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序

——为《分形几何与流体》而作





诞生于20世纪70年代的分形（fractal）学科，至今已有40多年了。其间不乏介绍分形基本知识、分形在各领域中应用的优秀书籍与学术论文，推动了一门新兴学科——分形及其应用的崛起与蓬勃发展。

40多年，在历史的长河中只是一个瞬间，然而，从B. B. Mandelbrot提出“分形”一词至今，分形研究已经从分形几何的范畴发展成为一个极具生命力的交叉学科，不仅在分形的数学基础理论建立方面有显著进展，而且在多学科中的应用方面获得了更可喜的成就。瞿波博士的工作就是这些出色成就中的一份。

分形的数学基础理论非常重要，没有坚实的数学基础，分形就得不到实质性进展；但分形应用却丝毫不能忽略，其重要性决不亚于数学理论的研究。只有两者紧密结合、相辅相成，才能使得分形研究真正登上科学的巅峰，真正成为人类征服大自然的利器。瞿波博士的博士论文和她获得学位后的工作都体现了这一重要思维。她在熟练掌握分形数学基础理论后，致力于分形在流体力学中的应用研究（包括海湾水流轨迹和粒子分布轨迹）、分数布朗运动模型的研究（包括随机分数布朗运动）、加速分数布朗运动粒子追踪模型的研究（包括对海洋污染物传播、水面污染物扩散）等与国计民生息息相关的最热门课题，获得了值得称道的优秀成果。

更难能可贵的是，瞿波博士作为一位科学研究与大学教学紧密结合的教师，她奉献了自己宝贵的时间，尽心尽力，多思多想，把难以理解的数学概念与方法，用通俗易懂的语言文字编写了这本分形入门书籍。她期盼更多的人认识分形，利用分形，因为她深知，在大自然中，在你我的生活中，是“处处有分形”啊！

我祝贺这本书的出版，希望更多的人从中受益，并能为分形研究的美好未来奉献一份力量。






南京大学　苏维宜



2013年12月于南京



自　　序

在英国爱丁堡大学读完博士的14年后的今天，我作了一个重要的决定，就是出版我的博士论文。我的初衷就是让更多的人了解分形这一新兴的数学学科。近年来有关介绍分形的书不多，但仅有的那几本对分形介绍的书籍又过于专业化。一大堆的数学测度论、集合论的公式把原本不复杂的分形复杂化了，让非数学界的读者望而生畏。而我要讲的分形理论和应用其实是很简单的东西，我把分形以最简单明了的方式介绍给大家，即使没有学过微积分的读者也能知道分形是怎么回事，也能计算出分形的维数。我的博士论文的思想也很简单，没有太多繁琐复杂的数学公式。所以，我想把我的研究成果与大家分享。

大概是和几何有缘，我在华东师范大学数学系读研究生时读的是微分几何，导师是年迈的钱端壮教授。其实当时钻研了一些微分几何的姊妹学——积分几何。和欧氏几何一样，微分几何、积分几何都是经典的规则几何。微分几何是运用微积分的理论研究空间的几何性质的数学分支。积分几何是通过各种积分研究图形性质的一门学科。它们都是在欧几里得空间研究的。去英国留学时，我想继续深造微分几何，可令我吃惊的是，英国的学校大多开设应用数学学科，数学中的统计学比较热门，因为它实用，几乎找不到学校研究微分几何的。当时我所在的英国苏格兰首府爱丁堡，是一座美丽的以城堡和街心花园加上一条王子大街著名的历史名城，我便决定在完成国内的数学硕士学位后先攻读一下计算机科学。于是，我选了龙比亚大学（Napier University）的计算机信息系统专业的硕士课程。学业之余，兼职在英国苏格兰皇家银行审计总部工作，负责和参与开发数据库软件模型，耳濡目染并感受了英国中级阶层的白领生活。在完成计算机硕士课程后，我的银行工作也告一段落。没有意向去拿第二个硕士学位，我选择了攻读博士。当时还是面临着此前同样的问题，就是英国的纯数学研究很少，基本上都是应用数学。我去了两所学校面试，最后选择了在我所居住的城市就读。我被爱丁堡龙比亚大学的土木工程系录取了，我的导师是比我小4岁的英俊的爱迪生博士。和国内的师生关系不同，这里师生总是直呼其名的，我的导师只许我叫他小名保尔（Paul），他也直呼我波，这样才显得亲切和平等。我的导师虽然年轻，但我很钦佩他的思路敏捷、作风严格。保尔有很多新点子，他后来把分形应用到了医疗器械上，用来诊断心脏病和高血压病，获得了美国专利。他由此成立了自己的公司，独树一帜地用分形这一数学工具造福于人民，并在经济上获利。

分形（fractal）是20世纪70年代发展起来的用于描述一些不能用传统的欧几里得几何描述的复杂几何图形的一门新学科。分形图形的特点是极不规则，分布不均，但在各种放大和缩小的尺度上都有着近乎相似的形状，如天空的浮云、起伏的地面、连绵的山峦等。分形的应用很广，几乎涉及包括物理、化学、生物学、材料科学、地质学、水文气象、医学、地理学、天文学等众多学科。大到宇宙星际，小到微生物粒子，可以说，这些貌似高深莫测的数学分形，就遍布于我们的生活中。基于此，我投身于数学分形研究，也基于此，我把貌似神秘的分形介绍给大家。

本书由分形几何介绍、我的英文博士论文和我的一部分有关分形研究的论文三部分构成。

在本书的第一部分，我用通俗的语言介绍了分形，只有高中数学基础的读者也能看懂，而且可以通过所介绍的简单方法来计算分形维数。

第二部分是我的博士论文，研究的是用分形中的分数布朗运动（fBm）模拟流水中污染物的轨迹。这是流体力学的范畴，但所用的是数学方法和分形思想。而分形中对曼德尔布罗特（Mandelbrod）的分数布朗运动模型的改进（FBMINC模型）是论文的核心所在。不同于传统的布朗运动，粒子的运动是随机的，分数布朗运动是基于布朗运动的具有长期记忆的随机运动。许多随机的运动都是分数布朗运动，而不是布朗运动，比如海洋上浮标的漂浮轨迹。攻读博士学位期间，先后和导师爱迪生博士联名在国际一流应用数学杂志上发表了几篇文章。其间，先和格拉斯哥大学研究人员合作，用他们的海湾模型的速度数据加上我的模型，用分数布朗运动粒子追踪模型来模拟海湾的水流轨迹和粒子分布轨迹。后用了英国诺森比亚（Northumbrian）水利局提供的海洋表面的污染散布的等高图，采用一种新型的加速分数型布朗运动的粒子追踪技术，来模拟沿开阔海水域中水流的传播，并成功地用粒子云来模拟沿海水域中污染物的扩散。通过将实际观测的数据与英国HR Wallingford传统的扩散模型计算出来的结果对比，我的模拟结果更胜一筹。我的导师爱迪生博士在此期间也出版了一本名为《分形和混沌》的专著，是作为教科书使用的。

我的博士论文的基本结构如下：

第一章，论文的结构和研究目的。

第二章，有关流体中分散（Diffusion）和传播（Dispersion）的背景文献介绍。

第三章，介绍布朗运动、分数布朗运动（fBm）和分形几何。其中的重点是我改进了曼德尔布罗特的FBM模型，使我的FBMINC模型成为更好、更精确的模型。关键的公式就是第三章中的（28）和（29）。我把曼德尔布罗特的FBM模型的积分公式调整了内核，变成了简单且更精确的离散型公式，只需要叠加就可以计算出分数布朗运动的轨迹。

第四章，沿海湾水流和粒子的模拟。

第五章，用加速分数布朗运动粒子追踪模型来模拟海洋上的污染物的传播。

第六章，结论和展望。

第三部分是为了让读者更好地理解我的博士论文内容，所附的几篇曾发表过的分形应用研究论文，有中文的，也有英文的，主要介绍了分形在流体中扩散的轨迹的模拟研究。不懂英文的读者也能从我的中文文章及分形的中文介绍中基本了解博士论文的内容。

书后附有模拟的Fortran程序和相当数量的参考文献。

这是一本很有启迪和实用性的分形入门书。对于如何把分形应用到实际问题中，此书能起到抛砖引玉的作用。当然，研究中难免有不足的地方，恳请读者对本书提出宝贵的批评意见。

通过《分形几何与流体》的出版发行，愿分形这一新型的数学分支能走出象牙塔，走向大众，给人们带来一个崭新的应用数学研究世界。愿你的思维冲破传统的羁绊，让我们一起来领略分形这一缤纷世界的风采。

本书的出版得到了国家自然科学基金的资助，得到了南通大学学术著作出版基金的资助，同时也得到了南通大学数学与应用数学重点专业建设资助。特此感谢！






瞿　波



2014年1月于江苏南通



分形几何介绍



此部分只需有初等数学的基础知识





"Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line." (Mandelbrot, 1983).





“云层不是圆形的，山不是圆锥体，海岸线不是圆圈，树皮不是光滑的，光不是以直线传播的。”　　（曼德尔布罗特，1983年）
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分形的创始人Mandelbrot和他著名的Mandelbrot集

一、不同于欧几里得空间的分形

欧几里得几何学的研究对象为几何物体，但它们具有特征长度。比如，零维的点、一维的线段、二维的面、三维的立体乃至四维的时空。自然界中很多的物体具有特征长度，如人有高度，山有海拔高度等。

最近二三十年来，产生了新兴的分形几何学，空间不一定是整数维的，而存在一个分数维数，这是几何学的新突破。

现在，你将进入一个新的几何学世界。在这个世界里，你碰到的将不再是欧几里得几何学的直线、圆、球体等简单规则的图形，而是海岸线、云彩、花草树木等复杂的自然形体，它们具有分数维空间，它们被称为分形（fractal）。

分形概念的形成，把人们带进了不规则的奇妙世界。分形几何学成为探索复杂性的有效工具。在这个充满新奇的几何学世界里，你将受到一种挑战传统教育的影响和冲击，你的思维将冲破传统的羁绊，让我们一起来领略分形的奇妙风采吧！

维数是几何学的基本概念。欧氏几何研究规则的图形，长度、面积、体积是它们最合适的特征量。但对海岸线这类不规则的分形，长度、面积和体积已经不能解释它了。维数才是最好的量化表征。

曼德尔布罗特（Mandelbrot）就提出了这样一个问题：英国的海岸线到底有多长？

海岸线长度最初是由英国数学家理查逊（Lewis Fry Richardson）提出的。他发现在估计一个国家的同一个海岸线长度时，竟然有20％的误差。理查逊觉得，这种误差是因为他们使用不同长度的量尺所导致的。他同时发现海岸线长度L与测量尺度S的关系是log（1/s）与log（L）呈线性关系，其斜率为一定值d。

曼德尔布罗特在理查逊的基础上，给出了相似维数的概念：如果把曲线（或曲面或立体）等分为N个小的自相似的线段（小曲面，小立体），每一段长度为S，则曲线的自相似维数
 D（可以是分数）为
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这就可以描述海岸线的特征了，这就是著名的分数维数，这一维数不会随量尺的变化而变化。这一问题的研究，成为曼德尔布罗特思想的转折点，分形概念从这里萌芽生长。

二、分形的发展

分数维的概念已经有80年历史了，但“fractal”一词以及对分形的兴趣还是到了1980年早期才形成。最近一些年，分形几何科学已经涉及大量的领域。分形几何是具有分形物特点的几何学，一般简称为分形。分形在自然界中无所不在，例如，喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等，都表现了客观世界特别丰富的现象。分形一词（fractal）是曼德尔布罗特（B. B. Mandelbrot）于1975年由拉丁语“Frangere”一词创造而成，词本身具有“破碎”、“不规则”等含义。曼德尔布罗特意识到许多自然界的东西是不可能用传统的欧几里得几何来表示的，因为在欧几里得几何学中总是把研究对象想象成一个个规则的形体，而我们生活的世界竟如此不规则和支离破碎，与欧几里得几何图形相比，拥有完全不同层次的复杂性。曼德尔布罗特创立了分形（fractals）和分形几何，则可被用来描述真正的物体，如树叶的分布、树皮的粗糙、弯曲的河流和海岸线等。

有许多分形的定义。最简单的分形定义可能就是为一个物体在任意放大后都是自相似（self-similarity）。事实上，具有纵观上的对称性，每个小部分都能再现整体。这可能是一个最放松的定义。然而，这抓住了自相似
 的最基本的特征。如果我们把图形的细微部分放大后，还可观察到图形的每一小片段和整体本身都具有相同的结构，局部和放大的过程可以重复下去，就称此物体具有自相似性。具有自相似性质的物体就是分形
 。自相似性质还可以分为绝对自相似和统计自相似。绝对自相似的例子可以举一片蕨类植物的叶子，从大的分叉到小的分叉，再到更小的分叉，每次分叉都和原来的叶子有绝对的相似性。每一个蕨类的叶是整个蕨类的缩小。自然界中具有统计自相似的物体很多，比如云的边界、墙的裂缝、复杂的海岸线等。这些自然的分形有同样的统计特点，即放大后都有同样程度的不规则性。它们具有统计上的自相似性。

许多自然的分形是在三维世界里存在的。分形有自己的维数，叫作分形维（fractal dimension），这通常是大于拓扑维数而小于欧几里得维数的非整数维。

三、几类最基本的分形图形

为了介绍分形维数，先介绍几种最基本的分形图形。

1．三分康托集（cantor set）

把一根单位线段分成三段，去掉中间的一段，再在剩下的两端中，分别作同样的分割和取舍，这样就得到图1中的k＝1。

[image: alt]


图1　三分康托集（Cantor Set）

图1无限次地分割下去，就得到著名的康托集（名字取自德国数学家康托，Georg Cantor, 1845～1918）。无限次分割取舍下去，就会得到很多点，那些点就像尘埃一样细小。

在构造康托集时，原来的单位线段（k＝0）叫引发剂（initiator），第一步（k＝1）叫发生器（Generator）。因为此后的过程都是反复迭代此步骤，因此第一步很重要，为了说明由此发生器所构造的分形，我们没有必要无止境地迭代下去，只需要迭代有限步，以满足眼球的需要。这种一路反复迭代构成分形的物体叫预分形（prefractals）。

计算一下所去掉的长度总和：
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很有意思的是，康托集最后留下来的无数个尘埃点集的长度是零！

2．柯西曲线（Koch curve）

柯西曲线是由瑞典数学家Helge von Koch发现的，它的构造方式如图2所示。
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图2　柯西曲线

图2左上方展示了构造柯西曲线的前4步。柯西曲线是由单位线段中间的1/3段用两个新的成60度角的1/3段重新连接而成。第三步以后就可以看出柯西曲线的基本形状了。图2的右方是由左上方的最后一步（第三步）的三个组合成的柯西岛，也叫雪花图，柯西岛的边长是趋于无穷的，而其面积是有界的（Addison，1997）。图2的下方图是第四步，是在第三步的基础上继续延伸的。

可以看出，柯西曲线具有很强的自相似性，即不同的局部经过放大，会和整体相似。柯西曲线有多长？可以看出，每次长度都增加了4/3，经过无限次延伸，总长度会趋于无穷。这让我们联想起曼德尔布罗特提出的问题：英国的海岸线到底有多长？英国的海岸线有无数的细节，和柯西岛有相似之处。用不同的尺去量海岸线的长短，会得到不同的答案。尺度越短，量出来的海岸线越长。当量尺越来越短时，量出来的海岸线就越来越长，乃至于没有边界。因此，用长度来尺量分形是不科学的。为此，曼德尔布罗特发明了分形维数这个概念。

四、分形维数

在欧几里得空间，维数都是整数，一维的直线，二维的平面，三维的空间，而空间中的点都可以用相互垂直的坐标系来一一对应。拓扑空间是欧几里得空间的推广，而豪斯多夫维数则给了分形维数一个严格的定义。

1．拓扑维数

先介绍什么是拓扑，抽象地说，一个集合X的拓扑T就是由X的一些子集组合而成的集合，而这些子集的有限交和无限并还是属于T。具体而言，二维欧氏空间中的所有开集就是该空间的拓扑，因为开集的有限交和无限并还是开集。

拓扑学（topology）是近代发展起来的研究连续性和连通性的一个数学分支，它也叫橡皮几何学。拓扑学研究几何图形在一对一的双方连续变换下不变的性质。在20世纪，拓扑学发展成为数学中一个非常重要的领域。拓扑学也叫地志学，即是和研究地形、地貌相类似的有关学科。拓扑学是几何学的一个分支，但是这种几何学又和通常的解析几何（平面几何、立体几何）不同。通常的解析几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。

举例来说，在通常的平面几何里，把平面上的一个图形搬到另一个图形上，如果完全重合，那么这两个图形叫做全等形。但是，在拓扑学里所研究的图形，在运动中无论它的大小或者形状都发生变化，也可能在拓扑空间里是等价的。在拓扑学里没有不能弯曲的元素，每一个图形的大小、形状都可以改变。例如，欧拉在解决哥尼斯堡七桥问题的时候，他画的图形就不考虑它的大小、形状，仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。

比如画在橡皮膜上的两条相交曲线，对橡皮膜施以拉伸或挤压等形变，但在不破裂或折叠时，它们“相交”始终是不变的，几何图形的这种性质称为拓扑性质。在拓扑变换下，点、线、块的数目仍和原来的数目一样，这就是拓扑等价。一般地说，对于任意形状的闭曲面，只要不把曲面撕裂或割破，它的变换就是拓扑变幻，就存在拓扑等价。球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。画在橡皮膜上的三角形，经过拉伸或挤压可以变为一个圆，从拓扑学的观点看，三角形和圆有相同的拓扑维数。

对于任何一个海岛的海岸线，经过某些形变总可以变为一个圆，因而海岸线与圆具有相同的拓扑维数（记为DT
 ）。在欧氏几何中，圆作为一种曲线，它的欧几里德维数DE
 ＝1，所以海岸线的拓扑维数也是1。可以论证对一个几何图形，恒有DT
 ＝DE
 。和欧几里得空间的维数是整数一样，拓扑维数DT
 的值也为整数。

拓扑维数也叫覆盖维数（covering dimension）。在拓扑意义下，一条直线和任意弯曲的曲线是等价的，它们具有相同的拓扑维数。一个有洞的物体经过任意变形，那个洞还会在那里。只不过洞的大小和形状发生了改变。一个物体的拓扑维数经过变形不会改变。拓扑维数就是用小圆盘覆盖物体的能力大小来计算的。

通俗地说，拓扑维数就是决定空间中任何一点位置所需要变量的数目。直线、曲线，乃至圆盘的拓扑维数都是1，平面、曲面的拓扑维数都是2。决定一个物体的拓扑维数
 ，一般用有限个最少可能的相交的开集来覆盖它，能覆盖此物体的每个点的最多数目的开集如果是n＋1个，那么这个物体的拓扑维数DT
 ＝n。直线可以用很多相交的小圆盘来覆盖，但也可以用只相交一次的一些小圆盘来覆盖。我们选择后者的覆盖形式。而在这种最少圆盘覆盖的情形下，直线上的每个点最多可以被两个相交小圆盘来覆盖，因此，直线的拓扑维数是1。例如，康托三分集，其欧几里得空间的维数是1，因为只需要一个坐标轴来标记所有的点。而康托三分集中的每一点都可以用一个很小的圆盘来覆盖它，因此康托三分集的拓扑维数是0。

图3给出了解释计算柯西曲线的拓扑维数的方法。有很多种不同大小的小圆盘可以用来覆盖柯西曲线上的点。我们选取比较精细的两两相交的小圆盘（较深色的圆盘），柯西曲线上的每个点最多被两个小圆盘覆盖。所以，柯西曲线的拓扑维数是1。
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图3　柯西曲线的拓扑维数的算法

图4显示了一个正方形可以用一些相交的小圆盘来覆盖。其中的点最多会被3个小圆盘覆盖，所以，正方形的拓扑维数是2。类似地，空间的单连通曲面的拓扑维数都是2，而空间的立体图形的拓扑维数是3。
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图4　正方形的拓扑维数的算法

2．豪斯多夫维数

豪斯多夫维（Hausdorff Dimension）或分形维（fractional dimension），它是由德国数学家豪斯多夫于1918年引入的。通过豪斯多夫维可以给一个任意复杂的点集合比如分形赋予一个维数。对于简单的几何体（比如线、长方形、长方体等），豪斯多夫维等同于它们通常的几何维数。通常来说，一个物体的豪斯多夫维不像拓扑维数一样总是一个自然数，它可能会是一个非整的有理数或者无理数。分形理论把维数视为分数，这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度，1919年，数学家从测度的角度引入了维数概念，将维数从整数扩大到分数，从而突破了一般拓扑集维数为整数的界限。

设想有一个由三维空间内具有有限大小的点组成的集合，N是用来覆盖这个集合内所有点所需的半径为R的球体的最少个数，则这个最小数N是R的一个函数，记作N（R）。显然R越小则N越大，假设N（R）和Rd
 之间存在一个反比的关系，我们把这个关系记作
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这里d是这个集合的豪斯多夫维数。当R趋向于0时，我们得到
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对通常的几何体而言，d是整数。

对于一条有限长度的曲线来说，它所需的“球体”的个数和它的半径成反比，那么曲线的豪斯多夫维数为1。对于一个平面而言，所需的“球体”的个数明显和它的半径的平方成反比，那么这个平面的豪斯多夫维数则为2。

豪斯多夫认为，可以把上式推广到维数，则d不一定取整数。人们便将此定义的维数d称为豪斯多夫维数，并记为dH
 ，即
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豪斯多夫是不容易直接计算的，一般的可以通过计盒维数
 （Box-counting dimension）估计到它的一个上界，而且可以通过局部维数
 （点维数）（Local dimension）估计到它的一个下界。

分形是与欧氏几何图形截然不同的另一类图形，它的维数一般是分数，所以分形的维数被称为分数维。由于分形又分为规则分形、不规则分形等许多种类，所以为了测出各类不同分形的维数往往必须使用不同的方法，因而得出多种不同名称的维数。在这些维数中，最重要的是豪斯多夫维数。它之所以重要，是因为它不仅适用于分形，也适用于欧氏几何图形。只不过当它用于欧氏几何图形时，值为整数，而用于分形时，值一般为分数。

五、分形维数

1．精准分形的维数的确定：相似维

在分形中有很多分数维（或分形维数）的定义，最有用的一种定义叫作相似维，我们记作DS
 。

一条直线段是一维的，由四条这样的直线段组成的正方形是二维的，六个这样的正方形组成的正方体是三维的。直线的长度数值、正方形的面积数值和立方体的体积数值都和我们测量的单位有关。

先拿直线来说，如果一条单位长为L的直线分成了N小段，每小段的长度是δ，则
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那么δ＝1/N。

再考虑一个单位面积为A的正方体（见图6
 ），如果我们把此正方体分成N等分的边长为δ的小正方形，每个小块的面积就是δ2
 ，则
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那么δ＝1/N2
 。

同样地，对体积是V的单位立方体而言（见图5），如果我们把此立方体分成N等分的边长为δ的小立方形，每个小块的体积就是δ3
 ，则
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图5　划分和维数举例

那么δ＝1/N3
 。

从（6）～（8）我们可以看出一个规律。对维数是DS
 的分形来说，我们有一般的结果：
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两边取对数就得到相似维数的定义公式：
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这也是豪斯多夫维数的基本思想。

对以上标准的图形（直线、正方体、立体），它们的欧几里得维数DE
 ，拓扑维数DT
 以及相似维数DS
 都是相等的，即
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但（10）也可以用来计算分形的维数，而分形的维数都是分数维的。

对康托三分集，N＝2，δ＝1/3，则
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对柯西曲线，N＝4，δ＝1/3，则
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图6是谢尔平斯基镂垫（sierpinski gasket）图形的分形构造的前4步。N＝3，δ＝1/2，则
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图6　sierpinski gasket图形的分形构造

在平面上的分形图形的相似维数可以超过2（Addison, 1997, p. 21）。柯西曲线的维数大于单位直线（对直线而言，DE
 ＝DT
 ＝1）小于单位面积（DE
 ＝DT
 ＝2），因此柯西曲线的相似维数DS
 满足不等式：
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曼德尔布罗特给出了一般的鉴别物体是不是分形的方法：如果一个物体的豪斯多夫维数严格地超过它的拓扑维数，那么这个物体就具有分形结构。此物体的分形维数DS
 满足（14），即分形的相似维数介于拓扑维数和欧几里得维数之间。

2．随机分形的维数的确定

在介绍记盒维数前，要先介绍一下随机分形的概念。在前面讲到康托三分集、柯西曲线都是规则的分形，即任何此类分形的局部都可以放大以后和原来的分形等同。它们是精准的自相似，然而在自然界，很多分形都是随机分形
 ，也就是此类分形具有随机性。此类分形不满足精准的自相似，但它们是统计意义上的自相似，即此类物体的部分放大后回合原来的物体在统计意义上是相似的。就像英国的海岸线、山峦或云层的边界曲线、树的分支、海洋中的浮标轨迹，这些都是随机分形。

相似维数的计算是对精准的分形而言的。而对于随即分形，有多种计算分形维数的方法，但其中有两种比较直接简单的分形维数计算方法：记盒维数（Box counting method）和圆规法（Structured walk technique）。

（1）记盒维数（Box counting method）

在分形几何中，记盒维数法（Boxing counting）是确定一个随机分形物体的分数维的一个有用而且比较简单的方法。

我们给出记盒维数的数学表达式，并给出一般的解释。假设分形物体为S，DB
 是记盒维数，N（δ）是边长为δ的覆盖盒子的数目，V是物体的体积，物体的计盒维数DB
 定义为：
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如果物体体积为1，方程（14）就变成
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如果用更通俗的语言来给出计算记盒维数的步骤，我们得到：

①对任意的δ＞0，N是能覆盖S的最小网格数

②取不同大小的δ，log（1/δ）的值由小到大排列，计算出不同的log（N）值

③根据下列式子计算出记盒维数序列：
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注意，这里的（16）和（17）实际上是一样的。

④以log（1/ε）为横轴，以log（N）为纵轴，找出平面上点集的最佳逼近直线的斜率（best fit line），此时所找到的斜率就是所要求的分形的记盒维数。

图7给出了对空间的曲线、曲面和立体的网格示意图。

[image: alt]


图7　用记盒维数法覆盖空间不同的物体

如果要用边长为δ的小立方体来覆盖一条空间的单位曲线，我们需要1/δ个小立方体；如果要用同样大小的小立方体覆盖空间的一块单位曲面（边长是1），就需要1/δ2
 个小立方体；如果要用同样大小的小立方体覆盖空间的一块单位立体（边长是1），就需要1/δ3
 个小立方体。

计盒维数方法已被广泛地应用于估计大量的分形物体的维数。它的应用不仅仅局限于平面上，对高维的分形物则用高维的覆盖盒子（见图8）来计算。
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图8　记盒维数法（from Addison, 1997）

