are:

	
input
 — for input variables

	
target
 — for target variables

	
freq
 — for a frequency variable

	
ID
 — for variables that are not used in modeling but are retained in the scored data sets

	
rejected
 — for variables that are not used in modeling and are not wanted in scored data sets

The Neural Network node requires one or more input variables and one or more target variables. To change the model role of a variable, use the Variables table in the Input Data node properties or use the Variables table in the Data Source properties.

The inputs and targets can be nominal, ordinal, or interval. However, you may not use both ordinal inputs and ordinal targets in the same network.

For a categorical (that is, nominal or ordinal) input with C categories, the Neural Network node automatically generates C — 1 dummy variables. For nominal inputs, deviation coding is used. For each case in the ith category for i< C, the ith dummy variable is set to 1, and all other dummy variables are set to 0. For i= C, all dummy variables are set to - 1. For example, if there is a nominal input called SEX with values Male, Female, Both, and Neither. The dummy variables would have the values shown in the following table, where it is assumed that the categories are ordered alphabetically.

Pairing Architectures with Combination and Activation Functions

 Radial combination functions with altitudes are not useful with ORBF architectures, since the altitude would be redundant with the hidden-to-output weights. Altitudes are useful with NRBF architectures, since the normalization performed by the softmax function intervenes between the altitudes and hidden-to-output weights. Hence there is a wider variety of NRBF architectures than ORBF architectures.

The practical differences among these architectures can be understood in terms of the isoactivation contours of the hidden units. An isoactivation contour is the set of all points in the input space yielding a specified value for the activation function of a given hidden unit.

Since an MLP uses linear combination functions, the set of all points in the space having a given value of the activation function is a hyperplane. The hyperplanes corresponding to different activation levels are parallel to each other (the hyperplanes for different units are not parallel in general). These parallel hyperplanes are the isoactivation contours.

The ORBF architectures use radial combination functions and the exponential activation function. Radial combination functions are based on the Euclidean distance between the vector of inputs to the unit and the vector of corresponding weights. Thus, the isoactivation contours for ORBF networks are concentric hyperspheres. The output of an ORBF network consists of a number of superimposed bumps, hence the output is quite bumpy unless many hidden units are used. Thus an ORBF network with a small number of few hidden units is incapable of fitting many simple, smooth functions, and should rarely be used.

The NRBF architectures also use radial combination functions but the activation function is softmax, which forces the sum of the activations for the hidden layer to equal one. Hence the activation of each hidden unit depends on the activations of potentially all other hidden units in the same layer, although near-by units will have more effect than those far away. Because the activation of one hidden unit depends on other hidden units, the isoactivation contours of a NRBF network are considerably more complicated than those of ORBF networks or MLPs.

Consider the case of an NRBF network with only two hidden units. If the hidden units have equal widths, the isoactivation contours are parallel hyperplanes; in fact, this network is equivalent to an MLP with one logistic hidden unit. If the hidden units have unequal widths, the isoactivation contours are concentric hyperspheres; such a network is similar to an ORBF network with one Gaussian hidden unit.

If there are more than two hidden units in an NRBF network, the isoactivation contours have no such simple characterization. If the RBF widths are very small, the isoactivation contours are approximately piecewise linear for RBF units with equal widths, and approximately piecewise spherical for RBF units with unequal widths. The larger the widths, the smoother the isoactivation contours where the pieces join. As Shorten and Murray-Smith (1996) point out, the activation is not necessarily a monotone function of distance from the center when unequal widths are used.

In a NRBF network, each output unit computes a nonnegative weighted average of the hidden-to-output weights. Hence the output values must lie within the range of the hidden-to-output weights. Therefore, if the hidden-to-output weights are within a reasonable range (such as the range of the target values), you can be sure that the outputs will be within that same range for all possible inputs, even when the net is extrapolating. No comparably useful bound exists for the output of an ORBF network or MLP, since the output can potentially be as large as the sum of the absolute values of all the hidden-to-output weights.

If you extrapolate far enough in a Gaussian ORBF network with an identity output activation function, the activation of every hidden unit will approach zero, hence the extrapolated output of the network will equal the output bias. If you extrapolate far enough in an NRBF network, one hidden unit will come to dominate the output. Hence if you want the network to extrapolate different values in a different directions, an NRBF should be used instead of an ORBF.

The NRBFEQ architecture is a smoothed variant of the learning vector quantization (LVQ) and counterpropagation architectures. In LVQ and counterpropagation, the hidden units are often called codebook vectors. LVQ amounts to nearest-neighbor classification on the codebook vectors, while counterpropagation is nearest-neighbor regression on the codebook vectors. The NRBFEQ architecture uses not just the single nearest neighbor, but a weighted average of near neighbors. As the width of the NRBFEQ functions approaches zero, the weights approach one for the nearest neighbor and zero for all other codebook vectors. LVQ and counterpropagation use ad hoc algorithms of uncertain reliability, but standard numerical optimization techniques (not to mention backprop) can be applied with the NRBFEQ architecture.

In a NRBFEQ architecture, if each observation is taken as an RBF center, and if the weights are taken to be the target values, the outputs are simply weighted averages of the target values, and the network is identical to the well-known Nadaraya-Watson kernel regression estimator, which has been reinvented at least twice in the neural net literature. A similar NRBFEQ network used for classification is equivalent to kernel discriminant analysis. Kernels with variable widths are also used for regression in the statistical literature. Such kernel estimators correspond to the NRBFEV architecture, in which the kernel functions have equal volumes but different altitudes. In the neural net literature, variable-width kernels appear always to be of the NRBFEH variety, with equal altitudes but unequal volumes. The analogy with kernel regression would make the NRBFEV architecture the obvious choice, but which of the two architectures works better in practice is an open question.

4.3.16

Objective Functions and Error Functions

Introduction to Objective Functions and Error Functions

 The Neural Network node trains a network by minimizing an objective function. The objective function is the sum of a total error function and a penalty function, divided by the total frequency. The total error function is a summation over all the cases in the training data and all the target variables of an individual error function applied to each target value and corresponding output. The penalty function is the product of the weight decay constant and the sum of all network weights other than output biases.

The objective function has several different forms depending on the types of error functions used. Maximum likelihood is the most important of all statistical estimation methods. For computational purposes, it is the negative log likelihood that is minimized, rather than the likelihood that is maximized. For noise distributions in the exponential family, the deviance function can be used instead of the likelihood function. The deviance is the difference between the likelihood for the actual network and the likelihood for a saturated model in which there is one weight for every case in the training set. The deviance cannot be negative and is zero for a perfect fit to noise-free data; these properties provide the deviance with computational advantages, so deviance training is often faster than likelihood training. However, the deviance function cannot be used for noise distributions that are not in the exponential family, and the Neural Network node does not estimate scale parameters when deviance training is used. Because scale parameters are not estimated when the deviance function is used, if there are multiple target variables, you should take care to standardize the target variables appropriately. A third form of objective function is provided by M-estimation, which is primarily used for robust estimation when the target values may contain outliers. As in likelihood estimation, M-estimation can be used to estimate scale parameters.

If you do not specify an objective function, the Neural Network node tries to choose one that is compatible with all of the specified error functions. The allowable combinations of error function and objective function are shown in the following table.

4.3.17

Choice of Architecture

 In developing a neural network, there are many choices to be made: the number of inputs to use, which basic network architecture to use, whether to use a hidden layer, the number of units in the hidden layer, the activation and combination functions to use, and so on. If you have considerable prior information about the function to be learned, you may be able to make some of these choices based on theoretical considerations. More often, it takes trial and error to find a good architecture. This section will offer some general guidelines.

Since regression and trees are often much faster to train than neural nets, you should try those methods first to provide a baseline for comparing neural network results.

For exploring network architectures, there is no need to use huge data sets. For an interval target, the number of training cases need only be 5 to 25 times the number of estimated parameters in the network, depending on the noise level in the target variable. For classification, the number of training cases in the smallest class need only be 5 to 25 times the number of estimated parameters in the network. You can use a representative sample (a stratified sample if you are trying to predict rare events) of the data for exploration and save the weights of the best architecture you find. Then you can use those weights to initialize training on a larger data set to fine-tune the network.

Hidden Layer

 Your neural network architecture may not need a hidden layer at all. Linear and generalized linear models are useful in a wide variety of applications. And even if the function you want to learn is mildly nonlinear, you may get better generalization with a simple linear model than with a complicated nonlinear model if there is too little data or too much noise to estimate the nonlinearities accurately.

In MLPs that have any of a wide variety of continuous nonlinear hidden-layer activation functions, one hidden layer with an arbitrarily large number of units suffices for the universal approximation property. But there is no theory to tell you how many hidden units are needed to approximate any given function.

Number of Hidden Units

 The best number of hidden units depends on the number of training cases, the amount of noise, and the complexity of the function you are trying to learn. If you are using a neural network, you probably don't know exactly how much noise the target values have, or how complex the function is. Hence, it will generally be impossible to determine the best number of hidden units without training numerous networks with different numbers of hidden units and estimating the generalization error of each network.

The simplest procedure is to begin with a network with no hidden units, then add one hidden unit at a time. Estimate the generalization error of each network. Stop adding hidden units when the generalization error goes up.

The Neural Network node will provide you with a rough guess for the largest number of hidden units you can use without serious risk of overfitting, providing that you supply a rough guess for the noise level in the target values. You can specify the noise level as High, Moderate, Low, or Noiseless via the Neural Networking node's properties panel. The noise levels can be interpreted according to the following table.

4.3.18

Neural Network Node Train Properties

 The following train properties are available in the Neural Network node:

	
Variables
 — Use the Variables property of the Neural Network node to specify the properties of each variable that you want to use in your data source. Select the
 [image:]
 button to the right of the Variables property to open a variables table. You can set the variable status to either Use or Don't Use in the table, as well as select which variables you want included in reports.

	
Continue Training
 — Use the Continue Training property of the Neural Network node to specify whether current estimates should be used as starting values for training. If the Continue Training property is set to
 Yes
 , the estimates from a previous run of the node will be used as initial values for subsequent training, and all other properties will be ignored. To use the Continue Training property, an estimates data set must have been created by the node prior to setting the Continue Training property to
 Yes
 .

	
Network
 — Select the
 [image:]
 button to the right of the Network property to open a window that you can use to customize network options. The available user defined network options that you can choose in the User Defined Network Options window are

	
Architecture
 — Use the Architecture property of the Neural Network node to specify the network architecture that you want to use during network training. The default is MLP (multilayer perceptron), which has no direct connections, and the number of hidden neurons is data dependent.

 You can choose from the following network architectures:

	
GLIM
 — generalized linear model.

	
MLP
 — (default setting) multilayer perceptron.

	
ORBFEQ
 — ordinary radial basis function with equal widths.

	
ORBFUN
 — ordinary radial basis function with unequal widths.

	
NRBFEH
 — normalized radial basis with equal heights.

	
NRBFEV
 — normalized radial basis with equal volumes.

	
NRBFEW
 — normalized radial basis with equal widths.

	
NRBFEQ
 — normalized radial basis with equal widths and heights.

	
NRBFUN
 — normalized radial basis with unequal widths and heights.

	
User
 — enables the user to define a network that has a single hidden layer. Selecting the User property enables the User Defined Network Options property setting.

	
Direct Connection
 — Direct connections define linear layers, whereas hidden neurons define nonlinear layers. Use the Direct Connection property of the Neural Network node to indicate whether you want to create direct connections from inputs to outputs in your neural network. The default setting for the Direct Connection property is No. In the default setting, each input unit is connected to each hidden unit, and each hidden unit is connected to each output unit. Setting the Direct Connection property to Yes adds direct connections between each input unit and each output unit.

	
Number of Hidden Units
 — Use the Number of Hidden Units property of the Neural Network node to specify the number n of hidden units that you want to use in the hidden layer. Permissible values are integers between 1 and 64. The default value is 3.

	
Randomization Distribution
 — Use the Randomization Distribution propertyof the Neural Networking node to specify the distribution to apply to the weights in your user-defined network. Permissible settings for the Randomization Distribution property of the Neural Networking node are

	
Normal
 — The weights are distributed using a Normal bell curve. Normal is the default setting for the Randomization Distribution property.

	
Cauchy
 — The distributed weights favor the most frequent values in the Cauchy distribution. Cauchy is most often used when you want to predict the approximate conditional mode instead of the conditional mean.

	
Uniform
 — The weights are uniformly distributed across the network with the Uniform Distribution setting.

	
Randomization Center
 — Use the Randomization Center property of the Neural Networking node to specify the center of the distribution of the weights of your user-defined network. Permissible values are real numbers. The default value for the Randomization Center property is 0.0.

	
Randomization Scale
 — Use the Randomization Scale property of the Neural Networking node to specify the scale of the distribution of the weights in your user-defined network. Permissible values are real numbers. The default value for the Randomization Scale property is 0.1.

	
Input Standardization
 — Use the Input Standardization property of the Neural Networking node to specify the method that is used to standardize the input values in your user-defined network. Permissible values are None, Standard Deviation, Range, and Midrange. The default setting for the Input Standardization property is Standard Deviation.

	
Hidden Layer Combination Function
 — The computed values from previous units in a neural network feeding into the given unit are combined into a single value using a combination function. The combination function uses the weights, bias, and altitude. Use the Hidden Layer Combination Function property of the Neural Networking node to specify the hidden layer combination function that you want to use in your user defined network. Permissible settings are

	

 Add
 — Additive combination function. Additive combination functions are used in architectures such as generalized additive networks. The default activation function for the additive combination function is the Identity function. The additive combination function can use any number of hidden units.

	
Linear
 — Linear combination function. Linear combination functions are most often used for multilayer perceptrons (MLPs). The default activation function for the Linear combination function is the Hyperbolic Tangent. The Linear combination function can use any number of hidden units.

	
EQSlopes
 — EQSlopes is identical to the Linear combination function, except that the same connection weights are used for each unit in the layer, although different units have different biases. EQSlopes is mainly used for ordinal targets. The default activation function for the EQSlopes combination function is the Hyperbolic Tangent. The EQSlopes combination function can use any number of hidden units.

	
EQRadial
 — Radial basis function with equal heights and widths for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
EHRadial
 — Radial basis function with equal heights but not widths for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
EWRadial
 — Radial basis function with equal widths but not heights for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
EVRadial
 — Radial basis function with equal volumes for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
XRadial
 — Radial basis function with unequal widths and heights for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
Default
 — The Neural Networking node uses the default PROC NEURAL setting for the Hidden Layer Combination Function, based on target and other Neural Network node property settings.

	
Hidden Layer Activation Function
 — The value produced by the combination function is transformed by an activation function, which involves no weights or other estimated parameters. Use the Hidden Layer Activation Function property of the Neural Networking node to specify the hidden layer activation function for your user-defined network. Permissible values are

	
Arc Tangent
 — Arc tangent hidden layer activation function for linear combination functions. The Arc Tangent function can be used as an alternative to the default Hyperbolic Tangent activation function. The arc tangent function for net input g is arctan(g).

	
Elliot
 — Elliot hidden layer activation function for linear combination functions. The Elliot function can be used as an alternative to the default Hyperbolic Tangent activation function.

	
Hyperbolic Tangent
 — Hyperbolic Tangent is the default hidden layer activation function for linear combination functions. The hyperbolic tangent function for net input g is htan(g).

	
Logistic
 — The Logistic hidden layer activation function for net input g is (1 + exp(-g))
 -1
 .

	
Gauss
 — The Gauss hidden activation function is useful when the data to contains local features (for example, bumps) in low dimensional subspaces.

	
Sine
 — Use the Sine hidden activation function with caution, because it yields an infinite Vapnik-Chervonenkis dimension, which can cause poor generalization. The range for the Sine activation function is [-1, 1] and the function for net input g is sin(g).

	
Cosine
 — Use the Cosine hidden activation function with caution, because it yields an infinite Vapnik-Chervonenkis dimension, which can cause poor generalization. The range for the Cosine activation function is [-1, 1] and the function for net input g is cos(g).

	
Default
 — The Neural Networking node uses the default PROC NEURAL setting for the Hidden Layer Activation Function, based on the combination function setting and the number of hidden units that exist in the layer.

	
Hidden Bias
 — Use the Hidden Bias property of the Neural Networking node to specify whether to compensate the user-defined network for hidden bias. Permissible values are
 Yes
 and
 No
 . The default value is
 Yes
 .

	
Target Layer Combination Function
 — The computed values from predecessor units that feed into the given unit are combined into a single value using a combination function. The combination function uses the weights, bias, and altitude. Use the Target Layer Combination Function property of the Neural Networking node to specify the target layer combination function for your user-defined network. Permissible values are

	

 Add
 — Additive combination function with no weights or bias. Additive combination functions are used in architectures such as generalized additive networks. The default activation function for the additive combination function is the Identity function. The additive combination function can use any number of hidden units.

	
Linear
 — Linear combination functions compute a linear combination of the weights and the values that feed into the unit and then add the bias value (the bias acts like an intercept). The default activation function for the Linear combination function is the Hyperbolic Tangent. The Linear combination function can use any number of hidden units.

	
EQSlopes
 — EQSlopes is identical to the Linear combination function, except that the same connection weights are used for each unit in the layer, although different units have different biases. EQSlopes is mainly used for ordinal targets. The default activation function for the EQSlopes combination function is the Hyperbolic Tangent. The EQSlopes combination function can use any number of hidden units.

	
EQRadial
 — Radial basis function with equal heights and widths for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
EHRadial
 — Radial basis function with equal heights but not widths for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
EWRadial
 — Radial basis function with equal widths but not heights for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
EVRadial
 — Radial basis function with equal volumes for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
XRadial
 — Radial basis function with unequal widths and heights for all units in the layer. Radial combination functions that have one hidden unit use the Exponential activation function by default. Radial combination functions that have two or more hidden units use the Softmax activation function by default.

	
Default
 — The Neural Networking node uses the default PROC NEURAL setting for the Target Layer Combination Function. The default target layer combination function varies according to the activation function.

	
Target Layer Activation Function
 — The value produced by the combination function is transformed by an activation function, which involves no weights or other estimated parameters. Use the Target Layer Activation Function property of the Neural Networking node to specify the target layer activation function for your user-defined network. The default activation function depends on the measurement level of the target variable. Select a function with a range that corresponds to the actual distribution of target values. Permissible values are

	

 Identity
 — Identity is the default target layer activation function for interval target variables. Identity is suggested for unbound target variables with range (-∞ , ∞). The Identity function for the net input g is g.

	
Linear
 — Linear target layer activation function.

	
Exponential
 — The Exponential target layer activation function is suggested for target variables with the range (0, ∞). The exponential function for the net input g is exp(g).

	
Reciprocal
 — the Reciprocal target layer activation function is suggested for target variables with the range (0, ∞). The reciprocal function for the net input g is 1/g.

	
Square
 — the Square target layer activation function is suggested for target variables with the range [0, ∞). The square function for the net input is g2.

	
Logistic
 — Logistic is the default target layer activation function for ordinal target variables with the range (0,1). The logistic function for the net input is (1 + exp(-g))
 -1
 .

	
MLogistic
 — Multiple logistic, or Softmax, is the only output activation function allowed for nominal targets with an error function of multiple Bernoulli, multiple entropy, or multinomial. The range for the MLogistic target variables is (0,1) and the function for the net input is
 [image: Descripcin: exp(g) / sum of exponentials]
 .

	
Default
 — The Neural Networking node uses the default PROC NEURAL setting for the Target Layer Activation Function, based on other Neural Network node property settings. The default target layer activation function depends on the selected combination function.

	
Target Layer Error Function
 — Each unit in a neural network produces a single computed value. Input and hidden units pass the computed values to other hidden or output units. The predicted value for output units is compared with the target value to compute the error function. Use the Target Layer Error Function property of the Neural Networking node to specify the target layer error function for your user-defined network. Permissible values are

	
Normal
 — Normal distribution, also called the least-squares or mean-squared-error criterion. Normal is suitable for unbounded interval targets with constant conditional variance, no outliers, and a symmetric distribution. Normal can also be used for categorical targets that have outliers.

	
Cauchy
 — The Cauchy distribution may be used with any kind of target variable. It is most often used when you want to predict the approximate conditional mode instead of the conditional mean.

	
Logistic
 — Logistic distribution may be used with any kind of target variable. It is most often used with interval targets where the noise distribution may contain outliers.

	
Huber
 — The Huber M-estimator is suitable for unbounded interval targets that have outliers or that have a moderate degree of inequality of the conditional variance and a symmetric distribution. Huber can also be used for categorical targets when you want to predict the mode rather than the posterior probability.

	
Biweight
 — The Biweight M-estimator may be used with any kind of target variable. It is most often used with interval targets where the noise distribution may contain severe outliers. Because of severe problems with local minima, you should obtain initial values by training with the Huber M-estimator before using the biweight M-estimator.

	
Wave
 — The Wave M-estimator may be used with any kind of target variable. It is most often used with interval targets where the noise distribution may contain severe outliers. Because of severe problems with local minima, you should obtain initial values by training with the Huber M-estimator before using the Wave M-estimator.

	
Gamma
 — The Gamma distribution may be used only with strictly positive interval target variables. It is most often used when the standard deviation of the noise is proportional to the mean of the target variable.

	
Default
 — The Neural Networking node uses the default PROC NEURAL setting for the Target Layer Error Function, based on the specified objective function settings.

	
Target Bias
 — Use the Target Bias property of the Neural Networking node to specify a target bias. Permissible values are
 Yes
 and
 No
 . The default value is
 Yes
 .

	
Weight Decay
 — Use the Weight Decay property to specify the weight decay parameter. The larger the weight decay value, the greater the restriction on total weight growth. The weight decay parameter does not affect the output weights when the activation function in the hidden layer is set to Softmax, because the adjustment to the error is too small. The default setting for the Weight Decay property is zero.

	
Optimization
 — Select the
 [image: Descripcin: Ellipses Selector Button]
 button to the right of the Optimization property to open a window that you can use to customize Neural Network optimization settings.

 The following Neural Network optimization properties can be configured in the Optimization window:

	
Training Technique
 — Use the Training Technique property of the Neural Network node to specify the neural network training algorithm that you want to use. The available training techniques are

	
Default
 — Use the Default property to let SAS choose the default training technique. The default method that SAS chooses depends on the number of weights that are applied to the data at execution.

	
Trust-Region
 — Use the Trust-Region technique for small and medium optimization problems that have up to 40 parameters.

	
Levenberg-Marquardt
 — Use the Levenberg-Marquardt technique for smooth least squares objective functions that have up to 100 parameters.

	
Quasi-Newton
 — Use the Quasi-Newton technique for medium optimization problems that have up to 500 parameters.

	
Conjugate Gradient
 — Use the conjugate gradient technique for large data mining problems with over 500 parameters.

	
Double Dogleg
 — The Double Dogleg optimization technique. The Double Dogleg optimization method combines the ideas of Quasi-Newton and Trust-Region methods. The Double Dogleg algorithm computes in each iteration the step s(k) as the linear combination of the steepest descent or ascent search direction s1(k) and a Quasi-Newton search direction s2(k) that is forced not to leave a prespecified Trust-Region radius.

	
Back Prop
 — The standard batch backpropagation technique. Standard backprop is the most popular back propagation method, but it is slow, unreliable, and requires the user to tune the learning rate manually, which can be a tedious process.

	
RProp
 — The standard incremental backprop technique uses a separate learning rate for each weight and adapts all the learning rates during training. The RProp technique tends to take more iterations than conjugate gradient methods, but each iteration is very fast.

	
QProp
 — The QuickProp technique is a Newton-like method which uses a diagonal approximation to the Hessian matrix. Like RProp, QProp tends to take more iterations than conjugate gradient methods, but each iteration is very fast.

	
Maximum Iterations
 — Use the Maximum Iterations propertyof the Neural Network node Train Options to specify the maximum number of iterations that you want to allow during network training. Permissible values are integers from 1 to 1000. The default value is 20.

	
Maximum Time
 — Use the Maximum Time propertyof the Neural Network node Train Options to specify the maximum amount of CPU time that you want to use during training. Permissible values are 5 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, or 7 hours. The default setting for the Maximum Time property is 1 hour.

	
Nonlinear Options
 — The Nonlinear Options section of the Optimization window contains the following settings:

	
Absolute
 — Use the Absolute convergence property of the Neural Network node to specify an absolute convergence criterion. The Absolute convergence is a function of the loglikelihood for the intercept-only model. The optimization is to maximize the loglikelihood. The default value is -1.34078E154.

	
Absolute Function
 — Use the Absolute Function property of the Neural Network node to specify an absolute function convergence criterion. Absolute Function is a function of the loglikelihood for the intercept-only model. The minimum value is 0 and the default value is 0.0.

	
Absolute Function Times
 — Use the Absolute Function Times property of the Neural Network node to specify the number of successive iterations for which the absolute function convergence criterion must be satisfied before the process can be terminated. The minimum value and the default value are both 1.

	
Absolute Gradient
 — Use the Absolute Gradient property of the Neural Network node to specify the absolute gradient convergence criterion that you want to use. All values must be larger than 0. The default value is 1.0E-5.

	
Absolute Gradient Times
 — Use the Absolute Gradient Times property of the Neural Network node to specify the number of successive iterations for which the absolute gradient convergence criterion must be satisfied before the process can be terminated. The default value is 1.

	
Absolute Parameter
 — Use the Absolute Parameter property of the Neural Network node to specify the absolute parameter convergence criterion. The default value is 1.0E-8. The value must be greater than zero.

	
Absolute Parameter Times
 — Use the Absolute Parameter Times property of the Neural Network node to specify the number of successive iterations for which the absolute parameter convergence criterion must be satisfied before the process can be terminated. The default value is 1.

	
Relative Function
 — Use the Relative Function property of the Neural Network node to specify the relative function convergence criterion. The minimum and the default value are both 0.0.

	
Relative Function Times
 — Use the Relative Function Times property of the Neural Network node to specify the number of successive iterations for which the relative function convergence criterion must be satisfied before the process can be terminated. The default value is 1.

	
Relative Gradient
 — use the Relative Gradient property of the Neural Network node to specify the relative gradient convergence criterion. The default value is 1.0E-6.

	
Relative Gradient Times
 — Use the Relative Gradient Times property of the Neural Network node to specify the number of successive iterations for which the relative gradient convergence criterion must be satisfied before the process can be terminated. Permissible values for the Relative Gradient Times property are integers greater than 0. The default value is 1.

	
Propagation Options
 — The Propagation Options section of the Optimization window contains the following settings:

	
Accelerate
 — Use the Accelerate propagation option to specify the rate of increase of learning for the RPROP optimization technique.

	
Decelerate
 — Use the Decelerate propagation option to specify the rate of decrease of learning for the RPROP optimization technique.

	
Learn
 — Use the Learn propagation option to specify the learning rate for BACKPROP or the initial learning rate for QPROP and RPROP optimization techniques.

	
Maximum Learning
 — Use the Maximum Learning propagation option to specify the maximum learning rate for the RPROP optimization technique.

	
Minimum Learning
 — Use the Minimum Learning propagation option to specify the minimum learning rate for the RPROP optimization technique.

	
Momentum
 — Use the Momentum propagation option to specify the momentum rate.

	
Maximum Momentum
 — Use the Momentum propagation option to specify the maximum momentum rate for the QPROP optimization technique.

	
Tilt
 — Use the Tilt propagation option to specify the tilt rate for the QPROP optimization technique.

	
Preliminary Training Options
 — The Preliminary Training Options section of the Optimization window contains the following settings:

	
Enable
 — Use the Enable property to specify whether to enable preliminary training in the Neural Networking node. The default setting for the Enable property is
 Yes
 .

	
Number of Runs
 — Use the Number of Runs property of the Neural Network node to specify the number of preliminary runs that you want to perform. Permissible values are integers greater than or equal to 1. The default value is 5.

	
Maximum Iterations
 — Use the Maximum Iterations property to specify the maximum number of iterations that you want to allow during preliminary network training. Permissible values are integers from 1 to 100. The default value is 10.

	
Maximum Time
 — Use the Maximum Time property to specify the maximum amount of CPU time that you want to use during preliminary training. Permissible values are 5 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, or 7 hours. The default setting for the Maximum Time property is 1 hour.

	
Initialization Seed
 — Use the Initialization Seed property to specify the random seed value that you want to use during network weight optimization.

	
Model Selection Criterion
 — Use the Model Selection Criterion property of the Neural Network node to specify the most appropriate model from your network. The available criteria are

	
Profit/Loss
 — (default setting) The Profit/Loss model selection criterion chooses the model that maximizes the profit or minimizes the loss for the cases in the validation data set. If a validation data set is not available, then the node uses the training data set.

	
Misclassification
 — The Misclassification model selection criterion chooses the model that has the smallest misclassification rate for the validation data set. If the validation data set does not exist, then the training data set is used.

	
Average Error
 — The Average Error model selection criterion chooses the model that has the smallest average error for the validation data set. If the validation data set does not exist, then the training data set is used.

	
Suppress Output
 — Set the Suppress Output property of the Neural Network node to
 Yes
 if you want to suppress all printed output generated by the Neural Network node. The default setting for the Suppress Output property is
 No
 .

4.3.19

Neural Network Node Results

 You can open the Results window of the Neural Network node by right-clicking the node and selecting
 Results
 from the pop-up menu.

 Select
 View
 from the main menu to view the following results in the Results window:

	
Properties

	
Settings
 — displays a window with a read-only table of the Neural Network node properties configuration when the node was last run.

	
Run Status
 — indicates the status of the Neural Network node run. The Run Start Time, Run Duration, and information about whether the run completed successfully are displayed in this window.

	
Variables
 — a table of the variables in the training data set.

	
Train Code
 — the code that Enterprise Miner used to train the node.

	
Notes
 — Select the
 [image:]
 button to the right of the Notes property to open a window that you can use to store notes of interest, such as data or configuration information.

	
SAS Results

	
Log
 — the SAS log of the Neural Network run.

	
Output
 — the SAS output of the Neural Network run. The SAS Output for the Neural Network node includes a variable summary, a model event summary, a decision matrix, a table of predicted and decision variables, optimization start parameter estimates, dual quasi-Newton optimization statistics, optimization results parameter estimates, optimization summary statistics, fit statistics for train, classification tables for train and validation data sets, decision tables for train and validation data sets, an event classification table, assessment score rankings for train and validation data sets, and assessment score distribution for train and validation data sets.

	
Flow Code
 — the SAS code used to produce the output that the Neural Network node passes on to the next node in the process flow diagram.

	
Scoring

	
SAS Code
 — the SAS score code that was created by the node. The SAS score code can be used outside of the Enterprise Miner environment in custom user applications.

	
PMML Code
 — the PMML Code that was generated by the node. The PMML Code menu item is dimmed and unavailable unless PMML is enabled.

	
Assessment

	
Fit Statistics
 — opens the Neural Network Node Fit Statistics Table, which contains fit statistics from the model that are calculated for interval and non-interval targets.

	
Residual Statistics
 — opens the residual statistics chart for an interval target.

	
Score Rankings Overlay
 — In a score rankings chart, several statistics for each decile (group) of observations are plotted on the vertical axis. For a binary target, all observations in the scored data set are sorted by the posterior probabilities of the event level in descending order. For a nominal or ordinal target, observations are sorted from highest expected profit to lowest expected profit (or from lowest expected loss to highest expected loss). Then the sorted observations are grouped into deciles based on the Decile Bin property and observations in a decile are used to calculate the statistics that are plotted in deciles charts.

The Score Rankings Overlay plot displays both train and validate statistics on the same axis. By default, the horizontal axis of a score rankings chart displays the deciles (groups) of the observations. The vertical axis displays the following values, and their mean, minimum, and maximum (if any).

	
posterior probability of target event

	
number of events

	
cumulative and noncumulative lift values

	
cumulative and noncumulative % response

	
cumulative and noncumulative % captured response

	
gain

	
actual profit or loss

	
expected profit or loss.

	
Score Distribution
 — The Score Distribution chart plots the proportions of events (by default), nonevents, and other values on the vertical axis. The values on the horizontal axis represent the model score of a bin. The model score depends on the prediction of the target and the number of buckets used.

For categorical targets, observations are grouped into bins, based on the posterior probabilities of the event level and the number of buckets.

The Score Distribution chart of a useful model shows a higher percentage of events for higher model score and a higher percentage of nonevents for lower model scores. For interval targets, observations are grouped into bins, based on the actual predicted values of the target.The default chart choice is Percentage of Events. Multiple chart choices are available for the Score Distribution Chart. The chart choices are

	
Percentage of Events — for categorical targets

	
Number of Events — for categorical targets

	
Cumulative Percentage of Events — for categorical targets

	
Mean for Predicted — for interval targets

	
Max. for Predicted — for interval targets

	
Min. for Predicted — for interval targets

	
Model

	
Iteration Plot
 — by default, a line plot of the average squared error versus the training iteration is displayed.

	
Weights — Final
 — a two-dimensional histogram of all weights generated for the selected iteration of the selected run.

	
Weights — History
 — a chart containing the neural history estimates.

	
Table
 — displays a table that contains the underlying data used to produce a chart. The Table menu item is dimmed and unavailable unless a results chart is open and selected.

	
Plot
 — opens the Graph Wizard to modify an existing Results plot or create a Results plot of your own. The Plot menu item is dimmed and unavailable unless a Results chart or table is open and selected.

4.3.20

Example with a Neural Network Model

Neural networks are a class of parametric models that can accommodate a wider variety of nonlinear relationships between a set of predictors and a target variable than can logistic regression. Building a neural network model involves two main phases. First, you must define the network configuration. You can think of this step as defining the structure of the model that you want to use. Then, you iteratively train the model.

A neural network model will be more complicated to explain to the management of your organization than a regression or a decision tree. However, you know that the management would prefer a stronger predictive model, even if it is more complicated. So, you decide to run a neural network model, which you will compare to the other models later in the example.

Because neural networks are so flexible, SAS Enterprise Miner has two nodes that fit neural network models: the Neural Network node and the AutoNeural node. The Neural Network node trains a specific neural network configuration; this node is best used when you know a lot about the structure of the model that you want to define. The AutoNeural node searches over several network configurations to find one that best describes the relationship in a data set and then trains that network.

This example does not use the AutoNeural node. However, you are encouraged to explore the features of this node on your own.

Before creating a neural network, you will reduce the number of input variables with the Variable Selection node. Performing variable selection reduces the number of input variables and saves computer resources. To use the Variable Selection node to reduce the number of input variables that are used in a neural network:

Select the
 Explore
 tab on the Toolbar.

Select the
 Variable Selection
 node icon. Drag the node into the Diagram Workspace.

Connect the
 Transform Variables
 node to the
 Variable Selection
 node.

