

 Learning C# by Developing Games with Unity 5.x Second Edition

Table of Contents

Learning C# by Developing Games with Unity 5.x Second Edition

Credits

About the Author

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback

Customer support

Downloading the example code

Downloading the color images of this book

Errata

Piracy

Questions

1. Discovering Your Hidden Scripting Skills and Getting Your Environment Ready

Prerequisite knowledge to use this book

Dealing with scriptphobia

Downloading Unity

Obtaining a free license

Teaching behavior to GameObjects

Using Unity's documentation

Do I need to know all that?

C# documentation – where to find it? Do I need it at all?

The Unity community – asking others for help

Working with C# script files

Lots of files can create a mess

Why does my Project tab look different?

Creating a C# script file

Introducing the MonoDevelop code editor

Syncing C# files between MonoDevelop and Unity

Opening LearningScript in MonoDevelop

The namespace – highlighted in blue

The class definition – highlighted in green

Watching for possible gotchas while creating script files in Unity

Fixing synchronization if it isn't working properly

Adding our script to GameObject

Instance? What is it?

Summary

2. Introducing the Building Blocks for Unity Scripts

Understanding what a variable is and what it does

Naming a variable

A variable name is just a substitute for a value

Creating a variable and seeing how it works

Declaration

Assignment

Click on Play!

Changing variables

Watching for a possible gotcha when using public variables

What is a method?

Using the term "method" instead of "function"

Method names are substitutes, too

Introducing the class

Inheritance

The Start(), Update(), and Awake() methods and the execution order

Components that communicate using dot syntax

What's with the dots?

Making decisions in code

Using the NOT operator to change the condition

Checking many conditions in an if statement

Using else if to make complex decisions

Making decisions based on user input

Paper and pencil are powerful tools 

Summary

3. Getting into the Details of Variables

Writing C# statements properly

Understanding component properties in Unity's Inspector

Variables become component properties

Unity changes script and variable names slightly

Changing a property's value in the Inspector panel

Displaying public variables in the Inspector panel

Private variables

Naming your variables properly

Beginning variable names with lowercase

Using multiword variable names

Declaring a variable and its type

The most common built-in variable types

Assigning values while declaring a variable

Where you declare a variable is important

Variable scope – determining where a variable can be used

Summary

4. Getting into the Details of Methods

Using methods in a script

Naming methods properly

Beginning method names with an uppercase letter

Using multiword names for a method

Parentheses are part of the method's name

Defining a method the right way

The minimum requirements for defining a method

Understanding parentheses – why are they there?

Specifying a method's parameters

How many parameters can a method have?

Returning a value from a method

Returning the value

Example

Summary

5. Lists, Arrays, and Dictionaries

What is an array?

Declaring an array

Storing items in the List

Common operations with Lists

List<T> versus arrays

Retrieving the data from the Array or List<T>

Checking the size

ArrayList

Dictionaries

Accessing values

How do I know what's inside my Hashtable?

Summary

6. Loops

Introduction to loops

The foreach loop

The for loop

An example

The while loop

while versus for loops

Loops in statements

Modulo

Searching for data inside an array

Breaking the loop

Summary

7. Object, a Container with Variables and Methods

Working with objects is a class act

Few facts

Example

Instantiating an object

Bored yet?

Using methods with objects

Custom constructors

Overloading

Summary

8. Let's Make a Game! – From Idea to Development

Your first game – avoiding the trap of the never-ending concept

The idea

Game mechanics and core components

Breaking a complex idea into smaller parts

Jake on the mysterious planet – the feature list

Procedural level generation

An animated 2D character

Physics

Mouse and touch controls

Collectables and obstacles

Scoring

UI – the user interface

Target platform and resolution

Target screen resolution

Summary

9. Starting Your First Game

Setting up a new Unity project for our game

Backup

Keeping your project clean

Preparing the player prefab

Rigidbody2D

CircleCollider2D

PlayerController

User input

Jump

Animator

Running

Code

PlayerController.cs

Summary

10. Writing GameManager

Gameplay loops

Singleton class

Starting the game

Setting up input keys

Using triggers

Restarting the game

Setting up the player starting position

Code in this chapter

Summary

11. The Game Level

Generating levels versus designed levels

Creating a level chunk

Planning the LevelGenerator class

Writing LevelGenerator

Commenting on your code

Creating a copy of the level piece

Instantiating

Vector3

Testing LevelGenerator

Extending the level

The code used in this chapter

Summary

12. The User Interface

Introducting the Unity UI

Views

Constructing the view UI – how to keep things clean

Target screen resolution

Recognizing events

Buttons

A simple button

Image

The Button component

Interaction

The Button action

Hiding and showing the Canvas

Reference exceptions

GameView

Game Over

The code in this chapter

Summary

13. Collectables — What Next?

Collectables

The coin prefab

The Collectable class

High score and persisting data

The Update function and UI values

What next?

The code in this chapter

Summary

Index

 Learning C# by Developing Games with Unity 5.x Second Edition

 Learning C# by Developing Games with Unity 5.x Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-759-6

www.packtpub.com

 Credits

Author

Greg Lukosek

Terry Norton

Reviewer

Karl Henkel

Commissioning Editor

Ashwin Nair

Acquisition Editor

Vinay Argekar

Content Development Editor

Deepti Thore

Technical Editor

Mohita Vyas

Copy Editor

Vikrant Phadke

Project Coordinator

Shweta H Birwatkar

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Graphics

Disha Haria

Production Coordinator

Nilesh Mohite

Cover Work

Nilesh Mohite

 About the Author

Greg Lukosek

 was born and raised in the Upper Silesia region of Poland. When he was about 8 years old, his amazing parents bought him and his brother a Commodore C64. That was when his love of programming started. He would spend hours writing simple basic code, and when he couldn't write it on the computer directly, he used a notepad.

Greg completed his mechanical engineering diploma at ZSTiO Meritum—Siemianowice Slaskie, Poland. He has learned all his programming skills through determination and hard work at home.

Greg met the love of his life, Kasia, in 2003, which changed his life forever. They both moved to London in search of adventure and decided to stay there.

He started work as a 3D artist and drifted away from programming for some years. Deep inside, he still felt the urge to come back to game programming. During his career as a 3D artist, he discovered Unity and adopted it for an interactive visualizations project. At that very moment, he started programming again.

His love for programming overcomes his love for 3D graphics. Greg ditched his 3D artist career and came back to writing code professionally. He is now doing what he really wanted to do since he was 8 years old—developing games.

These days, Greg lives in a little town called Sandy in the UK with Kasia and their son, Adam.

I want to thank my loving wife, Kasia, for all her love and support. Without her, writing this book would be simply impossible. I also want to thank my loving parents, Ela and Marek, and brother, Artur, for always believing in me and giving me exceptional support when I needed it.

Then, I want to thank our son, Adam, for being an awesome child. I hope you will also do what you love in your life.

 About the Reviewer

Karl Henkel

 is a software developer with a strong background in Unity3d. He is the author of several popular editor extensions in the Unity Asset Store. In addition to game development, he has also worked extensively on visual programming software for musicians and VJs.

 www.PacktPub.com

 eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <customercare@packtpub.com
 >
 for more details.

At www.PacktPub.com
 , you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[image: eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt'ssw online digital book library. Here, you can search, access, and read Packt's entire library of books.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Preface

Hello, future game developers! If you are reading this book, you are probably a curious person trying to learn more about a great game engine—Unity—and specifically, programming in C#. This book will take you on a learning journey. We will go through it together, beginning with the fundamentals of programming and finishing with a functional 2D platform game.

 What this book covers

Chapter 1
 ,
Discovering Your Hidden Scripting Skills and Getting Your Environment Ready

 , puts you at ease with writing scripts for Unity.

Chapter 2
 ,
Introducing the Building Blocks for Unity Scripts

 , helps you develop the skill of writing your first executable code.

Chapter 3
 ,
Getting into the Details of Variables

 , teaches you about creating and using C# variables, followed editing them in Unity Inspector.

Chapter 4
 ,
Getting into the Details of Methods

 , helps you learn more in detail about methods and how to use them to understand the importance of code blocks and the variables used in them.

Chapter 5
 ,
Lists, Arrays, and Dictionaries

 , introduces slightly more complex ideas of handling, lists, arrays, and dictionaries, which allow you to store many values at once.

Chapter 6
 ,
Conditions and Looping

 , helps you learn how to "ask" Unity to loop through a section of code and do something useful.

Chapter 7
 ,
Objects, a Containers with Variables and Methods

 , dives into the subjects of organizing your code and object-oriented programming.

Chapter 8
 ,
Let's Make a Game! – From Idea to Development

 , shows you how to turn an idea into a ready-to-code project and how to break down complex mechanics into pieces.

Chapter 9
 ,
Starting Your First Game

 , helps us transform an idea into a real Unity project.

Chapter 10
 ,
Writing GameManager

 , gets you acquainted with the basics of the singleton approach and also helps you work through the gameplay loop.

Chapter 11
 ,
The Game Level

 , helps you learn how to create reusable pieces of a level and also how to populate them to create the illusion of an endlessly running game.

Chapter 12
 ,
The User Interface

 , explains how to construct and implement the user interface in our game.

Chapter 13
 ,
Collectables — What Next?

 , focuses on collectables and storing some data between Unity sessions.

 What you need for this book

You will definitely need a computer—PC, Mac, or any machine that supports Unity editor installation.

The complete Unity system requirements can be found at this link:

https://unity3d.com/unity/system-requirements

 Who this book is for

The book is targeted at beginner-level Unity developers with no prior programming experience. If you are a Unity developer and wish to create games by learning how to write C# scripts or code, then this book is for you.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Add the Collectable
 script to your coin
 prefab."

A block of code is set as follows:

using UnityEngine;
using System.Collections;

public class LeaveTrigger : MonoBehaviour {

 void OnTriggerEnter2D(Collider2D other) {

 LevelGenerator.instance.AddPiece();
 LevelGenerator.instance.RemoveOldestPiece();
 }

}

New terms

 and
important words

 are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "When you are ready, click on
Play

 in Unity."

 Note

Warnings or important notes appear in a box like this.

 Tip

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com
 >
 , and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors
 .

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com
 . If you purchased this book elsewhere, you can visit http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the
SUPPORT

 tab at the top.

	Click on
Code Downloads & Errata

 .

	Enter the name of the book in the
Search

 box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on
Code Download

 .

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/LearningCbyDevelopingGameswithUnity5x_ColorImages.pdf
 .

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata
 , selecting your book, clicking on the
Errata Submission Form

 link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
 and enter the name of the book in the search field. The required information will appear under the
Errata

 section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com
 >
 with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com
 >
 , and we will do our best to address the problem.

 Chapter 1. Discovering Your Hidden Scripting Skills and Getting Your Environment Ready

Computer programming is viewed by the average person as requiring long periods of training to learn skills that are totally foreign, and darn near impossible to understand. The word
geek

 is often used to describe a person who can write computer code. The perception is that learning to write code takes great technical skills that are just so hard to learn. This perception is totally unwarranted. You already have the skills needed but don't realize it. Together, we will crush this false perception that you may have of yourself by refocusing, one step at a time, on the knowledge that you already possess to write code and develop an awesome game from scratch.

In this chapter, we will cover the following topics:

	Deal with preconceived fears and concepts about scripts

	Prepare the Unity environment for efficient coding

	Introduce Unity's documentation for scripting

	Explain how Unity and the MonoDevelop editor work together

	Create our first C# script

Let's begin our journey by eliminating any anxiety about writing scripts for Unity and become familiar with our scripting environment.

 Prerequisite knowledge to use this book

Great news if you are a beginner in scripting! This book is for those with absolutely no knowledge of programming. It is devoted to teaching the basics of C# with Unity.

However, some knowledge of Unity's operation is required. I will only be covering the parts of the Unity interface that are related to writing C# code. I am assuming that you know your way around Unity's interface. I will help you, however, to prepare the Unity layout for efficient scripting.

 Dealing with scriptphobia

You've
 got Unity up and running, studied the interface, and added some GameObjects
 to the scene. Now you're ready to have those GameObjects
 move around, listen, speak, pick up other objects, shoot the bad guys, or do anything else that you can dream of. So you click on
Play

 , and nothing happens. Well, darn it all anyway!

You've just learned a big lesson; all those fantastic, highly detailed GameObjects
 are dumber than a hammer. They don't know anything, and they surely don't know how to do anything.

So, you proceed to read the Unity
Forums

 , study some scripting tutorials, and maybe even copy and paste some scripts to get some action going when you click on
Play

 . That's great, but then you realize that you don't understand anything in the scripts you've copied. Sure, you probably recognize the words, but you fail to understand what those words do or mean in a script.

You look at the code, your palms get sweaty, and you think to yourself, "I'll never be able to write scripts!" Perhaps, you have
scriptphobia

 —a fear of not being able to write instructions (I made that up). Is that what you have?

The fear that you cannot write down instructions in a coherent manner? You may believe you have this affliction, but you don't. You only think you do.

The basics of writing code are quite simple. In fact, you do things everyday that are just like steps executed in a script. For example, do you know how to interact with other people? How to operate a computer? Do you fret so much about making a baloney sandwich that you have to go to an online forum and ask how to do it?

Of course you don't. In fact, you know these things as every day routines or maybe habits. Think about this for a moment: do you have to consciously think about these routines that you do everyday? Probably not. After you do them over and over, they become automatic.

The point is that you do things everyday following sequences of steps. Who created these steps that you follow? More than likely, you did, which means that you've been scripting your whole life.

You just never had to write down the steps for your daily routines on a piece of paper before you did them. You could write the steps down if you really wanted to, but it takes too much time and there's no need of it; however, you do in fact know how to. Well, guess what? To write scripts, you only have to make one small change—start writing down the steps, not for yourself but for the world that you're creating in Unity.

So as you see, you are already familiar with the concept of dealing with scripts. Most beginners of Unity easily learn their way around the Unity interface, how to add assets, and working in the
Scene

 and
Hierarchy

 windows. Their primary fear, and roadblock, is their false belief that scripting is too hard to learn.

Relax! You now
 have this book. I am going to get really basic in the early chapters. Call them baby steps if you want, but you will see that scripting for Unity is similar to doing things that you are already doing everyday. I'm sure you will have many
Ah-Ha

 moments as you learn and overcome your unjustified fears and beliefs.

 Downloading Unity

You have
 probably already installed and activated Unity. Where you should look for the latest Unity version and license might be obvious. However, I've noticed lots of questions online about where you can get Unity for free, and so I decided to cover this subject. If you feel that this step is obsolete for you, skip this part.

The best place to download
 your Unity copy from is, of course, Unity's official website: http://unity3d.com/unity/download
 .

In this book, we will be covering Unity Version 5.0 and higher. We need to download the latest version of Unity and install it with all components ticked. It's a good idea to install Unity with the example project. The Unity Example project (the
Angry Bots

 game) is there for us to play with, experiment, and learn.

 Obtaining a free license

The easiest way to obtain a
 Unity license is by simply launching Unity for the first time. The following steps will guide you to do so:

	Unity will present the

Activate your Unity license

 window. Click on
OK

 , as shown here:[image: Obtaining a free license]

	Fill in your details so that Unity Technologies can send you your Unity free license code:[image: Obtaining a free license]

	You should
 receive a verification e-mail with a confirm
email

 button. Once you have clicked on it, you should be able to log in to Unity.

You are now all set with the latest version of Unity and a free license!

 Teaching behavior to GameObjects

You have Unity
 because you want to make a game or something
 interactive. You've filled your game with dumb GameObjects
 . What you have to do now is be their teacher. You have to teach them everything that they need to know to live in this world of make-believe. This is the part where you have to write down instructions so that your GameObjects
 can be smarter.

Here's a quote from the
Unity Manual

 :

The behavior of GameObjects is controlled by the Components that are attached to them... Unity allows you to create your own Components using scripts.

Notice the word
behavior

 . It reminds me of a parent teaching a child proper behavior. This is exactly what we are going to do when we write scripts for our GameObjects
 ; we'll teach them the behaviors we want them to have. The best part is that Unity has provided a long list of all the behaviors that we can give to our GameObjects
 . This list of behaviors is documented in the
Scripting Reference

 .

This means that we can pick and choose anything that we want a GameObject
 to do from this list of behaviors. Unity has done all the hard work of programming all of these behaviors for you. All we need to do is use some code to tie into these behaviors. Did you catch that? Unity has already created the behaviors; all that we have to do is supply a bit of C# code to apply these behaviors to our GameObjects
 . Now, how difficult can it really be since Unity has already done most of the programming?

 Using Unity's documentation

When we begin
 writing scripts, we will be looking at Unity's documentation quite often, so it's beneficial to know how to access the information that we need. For an overview of a topic, we'll use the
Reference Manual

 , and for specific coding details and examples, we'll use the
Scripting Reference

 .

There are a number of ways to
 access the Unity documentation:

	Through the Unity
 website at http://docs.unity3d.com/ScriptReference/index.html
 :[image: Using Unity's documentation]

	Through the
Help

 menu on the top bar. In this way, you can access a local copy of Unity reference. This is worth remembering if there are Internet connectivity issues:[image: Using Unity's documentation]

	Through the
Help

 menu
 next to the component name. This will work only for Unity's built-in, standard components.

Let's open
Scripting Reference

 now and search for a GameObject
 . This is the place where we can find scripting documentation, answers to our questions, and a lot of example code. You might feel a bit lost right now, but don't worry; this is quite normal. The Unity documentation is really easy to use. For fastest access to relevant information, use
Search scripting...

 in the top-right corner, as shown here:

[image: Using Unity's documentation]

 Do I need to know all that?

Actually, no. The whole reason
Scripting Reference

 exists is so that we can look for information as we need it. This will actually make us remember the code that we write over and over, just like our other daily routines and habits. It is a very good idea to take a brief look through the most common Unity objects, such as:

	
GameObject

	
Transform

	
MonoBehaviour

	
Renderer

 C# documentation – where to find it? Do I need it at all?

Another
 resource that we will be using is Microsoft's C# scripting documentation. We can
 access it at https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
 .

Let's not worry about it too much at the moment. We agreed to take baby steps, so bookmark this link in your web browser for now.

 The Unity community – asking others for help

You are
 planning to become a game developer, or are using Unity for other interactive projects. During production, at some point, you will definitely need help from other developers. Unity has a very dedicated community of developers who are always keen to help each other.

When we encounter some hurdles, why not ask others? In most cases, there is someone like you out there with similar issues that have been resolved. A good place to talk about issues in your project is Unity
Forums

 . Go ahead and create a forum account now! Don't be shy; say "hello" to others! Unity
Forums

 are also the perfect place to read announcements about upcoming updates.

Use Unity
Forums

 to read about others' work, share your work, and connect with other developers, at http://forum.unity3d.com/
 .

Use Unity
Answers

 to ask specific questions about issues that you have encountered. Remember to be very specific, try to describe the problem in detail, and don't ask general questions (for example, "Why is my GameObject
 not moving?"). Instead, ask specifically, "GameObject
 not moving when adding a rigid body force" and then describe the details. Posting your code under the question is also a very good idea.

 Working with C# script files

Until you learn
 some basic concepts of programming, it's too early to study how scripts work, but you still need to know how to create one.

There are several ways of creating a script file using Unity:

	In the menu, navigate to
Assets

 |
Create

 |
C# Script

 .

	In the Project tab, navigate to
Create

 |
C# Script

 .

	Right-click in the
Project

 tab, and from the pop-up menu, navigate to
Create

 |
C# Script

 .

All of these ways
 create a .cs
 file in the Unity Assets
 folder. From now on, whenever I tell you to create a C# script, use whichever method you prefer.

 Lots of files can create a mess

As our Unity project
 progresses, we will have lots of different types of files in the
Project

 view. It's highly recommended that you keep a clean and simple folder structure in your project.

Let's keep our scripts in the Scripts
 folder, textures in Textures
 , and so on so that it looks something like this:

[image: Lots of files can create a mess]

From now on, let's not keep
 any loose files in the Assets
 folder.

 Why does my Project tab look different?

Unity allows us to
 customize the user interface. Everyone has their own favorite. I prefer a one-column layout
Project

 tab instead of Unity's default two-column layout. To change this, open the context menu in the top-right corner of the
Project

 tab, as shown in this screenshot:

[image: Why does my Project tab look different?]

When working in a
 team, you will notice that every team member has his/her own layout preference. A level designer may like to use a big
Scene

 tab. An animator will probably use the
Animation

 and
Animator

 tabs. For a programmer like you, all tabs are fairly important. However, the
Console

 tab is the one that you will use a lot while testing your code. I mostly prefer a layout divided into four columns—from left to right,
Scene

 and
Console

 , then
Hierarchy

 , then
Project

 and finally
Inspector

 . It looks like what is shown in the following screenshot:

[image: Why does my Project tab look different?]

 Note

If you have trouble with moving tabs around, refer to the
Customizing Your Workspace

 chapter in the
Unity Manual

 .

Feel free to change the
 interface however you want. But try to keep the
Console

 tab visible all the time. We will use it a lot throughout the book. You can also save your custom layouts in the
Layout

 menu.

 Note

The
Console

 tab shows messages, warnings, errors, or debug output from your game. You can define your own messages to be sent to the console.

 Creating a C# script file

We are now ready to create a new
 C# file in our learning project:

	Create a new Unity project and name it Learning Project
 .

	Right-click on the
Project

 tab and create a folder named Scripts
 .

	Right-click on the Scripts
 folder, as shown in the following screenshot, and create a C#
 script:[image: Creating a C# script file]

	Immediately rename NewBehaviourScript
 to LearningScript
 .

We have created the Scripts
 folder, which we will be using to organize our C# files. This folder will contain all of our Unity script files. We have also used Unity to create a C# script file named LearningScript.cs
 .

 Introducing the MonoDevelop code editor

Unity uses an external
 editor to edit its C# scripts. Even though it can create a basic starter C# script for us, we still have to edit the script using the MonoDevelop code editor that's included with Unity.

 Syncing C# files between MonoDevelop and Unity

Since Unity and MonoDevelop
 are separate applications, Unity will keep MonoDevelop synchronized with itself. This means that if you add, delete, or change a script file in one application, the other application will reflect the changes automatically.

 Opening LearningScript in MonoDevelop

Unity will synchronize with
 MonoDevelop the first time
 you tell it to open a file for editing. The simplest way to do this is by double-clicking on
LearningScript

 in the Scripts
 folder. It might take a few seconds for MonoDevelop to open and sync.

Our window should look like this:

[image: Opening LearningScript in MonoDevelop]

MonoDevelop launched with
LearningScript

 open, and ready to edit.

What we see now is a default C# script structure that Unity creates. It contains information on what namespaces are used in the script, the class definition, and two methods that Unity adds by default, as shown here:

[image: Opening LearningScript in MonoDevelop]

 The namespace – highlighted in blue

The namespace
 is simply an organization construct. It helps organize parts of code. Don't worry too much about them now. We won't need to create them anytime soon. All we will need to know for now is how many namespaces we are using in our script.

In our script, we can see these two lines:

using UnityEngine;
using System.Collections;

The preceding two lines simply mean that our script will be using the UnityEngine
 and System.Collections
 namespaces and we will have access to all parts of these libraries. These two namespaces are
 added to any new C# script by default, and we will use them in most of our cases.

 The class definition – highlighted in green

A class definition
 starts with the class keyword, followed by a class name and an optional base class name, followed by a class body enclosed in curly braces:

public class LearningScript : MonoBehaviour {

}

 Tip

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com
 . If you purchased this book elsewhere, you can visit http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the
SUPPORT

 tab at the top.

	Click on
Code Downloads & Errata

 .

	Enter the name of the book in the
Search

 box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on
Code Download

 .

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

Again, don't worry about this too much. Let's not introduce too much theory. All that we need to focus on now is how the class definition looks.

 Note

The code contained inside your class is called class body. By default, Unity creates two functions inside a class body.

 Watching for possible gotchas while creating script files in Unity

Notice line 4 in the
 preceding screenshot:

public class LearningScript : MonoBehaviour

The class name LearningScript
 is the same as the filename LearningScript.cs
 . This is a requirement. You probably don't know what a class is yet, but that's okay. Just remember that the filename and the class name must be the same.

When you create a C# script file in Unity, the filename in the
Project

 tab is in
Edit

 mode, ready to be changed. Please rename it right then and there. If you rename the script later, the filename and the class name won't match. The filename would change, but line 4 will be this:

public class NewBehaviourScript : MonoBehaviour

This can easily be fixed in MonoDevelop by changing NewBehaviourScript
 in line 4 to the same name as the filename, but it's much simpler to do the renaming in Unity immediately.

 Fixing synchronization if it isn't working properly

What happens when
 Murphy's Law strikes and syncing just doesn't seem to be working correctly? Should the two apps somehow get out of sync as you switch back and forth between them for whatever reason, do this. Right-click on Unity's
Project

 window and select
Sync MonoDevelop Project

 . MonoDevelop will resync with Unity.

 Adding our script to GameObject

We have
 created the LearningScript
 class. Its code is saved in
 the file in the Project
 /Assets
 folder. To include an instance of this class in our project, we will add it as a component to an empty GameObject
 .

Lets create a new GameObject
 . In the menu, navigate to
GameObject

 |
Create Empty Child

 , as shown here:

[image: Adding our script to GameObject]

There are a number of ways of adding our LearningScript
 component to GameObject
 . Let's talk about the simplest one:

	Select your newly created GameObject
 .[image: Adding our script to GameObject]

	Drag and
 drop the Script
 file from the
Project

 tab to the empty space underneath the
Transform

 component.[image: Adding our script to GameObject]

We can now see that our LearningScript
 file has been added as a component to the GameObject
 . This means that an instance of LearningScript
 is active and ready to execute code.

 Instance? What is it?

In object-oriented programming, an instance
 is simply a copy of the object. In this case, there is one copy of our LearningScript
 file. We are using two terms here: GameObject
 and Object. Do not mix this up; they are, in fact, two different things. GameObject
 is a object in your Unity scene. It contains components such as
Transform

 or our newly created LearningScript
 .

Object in programming means an instance of the script. Don't worry about the terminology too much at this stage. I am sure that the difference between these two will become much clearer soon.

 Summary

This chapter tried to put you at ease with writing scripts for Unity. You do have the ability to write down instructions, which is all a script is—a sequence of instructions. We saw how simple it is to create a new script file. You probably create files on your computer all the time. We also saw how to easily bring forth Unity's documentation. We created a channel to communicate with other developers. Finally, we took a look at the MonoDevelop editor. None of this was complicated. In fact, you probably use apps all the time that do similar things. The bottom line: there's nothing to fear here.

In Chapter 2
 ,
Introducing the Building Blocks for Unity Scripts

 , we will start off by introducing the building blocks for Unity scripts—by taking an introductory look at the building blocks of programming—for which we'll be using variables, methods, dot syntax, and classes. Don't let these terms scare you. The concepts behind each one of these are similar to things that you do often, perhaps everyday.

 Chapter 2. Introducing the Building Blocks for Unity Scripts

A programming language like C# can appear to be very complicated at first, but in reality, there are two basic parts that form its foundation. These parts are variables and methods. Therefore, understanding these critical parts is very necessary for learning any of the other features of C#. As critical as they are, they are very simple concepts to understand. Using these variable and method foundation pieces, we'll introduce the C# building blocks that are used to create Unity scripts.

For those who get sweaty palms by just thinking of the word script, wipe your hands and relax! In this chapter, I'm going to use terms that are already familiar to you to introduce the building blocks of programming. The following are the concepts introduced in this chapter:

	Using variables and methods in scripts

	The class, which is a container for variables and methods

	Turning a script into a component

	Components that communicate using the dot syntax

	Making decisions in code

 Understanding what a variable is and what it does

What is a
 variable? Technically, it's a tiny section of your computer's memory that will hold any information that you put there. While a game is running, it keeps track of where the information is stored, the value kept there, and the type of that value. However, for this chapter, all you need to know is how a variable works. It's very simple.

What's usually in a mailbox, besides air? Well, usually there's nothing, but occasionally there is something in it. Sometimes, there are letters, bills, a spider, and so on. The point is that what is in a mailbox can vary. Therefore, let's call each mailbox a variable.

In the game
 development world, some simple examples of variables might be:

	
playerName

	
playerScore

	
highestScore

 Naming a variable

Using the
 example of the mailbox, if I asked you to see what is in the mailbox, the first thing you'd ask is, "Which one?" If I say in the Smith mailbox, the brown mailbox, or the round mailbox, you'll know exactly which mailbox to open to retrieve what is inside it. Similarly, in scripts, you have to give your variables a unique name. Then I can ask you what's in the variable named myNumber
 , or whatever cool name you might use.

 Note

The golden rule

When
 you name variables, try to come up with the best name that accurately describes what value your variable contains. Avoid generic names such as name
 , speed
 , and score
 . Instead, name them playerName
 , carSpeed
 , and opponentScore
 , respectively.

 A variable name is just a substitute for a value

As
 you write a script and create a variable, you are simply creating a placeholder or a substitute for the actual information that you want to use. Look at the following simple math equation:
2 + 9 = 11

 .

Simple enough! Now try the following equation:
11 + myNumber = ???

 . There is no answer to this. You can't add a number and a word. Going back to the mailbox analogy, write the number 9
 on a piece of paper. Put it in the mailbox named myNumber
 . Now you can solve the equation. What's the value in myNumber
 ? The value is 9
 . So now the equation looks normal:
11 + 9 = 20

 .

The myNumber
 variable is nothing more than a named placeholder that can store some data (information). So, wherever you would like the number 9
 to appear in your script, just write myNumber
 , and the number 9
 will be substituted.

Although this example might seem silly at first, variables can store all kinds of data that is much more complex than a simple number. This is just a simple example that shows you how
 a variable works. We will definitely look at more complex variable types at later stages. Remember, slow, steady progress, baby steps!

 Creating a variable and seeing how it works

Let's see
 how
 this actually works in our script. Don't be concerned about the details of how to write this; just make sure that your script is the same as the script shown in the next screenshot:

	In the Unity
Project

 panel, double-click on LearningScript
 . The
MonoDevelop

 window should open automatically on LearningScript.cs
 .

	In
MonoDevelop

 , write the lines
6

 ,
11

 , and
13

 shown in the following screenshot:[image: Creating a variable and seeing how it works]

	Save
 the file.

 Note

The best way to save your script is by using a shortcut. If you are using Mac, use
command

 +
S

 , and on Windows use
Ctrl

 +
S

 . We will be saving a new version of the script every time some changes are made to it, so it is a good idea to use a shortcut instead of saving through the
File

 menu.

We have
 added a few lines to our script. Before we check whether it works or what it actually does, let's go through line 6:

public int myNumber = 9;

In simple words, this line declares a new number type variable named myNumber
 and assigns a value of 9
 to it. We don't want to worry about theory too much now and want to write more code, right? Agreed, but we do need to remember a few things first.

 Declaration

To
 create a new variable, we first need to declare it by saying what type of variable it is. In this case, we want to create a number variable. The keyword for whole number variables in C# is int
 . We also have to give our variable a name; myNumber
 is fine for now. You can use any name you want as long as it does not contain spaces and special characters.

 Assignment

We have
 created our variable, and now we are giving it a value. To assign a value, we use the equal to sign followed by the value. In this case, it is 9
 . To close the line, use a semicolon.

 Click on Play!

Quite
 an exciting moment! Go back from
MonoDevelop

 to Unity, and click the
Play

 button. Unity should print out two lines on the
Console

 tab, looking like this:

[image: Click on Play!]

Unity
 executed the code in the LearningScript
 component on GameObject
 just after you clicked on
Play

 . We can see two lines printed on the
Console

 window. We wrote a piece of code asking Unity to print these two values on the
Console

 window. Let's look again at lines
11

 and
13

 . Everything inside the brackets in the Debug.Log
 function will be printed to the Unity
Console

 . It can be a number, text, or even an equation.

[image: Click on Play!]

So, line
11

 is asking, "Hey Unity, print the result of 2 + 9 on the console!" Line
13

 is using the myNumber
 variable's value directly and adding it to the number 11
 .

Thus, the point of this exercise is to demonstrate that you can store and use whatever values you want using variables and use their name directly to perform operations.

 Changing variables

Since myNumber
 is a
 variable, the value that it stores can vary. If we change what is stored in it, the answer to the equation will also change. Follow the ensuing steps:

	Stop Unity by pressing the
Stop

 button and change 9
 to 19
 in the Unity
Inspector

 tab.