当然，如果对平面上的曲线或曲面而言，只需要用边长为δ的小正方形来覆盖。但下面的圆规法给出了平面分形曲线的维数的更简洁的计算。

（2）圆规法（Structured walk technique）

圆规法也叫结构散步技术。用圆规法计算出来的维数可以定义为划分维数，一般地决定平面中的曲线的随机分形的维数是用圆规法来实现的。此方法比记盒维数法更简洁方便。

最简单而且最通常在平面上决定曲线的分形维数的方法是圆规法，这种用手工测量和计算的方法比记盒维数要快得多，它需要使用圆规和直尺来测量，其方法如下（见图9）：
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图9　圆规法（from Addison, 1997）

①设置圆规以固定长为步长λ；

②以曲线的起点为初始点（或挑选一个合适的起点，如果曲线是封闭的）；

③以初始点为中心，画一个弧和曲线相交；

④第一个交点变成下一个弧的中心；

⑤以④步中交点为中心画弧度，最后得N个步长，L＝Nλ；

⑥以Log（L）比log（λ）绘图，这里L是用步长为λ测量的曲线长度，也就是L＝Nλ，N是沿着曲线按散步方式测量得到的步数；

⑦用不同的步长重复①到⑥，每次画出log（L）比上log（λ）的图形，绘制结果被称为理查森图形（Richardson Plot）。

理查森图形中的曲线坡度S与划分维数DD
 有关，关系如下：S＝1－DD
 。这里，划分维数（divider dimension）即为所要求的分形维数。这里测量所得到的总长度L决于测量杖λ（圆规的步长）的选择，λ越小，L就越长。图10是用圆规法计算的英国的海岸线的分形维数的计算图。
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图10　英国的海岸线的分形维数

（3）记盒维数和圆规法的关系

圆规法和计盒维数都可用于计算自然分形的维数，尤其是划分维数，它可以很快地计算像海岸线和粒子云的边界维数。因此，圆规法是一个很有用的工具。但是它也有不足之处，就是它只能限制在平面的曲线范围内。如果要计算云层表面或大地风景的分形维数，记盒维数是一个更好的选择。因为基于多变性，记盒维数更能体现多维空间的分形物的特点。此外，记盒维数和划分维数都可以估计像分数布朗运动（fBm）那样的不规则曲线的维数。

下面看一下记盒维数和划分维数的联系（Addison, 1997）。首先考虑记盒维数对于非单位体积V1
 ，变换方程得到：N（δ）δD
 ＝V1
 。这里，D为记盒维数（我们省略计盒维数的下符B）。因此，盒子数与δ的关系如下：
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再看一下圆规法，测量的海岸线长度L是划分长度λ的一个函数，N（λ）λ＝L（λ）。N表示沿着曲线需要散步的步数，因此，测量长度L是步长λ的一个函数。又δ和λ成线性比例，也就是：λ∝δ。因此，有N（λ）∝N（δ）。

由此得到：[image: alt]
 ，或更简单地：
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因此，log（L）对log（λ）的比值产生坡度S＝1－D。可以看到，记盒维数与划分维数是等价的。当然，等价的前提是对于类似于海岸线那样的曲线。

六、分形的应用

分形在日常生活中的应用很广，并不是所有复杂的几何体都是分形。惟有具有自相似结构的几何体才是分形。分形在金融业（股市，见图11）、岩石的裂缝、道路的分布、海洋的浮标轨迹（见图12左）、粒子的散布（见图12右）、医学上人体肺的分布及毛细胞血管、脑电图曲线（见图13）等都具有分形的特征。

上证综指日对数收益率波动图
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标普500指数日、周、月对数收益率的V统计量图
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图11　具有分形特征的股市曲线
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图12　具有分形特征海洋浮标图（左）和20颗粒子散布图（右）
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图13　具有分形特征的人体的脑电图曲线

自然界里的云层、树木、山峦、草木都具有分形的特征。自然界等出现的许多看似复杂的现象，如果存在着自相似性，那么曼德尔布罗特都会把它们用一个非常简单的方程通过初值的选择反复迭代得到。这就是上面介绍的分形构造。分形的图案千奇百态，美妙无穷，它被艺术家用来描绘多彩斑斓的图案。图14是作者基于曼德尔布罗特集变换而来的分形图形。分形不但是一门数学分支，也是一门艺术。分形是当代科学最有影响和感召力的基本概念之一，分形几何学是探索复杂性的有效工具。在这个充满新奇的几何学世界里，你将受到一种挑战传统的教育，让我们先从流体的传播和扩散开始分形的探索。你将进入一个随机变换的世界，那里面将有无穷的奥秘等待你去发现。
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图14　多姿多彩的分形图案
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Chapter 1

Outline of Project

1. Introduction

In recent years, pollutant dispersion in rivers, estuaries, coastal and ocean waters has become an important environmental issue for water engineers. The need to predict the transport of pollutants has resulted in a rapid rise in the use of numerical models. There has been much research and many attempts to produce models which explain and predict the dispersion of pollutant in fluids. Computer modelling of the dispersion of pollutants in fluids has traditionally utilised standard Advection-Diffusion equations. However, these traditional methods do not usually give successful predictions of the distributions of pollutants actually measured in fluids due to the complicated nature of environmental flows. Particle tracking models have received more and more attention in recent years whereby the random paths of particles can be used as a simple way to solve diffusion equations using high-speed computers.

To date, particle tracking models presented in the literature employ random Brownian motion to simulate turbulent diffusion. These traditional models generally assume that particle tracks are neutrally persistent where the particle executes a simple random walk without memory. However, the main drawback of these models is that they consist of statistically independent steps and cannot account for the correlation which exists in the flow field (Feder, 1988). It is known that particle movements in turbulent fluids are persistent, where the memory of the particle plays an important role in indicating the future direction of the particle. To simulate persistent motion, one may resort to the emerging field of fractal statistics.

2. Fractals and Fractional Brownian Motion

Fractal geometry provides both a description and a mathematical model for many of the seemingly complex forms found in nature. Shapes such as coastlines, mountains and clouds are not easily described by traditional Euclidean geometry. However, they often possess a remarkable simplifying invariance under changes of magnification. This self-similarity is the essential quality of fractals in nature. Although, fractal geometry has only a twenty year history, it has proved an important tool with which to both characterise and model natural objects and processes.

One of the most useful mathematical models for random fractals found in nature has been fractional Brownian motion (fBm). It is an extension of the central concept of Brownian motion which can simulate both persistent and anti-persistent random motions. This thesis details a newly developed model for the numerical synthesis of fractional Brownian motion and incorporates this within a fBm particle tracking model which allows for great flexibility in the modelling of pollutant dispersion in fluids.

3. Aim and Objectives

The aim of the project is to:

Develop a particle tracking model based on fractional Brownian motion which enables a more flexible approach to the simulation of non-Fickian diffusion in the coastal environment.

This aim is carried out through the following objectives:

● A literature review of diffusion and dispersion in fluids.

● A literature review of fractal geometry and the fractal properties of fractional Brownian motion.

● The development of a traditional particle tracking model.

● The production of a numerical method for synthesising fractional Brownian motion.

● The integration of fBm into a particle tracking model.

● The simulation of pollutant dispersion within a coastal bay test model.

● The comparison of Fickian and non-Fickian diffusion in the coastal bay model.

● The investigation of fBm shear dispersion.

● The analysis of data sets from coastal dispersion field studies.

● The development of numerical techniques to model the non-Fickian spreading observed in the coastal data.

4. Structure of Thesis

The rest of this thesis is structured as follows:

A literature review concerning molecular diffusion, turbulent diffusion and the nature of dispersion in open channel, estuaries and oceanic flows will be introduced in Chapter 2, together with brief details of associated numerical modelling methods. Fractional Brownian motion will be dealt with in detail in Chapter 3. A new method of synthesising fBm (FBMINC) is developed in Chapter 3 which can simulate non-Fickian diffusion. In Chapter 4, a new fBm particle tracking model is developed and used to predict contaminant transport in an idealised coastal bay. The pollutant dispersion process is investigated using this idealised coastal bay model and the latter part of this chapter briefly considers the effect of fBm on shear dispersion. Finally, real coastal bay data, provided by Northumbrian Water Ltd, is analysed in Chapter 5 and an attempt made to simulate the data sets. A discussion of the work detailed in the thesis together with conclusions and recommendations for future work are given in Chapter 6. Many examples of the FORTRAN 77 programs developed by the author for the work of this thesis are listed in the Appendix 1.





Chapter 2

Diffusion and Dispersion in Fluids

—A Literature Review

1. Introduction

In this chapter, background literature is reviewed which covers the topic of Fickian diffusion, turbulent diffusion, dispersion and numerical models. A review of fractal geometry and the random fractal function, fractional Brownian motion (fBm), is left to Chapter 3, where numerical techniques are developed to synthesise fBm.

The transport and transfer of pollutant in fluids is determined by the motions within the fluids itself. The motion covers a very large range of scales, from the ocean-wide circulation to molecular motion. The spreading (or dispersion) of a passive contaminant is governed by two classes of process: advection and diffusion (see Kullenberg, 1982). The advection is the movement due to underlying mean motions (i. e. average velocities). The diffusion is random motions superimposed upon the mean flow advection. Dispersion is the overall spreading of contaminant which combines the process of both advection and diffusion (see Figure 1). The main topic in this chapter is about diffusion.

[image: alt]


Figure 1　The Process of Advection Only and Advection Plus Diffusion of a Contaminant Patch (U＝Mean Velocity)

Coverage of fractal geometry and more specifically fractional Brownian motion (fBm), is left to Chapter 3 where it is combined with details of the numerical methods developed by the author to simulate non-Fickian diffusion.

2. Molecular Diffusion: Fick's Law and the Diffusion Equation

The classic theory of diffusion was founded more than one hundred years ago by the physiologist A. Fick. Before introducing the famous Fick's law, we start with the basic definition of concentration and flux.

The spreading out of a contaminant through diffusion causes the concentration to even out. The concentration, c, of a diffusing substance is defined as

[image: alt]


where ∆Mass is the mass contained in a sample volume ∆V. In addition, ∆V is large compared to a3
 , where a is the average distance between the diffusing molecules or particles.

The flux Fx
 is the rate of diffusion measurement which is the mass of the diffusing substance passing through an area element ∆A in unit time, e. g.

[image: alt]


Where ∆Mass is the total mass of particles passing the area element during time interval ∆t (Ozmidov (1990), Csanady (1980)).

According to Fick's law, the flux, Fx
 , is proportional to the gradient of the concentration of matter.
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where D is the diffusivity. The minus sign indicates that diffusion occurs from high concentration to low concentration.

Fick's law provides a relationship between the spatial distribution of concentration and flux. Considering a volume fix in space V, The total mass within V is
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The total flux out of the volume V is
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Where n
 is the outward normal to the surface element dS (see Figure 2).
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Figure 2　Control Volume of Fluid (from Csanady (1973), p. 6)

Since mass must be conserved, the total flux out of the volume through the control surface equals the net decrease of mass of the control volume, thus
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Equation (5) may be converted into a volume integral:
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where ∇ is the divergence operator.

Thus, equation (7) can be written as
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Hence,
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From (3) and (9), the diffusion equation (Csanady, 1980):
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When D is constant, the classical diffusion equation (10) becomes
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Where ∇2
 is the Laplacian operator.

(11) also can be written out fully in Cartesian co-ordinates:
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Equation (11) or (12) describes the spreading of mass in a fluid with no mean velocity. If a laminar flow exists with constant velocity U which contributes to the motion, the Advection-Diffusion equation can be obtained as follow:
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Considering the simplest case with a point discharge remote from boundaries with constant diffusion coefficient and with no mean velocity (U＝0), the most fundamental solution of the diffusion equation (12) is (Fischer et al (1979), pp. 33-34):
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If diffusion in one dimension only is considered then (Csanady (1980), Allen (1991)),

[image: alt]


This is a Gaussian distribution, where Mass' is mass per unit area. The mean square distance to which particles have diffused at time t is given by:
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(Csanady (1980), p. 8; or Fischer et al (1979), p. 40). Often the standard deviation σ is used as measure of the spread. The diffusion coefficient D can be calculated by
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D is known as the Fickian diffusion (or molecular diffusion) coefficient. This simple form of diffusion is widely used in the solution of many engineering diffusion problems, even in some areas, where the diffusion is obviously non-Fickian.

3. Statistical Theory of Diffusion: Brownian Motion

Discovered by Robert Brown in 1826, Brownian motion is the sustained irregular motion performed by small particles in a fluid and it is observable with the aid of a microscope. Later, in 1905, Einstein showed convincingly that this 'Brownian motion' is maintained by collisions with molecules of the surrounding fluid. The random wanderings of many Brownian particles result in their mean dispersion.

Figure 3 shows Brownian motion generation for one particle. Each particle randomly walks about (see Figure 3, left) taking steps from a Gaussian distribution. Brownian motion in one dimension may be generated as follows:
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Where B (ti
 ) is the observed Brownian location at discrete time ti
 and R(t) is a random number taken from a Gaussian distribution. Each particle path is then constructed by simply adding together a series of random numbers. Figure 3 (right) is a Brownian motion trajectory in two dimensions (see Addison (1997)).
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Figure 3　Brownian Motion Generation for One Particle (left: from Addison (1997); right: from Addison and Qu (1996))

If a number of particles are allowed to take random steps through time, then the diffusion of a contaminant cloud can be simulated. This is shown schematically in Figure 4.

Figure 4(a) shows ten, one-dimensional Brownian motion traces all beginning at the origin. The overall diffusion of the particles can be observed from the figure. In practice, many thousands of particles are used to simulate diffusive clouds. Using a large number of particles results in diffusive processes which have a standard deviation which grows with time as (see Figure 4(b)):
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i. e. in a Fickian manner. This behaviour of a large number of Brownian particles forms the basis of traditional particle tracking methods. This is dealt with in great detail in Chapter 3, where a more comprehensive introduction to Brownian motion is also given. The statistical theory of Brownian motion provides a useful background for an attack on the more difficult problem of turbulent diffusion, although the reader will see below that in reality turbulent diffusion is non-Fickian.
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Figure 4　The Diffusion Through Time of a Cloud of Brownian Particles (from Addison, 1997)

4. Turbulent Diffusion

4.1 Introduction

Molecular diffusion in a constant velocity flow was introduced in section 2. However, fluid motions in the environment are almost always turbulent. Turbulent motion is one of the most intractable problems of physical science. It is difficult to give a precise definition of turbulence. In general, turbulence may be detected by following two facts (Fischer et al, 1979): (1) mass at a point will spread much faster in turbulent flow than in laminar flow; (2) velocities and pressures measured at a point in the fluid are unsteady and possess an appreciable random component. Figure 5 shows the difference between a laminar flow and turbulent flow in a pipe. In laminar flow at the entrance to the pipe, the velocity is uniform near the centre of the pipe and reduces to zero at the wall through a boundary layer. Hence, an initially vertical plane of dye would be distorted as shown on the left hand side of Figure 5(a). Further downstream in the region where the pipe flow is fully developed, the dye is distorted into a parabolic surface extending over the diameter of the pipe. In turbulent flow, the dye can be distorted by the shape of the boundary layer or by the fully developed velocity profile further downstream, and also distorted by the random turbulent excursions. These observed curvatures result from "eddies" which will be the topic of discussion in the next section.
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Figure 5　Deformation of a Dye Surface in Laminar and Turbulent Pipe Flow

Turbulent diffusion is much more complex than molecular diffusion. In reality, turbulent diffusion can be non-Fickian and moreover, it can be superdiffusive (i. e. it exhibits a spreading exponentially faster than Fickian diffusion). More details will be discussed in Chapters 3 to 5.

4.2 Eddies

A turbulent fluid contains many eddies of various size. Figure 6 (left) shows that a very small dye blob initially is carried along intact as a coherent lump in which the particles are correlated with each other. However, as time passes, the diffusing blob will find parts of itself on various eddies in which the dye particles become increasingly decorrelated from each other.
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Figure 6　Schematic Diagram of a Dye Blob Placed within a Turbulent Eddy Field

These eddies are characterised by different length and velocity scales and carry varying contributions to the turbulent energy. Large eddies have a tendency to grow and extract energy from the main flow while small eddies are capable of feeding on them and thus extracting their energy. In-between, eddies receive energy from the larger ones and hand it down to the smaller ones. One finds that the velocity amplitude of eddies diminishes as one goes down the scale. Most of the turbulent energy are concentrated in the larger eddies, which obtain their energy supply directly from the main flow. Their characteristic size is the scale of turbulence.

4.3 Taylor's Theorem

The first successful attack on turbulent diffusion was by Taylor (1921) in his classic paper entitled 'Diffusion by Continuous Movements'. The framework is based on a homogeneous and stationary one-dimensional turbulent flow into which a group of particles are instantaneously released at a point.

The autocorrelation function Ru
 (τ) is important for characterising stationary stochastic processes, where τ is the time delay. It can be regarded as measuring the "persistence" of a given value of the random variable concerned. The Lagrangian auto-correlation function for turbulent velocities is defined as
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where the overbar denotes the ensemble mean and U′is the turbulent fluctuation of the velocity, i. e.
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where [image: alt]
 is the mean velocity.

The displacement of an individual diffusing particle is related to its velocity by
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Taylor obtained the following equation:
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Thus
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Integrating both sides,
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Considering the limiting cases of τ→0 and τ→∞:
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(25) becomes
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So that
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Hence, σx
 (t) increases initially linearly with time.
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Set
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TL
 is the area under Ru
 (τ) curve, also called Lagrangian integral time scale of turbulence.

If [image: alt]
 which is centre of gravity, so that
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Hence
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Taylor's results show that for short times the variance of particle position grows proportional to t2
 ; while the long time behaviour grows proportional to t (i. e. the same as ordinary Brownian motion, see Chapter 3).

Taking the square root of both sides of (29),
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Let
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(31) becomes
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or
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where D is the turbulent diffusion coefficient defined by (32).

Equation (32) and (34) is the most important result of Taylor's theory. It says that if one waits long enough, the variance of the particle cloud will increase linearly with time at a rate given by [image: alt]
 where TL
 is the Lagrangian integral time scale. The Lagrangian integral time scale is a measure of the time the particle takes to lose its memory of its initial velocity. A more exact statement of the meaning of "short" and "long" time in Taylor's theory is that the time t is greater or less than Lagrangian time integral TL
 (see Fischer et al (1979), p. 68).

4.4 The Relationship Between Lagrangian and Eulerian Measurement

Theoretical study of particle dispersion can be developed either by an Eulerian approach or a Lagrangian approach. Csanady (1980, p. 52) gives concise definitions for both descriptions: The Lagrangian description describes the fluid motions in terms of the velocities or displacements of individual tagged elements of the fluid. In contrast, the Eulerian description is one in which attention is focused on volume elements fixed in space.

In section 2, molecular diffusion was discussed from an Eulerian point of view, establishing the diffusion equations from a consideration of concentration and flux at fixed points in space. Many researchers rather approach the turbulent diffusion problem from a Lagrangian viewpoint, focusing on the history of the random movements executed by the diffusing particles.

Taylor's theory described in the previous section is based on the Lagrangian approach. McComb (1991, p. 441) attempted to use Eulerian co-ordinates to express the Lagrangian analysis. Oliveira and Baptista (1995) have introduced a finite element based Eulerian-Lagrangian methods for the solution of the transport equation. Usually, it is easier to estimate Lagrangian diffusion by using Eulerian measurements (Hanna, 1981). It seems there is no theoretical relationship between the Lagrangian and Eulerian statistics. However, there are a large number of approximations for the velocity autocorrelation function and corresponding integral scales (Lee and Stone (1983), Kaplan and Dinar (1988), etc). Hay and Pasquill (1960) assumed that the Lagrangian and Eulerian autocorrelations were similar in shape but were related by a scale factor β:
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Where TL
 and TE
 are the Lagrangian and Eulerian integral time scale. Generally, the integral time scale T is given by integral of autocorrelation function Ru
 .

[image: alt]


Gifford (1955) found that β≈3 by using observations of neutral pilot balloons released from the meteorological tower at Brookhaven National Library. Hanna (1981) found an average β＝1.7 by using neutrally-buoyant balloons for Lagrangian turbulence and fixed anemometers and aircraft observations for Eulerian turbulence. He pointed that it is intuitively reasonable that β: would be greater than unity, since the time required by a balloon to completely pass around an eddy would be longer than the time required by the same eddy to be transported past a fixed anemometer by the mean wind.

4.5 Relative Diffusion and Richardson's Law

In large water bodies (e. g. oceans, large coastal bays), there may be no natural limit to the distance over which turbulent motions are correlated. e. g. there may be no upper limit to the size of "eddies" which may form. Hence, equation (34) may never be achieved, and a gradient-diffusion description of the diffusion process is not justified. The so called "two particles" theory described by Csanady (1980), Fischer et al (1979) and others deals with this situation. The most important result is that as the contaminant cloud grows in size, it is subjected to differential advection by larger and larger eddies. Therefore, the relative motion of a pair of particles is mostly affected by eddies of size comparable to the interparticle distance. As long as this distance is well within the inertial range, scaling concepts are expected to be useful for characterising the relative diffusivity.

The subject of relative diffusion was first treated by Richardson (1926) (see McComb (1991), p. 451) who began by studying Fickian diffusion and showed that relative diffusivity Da
 was just equal to twice the single-particle result:
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where D is the single particle diffusivity.

He then extended this approach to the turbulent case by postulating the existence of a Fickian diffusion equation, but with a diffusivity which depended on the particle separation. Having introduced a relative diffusivity, Richardson attempted to find a form for it. By considering the results of various experiments on diffusion in the atmosphere, he obtained the famous Richardson 4/3 (power) law:


Richardson 4/3 (power) Law:
 If the interparticle distance is denoted by l, and the average of l2
 over many repetitions of the experiment by [image: alt]
 Richardson (1926) found that the diffusivity [image: alt]
 could be fitted by the "law":
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Equation (38a) can be rewritten using standard deviation σ:
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Through integration it can be shown that
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Figure 7 is Richardson's 4/3 power law chart.
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Figure 7　Richardson's 4/3 Power Law Chart (from Richardson, 1926) (Note that Richardson Uses K to Denote Diffusivity)

Later, Batchelor (1952) proved the Richardson law from another angle. His theory was widely accepted (details see Fischer et al (1979), pp. 73-74). Hentschel and Procaccia (1984) argued that 4/3 law is not expected to hold exactly because of fractal nature of turbulence (see Chapter 3 for fractal description). They suggested that the 4/3 exponent should be increased. However, Richardson's 4/3 power law has been shown to hold by many researchers (see Sullivan (1974); Poulain and Niiler (1989); Batchelor (1952); Okubo (1971)) and it is also a fundamental contribution to the understanding of turbulent diffusion in an oceanic environment.

4.6 Okubo's Oceanic Diffusion Diagrams

The study of oceanic diffusion is quite complicated to approach due to the large scale range of turbulent motion. There is no single theory that can explain the whole pattern of diffusion: it is, therefore, a good idea to use an empirical approach by experimental studies. Okubo (1971) collected large volume of data from ocean surface floats. His famous ocean diffusion diagrams (Figure 8, 10) show that ocean surface diffusion has a less rapid increase of effective diffusivity than Richardson's 4/3 power law.
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Figure 8　Okubo's Ocean Diffusion Diagram for Variance versus Diffusion Time (from Okubo, 1971)

Okubo (1971) pointed out that the maximum concentration in a patch of dye may not be a good measure of diffusion, not only because the observation of the maximum concentration involves a great deal of uncertainty but also because the peak concentrations are sensitive to the decay of dye. In this respect, he suggested that the variance is one of the most stable parameters with which to characterise diffusion.

According to Okubo's theory, the two variances, along the major and minor axes of the dye patch, say [image: alt]
 are necessary to properly describe ocean diffusion. The variance [image: alt]
 for a radially symmetrical distribution obtained by taking the equivalent radius is given by
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The apparent diffusivity is defined by

[image: alt]


Okubo set the scale of diffusion as:
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By plotting the value of the variance, [image: alt]
 against diffusion time t for a large range of available data, Okubo obtained a basic diffusion diagram (see Figure 8).

In Figure 8, the variance ranges from 107
 cm2
 to 1013
 cm2
 , while the time of diffusion ranges from 2 hours to nearly 1 month. The relationship Okubo found is

[image: alt]


where [image: alt]
 and t are expressed in terms of cm2
 and sec, respectively.

Figure 9 shows the relationship between the apparent diffusivity, Da
 , and a scale of diffusion, l. The scale of diffusion is arbitrarily defined as 3σr
 (see (42)). A straight line fit by eye to the data points gives the empirical relationship that
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Figure 9　Okubo's Diffusion Diagram for Apparent Diffusivity versus Scale of Diffusion (from Okubo, 1971) (Note that Okubo Uses Ka
 to Denote Apparent Diffusivity)

The exponent of l is apparently smaller than 4/3 (see Okubo, 1971).

Okubo said that his results do not rule out the possibility of the four-thirds power law of the diffusivity. He found that the 4/3 power law are fitted locally by eye to the data points (see Figure 10).
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Figure 10　Okubo's Diffusion Diagram: Variance versus Time: Fit of the Four-Thirds Power Law Locally (from Okubo, 1971)

5. Shear Dispersion

5.1 Introduction

The concept of dispersion may be defined as the spreading of marked fluid particles by the combined action of a velocity distribution and diffusion (see Fischer (1973)). The spreading in the direction of flow is caused primarily by the velocity profile in the cross section. Flows with velocity gradients are often referred to as "shear flows" (see Fischer et al (1979), p. 80). Figure 11 depicts a contaminant shear dispersion in an open channel flow. The contaminant is diffused up and down the velocity profile, where the differential advection results in an enhanced rate of spreading (i. e. shear dispersion).
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Figure 11　Contaminant Shear Dispersion in a Channel Bed

5.2 Taylor and Elder's Shear Dispersion Results

Taylor's theory (Taylor, 1921) has been introduced in section 4.3. Taylor's theory tells us that a dispersion coefficient can be defined by [image: alt]
 Taylor (1953) published a paper describing the spread of dissolved contaminants in laminar flow through a pipe (see Figure 12). Aris (1956) showed that it is possible to obtain Taylor's main results without stipulating the feature of the concentration distribution (Fischer et al (1979), p. 90). Aris proved that the longitudinal dispersion coefficient equals the longitudinal molecular diffusion directly additive to that caused by the velocity profile.
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Figure 12　Taylor's Early Dispersion Research in Laminar Pipe Flow

A year later, Taylor extended his analysis to turbulent flow (see Taylor (1954)). The velocity profile in turbulent flow U is different from that in a laminar flow. The cross-sectional turbulent diffusion coefficient will play the role of molecular diffusion in laminar flow. However, this time the cross-section diffusion coefficient Dy
 is a function of cross-section position, y. Taylor's experimental results show that all turbulent flows have similar velocity profiles:
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here U*
 is shear velocity defined as:
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where τ0
 is the bottom shear stress, ρ is the fluid density and Z＝r/a.