[image:]

In the Diagram Workspace, right-click the Variable Selection node, and select
 Run
 from the resulting menu. Click
 Yes
 in the Confirmation window that opens. In the window that appears when processing completes, click
 Results
 . The Results window appears. Expand the Variable Selection window (Figure 4-5).

[image:]

Figure 4-5

Examine the table to see which variables were selected. The role for variables that were not selected has been changed to
 Rejected
 . Close the Results window.

Note:
 In this example, for variable selection, a forward stepwise least squares regression method was used. It maximizes the model R-square value. For more information about this method, see the SAS Enterprise Miner Help.

Close the Results window.

The input data is now ready to be modeled with a neural network. To use the Neural Network node to train a specific neural network configuration:

From the
 Model
 tab on the Toolbar, select the
 Neural Network
 node icon. Drag the node into the Diagram Workspace.

Connect the
 Variable Selection
 node to the
 Neural Network
 node.

[image:]

Select the
 Neural Network
 node. In the Properties Panel, scroll down to view the
 Train
 properties, and click on the ellipses that represent the value of
 Network
 . The Network window appears.

Change the following properties:

Click on the value of
 Direct Connection
 and select
 Yes
 from the drop-down menu that appears. This selection enables the network to have connections directly between the inputs and the outputs in addition to connections via the hidden units.

Click on the value of
 Number of Hidden Units
 and enter
 5
 . This example trains a multilayer perceptron neural network with five units on the hidden layer.

Click
 OK
 .

In the Diagram Workspace, right-click the Neural Network node, and select
 Run
 from the resulting menu. Click
 Yes
 in the Confirmation window that opens.

In the window that appears when processing completes, click
 Results
 . The Results window appears. Maximize the Score Rankings Overlay window. From the drop-down menu, select
 Cumulative Total Expected Profit
 (Figure 4-6).

[image:]

Figure 4-6

Compare these results to those from the Regression node. According to this model, if you were to solicit the best 40% of the individuals, the total expected profit from the validation data would be approximately $1900. If you were to solicit everyone on the list, then based on the validation data, you could expect approximately $2350 profit on the campaign.

4.4

AUTONEURAL NODE

The AutoNeural node belongs to the Model category in the SAS data mining process of Sample, Explore, Modify, Model, Assess (SEMMA). You can use the AutoNeural node as an automated tool to help you find optimal configurations for a neural network model.

The AutoNeural node conducts limited searches in order to find better network configurations. There are several options that the node uses to control the algorithm.

	
Hidden nodes are added one at a time. A node may contain one or more neurons.

	
For each training iteration, one estimate vector and one fit vector are retained according to the criteria that are displayed below.

	
Subsequent training is initialized with the current estimates. The new node is initialized by PROC NEURAL with output weights = 0. Therefore, the beginning error is the same as the final error of the previous level.

	
An adjustable setting for the maximum number of iterations is used. The training Maximum Iterations is adjusted higher if the selected iteration equals the Maximum Iterations. The Maximum Iterations is adjusted lower if the selected iteration is significantly lower than the Maximum Iterations setting.

	
An adjustable setting for the amount of time after which training stops is used. The Total Time property enables you to set the maximum amount of time that can be used for training.

	
The scale parameter for random numbers decreases at each training iteration when you use the cascade architecture.

	
You can freeze or not freeze previously trained layers.

	
Preliminary training is performed, depending on the value of the Tolerance property.

	
The default combination functions and error functions are used.

	
AutoNeural Model selection criteria:

4.4.1

Network Architectures

 The Autoneural node can create different types of feed forward network architectures. In the charts below, the solid or dashed lines represent weight vectors that are optimized by the model fitting function. Each activation function and target function contains a bias weight that is also optimized.

At each step, a new network model is optimized using an iterative nonlinear solution. Multiple candidate activation functions are optimized, then the best ones are retained in the model. The Autoneural node only performs the model search when the Train Action property is set to Search.

MLP (Multi-Layer Perceptron) networks are genearlly not interpretable due to the highly nonlinear nature of combinations of activation functions. While these algorithms have been tuned to avoid overfitting, you should use both validation and test data to make sure that these networks are generalizable for your model.

In a
 single hidden layer network
 , new hidden neuron units are added one at a time and are selected according to which activation function provides the most benefit. Many models may be successfully fit with a single hidden layer.

[image:]

In a
 funnel network
 , new hidden neuron units are added to form a funnel pattern and are selected according to which activation function provides the most benefit.

[image:]

In a
 block network
 , new hidden neuron units are added as new layers in the network, according to which activation function provides the most benefit.

[image:]

Finally, in a
 cascade network
 , new hidden neuron units are added and connected from all existing input and hidden neurons. All previously trained weights and biases are frozen. Each additional step optimizes the fit of the network to the residuals of the previous step.

[image:]

4.4.2

Example using the Search Train Action

 The following example demonstrates how to use the search train action, in which nodes are added to the network depending on the architecture that you specify.

[image:]

 Follow these steps to create the following process flow diagram:

	
Define the Data Source

	
Add Nodes to the Diagram Workspace

	
Set the AutoNeural Node Properties

	
Run the AutoNeural Node

	
View the AutoNeural Node Output

	
View the AutoNeural Node Training Code

	

Define the Data Source

	
 From the main menu, select:
 File→New→Data Source
 .

	
 Select SAS Table as the metadata source and click
 Next
 .

	
 When prompted to Select a SAS Table, enter SAMPSIO.DMAGECR in the input field and click
 Next
 .

	
 In the Table Properties window, click
 Next
 .

	
 In the Metadata Advisor Options window, select the Advanced advisor. Click
 Next
 .

	
 In the Column Metadata window, set the role of the variable good_bad to
 Target
 . Click
 Next
 .

	
 If the Decision Processing window opens, select
 No
 and click
 Next
 .

	
 In the Data Source Attributes window, leave the data source role as
 Raw
 and click
 Next
 .

	
 In the Summary window, click
 Finish
 .

	

Add Nodes to the Diagram Workspace

	
 Drag the newly created data source onto an Enterprise Miner diagram workspace.

	
 Drag a Data Partition node onto the diagram from the node toolbar Sample folder, and then connect the All: German Credit node to the Data Partition node.

	
 Drag an AutoNeural node onto the diagram from the node toolbar Model folder, and connect the Data Partition node to the AutoNeural node.

	

Set the AutoNeural Node Properties

	
 Click the AutoNeural node in the diagram workspace to select it.

	
 In the Properties panel for the AutoNeural node, set the Train Action property of the Model Options group to
 Search
 .

	
 In the Activation Functions property group, set the Direct, Normal, Square, and Tanh properties to
 Yes
 . Set the remaining activation functions to
 No
 .

	
 Note that the Termination property of the Model Options group is set to
 Overfitting
 . Because you partitioned the data and you are using a class target variable, the misclassification rate of the Validation data set is used.

	
 Note that the Tolerance property of the Model Options group is set to
 Medium
 . This setting indicates that preliminary statements are executed when the node runs.

	

Run the AutoNeural Node

	
 Right-click the AutoNeural node, and select
 Run
 .

	
 When the AutoNeural node run is complete, select
 Results
 .

	

View the AutoNeural Node Output

	
 In the Results window, expand the Output window.

	
 The first section of the Output window displays a variable summary, a table of the model events, and a table of the predicted and decision variables. Scroll down to the first search that the node performed.

 ------ Search # 1 SINGLE LAYER trial # 1 : DIRECT : Training -----

ITER _AIC_ _AVERR_ _MISC_ _VAVERR_ _VMISC_

 0 598.691 0.61086 0.3000 0.60888 0.29766

 1 431.439 0.40180 0.1875 0.62017 0.29766

 2 421.327 0.38916 0.1900 0.71923 0.30100

 3 420.847 0.38856 0.1875 0.71225 0.29431

 4 420.691 0.38836 0.1900 0.74103 0.29766

 5 420.647 0.38831 0.1900 0.74369 0.29431

 6 420.623 0.38828 0.1900 0.76462 0.29766

 7 420.614 0.38827 0.1900 0.77283 0.29431

 8 420.610 0.38826 0.1900 0.78979 0.29431

 8 420.610 0.38826 0.1900 0.78979 0.29431

----- Selected Iteration based on _VMISC_ -----

ITER _AIC_ _AVERR_ _MISC_ _VAVERR_ _VMISC_

3 420.847 0.38856 0.1875 0.71225 0.29431

Eight iterations are performed in this search (the default setting for the Maximum Iterations property is eight). Because you partitioned the data and you are using a class target variable, the misclassification rate of the Validation data set is used to select and iteration. Based on these results, the network from iteration 3 is selected.

Note:
 Because this network only includes a direct connection, no preliminary training is performed.

	
 Scroll down to Trial #2. This trial is performed using the Tanh activation function.

 ----- Search # 1 SINGLE LAYER trial # 2 : TANH : Prelim -------

The NEURAL Procedure

Preliminary Starting Objective Number

Training Random Function of Terminating

 Run Seed Value Iterations Criteria

 1 196765887 0.417286920225 8

 2 1258498424 0.493684502807 8

 3 1121166870 0.402140358109 8

 4 1463483536 0.428628812381 8

 5 1266664492 0.424141526204 8

 6 1370487091 0.397375204114 8

 7 1472610205 0.436653553198 8

 8 1986582559 0.419403549987 8

------ Search # 1 SINGLE LAYER trial # 2 : TANH : Training -----

ITER _AIC_ _AVERR_ _MISC_ _VAVERR_ _VMISC_

 0 543.900 0.39738 0.1900 0.62328 0.23746

 1 531.166 0.38146 0.1800 0.57797 0.25084

 2 517.923 0.36490 0.1800 0.61547 0.26756

 3 513.275 0.35909 0.1650 0.63134 0.28094

 4 502.382 0.34548 0.1825 0.64671 0.27425

 5 495.090 0.33636 0.1800 0.67126 0.27425

 6 486.778 0.32597 0.1750 0.70288 0.26421

 7 481.578 0.31947 0.1675 0.71332 0.26087

 8 474.139 0.31017 0.1675 0.71659 0.27425

 8 474.139 0.31017 0.1675 0.71659 0.27425

----- Selected Iteration based on _VMISC_ -----

ITER _AIC_ _AVERR_ _MISC_ _VAVERR_ _VMISC_

0 543.900 0.39738 0.19 0.62328 0.23746

Preliminary training is performed in this run. The final weights of the best network that was trained in the preliminary training are used to initialize the subsequent training. Iteration 0 is chosen as the best network in this search.

	
 The AutoNeural node then runs searches using the normal and square activation functions. Scroll down in the Output window. Note that the AutoNeural node runs a second search, using all of the activation functions that you specified. Each of these searches is run with preliminary training.

	
 Scroll down to view the final training history.

 ----- Final Training History -----

 step _func_ _status_ _iter_ _AVERR_ _MISC_ _AIC_ _VAVERR_ _VMISC_

SINGLE LAYER 1 DIRECT initial 0 0.61086 0.3000 598.691 0.60888 0.29766

SINGLE LAYER 1 DIRECT candidate 3 0.38856 0.1875 420.847 0.71225 0.29431

SINGLE LAYER 1 TANH candidate 0 0.39738 0.1900 543.900 0.62328 0.23746

SINGLE LAYER 1 NORMAL reject 5 0.35864 0.2000 512.914 0.68756 0.27759

SINGLE LAYER 1 SQUARE reject 0 0.36231 0.1775 515.850 0.62200 0.27759

SINGLE LAYER 1 TANH keep 0 0.39738 0.1900 543.900 0.62328 0.23746

SINGLE LAYER 2 DIRECT reject 2 0.27803 0.1300 556.428 0.75596 0.30100

SINGLE LAYER 2 TANH reject 0 0.29815 0.1550 688.520 0.77238 0.27759

SINGLE LAYER 2 NORMAL reject 0 0.30277 0.1650 692.219 0.73099 0.26087

SINGLE LAYER 2 SQUARE reject 8 0.33162 0.1775 715.298 0.69221 0.27090

In this table, you can see the results of all of the searches that the node ran. The first rows indicate the results of the first search. Two of the networks, based on the Direct and Tanh activation functions, were identified as candidate networks. The remaining networks, based on the Normal and Square activation functions, were rejected. All of the networks in the second search were rejected.

Because it has the lowest value of _VMISC_, iteration 0 of the Tanh network from the first search was chosen.

	
 Scroll down to view the final model.

 ----- Final Model -----

----- Stopping: Termination criteria was satisfied: overfitting based on _VMISC_

func _AVERR_ _VAVERR_ neurons

TANH 0.39738 0.62328 2

 =======

2

The network that was chosen uses a Tanh activation function, and has two hidden units. You specify the number of hidden units in the Total Number of Hidden Units property.

	

View the AutoNeural Node Training Code

 You can view the final network by examining the SAS training code. From the Results window main menu, select
 View
 [image: Descripcin: then select]
 Properties
 [image: Descripcin: then select]
 Train Code
 . Scroll down in the Train Code window to view the final network.

 --;

* AutoNeural Final Network;

--;

*;

proc neural data=EMWS.Part_TRAIN dmdbcat=WORK.AutoNeural_DMDB

validdata=EMWS.Part_VALIDATE

;

input %INTINPUTS / level=interval id=interval;

input %BININPUTS / level=nominal id=binary;

input %NOMINPUTS / level=nominal id=nominal;

target good_bad / level=NOMINAL id=good_bad;

--;

* Layer # 1;

--;

Hidden 2 / id = H1x1_ act=TANH;

connect interval H1x1_;

connect binary H1x1_;

connect nominal H1x1_;

connect H1x1_ good_bad;

You can visualize this network as follows. Note that this diagram does not separate the output and target layers.

[image:]

4.5

DM Neural node

 The DMNeural node enables you to fit an additive nonlinear model that uses the bucketed principal components as inputs to predict a binary or an interval target variable.

The algorithm that is used in DMNeural network training was developed to overcome the following problems of the common neural networks for data mining purposes. These problems are likely to occur especially when the data set contains highly collinear variables.

	
Nonlinear estimation problem — The nonlinear estimation problem in common neural networks is seriously underdetermined, which yields to highly rank-deficient Hessian matrices and results in extremely slow convergence of the nonlinear optimization algorithm. In other words, the zero eigenvalues in a Hessian matrix correspond to long and very flat valleys in the shape of the objective function. The traditional neural network approach has serious problems to decide when an estimate is close to an appropriate solution and the optimization process can be prematurely terminated. This is overcome by using estimation with full-rank Hessian matrices of a few selected principal components in the underlying procedure.

	
Computing time — Each function call in common neural networks corresponds to a single run through the entire training data set; normally many function calls are needed for convergence of the nonlinear optimization. This requires a tremendous calculation time to get an optimized solution for data sets that have a large number of observations. In DMNeural network training of the DMNeural node, we obtain a set of grid points from the selected principal component and a multidimensional frequency table from the training data set for nonlinear optimization. In other words, segments of the data are trained instead of the entire data, and the computing time is reduced dramatically.

	
Finding global optimal solution — For the same reason, common neural network algorithms often find local rather than global optimal solutions and the optimization results are very sensitive with respect to the starting point of the optimization. However, the DMNeural network training can find a good starting point that is less sensitive to the results, because it uses well specified objective functions that contain a few parameters and can do a very simple grid search for the few parameters.

In the DMNeural training process, a principal components analysis is applied to the training data set to obtain a set of principal components. Then a small set of principal components is selected for further modeling. This set of components shows a good prediction of the target with respect to a linear regression model with an R2 selection criterion. The algorithm obtains a set of grid points from the selected principal component and a multidimensional frequency table from the training data set. The frequency table contains count information of the selected principal components at a specified number of discrete grid points.

In each stage of the DMNeural training process, the training data set is fitted with eight separate activation functions. The DMNeural node selects the one that yields the best results. The optimization with each of these activation functions is processed independently. The following table lists the eight activation functions that are used in the DMNeural training process:

 Table of Activation Functions

	

 Function Name

	

 Function Expression of Input x

	

 SQUARE

	

 (A + Bx)x

	

 TANH

	

 A * tanh(Bx)

	

 ARCTAN

	

 A * arctan(Bx)

	

 LOGIST

	

 [image: Descripcin: exp(ax) / (1 + exp(bx))]

	

 GAUSS

	

 A * exp(-[Bx]
 2
)

	

 SIN

	

 A * sin(Bx)

	

 COS

	

 A * cos(Bx)

	

 EXP

	

 A * exp(Bx)

In the DMNeural node, the link function depends on the type of the target variable. By default, the IDENT and LOGIST functions are used for a binary target and an interval target, respectively.

 Table of Link Functions

	

 Function Name

	

 Function Expression of Input x

	

 INDET

	

 x

	

 LOGIST

	

 [image: Descripcin: exp(x) / (1 + exp(x))]

In the first stage, the response variable is used as the target variable. Starting with the second stage, the algorithm uses the residuals of the model from the previous stage as the new target variables. In other words, model estimation is an additive stage-wise process. The response variable y is modeled in the first stage only. For each of the other stages, the residuals from the previous stage are modeled. The selection of the best activation function at each stage in the training process is based on the smallest SSE (Sum of Squared Error) or the smallest misclassification rate. In the final stage, an additive nonlinear model is generated as the final predicted model.

See the Predictive Modeling section for information that applies to all of the predictive modeling nodes.

4.5.1

Variable Requirements for the DMNeural Node

 The DMNeural node requires one target variable, either binary or interval, and at least two input variables to perform the DMNeural network training.

 You may also specify the following variables:

	
Cost — contains the cost of a decision. You should first assign the cost model role to the appropriate variables when you create the data source. You can then assign a cost variable to each decision when you define a profit matrix with costs in the target profile for the target. For more information about defining a profit matrix with costs, see the Target Profiler section.

	
Frequency — a variable that represents frequency of occurrences in each observation. Observations that have a missing or negative value for the frequency variable are excluded from the analysis. You can assign the freq model role to the appropriate variable when you create the data source.

4.5.2

DMNeural Node Train Properties

 The following train properties are associated with the DMNeural node:

	
Variables
 — specifies the properties of each variable in the data source that you want to use. Select the
 [image: Descripcin: Ellipses Selector Button]
 button to the right of the Variables property to open a variables table. You can set the variable status to either
 Use
 or
 Don't Use
 in the table, and you can set a variable's report status to
 Yes
 or
 No
 .

4.5.3

DMNeural Node rain Properties: DMNeural Network

	
 Lower Bound R2
 — Use the Lower Bound R2 property of the DMNeural Network node to specify the lower R-square bound that you want to use to select a small set of principal components at each stage of the optimization process. Permissible values are real numbers between 0 and 1. The default value is 5.0E-5.

	
Max Component
 — Use the Max Component property of the DMNeural Network node to specify the maximum number of principal components that you want to use to predict target variable values. Permissible values are integers between 2 and 6. The default value is 3.

	
Max EigenVector
 — Use the Max EigenVector property of the DMNeural Network node to specify the upper bound that you want to use for the number of eigenvectors that are available for selection. Permissible values are integers greater than or equal to 2. The default value is 400.

	
Max Function Call
 — Use the Max Function Call property of the DMNeural Network node to specify the upper bound that you want to use for the number of function calls in each optimization. Permissible values are integers greater than or equal to 1. The default value is 500.

	
Max Iteration
 — Use the Max Iteration property of the DMNeural Network node to specify the upper bound that you want to use for the number of iterations performed during each optimization. Permissible values are integers greater than or equal to 1. The default value is 200.

	
Max Stage
 — Use the Max Stage property of the DMNeural Network node to specify an upper bound for the number of stages utilized in the DMNeural optimization. Permissible values are integers between 1 and 10. The default value is 3.

4.5.4

DMNeural Node Train Properties: Convergence Criteria

	
 Absolute Gradient
 — Use the Absolute Gradient property of the DMNeural Network node to set the Gradient convergence criterion. Permissible values are real numbers greater than 0. The default value is 5.0E-4.

	
Gradient
 — Use the Gradient property of the DMNeural Network node to set the Gradient convergence criterion. Permissible values are real numbers greater than 0. The default value is 1.0E-8.

4.5.5

DMNeural Node Train Properties: Model Criteria

	
 Selection
 — Use the Selection property of the DMNeural Network node to specify a criterion where, for the best activation function at each stage in the training process.

	
Default
 — The default setting is the objective function in the optimization criterion that you specified in the Optimization property.

	
SSE
 — the sum of squared errors.

	
ACC
 — the number of correctly classified observations divided by the total number of training observations.

	
Optimization
 — Use the Optimization property of the DMNeural node to specify the objective function that you want to be optimized in the iterated network training process. The choices are

	
SSE
 (default) — The sum of squared errors is minimized.

	
ACC
 — The correct classification rate, that is, the number of correctly classified observations divided by the total number of training observations, is maximized.

	
Print Option
 — Use the Print Option property of the DMNeural Network node to specify the level of detail that for node output.

	
Default
 — prints the standard node output.

	
PAll
 — prints an extended version of the standard node output. This is the default setting.

	
PShort
 — prints an abbreviated set of node outputs.

	
Noprint
 — no print output is produced.

4.5.6

DMNeural Node Status Properties

 The following status properties are associated with this node:

	
Create Time
 — displays the time that the node was created.

	
Run ID
 — displays the identifier of the node run. A new identifier is created every time the node runs.

	
Last Error
 — displays the error message from the last run.

	
Last Status
 — displays the last reported status of the node.

	
Last Run Time
 — displays the time at which the node was last run.

	
Run Duration
 — displays the length of time of the last node run.

	
Grid Host
 — displays the grid server that was used during the node run.

	
User-Added Node
 — specifies if the node was created by a user as a SAS Enterprise Miner extension node.

4.5.7

DMNeural Node Results

 You can open the Results window of the DMNeural node by right-clicking the node and selecting
 Results
 from the pop-up menu.

 Select View from the main menu to view the following information in the Results window:

	
Properties

	
Settings
 — displays a window with a read-only table of the DMNeural node properties configuration when the node was last run.

	
Run Status
 — indicates the status of the DMNeural node run. The Run Start Time, Run Duration, and information about whether the run completed successfully are displayed in this window.

	
Variables
 — a table of the variables in the training data set. You can resize and reposition columns by dragging borders or column headers, and you can toggle column sorts between descending and ascending by clicking on the column headers.

	
Train Code
 — the code that Enterprise Miner used to train the node.

	
Notes
 — opens a window and displays (read-only) any notes that were previously entered in the General Properties — Notes window.

	
SAS Results

	
Log
 — the SAS log of the DMNeural node run.

	
Output
 — the SAS output of the DMNeural node run displays the following:

	
variable summary

	
model events summary

	
table of predicted and decision variables

	
component selection table for SS(y) and R2

	
PROC DMNEURL summary

	
response profile for the target variable

	
table of PROC DMNEURL variable statistics

	
stagewise goodness-of-fit criterion tables

	
stagewise component selection tables

	
summary table across stages

	
fit statistics for the target variable

	
classification table for the target variable

	
event classification table

	
assessment score rankings

	
assessment score distribution table

	
Flow Code
 — the SAS code used to produce the output that the DMNeural node passes on to the next node in the process flow diagram.

	
Scoring

	
SAS Code
 — the SAS score code that was created by the node. The SAS score code can be used outside of the Enterprise Miner environment in custom user applications. SAS Code contains DMNeural values of input variables only. This include DMNeural of unknown levels (if specified) and DMNeural of specific levels. If no DMNeural values were generated, the SAS Code menu item is dimmed and unavailable.

	
PMML Code
 — the DMNeural node does not generate PMML code.

	
Assessment

	
Fit Statistics
 — displays the following fit statistics:

	
ERR — Error Function

	
SSE — Sum of Squared Errors

	
MAX — Maximum Absolute Error

	
DIV — Divisor for ASE

	
NOBS — Sum of Frequencies

	
WRONG — Number of Wrong Classifications

	
DISF — Frequency of Classified Cases

	
MISC — Misclassification Rate

	
ASE — Average Squared Error

	
RASE — Root Average Squared Error

	
AVERR — Average Error Function

	
DFT — Total Degrees of Freedom

	
DFM — Model Degrees of Freedom

	
DFE — Degrees of Freedom for Error

	
MSE — Mean Squared Errors

	
RMSE — Root Mean Squared Errors

	
NW — Number of Weight

	
FPE — Final Prediction Error

	
RFPE — Root Final Prediction Error

	
AIC — Akaike’s Information Criterion

	
SBC — Schwarz Bayesian Criterion

	
Classification Chart
 — displays a stacked bar chart of the classification results for a categorical target variable. The horizontal axis displays the target levels that observations actually belong to. The color of the stacked bars identifies the target levels that observations are classified into.

	
Score Rankings Overlay
 — In a score rankings chart, several statistics for each decile (group) of observations are plotted on the vertical axis. For a binary target, all observations in the scored data set are sorted by the posterior probabilities of the event level in descending order. For a nominal or ordinal target, observations are sorted from highest expected profit to lowest expected profit (or from lowest expected loss to highest expected loss). Then the sorted observations are grouped into deciles and observations in a decile are used to calculate the statistics that are plotted in deciles charts. The Score Rankings Overlay plot displays both train and validate statistics on the same axis.

By default, the horizontal axis of a score rankings chart displays the deciles (groups) of the observations. The vertical axis displays the following values, and their mean, minimum, and maximum (if any):

	
posterior probability of target event

	
number of events

	
cumulative and noncumulative lift values

	
cumulative and noncumulative % response

	
cumulative and noncumulative % captured response

	
gain

	
actual profit or loss

	
expected profit or loss

	
Score Distribution
 — The Score Distribution chart plots the proportions of events (by default), nonevents, and other values on the vertical axis. The values on the horizontal axis represent the model score of a bin. The model score depends on the prediction of the target and the number of buckets used. For categorical targets, observations are grouped into bins, based on the posterior probabilities of the event level and the number of buckets. For interval targets, observations are grouped into bins, based on the actual predicted values of the target.The Score Distribution chart of a useful model shows a higher percentage of events for higher model score and a higher percentage of nonevents for lower model scores.

	
Model

	
Stagewise Optimization Statistics
 — In each stage of the DMNeural training process, the training data set is fitted with eight separate activation functions. The Stagewise Optimization Statistics window displays a lattice of plots that show model fit statistics of different activation functions at each stage of the training process. The fit statistics that are displayed in the lattice graph are Sum of Squared Errors and Accuracy Percent.

	
Table
 — displays a table that contains the underlying data that is used to produce a chart. The Table menu item is dimmed and unavailable unless a results chart is open and selected.

	
Plot
 — use the Graph wizard to modify an existing results plot or to create a results plot of your own

4.6

TWOSTAGE NODE

The TwoStage node enables you to model a class target and an interval target. The interval target variable is usually the value that is associated with a level of the class target. For example, the binary variable PURCHASE is a class target that has two levels:
 Yes
 and
 No
 , and the interval variable AMOUNT can be the value target that represents the amount of money that a customer spends on the purchase.

The TwoStage node supports two types of modeling: sequential and concurrent. For sequential modeling, a class model and a value model are fitted for the class target and the interval target, respectively, in the first and the second stages. By defining a transfer function and using the filter option, you can specify how the class prediction for the class target is applied and whether to use all or a subset of the training data in the second stage for interval prediction. The prediction of the interval target is computed from the value model and optionally adjusted by the posterior probabilities of the class target through the bias adjustment option. A posterior analysis that displays the value prediction for the interval target by the actual value and prediction of the class target is also performed. The score code of the TwoStage node is a composite of the class and value models. The value model is used to create assessment plots.

For concurrent modeling, the values of the value target for observations that contain a non-event value for the class target are set to missing prior to training. Then, the TwoStage node fits a neural network model for the class and value target variables simultaneously.

The default TwoStage node fits a sequential model that has a decision tree class model and a neural network value model. Posterior probabilities from the decision tree class model are used as input for the regression value model.

Before reading this document, you should be familiar with the Predictive Modeling, Regression Node, Decision Tree Node, and Neural Network Node documentation.

4.6.1

TwoStage Node Output Data

 After you have successfully run the TwoStage node in a diagram, you can view the output data sets that it generates. With the TwoStage node selected in the Diagram Workspace, select the
 [image:]
 button to the right of the Exported Data property. This opens a table of the exported TwoStage data.

 If data exists for an exported data set, you can select the row in the table and click one of the following:

	
Browse
 to open a window where you can browse the first 100 observations of the data set.

	
Explore
 to open the Explore window, where you can sample and plot the data.

	
Properties
 to open the Properties window for the data set. The Properties window contains a Table tab and a Variables tab. The tabs contains summary information (metadata) about the table and the variables.

By default, the scored score data set is exported to successor nodes.

 In addition to the original input, target, and frequency variables from predecessor nodes, the scored data set (training, validation, test, or sco re) contains the following new variables:

	
BP_ or BL_ — best profit or loss, depending on the target profile.

	
CP_ or CL_ — computed profit or loss, depending on the target profile.

	
D_ — the decision variable.

	
EP_ or EL_ — expected profit or loss, depending on the target profile.

	
I_ — the normalized category that the case is classified into.

	
S_ — the standardized input variables. This variable is generated only for neural models.

	
H<number> — the hidden units. This variable is generated only for neural models.

	
U_ — the u-normalized category that the case is classified into.

	
P_ — the posterior probabilities for categorical targets or the predicted values for interval targets.

	
R_ — residuals.

4.7

SUPPORT VECTOR MACHINE (SVM) NODE

 A support vector machine (SVM) is a supervised machine-learning method that is used to perform classification and regression analysis. Vapnik (1995) developed the concept of SVM in terms of hard margin, and later he and his colleague proposed the SVM with slack variables, which is a soft margin classifier. The standard SVM model solves binary classification problems that produce non-probability output (only sign +1/-1) by constructing a set of hyperplanes that maximize the margin between two classes. Most problems in a finite dimensional space are not linearly separable. In this case, the original space needs to be mapped into a much higher dimensional space or an infinite dimensional space, which makes the separation easier. SVM uses a kernel function to define the larger dimensional space.

The experimental SAS Enterprise Miner
 SVM
 node uses PROC SVM and PROC SVMSCORE. The tool is located on the
 Model
 tab of the SAS Enterprise Miner toolbar. In SAS Enterprise Miner 12.1, the
 SVM
 node supports only binary classification problems, including polynomial, radial basis function, and sigmoid nonlinear kernels. The
 SVM
 node does not perform multi-class problems or support vector regression. The frequency variable is ignored.

4.7.1

SVM Node Train Properties

	
 Variables
 — Select the
 [image:]
 button to open the Variables — SVM table, which enables you to view the columns metadata, or open an Explore window to view a variable's sampling information, observation values, or a plot of variable distribution. You can specify
 Use
 and
 Report
 variable values. The Name, Role, and Level values for a variable are displayed as read-only properties. The following buttons and check boxes provide additional options to view and modify variable metadata:

	
Apply
 — changes metadata based on the values supplied in the drop-down menus, check box, and selector field.

	
Reset
 — changes metadata back to its state before use of the
 Apply
 button.

	
Label
 — adds a column for a label for each variable.

	
Mining
 — adds columns for the Order, Lower Limit, Upper Limit, Creator, Comment, and Format Type for each variable.

	
Basic
 — adds columns for the Type, Format, Informat, and Length of each variable.

	
Statistics
 — adds statistics metadata for each variable.

	
Explore
 — opens an Explore window that enables you to view a variable's sampling information, observation values, or a plot of variable distribution.

	
Estimation Method
 — specifies an SVM modeling method.

	
Full Dense Quadratic Programming (FQP)
 — Full dense quadratic programming refers to the method used to store a Hessian matrix, not the techniques used to solve the QP problem. A full dense matrix requires substantial amounts of memory, even for relatively small problems. Therefore, this technique is not recommended for medium- or large-sized data sets. For certain problems that are small enough to support a full dense Hessian, this method might be quicker than other methods.

	
Decomposed Quadratic Programming (DQP)
 —Decomposed quadratic programming provides solutions by decomposing large scale quadratic programming problems into a series of smaller quadratic programming problems. Decomposed quadratic programming divides the input data into two partitions. The data in a small partition is optimized as a sub-problem, and the remaining data in a much larger partition remains constant. As data points in the sub-problem are optimized, they are iteratively replaced with data from the larger partition by evaluating the optimality conditions. The large quadratic programming problem is resolved by successively resolving a series of small quadratic programming problems.

	
Lagrangian SVM (LSVM)
 — The Lagrangian SVM method is suitable for large scale SV classification models with a linear kernel. It is also suitable for medium-sized models with nonlinear kernels. The Lagrangian SVM method follows Mangasarian and Musicant (2000), where the modified quadratic programming problem has no linear equality constraint and no upper bounds. The only constraints are that estimated parameters must be nonnegative. For linear kernels, Lagrangian SVM does not require data (X, y) in the core. Lagrangian SVM is an iterative method that makes multiple passes through the data set.

	
Least Squares SVM (LSSVM)
 — The least squares SVM method was originally developed by Suykens and Vandewalle (1999). Least squares SVM solves linear and nonlinear C classification problems. Two versions of least squares SVM exist for classification. The faster version, which is suitable for smaller n n kernel matrices, computes and stores the (dense) Cholesky factor. For larger n, the kernel matrix must not be stored in core when the iterative conjugate gradient algorithm is used. The slower version, which is suitable for small and medium sized n, uses a conjugate gradient solution.

	
Tuning Method
 — specifies the method used to perform tuning.

	
None
 — Tuning is not performed. The constant value specified as a tuning parameter is used.

	
Grid Search
 — grid search.

	
Optimal Search
 — direct optimal or pattern search.

	
Optimization Options
 — enables you to read and modify values for the following:

	
Maximum QP Size
 — specifies the maximum size in observations of the small decomposed quadratic programming partition when the Estimation Method property is set to DQP. The default setting for the Maximum QP Size property is 100.

	
Maximum Iteration
 — specifies the upper bound for the number of iterations in each optimization. The default is 200.

	
Maximum Function Call
 — specifies an upper bound for the number of function calls in each optimization. The default is 500.

	
Gradient Convergence Criterion
 — specifies a relative gradient convergence criterion for the optimization process. The default is 1e-8.

	
Absolute Gradient Convergence Criterion
 — specifies an absolute gradient convergence criterion for the optimization process. The default is 5e-4.

	
Relative Convergence Criterion
 — specifies a relative parameter convergence criterion for the optimization process. The default is 1e-8.

	
Absolute Convergence Criterion
 — specifies an absolute gradient convergence criterion for the optimization process. The default is 5e-4.

	
Use Conjugate Gradient Method
 — specifies whether the iterative conjugate gradient method is used. When there are more than 3000 observations in training data, the Default option uses the iterative conjugate gradient method automatically.