	Notice that when you restart the game, the answer will be 30
 .

I bet you have noticed the public
 keyword at the very beginning of the line that declares the myNumber
 variable. Let me explain what it means. It's called an
access modifier

 . We use these to
 specify the accessibility of a variable. The public
 keyword means that the variable can be seen by code outside our script. Look again at the Unity
Inspector

 tab. You can see the value of myNumber
 there because it is public. The private keyword, however, means that the variable can be accessed only by code in the same class.

 Note

Private variables are not visible in the Unity
Inspector

 tab. If you wish to control or view them, make them public.

 Watching for a possible gotcha when using public variables

Unity
 gives us great flexibility with editing or reading public variables in the
Inspector

 tab. You will be using public variables most of the time. Now, I want to make you aware of something that might give you a headache sometimes.

 Note

All public variable values are overridden by the Unity
Inspector

 tab.

Let's look back at line
6

 ; we had assigned our variable a value of 9
 . This value will be copied to Unity
Inspector

 . From now on, the value from
Inspector

 is taken in to account and not the value in the script, even if you change it. Therefore, be careful as this is very easy to forget.

In
 the
Inspector

 panel, try changing the value of myNumber
 to some other value, even a negative value. Notice the change in the answer in the
Console

 tab.

 What is a method?

When we
 write a script, we are making lines of code that the computer is going to execute, one line at a time. As we write our code, there will be things that we want our game to execute more than once. For example, we can write a piece of code that adds two numbers. Suppose our game needs to add those two numbers a hundred different times during gameplay. So you'd say, "Wow! I have to write the same code a hundred times to add two numbers together? There has to be a better way."

Let a method take away your typing pain. You just have to write the code to add two numbers once and then give this chunk of code a name, such as AddTwoNumbers()
 . Now, every time your game needs to add two numbers, don't write the code over and over; just call the AddTwoNumbers()
 method.

 Using the term "method" instead of "function"

You
 are constantly going to see the words "function" and "method" used everywhere as you learn how to code.

 Note

The words "function" and "method" truly mean the same thing in Unity. They also do the same thing.

Since
 you are studying C#, and C# is an
Object-Oriented Programming

 (
OOP

) language, I will use the word
method

 throughout this book, just to be consistent with C# guidelines. It makes sense to learn the correct terminology for C#. The authors of
Scripting Reference

 probably should have used the word "method" instead of "function" in all of their documentation. Anyway! Whenever you hear either of these words, remember that they both mean the same thing.

 Note

From now on, I'm going to use the word "method" or "methods" in this book. When I refer to the functions shown in
Scripting Reference

 , I'm going to use the word "method" instead, just to be consistent throughout this book.

We're going to edit LearningScript
 again. In the following screenshot, there are a few lines of code that look strange. We are not going to get into the details of what they mean in this
 chapter. We will discuss that in Chapter 4
 ,
Getting into the Details of Methods

 . Right now, I am just showing you a method's basic structure and how it works:

	In
MonoDevelop

 , select LearningScript
 for editing.

	Edit the file so that it looks exactly like what is shown in the following screenshot:[image: Using the term "method" instead of "function"]

	Save the file.

In the
 previous screenshot, lines
6

 and
7

 will look familiar to you. They are variables, just as you learned in the previous section. There are two of them this time. These variables store the numbers that are going to be added.

Line
16

 may look very strange to you. Don't concern yourself right now with how it works. Just know that it's a line of code that lets the script know when the
Return

 /
Enter

 key is pressed. On the keyboard method AddTwoNumbers
 will be called into action.

 Note

The simplest way to call a function in your code is by using its name followed by braces and a semicolon, for example, AddTwoNumbers();
 .

 Method names are substitutes, too

You
 learned that a variable is a substitute for the value that it actually contains. Well, a method is no different. Take a look at line
20

 in the previous screenshot:

void AddTwoNumbers ()

AddTwoNumbers()
 is the name of the method. Like a variable, AddTwoNumbers()
 is nothing more than a named placeholder in the memory, but this time, it stores some lines of code instead. So, wherever we wish to use the code in this method in our script, we just write AddTwoNumbers()
 and the code will be substituted.

Line
20

 has an opening curly brace and line
23

 has a closing curly brace. Everything between the two curly braces is the code that is executed when this method is called in our script. Look at line
16

 from the previous screenshot, precisely at this part:

AddTwoNumbers();

The method named AddTwoNumbers()
 is called. This means that the code between the curly braces is executed. Of course, this AddTwoNumbers()
 method has only one line of code to execute, but a method can have many lines of code.

Line
22

 is the action part of this method—the part between the curly braces. This line of code adds the two variables and displays the answer on the Unity
Console

 .

Then, follow these steps:

	Go back to Unity and have the
Console

 panel showing.

	Now click on
Play

 .

Oh no! Nothing happened! Hold on… Actually, as you sit there looking at the blank
Console

 panel, the script is running perfectly, just as we programmed it. The first part of line
16

 in the script is waiting for you to press the
Return

 /
Enter

 key. Press it now.

And there you go! The following screenshot shows you the result of adding two variables that contain the numbers
2

 and
9

 :

[image: Method names are substitutes, too]

In our LearningScript line
16

 waited for you to press the
Return

 /
Enter

 key. When you do this, AddTwoNumbers()
 method, is executed. When you do this, line
17

 , which calls
 the AddTwoNumbers()
 method, is executed. This allows the code block of the method, line
23

 , to add the values stored in the number1
 and number2
 variables.

While Unity is in the
Play

 mode, select
Main Camera

 so that its components appear in the
Inspector

 panel. In the
Inspector

 panel, locate LearningScript
 and its two variables. Change the values, currently 2
 and 9
 , to something else. Make sure that you click on the
Game

 panel so that it has focus. Then press the
Return

 /
Enter

 key again. You will see the result of the new addition in
Console

 .

You just learned how a method works to allow a specific block of code to be called in order to perform a task. We didn't get into any of the wording details of methods here. This was just to show you fundamentally how they work. We'll get into the finer details of methods in a later chapter.

 Introducing the class

The class
 plays a major role in Unity. Most of your code will be written inside classes. Think about it like a container for variables and methods.

You just learned about variables and methods. These two items are the building blocks used in Unity scripts. The term "script" is used everywhere in discussions and documents. Look for it in the dictionary, and you will see that it can generally be described as written text. Sure enough, that's what we have. However, since we aren't just writing a screenplay or passing a note to someone, we need to learn the actual terms used in programming.

Unity calls the code it creates a C# script. However, people like me have to teach you some basic programming skills and tell you that a script is really a class.

 Note

In the previous section about methods, we created a class (script) called LearningScript
 . It contained a couple of variables and a method. The main concept, or idea, of a class is that it's a container of data, stored in variables, and methods that process that data in some fashion. Because I don't have to constantly write class (script), I will be using the word "script" most of the time. However, I will also be using "class" when getting more specific with C#. Just remember that a script is a class that is attached to a GameObject
 .

A script is
 like a blueprint or a written description. In other words, it's just a single file in a folder on our hard drive. We can see it right there in the
Projects

 panel. It can't do anything by just sitting there. When we tell Unity to attach it to a GameObject
 , we aren't creating another copy of the file. All we're doing is telling Unity that we want the behaviors described in our script to be a component of the GameObject
 .

When we click on the
Play

 button, Unity loads the GameObject
 into the computer's memory. Since the script is attached to a GameObject
 , Unity also has to make a place in the computer's memory to store a component as part of the GameObject
 . The component has the capabilities specified in the script (blueprint) that we created.

It is worth knowing that not every class is a Unity component. In object-oriented programming, we use classes to organize the project. The last thing I want to do is get you confused at this stage, so it's a good idea here to write some code examples. Don't worry about writing it in your
MonoDevelop

 . Just look at the examples and try to understand what classes might be used for.

Example 1 – Student

 :

using UnityEngine;
using System.Collections;

public class Person : MonoBehaviour {

 public string firstName = "Greg";
 public string lastName = "Lukosek";
 public string emailAddress = "lukos86@gmail.com";
 public int age = 28;
 public float heightInMeters = 1.75f;

}

Example 2 – Car

 :

using UnityEngine;
using System.Collections;

public class Car : MonoBehaviour {

 public string make = "Tesla"
 public string model = "S";
 public int numberOfWheels = 4;
 public int topSpeed = 250;

}

 Inheritance

Unity
 components inherit from MonoBehaviour
 . For beginners to Unity, studying C# inheritance isn't a subject you need to learn in any great detail, but you do need to know that each Unity script uses inheritance. We see the code in every script that will be attached to a GameObject
 . In LearningScript
 , the code is on line
4

 :

public class LearningScript : MonoBehaviour

The colon and the last word of this code mean that the LearningScript
 class is inheriting behaviors from the MonoBehaviour
 class. This simply means that the MonoBehaviour
 class is making a few of its variables and methods available to the LearningScript
 class. It's no coincidence that the variables and methods inherited look like some of the code that we saw in the Unity
Scripting Reference

 .

The following are the two inherited behaviors in the LearningScript
 class:

Line 10: void Start ()
Line 15: void Update ()

You don't have to call these methods; Unity calls
them behind the scenes

 . So, the code that you place in these methods gets executed automatically.

 The Start(), Update(), and Awake() methods and the execution order

The Start()
 , Update()
 , and Awake()
 methods are called automatically. The Start()
 method is
 called
 on the frame
 when the script is enabled. For most of our components, this will be when you press the
Start

 button in Unity.

The Awake()
 method is called just before the Start()
 method. That gives a very convenient place to set up code if you have any. The Update()
 method is very specific. It's called on every frame if the component is enabled. It's very useful for observing user keyboard actions, for example. As you can see in our script, in Line
16

 , we are checking on every frame to know whether the user has pressed the
Enter

 key.

Let's
 create
 a new C# Script and
 call it LearningMethods
 . As you can see, the Start()
 and Update()
 methods are added automatically when you create a new script. To test them all, all that we need to do is add the Awake()
 method and a few other useful lines to print something on the
Console

 panel.

[image: The Start(), Update(), and Awake() methods and the execution order]

As you already know, our three methods should be called in a very specific order. Add the LearningMethods
 component to some GameObject
 in the Unity scene and press
Play

 . Then stop after 2 seconds. Keep an eye on the
Console

 tab:

[image: The Start(), Update(), and Awake() methods and the execution order]

Wow! A
 lot of stuff on the
Console

 tab? Why? Scroll up to the
 very
 top of the
Console

 list. We can observe that Unity has printed the
Debug:Log

 information from our Awake()
 method, followed by the Start()
 method. Then the madness starts. Unity prints tons of messages from the Update()
 method. We know why! Update()
 is called on every frame, so Unity will execute the lines of code within Update()
 forever, for every frame it renders.

You can, of course, print other information to
Console

 —not just messages. Replace line
18

 with this line:

Debug.Log(Time.time);

Press
Play

 in Unity. You will notice that the time, in seconds, is printed, after you have pressed
Play

 button. It's fun, isn't it? Maybe not. Don't worry; we will get into much more
 interesting programming
 after
 we cover dot syntax.

 Components that communicate using dot syntax

Our
 script has variables for holding data, and our
 script has methods to allow tasks to be performed. I now want to introduce the concept of communicating with other GameObjects
 and the components they contain. Communication between one components GameObject
 and another component GameObject
 using dot syntax is a vital part of scripting. It's what makes interaction possible. We need to communicate with other components or GameObjects
 to be able to use the variables and methods in other components.

 What's with the dots?

When
 you look at code written by others, you'll see words with periods separating them. What the heck is that? It looks complicated, doesn't it. The following is an example from the Unity documentation:

transform.position.x

 Note

Don't concern yourself with what the preceding code means, as that comes later. I just want you to see the dots.

This is called dot syntax. The following is another example. It's the fictitious address of my house: UnitedKingdom, Bedfordshire, Sandy, 10MyStreet. Looks funny, doesn't it? That's because I used the syntax (grammar) of C# instead of the post office. However, I'll bet that, if you look closely, you can easily figure out how to find my house. We'll get into much more at a later stage. For now, think of dot syntax as an address, starting from a big thing, a country in this case, and narrowing down to the most precise part that we want to access.

 Making decisions in code

The
 fundamental mechanism of programming is making decisions. In everyday life, we make hundreds—and possibly thousands—of decisions a day. They might be the results of simple questions such as, "Do I need an umbrella today?" or "Should I drive at the maximum motorway speed at the moment?" Let's first take a question and draw a single graph, as follows:

[image: Making decisions in code]

This is a fairly easy question. If it will be raining, I need an umbrella; otherwise, I don't. In programming, we call it an if
 statement. It's a way we describe to the computer what code should be
 executed under what conditions. The question "Will it be raining?" is the condition. When planning your code, you should always break down decision-making in to simple questions that can be answered only by a "yes" or a "no."

 Note

In C# syntax, we use true
 or false
 instead of yes/no.

We now know how the simplest if
 statements work. Let's see how this question will look in code. Let's create a new script, name it LearningStatements
 , and add it to a GameObject
 in the scene:

[image: Making decisions in code]

Look at the code on line
10

 and its description:

if (willItBeRainingToday)

An if
 statement is
 used to test whether the condition between the parentheses is true or false. The willItBeRainingToday
 variable stores a value true
 . Therefore, the code block in line
11

 will be executed. Go ahead and hit
Play

 in the
Editor

 tab. The
Console

 will print out line
11

 .

Line
12

 contains the else
 keyword. Everything within the braces after the else
 keyword is executed only if the previous conditions aren't met. To test how it works, we press
Stop

 in the editor, and on the GameObject
 containing our LearningStatements
 script, we change our variable value by ticking the checkbox in the
Inspector

 panel. Then press
Play

 again.

 Using the NOT operator to change the condition

Here's
 a little curveball to wrap your mind around—the
NOT

 logical operator. It's written in code using an exclamation mark. This makes a true condition false, or a false condition true. Let's add a NOT operator to our statement. Line
10

 should now look like this:

if (! willItBeRainingToday) {

Press
Play

 in the editor. You will notice that the decision-making is now working the opposite way. Line
11

 will be executed only if the willItBeRaining
 variable is false.

 Checking many conditions in an if statement

Sometimes, you
 will want your if
 statements to check many conditions before any code block is executed. This is very easy to do. There are two more logical operators that you can use:

	

AND

 : This is used by putting &&
 between the conditions being checked. The code inside the curly braces is executed only if all the conditions are true:[image: Checking many conditions in an if statement]

	

OR

 : This is used by putting ||
 between the conditions being checked. Then, the code
 inside the curly braces is executed if any of the conditions are true:[image: Checking many conditions in an if statement]

 Using else if to make complex decisions

So
 far, we have learned how to decide what code we want to execute if certain conditions are met. Using if
 and else
 , we can decide what code is executed out of two parts. You are probably wondering, "What if I have many more complex decisions to make and need to be able to choose between more than two code blocks?" Yes, good question!

The else if
 expression is an expression that you can add after the code block belonging to the first if
 statement. Don't worry; it's not complicated. Let's take another example. Imagine you are driving a car and you need to check the speed limit and decide what speed you want to drive at.

[image: Using else if to make complex decisions]

Let's
 analyze the code:

	Line
9

 : This line declares the speedLimit
 number variable and assigns a value of 60
 .

	Line
11

 : The if
 statement checks whether the speedLimit
 variable is exactly 70
 . As we have assigned speedLimit
 as 60
 , the statement in line
11

 is false, so line
12

 won't be executed.

	Line
14

 : The compiler will check this statement whenever the statement directly before else
 is false. Don't panic; it sounds very confusing now. All you need to know at the moment is that the else if
 statement is checked only if the previous statement isn't true.

	Line
17

 : Analogically, line
17

 is checked only if line
14

 is false.

 Note

Of course, you can nest if
 statements inside each other. The syntax would look exactly the same. Simply write your new
child

 if
 statement between the curly braces of the
parent

 statement.

 Making decisions based on user input

Decisions
 always have to be made when the user provides input. Previously in this chapter, we used an example where the user had to press the
Return

 /
Enter

 key to call the AddTwoNumbers()
 method:

if(Input.GetKeyUp(Keycode.Return)) AddTwoNumbers();

The if
 statement's condition becomes true only when the
Return

 key is released after being pressed down.

 Note

Notice that the code of AddTwoNumbers()
 isn't between two curly braces. When there is only one line of code to execute for an if
 or else
 statement, you have the option of not using the curly braces.

Here's a
 partial screenshot of the GetKeyUp()
 method as shown in Unity's
Scripting Re

ference

 :

[image: Making decisions based on user input]

 Paper and pencil are powerful tools 

We went
 through a few simple examples. For us humans, it's fairly simple to comprehend a few variables, if
 statements, and methods. Imagine, however, that you need to write a game containing many thousands of lines of code. It is very easy to get lost in your own project, trust me! There are many good practices and tools that can help you keep your project manageable. The most powerful one is planning. Plan as much as you can, write down ideas, and make notes. Draw flowcharts to break
 down complex decisions and you will be fine!

 Summary

This chapter introduced the basic concepts of variables, methods, and the dot syntax. These building blocks are used to create scripts and classes. Understanding how these building blocks work is critical, so you don't feel you're not getting it.

We discovered that a variable name is a substitute for the value it stores, a method name is a substitute for a block of code, and when a script or class is attached to a GameObject
 , it becomes a component. The dot syntax is just like an address for locating GameObjects
 and components.

With these concepts under your belt, you can proceed to learn the details of the sentence structure, grammar, and syntax used to work with variables, methods, and the dot syntax. You also learned how to make decisions in code based on variable values. In the next chapter, we will cover the details of using variables.

 Chapter 3. Getting into the Details of Variables

Initially, computer programming appears difficult to beginners due to the way in which words are used in code. It's not the actual words that cause the problem because, for most of the part, many of the words are the same as those we use in our everyday life. C# is not a foreign language. The main problem is that the words simply don't read like typical sentences that we are all used to. You know how to say words and how to spell words. What you don't know is where and why you need to put them in that crazy-looking grammar, that is, the syntax that makes up a C# statement.

In this chapter, you will learn some of the basic rules to write a C# statement. We will also introduce many of the words that C# uses and the proper placement of these words in C# statements when we create our variables.

In this chapter, we will cover the following topics:

	Writing C# statements properly

	Using C# syntax to write variable statements

	The GameObject
 component's properties

	Using public variables for the Unity
Inspector

 panel

	Naming a variable properly

	Declaring a variable for the type of data it will store

 Writing C# statements properly

When you do
 normal writing, it's in the form of a sentence, with a period used to end the sentence. When you write a line of code, it's called a statement, with a semicolon used to end the statement.

 Note

The reason a statement ends with a semicolon is so that Unity knows when the statement ends. A period can't be used because it is used in the dot syntax.

The code for a C# statement does not have to be on a single line as shown in the following example:

public int number1 = 2;

The statement can be on several lines. Whitespace and carriage returns are ignored, so, if you really want to, you can write it as follows:

public
int
number1
=
2;

However, I do not recommend writing
 your code like this because it's terrible to read code that is formatted like the preceding code. Nevertheless, there will be times when you'll have to write long statements—longer than one line. Unity won't care. It just needs to see the semicolon at the end.

 Understanding component properties in Unity's Inspector

GameObjects
 have some
 components that make them behave in a certain way. For instance, select
Main Camera

 and look at the
Inspector

 panel. One of the components is the camera. Without that component, it will cease being a camera. It would still be a GameObject
 in your scene, just no longer a functioning camera.

 Variables become component properties

Any component of any
 GameObject
 is just a script that defines a class, whether you wrote the script or the Unity's programmer did. We just aren't supposed to edit the scripts that Unity has written. This means that all the properties that we see in
Inspector

 are just variables of some type. They simply store data that will be used by some method.

 Unity changes script and variable names slightly

When we add our
 script to a GameObject
 , the name of our script shows
 up in the
Inspector

 panel as a Component
 . Unity makes a couple of small changes. You might have noticed that when we added LearningScript
 to
Main Camera

 , Unity actually showed it in the
Inspector

 panel as
Learning Script

 . Unity added a space to separate the words of the
 name. Unity does this modification to variable
 names too. Notice that the number1
 variable is shown as
Number 1

 and number2
 as
Number 2

 . Unity capitalizes the first letter as well. These changes improve readability in
Inspector

 .

 Changing a property's value in the Inspector panel

There are two
 situations when you can modify a property value:

	During the
Play

 mode

	During the development stage (not in the
Play

 mode)

When you are in the
Play

 mode, you will see that your changes take effect immediately in real time. This is great when you're experimenting and want to see the results.

Write down any changes that you want to keep because when you stop the
Play

 mode, any changes you made will be lost.

When you are in the development mode, changes that you make to the property values will be saved by Unity. This means that if you quit Unity and start it again, the changes will be retained. Of course, you won't see the effect of your changes until you click on
Play

 .

The changes that you make to the property values in the
Inspector

 panel do not modify your script. The only way your script can be changed is by you editing it in the script editor (MonoDevelop). The values shown in the
Inspector

 panel override any values you might have assigned in your script.

If you wish to undo the changes you've made in the
Inspector

 panel, you can reset the values to the default values assigned in your script. Click on the cog icon (the gear) on the far right of the component script, and then select
Reset

 , as shown in the following screenshot:

[image: Changing a property's value in the Inspector panel]

 Displaying public variables in the Inspector panel

You might still be
 wondering what the word public
 at the beginning of a variable statement means:

public int number1 = 2;

We mentioned it
 before. It means that the variable will be visible and accessible. It will be visible as a property in the
Inspector

 panel so that you can manipulate the value stored in the variable. The word also means that it can be accessed from other scripts using the dot syntax.

 Private variables

Not all variables need to be public. If there's no need for a variable to be changed in the
Inspector

 panel or be
 accessed from other scripts, it doesn't make sense to clutter the
Inspector

 panel with needless properties. In LearningScript
 , perform the following steps:

	Change line
6

 to this:
private int number1 = 2;

	Then change line
7

 to the following:
int number2 = 9;

	Save the file.

	In Unity, select
Main Camera

 .

You will notice in the
Inspector

 panel that both properties,
Number 1

 and
Number 2

 , are gone:

Line 6: private int number1 = 2;

The preceding line
 explicitly states that the number1
 variable has to be private. Therefore, the variable is no longer a property in the
Inspector

 panel. It is now a private variable for storing data:

Line 7: int number2 = 9;

The number2
 variable is no longer visible as a property either, but you didn't specify it as private
 . If you don't explicitly state whether a variable will be public or private, by default, the variable will implicitly be private in C#.

It is good coding practice to explicitly state whether a variable will be public or private.

So now, when you click on
Play

 , the script works exactly as it did before. You just can't manipulate the values manually in the
Inspector

 panel anymore.

 Naming your variables properly

Always use
 meaningful names to store your variables. If you don't do that, 6 months down the line, you will be sad. I'm going to exaggerate here a bit to make a point. I will name a variable as shown in this code:

public bool areRoadConditionsPerfect = true;

That's a descriptive name. In other words, you know what it means by just reading the variable. So 10 years from now, when you look at that name, you'll know exactly what it means. Now suppose that instead of areRoadConditionsPerfect
 , I had named this variable as shown in the following code:

public bool perfect = true;

Sure, you know what perfect is, but would you know that it refers to perfect road conditions? I know that right now you'll understand it because you just wrote it, but 6 months down the line, after writing hundreds of other scripts for all sorts of different projects, you'll look at this word and wonder what you meant. You'll have to read several lines of code you wrote to try to figure it out.

You may look at the code and wonder who in their right mind would write such terrible code. So, take your time to write descriptive code that even a stranger can look at and know what you mean. Believe me, in 6 months or probably less time, you will be that stranger.

 Note

Using meaningful names for variables and methods is helpful not only for you but also for any other game developer who will be reading your code. Whether or not you work in a team, you should always write easy to read code.

 Beginning variable names with lowercase

You should begin a variable name with a lowercase because it helps distinguish between a class name and a variable
 name in your code. There are some other guides in the C# documentation as well, but we don't need to worry about them at this stage. Component names (class names) begin with a capital letter. For example, it's easy to know that Transform
 is a class and transform
 is a variable.

There are, of course, exceptions to this general rule, and every programmer has a preferred way of using lowercase, uppercase, and perhaps an underscore to begin a variable name. In the end, you will have to decide upon a naming convention that you like. If you read the Unity forums, you will notice that there are some heated debates on naming variables. In this book, I will show you my preferred way, but you can use whatever is more comfortable for you.

 Using multiword variable names

Let's use the same example again, as follows:

public bool areRoadConditionsPerfect = true;

You can see that the
 variable name is actually four words squeezed together. Since variable names can be only one word, begin the first word with a lowercase and then just capitalize the first letter of every additional word. This greatly helps create descriptive names which the viewer is still able to read. There's a term for this, called camel casing.

I have already mentioned that for public variables, Unity's
Inspector

 will separate each word and capitalize the first word. Go ahead! Add the previous statement to LearningScript
 and see what Unity does with it in the
Inspector

 panel.

 Declaring a variable and its type

Every variable that
 we want to use in a script must be declared in a statement. What does
 that mean? Well, before Unity can use a variable, we have to tell Unity about it first. Okay then, what are we supposed to tell Unity about the variable?

There are only three absolute requirements to declare a variable and they are as follows:

	We have to specify the type of data that a variable can store

	We have to provide a name for the variable

	We have to end the declaration statement with a semicolon

The following is the syntax we use to declare a variable:

typeOfData nameOfTheVariable;

Let's use one of the LearningScript
 variables as an example; the following is how we declare a variable
 with the bare minimum requirements:

int number1;

This is what we have:

	

Requirement #1

 is the type of data that number1
 can store, which in this case is an int
 , meaning an integer

	

Requirement #2

 is a name, which is number1

	

Requirement #3

 is the semicolon at the end

The second requirement of naming a variable has already been discussed. The third requirement of ending a statement with a semicolon has also been discussed. The first requirement of specifying the type of data will be covered next.

The following is what we know about this bare minimum declaration as far as Unity is concerned:

	There's no public modifier, which means it's private by default

	It won't appear in the
Inspector

 panel or be accessible from other scripts

	The value stored in number1
 defaults to zero

 The most common built-in variable types

This section shows
 only the most common built-in types of data that C# provides for us and variables can store.

Only these basic types are presented here so that you understand the concept of a variable being able to store only the type of the data that you specify. Custom types of data, which you will create later, will be discussed in Chapter 7
 ,
Creating the Gameplay is Just a Part of the Game in the Discussion on Dot Syntax

 .

The following chart shows the most common built-in types of data you will use in Unity:

[image: The most common built-in variable types]

 Note

There are a few more built-in types of data that aren't shown in the preceding chart. However, once you understand the most common types, you'll have no problem looking up the other built-in types if you ever need to use them. You can also create your own classes and store their instances in variables.

We know the minimum requirements to declare a variable. However, we can add more information to
 a declaration to save time and coding. In LearningScript
 , we've already seen some examples of assigning values when the variable is being declared, and now we'll see some more examples.

 Assigning values while declaring a variable

Add some
 more variables to LearningScript
 using the types shown in the previous chart. While declaring the variables, assign them values as shown in the following screenshot. See how they are presented in the
Inspector

 panel. These are all public variables, so they'll appear in the
Inspector

 panel.

[image: Assigning values while declaring a variable]

This screenshot shows what Unity presents in the
Inspector

 panel:

[image: Assigning values while declaring a variable]

The variables are
 displayed in the
Inspector

 panel with the values set by default in the code. Remember that from now on, the value in the
Inspector

 panel will override the value in the code, so if you decide to change your code a little, the value in
Inspector

 will stay as it was initially.

 Where you declare a variable is important

You will be declaring
 and using variables in many places in a script. The variables that I have shown you so far are called member variables. They are members of the LearningScript
 class—not declared within any method. These member variables are the only variables that have the option of being displayed in the
Inspector

 panel or being accessed by other scripts.

 Note

Declaring your member variables at the beginning of a class may give you a mental clue that these member variables can be used anywhere in the script.

We will also be
 creating variables in methods. These variables are called local variables. They are never displayed in the Unity's
Inspector

 panel, nor can they be accessed by other scripts. This brings us to another concept of programming, called variable scope.

 Variable scope – determining where a variable can be used

Variable scope is
 a fancy way of saying "Where in the script a variable exists." The following screenshot explains the scope of some variables:

[image: Variable scope – determining where a variable can be used]

You might have noticed that the rectangular blocks start and end with curly braces. Just like the AddTwoNumbers()
 method in Chapter 2
 ,
Introducing the Building Blocks for Unity Scripts

 , the code between an opening curly brace and a closing curly brace is called a code block. Absolutely wherever in a code you have an opening curly brace, there will be a closing curly brace to match. All of the code between the two braces is a code block. Notice that code blocks can be nested inside other code blocks.

 Note

You normally
 won't create bare blocks of code with curly braces like I did in the
 case of
Code Block 3

 . Code blocks usually include other things, such as if
 statements, looping statements, and methods. This example is just to demonstrate how the scope of a variable works and where a variable exists and is usable.

The following is what you have:

Line 16: string block3 = "Block 3 text";

The preceding line declares a local string variable named block3
 . This variable exists in the code block that is labeled
Code Block 3

 . If you try to use the block3
 variable outside of
Code Block 3

 , such as in
Code Block 2

 or
Code Block 1

 , Unity will give you an error message saying that the block3
 variable doesn't exist.

The scope of the block3
 variable is the code block defined by the curly braces of lines
13

 and
18

 :

Line 6: string block1 = "Block 1 text";

The preceding line declares a string type member variable named block1
 . This variable exists in the code block that is labeled
Code Block 1

 . This code block begins on line
5

 and ends on line
20

 . This means that the block1
 variable can be used everywhere, including
Code Block 2

 and
Code Block 3

 , because they are also within
Code Block 1

 . The block1
 variable is used in
Code Block 2

 on line
10

 and in
Code Block 3

 on line
14

 .

Thus, the scope of the block1
 variable is the code block defined by the curly braces between lines
5

 and
20

 .

 Summary

First, we covered how to write a C# statement, especially the semicolon for terminating a statement. All the component properties shown in the
Inspector

 panel are member variables in the component's class. Member variables can be shown in the
Inspector

 panel or accessed by other scripts when the variable is declared public. The type of data that a variable can store is specified when it's declared. Finally, you learned that variable scope determines where it is allowed to be used.

Now that you've learned about variables, you're ready to learn the details of the C# methods that will use the variables we create, which is the topic of the next chapter.

 Chapter 4. Getting into the Details of Methods

In the previous chapter, you were introduced to a variable's scope, within which a variable exists and is allowed to be used. The scope is determined by the
opening

 and
closing

 curly braces. The purpose of those curly braces is to act as a container for a block of executable code—a code block. In the second chapter, you understood that a method is a code block that can execute by just calling the method's name. It's time to understand the importance of code blocks and the variables used in them. A method defines a code block that begins and ends with curly braces.

In this chapter, we will cover the following topics:

	Using methods in a script

	Naming methods the good way

	Defining a method

	Calling a method

	Returning a value from a method

Variables are the first major building block of C# and methods are the second, so let's dive into methods.

 Using methods in a script

There
 are two reasons to use methods in a script:

	To
 provide a behavior to GameObject

	To create reusable sections of code

All of the executable code in a script is inside methods. The first purpose of a method is to work with the member variables of the class. The member variables store data that is needed for a component to give a GameObject
 its behavior. The whole reason for writing a script is to make a GameObject
 do something interesting. A method is the place where we make a behavior come to life.

The second purpose of a method is to create code blocks that will be used over and over again. You
 don't want to be writing the same code over and over. Instead, you
 place the code in a code block and give it a name so that you can call it whenever needed.

Let's take a quick look at this example:

[image: Using methods in a script]

This is a perfect example of the function that does something useful. It might look a bit strange to you as it takes two parameters. Don't worry about it too much as of now; we will cover it in detail soon. All I want you to notice right now is that the preceding method can take some data and do something useful with it. In this case, it is adding two numbers and printing the result on the Unity console. Now, the best part now—we can call this method as many times as we want, passing different parameters, without repeating the code every time we need it. If you feel confused, don't worry. Just remember that a function can save you from repeating code over and over again.

Methods can also return some data. We will cover this at a later stage in this chapter.

 Naming methods properly

Always
 use meaningful names for your methods. Just as I explained for variables, if you don't use good names, then six months from now, you will be confused.

Since methods make GameObject
 do something useful, you should give your method a name that sounds like an
action

 , for example, JumpOverTheFence
 or ClimbTheWall
 . You can look at those names and know exactly what the method is going to do.