Taylor got the simplest result for describing turbulence dispersion (i. e. the dispersion diffusion coefficient, also called longitudinal diffusion coefficient):
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where a is the radius of the pipe.

Elder (1959) developed Taylor's result in pipe flow into a flow down an infinitely wide inclined plane. His velocity fluctuation profile is
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where k is the von Karman constant, usually taken as K＝0.4. z′＝z/d, where z is the height from the channel bottom and d is the depth of the channel. The longitudinal diffusion coefficient is
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Elder gives the well known result (by taking K＝0.41):
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The significance of Taylor's and Elder's work for channel flow is that the longitudinal spread of depth-averaged concentration, [image: alt]
 can be described by a one-dimensional Advection-Diffusion equation (see Holly, 1985, p. 17):
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where Dx
 is the longitudinal diffusion coefficient given by (47) or (50).

5.3 Dispersion in Rivers

In a typical river, there are three stages of dispersion (see Fischer et al (1979), also see Figure 13). In the first stage, the initial momentum and buoyancy of the contaminant determine the rate of dilution (position A). It soon leads to a second stage in which the contaminant is mixed across the channel primarily by turbulence in the receiving stream (position B). Finally, when the contaminant is fully mixed across the channel, the process of longitudinal shear flow dispersion will tend to erase any longitudinal concentration variations (position C). In this stage, Fickian diffusion can be an accurate model.
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Figure 13　Three Stages of Dispersion in a River (from Fischer et al, 1979)

5.3.1 Dispersion in a Uniform Depth Open Channel

A uniform depth open channel is shown as Figure 14. This idealised open channel is uniformly straight, infinitely wide and of constant depth. In this ideal case, the turbulence is homogenous and stationary in both x and y directions. A cloud of tracer released in such a flow will grow until it fills the depth, and then will continue to grow in the direction of the length and breadth. The Lagrangian length scale will be approximately equal to the depth. Therefore, once the cloud extends over several depths, the turbulent diffusion coefficient will be constant. Taylor's theory (2) can be applied to this case. The Fickian turbulent diffusion is accurate in this stage. i. e. the variance of particle position grows proportional to time t:
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Figure 14　Schematic Diagram of the Velocity Profile in an Open Channel

The physical processes of contaminant dispersion in an open channel are very complicated. Sullivan (1971) uses a line of passively marked fluid elements extending across a two-dimensional turbulent shear flow, then becoming dispersed in the streamwise direction primarily because of the variation in the mean velocity U(y) direction. He described the processes of contaminant dispersion using three different distributions p(x, t) (see Figure 15). In the first stage, the distribution is skewed. The distribution in the second stage has a Gaussian tail on its end. The third stage has a Gaussian distribution.

In Table 1, d is the depth of the open channel, y is the height from the channel bottom, y*
 ＝30d/R*
 , R*
 ＝u*d/U, u*
 is the friction velocity.

Table 1　Sullivan's Three Stages Table (see Sullivan, 1971)
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Many researchers have a great interest in the period before a Gaussian distribution can be achieved. Aris (1956) proved that for an asymptotically long time, Taylor's second results can be applied, although he did not specifically discuss how soon Taylor's analysis would be valid. Sayre (1968) integrated Aris's equation numerically and found that the second moment grew at a constant rate if the dimensionless time is greater than approximately 0.5. Dimensionless time [image: alt]
 can be defined as (see Fischer, 1973)
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where Dy
 is the characteristic diffusion coefficient in cross section direction, and h is a characteristic length of the cross section.

Chatwin (1970, 1972) found that after dimensionless time [image: alt]
 the flow concentration will be indistinguishable from Gaussian. It was also shown that the variance of the dispersion cloud grows at a constant rate for [image: alt]
 (Chatwin (1970), Fischer (1973), Fischer et al (1979)). Fischer (1967) found that if the distribution of a dispersing cloud was measured at a dimensionless time greater than approximately 0.4, distribution at later times could be computed with reasonable accuracy with the Advection-Diffusion equation (also see Fischer, 1973).

In 1966, Fischer stated that Taylor's second equation should not be applied until after an initial time, called the convective period (McQuivey and Keefer (1976)). McQuivey and Keefer (1976) developed a convective model and gave a good approximation of the shape of the centre line concentration profile up to a distance of one-sixth of the convective period. The convective period is the length of time before a Gaussian distribution can be applied. Figure 15 illustrates the concept of the convective model.
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Figure 15　The Concept of Convective Model with Longitudinal Diffusion Component (from McQuivey and Keefer (1976))

Much has been attempted in order to produce a numerical approach to the initial period. For example, Chatwin (1976, 1977) expands the concentration as a power of t. Smith (1981) developed a more promising method in which the rapidly varying concentration c(x, t) is expressed in terms of two slow varying functions a(x, t) and [image: alt]
 (x, t) by the equation c＝aexp(±[image: alt]
 ). An easier computational approach was given by Fischer (1967) and Fischer et al (1979) where they use observed velocities at only one cross section, in accordance with the requirement that Taylor's analysis can be used only in uniform flow. More discussion about the dispersion soon after release in an open channel can be seen from Chatwin and Allen (1985), Fischer (1973), Fischer et al (1979).

5.3.2 The Three-Dimensional Diffusion Coefficients in an Open Channel

(1) Vertical Diffusion Coefficient Dz


From the idea of Elder's analysis that the diffusion coefficient is proportional to the depth d times the shear velocity U*
 (see equation (50)), Fischer (1973) gives a useful result for a vertical diffusion coefficient after their experimental measurements which is:
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This result is close to the result given by Csanady in 1976 as Dz
 ＝0.05dU*
 for measurements in an atmospheric boundary layer (Fischer et al, 1979).





(2) Transverse Diffusion Coefficient Dy


Experiments show that the transverse diffusion coefficient Dy
 is always in the range of 0.1dU*
 ～0.2dU*
 (see Fischer et al (1979)). An approximate average of experimental results is
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However, Fischer (1967) measured transverse diffusion coefficient in an apparently straight irrigation canal and found that Dy
 ≈0.23dU*
 (also see Csanady (1980), p. 144), which is larger than (55). In a large irregular channel, the boundary geometry may increase the scale of transverse motion and lead to a larger value of diffusion coefficient.





(3) Longitudinal Diffusion Coefficient Dx


In an infinitely wide uniform channel, turbulence causes longitudinal dispersion at about the same rate as transverse dispersion as there are no boundaries in both directions. However, most results show that the longitudinal diffusion coefficient is larger than the transverse coefficient. Sayre (1968) found that the longitudinal coefficient for spreading of polyethelene particles on the water surface was approximately three times that for transverse spreading. Some of the longitudinal spreading may have been due to a transverse velocity shear resulting from secondary circulation. However, in any case, longitudinal diffusion caused by turbulent eddies is generally unimportant because the shear flow dispersion caused by the velocity gradient is much larger than is caused by turbulent diffusion alone (Fischer et al (1979), p. 109).

Elder's result (equation (50)) shows that the longitudinal diffusion coefficient, Dx
 , is about 40 times the transverse diffusion coefficient, Dy
 , i. e. Dx
 ≈40Dy
 . Smith (1989) found that the contaminant cloud will have travelled only about 5 channel breadths downstream by the time that shear dispersion has become more important than the longitudinal diffusivity.

Smith (1989) reviewed dispersion in an open channel (or river) from the viewpoint of apparent diffusivity. He concluded that the apparent diffusivity for the rate of dilution of pollutant depends strongly on the time (or length) scale. For times which are moderately long compared with molecular time of flight, a molecular diffusivity is appropriate. For times moderately long compared with (Lagrangian) turbulent correlation time, a turbulent eddy diffusivity is appropriate. For times which are longer than the cross-sectional mixing time in a river, a longitudinal shear dispersion coefficient is appropriate. At each increase in time (or length) scale, there is a vast increase in the rate of dilution. Molecular diffusivities are typically 10-9
 m2
 s-1
 , turbulent diffusivities are of order 10-3
 m2
 s-1
 , and longitudinal dispersion coefficient for the world's major rivers can be as large as 103
 m2
 s-1
 .

5.3.3 Dispersion in a Natural Channel

Natural channels are different from uniform channels, due to their irregular shape in depth and width. However, the irregular width does not interfere much with the rate of vertical diffusion (Fischer et al, 1979). Hence, in general, the vertical diffusion coefficient given by equation (54) still holds.

On the other hand, the irregular width does strongly affect the transverse diffusion. Experiments show that the greater the degree of irregularity, the faster the transverse diffusion which arises (Fischer et al, 1979).

Fischer et al (1979, p. 129) pointed out that natural streams usually have width to depth ratios in the range of ten or greater. Thus the transverse velocity profile should be 100 or more times as important in producing longitudinal dispersion as the vertical profile.

A further introduction and a description of the theory concerning natural channel dispersion can be found in Fischer et al (1979) and Csanady (1980).

5.4 Dispersion in the Sea

5.4.1 Introduction

The process of oceanic diffusion is quite complex, and no single theory can explain the entire pattern of diffusion. In addition to a theoretical approach, a knowledge of the processes in oceanic diffusion still depends heavily on an empirical approach by means of tracer experiments (Okubo (1971)). A common method used in these experimental studies is the tracking of freely drifting objects. Traditional methods are: buoyant floats, drift of ships, bottles, etc. Nowadays, more sophisticated drifters are used such as those remotely tracked by radio, radar or satellite. Due to the long period and large area of measurement in the sea, traditional methods suffered from lost and inaccurate data. However, more advanced methods, such as satellite-tracking, now give highly accurate results.

Figure 16 (left) is a set of drifter tracks for the 10 buoys in the Northeast Atlantic which was tracked by Booth (1988). Figure 17 (right) provides a closer look at drifter 72 off the Northwest Coast of Ireland. The irregular shape of the drifter trajectory is noticeable in the plot. Actually the trajectory is a random fractal known as fractional Brownian motion. This will be dealt with in more detail in Chapter 3.
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Figure 16　Left: 10 Buoy Tracks in the Northeast Atlantic. Right: The Movement of an Actual Satellite Tracked Buoy 72 Monitored off the Northwest Coast of Ireland (by Booth (1988)) (The Data Shown in the Right Hand Plot Was Provided to the Author by Dr. D. Meldrum, Dunstaffnage Marine Laboratory, Oban, Scotland)

5.4.2 Relative Diffusion on the Ocean Surface

It has been found that separating dispersion from turbulent diffusion is difficult in the ocean. In open channels, the problem is circumvented by considering only the largest scales (that is, scales on the order of the channel width) as contributing to dispersion. In the ocean there is no fixed length scale and the problem cannot be avoided. Since the problem is one of definitions and scales, the method described by Okubo and Ebbesmeyer (1976) is still useful, in that it allows a separation based on the length scale of dispersion effects from turbulent diffusion (List et al (1990)).

Okubo and Ebbesmeyer suggest that the diffusivity can be estimated by
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where σx
 and σy
 are the standard deviations of the relative displacement at time t in x and y directions. σu
 and σv
 are the standard deviations of the turbulent velocity in velocity directions, C is a constant of order 0.1-1.0. It was reasonable to assume the value C is 0.1 (Yanagi et al (1982), Sanderson and Pal (1990)). Some other relative diffusion coefficient calculation methods can be seen from Yanagi et al (1982) and List et al (1990).

Many researchers have attempted to elucidate the nature of turbulent diffusion within an ocean, e. g. Fahrbach et al (1986), Yanagi et al (1982), Sanderson and Pal (1990), Booth (1988), Young and Rhines (1982), Bowden (1965). A series of research studies on horizontal dispersion in oceans was carried out by these researchers (more can be seen from Colin de Verdiere (1983), Krauss and Boning (1987), List et al (1990), Pouland and Niiler (1989)).

Bowden (1965) emphasised that the vertical gradient of velocity combined with vertical turbulent diffusivity leads to an effective diffusion in the horizontal direction. It was also stressed by Yangi et al (1982) and Young and Rhines (1982). Bowden (1965) further pointed out that, in estuaries and coastal waters, horizontal mixing by the shear effect may be associated with tidal currents, density currents or wind-driven currents. In each case, the effective horizontal diffusion, Dx
 or Dy
 , is inversely proportional to the vertical diffusion coefficient Dz
 . Dz
 is lowest near the surface, reaches a maximum near mid-depth, and then decreases towards the bottom, while still remaining higher than near the surface. Figure 17 is a vertical concentration distribution of dye cloud from Yanagi et al (1982).
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Figure 17　The Vertical Concentration Distribution of a Dye Cloud (from Yanagi et al (1982))

Booth (1988) concluded that the horizontal variance, σ2
 , of a dispersing patch increases with time, t, according to
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and the corresponding horizontal diffusion coefficient, D, varies according to

[image: alt]


Here l is the horizontal scale.

As mentioned in section 4.5, Richardson's 4/3 power law has been found in practice by many researchers. Fahrbach et al (1986) found that D∝l1.43
 , which is not significantly different from Richardson's 4/3 power law. However, some researchers found that the dispersion curves fit Taylor's small and large-time approximation reasonably well during certain periods (Booth (1988), Verdiere (1983), Krauss and Boning (1987), Van Dam (1994)).

In practice, the engineer will require detailed knowledge of the characteristics of the area of interest, probably from field studies. The actual diffusing cloud may show anisotropic spreading. In this case, it is usual to define the cloud in terms of the axes of greatest and least spreading:
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and
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hence, the overall radial spreading is:
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Notice that the condition of equation (63) assumes that the cloud distribution is of a radial Gaussian form. Figure 18 shows a schematic diagram of a diffusing cloud spreading along the mean flow direction. The concentration decreases at the centroid and increases its area while the patch spreads out (Figure 18).
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Figure 18　Diffusing Cloud Spreading Along the Mean Flow Direction (Typical of Ocean Surface Spreading)

There are several articles which consider the ratio of advection to diffusion displacement in the oceanic range. Spall et al (1993) compared the ratio, b, of the displacement due to advection to the displacement due to diffusion for Lagrangian buoy trajectories in the Mediterranean:
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They plotted the ratio b as a function of time and showed that the eddy component dominates over the mean component during a certain initial time. This initial time, however, was larger than the scale of observation (approximately 5 years). Huang and Fergen (1997) set a model for surface plume dispersion in an ocean current. They found that the importance of buoyant spreading decreases and that of turbulent diffusion increases with distance from the source.

Krauss and Boning (1987), monitored 113 satellite-tracked buoys over 5 months in the northern North Atlantic and they found that oceanic diffusion is nearly always dominated by the eddy field. Figure 19 shows the Buoy trajectories of the 113 satellite-tracked buoys they used for tracking turbulent dispersion in the North Atlantic.
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Figure 19　Buoy Trajectories of 113 Satellite-Tracked Buoys Based on Daily Averages for the First 5 Months After Deployment (from Krauss and Boning, 1987)

5.4.3 Coastal Region

Dispersion in the coastal region, especially in semi-enclosed bays, is much more complicated than for rivers and the wide ocean surface. In rivers and the wide ocean surface, the combination of turbulent diffusion and advection is relatively simple. In a semi-enclosed bay, the advection velocity is not constant in time, space or direction due to the effect caused by wind, tides or river inflows. There are two primary physical properties of coastal water motions (List et al (1990)): (1) The predominant direction and intensity of the flow vectors; and (2) the diffusing and dispersing ability of the currents and their associated turbulence. There are several main causes of dispersion in the coastal region: the effect of tidal induced divergence, current shear, rotation and turbulent diffusion are major sources (List et al (1990)). Wind is usually a dominant source of energy in the coastal area. The effect of wind depends primarily on the currents induced (Fischer et al (1979), p. 232). Topography, including simple slopes, can affect the difference between the jet and the ebb flows (Booth (1994)). Moreover, the main causes may change from season to season, even from week to week (Fischer et al (1979), p. 248). Often the flow is moving in different directions at different depths. Figure 20 shows a group of drifting buoys tracked by Booth (1994) in Havre de Gaspe bay in 1990 on the coast of the Gulf of St Lawrence in Canada during a one-day period for both shallow drogues (a) and deep drogues (b). Their paths are quite different.
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Figure 20　Drift Buoys Change Direction under Different Wind Direction in Havre de Gaspe Bay in 1990 (from Booth (1994))

(a) Shallow Drogues

(b) Deep Drogus. Wind: 1-7ms-1
 from the North-West and Later the South-East. Predicted Tides: 1305, 0.9m; 1840, 0.6m, 0210, 1.3m





List et al (1990) found that coastal currents generally increase in magnitude with the distance from shore, so the offshore drogues move faster than inshore drogues, and the diffusion coefficient Dx
 (alongshore) increases with distance from shore much faster than does Dv
 . Due to drogue set rotation, their variances in both the x and y direction will alternately increase and decrease, and Dx
 and Dy
 will be alternatively positive and negative. They also found a rapidly accelerating diffusion mechanism at length scales on the order of 4 km and larger in the Southern California coastal region. Figure 21 (left) is the growth tendency of diffusivities with time-scale. They also found that as the scale increases, the relative importance of dispersion decreases, while the relative important of turbulent diffusion increases. Figure 21 (right) shows a 4/3 slope line drawn by List et al (1990) for comparison of the upper bound of the dispersion coefficient, Dx
 , found for floating drogues. This confirms that Richardson's 4/3 power law is important not only on the open ocean surface but also in the coastal region.
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Figure 21　Left: Diffusivity versus Time (Hours) from 5-m Drogues. Here kx
 ＝σx
 σu
 , ky
 ＝σy
 σv
 and k＝(kx
 ＋ky
 )/2. x is Alongshore Direction. Right: Plot of Dispersion Coefficient versus σ in the x-Direction (from List et al, 1990)

Dispersion modelling in the coastal zone has its difficulties. These are detailed by List et al (1990), see also Fischer et al (1979).

6. Numerical Model of Dispersion

6.1 Solution of the Advection-Diffusion Equation

This section contains a brief review of the numerical solution to the Advection-Diffusion equation. This section is included for completeness of the literature review, however, the reader should note that this is not within the area of expertise of the author.

A traditional approach to modelling diffusive processes in fluids is by way of the Advection-Diffusion equation (13), where the diffusion coefficient D and velocity U are assumed constant. To illustrate the numerical modelling using the equation, the Advection-Diffusion equation in its general one dimensional form is considered:
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The model can be easily generalised to 3-D.

Equation (65) is usually implemented numerically using finite-difference techniques to produce output of the mean concentration. The derivatives in equation (65) must be written in terms of the known and unknown values of c. If the time is indicated by the upper index n (tn
 ＝n∆t, where ∆t is the time step used for the discretisation of time) and the position along the x axis by the lower index i (xi
 ＝i∆x, where ∆x is the space step), an explicit technique is one in which all the derivative are expressed in term of known values. For instance,
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All of these operators use only the value of c known at time interval n. Implicit schemes are more stable but more expensive computationally. An implicit central difference operator may be written as
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Obtaining the most accurate estimate possible of the initial concentration at a location between grid points can be done by constructing a higher order polynomial using initial value of concentration at several grid points (Fischer et al (1979), p. 287; Abbott and Basco (1989)). For example, Holly and Preissmann (1977) suggest constructing a third order polynomial from the value of concentration and its derivative at two points. The higher the order of the polynomial the more accurate the scheme, but the more expensive the computation. One scheme that has been used frequently is that of Stone and Brian's method (see Fischer et al (1979), p. 287). They use the implicit central difference operator for the advective term and represent the time derivative in a spread form as
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The diffusion term is represented by the Crank-Nicholson Approximation,
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Some other numerical methods are available for the approximate solution of equation (65). Holly and Usseglio-polatera (1984) found that it is complicated and difficult to find a single numerical method which adequately treats both advection and diffusion process at the same time. A more practical solution is to calculate advection and diffusion separately (see Sauvaget (1985), Holly and Preissmann (1977), Holly and Usseglio-Polatera (1984)). Their method is based on the fact that interpolating polynomials of higher order may be constructed between only two points if not only the dependent parameter, but also its derivatives, are known at each point.

Wang and Anderson (1982, pp. 183-184) pointed out that the solutions using finite difference approximations contain numerical errors. More recently, interest has shifted to the use of finite element techniques to approximate the Advection-Diffusion equation. Finite element solutions are, in general, more immune to numerical errors than are finite difference solutions. Example of finite element solutions can be found in Wang and Anderson (1982, pp. 185-197).

6.2 The Disadvantage of Solving the Advection-Diffusion Equation

Although the Advection-Diffusion equation is a traditional method in describing turbulent mixing especially in a river, it is not practically useful for hydraulic engineering purposes. The reason is that the velocity vector must be known with sufficient precision in time and space to solve the details of random turbulent fluctuations. It is simply not possible to use computer memory to store and manipulate such detailed information. Therefore, the Advection-Diffusion equation must be replaced by mean velocities and mean concentrations before engineers use it in practice. Chatwin and Allen (1985) studied the meaning of the mean concentration in several different aspects. They pointed that the basic average in all work on turbulent diffusion is the ensemble mean. However, the average concentration is much smaller than typical concentrations found in reality (also see Fischer et al (1979), p. 269). Hence, they suggested to set a concentration and velocity value to the mean concentration and velocity plus the fluctuation of their component. A fluctuation term should be added into the Advection-Diffusion equation accordingly (see Chatwin and Allen (1985), p. 124, equation (3)). Figure 22 is a sketch illustrating the mechanisms causing dispersion in the downstream direction of a channel (by Chatwin and Allen (1985)).
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Figure 22　Sketch Illustrating the Mechanisms Causing Dispersion in the x-Direction

(a) Molecular Diffusion

(b) Turbulent Diffusion

(c) Initial Advection, which Enhances Transverse Diffusion

(c′) and Hence is Smeared (c″) (from Chatwin and Allen, 1985)





Another inaccuracy in using the Advection-Diffusion equation is that it cannot be applied in the early stages of dispersion as described in section 5.3.1.

For practical problems of dispersion of pollutant in the environment, it is more important to be able to predict the peak concentrations of pollutants which are likely to occur at a particular location and time, in order to make a proper assessment of any hazard potential. The Advection-Diffusion equation model can only calculate mean concentration which under the condition of the fluctuations in concentration are small in comparison with the mean concentration values (Chatwin and Allen, 1985). However, in reality, especially on the ocean surface, the fluctuations can reach a very high value.

To overcome the disadvantages of using the direct solution of the Advection-Diffusion equation, an evolution of a dispersion method-the traditional particle tracking model-was proposed first by Sullivan (1971), later developed by Allen (1982, 1991) and others. A brief review of this method is given in the next section, and in more detail in Chapter 3.

7. Traditional Particle Tracking Methods

Using particle tracking methods to simulate pollutant dispersion has received increasing attention in recent years. An early particle tracking method was proposed by Sullivan in 1971 when he tried a different approach to model dispersion in a rectangular river channel (see Figure 23). He used a large number of particles as a pollutant source. The paths of the particles represent a cloud of pollutant which are tracked by computer as they move through the fluid. Sullivan specified the source of pollutant as either a point source or a line source. The particles were allowed to move randomly in the transverse direction, while advecting in the longitudinal direction according to the velocity derived from the local fluid velocity field. It is obvious that particle tracking models require a detailed knowledge of the turbulent velocity components in order to predict the particle paths.
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Figure 23　A Typical Particle Path Measured in Open Channel Flow by Sullivan (from Sullivan, 1971) (Note: Sullivan uses y as vertical direction and z as transverse direction)

Sullivan's early particle tracking model was based on the uniform rectangular channel with constant vertical velocity. Allen (1982, 1991), Heslop and Allen (1993), extended Sullivan's particle tracking model into a horizontal oscillating current in a vertical plane, with current shear and vertical mixing, where the bottom topography can be irregular. Due to the similarity between Sullivan's particle tracking model and Allen's (1982), we introduce only Allen's particle tracking model in detail in this section. In Allen's model, x denotes longitudinal distance and z denotes the distance from the bottom boundary (see Figure 24).

Allen used the random walk technique to simulate the dispersion in a two dimensional turbulent shear flow in a rectangular channel. The position of particle displacement is given by
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where L is the local Eulerian length scale, and U(z) is the temporal longitudinal velocity at a distance z from the flow bottom boundary and W is the vertical velocity during this small displacement (see Figure 24). A random sign is attached to the vertical displacement ∆z. U(z) is taken as the logarithmic velocity profile of open channel flow in Allen's work.
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Figure 24　Schematic Diagram of Allen's Particle Tracking Model in an Open Channel The Particle is Displaced Horizontally by ∆x and Vertically by ∆z at Each Time Step of Duration ∆t

Both Sullivan and Allen's experimental work show that the technique they used is more realistic than the Advection-Diffusion equation model. The main advantage of particle tracking models is that they can model from the very early stage of dispersion. Figure 25 shows a skewed concentration in the early stage where a nearly Gaussian forward section is followed by a long upstream tail using both measured and simulated methods.
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Figure 25　Simulated and Experimental Depth-Integrated Concentration in the Early Stage for Flows in an Open Channel (by Sullivan, 1971)

By taking a close look at the early stage of the dispersion, Allen found that a dimensionalized time [image: alt]
 is required before a Gaussian distribution is reached in an open-channel, where d is the depth of the channel. For example, Allen found that for the Mersey estuary, a symmetrical longitudinal concentration distribution is obtained after 40 hours. Figure 26 shows Allen's typical concentration output during the early stage after release. The non-Gaussian distribution in the vertical averaged concentration can be clearly seen in the figure.
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Figure 26　Allen's Typical Concentration Output in the First Stage (from Allen, 1991)

Particle tracking methods have received more and more attention in recent years. Van Dam (1994) developed Allen's particle tracking method into more sophisticated applications: from a longitudinal system with simple geometry to complex geometries. A Fickian diffusion coefficient was used in his modelling, under the condition of a sufficiently small time step and sufficiently large number of particles which was suggested by Einstein in 1905 (see Van Dam, 1994). Cheng et al (1996) developed a particle tracking technique in multi-dimensions. Further research on particle tracking is detailed in Dewey and Sullivan (1977), Scheibe and Cole (1994), Kitanidis (1994), Scott (1997) and Addison et al (1998a).

Particle tracking models afford simpler and more accurate predictions of advection and diffusion. It is more computer efficient to use a particle tracking method which does not occupy the whole model domain. It can also accurately simulate the initial stage of dispersion, showing a more skewed distribution in the early stages (Figure 25, 26). It has been found that particle tracking techniques allow for a two-dimensional approach to be taken when modelling diffusion in rivers and estuaries rather than a one-dimensional approach (Van Dam, 1994).