	
Upper Bound of Conjugate Gradient Iteration
 — This option is valid only for the methods LSSVM with any kernel, as well as LSVM method with any nonlinear kernel. Instead of solving the large linear system via Cholesky decomposition, the system is solved by the iterative conjugate gradient method. This option specifies an upper bound for the number of iterations. The default is 400.

	
Conjugate Gradient Termination Tolerance
 — This option is valid only when the iterative conjugate gradient method is being solved. The option specifies a termination tolerance for the iteration. By default, 1e-6 is used.

	
Scale Predictors
 — specifies whether the predictor variables are scaled before entering the analysis. The Scale Predictors property defaults to Yes and becomes dimmed and unavailable when the Kernel property is set to Polynomial, because polynomial kernels always use scaled predictors.

4.7.2

SVM Node Train Properties: Regularization Parameter

	
 Regularization Parameter
 — Use the Regularization Parameter property to choose the method that you want to use to specify a value for the Regularization Parameter.

	
Constant
 — Set the Regularization Parameter property to Constant if you want to use the Constant Value property to manually specify a value for the Regularization Parameter
 C
 .

	
Tuning
 — Set the Regularization Parameter property to Tuning if you want to use a tuning method to choose the best Regularization Parameter
 C
 from a range of values that you specify.

	
Constant value
 — When the Regularization Parameter property is set to Constant, use the Constant Value property to specify the value of the polynomial order parameter. The value of polynomial order parameter must be a real number greater than zero.

	
Tuning Range
 — When the Regularization Parameter property is set to Tuning, select the
 [image:]
 button to the right of the Tuning Range property to open a window where you can specify parameters for tuning your regularization parameter value:

	
Start Value
 — When the Regularization Parameter property is set to Tuning, use the Start Value property to specify the beginning value of the tuning range.

	
End Value
 — When the Regularization Parameter is set to Tuning, use the End Value property to specify the end value of the tuning range.

	
Increment Value
 — When the Regularization Parameter is set to Tuning, use the Increment Value property to specify the increment value for each tuning step.

4.7.3

SVM Node Train Properties: Kernel

	
 Kernel
 — specifies the desired kernel function. The default kernel function is Linear.

	
Linear
 — K(u, v) = uTv.

	
Polynomial
 — K(u,v) = (uTv + 1)
 p
 with polynomial order
 p
 . The 1 is added in order to avoid zero-value entries in the Hessian matrix for large values of
 p
 .

	
Radial Basis Function
 — K(u,v) = exp[-p (u - v)2], Gaussian radial basis function kernel. The radial basis function kernel requires you to specify a value for the kernel scale parameter
 p
 .

	
Sigmoid
 — K(u,v) = tanh(p*(uTv) + q) where
 p
 is the kernel scale parameter and
 q
 is the kernel location parameter.

	
Polynomial Kernel Parameter
 — When the Kernel function is set to Polynomial, select the
 [image:]
 button to the right of the Polynomial Kernel Parameter property to open a window where you can specify the following parameters for your polynomial kernel function:

	
Polynomial Order
 — Use the Polynomial Order property to choose the method that you want to use to specify the order of the polynomial kernel parameter.

	
Constant
 — Set the Polynomial Order property to Constant if you want to use the Constant Value property to manually specify a value for the polynomial order parameter.

	
Tuning
 — Set the Polynomial Order property to Tuning if you want to use a tuning method to choose the best value of the polynomial order from a range of values that you specify.

	
Constant Value
 — When the Polynomial Order property is set to Constant, use the Constant Value property to specify the value of the polynomial order parameter. The value of polynomial order parameter must be an integer between 1 and 10.

	
Tuning Start Value
 — When the Polynomial Order property is set to Tuning, use the Tuning Start Value property to specify the beginning value of the tuning range.

	
Tuning End Value
 — When the Polynomial Order property is set to Tuning, use the Tuning End Value property to specify the end value of the tuning range.

	
Tuning Increment Value
 — When the Polynomial Order property is set to Tuning, use the Tuning Increment Value property to specify the increment value for each step in kernel parameter tuning.

	
RBF Kernel Parameter
 — When the Kernel function is set to Radial Basis Function, select the
 [image:]
 button to the right of the RBF Kernel Parameter property to open a window where you can specify the following parameters for your RBF kernel function:

	
Scale Parameter
 — Use the Scale Parameter property to choose the method that you want to use to specify the value for the kernel scaling parameter
 p
 .

	
Constant
 — Set the Scale Parameter property to Constant if you want to use the Constant Value property to manually specify a value for the kernel scaling parameter
 p
 .

	
Tuning
 — Set the Scale Parameter property to Tuning if you want to use a tuning algorithm to select the best scaling parameter
 p
 from a range of values that you specify.

	
Constant Value
 — When the Scale Parameter property is set to Constant, use the Constant Value property to specify the value of the radial basis function scaling parameter
 p
 . The value for the Constant Value property must be a real number greater than zero.

	
Tuning Start Value
 — When the Scale Parameter property is set to Tuning, use the Tuning Start Value property to specify the beginning value of the tuning range.

	
Tuning End Value
 — When the Scale Parameter property is set to Tuning, use the Tuning End Value property to specify the end value of the tuning range.

	
Tuning Increment Value
 — When the Scale Parameter property is set to Tuning, use the Tuning Increment Value property to specify the increment value for each step in parameter tuning.

	
Sigmoid Kernel Parameter
 — When the Kernel property is set to Sigmoid, select the
 [image:]
 button to the right of the Sigmoid Kernel Parameter property to open a window where you can specify the following parameters for your sigmoid k ernel function:

	
Sigmoid Kernel Scale Parameters

	
Kernel Scale Parameter
 — Use the Kernel Scale Parameter property to choose the method that you want to use to specify the value for the sigmoid kernel scaling parameter
 p
 . The Kernel Scale Parameter property has two settings:

Constant
 — Set the Kernel Scale Parameter property to Constant if you want to use the Constant Value property to manually specify a value for the hyperplane scaling parameter
 p
 .

Tuning
 — Set the Kernel Scale Parameter property to Tuning if you want to use an iterative tuning algorithm to select the best scaling parameter
 p
 from a range of values that you specify.

	
Constant Value
 — When the Kernel Scale Parameter property is set to Constant, use the Constant Value property to specify the value of the scaling parameter
 p
 . The value for the Constant Value property must be a real number greater than zero.

	
Tuning Start Value
 — When the Kernel Scale Parameter property is set to Tuning, use the Tuning Start Value property to specify the beginning value of the tuning range.

	
Tuning End Value
 — When the Kernel Scale Parameter property is set to Tuning, use the Tuning End Value property to specify the end value of the tuning range.

	
Tuning Increment Value
 — When the Kernel Scale Parameter property is set to Tuning, use the Tuning Increment Value property to specify the increment value for each step in parameter tuning.

	
Sigmoid Kernel Location Parameters

	
Kernel Location Parameter
 — Use the Kernel Location Parameter property to choose the method that you want to use to specify the value for the hyperplane location parameter
 q
 .

Constant
 — Set the Kernel Location Parameter property to Constant if you want to use the Constant Value property to manually specify a value for the kernel location parameter
 q
 .

Tuning
 — Set the Kernel Location Parameter property to Tuning if you want to use an iterative algorithm to select the kernel location parameter q from a range of values that you specify.

	
Constant Value
 — When the Kernel Location Parameter property is set to Constant, use the Constant Value property to specify the value of the location parameter
 q
 . The value for the Constant Value property must be a real number greater than zero.

	
Tuning Start Value
 — When the Kernel Location Parameter property is set to Tuning, use the Tuning Start Value property to specify the beginning value of the tuning range.

	
Tuning End Value
 — When the Kernel Location Parameter property is set to Tuning, use the Tuning End Value property to specify the end value of the tuning range.

	
Tuning Increment Value
 — When the Kernel Location Parameter property is set to Tuning, use the Tuning Increment Value property to specify the increment value for each step in parameter tuning.

4.7.4

SVM Node Train Properties: Cross Validation

	
 Cross Validation
 — specifies whether cross validation is used.

	
Method
 — specifies the cross validation method when the Cross Validation property is set to Yes.

	
Random
 — performs random cross validation. The number of cross validation runs is equal to the value specified in the
 Fold
 property. Let N be the number of observations in the input data set and F be the value specified in the
 Fold
 property. Each cross validation run uses N/F observations that are randomly selected from the input data set.

	
Testset
 — permits you to use the test data set as the validation data set.

	
Fold
 — specifies the number of training runs and the number of left out data sets. Typical values are fold=4 or fold=10. For fold=1, leave-one-out estimation is used. The default value is 10.

4.7.5

SVM Node Train Properties: Sampling

	
 Apply Sampling
 — specifies whether sampling is used for SVM training. Stratified sampling is used for class targets.

	
Sample Size
 — specifies the sampling size for SVM training. The default is sample size is 1000 observations.

4.7.6

SVM Node Train Properties: Print Options

	
 Print Option
 — use the Print Option property to configure the granularity of the printed output from the
 SVM
 node.

	
Default
 — suppresses printing of some SVM model details.

	
All
 — prints all SVM results information.

	
No Print
 — suppresses printing of all SVM results information.

	
Optimization History
 — specifies whether to print the detailed optimization history.

4.7.7

SVM Node Status Properties

 The following status properties are associated with this node:

	
Create Time
 — displays the time that the node was created.

	
Run ID
 — displays the identifier of the node run. A new identifier is created every time the node runs.

	
Last Error
 — displays the error message from the last run.

	
Last Status
 — displays the last reported status of the node.

	
Last Run Time
 — displays the time at which the node was last run.

	
Run Duration
 — displays the length of time of the last node run.

	
Grid Host
 — displays the grid server that was used during the node run.

	
User-Added Node
 — specifies if the node was created by a user as a SAS Enterprise Miner extension node.

4.7.8

SVM Node Results

 You can open the Results window of the
 SVM
 node by right-clicking the node and selecting
 Results
 from the pop-up menu.

 Select
 View
 from the main menu to view the following results in the Results Package:

	
Properties

	
Settings
 — displays a window with a read-only table of the configuration information in the
 SVM
 node Properties Panel. The information was captured when the node was last run.

	
Run Status
 — indicates the status of the
 SVM
 node run. The Run Start Time, Run Duration, and information about whether the run completed successfully are displayed in this window.

	
Variables
 — a read-only table of variable meta information about the data set submitted to the
 SVM
 node . The table includes columns to see the variable's name, use, report, role, and level.

	
Train Code
 — the code that SAS Enterprise Miner used to train the node.

	
Notes
 — displays any user-created notes of interest.

	
SAS Results

	
Log
 — the SAS log of the
 SVM
 node run.

	
Output
 — the SAS output of the
 SVM
 node run.

	
Flow Code
 — The SAS code used to produce the output that the
 SVM
 node passes on to the next node in the process flow diagram.

	
Scoring

	
SAS Code
 — the SAS score code that was created by the node. The SAS score code can be used outside of the SAS Enterprise Miner environment in custom user applications.

	
PMML Code
 — the
 SVM
 node does not generate PMML code.

	
Assessment

	
Fit Statistics
 — a table of the fit statistics from the model.

	
Classification Chart
 — a bar chart that shows the correct classification of the values of the target variable.

	
Score Rankings Overlay <TARGET>
 — opens the Score Rankings Overlay chart.

	
Score Rankings Matrix
 — opens the Score Rankings Matrix chart.

	
Score Distribution
 — opens the Score Distribution chart.

	
Model

	
Histogram: Support Vectors
 — opens a histogram that displays the distribution of support vectors.

	
SVM Fit Statistics
 — a table of the SVM fit statistics from the trained model.

	
Tuning History
 — a table of Tuning history. This table is generated when the Tuning Method property is set to Grid Search.

	
Support Vectors
 — displays a table of support vectors with LaGrange multipliers.

	
Table
 — displays a table that contains the underlying data that is used to produce a chart. The Table menu item is dimmed and unavailable unless a results chart is open and selected.

	
Plot
 — opens the Select a Chart Type wizard to modify an existing Results plot or create a Results plot of your own.

4.7.9

SVM Node Example

 From the SAS Enterprise Miner menu, select
 Help
 [image: Descripcin: then select]
 Generate Sample Data Sources
 to open the Generate Sample Data Sources window.

[image:]

Figure 4-25

Select
 OK
 to generate the sample data sources. The new sample data sources automatically populate the Data Sources folder of the SAS Enterprise Miner Project Navigator. Create a new process flow diagram, and then drag the Home Equity data source from the Data Sources folder of the SAS Enterprise Miner Project Navigator onto the diagram workspace. Drag a
 Data Partition
 node from the
 Sample
 tab of the SAS Enterprise Miner node toolbar, and an
 SVM
 node from the
 Model
 tab of the SAS Enterprise Miner node toolbar, and connect these nodes to the Home Equity data source as shown below. Right-click the
 SVM
 node and select
 Run
 .

[image:]

From the SVM Results window, examine the Fit Statistics table.

[image:]

Figure 4-26

The table below contains selected fit statistics from the SVM training. Since sampling was used, the statistics in the table below are based on 1000 observations, which differs from the number of training observations that were used to generate the previous fit statistics table.

[image:]

Figure 4-27

The distribution of nonzero Lagrange Multipliers and Support Vectors are shown as follows:

[image:]

Figure 4-28

[image:]

Figure 4-29

When the
 Grid Search
 tuning method is used, its history is shown as a table.

[image:]

Figure 4-30

The SAS Output contains the following output from the SVM run:

	

 The SVM Procedure

Parameter Tuning Process: Technique= DQP

---Start Tuning Process: Technique= DQP---

Terminate pattern search after 2 iterations (3 training runs) with maximum grid distance=0.1125.

Best solution with C=0.55 selected.

 The SVM Procedure

 Regularization Parameter C=0.55

 Classification Table (Training Data)

 Misclassification=161 Accuracy= 83.90

 Predicted

Observed 0 1 Missing

0 798.0 3.0000 0

1 158.0 41.0000 0

Missing 0 0 0

The SVM Procedure

Support Vector Classification C_CLAS

Kernel Function Linear

Estimation Method DQP

Maximum QP Size 100

Number of Observations (Train) 1000

Number of Effects 20

Regularization Parameter C 0.550000

Classification Error (Training) 161.000000

Objective Function -202.236319

L1 Loss 1.261213E-13

Inf. Norm of Gradient 1.412204E-13

Squared Euclidean Norm of w 8.598777

Geometric Margin 0.682043

Number of Support Vectors 384

Number of S.Vector on Margin 368

Norm of Longest Vector 4.288153

Radius of Sphere Around SV 4.210008

Estimated VC Dim of Classifier 153.406184

Linear Kernel Constant (Fit) 2.535592

Linear Kernel Constant (PCE) 2.535592

Number of Kernel Calls 19711817

CHAPTER 5

SUPERVISED LEARNING. NEURAL NETWORK MODELS TO PREDICT RESPONSE

5.1

A Neural Network Model to Predict Response BY EXAMPLES

This section discusses the neural network model developed to predict the response to a planned direct mail campaign. The campaign’s purpose is to solicit customers for a hypothetical insurance company. A two-layered network with one hidden layer was chosen. Three units are included in the hidden layer. In the hidden layer, the combination function chosen is linear, and the activation function is hyperbolic tangent. In the output layer, a logistic activation function and Bernoulli error function are used. The logistic activation function results in a logistic regression type model with non-linear transformation of the inputs, as shown in previos chapter. Models of this type are in general estimated by minimizing the Bernoulli error functions. Minimization of the Bernoulli error function is equivalent to maximizing the likelihood function.

Display 5.1 shows the process flow for the response model. The first node in the process flow diagram is the
 Input Data
 node, which makes the SAS data set available for modeling. The next node is
 Data Partition
 , which creates the Training, Validation, and Test data sets. The Training data set is used for preliminary model fitting. The Validation data set is used for selecting the optimum weights. The
 Model Selection Criterion
 property is set to Average Error.

As pointed out earlier, the estimation of the weights is done by minimizing the error function. This minimization is done by an iterative procedure. Each iteration yields a set of weights. Each set of weights defines a model. If I set the
 Model Selection Criterion
 property to Average Error, the algorithm selects the set of weights that results in the smallest error, where the error is calculated from the Validation data set.

Since both the Training and Validation data sets are used for parameter estimation and parameter selection, respectively, an additional holdout data set is required for an independent assessment of the model. The Test data set is set aside for this purpose.

Display 5.1

[image: Display 5.1]

5.1.1

Input Data Node

I create the data source for the
 Input Data
 node from the data set NN_RESP_DATA2. I create the metadata using the Advanced Advisor Options, and I customize it by setting the
 Class Levels Count Threshold
 property to 8, as shown in Display 5.2

Display 5.2

[image: Display 5.2]

I set adjusted prior probabilities to 0.03 for response and 0.97 for non-response, as shown in Display 5.3.

Display 5.3

[image: Display 5.3]

5.1.2

Data Partition Node

The input data is partitioned such that 60% of the observations are allocated for training, 30% for validation, and 10% for Test, as shown in Display 5.4.

Display 5.4

[image: Display 5.4]

5.2

Setting the Neural Network Node Properties

Here is a summary of the neural network specifications for this application:

• One hidden layer with three neurons

• Linear combination functions for both the hidden and output layers

• Hyperbolic tangent activation functions for the hidden units

• Logistic activation functions for the output units

• The Bernoulli error function

• The
 Model Selection Criterion
 is Average Error

These settings are shown in Displays 5.5–5.7.

Display 5.5 shows the Properties panel for the
 Neural Network
 node.

Display 5.5

[image: Display 5.5]

To define the network architecture, click
 [image: image shown here]
 located to the right of the
 Network
 property. The Network Properties panel opens, as shown in Display 5.6.

Display 5.6

[image: Display 5.6]

Set the properties as shown in Display 5.6 and click
 OK
 .

To set the iteration limit, click
 [image: image shown here]
 located to the right of the
 Optimization
 property. The Optimization Properties panel opens, as shown in Display 5.7. Set
 Maximum Iterations
 to 100.

Display 5.7

[image: Display 5.7]

After running the
 Neural Network
 node, you can open the Results window, shown in Display 5.8. The window contains four windows: Score Rankings Overlay, Iteration Plot, Fit Statistics, and Output.

Display 5.8

[image: Display 5.8]

The Score Rankings Overlay window in Display 5.8 shows the cumulative lift for the Training and Validation data sets. Click the down arrow next to the text box to see a list of available charts that can be displayed in this window.

Display 5.9 shows the iteration plot with Average Squared Error at each iteration for the Training and Validation data sets. The estimation process required 70 iterations. The weights from the 49
 th
 iteration were selected. After the 49
 th
 iteration, the Average Squared Error started to increase in the Validation data set, although it continued to decline in the Training data set.

Display 5.9

[image: Display 5.9]

You can save the table corresponding to the plot shown in Display 5.9 by clicking the
 Tables
 icon and then selecting
 File→ Save As
 . Table 5.1 shows the three variables _ITER_ (iteration number), _ASE_ (Average Squared Error for the Training data), and _VASE_ (Average Squared Error from the Validation data) at iterations 41-60.

Table 5.1

[image: Table 5.1]

You can print the variables _ITER_, _ASE_, and _VASE_ by using the SAS code shown in Display 5.10.

Display 5.10

[image: Display 5.10]

5.3

Assessing the Predictive Performance of the Estimated Model

In order to assess the predictive performance of the neural network model, run the
 Model Comparison
 node and open the Results window. In the Results window, the Score Rankings Overlay shows the Lift charts for the Training, Validation, and Test data sets. These are shown in Display 5.11.

Display 5.11

[image: Display 5.11]

Click the arrow in the box at the top left corner of the Score Ranking Overlay window to see a list of available charts.

SAS Enterprise Miner saves the Score Rankings table as EMWS.MdlComp_EMRANK. Tables 5.2, 5.3, and 5.4 are created from the saved data set using the simple SAS code shown in Display 5.12.

Display 5.12

[image: Display 5.12]

Table 5.2

[image: Table 5.2]

Table 5.3

[image: Table 5.3]

Table 5.4

[image: Table 5.4]

The lift and capture rates calculated from the Test data set (shown in Table 5.4) should be used for evaluating the models or comparing the models because the Test data set is not used in training or fine-tuning the model.

To calculate the lift and capture rates, SAS Enterprise Miner first calculates the predicted probability of response for each record in the Test data. Then it sorts the records in descending order of the predicted probabilities (also called the scores) and divides the data set into 20 groups of equal size. In Table 5.4, the column Bin shows the ranking of these groups. If the model is accurate, the table should show the highest actual response rate in the first bin, the second highest in the next bin, and so on. From the column %Response, it is clear that the average response rate for observations in the first bin is 8.36796%. The average response rate for the entire test data set is 3%. Hence the lift for Bin 1, which is the ratio of the response rate in Bin 1 to the overall response rate, is 2.7893. The lift for each bin is calculated in the same way. The first row of the column Cumulative %Response shows the response rate for the first bin. The second row shows the response rate for bins 1 and 2 combined, and so on.

The capture rate of a bin shows the percentage of likely responders that it is reasonable to expect to be captured in the bin. From the column Captured Response, you can see that 13.951% of all responders are in Bin 1.

From the Cumulative % Captured Response column of Table 5.3, you can be seen that, by sending mail to customers in the first four bins, or the top 20% of the target population, it is reasonable to expect to capture 39% of all potential responders from the target population. This assumes that the modeling sample represents the target population.

5.4

Receiver Operating Characteristic (ROC) Charts

Display 5.13, taken from the Results window of the
 Model Comparison
 node, displays ROC curves for the Training, Validation, and Test data sets. An ROC curve shows the values of the
 true positive fraction
 and the
 false positive fraction
 at different
 cut-off values
 , which can be denoted byPc. In the case of the response model, if the estimated probability of response for a customer record were above a cut-off valuePc, then you would classify the customer as a responder; otherwise, you would classify the customer as a non-responder.

Display 5.13

[image: Display 5.13]

In the ROC chart, the true positive fraction is shown on the vertical axis, and the false positive fraction is on the horizontal axis for each cut-off value (Pc).

If the calculated probability of response (P_resp1) is greater than equal to the cut-off value, then the customer (observation) is classified as a responder. Otherwise, the customer is classified as non-responder.

True positive fraction is the proportion of responders correctly classified as responders. The false positive fraction is the proportion of non-responders incorrectly classified as responders. The true positive fraction is also called
 sensitivity,
 and
 specificity
 is the proportion of non-responders correctly classified as non-responders. Hence, the false positive fraction is 1-specificity. An ROC curve reflects the tradeoff between sensitivity and specificity.

The straight diagonal lines in Display 5.13 that are labeled Baseline are the ROC charts of a model that assigns customers at random to the responder group and the non-responder group, and hence has no predictive power. On these lines, sensitivity = 1- specificity at all cut-off points. The larger the area between the ROC curve of the model being evaluated and the diagonal line, the better the model. The area under the ROC curve is a measure of the predictive accuracy of the model and can be used for comparing different models.

Table 5.5 shows sensitivity and 1-specificity at various cut-off points in the validation data.

Table 5.5

[image: Table 5.5]

From Table 5.5, you can see that at a cut-off probability (Pc) of 0.02, for example, the sensitivity is 0.84115. That is, at this cut-off point, you will correctly classify 84.1% of responders as responders, but you will also
 incorrectly
 classify 68.1% of non-responders as responders, since 1-specificity at this point is 0.68139. If instead you chose a much higher cut-off point ofPc= 0.13954, you would classify 0.284% of true responders as responders and 0.049% of non-responders as responders. In this case, by increasing the cut-off probability beyond which you would classify an individual as a responder, you would be reducing the fraction of false positive decisions made, while, at the same time, also reducing the fraction of true positive decisions made. These pairings of a true positive fraction with a false positive fraction are plotted as the ROC curve for the VALIDATE case in Display 5.13.

The SAS macro in Display 5.14 demonstrates the calculation of the true positive rate (TPR) and the false positive rate (FPR) at the cut-off probability of 0.02.

Display 5.14

[image: Display 5.14]

Tables 5.6, 5.7, and 5.8, generated by the macro shown in Display 5.14, show the sequence of steps for calculating TPR and FPR for a given cut-off probability.

Table 5.6

[image: Table 5.6]

Table 5.7

[image: Table 5.7]

Table 5.8

[image: Table 5.8]

For more information about ROC curves, see the textbook by A. A. Afifi and Virginia Clark (2004).

4

Display 5.15 shows the SAS code that generated Table 5.5.

Display 5.15

[image: Display 5.15]

5.5

How Did the Neural Network Node Pick the Optimum Weights for This Model?

In other section, I described how the optimum weights are found in a neural network model. I described the two-step procedure of estimating and selecting the weights. In this section, I show the results of these two steps with reference to the neural network model discussed in previous sections.

The weights such as those shown in Equations 5.1, 5.3, 5.5, 5.7, 5.9, 5.11, and 5.13 are shown in the Results window of the
 Neural Network
 node. You can see the estimated weights created at each iteration by opening the results window and selecting
 View→Model→Weights-History
 . Display 5.16 shows a partial view of the Weights-History window.

Display 5.16

[image: Display 5.16]

The second column in Display 5.16 shows the weight of the variable AGE in hidden unit 1 at each iteration. The seventh column shows the weight of AGE in hidden unit 2 at each iteration. The twelfth column shows the weight of AGE in the third hidden unit. Similarly, you can trace through the weights of other variables. You can save the Weights-History table as a SAS data set.

To see the final weights, open the Results window. Select
 View→Model→Weights_Final
 . Then, click the
 Table
 icon. Selected rows of the final weights_table are shown in Display 5.17.

Display 5.17

[image: Display 5.17]

Outputs of the hidden units become inputs to the target layer. In the target layer, these inputs are combined using the weights estimated by the
 Neural Network
 node.

In the model I have developed, the weights generated at the 49
 th
 iteration are the optimal weights, because the Average Squared Error computed from the Validation data set reaches its minimum at the 49
 th
 iteration. This is shown in Display 5.18.

Display 5.18

[image: Display 5.18]

5.6

Scoring a Data Set Using the Neural Network Model

You can use the SAS code generated by the
 Neural Network
 node to score a data set within SAS Enterprise Miner or outside. This example scores a data set inside SAS Enterprise Miner.

The process flow diagram with a scoring data set is shown in Display 5.19.

Display 5.19

[image: Display 5.19]

Set the
 Role
 property of the data set to be scored to Score, as shown in Display 5.20.

Display 5.20

[image: Display 5.20]

The Score Node applies the SAS code generated by the
 Neural Network
 node to the Score data set NN_RESP_SCORE2, shown in Display 5.19.

For each record, the probability of response, the probability of non-response, and the expected profit of each record is calculated and appended to the scored data set.

Display 5.21 shows the segment of the score code where the probabilities of response and non-response are calculated. The coefficients of HL1, HL2, and HL3 in Display 5.21 are the weights in the final output layer. These are same as the coefficients shown in Display 5.17.

Display 5.21

[image: Display 5.21]

The code segment given in Display 5.21 calculates the probability of response using the formulaP_resp1i=11+exp(−ηi21),

whereμi21= -1.29172481842873 * HL1 + 1.59773122184585 * HL2

+ -1.56981973539319 * HL3 -1.0289412689995;

This formula is the same as Equation 5.14 in Section 5.2.4. The subscriptiis added to emphasize that this is a record-level calculation. In the code shown in Display 5.21, the probability of non-response is calculated asp_resp0=11+exp(ηi21).

The probabilities calculated above are modified by the prior probabilities I entered prior to running the
 Neural Network
 node. These probabilities are shown in Display 5.22.

Display 5.22

[image: Display 5.22]

You can enter the prior probabilities when you create the
 Data Source
 . Prior probabilities are entered because the responders are overrepresented in the modeling sample, which is extracted from a larger sample. In the larger sample, the proportion of responders is only 3%. In the modeling sample, the proportion of responders is 31.36%. Hence, the probabilities should be adjusted before expected profits are computed. The SAS code generated by the
 Neural Network
 node and passed on to the
 Score
 node includes statements for making this adjustment. Display 5.23 shows these statements.

Display 5.23

[image: Display 5.23]

Display 5.24 shows the profit matrix used in the decision-making process.

Display 5.24

[image: Display 5.24]

Given the above profit matrix, calculation of expected profit under the alternative decisions of classifying an individual as responder or non-responder proceeds as follows. Using the neural network model, the scoring algorithm first calculates the individual’s probability of response and non-response. Suppose the calculated probability of response for an individual is 0.3, and probability of non-response is 0.7. The expected profit if the individual is classified as responder is 0.3x$5 + 0.7x (–$1.0) = $0.8. The expected profit if the individual is classified as non-responder is 0.3x ($0) + 0.7x ($0) = $0. Hence classifying the individual as responder (Decision1) yields a higher profit than if the individual is classified as non-responder (Decision2). An additional field is added to the record in the scored data set indicating the decision to classify the individual as a responder.

These calculations are shown in the score code segment shown in Display 5.25.

Display 5.25

[image: Display 5.25]

5.7

Score Code

The score code is automatically saved by the
 Score
 node in the sub-directory \Workspaces\EMWSn\Score within the project directory.

For example, in my computer, the Score code is saved by the
 Score
 node in the folder C:\TheBook\EM12.1\EMProjects\Chapter5\Workspaces\EMWS3\Score. Alternatively, you can save the score code in some other directory. To do so, run the Score node, and then click Results. Select either the Optimized SAS Code window or the SAS Code window. Click
 File→Save As
 , and enter the directory and name for saving the score code.

5.8

A Neural Network Model to Predict Loss Frequency in Auto Insurance

The premium that an insurance company charges a customer is based on the degree of risk of monetary loss to which the customer exposes the insurance company. The higher the risk, the higher the premium the company charges. For proper rate setting, it is essential to predict the degree of risk associated with each current or prospective customer. Neural networks can be used to develop models to predict the risk associated with each individual.

In this example, I develop a neural network model to predict loss frequency at the customer level. I use the target variable LOSSFRQ that is a discrete version of loss frequency. The definition of LOSSFRQ is presented in the beginning of this chapter. If the target is a discrete form of a continuous variable with more than two levels, it should be treated as an ordinal variable, as I do in this example.

The goal of the model developed here is to estimate the conditional probabilitiesPr(LOSSFRQ=0|X),Pr(LOSSFRQ=1|X), andPr(LOSSFRQ=2|X), whereXis a set of inputs or explanatory variables.

I have already discussed the general framework for neural network models in Section 5.2. There I gave an example of a neural network model with two hidden layers. I also pointed out that the outputs of the final hidden layer can be considered as complex transformations of the original inputs. These are given in Equations 5.1 through 5.12.

In the following example, there is only one hidden layer, and it has three units. The outputs of the hidden layer areHL1,HL2, andHL3. Since these are nothing but transformations of the original inputs, I can write the desired conditional probabilities as:

Pr(LOSSFRQ=0|HL1,HL2,andHL3),Pr(LOSSFRQ=1|HL1,HL2,andHL3),

andPr(LOSSFRQ=2|HL1,HL2,andHL3).

5.5.1 Loss Frequency as an Ordinal Target

In order for the
 Neural Network
 node to treat the target variable LOSSFRQ as an ordinal variable, we should set its measurement level to Ordinal in the data source.

Display 5.26 shows the process flow diagram for developing a neural network model.

Display 5.26

[image: Display 5.26]

The data source for the
 Input Data
 node is created from the data set Ch5_LOSSDAT2 using the Advanced Metadata Advisor Options with the
 Class Levels Count Threshold
 property set to 8, which is the same setting shown in Display 5.2.

Loss frequency is a continuous variable. The target variable LOSSFRQ, used in the Neural Network model developed here, is a discrete version of loss frequency. It is created as follows:

 LOSSFRQ=0if lossfrequency=0,LOSSFRQ=1if0<lossfrequency<1.5,and  LOSSFRQ=2iflossfrequency≥1.5.

Display 5.27 shows a partial list of the variables contained in the data set Ch5_LOSSDAT2. The target variable is LOSSFRQ. I changed its measurement level from Nominal to Ordinal.

Display 5.27

[image: Display 5.27]

For illustration purposes, I enter a profit matrix, which is shown in Display 5.28. A profit matrix can be used for classifying customers into different risk groups such as low, medium, and high.

Display 5.28

[image: Display 5.28]

The SAS code generated by the
 Neural Network
 node, shown in Display 5.29, illustrates how the profit matrix shown in Display 5.28 is used to classify customers into different risk groups.

Display 5.29

[image: Display 5.29]

In the SAS code shown in Display 5.29, P_LOSSFRQ2, P_LOSSFRQ1, and P_LOSSFRQ0 are the estimated probabilities of LOSSFRQ= 2, 1, and 0, respectively, for each customer.

The property settings of the
 Data Partition
 node for allocating records for Training, Validation, and Test are 60, 30, and 10, respectively. These settings are the same as in Display 5.4.

To define the Neural Network, click
 [image: image shown here]
 located to the right of the
 Network
 property of the
 Neural Network
 node. The Network window opens, as shown in Display 30.

Display 5.30

[image: Display 5.30]

The general formulas of Combination Functions and Activation Functions of the hidden layers are given by equations 5.1-5.12 of section 5.2.2.

In the Neural Network model developed in this section, there is only one hidden layer and three hidden units, each hidden unit producing an output. The outputs produced by the hidden units are HL1, HL2, and HL3. These are special variables that are constructed from inputs contained in the dataset Ch5_LOSSDAT2. These inputs are standardized prior to being used by the hidden layer.

5.8.1

Target layer combination and activation functions

As you can see from Display 5.30, I set the
 Target Layer Combination Function
 property to Linear and the Target
 Layer Activation Function
 property to Logistic. These settings result in the following calculations.

Since we set the
 Target Layer Combination
 Function property to be linear, the
 Neural Network
 node calculates linear predictors for each observation from the hidden layer outputs HL1, HL2, and HL3. Since the target variable LOSSFRQ is ordinal, taking the values 0, 1 and 2, the
 Neural Network
 node calculates two linear predictors.

To verify the calculations, run the
 Neural Network
 node shown in Display 5.26 and open the Results window. In the Results window, click
 View→Scoring→SAS Code
 and scroll down until you see “Writing the Node LOSSFRQ” as shown in Display 5.31.

Display 5.31

[image: Display 5.31]

Scroll down further to see how each customer/record is assigned to a risk level using the profit matrix shown in Display 5.28. The steps in assigning a risk level to a customer/record are shown in Display 5.32.

Display 5.32

[image: Display 5.32]

5.9

DATA PREPARATION

5.9.1

Model selection criterion property

I set the
 Model Selection Criterion
 property to Average Error. During the training process, the
 Neural Network
 node creates a number of candidate models, one at each iteration. If we set
 Model Selection Criterion
 to Average Error, the
 Neural Network
 node selects the model that has the smallest error calculated using the Validation data set.