Don't make them too simple. Suppose you name a method Wiggle
 . Sure, you know what Wiggle
 means right now, but six months later, you'll look at that and say "Wiggle? Wiggle what?" It takes only a moment more to be a little more precise and write WiggleDogsTail
 . Now, when you see this method name, you'll know exactly what it's going to do.

 Beginning method names with an uppercase letter

Why? We
 do this to make it easier to tell the difference between a class or method and a variable. Also, Microsoft recommends beginning method names with an uppercase letter. If someone else ever looks at your code, they will expect to see method names beginning with an uppercase letter.

 Using multiword names for a method

Let's use
 this example again:

void AddTwoNumbers ()
{
 // Code goes here
}

You can see that the name is actually three words squished together. Since method names can have only one word, the first word begins with an uppercase, and then we just capitalize the first letter of every additional word, for example, PascalCasing
 .

 Parentheses are part of the method's name

The
 method name always includes a pair of parentheses at the end. These parentheses not only let you know that the name is of a method, but also serve an important purpose of allowing you to input some data into the method when needed.

 Defining a method the right way

Just as
 with variables, we have to let Unity know about a method before we can use it. Depending on who you talk to, some will say "We have to declare a method," others will say "We have to define a method," or even "We have to implement a method." Which is correct? In C#, it doesn't make any difference. Use whichever term helps you learn more easily. I like to say I'm defining a method's code block, nothing
 like declaring a simple variable on a one-line statement.

 The minimum requirements for defining a method

There
 are three minimum requirements for defining a method:

	The type of information, or data, that a method will return to the place from where it was called

	The name of the method should be followed by a pair of parentheses

	A pair of curly braces should be present to contain the code block:
returnDataType NameOfTheMethod ()
{

}

Looking at LearningScript
 once again, or any Unity-generated script, you can see that the Start()
 method has the three minimum requirements for a method:

void Start ()
{

}

Here's what we have:

	Our first requirement is the type of data that the method will return to the place in the code that called this method. This method isn't returning any value, so instead of specifying an actual type of data, the void
 keyword is used. This informs Unity that nothing is being returned from the method.

	The second requirement is the method name, which is Start()
 .

	The last requirement is the curly braces. They contain the code that defines what the method is going to do.

This example fulfills the bare minimum requirements for a method. However, as you can see, there's no code in the code block, so when Start()
 is called by Unity, it doesn't do anything at all. Yet it's a method. Normally, if we aren't going to use a method by adding code to a skeleton method created by Unity, we can simply remove them from our script. It's normally best to remove unused code after the script has been written.

Here's what we know about this bare-minimum method definition as far as Unity is concerned:

	There's no public modifier, which means that this method is private by default. Therefore, this method cannot be called from other scripts.

	There's no code in the code block. Therefore, this method doesn't do anything. So, it
 can be removed if we wish to remove it.

 Note

Methods that do not return any data use the void
 keyword instead of datatype
 .

 Understanding parentheses – why are they there?

One
 thing for sure is that parentheses make it easy to recognize that it's a method, but why are they part of a method's name?

We already know that a method is a code block that is going to be called multiple times. That's one of the reasons a method is created in the first place—so that we don't have to write the same code over and over. Remember the AddAndPrintTwoNumbers()
 example method? We have mentioned that a method can take some input parameters. Why is this useful?

A script may need to add two numbers several times, but they probably won't always be the same two numbers. We can have possibly hundreds of different combinations of
two numbers

 to add together. This means that we need to let the method know which two numbers need to be added together at the moment when we call the method. Let's write a code example to make sure you fully understand it:

[image: Understanding parentheses – why are they there?]

Lines
7

 ,
8

 , and
9

 should be quite clear to you—simple declarations of variables.

Let's take
 a look at the AddAndPrintTwoNumbers
 method. It's a void
 function. Again, this means the function does something but does not return any data. Inside the parentheses, our method takes two variables: firstNumber
 and secondNumber
 .

Line
25

 contains the declaration and assignment of the local variable that we will be printing on line
26

 .

So, AddAndPrintTwoNumbers
 is written the universal way. We can reuse this function as many times as we want, passing different parameters.

Lines
15

 ,
16

 , and
17

 call our function three times, each time passing different parameters to the function. Let's
 test whether it works! Go ahead, add the LearningReusableMethods
 component to any GameObject
 in the Unity scene, and click on
Play

 .

As this script executes, the AddAndPrintTwoNumbers
 method is called three times on lines
15

 ,
16

 , and
17

 . The method's code block adds two numbers and displays the result in the Unity
Console

 tab:

[image: Understanding parentheses – why are they there?]

As expected! The console will print out the values. There's a special name for information
 between the parentheses of a method definition, such as line
23

 —the code is called
method parameters

 .

 Specifying a method's parameters

If you
 look up the word "parameters" in the dictionary, your brain will probably seize up. All it means is that the method has to be able to use the information you send it, so you simply have to specify the type of data that the method is allowed to use. That's it! It's very simple.

In the earlier screenshot, on line
23

 , we declared the firstNumber
 and secondNumber
 variables. The type is int
 . Now notice our member variables: number1
 , number2
 , and number3
 . They are also of the int
 type. These variables have to be of the int
 type since they store the numbers that will be added in the method, which the parameters specify will be of int
 the type.

So now, go
 look in the dictionary again. You will probably see the word limit in there somewhere. That's what you did when you specified the type of data that the method will use, an integer in this case. You set some limits on what is allowed.

Okay, so you're setting parameters, or limits, on the type of data the method can use, but what exactly is a parameter? Well, the first parameter is called firstNumber
 . And what is firstNumber
 doing? It stores a value that will be used in the code block on line
25

 . What do we call things that store data? That's right, variables! Variables are used everywhere.

 Note

Remember that a variable is just a substitute name for the value it actually stores.

As you can see on line
25

 of the code block, those variables are being added and stored in the result
 variable.

 How many parameters can a method have?

We can
 have as many parameters as we need to make a method work properly. Whether we write our own custom methods or use the methods of the scripting reference, the parameters that are defined are what the method will require to be able to perform its specified task.

 Returning a value from a method

Now it's time
 to discover the
power

 feature of using a
 method. This usually means sending data to the method, which you just learned to do. Then we have the method return a value. Previously, we used a void
 type method. I have mentioned before that this is a keyword for
nothing

 , which means that the function isn't returning anything.

Let's learn about return
 type functions now. We won't use void
 anymore. Instead of that, we will write the type of data that we want our method to return. Don't worry if this sounds complicated; it isn't. I remember that, years ago, I had some issues getting my head around it. In practice, this is a very simple concept.

Let's take a look at the following example. I have highlighted two key areas that we will speak about next.

[image: Returning a value from a method]

As you
 can see, this method is very similar to the AddAndPrintTwoNumbers
 method that we spoke of previously. The two main differences
 are highlighted.

A return
 type function will always begin with a description of the type of data that it's returning. In this case, we will be returning the sum of two numbers, so our type is int
 (an integer). In simple words, the AddTwoNumbers
 function is returning a number.

 Returning the value

Once you
 have decided what type of data will be returned by a method, you must tell the function what value will be returned. The syntax is very straightforward. We use the return
 keyword, as highlighted in blue, followed by the value we are returning.

 Example

You
 just learned how to write a return
 type method. Time to put it to use! Let's write a new script and call it LearningReusableMethodsWithReturn
 :

[image: Example]

What do
 we have here? You probably understand most of this code with no issues, but it's good practice to go through it line by line. Lines
7

 and
8

 contain declarations of the number1
 and number2
 integer variables. Lines
22

 to
27

 are exactly the same as we used in the last example. They have the declaration of a method that takes two parameters—firstNumber
 and secondNumber
 —and it returns a value of the int
 type.

Lines
30

 to
34

 contain the declaration of method that simply prints the given int
 value on the Unity console. Now is the most important part you need to remember. Take a look at line
14

 :

int sumResult = AddTwoNumbers(number1, number2);

The left-hand side of this line is a simple declaration of an int
 variable called sumResult
 . Simple! What I want to talk about is the right-hand side—the assignment of this variable. As you can see, what we are doing here is calling the AddTwoNumbers
 method instead of simply giving the value to be stored in sumResult
 . It might look a bit awkward. You would expect a value to be passed instead of another method call.

Let me
 explain how it works. The AddTwoNumbers
 method is a return
 type method. It does return an int
 value in every place where you call it—instantly. In even simpler words, AddTwoNumbers()
 is an integer, and a number value.

This concept might be a bit difficult to get your head around. If you still don't get it, don't worry. All you need to remember right now is the fact that, whenever a program calls a method that returns something, it is calling the method and inserting the value that the method returns into the place where it made the call.

Remember I told you that, when you call a method, it's just a substitute for the code block that will be executed. It's like taking all of the code in the method's code block and placing it right where the method was called.

 Summary

In this chapter, you learned more details about methods. We will start using methods everywhere in this book. Feel free to come back to this chapter if you feel lost.

In the next chapter, we will introduce a little more complex ideas of handling, lists, arrays, and dictionaries.

 Chapter 5. Lists, Arrays, and Dictionaries

In previous chapters, you learned how to declare and use a single variable and its type. Now it's time for something more complex. As you know, we can store a value in a variable. But we can also store more than one value in a single variable. In this chapter, we will be talking about special types of variables that allow us to store many values at once.

In this chapter, we will cover the following topics:

	What arrays are and why it is good to use them

	Storing data in an array

	Retrieving data from an array

	Lists are powerful, using collections

	List or ArrayList

	An introduction to dictionaries

 What is an array?

An array stores
 a sequential collection of values of the same type, in the simplest terms. We can use arrays to store lists of values in a single variable. Imagine we want to store a number of student names. Simple! Just create a few variables and name them student1
 , student2
 , and so on:

public string student1 = "Greg";
public string student2 = "Kate";
public string student3 = "Adam";
public string student4 = "Mia";

There's nothing wrong with this. We can print and assign new values to them. The problem starts when you don't know how many student names you will be storing. The name variable suggests that it's a changing element. There is a much cleaner way of storing lists of data.

Let's store the same names using a C# array variable type:

public string[] familyMembers = new string[]{"Greg", "Kate", "Adam", "Mia"} ;

As you can see, all the
 preceding values are stored in a single variable called familyMembers
 .

 Declaring an array

To declare a C# array, you must first say what type of data will be stored in the array. As you can see in the preceding example, we are storing strings of characters. After the type, we have an open square bracket and then immediately a closed square bracket []
 . This will make the variable an actual array. We also need to declare the size of the array. It simply means how many places are there in our variable to be accessed. The minimum code required to declare a variable looks similar to this:

public string[] myArrayName = new string[4];

The array size is set
 during assignment. As you have learned before, all code after the variable declaration and the equal to sign is an assignment. To assign empty values to all places in the array, simply write the new
 keyword followed by the type, an open square bracket, a number describing the size of the array, and then a closed square bracket. If you feel confused, give yourself a bit more time. Then you will fully understand why arrays are helpful. Take a look at the following examples of arrays; don't worry about testing how they work yet:

string[] familyMembers = new string[]{"John", "Amanda", "Chris", "Amber"} ;

string[] carsInTheGarage = new string[] {"VWPassat", "BMW"} ;

int[] doorNumbersOnMyStreet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

GameObject[] carsInTheScene = GameObject.FindGameObjectsWithTag("car");

As you can see, we can store different types of data as long as the elements in the array are of the same type. You are probably wondering, what is the last example which looks different:

GameObject[] carsInTheScene = GameObject.FindGameObjectsWithTag("car");

In fact, we are just declaring the new array variable to store a collection of GameObjects
 in the scene using the "car"
 tag. Jump into the Unity scripting documentation and search for GameObject.FindGameObjectsWithTag
 :

[image: Declaring an array]

As you can see, GameObject.FindGameObjectsWithTag
 is a special built-in Unity function that takes a
 string parameter (tag
) and returns an array of GameObjects
 using this tag.

 Storing items in the List

Using a List
 instead of an array can be so much easier to work with in a script. Look at
 some forum sites related to C# and Unity, and you'll discover that a great deal of programmers simply don't use an array unless they have to; they prefer to use a list. It is up to the developer's preference and task. Let's stick to lists for now.

Here are the basics of why a List is better and easier to use than an array:

	An array is of fixed size and unchangeable

	The size of a List is adjustable

	You can easily add and remove elements from a List

	To mimic adding a new element to an array, we would need to create a whole new array with the desired number of elements and then copy the old elements

The first thing to understand is that a List has the ability to store any type of object, just like an array. Also, like an array, we must specify which type of object we want a particular List to store. This means that if you want a List of integers—of the int
 type—then you can create a List that will store only the int
 type.

Let's go back to
 the first array example and store the same data in a List. To use a list in C#, you need to add the following line at the beginning of your script:

using System.Collections.Generic;

As you can see, using Lists is slightly different from using arrays. Line
9

 is a declaration and assignment
 of the familyMembers
 List. When declaring the list, there is a requirement for a type of objects that you will be storing in the list. Simply write the type between the < >
 characters. In this case, we are using string
 .

As we are adding the actual elements later in lines
14

 to
17

 , instead of assigning elements in the declaration line, we need to assign an empty List to be stored temporarily in the familyMembers
 variable. Confused? If so, just take a look at the right-hand side of the equal to sign on line
9

 . This is how you create a new instance of the list for a given type, string for this example:

new List<string>();

[image: Storing items in the List]

Lines
14

 to
17

 are
 very simple to understand. Each line adds an object at the
 end of the List, passing the string value in the parentheses.

 Note

In various documentation, Lists of type look like this: List< T >
 . Here, T
 stands for the type of data. This simply means that you can insert any type in place of T
 and the List will become a list of that specific type. From now on, we will be using it.

 Common operations with Lists

List<T> is very easy to use. There is a huge list of different operations that you can perform with them. We have already spoken about adding an element at the end of a List. Very briefly, let's look at the common
 ones that we will be possibly using at later stages:

	
Add
 : This adds an object at
 the end of List<T>.

	
Remove
 : This
 removes the first occurrence of a specific object from List<T>.

	
Clear
 : This removes
 all elements from List<T>.

	
Contains
 : This
 determines whether an element is in List<T> or not. It is very useful to check whether an element is stored in the list.

	
Insert
 : This inserts an
 element into List<T> at the specified index.

	
ToArray
 : This copies the
 elements of List<T> to a new array.

You don't need to understand all of these at this stage. All I want you to know is that there are many
out-of-the-box

 operations that you can use. If you wish to see them all, I encourage you to dive into the C# documentation and search for the List<T>
 class.

 List<T> versus arrays

Now you are probably
 thinking, "OK, which one should I use?" There isn't any general rule for this. Arrays and List<T> can serve the same purpose. You can find a lot of additional information online to convince you to use one or the other.

Arrays are generally
 faster. For what we are doing at this stage, we don't need to worry about processing speeds. Some time from now, however, you might need a bit more speed if your game slows down, so this is good to remember.

List<T> offers great flexibility. You don't need to know the size of the list during declaration. There is a massive list of
out-of-the-box

 operations that you can use with List, so it is my recommendation. Array is faster, List<T> is more flexible.

 Retrieving the data from the Array or List<T>

Declaring and storing data
 in the array or list is very clear to us now. The next thing to learn is how to get stored elements from an array. To get a stored element from the array, write an array
 variable name followed by square brackets. You must write an int
 value within the brackets. That value is called an index. The
 index is simply a position in
 the array. So, to get the first element stored in the array, we will write the following code:

myArray[0];

Unity will return the data stored in the first place in myArray
 . It works exactly the same way as the return
 type methods that we discussed in the previous chapter. So, if myArray
 stores a string value on index 0
 , that string will be returned to the place where you are calling it. Complex? It's not. Let's show you by example.

 Note

The index value starts at 0, not 1, so the first element in an array containing 10 elements will be accessible through an index value of 0
 and last one through a value of 9
 .

Let's extend the familyMembers
 example:

[image: Retrieving the data from the Array or List<T>]

I want to talk
 about line
20

 . The rest of it is pretty obvious for you, isn't it? Line
20

 creates a new variable called thirdFamilyMember
 and assigns the third value stored in
 the familyMembers
 list. We are using an index value of 2
 instead of 3
 because in programming, counting starts at 0. Try to memorize this; it is a common mistake
 made by beginners in programming.

Go ahead and click
 on
Play

 . You will see the name
Adam

 being printed in the Unity
Console

 . While accessing objects stored in an array, make sure you use an index value between zero and the size of the array. In simpler words, we cannot access data from index 10
 in an array that contains only four objects. Makes sense?

 Checking the size

This is very
 common—we
 need to check the size of the array or List. There is a slight difference between a C# Array and List<T>.

To get the size as an integer value, we write the name of the variable, then a dot, and then Length
 of an
 array or Count
 for List<T>.

	
arrayName.Length
 : This returns a integer value with the size of the array

	
listName.Count
 : This returns a integer value with the size of the list

As we need to focus on
 one of the choices here and go ahead, from now on, we will be using List<T>.

 ArrayList

We definitely know how to use lists now. We also know how to declare a new list and add, remove, and retrieve
 elements. Moreover, you have learned that the data stored in List<T> must be of the same type across all elements. Let's throw a little curveball.

ArrayList
 is basically List<T> without a specified type of data. This means that we can store whatever objects we want. Storing elements of different types is also possible. ArrayList
 is very flexible. Take a look at the following example to understand what ArrayList
 can look like:

[image: ArrayList]

You have probably noticed that ArrayList
 also supports all common operations, such as .Add()
 . Lines
12

 to
15

 add different elements into the array. The first two are of the integer
 type, the third is a string
 type, and the last one is a GameObject
 . All mixed types of elements in one variable!

When using
 ArrayList
 , you might need to check what type of element is under a specific index to know how to treat it in code. Unity provides a very useful function that you can use on virtually any type of object. Its GetType()
 method returns the type of the object, not the value. We are using it in lines
18

 and
19

 to print the types of the second and third elements.

Go ahead, write the preceding code, and click on
Play

 . You should get the following output in the
Console

 window:

[image: ArrayList]

 Dictionaries

When we talk about
 collection data, we need to mention Dictionaries. Dictionary is similar to a List. However, instead of accessing a certain element by index value, we use a string called Key.

The Dictionary that you will probably be using most often is called Hashtable
 . Feel free to dive into the C# documentation after reading this chapter to discover all the bits of this powerful class.

Here are a few key properties of Hashtable
 :

	
Hashtable
 can be resized dynamically like List<T> and ArrayList

	
Hashtable
 can store multiple data types at the same type, like ArrayList

	A public member Hashtable
 isn't visible in the Unity
Inspector

 panel due to default inspector limitations

I want to make sure that you won't feel confused, so I will go straight to a simple example:

[image: Dictionaries]

Adding elements into hashtable
 must contain a string with the key. The key is necessary for retrieving a specific value. We have mentioned this before but I want to highlight the main difference between ArrayList
 and Hashtable
 . In ArrayList
 , data is stored under the index integer number value. In Hashtable
 , however, we store a value under the string key.

The Add
 function
 of Hashtable
 is taking two parameters here. Take a look at line
11

 . This line adds the value "Greg"
 under the "firstName"
 key. Simple, right? If you are
 confused, all you need to remember now is that when you want to add a value to Hashtable
 , you start with the Hashtable
 type variable name, followed by a dot and Add
 . Then, in the brackets, you enter the string key followed by a comma and any type of data key.

 Accessing values

To access a
 specific key in the Hashtable
 , you must know the string key the value is stored under. Remember, the key is the first value in the brackets when adding an element to Hashtable
 . Ideally, you should also know the type of data you are trying to access. In most cases, that would not be an issue. Take a look at this line. Try to stay calm and do not panic!

Debug.Log((string)personalDetails["firstName"]);

Similar to ArrayList
 , we can store mixed-type data in Hashtable
 . Unity requires the developer to specify how an accessed element should be treated. To do this, we need to cast the element into a specific data type. The syntax is very simple. There are brackets with the data type inside, followed by the Hashtable
 variable name. Then, in square brackets, we have to enter the key string the value is stored under. Ufff, confusing!

As you can see in the preceding line, we are casting to string (inside brackets). If we were to access another type of data, for example, an integer number, the syntax would look like this:

(int)personalDetails["age"];

I hope that this
 is clear now. If it isn't, why not search for more examples on the Unity forums?

 How do I know what's inside my Hashtable?

Hashtable
 , by default, isn't
 displayed in the Unity
Inspector

 panel. You cannot simply look at the
Inspector

 tab and preview all keys and values in your public member Hashtable
 .

We can do this in code, however. You know how to access a value and cast it. What if you are trying to access the value under a key that isn't stored in the Hashtable
 ? Unity will spit out a null reference error and your program is likely to crash.

To check whether an element exists in the Hashtable
 , we can use the .Contains(object)
 method, passing the key parameter:

[image: How do I know what's inside my Hashtable?]

 Summary

In this chapter, you learned how to use collections of data. You now know what an Array is, what List<T> is, and how to use Hashtable
 . If you haven't fully understood this chapter, I suggest a quick read through it again. In the next chapter, we will move on to something more advanced: loops.

 Chapter 6. Loops

In previous chapters, we learned how to tell Unity what to do line by line. In most of our examples, we wrote one instruction per line. I want to move on to something a bit more complex now.

In this chapter, we will cover the following topics:

	Introduction to loops

	Why we use loops

	Commonly used loops

	Loops with statements

	Searching for data inside a loop

	Breaking loop execution

 Introduction to loops

Loops are an
 essential technique when writing any software in pretty much any programming language. By using loops, we gain the ability to repeat a block of code
X

 number of times. There are many variants of loops in C#. We will talk about the most common loops:

	The foreach
 loop

	The for
 loop

	The while
 loop

 The foreach loop

The foreach
 loop is very simple to
 use. It also has the simplest syntax. We
 use the foreach
 keyword followed by brackets in this loop. Inside the brackets, you must specify the type of data you want to iterate through inside your loop. Pick a single element variable name. You can name it whatever you like. This name is used to access this variable inside the main loop block. After the name, we write the in
 keyword, followed by our List variable name, as shown here:

[image: The foreach loop]

I know it's quite
 confusing now, but don't worry too much about the theory. All you need to know as of now is that the code inside the foreach
 loop is called as many times as there are elements in myCollectionVariable
 . So, if myCollectionVariable
 contains 10 elements, the code inside the loop block (highlighted in pink) will be executed 10 times.

To make it a bit more
eye friendly

 , let's look at an actual code example. We will use the family members example from the previous chapter and print every element inside the loop on Unity
Console

 :

[image: The foreach loop]

Write the preceding code, add it as a component to a GameObject
 , and click on
Play

 . Line
20

 creates the loop (foreach
 familyMember
 in familyMembers
).

Lines
21

 to
23

 form
 a loop block. As our List contains four elements, this code block will be executed four times, each time with a different value stored in the familyMember
 local variable.

Line
22

 simply prints the output on Unity
Console

 . Your output should look like this:

[image: The foreach loop]

Not that scary, isn't it? Go ahead and play around with the code. You can, for example, add more elements to the familyMembers
 List.

Alternatively, you
 can print the number of characters each element has and so on. The sky is the limit! The foreach
 loop can be used with any type of collection, so there are no issues with using it with an Array
 , ArrayList
 , or even Hashtable
 .

 The for loop

You have learned about foreach
 loops. When iterating through a foreach
 loop, we can use a local variable
 directly to access the data we need. In a for
 loop, we also create a variable. However it is an integer variable for controlling the execution of the loop
 and accessing the data inside the collection by index.

There are three fundamental parts of the for
 loop. It will look a bit scary to you at the beginning, but try not to run away.

[image: The for loop]

The for
 loop's syntax might look overcomplicated, but trust me, it isn't! Let's go through all of its elements one by one.

The for
 loop begins with the for
 keyword, followed by brackets. Inside the brackets we must have three fundamental elements separated by semicolons:

	

Initializer

 : The initializer is simply a declared variable that is assigned a value. In the preceding
 code, we declared a variable called i
 of the int
 type and assigned it a value of 0
 .

	

Condition

 : The condition
 must be true for the code block to be executed. In this example, the loop will run through the code block only if the i
 variable is less than 10
 .

	

Iterator

 : The
 iterator, i++
 in this case, simply adds a value of 1
 to the mentioned variable every time the loop completes an execution.

In simple words, to use
 a for
 loop, we need an integer variable to control it. The initializer is the declaration and assignment of that variable. In most cases, you will never have to change it at all and it will always look like this:

int i = 0;

The next step is to describe under what conditions the loop will be running. It is the same type of condition that you might write in any if
 statement. If i
 is less than 10
 , this statement is true. If this statement is true, our loop will execute whatever code is inside the code block:

i < 10;

The last part of the for
 loop's syntax is simply the addition of 1
 to the previous value stored in the i
 variable. The i++
 might look rather scary, but it's simply a more elegant version of this statement: i = i+1;
 .

 Note

The ++
 operator increments the value by 1
 .

I have introduced lots of technical words here. Try not to panic. Remember that we want to take baby steps, as we need to make sure you fully understand for
 loops. I will show it in an example. Let's now
 write some proper code using a for
 loop.

 An example

Yet again, we are
 using the previous familyMember
 example. Create a new C# script and write the following code:

[image: An example]

We have analyzed most of this code before. Let's focus on lines
20

 to
24

 . What we are trying to do in this example is iterate through all the elements inside the familyMembers
 list and print their values to the Unity Console. You will probably ask, "Why do I even have to learn this? I could have used a foreach
 loop." Correct! A foreach
 loop is a definitely good approach to this task. However, there will be cases when you need to know at what index position in the array a certain element is stored. That is when you will use a for
 loop instead of foreach
 . Trust me, it's worth it!

Line
20

 constructs our for
 loop. As I promised before, in most cases there is no need to edit the initializer at all.

Take a look at this condition:

i < familyMembers.Count;

Previously, we used a value of 10
 directly in the condition. In the current example, we want to iterate through all the elements in the array. We don't always know the size of our array, so the safest option is to access its size directly. If you are still confused, please go back to the previous chapter where we spoke about checking out the size of an array and List<T>.

Before you test the
 code in Unity, try to imagine what actually happens when you click on the
Play

 button.

Unity executes the Start()
 function. Lines
14

 to
17

 add four string values to the familyMembers
 list.

Unity starts executing the loop from line
20

 . It creates the i
 variable with a value of 0
 . Then it checks the condition. As 0
 is smaller than the size of the list, the code block is executed with a value of 0
 for i
 .

Line
23

 accesses the value in the first place in the familyMembers
 list as the value of i
 is 0
 . Unity prints the "Greg"
 string.

Unity hits the end of the loop block and goes back to line
20

 to check whether the loop should run through again.

But first, i++
 increments the value of i
 by 1
 . So 0 + 1 = 1
 . The i
 variable is now equal to 1
 . Unity checks the condition again and runs through the loop block again.

These steps will keep occurring until the i < familyMembers.Count;
 condition becomes false
 . This condition will be false
 simply when i
 becomes equal to 4
 . Then, Unity won't execute the code block anymore but will proceed with the normal execution order outside the loop.

Go ahead now. Press
Play

 in Unity. You
 should see four names being printed to the console one by one.

 The while loop

There is one more type of loop that I want to talk about. It has pretty much the simplest form of any loop. The while
 loop does not create any variable to control its execution. To create a
 while
 loop, start with the keyword while
 , followed by brackets. Within the brackets, you must write a condition. Whenever the condition is true, the code inside the loop block will be executed:

[image: The while loop]

It's worth knowing that this is quite a dangerous loop and you need to know how to use it. As a while
 loop does not create any control variable and is not iterating through the list there is a possible scenario where a condition is always true. This will create an infinite loop—a loop that will go on forever. An infinite loop never finishes executing the loop block, and most certainly, it will crash your program and even Unity
Editor

 .

To avoid this nasty situation—when Unity crashes and we don't even know why—we can use a variable to control the flow of the while
 loop, like we did in our for
 loop. Then, this is what the loop looks like:

[image: The while loop]

You have seen this before, right? This example contains exactly the same fundamental elements as a for
 loop. Line
20

 is a initializer, and within line
22

 , we have the i<10
 condition. The iterator is on line
26

 .

Go ahead and type in the code. Try to predict what will happen in the
Console

 Window before you press

Play

 in
Editor

 .

 while versus for loops

Both while
 and for
 loops do the same thing. I bet you are wondering why we should even bother learning them both. A for
 loop is great for iterations through arrays and lists. A while
 loop is great
 for holding code execution until a condition isn't met.

I don't want you to
 worry about while
 loops for now. We will go through more complex examples when you learn about coroutines in Unity. A coroutine is a special type of method in Unity that can run through an infinite loop without crashing. Let's forget it for a few chapters. We will definitely use them in the second half of the book, when you will be building your first game!

 Loops in statements

You have learned the
 fundamentals of the three basic loops. Let's have some fun now. You can write virtually any code inside a loop block.

Why don't we insert some if
 statements inside our code block and ask Unity to make the decisions? Let's iterate through a for
 loop 100 times and print on the Unity
Console

 some useful information about the i
 variable's value, as follows:

[image: Loops in statements]

Checking whether a number is zero, even, or odd

Let's analyze
 the code:

	Line
9

 : This is the declaration of the for
 loop. The condition for our loop is i < 100
 , which means that we will run the loop 100 times with the value of i
 increasing from 0 to 99.

	Line
11

 : This contains a simple if
 statement that checks whether i
 is equal to 0
 . As the i
 value increments every time the loop runs through, line
12

 will be executed only once, that is, on the first loop run.

	Line
14

 : This contains if
 statements that call the IsNumberEven
 function, which returns bool
 . I know this feels very complicated now, but it is deliberate. We need to make sure that you understand every single line of this example.

To make things
 easier, we can talk about the IsNumberEven
 method first.

The IsNumberEven
 method is
 constructed from elements that are well known to you. This method takes one int
 parameter and uses name number within itself. It also returns bool
 . That's why we can use it directly in line
14

 .

 Modulo

Take a look at line
26

 . The %
 operator is called
modulo

 . Modulo computes a remainder. The modulo operator provides a way to execute code once in every several iterations of a loop. We are using modulo
 here to check whether a number variable can be perfectly divided by 2. If the number can be divided, the reminder will be equal to 0, so we will have an even number! Otherwise, the number must be odd.

Coming back to line
14

 , as a method is a substitute for a value and IsEvenMethod
 is a return
 type method, returning Boolean value inside if
 statement. In simpler words, when the value of i
 is passed to IsEvenNumber
 , the method returns a true or false value. If the value is true, line
15

 will be executed and the message will be printed on the
Console

 window.

Let's test the code. If all goes well, you should see lots of messages printed on the
Console

 window, as follows:

[image: Modulo]

All went very
 well then! Go ahead and try to experiment with this code. Why not run the loop 1,000 times? Do it! Computers can make mathematical calculations at amazing speeds.

 Searching for data inside an array

Very often, you will need to
 get a single element inside an array. It's very straightforward
 as long as you know the specific index your element is stored under. If you don't, you can search for it by iterating through the entire array object.

Yet again, let's go back to the familyMembers
 example and try to look for the index of the "Adam"
 string value:

[image: Searching for data inside an array]

We are
 not going
 too much into the details. The easiest way of finding the index of a certain element in the collection is by looping through the array and comparing elements. You can spot that on line
22

 . If the familyMembers[i] == "Adam"
 condition is true, line
23

 will be executed. The adamsIndex
 variable will be then assigned the current i
 value.

Notice the default
 value of adamsIndex
 . I deliberately assigned it -1
 so that we can check on line
29

 whether there were any changes to this value inside the loop. If it's still -1
 , it means that the value we are trying to find inside the array was not found
 at all.

 Breaking the loop

Loops can also be designed to stop themselves from executing any further. To do this, we use the break
 keyword. Whenever Unity executes a line containing the break
 keyword, it will stop the loop
 it is in and continue executing from the line just after the loop block.

We use break
 mainly for performance reasons. In the preceding example, we are looking for the "Adam"
 string. Once we've found it, there is no reason to iterate through the remaining elements of the loop. So, line
24

 breaks the loop and the execution jumps to just after the loop block—line
27

 .

 Summary

Hey! You are doing really well. In this chapter, you learned how to
ask

 Unity to loop through sections of code and do something useful. In the next chapter, we will dive into the subject of organizing your code and object-oriented programming.

 Chapter 7. Object, a Container with Variables and Methods

We have covered most of the theory part now. You can read and write code. In this chapter, we will discuss organizing your code and object oriented programming.