Sullivan (1971) and Allen (1982) both provided the simplest type of particle tracking model in which the random walk is a constant jump. Later particle tracking methods use random steps taken from a Gaussian distribution (see Van Dam (1994), Cheng et al (1996), Delay et al (1996), Kitanidis (1994), Scheibe and Cole (1994), Scott (1997), Starchev et al (1997)). These traditional models all produce Fickian diffusion. Some articles consider the use of particle tracking methods for subsurface flow and transport processes (see Scheibe and Cole (1994), Scott (1998), LaBolle et al (1996)). However, many researchers have found that, in reality, dispersion is more likely to be non-Fickian, rather than Fickian (see Sanderson and Booth (1991); Okubo (1971)). A new non-Fickian particle tracking model is, therefore, proposed in this thesis. This non-Fickian particle tracking model will be introduced in detail in Chapter 3 and its use illustrated in Chapters 4 and 5.

8. Summary

The basic concept of diffusion: both molecular and turbulent diffusion was introduced at the beginning of this chapter. Taylor's theory is based on a Lagrangian approach which shows that for a short time, the variance grows proportional to t2
 , while after a long time, the variance grows proportional to t (Fickian diffusion). It was verified that in an open channel, after the pollutant is fully mixed across the channel (maximum size of eddies achieved), Taylor's long time Fickian diffusion holds true. This is the "third stage" as described by Fischer et al (1979) and Sullivan (1971). In their first stage, which occurs immediately after pollutant release, the distribution is skewed. There are several suggestions for the duration required since release before the Advection-Diffusion equation can be used (Townsend (1954), Mickelsen (1960), McQuivey and Keefer (1976), Dewey and Sullivan (1977), Smith (1981), Van Dam (1994)). On the ocean surface, there is no limit of eddy size, and the limiting case where the variance grows linearly with time may never be achieved. A relative diffusion can describe the dispersion in ocean surface. Richardson's 4/3 Law (Richardson, 1926) and Okubo's oceanic diagrams describe the relationship between the relative diffusivity and the interparticle displacement (equation (38b) by Richardson, (44) by Okubo). Hence the relationship between the standard deviation of a cloud of particles and their release time can be obtained (equation (39) by Richardson, (43) by Okubo). Both of their results show that ocean surface dispersion is in fact non-Fickian, and furthermore, superdiffusive in nature.

Sullivan (1971) proposed a particle tracking method which can overcome some disadvantages of the Advection-Diffusion equation method. Traditional particle tracking methods mostly result in Fickian diffusion which is not a realistic for diffusion in many large water bodies. A newly developed non-Fickian particle tracking method will be introduced in the rest of this thesis.





Chapter 3

Brownian Motion, Fractional Brownian Motion and Fractal Geometry

This chapter outlines both Brownian motion and fractional Brownian motion. The development by the author, of numerical models to synthesise fractional Brownian motion is introduced in detail. Testing of these models is then carried out. The chapter ends with a brief introduction to fractal geometry and the interpretation of fractional Brownian motion as a random fractal function.

1. Brownian Motion

1.1 The Definition of Brownian Motion

Small particles of solid matter suspended in a liquid can be seen under a microscope to move about in an irregular and erratic way. This movement, known as Brownian motion, was observed by the Scottish botanist Robert Brown around 1827. The modelling of this movement is the one of the great topics of statistical mechanics. Brownian motion is widely used within particle tracking models to predict pollutant dispersion in fluids, e. g. river flows, atmospheric flows and oceanic flows.

What kind of motion can be called Brownian motion? Hastings and Sugihara (1993, p. 25) give the following definition:


Brownian Motion Definition:
 A continuous process {B(t)} is called a Brownian process, if, for any step ∆t, the increments ∆B(t)＝B(t＋∆t)－B(t) are

(1) Gaussian,

(2) of mean 0, and

(3) of a variance proportional to ∆t.

Here (2) and (3) are equivalent to

(4) successive increments ∆B(t) and ∆B(t＋∆t) are uncorrelated.

Brownian motion B(t) can be expressed as a continuous-time random function, which is the integral of a Gaussian white noise WT(s),
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The random variables WT(s) are uncorrelated and have the same Gaussian, or normal distribution with zero mean and unit standard deviation, denoted N(0, 1). Because successive increments of the Brownian trace, B(t)－B(t－∆t), have a Gaussian distribution, it can be seen that a discretised approximation to a Brownian motion trace, B(i), may be produced at discrete times, ti
 ＝i·∆t, (where i is an integer), by summing up a series of independent random steps taken from a Gaussian distribution,
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we have
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The finite resolution of the Brownian motion trace generated is governed by the choice of the time increment ∆t. The reader should note that in equation (2), B(i) is used to represent the synthesised Brownian motion at time ti
 , whereas in equation (1), B(t) is used to represent the continuous Brownian motion at time t.

1.2 Two Simple Random Walks

Instead of using random steps from a Gaussian distribution, an approximation to Brownian motion may be constructed by taking random steps from simple probability functions, such as a delta function or a constant probability density function (p. d. f.). The accumulation of delta or constant pulses is generally known as a random walk.

The FORTRAN 77 software package used in the simulations contained in this thesis provides a constant p. d. f. R(i) in the range (0, 1), i. e. it has a standard deviation, [image: alt]
 and a mean of μ＝0.5. The numerical generation of delta pulses and constant p. d. f. pulses, with σ＝1 and μ＝0, using this software, is detailed below. The generation of Brownian motion using steps taken from a Gaussian distribution is given in the next subsection 1. 3. For the purpose of illustration, a diffusion coefficient D＝0.5 is always used in section 1.

To get a delta function with standard deviation σ＝1, we require a sequence of numbers Delta(i), which are randomly distributed with values of either 1 or -1. Hence, we use
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Figure 1 shows a random sequence of Delta pulses. Figure 2 shows the integral of the Delta pulses, herein called a "Delta Random Walk". Here, the length of each step of random walk is the same, i. e. equal to unity.
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Figure 1　Delta Pulses With 500 Steps
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Figure 2　Samples of Delta Random Walk in One Dimension (i. e., the Integral of the Pulses of Figure 1)

A sequence of random numbers from a constant p. d. f., with σ＝1 is generated from R(i) as follows,
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This produces a constant p. d. f. in the range [image: alt]
 Figure 3 shows the constant random pulses in the range [image: alt]
 Figure 4 contains the integral of the constant pulses, herein called a "Constant Random Walk".
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Figure 3　Constant Pulses with 1000 Steps
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Figure 4　A Sample of Constant Random Walk with 1000 Steps (i. e., the Integral of the Pulses of Figure 3)

1.3 Brownian Motion Generation

It is known that Gaussian white noises, WT(i), are uncorrelated and have a Gaussian (i. e. normal) distribution N(0, 1). Brownian motion is the integral of WT(i). To generate Brownain motion, we need first to produce Gaussian white noise WT(i).

As Gaussian white noises are independent of each other, the Gaussian distribution of the pulses WT(i) is given by the probability density function
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Therefore, the standard deviation of each step, σstep
 , in Brownian motion needs to be calculated first. The FTN77 random variables x＝R(i) are all within [0, 1] with mean μ＝0.5. Hence, for each step, the standard deviation σstep
 can be calculated by
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hence,
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We use two methods to generate Gaussian random numbers. One is the Central Limit Theorem, whilst the other is the Box-Muller method.

1.3.1 Central Limit Theorem Method

According to the Central Limit Theorem, if Zn
 is the standardised sum of any n identically distributed random variables R(i), the probability distribution of Zn
 tends to the normal distribution as n→∞. For the random number generator within the FTN77 software, we have:
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Where E is the expectation operator.

Hence, to produce Gaussian random variables Zn
 with normal distribution N(0, 1), from the constant p. d. f. R(i), we require:
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Hence, for each i, Gaussian white noise is
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Brownian motion may then be generated by summing up a series of discrete white noise pulses. The discrete Gaussian pulses in Figure 5 were generated using the method just described using a finite "n" and the Brownian motion shown in Figure 6 was generated by summing up these Gaussian pulses.
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Figure 5　Gaussian Pulses with 1000 Steps and D＝1, Generated Using the Central Limit Theorem Method
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Figure 6　A Sample of Brownian Motion with 1000 Steps. Generated from the Integration of the Gaussian Pulses in Figure 5

This method for generating Gaussian random numbers requires the modeller to choose the number of random numbers n, which may cause significant errors if the number n is not large enough. The Box-Muller method can avoid this problem and leads to more accurate results.

1.3.2 The Box-Muller Method

In this method, Gaussian random numbers are obtained exactly by means of a one-to-one transformation of two random variables with mean of zero and a unit standard deviation. For example, if R(1) and R(2) are two independent random variables, then
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and
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have independent Gaussian distributions with each zero mean and unit standard deviation.

Press et al (1986, 1992, pp. 279-280) illustrates the use of the Box-Muller method for generating Gaussian random numbers in FORTRAN programs. From section 2 onwards, we shall use this method to generate Gaussian random numbers instead of using the Central Limit Theorem.

1.4 The Properties of a One-Dimensional Brownian Motion Time Trace

(1) Brownian Motion is a Self-affine Process

Brownian motion B(t) has the property of self-affinity. This means that if the time t is rescaled to bt, the corresponding Brownian motion will rescale as [image: alt]
 (Feder, 1988, p. 167). Resealing in this way results in the visual appearance of all samples appearing the same as before. More importantly, the statistical properties of the motion are preserved. This property is called self-affinity (see Feder (1988), Barnsley et al (1988) or Addison (1997)). Figure 7 shows a Brownian motion B(t) with total time t＝10000, with a time step of ∆t＝1. After zooming in twice with the appropriate rescaling of the axes, the Brownian motion still looks similar.
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Figure 7　Visualise Brownian Motion's Self-Similar Property. Here D＝0.5, ∆t＝1

(2) For a Brownian motion B(t), the average value of ∣B(t＋L)－B(t)｜ is proportional to [image: alt]
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where the exponent [image: alt]
 is known as the Hurst exponent, H (We will come back to the Hurst exponent later when it will be shown that it can take a range of values for fractional Brownian motion).





(3) It follows from (2) that for a large number of Brownian particles released at time t＝0, diffusing away from the origin through time, the standard deviation of the diffusion cloud, σc
 (t), is proportional to the square root of time.
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The scaling relationship is
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Where D is the diffusion coefficient.

Equation 11 shows that the variance of the diffusing cloud is proportional to time. Hence D can be obtained from a plot of variance against time.
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where [image: alt]
 is the variance of the diffusion cloud at time t.

Figure 8 shows the variances of clouds of diffusing particles undergoing each of three random walks (Delta, Constant and Gaussian) against time. The gradient of each is actually twice the diffusion coefficient D. Here, for simplicity of illustration, the diffusion coefficient is set to D＝0.5, which gives from (11), [image: alt]
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Figure 8　Variances versus Time Steps for Three Random Walks. D＝0.5. P is the Number of Particles Used in the Simulation (Below each Plot the fit to the Theoretical Line is Expressed as a Percentage)

The number of steps taken by each particle is denoted by t (i. e. unit time step) and number of particles by P. The variances at each step are numerically calculated for each diffusing cloud and the results are shown in Figure 8.

Figure 8 confirms that the author's program is reasonably accurate for large numbers of particles. This is the basic method used to check if the generated Brownian motion (or a random walk) is correct. It was observed that with increasing numbers of particles, the results become more accurate, as expected. Comparing Delta, Constant and Gaussian distributions, with a large number of particles, there is no obvious difference between them. It confirms that simpler random walk models can be used to synthesise Brownian motion.

1.5 The Skewness and Kurtosis of Random Walks

The expectation of a random variable is a "measure of location". The variance (or standard deviation) measures the entire trends of the data. Going one step further, we can consider the skewness (symmetrical trends) and the kurtosis (pinnacle) of particle clouds, where skewness is the third moment of the distribution and kurtosis is the fourth moment of the distribution. In a normal distribution, skewness equals 0 and kurtosis equals 3.

Figure 9(a) shows that the skewness of a particle cloud tends to zero with a large number of particles (Here P＝5000). It means that the shape of the distribution in each step of the particle cloud will tend to be symmetric. There is no significant difference among the three different random walks. They all produce quite symmetrical distributions. However, Figure 9(b) shows that there are some differences in kurtosis between the three random walks. As expected, the Gaussian random walk immediately begins at a value of 3 (as expected from a function generated using normally distributed steps), whereas the Constant and Delta functions tend towards this value as the number of steps increases, i. e. as the ensemble distribution tends towards a Gaussian shape as a manifestation of the Central Limit Theorem.
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Figure 9　Skewness and Kurtosis of Random Walks with 5000 Particles, D＝0.5

Looking at the early stage of the random walks in more detail, Figure 10 shows only the first 10 steps of skewness and kurtosis for a particle cloud containing 1000 particles. As expected, the Delta function takes longer than the Constant p. d. f. to approximate a Gaussian distribution.
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Figure 10　Skewness and Kurtosis of Random Walks in Early Stage.Time Step＝10, P＝1000, D＝0.5

1.6 Random Walks in Two Dimensions

To generate a random walk in two dimensions, two independent random walks are used, one for each co-ordinate in time using different random seeds.

In Figure 11, the constant steps lead to a regular "lattice" type walk, where the random walk may only fall on specific x, y co-ordinates. However, as the number of steps increase, this limitation becomes less apparent.

1.6.1 Delta Random Walks in Two Dimensions

[image: alt]


Figure 11　Delta Random Walk in Two Dimensions

1.6.2 Constant Random Walks in Two Dimensions

The plot at the top left hand of Figure 12 shows the spatial steps taken from a constant p. d. f.. As expected, there is a more random appearance than the corresponding plot in Figure 11. However, as the numbers of steps increase, both the methods produce a random walk with similar appearance (lower plots in both figures).

[image: alt]


Figure 12　Constant Random Walk in Two Dimensions

1.6.3 Brownian Motion in Two Dimensions

Figure 13 shows Brownian motion in two dimensions generated by combining Gaussian random numbers. There is no apparent difference between the three random walks (Figure 11, 12 and 13) after a certain large number of time steps. In section 1.6, the seeds are checked with sufficiently random.
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Figure 13　Brownian Motion (Gaussian) in Two Dimensions

1.7 The Last Steps of the Random Walks in Two Dimensions

After the release of a cloud of particles, what does the spreading look like?

Figure 14 shows the last position of 100 particles released from the origin, the last positions being recorded after NSTEP＝10, 100, 1000. It is obvious from the plots that the diffusion of the cloud grows when the time steps increase. This spreading becomes Fickian in nature when a large number of particles are used.
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Figure 14　The Final Locations of Random Walks in Two Dimensions. Each Particle in the Plot Has Undergone a Random Walk Similar to the One Shown in Figure 11, 12, 13

2. Fractional Brownian Motion

2.1 Introduction

2.1.1 Fractional Brownian Motion: A Generalisation of Brownian Motion

It is known that for Brownian motion, the standard deviation of a diffusing cloud of particles σc
 (t) is proportional to the square root of time [image: alt]
 e. g.

[image: alt]


Mandelbrot and Van Ness (1968) introduced the concept of fractional Brownian motion, BH
 (t), as a generalisation of regular Brownian motion by adding an additional parameter, the "Hurst exponent" H(0＜H＜1), replacing (13) by
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Actually, the Hurst exponent H was first introduced by Edwin Hurst (1950) when he tried to find a solution of the problem of determining the reservoir storage required on a given stream. H is a parameter which can control the "smoothness" of the trace and is related to the fractal dimension of the trace Df
 as:
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(see section 3). The cases where [image: alt]
 are proper fractional Brownian motions; where [image: alt]
 is the special case of independent increments valid for Brownian motion.

It has been observed that, in many cases, the diffusion generated by Brownian motion based models does not reproduce the physical reality. However, fractional Brownain motion (fBm) can produce a wider range of diffusive phenomena which meets the requirement of a variety of modelling purposes.

2.1.2 Applications of Fractional Brownian Motion (fBm)

Fractional Brownian motion has already been used in a wide variety of studies in the physical sciences. The most common application of fBm is to model surfaces or landscapes, such as the ocean floor, coastlines, mountains, clouds (see Voss (1985), Peitgen et al (1992), Barnsley et al (1988)). In addition, various researchers have attempted to use fBm as a model for a wide variety of physical phenomena. A representative sample of these are given in the rest of this section.

Allegrini et al (1998) found that the long-range correlations in DNA sequences could be interpreted as an example of stationary fBm. As far as the specific problem of the DNA sequences is concerned, their research using fBm as a tool can only be thought of as speculative as no real DNA sequence was analysed.

Chakravarti and Sebastian (1997) used fBm as a model for polymer molecules. They also found that although Brownian motion itself is Markovian, fBm is, in general, non-Markovian. They mentioned certain uses of fBm as a model for polymer molecules. However, they did not progress this research to a point where fBm could be used as a tool for modelling polymer molecules.

Chen et al (1998) applied the concept of normalised fBm model (called NFB, which is generated from fBm, see Chen et al (1998) section Ⅱ. B) to find an initial liver boundary, in the design and development of computer-aided diagnostic (CAD) tools for liver cancel. They used a NFB motion feature vector to classify three types of regions in a CT (computed tomography) liver image, normal liver, hepatoma, and liver boundary (or complexity region). This is a valuable and practical article which can be used by diagnostic system users. The normalised fBm model which generated from fBm model provided a useful tool for this practical application.

Odde et al (1996) suggested that an fBm model could account for the observed anticorrelation of the nerve growth cone and microtubules during neurite outgrowth. They found that the growth cone and its microtubule array advanced in fits and starts and had the appearance of a random walk. Seven of the eight growth cones made significant forward progress, with occasional backward movements interspersed. The presence of anticorrelation in the dynamics of growth cone and microtubule advance implied that the simple Brownian motion model is not generally adequate to describe these processes. An fBm model can intrinsically account for correlations in random walks. They found that the Hurst exponent for both growth cones (Hgc
 ) and microtubules (Hmt
 ) were: Hgc
 ＝0.44±0.18 and Hmt
 ＝0.34±0.18. It is a novel discovery by these authors that the nerve growth cone and microtubules have an anticorrelation tendency during neurite outgrowth which can be simulated using an fBm model.

Hazel et al (1997) employed an fBm as a stochastic process model for drift noise. It was found that Fourier transform (FT) spectroscopy exhibits long-term drift noise. Two random process models, fBm and noisy fBm (nfBm, which is simply the sum of fBm with zero-mean white Gaussian process of variance σ2
 ), are proposed for modelling spectrometer drift noise. Theoretical predictions are confirmed by their experiment.

Perez and Chopra (1997) used fBm to represent observed lateral and vertical heterogeneities of a sandstone oil reservoir. Statistical fractals were used to characterise the spatial correlation structures of porosity and permeability of vertical and horizontal logs in a braided-fluvial sandstone reservoir. Hurst exponents, H, for each well were calculated using both R/S analysis and box-counting method (see section 3.3.1 and 3.4(1) in this thesis). For the reservoir zone considered, the vertical variability of both porosity and permeability can be represented with an FGN (fractional Gaussian noise) model of high H(～0.85). Observed variability in the horizontal direction can be represented with an fBm model of low H(～0.2). Spatial correlations of high FGN H and low fBm H models are very similar. The results in this paper are useful for evaluation of infill drilling, design, selection, and optimization of an EOR (Evaluation of Reservoir) process.

Srinivasan and Wood (1995) generated error data as a function of fractal dimension using an fBm model and superposed it on an ideal profile of a slider bearing. The performance of fluid-film bearing is affected by surface roughness and waviness. While roughness represents high frequency errors, waviness constitutes low frequency errors in the straightness of the profile and is considered as a geometric tolerance characteristic. The extended midpoint displacement algorithm (to spatial approximate fBm) is used to generate the error profiles. The paper provided specific guidelines for process selection, machine tool characteristics and related issues.

Shurtz (1992) used fBm as an interpolation for risk analysis. It is well known that the Monte Carlo method has been used increasingly for risk assessment. The Monte Carlo risk analysis method breaks some complex cases into simpler constituent cases the risks of which can be readily comprehended and evaluated by qualified specialists. The outcomes of these simpler cases are then combined randomly a sufficient number of times to generate a stable frequency distribution of global outcomes. Each of the simple constituent cases is a random walk interpolation between a pair of sample value. Application of the Monte Carlo method requires a large family, or ensemble, of such interpolations generated according to a consistent set of rules. Consistency among family members is assured by using the same "machine" to generate them all. This "machine" is the midpoint displacement method which is a simple fBm generation tool. However, the author does not compare their results with experiment.

Lauritsen et al (1993) investigated the effect of quenched disorder with long-range correlations on two growth phenomena, namely, diffusion-limited aggregation (DLA) and the dielectric-breakdown model (DBM). They found that the permeability and hydraulic conductivity of heterogeneous rock masses also seemed to follow an fBm, a distribution that induces correlations that are essentially of infinite extent. A two dimensional fBm is used to generate the conductivities of the medium in which DLA and DBM clusters are grown. They concluded that any realistic modelling of transport in rock must take into account the effect of long-range correlations. They also investigated the effect of such long-range correlations on miscible displacements and viscous fingering in heterogeneous rocks.

There are many applications about pollutant dispersion modelling in fluids using either the Advection-Diffusion equation model or the traditional particle tracking model (where Brownian motion is used for diffusion modelling, see Chapter 2, section 2.8). The author has not found any article concerning the use of fBm to predict pollutant dispersion in fluids. A novel fBm particle tracking model will be developed by the author (see Chapter 4 and 5) which can be used in a wide range of pollutant dispersion applications, such as river, coastal regions and open ocean surface.

2.1.3 The Definition of Fractional Brownian Motion

The generation of fBm is not as simple as generating Brownian motion, because an fBm trace does not take statistically independent steps (as Brownian motion does), but rather each point on a fBm trace depends upon the whole of the history of the fBm previous to that point. In other words, an fBm has a long-term memory associated with it. Mandelbrot and Van Ness (1968) defined the random function BH
 (t) with zero mean roughly as a moving average of dBH
 (t), in which past increments of BH
 (t) are weighted by the kernel [image: alt]
 as

[image: alt]


Here г(x) is the gamma function, and H is the Hurst exponent of the trace. This definition states that the value of the random function at time t depends on all previous increments dB(s) at time s＜t of a Gaussian random process B(t) with average zero and unit variance.

Mandelbrot and Van Ness (1968) replaced the above definition (equation 16) with another which forces the function through the origin. Given the value BH
 (t＝0), hence
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Defining
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then equation (17) can be written as:
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This kernel vanishes quickly enough as s→-∞.

Letting H be such that 0＜H＜1, the following random function BH
 (t) is called fractional Brownian motion with parameter H. For t＞0, BH
 (t) is defined by
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2.1.4 Properties of Fractional Brownian Motion

Fractional Brownian motions have the following properties:

(1) They are Gaussian processes and their increments BH
 (t)－BH
 (t－∆t) constitute a stationary random process.

(2) They are self affine processes, in the sense that, if time is changed in the ratio b, and the function BH
 (t)－BH
 (0) is changed in the ratio bH
 .

It is easy to prove this from (19). By changing the time scale a factor b to obtain
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Here, a new integration variable s=bŝ is introduced (see Feder, 1988, p. 173) and the following result for an independent Gaussian process is used
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Using the relation [image: alt]
 (21) becomes
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In particular, t＝1 and ∆t＝bt may be chosen and so that the increment of the fractional Brownian "particle" position is given by
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(3) As H changes, the correlation between past and future will change accordingly. When H＞0.5, fractional noises are persistent, such persistence increasing with H; When H＜0.5, fractional noises are anti-persistent, and will decrease with H; When H＝0.5, Brownian motion is obtained where the fractional noises are independent.

Suppose in one dimension, an incremental correlation function Ru
 (t) of the future increments BH
 (t) with the past increments BH
 (-t) is defined as
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where the over-bar denotes the ensemble mean.

Then one finds that
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which only depends on H and is independent of t.

From (23), if H＞1/2, Ru
 (t)＞0, the fBm is persistent. That means that if the distance from the time axis has been increasing for a period of time, it is expected to continue to increase in the future. Conversely, if the distance from the t-axis is observed to decrease for a period of time, it is expected to continue to decrease in the future.

If H＜1/2, Ru
 (t)＜0, the fBm is anti-persistent. Anti-persistent tends to show a decrease in values following previous increases, and shows increases following previous decreases. The record of an anti-persistent process appears very "noisy".

If H＝1/2, Ru
 (t)＝0. The increments of random walk are uncorrelated. This is the special case of fBm which is regular Brownian motion.

2.1.5 Methods for the Generation of Fractional Brownian Motion

There are many methods which can produce discrete approximations to fractional Brownian motion given by equation (20) (Voss (1985); Peitgen et al (1992)). However, many of the popular methods (i. e. midpoint displacement, successive random additions, spectral methods, etc.) are not practical for incorporation within a particle tracking technique as they require either a predetermined sequence length for the fBm or a knowledge of both the start and end point of the fBm before the intermediate points can be calculated (see also Wheatcraft and Tyler (1988)).

In this thesis, two methods were developed by the author: Firstly the FBM method, and then an improved FBMINC method. Both methods allow each successive step to be added to the end of the fBm trace, in a similar manner to the generation of regular Brownian motion discussed in section 1. More details of the FBMINC method can be seen from Addison and Qu (1997) and Addison et al (1997a).

2.2 FBM Model

The discrete version of BH
 (t) given in equation (17) has to be modified with the proper kernel in order to make the sum convergent. However, any calculation of BH
 must use a finite number of terms and the sums can only cover a range M in the integer time t. Herein, M is called the memory. The definition of fBm (20) is discretised to give the following:
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Equation (24) is the FBM model developed by the author (see Addison and Qu (1996)). Here the memory M can be any positive integer, 0≤i≤NSTEP. It is easy to see that (24) is only valid when M≥i. The following formula may be applied to the case of M＜i:
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In general, the work of the thesis mainly considers the case where M≥i. To generate NSTEP steps of an fBm using (24) (here NSTEP is the number of steps in the computational model), NSTEP+M random steps are needed from a Gaussian distribution. The larger the memory, M, used, the better the approximation to the real fBm. The reason why M should be at least as large as NSTEP will be discussed later. One thing to notice is that the above definition of an fBm trace passes through the origin, BH
 (t0
 )＝0. Also, when H＝0.5, the fBm trace reduces to regular Brownian motion. Figure 15 contains plots of synthesised fBm time traces produced using the FBM model with H＝0.1～0.9, where the same random number sequences are used.
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Figure 15(a)　FBM Model (Gaussian): fBm in One Dimension with 1000 NSTEP, M＝5000 (Note: Different Scales Used for Vertical axes)
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Figure 15(b)　FBM Model (Gaussian): fBm in One Dimension with 1000 NSTEP, M＝5000 (Note: Different Scales Used for Vertical Axes)
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Figure 15(c)　FBM Model (Gaussian): fBm in One Dimension with 1000 NSTEP, M＝5000 (Note: Different Scales Used for Vertical Axes) The H＝0.1 and H＝0.5 fBm is Shown Together with the H＝0.9 Realization for Comparison

Figure 16 shows a cloud of 20 particles released from the origin spreading out through time. The H＝0.2 case only spreads out over a small range, while the H＝0.8 case spreads out much more widely. H＝0.5 is the case of Brownian motion.
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Figure 16　FBM Model (Gaussian): A Cloud of fBm Traces Released from the Origin. Where 200 NSTEP. 20 Particles, M＝2000, D＝1, H＝0.8 (Note: Different Scales Used for the Vertical Axes)

2.3 FBMINC Model

The FBM model is a discrete version of fBm which has simplified the generation of fBm, however, it does not give a good approximation when M＜NSTEP. It is also found that the standard deviation of each step jump σ (BH
 (ti
 )－BH
 (ti－1
 )) always increases with the time step i (see section 2.4). An improved FBMINC model was developed which overcame these two faults and gave a better approximation of fractional Brownian motion. This model is called the FBMINC model.