5.9.2

Score ranks in the results window

Open the Results window of the
 Neural Network
 node to see the details of the selected model.

The Results window is shown in Display 5.33.

Display 5.33

[image: Display 5.33]

The score rankings are shown in the Score Rankings window. To see how lift and cumulative lift are presented for a model with an ordinal target, you can open the table corresponding to the graph by clicking on the Score Rankings window, and then clicking on the
 Table
 icon on the task bar. Selected columns from the table behind the Score Rankings graph are shown in Display 5.34.

Display 5.34

[image: Display 5.34]

In Display 5.34, column 3 has the title
 Event
 . This column has a value of 2 for all rows. You can infer that SAS Enterprise Miner created the lift charts for the target level 2, which is the highest level for the target variable LOSSFRQ.

When the target is ordinal, SAS Enterprise Miner creates lift charts based on the probability of the highest level of the target variable. For each record in the test data set, SAS Enterprise Miner computes the predicted or posterior probabilityPr(lossfrq=2|Xi)from the model. Then it sorts the data set in descending order of the predicted probability and divides the data set into 20 percentiles (bins).

7

 Within each percentile it calculates the proportion of cases with actuallossfrq= 2. The lift for a percentile is the ratio of the proportion of cases withlossfrq= 2 in the percentile to the proportion of cases withlossfrq=2 in the entire data set.

To assess model performance, the insurance company must rank its customers by the expected value ofLOSSFRQ, instead of the highest level of the target variable. To demonstrate how to construct a lift table based on expected value of the target, I construct the expected value for each record in the data set by using the following formula.

E(lossfrq|Xi)=Pr(lossfrq=0|Xi)*0+Pr(lossfrq=1|Xi)*1+Pr(lossfrq=2|Xi)*2

Then I sorted the data set in descending order ofE(lossfrq|Xi), and divided the data set into 20 percentiles. Within each percentile, I calculated the mean of the
 actual
 or observed value of the target variablelossfrq. The ratio of the mean of actuallossfrqin a percentile to the overall mean of actuallossfrqfor the data set is the lift of the percentile.

These calculations were done in the
 SAS Code
 node, which is connected to the
 Neural Network
 node as shown Display 5.26.

The SAS program used in the
 SAS Code
 node is shown in Displays 5.88, 5.89, and 5.90.

The lift tables based onE(lossfrq|Xi)are shown in Tables 5.9, 5.10, and 5.11.

Table 5.9

[image: Table 5.9]

Table 5.10

[image: Table 5.10]

Table 5.11

[image: Table 5.11]

5.9.3

Scoring a new dataset with the model

The Neural Network model we developed can be used for scoring a data set where the value of the target is not known. The
 Score
 node uses the model developed by the
 Neural Network
 node to predict the target levels and their probabilities for the Score data set.

Display 5.26 shows the process flow for scoring. The process flow consists of an
 Input Data
 node called Ch5_LOSSDAT_SCORE2, which reads the data set to be scored. The
 Score
 node in the process flow takes the model score code generated by the
 Neural Network
 node and applies it to the data set to be scored.

The output generated by the
 Score
 node includes the predicted (
 assigned
) levels of the target and their probabilities. These calculations reflect the solution of Equations 5.18 through 5.25.

Display 5.35 shows the programming statements used by the
 Score
 node to calculate the predicted probabilities of the target levels.

Display 5.35

[image: Display 5.35]

Display 5.36 shows the assignment of the target levels to individual records using the profit matrix.

Display 5.36

[image: Display 5.36]

The following code segments create additional variables. Display 5.37 shows the target level assignment process. The variable I_LOSSFRQ is created according to the posterior probability found for each record.

Display 5.37

[image: Display 5.37]

In Display 5.38, the variable EM_CLASSIFICATION represents predicted values based on maximum posterior probability. EM_CLASSIFICATION is the same as I_LOSSFRQ shown in Display 5.37.

Display 5.38

[image: Display 5.38]

Display 5.39 shows the list of variables created by the
 Score
 node using the Neural Network model.

Display 5.39

[image: Display 5.39]

5.9.4

Classification of Risks for Rate Setting in Auto Insurance with Predicted Probabilities

The probabilities generated by the neural network model can be used to classify risk for two purposes:

• to select new customers

• to determine premiums to be charged according to the predicted risk

For each record in the data set, you can compute the expected LOSSFRQ as:

E(lossfrq|Xi)=Pr(lossfrq=0|Xi)*0+Pr(lossfrq=1|Xi)*1+Pr(lossfrq=2|Xi)*2. Customers can be ranked by this expected frequency and assigned to different risk groups.

CHAPTER 6

SUPERVISED LEARNING. Specific NEURAL NETWORKS TO PREDICT RESPONSES

6.1

Alternative Specifications of the Neural Networks

The general Neural Network model consists of linear combinations functions and hyperbolic tangent activation functions in the hidden layers, and a linear combination function and a logistic activation function in the output layer. The multilayer perceptrons networks use linear combination functions and sigmoid activation functions in the hidden layers. Sigmoid activation functions are S-shaped.

In this section, I introduce you to other types of networks known as Radial Basis Function (RBF) networks, which have different types of combination activation functions. You can build both Multilayer Perceptron (MLP) networks and RBF networks using the
 Neural Network
 node.

6.2

Multilayer Perceptron (MLP) Neural Network

In an MLP neural network the hidden layer combination functions are linear. The hidden Layer Activations Functions are sigmoid functions.

The Hidden Layer Activation Function in an MLP network is a sigmoid function such as the Hyperbolic Tangent, Arc Tangent, Elliot, or Logistic. The sigmoid functions are S-shaped.

If you want to use a built-in MLP network, click
 [image: image shown here]
 located at the right of the
 Network
 property of the
 Neural Network
 node. Set the
 Architecture
 property to Multilayer Perceptron in the Network Properties window, as shown in Display 6.40.

Display 6.40

[image: Display 5.40]

When you set the
 Architecture
 property to Multilayer Perceptron, the
 Neural Network
 node uses the default values Linear and Tanh for the
 Hidden Layer Combination Function
 and the
 Hidden Layer Activation Function
 properties. The default values for the
 Target Layer Combination Function
 and
 Target Layer Activation Function
 properties are Linear and Exponential. You can change the
 Target Layer Combination Function
 ,
 Target Layer Activation Function
 , and
 Target Layer Error Function
 properties. I changed the
 Target Layer Activation Function
 property to Logistic, as shown in Display 6.40. If the Target is Binary and the
 Target Layer Activation Function
 is Logistic, then you can set the
 Target Layer Error Function
 property to Bernoulli to generate a Logistic Regression-type model.

6.3

A Radial Basis Function (RBF) Neural Network

The hidden layer combination function in a MLP neural network is the weighted sum or inner product of the vector of inputs and vector of corresponding weights
 plus
 a bias coefficient. In contrast to the Hidden Layer Combination function in an MLP neural network, the hidden layer combination function in a RBF neural network is the Squared Euclidian Distance between the vector of inputs and the vector of corresponding weights (center points), multiplied by squared bias.

In the
 Neural Network
 node, the Basis functions are defined in terms of the combination and activation functions of the hidden units. The RBF neural network which uses the especial combination function is called the Ordinary Radial with Unequal Widths or ORBFUN if the activation function of the hidden units is an exponential function.

To build an ORBFUN neural network model, click
 [image: image shown here]
 located to the right of the
 Network
 property of the
 Neural Network
 node. In the Network window that opens, set the
 Architecture
 Property to Ordinary Radial-Unequal Width, as shown in Display 6.41.

Display 6.41

[image: Display 5.41]

As you can see in Display 6.41, the rows corresponding to
 Hidden Layer Combination Function
 and
 Hidden Layer Activation Function
 are shaded, indicating that their values are fixed for this network. Hence this is called a built-in network in SAS Enterprise Miner terminology. However, the rows corresponding to the
 Target Layer Combination Function
 ,
 Target Layer Activation Function
 , and
 Target Layer Error Function
 are not shaded, so you can change their values. For example, to set the
 Target Layer Activation Function
 to Logistic, click on the value column corresponding to
 Target Layer Activation Function
 property and select Logistic. Similarly you can change the
 Target Layer Error
 Function to Bernoulli.

As pointed out earlier in this chapter, the error function you select depends on the type of model you want to build.

Display 6.42 shows a list of RBF neural networks available in SAS Enterprise Miner. You can see all the network architectures If you click on the down-arrow in the box to the right of the
 Architecture
 property in the Network window.

Display 6.42

[image: Display 5.42]

Display 6.43 shows a graph of the radial basis function with
 height
 = 1 and
 width
 = 1.

Display 6.43

[image: Display 5.43]

Display 6.44 shows a graph of the radial basis function with
 height
 = 1 and
 width
 = 4.

Display 6.44

[image: Display 5.44]

Display 6.45 shows a graph of the radial basis function with
 height
 = 5 and
 width
 = 4.

Display 6.45

[image: Display 5.45]

If there are three units in a hidden layer, each having a radial basis function, and if the radial basis functions are constrained to sum to 1, then they are called Normalized Radial Basis Functions in SAS Enterprise Miner. Without this constraint, they are called Ordinary Radial Basis Functions.

6.4

Comparison of Alternative Built-in Architectures of the Neural Network Node

You can produce a number of neural network models by specifying alternative architectures in the
 Neural Network
 node. You can then make a selection from among these models, based on lift or other measures, using the
 Model Comparison
 node. In this section, I compare the built-in architectures listed in the Display 6.46.

Display 6.46

[image: Display 5.46]

Display 6.47 shows the process flow diagram for comparing the Neural Network models produced by different architectural specifications. In all the eight models compared in this section, I set the
 Assessment
 property to Average Error and the
 Number of Hidden Units
 property to 5.

Display 6.47

[image: Display 5.47]

6.4.1

Multilayer Perceptron (MLP) Network

The top
 Neural Network
 node in Display 6.47 is a MLP network, and its property settings are shown in Display 6.48.

Display 6.48

[image: Display 5.48]

The default value of the
 Hidden Layer Combination Function
 property is Linear and the default value of the
 Hidden Layer Activation Functions
 property is Tanh. After running this node, you can open the Results window and view the SAS code generated by the
 Neural Network
 node. Display 6.49 shows a segment of the SAS code generated by the Neural Network mode with the Network settings shown in Display 6.48.

Display 6.49

[image: Display 5.49]

The code segment shown in Display 6.50 shows that the final outputs in the Target Layer are computed using a Logistic Activation Function.

Display 6.50

[image: Display 5.50]

6.4.2

Ordinary Radial Basis Function with Equal Heights and Widths (ORBFEQ)

Display 6.51 shows an example of the outputs of five Hidden Units of an ORBFEQ with a single input.

Display 6.51

[image: Display 5.51]

In the second
 Neural Network
 node in Display 6.47, the
 Architecture
 property is set to Ordinary Radial – Equal width as shown in Display 6.52.

Display 6.52

[image: Display 5.52]

Display 6.53 shows a segment of the SAS code, which shows the computation of the outputs of the hidden units of the ORBFEQ neural network specified in Display 6.52.

Display 6.53

[image: Display 5.53]

Display 6.54 shows the computation of the outputs of the target layer of the ORBFEQ neural network specified in Display 6.52.

Display 6.54

[image: Display 5.54]

6.4.3

Ordinary Radial Basis Function with Equal Heights and Unequal Widths (ORBFUN)

Display 6.55 shows an example of the output of the five hidden unitsHk(k=1,2,3,4and5)with a single standardized input and arbitrary values forwjkandbk.

Display 6.55

[image: Display 5.55]

The Architecture property of the ORBFUN
 Neural Network
 node (the third node from the top in Display 6.46) is set to Ordinary Radial – Unequal Width. The remaining Network properties are the same as in Display 6.52.

Displays 5.56 and 5.57 show the SAS code segment showing the calculation of the outputs of the hidden and target layers of this ORBFUN network.

Display 6.56

[image: Display 5.56]

Display 6.57

[image: Display 5.57]

6.4.4

Normalized Radial Basis Function with Equal Widths and Heights (NRBFEQ)

Display 6.58 shows the output of the five hidden unitsHk(k=1,2,3,4and5)with a single standardized input, and arbitrary values forwjkandb.

In this case, the heightak=1 for all the hidden units. Hencelog(ak)=0.

Display 6.58

[image: Display 5.58]

For a NRBFEQ neural network, the
 Architecture
 property is set to Normalized Radial – Equal Width and Height. The remaining Network settings are the same as in Display 6.52.

Displays 5.59 and 5.60 show segments from the SAS code generated by the
 Neural Network
 node. Display 6.59 shows the computation of the outputs of the hidden units and Display 6.60 shows the calculation of the target layer outputs.

Display 6.59

[image: Display 5.59]

Display 6.60

[image: Display 5.60]

6.4.5

Normalized Radial Basis Function with Equal Heights and Unequal Widths (NRBFEH)

Display 6.61 shows the output of the five hidden unitsHk(k=1,2,3,4and5)with a single standardized input AGE (p=1), and arbitrary values forwjkandbk. The heightak=1 for all the hidden units. Hencelog(ak)=0.

Display 6.61

[image: Display 5.61]

The
 Architecture
 property for the NRBFEH neural network is set to Normalized Radial – Equal Height. The remaining Network settings are the same as in Display 6.52.

Display 6.62 shows a segment of the SAS code used to compute the hidden units in this NRBEH network.

Display 6.62

[image: Display 5.62]

Display 6.63 shows the SAS code used to compute the target layer outputs.

Display 6.63

[image: Display 5.63]

6.4.6

Normalized Radial Basis Function with Equal Widths and Unequal Heights (NRBFEW)

Display 6.64 shows the output of the five hidden unitsHk(k=1,2,3,4and5)with a single standardized input and arbitrary values forwjk,ak, andb.

Display 6.64

[image: Display 5.64]

The
 Architecture
 property of the estimated NRBFEW network is set to Normalized Radial – Equal Width. The remaining Network settings are the same as in Display 6.52.

Display 6.65 shows the code segment showing the calculation of the output of the hidden units in the estimated NRBFEW network.

Display 6.65

[image: Display 5.65]

Display 6.66 shows the calculation of the outputs of the target layer.

Display 6.66

[image: Display 5.66]

6.4.7

Normalized Radial Basis Function with Equal Volumes (NRBFEV)

Display 6.67 shows the output of the five hidden unitsHk(k=1,2,3,4and5)with a single standardized input, and arbitrary values forwjkandbk.

Display 6.67

[image: Display 5.67]

The
 Architecture
 property of the NRBFEV architecture used in this example is set to Normalized Radial – Equal Volumes. The remaining Network settings are the same as in Display 6.52.

Display 6.68 shows a segment of the SAS code generated by the
 Neural Network
 node for the NRBFEV network.

Display 6.68

[image: Display 5.68]

Display 6.69 shows the computation of the outputs of the target layer in the estimated NRBFEV network.

Display 6.69

[image: Display 5.69]

6.4.8

Normalized Radial Basis Function with Unequal Widths and Heights (NRBFUN)

Display 6.70 shows the output of the five hidden unitsHk(k=1,2,3,4and5)with a single standardized input and arbitrary values forwjk,ak, andbk.

Display 6.70

[image: Display 5.70]

The
 Architecture
 property for the NRBFUN network is set to Normalized Radial – Unequal Width and Height. The remaining Network settings are the same as in Display 6.52.

Display 6.71 shows the segment of the SAS code used for calculating the outputs of the hidden units.

Display 6.71

[image: Display 5.71]

Display 6.72 shows the SAS code needed for calculating the outputs of the target layer of the NRBFUN network.

Display 6.72

[image: Display 5.72]

6.4.9

User-Specified Architectures

With the user-specified
 Architecture
 setting, you can pair different Combination Functions and Activation Functions. Each pair generates a different Neural Network model, and all possible pairs can produce a large number of Neural Network models.

You can select the following settings for the Hidden Layer Activation Function:

• ArcTan

• Elliott

• Hyperbolic Tangent

• Logistic

• Gauss

• Sine

• Cosine

• Exponential

• Square

• Reciprocal

• Softmax

You can select the following settings for the Hidden Layer Combination Function:

• Add

• Linear

• EQSlopes

• EQRadial

• EHRadial

• EWRadial

• EVRadial

• XRadial

6.5

AutoNeural Node

As its name suggests, the
 AutoNeural
 node automatically configures a Neural Network model. It uses default combination functions and error functions. The algorithm tests different activation functions and selects the one that is optimum.

Display 6.73 shows the property settings of the
 AutoNeural
 node used in this example. Segments of SAS code generated by
 AutoNeural
 node are shown in Displays 5.74 and 5.75.

Display 6.73

[image: Display 5.73]

Display 6.74 shows the computation of outputs of the hidden units in the selected model.

Display 6.74

[image: Display 5.74]

From Display 6.74 it is clear that in the selected model inputs are combined using a Linear Combination Function in the hidden layer. A Sin Activation Function is applied to calculate the outputs of the hidden units.

Display 6.75 shows the calculation of the outputs of the Target layer.

Display 6.75

[image: Display 5.75]

6.6

DMNeural Node

DMNeural
 node fits a non linear equation using bucketed principal components as inputs. The model derives the principal components from the inputs in the training data set. As explained in Chapter 2, the principal components are weighted sums of the original inputs, the weights being the eigenvectors of the variance covariance or correlation matrix of the inputs. Since each observation has a set of inputs, you can construct a Principal Component value for each observation from the inputs of that observation. The Principal components can be viewed as new variables constructed from the original inputs.

The
 DMNeural
 node selects the best principal components using the R-square criterion in a linear regression of the target variable on the principal components. The selected principal components are then binned or bucketed. These bucketed variables are used in the models developed at different stages of the training process.

The model generated by the DMNeural Node is called an additive nonlinear model because it is the sum of the models generated at different stages of the training process. In other words, the output of the final model is the sum of the outputs of the models generated at different stages of the training process as shown in Display 6.80.

In the first stage a model is developed using the response variable is used as the target variable. An identity link is used if the target is interval scaled, and a logistic link function is used if the target is binary. The residuals of the model from the first stage are used as the target variable values in the second stage. The residuals of the model from the second stage are used as the target variable values in the third stage. The output of the final model is the sum of the outputs of the models generated in the first, second and third stages as can be seen in Display 6.80. The first, second and third stages of the model generation process are referred to as stage 0, stage 1 and stage 2 in the code shown in Displays 5.77 through 5.80. See
 SAS Enterprise Miner 12.1 Reference Help
 .

Display 6.76 shows the Properties panel of the
 DMNeural
 node used in this example.

Display 6.76

[image: Display 5.76]

After running the
 DMNeural
 node, open the Results window and click
 Scoring→SAS code
 . Scroll down in the SAS Code window to view the SAS code, shown in Displays 5.77through 5.79.

Display 6.77 shows that the response variable is used as the target only in stage 0.

Display 6.77

[image: Display 5.77]

The model at stage 1 is shown in Display 6.77. This code shows that the algorithm uses the residuals of the model from stage 0 (_RHAT1) as the new target variable.

Display 6.78

[image: Display 5.78]

The model at stage 2 is shown in Display 6.79. In this stage, the algorithm uses the residuals of the model from stage 1 (_RHAT2) as the new target variable. This process of building the model in one stage from the residuals of the model from the previous stage can be called an additive stage-wise process.

Display 6.79

[image: Display 5.79]

You can see in Display 6.79 that the Activation Function selected in stage 2 is SQUARE. The selection of the best activation function at each stage in the training process is based on the smallest SSE (Sum of Squared Error).

In Display 6.80, you can see that the final output of the model is the sum of the outputs of the models generated in stages 0, 1, and 2. Hence the underlying model can be described as an additive nonlinear model.

Display 6.80

[image: Display 5.80]

6.7

Dmine Regression Node

The
 Dmine Regression
 node generates a Logistic Regression for a binary target. The estimation of the Logistic Regression proceeds in three steps.

In the first step, a preliminary selection is made, based on Minimum R-Square. For the original variables, the R-Square is calculated from a regression of the target on each input; for the binned variables, it is calculated from a one-way Analysis of Variance (ANOVA).

In the second step, a sequential forward selection process is used. This process starts by selecting the input variable that has the highest correlation coefficient with the target. A regression equation (model) is estimated with the selected input. At each successive step of the sequence, an additional input variable that provides the largest incremental contribution to the Model R-Square is added to the regression. If the lower bound for the incremental contribution to the Model R-Square is reached, the selection process stops.

The
 Dmine Regression
 node includes the original inputs and new categorical variables called AOV16 variables which are constructed by binning the original variables. These AOV16 variables are useful in taking account of the non-linear relationships between the inputs and the target variable.

After selecting the best inputs, the algorithm computes an estimated value (prediction) of the target variable for each observation in the training data set using the selected inputs.

In the third step, the algorithm estimates a logistic regression (in the case of a binary target) with a single input, namely the estimated value or prediction calculated in the first step.

Display 6.81 shows the Properties panel of the
 Dmine Regression
 node with default property settings.

Display 6.81

[image: Display 5.81]

You should make sure that the
 Use AOV16 Variables
 property is set to Yes if you want to include them in the variable selection and model estimation.

Display 6.82 shows the variable selected in the first step.

Display 6.82

[image: Display 5.82]
 .

Display 6.83 shows the variables selected by the forward least-squares stepwise regression in the second step.

Display 6.83

[image: Display 5.83]

6.8

Comparing the Models Generated by DMNeural, AutoNeural, and Dmine Regression Nodes

In order to compare the predictive performance of the models produced by the
 DMNeural
 ,
 AutoNeural
 , and
 Dmine Regression
 nodes, I created the process flow diagram shown in Display 6.84.

Display 6.84

[image: Display 5.84]

The results window of the
 Model Comparison
 node shows the Cumulative %Captured Response charts for the three models for the Training, Validation, and Test data sets.

Display 6.85 shows the Cumulative %Captured Response charges for the Training data set.

Display 6.85

[image: Display 5.85]

Display 6.86 shows the Cumulative %Captured Response charges for the Validation data set.

Display 6.86

[image: Display 5.86]

Display 6.87 shows the Cumulative %Captured Response charges for the Test data set.

Display 6.87

[image: Display 5.87]

From the Cumulative %Captured Response, there does not seem to be a significant difference in the predictive performance of the three models compared.

CHAPTER 7

SUPERVISED LEARNING. PREDICTIVE MODELS COMPARISON

7.1

MODELS COMPARISON

This chapter compares the output and performance of three modeling tools—
 Decision Tree
 ,
 Regression
 , and
 Neural Network—
 by using all three tools to develop two types of models—one with a binary target and one with an ordinal target. I hope this chapter will help you decide what approach to take.

The model with a binary target is developed for a hypothetical bank that wants to predict the likelihood of a customer’s attrition so that it can take suitable action to prevent the attrition if necessary. The model with an ordinal target is developed for a hypothetical insurance company that wants to predict the probability of a given frequency of insurance claims for each of its existing customers, and then use the resulting model to further profile customers who are most likely to have accidents.

The
 Stochastic Boosting
 and
 Ensemble
 nodes are demonstrated for combining models.

7.2

Models for Binary Targets: An Example of Predicting Attrition

Attrition can be modeled as either a binary or a continuous target. When you model attrition as a binary target, you predict the probability of a customer “attriting” during the next few days or months, given the customer’s general characteristics and change in the pattern of the customer’s transactions. With a continuous target, you predict the expected time of attrition, or the residual lifetime, of a customer. For example, if a bank or credit card company wants to identify customers who are likely to terminate their accounts at

 any

 point within a predefined interval of time in the future, the company can model attrition as a binary target. If, on the other hand, they are interested in predicting the

 specific

 time at which the customer is likely to attrit, then the company should model attrition as a continuous target, and use techniques such as survival analysis.

In this chapter, I present an example of a hypothetical bank that wants to develop an early warning system to identify customers who are most likely to close their investment accounts in the next three months. To meet this business objective, an attrition model with a binary target is developed.

The customer record in the modeling data set for developing an attrition model consists of three types of variables (fields):

• Variables indicating the customer’s past transactions (such as deposits, withdrawals, purchase of equities, etc.) by month for several months

• Customer characteristics (demographic and socio-economic) such as age, income, lifestyle, etc.

• Target variable indicating whether a customer attrited during a pre-specified interval

Assume that the model was developed during December 2006, and that it was used to predict attrition for the period January1, 2007 through March 31, 2007.

Display 7.1 shows a chronological view of a data record in the data set used for developing an attrition model.

Display 7.1

[image: Display 7.1]

Here are some key input design definitions that are labeled in Display 7.1:

• inputs/explanatory variables window: This window refers to the period from which the transaction data is collected.

• operational lag: The model excludes any data for the month of July 2006 to allow for the operational lag that comes into play when the model is used for forecasting in real time. This lag may represent the period between the time at which a customer's transaction takes place and the time at which it is recorded in the data base and becomes available to be used in the model.

• performance window: This is the time interval in which the customers in the sample data set are observed for attrition. If a customer attrited during this interval, then the target variable ATTR takes the value 1; if not, it takes the value 0.

The model should exclude all data from any of the inputs that have been captured during the performance window.

If the model is developed using the data shown in Display 7.1 and used for predicting, or scoring, attrition propensity for the period January 1, 2007 through March 2007, then the inputs window, the operational lag, and the prediction window look like what is shown in Display 7.2 when the scoring or prediction is done.

Display 7.2

[image: Display 7.2]

At the time of prediction (say on Dec 31, 2006), all data in the inputs/explanatory variables window is available. In this hypothetical example, however, the inputs are not available for the month of December 2006 because of the time lag in collecting the input data. In addition, no data is available for the prediction window, since it resides in the future (see Display 7.2).

As mentioned earlier, we assume that the model was developed during December 2006. The modeling data set was created by observing a sample of current customers with investment accounts during a time interval of three months starting August 1, 2006 through October 31, 2006. This is the performance window, as shown in Display 7.1. The fictitious bank is interested in predicting the probability of attrition, specifically among their customers’ investment accounts. Accordingly, if an investment account is closed during the performance window, an indicator value of 1 is entered on the customer’s record; otherwise, a value of 0 is given. Thus, for the target variable ATTR, 1 represents attrition and 0 represents no attrition.

Each record in the modeling data set includes the following details:

• monthly transactions

• balances

• monthly rates of change of customer balances

• specially constructed trend variables

These trend variables indicate patterns in customer transaction behavior, etc., for all accounts held by the customer during the Inputs/Explanatory variables window, which spans the period of January 1, 2006, through June 30, 2006, as shown in Display 7.1. The customer’s records also show how long the customer has held an investment account with the bank (investment account tenure). In addition, each record is appended with the customer’s age, marital status, household income, home equity, life-stage indicators, and number of months the customer has been on the books (customer tenure), etc. All of these details are candidates for inclusion in the model.

In the process flow shown in Display 7.3, the data source is created first from the dataset ATTRITION2_C. TheInput Data

 node reads this data. The data is then partitioned such that 45% of the records are allocated to training, 35% to validation, and 25% for testing. I allocated more records for training and validation than for testing so that the models are estimated as accurately as possible. The value of the

 Partitioning Method

 property is set to Default, which performs stratification with respect to the target variable if the target variable is categorical. I also imputed missing observations using the

 Impute

 node. Display 7.3 shows the process flow for modeling the binary target.

Display 7.3

[image: image shown here]

7.2.1

Logistic Regression for Predicting Attrition

The top segment of Display 7.3 shows the process flow for a logistic regression model of attrition. In the
 Regression
 node, I set the
 Model Selection
 property to Stepwise, as this method was found to produce the most parsimonious model. For the stepwise selection, I set the
 Entry Significance Level
 property to 0.05 and the
 Stay Significance Level
 property to 0.05. I set the
 Use Selection Defaults
 property to No and the Maximum
 Number of Steps
 property to 100. Before making a final choice of value for the
 Selection Criterion
 property, I tested the model using different values. In this example, the
 Validation Error
 criterion produced a model that made the most business sense. Display 7.4 shows the model that is estimated by the
 Regression
 node with these property settings.

Display 7.4

[image: Display 7.4]

The variables that are selected by the
 Regression
 node are btrend and duration. The variable btrend measures the trend in the customer’s balances during the six-month period prior to the operational lag period and the operational lag period. If there is a
 downward trend
 in the balances over the period, e.g., a
 decline
 of 1 percent, then the odds of attrition increase by100*{e−0.1485(−1)−1}=16.0%. This may seem a bit high, but the direction of the result does make sense. (Also, keep in mind that these estimates are based on simulated data. It is best not to consider them as general results.)

The variable duration measures the customer’s investment account tenure. Longer tenure corresponds to lower probability of attrition. This can be interpreted as the positive effect of customer loyalty.

Display 7.5 shows the Cumulative Lift chart from the Results window of the
 Regression
 node.

Display 7.5

[image: Display 7.5]

Table 5.1 shows the cumulative lift and capture rates for the Train, Validation, and Test data sets.

Table 5.1

[image: Table 7.1]

7.2.2

Decision Tree Model for Predicting Attrition

The middle section of Display 7.3 shows the process flow for the Decision Tree model of attrition.

I set the
 Splitting Rule Criterion
 property to ProbChisq, the
 Subtree Method
 property to Assessment, and the
 Assessment Measure
 property to Average Square Error. My choice of these property values is somewhat arbitrary, but it resulted in a tree that can serve as an illustration. You can set alternative values for these properties and examine the trees produced.

According to the property values I set, the nodes are split on the basis of
 p
 -values of the Pearson Chi-Square, and the sub-tree selected is based on the Average Square Error calculated from the Validation data set.

Display 7.6 shows the tree produced according to the above property values. The
 Decision Tree
 node selected only one variable, btrend, in the tree. The variable btrend is the trend in the customer balances, as explained earlier. The
 Regression
 node selected two variables, which were both numeric, while the
 Decision Tree
 selected one numeric variable only. You could either combine the results from both of these models or create a larger set of variables that would include the variables selected by the
 Regression
 node and the
 Decision Tree
 node.

Display 7.6

[image: Display 7.6]

Display 7.7 shows the cumulative lift of the Decision Tree model.

Display 7.7

[image: Display 7.7]

The cumulative lift and cumulative capture rates for Train, Validation, and Test data are shown in Table 5.2.

Table 5.2

[image: Table 7.2]

7.2.3

A Neural Network Model for Predicting Attrition

The bottom segment of Display 7.3 shows the process flow for the Neural Network model of attrition.

In developing a Neural Network model of attrition, I tested the following two approaches:

• Use all the inputs in the data set, set the
 Architecture
 property to MLP (multi/layer perceptron), the
 Model Selection Criterion
 property to Average Error, and the
 Number of Hidden Units
 property to 10.

• Use the same property settings as above, but use only selected inputs. The included variables are: _NODE_, a special variable created by the Decision Tree Node that preceded the Neural Network Node; btrend, a trend variable selected by the Decision Tree Node and duration which was manually included by setting the “use” property to “Yes” in the variables table of the Neural Network Node.

As expected, the first approach resulted in an over-fitted model. There was considerable deterioration in the lift calculated from the Validation data set relative to that calculated from the Training data set.

The second approach yielded a much more robust model. With this approach, I compared the cumulative lift of the different models generated by setting the
 Number of Hidden Units
 property to 5, 10, 15, and 20. The model that has the best lift for the Validation data is the one generated by setting the
 Number of Hidden Units
 property to 10.

Using only a selected number of inputs enables you to quickly test a variety of architectural specifications. For purposes of illustration, I present below the results from a model with the following property settings:

•
 Architecture
 property: Multilayer Perceptron

•
 Model Selection Criterion
 property: Average Error

•
 Number of Hidden Units
 property: 10

The bottom segment of Display 7.3 shows the process flow for the neural network model of attrition. In this process flow, I used the
 Decision Tree
 node with the
 Splitting Rule Criterion
 property set to ProbChisq,
 Assessment Measure
 property set to Average Square Error,
 Leaf Variable property
 to Yes
 , Variable Selection property
 to Yes, and
 Leaf Role property
 to Input to select the inputs for use in the
 Neural Network
 node.

The lift charts for this model are shown in Display 7.8.

Display 7.8

[image: Display 7.8]

Table 5.3 shows the cumulative lift and cumulative capture rates for the Train, Validation, and Test data sets.

Table 5.3

[image: Table 7.3]

Display 7.9 shows the lift charts for all models from the
 Model Comparison
 node.

Display 7.9

[image: Display 7.9]

Table 5.4 shows a comparison of the three models using Test data.

Table 5.4

[image: Table 7.4]

From Table 5.4 it appears that both the Logistic Regression and Neural Network models have outperformed the Decision Tree model by a slight margin and that there is no significant difference in performance between the Logistic Regression and Neural Network models. The top four deciles (the top eight demi-deciles), based on the Logistic Regression model, capture 80.4% of attritors, while the top four deciles based on the Neural Network model also capture 80.0% of the attritors, while the top four deciles, based on the Decision Tree model, capture 76.8% of attritors. The cumulative lift for all the three models are monotonically declining with each successive demi-decile.

7.3

Models for Ordinal Targets: An Example of Predicting the Risk of Accident Risk

In previous chapter, I demonstrated a neural network model to predict the loss frequency for a hypothetical insurance company. The loss frequency was a continuous variable, but I used a discrete version of it as the target variable. Here I follow the same procedure, and create a discretized variablelossfrqfrom the continuous variable loss frequency. The discretization is done as follows:

lossfrqtakes the values 0, 1, 2, and 3 according the following definitions:

lossfrq=0ifthelossfrequency=0lossfrq=1if0<lossfrequency<1.5 lossfrq=2if1.5≤lossfrequency<2.5lossfrq=3if thelossfrequency≥2.5.

The goal is to develop three models using the
 Regression
 ,
 Decision Tree
 , and
 Neural Network
 nodes to predict the following probabilities:

Pr(lossfrq=0|X)=Pr(lossfrequency=0|X)Pr(lossfrq=1|X)=Pr(0<lossfrequency

<1.5|X)Pr(lossfrq=2|X)=Pr(1.5≤lossfrequency<2.5|X)Pr(lossfrq=3|X)=Pr(loss

frequency≥2.5|X)

whereXis a vector of inputs or explanatory variables.

When you are using a target variable such aslossfrq,which is a discrete version of a continuous variable, the variable becomes ordinal if it has more than two levels.

The first model I develop for predicting the above probabilities is a Proportional Odds model (or logistic regression with cumulative logits link) using the
 Regression
 node. The
 Regression
 node produces such a model if the measurement level of the target is set to Ordinal.

The second model I develop is a Decision Tree model using the
 Decision Tree
 node. The
 Decision Tree
 node does not produce any equations, but it does provide certain rules for portioning the data set into disjoint groups (leaf nodes). The rules are stated in terms of input ranges (or definitions). For each group, the
 Decision Tree
 node gives the predicted probabilities:

Pr(lossfrq=0|X),Pr(lossfrq=1|X),Pr(lossfrq=2|X)andPr(lossfrq=3|X).