In this chapter, we will cover the following topics:

	Working with objects

	Constructing the class and its syntax

	Using C# constructors with data

 Working with objects is a class act

I'm throwing the word
 object around like you were born with the knowledge of what an object is. Actually, you do know what it means. The coffee cup you may have in your hand is an object, a real one. That UFO flying around at night is an object, even if you can't identify it. In Unity, you may have a flying saucer in your
Scene

 , but it's obviously not a real flying saucer—it's a virtual one.

However, in the virtual world of gaming, most people would consider things they can see on the screen as objects.

[image: Working with objects is a class act]

If you can expand your mind just a little bit more, perhaps you can accept that not all objects in Unity have to be
 something you can see in a game
Scene

 . In fact, the vast majority of objects in Unity are not visually in the
Scene

 .

In a computer, an object is just a small section of your computer's memory that acts like a container. The container can have some data stored in variables and some methods to work with the data.

The best example I can show you is the object you've been using since we started this book:

[image: Working with objects is a class act]

In MonoDevelop, we've been working with the Script called LearningScript
 . In Unity, we use the general term Script, but it's actually a class, which means it's a definition of a type of container. Look at line 4
 of the file:

public class LearningScript : MonoBehaviour

See that second word? It means that LearningScript
 is a class. In this class, we defined its member variables and
 methods. Any variable not declared in a method is a member variable of the class.

In Chapter 2
 ,
Introducing the Building Blocks for Unity Scripts

 , I told you about the magic that happens when we attach the script
 class to a GameObject
 . The Script becomes a Component.

Besides the visual mesh in the
Scene

 , can you visualize in your mind that a GameObject
 is just a bunch of different types of Component objects assembled together to construct that GameObject
 ? Each of those individual Components shown in the
Inspector

 window will become an object in our computer's memory when we click on the
Play

 button.

Select any GameObject
 in the
Scene

 window and look at
Inspector

 . For example, select the
Main Camera

 GameObject. There are several Components on the
Main Camera

 GameObject. Look at each of these defined Components. Every one of these Components started off as a class
 file in
 Unity, defining a type of container of variables and methods.

[image: Working with objects is a class act]

 Few facts

We don't see or modify those Unity class
 files, but they're in Unity somewhere.

	The name of the class is also known as the object type of the object that will be created in memory from that class, when the
Play

 button is clicked.

	Just like int
 or a string is a type of data, the name of a class is also a type of data.

	When we declare a variable and specify the type of data it will store, it can easily just store a reference to an object of the LearningScript
 type, as shown in the following line of code:
 LearningScript myVariable;

	Storing a reference to an object in a variable does not mean we are storing the actual object. It means we are storing the location in memory of that object. It's just a reference that points to the object in memory so that the computer knows where to access the object's data and methods. This means we can have several variables storing a reference to the same object, but there's still only one
 actual object in memory.

 Note

A Script is just a file on your hard drive, and there's only ever one file. The class
 file simply defines a type of container of variables and methods that will become a Component object in the memory when you click on
Play

 . You can attach the Script to many GameObjects
 , but there's still only one file on your hard drive.

Attaching a Script to a GameObject
 is like placing a sticky-note on the GameObject
 . When we click on the
Play

 button, Unity looks at our GameObject
 , sees the sticky-note which says, "This GameObject
 is supposed to have a Component of type LearningScript
 . Make some room in the computer's memory to hold this object of variables and methods, as described in the LearningScript
 class file."

If we were to attach LearningScript
 to 1,000 GameObjects
 and click on
Play

 , there will be 1,000 separate sections created in your computer's memory, with each storing an object of type LearningScript
 . Each one has its own set of variables and methods, as described by the script
 file. Each one of those 1,000 sections of computer memory is a separate Component object of its respective GameObject
 .

 Note

Even though the object created from a class is called a Component
 by Unity, in general C# terms each object that gets created from a class is called an instance object.

Your brain is probably just
 about to start boiling. To make this easier to understand, let's write a quick example.

 Example

[image: Example]

Take a look at the code. We
 wrote a class named Person
 . Notice that I removed : MonoBehaviour
 after the name of the class. The main reason is that we treat the class Person
 as a simple container of the data, a C# object of type Person
 , not a Unity Component. We don't need this class to be a full-spec Unity Component.

As you can see, you can easily store any type of data inside your class. We make variables public as we will need to access this data from other classes.

 Instantiating an object

We know exactly
 how to write a class as an object. The next step would be creating an instance of the object of that class. In C#, we use the keyword new
 to instantiate the object.

The syntax looks like this:

new ObjectType();

So, we are using the keyword new
 followed by an ObjectType, and then we have the opening and closing brackets. ObjectType
 is nothing but your class name (we discussed this before).

Each time you instantiate an object of any class, Unity will create some space in the memory to store that object. The issue in the preceding syntax is that we are not assigning that freshly created object anywhere. Therefore, we won't be able to access its data.

The best way is to
 assign this object to some variable:

ObjectType myObjectInstance = new ObjectType();

This way, we can access and change any variables inside our myObjectInstance
 object using the dot syntax. Again, let's learn from examples, OOP might seem a bit confusing at the start, but I promise you will master it when you go through the whole book.

[image: Instantiating an object]

Please write the preceding code. We are using the Person
 class we spoke about a bit earlier; make sure you have
 Person
 class in your project too. In lines
7

 to
9

 , we are declaring a public member variables of the type Person
 .

In line
14

 , we are instantiating a new object of type Person
 and assigning it to public member named father
 . In lines
15

 to
19

 , we are assigning various data to father
 variable. Please notice the syntax. To access the variables inside our object, we write the name of the instance variable followed by the dot and the name of the public variable. You can only access public variables and methods this way. Private variables are not accessible from the other classes. By the same analogy, we have instantiated and assigned mother and son objects.

In line
39

 , we are printing a quick message composed from the data stored inside father
 , mother
 , and son

 objects. Press
Play

 in Unity and your
Console

 output should look like this:

[image: Instantiating an object]

Go ahead and experiment with the code—change it, play with it!

 Bored yet?

I understand that you might feel a bit frustrated now. We are learning a lot about theory, going through examples,
 and it isn't exciting at all. I have promised fun and we will get there, I must make sure that you understand the fundamentals of OOP. This knowledge will help us design a cool-looking game that is coded using clean practices. Code can be good and bad, and it can be written the way that is easily understood by other developers or it might be unmanageable and messy.

By learning how to organize your
 code, you absorb and use good practices that will help you to be a top developer who is proud of his code. So stay focused! Let's go through the theory and make an awesome game later.

	
	

"Any fool can write code that a computer can understand. Good programmers write code that humans can understand."

	

	
	--

Martin Fowler

 Using methods with objects

We learned that an
 object is a container for data. We can store specific data
 inside the objects in its variables, and we can also write some more useful methods. OOP is a very neat and flexible concept. There is nothing stopping us from using our encapsulated object and passing it as a parameter to the other method. Let's write the following code as an example where the class name is Person
 :

[image: Using methods with objects]

I removed most of the variables from the Person
 class to make this example clearer. If you are writing this
 example in the same Unity Project as the previous
 example, you will get some errors in the Family
 class we were using before. I recommend
 starting this example in
 a new Unity Project and the class here is LearningObjects
 :

[image: Using methods with objects]

Yes, lots of new code to analyze, awesome! What we are trying to do here is create two instances of the Person
 object. We'll cross-reference them by assigning a public member spouse, and then call the method within the object class itself. Let's analyze this step by step—we do not want to get you confused.

Let's talk about the Person
 class first. You most certainly understand what an object is and we can hold variables in them. However, I want to talk about the IsMarriedWith
 method inside the class itself. As you can see, this is a return
 type method that returns a bool
 value and takes one parameter. Notice the type of the parameter. The IsMarriedWith
 method takes another instance of the Person
 class.

Line
13

 of the Person
 class checks whether there is any value stored in the spouse variable.

The easiest way to check if there is any value assigned to the variable is comparing the variable to null
 . If
 the variable isn't null, it means there is something assigned to the variable.

 Note

The null
 keyword is a literal that represents a null reference, one that does not refer to any object. It is the default value of reference-type variables.

So, if spouse isn't assigned, it means our instance isn't married and we are returning false in line
27

 . Let's talk about the LearningObjects
 class. It must be pretty obvious to you what is going on there. We are creating two instances of the Person
 class and assigning the values. Notice lines
22

 and
23

 . We are assigning woman.spouse
 with a man
 object and man.spouse
 with a woman
 object. I asked you to do it this way to demonstrate that you can easily reference objects inside other objects even if both of them are the same type.

Line
26

 is where the main logic happens. We are calling the IsMarriedWith
 method on the man
 instance and passing woman
 object. Yet again, this is to demonstrate how flexible objects are. The condition in line
26

 will be true if two Person
 type objects are married. If so, the suitable message is printed out in the Unity
Console

 panel.

Go ahead and play with the code. Try to add some more methods or variables to the Person
 class. Why not add an age
 public member again and write a method to return the total number of years? Sky is the limit! The best you can do is write a lot of code. Learning by experience is
 the fastest way to become a decent programmer. Fingers crossed!

 Custom constructors

We saw how to
 create new instance of an object using the following syntax:

new ObjectType();

This way, you are calling the public implicit constructor. In simple words, the default constructor creates an instance without taking any parameters. All C# objects that are not using custom constructors will be using an implicit constructor.

Another great ability
 is to write your own constructors. Why? It will have you typing a lot of code, it's fun to use, and it makes code much easier to read.

Custom constructor should be written within the code block of the class. Have a look at the example first and then we'll go through the actual syntax. A custom public constructor for the Person
 could look like this:

[image: Custom constructors]

As you can see, it's nothing scary. A custom constructor is a public method taking some parameters. The generic syntax for the public constructor will always start with the keyword public
 followed by a class name. Inside the brackets, we can write any parameters we wish.

I try to keep my code consistent and a have a simple naming rule for constructor parameters. I always use a lowercase
p

 followed by the parameter name. This way, I avoid confusion inside the constructor body. So, the firstName
 parameter is called pFirstName
 and the lastName
 parameter is called pLastName
 . Feel free to set your own rule for this. However, this one is quite common. I have seen it being used by another developer and adopted it.

Let's try to implement it now. Add the two constructors to the Person
 method:

[image: Custom constructors]

You are probably wondering why we are adding an empty constructor at all. It's simply to keep a bit of flexibility if we want to instantiate the object without any data. This way, we will also stop any errors coming up inside the LearningObjects
 class, as we are using implicit constructor there.

Let's focus on constructor
 within lines
16

 to
19

 . As you can see, there's nothing scary. It is exactly what you would expect to see, right? We are taking two string parameters, naming them according to the
p

 rule, and assigning them to the variables within this object.

 Overloading

To understand how to use custom constructors, we need to learn a bit about different overloads. Overloading happens
 when we have two methods with the same name but different signatures, that is, we are passing different types of parameters into the method.

As a constructor is a public method, the same rule applies. You can choose what overload you wish to use simply by entering the specific parameters when calling the method. MonoDevelop works well with Unity and helps you preview the available overloads you can use with its parameters and type.

Go back to the LearningObjects
 and have a try. Inside the Start
 function, type new Person (
 . The popup in MonoDevelop will appear as soon as you type the open bracket.

[image: Overloading]

MonoDevelop is trying to let us know there are two overloads available for Person
 constructors. Press down the arrow on your keyboard straightaway to preview the next overload:

[image: Overloading]

As you can see, this is the custom constructor we have written. By pressing down the arrow key whenever you see this popup, you can iterate through all available overloads.

We know how to write
 custom public constructors and how to call them. Let's try to put that knowledge into use now. I will use the same example again to make it easier to compare.

[image: Overloading]

Lines
14

 and
15

 are calling our newly written custom constructor. As we are instantiating Person
 object and assigning firstName
 and secondName
 in one line, our code has shrunk by a few lines. This is
 good! Less code but the same functionality.

 Note

Another good practice in programming is to keep your code as short as possible. If you are able to code same functionality in fewer lines, you should definitely do it, even if it requires rewriting part of your project.

 Summary

Again, well done! Another difficult chapter has been covered. We saw a lot of theory in the first part of the book. Now it's time for more fun. In the next chapter, we will start planning the development of your first Unity game!

 Chapter 8. Let's Make a Game! – From Idea to Development

This chapter will show you how to turn an idea into a ready-to-code project and how to break down complex mechanics into small pieces.

In this chapter, we will cover the following topics:

	Common mistakes made by early developers.

	Breaking a complex idea into manageable parts.

	Pen and paper are your friends. Break the game into features!

	Where you should really start. Fancy game art later, prototype first.

	The core game components (GameManager
 , the Player
 , Physics
 , and the UI
).

	Target platform, screen resolution, and screen ratio.

 Your first game – avoiding the trap of the never-ending concept

As you are aspiring to
 become a good game developer, you probably have tons of brilliant ideas for games. If not, you probably have one massive idea that you really want to get done yourself as soon as possible. Maybe, you do have some core game mechanics on your mind but just don't know how to code it. Good! This book is precisely for you. We will move away from talking about examples and will focus more on coding actual game functionality.

Before we do that, however, I want to make sure that the idea behind your first game won't take you to a dead end.

I have spoken to many aspiring game developers who have massive multiplier games in their minds, wanting to create another
World of Warcraft

 or
Call of Duty

 as their first big project. That's fine! You should think big, and you never know you might be a part of a great team one day, developing
AAA

 titles in Unity. For now, however, we need to take baby steps to get there. That's why we shouldn't think about such massive ideas that take tens of millions of dollars and the most talented teams in the world to develop. We should rather think a bit smaller. You are possibly a one-man team at the moment without a massive budget, but you have a massive passion for game development. Trust me, this is all that you need to release your first game and be
mega proud

 of it.

Let's agree to hold on and
 focus to develop and finish a simple game in the next few chapters instead of starting and never finishing something. In this book, we will take up the simple idea of an infinite scroller game. We will use built-in Unity 2D tools, physics, and, of course, a lot of code.

 The idea

I have a very simple but
 fun idea in my mind for our first game—a very childish but fun 2D platform game:

[image: The idea]

This is
Jake

 , an alien who recently passed his flying license. Jake's parents were very proud of him until, for unknown reasons, he crashed into one of the faraway little planet. He lost most of his ship's batteries and needs to get new ones. You will help him get the batteries so that he can fly back home. It will be an awesome adventure. We will collect anything valuable to sell and avoid the dangers of the mysterious planet. Let's call the game
Jake on the mysterious planet

 .

I hope you like the idea. It
 is very simple as we have limited time. We will use most of the assets from http://kenney.nl/
 . They kindly agreed to contribute to this book.

 Game mechanics and core components

I want this
 game to be as simple as possible so that we can complete it in the
 next few chapters. We will create a lot of scripts, prefabs, and possibly some assets, too.

Jake on the mysterious planet

 will be a 2D infinite scroller game. Jake will run automatically from left to right through the mysterious world. We will give him the ability to jump from platforms to collect coins. He can use them to buy batteries for his ship.

In most cases, when you have your own idea for a game, you will have a vision in your mind. You will know what sort of feel and gameplay you want to achieve. However, you won't know the tiny parts of the game and how they will work together to create the game you want. This is why planning is so important. Developing the game starts in your head, and then you have to create the documentation for your idea—even if the game is as simple as
Jake on the mysterious planet

 . Don't be scared! You may not have to document the complete idea first, but trust me! It's worthwhile to have as much as you can written down.

There aren't any golden rules for game idea documentation. You should aim to write down as much as you want for two main reasons:

	There might be someone else you wish to share your idea with to gather feedback.

	When you write down your idea, you will have tons of new ideas on how to achieve it. Lots of things will pop up in your brain to indicate what could be a good way to do things.

I know what I am speaking is very generic, and I am not able to tell you exactly what to do. Your idea is
 your idea and only you can lead it to success. What I can
 do, however, is show you how I approach planning.

 Breaking a complex idea into smaller parts

Game ideas
 vary. Some are simple, such as
Tic-tac-toe

 , and some of them require years of hard work from teams and tons of planning to develop. There is a one common factor, however. Absolutely every idea can be broken down into smaller parts—parts that can be more manageable and easier to approach. Let's put our generic talk aside now and focus on our game.

We have a very rough idea of what our game will be. The first step will be to divide the game into parts that we can work on independently.

Some of these parts will be:

	Level creation

	The main character's appearance

	Player controls

	The game loop—
Start

 ,
Game Over

 ,
Restart

	Collecting stuff

	Obstacles that kill the player

	The graphical user interface

	Storing the player's inventory

At this point, this is all I have in mind. I know that some of this probably doesn't make sense to you as of now. I will briefly talk about these parts very soon. There are probably other parts of the game that we will add at a later stage. In fact, this list isn't complete at all, and we will keep updating it whenever a new idea pops up.

Based on this list of the game's core components, we can have some idea about the game. Take a look at this quick sketch. It will give you a much better idea about how this game will work. I hope you'll like it:

[image: Breaking a complex idea into smaller parts]

I realize that this
 isn't the best game art you have ever seen. At this moment, however, this is all we need to understand the basic game mechanics. As you can see, Jake will be running from left to right. The background will move from right to left, along with all the level elements. Every time Jake hits an obstacle, it's game over. The coins can be collected. I hope you have an idea now. Yet again, we are making a simple game, but you will learn a lot while developing it. Remember that I have promised baby steps forward. We will create something you will be proud of, and I bet you will love to customize it. Why not? You are a game developer. You can create worlds on the screen with no limits whatsoever. Feel free to
 use your own graphics assets or sounds, or simply stick to the ones we have.

 Jake on the mysterious planet – the feature list

We know the
 core components that we will need to develop to make this game work. We also have a rough idea about the game.

What's next? Another good step forward would be to write down the game's feature list and talk about each of the steps in detail.

Here is the feature list:

	Procedural level generation with infinite gameplay

	An animated 2D character with 2D physics

	Mouse and touch controls

	Collectables and storing the player's data

	A scoring system with a storage of high score

	UI

Let's talk about each of these features to make sure you understand what they are.

 Procedural level generation

In every game, the
 level is a key component. It's the environment in which the player moves around and enjoys the game. In this case, we have a flat 2D level scrolling from right to left.

As
Jake on the mysterious planet

 is an infinite scroller game, we don't know how big the level has to be. The player can play for just 10 seconds, or they can be really good at this game and run for a long time. This is the main reason we want to divide the level into movable pieces and generate it during gameplay.

It will work very simply. Once the player travels through the level, the level generator will spawn a new piece of the level in front of the player and destroy the level pieces that are far behind the player. This simple concept will grant the player infinite gameplay.

Take a look at this sketch:

[image: Procedural level generation]

The gray box represents our
Main Camera

 in 3D space.

The green boxes represent moving pieces of the level. They spawn near the purple line and are destroyed once they touch the red line. I hope this concept makes sense to you. Don't worry about planning to code this at all as of now. Remember that we are planning the game. We
 are not in the active production phase yet. The more you think about the mechanics and how it can work, the better. There will always be a lot of uncertainty while planning, and some solutions that you pick at the planning stage might not work. That's fine! Let's stay open-minded with the game, while at the same time, try to plan as much as we can.

 An animated 2D character

So, we are
 creating a 2D game in a 3D game engine. Yes, why not? Unity gives us a lot of brilliant features for creating 2D games. We will use Unity's built-in animation system to animate Jake. We will try to add animations for:

	Running

	Jumping

	Falling

	Flying in his spaceship

If you haven't used the
 Mecanim system in Unity to manage animations yet, I encourage you to take a look at Unity's official tutorials. Anyway, we will cover some basics in this book, too.

 Physics

For gravity, physics, collision detection, and triggering of events, we will use built-in 2D physics components, such as Rigidbody2D
 . As our game is really simple and this book is about learning C#, we
 will try to keep the physics as simple as possible. In fact, we will just implement gravity and simply check whether our character is on the ground. These two physics mechanics are the absolute minimum for any platform game, and you will be able to reuse most of the code that you write for this.

 Mouse and touch controls

We need to give our
 user a way to control the game. Yet again, simplicity is the key here. I believe we can use the built-in input system and make it universal for standalone platforms and mobile devices. The user will be able to use their mouse and touchscreen. We will possibly use clicks for jump mechanics, and that's it!

 Collectables and obstacles

Our character will
 travel through the level. We will add the ability for him to collect stuff such as coins.

Jake can also be killed by obstacles. To make this work, we will use the built-in Unity physics and write some easy-to-use classes.

If you search in the Unity reference documentation for MonoBehaviour
 , you will find some useful methods called automatically by Unity physics, such as OnTriggerEnter
 , OnCollisionEnter
 , and so on. I don't want to go too much into the details of how this will work, but I want you to understand the principle.

[image: Collectables and obstacles]

On the left-hand side of the image, we have our character game object. It will contain a RigidBody
 component in order to enable simple gravity physics and physics events.

As soon as the RigidBody
 collider overlaps the coin trigger, the OnTriggerEnter
 method on the MonoBehaviour
 attached to the RigidBody
 game object will be executed automatically. I
 realize that this might feel a bit complicated, so don't trouble yourself about it too much yet. Once we get that far, I will explain it in much greater detail.

 Scoring

Our game is very simple, so
 we should also keep the scoring system simple. The player's score will be calculated based on the distance traveled from the beginning of the level. The top score is technically infinite. You will learn how to store and retrieve the user's high score.

 UI – the user interface

As this book covers the
 basics, we should first explain what a user interface is. A user interface is everything on the screen that the user interacts with to control the game. So, all buttons, text, and so on are parts of a UI system.

Unity introduced a brilliant UI system with version 4.6. We will focus on the built-in system instead of using any third-party package. Why? Simply because we should learn about the built-in tools that Unity offers.

The game will be divided into a few views, as follows:

	

Main menu view

 : This is the first view that the user sees when the game is loaded:[image: UI – the user interface]

As you can see, the Main Menu view will be very simple. It will contain only the
Title

 and the
Play

 button. The
Play

 button will take the user to the next view. We will possibly add a nice background also, maybe an animated one. Let's keep the background planning open for this view. We can decide on that later.

	

In-game view

 : This
 will be visible during the gameplay only:[image: UI – the user interface]

This is more or less what we want our user to see during the actual gameplay stage. The top-left corner will be occupied by some text. One part of it will say
Score

 , and immediately underneath it we will display the current score. Analogically, the top-right corner will display the highest score ever achieved by the player.

The top center of this view seems to be a good spot for a
coin counter

 . The
coin counter

 will display a coin symbol right next to a text label that shows the currently collected coins. The view won't have any background as it will be filled by the game itself! I hope this makes sense.

	

Game Over view

 : This
 will be shown after the game, when the playable character dies:[image: UI – the user interface]

When the player dies, we will move the focus to the Game Over view, most likely displaying the elements shown in the preceding figure. A massive
Game Over

 message will be shown, followed by the score achieved and the count of coins collected. The user will have to make a choice here to
 either click on
Play

 again or go to the main menu.

 Target platform and resolution

Unity is a
 great game engine that allows us to build games on many
 platforms. One very important stage in the planning of your project is to decide what platforms you would like to support at the beginning. This is simply to know whether you can have any platform-dependent constraints. For example, if you decide to make your game available on mobile phones and tablets, you need to remember that you cannot use right-clicks of a mouse at all in your game, as you are restricted to using the touchscreen interface. There are many platforms to choose from.

[image: Target platform and resolution]

In this book, we
 will, of course, go for the easiest option available and
 choose the
PC

 ,
Mac & Linux Standalone

 platforms.

 Target screen resolution

Another good
 thing to
fix

 at the start is the game's target screen resolution. Unity does allow you to create a game that supports dynamic resolution changes. However, we will fix the resolution for now. This will make things easier. Yet again, baby steps forward! We are learning in the right order instead of jumping into deep waters.

This is it. Very simple! Almost feels as if it's not worth planning at all? Trust me, it is. The truth is that a game is created in your head first. It's best to take that vision ahead and create at least some documentation from it. Make this a rule: note down your ideas as soon as you have them.

 Summary

We covered some basic planning in this chapter. It's a very important stage, so try to remember it and don't skip it in your future projects. In the next chapter, we will get this idea going and start turning it into a real Unity project!

 Chapter 9. Starting Your First Game

This is it! We have done some basic planning. Now let's begin the project and build your first game. In this chapter, we will cover the following topics:

	Setting up a new Unity project

	Backing up

	Good practices to keep your project clean

	Preparing the player prefab

	Brief introduction to physics and the Rigidbody
 component

	Collisions and triggers

	Adding physics force on input

	Update function versus FixedUpdate

	First gameplay

 Setting up a new Unity project for our game

There are a few basic but
 important things. Create a new project in Unity. Save it in an easily accessible place. Make sure you have switched the project type to
2D

 . It will save us some time while importing assets such as Sprites or textures. There's nothing to worry about here; just make sure you select
2D

 , as in the following screenshot:

[image: Setting up a new Unity project for our game]

 Backup

Backing up isn't a direct
 topic in this book; however, I really want to highlight how important this is. Backing up your files will definitely save you from disaster at some point. Lots of things can happen, from hardware failure to rare internal Unity bugs that can ruin your project. That's why it's wise to have a copy of your project somewhere. I don't want to tell you how you should back up your files. There are many ways of doing it, and some are very simple and free.

I would love to tell you a lot about version control and ways to secure your project. However, version control is a rather advanced topic. We will leave it for now. I recommend zipping your project at least once a day and keeping it in one of the cloud storage services such as Dropbox or Google Drive.

 Keeping your project clean

Another very good
 practice that I want to teach you before we get into developing your first game is the importance of keeping your project structure clean.

Unity is very flexible in terms of file placement in the Assets
 folder. This is good but it can get you into trouble if you overuse it. Let's set up a few rules that we will follow to make sure our project won't end up being messy:

	We'll keep all Assets
 files inside subfolders and not in the root of the Assets
 folder

	We'll always name files in the best possible way

	We'll never call any files test; if you are importing a test asset, name it test_xxx
 where xxx
 explains what the file actually contain

Another tip that I can give you is to keep subfolders organized. Have a look at the following screenshot that shows examples of a bad and good project structure. On the left-hand side of the screenshot, you can see shockingly disorganized files. There are files placed in the root of the Assets
 folder and different types of files are placed next to each other. On the right-hand side of the screenshot, you can see how I want you to organize your projects. Keep
 it neat and clean. You won't regret it when your simple project grows into something bigger that is still easy to manage.

[image: Keeping your project clean]

We are ready to start
 game development now. We have a rough plan and Unity is set up for the job. Let's finally start now.

 Preparing the player prefab

Download the
 Player.unitypackage
 file. Make sure your Unity Project is open first and then double-click on the Player.unitypackage
 file:

[image: Preparing the player prefab]

Unity displays a
 window with the assets we are importing to the project. You might ask yourself a question, "Why do I need all this? This is confusing." Don't worry about it too much now. I have prepared Player.prefab
 with some assets for our Jake. In this book, we will learn about programming the game and not about preparing game art. This is the main reason we will work with prepared assets. We will go through every prefab we are importing to understand how things work. However, you will write the code to control this prefab and create the game!

After pressing
Import

 , you will notice a bunch of folders being created in Unity. We should have:

	
Animations
 : This folder contains all Unity animation files

	
Materials
 : This is for storing all materials and physics materials

	
Sprites
 : This is for
 storing all art sprite assets courtesy of http://www.kenney.nl/

Unity also imported the
 Player.prefab
 file we will be using in our scene. Have you noticed something wrong with the project structure? We have promised ourselves to never keep any files in the root of the Assets
 folder. Let's fix it by creating a Prefabs
 folder and then dragging Player.prefab
 inside the folder:

[image: Preparing the player prefab]

Now, we can add Player.prefab
 into our scene. It is best if you drag the prefab
 file and drop it on the
Hierarchy

 view.

"Hey there, I'm Jake!"

 Just appeared in the
Scene

 view. He is a cool-looking happy alien. However, we don't have any functionality programmed. This is your job. You will make him run, jump, collect stuff, and sadly also die. Excited now? I hope so.

[image: Preparing the player prefab]

Before we start
 writing the code, we will go though the components attached to the
Player

 game object. Select the
Player

 game object and look at the
Inspector

 tab.

Let's talk about the components we have attached to our Player.prefab
 . I am deliberately skipping the
 Transform
 component, as you are probably aware of its functionality already.

 Rigidbody2D

Please have a look at the
 Unity manual. According to the documentation, a
 Rigidbody2D component places an object under the control of the physics engine. So simple. We add the Rigidbody
 component to every object we want to enable physics behavior on.

Once you do that, your GameObject
 will obtain mass and will be affected by gravity. Press Play in Unity to see what will happen.

Yes, the poor alien is falling down endlessly. This is correct as we don't have any other GameObjects
 (such as ground) that Jake can stand on. We will add it soon.

 CircleCollider2D

Colliders are necessary for
 physics objects to affect each other through
 collisions and triggers. Select the
Player

 game object and zoom in on Jake in the
Scene

 view. You will see a green circle. This is our 2D collider. The physics engine won't allow any other colliders to overlap with that circle. This means that, if we have a floor, for example, Jake will stand on it!

Let's test this.

Download and import FloorShort.unitypackage
 , drag the newly imported prefab to the scene, and place it underneath our character. Press
Play

 and you will notice that Jake will drop and stay on the piece of floor we just imported.

[image: CircleCollider2D]

Notice when the colliders meet right under his left leg. This is the collision point. Jake seems to be a little bit
 sad at the moment. We will fix it by adding
 some functionality.

 PlayerController

This is the moment when
 we start writing the code for our game. Create a new C# script and call it PlayerController
 . Remember to keep your project structure nice and clean. The wise thing to do is to create a folder called Scripts
 and keep the code there. Add the PlayerController
 component to the
Player

 game object in our scene.

 User input

The first and relatively
 simple functionality we can add is the ability to jump. We already have basic physics with gravity working on the
Player

 game object. Before we can make our
Player

 game object jump, we need to know when this should happen. The user always needs some sort of interface in order to interact with the game. On the PC and Mac, in most of cases, it will be the mouse or keyboard. On mobile devices, it will be the touchscreen.

Unity gives us a lot of
out-of-the-box

 functions we can call to check whether user is trying to interact through any input.

As we are writing a standalone game, I think it best if we stick to the mouse control.

Please open the Unity
Scripting Reference

 and search for Input
 . You can have a read through the documentation on the Input
 class of jump straight to the Input.GetMouseButtonDown
 public method. Read it thoroughly.

[image: User input]

Input.GetMouseButtonDown
 returns true
 during the frame when the user pressed the given mouse button. According to the documentation, it's best if we call Input.GetMouseButtonDown
 inside the Update
 function. Let's write some code to test how it works:

[image: User input]

Let's analyze the
 code:

In line
14

 Input.GetMouseButtonDown(0)
 returns the bool
 value so we can use it in the if
 statement directly.

if(Input.GetMouseButtonDown(0))

This is in fact exactly same as the next line:

if(Input.GetMouseButtonDown(0) == true)

Line
14

 is executed in every frame over and over again when Unity is in
Play

 mode. If the user clicks on the left mouse button, the if
 statement value in line
14

 will be true in that frame and Unity will execute everything within the if
 statement code block. Complicated? If so, I'll try again.

If the user clicks on the left mouse button, Debug.Log("Left mouse button clicked!")
 will execute and a message will be displayed in the
Console

 window. Go ahead, save the file and press
Play

 in Unity. Click on the left mouse button on the
Game

 window. You will see the
Console

 populating message every time you click. We can handle the user input now and tell Jake to jump when the user wants it.

 Jump

I will be sending you to the
 Unity
Scripting documentation

 many times now to make sure you understand the code before we use it and to learn that it is always a good practice to investigate the documentation if you see something new. Nobody would ever expect you to remember the entire Unity documentation, so it's good to learn how to find stuff you need.

Search scripting reference for Rigidbody2D.AddForce
 . This is the way we will apply force on Jake. Let's add more code to PlayerController
 so it looks more or less like this:

[image: Jump]

Lots of new code! Let's go through each new line we have added.

Line
6

 should be very easy to understand for you now. It declares the float
 type variable jumpForce
 . In lines
7

 and
10

 , we will be controlling the character physics in the PlayerController
 script, so we need easy access to the RigidBody2D
 component on the same game object.

Have a look in the
Scripting Reference

 for GameObject.GetComponent
 . It searches the game object our PlayerController
 is attached to for the Rigidbody2D
 component and returns it so we can assign the rigidBody
 private variable for easy access. GetComponent
 must be called at runtime, so we are calling it in the Awake
 function. After line
10

 , we can simply say rigidBody
 . The RigidBody2D
 component will be called on playerGameObject
 .