The sequence of increments of BH
 (t), namely the sequence of values of ∆BH
 (t)＝BH
 (t)－BH
 (t－1), with t an integer, is called 'discrete-time fractional noises'. It can be deduced from a Brownian motion B(s) by the formula
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with the 'kernel function'
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(27a) can be deduced from (18). The process as follow: Because (18) is the kernel for BH
 (t)－BH
 (0) (see Figure 17).
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Figure 17　Kernel for BH
 (t)－BH
 (0) (Refer Back to Equation (18))

A kernel for BH
 (t)－BH
 (t－1) can be obtained by modifying the kernel of BH
 (t)－BH
 (0). Figure 18 visualises the new kernel KH
 for BH
 (t)－BH
 (t－1).
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Figure 18　Kernel for BH
 (t)－BH
 (t－1) (Compare to Figure 17)

Hence, the Kernel, KH
 , can be written as
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Let u＝t－s. When s∈(t－1, t), u∈(0, 1);
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Hence, (27a) is obtained.

From (26) and (27a), replace u with i-j, the discrete version of ∆BH
 (i) is as follow:
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So,
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 ∆BH
 (t) is reduced to a discrete time Gaussian white noise. Clearly, the following relationship is valid:
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Equation (28) and (29) form the two step FBMINC model developed by the author.

Figure 19 shows an fBm diffusion among 20 marked particles with a release point of (0, 0), for the cases of H＝0.2, 0.5, 0.8. Here the FBMINC model is used. Comparing Figure 16 and Figure 19, it can be seen that the FBM and FBMINC models generate similar clouds of fBm traces when released from the origin as expected.
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Figure 19　FBMINC Model (Gaussian): A Cloud of fBm Traces with P＝20, NSTEP＝200, M＝2000, D＝1 and H＝0.2, 0.5, 0.8 (Note: Different Scales in Vertical Axes)

2.4 The Comparison of the FBM and FBMINC Models

Figure 20 shows six fBm traces generated by both the FBM and FBMINC models. Three H values are used: H＝0.2, 0.5, 0.8, and the diffusion coefficient is set to D＝1. The time interval is ∆t＝1, memory M＝5000 and the same random seed is used in each case to begin the simulation. The plot shows that there is no significant difference between the two models, especially for H＝0.2 and H＝0.5. Both models generate traces almost on top of each other for the same H. However, the H＝0.8 traces exhibit noticeably divergent behaviour compared to the other two. More details are contained in Addison et al (1997b).
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Figure 20　Fractional Brownian Motion Produced by the FBM and FBMINC Models. Where M＝5000, D＝1, ∆t＝1 (from Addison et al, 1997b)

Although the FBM and FBMINC models synthesise fBm using different methods, they produce similar fBm traces. In the following, the more accurate model for synthesising fBm traces is determined. Both models are compared from three aspects: the standard deviation of each step, the small memory (when M＜NSTEP) and the effect of the number of particles in the cloud.

(1) Consideration of the Standard Deviation of Each Step: σ (BH
 (t)－BH
 (t－1))

Theoretically, σ(BH
 (t)－BH
 (t－1)) should be a constant for all time t. From Figure 21, it can be noticed that for the FBM model, σ (BH
 (t)－BH
 (t－1)) increases with the number of time steps, although this effect is reduced as the memory used is increased. However, for the FBMINC model, σ(BH
 (t)－BH
 (t－1)) is always constant, regardless of the number of steps and memory used (see Figure 22(a)). This is the principal advantage of the FBMINC model. Figure 22(b) shows the various standard deviations obtained from the increments in FBMINC, σ(BH
 (t)－BH
 (t－1)), for a variety of H values.
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Figure 21　FBM Model: σ(BH
 (t)－BH
 (t－1)) versus Time Step Where P＝1000, H＝0.8, D＝1

The Memory. M, Used for Each Run is Given in the Figures
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Figure 22(a)　FBMINC Model: σ(BH
 (t)－BH
 (t－1)) versus Time Step Where P＝1000, H＝0.8, D＝1
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Figure 22(b)　FBMINC Model: σ(BH
 (t)－BH
 (t－1)) versus Time Step for Different Hurst Exponent Value H

(2) Consideration of M＜NSTEP

Another advantage of the FBMINC model is that it can be used while M＜NSTEP. However, according to its definition, the FBM model is not suitable for this case. We need to redefine the FBM model for the case when M＜NSTEP.

Figure 23 and Figure 24 contain plots of [image: alt]
 versus time step t, for the FBM and FBMINC models respectively. In addition, three different distributions of random numbers are used in the generation: Delta, Constant and Gaussian. Figure 23 show an obvious cut-off in the plots for M＜NSTEP of the FBM model. However, Figure 24 shows that the FBMINC model can produce better results than the FBM model, especially when M＜NSTEP. In the figures, D is set to unity, hence we expect [image: alt]
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Figure 23　FBM Model. [image: alt]
 versus Time Step with 400 Particles, D＝1, H＝0.8
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Figure 24　FBMINC Model: [image: alt]
 versus Time Step with 400 Particles, D＝1, H＝0.8

(3) The Effect of the Number of Particles in the Cloud

Figure 25 and 26 show that both the FBM and FBMINC models all give good prediction of fBm traces as long as the number of particles and memory used are large enough. For a memory only several times the value of NSTEP, the FBMINC model gives a better prediction than the FBM model.
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Figure 25　The Effect of the Number of Particles in a Cloud for Both the FBM and FBMINC Models. Here H＝0.8, D＝1, NSTEP＝50, M＝400
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Figure 26　The Effect of Memory for the FBM and FBMINC Models Here H＝0.8, D＝1, NSTEP＝400, P＝400

From comparison tests (1), (2) and (3), we find that the FBMINC model is the better model as it produces more accurate statistics and hence it will be used in syntheses of fBm in subsequent chapters of this thesis. However, many of the examples of fBm used to illustrate this chapter use the original FBM model which was developed first by the author.

2.5 FBM Plots in One Dimension

2.5.1 Fractional Random Walk Plots for the FBM Model

The parameter H, in effect, describes the "roughness" of the function at small scales. Figure 27 (a), (b), (c) show this using the FBM model to generate fractional random walks: fractional Delta random walk, fractional Constant random walk and fractional Brownian motion, for H＝0.2, 0.5 (which is actually the Brownian motion where memory, M, has no effect to the random walk generations) and 0.8. It can be easily seen from the figures that the H＝0.2 traces are anti-persistent, while the H＝0.8 traces are persistent. The H＝0.5 traces of Brownian motion are neutrally persistent.
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Figure 27(a)　Fractional Delta Random Walk with 1000 Steps, M＝10000, D＝1, ∆t＝1
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Figure 27(b)　Fractional Constant Random Walk with 1000 Steps. M＝10000, D＝1, ∆t＝1
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Figure 27(c)　Fractional Brownian Motion with 1000 Steps, M＝10000, D＝1, ∆t＝1

Figures 27 (a), (b) and (c) show the similarity of the three fractional random walks under the same H values. H＝0.2 produces more jagged curves than H＝0.5 or H＝0.8. This is because the noises are richer in high frequency components (see Mandelbrot and Wallis (1969a), Part 1 for details). When H＝0.8, the curves are much smoother and also more spread out from the origin in the vertical direction.

2.5.2 The Effect of the Different Random Number Sequences

Figure 28 shows that different sequences of random numbers produce different fBm traces. Different sequences of random numbers are generated by calling different random seed numbers in the FORTRAN program. In this study, the particles are each given independent random paths by selecting an independent range of seed numbers from within the FORTRAN program.
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Figure 28　(FBMINC Model) Fractional Brownian Motion with Different Random Seeds. Here, NSTEP＝1000, D＝1, ∆t＝1

2.5.3 The Mean Absolute Separation of an fBm Trace

As with Brownian motion, if pairs of points of an fBm trace BH
 (t) separated by a time L are considered, the mean absolute separation of an fBm trace, [image: alt]
 scales with time of separation L on the trace as,
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or
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The time separation L is the window length which slides along the time axis (see Figure 29, also see Addison (1997)).
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Figure 29　The Scaling of Increment on an fBm (FBMINC Model). Here H＝0.6, NSTEP＝1000, ∆t＝1, D＝1, M＝5000. Where NL is the Maximum Window Size (NL＜NSTEP)

Figure 30 plots [image: alt]
 against L for different values of H. The FBMINC model and a Gaussian distribution was used. The plots show that for small H values (H＜0.5), the linear relationship between [image: alt]
 and L breaks down. The reason for this problem is that the kernel K(t-s) in (18) or KH
 (u) in (27a) is discontinuous, when 0＜H＜0.5. The kernel improves as H increases from 0 to 1 (see Mandelbrot and Wallis (1969, Part 3) for more details).
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Figure 30　FBMINC Model (Gaussian): [image: alt]
 versus L for Different Values H (H＝0.1～0.9), with NSTEP＝5000, M＝20000, D＝1, ∆t＝1, NL＝10 (NL is the Maximum Window Size)

The maximum window size NL (L＝0, NL) compared to the length of the fBm trace (NSTEP) affects the reliability of the H value significantly. Figure 31 shows that as the maximum window size increases, the bias of the H value is more significant.
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Figure 31　[image: alt]
 versus Window Size L with Different Maximum Window Size. NSTEP＝10000. M＝0, D＝1, ∆t＝1, H＝0.5 NL is the Maximum Window Size

2.6 The Relationship Between Memory, M, Number of Steps, NSTEP, and Number of Particles, P

The relationship between M, NSTEP and P was dealt with briefly in section 2.4 where the FBM and the FBMINC models were compared. From the definitions of fractional Brownian motion used in both FBM and FBMINC, it can be seen that the accuracy of the results increase with the Memory, M. However, in reality, only a finite number M can be chosen. How large should a practical M be? This is a question which should be considered in detail. There has been no standard answer until now and the author has been unable to find any mention of it in the literature.

To check whether the memory is large enough, the simplest way is to use the relationship
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to see if [image: alt]
 versus t is a straight line and the gradient is 2D. Here we suppose the number of particles, P, is large enough. However, the size of P should also be addressed separately.

Two fBm models have been introduced in the early part of this section. One is FBM—which uses the definition of fractional Brownian motion given by equations (24) and (25). Another is FBMINC—which adds up the discrete-time Fractional noises, using equations (28) and (29).

The relationship between M, NSTEP and P are given below.

2.6.1 Relationship Between NSTEP and M


Property 1:
 With increasing steps, the memory should increase accordingly.

In the FBMINC model, it is supposed that NSTEP≤M. The question is, how large should the memory, M, be compared to the number of steps of the model (NSTEP).

Figure 32 shows [image: alt]
 against time for clouds of 5000 particles which is large enough to ensure no errors which due to a limited number of particles. The number of steps used (NSTEP) is 100. When M≥1000＝10×NSTEP, the plots lie on top of each other. This indicates that when M is ten times, or more, larger than NSTEP, reasonable accurate fBm are generated. Actually the author has found that M≥3×NSTEP is good enough for most approximations.
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Figure 32　[image: alt]
 versus Time Steps with Different Memories, while P＝5000, NSTEP＝100, H＝0.8, D＝1

Figure 33 shows the effect of memory on two H values (0.5 and 0.8). For time step t＝40, we expect [image: alt]
 Table 1 gives the ratios of the values realised against that expected (i. e. 80).
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Figure 33　[image: alt]
 versus Time Steps with Different Memories, while P＝10000, NSTEP＝40, D＝1, ∆t＝1, H＝0.5 and 0.8

Table 1 shows that there is no significant difference when M≥10×NSTEP. From Figure 32 and 33, the actual values of [image: alt]
 are slightly higher than the expected value (＝2Dt). Theoretically, it can be adjusted by decreasing the diffusion coefficient D used in the model (see Addison and Qu (1997)).

Table 1　The Ratios for Various H and M
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2.6.2 The Effect of the Number of Particles in a Diffusing Cloud


Property 2:
 With the number of particles increasing, the slope of [image: alt]
 against t becomes closer to the theoretical value.

Figure 34 shows the effect of the number of particles for [image: alt]
 against time step t. Here we restrict memory M＝1000＝10×NSTEP (NSTEP＝100), which is large enough to ensure no significant errors arise due to limited memory. As the number of particles P increase from 50 to 20000, the plots becoming visibly straighter and more accurate. However, from the right hand side plot we can see that for P≥1000, there is no obvious difference. This means that P＝1000 is large enough for simulating a cloud of fBm.
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Figure 34　(Left and Middle Plots): [image: alt]
 versus Time Steps with Number of Particles, P, Increases. (Right Plot): Ratio Percentage Plot for the Calculated Result to the Expected Value (when P≥1000) Where H＝0.8, D＝1, M＝1000

2.6.3 A Check on Random Number Seeds

Compare the two plots in Figure 35, where the random number seed in the program is changed from 1234 to 4031. Although the sequence of fBm's generation are no longer the same, [image: alt]
 is almost the same. This means that the choice of random seeds has no effect on the overall statistics of the cloud of fBm's (many more random seeds were checked by the author).
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Figure 35　Different Random Number Seeds Produce the Same [image: alt]
 Although Different fBm Sequences are used. Here P＝1000, NSTEP＝100, M＝1000, H＝0.8, D＝1 (The First fBm Trace Generated Within the Program is Shown in Both Plots)

2.7 Fractional Brownian Motion in Two Dimensions

To produce two-dimensional fBm particle trajectories, two independent fBm traces are used in both the x and y directions. Figures 36(a) and (b) contain fBm trajectories in two dimensions with H＝0.1～0.9. We can see the trajectories becoming less densely packed as H increases.
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Figure 36(a)　FBM in 2D with 1000 NSTEP, M＝5000 (FBM Model(Gaussian))
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Figure 36(b)　FBM in 2D with 1000 NSTEP, M＝5000 (FBM Model (Gaussian))

Figure 37 contains two plots of the location of a particle cloud at four distinct times for two values of H: H＝0.5, corresponding to regular Brownian motion of traditional particle tracking techniques; and H＝0.8, corresponding to a super-diffusing particle cloud. The expected standard deviation of the particle cloud is superimposed on the lower plot. The clouds are advected simply by a constant velocity for ease of visualisation.
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Figure 37　Comparative Spreading of a Fickian (H＝0.5) and Non-Fickian (H＝0.8) Particle Cloud (This Figure Appears in the Journal "Mathematical Geology" (Addison et al, 1998a))

One obvious consequence of non-Fickian diffusive behaviour is the long term prediction of the concentrations of contaminant which will be lower at the centre (and correspondingly higher at the edge) of the super-diffusing cloud (H＞0.5) than would be predicted by the traditional model (The full implications of this are discussed in more detail in Chapter 4).

2.8 Projection of Two-Dimensional Fractional Brownian Motion

Suppose X1
 ≥(t), X2
 (t) are two one-dimensional time traces of fractional Brownian motion, X1,2
 (t)＝(X1
 ≥(t), X2
 (t)) can be plotted as fractional Brownian motion trajectory in two dimensions (as was done in last section). Hence, two-dimensional fBm trajectories can be converted into two independent one-dimensional fBm through the projection of X1,2
 (t) onto each of the co-ordinate axes. In addition, the co-ordinate axes may be rotated from the original x, y direction, as n-dimensional fBm is isotropic. That means, it has the same statistical characteristics in every direction. This can be proved in the two-dimensional case.

Suppose
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the projection of X1,2
 (t) onto the line Lw
 at angle w through the origin is
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For t≥0 and h＞0, the random variables X1
 (t＋h)－X1
 (t) and X2
 (t＋h)－X2
 (t) are independent and normally distributed with means 0 and variances h. Thus the increments of the projection onto Lw
 given by
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are normally distributed with mean 0 and variance h (＝h cos2
 w＋h sin2
 w). The increments of the projection are independent, so the projection of X1,2
 (t) onto Lw
 is one dimensional fBm, for all angles w.

The above property was used as a test for the two-dimensional trajectories generated using the FBMINC model. Figure 38 plots the standard deviation of the projection of this trajectory at different angles: w＝0°, 30°, 60°, 90°. A large number of steps and large memory was used and there appears to be no significant difference in the results obtained from each angle. Figure 38 proves that, as expected, the projection of an fBm trajectory in two-dimensions into one dimension produces an fBm time trace regardless of angle of projection.
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Figure 38　[image: alt]
 versus Time Step while Projection with the Angle w (Upper Plots) and Their Ratio Percentage for the Calulated Results to the Expected Values (Lower Plots): The Where H＝0.8. D＝1, w＝0, 30, 60, 90

2.9 The Use of Simpler Probability Distributions to Reduce CPU Time

For both the FBM model and the FBMINC model, it can be seen that from their definition ((24) and (25) for FBM model, or (28) and (29) for FBMINC model) that the generation of each step requires M random numbers. In addition, M requires to be at least as large as NSTEP. In fact, to get a good approximation, M requires to be several times the value of NSTEP (see section 2.6). This is very expensive computationally in CPU time, especially when simulating a cloud with a large number of particles. In an attempt to reduce the computational time required, an investigation was carried out in order to use the simpler fractional random walks (with distribution as Delta or Constant) within the fBm particle tracking models to approximate the dynamics required (Addison and Qu (1997), Refer back to section 1.6).

In a study concerning the use of various probability distributions within traditional (i. e. Brownian) particle tracking models, Hunter et al (1993) pointed out that the Central Limit Theorem ensures that after a certain number of time steps, the exact form of the distribution is not important, as long as the first and second moments satisfy certain relationships. They proved that both Delta (the two-step) and Constant (the top hat) distributions satisfy the above conditions. They also mentioned that the use of these simple distributions is only reasonable if it involves a saving in computation time by at least a factor of r (where r≥2), relative to that required by the Gaussian distribution. They found that
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Hence, it only takes about twice as long as to generate a random number from a Gaussian distribution as it does from a constant or Delta distribution. They concluded that it is more efficient to use a Gaussian distribution rather than Delta or Constant distribution in a random walk model.

What is the CPU time of the fractional random walks used in the two fBm models?

Table 2 shows the differences of the CPU time among fractional random walk (Delta, Constant, Gaussian) and the differences between the two models. The machine the author used is a Pentium 166 (MHZ) with 16 MB RAM. We noticed that the FBMINC model is only very slightly more expensive in CPU time than the FBM model. However, the difference is not significant. Within the same model, Delta, Constant and Gaussian fractional random walks have almost the same CPU time, with the Gaussian walk CPU time being only very slightly more expensive. The reason, why this is the case, may be because most of the CPU time is used in the latter part of the fBm generation algorithm, other than the white noises generation (see Programs fBm. for and fBminc. for in Appendix 1).

Table 2　CPU Time (Sec.) Comparison for the Three Distributions Using the FBM and FBMINC Models, where NSTEP＝300, P＝1000, M＝1000, H＝0.8
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Table 3(a), (b), (c) show the relationship of CPU time with NSTEP, P and M by using FBMINC model and Gaussian distribution.

Table 3(a)　CPU Time for Different Number of Particles
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Table 3(b)　CPU Time for Different Number of Time Steps
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Table 3(c)　CPU Time for Different Memories
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Table 3(a), (b) and (c) show the relationship of CPU time with NSTEP, P and M by using the FBMINC model and Gaussian distribution. The following results can be obtained by Table 3: CPU∝P (from Table 3(a)); CPU∝NSTEP (from Table 3(b)); CPU∝M (from Table 3(c)).

Figure 39 shows fractional random walks in two dimensions generated using the FBMINC model, where H＝0.2, 0.5, 0.8. Notice that the space filling properties of the particle paths reduce with increasing H.
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Figure 39　Fractional Random Walks in Two Dimensions. Where NSTEP＝1000, M＝1000, D＝1 (from Addison and Qu (1997)).

The Delta distribution for H＝0.5 corresponds to a simple random walk. The discrete steps are obviously seen in the Figure 39 (middle figure, left hand column). When NSTEP is large enough, the effect of the discrete steps on the overall statistics is lost due to the Central Limit Theorem. Thus Delta, Constant and Gaussian distributions can produce fBm of similar properties in both one or two dimensions.

Figure 40 compares [image: alt]
 against time for the three models (with Delta, Constant and Gaussian distributions) using both FBM and FBMINC models. The diffusion coefficient is set at D＝1, therefore [image: alt]
 [image: alt]
 is the result expected at time t＝400. As noticed above, there is always an over-prediction (of around 5%) in the plots for H＝0.8. This can be accounted for by altering the diffusion coefficient, as long as there is a linear relationship of [image: alt]
 versus t.
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Figure 40　[image: alt]
 versus Time Steps of Three Fractional Random Walks (Upper and Middle Plots) and Their Ratio Percentage for the Calculated Results to the Expected Values (Lower Plots correpondent to the Middle Plots) Here D＝1, H＝0.8 (Upper Plots Featured in Addison and Qu (1997))

It is noticed from the plots that both the FBM and FBMINC models produce almost the same fBm statistics. When M＝4000＝10×NSTEP, the three distributions produce coincident plots. While M＝2000＝5×NSTEP, a slight difference is evident for the three models. This again proves that an increase in the memory of the fBm generating methods can reduce its errors. It was found that minimum values of P＝1000 and M＝10×NSTEP are required for accurately synthesising fBm clouds.

2.10 Long Term Fickian Behaviour

Often in diffusion problems, the diffusion becomes more Fickian as the time since release of the particle increases. One way to simulate this change in the diffusive behaviour within an fBm model is to limit the memory, M, of the particle used in the model.

Figure 41 shows this effect on a variance-time plot. The variance of a particle cloud containing 4000 particles is plotted against time over the first 200 steps of unit time increment. A memory of 150 time steps has been used in the simulation of the individual fBm particle trajectories. The initial superdiffusive behaviour of the diffusing cloud is evident in the non-linear part of the curve. The curve becomes linear, i. e. Fickian, once the memory of 150 time steps has been exceeded.
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Figure 41　Long Term Fickian Diffusion Resulting from a Limited Memory Here ∆t＝1. D＝1, H＝0.8 (This Figure Appears in the Journal "Mathematical Geology" (Addison et al (1998a))

The question is what will happen if M is too small. For example, if M＜[image: alt]
 NSTEP?

Figure 42 shows a super-diffusion (H＝0.8) plot for M＝100, 200 and 400; and NSTEP＝400. In addition, the number of particles P is set at 2000.
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Figure 42　FBMINC Model: σ2
 versus Time Step with M≤NSTEP. Where P＝2000, H＝0.8, D＝1

The M＝100 case shows Fickian behaviour for t＞100, however, there is a slight kink in the plot at t＞360. The reason for this is unclear. Perhaps it is because the memory is too small. The M＝200 case shows Fickian diffusive behaviour when t＞200. The case where M＝400 (＝NSTEP) results in super-diffusion over all times 0≤t≤400, i. e. the curve is continuously curving upwards.

Long term Fickian behaviour often occurs in open-channels as was discussed in Chapter 2. When pollutant is fully mixed across a regular channel, where the eddy size reaches to the maximum value, Fickian diffusion becomes dominant.

It is possible that the FBMINC model could be used in synthesising the diffusion both over the initial time span 0＜t≤T, and after time t＞T by cutting off the memory in the fBm model; where T is the mixing time of the channel.

Long term Fickian tendency can also occur in estuaries and coastal regions. However, on the ocean surface long term Fickian behaviour is generally not observed as there is no limitation in the eddy sizes in the open sea.

3. fBm as a Random Fractal Function

3.1 Fractal Geometry and Fractal Curves

Fractional Brownian motion is a special random fractal function (Barnsley et al, 1988), but what is a fractal?

"Fractal" is a word invented by Mandelbrot (1977, 1982). The term "fractal" comes from the Latin adjective "Fractus", which has the same root as "fraction" and "fragment" and means "irregular and fragmented" (see Xu et al (1993)). Then what is Fractal geometry?

Euclidean geometry has deeply influenced scientists for over 2000 years. However, it cannot easily describe many irregular natural shapes, such as coastlines, mountains and clouds, etc. Around 20 years ago, Mandelbrot's new geometric theory, fractal geometry, provided both a description and a mathematical model for many of the seemingly complex forms found in nature (see Mandelbrot 1977, 1982). He pointed out that the shapes of nature often possess a remarkable simplifying invariance under changes of magnification. This statistical self-similarity is the essential quality of fractals in nature. Barnsley et al (1988) listed the differences between Euclidean and Fractal geometries:

Table 4　A Comparison of Euclidean and Fractal Geometries
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These differences can be illustrated with one of the early mathematical monsters: the von Koch curve, simply called the Koch curve (see Figure 43). A simple line segment is divided into thirds and the middle segment is replaced by two equal segments forming part of equilateral triangle. At the next stage in the construction, each of these 4 segments is replaced by 4 new segments with length [image: alt]
 of their parent according to the original pattern. This procedure is repeated over and over, yields the beautiful Koch curve (see Figure 43).
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Figure 43　Construction of the Koch Curve (from Feder, 1988)

A noticeable property of the Koch curve is that it is seemingly infinite in length. This may be seen from the construction process. At each stage in its construction, the length of the curve increases by a factor of [image: alt]
 Thus, the limiting curve crams an infinite length into finite area of the plane without intersecting itself. The Koch curve is not a smooth curve and is nowhere-differentiable, also there is no algebraic formula which can specify all the points of the curve. In addition, this curve has details on all length scales. The closer one looks, the more detail one finds. In another words, the curve possesses an exact self-similarity. Each small portion, when magnified, can reproduce exactly a larger portion.

As can be seen form Figure 44, each sub-segment is an exact replica of the original curve.
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Figure 44　The Self-Similar Structure of the Koch Curve (from Addison, 1997)

3.2 Fractal Dimension

The property of self-similarity, as exemplified by the Koch curve, is one of the central concepts of fractal geometry. It is closely connected with the intuitive notion of fractal dimension.

An object normally considered as one dimensional (a line segment) also possesses a similar scale property. It can be divided into N identical parts, each scaled down by the ratio r=[image: alt]
 from the whole. Similarly, a square area in the plane can be divided into N self-similar parts, each scaled down by a factor of [image: alt]
 A three dimensional solid cube may be divided into N smaller cubes, each scaled down by a ratio [image: alt]
 Therefore, a Dfr
 dimensional self-similar object can be divided into N smaller copies of itself, each scaled down by a factor r, where [image: alt]
 or [image: alt]
 Hence, fractal dimension (or similarity dimension) Dfr
 is given by
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(See Barnsley et al (1988), Feder (1988), Hastings and Sugihara (1993) or Addison (1997)).