The
 Decision Tree
 node also assigns a target level such as 0, 1, 2, and 3 to each group, and hence to all the records belonging to that group.

The third model is developed by using the
 Neural Network
 node, which produces a Logit type model, provided you set the
 Target Activation Function
 property to Logistic. With this setting, you get a model similar to the one shown in Chapter 5.

Display 7.10 shows the process flow for comparing the ordinal target.

Display 7.10

[image: image shown here]

7.3.1

Lift Charts and Capture Rates for Models with Ordinal Targets

Method Used by SAS Enterprise Miner

When the target is ordinal, SAS Enterprise Miner creates lift charts based on the probability of the highest level of the target variable. The highest level in this example is 3. For each record in the Test data set, SAS Enterprise Miner computes the predicted, or posterior, probabilityPr(lossfrq=3|Xi)from the model. Then it sorts the data set in descending order of the predicted probability and divides the data set into 20 deciles, which I refer to alternatively as demi-deciles. Within each decile, SAS Enterprise Miner calculates the proportion of cases, as well as the total number of cases, withlossfrq= 3. The lift for a decile is the ratio of the proportion of cases wherelossfrq=3 in the decile to the proportion of cases withlossfrq=3 in the entire data set. The capture rate is the ratio of the total number of cases withlossfrq=3 within the decile to the total number of cases withlossfrq=3 in the entire data set.

 An Alternative Approach Using Expected Lossfrq

As pointed out earlier in Section 5.5.1.4, you sometimes need to calculate lift and capture rate based on the expected value of the target variable. For each model, I present lift tables and capture rates based on the expected value of the target variable.

For each record in the Test data set, I calculate the expectedlossfrqas

 E(lossfrq|Xi)=Pr(lossfrq=0|Xi)*0+Pr(lossfrq=1|Xi)*1

 +Pr(lossfrq=2|Xi)*2+Pr(lossfrq=3|Xi)*3.

Next, I sort the records of the data set in descending order ofE(lossfrq|Xi), divide the data set into 20 demi-deciles (bins), and within each demi-decile, I calculate the mean of the actual or observed value of the target variablelossfrq. The ratio of the mean of actuallossfrqin a demi-decile to the overall mean of actuallossfrqfor the data set is the lift for the demi-decile. Likewise, the capture rate for a demi-decile is the ratio of the sum of the actuallossfrqfor all the records within the demi-decile to the sum of the actuallossfrqof all the records in the entire data set.

7.3.2

Logistic Regression with Proportional Odds for Predicting Risk in Auto Insurance

Given that the measurement level of the target variable is set to Ordinal, a Proportional Odds model is estimated by the
 Regression
 node using the property settings shown in Displays 7.11 and 7.12.

Display 7.11

[image: Display 7.11]

Display 7.12

[image: Display 7.12]

The reasons for the settings of the
 Selection Model
 property and the
 Selection Criterion
 property are cited in previous sections. The choice of Validation Error is also prompted by the lack of an appropriate profit matrix.

Display 7.13 shows the estimated equations for the Proportional Odds model.

Display 7.13

[image: Display 7.13]

Display 7.13 shows that the estimated model is Logistic with Proportional Odds. Accordingly, the slopes (coefficients of the explanatory variables) for the three logit equations are the same, but the intercepts are different. There are only three equations in Display 7.13, while there are four events represented by the four levels (0, 1, 2, and 3) of the target variablelossfrq. The three equations given in Display 7.13 plus the fourth equation, given by the identity

 Pr(lossfrq=0)+Pr(lossfrq=1)+Pr(lossfrq=2)+Pr(lossfrq=3)=1

are sufficient to solve for the probabilities of the four events. (See Chapter 6 to review how these probabilities are calculated by the
 Regression
 node.) In the model presented, the target variable has only three levels, while the target variable in the model presented in Display 7.13 has four levels: 0, 1, 2, and 3.

The variables selected by the
 Regression
 node are AGE (age of the insured), CRED (credit score of the insured), and NPRVIO (number of prior violations). The cumulative lift charts from the Results window of the
 Regression
 node are shown in Display 7.14.

Display 7.14

[image: Display 7.14]

The cumulative lift charts shown in Display 7.14 are based on the highest level of the target variable, as described in Section 7.3.1. Using Test data, alternative cumulative lift, and capture rates based onE(lossfrq), were computed and are shown in Table 5.5.

Table 5.5

[image: Table 7.5]

7.3.3

Decision Tree Model for Predicting Risk in Auto Insurance

Display 7.15 shows the settings of the properties of the
 Decision Tree
 node.

Display 7.15

[image: Display 7.15]

Note that I set the
 Subtree Method
 property to Assessment and the
 Assessment Measure
 property to Average Square Error. These choices were arrived at after trying out different values. The chosen settings end up yielding a reasonably sized tree—one that is not too small nor too large. In order to find general rules for making these choices, you need to experiment with different values for these properties with many replications.

Displays 7.16A and 7.16B show a part of the tree produced by the property settings given in Display 7.15.

Display 7.16A

[image: Display 7.16A]

Display 7.16B

[image: Display 7.16B]

The
 Decision Tree
 node has selected the three variables AGE, CRED (credit rating), and NPRVIO (number of previous violations), which were also selected by the
 Regression
 node. In addition, the
 Decision Tree
 node selected five more variables: MILEAGE (miles driven by the policy holder), NUMTR (number of credit cards owned by the policyholder), DELINQ (number of delinquencies), HEQ (value of home equity), and DEPC (number of department store cards owned).

Display 7.17 shows the importance of the variables used in splitting the nodes.

Display 7.17

[image: Display 7.17]

Display 7.18 shows the lift charts for the Decision Tree model.

Display 7.18

[image: Display 7.18]

Table 5.6 shows the lift charts calculated using the expected loss frequency.

Table 5.6

[image: Table 7.6]

7.3.4

Neural Network Model for Predicting Risk in Auto Insurance

The property settings for the
 Neural Network
 node are shown in Displays 7.19 and 7.20.

Display 7.19

[image: Display 7.19]

Display 7.20

[image: Display 7.20]

Because the number of inputs available in the data set is small, I passed all of them into the
 Neural Network
 node. I set the
 Number of Hidden Units
 property to its default value of 3, since any increase in this value did not improve the results significantly.

Display 7.21 shows the lift charts for the neural networks model.

Display 7.21

[image: Display 7.21]

Table 5.7 shows the cumulative lift and capture rates for the Neural Network model based on the expected loss frequency using the Test data.

Table 5.7

[image: Table 7.7]

7.3.5

Comparison of All Three Accident Risk Models

Table 5.8 shows the lift and capture rates calculated for the Test data set ranked byE(lossfrq), as outlined in previous section.

Table 5.8

[image: Table 7.8]

From Table 5.8, it is clear that the logistic regression with proportional odds is the winner in terms of lift and capture rates. The table shows that, for the logistic regression, the cumulative lift at Bin 8 is 1.95. This means that the actual average loss frequency of the customers who are in the top 40 percentiles based on the logistic regression is 1.95 times the overall average loss frequency. The corresponding numbers for the Neural Network and Decision Tree models are 1.92 and 1.85, respectively.

7.4

Boosting and Combining Predictive Models

Sometimes you may be able to produce more accurate predictions using a combination of models instead of a single model. Gradient Boosting and Ensemble methods are two different ways of combining models. Gradient Boosting starts with an initial model and updates it by successively adding a sequence of regression trees in a step-wise manner. Each tree in the sequence is created by using the residuals (gradients of an error function) from the model in the previous step as the target. If the data set used to create each tree in the sequence of trees is a random sample from the Training data set, then the method is called Stochastic Gradient Boosting. In Stochastic Gradient Boosting, a sample is selected at each step by Random Sampling Without Replacement. In the selected sample, observations are weighted according to the errors from the model in the previous step. In SAS Enterprise Miner 12.1, Gradient Boosting is done by the
 Gradient Boosting
 node.

While Boosting and Stochastic Boosting combine the models created sequentially from the initial model, the Ensemble method combines a collection of models independently created for the same target. The models combined can be of different types. The
 Ensemble
 node can be used to combine different models created by different nodes.

. They are intended to give you an understanding of Gradient Boosting and Stochastic Gradient Boosting in general. To gain further insights into Gradient Boosting and Stochastic Gradient Boosting techniques, you should read the papers by Friedman.

7.5

MODEL VALIDATION

7.5.1

Stochastic Gradient Boosting

In Stochastic Gradient Boosting, at each iteration, the tree is developed using a random sample (without replacement) from the Training data set. In the sampling at each step, weights are assigned to the observations according the prediction errors in the previous step, assigning higher weights to observations with larger errors.

7.5.2

An Illustration of Boosting Using the Gradient Boosting Node

Display 7.22 shows the process flow diagram for a comparison of models created by
 Gradient Boosting
 and
 Decision Tree
 nodes.

Display 7.22

[image: Display 7.22]

The property settings of the
 Gradient Boosting
 node are shown in Display 7.23.

Display 7.23

[image: Display 7.23]

The property settings for the
 Decision Tree
 node are shown in Display 7.24.

Display 7.24

[image: Display 7.24]

Table 5.9 shows a comparison of Cumulative Lift and Cumulative Capture Rate for the two models for the Test data.

Table 5.9

[image: Table 7.9]

By comparing the Cumulative Lift and Cumulative Capture rates for Gradient Boosting and Decision Tree models from the 15
 th
 percentile onwards, we can find that Gradient Boosting has yielded slightly better predictions than the Decision Tree model.

7.5.3

The Ensemble Node

We can use the
 Ensemble
 node to combine the three models’
 Logistic Regression
 ,
 Decision Tree
 , and
 Neural Network
 nodes, as shown in Display 7.25.

Display 7.25

[image: Display 7.25]

The target variable used in the
 Input Data
 node is ATTR, which is a binary variable. It takes the value 1 if a customer attrited during a given time interval and 0 if the customer did not attrit. When you run the
 Regression
 , the
 Decision Tree
 , the
 Neural Network
 , and the
 Ensemble
 nodes as shown in Display 7.25, the
 Ensemble
 node calculates the posterior probabilities and an “Into” variable for each record in the data set from each model.

The
 Ensemble
 node creates the variables listed Table 5.10.

Table 5.10

[image: Table 7.10]

In the last column of Table 5.10, I assigned hypothetical values for each of the variables for illustrating the different combination methods of the
 Ensemble
 node. Note that the value of the “Into” variable from each model is based on the Maximum Posterior Probability criterion. That is, if the predicted probability from a model for level 1 is higher than the predicted probability for level 0, then the record (customer) is given the label 1. If 1 represents the event that the customer attrited and 0 represents the event that the customer did not attrit, then by assigning level 1 to the customer, the model is classifying him/her as an “attritor”. You can use some other criteria such as Maximum Expected Profits by providing a weight matrix or a profit matrix.

For example, from Table 5.10 it can be seen that the probability of attrition calculated from a Logistic Regression model for the hypothetical customer is 0.6, and the probability of no attrition for the same customer is 0.4. Since 0.6 >0.4, the record is assigned level 1 if you use the Logistic Regression model for classification.

In the
 Ensemble
 node there are three methods for combining multiple models. They are:

• Average

• Maximum

• Voting

◦ Average

◦ Proportion

[image: Table 7.11]

7.5.4

Comparing the Gradient Boosting and Ensemble Methods of Combining Models

The task of comparing the combined model from the
 Ensemble
 node with the individual models included in the Ensemble is left as an exercise. In this section, we compare the combined model generated by the
 Ensemble
 node with the one generated by the
 Gradient Boosting
 node. Display 7.26 shows the process flow diagram for demonstrating the
 Ensemble
 node and also for comparing the models generated by the
 Ensemble
 and
 Gradient Boosting
 nodes.

Display 7.26

[image: Display 7.26]

The property settings of the
 Ensemble
 node are shown in Display 7.27. The property settings of the
 Gradient Boosting
 node are same as those shown Display 7.23.

Display 7.27

[image: Display 7.27]

Table 5.12 shows Cumulative Lift and Cumulative Capture Rate from the models developed by the
 Ensemble
 and
 Gradient Boosting
 nodes for the Test data.

Table 5.12

[image: Table 7.12]

From Table 5.12, it appears that the
 Ensemble
 method has produced better predictions than
 Gradient Boosting
 in percentiles 5-20.

CHAPTER 8

UNSUPERVISED LEARNING. CLUSTER ANALYSIS WITH NEURAL NETWORKS

8.1

CLUSTER ANALYSIS on ENTERPRISE MINER

SAS Institute considers explore phase within the process of
 Data Mining
 (
 Exploring
), which takes place after the phase of selection (
 Selecting
). Initially the exploration phase leads to partners the nodes shown in Figure 8-1,
 but three nodes perform cluster analysis:
 Cluster Node
 (clustering),
 SOM/Kohonen
 (self-organized neural networks) and
 Variable Clustering Node
 (divides numeric variables into disjoint or hierarchical clusters
).

[image:]

Figure 8-1

The
 Cluster
 node enables you to segment your data by grouping observations that are statistically similar. Observations that are similar tend to be in the same cluster, and observations that are different tend to be in different clusters. The cluster identifier for each observation can be passed to other tools for use as an input, ID, or target variable. It can also be used as a group variable that enables automatic construction of separate models for each group.

[image:]

The
 SOM/Kohonen
 node enables you to perform unsupervised learning by using Kohonen vector quantization (VQ), Kohonen self-organizing maps (SOMs), or batch SOMs with Nadaraya-Watson or local-linear smoothing. Kohonen VQ is a clustering method, but SOMs are primarily dimension-reduction methods.

[image:]

The
 Variable Clustering
 node is a useful tool for selecting variables or cluster components for analysis. Variable clustering removes collinearity, decreases variable redundancy, and helps reveal the underlying structure of the input variables in a data set. Large numbers of variables can complicate the task of determining the relationships that might exist between the independent variables and the target variable in a model. Models that are built with too many redundant variables can destabilize parameter estimates, confound variable interpretation, and increase the computing time that is required to run the model. Variable clustering can reduce the number of variables that are required to build reliable predictive or segmentation models.

[image:]

8.2

CLUSTER NODE

 Use the
 Cluster
 node to perform observation clustering, which can be used to segment databases. Clustering places objects into groups or clusters suggested by the data. The objects in each cluster tend to be similar to each other in some sense, and objects in different clusters tend to be dissimilar. If obvious clusters or groupings could be developed prior to the analysis, then the clustering analysis could be performed by simply sorting the data.

The clustering methods in the
 Cluster
 node perform disjoint cluster analysis on the basis of Euclidean distances computed from one or more quantitative variables and seeds that are generated and updated by the algorithm. You can specify the clustering criterion that is used to measure the distance between data observations and seeds. The observations are divided into clusters so that every observation belongs to at most one cluster.

To perform clustering, you must have a raw data set or a training data set feeding into the
 Cluster
 node.

After clustering is performed, the characteristics of the clusters can be examined graphically using the Clustering Results Package. The consistency of clusters across variables is of particular interest. The multidimensional charts and plots enable you to graphically compare the clusters.

Note that the cluster identifier for each observation can be passed to other nodes for use as an input, ID, group, or target variable. The default is group variable.

The
 Cluster
 node also exports the cluster statistics and the cluster seed data sets to the successor nodes.

 The
 Cluster
 node can impute missing values of database observations. However, you might want to preprocess the data in other ways before using the
 Cluster
 node. For example, you might want to remove outliers, as they often appear as individual clusters, and they might distort other, more important clusters. For most applications, the variables should be transformed so that equal distances are of equal practical importance.

The
 Cluster
 node accepts binary, nominal, ordinal, and interval data. Binary, nominal, and ordinal variables are coded as numeric dummy variables for processing.

Variables with large variances tend to have more effect on the resulting clusters than variables with small variances. If all variables are measured in the same units (for example, dollars), then standardization might not be necessary. Otherwise, some form of standardization is recommended.

Nonlinear transformations of the variables can change the number of population clusters. Therefore, you should be careful when using nonlinear transformations.

 The following nodes are particularly useful in preprocessing data for cluster analysis:

	
Use the
 Sampling
 node to select a random sample of the data for initial analysis.

	
Use the
 Transform Variables
 node to standardize the variables in some way.

	
Use the
 Data Partition
 node to partition the data into training, validation, and test data sets. Partitioning has no effect on the cluster analysis itself. However, the
 Cluster
 node can score these data sets.

8.2.1

Cluster Node General Properties

 The following general properties are associated with the
 Cluster
 node:

	
Node ID
 — The Node ID property displays the ID that SAS Enterprise Miner assigns to a node in a process flow diagram. Node IDs are important when a process flow diagram contains two or more nodes of the same type. The first cluster node added to a diagram will have a Node ID of Clus. The second cluster node added to a diagram will have a Node ID of Clus2, and so on.

	
Imported Data
 — The Imported Data property accesses the Imported Data — Cluster window. The Imported Data — Cluster window contains a list of the ports that provide data sources to the
 Cluster
 node. Select the
 [image:]
 button to open a table of the imported data.

 If data exists for an imported data source, you can select the row in the imported data table and click one of the following buttons:

	
Browse
 to open a window where you can browse the data set.

	
Explore
 to open the Explore window, where you can sample and plot the data.

	
Properties
 to open the Properties window for the data source. The Properties window contains a
 Table
 tab and a
 Variables
 tab. The tabs contain summary information (metadata) about the table and variables.

	
Exported Data
 — accesses the Exported Data — Cluster window. The Exported Data — Cluster window contains a list of the output data ports that the
 Cluster
 node creates data for when it runs. Select the
 [image:]
 button to the right of the Exported Data property to open a table that lists the exported data sets.

 If data exists for an imported data source, you can select the row in the imported data table and click one of the following buttons:

	
Browse
 to open a window where you can browse the data set.

	
Explore
 to open the Explore window, where you can sample and plot the data.

	
Properties
 to open the Properties window for the data source. The Properties window contains a
 Table
 tab and a
 Variables
 tab. The tabs contain summary information (metadata) about the table and variables.

	
Notes
 — Select the
 [image:]
 button to the right of the Notes property to open a window that you can use to store notes of interest, such as data or configuration information.

8.2.2

Cluster Node Train Properties

 The following train properties are associated with the
 Cluster
 node:

	
Variables
 — Select the
 [image:]
 button to open the Variables — Clus table, which enables you to view the columns metadata, or open an Explore window to view a variable's sampling information, observation values, or a plot of variable distribution. You can specify Use and Report variable values. The Name, Role, and Level values for a variable are displayed as read-only properties.

 The following buttons and check boxes provide additional options to view and modify variable metadata:

	
Apply
 — Changes metadata based on the values supplied in the drop-down menus, check box, and selector field.

	
Reset
 — Changes metadata back to its state before you click
 Apply
 .

	
Label
 — Adds a column for a label for each variable.

	
Mining
 — Adds columns for the Order, Lower Limit, Upper Limit, Creator, Comment, and Format Type for each variable.

	
Basic
 — Adds columns for the Type, Format, Informat, and Length of each variable.

	
Statistics
 — Adds statistics metadata for each variable.

	
Explore
 — Opens an Explore window that enables you to view a variable's sampling information, observation values, or a plot of variable distribution.

	
Cluster Variable Role
 — Use the Cluster Variable Role property to specify the model role that you want to be assigned to the cluster variable. By default, the cluster variable (segment identifier) is assigned a role of group. Model roles are Segment, ID, Input, and Target. The model role of Segment is useful for BY-group processing. Note that the segment identifier retains the selected variable role as it is passed to subsequent tools in the process flow diagram. The default setting for the Cluster Variable Role property is
 Segment
 .

	
Internal Standardization
 — Use the Internal Standardization property to specify the internal standardization method that the
 Cluster
 node should use.

	
None
 — the variables are not standardized before clustering.

	
Standardization
 — (default setting) the variable values are divided by the standard deviation. The mean is not subtracted.

	
Range
 — the variable values are divided by the range. The mean is not subtracted.

8.2.3

Cluster Node Train Properties: Number of Clusters

	
 Specification Method
 — Use the Specification Method property to choose the method that SAS Enterprise Miner will use to determine the maximum number of clusters. Choose between Automatic and User-Specifiedmethods.

	
The
 Automatic
 setting (default) configures SAS Enterprise Miner to automatically determine the optimum number of clusters to create.

When the
 Automatic
 setting is selected, the value in the
 Maximum Number of Clusters
 property in the
 Number of Clusters
 section is not used to set the maximum number of clusters. Instead, SAS Enterprise Miner first makes a preliminary clustering pass, beginning with the number of clusters that is specified as the
 Preliminary Maximum
 value in the
 Selection Criterion
 properties.

After the preliminary pass completes, the multivariate means of the clusters are used as inputs for a second pass that uses agglomerative, hierarchical algorithms to combine and reduce the number of clusters. Then, the smallest number of clusters that meets all four of the following criteria is selected.

	
The number of clusters must be greater than or equal to the number that is specified as the Minimum value in the Selection Criterion properties.

	
The number of clusters must have cubic clustering criterion statistic values that are greater than the CCC Cutoff that is specified in the
 Selection Criterion
 properties.

	
The number of clusters must be less than or equal to the
 Final Maximum
 value.

	
A peak in the number of clusters exists.

Note:
 If the data to be clustered is such that the four criteria are not met, then the number of clusters is set to the first local peak. In this event, the following warning is displayed in the Cluster node log:

WARNING: The number of clusters selected based on the CCC values may not be valid. Please refer to the documentation of the Cubic Clustering Criterion. There are no number of clusters matching the specified minimum and maximum number of clusters. The number of clusters will be set to the first local peak.

After the number of clusters is determined, a final pass runs to produce the final clustering for the
 Automatic
 setting.

	
The
 User-Specified
 setting enables you to use the Maximum value in the Selection Criterion properties to manually specify an integer value greater than 2 for the maximum number of clusters. Because the Maximum Number of Clusters property is a maximum, it is possible to produce a number of clusters that is smaller than the specified maximum.

To force the number of clusters to some exact number n, specify n for both the Maximum and Minimum values in the Selection Criterion properties. It won't matter whether you choose Automatic or User Specify as your Specification Method. Either method will produce exactly n clusters.

	
Maximum Number of Clusters
 — Use the Maximum Number of Clusters property to specify the maximum number of clusters that you want to use in your analysis. Permissible values are nonnegative integers. The minimum value for the Maximum Number of Clusters property is 2, and the default value is 10.

8.2.4

Cluster Node Train Properties: Selection Criterion

	
 Clustering Method
 —If you select Automatic as your Specification Method property, Clustering Method specifies how SAS Enterprise Miner calculates clustering distances.

	
Average
 — the distance between two clusters is the average distance between pairs of observations, one in each cluster.

	
Centroid
 — the distance between two clusters is defined as the (squared) Euclidean distance between their centroids or means.

	
Ward
 — (default) the distance between two clusters is the ANOVA sum of squares between the two clusters summed over all the variables. At each generation, the within-cluster sum of squares is minimized over all partitions obtainable by merging two clusters from a previous generation.

	
Preliminary Maximum
 — Preliminary Maximum specifies the maximum number of clusters to create during the preliminary training pass. The default setting for the Maximum property is 50. Permissible values are integers greater than 2.

	
Minimum
 — Minimum specifies the minimum number of clusters this is acceptable for a final solution. The default setting for the Minimum property is 2. Permissible values are integers greater than 2.

	
Final Maximum
 — Final Maximum specifies the maximum number of clusters that are acceptable for a final solution. The default setting for the Maximum property is 20. Permissible values are integers greater than 2.

	
CCC Cutoff
 — If you select Automatic as your Specification Method, the CCC Cutoff specifies the minimum cubic clustering cutoff criteria. The default setting for the CCC Cutoff property is 3. Permissible values for the CCC Cutoff property are integers greater than 0.

8.2.5

Cluster Node Score Properties

 The following score properties are associated with the
 Cluster
 node:

	
Cluster Variable Role
 — Use the Cluster Variable Role property to specify the model role that you want to be assigned to the cluster variable. By default, the cluster variable (segment identifier) is assigned a role of group. Model roles are
 Segment
 ,
 ID
 ,
 Input
 , and
 Target
 . The model role of
 Segment
 is useful for BY-group processing. Note that the segment identifier retains the selected variable role as it is passed to subsequent tools in the process flow diagram. The default setting for the Cluster Variable Role property is Segment.

	
Hide Original Variables
 — Use the Hide Original Variables property to specify whether you want to display the original transformed variables in the node output. The default setting for the Boolean Hide Original Variables property is Yes.

	
Cluster Label Editor
 — Select the
 [image:]
 button to open an editor that you use to specify and edit descriptions to the various cluster segments. The node will use these strings to create a new variable called _SEGMENT_LABEL_ that describes the associated value of the _SEGMENT_ variable.

8.2.6

Cluster Node Report Properties

 The following report properties are associated with the
 Cluster
 node:

	
Cluster Graphs
 — When set to No, the Cluster Graphs property suppresses cluster graphical output showing distribution of variables. The default setting for the Cluster Graphs property is Yes.

	
Tree Profile
 — When set to No, the Tree Profile property suppresses the tree profile from the output. The default setting for the Tree Profile property is Yes.

	
Distance Plot and Table
 — Use the Distance Plot and Table report to specify whether to generate reports based on the distance between clusters. The default setting for the Distance Plot and Table property is Yes.

8.2.7

Cluster Node Status Properties

 The following status properties are associated with this node:

	
Create Time
 — displays the time at which the node was created.

	
Run ID
 — displays the identifier of the node run. A new identifier is created every time the node runs.

	
Last Error
 — displays the error message from the last run.

	
Last Status
 — displays the last reported status of the node.

	
Last Run Time
 — displays the time at which the node was last run.

	
Run Duration
 — displays the length of time of the last node run.

	
Grid Host
 — displays the grid server that was used during the node run.

	
User-Added Node
 — specifies if the node was created by a user as a SAS Enterprise Miner extension node.

8.2.8

Cluster Node Results Window

 You can open the Results window of the
 Cluster
 node by right-clicking the node and selecting Results from the pop-up menu.

 Select
 View
 from the main menu to view the following results in the Results window:

	
Properties

	
Settings
 — displays a window that includes a read-only table of the
 Cluster
 node properties configuration when the node was last run.

	
Run Status
 — indicates the status of the
 Cluster
 node run. The Run Start Time, Run Duration, and information about whether the run completed successfully are displayed in this window.

	
Variables
 — the Variables setting in the menu opens a window that contains a table of the variables submitted to the clustering node. The variables table displays the use, report, role, and level for each variable.

	
Train Code
 — the code that SAS Enterprise Miner used to train the node.

	
Notes
 — allows users to read or create notes of interest.

	
SAS Results

	
Log
 — the SAS log of the cluster run.

	
Output
 — the SAS output of the cluster run. For the
 Cluster
 node, the SAS output includes a variable summary, Ward's Minimum Variance Cluster Analysis, Eigenvalues of the Covariance Matrix, RMS Total Sample Standard Deviation, RMS distance between observations, a Cluster history, and a Variable Importance table.

	
Flow Code
 — the SAS code used to produce the output that the
 Cluster
 node passes on to the next node in the process flow diagram.

	
Scoring

	
SAS Code
 — the SAS score code that was created by the node. The SAS score code can be used outside the SAS Enterprise Miner environment in custom user applications.

	
PMML Code
 — the PMML Code that was generated by the node. The
 PMML Code
 menu item is dimmed and unavailable unless PMML is enabled.

	
Summary Statistics
 — Three summaries are available: a Mean Statistics table, a Cluster Statistics table, and a Segment Size pie chart.

	
Mean Statistics
 —The Mean Statistics table provides a row of cluster information for every cluster segment that was created during your Cluster node run.

 The Mean Statistics table contains the following columns for each segment row:

	
Clustering Criterion
 — the clustering criterion value. The numerical value is determined by the Clustering Method specified in the Cluster node Properties panel.

	
Maximum Relative Change in Cluster Seeds
 — the maximum relative change in the cluster seed values over the clusters from the previous iteration. The relative change in a cluster seed is the distance between the old seed and the new seed divided by the scaling factor.

	
Improvement in Clustering Criterion
 — the algorithm underlying the
 Cluster
 node attempts to minimize cubic clustering criterion scores. The improvement in clustering criterion refers to a relative change, or decrease, in the cubic clustering criterion values from one iteration to the next.

	
Segment ID
 — a numerical ID for a given cluster.

	
Frequency of Cluster
 — the sum of frequencies (observations) for nonmissing values in a cluster.

	
Root-Mean-Square Standard Deviation
 — the root mean square across variables of the cluster standard deviations, which is equal to the root mean square distance between observations in the cluster.

	
Maximum Distance from Cluster Seed
 — the maximum distance from the cluster seed to any observation in the cluster.

	
Nearest Cluster
 — the number of the cluster that has the mean closest to the mean of the current cluster.

	
Distance to Nearest Cluster
 — the distance between the centroids (means) of the current cluster and the nearest other cluster.

	
Input Variable Columns
 — The Mean Statistics table contains a column for each input variable that is used in the clustering calculations. Each variable's column contains the cluster means for each input variable, for each segment number.

	
Segment Size
 — The Segment Size pie chart displays clusters by segment number. The width of each pie slice reflects each segment's percentage of all the clustered data. Each segment ID appears as you move your mouse pointer across pie slices of interest. To see the data table that SAS Enterprise Miner uses to create the Segment Size pie chart, click the pie chart to select it, then from the Results window main menu, select
 View
 [image: Descripcin: then select]
 Table
 .

	
Cluster Statistics
 — The Cluster Statistics table contains summary columns for each input variable as well as columns for segment values and cumulative statistics summed across all input variables. The Cluster Statistics table contains the following rows for each column:

	
DMDB_FREQ
 — the sum of frequencies (observations) for nonmissing values of each variable.

	
DMDB_WEIGHT
 — the sum of weights for nonmissing values of each variable.

	
DMDB_MEAN
 — the mean value statistic that is computed from all nonmissing values of each variable.

	
DMDB_STD
 — the standard deviation statistic computed from all nonmissing values of each variable. The Cluster Statistics table also provides a DMDB standard deviation statistic that is summarized over all input variables.

	
LOCATION
 — the STDIZE= location measure that incorporates replaced missing values.

	
SCALE
 — the STDIZE= scale measure that incorporates replaced missing values.

	
DMDB_MIN
 — the minimum of all nonmissing values for each variable.

	
DMDB_MAX
 — the maximum of all nonmissing values for each variable.

	
CRITERION
 — the clustering criterion value that is used for all variables, as calculated by the Clustering Method property specified in the Cluster node Properties Panel.

	
PSEUDO_F
 — the Pseudo-F statistic, summarized across all input variables [([(R2)/(c - 1)])/([(1 - R2)/(n - c)])] where R2 is the observed overall R2, c is the number of clusters, and n is the number of observations.

	
ERSQ
 — the approximate expected value of the squared multiple correlation R, which is the proportion of variance accounted for by the clusters under a uniform null hypothesis. If the number of clusters is greater than one-fifth of the number of observations, ERSQ and CCC are given missing values.

	
CCC
 — the cubic clustering criterion value, which is useful in determining the number of clusters in the data. CCC values that are greater than 2 or 3 indicate good clusters, values between 0 and 2 indicate potential clusters (but they should be considered with caution), and large negative values can indicate outliers. If the number of clusters is greater than one-fifth the number of observations, CCC and ERSQ are given missing values.

	
TOTAL_STD
 — the total standard deviation of each variable. The Cluster Statistics table provides total standard deviation statistics that are summed for all clusters and for individual input variables.

	
WITHIN_STD
 — the pooled within-cluster standard deviation of each variable. The Cluster Statistics table provides within-cluster standard deviation statistics that are pooled for all clusters and for individual input variables.

	
RSQ
 — the squared multiple correlation R, which is the proportion of variance accounted for by the clusters. The Cluster Statistics table provides the RSQ statistic pooled over all input variables and for each input variable.

	
RSQ_RATIO
 — the ratio of between-cluster variance to within-cluster variance (R2/(1 - R2)). The Cluster Statistics table provides the RSQ-RATIO statistic that is summarized over all input variables and for each input variable.

	
SEED
 — seeds for each cluster and variable.

	
CLUS_MEAN
 — the mean of each variable within each cluster.

	
CLUS_STD
 — the standard deviations of each variable within each cluster.

	
CLUS_MIN
 — the minimum of each variable within each cluster.

	
CLUS_MAX
 — the maximum of each variable within each cluster.

	
CLUS_FREQ
 — the sum of frequencies for nonmissing values of each variable within each cluster.

	
CCC Plot
 — displays a cubic clustering criterion scatter plot that charts number of clusters against cubic clustering criterion scores.

	
Input Means Plot
 — displays a scatter plot that charts the normalized mean values for each input variable. The normalized mean values for each variable are tabulated for each individual cluster as well as across all clusters.

	
Cluster Profile
 — view one of the following cluster profiles:

	
Tree
 — shows the decision tree that was used to form the individual clusters. The decision tree is based on your clustered data. The cluster variable (Segment ID) is used as the decision tree target variable. You can use the Cluster Profile Tree to identify influential input variables, such as which variables are most effective for grouping observations into clusters.

You can select a node and hide or view a node's children by clicking on the minus or plus (Figure 8-2).

[image:]

Figure 8-2

	
Node Rules —
 shows in text format the splitting rules that were used to form individual clusters.

	
Variable Importance
 —displays a variables table that contains the number of splitting rules, the number of surrogate rules, and the relative importance of each variable.

	
Segment Plot
 — displays a segment plot of the discriminating segment (clustering) variables in the data set (Figure 8-3). Discriminating variables are variables that have high importance scores. Not all clustering variables will appear in segment plots. Input cluster variables that have a zero importance score are called nondiscriminating variables. Nondiscriminating variables are not included in segment plots because they do not contribute to cluster formation. Position your mouse pointer over a segment within a plot to see the name of the segment variable, the percentage of the segment variable values that are within the segment that you are viewing, and the formatted values used.

[image:]

Figure 8-3

	
Cluster Distance
 — Cluster distance results (distances between cluster means) are summarized in a table of cluster distances and a cluster distance plot.

	
Plot
 — The cluster distance plot provides a graphical representation of the size of each cluster and the relationship among clusters (Figure 8-4). The graph axes are determined from multidimensional scaling analysis, using a matrix of distances between cluster means as input. The asterisks are the cluster centers, and the circles represent the cluster radii. A cluster that contains only one case is displayed as an asterisk. The radius of each cluster depends on the most distant case in that cluster, and cases might not be uniformly distributed within clusters. Therefore, it might appear that clusters overlap, but in fact, each case is assigned to only one cluster. The distance among the clusters is based on the criteria that are specified to construct the clusters.