See how simple the Jump
 function is. It's just a simple line saying, "Hey RigidBody, apply force with the direction up with this jump force." There are a few force modes we can use for other useful stuff; however, impulse make sense for jumping. We just want to kick the character up and then let him fall back to the ground.

Go ahead, press
Play

 in Unity
 and then click on the left mouse button a few times in the game view. Hey! Jake is actually jumping but something is wrong. We need him to jump higher. Experiment with the jump force in the inspector to find the right value. I think value 25
 looks good for the jump height. It's not too high and not too low.

You probably noticed already we have another issue. We are applying the jump force every time the left mouse button is clicked. This is good. However, Jake should not jump in the air. If you click on the left mouse button many times quickly, he'll simply fly away. We can fix that by adding bit more code. The right behavior will be to only jump when the character is on the ground.

Lets add the following code and edit the Jump method a little:

[image: Jump]

I will make a little exception from the rule; I won't analyze this code from top to bottom. I want to talk about the IsGrounded
 function. In programming and math in general, there isn't any simple way of asking
 the computer if the character is on the ground or in the air. Game developers must turn complex ideas and into simple programmable parts. Let's not talk about the IsGrounded
 method yet. Let's focus on line
31

 .

Search the scripting reference for Physics2D.Raycast
 and have a read through. You should see that raycast is casting a ray against colliders in the scene. It does sound very complicated. Trust me, it isn't. It will all be clear to you in few minutes. Raycast? What is the mystery about raycast? The simplest real-life example for raycast would be a laser pointer. Imagine you are holding the laser pointer and pointing at the floor. This is exactly what are we doing in line
31

 . We are basically saying "Hey Unity, shoot the laser down from this GameObject
 position and check whether the distance to hit any object on the ground layer is less than 0.2."

[image: Jump]

Have a look at this picture. The green point represents the origin of the ray we are virtually casting. The blue point is the hit point. The ray distance would be the distance between the origin and the hit point. In this case, we are casting the ray down to a maximum distance of 0.2. I have visualized that distance with a yellow line. Looking back at IsGroundedMethod()
 , we can
 see that the method is returning true if the raycast hit happens within a distance of 0.2 or less; otherwise, we return false.

I hope this is fairly clear to you now. Let's look at the parameters in the actual Raycast
 function again. Physics2D.Raycast
 has lots of different overloads, which means we can pass a few sets of parameters to the method. In this case, we are using an overload with four parameters:

	
Origin

	
Direction

	
Distance

	
layerMask

You can preview the names and
 types of the parameters if you hover your mouse for a new seconds above the Raycast
 word in the code:

.

[image: Jump]

We have already covered origin
 , direction
 , and distance
 . Let's talk briefly about layerMask
 . We can specify a filter here to detect colliders only on certain layers. This means we can set Unity to make raycast work only on specific layers. In this case, we are simply checking if
Player

 is grounded or not. So, the wise thing to do is to set raycast to work only with objects on the ground layer.

To make sure everything works as it should, we must create the ground layer.

	In Unity, navigate to
Edit

 |
Project Settings

 |
Tags and Layers

 .

	In the Inspector, write Ground
 next to
User Layer 8

 .

	Select the FloorShort
 game object in the hierarchy and set its layer to
Ground

 . Set it up as shown here:[image: Jump]

	We have the
Ground

Layer

 set up. Set up the layer mask on the
Player

 game object now. If you save the
Player

 script, you will notice a new public member variable has appeared:[image: Jump]

	Press
Play

 in Unity and perform a test jump. If everything is done correctly, jumping will work only when Jake is on the ground. We check if Jake is on the ground in line
22

 . If the IsGrounded()
 method returns true, the Jump
 method is called; otherwise, we simply ignore the user click.

 Animator

Another important topic in this book is how to animate Jake. Certain animations will be played on the character for specific events. You probably noticed Jake's face is sad during the game. Unity has a really clever system already built-in for controlling animation:
Mecanim

 . If you haven't
 heard about it yet, I encourage you to dive into Unity's documentation. Anyway, we
 won't go into too much detail about animating stuff in Unity. All I want you to know is that I have prepared the following animation clips for you:

	

Run

 : This is played when the player is grounded and alive

	

Jump

 : This is played during the jump

	

Hit

 : This is played when the player hits the obstacle and dies

To preview how animation clips are connected, open the
Animator

 view by going to
Window

 |
Animator

 and selecting the
Player

 game object from the hierarchy:

[image: Animator]

This is an
Animator

 view. As we want to focus on programming in this book, we won't discuss the details here. All I want you to notice is the
Parameters

 tab and two bool
 type parameters we have already set up. To control animations on Jake, we just need to make sure IsGrounded
 and isAlive
 bools are set to the correct values. We will do that from our PlayerController
 script.

The first step is to access the
Animator

 component in the code. We already learned about the GetComponent
 method of Unity. This time, I want to talk about another way to gain easy access to certain components. Add the following line to your code just after the line that declares the rigidBody
 variable:

public Animator animator;

Save the script, select the
Player

 game object, and look at the
Inspector

 panel. We just created a new public member of the
Animator

 type and called it animator
 . The
Animator

 field will appear in the
Inspector

 window. The next step is to assign this variable. Have a look at the hierarchy. There is a child object of the
Player

 game object called sprite
 we have the
Animator

 component on. Simply drag the sprite
 game object from the hierarchy on top of the

None (Animator)

 field. Unity will automatically recognize that you are trying to assign
Animator

 from the sprite
 game object to the Animator variable:

[image: Animator]

After a correct assignment, the
Inspector

 window will look like the preceding screenshot. Now, we have really easy access to the
Animator

 component through the animator
 variable within the PlayerController
 script. Let's put that to use. First, set the isAlive
 animator parameter to true
 , as we want Jake to be happy at the start. Add the Start
 method in PlayerController
 with the following line:

void Start() {
 animator.SetBool("isAlive", true);

At the end of the Update
 method, inset this line to set the IsGrounded
 animator parameter:

animator.SetBool("isGrounded", IsGrounded());

Save the code and press

Play

 in Unity. Jake should be set to the alive state at the start and change his face a little during the jumps. This is cool, isn't it?

 Running

Jake is very much alive now—smiling, jumping, and running... in the same place. The next task is to make
 him run forward. You probably know how we are going to approach this. We can add a constant force forward. Add a runningSpeed
 float public variable to the PlayerController
 class:

publicfloat runningSpeed = 1.5f;

Also, add the following method to apply the force:

[image: Running]

The FixedUpdate
 method is called automatically in Unity after a fixed time interval; it is not like the Update
 method, which is called every frame.

FixedUpdate
 is the best place to add constant forces to your physics. If you wish to learn more about the FixedUpdate
 method, dive into Unity's documentation. For now, all you need to understand is that this method is called all the time, and you do not need to call this yourself. In line
34

 , we are applying a Vector2
 velocity to the rigidbody
 . The new Vector2
 is a simple C# constructor, and we are passing the x
 and y
 values in brackets. Our character is moving from left to right, so we are applying force with x
 equal to the running speed and leaving velocity y
 unchanged.

Line
31

 prevents constant acceleration. We are only applying force if the x
 velocity is lower than the running speed. In human words, if the character's speed is slower than the running speed, push him forward.

Go ahead, save your script and press
Play

 in Unity. You will see Jake is moving forward now. We have implemented running and jumping functionality. I think we can easily call it our first gameplay! As you probably noticed, Jake will run forward until he falls down from the platform and will be falling forever until you restart. We are missing a game-over event here. In the next chapter, we will write the GameManager
 class to help us clamp the whole game functionality together.

 Code

This section will
 cover the code that is present in this chapter:

 PlayerController.cs

Here's the
 code:

using UnityEngine;
using System.Collections;

publicclass PlayerController : MonoBehaviour {

 publicfloat jumpForce = 6f;
 publicfloat runningSpeed = 1.5f;
 privateRigidbody2D rigidBody;
 public Animator animator;

 void Awake() {
 rigidBody = GetComponent<Rigidbody2D>();
 }

 void Start() {
 animator.SetBool("isAlive", true);
 }

 // Update is called once per frame
 void Update () {

 if (Input.GetMouseButtonDown(0)) {
 Jump();
 }

 animator.SetBool("isGrounded", IsGrounded());
 }

 void FixedUpdate() {

 if (rigidBody.velocity.x < runningSpeed) {
 rigidBody.velocity = newVector2(runningSpeed, rigidBody.velocity.y);
 }
 }

 void Jump() {
 if (IsGrounded()) {
 rigidBody.AddForce(Vector2.up * jumpForce, ForceMode2D.Impulse);
 }
 }

 publicLayerMask groundLayer;

 bool IsGrounded() {

 if (Physics2D.Raycast(this.transform.position, Vector2.down, 0.2f, groundLayer.value)) {
 returntrue;
 }
 else {
 returnfalse;
 }
 }
}

 Summary

We finally started actively working on game development. You are doing great. We wrote our basic PlayerController
 , implemented jumping physics, and even discussed triggering animations.

In the next chapter, we will start working on the GameManager
 class that will allow enclosed game loops.

 Chapter 10. Writing GameManager

We have achieved some
 basic gameplay. Now is the time to tie it all together. In this chapter, we will cover the following topics:

	What is a gameplay
 loop?

	What is a singleton
 class?

	Writing GameManager
 events?

	Implementing the first game loop

 Gameplay loops

Well done so far. You
 have added basic functionality like jumping, physics, and running to the PlayerController
 object. We are definitely going in the right direction here. The next important step is writing a neat GameManager
 class to help us control the game events like:

	
StartGame

	
GameOver

	
Restart

For basic games like
Jake on the mysterious planet

 , it is a good practice to have one instance of the GameManager
 running and controlling all main events in the game. The gameplay
 loop is simply a journey from the gameplay start to the gameplay phase and the game over phase. Time to write some code!

Let's create a new C# script and call it GameManager
 , and write the following code:

[image: Gameplay loops]

As you can see, nothing is
 very complicated. We wrote very simple methods to help us control the main game events. This script does nothing yet; however, please add it to the Unity
Scene

 . Create a new game object call it GameManager
 , and add the GameManager
 component to it. We will use it in the future.

We won't test this code in Unity yet. Let's think what can be improved. Would it be nice to have only one method to control the main events in the game? Let's edit the code a little to have something like that.

[image: Gameplay loops]

We have an enum GameState
 declaration in lines
4

 to
8

 . What is enum
 ? If you check on Google, you will be probably be directed to the Microsoft documentation. From the C# documentation:

"The enum keyword is used to declare an enumeration, a distinct type that consists of a set of named constants called the enumerator list".

Yes, this is a massively overcomplicated definition. Let's forget it and make our own, simple one by defining what we can use enum
 for.

Enum
 is a set of magic constants you can control your code with. We can define few states stored in enum
 and use it without risk of typos like with using the string. Lines
4

 to
8

 simply create a new enum
 , which works like an object and can be passed to the method as a parameter. The rest of the code should be well easy for you to understand. SetGameState
 is called with a certain GameState enum
 value. Note that we are also storing the currentGameState
 value for the future.

We have more code that
 allows us to control events in the game. Now, we need to make some real use of it. If you press
Play

 in Unity, you will see that nothing has really changed. Jake still runs the same way he did before GameManager
 was added. This is because nothing actually changed in the PlayerController
 class. PlayerController
 and GameManager
 are two separate instances of two different classes. They won't affect each other's behavior until we write some additional code.

We have already seen how to access components from different scripts by creating public member variable and dragging the game object to the field in
Inspector

 . It is a good approach for this situation. However, I want to show you something better. If there is only one instance of the object required in the project, we can use the singleton approach.

 Singleton class

By implementing the
 singleton pattern for GameManager
 , we can easily access
 it from anywhere using one single point of access. I guess you will feel really confused about this now. A simple example will help you get your head around it.

	
	

"In software engineering, the singleton pattern is a design pattern that restricts the instantiation of a class to one object. This is useful when exactly one object is needed to coordinate actions across the system."

	

	
	--

Wikipedia

Let's add the following code to the GameManager
 class. Declare a new public static variable. This code should be written right next to other public variables:

public static GameManager instance;

Then, add an Awake
 method with the following line.

void Awake() {
 instance = this;
}

That's it! This is all the code you need for a simple access to the GameManager
 instance from anywhere in your code. It is important to remember that only one instance of this component can be present in the whole Unity
Scene

 . To access any of the public code in GameManager
 from another class, you can simply call:

GameManager.instance.SomeUsefulMethodOrVariable

For example, if we want to
 read the currentGameState
 value from PlayerController
 , we will simply write:

GameState currentState = GameManager.instance.currentGameState;

I hope the singleton pattern is fairly familiar to you now. Of course, we just covered the basics. Feel free to browse the Internet and read more about the subject.

We have easy access to
 GameManager
 , with basic game events helping to control the game. When we press
Play

 in Unity, we can still see that our character is running forward without any control. We are unable to stop him at all. Let's put some restrictions in PlayerController
 so that the running and jumping behavior works only when currentGameState
 is .inGame
 . To do this, let's open PlayerController
 and add some code:

[image: Singleton class]

Lines
22

 and
34

 are identical. They contain a simple if
 statement to make the running and jumping functionality
 work only when currentGameState
 is
 inGame
 . There isn't much more to explain here. Notice how easily we can access the currentGameState
 due to the singleton approach.

 Starting the game

At the moment, our
 gameplay starts automatically after pressing the
Play

 button in Unity. This
 was convenient for testing running and jumping. If you look into the Start
 method in GameManager
 , you will notice we are calling the start game there. Let's remove that line and keep the Start
 method empty for now.

Further in the development of this game, we will have a nice
Graphic User Interface

 (
GUI

) to control the game states by pressing buttons like
Start Game

 ,
Restart

 , and so on. For now, we should focus on functionality only and leave the GUI for later. However, we do need an easy way to call the events at runtime. Why not use the keyboard for now? You probably remember using Input.GetKeyDown
 . If you don't remember much, dive into Unity Scripting Reference again and search for Input.GetKeyDown
 .

Let's say when each time user presses
S

 on the keyboard, we will fire up the StartGame
 method on GameManager
 . Before we start adding code, we need to make sure that currentGameState
 is set to inMenu
 just after pressing
Unity

 button. To achieve this, simply edit Start
 method in GameManager
 :

void Start() {
 currentGameState = GameState.menu;
}

In Unity, after pressing
Play

 , Jake has running and jumping disabled as the current state is inMenu
 . This is how we expect it to work now. Let's add more code to call the StartGame
 method on keyboard press. Write the Update
 method within the GameManager
 class:

[image: Starting the game]

With your coding experience, you can definitely understand what we are doing here. Every time the button
S

 is
 pressed on the keyboard, the StartGame()
 method
 will be called.

 Setting up input keys

One more thing that's
 missing now is adding s
 into Unity's build in InputManager
 . To do that, follow these simple steps.

	Open
InputManager

 by going to
Edit

 |
ProjectSettings

 |
Input

 .

	Increase input size of
Axis

 by 1.

	Select the bottom
Axis

 and change its settings.[image: Setting up input keys]

We have a new input button
 set up as well as the code executed each time the button is pressed. Time to test that. Press
Play

 in Unity and, after Jake drops on the platform, press
S

 on the keyboard. The StartGame()
 method will be called by Unity just after you pressed the key. The StartGame()
 method changes currentGameState
 to inGame
 so our gameplay starts.

So, we completed the first part of the simple gameplay
 loop. The user can start the game by pressing the button and the game will start. As we are calling it a loop, it will have to be a closed chain of events. To close the gameplay, we will need to add the GameOver
 event.

In our simple game, the game over event will be called when the player dies. There will be two ways to kill the player:

	By falling through the hole in the ground

	By hitting obstacles

We already have the physics functionality working, which means Jake is falling through the holes. All we need to do is create some sort of trigger telling GameManager
 , "Player fallen through the hole, game over!"

 Using triggers

We can easily configure
 any collider in Unity to work like a trigger. Triggers are very useful. In this case, we will use them to detect whether our character has fallen into the hole. I have already prepared another useful prefab for you, so we won't waste any time setting it up. The steps are as follows:

	Import KillTrigger.unitypackage
 into your project.

	Drag Kill
 trigger into your project.

	Position the KillTrigger
 game object so the red area is below the ground.[image: Using triggers]

This is all we need in the
Scene

 view. Once Jake drops down from the end of the platform, he will most certainly fall through the red trigger zone. Now, we need to write some code to describe this behavior. It will be a very simple component added to the KillTrigger
 game object.

Create new a C# script, call
 it KillTrigger
 , and write the code so it looks like this:

[image: Using triggers]

As you can see, there is nothing complicated here. We use the OnTriggerEnter2D
 method. It is called automatically by Unity whenever another 2D collider enters the trigger area.

Before we test how things work, we need to make sure out
Player

 game object has the correct tag set up. Unity uses tags to help you recognize the game objects in code. It is very useful and easy to use. Select the
Player

 game object and set its tag to
Player

 :

[image: Using triggers]

Now, we are ready to perform a test. Press
Play

 in Unity. Then, press
S

 on the keyboard to start the game. Our character will start running. If everything works properly, we should get the
Console

 message as soon as the character touches the trigger area.

Nice! We can trigger the parts of the code by physics events. Think about different things we can use triggers for, such as collecting stuff! Anyways, at the moment we just call the Debug.Log
 . What we really want here is an actual functionality.

Simple logic says if player touched the killTrigger
 , player should die. Let's go back to PlayerController
 and add a new method in.

public void Kill() {

 GameManager.instance.GameOver();
 animator.SetBool("isAlive", false);
}

Before we call this method in the PlayerController
 , we need to change PlayerController
 class itself into a singleton. We have done this already with GameManager
 . Go ahead and add the instance static variable to PlayerController
 and assign it in the Awake
 method. If you feel a bit lost now, go back to the previous part of this chapter where we learned about the singleton approach.

Now, we have a really easy Kill
 method to call when something bad happens to our character. Let's go back to the
 trigger killer
 and call it instead of Debug.Log()
 . After editing the Kill
 trigger class should look like this:

[image: Using triggers]

Test the newly written or edited code as soon as possible. Select GameManager
 in the
Hierarchy

 first. Press
Play

 in Unity and then press the
S

 key to start the game. As soon as our character falls into the trigger area, GameManager.currentGameState
 should change from inGame
 to game over.

 Restarting the game

At this moment, we have a
 very simple gameplay. We can ask the game to start and we know when the player is finished. All that's missing to complete the game loop is the ability
 to restart the game.

Restarting the game should be done by the user by pressing the button on the screen or by pressing the button on the keyboard. Let's use the same input event we already have to start the game. The main difference between starting and restarting the game is that actual conditions in the game might be much different. For example, the player's position in the game will be different. In fact, this is a good starting point. Let's make sure every time the game starts, the player's initial position is the same.

 Setting up the player starting position

Every time our
 game starts, we should reset all its conditions to the same state. We already mentioned that resetting the starting position of the

Player

 game object would be a good start. Positions in the 3D world in Unity are described using Vector3 struct
 . Go ahead and type Vector3
 in the
Scripting Reference

 for a better understanding. This is complex stuff, so don't worry if you can't get it. All you need to know now is that Vector3
 is made up of three floats describing
x

 ,
y

 , and
z

 positions in the space.

Let's go forward and perform some code changes to set up the
Player

 position. In PlayerController
 , we will:

	Add private Vector3
 type variable and call it startingPosition
 in PlayerController
 .

	Assign the startingPosition
 value taken from the
Player

 game object world space position in the Awake
 method. This way, we will always store the initial position of the
Player

 game object just after Unity starts executing the game.

	Rename the Start
 method to StartGame
 , as we will call it from the GameManager
 from now.

	Set the
Player

 position to starting position in the StartGame
 method.

You are feeling a bit confused now? We have carried out a lot of changes in one go. If you really feel lost now, here's what the first part of PlayerController
 should look like (hopefully it will make you less anxious):

[image: Setting up the player starting position]

Now, inside the
 GameManager StartGame

 method, make sure you are calling:

PlayerController.instance.StartGame();

[image: Setting up the player starting position]

Time for testing. Save both scripts and come back to Unity. If you are getting any compiler errors, please go back and double-check everything. If you don't have any errors, that's great! Go ahead and press
Play

 in Unity. Every time you hit the
S

 button on the keyboard, the
 game will restart and the
Player

 game
 object's position will be set back to its initial position.

 Code in this chapter

Code for
 GameManager.cs
 :

using UnityEngine;
using System.Collections;

public enum GameState {
 menu,
 inGame,
 gameOver
}

public class GameManager : MonoBehaviour {

 public static GameManager instance;
 public GameState currentGameState = GameState.menu;

 void Awake() {
 instance = this;
 }

 void Start() {
 currentGameState = GameState.menu;
 }

 //called to start the game
 public void StartGame() {
 PlayerController.instance.StartGame();
 SetGameState(GameState.inGame);
 }

 //called when player die
 public void GameOver() {
 SetGameState(GameState.gameOver);
 }

 //called when player decide to go back to the menu
 public void BackToMenu() {
 SetGameState(GameState.menu);
 }

 void SetGameState (GameState newGameState) {

 if (newGameState == GameState.menu) {
 //setup Unity scene for menu state
 }
 else if (newGameState == GameState.inGame) {
 //setup Unity scene for inGame state
 }
 else if (newGameState == GameState.gameOver) {
 //setup Unity scene for gameOver state
 }

 currentGameState = newGameState;
 }

 void Update() {

 if (Input.GetButtonDown("s")) {
 StartGame();
 }
 }

}

Code for
 PlayerController.cs
 :

using UnityEngine;
using System.Collections;

public class PlayerController : MonoBehaviour {

 public static PlayerController instance;

 public float jumpForce = 6f;
 public float runningSpeed = 1.5f;
 public Animator animator;

 private Vector3 startingPosition;
 private Rigidbody2D rigidBody;

 void Awake() {
 instance = this;
 rigidBody = GetComponent<Rigidbody2D>();
 startingPosition = this.transform.position;
 }

 public void StartGame() {
 animator.SetBool("isAlive", true);
 this.transform.position = startingPosition;
 }

 void Update () {

 if (GameManager.instance.currentGameState == GameState.inGame)
 {
 if (Input.GetMouseButtonDown(0)) {
 Jump();
 }
 animator.SetBool("isGrounded", isGrounded());
 }
 }

 void FixedUpdate() {

 if (GameManager.instance.currentGameState == GameState.inGame)
 {
 if (rigidBody.velocity.x < runningSpeed) {
 rigidBody.velocity = new Vector2(runningSpeed, rigidBody.velocity.y);
 }
 }
 }

 void Jump() {
 if (isGrounded()) {
 rigidBody.AddForce(Vector2.up * jumpForce, ForceMode2D.Impulse);
 }
 }

 public LayerMask groundLayer;

 bool isGrounded() {

 if (Physics2D.Raycast(this.transform.position, Vector2.down, 0.2f, groundLayer.value)) {
 return true;
 }
 else {
 return false;
 }
 }

 public void Kill() {

 GameManager.instance.GameOver();
 animator.SetBool("isAlive", false);
 }

}

Code for
 KillTrigger.cs
 :

using UnityEngine;
using System.Collections;

public class KillTrigger : MonoBehaviour {

 void OnTriggerEnter2D(Collider2D other) {

 if (other.tag == "Player") {
 PlayerController.instance.Kill();
 }
 }

}

 Summary

In this chapter, we covered the basics of the singleton approach. We also covered the gameplay loop. You are doing really well. In the next chapter, we will talk about generating the levels.

 Chapter 11. The Game Level

Let's create a nonrepetitive, endless level that the player can enjoy.

In this chapter, we will cover the following topics:

	Generating levels versus designed levels

	Creating a level chunk

	Planning LevelGenerator

	Writing LevelGenerator

	Instantiating random-level pieces at runtime

	Using triggers to create and destroy level chunks

 Generating levels versus designed levels

The next big
 chunk of development in our game is the level. A level is simply the environment that a player is placed in virtually. You are probably a gamer yourself, so I don't really need to explain this much. However, I want to talk about one thing—we need to make a decision on how we want the level to look and behave to keep the player engaged all the time.

A level can be either randomly generated during the game (for example, in
Run)

 , or have static, designed by level designer layout (for example,
Super Mario Bros

 .).

There are pros and cons to both level types. A designed level can be customized very easily and is easier to develop in general. However, the player might not like the repetitiveness of the level at all.

If we choose the generating-during-gameplay approach, we have slightly more work to do. However, the level can be endless and random every time the player sees it. The player will always be challenged by different level layouts. Let's choose this approach. If you are feeling a bit confused now, I will break it down into a few features of a level, which are as follows:

	A level is made up of level chunks. Each chunk is simply a part of the level.

	Each level chunk will be predesigned.

	The level will be generated randomly by placing the chunks one by one.

	A chunk will be placed in the front of the Player
 game object and destroyed behind the Player
 game object.

	Level chunks will be placed seamlessly next to each other so that the player has a
 feeling of continuous gameplay.[image: Generating levels versus designed levels]

Individual level chunks in the preceding illustration are represented by rectangles with black edges. The section marked in the center of the image is the viewport visible to the player through Unity's camera.

So, in simple words, the player is traveling from left to right. At a later stage, we will make the camera follow the player. When the player game object enters the trigger (the green rectangle), the oldest chunk on the left-hand side will be destroyed; at the same time, we will instantiate a new chunk in front of the player.

Great! So, this approach gives us an endless level that generates itself, and technically the player can play forever.

 Creating a level chunk

The level chunk is the
 most important part of the level. It's like a Lego piece. A single piece can't bring about much fun for the player. However, when you take a lot of Lego pieces and fix them together, you can build a structure that's really entertaining. Our level will work exactly the same way. Level chunks right next to each other will create a nice gaming experience (and fun) for the player.

Before we talk about coding the level chunks, we need to make sure that we understand the fundamental parts of each chunk:

[image: Creating a level chunk]

This is a level
 chunk. It can contain whatever you wish to add to it. It's up to you to design the chunks. You need to remember, however, that every chunk must have the following features to fit your game:

	

exitPoint—red dot

 : This is the point in 3D space where the next chunk will be placed to match this chunk

	

startPoint—greenDot

 : This is the pivot point of the parent chunk that is plugged into the exit point of the previous chunk

	

exit trigger—green trigger on the right-hand side

 : This detects when the player went through the chunk to tell LevelGenerator to destroy the old piece and instantiate a new piece

	

kill trigger—red box

 : This is an optional trigger that kills the player on contact

So, this is it! A very simple part of a level that we call a level chunk. Let's do something exciting now
 and write a -procedural level generation.

 Planning the LevelGenerator class

Remember
 that we are not writing any code without quick planning. Let's quickly think about the LevelGenerator
 script and the functionality.

We will definitely need to write methods for:

	
AddPiece
 , which is the level chunk right behind the last level chunk that is already generated

	
RemoveOldestPiece
 , to keep Unity clean of already used level chunks

	
RemoveAllPieces
 , to cleanse the level of all chunks

	
GenerateInitialPieces
 , to generate a few pieces straightaway when the game starts

Don't panic! I promise to go
 through this gradually. In fact, most of the statements that we will use in these four basic methods are already well known to you. I have used the term
piece

 instead of
chunk

 , but these are the same things. Let's stick to
piece

 instead of
chunk

 in our code.

Before we get to coding, let's prepare some assets.

Download and import LevelPieceBasic.unitypackage
 into your project. You will notice that the PlayerPieceBasic
 prefab has been imported into the prefabs
 folder. Drag this prefab into the
Hierarchy

 window. Make sure that the entire PlayerPieceBasic
 game object in the
Scene

 is placed on GroundLayer
 . Otherwise, the Player
 script won't detect that the player is on the ground. If we get this wrong, the player won't be able to jump.

At this stage, we will have quite an unorganized project hierarchy. It might be worth giving it a little cleanup. We won't use the FloorShort
 and KillTrigger
 game objects for a while, so let's delete them. Our
Hierarchy

 and
Scene

 windows should look more or less like this now:

[image: Planning the LevelGenerator class]

Let's take a look at the prefab we just imported. As you can see, there is nothing fancy here. It's just a straight floor piece without any obstacles or holes. It's perfect for a start.

If you look closely at what's inside LevelPieceBasic
 , you will notice a very simple structure, as
 we have mentioned
 before. There are lots of individual floor pieces, ExitPoint
 , and LeaveTrigger
 . At the moment, we don't have any scripts attached to them.

The key element for generating the level is knowing the position where the elements will appear. We will use the ExitPoint
 world space position for this. I understand that this might sound a bit confusing again. Let's write a very simple piece of code that we will use to manage the LevelPiece
 and hold the reference to the ExitPoint
 game object.

Create a new
 C# script, call it LevelPiece
 , and add the exitPoint
 public member, as shown here:

[image: Planning the LevelGenerator class]

That's it! No complicated code here! We are using the LevelPiece
 component just to hold the ExitPoint
 transform reference.

Add the LevelPiece
 component to the LevelPieceBasic
 game object, and assign ExitPoint
 by
 dragging and dropping the ExitPoint
 game object on top of the slot, as shown in this screenshot:

[image: Planning the LevelGenerator class]

You are probably asking yourself, "Why do we need this stuff right now?" Good question! We are just about to build the LevelGenerator
 class that will spawn level pieces in the level. The LevelPiece
 class will help us manage the pieces that are already in the game and will massively speed up their positioning correctly through the ExitPoint

 reference. Please
 be patient; everything will become clear to you soon.

 Writing LevelGenerator

We are ready to
 start writing the level generator. Woohoo! But before we proceed, let's have a recap of what functionality we have
 planned to include.

We will definitely need to write methods for:

	
AddPiece
 , the level chunk right behind the last level chunk that is already generated

	
RemoveOldestPiece
 , to keep Unity free of already used level chunks

	
RemoveAllPieces
 , to clean up the level of all chunks

	
GenerateInitialPieces
 , to generate few pieces on the game start straightaway

Let's create a new script and call it LevelGenerator
 . Let's also change the way we talk about new code here. As LevelGenerator
 is quite an important class, I want you to understand it fully. That's why we will talk about variables as of now. Later, we will move on to methods.

Now add the following code to LevelGenerator
 :

[image: Writing LevelGenerator]

I believe you are quite confident with reading this code and have probably spotted that... this code doesn't do anything? Yes, that's correct. The first part of the LevelGenerator
 class will store some crucial variables.

As you can see in
 line
7

 , we are declaring a static variable. You already know that we need this static variable for easy access using the
 singleton approach.

Lines
8

 ,
9

 , and
10

 declare some useful variables:

	
levelPrefabs
 : This is the list of all already prepared level pieces. We will store all different level pieces that we want the generator to copy from.

	
levelStartPoint
 : This is a transform. We will plug in a game object in the scene that we will use to describe where the level is starting. In simple words, this is the position of the very first level piece in the level.

	
pieces
 : This is another list of level pieces. We will use this variable to store all level pieces that are in the game at the time.

What is the difference between the levelPrefabs
 and pieces
 variables? Basically the levelPrefabs
 elements are our blueprints. Every time we ask the generator to add a new piece to the level, the generator will randomly pick one prefab (blueprint
), make a copy of it, place it in the scene, and add this copied level piece at the end of the pieces
 list. So, remember that the levelPrefabs
 list won't change during the gameplay. The pieces
 list, however, will constantly change as the player progress through the level.

 Note

Remember to use the System.Collections.Generic
 namespace if you want to use the C# List<T>.

 Commenting on your code

We just mentioned
 some very useful information about variables. Right now, it's really easy to come back to the code, look at the lines, and know what line is doing what. In the near future, however, you will notice how easy it is to get lost in the code. We are all human, and we do forget stuff very often. That's why it is a very good practice to comment on your code.

Comments are fragments of code that the compiler skips. The computer isn't really interested in anything written there; the comments are for the developer. In other words, comments are for you and other developers reading your code.

To add the simplest comment into your code in C#, you simply have to add two forward-facing slashes, followed by the comment text.

Let's add some comments into LevelGenerator
 now to make our life easier in the future, as follows:

[image: Commenting on your code]

This looks much
 better. It's much easier to look at this code now and know exactly what we are planning to do.

 Note

From now on, we will try to comment on code as much as possible.

 Creating a copy of the level piece

We are now
 ready to write a clever method that will copy levelPrefab
 and place it at the right location on the level.