Unlike Euclidean dimensions which are always integers, fractal dimensions need not be integers. Looking back at the Koch curve of Figure 44, it composes of 4 sub-segments while each of which is scaled down by a factor of [image: alt]
 from its parent. Its fractal dimension is
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This fractional dimension (greater than one and less than two), reflects the unusual properties of the curve. It fills more of the space than a line (one dimension), but less than a Euclidean area (a two dimensional plane). The fractal dimension of the Koch curve lies between its Euclidean dimension (DE
 ＝2) and its topological dimension (DT
 ＝1), i. e.
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Thus fractal dimension Dfr
 provides a quantitative measure of the wiggliness of the curves (see Barnsley et al (1988) or Addison (1997)).

3.3 Fractal Properties of FBM

The main property of a fractal object is self-similarity. Self-similarity assumes that transformations in each direction of Euclidean co-ordinate space are the same, although objects may be rotated. If the transformation is different in each direction, then an object is self-affine rather than self-similar (see Xu et al (1993)). As mentioned early in section 2.1.4, an fBm is a self-affine process.

It is easy to confuse the dimension of fBm traces and the dimension of fBm trajectories. Addison (1997) differentiated between these two and gave detailed explanations. He introduced the fractal dimension of an fBm trace and fBm trajectory by using the box counting method. Let us briefly recall the box counting dimension first.

3.3.1 The Box Counting Dimension

The box counting method (Mandelbrot (1977, 1982), Voss (1985), Barnsley et al (1988), Hastings and Sugihara (1993), Xu et al (1993)) is a useful method for determining the fractal dimension of an object; especially random fractal objects. The general mathematical form of the box counting methods is:
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where DB
 is the fractal dimension, N(δ) is the number of boxes that cover the object measured, δ is the side length of the square covering boxes, and V is a constant which represents the hypervolume of the object (i. e. length, area, volume, or fractal hypervolume). Then the box counting dimension of the object DB
 is:

[image: alt]


If the object has an unit hyper volume (V＝1), then equation (37) becomes
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This form is suitable for determining the box counting dimension of a wide variety of fractal objects.

3.3.2 The Dimension of an FBM Trace

The box counting fractal dimension, DB
 , of an fBm trace may be obtained by considering a portion of an fBm trace which has been rescaled for simplicity so that it fits into a unit box, i. e. 0≤t≤1, 0≤BH
 (t)≤1 (see Addison (1997) for details). Dividing the time interval into n segments each of length [image: alt]
 the height of the box required to contain the time trace over the time sub-interval [image: alt]
 will be [image: alt]
 this is due to the self-affine property of fBm. Each of these rectangular boxes is [image: alt]
 long and [image: alt]
 high (see Figure 45).
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Figure 45　Scaling Properties of an fBm Trace Contained within the Unit Box (Persistent fBm-H＝0.6) (from Addison, 1997)

The area of the boxes required to cover the trace at each sub-interval of time is
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It is needed to relate the scaling of the smaller square boxes to the original square box of unit side length. Thus, the typical number of smaller squares, of area [image: alt]
 required to cover the trace in each time sub-interval is
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There are n such sub-intervals of time each with [image: alt]
 length. Therefore, the number of boxes, N(δ), of side length [image: alt]
 required to cover the original portion of the fBm in the unit box is
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The box dimension (from formula (41)) is
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Hence,
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Formula (42) is for a two dimensional fBm traces. The dimension of an fBm surface can be obtained in the same way and is Dfr
 ＝3－H. The fractal dimension of a multi-dimensional fBm trace function in a DE
 -dimensional Euclidean space is given by
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(see Barnsley et at (1988), Addison (1997)).

3.3.3 The Dimension of fBm Trajectories

Instead of considering fBm time traces, i. e. BH
 (t) against t, an fBm trajectory in the plane may be constructed using two independent fBm traces in the same way produced regular Brownian motion in Figure 11～13. The process is illustrated in Figure 46.
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Figure 46(a), (b)　The Generation of Two Component fBm's in the Plane for H＝0.2 and H＝0.5 (from Addison, 1997)
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Figure 46(c)　The Generation of Two Component fBm's in the Plane for H＝0.8 (from Addison, 1997, also reprinted from Addison and Qu. 1996)

In Figure 46(a), (b) and (c), H＝0.2, 0.5, 0.8 are used in the upper, middle and lower plots. The left hand plots contain the two individual fBm time traces which are used as the x and y components of fBm trajectories in the plane (show on the right hand side). In contrast to fBm traces, where the curve is continuously marched through time with random displacements added at each time interval, fBm trajectories may cross over themselves as they wander about the plane. fBm trajectories are also random fractals with statistical self-similarity at all scales. (Note that fBm trajectories are self-similar and fBm trace functions are self-affine). However, the fractal dimension for fBm trajectory is different from the corresponding trace. The box counting fractal dimension of an fBm trajectory may be obtained by considering an fBm trajectory observed over a time interval T (see Figure 47).
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Figure 47　Scaling Properties of an fBm Trajectory (from Addison, 1997)

According to equation (30), each co-ordinate of an fBm trajectory will vary over time sub-intervals ∆t, by [image: alt]
 On a trajectory, the number of boxes, N(δ), of side length δ, required to cover the trajectory scales simply with the "size" of the trajectory which in turn is related to the time span of the motion, T (see Addison(1997)). i. e.
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It needs to be emphasised that the trajectory is not self-affine but rather self-similar, consisting of two spatial axes, both of which have the same scaling properties. The spatial dimension of each box required to cover the fBm trajectory [image: alt]
 scales with ∆tH
 . Thus, as we reduce the side length, δ, of the probing boxes, after choosing suitable units, the box counting dimension is
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In the plane, the box counting dimension cannot exceed 2 (i. e. the Euclidean dimension of the plane itself). Hence the box counting fractal dimension of an fBm trajectory in the plane is given by
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Trajectories in 3D space may be generated in a similar manner as in 2D. The box counting fractal dimension of an fBm trajectory in a 3D space can be given by [image: alt]
 Extending this further, fBm trajectories in higher dimensional spaces may be generated. The fractal dimension of an fBm trajectory in a DE
 -Dimensional Euclidean space is given by
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3.4 Methods for Determining H from Real Data

As in previous sections, the Hurst exponent H determines the nature of the correlation. There are a variety of methods which can estimate H from real data. The most useful methods are listed here:

(1) Rescaled Range Method (R/S method)

This is a traditional method for estimating the value of H. It was first developed by Hurst (1950) and analysed extensively by Mandelbrot and Wallis (1969). Feder (1988) also explains the method. The detailed method is given by Mandelbrot and Wallis (1969), Feder (1988) and Mehrabi et al (1997). According to Mendelbrot and Wallis (1969), this method is very robust, however, it is not very accurate in the sense that it yields roughly the same value of H regardless of the data (see Mehrabi et al (1997)). Liu and Molz (1996) pointed out that R/S analysis cannot be used to clearly discriminate fGn (fractional Gaussian noise) and fBm from a given data set in some cases. However, it is the earliest used method for evaluating H.

(2) Using the Fractal Dimension

Using the Box counting method
 to calculate the fractal dimension DB
 , the value of H can be obtained from the relationship between DB
 and H. In the last section, Equation (42) and (45) can be used to determine the H value of a fBm trace and trajectory respectively.

(3) The Structured Walk Technique

The structured walk technique is an easy method for determining a fractal dimension estimate for fractal curves in a plane. The Hurst exponent H can then be obtained once the fractal dimension is known. The technique is much faster to perform by hand rather than the box counting dimension method. This method requires the use of compass or a set of dividers (or a ruler). The detailed method is outlined as follows (see Addison (1997)):

(a) Set the compass/divider/ruler at a step length "s".

(b) Take an initial point at the beginning of the curve.

(c) Draw an arc, centred at initial point, which crosses the curve.

(d) The crossing point (step 3) becomes the new initial point. Repeat step (c) and (d) until the end of the curve is reached.

(e) Plot log(L) versus log(s), where L is the length of the curve obtained using s as a step length and N as number of steps. L＝s×N. This is known as a Richardson Plot.

(f) The slope G of the best fit line is related to the fractal dimension Dfr
 , by G＝1－Dfr
 .

This method is illustrated in the following where it is used to calculate the dimension of a real drifter trajectory from which a value of H is obtained.

A typical trajectory of an ocean surface drifter (drg 72) is shown in Chapter 2, Figure 17 (right). This is one from a set of drifter trajectories monitored in the Northeast Atlantic near north Ireland (Figure 17 (left), from Booth (1988)).

Table 5 shows the calculations performed for the Structured Walk technique applied to drifter trajectory drg 72. Figure 48 contains the Richardson Plot from which a best fit line is drawn and the slope calculated.

Table 5　The Data Used for the Calculation the Value of H using the Structure Walk Technique
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Figure 48　Fractional Dimension Dfr
 Calculation from the Real Drifter Data (Note: In the figure, Fractal Dimension Dfr
 denoted as D)

The slope G was found to be -0.3104. Hence, the fractal dimension Dfr
 ＝1－G＝1－(-0.3104)＝1.3104 and the Hurst exponent H＝1/Dfr
 ＝1/1.3104＝0.7631.

It was found that the Hurst exponent for coastal and ocean surface trajectories is, on average around H＝0.8 (for Osborne et al (1989), H≈0.79; Sanderson et al (1990), H≈0.77; Sanderson and Booth (1991), H≈0.78) (further details are given in Chapter 5 section 6).

From the study above and those by others, it is reasonable to assume H＝0.8 for the general case.

(4) The Window Average Method

Section 2.5.3 introduced the mean absolute separation of a fBm trace [image: alt]
 scales with time of separation L (also called the window length) as
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 for any time t.

Hence,
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(5) The Variance Method

This simple method is used to determine the value of H from a cloud of fBm particles. The method is frequently used throughout this thesis to find H.

The standard deviation of a diffusing cloud of fBm particle σc
 (t) scales with the time step t as

[image: alt]


This can be written in logarithmic form as
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so that,

[image: alt]


where D is the diffusion coefficient of the fBm.

Hence, using a logarithmic plot, both the Hurst exponent and diffusion coefficient can be determined. The Hurst exponent, H, is the gradient of the plotted line and the diffusion coefficient, D, can be found from the intersept value (＝Hlog2D).

(6) Other Methods

There are many other useful methods, such as the Power Spectral method (see Reed et al (1995), Mehrabi et al (1997), Xu et al (1993), Voss (1985), Osborne et al (1989)); Orthonomal wavelet decomposition method (see Meharbi et al (1997)), several scaled window variance methods (see Cannon et al (1997)), and many more. Choosing an appropriate method which has good reliability for estimating H is very important. As mentioned in Cannon (1997) the first thing a method should do is to determine the characteristic of the signal: Is it noise or motion? Each method for estimating H requires that the signal to be in a specific form. Meharbi et al (1997) also compared several different methods of evaluating H.

4. Summary

The method for generating a Brownian motion and simple random walks were illustrated in detail in the first section of this chapter. The statistics of random walks were also elucidated and random walks in two dimensions were plotted.

Fractional Brownian motion (FBM) was shown to be a useful tool for generating non-Fickian diffusion. The definition of fBm shows how each point on an fBm trace depends upon the whole history of the fBm previous to that point. Two models for synthesising fractional Brownian motion (FBM model and FBMINC model) were developed by the author, and their properties in one and two dimensions were explored. The effect of the memory, number of steps and number of particles on the statistics of synthesised fBm was evaluated. It was concluded that M≥10×NSTEP, P≥1000 are required conditions for producing fBm with reasonable accuracy. FBm in two dimensions were generated. It was verified that the projection of two-dimensional fBm trajectories onto a one-dimensional line produces an fBm time trace, regardless of the angle of projection. In order to reduce the computation time, methods using simpler distributions (Delta or Constant) to approximate fBm generation were developed. However, there was found to be no significant difference in CPU time between the three models. In addition, it was found that it is always more accurate to use the Gaussian distribution especially for short time series.

The chapter concluded with a brief introduction to fractal geometry. Fractional Brownian motion was shown to be a random fractal function and the fractal properties of both fBm traces and trajectories were elucidated. The relationships between the Hurst exponent and fractal dimension for fBm trace and fBm trajectories were detailed. The most common and useful methods for determining H value from physical data were also introduced.





Chapter 4

Coastal Bay Modelling

1. Introduction

A study was undertaken by the author to employ the fBm particle tracking model within a existing comprehensive model of a coastal bay developed by Dr. Garry Pender, Mr. Alistair Nisbet and Ms. Sharon Sloan of Glasgow University. These collaborators supplied the surface velocity field for an idealised coastal bay. The bay model provided a relatively simple test case for the comparison of fBm and traditional random walk techniques.

During the study, it became apparent that shear dispersion was important at the interface between the main flow and recirculation zone in the bay. A study was conducted to investigate the effect of shear dispersion on the fBm model and compare it with existing Brownian shear dispersion theory.

As there is a large number of figures in this chapter, for compactness, all the figures are put at the end of the text.

2. New Particle Tracking Method Using in the Bay

The idealised open coastal bay (see Figure 1) is 2000m wide and 4775m long. The grid sizes are 50m×100m in the main flow area. The grid sizes are finer and not evenly spaced in the vicinity of the bay area of the model, in order to make the simulation more detailed in this region.
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Figure 1　Coastal Bay Model, Velocity Vector Plot

The surface velocity distribution was obtained from a layered two dimensional hydrodynamic model. Figure 2 reveals the enlarged vector plot of the recirculation zone of Figure 1. The bay area (recirculation zone) is within the grid co-ordinate ranges 1275＜x＜2000, 2025＜y＜2825. The velocities at the boundary are zero. Ignoring the direction, the maximum speed in the main flow is 0.67m/s and the average speed in the main flow zone is between 0.4～0.5m/s. The velocities in the bay area are smaller than those of the main flow region. The bay area contains a recirculating flow field driven by the main flow.
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Figure 2　Enlarged Velocity Vector Plot of the Recirculation Zone in the Coastal Bay Model

In the rest of the chapter, a new fBm-based method (based on FBMINC model) is employed in the modelling of two dimensional surface diffusion within the coastal bay model. It is well known that the dispersion of pollutant in the coastal or ocean mainly involves two movements: advection and turbulent diffusion. Tidal and other diffusion mechanisms are ignored in this study.

2.1 Advection

In the numerical model, a set of massless particles representing the pollutant cloud is injected at time t＝0 from a point source on the surface. The particle cloud is then advected through the grid domain in the following manner. Suppose that for time step i (time t＝i×∆t) the particle P(xi
 , yi
 ) has gone into grid (k, l), where the velocities at the four grid points A, B, C, D are:


A
 (U(k, l), V(k, l)),


B
 (U(k, l＋1), V(k, l＋1)),


C
 (U(k＋1, l＋1), V(k＋1, l＋1)),


D
 (U(k＋1, l), V(k＋1, l.)).

Then, when a particle P(xi
 , yi
 ) is in grid (k, l) with corner ABCD (see Figure 3), the velocity in x direction is U (xi
 , yi
 ) and in the y direction is V(xi
 , yi
 ).
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Figure 3　Bilinear Interpolation in Grid (k, l)

The advective component is subject to the Lagrangian principle. Usually an interpolation scheme in both time and space is employed to generate the velocity vector at off-grid points. For time, a simple linear interpolation was adopted. The following bilinear interpolation in space was selected, i. e.
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Here suppose each grid length in both x and y direction is: ∆Lx
 ＝∆Ly
 ＝1. Hence,
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The advective step at each time step i is given by

[image: alt]


[image: alt]


2.2 Diffusion

2.2.1 Traditional Random Walk Model

Traditional random walk models of diffusion were performed by releasing a large number of massless, marked particles into a flow field and allow them to diffuse by taking random steps in each spatial direction. The random steps taken by traditional models, usually either from a Gaussian probability distribution with zero mean and unit variance, or a simpler constant distribution or Delta distribution in order to reduce computational time. Chapter 3 showed that these simpler distributions can also produce accurate results for large time scales as they give good approximations to Brownian motion. However, they provided no significant saving in computer time.

There is a fundamental drawback with the traditional random walk technique. That is, as long as the steps are statistically independent from each other, then regardless of the form of the probability distribution from which the random steps are taken, only Fickan diffusion can be produced. Therefore, if a large number of particles are used in a particle tracking model, the standard deviation of the particle cloud scales with the square root of time since release:
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here D is the diffusion coefficient. As was shown in Chapter 3, a Brownian motion can be produced by summing up a series of random steps taken from a Gaussian distribution, WT (i), i. e.
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To simulate the required diffusion, a standard deviation σstep
 of a random particle step is employed:
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After N steps, the standard deviation of the particle cloud is
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As mentioned above, WT(i) may be a simpler distribution. In this case, the shape of diffusing cloud over short time will not be Gaussian. But after a sufficiently large time, the shape of the diffusing cloud will change towards a Gaussian form (due to the Central Limit Theorem).

2.2.2 Diffusion Using Fractional Brownian Motion Model

It is known that traditional particle tracking methods (as mentioned in the last section) lead to Fickian diffusion which does not produce the physical reality of the non-Fickian turbulent diffusion frequently observed in pollutant dispersion processes due to correlation in the flow field (Okubo (1971), Osborne et al (1989), Sanderson and Booth (1991)). This property exists over significantly large spatial scales (Lam et al, 1984). This Lagrangian memory effect (Yvergniaux and Chollet, 1989) cannot be taken into account in traditional particle tracking models which use statistically independent steps in the reproduction of the individual particle trajectories.

Osborne et al (1989) and Sanderson and Booth (1991) have found that the trajectories of satellite tracked ocean surface drifters may be described as fractional Brownian motion with non-Fickian scaling properties. Both studies have characterised the fractional Brownian motions of trajectories in terms of the fractal geometric properties.

As introduced early in Chapter 3 (section 2), a fractional Brownian motion may be generated from the summation of a series of random steps taken from a Gaussian distribution (Mandelbrot and Wallis, 1969). The summation is weighted in order to allow for a long time power law correlation to be included in the resulting motion.

In this chapter, the fractional Brownian motions employed will all be synthesised using the FBMINC model developed in Chapter 3:
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summed to produce an fBm trace:
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(9) and (10) are the same as equations (28), (29).

As mentioned previously, the standard deviation of a diffusing cloud of fBm particles scales with time since release to the power of H (0＜H＜1) (rather than being restricted to the power of 0.5 as with Brownian motion). This leads to a more general form of equation (5) using a fractal diffusion coefficient Df
 :
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In this chapter, H＝0.8 is used in most of the cases to generate a superdiffusion.

2.2.3 The New fBm Particle Tracking Model

The pollutant dispersion in fluids is determined by both advection and diffusion. The advection displacement can be calculated using the average velocity (U(i), V(i)) in each time step i. i. e.
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Notice that expressions (12a) and (12b) are slightly different from (4a) and (4b), where (xi
 , yi
 ) is the position of particle P at time step i. The nomenclature for velocity is shortened to: U(xi
 , yi
 )＝U(i); V(xi
 , yi
 )＝V(i).

The diffusion is caused by the random motions superimposed upon the mean flow advection. As mentioned in Chapter 2, there are two types of diffusion: molecular diffusion and turbulent diffusion. Turbulent diffusion is much greater than the molecular diffusion. It causes local mixing of the fluid. Therefore, turbulent diffusion is considered here, while molecular diffusion is ignored.

The total particle displacement at time step i is the summation of the advective component and the diffusive component (i. e. the increment of fBm) over the time interval:
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The diffusion displacement of each time step in both x and y directions are ∆BHx
 (i) and ∆BHy
 (i), which are two independent fBm increments defined by (9).

The location of the particle at the next time step (i＋1) is then,
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2.3 Choosing a Time Interval

Before a simulation can be performed, a decision needs to be made on the choice of time step, ∆t, to be used. The maximum time step is required which provides both fast and accurate results. Delay et al (1996) detail the selection of a time step. They concluded that: in classical particle methods, in order to take into account velocity variations between two adjacent grids, one generally considers that the greatest distance covered during time step ∆t should not exceed [image: alt]
 e. g. if the velocity is U (i) in time step i, and the grid length is ∆Lx
 , then the maximum time step should be
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Figure 4 shows one step of the displacement for the time step intervals ∆t＝100 and 1000 seconds. The displacement for ∆t＝100 is about half the length of the grid size 50×100 (in the main flow area, see left plot). In the recirculation zone, ∆t＝100 produces a much smaller displacement than one grid length (grid size is 50×50, see the middle plot). Again for the recirculation zone, the displacement for ∆t＝1000 is about one grid length (the right hand plot). Hence, the time step should be restricted to ∆t≤100. However, due to the rapid changing of the direction of the velocity vectors in the recirculation zone, further investigation of the time interval in this area is required.
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Figure 4　Time Interval ∆t＝100 and 1000 Seconds for Release Point (Xp, Yp) in Three Different Places (∆t is Denoted DT in the Plots)

Figure 5 shows one-particle, advection-only paths in the recirculation zone (without considering the diffusion component) from four different release points. When ∆t＝100 (NSTEP＝1000), the paths do not stay in the same recirculating trajectory. They tend to spin out as time increases. Figure 5 tells us that the time interval ∆t＝100 is too large for the particle tracking in the recirculation zone, although each step length is quite small within one grid.
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Figure 5　One Particle Advection Trace in the Recirculation Zone with ∆t＝100 Here NSTEP＝1000, Release Point is (Xp, Yp)

Figure 6 shows one displacement step within a grid box for ∆t＝10 and 50. The right hand side figure is a plot of one step of a particle in the recirculation zone when ∆t＝50. It is noticeable that the displacements of one step for ∆t＝10 and 50 are very small within each grid, due to the small velocities within the recirculation zone. The particle trajectory is required to follow the same recirculating path when advecting around the recirculation zone.
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Figure 6　One Step Displacement with Time Interval ∆t(＝DT)＝10, 50

Figure 7 uses time steps of both ∆t＝20 and ∆t＝10 for the same release points as Figure 5 upper plots. The figure shows that ∆t＝20 is obviously much better than ∆t＝100 at reproducing the advective recirculation trajectory, and as expected, ∆t＝10 is better than ∆t＝20. When ∆t＝10, the particle stays within the trajectory for each different release point, except in the centre of the bay area (when Xp
 ＝1500, Yp
 ＝2400, see Figure 8). It is difficult to prevent the particle from spinning out in the centre of the bay. However, if set ∆t＝1, the particle trace can almost repeat the same recirculating trajectory (see Figure 8 right plot). Some effort could be made in adjusting the velocity direction along the trajectories. The most effective way in generating a more accurate particle trace is to replace equation (12) with a higher order of time (where equation (12) gives the error in the order of time squared, i. e. O(t2
 ), an equation with order of o (t4
 ) can give a more accurate result). However, it would require excessive in CPU time and is thus left as a future work.
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Figure 7　One Particle Advection Trajectory in the Recirculation Zone with ∆t(＝DT)＝10 or 20
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Figure 8　One Particle Advection Trajectory in the Centre of the Rcirculation Zone with ∆t(＝DT)＝1 and 10

Taking the above figures into consideration, the time step (∆t) for the particle tracking model used in this chapter was usually set to either 10 or 20 seconds.

2.4 Choosing a Diffusion Coefficient

As molecular diffusion is much smaller than turbulent diffusion, it can be ignored, e. g. only turbulent diffusion is considered here.

Often in studies of turbulent diffusion, the diffusion coefficient D is calculated from a Fickian formulation (Booth (1988), Allen (1982), List et al (1990), Yanagi et al (1982), Poulain and Niiler (1989), etc). This leads to the growth of D with time due to the non-Fickian nature of the phenomena. However, if one assumes the following non-Fickian diffusion relationship:
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(i. e. fBm diffusion), then the diffusion coefficient in this case Df
 is assumed constant.

The relationship between this fractal diffusion coefficient, Df
 , and its Fickian counterpart, D, is found (by combining equation (5) and (11) for σc
 ) as follows:

[image: alt]


Hence,
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Figure 9 shows the relationship between the Fickian diffusion coefficient D with time for different H values when the "constant" fractal diffusion coefficient Df
 ＝0.01, according to (16). The special case is when H＝0.5, D＝Df
 ＝0.01.
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Figure 9　Diffusion Function D versus Time Step t with Different H, while Df
 ＝0.01

Okubo's (1971) apparent diffusivity ranged from 0.05 to 220m2
 /s within different regions of the North Sea (from data taken between 1956 and 1963). Fischer (1973) listed the results of some experiments by some researchers on longitudinal dispersion in laboratory channels, nature streams and canals. The range of the dispersion coefficient is from 0.123 up to 1500m2
 /s. Fischer (1973) also listed the transverse diffusivity in open channel from the result of some researchers:



	For floating particle experiments:
	the range is 0.00013～0.00592m2
 /s;



	For laboratory tracer experiments:
	the range is 0.00009～0.00369m2
 /s;



	For field experiments:
	the range is 0.0102～0.186m2
 /s.




Fischer (1973) pointed that typical cross sections found in real rivers and coastal waters varies from approximately 0.06 to 0.15m2
 /s. In South San Francisco Bay, a transverse-mixing coefficient was found between 0.25～0.4m2
 /s.

Typically, in engineering practice, values around 0.01～0.02m2
 /s are used (Wallingford, Report Ex 3358, 1996) for modelling diffusion in a small coastal zone. The diffusion coefficient in the ocean can reach a very high value over long distances, which is not the case considered here, i. e. in the coastal zone. In the coastal bay model, outlined in this chapter, the diffusion coefficient was set at Df
 ＝0.01 for all cases as it was easy for comparison and simulations. Hence, for Fickian simulation, D＝Df
 ＝0.01m2
 /s.

2.5 Boundary Reflection

The velocities at the boundaries are zero, i. e. U＝V＝0. The particles that hit the boundary is not allowed to stay there, but are reflected back into the flow field. Figure 9 shows the bay area. The boundaries are defined as:

x＝1275;

x＝2000;

y＝2025, when x≥1275;

y＝2825, when x≥1275.

There are several cases that should be considered for particle reflection. These are given as follows (refer to Figures 10 and 11):

[image: alt]


Figure 10　The Boundaries Reflection around the Recirculation Zone
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Figure 11　The Boundaries Reflection near the Edges: x＝0, y＝0

(1) When particle f1 hits the boundary y＝2825 at O1
 . The next step would go to A if there was no boundary. Reflect A (xi＋1
 , yi＋1
 ) to [image: alt]
 [image: alt]
 by setting
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(2) When particle f2 hits the boundary x＝2000 at O2
 , the next step would go to B if there was no boundary. Reflect B (xi＋1
 , yi＋1
 ) to [image: alt]
 [image: alt]
 by setting

[image: alt]


(3) When particle f3 hits the boundary y＝2025 at O3
 , the next step would go to C if there was no boundary. Reflect C (xi＋1
 , yi＋1
 ) to [image: alt]
 [image: alt]
 by setting
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(4) When particle f4 hits the boundary x＝1275 at O4
 , the next step would go to D if there was no boundary. Reflect D (xi＋1
 , yi＋1
 ) to [image: alt]
 [image: alt]
 by setting
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(5) When particle f5 hits the boundary x＝0 at O5
 , the next step would go to E if there was no boundary (see Figure 10). Particles which exit the flow field in this way are removed from the model.