[image:]

Figure 8-4

	
Table
 — The cluster distance table for n clusters contains n rows and n columns. Each cell in the table displays the Euclidean distance between the centroids of the clusters from the row and column.

	
Table
 — Displays a table that contains the underlying data used to produce a chart. The
 Table
 menu item is dimmed and unavailable unless a results chart is open and selected.

	
Plot
 — Use the Graph Wizard to modify an existing Results plot or create a Results plot of your own. The
 Graph Wizard
 menu item is dimmed and unavailable unless a Results chart or table is open and selected.

8.2.9

Example

Consider the following scenario. A baseball manager wants to identify and group players on the team who are very similar with respect to several statistics of interest. Note that there is no response variable in this example. The manager simply wants to identify different groups of players. The manager also wants to learn what differentiates players in one group from players in a different group.

The data set for this example is located in SAMPSIO.DMABASE. The following table contains a description of the important variables.

[image:]

For this example, you set the model role for TEAM, POSITION, LEAGUE, DIVISION, and SALARY to Rejected. SALARY is rejected because this information is contained in the LOGSALAR variable. No target variables are used in a cluster analysis or self-organizing map (SOM). If you want to identify groups based on a target variable, consider a predictive modeling technique and specify a categorical target variable.

Cluster analysis is often referred to as supervised classification because it attempts to predict group or class membership for a specific categorical response variable. Clustering, on the other hand, is referred to as unsupervised classification because it identifies groups or classes within the data based on all the input variables. These groups, or clusters, are assigned numbers. However, the cluster number cannot be used to evaluate the proximity between clusters.

Cluster analysis is often referred to as supervised classification because it attempts to predict group or class membership for a specific categorical response variable. Clustering, on the other hand, is referred to as unsupervised classification because it identifies groups or classes within the data based on all the input variables. These groups, or clusters, are assigned numbers. However, the cluster number cannot be used to evaluate the proximity between clusters.

Self-organizing maps attempt to create clusters and plot the resulting clusters on a map so that cluster proximity can be evaluated graphically. This example does not contain a self-organizing map. However, the SOM/Kohonen node is used to create self-organizing maps.

Building the Process Flow Diagram

This example uses the same diagram workspace that you created in Chapter 2. You have the option to create a new diagram for this example, but instructions to do so are not provided in this example. First, you need to add the SAMPSIO.DMABASE data source to project.

In the Project Panel, right-click
 Data Sources
 and click
 Create Data Source
 .

In the Data Source Wizard — Metadata Source window, click
 Next
 .

In the Data Source Wizard — Select a SAS Table and enter
 SAMPSIO.DMABASE
 in the
 Table
 field. Click
 Next
 .

In the Data Source Wizard — Table Information window, click
 Next
 .

In the Data Source Wizard — Metadata Advisor Options window, select
 Advanced
 . Click
 Next
 .

 In the Data Source Wizard — Column Metadata window, make the following changes:

For the variable NAME, set the
 Role
 to
 ID
 .

For the variables TEAM, POSITION, LEAGUE, DIVISION, and SALARY set the
 Role
 to
 Rejected
 .

Ensure that all other variables have a
 Role
 of
 Input
 .

Click
 Next
 .

In the Data Source Wizard — Create Sample window, click
 Next
 .

In the Data Source Wizard — Data Source Attributes window, click
 Next
 .

In the Data Source Wizard — Summary window, click
 Finish
 .

This creates the
 All: Baseball Data
 data source in your Project Panel. Drag the
 All: Baseball Data
 data source to your diagram workspace.

If you explore the data in the
 All: Baseball Data
 data source, you will notice that SALARY and LOGSALAR have missing values. Although it is not always necessary to impute missing values, at times the amount of missing data can prevent the Cluster node from obtaining a solution. The Cluster node needs some complete observations in order to generate the initial clusters. When the amount of missing data is too extreme, use the Replacement or Impute node to handle the missing values. This example uses imputation to replace missing values with the median.

On the
 Modify
 tab, drag an
 Impute
 node to your diagram workspace. Connect the
 All: Baseball Data
 data source to the
 Impute
 node. In the
 Interval Variables
 property subgroup, set the value of the
 Default Input Method
 property to
 Median
 .

On the
 Explore
 tab, drag a
 Cluster
 node to your diagram workspace. Connect the
 Impute
 node to the
 Cluster
 node.

[image:]

By default, the Cluster node uses the Cubic Clustering Criterion (CCC) to approximate the number of clusters. The node first makes a preliminary clustering pass, beginning with the number of clusters that is specified in the
 Preliminary Maximum
 value in the
 Selection Criterion
 properties. After the preliminary pass completes, the multivariate means of the clusters are used as inputs for a second pass that uses agglomerative, hierarchical algorithms to combine and reduce the number of clusters. Then, the smallest number of clusters that meets all four of the following criteria is selected.

The number of clusters must be greater than or equal to the number that is specified as the Minimum value in the Selection Criterion properties.

The number of clusters must have cubic clustering criterion statistic values that are greater than the CCC Cutoff that is specified in the Selection Criterion properties.

The number of clusters must be less than or equal to the Final Maximum value.

A peak in the number of clusters exists.

Note:
 If the data to be clustered is such that the four criteria are not met, then the number of clusters is set to the first local peak. In this event, the following warning is displayed in the Cluster node log: WARNING: The number of clusters selected based on the CCC values may not be valid. Please refer to the documentation of the Cubic Clustering Criterion. There are no number of clusters matching the specified minimum and maximum number of clusters. The number of clusters will be set to the first local peak
 .
 After the number of clusters is determined, a final pass runs to produce the final clustering for the Automatic setting.

You are now ready to cluster the input data.

Using the Cluster Node

Right-click the
 Cluster
 node and click
 Run
 . In the Confirmation window, click
 Yes
 . Click
 Results
 in the Run Status window (Figure 8-5).

[image:]

Figure 8-5

Notice in the Segment Size window that the Cluster node created 4 clusters. On the main menu, select
 View
 →
 Cluster Profile
 →
 Variable Importance
 . The Variable Importance window displays each variable that was used to generate the clusters and their relative importance. Notice that NO_ASSTS, NO_ERROR, and NO_OUTS have an
 Importance
 of 0. These variables were not used by the Cluster node when the final clusters were created. On the main menu, select
 View
 →
 Summary Statistics
 →
 Input Means Plot
 . See Figure 8-6.

[image:]

Figure 8-6

This plot displays the normalized mean value for each variable, both inside each cluster and for the complete data set. Notice that the in-cluster mean for cluster 1 is always less than the overall mean. But, in cluster 4, the in-cluster mean is almost always greater than the overall mean. Clusters 2 and 3 each contain some in-cluster means below the overall mean and some in-cluster means above the overall mean.

From the Input Means Plot, you can infer that the players in cluster 1 are younger players that are earning a below average salary. Their 1986 and career statistics are also below average. Conversely, the players in cluster 4 are veteran players with above average 1986 and career statistics. These players receive an above average salary. The players in clusters 2 and 3 excel in some areas, but perform poorly in others. Their average salaries are slightly above average.

Close the Results window.

Examining the Clusters

Select the
 Cluster
 node in your process flow diagram. Click the ellipsis button next to the
 Exported Data
 property. The Exported Data — Cluster window appears. Click
 TRAIN
 and click
 Explore
 . The Clus_TRAIN window contains the entire input data set and three additional columns that are appended to the end. Scroll to the right end of the window to locate the
 Segment ID
 ,
 Distance
 , and
 Segment Description
 columns. The
 Segment ID
 and
 Segment Description
 columns display what cluster each observation belongs to (Figure 8-7).

[image:]

Figure 8-7

Next, create a plot that compares the number of hits for each cluster.

On the main menu, select
 Actions
 →
 Plot
 .

In the Select a Chart Type window, click
 Box
 . Click
 Next

In the Select Chart Roles window, find the _SEGMENT_LABEL_ variable. Set the
 Role
 for _SEGMENT_LABEL_ to
 X
 . Next, find the NO_HITS variable. Set the
 Role
 for NO_HITS to
 Y
 . Click
 Next
 .

In the Data WHERE Clause window, click
 Next
 .

In the Chart Titles window, enter
 Number of Hits in Each Cluster
 in the
 Title
 field. Leave the
 Footnote
 field blank. Enter
 Segment
 for the
 X Axis Label
 . Enter
 Hits
 for the
 Y Axis Label
 . Click
 Next
 . In the Chart Legends window, click
 Finish
 . See Figure 8-8.

[image:]

Figure 8-8

Notice that the average number of hits in clusters 1 and 3 is significantly lower than the average number of hits in clusters 2 and 4. You should repeat these steps to create box plots for several other variables.

8.3

SOM/KOHONEN NODE

SOM/Kohonen node belongs to the Explore category of the SAS SEMMA (Sample, Explore, Modify, Model, Assess) data mining process. You use the SOM/Kohonen node to perform unsupervised learning by using Kohonen vector quantization (VQ), Kohonen self-organizing maps (SOMs), or batch SOMs with Nadaraya-Watson or local-linear smoothing. Kohonen VQ is a clustering method, whereas SOMs are primarily dimension-reduction methods. For cluster analysis, the Clustering node is recommended instead of Kohonen VQ or SOMs.

8.3.1

SOM/Kohonen Node Train Properties

The following train properties are associated with the SOM/Kohonen node:

	
Variables
 — Use the Variables property to specify the properties of the variables that you want to use from the data source. Select the
 [image:]
 button to open a variables table.

	
Method
 — Use the Method property to specify one of the following network methods.

	
Batch SOM
 — For the Batch SOM method, larger maps are usually better, as long as most clusters have at least five or ten cases. However, the larger the map, the longer it will take to train. You may specify the number of rows and columns in the topological map using the Row and Column properties, and you specify the final neighborhood size using the Final Size property in the Neighborhood Options table. The final neighborhood size should usually be set in proportion to the map size. For example, if you double the number of rows and columns in the map, you should double the final neighborhood size. Choosing the map size and final neighborhood size generally requires trial and error. Batch SOM is the default setting for the Method property.

	
Kohonen SOM
 — For the Kohonen SOM method, larger maps are usually better, as long as most clusters have at least five or ten cases. However, the larger the map, the longer it will take to train. You may specify the number of rows and columns in the topological map using the Row and Column properties, the final neighborhood size using the Final Size property in the Neighborhood Options table, and the learning rate parameters by using the Learning Rate, Initial Rate, Final Rate, and Number of Steps properties in the Kohonen Options table. The final neighborhood size should usually be set in proportion to the map size. For example, if you double the number of rows and columns in the map, you should double the final neighborhood size. Choosing the map size and final neighborhood size generally requires trial and error. The learning rate changes during training. If the initial seeds are random, then it is important to start with a high learning rate, such as 0.9. If the initial seeds are obtained by using principal components or some preliminary analysis, then the initial learning rate should be much lower.

	
Kohonen VQ
 — For the Kohonen VQ method, you may specify the number of clusters by using the Maximum Number of Clusters property. Choosing the number of clusters generally requires trial and error. You may specify the learning rate by using the Learning Rate property in the Kohonen Options table. The learning rate changes during training. If the initial seeds are random, then it is important to start with a high learning rate, such as 0.5. If the initial seeds are obtained through some preliminary analysis, then the initial learning rate should be much lower.

	
Internal Standardization
 — Use this property to specify one of the following internal standardization methods.

	
None
 — specifies that the variables are not standardized prior to clustering.

	
Range
 — specifies that the minimum value be subtracted from the variable values and then that the variable values be divided by the range.

	
Standardization
 — specifies that the mean be subtracted from the variable values and then that the variable values be divided by (standard deviation) * SQRT(dimension). Dimension refers to the number of unique categories. For nominal variables, the default dimension is C, the number of categories. The default dimension for ordinal variables is 1. This is the default setting for the
 Internal Standardization
 property.

8.3.2

SOM/Kohonen Node Train Properties: Segment

 Finding a good map size generally requires trial and error. If the map size is too small, then it will not accurately reflect nonlinearity in the data. If the map size is too large, the analysis will take a lot of computer time and memory, and empty clusters might produce misleading results. If you change the map size, then you might need to change the neighborhood size in proportion to the map size, because the amount of smoothing depends on the ratio of the neighborhood size to the map size.

	
Row
 — Use the Row property to specify the number of rows in the topological map. The default value is 10. A value of 1 creates a one-dimensional map.

	
Column
 — Use the Column property to specify the number of columns in the topological map. The default value is 10. A value of 1 creates a one-dimensional map.

8.3.3

SOM/Kohonen Node Train Properties: Seed Options

	
 Initial Method
 — Use the Initial Method property to specify the seed initialization method.

 The following initialization methods are available:

	
Default
 — uses the Princomp method to initialize seeds if the network method is set to BatchSOM, and the Outlier method if the network method is set to KohonenSOM or KohonenVQ.

	
Outlier
 — selects initial seeds that are well separated using the full replacement algorithm.

	
First
 — selects the first complete cases as initial seeds. The next complete case that is separated from the first seed by at least the specified radius becomes the second seed. Subsequent cases are selected as new seeds if, and only if, they are separated from all previous seeds by at least the radius, and if the maximum number of seeds is not exceeded.

	
Separate
 — selects initial seeds that are well separated using a partial replacement algorithm. This method selects the first complete case as the first seed. The next complete case that is separated from the first seed by at least the specified radius becomes the second seed. Subsequent cases are selected as new seeds if they are separated from all previous seeds by at least the radius as long as the maximum number of seeds is not exceeded. If a case is complete but fails to qualify as a new seed, this case is then considered to replace one of the old seeds. An old seed is replaced if the distance between the case and the closest seed is greater than the minimum distance between seeds. The seed that is replaced is selected from the two seeds that are closest to each other. The seed that is replaced is the one of these two seeds that has the shortest distance to the closest of the remaining seeds when the other seed is replaced by the current observation.

	
Principal Components
 — initializes seeds on an evenly spaced grid in the plane of the first two principal components. If the number of rows is less than or equal to the number of columns, then the first principal component is placed to vary with the column number, and the second principal component is placed to vary with the row number. If the number of rows is greater than the number of columns, then the first principal component is placed to vary with the row number, and the second principal component is placed to vary with the column number.

	
Radius
 — Use the Radius property to specify the minimum distance between cluster seeds. The Radius property accepts real numbers. The default setting is 0.0.

8.3.4

SOM/Kohonen Node Train Properties: Batch SOM Training

 When the Method property is set to
 Batch SOM
 or
 Kohonen SOM
 , use the following Batch SOM Training Properties to specify advanced batch training options.

	
Use Defaults
 — Use this property to specify whether to use the default batch SOM training options to run the node. The default batch SOM training options depend on the type of network that you specified in the Method property.

	
If the Method property is set to
 Batch SOM
 , SOM training is always performed, and both the local-linear and Nadaraya-Watson smoothing methods are applied.

	
If the Method property is set to
 Kohonen SOM
 , SOM training is not performed, and neither the local-linear nor Nadaraya-Watson smoothing method is applied.

	
Local-Linear Smoothing
 — Use the Local-Linear Smoothing property to specify whether to perform local-linear training. If the property is set to
 Yes
 , you can use the Local-Linear Options properties to modify the smoothing options.

	
Nadaraya-Watson Smoothing
 — Use the Nadaraya-Watson Smoothing property to specify whether to perform Nadaraya-Watson training. If the property is set to
 Yes
 , you can use the Nadaraya-Watson Options properties to modify the smoothing options.

8.3.5

SOM/Kohonen Node Train Properties: Local-Linear Options

	
 Convergence Criterion
 — Use the Convergence Criterion property to specify the convergence criterion for the local-linear smoothing method. The Convergence Criterion property is a real number greater than or equal to 0, and the default value is 1.0E-4 (0.0001).

	
Max Iterations
 — Use the Max Iterations property to specify the maximum number of iterations for the local-linear smoothing method. The Max Iterations property is an integer greater than or equal to 1, and the default value is 10.

The
 Use Defaults
 property must be set to
 No
 before you can change either of the properties in the Local-Linear Options.

8.3.6

SOM/Kohonen Node Train Properties: Nadaraya-Watson Options

	
 Convergence Criterion
 — Use the Convergence Criterion property to specify the convergence criterion for the Nadaraya-Watson smoothing method. The Convergence Criterion property is a real number greater than or equal to 0, and the default value is 1.0E-4 (0.0001).

	
Max Iterations
 — Use the Max Iterations property to specify the maximum number of iterations for the Nadaraya-Watson smoothing method. The Max Iterations property is an integer greater than or equal to 1, and the default value is 10.

The
 Use Defaults
 property must be set to
 No
 before you can change either of the properties in the Nadaraya-Watson Options.

8.3.7

SOM/Kohonen Node Train Properties: Kohonen VQ

	
 Maximum Number of Clusters
 — If the Method property is set to
 Kohonen VQ
 , use the Maximum Number of Clusters property to specify the number of clusters that are created when you run the node. The Maximum Number of Clusters is an integer greater than or equal to 1. The default value is 10.

8.3.8

SOM/Kohonen Node Train Properties: Kohonen

	
 Batch Training
 — Use the Batch Training property to specify whether to perform batch training when the Method property is set to Kohonen SOM.

	
Use Defaults
 — Use this property to specify whether to use the default Kohonen training settings.

	
Kohonen Options
 — Select the button to open a properties table that allows you to customize the Kohonen Options settings. The Method property must be set to Kohonen SOM or Kohonen VQ and the Use Defaults property must be set to No before you can open the Kohonen Options properties table.

	
Learning Rate
 — Use the Learning Rate property to specify the learning rate for Kohonen training. The default value is 0.9.

	
Initial Rate
 — Use the Initial Rate property to specify the initial learning rate for Kohonen training. The default value is 0.9. Valid values are real numbers between 0 and 1.

	
Final Rate
 — Use the Final Rate property to specify the final learning rate for Kohonen training. The default value is 0.2. Valid values are real numbers between 0 and 1.

	
Number of Steps
 — Use the Number of Steps property to specify the step number at which the learning rate reaches the final learning rate. The default value is 1,000.

	
Convergence Criterion
 — Use the Convergence Criterion property to specify the value of the convergence criterion. The default value is 0.0001.

	
Max Iterations
 — Use the Max Iterations property to specify the maximum number of training iterations that you want to perform. An iteration is the processing that is performed on the entire data set. The default value is 100.

	
Max Steps
 — Use the Max Steps property to specify the maximum number of steps to perform during Kohonen training. A step is the processing that is performed on a single observation. The default value is 1,200.

8.3.9

SOM/Kohonen Node Train Properties: Neighborhood Options

 If you selected Batch SOM or Kohonen SOM as the Method property, you can use the following properties to specify Neighborhood Options:

	
Use Defaults
 — Use this property to specify whether to use the default values of the following neighborhood options.

	
Neighborhood Options
 — Select the button to open a properties table that allows you to customize the Neighborhood Options settings. Note that the Method property must be set to Batch SOM or Kohonen SOM and the Use Defaults property must be set to No before you can open the Neighborhood Options properties table.

 The following properties are available in the Neighborhood Options properties table:

	
Size
 — Use the Size property to specify the neighborhood size. The neighborhood size must be greater than or equal to 0. The default value is Max(5, Max(Rows, Columns)/2)

	
Kernel Shape
 — Valid values are 0 (uniform), 1 (Epanechnikov), 2 (biweight) and 3 (triweight). The default value is 1.

	
Kernel Metric
 — Valid values are 0 (max), 1 (cityblock), and 2 (Euclidean). The default value is 0.

	
Initial Size
 — Use the Initial Size property to specify the initial size for the neighborhood. The default value is 5.

	
Final Size
 — Use the Final Size property to specify the final size for the neighborhood. The default value is 0.

	
Number to Reset
 — Use the Number to Reset property to specify the number of steps after which neighborhood size and kernel are reset. The default value is 100.

	
Number of Steps
 — Use the Number of Steps property to specify the step number at which the neighborhood size reaches the value of the Final Size property for Kohonen SOM training. The default value is 1,000.

	
Iteration Number
 — Use the Iteration Number property to specify the iteration number at which the neighborhood size reaches the value of the Final Size property for Batch SOM training. The default value is 3.

8.3.10

SOM/Kohonen Node Results

 Open the Results window by right-clicking the node and selecting
 Results
 from the pop-up menu.

 Select
 View
 from the main menu to view the following results in the Results window:

	
Properties

	
Settings
 — displays a window with a read-only table of the SOM/Kohonen node properties configuration when the node was last run.

	
Run Status
 — displays the status of the SOM/Kohonen node run. Information about the run start time, run duration, run ID and completion status are displayed in this window.

	
Variables
 — displays a table of the variables submitted to the SOM/Kohonen node. The variables table displays the Name, Use, Report, Role and Level settings for each variable.

	
Train Code
 — the code that Enterprise Miner used to train the node.

	
Notes
 — displays (in read-only mode) any notes that were previously entered in the General Properties — Notes window.

	
SAS Results

	
Log
 — the SAS log of the SOM / Kohonen node run.

	
Output
 — the SAS output of the SOM / Kohonen node run. The SOM / Kohonen node SAS output contains a variable summary.

	
Flow Code
 — the SAS code used to produce the output that the SOM / Kohonen node passes on to the next node in the process flow diagram.

	
Train Graphs
 — is dimmed and unavailable in the SOM/Kohonen node

	
Report Graphs
 — is dimmed and unavailable in the SOM/Kohonen node

	
Scoring

	
SAS Code
 — the SAS score code that was created by the SOM / Kohonen node. The SOM / Kohonen node SAS code can be edited and used in external applications outside of the Enterprise Miner environment.

	
PMML Code
 — the SOM/Kohonen node does not generate PMML code.

	
Model

	
Mean Statistics
 — The Mean Statistics table displays following statistics for each cluster.

	
Clustering Criterion

	
Maximum Relative Change in Cluster Seeds

	
Improvement in Clustering Criterion

	
SOM Segment ID

	
Frequency of Cluster — the number of observations in each cluster.

	
Root-Mean-Square Standard Deviation — the root mean square error across variables of the cluster standard deviations, which is equal to the root mean square distance between observations in the cluster.

	
Maximum Distance from Cluster Seed — the maximum distance from the cluster seed to any observation in the cluster.

	
Nearest Cluster — the number of the cluster that has a mean closest to the mean of the current cluster.

	
Distance to Nearest Cluster — the distance between the centroids (means) of the current cluster and the nearest other cluster.

	
SOM Dimension1

	
SOM Dimension2

	
SOM ID

	
Mean of each input variable.

	
Map
 — if you set the Method property to
 Batch SOM
 or
 Kohonen SOM
 , a topological mapping of the input space to the clusters is produced. If you set the Method property to
 Kohonen VQ
 , a graphical representation of key characteristics of the segments that are generated by the node is produced (Figure 8-9).

[image:]

Figure 8-9

To examine a cluster in the map, place your mouse pointer over a cluster in the topological map. A text box will display the SOM dimensions and Frequency of Cluster (the number of observations in a cluster).

When you select a cluster, the corresponding row in the Mean Statistic table is highlighted and displays statistics for that cluster. To select multiple clusters, hold your right mouse button down and drag to create a rectangle over the clusters in the map.

By default, the SOM/Kohonen node uses the cluster frequency to color the cluster. Use the Select Chart combo box to select a statistic to color the clusters.

	
Segment Plot
 — if you set the Method property to
 Kohonen VQ
 , the Segment Plot provides a graphical representation of key characteristics of the segments that are generated from the
 Kohonen VQ
 method (Figure 8-10).

[image:]

Figure 8-10

To examine a segment in the map, place your pointer over a slice of the pie. A text box will display the segment ID.

When you select a slice, the corresponding row in the Mean Statistic table is highlighted and displays statistics for that cluster. To select multiple clusters, press CTRL and click the clusters that you want.

By default, the size of each slice in the two-dimensional pie chart is proportional to the cluster frequency. To use a different variable to create the pie chart, right-click in the map and select
 Data Options
 , and then assign the
 Response
 role to that variable.

	
Analysis Statistics
 — The Analysis Statistics table displays the following statistics:

	
Type of Observation

	
SOM Segment ID

	
SOM Dimension 1

	
SOM Dimension 2

	
SOM ID

	
Statistic Applying over All Variables.

	
Statistics for each input variable

	
Table
 — displays a table of the data that is associated with the graph that you have open. Data table column headings display variable labels by default. To display the variable names used in SAS code as column headings, right-click in any table cell and select
 Show Variable Names
 . To view labels in the column headings again, right-click in any table cell and select
 Show Variable Labels
 .

	
Plot
 — enables you to create or modify a graph of the data in the table that you have open.

8.4

VARIABLE CLUSTERING NODE

 The
 Variable Clustering
 node is on the
 Explore
 tab of the Enterprise Miner tools bar. Variable clustering is a useful tool for data reduction, such as choosing the best variables or cluster components for analysis. Variable clustering removes collinearity, decreases variable redundancy, and helps reveal the underlying structure of the input variables in a data set.

Suppose a direct mail company wants to build models using a database that has hundreds or thousands of variables for each customer. Should a predictive or segmentation model attempt to use all of the available variables? Large numbers of variables can complicate the task of determining the relationships that might exist between the independent variables and the target variable in a model. Models that are built with too many redundant variables can destabilize parameter estimates, confound variable interpretation, and increase the computing time that is required to run the model. Variable clustering can reduce the number of variables that are required to build reliable predictive or segmentation models.

Variable clustering divides numeric variables into disjoint or hierarchical clusters. The resulting clusters can be described as a linear combination of the variables in the cluster. The linear combination of variables is the first principal component of the cluster. The first principal components are called the cluster components. Cluster components provide scores for each cluster. The first principal component is a weighted average of the variables that explains as much variance as possible. The algorithm for Variable Clustering seeks the maximum variance that is explained by the cluster components, summed over all the clusters.

The
 Variable Clustering
 node cluster componentsare oblique, and not orthogonal, even when the cluster components are first principal components. In an ordinary principal component analysis, all components are computed from the same variables. The first principal component is orthogonal to the second principal component and to each other principal component. With the
 Variable Clustering
 node, each cluster component is computed from a different set of variables than all the other cluster components. The first principal component of one cluster might be correlated with the first principal component of another cluster. The
 Variable Clustering
 node performs a type of oblique component analysis.

As in principal component analysis, either the correlation or the covariance matrix can be analyzed. If correlations are used, all variables are treated as equally important. If covariances are used, variables with larger variances have more importance in the analysis.

When properly used as a variable-reduction tool, the
 Variable Clustering
 node can replace a large set of variables with the set of cluster components with little loss of information. A given number of cluster components does not generally explain as much variance as the same number of principal components on the full set of variables. However, the cluster components are usually easier to interpret than the principal components, even if the latter are rotated.

For example, an educational test might contain fifty items. The
 Variable Clustering
 node can be used to divide the items into, say, five clusters. Each cluster can then be treated as a subtest, with the subtest scores given by the cluster components.

8.4.1

Variable Clustering Node Algorithm

 The algorithm behind the
 Variable Clustering
 node is both divisive and iterative. By default, the
 Variable Clustering
 node begins with all variables in a single cluster.

 It then repeats the following steps:

	
A cluster is chosen for splitting. Depending on the options specified, the selected cluster has either the smallest percentage of variation explained by its cluster component (using the
 Variation Proportion
 property) or the largest eigenvalue that is associated with the second principal component (using the
 Maximum Eigenvalue
 property).

	
The chosen cluster is split into two clusters by finding the first two principal components, performing an orthoblique rotation (raw quartimax rotation on the eigenvectors; Harris and Kaiser, 1964), and assigning each variable to the rotated component with which it has the higher squared correlation.

	
Variables are iteratively reassigned to clusters to try to maximize the variance accounted for by the cluster components. You can require the reassignment algorithms to maintain a hierarchical structure for the clusters (using the Keep Hierarchies property).

 The
 Variable Clustering
 node algorithm stops splitting when either:

	
the maximum number of clusters as specified by the Maximum Clusters property is reached,

	
each cluster satisfies the stopping criteria specified in the Variation Proportion property and / or the Maximum Eigenvalue properties

Using default settings, the
 Variable Clustering
 node stops splitting when each cluster has only one eigenvalue greater than 1, thus satisfying the most popular criterion for determining the sufficiency of a single underlying dimension.

The iterative reassignment of variables to clusters proceeds in two steps. The first step is a nearest component sorting phase, similar in principle to the nearest centroid sorting algorithms described by Anderberg (1973). In each iteration, the cluster components are computed, and each variable is assigned to the component with which it has the highest squared correlation. The second phase involves a search algorithm in which each variable is tested to see whether assigning it to a different cluster increases the amount of variance explained. If a variable is reassigned during the search phase, the components of the two clusters involved are recomputed before the next variable is tested. The nearest component sorting step is much faster than the search step but is more likely to be trapped by a local optimum.

Using principal components, the nearest component sorting step is an alternating least squares method and converges rapidly. The search step can be very time consuming for a large number of variables. But if the default initialization method is used, the search step is rarely able to substantially improve the results of the nearest component sorting step. In this case, the search takes fewer iterations. If random initialization is used, the nearest component sorting step might be trapped by a local optimum from which the search phase can escape.

You can use the
 Variable Clustering
 node to perform hierarchical clustering by using the Keep Hierarchies property. The Keep Hierarchies property restricts the reassignment of variables so that split clusters maintain a tree structure. When a cluster is split during hierarchical clustering, a variable in one of the two newly formed clusters can be reassigned to the other new cluster, but not to any other cluster.

8.4.2

Variable Clustering Node and Missing Data Set Values

 If an observation contains missing values, the
 Variable Clustering
 node excludes the observation from the analysis. If the input data set that you want to perform variable clustering on contains a significant amount of observations with missing values, it might be beneficial to use the
 Replacement
 or
 Impute
 nodes to replace or impute missing variable values before submitting the data set to the
 Variable Clustering
 node.

8.4.3

Variable Clustering Node and Large Data Sets

 The
 Variable Clustering
 node is most computationally effective when used with data sets that have less than 100 variables and less than 100,000 rows. Running the standard variable clustering algorithms with larger data sets results in noticeable processor performance decreases. When you need to perform variable clustering on a data set that has more than 100 variables or more than 100,000 rows, you should make changes to your process flow diagram configuration to improve the computational performance.

If your data set contains more than 100,000 observations, you should use the
 Sampling
 node to obtain a sample of the data set for variable clustering. You can select from several sampling strategies that reduce the number of observations in your process flow diagram to less than 100,000.

If your data set contains more than 100 variables, use the node's two-stage variable clustering algorithm.

8.4.4

Variable Clustering Node and Variable Roles

 The
 Variable Clustering
 node is designed to cluster numeric variables. You can use the Include Class Variables property to analyze class variables through the use of dummy variables, but care should be used when including class variables in the analysis.
 Variable Clustering
 node performance can suffer when class variables that have a large number of levels are analyzed. This happens because the
 Variable Clustering
 node creates a dummy variable for each measurement level that it detects. Nominal class variables can be troublesome because every non-unique combination of characters or text would become a new dummy variable.

If your
 Variable Clustering
 node creates an unusually complex cluster map, you might want to inspect the measurement levels for the variables in your input data set. When you select the input data set node in your process flow diagram, you can use the
 Variables
 property to view your input data set variable measurement levels. The
 Variable Clustering
 node might provide better results if you reclassify some of your nominal variables in the table into interval variables.

8.4.5

Using the Variable Clustering Node

 The default configuration of the
 Variable Clustering
 node often provides satisfactory results. If you want to change the final number of clusters, you can modify the settings for the
 Maximum Clusters
 ,
 Maximum Eigenvalue
 , or
 Variation Proportion
 properties. The
 Maximum Eigenvalue
 and
 Variation Proportion
 criteria usually produce similar results, but occasionally can cause different clusters to be selected for splitting. The
 Maximum Eigenvalue
 criterion tends to choose clusters that have a large number of variables. The
 Variation Proportion
 criterion is more likely to select clusters that have a small number of variables.

The
 Variable Clustering
 node usually requires more computer processing than a comparable Principal Component analysis, but it can be faster than some of the iterative factoring methods.

 If you have more than 30 variables, you can want to reduce your Variable Clustering node processing time by using one or more of the following methods:

	
Specify a numeric value for the Maximum Clusters property if you know how many clusters you want.

	
Set the Keep Hierarchies property to
 Yes
 .

	
Set the Two Stage Clustering property to
 Yes
 .

8.4.6

Variable Clustering Node Train Properties

 The following train properties are associated with the
 Variable Clustering
 node:

	
Variables
 — Use the Variables table to specify the status for individual variables that are imported into the
 Variable Clustering
 node. Select the
 [image:]
 button to open a window containing the variables table. You can set the variable status to either
 Use
 or
 Don't Use
 in the table, view the columns metadata, or open an Explore window to view a variable's sampling information, observation values, or a plot of variable distribution.

	
Clustering Source
 — Use the Clustering Source property to specify the source matrix that you want to use for variable clustering analysis. The default setting for the Clustering Source property is Correlation.

	
Correlation
 — Setting the Clustering Source property to Correlation uses the correlation matrix of standardized variables. When the Cluster Component property is set to Principal Components, the source matrix provides eigenvalues.

	
Covariance
 — Setting the Clustering Source property to Covariance uses the covariance matrix of raw variables. The Covariance property setting permits variables that have a large variance to have more effect on the cluster components than variables that have a small variance. When the Cluster Component property is set to Principal Components, the source matrix provides eigenvectors.

	
Keep Hierarchies
 — Use the Keep Hierarchies property to specify whether clusters should be maintained at different levels in order to create a hierarchical cluster structure. The default setting for the Keep Hierarchies property is
 Yes
 .

	
Include Class Variables
 — The
 Variable Clustering
 node is designed to create clusters from numerical variables. The
 Include Class Variables
 property provides a way to include class variables in the variable clustering. The default setting for the
 Include Class Variables
 property is
 No
 . When the
 Include Class Variables
 property is set to
 Yes
 , class variables are converted to dummy variables and are treated as interval inputs. Users should pay close attention to the behavior of clustered dummy variables because dummy variables from one class variable can be sorted into different clusters. When dummy variables are created, the dummy variables are passed on to the node that follows the
 Variable Clustering
 node. When the
 Include Class Variables
 property is set to
 No
 , all class variables are passed on to the successor nodes without any processing.

	
Two Stage Clustering
 — Use the
 Two Stage Clustering
 property to specify whether to perform two-stage clustering. Two-stage clustering is normally used when submitting data sets with more than 100 variables or 100,000 observations to the
 Variable Clustering
 node. The default setting for the
 Two Stage Clustering
 property is
 Auto
 .