Add the following method to the LevelGenerator
 class:

[image: Creating a copy of the level piece]

When creating procedurally generated levels, we want to make sure that the level is different every time the player sees it. For our solution, we simply want to pick a random element from the levelPrefabs
 .

Please take a look at Unity's reference and search for Random.Range
 . You will realize that Random.Range
 returns a randomly generated number that lies between two numbers (min
 and max
).

So, if we use Random.Range
 , passing 0
 and the count of all level prefabs, we have at our disposal a random
 integer number. We can use this number as an index from the levelPrefabs
 list. This is exactly what we are doing in line
33

 .

Great! Now we know how to generate a random number to help us pick the right levelPrefab
 to
 copy and add to the level.

 Instantiating

I have used the
 word Instantiate
 a few times before. What does it mean? Instantiating simply means creating a copy of the object. Yet again, I encourage you to go back to
Scripting Reference

 and read about Instantiate
 .

Line
36

 is where we are using Instantiate:

LevelPiece piece = (LevelPiece)Instantiate(levelPrefabs[randomIndex]);

In this line, we are creating a copy of one of the levelPrefabs
 elements stored under the randomIndex
 value. We assign the instantiated object straightaway to the local piece variable. So basically, this is the line that creates an exact copy of the prefab and places it in the scene.

When instantiating a game object, we are creating a copy of the object. Unity, however, doesn't copy its parent assignment, so the instantiated object will be created on top of the hierarchy. To correct this, we set the parent to the piece object using the transform.SetParent
 function on line
37

 .

Great! We know how to create a copy of a game object and assign a parent to it. The next step is to position the newly created level piece at the right place in our level. Let's try to understand the rest of the AddPiece
 function line by line.

 Vector3

As you know Unity a bit, have you heard of Vector3 already? If you haven't, I will explain it very briefly. Vector3
 represents a 3D vector and a point or direction. The Unity documentation says:

"This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doing common vector operations."

Feel free to study more about Vector3 at this link: http://docs.unity3d.com/ScriptReference/Vector3.html
 . If you are not a math master, you will feel confused now. All I want you to remember right now is that Vector3 can be used to store the
 position of a game object in 3D space. It contains the
X

 ,
Y

 , and
Z

 positions in 3D space. That's it! Don't bother yourself with too much information about 3D vectors at this stage; it is a massive subject.

Line
39

 is where we are creating a new Vector3 type variable to store the position we will move our level position to in the next few lines.

 Note

You can use List<T>.Count
 to access the current size of the list. List<T>.Count
 returns an int
 value.

The if
 statement on line
42

 checks whether the piece we are adding to the level is the very first piece in the level. If this statement is true, then line
44

 is executed, assigning the levelStartPoint.position
 value to the spawnPoint
 local variable.

In other words, if the pieces
 list count is 0
 , it means that we are adding the very first piece to the level, and its position will be the same as that of the levelStartPoint
 variable.

If we do not add the
 first piece to the level, the piece.Count
 value will be different from 0
 and line
48

 will be executed instead of line
44

 .

It is crucial that you understand fully how line 48 works. In this line, we are assigning the value to spawnPoint
 . What value? That's a good question. To get the position, we are looking back into the pieces
 list—at the last element stored in that list. The last element in the pieces
 list will be always the last level piece that is already placed in the level, so we can use the exitPoint.position
 value here. Remember the LevelPiece
 class? The ExitPoint
 is the position where the next piece will connect to; you learned about this a few pages back.

Great! So at this point, we know that the spawnPosition
 value should be set to either the initial position from which the level starts, or the exit point of the last piece in the level. All that we need to do now to make the newly spawned piece jump to the right position is assign its .transform.position
 value. We do that in line
51

 . Line
52

 adds the new piece to the list for easy access.

This was a tough phase in the game. I really hope you don't feel confused now. Don't worry too much if you do. Things will be much clearer when you see your LevelGenerator
 working in the
Scene

 view.

 Testing LevelGenerator

We went through
 some difficult coding recently. You might feel a bit uncomfortable still, but don't worry. The more time you spend coding, the more confidence you gain.

To test whether everything works correctly, we need to do some setup in the
Scene

 :

	Create a new GameObject
 and call it LevelGenerator
 .

	Add a LevelGenerator
 Component to the LevelGenerator
 game object.

	Create a new game object and call it startPoint
 :[image: Testing LevelGenerator]

	Position the start point game object in the scene so that it is below and behind the Player
 game object. Thus, the first generated level piece will appear directly under the Player
 .

	Assign the LevelPieceBasic
 game object as the first element on the LevelPrefabs
 array.

	Assign the startPoint
 game object into the correct slot in the LevelGenerator
 component:[image: Testing LevelGenerator]

	Ready to test? Click
 on
Play

 in Unity. If all went right, you should notice two initial level pieces generated. It should look more or less like this:[image: Testing LevelGenerator]

Congratulations! You just wrote a working part of a procedurally generated level. I get its not most exciting level
 yet. We will slowly get there; don't worry! Press
S

 on the keyboard to start the game.

 Extending the level

At the moment, Jake
 moves forward and eventually will run to the edge and drop. To avoid this, we will simply generate the next piece of the level every time the player leaves one level piece behind. We will also destroy the
old

 and already used piece of level to keep things clean.

We will use the OnTriggerEnter
 method to recognize when the player reaches the ExitTrigger
 of a certain level piece:

[image: Extending the level]

First things first; we need to make sure that our level generator contains the functionality needed to extend the level. Let's add the Remove OldestPiece void
 method to the level generator.

With your coding experience, you should easily understand line by line what we are doing in this method. If you don't, just remember that this method will remove the oldest levelPiece
 from the level.

We are getting closer to a working endless level. The last piece of the puzzle that is missing is calling the AddPiece
 and RemoveOldestPiece
 methods when the Player
 game object enters the trigger.

Let's write one more
 component that we will add to the LeaveTrigger
 game object in every LevelPiecePrefab
 . Create a new C# script and call it LeaveTrigger
 .

[image: Extending the level]

The OnTriggerEnter2D
 method is called automatically by Unity whenever RigidBody2D
 enters the 2D collider. If you look closely at the Player
 game object, you will see that one of its components is a Rigidbody
 . Where is our trigger then? We actually have a game object called LeaveTrigger
 as a child of LevelPieceBasic
 . In theory, we have all the parts needed for the OnTriggerEnter2D
 method to be called on the LeaveTrigger
 .

Add the LeaveTrigger
 component to the LeaveTrigger
 game object and click on
Play

 in Unity.

What should happen? After you press
S

 to start the game, Jake will run through the level. As soon as he enters the LeaveTrigger
 game object, we will call the AddPiece
 method to extend the level and the RemoveOldestPiece
 method to clean up the oldest piece in the level.

Please note that you can observe level generation only in the scene view. Why? Because the
Main Camera

 we are using to render what is happening is in a static position right now. We will add a
 smart script to the camera very soon to make it follow the Player
 game object:

	Download CameraFollow.unitypackage
 from the Packt hub and import it to your project.

	Add the CameraFollow
 component to the
Main Camera

 game object.

	Drag the Player
 game object into the
Target

 slot in the
Camera Follow

 component, as shown in this image:[image: Extending the level]

 The code used in this chapter

Here are the pieces of code used in the chapter:

The code for LevelPiece.cs
 :

using UnityEngine;
using System.Collections;

public class LevelPiece : MonoBehaviour {

 public Transform exitPoint;

}

The code for LevelGenerator.cs
 :

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class LevelGenerator : MonoBehaviour {

 public static LevelGenerator instance;
 //all level pieces blueprints used to copy from
 public List<LevelPiece> levelPrefabs = new List<LevelPiece>();
 //starting point of the very first level piece
 public Transform levelStartPoint;
 //all level pieces that are currently in the level
 public List<LevelPiece> pieces = new List<LevelPiece>();

 void Awake() {
 instance = this;
 }

 void Start() {
 GenerateInitialPieces();
 }

 public void GenerateInitialPieces() {
 for (int i=0; i<2; i++) {
 AddPiece();
 }
 }

 public void AddPiece() {

 //pick the random number
 int randomIndex = Random.Range(0, levelPrefabs.Count-1);

 //Instantiate copy of random level prefab and store it in piece variable
 LevelPiece piece = (LevelPiece)Instantiate(levelPrefabs[randomIndex]);
 piece.transform.SetParent(this.transform, false);

 Vector3 spawnPosition = Vector3.zero;

 //position
 if (pieces.Count == 0) {
 //first piece
 spawnPosition = levelStartPoint.position;
 }
 else {
 //take exit point from last piece as a spawn point to new piece
 spawnPosition = pieces[pieces.Count-1].exitPoint.position;
 }

 piece.transform.position = spawnPosition;
 pieces.Add(piece);
 }

 public void RemoveOldestPiece() {

 LevelPiece oldestPiece = pieces[0];

 pieces.Remove(oldestPiece);
 Destroy(oldestPiece.gameObject);
 }

}

The code for LeaveTrigger.cs
 :

using UnityEngine;
using System.Collections;

public class LeaveTrigger : MonoBehaviour {

 void OnTriggerEnter2D(Collider2D other) {

 LevelGenerator.instance.AddPiece();
 LevelGenerator.instance.RemoveOldestPiece();
 }

}

 Summary

Great! We now have all of the functionality we need for infinite gameplay. You just learned how to create reusable pieces of a level. You also learned how to populate the level pieces to create an illusion of an endlessly running game. Not bad for a beginner! Well done! In the next chapter, we will explain how to construct and implement a user interface for our game.

 Chapter 12. The User Interface

This is a great time to introduce some
UI

 (
User Interface

) into our game. We will construct and implement a simple, dynamic user interface using Unity's built-in UI system.

In this chapter, we will
 cover the following topics:

	Introducting the Unity UI

	Creating UI Views

	Connecting buttons to actions

	Switching UI views

So far, our sole focus was on learning how to code. I would like to make a little exception in this chapter and talk about coding the UI functionality as well as creating a good-looking UI. You probably already know what a user interface is, right? If not, we will cover it very briefly.

A UI is a bridge between a human and a computer program. All user interactions with your game will be happening in the user interface. In simple words, all buttons on the screen, labels, as well as mouse- and keyboard-driven events are part of the UI.

The main part of the UI
 is the
Graphical User Interface

 (
GUI

). The GUI is simply whatever is visible on the screen. All graphical elements that the user can interact with to control the game constitute the GUI:

[image: The User Interface]

This is an example of a very simple
 GUI panel that allows the user to choose what to do. It contains four simple buttons. They are easy for the user to interact with. We will also create a simple and easy-to-operate UI for our game.

 Introducting the Unity UI

There are some great UI
 solutions available on the Unity Asset store. One of the best and my favorite is
NGUI

 . I have used it for many years without any major issues. In fact, NGUI was so good that
Unity Technologies

 decided to hire its developer to create a new UI system for Unity 4.6. Currently, the Unity UI system is the best choice. It is also built-in and does not require any Asset store purchases. Let's learn how to use it.

Good to mention here is that Unity UI is a tiny part of the Unity source code that is actually open source. What does this mean? It means you can download and edit Unity UI code to fit your purpose. I understand that your coding skills are not up to that level yet, but I thought it is worth mentioning for future reference.

If you ever decide to
 play around with the UI source code, here is the link: https://bitbucket.org/Unity-Technologies/ui
 .

 Views

Before we go
 ahead with creating our UI, we need to make a few assumptions here. Remember that planning is very important. From now on, we will be using the term
view

 a
 lot. In simple words, a view is a portion of the application UI that is visible to the user at a particular time:

	Our simple game will contain three simple views: the
Menu

 view, the
InGame

 view, and the
GameOver

 view

	Each view will contain all UI elements, such as buttons, labels, and so on

	Only one view can be displayed to the user at a time

 Constructing the view UI – how to keep things clean

Unity draws
 UI elements in a way similar to its rendering of 3D meshes. What I mean by this is that all rendering happens in the 3D space. To draw UI elements, Unity requires a game object with the
Canvas

 component on it. All this new information might be a bit confusing to you, so it's best if we create a view as an example. We will start with the Menu view.

In our Menu view, we will have only a
Play

 button. The Menu view is the first view that the user will see after they launch our game. Follow these steps:

	Create a new game object and call it UI
 . It will be a root of our UI, which means that all views and UI elements will be children of this view. This will help keep the UI and the actual game separate.

	Create a new child game object and call it MenuCanvas
 .

	Add a
Canvas

 component to the MenuCanvas
 game object with the following settings:[image: Constructing the view UI – how to keep things clean]

The
Canvas

 component represents the abstract space in which the UI is laid out and rendered. All UI elements must be children of a GameObject
 that has a
Canvas

 component attached.

The reason
 we chose the
Screen Space - Overlay

 in the
Render Mode

 is that it does not require any additional camera. As we are trying to keep our first Unity game as simple as possible, this is an obvious choice.

	Add the
Canvas Scaler

 component to the MenuCanvas
 game object with these settings:[image: Constructing the view UI – how to keep things clean]

The
Canvas Scaler

 component is used to control the overall scale and pixel density of UI elements in the
Canvas

 . This scaling affects everything on the
Canvas

 , including font sizes and image borders.

Yet again, to keep things simple, we will pick the easiest scaling mode—
Scale With Screen Size

 .

 Target screen resolution

When creating a
 UI for your game, you need to decide what screen resolutions and aspect ratio you want to support. Most modern games support multiple screen resolutions in order to support a variety of games, monitors, and touchscreen devices.

We are focusing mainly on coding in this book. Creating dynamic UI layouts to fit a number of screen resolutions is possibly a subject for another book. In this case, we will stick to the easiest solution and choose the static canvas resolution as 960 pixels by 600 pixels.

 Recognizing events

All interactions
 with the user interface occur through the Event System. Actions such as button clicks, drag-and-drop UI elements, and swipe gestures require the Event System to be present in the Unity scene all the time.

The Event System is a way of sending events to objects in the application based on the input, whether a keyboard, mouse, touch, or custom input.

To add the Event system to our game, we simply navigate to
GameObject

 |
UI

 |
Event System

 , as shown here:

[image: Recognizing events]

When you add an
Event System

 component to a GameObject
 , you will notice that it does not have much functionality exposed. This is because the
Event System

 itself is designed as a manager and facilitator of communication between
Event System

 modules.

We are missing one
 more component in the view. Add the
Graphic Raycaster

 component to the Menu Canvas game object. The Raycaster looks at all graphics on the canvas and determines whether any of them have been hit.

Great! Our Menu Canvas contains all the elements necessary to render and allow user interaction with UI elements.

Our MenuCanvas
 game object should look like this:

[image: Recognizing events]

 Buttons

One of the most
 common UI elements is a simple button. Pretty much all UI interfaces on the most commonly available Unity platforms contain buttons. The simplest interaction with a button is a click. You will now learn how to construct a button in Unity UI and call a certain method in the code when the button is clicked on.

To speed up your learning
 process, I have prepared ready-to-use UI elements.

Download and import MenuViewUIElements.unitypackage
 into your Unity project, as follows:

[image: Buttons]

Unity will import a few useful assets with this package. In the
Project

 View, find Prefabs/UI/PlayButton.prefab
 and drag it directly on top of the Menu Canvas, as shown here:

[image: Buttons]

When you drop the
 prefab, the
PLAY

 button should appear on the canvas, like this:

[image: Buttons]

 A simple button

Before we talk
 about the functionality of the button, we will talk about the visual parts that make up the simple labeled button:

[image: A simple button]

 Image

Unity can very easily
 draw 2D images on the UI canvas. Select your button and take a look at the
Inspector

 window. We are using the
Image

 component on our button to give it a visual presence. In simple words, the
Image

 component gives our button a background.

 The Button component

The actual interaction with the
 button is controlled by the
Button

 component. The
Button

 control responds to a click from the user and is used to initiate or confirm an action. For more detailed information, refer to the Unity Manual. You will find tons of
 useful information and examples in it: http://docs.unity3d.com/Manual/script-Button.html
 .

 Interaction

There it is! This is our
 first button. It might not look very impressive, but it's functional. To check how it works, click on
Play

 in Unity and press the button in the game view.

What should happen is… nothing. You observe the button visually changing a little when you press it, but the game doesn't start. We need to assign an action to the button to call the part of code that we need.

All user interaction with Unity UI is driven by events. The button has one type of event already built into its component. It is the simple OnClick
 event:

[image: Interaction]

The OnClick
 event is invoked when a user clicks on the button and releases it. At the moment, the list of methods that we want to invoke when the OnClick
 event happens is empty. Hey! That's why the button isn't doing anything useful. Let's hook it up with a method and see how it works.

 The Button action

Unity's Event Systems are
 very flexible. The OnClick
 event allows you to call any public method in your code directly from the
Button

 component. Follow the few simple steps given here to assign a specific method in the code that you want to call when the UI button is clicked on by the user:

	Select the game object containing the
Button

 component.

	Press the
+

 button in the
Event

 section, as shown here:[image: The Button action]

	Drag and drop the GameObject
 containing the script with the public
 method you want to call from the event. In this case, it is the GameManager
 game object. Drop GameManager
 into the
Object

 field:[image: The Button action]

	From the function list, select the Component name and then the method name of the function that you want to be called when the button is clicked on. Since we are playing with the
Play

 button, we will call the StartGame()
 function from GameManager
 , as shown next:[image: The Button action]

 Note

If you cannot see your function on the function list, it probably means that EventSystem
 cannot access the function as it is private. Change the access modifier to
 public.

	If you have connected everything properly, the OnClick()
 event attached to the
Play

 button will look like this in the
Inspector

 window:[image: The Button action]

We now have all the bits and pieces we need for the button to work. We have set up the
Canvas

 view to render UI elements. We have an EventSystem
 to process and trigger events caused by the user. And we also have the first event called when the user presses the
Play

 button.

Great work so far. Let's test the
Play

 button! Press
Play

 in Unity and click on the green
Play

 button in the Game view.

Woohoo! It's working! Great work! As soon as you press the
Play

 button, the Event manager will invoke the
 StartGame()
 function, which is under GameManager
 , and the game will start.

The button is working great. However, something is not right. The user will expect the menu to disappear just after they've pressed the button. Let's get this sorted right away.

 Hiding and showing the Canvas

We have decided
 that the UI in our game will be made up of three simple views:

	MenuView

	InGameView

	GameOverView

We have created most
 of the MenuView. I am using two terms here, View and Canvas. In our simple game, both of them will mean the same thing. MenuCanvas is just the
 visible part of MenuView. Keep that in mind.

The simplest way to toggle the
 view's visibility is by enabling and disabling the
Canvas

 component. Let's test how it works without the code for now:

	Press
Play

 in Unity.

	Select the
MenuCanvas

 game object in the
Hierarchy

 window.

	Disable the
Canvas

 element, marked here:[image: Hiding and showing the Canvas]

	As the
Canvas

 component is responsible for rendering the UI in the scene, disabling it will
 hide the content of all UI elements within the canvas.

 Note

Note once again that disabling the
Canvas

 component will hide all UI elements within the canvas. It will also disable all events handled by the Event System.

It's been a while since we
 wrote some code. Let's implement the same behavior in the code. Add a Canvas
 type public member to the GameManager
 class and call it menuCanvas
 . We will use this reference in GameManager
 for easy access:

public Canvas menuCanvas;

Edit SetGameState
 by adding three lines that enable and disable the
Canvas

 component, as follows:

[image: Hiding and showing the Canvas]

Well done! We have a piece of basic code that is enabling and disabling the
Canvas

 for us.

 Reference exceptions

Test the code by
 pressing
Play

 in Unity and then clicking on the
Play UI

 button. The SetGameState
 function that we just added to GameManager
 should hide the MenuCanvas
 . Oops! Something is wrong. Unity is displaying an error in the
Console

 window. Something surely went wrong. Let's take a look at the red error message, which is shown here:

[image: Reference exceptions]

In your programming career, you will come across many issues with the games or applications that you are creating. I have deliberately asked you to follow my steps to cause this issue. We will learn with experience. Beginners in programming often rely on luck while sorting issues. They blindly change something, test again, and keep going in that loop until they fix the issue by pure luck or simply give up on trying. This is a very bad approach to debugging. I want you to understand what the issue is. In most cases, Unity will try to give you an accurate description of the error in the console. Once we face an issue, we will learn to understand what's wrong and only then will we be able to fix the code issues. While learning something new, we will gain experience and write flawless code.

Let's take a look at the
Console

 window again. As you can see, the console is divided into two sections:

	

The top section

 : This
 displays all error and warning messages, usually with a short description

	

The bottom section

 : This has a full description of an error or warning, with the stack trace message showing the sequence of nested functions called up to this point

Our error says:
UnassignedReferenceException: The variable menuCanvas of GameManager has not been assigned. You probably need to assign the menuCanvas variable of the GameManager script in the inspector.

Hmm... To see the exact line that is throwing up the error, double-click on the error in the console. MonoDevelop should open after a few seconds, selecting the line that is causing the issue:

[image: Reference exceptions]

The selected line is causing the issue

 Tip

Double-click on the error in the console. It will open up MonoBehaviour
 and highlight the exact line that is causing the issue.

We are not asking Unity to do much in this line. What we are trying to do is set the
Canvas

 component stored under the menuCanvas
 variable name to false
 . What can go wrong then? An unassigned reference exception means Unity is trying to use a variable that is not properly assigned. I led you to this issue deliberately, as this is a very common mistake made by beginner programmers.

Still confused? Not sure
 what I mean? Select the GameManager
 game object and take a look at your GameManager
 component in the inspector, as follows:

[image: Reference exceptions]

It should be clear to you now. We forgot to connect the
Menu Canvas

 slot with the MenuCanvas
 game object. To fix this, simply drag and drop the MenuCanvas
 game object into the
Inspector

 just as you did before.

Make sure that the

Clear on Play

 toggle in your
Console

 is switched on. Press
Play

 . The error should disappear and everything should work as expected.

Great! We have created a menu view with a simple, fully working button. The Menu view will be the first view seen by our user. It would be good to include a game name in this view.

Download and import GameLogo.unitypackage
 from the Packt hub. The GameLogo
 prefab will be imported into the Assets/Prefabs/UI
 folder. Simply drag and drop this prefab onto the MenuCanvas
 game object.

[image: Reference exceptions]

A very simple and ugly game logo will appear on the Menu Canvas!

Feel free to change
 the name of the game and anything else you wish. Hey! At the end of the day, this is your game, right!

 GameView

It's a great time to add
 more UI into the game! I have prepared the second one for you—InGameCanvas
 . Yet again, you have to download and import InGameCanvas.unitypackage
 .

Import the aforementioned package and drag the newly created InGameCanvas.prefab
 file on top of the UI game object.

InGameCanvas
 should appear as a child of the UI game object. It will be invisible for now, but don't worry about it too much at the moment. We will need to add a bit of code to manage the visibility of InGameCanvas
 and MenuCanvas
 .

As I have mentioned before, the plan is to show only one UI view at a time to the user. In this way, we will avoid confusion created by multiple layers of a UI on top of each other. When the user is using the menu, only the Menu Canvas should be visible. When the user is in the game, only inGameCanvas
 should be visible. Simple!

Let's add a few lines of code to trigger this behavior.

In the GameManager
 class, add another Canvas
 type public variable and call it inGameCanvas
 . We will use this reference to control the enabled state in exactly the same way as we did for
 menuCanvas
 . Find the SetGameState
 function and edit it so that it looks like this:

[image: GameView]

Make sure that this time you connect the inGameCanvas
 slot in the inspector to the right game object. Press
Play

 in Unity to preview the behavior. If everything works as it should, MenuCanvas
 will disappear as soon as we press the
Play

 button and inGameCanvas
 will appear.

Great! It all works fine. The views are switching properly. In the Game, view isn't doing any work at the moment. The score, collected coins, and high score always display zero values. We will take care of this in the next chapter.

I hope it's clear to you how to create additional views for our game. We are missing one more View—GameOverView
 . I would like you to import it and implement switching yourself as an exercise. You can find GameOverView
 on the Packt hub. I have named the file GameOverCanvas.unitypackage
 .

 Game Over

Testing the UI is
 very crucial. To test whether the Game Over view is presented to the user at the right time or not, we need a certain condition to happen. In this case, we are calling game-over as soon as the player dies in our game. Let's create the right conditions for this.

At the moment, we are using only one level piece, which is a straight ground level. To make things a bit more interesting and challenging, create a copy of the LevelPieceBasic
 game object and call it LevelPieceHole
 . Delete two sections of the floor and place the KillCollider
 prefab under the hole. Make sure that the KillCollider
 prefab is
 a child of the LevelPieceHole
 game object.

[image: Game Over]

The last thing to do is add the newly created level piece into LevelGenerator
 . Add LevelPieceHole
 into the Level Prefabs list inside LevelGeneratorComponent
 .

[image: Game Over]

That's it! With these few steps, we have added a new level piece into the game. To test whether the game-over
 canvas is being displayed at the right time or not, let the player fall through the hole.

 The code in this chapter

The code for GameManager.cs
 :

using UnityEngine;
using System.Collections;

public enum GameState {
 menu,
 inGame,
 gameOver
}

public class GameManager : MonoBehaviour {

 public static GameManager instance;
 public GameState currentGameState = GameState.menu;

 public Canvas menuCanvas;
 public Canvas inGameCanvas;
 public Canvas gameOverCanvas;

 void Awake() {
 instance = this;
 }

 void Start() {
 currentGameState = GameState.menu;
 }

 //called to start the game
 public void StartGame() {
 PlayerController.instance.StartGame();
 SetGameState(GameState.inGame);
 }

 //called when player die
 public void GameOver() {
 SetGameState(GameState.gameOver);
 }

 //called when player decide to go back to the menu
 public void BackToMenu() {
 SetGameState(GameState.menu);
 }

 void SetGameState (GameState newGameState) {

 if (newGameState == GameState.menu) {
 //setup Unity scene for menu state
 menuCanvas.enabled = true;
 inGameCanvas.enabled = false;
 gameOverCanvas.enabled = false;
 }
 else if (newGameState == GameState.inGame) {
 //setup Unity scene for inGame state
 menuCanvas.enabled = false;
 inGameCanvas.enabled = true;
 gameOverCanvas.enabled = false;
 }
 else if (newGameState == GameState.gameOver) {
 //setup Unity scene for gameOver state
 menuCanvas.enabled = false;
 inGameCanvas.enabled = false;
 gameOverCanvas.enabled = true;
 }

 currentGameState = newGameState;
 }

 void Update() {

 if (Input.GetButtonDown("s")) {
 StartGame();
 }
 }

}

 Summary

Well done! You are becoming proficient with using Unity's built-in UI system. In this chapter, you learned about the visual parts of the UI as well as the Event System, which allows interaction with the user. In the next chapter, we will focus on collectables and storing some data between Unity sessions.

 Chapter 13. Collectables — What Next?

Great progress so far! You are able to create and control a good-looking and functional UI. Let's move on. In this chapter, we will cover the following topics:

	Introducting collectables

	Preparing collectable prefabs

	The score and high score

	Persisting data using player prefs

	What's next? Your path to greatness

 Collectables

All objects in a game that the
 player is able to collect are called collectables. Probably, you are a gamer yourself and this concept should be fairly familiar to you. In our game, we will add collectable coins scattered in the level's pieces for the player to collect. I am not going to talk too much about what collectables are and why it is good to use them as I believe it is pretty obvious. Let's skip all that and make a simple plan:

	Our collectables—let's call them coins from now on—will be collected on contact with the player game object

	We will write the Collectable
 class to manage coin behavior

	For every coin collected, we will count and increment the number of collected coins on the UI

	The count of total collected coins will restart with the new game

 The coin prefab

To make things a little
 easier, I have already prepared the visual part of our coin. Download Coin.unitypackage
 and import it into your project:

[image: The coin prefab]

Great job! Now we drag the

Coin

 prefab into the
Hierarchy

 view so that we can take a look at it. As mentioned before, I prepared this prefab visually. I have added
Sprite

 Renderer
 to the game object and linked it with the coin sprite. I have also created a simple spin animation controlled by the
Animator

 . Don't worry about it right now.

Now, you have to pick up from where I finished. Most collectables react with the environment through the physics of the game. We can use the 2D trigger here to react with the Player
 Game Object Rigidbody2D
 component. This is the exactly the same way we inserted LeaveTriggers
 into the game previously.

Select the coin and add the CircleCollider2D
 component. A green circle will appear around the coin, representing the triggering area. Make sure you tweak the radius value to roughly match the size of the coin. In my case, a value of 0.35 works great.

Another requirement that we need to fulfill to make the trigger work is ticking the IsTrigger
 checkbox. That's it! Our coin is ready to process trigger events. All that we need to do now is write some code to manage its behavior:

[image: The coin prefab]

 The Collectable class

Let's plan what
 behavior we want from our collectable. We will need the following methods:

	
Show()
 : This will show the coin and activate its collider

	
Hide()
 : This will hide the coin and deactivate its collider

	
Collect()
 : This is called at the moment of collection of the coin

	
OnTriggerEnter2D
 (Collider2D other): This is called by Unity's physics system when the collider enters our coin's trigger

Create a new C# script, call it Collectable
 , and write the following code:

[image: The Collectable class]

Add the Collectable

 script to your coin
 prefab. We are ready to test it now! Make the coin
 prefab a child of one of the level chunks. Create a few copies of the coin next to each other so that you can test them better.

[image: The Collectable class]

Let's click on
Play

 in Unity and see what happens. You should notice that the coin disappears upon contact with a Player
 Game Object. That's exactly what we wanted. Well done!

The last thing to do now is counting the collected coins. We will store the number of coins collected in the
 GameManager
 class and increment the int
 number every time a coin is collected. Let's add some functionality to the GameManager
 class:

	Add the collectedCoins
 public member:
 public int collectedCoins = 0;

	Add a public
 method that you can call when a coin is collected:
public void CollectedCoin() {
 collectedCoins ++;
}

What this method does is increment the collectedCoins
 variable by 1
 every time the ++
 operator is used.

	In the Collectable
 class, add a single line calling CollectedCoin()
 from the Collect
 method, as follows:[image: The Collectable class]

Now click on
Play

 in
 Unity. Let's take a quick look to check whether it works. Select
GameManager

 and press the
Play

 button. You will notice that the number of collected coins in the Unity
Inspector

 increases every time a new coin is collected. Great! We now know that our collectedCoin
 variable works. However, we still need to update the label value in the gameView
 so that our user can see exactly how many coins they have collected.

It's a good idea to keep UI-controlling code separate from the GameManager
 . Let's write a short script that controls the UI on the
Game View

 . Create and add this component to the InGameCanvas
 game object:

[image: The Collectable class]

Once you have the
View In Game

 component added, drag the coinLabel
 game object into the
coinsLabel

 slot:

[image: The Collectable class]

The
View In Game

 component should look like this:

[image: The Collectable class]

What our code does is update the .text
 string value on the label. By doing this, the text on the UI changes and is always up-to-date with the collectedCoins
 value in
Game Manager

 .

 High score and persisting data

Pretty much every
 game has some sort of scoring system. You will now learn how to write simple code that calculates the score based on the distance the Player has traveled since the start of the level. We will then use this score value and store it in Unity PlayerPrefs
 to make sure that the value is remembered between sessions. PlayerPrefs
 is a very useful built-in Unity class that allows us to store and access data between Unity sessions.

Let's write the following method in the Player
 class:

[image: High score and persisting data]

We have finally come to a real-life example of a method that returns something. As you can see, the GetDistance()
 method returns a float value—the distance between the starting point and the current position of the player game object.

I won't go too much into the detai here. I encourage you to dive into the Unity
Scripting Reference

 and search for Vector2.Distance
 to understand exactly how it works.

Having the GetDistance()
 method working, we can now call it from any place in the code and get the accurate distance traveled by the Player
 game object. The value returned by this method will
 be used directly as the player's score. Now is a good time to connect the score UI label directly to the GetDistance()
 method.

In the ViewInGame
 class, we declare the scoreLabel Text
 variable and add a new line to the Update()
 method just above the line where we are assigning the coin label.

[image: High score and persisting data]

Notice line
12

 . We are assigning the scoreLabel.text
 value by taking it directly from the float value returned from the PlayerController.instance.GetDistance()
 method. I hope this is not confusing! If it is, please remember what we said in the very early chapters of this book. A function can be the substitute for a value. In this case, when we are calling GetInstance()
 , we are getting back an int
 number straightaway. All we need to do is convert that float into a string. To do this, we use the ToString()
 function right away.