(6) Particle f6 hits the boundary y＝0 at O6
 , the next step would end at F if there was no boundary. Particles which exit the flow field in this way are removed from the model.

Figure 12 shows two particles released from four different points. The figure illustrates the boundary reflections taking place within the model for H＝0.8.
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Figure 12　Boundary Reflection of Two Particles in the Bay Model from Four Corners of the Bay Area. Where NSTEP＝1000, M＝5000, Df
 ＝0.01, ∆t＝20, H＝0.8


Important Note on FBM Reflection


It is an important point to note that because of the memory associated with fBm, the particles cannot be reflected simply. Due to the persistent nature of fBm, the particles, once reflected, will continue to persist towards the boundary. Hence, in order to produce a trace reflection, the sign of the whole fBm trace must be reversed on reflection.

2.6 The Particle Tracking Model

This section details the simulation of particle tracks using the bay model. To illustrate the nature of the tracks, only 20 particles are shown. For a cloud of particles, the location of 1000 particles will be recorded once in every hour (up to 10 hours).

2.6.1 The Particle Tracking Algorithm

The following algorithm is used to generate the particle tracking bay model. The computer program bayflu. for (for a particle trace), baycloud. for (for a cloud of particles recorded once every hour, up to 10 hours) are contained in Appendix 1.

(1) Input release point in the bay (Xp
 , Yp
 ).

If (Xp
 , Yp
 ) is outside of the bay region, try again.

(2) Open data file "tecvec4. dat" (which is provided by Glasgow University) with grid points (X(i), Y(j)) and corresponding velocities (U(i, j), V(i, j)), i＝0, 40; j＝0, 57.

(3) fBm generation (in program baycloud. for, the fBm step increments in both x and y directions are pre-generated, this can save CPU time significantly).

(a) Make distribution choice: 1. Delta; 2. Constant; 3. Gaussian.

(b) Calculate the Γ function using the polynomial approximation (see Abramowitz and Stegun (1965), p. 257):
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Where 0≤x≤1. ｜ε(x)｜≤5×10-5
 . Set H＋0.5＝x＋1, then x＝H－0.5.
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Here, a1
 ＝-0.5748646, a2
 ＝0.9512363, a3
 ＝-0.6998588, a4
 ＝0.4245549, a5
 ＝-0.6998588.

(c) White noise WT(k, p) generation for sequence k＝0, M＋NSTEP and particle number p＝1, P.

Calculate the single step standard deviation from a knowledge of the diffusion coefficient, Df
 , and time step, ∆t:
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Let R＝random number (given by FORTRAN 77: a uniform distribution with range (0, 1)).

For a Delta distribution,
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For a Constant distribution,
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For a Gaussian distribution,

Generate the Gaussian random number (Gasdev) using the Box-Muller method (also see equation (8)),
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(see also in Chapter 3 equations (3), (4) and (7) or (8)).

(d) Calculate fBm increment ∆BH
 (i, p) for H≠0.5. ∆BH
 (i, p)＝WT(k, p) when H＝0.5.

(4) Generate [image: alt]
 and [image: alt]
 from 3 (d) by setting different random seeds.

(5) For each particle p, use bilinear interpolation to calculate particle velocity U(i, p), V(i, p) in each step.

(6) Using the fBm particle tracking model, calculate the next step displacement:
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Here Signx and Signy is equal to either 1 or -1, according to the direction of the particles movement. If the particle hits the boundary, change the sign of signx or signy accordingly (see the note in section 2.5.1).

(7) Boundary reflection: Check to see if particle is outwith the flow domain. If so, reflect according to the methods described in section 2.5.

THEN EITHER

(8a) Get output particle location XT(i, p), YT(i, p) for each particle p at time step i. i＝1, NSTEP. Hence a particle tracking trajectory can be obtained for each particle p (program bayflu. for, see Appendix 1).

OR

(8b) Generate the particle cloud locations XT(i, p), YT(i, p), for all p's and for i at selected output intervals. Hence a cloud of particles at time step i can be obtained for p＝1, P (program baycloud. for, see Appendix 1).

2.6.2 Typical Particle Trajectory Plots for the Bay Model

Using the particle tracking algorithm given above, for different release points (Xp
 , Yp
 ), a different particle flow trace can be generated. The particles move through the computational grid, advected by the mean advection velocity (found from bilinear interpolation of the four velocity vectors at the corners of the grid cell) and diffused by taking random steps according to the FBMINC algorithm. Typical results from a series of test cases are illustrated in Figures 13～18. These were undertaken for both a Fickian (H＝0.5) model and a non-Fickian, superdiffusive (H＝0.8) model. In all the cases, the diffusion coefficient was set at Df
 ＝0.01m2
 /s in both spatial directions.
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Figure 13　20 Particles Released from the Different Positions in the Bay—Regular Brownian Motion (H＝0.5). Where NSTEP＝2000, M＝0, Df
 ＝0.01, ∆t＝20
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Figure 14　20 Particles Released from the Different Positions—Fractional Brownian Motion (H＝0.8). Where NSTEP＝2000, M＝10000, Df
 ＝0.01, ∆t＝20
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Figure 15　Comparison of Fickian (H＝0.5) and Non-Fickian (H＝0.8) Diffusion for 20 Particles Released from (Xp, Yp). Total Time: 11 Hours 6 Minutes 6 Seconds (NSTEP＝2000), Df
 ＝0.01, ∆t＝20, M＝20000
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Figure 16　20 Particles Released Inside the Recirculation Zone-Regular Brownian Motion (H＝0.5). Where (Xp, Yp) is the Release Point, NSTEP＝2000, D＝0.01, ∆t＝20
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Figure 17　20 Particles Released Inside the Recirculation Zone-Fractional Brownian Motion (H＝0.8). Where (Xp, Yp) is the Release Point, NSTEP＝2000, M＝20000, Df
 ＝0.01, ∆t＝20
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Figure 18　Comparison of Fickian (H＝0.5) and Non-Fickian (H＝0.8) Diffusion for 20 Particles Released from the Corner of the Recorculation Zone. Where Release Point is (Xp, Yp). Total Time: 11 Hours 6 Minutes 6 Seconds, Df
 ＝0.01, M＝20000, ∆t＝20

Figure 13 and 14 contain 20 particles released from the nine different points (Xp
 , Yp
 ) in the flow domain. In Figure 13 the particles use regular Brownian motion (H＝0.5). Figure 14 contains the 20 particles released from the same locations as Figure 13, however this time the particles follow fractional Brownian motion (H＝0.8). Comparing these two figures, there is a noticeable difference between them which will be discussed below.

Figure 15 compares the Fickian (H＝0.5) and non-Fickian (H＝0.8) cases for three selected release locations taken from Figures 13 and 14. Considering the release points (1250, 4775) and (1250, 2900), no particle paths enter the recirculation zone when H＝0.5. For the same release points, the particles spread out more when H＝0.8, and some of the paths enter the recirculation zone. The third picture illustrates the release point in (1400, 2700), which is inside the recirculation zone. From this location the resulting particle paths always remain inside the recirculation zone when H＝0.5. However, for the same release point with H＝0.8, some of the particles enter the downstream zone and the particles spread out more rapidly inside the recirculation zone.

Figure 16 and 17 compares another set of release points which are all located within the recirculation zone. The centre of the bay recirculation flow is near (1500, 2400). This is noticeable from the centre-right plot of Figure 16. Figure 16 contains the Fickian cases (H＝0.5) and Figure 17 the non-Fickian ones (H＝0.8). The release points are set at the same value in each of these two figures. When H＝0.5 (Figure 16), almost no particles enter the main North-South flow zone when released within the recirculation zone. While for H＝0.8, many particles enter the mainflow (Figure 17), due to the superdiffusive nature of the particles.

Figure 18 compares the Fickian (H＝0.5) and non-Fickian (H＝0.8) cases for three spatial release locations picked from Figure 16 and 17. These three release points are all from the edges of the recirculation zone. After the same time, the particles do not move a significant distance for H＝0.5. No particle passes to the downstream zone. However, there are obviously much larger displacements for the particles on the H＝0.8 case. Some particles even reach the downstream zone. Due to the persistent spreading of the superdiffusive case, particles are rapidly reaching regions of higher velocity within the recirculation zone.

2.7 Particle Clouds

2.7.1 Computational Effort

For a cloud of massless particles released in the bay, the computational effort involved needs to be considered. Only array sizes up to 300000 in FORTRAN 77 were used by the author for one dimensional array computation. For the fBm model, a two dimensional array is required, (i, p), where i is the number of steps, p is number of particles. Owing to the computational intensity of the fBm model, only 400 particles can be released if taking 750 steps in total, when the memory, M, is 10 times the number of steps. In addition, setting ∆t＝10, the total time step NSTEP since release allowed is only 7500 sec.

Several efforts were made to overcome this computational problem. The first one considered by the author was to input a large number of particle clouds and take the maximum number of steps corresponding to this number of particles. For example, it is possible to compute 300 steps for 1000 particles. The program was then rerun using the last positions of the previous particle cloud as the release points of the second run. The total number of steps after the second run is then 2×300＝600. The above processes were repeated until the desired NSTEP was reached. The advantage of this method is that there is no restriction in number of particles and steps. As many particles can be input as required and as many steps generated as needed. However, this is not a correct way to generate fBm diffusion, because this way of producing fBm is not continuous. That is, the memory of the fBm particle is destroyed between each run. This is a fatal fault of this method.

Another way to reduce the computational effort is to reduce the memory from 10 times of NSTEP to 5 times or 3 times of NSTEP in order to a give approximation of the diffusion clouds. Figure 32 (Chapter 3) revealed that there is no significant difference once M＞NSTEP. Quite close approximations can be obtained for M≥3×NSTEP. In this case, 1000 particles can be released in the bay and a continuous fBm can be generated within 3600 steps. Hence, when ∆t＝10, ten hours of simulation can be run. Although generally larger numbers of particles (about 10000～100000 particles) are used in numerical simulations, 1000 number of particles were found adequate to illustrate the technique herein.

In practice, the most efficient way of using the FBMINC model to generate a particle cloud or traces, would be perhaps to use a pre-generated fBm traces. These fBm traces could be stored as a zip file for compactness. This method would reduce the CPU time required to generate the particle clouds. (In fact, this method was employed in many of the simulations in this chapter.)

Figures 19 and 20 contains plots of the spreading of a particle cloud released from the grid position (1300, 2800) at time t＝0. Figure 19 is for the case H＝0.5, where the clouds follow regular Brownian motion. The subsequent spreading of the particle cloud can be followed, in one hour increments, until 10 hours after release. Figure 20 contains the particle cloud released from the same location as for Figure 19. However, in this case, the particles follow fractional Brownian motion paths with H＝0.8. There is a noticeable increase in the spreading rate of the cloud for the fBm case, which in physical terms means a greater reduction in the maximum contaminant concentration with time. Therefore, it has important implications for the predicted toxicity levels to a physiologically safe level in the environment. A change in the Hurst exponent, H, can lead to an area of the flow field being affected by a contaminant cloud which is not picked up by the regular Brownian motion model traditionally used in practice.
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Figure 19　A Particle Cloud Released from (1300, 2800) within 10 Hours-Regular Brownian Motion. Where P＝1000, NSTEP＝3601, D＝0.01, ∆t＝10, H＝0.5
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Figure 20　A Particle Cloud Released from (1300, 2800) within 10 Hours-Fractional Brownian Motion. Where P＝1000, NSTEP＝3601, M＝3*NSTEP＝10803, Df
 ＝0.01, ∆t＝10, H＝0.8

Figure 21 compares the Fickian (H＝0.5) and Non-Fickian (H＝0.8) clouds released from (1300, 2800) after the 1st, 2nd, 3rd, 4th, 7th, 10th hours. The difference between the Fickian and Non-Fickian particle clouds can be seen clearly here.
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Figure 21　Comparison of Fickian (H＝0.5) and Non-Fickian (H＝0.8) for a Particle Cloud Released from (1300, 2800) after 1, 2, 3, 4, 7 and 10 Hours. Where P＝1000, NSTEP＝3601, M＝3×NSTEP, Df
 ＝0.01, ∆t＝10

Figures 22 and 23 contain the diffusion of the particle cloud released at grid position (1500, 2400) which is very near the centre of the bay recirculation zone. These two figures confirm the behaviour observed in Figures 19, 20 and 21. In Figure 22, the regular Brownian particle cloud remains quite compact. After nearly 10 hours, the particle cloud still remains near the centre, there is no significant change after each hour. In Figure 23, the evolution of the fBm cloud released in the same centre point. After each hour, the particle cloud spreads significantly from the centre, comparing to Figure 22. In fact, a small number of particles exit the bay after eight hours and are advected downstream, near to the shoreline, by the main flow. These are just visible in the bottom three plots of Figure 23.
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Figure 22　A Particle Cloud Released from (1500, 2400) within 10 Hours-Regular Brownian Motion. Where P＝1000, NSTEP＝3601, M＝0, D＝0.01, ∆t＝10, H＝0.5
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Figure 23　A Particle Cloud Released from (1500, 2400) within 10 Hours. Where P＝1000, NSTEP＝3601, M＝3×NSTEP, Df
 ＝0.01, ∆t＝10, H＝0.8

The diffusion coefficient Df
 is another key to control the particle cloud spreading. In figures above, Df
 was set as Df
 ＝0.01m2
 /s. It needs to be noticed that, when the Df
 value increases, the particle cloud would spread out accordingly.

2.8 Concentration Calculation and Plots

An algorithm was developed to produce pollution concentrations from generated particle clouds. This was done by converting the particle densities on the grid into pollution concentrations using the following algorithm (Program concent. for in Appendix 1).

2.8.1 Algorithm for Calculation of Pollution Concentration

(1) Open the data file "tecvec4. dat" which contains the grid locations in both x and y directions: X(i), Y(j), where i＝0, 40; j＝0, 57.

(2) Open output file of program baycloud. for which contains the particle cloud locations in both the x and y directions: XTN(p), YTN(p) (p＝1, P) for each hour since release.

(3) Initialise the grid number NGRID＝0. For each grid, find the four grid corners in both the x and y directions:

(XBL, YBL) — Bottom left grid point;

(XBR, YBR) — Bottom right grid point;

(XTL, YTL) — Top left grid point;

(XTR, YTR) — Top right grid point.

(4) Increment of NGRID:

NGRID＝NGRID＋1

(5) Find the central point in the grid box:

XC(NGRID)＝XBL＋(XBR－XBL)/2,

YC(NGRID)＝YBL＋(YBR－YBL)/2.

(6) Calculate the area of the grid box. Note that the areas are not uniform. There are various sizes of grid box in the vicinity of the bay region.

(7) Count the number of particles within each grid box by checking each value of (XTN(p), YTN(p)), p＝1, P, to see if the value falls inside the grid box or not. If it is inside the grid box, increase the count for the total particle numbers in this grid box:

NTOT(NGRID)＝NTOT(NGRID)＋1.

(8) Calculation of concentration:

Set total Mass＝MP; mass per particle＝MP/P.

In these simulations, for simplicity, the total mass is set to 1kg (＝1000000 µg in the program).
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The concentration file is then output to the SURFER software package.

2.8.2 Contour Plots and 3D Surface Plots

Figure 24 contains concentration contour plots for comparison of the Fickian (H＝0.5) and non-Fickian (H＝0.8) cases. This is done for the particle clouds shown in Figure 21, where the particle clouds were released from (1300, 2800). The 1st, 2nd, 3rd, 4th, 7th, 10th hours are recorded. The package SURFER was used here for plotting the contour plots. The contour level was set as interval＝5, minimum level＝1. The smaller the interval used, the more detailed the contouring will be. It was found that an interval equal to 5 was appropriate to show the contour layers. Figure 24 again shows the lower peak concentrations of the non-Fickian particle cloud (when H＝0.8) but with a larger area affected, as compared to the Fickian model.
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Figure 24　Comparison of Fickian (H＝0.5) and Non-Fickian (H＝0.8) of the Concentration Contour Plots Released from (1300, 2800) after 1, 2, 3, 4, 7, 10 Hours. Where P＝1000, NSTEP＝3601, M＝3×NSTEP, ∆t＝10, Df
 ＝0.01

Figure 25 contains 3D concentration surface plots corresponding to four of the cases of Figure 24 (i. e. the 1st, 4th, 7th and 10th hour). SURFER software was again used here. The z-axes, vertical to the bay surface, shows the concentration values in each grid. The left hand plots in the figure contain the Fickian cases and right hand side shows the non-Fickian cases. These plots show very well the higher peak concentrations and less rapid spreading of the Fickian case as compared to the non-Fickian (H＝0.8) case. After 10 hours, the recirculation zone is filled up with the Non-Fickian particles cloud and has relatively low concentrations. The Fickian particle cloud still contains some high concentrations in some localised regions even after 10 hours.
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Figure 25　3D Concentration Plot for Comparison of Fickian (Left, H＝0.5), non-Fickian (Right, H＝0.8). Released Point: (1300, 2800), Df
 ＝0.01, ∆t＝10, P＝1000, NSTEP＝3601

2.9 Further Reported Results

Figure 26, 27 contain the results from another (similar) coastal bay study undertaken by the author and Mr. A. Nisbet of Glasgow University and reported in the International Journal For Numerical Methods In Fluids (Addison et al, 1997a). These results are included here for completeness. Figure 26(a) shows the model bay geometry. The grid is uniform with cells 100m by 100m (Figure 26(a) left plot). The main channel has a depth of 50 m over the first 500m then shallows to 10m at the eastern coastline (Figure 26(a) right plot). The surface velocity field (see Figure 26(b)) was slightly different from that described above as the bay selected was smaller. A constant inflow of 0.5m/s was set at the northern boundary (see Figure 26(b) left plot). The enlarged velocity plot in the recirculation zone is shown in Figure 26(b) right plot.
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Figure 26(a)　Simulation Geometry: Uniform Grid and Contour Plot of Bottom Surface Topography (from Addison et al, 1997a)
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Figure 26(b)　Velocity Vector Field for Surface Layer (from Addison et al, 1997a)

The diffusion coefficient was set at Df
 ＝0.01m2
 /s. Owing to the computational intensity of the fBm technique, only 400 particles were released in each test case. The same particle tracking method was used as described above. The results from both regular Brownian motion (H＝0.5) and fractional Brownian motion (H＝0.75) are illustrated in Figure 27 and 28.
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Figure 27　Release in a Smaller Size Bay-Regular Brownian Motion (from Addison et al, 1997a)
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Figure 28　Release in a Smaller Size Bay-Fractional Brownian Motion with H＝0.75 (from Addison et al, 1997a)

Figure 27 and 28 contain the spreading of a particle cloud released from grid position (1200, 1700) at time t＝0. In Figure 27, the particles in the cloud follow regular Brownian motion paths (H＝0.5). The subsequent spreading of the particle cloud can be followed, in 2 hours increments, until 12 hours after release. The entrapment of the particle cloud within the recirculatory bay flow can be seen. Figure 28 contains the particle cloud released from the same location as for Figure 27, but this time the particles follow fractional Brownian paths with H＝0.75. There is a noticeable increase in the spreading rate of the cloud. In addition, owing to the increased spreading of the fBm particle cloud, a noticeable part of it has escaped the bay area and is transported downstream. This again proves that the variation in the Hurst exponent can lead to an area of flow field being affected by a contaminant cloud which is not picked up by the regular Brownian motion models.

From Figure 28 which is the case of non-Fickian (H＝0.75), one can see that the greater spreading of the cloud in the bay area leads to a more even concentration distribution within the bay: as the particles are not confined to the shoreline as was the case with H＝0.5. Thus it can be seen from this case that an increase in the spreading of the pollutant in the bay region does not necessarily lead to an increase in contamination of the bay shoreline.

3. Shear Dispersion

During the Bay model simulations described in detail in the last section, it became obvious that rapid spreading of the particle clouds occurred at the interface between the main North-South flow and the relatively slower flow in the recirculation zone. This rapid spreading in the direction of flow within a shear zone is a well documented phenomenon known as shear dispersion. It was decided by the author to investigate the nature of shear dispersion exhibited within the fBm model. In this section, shear dispersion of Brownian diffusion combined with a linear velocity profile is discussed; then fBm shear dispersion is considered; and finally the shearing exhibited within the coastal bay model is investigated.

3.1 Simple Shear Dispersion (Brownian Motion)

It is known that shear dispersion, caused by the combined action of shear flow and mixing across the velocity gradient, has a strong influence on mass transportation. As discussed in Chapter 2, Chatwin and Allen (1985) define shear dispersion in a more meaningful way as follows: shear dispersion arises from an interaction between advection by a transversely sheared mean velocity and transverse diffusion.

If we consider Fickian diffusion in both the x and y directions, with both diffusion coefficients equal to D. With no shearing of the flow, the variance in both directions after time t will be
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The question is what happens to the variances in both directions as a result of shear dispersion?

Townsend (1951) found that, for a linear shear flow, the concentration distribution retains its Gaussian form but the variance and the centroid of the dispersion is modified radically. Suppose the velocity in the y direction is a function of x, i. e. V(x), the simplest case of a shear flow is that in which the velocity increases linearly with increasing x, i. e.
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V(x)＝0, when x＝0.
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Figure 29　Simper Linear Shear Dispersion Velocity Profile

There are several articles which explore cloud variances after shear dispersion. For example, Foister and Van De Ven (1980) obtain solutions by solving appropriate Advection Diffusion equations for the time dependent probability density. Suppose, as above, the diffusions in both directions are Fickian with both diffusion coefficients set equal to D. Under shear effects (for the simple shear), the variances in both x and y directions will become
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where α is the gradient of velocity profile V(x)/x (Foister and Van De Ven, 1980). Compte (1997), who used the continuous time random walks scheme, defines the probability of the motion in another way, however, his outcome was the same as that given by (30) under a simple shear effect.

For large times, equation (30) reduces to
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To verify the results of these researchers, a simple channel model was set up by the author as shown in Figure 30(a). The channel size is 2000×5000m and the grid spacing is 50×100m. The x-direction velocity was set to zero and the y-direction velocity was set as
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Figure 30(a)　A Linear Velocity Flow Channel with Velocity V(x)＝-0.0003x

(shown schematically in Figure 30(b)). It is expected that shear dispersion will take place along the direction of flow, i. e. vertically downwards. A cloud of particles was released at the top of the channel, at the release point (1000, 5000). For simplicity, the simpler case of Fickian diffusion only in the x-direction was considered, i. e. the diffusion coefficient in the y-direction is set to zero. Without shear dispersion, this results in diffusion of the form:
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Figure 30(b)　Velocity Direction in the Simple Channel (see Figure 30(a))

According to (28), (31), with shear dispersion, the spreading is defined by:
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from (33),
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Taking logarithms of both sides,
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Hence, the gradient of a plot of ln(σx
 ) against ln(t) is expected to be
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From (34),
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Again taking logarithms of both sides,
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For α＝0.0003 and D＝0.01, from (35a) and (36a),
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Figure 31 shows the results of the numerical model which released a cloud of 1000 particles from (1000, 5000), into the channel flow exhibiting the simple shear dispersion in the y-direction as shown in Figure 30. In the Figure 31, the ln(σ) versus ln(t) best-fit-line plots are extrapolated to the vertical axis to locate the intercept point. The figure shows that the numerical results are as expected from equations (35) to (38). It is encouraging that the numerical results are so close to the theoretical results (especially after the long extrapolation from the best fit line plots). For convenience, some dashed lines are added to the plots to show the extrapolation from the numerical results to the ln(σ) axis.
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Figure 31　ln(σx
 ) and ln(σy
 ) versus ln(t) for H＝0.5 in the Simple Channel (see Figure 30(a)). Where D＝0.01, ∆t＝10, P＝1000, 100 steps (The Plots are Extrapolated to the Vertical Axis to Find the Intercept Values)

In Figure 31, the intercept points (with ln(t)＝0) and the slopes are obtained using regression analysis in the EXCEL software package. The functions used are:

Slope: INDEX(LINEST(y_Range, x_Range), 1);

y-intercept: INDEX(LINEST(y_Range, x_Range), 2).

3.2 Shear Dispersion with Fractional Brownian Motion

In this section, the above results are extended from regular Brownian motion to fractional Brownian motion. Suppose that without shear dispersion,
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Then for simple shear dispersion, that is, again only consider diffusion across the direction of flow, we expect
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From equation (34) where [image: alt]
 and H＝0.5, it was hypothesised (Addison et al, 1999b) that the y-direction diffusion takes the following form:
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that is
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Consider first dispersion across the direction of flow.

Again using α＝0.0003 and Df
 ＝0.01, from equation (40) set
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Where Ax
 is the interception of the function given by equation (40) on the ln(σx
 ) axis. Value Ax
 is calculated for each different value H (0＜H＜1) and shown in Table 1(b). The value Ax
 is also calculated using each realised value of H (which is calculated from the model, i. e. those obtained from Figures 31 and 32(a), (b)) and shown in Table 1(c).

Table 1(a)　Intercept Ax
 from Figure 31 and 32
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Table 1(b)　Intercept Ax
 Calculated from Equation (42) and Inputted H Values
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Table 1(c)　Intercept Ax
 Calculated from Equation (42) and H Values Found from Plots
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Figure 32 contains plots of ln(σx
 ) and ln (σy
 ) against ln(t) for the superdiffusive range of H's: 0.6≤H≤0.9 in steps of 0.1. The intercept values for ln(σx
 ) are listed in Table 1(a) the last row and can be compared favourably with those expected values in both Table 1(b) and (c) (especially Table 1(c) which shows an improved matching compare with Table 1(b)). However, as H increases the value obtained numerically for the intercept become slightly less than those expected. The reason for this is unclear.

Now let us consider the shear dispersion with the direction of flow.