8.4.7

Variable Clustering Node Train Properties: Stopping Criteria Properties

	
 Maximum Clusters
 — Use the
 Maximum Clusters
 property to specify the largest number of clusters desired. If you do not specify a value for the
 Maximum Clusters
 property, the default setting counts the number of variables in the input data set and uses that value. The
 Variable Clustering
 node stops splitting clusters after reaching the
 Maximum Clusters
 value, regardless of what other splitting options are specified. Valid values are integers greater than or equal to 1.

	
Maximum Eigenvalue
 — Use the
 Maximum Eigenvalue
 property to specify the largest permissible threshold for the second eigenvalue of each cluster. When the second eigenvalue of a cluster exceeds the
 Maximum Eigenvalue
 setting, the
 Variable Clustering
 node stops splitting the cluster. If you do not specify a value for the
 Maximum Eigenvalue
 property, the default setting counts the number of variables in the input data set and uses that value. Valid values are real numbers greater than or equal to 1.

	
Variation Proportion
 — Use the
 Variation Proportion
 property to specify the upper threshold for the proportion of variation criterion. Using this criterion, the
 Variable Clustering
 node splits the cluster that has the smallest proportion of variation explained, as long as the proportion of variation value is less than or equal to the value specified for the
 Variation Proportion
 property. The default value for the
 Variation Proportion
 property is 0. The
 Variation Proportion
 property accepts real numbers between 0 and 1.0.

If you specify values for both the
 Variation Proportion
 property and the
 Maximum Eigenvalue
 property, the
 Variable Clustering
 node searches first for a cluster to split using the
 Maximum Eigenvalue
 criterion. If no cluster meets the
 Maximum Eigenvalue
 criterion, the
 Variable Clustering
 node next looks for a cluster to split based on the
 Variation Proportion
 criterion. If you specify values for both the
 Variation Proportion
 property and the
 Maximum Clusters
 property, the resulting number of clusters will always be less than or equal to the
 Maximum Clusters
 property value.

	
Print Option
 — Use the
 Print Option
 property to configure the granularity of the printed output from the
 Variable Clustering
 node.

	
Summary
 — Prints variable clustering results summary information only.

	
Short
 — Suppresses printing of the cluster structure, scoring coefficients, and inter-cluster correlation matrices.
 Short
 is the default setting for the
 Print Option
 property.

	
All
 — Prints all variable clustering results information.

	
None
 — Suppresses printing of all variable clustering results information.

	
Suppress Sampling Warning
 — Use the
 Suppress Sampling Warning
 property to configure whether you want the
 Variable Clustering
 node to suppress the sampling warning when you submit a large data set for clustering. Performing variable clustering on large data sets that have 100,000 or more observations can be very computationally intensive. SAS Enterprise Miner recommends that you use sampling to perform variable clustering on large data sets. The default setting for the
 Suppress Sampling Warning
 is
 No
 . Set the
 Suppress Sampling Warning
 property to
 Yes
 if you want to run the
 Variable Clustering
 node without any restriction on the number of submitted observations.

8.4.8

Variable Clustering Node Score Properties

 The following score properties are associated with the
 Variable Clustering
 node:

	
Variable Selection
 — Use the
 Variable Selection
 property to specify the variables or components that you want to export from the clusters.

	
Cluster Component
 — the
 Variable Clustering
 node exports a linear combination of the variables from each cluster.
 Cluster Component
 is the default setting for the
 Variable Selection
 property.

	
Best Variables
 — the
 Variable Clustering
 node exports the variables in each cluster that have the minimum R-square ratio values.

	
Interactive Selection
 — Use the
 Interactive Selection
 property to open an interactive variable selection table that permits you to manually choose important variables. Select the
 [image:]
 button to the right of the
 Interactive Selection
 property to open the variables table for interactive selection.

	
Hide Rejected Variables
 — Use the
 Hide Rejected Variables
 property to specify whether to hide the rejected variables from all successor nodes in the process flow diagram. The default setting for the
 Hide Rejected Variables
 is
 Yes
 .

8.4.9

Variable Clustering Node Status Properties

 The following status properties are associated with this node:

	
Create Time
 — displays the time at which the node was created.

	
Run ID
 — displays the identifier of the node run. A new identifier is created every time the node runs.

	
Last Error
 — displays the error message from the last run.

	
Last Status
 — displays the last reported status of the node.

	
Last Run Time
 — displays the time at which the node was last run.

	
Run Duration
 — displays the length of time of the last node run.

	
Grid Host
 — displays the grid server that was used during the node run.

	
User-Added Node
 — specifies if the node was created by a user as a SAS Enterprise Miner extension node.

8.4.10

Example

 This example performs variable clustering on an example SAS data set composed of training metadata about applicants for credit. The training data has a binary target variable named GOOD_BAD. The GOOD_BAD status indicates whether the individual in the training data defaulted on his loan. The example uses variable clustering to create a model that uses a combination of latent vectors to predict the good risks among a pool of credit applicants.

Use the SAS Enterprise Miner Create Data Source Wizard to create the German Credit Data data source. The example data is located in the SAS sample library SAMPSIO. Use the SAS sample German Credit data set, SAMPSIO.DMAGECR.

 Configure the variables in the SAMPSIO.DMAGECR data set as follows:

	
Set the role of the binary variable GOOD_BAD as the target variable.

	
Set the measurement level of all the input variables except the character variable PURPOSE to Interval.

	
Ensure that the measurement level of PURPOSE is set to Nominal, and that the measurement level of GOOD_BAD is Binary.

	
Save the SAMPSIO.DMAGECR data set using the role of either Train or Raw.

Create a new process flow diagram. Next, connect the
 German Credit
 data source with a
 Variable Clustering
 node (found in the
 Explore
 tab of the node toolbar) as shown below. Use the default property settings for the
 Variable Clustering
 node.

[image:]

Right-click the
 Variable Clustering
 node, and then select
 Run
 to run the process flow diagram. When the Run Status window indicates that the run is completed, select the
 Results
 button to open the
 Variable Clustering
 node Results window. Examine the Cluster Plot (Figure 8-11) to view the seven clusters that were created from the set of interval input variables in the German Credit training data:

[image:]

Figure 8-11

Examine the Variable Selection table in the Results window to view the cluster statistics, sorted by cluster. The components in the Variable Selection table will be exported to the node that follows the
 Variable Clustering
 node in a process flow diagram. The
 R-Square
 with
 Next Cluster Component
 column of the table indicates the R-square scores with the nearest cluster. If the clusters are well separated, R-square score values should be low. Small values in the
 1–R
 2
 Ratio
 column of the Variable Selection table also indicate good clustering.

The
 Variable Clustering
 node run was performed using its default property settings. By default, the
 Variable Clustering
 node exports cluster components to the node that follows in a process flow diagram. Note that the
 Variable Selected
 column of the Variable Selection table in this case reads
 YES
 only for the cluster component variables (
 CLUS1
 ,
 CLUS2
 , and so on.) The
 Variable Clustering
 node can also export the best variable from each cluster to successor nodes if you desire.

To export the best variable from each cluster (instead of cluster components), close the
 Variable Clustering
 node Results window, and then change the value of the
 Variable Selection
 property from
 Cluster Component
 to
 Best Variables
 . Run the node after you make the configuration changes and open the Results window. When you examine the Variable Selection table, the
 Variables Selected
 column displays
 YES
 for the best variable in each cluster (Figure 8-12). When you use the
 Best Variable
 setting for the
 Variable Selection
 property, the best variable in each cluster is the variable that has the lowest
 1–R
 2
 Ratio
 .

[image:]

Figure 8-12

The Results window dendrogram uses a tree hierarchy to display how the clusters were formed Figure 8-13.

[image:]

Figure 8-13

You can use the Results window menu to display the flow code for the cluster components (Figure 8-14). The flow code contains the score code:
 View
 [image: Descripcin: then select]
 SAS Results
 [image: Descripcin: then select]
 Flow Code
 .

[image:]

Figure 8-14

The type of output that the
 Variable Clustering
 node produces varies according to how the node
 Export Options
 are configured. You can verify which variables are exported during a
 Variable Clustering
 node run by attaching a successor node to the
 Variable Clustering
 node and running the successor node. After the run, open the table for the successor node
 Variables
 property to view the input variables that were exported by the
 Variable Clustering
 node.

This example has produced both cluster components and best variable cluster values during separate
 Variable Clustering
 node runs. To view how exported data passes to successor nodes, add a successor
 Regression
 node and configure the
 Variable Clustering
 node to export cluster components.

[image:]

Drag a
 Regression
 node from the
 Model
 tab of the node tools bar onto your process flow diagram. Connect the
 Variable Clustering
 node to the
 Regression
 node. Leave the
 Regression
 node properties in their default states. The
 Variable Clustering
 node needs to be configured to export cluster components instead of the best variables within each cluster.

 Select the
 Variable Clustering
 node in the process flow diagram, and then set the following properties:

	
set the
 Variable Selection
 property in the
 Export Options
 section to
 Cluster Component
 .

	
ensure that the
 Hide Rejected Variables
 property in the
 Export Options
 section is set to
 Yes
 .

	
set the
 Include Class Variables
 property to
 No
 .

When the run completes, select
 OK
 in the Run Status window. (This example does not visit the results of the
 Regression
 node.) With the
 Regression
 node selected in the process flow diagram, click on the
 [image: Descripcin: Ellipses Selector Button]
 button to the right of the
 Variables
 property in the
 Regression
 node general properties panel. A table opens that displays all of the variables that the
 Variable Clustering
 node exported to the
 Regression
 node (Figure 8-15):

[image:]

Figure 8-15

The table shows the exported variables: the GOOD_BAD target variable, the nominal PURPOSE variable that was neither analyzed nor rejected, and the seven variable cluster components that the
 Variable Clustering
 node created.

Because the value of the
 Hide Rejected Variables
 property of the
 Variable Clustering
 node was set to
 Yes
 , none of the rejected variables are passed on to the successor node.

8.4.11

Two Stage Variable Clustering Example

 The two stage variable clustering example uses a data set called GD_200VARS_10000ROWS_NOCLASS. The example data set is typical of a data source that should use two-stage variable clustering. The example data source is a raw data set that has 200 interval input variables, no class variables, and 10,000 observations. The data set has a binary target variable called TARGET. This example configures the input data source as a training data set.

For the input data set, use the
 Create Data Source Wizard
 to create a data source from the SAS SAMPSIO sample library. Use the SAS data set, SAMPSIO.GD_200VARS_10000ROWS_NOCLASS to create a new data source.

 Confirm that the newly created data source is configured as follows:

	
the
 Advanced
 advisor is selected.

	
the binary variable TARGET is the target variable.

	
ID_CUST and ID_STORE are nominal ID variables.

	
SEGMENT is a nominal segment variable.

	
the remaining variables are all interval input variables.

Construct the following process flow diagram:

[image:]

 Select the
 Variable Clustering
 node and configure the following properties:

	
Set the
 Two Stage Clustering
 property to
 Yes
 .

	
Leave all other property settings in their default state. The node will export cluster components.

Right-click the
 Variable Clustering
 node in the process flow diagram and select
 Run
 . In the Confirmation window, select
 Yes
 . In the Run Status window, select
 Results
 .

You can see that within each global cluster, all results are similar to those for single-stage clustering. The global clusters in the
 GCluster
 column are labeled
 GC1
 ,
 GC2
 , and so on. The formula for the number of global clusters is Number of clusters = INT ((number of variables / 100) + 2). Therefore, the number of clusters is INT ((200 / 100) + 2) = 4.

Because there are four global clusters, the results contain four cluster plots, four cluster tables, and so on. The table for global cluster 1 (
 GC1
) is shown below (Figure 8-16):

[image:]

Figure 8-16

The Global Cluster Dendrogram below (Figure 8-17) is generated from scored cluster components and hierarchical clustering. It shows the relationship between global clusters and provides a link to the gap between global clusters and sub-clusters.

 [image:]

Figure 8-17

8.4.12

Predictive Modeling with Variable Clustering Example

 This example demonstrates how the
 Variable Clustering
 node can enhance the performance of a data mining predictive model. The SAS sample data set SAMPSIO.DMEXA1 is used as a data source. The data source is partitioned into training and validation data sets for a regression analysis.

 The partitioned data is passed on to three identically configured successor
 Regression
 nodes with the following variations:

	
The data that flows to the first
 Regression
 node has no variable clustering performed on the data.

	
The data that flows to the second
 Regression
 node has variable clustering performed on the data. The
 Variable Clustering 1
 node is configured to output cluster components.

	
The data that flows to the third
 Regression
 node has variable clustering performed on the data. The
 Variable Clustering 2
 node is configured to output the best cluster variables.

The output from the three regression models is then submitted to a
 Model Comparison
 node to assess the regression model with the best performance.

 [image:]

	
Configure the DMEXA1 data source as follows:

	
Use the Create Data Source Wizard to select the sample SAS data set SAMPSIO.DMEXA1.

	
After you specify the SAS table SAMPSIO.DMEXA1 in the Data Source Wizard, select the
 Basic
 setting for the metadata advisor.

	
In the Basic Column Metadata table for SAMPSIO.DMEXA1, make the following configurations:

	
Set the
 Role
 for variable ACCTNUM to
 ID
 .

	
Set the
 Role
 for variable STATECOD to
 Rejected
 .

	
Set the
 Role
 for variable PURCHASE to
 Target
 .

	
In the Data Source Attributes table for SAMPSIO.DMEXA1, set the
 Data Source Role
 attribute to your choice of
 Train
 or
 Raw
 .

The newly created SAMPSIO.DMEXA1 data source should have 43 interval input variables, 4 nominal input variables, and 1,966 observations.

	
 Add and connect a
 Data Partition
 node to the diagram. In the
 Data Set Allocations
 section of the
 Data Partition
 node properties panel, make the following configurations:

	
Set the
 Training
 property value to 60%.

	
Set the
 Validation
 property value to 40%.

	
 Add and connect two
 Variable Clustering
 nodes to the diagram as shown. In the
 Export Options
 section of the
 Variable Clustering
 node properties panel, make the following configurations:

	
Set the
 Variable Selection
 property value on the uppermost
 Variable Clustering
 node in the diagram to
 Cluster Components
 .

	
Set the
 Variable Selection
 property value on the remaining
 Variable Clustering
 node in the diagram to
 Best Variables
 .

	
 Add and connect three
 Regression
 nodes to the diagram as shown. Leave all three
 Regression
 nodes in their default configuration.

	
 Add and connect the
 Model Comparison
 node to the diagram as shown. Leave the
 Model Comparison
 node in its default configuration.

	
 Right-click the
 Model Comparison
 node and select
 Run
 from the pop-up menu. In the Run Status window, select
 OK
 .

	
 Before examining the
 Model Comparison
 node results, examine the variables that were passed to the two
 Regression
 nodes that follow
 Variable Clustering
 nodes. In the properties panel for the
 Regression
 node that follows the uppermost
 Variable Clustering
 node, select the
 [image:]
 button that is located to the right of the
 Variables
 property to view the table of imported variables. The table shows that the first
 Variable Clustering
 node summarized 43 interval variables in 13 cluster components, and then passed the cluster components to the successor
 Regression
 node as new inputs (Figure 8-18).

[image:]

Figure 8-18

	
 In the properties panel for the
 Regression
 node that follows the second
 Variable Clustering
 node, select the
 [image:]
 button that is located to the right of the
 Variables
 property to view the table of imported variables. The table shows that the second
 Variable Clustering
 node chose 13 interval variables, each variable the best cluster representative. The 13 best cluster variables are passed to the successor
 Regression
 node as new inputs (Figure 8-19).

[image:]

Figure 8-19

	
 Right-click the
 Model Comparison
 node in the diagram and select
 Results
 from the pop-up menu to compare the results of the three
 Regression
 models.

	
 The Fit Statistics table and the SAS Log show that the
 Model Comparison
 node chose the regression model that followed the
 Variable Clustering
 node that exported cluster components as the best predictive model. The regression models use unclustered variable inputs or best cluster variable inputs based on validation error and misclassification rates (Figure 8-20).

[image:]

Figure 8-20

OEBPS/Image00102.jpg

OEBPS/Image00223.jpg
°

OEBPS/Image00101.jpg

OEBPS/Image00222.jpg

OEBPS/Image00104.gif
Neural
Network
Terms.

Shtitial
Terms

input

output farget

[—
ity

dependent

reited
i varibe

OEBPS/Image00225.jpg

OEBPS/Image00103.gif
Neural
Network
Terms.

Sttiteal
Terms

input

output

farget

«— 00—

indepncont
priaiy

preced

depancnt
gy

OEBPS/Image00224.jpg

OEBPS/Image00106.gif

OEBPS/Image00227.jpg
InputsfEplanatoryvariables window

~Customertransactions by manth
Jan1, 2006 - June 30, 2006

~Customer charactersticscbserved

2 time ot
on o befoe June 30,2006,

Jan1, 2006 June30,2006

Perormance Window

Event Targetvariable)
operstionsilag Attriton=1
= 1month Notrion

AgL2006 oct3L, 2006

OEBPS/Image00105.jpg
Neursl mput hiden output farget
Netwark byer

B2)

Sattial ncegencent e dependent
Terms "t Palie” “arae

OEBPS/Image00226.jpg
f s & % ®

OEBPS/Image00107.gif

OEBPS/Image00022.jpg

OEBPS/Image00023.jpg

OEBPS/Image00020.jpg
4
4 BvEancie-1 savsio v
v Fahe srcersn e ISPSI0 OVARIS
2 eman Crest [Sps10 D¥AGET
4 ore cauty SapsiovEQ
v Piare: Seqrces Swesiosear
[Associarions
| Associasons.

o] o= |

OEBPS/Image00021.jpg
K] et secuences
& oagers
o Sivoce pacages

OEBPS/Image00018.jpg
CFTIONS st ENAME semers TLE et s thr coge

OEBPS/Image00098.jpg
e RGNy _sTaTvs s 15 o or: 5, 4
Banber o Ghsecvatsons - 3024.067307
Predicted: TARGET e - 0.07

35 b ey iy a7 16 08 07 1, 2 o mizeDNG
priey
15 e e soeacier -6

10 maber of onservaions - 2965, 1454069

OEBPS/Image00219.jpg
_tapPredict.
=
+REATL
-+ T2

_tapPredict=1-_tapPredict;

Tt _capPredict > 1 then _tapPredic
elst if _capPredict < 0 then _tapPredicts
P_respl=_tapPredict;

Iabel P_tespl = "Predicted: respe1":
P_resp0r1-_twpPredict;
Label P_respd = "Bredicted:

resp=0";

OEBPS/Image00019.jpg
e Eit Yo s

ponent Epetes o

ool

OEBPS/Image00218.jpg
W

* Selected activation function at stage 2 « SIUARE:

pekrz- w020
+(-0.010321372869454-0. 001771392668847_SIRINZL) *_SPRINZL
+(0.011320756484214-

317084804596+ SERINZZ) T SPRINZZ

01701610479667_SPRINZ3)?_SPRINZ3
643615585587_SPRINZ4)*_SPRINZA

160359115769%_SPRINGS) *_SPRINZS

028793475031345
00435703724489+4.
030197888540640.

OEBPS/Image00100.jpg
orot vt TARGET 5

s
-
oo
=
B
o
=
o
)
251
s
e

OEBPS/Image00221.jpg
rer

o-01248

OEBPS/Image00099.jpg

OEBPS/Image00220.jpg
B Sauure Opirs

N 1T T

OEBPS/Image00026.jpg
W=

e e o

7 we e sersasons

[T I— |

OEBPS/Image00027.jpg
o e

© tocme
% An

o]

(oot s 545 P

OEBPS/Image00024.jpg

OEBPS/Image00025.jpg
[e ity % b Edi Varabes.

€ Los

-A Du:!da ==

& ents
() smot Panos 535 Pogen

OEBPS/Image00003.jpg

OEBPS/Image00002.jpg
@
3 Append tode
3 Data ortton ode
13 Fle Import Node
Fier ode
3 iput Daa Node
3 Werge iode

L Sample Node

OEBPS/Image00005.jpg
P EEE R E s

B e

OEBPS/Image00004.jpg
ol s

13 Assocation Node

Cluster tlode

13 omos tode

Graph Explore Node

3 Uk Anaiyss tiode

3 Morket saske hode

3 woliotode

Path Anaysstiode

13 somohanen Hode

Statoplore Node

Variable Glusteing Hode
|- Memherreouraei b

OEBPS/Image00007.jpg

OEBPS/Image00006.jpg
|
Orop Nade

2 mpute Node
3 Interactive Binning Node
3 principal Components Hode
3 Replacemen fiode:
] Rules Buider Node
{2 Transform Variables Node

OEBPS/Image00113.jpg
st

OEBPS/Image00234.jpg
TSN ¢ Dccison Tree

0
s
2

Cumutative Litt

ALDATE

OEBPS/Image00112.jpg
b oo o

e

ordos

T

Soe

Nomal

OEBPS/Image00233.jpg

OEBPS/Image00115.jpg

OEBPS/Image00236.jpg
cumutative Lt

Depn

OEBPS/Image00114.jpg
Multi-hidden layer block network

Normal

Normal

OEBPS/Image00235.jpg

OEBPS/Image00117.jpg
Binery

QOQ

Input

Fidaen
Hixt good_oad
Hidden OutputrTar

OEBPS/Image00116.jpg

OEBPS/Image00237.jpg
S

tasmeynsecsnecanzeny
Secsddesinaianasy

s=sumsesesaTRRTsy

esreesnsesssseEzaRy

OEBPS/Image00011.jpg
h@asE®E

OEBPS/Image00012.jpg
8 5A5 94 (ingles)

§, SAS Deployment Manager 94

18 545 Documentation Viewer 94 (Eng!
8 54 enterprie Guide 6.1 (54-bi)

R SAS Enterprise Miner Client 13.

K SAS Enterprise Miner Workstation 13

OEBPS/Image00009.jpg
AEEs

B8

OEBPS/Image00228.jpg
InputsfExplanatoryvariables window Perormance Window

~Customertransactions by manth Event Targetvriable)
June1,2006 - Nov 3, 2006 Operatinalsg Attriion= 1
“Lmonth NoAttrion=0

~Customer charactrstiscbsenved
atatime pont
on o befoe Nov 30, 2006

June1, 2008 Nov 30,2008 Jant, 2007 mar31, 2000

OEBPS/Image00010.jpg
13 Cutoff Node
2 Decisions Node

12 Model Comparison Node
13 score tode.

13 Segment Profie Node

OEBPS/Image00109.jpg
O Variable Selection ESHECE =

PR e il e |
Ano_prow1z Recisa Nominal Varso Smai sauare vt - |
ponor, senper Rolaced Nominal Chaader VarsolSmalR sauarevalue | |
LE D, QT Relaled newal Numenc Varselcral . quarevaloe
Freavency STAus.a7. Inout Nominat Numerc

e Nominal Nomarc

loRecENT_ResroNsE. . Inou Nominai Rumenc

Hiawe_cwnicr Reces Bnany Characer VarsersmanRsausrevalue
e BonoR_Ace Relaced ewsl Numenc | Varsolmal R squarevalue
MEUONTHS GINCE LAS. Rojocad Itamal Moo 1 Vareal Sl .o el
e P BES Relacad Nommsi Gnaractr | Vares emall . square vaoe

e
e
b

OEBPS/Image00230.jpg

OEBPS/Image00008.jpg
2 st
2 Avtolieural Node:
3 Decsion Tree fode
3 Omine Regression Node
DMneural Node
2 Ensemble Node
2 Gradient Boosting Node.
13 Interactv Decison Tree Applcation
3 LaRs Node
3 Memory-Based Reasoning (MER) lode
2 Model Import Node
‘2 Neural Network Node: Reference
13 Neura Network Node: Usage
Portl Leost Squares flode
13 Regression ode.
2 Rule Induction Node
) TwoStage Node

OEBPS/Image00108.jpg

OEBPS/Image00229.jpg

OEBPS/Image00111.jpg
w0

£}

2ol parsade3 o) ageiung

000
oo
ES

OEBPS/Image00232.jpg
PEERTPR T

OEBPS/Image00110.jpg

OEBPS/Image00231.jpg

OEBPS/Image00017.jpg
B
Pt
| erscots e st

OEBPS/Image00015.jpg
£ Croato Now Projoct — Siep 3 of 4 Rogister the Projoct

‘Selctine SAS Folders Iocaton or s project Use
these folderst organizs yourprjects and conroluser

[—
i

ok | o> | oo

OEBPS/Image00016.jpg
Create New Project — Step 4 of 4_New Project Informati [x]

New Project nformaton

o vinng P
s etadta ocaton s roldrs s o
A5 Aphcatan serverEASton - Logca Ve
Beverdrecon e omusers popctsims

OEBPS/Image00001.jpg

OEBPS/Image00013.jpg
£ Croato Now Projoct — Step 1 of 4 Select SAS Server

‘Selecta 545 Senverfor s project. Al processing wil
2 take place on tis server.

OEBPS/Image00000.jpg
MACHINE LEARNNG.

surevIs®>
LEARNING.

cunssircATION

Rscatssion

cuwsrernG,

DUD

OEBPS/Image00014.jpg
[EA Croate Now Projoct — Stop 2 of 4_Specify Projoct Name and Server _EJ|

Speciy prjectname and direcor on the SAS Server
forhis project AllSAS data ses and les wil be
witen o i locaton.

Procttane
T ——

55 Seves Drectony

<ms | wea> e

OEBPS/Image00201.jpg
HIS « HIS + (-0.20498702609535 - ENP_STAQ
4 -133715597362906 - ENP_STALZ

L0 ol o1)i+ o.asumsaszienee: -
Jerz e (w.2szzanasssis - w0
S L a0 - S0 jrr2 e (1053012749055 -
Jerz e -n.a2ssaesTaeses - maso
40 o - mcoma
L ommeienes - meoms
Y0 aammsnemas - mcoma
L0 olzmzisesaens - mcomso
L0 Tosmsmasisen - meome
+ 0 assssessnn - mucom
Yoz o (0.16400226063961 - MRTGIN)7v2 4 (-1.83549043739692 -
AT e e 0.0609T04826220 - nSH
)2 e (130300SNTI - MU 1002 + (0.20057916751609
RESTYPECOO 1472 + (1161430346440 - RESTIPECOOF
Jere s (-o.GTasiss09LL - RESTIPEHONE y1e25
B+ - o e A
We oL - essesnaan + ma ;
ms o+ - vewsessse sms s - Unequal Widths
B < D Lassesemeneee + s s
WS 1 - dseussesserss + s ;

RN - WX (UL, M2, WIS, HA, HIS)
Zom_ -

H s pomn - me);
Sm_ - _sm_+mi s
B2 . pem2 - W)
SN« _stH_+ I3
M3 - BemI - W)
sm_ - sm_+m3 ;
B4 s pems - _m
ST+ S+ M
s e Bems - M)
sm - _sm_+ w5
e EL
2 - m2
M3 .3
Ha -4

s - ms

Normalized

OEBPS/Image00200.jpg
NRBFEH: OUTPUT OF HIDDEN UNITS

) 2 i] i H 3

Standordized Ioput

Plot
—t =2 0 e s

OEBPS/Image00203.jpg
'NRFEW: OUTPUT OF HIDDEN UNITS

Pr——

OEBPS/Image00202.jpg
Porespl + -1.20012000995707 * HLL + 2.31985635543082 * M1z

Prespo -
I+ X (0_cespl | P_zesp0)5
Frespl + B repl - W)

S+ s+ b respl 5
Frespo - KR tes0 - mac)
S - _sum_+ 7_cesp0 5
Frespl - pceml /s
Bxesp0_« Prespo s sm:

OEBPS/Image00205.jpg
Prespl = -0.16134105457285 * HIL + -2.7066232071686E-12 * H1Z
+ o samenmesen + ms

b e -

A+ X (1_sespl , B_resp0)5

o -0

Prempl DO _cepl - W)

R - s+ 7 xespl ;

Preapo - B o0 - WNC)

S+ s+ 7_cespo 5

Prespl e veesl / _sons

Prem = Vcesp0) SO

OEBPS/Image00204.jpg
HIS = HIS + (-2.35058561500512 - ENP_STAQ

)2 e 2.40518623330855 - ENP STAL 2
DTR2 4 [0.51927850442270 - MEQDL 1712 4 (-0.45148651869942 -
QL0)1r2 4 (-0.32072103277071 - O30

1912+ (1062220580778 - HEQSO 1172 + (osus0028379 -
B0 Jre2 4 (0.28333390657084 - 090

12 326641930412 - THCOMEZD

)2 0191760870978 - THCOMESO

- oo
986197242409415 - THCOMESO
2106504210076 - THCOMESD
-1.13941338986417 - THCOKETD
(0.27032103311026 - WRTGIN)72 + (-1.01616930524604 -
NRIGIU)12 4 (-0.35079811387852 - HS

h
»

«
¢
«
«
¢

Y2 (5946915705009 - 15U 742 + (26708045409 -
FESTYFECODO)7#2 + (-0.01939358001093 - RESTYPECODD
1742 + [-4.73871955673152 - RESTYPERORE)7*2.
HLL =30 % LOGUBS(0.047100289154)) - 0.01629829958408 * HLL 5
HIZ - 30 % LOGUBS(0.02068890020713)) mz
HI3 - 30 % LOG(BS(1.7075415385%408)) - s
B4 - 30 7 LOGUBS(-0.19255087809684)) - ma;

o1620m20958408 * M 5

s

s D ¢ ocusst 1 e
m_-mxmu,mz,m!.xu.ms]\
R - B -)

Unequal Heights

o em_ w5
fue - Eon - s

o miz Equal Widths
s - Eowns - s

o am_ w3

e - B0 - Mo

o e ma

s - poms -)
son - _sum_+ w5 ;

- HL
M2 - m2
P
B4 - HG
Hs - ms

Normalized

OEBPS/Image00207.jpg
yrea 'l s - o2
Jreal L iameoveieies oA 1 (e -
0 ez 4 (3 veasassans - w0
P2 L0 L sumiiae e a4 e asessesann -
ez s [eomnaeian - wiso

e R
O e 3 (L ssneserin -
BESTIVECCIRO)02 + (-1 tsMGRZRRDIS2 - FESTIRCOOD

i e RO L e
W2 2w Lo . aessamnension))
30N LGB b isuaoG)) b evemisiaesesn ¢ w3

T e Z‘.:'T’.‘}TT'E’LV\“ NG

e -)
T s 3
o s
o
E
s

Sl
B o
R

OEBPS/Image00206.jpg
NRBFEV: OUTPUT OF HIDDEN UNITS

Stondarized ot

OEBPS/Image00199.jpg
Prespl = -3.31966494396031 * HLL 4 0.4682110521405 * HI2

Premo -
X - mi (2_xespl | 2_temp0)
oo - o

el - 0ol - W)
S - sm_+ Premmt 5
Breapo - E(r_tesp0 - W)
S+ s+ Fremp0
Prespl = pcespl / _som:
Prespo - Presp s su_s

OEBPS/Image00198.jpg
Jern d (e TaerONIET L1 e 4 (1 semeeesas -
a0 jerz 4 (0 seesacaanasssz - im0
Jrrah (2 amieksRseIIeS s) 4 GeeSESARLAZS -
i e wemaimee -

1172 4 BISHIMATELS - TGN)72 4 (-1 CAOMGRIAR?
R s o d AT -
FLSTIPECIO 1472 + (b 4réauRGeisses - FESTIVESORD
112 e -k assmesseseases - ResTITE 10023

m2 L S - w2

WL s w0 Equal Widths

WS DD wsmereans s s

Do ot mz s L e S 05
e
Rz - g - e
R - g -
e B - W
Yo it s

s i s

Normalized

s

OEBPS/Image00212.jpg

OEBPS/Image00211.jpg
Pxespl = 2.M53666TIGE-26 * HLL + -1.306271644205968-26 * W12
+ e s ms
- A (2_respl , B_resp0)5
.

oo
Frempl - DGR cep) - W)
F_respo - DR (r_tesp0

S - _sm_+ 5_zemo ;
Frespl e Pxespl /SO0
P respo = Prespo / _su_

s

OEBPS/Image00214.jpg
R - e (p_cespl, 2_cesp0)5
Freml - Breml - W05
S e+ Bret

Frerpo e Bip(p_res0 - W)
Pocesp0 - Pcespo /3

OEBPS/Image00213.jpg

OEBPS/Image00216.jpg
| Selected activacion famction ac stage 0 = 51

THATO=s. 8202154303
5.41235092923889+ T (1. 60679533346274_SFRINOL® (2/ARCO3 (1))
+1.752940937585767 I (-0, 113803004671567_SPRINOZ* (2/ARCOS(-1)1)
+1.6904861372042175T0 (-0, 15185018249214+_SPRINOS* (2/ARCOS(-1)))
+0.406604791971347 T (1. 18080159361068_SPRINOA (2/ARCOS (1))
40.396149503573937STH(-0. 394640217147275_SPRINOS* (2/ARCOS (-1)))

/7--- Tazget. level 13 binary, take o logistic link funceion -
L€ EATO > 0 then YHATO-1/ (Lsexp (- YHATO))
1o _VHATO-exp(_TEATO) / (1eexp _TIATO))

OEBPS/Image00215.jpg
Fropety Ve

Node D Diters

OEBPS/Image00217.jpg
A L

Ui

* Selected activation function at stage 1 = SQUARE:

0499560950094 SPRINLL)*_SPRINLL
0106987123715%_SPRINI2) *_SPRINLZ
+(0.013548492107964-0. 00041734334 163_SPRINLS) »_SPRINLS
2569360521097_SPRINLA)_SPRINLA
2943779394637_SPRINLS) _SPRIINLS

OEBPS/Image00208.jpg
Prespl = -0.702635019202711 * HIL + 4649332033907 * H1Z

b aemeni ¢ ms
B+ X (p_sespl , 5_resp0)

Freml + BXP(Peml -)
R+ o+ s
F_resp0 e EXP(r_esp0 - WC):
S+ w4 7 gemn
Frespl - xempl /s
Presp0 - Presp0 / SO

OEBPS/Image00210.jpg
ES o HIS 4 (0.7073012770% - ENP_STAO

S vt - m
Jovs s (o aseresseseise - o1 [—
0 ez 4 ¢

D724 (| 03eNTTIRSNIGHS - TEOS0 1002 4 (83045620605 -
B0y o (W eenaITIERS - a0
I om0
e - om0
e - mcoms
e} mweomso
el - mcoaso
el - meoar
el
o ez 4
Jovz e | e s (e -
resTcomo) Sssisiassaeses - pesTIrECODr
R
R om
Z 30+ oaes iz
Con e uosass(sz - s
W oG 1 ssenseenn) - sma s

WS D30 s oS 1enesnn)
e - s

Unequal Heights

Unequal Widths.