You are probably wondering, "What is the magical f0
 parameter that we are passing in ToString("f0")
 ?" It describes how we want our string to be formatted. In this case, we just want a whole number, without any decimals. I encourage you to read more online about C# ToString()
 formatting.

The last thing to do is connect
 the scoreLabel
 variable with the actual scoreLabel
 game object in the
Hierarchy

 view. When you are ready, click on
Play

 in Unity. The score label in the top-left corner will be showing the correct score value. Great job!

What you just learned is how to convert a float value to a string and display the value in the UI for the user.

We are getting close to finish writing the functionality for the inGameView
 . We will now work on persisting data. What does this mean? We want the user's high score to be remembered between game sessions. So, if the user closes the game and then opens it again, their high score will not be reset to zero. Rather, will remember their best score.

Unity does have an easy-to-use system for this. Let's jump into the scripting reference and search for PlayerPrefs
 .

[image: High score and persisting data]

The preceding screenshot
 has been taken from http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
 . Let's take a look at the list of static functions again, specifically at the SetFloat
 and GetFloat
 functions:

	
SetFloat(string key, float value)
 : This sets the value of the preference identified by the key.

	
public static float GetFloat(string key, float defaultValue = 0.0F)
 : This returns the value corresponding to the key in the preference file, if it exists. If it doesn't exist, it will return defaultValue
 .

In simple words, we can ask Unity to save the float value accessible under the string key. Let's jump straight into our code. Open the PlayerController
 script and add the high-score-saving code.

[image: High score and persisting data]

What are we doing here? At the moment when the player is killed, we check whether the current distance traveled is greater than the float value stored under the high score key in Player
 prefs. If the distance is greater, it means the user has achieved a new high score, so Unity proceeds to line
79

 and overrides the value in PlayerPrefs
 . Saving done!

Now, we need to make sure that highscoreLabel
 is displaying the correct value all the time. Yet again, add a new
 Text
 type variable, call it highscoreLabel
 this time, and add a line to the Update
 function.

 Note

Make sure that all public member slots are connected to the correct game objects to avoid
Null Reference Exceptions

 .

[image: High score and persisting data]

Our high score should work now. Play a game. Let the character die, restart the game, and see whether the value is
 displayed in the-top right corner.

 The Update function and UI values

There is one thing I
 want to mention here. As you must have noticed, we are updating all UI values in the Update
 function. As the Update
 function is called on every frame, we are wasting a lot of computation power there. This isn't the most efficient
 or correct way of assigning these values for every frame. Ideally, we change the text value only when we need to; for example, when the value actually changes. I decided to show you this way because it's definitely the simplest way. As this book is written for you, a beginner in programming, this way just works.

 What next?

Well done! You survived reading your first programming book! We can easily say that you are not suffering from
scriptphobia

 anymore. You have now learned how to write, read, and, most importantly, understand C# code in Unity. The next step for you is very easy—decide what you want to do with your skills! I encourage you to keep working on the game we have started together, or you can start a new one from scratch! The sky is the limit!

Remember, however, that you will gradually gain experience. It would be wise to keep your projects simple and work on them from start to finish. There is nothing better for a game developer than finishing their very own project and publishing it!

Two very good places to show off your games are the Unity forums and the
Unity Developers Facebook

 public group. We would love you to join our community. Yet again, well done! Keep working hard and you will find your very own path to greatness.

 The code in this chapter

Let's take a look at the code again to make sure we are on the same page.

The code for Collectable.cs
 :

using UnityEngine;
using System.Collections;

public class Collectable : MonoBehaviour {

 bool isCollected = false;

 void Show() {
 this.GetComponent<SpriteRenderer>().enabled = true;
 this.GetComponent<CircleCollider2D>().enabled = true;
 isCollected = false;
 }

 void Hide() {
 this.GetComponent<SpriteRenderer>().enabled = false;
 this.GetComponent<CircleCollider2D>().enabled = false;
 }

 void Collect() {

 isCollected = true;
 Hide();
 GameManager.instance.CollectedCoin();
 }

 void OnTriggerEnter2D(Collider2D other) {

 if (other.tag == "Player") {
 Collect();
 }
 }
}

The code for playerController.cs
 :

using UnityEngine;
using System.Collections;

public class PlayerController : MonoBehaviour {

 public static PlayerController instance;

 public float jumpForce = 6f;
 public float runningSpeed = 1.5f;
 public Animator animator;

 private Vector3 startingPosition;
 private Rigidbody2D rigidBody;

 void Awake() {
 instance = this;
 rigidBody = GetComponent<Rigidbody2D>();
 startingPosition = this.transform.position;
 }

 public void StartGame() {
 animator.SetBool("isAlive", true);
 this.transform.position = startingPosition;
 }

 void Update () {

 if (GameManager.instance.currentGameState == GameState.inGame)
 {
 if (Input.GetMouseButtonDown(0)) {
 Jump();
 }
 animator.SetBool("isGrounded", isGrounded());
 }
 }

 void FixedUpdate() {

 if (GameManager.instance.currentGameState == GameState.inGame)
 {
 if (rigidBody.velocity.x < runningSpeed) {
 rigidBody.velocity = new Vector2(runningSpeed, rigidBody.velocity.y);
 }
 }
 }

 void Jump() {
 if (isGrounded()) {
 rigidBody.AddForce(Vector2.up * jumpForce, ForceMode2D.Impulse);
 }
 }

 public LayerMask groundLayer;

 bool isGrounded() {

 if (Physics2D.Raycast(this.transform.position, Vector2.down, 0.2f, groundLayer.value)) {
 return true;
 }
 else {
 return false;
 }
 }

 public void Kill() {
 GameManager.instance.GameOver();
 animator.SetBool("isAlive", false);

 //check if highscore save if it is
 if (PlayerPrefs.GetFloat("highscore", 0) < this.GetDistance()) {
 //save new highscore
 PlayerPrefs.SetFloat("highscore", this.GetDistance());
 }
 }

 public float GetDistance() {
 float traveledDistance = Vector2.Distance(new Vector2(startingPosition.x, 0),
 new Vector2(this.transform.position.x, 0));
 return traveledDistance;
 }

}

The code for ViewInGame.cs
 :

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class ViewInGame : MonoBehaviour {

 public Text scoreLabel;
 public Text coinLabel;
 public Text highscoreLabel;

 void Update() {
 if (GameManager.instance.currentGameState == GameState.inGame) {
 scoreLabel.text = PlayerController.instance.GetDistance().ToString("f0");
 coinLabel.text = GameManager.instance.collectedCoins.ToString();
 highscoreLabel.text = PlayerPrefs.GetFloat("highscore", 0).ToString("f0");
 }
 }
}
The code for GameManager.cs:
using UnityEngine;
using System.Collections;

public enum GameState {
 menu,
 inGame,
 gameOver
}

public class GameManager : MonoBehaviour {

 public static GameManager instance;
 public GameState currentGameState = GameState.menu;

 public Canvas menuCanvas;
 public Canvas inGameCanvas;
 public Canvas gameOverCanvas;

 public int collectedCoins = 0;

 void Awake() {
 instance = this;
 }

 void Start() {
 currentGameState = GameState.menu;
 }

 //called to start the game
 public void StartGame() {
 PlayerController.instance.StartGame();
 SetGameState(GameState.inGame);
 }

 //called when player die
 public void GameOver() {
 SetGameState(GameState.gameOver);
 }

 //called when player decide to go back to the menu
 public void BackToMenu() {
 SetGameState(GameState.menu);
 }

 void SetGameState (GameState newGameState) {

 if (newGameState == GameState.menu) {
 //setup Unity scene for menu state
 menuCanvas.enabled = true;
 inGameCanvas.enabled = false;
 gameOverCanvas.enabled = false;
 }
 else if (newGameState == GameState.inGame) {
 //setup Unity scene for inGame state
 menuCanvas.enabled = false;
 inGameCanvas.enabled = true;
 gameOverCanvas.enabled = false;
 }
 else if (newGameState == GameState.gameOver) {
 //setup Unity scene for gameOver state
 menuCanvas.enabled = false;
 inGameCanvas.enabled = false;
 gameOverCanvas.enabled = true;
 }

 currentGameState = newGameState;
 }

 void Update() {

 if (Input.GetButtonDown("s")) {
 StartGame();
 }
 }

 public void CollectedCoin() {
 collectedCoins ++;
 }

}

 Summary

In this chapter, you learned about collectables, counting the player's score, and persisting data.

You can definitely call yourself a game developer now. You've learned so much recently. I bet you want to take your skills further. I really hope you enjoyed this book and will leave positive reviews about the book, or even recommend it to someone directly. Thanks!

Index

A

	access modifier
	about / Changing variables

	animator
	about / Animator

	running / Running

	array
	about / What is an array?

	declaring / Declaring an array

	versus List<T> / List<T> versus arrays

	data, retrieving / Retrieving the data from the Array or List<T>

	size, checking / Checking the size

	data, searching / Searching for data inside an array

	ArrayList
	about / ArrayList

	Awake() method
	about / The Start(), Update(), and Awake() methods and the execution order

B

	behavior
	teaching, to GameObjects / Teaching behavior to GameObjects

	buttons
	about / Buttons

	simple button / A simple button

	image / Image

	component / The Button component

	component, URL / The Button component

	interaction / Interaction

	action / The Button action

C

	C# documentation
	about / C# documentation – where to find it? Do I need it at all?

	C# script files
	working with / Working with C# script files

	issues / Lots of files can create a mess

	creating / Creating a C# script file

	C# statements
	writing / Writing C# statements properly

	canvas
	hiding / Hiding and showing the Canvas

	showing / Hiding and showing the Canvas

	CircleCollider2D / CircleCollider2D

	class
	defining / Introducing the class

	inheritance / Inheritance

	class definition
	about / The class definition – highlighted in green

	code
	PlayerController.cs / Code

	Code Block 3 / Variable scope – determining where a variable can be used

	code decision
	creating / Making decisions in code

	NOT operator used, for changing condition / Using the NOT operator to change the condition

	conditions, checking in if statement / Checking many conditions in an if statement

	else if used, for making complex decisions / Using else if to make complex decisions

	making, based on user input / Making decisions based on user input

	coin prefab
	about / The coin prefab

	collectable class / The Collectable class

	collectables
	about / Collectables

	components
	used, for communicating / Components that communicate using dot syntax

	custom constructors
	about / Custom constructors

D

	data
	retrieving, in arrays / Retrieving the data from the Array or List<T>

	retrieving, in List<T> / Retrieving the data from the Array or List<T>

	searching, in array / Searching for data inside an array

	dictionaries
	about / Dictionaries

	values, accessing / Accessing values

	Hashtable content, examining / How do I know what's inside my Hashtable?

	dots
	defining / What's with the dots?

	dot syntax
	used, for components / Components that communicate using dot syntax

F

	foreach loop
	about / The foreach loop

	for loop
	about / The for loop

	initializer / The for loop

	condition / The for loop

	iterator / The for loop

	example / An example

	versus while loop / while versus for loops

G

	game
	about / Your first game – avoiding the trap of the never-ending concept

	idea / The idea

	mechanics / Game mechanics and core components

	core components / Game mechanics and core components

	complex idea, breaking into smaller parts / Breaking a complex idea into smaller parts

	target platform / Target platform and resolution

	resolution / Target platform and resolution

	target screen resolution / Target screen resolution

	starting / Starting the game

	restarting / Restarting the game

	player starting position, setting up / Setting up the player starting position

	game, building
	about / Jake on the mysterious planet – the feature list

	procedural level generation / Procedural level generation

	2D character, animated / An animated 2D character

	physics / Physics

	mouse and touch controls / Mouse and touch controls

	collectables and obstacles / Collectables and obstacles

	scoring / Scoring

	user interface (UI) / UI – the user interface

	GameManager
	singleton class / Singleton class

	game, starting / Starting the game

	game, restarting / Restarting the game

	player starting position, setting up / Setting up the player starting position

	code / Code in this chapter

	GameObject
	script, adding to / Adding our script to GameObject

	GameObjects
	behavior, teaching to / Teaching behavior to GameObjects

	gameplay loop
	about / Gameplay loops

	GameView
	about / GameView

	Game Over / Game Over

	golden rule
	about / Naming a variable

H

	Hashtable
	Add function / Dictionaries

	high score
	about / High score and persisting data

I

	input keys
	setting up / Setting up input keys

	Inspector, Unity
	component properties / Understanding component properties in Unity's Inspector

	variables, turning to component properties / Variables become component properties

	script name changes / Unity changes script and variable names slightly

	variable name changes / Unity changes script and variable names slightly

	property�s value, changing / Changing a property's value in the Inspector panel

	public variables, displaying / Displaying public variables in the Inspector panel

	instance
	about / Instance? What is it?

	instantiating
	about / Instantiating

	IsNumberEven method / Loops in statements

	items
	storing, in List / Storing items in the List

L

	LearningScript
	opening, in MonoDevelop / Opening LearningScript in MonoDevelop

	level
	extending / Extending the level

	level, versus designed levels
	generating / Generating levels versus designed levels

	level chunk, creating / Creating a level chunk

	LevelGenerator class, planning / Planning the LevelGenerator class

	LevelGenerator, writing / Writing LevelGenerator

	code, commenting on / Commenting on your code

	LevelGenerator
	writing / Writing LevelGenerator

	testing / Testing LevelGenerator

	LevelGenerator class
	planning / Planning the LevelGenerator class

	level piece
	copy, creating / Creating a copy of the level piece

	List
	items, storing / Storing items in the List

	operations / Common operations with Lists

	List<T>
	versus arrays / List<T> versus arrays

	data, retrieving / Retrieving the data from the Array or List<T>

	size, checking / Checking the size

	loops
	about / Introduction to loops

	foreach loop / The foreach loop

	for loop / The for loop

	using, in statements / Loops in statements

	breaking / Breaking the loop

M

	Mecanim / Animator

	method
	about / What is a method?

	used, instead of function / Using the term "method" instead of "function"

	names, as substitutes / Method names are substitutes, too

	value, returning from / Returning a value from a method

	method parameters
	about / Understanding parentheses – why are they there?

	methods
	used, in script / Using methods in a script

	naming / Naming methods properly

	method names, beginning with uppercase letter / Beginning method names with an uppercase letter

	multiword names used, for method / Using multiword names for a method

	parentheses, including / Parentheses are part of the method's name

	defining / Defining a method the right way

	minimum requirements / The minimum requirements for defining a method

	using, with objects / Using methods with objects

	Microsoft's C# scripting documentation
	reference link / C# documentation – where to find it? Do I need it at all?

	modulo
	about / Modulo

	MonoDevelop
	LearningScript, opening in / Opening LearningScript in MonoDevelop

	MonoDevelop, and Unity
	C# files, syncing between / Syncing C# files between MonoDevelop and Unity

	MonoDevelop code editor
	about / Introducing the MonoDevelop code editor

	multiword variable names
	using / Using multiword variable names

N

	namespace
	about / The namespace – highlighted in blue

O

	Object-Oriented Programming (OOP)
	about / Using the term "method" instead of "function"

	objects
	working with / Working with objects is a class act
 , Few facts

	example / Example

	instantiating / Instantiating an object

	methods, using / Using methods with objects

	OOP / Bored yet?

	operations, List
	Add / Common operations with Lists

	Remove / Common operations with Lists

	Clear / Common operations with Lists

	Contains / Common operations with Lists

	Insert / Common operations with Lists

	ToArray / Common operations with Lists

	overloading
	about / Overloading

P

	parameters
	defining / How many parameters can a method have?

	parameters, method
	specifying / Specifying a method's parameters

	parentheses
	defining / Understanding parentheses – why are they there?

	Play button
	clicking / Click on Play!

	PlayerController
	about / PlayerController

	PlayerController.cs / PlayerController.cs

	player prefab
	preparing / Preparing the player prefab

	Rigidbody 2D / Rigidbody2D

	CircleCollider2D / CircleCollider2D

	private variables
	about / Private variables

	Project tab
	about / Why does my Project tab look different?

	public variables
	displaying, in Inspector panel / Displaying public variables in the Inspector panel

R

	Rigidbody 2D / Rigidbody2D

S

	script
	adding, to GameObject / Adding our script to GameObject

	methods, using / Using methods in a script

	script files, creating in Unity
	issue, catching / Watching for possible gotchas while creating script files in Unity

	scriptphobia
	dealing with / Dealing with scriptphobia

	singleton class
	about / Singleton class

	sprites
	URL / Preparing the player prefab

	Start() method
	about / The Start(), Update(), and Awake() methods and the execution order

	synchronization
	fixing / Fixing synchronization if it isn't working properly

T

	tools
	defining / Paper and pencil are powerful tools 

	triggers
	using / Using triggers

U

	UI values
	and Update function / The Update function and UI values

	Unity
	downloading / Downloading Unity

	download link / Downloading Unity

	free license, obtaining / Obtaining a free license

	reference link / Using Unity's documentation

	Unity community
	about / The Unity community – asking others for help

	Unity documentation
	about / Using Unity's documentation

	accessing / Using Unity's documentation

	Unity Forums
	reference link / The Unity community – asking others for help

	Unity Project
	setting up, for game / Setting up a new Unity project for our game

	backing up / Backup

	project, keeping clean / Keeping your project clean

	Update() method
	about / The Start(), Update(), and Awake() methods and the execution order

	Update function
	and UI values / The Update function and UI values

	user input
	about / User input

	jump / Jump

	User Interface (UI)
	about / Introducting the Unity UI

	URL / Introducting the Unity UI

	views / Views

	buttons / Buttons

	canvas, hiding / Hiding and showing the Canvas

	canvas, showing / Hiding and showing the Canvas

	reference exceptions / Reference exceptions

V

	value
	returning, from method / Returning a value from a method

	returning / Returning the value

	example / Example

	variable
	defining / Understanding what a variable is and what it does
 , Creating a variable and seeing how it works

	naming / Naming a variable
 , Naming your variables properly

	name, substitute for value / A variable name is just a substitute for a value

	creating / Creating a variable and seeing how it works

	working / Creating a variable and seeing how it works

	declaration / Declaration

	assignment / Assignment

	naming conventions / Beginning variable names with lowercase

	declaring / Declaring a variable and its type

	type / Declaring a variable and its type

	built-in variable types / The most common built-in variable types

	declaring, while value assignment / Assigning values while declaring a variable

	declaring, places / Where you declare a variable is important

	scope, determining / Variable scope – determining where a variable can be used

	variables
	changing / Changing variables

	public variables, using / Watching for a possible gotcha when using public variables

	Vector3
	about / Vector3

	URL / Vector3

	views
	about / Views

	view UI, constructing / Constructing the view UI – how to keep things clean

	target screen resolution / Target screen resolution

	events, recognizing / Recognizing events

W

	while loop
	about / The while loop

	versus for loops / while versus for loops

OEBPS/Image00101.jpg
& using UnityEngine
L using System. (a\\eniuns,

E] public class KillTrigger : MonoBehaviour {

Bl void OnTriggerenter2D(Collider2o other) {

if (other.tag = "Player") {
Play rCantm\\er.instance Kill0);

OEBPS/Image00100.jpg
© inspector

OEBPS/Image00103.jpg
//called to start the game

Bl public void StartGame() {
PlayerController. instance.StartGame();
SetGanestate GaneState. inGane) ;

OEBPS/Image00102.jpg
public class PlayerController : MonoBehaviour {
public static PlayerController instance;

public float jumpForce = 6
public float runningSpeed = 1.5f;
public Animator animator;

private Vector3 startingPosition;
private Rigidbody2D rigidsody;

void Avake() {
instance = this;
rigidBody = GetConponent<Rigidbody20>();
= this. transf itd

public void StartGame() {
animator.SetBool(*isAlive", true);
this. transforn.position = startingPosition;

OEBPS/Image00105.jpg

OEBPS/Image00104.jpg

OEBPS/Image00097.jpg
Vs

Name
Descriptive Nam
Descriptive Neg:
Negative Button
Positive Buttan

Alt Negative Butt
Alt Positive Buttc

Joy Num

1000
0.001
1000
eyorvowseuman ¥

Xaxs g
(Gerwioton Fom M Toystels %)

OEBPS/Image00096.jpg
B void Update() {

if (Input.GetButtonDown("s")) {
StartGane();

OEBPS/Image00099.jpg
[using UnityEngine
L using System. ca\\eniuns,

E] public class KillTrigger : MonoBehaviour {

Bl void OnTriggerenter2D(Collider20 other) {

if (other.tag = "Player") {
Debug.Log("Player collider entered the trigger

OEBPS/Image00098.jpg

OEBPS/Image00112.jpg
om

OEBPS/Image00111.jpg
public void AddPiece() {

pick the random numbe
A s = o Range(0, levelPrefabs.Count);

//mstantatelcopylotiencomlowel pretoblend [store} (< nlplecelvarisole
LevelPiece piece = (Le i
e st i SetPareﬂt(tnxs.transfarm, false

Vector3 spawnPosition = Vector3.zero;

//position

levelstartPoint.position;

{
//take exit point from last piece as a spawn point to new piece
~1]. exitPoi

}

piece. transform. position = spawnPosition;
pieces.Add (piece)

OEBPS/Image00114.jpg

OEBPS/Image00113.jpg
© Inspector Lighting
W ¥ LevelGenerator

Tag (Untagged B]
J Transform LEN
Position X 0 Yo zo0
Rotation X 0 Yo zo0
Scale X1 v/8 Al
[@ ¥ Level Generator (Script) LAY
Script B LevelGenerator o
Level Prefabs.

size 1

Element 0 B LevelPieceBasic (Leve ©
Level Start Point 2 startPoint (Transforn ©
Pieces.

[r——
"Add Component

OEBPS/Image00115.jpg
B public void RemoveOldestPiece() {
Levelpiece oldestPiece = pieces[0];

pieces.Remove (oldestPiece);
Destroy (oldestpiece.ganeObject) ;

OEBPS/Image00106.jpg
Hierarchy

#Scene #2 Animator
BT Creae - @

Shadea) 19 Giamos - @
GameManager
Main Camera
Player

OEBPS/Image00108.jpg
© inspector Lighting
7 Levepiecesasic
Tag [vgged T Layer eRur 7

Prefab [Seleer T Rever T AgEy
J Transform

Position 73780 Y 1196 2 0
Rotation X0 Yo z0

Scale X1 Y1 z1

B Level Piece (Script) LAY
Script B Levelpiece ©

Exit Point J Exitpoint (Transform) ©

OEBPS/Image00107.jpg
[using UnityEngine;
L using System.Collections;

Bl public class LevelPiece : MonoBehaviour {

public Transfor exitPoint;

OEBPS/Image00110.jpg
[using UnityEngine;
Lus ng System.Collection:
ueing System.Collections. Generics

Bl public class LevelGenerator : MonoBehaviour {

public static LevelGenerator instance;
7731 level pieces blueprints used to copy f
Public List<Levelpicces leveiPretabs = now ListeLevelPisces();
ry first level piece
A i BB
that are currently in the leve
§lin it ctThiece picess e Liseeveipieces();

B void Awake()
}» instance = this;
¥

OEBPS/Image00109.jpg
B using UnityEngine;
L using System. (a\\e -ion:
ueing System.Collections Generics

E] public class LevelGenerator :

MonoBehaviour {
public static LevelGenerator instanc
public List<LevelPiece> levelPrefabs
public

Transforn levelStartPoint
public List<LevelPiece> pieces

new List<LevelPiece>();

ew List<levelPiece>();
void Awal

0 {
instance = this

OEBPS/Image00079.jpg

OEBPS/Image00078.jpg
R

5 Animations

B sprite.controller
9 Materials
B NoFriction.physicsMaterial2D.
® Player prefab
85 Sprites
85 platformer-pack-redux-360-assets

5 Players
5 1281256
5 Green
alienGreen_hit.png
alienGreen_jump.png
alienGreen_walklpng
alienGreen_walk2.png

499499499499 499949494+¢
§9999999333333333313

AT Nene Cancel | (Tmport

OEBPS/Image00081.jpg

OEBPS/Image00080.jpg
© inspector

a
) Player Mstaric v
Tag (Fiyer Layer B
prefab et et =
v Transform L
Position 85367¢ 2 0
Rotation xo0 z0
Scale x1 z1
¥4 Rigidbody 20 L
wass 2
Linear Drag 0
Angular Drag 0
Gravity Scale 27
Is Kinematic m
Interpolate)
Sleeping Mode T
Colision Detection [Bier@e
> Constraints
v O W circle Collider 2D
[edi Colider
Material NoFriction o
1s Trigger m
Used by Effector M)
Offset xo v o0s

Radius s

OEBPS/Image00083.jpg
O us InityEngine
L using System. (a\\eniuns,

E] public class PlayerController : MonoBehaviour {

77 Use this for initialization
void Start () {

¥

Update is called once per frame
[

T
I L Update

1¢ (Topet: Gettouseuttonnaun(6)) {
Debug.Log(“Left mouse button clicked:!

OEBPS/Image00082.jpg
Input.GetMouseButtonDown

public static bool GetMouseButtonDown(int button),

OEBPS/Image00085.jpg
void Jump() {
if (1scrounded()) ¢
1gidBody. * jumpForce, . Inpul

}

public LayerMask groundLayer

bool. IsGrounded() {

if (Physics2D. this. transfy ition, Vector2.down, 8.2f, groundLayer.value)) {
return true;

else {
return false;

OEBPS/Image00084.jpg
Uity Eny Inc|
T ueing Systen.Collections;

public class PlayerController : MonoBehaviour {

pllh\l: float jumpForce =
vate Rigidbody20 rigidBod

void Awake() {
rigidsody

etConponent<Rigidbody20>();
/1 Update is called once per frame
void Update () {

if (Input.GetMouseButtonDown(0)) {
Jump();

¥

void Jump() {
rigidBody.AddForce (Vector2.up * jumpForce, ForceMode2D.Inpulse);

OEBPS/Image00077.jpg
= Project
Creae - @

5 Animations

& Animators.

B CameraFoliow
® Coin

5 Fonts

[LeaveTrigger
B LevelGenerator
4 MainScene

5 Materials

5 Player

& Playeranimator
5 scripts

M skyGradient
5 sprites.

& .= | = Project

N - @
5 Animations
5 Enemies
5 LevelPraps

B CameraFoliow
1 Collectable

[GameManager
KillTrigger

[LeaveTrigger
B LevelGenerator
B LevelPiece

8 PlayerController

ul
B ViewGameOver
[viewinGame
85 Sprites,

OEBPS/Image00076.jpg
New Unity Project

/Users/greg/Dropbox (Personal)/Book/Writting/Che

3D 2D

[sset packages. |

OEBPS/Image00090.jpg
+ 0

OEBPS/Image00089.jpg
Tayers

© nspector Lighting
® 7 loorshort
Tag (agged T
et o
et Add Layer...
) Transform

OEBPS/Image00092.jpg
void FixedUpdate() {

1¢ (ritisody.veloctty.x < rumisgpesd) {
rigidBody. velocity = new Vector2(

igidBod

OEBPS/Image00091.jpg
[¥ Player Controller (Scripy) LAY

Seript BPlayerController ©
Jump Force 25
Animator None (Animator) ©

Ground Layer Cround g

OEBPS/Image00094.jpg
O using UnityEngine;
L using System.Collections;

E] public enum GameState {
nu,
inGame,
gameOver

public class GameManager : MonoBehaviour {

public GameState currentGameState = GameState.men

void Start() {
StartGame(

//called to start the gane
public void StartGame() {
SetGanestate (GameState. inGane) ;
b
//called when player die
public void GameOver() {
SetGamestate(GaneState. ganeOver) ;
i3
//called when player decide to go back to the menu

public void BackToMenu() {
SetGanestate (GameState.menu) ;

void SetGameState (GameState newGameState) {

if (newGameState == GameState.menu) {
//setup Unity scene for menu state

else if (newGameState = GameState. inGame) {
//setup Unity scene for inGame state

else if (newGaneState = GaneState.ganeOver) {
//setup Unity scene for gameOver state

currentGaneState = newGameState;

OEBPS/Image00093.jpg
using UnityEngine;
using Systen.Collections;

public class GameManager : MonoBehaviour {
//called to start the game
public void Startcame() {
b

//called when player die
public void GameOver() {

3

//called when player decide to go back to the menu
public void BackToMenu() {

¥

OEBPS/Image00095.jpg
void Update () {
if (GameManager. instance. currentGaneState == GameState. inGane)

if (Input.GetMouseButtondown(0)) {
Jump();

¥
animator. SetBool(*isGrounded”, isGrounded());

void Fixedupdate() {
if (GameManager. instance. currentGaneState == GaneState. inGane)

if (rigidBody.velocity.x < runningspeed) {
rigidBody. velocity = new Vector2(igidBody.velocity.y);

OEBPS/Image00086.jpg

OEBPS/Image00088.jpg
¥ Player Controller (Script) LEN
Script ®PlayerController °
Jump Force 25

Ground Layer Grourd

OEBPS/Image00087.jpg
if (Physics2D.Raycast (this. transforn.po

pubLic siatic Raycasthit2d Raycast (
Vector2 o
Vector2 dxre:tmn.

float dist
et

OEBPS/Image00060.jpg
O Console.
Clear || Collapse | Clear on lay | Errar Pause

Greg and Kate have a beautiful son Adam
UnityEngine Debug:Log(Object)

Greg and Kate have 2 beautiful son Adam.
UnityEngine.Debug:Log(Object)
[Family Start() (at Assets Scripts /Chapter 7/ Family.cs:39)

OEBPS/Image00059.jpg
16 using UnityEngine;
2T ysing System.Collections;

public class Family : MonoBehaviour {

public Person father;
public Person mother;
public Person son;

void Start() {

father = new Person();
father. firstName = "Greg";
father. lastNane = “Lukosek"
father.age

father. isMale = true;
father. isMarried = true;

mother =g esesmnlly
ate’

fa
mother. isMarried = true;

son = new Person(
son. firstName = "Adan
“Lukosek"”;

true;
son.isMarried = false;

Debug. Log(father. firstName + * and * + nother. firsthane +
ha * + son.firstName);

ve a beautiful son

OEBPS/Image00062.jpg
1E] using UnityEngine
2T using System.Collections;

public class LearningObjects : MonoBehaviour {

public Person man;
public Person woman;

void start() {

man = new Person(
man. firsthane = "Gre:
man. lastNane = “Lukosek";

new Person();
woman, firstName = "Kate";
woman, lastName = “Lukosek";

man. spouse = woma
woman. spouse = ma

if (man.IsMarriedWith(woman)) {

Debug. Log(man. firstNane + * is married to + woman.firstNane);

“ and " + woman, firstName + " are not married");

se {
Debug. Log(man. firstNane +

OEBPS/Image00061.jpg
using UnityEngine;
using System.Collections;

public class Person {

public string firstName
public string lastName
public Person spouse;

public bool IsMarriedWith (Person otherPerson) {

if (spouse
//Person object is stored in spouse variable
if (otherPerson == this.spouse)
//otherPerson object is the same as stored spouse
return true;

b
else {
//not married
return false;
b

b
else {
//spouse variable is not assigned so this

/7Person is not married at a
return false;

OEBPS/Image00064.jpg
16 using UnityEngine;
2T ysing System.Collections;

public class Person {

public string firstName
public string lastName =
public Person spouse;

public Person () {
¥

public Person (string pFirstNane, string pLastName) {
this. firstNane = pFirstNan
this.lastNane = pLastName;

public bool TsMarriedWith (Person otherPerson) {

if (spouse != null) {
//Person object is stored in spouse variable
if (otherPerson == this.spouse) {
//otherperson object is the same as stored spouse
return true;

b
else {
//not married
return false;
¥

b

else {
//spouse variable is not assigned so this
/7Person is not married at all
return false;

OEBPS/Image00063.jpg
public Person (string pFirstName, string pLastName)
this.firstName = pFirstName;

this. lastNane = pLastName;

OEBPS/Image00065.jpg
void Start() {

new Person(
iiozy

public Person ()

OEBPS/Image00056.jpg
1] using UnityEngine;
2T using System.Collections;
3

4E] public class LearningScript : MonoBehaviour {

/1 Use this for initialization
void start () {

b

/7 Update is called once per frame
void Update () {

OEBPS/Image00058.jpg
using UnityEngine
using System.Collections;

public class Person {

public string firstName
public string lastName =
public int age = 0;

public string address

public bool isMale = false;
public bool isMarried fa\se}

OEBPS/Image00057.jpg
© Inspector a-=
4 [Vain Camera [Cstatic +
Tag ainGamers +] Layer [pefaui.

v~ Transform
Position 0
Rotation x0 ¥
Scale x1

@ [Camera
Clear Flags
Background
Culling Mask [Everyiting

Projection [Ferspcive
Field of View —_——
Clipping Planes Ner 03

Far 1000
Viewport Rect P C——
w1 HT
Depin =
Rendering Path
Target Texture
Occlusion Culling
HOR =)

v L MG Layer ®

¥ M Flare Layer *

v © ¥ Audio Listener #

Add Component

OEBPS/Image00071.jpg
Character
Trigger

Trigger

OEBPS/Image00070.jpg
Camera

OEBPS/Image00073.jpg

OEBPS/Image00072.jpg
Title

PLAY

OEBPS/Image00154.jpg
Learning C# by Developing

Games with Unity 5.x
Second Edition

Greg Lukosek [|

OEBPS/Image00075.jpg
Platform

B v e

Android

BlackBerry
ﬁ Tizen

. WebGL (Preview)

* PC, Mac & Linux Standalone

Windows.
Target Platform v Macosx
Architecture Linux.

Development Build

Swich platform | ("Player Settings.

] B And RuR

OEBPS/Image00074.jpg
'C,AME‘
OVER

Scove o

000D @O

PLAY ALAL

MAIN MEw

OEBPS/Image00067.jpg
1B using UnityEngine
2T ysing System.Collections;
tructors :

public class L

public Person man;
public Person woman;

void start() {

man = new Person("Greg", “Lukosek")
4 "Lukosek");

woman = new Person("Kat:

man. spouse = woma
woman. spouse = ma

if (man.IsMarriedWith(woman))
“ + woman. firstNane) ;

Debug. Log(man. firstNane + " is married to

tse ¢
Debug. Log(man. firstNane + * and * + woman.firstNane + " are not married");

OEBPS/Image00066.jpg
void Start() {

new Person(

public Person (

string pFirstName,
string plastName
)

OEBPS/Image00069.jpg

OEBPS/Image00068.jpg

OEBPS/Image00045.jpg
foreach (Type elementName in myCollectionvariable) {

//100p block

OEBPS/Image00038.jpg
Manual

e

GameObject.FindGameObjectsWithTag

public static GameObject(] FindGameObjectsWithTag(string tag),

Parameters

tag The name of the tag to search GameObjects for.

OEBPS/Image00159.jpg

OEBPS/Image00037.jpg
using UnityEngine;
using System.Collections;

public class L

public int numberl
public int number2
void start () {

int sumResult = AddTwoNumbers(number1, number2);

DisplayResult(sunResult);

int AddTwoNumbers (int firstNumber, int secondNumber) {

int result

firstNunber + secondNumber;
return resul

void DisplayResult (int total) {

Debug.Log(“The grand total is: * + total);

OEBPS/Image00158.jpg

OEBPS/Image00040.jpg
1E using UnityEngine
2 using System.Collections;
3L using System.Collections.Generic;

5
6] public class LearningLists : MonoBehaviour {
7

public Listestring> familyMembers = new List<string>();

void start() {

fami LyMenbers. Add("Greg") ;
fami LyMenbers. Add("Kate") ;

fami LyMembers . Add("Adan");
fani lyMenbers . Add(“Hia");

string thirdFanilyMenber = fanilyMenbers [2];
Debug. Log (thirdFamilyMenber) ;

OEBPS/Image00039.jpg
1E] using UnityEngine;
27 using System.Collections;
3L using System.Collections.Generic;

5
6] public class Learninglists : MonoBehaviour {
7

public Listestring> familyMembers = new List<string>();

void start() {

fami LyMenbers. Add(“Greg") ;
fami LyMenbers. Add("Kate") ;
fami LyMenbers. Add("Adan") ;
fami LyMenbers. Add(“Hia");

OEBPS/Image00161.jpg
Learing C# by Developing
Games with Unity 5.

OEBPS/Image00042.jpg
B Console

| clear || Cottapse | Clear on piy | rror Pause

(1) System.ni32
UnityEngine.Debug:Log(Object)

(1) SystemsSiring
(L) UnityEngine.Debug:Log(Object)

OEBPS/Image00041.jpg
1] using UnityEngine;
2T using System.Collections;

public class LearningArrayList : Monoehaviour {

public Arraylist inventory = new ArrayList();

void start() {

inventory.Add(10);
inventory.Add(20) ;
inventory. Add("Adan
inventory. Add(GameObject. Find("Player™));

Debug. Log (inventory[1].GetType());
Debug. Log (inventory[2].GetType()) ;

OEBPS/Image00044.jpg
18
19
20
21
2
2
2
2

if (personalDetails.Contains("firstName")) {
Debug. Log((string) personalbetails["firsthane"]);

¥
etse {

Debug.Log("First name isnt stored in the hashtable")
¥

OEBPS/Image00043.jpg
16 using UnityEngine;
2T using Systen.Collections;

3

4E] public class LearningDictionaries : MonoBehaviour {
5

public Hashtable personalDetails = new Hashtable();

6
7
8
9

void start() {
10
bl personalDetails. Add(" firstane", "Greg");
12 personalDetails. Add(" lasthane", "Lukosek);
19 personalDetails. Add("“gender”, “male");
personalDetails. Add(" isHarried", true);
personalDetails. Add("age", 29);

OEBPS/Image00036.jpg
int AddTwoNumbers (int firstNumber, int secondNumber) {

int result = firstNumber + secondNumber;
return result;

OEBPS/Image00157.jpg

OEBPS/Image00156.jpg

OEBPS/Image00049.jpg
16 using UnityEngine;
27 using System.Collections;
using System.Collections.Generic;

public class LearningLoopsFor : MonoBehaviour {

public List<string> familyWembers = new List<string=();

void start() {

fami LyMenbers. Add(“Greg") ;
fami LyMenbers. Add(“Kate") ;
fami LyMenbers. Add("Adan") ;
fami LyMenbers. Add(“#ia") ;

for(int 1 i < familyMenbers. Count;
//100p b
Debug. Log(fam)\members[ll)'

OEBPS/Image00048.jpg
for(int 1= 0; i<10; is#) {

OEBPS/Image00051.jpg
while (i<10) {

//100p block
Debug. Log(1);

OEBPS/Image00050.jpg
while (condition) {

//100p block

OEBPS/Image00053.jpg
Hconsole |

lear || Collapse | Clear on Play | Error Pause Dioo| Ao @o]|
01 zer0
ey)

@ imyingine Debug Log(@bject
(1) 2is even

L) UnityEngine.Debug:Log(Object)
(1) 3is0dd

(L) UnityEngine.Debug:Log(Object)
7y 41 ever

Q@ UnieyEngine.ebug:Log(Object)
(1) 5isodd

(L)' UnityEngine.Debug:Log(Object)

(1) 6 ever
@ umengmz Debug:Log(Object)

(D) rryengine ebug osiobiecy
(1) Bis even

47 UnityEngine Debug:Log(Object)

(1) 9is odd

L) UnityEngine.Debug:Log(Object)

5 10

UnityEngine.Debug:Log(Object

(1) 11is odd v

()99 is odd

OEBPS/Image00052.jpg
using UnityEngine;
using System.Collections;

public class LearningLoopshithStatements : MonoBehaviour {

void start () {

for(int i =98; i < 100; i++) {
if (i

DemgoLog(d + * 15 zero");
else if (IsMumberEven())) {

Debug.Log(i + " is even");

s
Debug. Log(i + * is odd

public bool IsNumberEven(int number) {
if (number % 2 =
return true;

else

return false;

OEBPS/Image00055.jpg
Variables

OEBPS/Image00054.jpg
using UnityEngine;
using System.Collections;

using Systen.Collections.Generic;

public class LearningLoopsSearching : MonoBehaviour {

public Listestring> fanilyMembers = new List<string>();

void start() {

fami LyMenbers. Add(“Greg") ;
fami LyMenbers. Add(“Kate") ;
fami LyMenbers. Add("Adan") ;
fami LyMenbers. Add(“fia") ;

int adamsIndex
for(int 1= 9; i < familyMembers.Count; i++) {
if (familyMembers[i] dan") {

adamsIndex = i
break;

if (adamsIndex = -1) {
Debug. Log("Adan value is not stored in the list

e {
Debug. Log("Adan value found at index * + adamsndex);

OEBPS/Image00047.jpg
Bconsole |
Glear || Collapse | Clear on iay | Exror Pause

) Greg
UnityEngine.Debug:Log(Object)

§ Kate
UnityEngine.Debug:Log(Object)

UnityEngine Debug:Log(Object)

J Ma
UnityEngine Debug:Log(Object)

OEBPS/Image00046.jpg
16 using UnityEngir
27 using System.Collections;
3L using System.Collections.Generic;

public class LearningLoopsForeach : MonoBehaviour {

public List<strings familyMembers = new List<string=();

void start() {
fami LyMenbers. Add(“Greg") ;
fami LyMenbers. Add(“Kate") ;
fami LyMenbers. Add(“Adan") ;
fami LyMenbers. Add(“#ia") ;

foreach (string familyMember in fanilyMenbers) {

Debug. Log (famiyMenber) ;

OEBPS/Image00024.jpg
public bool imLateForMeeting = true;
public bool roadConditionsArePerfect = true;

void Start () {

if (imLateForMeeting & roadConditionsArePerfect)
Debug. Log("I need to drive fas

OEBPS/Image00145.jpg
Bl void Collect() {

isCollected = true;
Hide();
Gamebanager. instance. CollectedCoin();

OEBPS/Image00023.jpg
1) using UnityEngine;
2L using System.Collections;

3

4] public class LearningStatements : MonoBehaviour {
5

6 public bool willltBeRainingToday = true;

7

8(] void start () {

if (willItBeRainingToday) {
Debug.Log("Yes you need umbrella");
¥ else {

Debug.Log("No, you dont need umbrella");
}

OEBPS/Image00144.jpg

OEBPS/Image00025.jpg
17
18
19
205
21
22
23
24
25 |
26

public bool imHugry = false;
public bool areKidsHungry = true;

void Start () {

if (imHugry || areKidsHungry) {
Debug.Log("I should cook some food");
}

OEBPS/Image00016.jpg
El Console
| Clear | | Collapse | Clear on Play | Errar Pause |

[@2[Ao[@0

11
UnityEngine.Debug:Log(Object)
20

UnityEngine.Debug:Log(Object)

OEBPS/Image00137.jpg
JAHE

ON THE MYSTERIOUS PLANET

OEBPS/Image00136.jpg
v [¥ Game Manager (Script) LA
Script 9 GameManager o
Current Game State [Went T

Menu Canvas None (Canvas) o

OEBPS/Image00018.jpg
using UnityEngine;
using System.Collections;

public class LearningScript : MonoBehaviour {

public int numberl =
public int number2

// Use this for initialization
void Start () {

}
// Update is called once per frame

void Update () {
if (Input.GetKeyUp(KeyCode.Return)) AddTwoNumbers();
}

void AddTwoNumbers() {

Debug.Log(numberl + number2);

OEBPS/Image00139.jpg
KillTrigger
ExitPoint
LeaveTrigger
Floor
Floor (1)
Floor (2)
Floor (3)
Floor (6)
Floor (7)
Floor (8)
Floor (9)
Floor (1)
Floor (12)

Floor (13)

Floor (14)

OEBPS/Image00017.jpg
1
12
13

Log(2 + 9)

Log(11 + myNumber)

OEBPS/Image00138.jpg
void SetGameState (GameState newGameState) {

if (newGameState == GameState.menu) {
PEED S S L Gt
menuCanvas. enable
e

else if (newGameState = GameState. inGame) {
//setup Unity scene for inGame state

menuCanvas. enable

\GaneCanvas..enabled = truc;

slse 11 (neGameState — Gamestste.gamever) {
//setup Unity scene for ganeOver state
menuCanvas. enable
inGaneCanvas. enabled

false;

currentGaneState = newGameState;

OEBPS/Image00020.jpg
using UnityEngine;
using System.Collections;

public class LearningMethods : MonoBehaviour {

void Avake() {
Debug. Log("Awake function is called"
b

/7 Use this for initialization
void start () {

Debug. Log("start function is called"
b

/1 Update is called once per frane
void Update () {

Debug. Log("Update function is called");
b

OEBPS/Image00141.jpg
Coin

¥ R Coin.controller
¥ © Coinspin.anim
¥ ® Coin.prefab

oinGold.png
= Bl coinGold_frame2.png
oinGold_frame3.png
v Bl coinGold_framed.png

AT MNene Caneel

Tmport

OEBPS/Image00019.jpg
B console

Clear || Collapse | Clear on Play | Error Pause

@ o UnityEngine.Debug:Log(Object)

OEBPS/Image00140.jpg
B ¥ Level Generator (Script)

Script

Element 0
Element 1
Level Start Point

Pieces

B LevelGenerator

2

B LevelPieceBasic (LevelPiece)
B LevelPieceHole (LevelPiece)
J startPoint (Transform)

LAY
°

OEBPS/Image00022.jpg
Wil it be raining
today?

Yes you No you don't
need need
umbrella umbrella

OEBPS/Image00143.jpg
[using UnityEngine
L using System. ca\leniuns,

public class Collectable : MonoBehaviour {
bool isCollected = false;

void show() {
‘this.GetComponent<SpriteRenderer>().enabled = true;
this.GetComponent<CircleCollider20>() .enabled = trie;
isCollected = false.

void Hide() {
‘this.GetComponent<SpriteRenderer>().enabled = fals
this.GetComponent<CircleCollider20>().enabled = false;

void Collect() {

isCollected = true;
Hide()

b
void OnTriggerenter20(Collider20 other) {

if (other.tag
Collect();

layer) {

OEBPS/Image00021.jpg
Bconsole |
Giosr| | catapse | Ciaron iy | rrr pause 35| Ao| @0

(1) Awake function is called
£/ UnityEngine Debug: Lug(omgm

(1) Start function is cal
O S e cog(0bject

) Update function s called
47 UnityEngine.Debug:Log(Object)

(7) Update function s called
47 UnityEngine.Debug:Log(Object)

(1) Update function is called
-/ unityEngine.DebugLog(Object)

(7) Update function s called
47 UnityEngine.Debug:Log(Object)

(7) Update function s called
47 UnityEngine.Debug:Log(Object)

(7) Update function s called .
L) UnityEngine.Debug:Log(Object

) Update function is called

OEBPS/Image00142.jpg

OEBPS/Image00035.jpg
B Console
Glear || Collapse | Clear on iay | Exror Pause
N5

UnityEngine Debug:Log(Object)

9
UnityEngine Debug:Log(Object)

10
UnityEngine.Debug:Log(Object)

OEBPS/Image00034.jpg
1E] using UnityEngine
2T using System.Collections;

public class LearningReusableMethods : MonoBehaviour {

public int numberl = 2;
public int number2
public int number3

void start () {
AddAndPrintTwoNumbers (nunberl, number2);
AddAndPrintTwoNumbers (nunberl, number3) ;
AddAndPrintTwoNumbers (nunber2, number3) ;

void AddAndPrintTwoNumbers (int firstNumber, int secondNumber) {
int result = firstNunber + secondNunber;
Debug. Log(result);

OEBPS/Image00155.jpg

OEBPS/Image00027.jpg
Input.GetKeyUp

public static bool GetKeyUp(string name);

Parameters

Description

Returns true during the frame the user releases the key identified by name.

OEBPS/Image00148.jpg
B ¥ View In Game (Script)
ript B ViewinGame
Coin Label McoinsLabel (Text)

LAY
°

°

OEBPS/Image00026.jpg
void Start () {

int speedLimit = 60;

if (speedLinit == 70) {
Debug. Log("I can drive at maxinun speed

¥
else if (speedLinit < 76 & speedLinit >= 30) {
Debug. Log("Speed linit is less than 70 and more or equals to 38");

else if (speedLinit < 30) {
Debug. Log("T better be driving slowly, 30 mph or less");

OEBPS/Image00147.jpg
¥ InGameCanvas.
» Highscore
»Score
v Coins

»> GameOverCanvas

OEBPS/Image00029.jpg
Type

Contents of the variable

int

A simple integer, such as the number 3

float

A number with a decimal, such as the number 3.14

string

Characters in double quotes, such as, “Watch me go now”

bool

A boolean, either true or false

OEBPS/Image00150.jpg
Bl public class ViewInGame :

mo

using System.Collections:

+ MonoBehaviour {

public Text scoreLabel:
public Text coinLabel

e
S S T S s
scoreLabel. tex yerController. instance. GetDistance() - Yostring “fo’
coinLabel . text n.m«anager instance. collectedCoins. ToString();
¥

OEBPS/Image00028.jpg
© ¥ Audio Listener

¥ Learning Script (Script) W &,
Saript @Leam|

Number 1

Number 2 5

Py Component
Paste Component As Ne

Pas nt Valu

Edit Script

OEBPS/Image00149.jpg
public float GetDistance() {

float traveledDistance = Vector2.Distance(new Vector2(startingPosition.x, 0),
new Vector2(this. transform.position.x, 0));
return traveledDistance;

OEBPS/Image00031.jpg
B ¥ Learning Script (script) M %

seript. Learningseript ©
Number 1 2

Number 2 a7

Some Words Now is the time
Check This out @

OEBPS/Image00152.jpg
fu}

public void Kill() {

Gamellanager. instance. GaneOver()
animator. SetBool (“isAlive", false]

//check if highscore save if it is

& (Ol s ey) @ S o) §
//5ave new highsc
Playerprefs.setFloat(*highscore", this.Getdistance()):

OEBPS/Image00030.jpg
using UnityEngine;
using System.Collections;

: MonoBenaviour

public class LearningScript

public int numberl = 2;
public float number2 = 4
public string someWords
public bool checkThisOut = t:

"Now is the time";

void Starc ()
i

void Update ()

OEBPS/Image00151.jpg
Static Functions

DeleteAll
DeleteKey
GetFloat
Getint
GetString
Haskey

save

Setint

SetString

Removes all keys and values from the preferences. Use with caution.
Removes key and its corresponding value from the preferences.
Returns the value corresponding to key in the preference file i it exists.
Returns the value corresponding to key in the preference file if it exists.
Returns the value corresponding to key in the preference file i it exists.
Returns true if key exists in the preferences,

Writes all modified preferences to disk

Sets the value of the preference identified by key.

Sets the value of the preference identified by key.

Sets the value of the preference identified by key.

OEBPS/Image00033.jpg
void AddAndPrintTwoNumbers(int numberl, int number2) {

int result = numberl + number2;

Debug. Log(result);

OEBPS/Image00032.jpg
=l using UnityEngine;

using System.Collections;

= public class LearningScript

: MonoBehaviour
string blockl "Block 1 text"; Code Block 1
void Start ()

‘

Debug. Log (blockl) ; Code Block 2
string block2 = "Slock 2 texc";

Debug. Log (block2) ;
i :

Debug. Log (blockl) ;

Debug. Log (block2) ;
string blo

Code Biock 3!

"Block 3 text";
Debug. Log (block3) ;

OEBPS/Image00153.jpg
Bl public class ViewInGame :

oo

using UnityEngine;
using UnityEngine.UI;
using System.Collections:

+ MonoBehaviour {

public Text scoreLabei
public Text coinLal
public Text highscoreLabel;

el Undat s DR
f"(GaneHanager. instance. currentGanestate == Ganestate. inGane|

scoreLabel. t PlayerController..
coinLabel . text

o S rastring("fe
meHanager . instance. collectedCo:

P ins.ToString(): :
highscoreLabel. text = PlayerPrefs.GetFloat("highscore", o rosmny(for

OEBPS/Image00146.jpg
[using UnityEngine;
L using UnityEngine. U]

using Systen.Collections;
+ MonoBehaviour {

E] public class ViewInGame
public Text coinLabel;

void Update() {
if (GameManager. instance. currentGaneState == GaneState. inGane)
coinLabel.text = GaneManager. instance. collectedCoins. Tostring();

OEBPS/Image00002.jpg
O ———
Create a Unity Account Q unity

Create a personal Unity Account. This account will be your unique point of access to all of our
services (Community, Asset Store, Online Store, etc...).

Name
Greg Lukasek

Email

Password

Password confirmation

¥ 1 agree to the Unity Terms of Use and Privacy Policy

3 Cancal

Forqot your password? | FAQ | Help

OEBPS/Image00123.jpg
Importi

MenuViewUIElements

¥ 81 Fonis
¥ B kenvector_future_thin.ttf
@ 5 prefabs

¥ ® GameLogo.prefab
¥ @ PlayButton.prefab
¥ 5 Sprites

¥ Bgreen.png
¥ Blgreen_pressed.png

AT Nene Canel

Timport

OEBPS/Image00001.jpg
O ———
Activate your Unity license & unity

Thank you for downloading Unity! Choose between the available license options below.

Activate the existing serial number you received in your invoice

¥ Activate the free version of Unity

You can start using your free version immediately. Projects you make with the free
version are fully compatible with Unity Pro If you ever wish to upgrade later to Unity
Pro for advanced features and increased productivity.

ubscribe to Unity Pro for §75 / montt

™ Activate a free 30-day trial of Unity Pro

oK

License Comparison | Online Store | FAQ | Help

OEBPS/Image00122.jpg
@ MenuCanvas Mstatic v
Tag [vgged 7 Layer (GeuT y

v3% RectTransform

Same values driven by Canvas

Height
767,560
v Anchars
Min
Max
Pivot
Rotation
Scale
v 0¥ canvas
Render Mode (Sereem Smace vy R
Pixel Perfect m
Sort Order o
v 21 ¥ canvas Scaler (Scripy)
Ui Scale Mode (e Wit Ser SR
Reference Resolution X 1024 Y 768
Screen Match Mode WA WG OFFeght)
Match ° o
Width Height
Reference pixels Per Unit 1
¥ I ¥ Graphic Raycaster (Script) W
Script GraphicRaycaster o
lgnore Reversed Graphics ¥l
Blocking Objects. O —
Blocking Mask [——

"Add Component

OEBPS/Image00004.jpg
Search |

Unity Manual
Scripting Reference

Unity Forum
Unity Answers
Unity Feedback
Welcome Screen
Check for Updates

Release Notes.
Report a Bug

OEBPS/Image00125.jpg
PLRY

OEBPS/Image00003.jpg
© Inspector a-=

o ¥ [cube — | Osutic +
Tag & tayer
v~ Transform
Position X0 Yo
Romtion X0 v0 1z
Scale x1T vT 21
7 Cube (Mesh Filter)

vesh i Cube
¥ ¥ Box Collider

(Open Reference for BoxCollider.

Is Trigger a
Material None (Physic Material] ©
Center
x[0 Yo 2o
Size
x[T YT 21

v | [Mesh Renderer %,

OEBPS/Image00124.jpg
EventSystem

OEBPS/Image00005.jpg
© ©® Buny-scrpting APt x

& - € [[} fievocalhost/Applications/Unity/Unity.app/Contents/Documentation/htmi/en/ScriptRefer... 'z & @ «

Q unity | DOCUMENTATION Manual

Scripting API Welcome to the Unity Scripting
Reference!

B UnityEngine

UnityEngine.Events This section of the documentation contains details of the scripting API that Unity

UnityEngine Eventsystems provides. To use this information, you should be familiar with the basic theory and

UnityEngine.Flash practice of scripting in Unity which is explained in the Scripting section of our
manual

UnityEngine.Rendering

UnityEngine.Serialization The scripting reference is organised according to the classes available to scripts

which are described along with their methods, properties and any other information
relevant to their use.

UnityEngine.SocialPlatforms
UnityEngine.Sprites
UnityEngine.Ul The pages are extensively furnished with example code that you are free to use for
any purpose without crediting Unity. The examples can be viewed in any of the three
supported languages (C#, JavaScript and Boo) using the menu at the top of each
page. Note that the API is the same regardless of which language is used, 5o the
UnityEngine WSA choice of language is purely down to preference,

Classes

Enumerations

UnityEngine Windows
UnityEngine WindowsPhone

Subsections of the reference can be selected using the menu to the left. For most
users, the Runtime Classes section will be the main port of call. Other sections of
Attributes the API, including the Editor extension API can be selected from the drop-down

h i

OEBPS/Image00117.jpg
[¥ Camera Follow (Scripy LEN
°

Script ® Camerafoliow
Offset X 01
Damp Time 03

Target J Player (Transform)

OEBPS/Image00116.jpg
[using UnityEngine
L using System. ca\\eniuns,

E] public class LeaveTrigger : MonoBehaviour {
Bl void OnTriggerenter2D(Collider2o other) {

LevelGenerator. instance.AddPiece() ;
LevelGenerator. instance. Renove0ldestPiece();

OEBPS/Image00119.jpg
v ¥ canvas L]

Render Mode (e Space ~Overy ¥
Pixel Perfect m

Sort Order 0

OEBPS/Image00118.jpg

OEBPS/Image00000.jpg

OEBPS/Image00121.jpg
Component Window _Help
Create Empty N
Create Empty Child XN

Mute audio stts Gl

>
>
>
>
>

Text
Particle System Image.
Camera Raw Image
Button
Toggle
Slider
Scrollbar
Dropdown
Input Field

Canvas
Panel
Scroll View

Event System

OEBPS/Image00120.jpg
v 2] @ canvas scaler (script) L

Ui Scale Made Scale With Screen Sz
Reference Resolution X 950 ¥ 600
Screen Match Mode (AR WGt OFREght)
Match ° 0

Widih Height

Reference Pixels Per Unit 1

OEBPS/Image00013.jpg
°e Untitled - Learning Project - iPhone, iPod Touch and iPad

(& BN S (=] ET] [eapivot | @Loca] [> i [p] [aaves] [Layout -]

Scen | Gam Anim .= = Hierarchy | ~=| @ Project | © Inspector | =
Textured RGE) | Create - | (GrAll Create ~| (@ ‘GameObject | [Jstatic +
Vain Camera v scrpts Tag (Uniaggeat) Layer Defui &)
(6 Learnngseript YA Transform ®

X[-0a723) v 0012312 0
xg__ v lzo |
b o r—lr—

Add Component

B Console —

Glear || Collapse | Clear on 1a

OEBPS/Image00134.jpg
B Cansale
Glar | Cotanse NERRERIR] i e @5 Ao THE

UnassignedReferenceException: The variable menuCanvas of GameManager has not been assigned.
You probably need to assign the menuCanvas variable of the GameManager script in the inspector.
GameManager SetGameState (GameState newGameState) (at Assets/Scripts /GameManager s 50)
GameManager StartGame () (at Assets Scripts /GameManager.cs 29)
UnityEngine.Events.InvokableCallinvoke (System.Object(args)

UnityEngine Events InvokableCallList.nvoke (System.Object(] parameters)

UnityEngine Events UnityEventBase Invoke (System.Object(] parameters)

UnityEngine Events UnityEventinvoke ()

UnityEngine.Ul Button.Press () (at

JUsers/builduser /buildslave/ unity /build/Extensions fquisystem/ UnityEngine.Ul/Ul/ Core /Button.cs3
5

UnityEngine.Ul Button.OnPointer Click (UnityEngine Eventsystems Pointer EventData eventData) (at
JUsers/ builduser,buildslave/ unity build/ Extensians guisystem/UnityEngine.Ul/ I/ Care Button.cs:4
4

UnityEngine EventSystems ExecuteEvents Execute (PointerClickHandler handler,

UnityEngine EventSystems BaseEventData eventData) (at

OEBPS/Image00012.jpg
 Assets [JeETOISEI Component Window

Create Empty 28N
ite Er hil RS

—_— CmptyCld
2D Object >

||20] @

OEBPS/Image00133.jpg
void SetGameState (GameState newGameState) {

if (newGameState == GameState.menu) {
//setup Unity scene for menu state
menuCanvas. enabled = true;

else if (newGameState = GameState. inGame) {
//setup Unity scene for inGame state
menuCanvas. enabled = false;

€lse if (newGaneState = Ganestate.ganeOver) {
//setup Unity scene for ganeOver state

menuCanvas. enabled = false;

b

currentGaneState = newGameState;

OEBPS/Image00015.jpg
1E] using UnityEngine;
2L using System.Collections;
3

4[] public class LearningScript : MonoBehaviour {

6 public int myNumber =
7

8 // Use this for initialization
L= void start () {

10

1 Debug.Log(2 + 9);

12

13 Debug.Log(11 + myNumber) ;

14

15 }

16

17 /1 Update is called once per frame

18E void Update () {

19
ZOL 3
21}

OEBPS/Image00014.jpg
© Inspector
™ Gameobjeer | Clsatic ~
Tag (Untaggeds | Layer Defauit_%

¥ A Transform
X -01723) v -0.0123]2[0
© volzo |
[T —
v (& ¥ Learning Scripe (criped
Script © Learnin| 0

‘Add Component

OEBPS/Image00135.jpg
—— O O-

void SetGameState (GameState newGameState) {

if (newGameState == GameState.menu) {
//setup Unity scene for menu state
menuCanvas. enabled = true;

else if (newGameState = GameState. inGame) {
//setup Unity scene for inGame state
menuCanvas. enabled = false;

€lse if (newGaneState = Ganestate.ganeOver) {

//setup Unity scene for gameOver state
menuCanvas. enabled = false;

currentGaneState = newGameState;

OEBPS/Image00126.jpg
© Inspector Lighting
B ¥ Paysuron
Tag [vgged T Layer (1
Prefab Sefeet vt

2% RectTransform

Pos X Pos ¥
.) 1432
g width Height
ol e
Anchors
win x 05 Yo
Max X 05 Yo
Pt X 05 vos
Rotation
scale x1 Y1 z1
© Canvas Renderer LS
2 ¥ image (scripy LES
Source Image “igreen o
Color I
Waterial None (Materia) o
Raycast Target
Image Type Siced 7
FillCenter v
@ ¥ Button (Scripy LS
Interactable v
Transition Sori S T
Target Graphic &PlayButton (mage) o
Highlighted Sprite None (Sprite) o
Pressed Sprite " ’green_pressed °
Disabled Sprite None (Sprite) o
Navigation Ratmate

Vieiaes
On Click)
st is Empry

OEBPS/Image00007.jpg
& project | Oconsole

o] &
T
Al Waterils
O Al odels
O Alprefabs
Quaiseris

o Materials
o Models
o Plugins.
o Prefabs
o scenes,
- scripts,
- Textures

One Column Layout

7T wyout
Maximize
Close Tab
Add Tab >

OEBPS/Image00128.jpg

OEBPS/Image00006.jpg
2 project O console

- Textures

OEBPS/Image00127.jpg

OEBPS/Image00009.jpg
LearningScript

OEBPS/Image00130.jpg
On Click ()

Rutime Oy + 1 No Function
* Gamentan: | © (VRN
GameObject

Transform
GameManager

bool enabled
string name
string tag
bool useGUILayout
BackToMenu ()
BroadcastMessage (string)
Cancellnvoke (string)
Cancelinvoke ()

GameOver ()

SendMessage (string)
SendMessageUpwards (string)
StartGame)

StopAllCoroutines (
topCoroutine (string)

OEBPS/Image00008.jpg
°e Untitled - New Unity Project 11 - PC, Mac & Linux Standalone

™ + AR cEmerm (> il i)

#scene | € Game Hierarchy | = | & Project |
Texured - || rce Gueae | @AT e | (@

O inspector | a

Main Camera o Materials
o Models
& Plugins.
o Prefabs
o scenes,
- scripts,
- Textures

B Console

Glear || Collapse | Clear on lay | Exror Pause || (Do | |

OEBPS/Image00129.jpg
On Click)

‘Game

OEBPS/Image00011.jpg
L XX } Assembly-CSharp - Scripts/LearningScript.cs - MonoDevelop-Unity
| | ® MonoDevelop-nity

LeamingScrptcs
[LeamingScript » K] Update

TE] using UnityEngine;
2L using System.Collections;
3

4] public class LearningScript : MonoBehaviour {

OEBPS/Image00132.jpg
(Sereen Space ~Overay %)

Pixel Perfect
Sort Order 0

OEBPS/Image00010.jpg
L XX } Assembly-CSharp - Scripts/LearningScript.cs - MonoDevelop-Unity

® MonoDevelop-Unity

LeamingScriptes.

[d LeamingScript » 5] Update ()

75l using UnityEngine;
2L using System.Collections;

3
4E] public class LearningScript : MonoBehaviour {
5

8] 47 s this or snitiatiation

7 void start () {

s

B
i b
10
1 /1 Update is called once per frame
26 void Update () {

18
1 }
wly

anmw Bame Log Merge

OEBPS/Image00131.jpg