Normalized

OEBPS/Image00209.jpg

OEBPS/Image00299.jpg
Y mm oams vams pmao

OEBPS/Image00302.jpg

OEBPS/Image00298.jpg
=l =T =
n:;:.m\‘"w. Lu—- \‘n-.\"m-lm T o T
D e e Nanna— | 1o

T T i

(o — R
i e—r

e b o

1 e

OEBPS/Image00182.jpg
Radial Basis Function HEIGHT=1,WIDTH=1

Stndaraized nput

OEBPS/Image00181.jpg
INormalzed Radial - Equal Widkh and Height
[Normakzed Radial - Unedual Wickh and Height.

OEBPS/Image00184.jpg
o

OEBPS/Image00183.jpg

OEBPS/Image00186.jpg

OEBPS/Image00185.jpg
ordnary Radl - Equs Width
Jordnary Radal - Unequa wikh
frmalzed Radsl - Equal Height

prormalized Racl - Equal Volumes
bormalzed Rackl - Equs Wikh

rormalized okl - Equalwidth and Height
Jormalzed Radsl - Unequsl Width and Height ¥/

OEBPS/Image00187.jpg
nnecee Moy pecepten A

T —
st rsion s 3

Bandamasion Osrtuson Yorwad
Rondimtoncorte 6o
Randimton sl b1

R — e
e Laye Conbvtion P Dok

b Loy At ot Pefa
s Ner
e ——

e Laye Acoaton Fcion Loosic

j T T — Y v

OEBPS/Image00178.jpg
Do 08810
PresctnioL065F
s iow 2
Preani o ciacs
Erede s (06
s

Decision
CussncaTon
Preder
Prebcr
ey

=
©

OEBPS/Image00180.jpg
B Notwork

OEBPS/Image00179.jpg
ctecure YuloyerPerceptron |

Drect Comection
Nonbe of Hden Unks

RandonizstonOrbion ol

Randoncaton caror o

Rondoriztin sse]

ot Sanddzaton Cardrd Ot

Ve Loyer Conbintion Frcton —pefock

Fidden Loer ctvaten Funcin etk

s os

Toroat LoyerCombitin Funcion etk

ToroatLayer ActvstinFction ot N

Horcmk Laver Eror Fncion ernoul v

OEBPS/Image00193.jpg
Prespl = -2.29043997245064 " HIL + 4.69131355398006 * HIZ
+ eavmerzasIEss THLY ¢ 2661301756006 * M

. 3raas109 + LS 5
Prespl = -0.38960261652833 + P respl ;
Frespo = 0;

RAX + WX (P_respl | P_cespo)
e

Fxeml - EX(P_xespl - W)
S = _smn_+ 7 _resp) ;

Presp0 - ERR(B_Tesp - A5
B - _sm_+ F_reso ;

Frespl = prespl / _smns
Frespo = Frespo s s

OEBPS/Image00192.jpg
HS

~ms
I
yeez
maio
yere
a0
ez
Jeez
Jeez
Jeez
Jeez
Jeez
Jeez

O 2 (

)12+

REsTYPECTIOD)72 + (

$3802366998253 - ENP_STAD

€ o.sasnszaasens - o STAL 2
(-olameannaenan - HE0DL)R (
- ari021m97521 - W30
(-o.a620e90575235 - S0)7e2 4
- -0.73967069125904 - KEQ30

(-o.26391219389024 - TaCOMEZ0

(-o.289m323201902 - TACOMESO

(vaassonressser - mucomEan

« 55741684227 - THCONESO

(Lasassesseseie - mucomeo

(-o.s6mu66s660526 - TACOMETO
(osvcasnaceaees - WRTGIH)2 4 (

12 e(Leasmswnens -
2 - aeseraanrin o
2D elesszeraanmin ez
2D eleeeraaman v ma
_exs_sass

- exp L
- Bxegun gz
- Exe g
- B s
- exe oINS

B A ;
o)
raaa) ;
o)
e)) -

23563622069 - o
(Crauemsenaesi - ms ez +
0.34870849329208 - RESTYPECOOP

rEsTYIERONE) 2;

H Equal Widths

OEBPS/Image00097.jpg
DONOR_RAW
_DATA

("3, Decision Tree

OEBPS/Image00195.jpg
Cuacenenne - o sThl 2
eI UL e (L1isemetsesss -
24 | -aseeeaszers - w0
LM - S0)12 4 (2 TS
S s - w0

Loswsiseotanie - om0
e
e O

R 702 4 (-1 ez - xm
FESTVIECOmO 1102 4 (0.24213947846922 - BESTRECOOR

Toemmimn [e

L poomon , o)
me - poomim: | o)
w3 - ponmous | o)
s - poomions | o)
s - poommous ;e)

OEBPS/Image00194.jpg
ot

ORBFUN: OUTPUT OF HIDDEN UNITS

pros——

OEBPS/Image00300.jpg

OEBPS/Image00095.gif

OEBPS/Image00197.jpg
NRBFEQ: OUTPUT OF HIDDEN UNITS

OEBPS/Image00096.jpg

OEBPS/Image00196.jpg
el + LLISLWIINNNI HLL + -2 12961102902
o o0ren1a0964 * S 5

-+ mesuasieers + o ces ;

X (2_cesp | _cesp)

< pe et - W)s
s+ prempt 5
- ERR_Tespo - 3

OEBPS/Image00093.jpg

OEBPS/Image00094.jpg

OEBPS/Image00189.jpg
Prespl = -0.43903268035898 ¢ HIL 4 0.4779584876191 * K12
o e T my ¢ e e + 0
Tremo -+ vamesaeezzse sl 4

amsesemienss « w2

sxemt’ -+ aaeerinene o el
sior o] R
“Ea i

Brempl = 10/ (L0 + EQODN(- P_cespl | _DXFBAR):
Tcesp0 < 1.0 / (1.0 + EXPONIN - Prespo , DXBBAR))):

OEBPS/Image00188.jpg
i)
i).
T).

sz S L+

OEBPS/Image00191.jpg
Popety Vo

ctaecire ey Rl Eq it al
e comuon i
it 5
Ranncten Gttt Do
anmaten Corter b0
andmen s b1
ok Sundadstin Sdwdoenson
e —
Vasion oy Actvtn Farctin Pefak
5 i
e
ot Loy Advaton arcin =y

OEBPS/Image00190.jpg
‘ORBFEQ: OUTPUT OF HIDDEN UNITS.

P

OEBPS/Image00091.gif

OEBPS/Image00092.jpg

OEBPS/Image00167.jpg
1+ Urscing che Node L0SSFRO

v _onean 20

254374302168 + HLY
~s.52895202992659 + »_LossrRa2
2laminsssanes & tossmar

- p_ossmoz

(100 + Exr (g - _tossrmas |

OEBPS/Image00089.jpg

OEBPS/Image00090.jpg

OEBPS/Image00088.jpg

OEBPS/Image00160.jpg
sing - NI_RESP_DATAZ

Lagets | e Proabites | Gsciions | Decion s |

Selct dacion i
© M

Enter it e or the docsirs.

Love oEcision _pecrsionz

' 0 oo
¥} o0

OEBPS/Image00281.jpg

OEBPS/Image00159.jpg
%% Update Posterior Probabilities:
P_respl = P_respl * 0.03 / 0.31368937998772;
P_resp0 = P_resp0 * 0.97 / 0.60631062001227;
dfop _sus: _sus = P_tespl + ?_tesp :
i€ _sun > 4.135903-25 then do

P_respl = P_respl / _su;

P_respo = P_respd / _sun:
end;’

OEBPS/Image00280.jpg
Number of Hits in Each Cluster
=

o

Cumr | Cumn Ciwd Ot

OEBPS/Image00086.jpg
Sum

o6

o

02

OEBPS/Image00162.jpg

OEBPS/Image00283.jpg
1 (=1 E3)

Seent 1 = 10
Frequency of Clustes - 67

ES

OEBPS/Image00087.jpg

OEBPS/Image00161.jpg
0+ Decision Processing:
Labed D.RESP - ‘Decision: resp’ ;
Lbel £7.RESP = “Expacted profits resp’ ;

Lengen 0 RSP ¢ 9

b gese - 0 s
Er=

1+ Coupuce Expected Consequences and Choose Decision;
_ecma = 1 drop _decoum,

DSt - 1t

B bEst - prespl + 5+

acop _sun;

o prespi + 0 4 1 xemo + 0
owst - -

resp0 -

ove pnd pecissen Procesetns 2

OEBPS/Image00282.jpg

OEBPS/Image00084.jpg

OEBPS/Image00164.jpg

OEBPS/Image00285.jpg
Clggmee — (e]

OEBPS/Image00085.jpg
L 101>

“ “
e x

Mo Score Mol Score

Percoriage

Ferceriage arfinavans)

OEBPS/Image00163.jpg
[)

OEBPS/Image00284.jpg

OEBPS/Image00082.jpg

OEBPS/Image00166.jpg

OEBPS/Image00287.jpg
lvesomcm e

OEBPS/Image00083.jpg

OEBPS/Image00165.jpg
7+ Conpute Expected Consequences end Choose Decision;
[decnum = 15 arop _secnun:

o_tossrwa = v 5
7 _Lossrma « »_tossmeaz + 5 + 8 tossmRaL +
acop _sum:
_eun = p_tossreaz « -1+ 7_LossTRO * 4 + »_LossmRa0 *
it _sun 5 EP_L0SSPRQ + 2.273737-12 chen do;

EP_LOSSTRY + _sun; _decnum = 2;

D_iossrRa - " ;
en
_oun = 7_10s5702 « -2 + 7_0857R01 * -1+ 7_L0SSTRO0 * 3
it _eun 5 EP_LOSSFRQ + 2.273137-12 then do.

EP_L0SSFRG + _sun; _decnum =

D_iossrrg = 07 5

ent;

+»_tossmmoo

+++ £ad pecision processing ;

OEBPS/Image00286.jpg
i Buon

OEBPS/Image00158.jpg

OEBPS/Image00279.jpg
261100t Clutert
2s4z00Cluced
preem
241160 e
Sarsts2ciuserz

2imas2ciusnt
250160 lotert

OEBPS/Image00278.jpg
st Loy Salary-
PusOut i 1068

i i 1960

Erusin 1085

Wl i 1989

Fune i 1963

Rete 1085

Vears nihe Major Loaues
Home Rune i 1505
Carestimes e
Corsert

CareerRurs
CarseHome Funs-

0

02

T os
Normalized Mean

0

1

OEBPS/Image00080.jpg
e

R enis

=5

_—

e e

OEBPS/Image00081.jpg
i
123 AutoNeural Node
2 Decision Tree Node
2 Dmine Regression Node
3 DMeural Node.
2 Ensemble Node.
3 Gradient Bocsting tode
3 Interactive Decison Tree Application
3 1aRs Node
3 Memory-8ased Reasaning (MBR) Node
2 Model Import Node
12 Neural Network Node: Reference
13 NeuralNetwork Node: Usage
13 ortl Least Squares fode
2 Regression Node
13 Rule Induction Node
] TwoStage Node

OEBPS/Image00078.jpg
) - L e -l o P

OEBPS/Image00079.jpg
e e P

OEBPS/Image00077.jpg

OEBPS/Image00171.jpg
Loss Frequency: TRAIN

Losstrg
Lossteg Cmulavive Cumulacive
Percentile Nean Hean Laee

s oaoms a0 408656
1 ooss o0ss0 3se2e
15 olosars o.0873 3.08550
2 oozser ooew0 2.ssenz
2 ooos oossa 22606
o ooses ooszu Lssoz
3 ooua o.0amo Loa156
w ool ooa Leszss
4 oozt oomo? Lsees
S0 oomu oo Lassad
s ooua ooms Lasn
s oo o036 Ls0sz
6 ooa 003 L2087
oo ooz 1.23082
75 o0 0.0 L16ses
s oot oozses L1328
8 ooise ooz Loz
s oousy o204 107089
55 oow0s 0.0z09 103470

100 0,009 0.02616 1.00000

OEBPS/Image00292.jpg

OEBPS/Image00170.jpg
O T O
Nvee s St I
T
o ason2 o osime bl o aviazad
w2 Gustzs 903030 5090308 3 ammor 36
w2 asmie o a0 E o 3uaer|
w2 oz 0 e s o irase
o o308 0 s 6 o 1 saara
w2 Wloasss asisiss t0 85 osw sy
o Biaas 0w o
o a13sies 0w o
w1 a1 0w o
WO 2 as0i o T
ONTE 2 o080 o ™
WONE 2 a0l 0w
ONE 2 o " W
WO 2 a200003 "
WONE 2 az03000 0o
WONE 2 aioatis o w
e ainre 0w o
WONE 2 aisor 0w o)
VAN 2 aion 0w o el
ONE 2 o008 0w oyl
WONE 2 aiires 0w o 1 oeasl

OEBPS/Image00291.jpg
o[o
T
9 o aral— amate
o iopa——iral— aat
o o e
o 7
" T
o o Il et
o L
o i
 ——

OEBPS/Image00075.jpg
Bawsio ey
Swsiowezar

OEBPS/Image00173.jpg
Jpeccentise

Losstry
Hean

0.04s67
0.04027
0.02667
0.04027
002013
0.00667
00142
0.00567

Loss Frequency: TEST

Losstrq
Tean Laee
ooszr 225100
ooss2s 206457
0,011 Leasz)
004215 Lene
oo 129224
0.03244 L2nes
o027 Lomer
o.02752 Loz70s

OEBPS/Image00294.jpg
10 o8 05 0% 02
Proportion of Variance Explained

OEBPS/Image00076.jpg

OEBPS/Image00172.jpg
Losstra
Losstra Cmilative Comecive

3 oosee oosme 2o

3 ooassa oowa Leem

i oomowm oowss nseors

s oomes oome 1swoe

6 ooy oomes 130es

S ooises oowea nowss

100 0.00a4e4 0.026907 1.00000

OEBPS/Image00293.jpg
 ——

OEBPS/Image00073.jpg

OEBPS/Image00175.jpg
v Decision Frocessing:
Lebel D_LOSSFRQ = ‘Decision: LOSSFAQ'
label EP_LOSSFRQ = 'Expected Brofit: LOSSFRQ' :

Lengeh D_LOSSFR ¢ 9:

D_iossmR « 1 1;
EP_L0SSIRO - .

#7+ Coupute Expected Consequences and Choose Decisio
_decnun = 1; dzop _decnun;

D_LossIO = 20
EP_LOSSFRQ = P_LOSSFRQ2 * 5 + P_LOSSFROL * -1+ F_LOSSFRO0 7 -2;
assp _sus
_eun T B_LOSSTRQ2 * -1 + P_LOSSFROL * 4 + B_LOSSFRQO * -1
Te _oun > EP_LOSSFRQ + 2.2350375-12 then do;

EP_L0SSFRD + _sun; _decnua =

D_iossrRg = ° 5
end;
_eun = P_LOSSFRQZ * -2 + P_LOSSFROL * -1 + P_LOSSFRQ0 * 3:
Tt _sua > EP_LOSSFRQ + 2.203135-12 chen do;

EP_LOSSTRD » _sun; _decnum = 35

D_iossmRa = 0" ;
ens

v+ End Decision Processing ;

OEBPS/Image00296.jpg

OEBPS/Image00074.jpg

OEBPS/Image00174.jpg
PLOSSFRQZ = 1.48949434173539 * HLL + 1.15959884200533 7 HLZ
+ 1.06730113426007 * HL3 5

PLOSSFROL = 1.11754131452423 T HLL + 0.96438843023431 * HL2
+ 0.02537332168 * L3 5

PLOSSFRG2 = -3.32895202992659 + P_LOSSFRQ2 ;

PLOSSFROL = -2.23114143594446 + P_LOSSFRQL ;

DROP _EXP_BAR:

EXP_BARe

P_LOSSFRG2 = 1.0 / (1.0 + EXP(MIN(- P_LOSSFRQZ , EXP_BAR))):
1

P_L0ssrRaL 7 (1.0 + EXPONIN(- PLOSSFROL , _EXP_BAR))):
PLLOSSFRQD = 1. - B_LOSSFRQL ;
PLLOSSFRQL = P_LOSSFRQL - P_LOSSFROZ :

OEBPS/Image00295.jpg
B WW
'@‘W

OEBPS/Image00071.jpg
@:

il

OEBPS/Image00177.jpg
Score Node:
AssEss;
Score:

Creating Fixed Nases:

LAEEL EN_EVENTFROBABILITY = ‘Ercbability for level 2 of LOSSFRQ's
EM_EVENTPROBABILITY = ?_LOSSFRO2:

LABEL EN_PROBABILITY = "Brobability of Claseification's
EM_FROBASTLITY =

et

»_LossrRaz

?_LossrroL

?_LossrRa0
In
LENGTH EM_CLASSIFICATION ¢+dmnorlen;

LAEEL EN_CIASSIFICATION = "Erediction for LOSSFRQ"
EW_CLASSTFICATION = 1_LOSSFRO:

OEBPS/Image00072.jpg

OEBPS/Image00176.jpg
Vriting che TLOSSTRY AID U_L0SSTRO 5

[aw_ -+ sossmaz
T_sosimg - 72 "
i0ssma - 2

17 wa_ it 5 sossmo) e o;
k- ¢ tassral
TLtosimo = 71 -
Viossm -

o,

1r(wa_ vt s sossmoo) Ex vo;
W 1 uassran
Tiosima = 0 -
iossma -

o

OEBPS/Image00297.jpg
8 Varisbles - Reg2
fomer >]]| Coomr | [|
e |_uee [o | we | ous |
i e o i
Cit et Vi 4
-

T
T N

Flcis e e
T —— N
s i
et
a5 e
) N
et R
i Nt
o N
s Charr o
e o i¥
e ves oot Homsie o
e et i 5l

T Tl

|
Exgiore.. || Updstepath | [oK]| coneet |

=

OEBPS/Image00288.jpg
F Total Proportion o Variance.

200
dspands

mpioyas ———————————
asident
savings. i

instaly
martal
cnweling
ister
ston
amaunt

dwaon—————————————
o I
lepnon
ousing
7 ——
propery I
o
orson
1o 05 05 o4 02
Proportion of Variance Explained

OEBPS/Image00169.jpg

OEBPS/Image00290.jpg
Do -fum, f e

OEBPS/Image00168.jpg
Label EF_LOSSFRQ = ‘Expected Profit: LOSSFRQ' :

£7_LossPRQ = 7_LOSSFRQZ * 3 + P_LOSSFRQL * -1 + P_LOSSFRGO * -2
TE et S Er_L0SSrR0 + 2273730 12 chen do7 :
B Tossrma - om: _ascmm - 37 :

OEBPS/Image00289.jpg
Elofedre o s L

Cinas - Chuasse senksasisneiss + (aseeny - 3330

it Chussss sisssssmenntis + (cessaens 3 o05)1

OEBPS/Image00069.jpg

OEBPS/Image00146.jpg
cutote

02656
0.22075
0.15334
014585
o.12783
011556
010987
o.09981
0,091
006395
0.05985
003998
003000
0.02000
0.01000

Senssesviey

000036
000071
000071
000162
000391
0.00680
0.00995
o074
0.04s55
o.07285
0,129
026209
06104
084115
0.56969

Lespeciticiey

000000
000000
000016
000016
000097
o016z
000325
000503
00609
002558
004544
0119504
o.a1410
o619
0,569

OEBPS/Image00267.jpg
“Assocition iode
3 Custer ode

3 owos tode

3 Groph Bxpore Node.

23 Unk Analysis tiode

3 varket Basket ode

2 MultPlot Node

3 path Analysis ode

3 soM/Kohonen tiode:

3 stateplore tode

3 variable Clustering Node
2 Variable Selection Node

OEBPS/Image00070.jpg

OEBPS/Image00145.jpg
i

v

1~ specncy 1~ speanicry 1~ specnicry

OEBPS/Image00266.jpg
e

s R RS

OEBPS/Image00068.jpg
%

OEBPS/Image00147.jpg
ods htal £ile =" /Thaook L2, 1 /keports /Chapters /ResphateV.ntad”s
Citie alsdation Date Setv

proc exeq astamcen L1s. aiconp_velsaate:

Cable cesp / nepers nocuspese suttabl (Keeps Tesp count cenames (cowntel]):

s neas close 5
ods htal £ile «"C:/Thaook/NL2. 1/beports,/Chapters,/Resplatel,_cutott. ntal"s
Ticse "cases watn brdicted Fronapidity (2_vespl) GE €RC"
proc treq datascch 115, NaiConp_Validate:
Cable resp / noperc nocuapere outscabd (eeps Tesp count renames (counCHNC))
wheze P_respl e 4703
o beal close:
daca ceap:
aerge tabl can2
by resp
5% respes then TYR
cutotesape:
ods heal Eile <"C: /Tabook 12,1 Reports /Chapt ' /TER_FPE_Cutott, hea®s
“Title “True Rositive Rate (I7E) and False Positive Rate (FPE)":
proc prine dacasce 1abei nocbs:
vax RESP N NC TYPE RATE
Label W+ "Mumber of Observations in the asmple”s
Label NC - umber of Ghaesvaticns clessified ss respordars
Labe) RESP » "Actiua] RESPONSE "2
Label TVFE - "Roc Coordinate "
Label Rate « "BOC Conrdinate Value"s
o heal close:
wena coccalc;
sroccate(pces.92);

PR 5 else 1 cespel chen TYFE<TER'; Baves MO

OEBPS/Image00066.jpg

OEBPS/Image00138.jpg
o

OEBPS/Image00259.jpg
Eroktng Rue

OEBPS/Image00067.jpg

OEBPS/Image00258.jpg

OEBPS/Image00064.jpg

OEBPS/Image00140.jpg

OEBPS/Image00261.jpg
- =

NP R

X Spa—

L y—

OEBPS/Image00065.jpg

OEBPS/Image00139.jpg
roc prant dacascea_1ib. newral_plotas nocbs labels
vex XTER_ _ASE__vASE_
hecs 41 1e ITERL le 6

OEBPS/Image00260.jpg
TEST DATA
Gradient Boosting Decision Tree
Bin Porcon- Comilative Comalative Cumilative Camslative
TR e TR e
Rate(x) Rata()

2.0 15.42 a.0s 15
3.0 30037 3o a0k
a0 e 28
26 23

250 221

23 2

23 21

T30 il

i) i

161 166

150 187

eid et

1138 et}

3 i)

20 2

1) et

i it

il0s 1o

iid iid

it 100

OEBPS/Image00062.jpg
&
.

o
I
l‘[

OEBPS/Image00142.jpg
camuaeioe

Liwe e Soimse
Vi i o
o L e

e o
Pt i
S Lo el

OEBPS/Image00263.jpg
[oneregmnn Ca— T

ety s customer i st i e el
sty s cotorer it i o e e s
T el gt e recros v h e pensies
cmputad ram the rmadt, s o e e pesero rababdny” i

OEBPS/Image00063.jpg
G ==jree=]
P

OEBPS/Image00141.jpg
=

opeions center

Slproc peiat datascEN_i15. NaLConp EMRARK 1sbel nocbs
heze wease (datazole) « "TIAIN' and bin ne . ¢
vac bin decile resp respe Lict itte cap cape ;
Eitle it and Capture Mates: Training Data set”s

Siproc priRt dacascEi_LT5. NdLCoap_EMRANK Label nochs
‘heze wpcase (datazole) = ALIIATE and bin ne
vac bin decile resp respe Lifc lacce cap cape
Eitle it and Capture Bates: Validaticn Data set”s

Fiproc priat dacescEi 115, NaLCoap EMRANK Label nochs
hece upcase (datarole) = "IEST” and bin ne . ;
vac bin decile resp respe Licc lifce cap cape
Citle it and Capture Rates: Test Data set"

OEBPS/Image00262.jpg
e o arms
et om0
e an

et s

sy it cstomer s - stmatadrom e gt epresion el
bl ht cstomer dogs ot sttt o th Logtc Regrssion ode
e Ve e o et vl e o recordbed

onthetimaed proositis g 5_ATTRL 3 g AT calcsts

rom e ogscRegrsson el

rbabiy ht cstomer does ot st - estimatd fom the Dcsion Tree Model.
e Ve nctes o et vl g o s
ontheetmsted provsbitis o5 ATIRLsnd Tre ATIROGlkstd

romth Dciion Tee e,

sy it stomer s - stmtadrom e Neurl etwork Mo
ity it cstomer does ot st - estimatd o th Nl ek ode
i Varaie: It e gt el s ghe 0 arecrd bases

ontheetmaed prcaities a5 ATTRL Newr AR st

o he Meurs Notwork Model,

©

OEBPS/Image00060.jpg

OEBPS/Image00144.jpg
Response

iy
i
perr
S
e
Laioes

Life and Capeuce Rates: Test Data set.

*Respnse

e
i
pered
ey
el
pereed

e
e
ey
Lo
peee

Zomss
L72u8
ety
L3t
11663
Loaoz4

Response

—
Response

s
prier
62007

OEBPS/Image00265.jpg

OEBPS/Image00061.jpg

OEBPS/Image00143.jpg
o

eoss20

VResponse

e

e

S
e
e
e
e
e

SRR .
Dme o
Lomi s
Low Sl
Vi e
Vi Yais
Lo e

Besponse

zen
ey

OEBPS/Image00264.jpg

OEBPS/Image00058.jpg

OEBPS/Image00157.jpg
Prespl = -L29172482403%62 * HLL + 1597731220933 ¥ KL2
Yeemo 1 iumessizass + 1remd

el 4.0 / (1.0 + DR - p_sespt | D nARY)
Frespd + 1.0/ (1.0 + EXPONN(- sasp0 | X EAR))))

OEBPS/Image00059.jpg
rema

LB -

]

OEBPS/Image00156.jpg

OEBPS/Image00277.jpg

OEBPS/Image00055.jpg

OEBPS/Image00149.jpg
Cases with Predicted Probabillty (P_resp1) GE 0.02
Validation Data Set

The FREQ Procedure.

rosp] Frequency
o e
3| e

OEBPS/Image00270.jpg

OEBPS/Image00056.jpg
Eewe |- GBourne |

OEBPS/Image00148.jpg
Validation Data Set

The FREQ Procedure

resp

Frequency

o
1

o158
214

OEBPS/Image00269.jpg
B v

OEBPS/Image00053.jpg
g(M) = 1/0(M)

OEBPS/Image00151.jpg
[proc prist data-cEN_LIb. .ndlcomp_eazoc noobs label;
VAL CUTOL sensitivicy oneaimusspecificicy :
“here upcase (dacacole) = VALIDATE" and upcase (aodel) ="NEVIAL" and cucott ne
Title "ROC Tablo: Validetion Data
Label cutoft = "Cutofe” sensitivicy = "Sensitivity”

Oneatmisspeci icaty="i-Speci ficity"s

OEBPS/Image00272.jpg

OEBPS/Image00054.jpg
DEBTING
DELING
DEROG
108

Nixg
REASON

Wode! Role

g
.
ou
pu
gt
gt
put

put
—

Messuroment

el

-
ey
ntel
o
Noninal
el
el
el
By

el

Deseription

vl inicats tht h it defedon e
o ori ey deiuens A vaue of D e
e chentpad off e loan

At of e s creiting, messred i s

Number of cedities
Debtioacome o
Numberof dlinquen rditioes

Number oo desgaoey epers
Occupaiondcateories

Amouatrequesed forheloan

Aot o o cating g

Number f ecen cedtinquiies

The vaue DebCon nfcte st the o vassended.
fordeb conrldaion. The vlne Homelp ndica
Batheloanwas o home improvemet.

Value o the comentpropery
o e SO

OEBPS/Image00150.jpg
True Positive Rate (TPR) and False Positive Rate (FPR)
at cut-off = 0.02

Actusl _ Numborof _ Numberof ROC Coordinate ROC Coordinato

RESPONSE Observations ~Observations Valuo.
Inthe sample _classified
as responders

o ose 1% FR)

l 2814 207 TR o815

OEBPS/Image00271.jpg

OEBPS/Image00051.jpg

OEBPS/Image00153.jpg
A reap
Lt res0

OEBPS/Image00274.jpg

OEBPS/Image00052.jpg
9 (M) = log (%5

OEBPS/Image00152.jpg

OEBPS/Image00273.jpg
ia e
2 Z
i Seqmant Varable T
5= Parcenisum) = 288714
Fomated Vats = 86751775
Segment Varable Seqmen Va Seqment Vi
a0 |
BTN Bl e :'Ebmua sund BT e

8 g
R as AR aiten B onrs Bitessars SN

OEBPS/Image00049.jpg

OEBPS/Image00155.jpg

OEBPS/Image00276.jpg

OEBPS/Image00050.jpg
g(M) = log(—log (1 — M))

OEBPS/Image00154.jpg

OEBPS/Image00275.jpg
NAME
TEAM

POSITION
LEAGUE
DIVISION

NO_ATBAT
No_HITS
NO_HOME
NO_RUNS
NO_RBI
No_BB
YROMAJOR

CR_ATBAT
CR_HITS
CRTHOME
CRIRUNS
CR_RBI

CR BB
NO_oUTS
NO_ASSTS
NO_ERROR
SALARY

LOGSALAR

Model Role.

D
Rejected
Rejected
Rejected
Rejected

Input
Input
Input
Input
Input
Input
Input

Measurement
Leve
Nominal
Nominal

Nominal
Binary

Binary

Interval
Interval
Interval
Interval
Interval
Interval
Interval

Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval

el

Description

Playername

Team atthe end of
1986

Positions played at
the end of 1986
League atthe end of
1986

Division atthe end
of 1986

Timesat batin 1986
Hits in 1956
Homerunsin 1986
Runsin 1986

RBI: in 1986
Walksin 1986
Years in the major
leagues
Careertimes at bat
Carcerhits
Careerhome runs
Carcerruns

Career RBIs
Careerwalks

Put outsin 1956
Assistsin 1986
Ertorsin 1986
1957 salaryin
thousands

Log of 1987 silaty

OEBPS/Image00057.jpg

OEBPS/Image00268.jpg

OEBPS/Image00124.jpg
Lo Lo |

___[_;w g 0

OEBPS/Image00245.jpg
Din Porcant 1o onbor o T

EEPTEPBPEEPREY LYY

OEBPS/Image00048.jpg

OEBPS/Image00123.jpg
EYF— <[.
s s |
BAD ASE_ Aversge Squared Enor nrasm atame — or3ee
B e e e
E S
E ST e

OEBPS/Image00244.jpg

OEBPS/Image00126.jpg

OEBPS/Image00247.jpg

OEBPS/Image00125.jpg

OEBPS/Image00246.jpg

OEBPS/Image00127.jpg
Ofunnghitoy £ TS |

il

T o000 15900000)
LamE
e ———
=
]

OEBPS/Image00044.jpg

OEBPS/Image00045.jpg

OEBPS/Image00042.jpg
e

OEBPS/Image00118.jpg

OEBPS/Image00239.jpg
2353820408020

Fa2zaRooanons

H
H

OEBPS/Image00043.jpg

OEBPS/Image00238.jpg

OEBPS/Image00040.jpg

OEBPS/Image00120.jpg

OEBPS/Image00241.jpg
Stepne
Scecton rtern Wabdaton Eror

i Seecton Defats o
etection options

OEBPS/Image00041.jpg
B |

OEBPS/Image00119.jpg

OEBPS/Image00240.jpg
D |-G =

N Sr——

> fa ottt |-

@ |
> [@usacee

- Damscecn

OEBPS/Image00038.jpg

OEBPS/Image00122.jpg

OEBPS/Image00243.jpg
[—

Incercepe 3
Incercepe 2
Inceccepe 1
ez

cren

wevro

or

‘Analysis of Mexima Likelinood Estis

Esvinare

-2.0i00
Lsais
0,03
0.5624

Eeror

0.3486
0.2629
0.2509

0.0032
0.0407

h-squaze.

.z

2,79
106,53
190,08

P> onisq

<00
<.oon1
oo
<o

OEBPS/Image00039.jpg

OEBPS/Image00121.jpg
= 1 = T S—|
ooz v s
v oo Sereio o
[P —_ S S — Eteonoiet T —
4 isisins Swsin acsocs
4 o s Swsioere
v s o coverie

L) e |

OEBPS/Image00242.jpg

OEBPS/Image00046.jpg

OEBPS/Image00047.jpg

OEBPS/Image00135.jpg

OEBPS/Image00256.jpg
: g1 n 2]
H] Bx] G
H 3 %] o
H & e
H]]

OEBPS/Image00134.jpg
B Notwork

OEBPS/Image00255.jpg
Neural

Bin Porcent 16 Musber of Comriative Comlative Comilative Comalative
Rt totat - mean " Hotal ™" TR coptns
Rata(x)

2.0
a5
pixd
o]

50
bt

2382828 AZARRAAG

OEBPS/Image00137.jpg

OEBPS/Image00136.jpg
i
11111

OEBPS/Image00257.jpg

OEBPS/Image00033.jpg

OEBPS/Image00248.jpg
<s50rMssing ks
L I

OEBPS/Image00034.jpg

OEBPS/Image00031.jpg

OEBPS/Image00129.jpg
£ Advanced Advisor Options

Property Ve
s Percertog Teeshold)
ot Vrs withExcesve Missing Valies Vs
o Lo Court s b
petet s Lovls: e
RejotLovelsCort hreshold 23
et Vs it Excesse iz Vaoss s
(S —

OEBPS/Image00250.jpg

OEBPS/Image00032.jpg
Al & | 8] %

Savpl] Explore | Moafy | Poadl) ssess | TRty Credt Scorig] Popieations | Text iring] Tone Seres]

OEBPS/Image00128.jpg
~[E e

R TP R S N Y S prry

OEBPS/Image00249.jpg
Vwan e Mmowor | mpwiacs | veawe | faoo
= Sy oraee | Vatatento
R ey
o 3 omoz ot tomer
e i osion osem oaw

OEBPS/Image00029.jpg
o o tor o G e o0

© @) Mode Pacases

& DR

OEBPS/Image00131.jpg

OEBPS/Image00252.jpg
25

verage Error

OEBPS/Image00030.jpg
St ——

S

e —)

ey

ey

[===

OEBPS/Image00130.jpg
Lt B Pres | Qs | G Wespes

00t ot v rcbls
©vws Ot (oo]

o B e

b B

pstador

OEBPS/Image00251.jpg

OEBPS/Image00133.jpg

OEBPS/Image00254.jpg
=
H
H

OEBPS/Image00028.jpg

OEBPS/Image00132.jpg

OEBPS/Image00253.jpg

OEBPS/Image00037.jpg

OEBPS/Image00035.jpg

OEBPS/Image00036.jpg