From Figures 31 and 32, the intercepts on the ln(σy
 ) axes, Ay
 , are given as follows:

Table 2　Intercept Ay
 and Value of H (the Second Row) Obtained from Figure 31 and 32
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From (41b),
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Still using α＝0.0003 and Df
 ＝0.01, the intercept of the function given by equation (43) on the ln(σy
 ) axis is Ay
 :
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Hence,
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Figure 32(a)　ln(σx
 ) and ln(σy
 ) versus ln(t) for 0.6≤H≤0.9 in the Simple Channel (see Figure 30(a)). Where Df
 (＝D)＝0.01, P＝1000, 100 steps
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Figure 32(b)　ln(σx
 ) and ln(σy
 ) versus ln(t) for 0.6≤H≤0.9 in the Simple Channel (see Figure 30(a)). Where Df
 (＝D)＝0.01, P＝1000, 100 steps

Using Table 2 for the intercepts Ay
 , the value of C for each value of H can be obtained (see Table 3(a) and (b)):

Table 3(a)　The Scaling Coefficient C for Equation (41b) Using the Intercept Ay
 from Plots and the Input Value of H
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Table 3(b)　The Scaling Coefficient C Using the Intercept Ay
 and Value of H from Figure 31 and 32
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A nearly constant value C is found from the Table 3(a) and (b). From this preliminary investigation, it appears that (41b) is a good hypothesised equation. The averaged value C in Table 3(b) is 0.2976 (using the realised value of H gives a better result). Hence, an fBm shear dispersion may follow equation (41b) with a constant C＝0.3. A more accurate result could be achieved by increasing the number of particles. It may even prove that C is in fact equal to 1/3 as with Brownian shear dispersion (Equation (34)).

Further theoretical and numerical research concerning fBm shear dispersion is left as future work for completion subsequent to the work presented in this thesis.

3.3 Shear Dispersion in the Coastal Bay Model Recirculation Zone

In this section, the shear dispersion occurring between the main flow and the recirculation zone in the coastal bay model is investigated briefly. This is done in the context of the results obtained above in sections 3.1 and 3.2.

Figure 33 contains the velocity vector plot of the recirculation zone showing the recirculation pattern. From the plot, there is a noticeable increase in the velocity in the y direction between x＝1200 and x＝1400. This region forms the shear zone between the bay and the main flow. Considering the entrance of the bay, it is also clear that the velocity increases not only in the y-direction, but also changes in the x-direction. The direction of the velocity vectors change in this region. The velocity vectors are in general oriented downwards and increase mainly along the x-direction from the recirculation zone to the main flow. Therefore, shear dispersion should take place orthogonal to this, i. e. along the y-direction.
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Figure 33　Vector Plot of the Recirculation Zone (Refer Back to Figure 2)

Figure 34 shows that the vertical velocity profiles V(x) decrease non-linearly along the x-direction, from x＝1000 to x＝1400, and also that the profiles near the top and bottom corner of the bay (y＝2775 and y＝2075) have the steepest gradients as expected.
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Figure 34　Velocity Profiles V(x) in the Bay Entrance Region for Each Particular y Value (y＝2075, ..., 2775), while x from 1000 to 1400

In this case, simple shear cannot be expected as the velocity does not vary linearly across the zone and the vectors change directions within the zone, most notably near the upstream and downstream corners (also see Figure 35). The results that arrived from below, must be viewed with this taken into consideration.
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Figure 35　Shear Dispersion Zone Illustration in the Bay Entrance Region

Ignoring diffusion in the y-direction, i. e. only considering the diffusion in the xdirection, a set of particle clouds can be generated using the method introduced in 2.6. The standard deviations along both the x- and y-directions σx
 (t), σy
 (t) can be calculated. Figure 36(a) and (b) (left column) records both ln(σx
 ) and ln(σy
 ) versus ln(t) once every 10 minutes up to 1 hour, after releasing a Fickian particle cloud (H＝0.5) from the upper left corner of the bay area. This was for y＝2775 and the four locations x＝1250, 1300, 1350.
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Figure 36(a)　log(σx
 ) versus log(t) Plots for Shear Dispersion Test in the Shear Zone of the Coastal Bay, with H＝0.5, P＝1000, D＝0.01, ∆t＝10, Yp＝2775, Xp＝1250, 1300, 1350

(Note: Right Column Plots are the Best Fit Line Plots for Their Left Hand Plots While First a Few Points Were Picked Up.)
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Figure 36(b)　log(σy
 ) versus log(t) Plots for Shear Dispersion Test in the Shear Zone of the Coastal Bay, with H＝0.5, P＝1000, D＝0.01, ∆t ＝10, Yp＝2775, Xp＝1250, 1300, 1350

(Note: Right Column Plots are the Best Fit Line Plots for Their Left Hand Plots While First a Few Points Were Picked Up.)





Figure 36(a) and (b) (right column) contains the first few points picked from the corresponding figure on the left, where the points are almost linear. The best fit line is shown in the plot (right hand) and the apparent Hurst exponent is obtained from its gradient.

Table 4 displays the gradients: [image: alt]
 and [image: alt]
 for x＝1250, 1300 and 1350. Hx
 decreases while Hy
 increases along x＝1250 to 1350. However, the gradients do not stay constant. There is a noticeable shear dispersion in the y-direction, with Hy
 values from 1.1728 to 1.6788. For these Fickian clouds, shear dispersion occurs in the y-direction, with average gradients (Hy
 ) around 1＋H (H＝0.5, which the simple shear case would be expected). Figure 38(a) and (b) shows visually the results from Table 4.

Table 4　Apparent Hurst Exponent Hx
 , Hy
 Calculated from the Shear Zone in the Coastal Bay Model, When H＝0.5

[image: alt]


The general trend in Table 4 and Figure 38(a) seems to indicate that an increase in Hy
 results in a decrease in Hx
 across the shear zone. Note also the high Hy
 exponent of 1.6788 generated by the non-linear shear velocity profile.

Figure 37(a) and (b) demonstrates the same conditions as Figure 36(a) and (b). The only difference is that in this case, a non-Fickian particle cloud (H＝0.8) was released from the same points (x＝1250, 1300, 1350; y＝2775). Again, ln(σy
 (t)) versus ln(t) was plotted once every 10 minutes up to 1 hour. The gradient of ln(σx
 ) versus ln(t) (＝Hx
 ) and the gradient of ln(σy
 ) versus ln(t) (＝Hy
 ), for x＝1250, 1300 and 1350 are listed in Table 5.

Table 5　Apparent Hurst Exponent Hx
 , Hy
 Calculated from the Shear Zone in the Coastal Bay Model, When H＝0.8

[image: alt]


[image: alt]


Figure 37(a)　log(σx
 ) versus log(t) Plots for Shear Dispersion Test in the Shear Zone of the Coastal Bay, with H＝0.8, P＝1000, Df
 ＝0.01, ∆t＝10, Yp＝2775, Xp＝1250, 1300, 1350

(Note: Right Column Plots are the Best Fit Line Plots for Their Left Hand Plots While First a Few Points Were Picked Up.)
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Figure 37(b)　log(σy
 ) versus log(t) Plots for Shear Dispersion Test in the Shear Zone of the Coastal Bay, with H＝0.8, P＝1000, Df
 ＝0.01, ∆t＝10, Yp＝2775, Xp＝1250, 1300, 1350

(Note: Right Column Plots are the Best Fit Line Plots for Their Left Hand Plots While First a Few Points Were Picked Up.)
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Figure 38　Apparent Hurst Exponent Calculations in the Shear Zone of the Coastal Bay (a): Hx
 and Hy
 versus x, when x＝1250, 1300, 1350, y＝2775, H＝0.5; (b): Hx
 and Hy
 versus x, when x＝1250, 1300, 1350, y＝2775, H＝0.8.

Table 5 and Figure 38(b) show that Hx
 decreases while Hy
 increases along x＝1250 to 1350. This is similar to the behaviour of the Fickian cloud shown in Figure 38(a) and Table 4. Again, shear dispersion occurs in the y-direction, with average gradients Hy
 around 1＋H (here H＝0.8).

4. Summary

An idealised open bay coastal model was introduced at the beginning of this chapter. A practical fBm particle tracking model was then developed and applied to this coastal bay model. Details were presented regarding the choice of time interval, diffusion coefficient and the handling of boundary reflections. The particle tracking algorithms for the bay diffusion model and the calculation of pollution concentration were given. Fickian (H＝0.5) and non-Fickian (H＝0.8) particles clouds with only 20 particles released from various points were used to illustrate the problem and noticeable differences between the two cases were investigated. Generally, non-Fickian particle clouds spread out more than Fickian clouds. Figure 15 and 18 show the difference between the two cases. A cloud of 1000 particles was released in the bay and the subsequent spreading of particle cloud was recorded in one hour increments until 10 hours after release. Again a comparison of Fickian and non-Fickian particle clouds was made. A noticeable increase of the rate of spreading of the cloud was observed for the super-diffusive spreading which, in physical terms, means a greater reduction in peak contaminant concentration with time. Therefore, it has important implications for the predicted toxicity levels of pollutant level in the environment, i. e. whether they are above or below a physiologically safe level. Using superdiffusive Hurst exponents can lead to an area of flow field being affected by a contaminant cloud which is not picked up by the regular Brownian motion models used in practice.

In addition to the particle cloud plots, the SURFER software package was used to produce contour plots and 3D surface plots, in order to illustrate the spatial concentrations of the pollutant clouds through time. Comparisons of the Fickian and non-Fickian particle clouds were shown in Figures 21, 24 and 25 using three representations: the particle clouds, isoconcentration contours and isoconcentration surface plots. Further reported results, from Addison et al (1997a) for a slightly different bay model, were briefly introduced for completeness of the work.

An investigation of simple shear dispersion for both Brownian motion and fractional Brownian motion was carried out. The author extended the results of other researchers on simple shear dispersion using Brownian motion, to shear dispersion with fractional Brownian motion. This was done using numerical simulations. The results were quite encouraging whereby the correct power law scaling of fBm shear dispersion was predicted (i. e.＝1＋H). In addition, a scaling coefficient, C, was found with a value of around 1/3. Hence, an equation for the shear dispersion of fractional Brownian motion may be used for all H (equation (41b)). Further theoretical and numerical research concerning fBm shear dispersion is needed to prove the hypothesis made on the scaling of fBm shear dispersion. This is left as a future work.

Finally, shear dispersion in the coastal bay recirculation zone was investigated. It was noticed that there is significant shear dispersion at the entrance of the bay; mainly in the North-South direction (y-direction). The nature of the shear dispersion in the bay was quite complex, producing superdiffusion exponents in excess of 1＋H. In addition, increases in the exponent with the flow were coupled with decreases across the flow.





Chapter 5

Simulation of Observed Coastal Dispersion

1. Introduction

During 1995 and 1996, several dye releases near the Northumbrian coast were carried out on behalf of Northumbrian Water Ltd at various locations. HR Wallingford's mid-field water quality model, PLUME-RW, was calibrated using the observations of the resulting dye patches. The model simulates turbulent dispersion using a random walk technique. This is a Fickian particle tracking model. In the model, the particles are tracked in three dimensions, which requires a 3D velocity field to be calculated from two-dimensional, depth-averaged velocities supplied by the TELEMAC-2D computer program (The program assume a logarithmic velocity profile through the depth). More details of the dye observations and subsequent simulations can be found in Wallingford (1996). PLUME-RW was calibrated and verified against the dye dispersion data, mainly to within or near pre-defined calibration targets. However, the level of agreement between the model and observations varied between sites, and some differences between model and observation are considered further in this chapter.

Data sets containing information on both the dye patch dispersion tests and HR's simulation results were made available to the author in the form of concentration contour sets. These were analysed and simulations of the dye patches were then carried out by the author using her fBm model.

This chapter outlines the analysis of the Northumbrian Water coastal dispersion data sets and supplied to the author by HR Wallingford with the permission of Northumbrian Water. The chapter begins by outlining several methods proposed by the author for calculating the concentration distributions for the Northumbrian Water data sets. Simulation of the dye patches using an fBm model is then described in the latter part of this chapter.

Due to their number, both the figures and tables in this chapter are to be found at the end of the text.

2. Northumbrian Coastal Water Data Sets

Between 18th August 1995 and 8th October 1996, between one and eight releases of dye were undertaken at each of six sites near the Northumbrian coast. Four data sets from these dye dispersion studies were selected by the author. Where several dye releases had been carried out at a particular site, HR Wallingford's model was run initially to simulate one dye release. The model results were then compared with the dye concentration observations and the model was re-run after adjusting the calibration parameters. This procedure was repeated until the calibration targets were met as closely as possible. Subsequently, verification checks were carried out by running the model to simulate each of the remaining dye releases at the site using the same parameters, and comparing the results with the observations to ensure that agreement remained satisfactory. Results are shown in Tables 1～4, and Figure 1 (observed data sets) and Figure 2 (simulated data sets) for the data sets chosen by the author. In this chapter, the four data sets are referred to B, C, D and E, they are:


B:
 Seaham LW intermediate

(Table 1, Figure 1 (upper left, observed), Figure 2 (upper left, simulated));


C:
 Horden LW neap

(Table 2, Figure 1 (upper right, observed), Figure 2 (upper right, simulated));


D:
 Cambois LW neap

(Table 3, Figure 1 (lower left, observed), Figure 2 (lower left, simulated));


E:
 Cambois HW spring

(Table 4, Figure 1 (lower right, observed), Figure 2 (lower right, simulated)).

It can be seen by comparing Figures 1 and 2 and from the concentration area information in Tables 1～4 that some features of the observed dye distributions were not reproduced by the model, partly due to the complexity of the physical conditions in the field, which a two-dimensional model is unable to reproduce.

Table 1　Summary of Dye Patch Simulations for Data Set B (HR's Simulation Results)
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Table 2　Summary of Dye Patch Simulations for Data Set C (HR's Simulation Results)
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Table 3　Summary of Dye Patch Simulations for Data Set D (HR's Simulation Results)
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Table 4　Summary of Dye Patch Simulations for Data Set E (HR's Simulation Results)
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Figure 1　Observed Dye Patches B, C, D, E—by Northumbrian Water Ltd
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Figure 2　Simulated Dye Patches B, C, D, E—by HR Wallingford

3. Three Methods for Calculating the Standard Deviation of the Dye Patch Concentrations

The data sets provided by HR Wallingford consist of the observed data for up to five concentrations: these are c＝0.01, 0.1, 1, 10, 100 micrograms/litre (i. e. µg/litre). Figure 1 shows only the concentration from c＝0.1 up to c＝100 µg/litre. As the dye patches spread out, the maximum concentration contour levels reduce from 100, to 10, or 1 µg/litre.

The data given to the author consisted of the contour data files of the processed observed and simulated data sets. The original data sets were not available to the author, hence, a method to provide spatial concentrations from the contour data sets was required.

The observed data sets supplied came in lists of 3 columns: X(k), Y(k), c(k), for each contour level where X(k) and Y(k) are the National Grid co-ordinates; c(k) is the concentration; k＝1, DL; and DL is the number of points for each contour level. Figures 3, 4, 5 and 6 display the contour points of the observed data sets B, C, D, E that were received from HR Wallingford. These are plotted using the Stanford Graphics software package. Figure 3 and 4 contain the original data sets B and C. The format of the data sets D and E was different from that of B and C. Data sets D and E were very large, about 10 times larger than data sets B and C. To make data sets D and E more manageable, a program was written to pick out one in every 5 or 10 data points. The data format was also changed to the same as that of data sets B and C. Figures 5 and 6 show the modified four data sets.

The author attempted to reproduce spatial concentration data sets from the contour data supplied using three different methods and these are described below:
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Figure 3　B-Patches Plot for the Concentration Level c, Where c＝0.01, 0.1, 1, 10, Up to 100. Notice the Different Grid Scale for Different Patch
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Figure 4　C-Patches Plot for the Concentration Level c, where c＝0.01, 0.1, 1, 10, Up to 100. Notice the Different Grid Scale for Different Patch
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Figure 5　D-Patches Plot for the Concentration Level c, Where c＝0.1, 1, 10, Up to 100. Notice that the Different Grid Scale for Each Patch
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Figure 6　E-Patches Plot for the Concentration Level c, Where c＝0.1, 1, 10, Up to 100. Notice that the Different Grid Scale for Each Patch
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Figure 7(a)　The Comparison for Hx
 , Hy
 , Hr
 and the Diffusion Coefficient D(＝Df
 ) Using the Three Methods for B-Patches

[image: alt]


Figure 7(b)　The Comparison for Hu
 , Hv
 and the Diffusion Coefficient D(＝Df
 ) Using the Three Methods for B-Patches
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Figure 8(a)　The Comparison for Hx
 , Hy
 , Hr
 and the Diffusion Coefficient D(＝Df
 ) Using the Three Methods for C-Patches
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Figure 8(b)　The comparison for Hu
 , Hv
 and the Diffusion Coefficient D(＝Df
 ). Using the Three Methods for C-Patches
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Figure 9(a)　The Comparison for Hx
 , Hy
 , Hr
 and the Diffusion Coefficient D(＝Df
 ) Using the Three Methods for D-Patches
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Figure 9(b)　The Comparison for Hu
 , Hv
 and the Diffusion Coefficient D(＝Df
 ). Using the Three Methods for D-Patches
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Figure 10(a)　The Comparison for Hx
 , Hy
 , Hr
 and the Diffusion Coefficient D(＝Df
 ) Using the Three Methods for E-Patches
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Figure 10(b)　The Comparison for Hu
 , Hv
 and the Diffusion Coefficient D(＝Df
 ) Using the Three Methods for E-Patches

3.1 The SQ-Method

A grid is first placed on the observed concentration data sets as shown in Figure 11. The distance from each grid centre to the nearest observed data point is calculated. The concentration at a grid centre is then set equal to the concentration at the closest point in the observed data file. In this way a concentration field is built up for each patch. The centroid of each dispersing patch [image: alt]
 is calculated using the following formulae:
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where A(i, j) is the area of grid box (i, j), c(i, j) is the concentration in this grid and XC(i, j), YC(i, j) are the grid centre points in the x-and y-directions.
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Figure 11　The SQ-Method

The standard deviations of the concentrations for each dispersing plume along four directions are calculated: σx
 (x-direction), σy
 (y-direction), σu
 (u-velocity direction: which is the direction of the mean advection of the dye patch), σv
 (v-velocity direction: which is perpendicular to u-direction). In addition, σr
 , the radial, r, component standard deviation is calculated. These standard deviations are found from:
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where
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where XC(i, j), YC(i, j) are the grid centre points in the x-, y-directions and UC(i, j), VC(i, j) are these grid centre points along the velocity u-, v-directions.

The apparent Hurst exponent values: Hx
 , Hy
 , Hr
 , Hu
 , Hv
 for the spreading patch are calculated by plotting respectively, log(σx
 ), log(σy
 ), log(σr
 ), log(σu
 ) and log(σv
 ) against log(t). The slopes of the plots give the apparent Hurst exponent values. The top plots in Figures 7 to 10 contain log(σ) versus log(t) for the SQ-Method.

3.2 The R-Method

In this method, a radial grid is used (see Figure 12(a)). To obtain a concentration in each grid, the two nearest known data points in either side of the radial grid line GC are selected (denoted A(k), B(k) in Figure 12(b)). The radius of the intersection point is obtained by averaging the radius of the two points A(k) and B(k) (from O to C(k) in Figure 12(b)). The concentration of the intersection point C(k) equals the concentration of the contour level on which A(k) and B(k) lie. Here k＝1, NK; where NK is the number of the concentration levels given for that dye patch (see Figure 12(c)). Using the least squares method
【1】

 , a logarithmic concentration function along each radial line GC(j) is obtained. Using these concentration functions, the concentration at each grid centre (i, j) is obtained from the value of the logarithmic concentration function at the grid centre (see Figure 12(d)).
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Figure 12(a)　The R-Method
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Figure 12(b)　Find the Radius RR(j, k)＝OC(k) in Each Radial Line GC(j), j＝1, 360－DG. ∆j＝DG

[image: alt]


Figure 12(c)　The Positions of the Interception Points C(k) (k＝1, NK) in Each Radial Line GC(j)
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Figure 12(d)　The Concentration Function log(c) versus Radius RR. Where RC(i, j) and RC(i＋1, j) are Radius of Grid Centres (i, j) and (i＋1, j). Here Using the R-Method or the SR-Method

3.3 The SR-Method

This method combines both the SQ-method and the R-method. The principle of this method is to apply the R-method concentration function generation algorithm to a rectangular grid which is generated in a similar way as that for the SQ-Method (see Figures 13 and 12(b)～(d)). Three programs are given in Appendix 1 which calculate grid concentrations and the standard deviations in the x, y, u, v directions and for the r component (srb1. for—for the radial line concentration functions generation; srbb1. for—for the grid concentrations calculation and the standard deviations in the x, y directions and r component calculation; sruvb1. for—for the calculation of the standard deviations in the velocity u and v directions). The programs all use patch B1 as an illustration.

3.4 Estimation of the Direction of the Mean Advective Velocity Vector for Each Patch

As the observed dye patch spreads out it is advected in the direction of the mean advective velocity vector. Each set of observed dye patch data provided by HR Wallingford contains at least five sequential patches. The centroid of each patch can be found as shown above. The approximate direction of the mean advective component of the spreading patches can be found by connecting two adjacent patch centres. The author chose the average angle between the previous patch and the next patch to give the direction of the mean advective velocity component. This is illustrated in Figure 14. For the first and last patches only one direction is available and this was used. Referring to Figure 14, the velocity direction of U1 from patch 1 to patch 2 is the direction from O1 to O2. The velocity V1 is perpendicular to U1. The direction from patch 2 to 3 is different from that between the first two patches. (O2) D is in the same direction as U1. (O2) E was chosen as the direction of the instantaneous velocity direction of patch 2, and is also denoted as U2. Hence,
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Figure 13　The SR-Method
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Figure 14　Decision for the Velocity u and v Directions, from the Observed Dye Patches

where (O2) C is in the horizontal direction.

The same method for determining the velocity directions for the subsequence patches is employed until the last patch is reached.

4. Comparison of the Three Methods

4.1 The Reason for Introducing the SR-Method

The SQ-Method finds the closest contour point in the observed data files and attaches this value to each grid centre. It is the simplest way of finding spatial concentrations among the three methods considered. It obviously produces a relatively rough estimate of the concentration field, as the concentration between two adjacent contour levels is either set equal to the inner concentration contour value or the outer concentration contour value. There is also no variation in concentration in those grid boxes inside the whole grid boundary but outside the smallest concentration level. In Figure 15, the concentration in grid boxes a to f are all set equal to the lowest concentration (0.01) by the method. In addition, the concentrations all equal zero for those outside of the boundary ABCD. The concentrations inside the highest concentration level all equal the concentration at that level (the grey area in Figure 15). It is known, however, that the concentration should follow a smooth decrease from the high values to the lower values. For this reason, the R-Method was introduced, where a logarithmic concentration function is found along radial lines from the centre of the patch. The R-Method uses a radial grid.
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Figure 15　Square Grid Used in the SQ-Method

In the R-method, a logarithmic concentration function is found along each radial line. Details of the method were introduced in section 3.2. The method of calculating the concentration in each grid using the R-Method appears to be much better than the SQ-Method. After finding the concentration function for each ray, the concentration at any point on the ray can be approximated by the function. Hence, there is no limit to the edge of the dye patch and smoothly varying concentrations are produced.

However, poor results were obtained when the concentrations in each grid were plotted and the apparent Hurst exponent values in the four directions (x, y, u, v directions) and the radial r component were calculated. The method appeared to produce similar Hurst values in both x and y (or u and v) directions, although the data sets, in general, were obviously not axisymmetric. The author found this was due to the radial grid used. To overcome the weakness of the radial grid in the R-Method, the SR-method was developed. In the SR-Method, a rectangular grid or square grid is considered instead of a radial grid. The ray centre is chosen by only considering the highest concentration contour level (note: this is different from the SQ-Method where a centroid was calculated for the whole dye patch). This is for the convenience of generating the concentration function for each ray. Instead of considering a set of rays spaced at equal angles (i. e. the R-Method), each ray in the SR-Method connects between the ray centre O and each grid centre G(i, j). See Figure 13. Hence, each grid centre has its own unique radial line. This is another difference between the SR-Method and the R-Method. The simulations appearing later in this chapter are all based on data obtained using the SR-Method, as it was found to be the most reliable method among the three methods considered.

4.2 Comparison of the Results Using the Three Methods

Figures 7～10 plot log(ση
 ) (η＝x, y, r, u, v) against log(t) obtained from the three methods for the four data sets B, C, D, E.

Table 5(a), (b), (c), (d) provides a the comparison of the three methods for the data sets B, C, D, E in producing Hx
 , Hy
 , Hr
 , Hu
 , and Hv
 . It is noticeable that the results of the SQ-Method and the SR-Method are quite close to each other, while there is an obvious difference from the R-Method. The R-method always produces similar Hx
 , Hy
 or Hu
 , Hv
 values as described above.

Table 5(a)　Comparison of the Three Methods of Hη
 Values for B-Patches, where η＝x, y, r, u, v
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Table 5(b)　Comparison of the Three Methods of Hη
 Values for C-Patches, where η＝x, y, r, u, v
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Table 5(c)　Comparison of the Three Methods of Hη
 Values for D-Patches, where η＝x, y, r, u, v

[image: alt]


Table 5(d)　Comparison of the Three Methods of Hη
 Values for E-Patches, where η＝x, y, r, u, v
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5. Accuracy of the Results

The processing which had to be applied to the contour data to derive gridded concentrations was felt to be a principal cause of the differences between the fBm model results and observations, particularly for data sets D and E. Some other factors affecting these differences are considered further below.

5.1 Sensitivity of the Centre

From Figures 3～6 and Figures 7～10, it is noticeable that data set B is the most consistent data set among these four data sets. It is not easy to choose a centre for patches C5 and C6, as the patch is stretched markedly in the u-velocity direction and the calculated ray centre is outside of the highest concentration level. Hence, the ray centres were set for C5 and C6 by eye. Data sets D and E have several irregular shapes for the highest contour level. The multiple contours at the highest concentration level makes the location of the ray centre very difficult to decide (see Patch D3, E2, E6, etc. in Figures 5 and 6). One way is to ignore the highest concentration level and reduce the highest concentration level to the next level (for example, reduce the highest concentration level from c＝100 µg/litre to c＝10 µg/litre). Alternatively, if there is a dominant area enclosed by the highest concentration contour, then the others are ignored and the centre of this largest area is used as the ray centre of the patch. For patches D3, E2, E6, the concentration level c＝100 µg/litre was ignored. For Patch D5, E3, E4, the smaller patches at concentration level c＝10 µg/litre were ignored. Figure 16 shows an example where two contours at the highest level appear. The modified data set (right hand) figure shows the removal of one of the highest contour levels: the one containing the smallest area.
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Figure 16　Example of a Modification to the Original Data Set (D5)

It was also noticed that the results are quite sensitive to changes in the location of the centre used. Patch C6 is used to illustrate the sensitive nature of the choice of patch centre. Figure 17 shows several ray centres (denoted*
 in the figure) picked at slightly different locations within patch C6. Table 6 shows that slightly changing the centre leads to a significant change in the standard deviations found for the dye patch concentrations. If the ray centre is outwith the highest concentration level, it makes a significant difference to the calculated standard deviations. Hence, in this case, the author chose a reasonable ray centre (denoted "1" in the figure) which is inside the highest concentration level and also near the calculated ray centre.
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Figure 17　Four Different Ray Centres (Marked in order of 1, 2, 3, 4, as the same order in Table 6) in Patch C6. The Symbol * Denotes the Actual Ray Centre of the Patch. Note, This is Outside the Highest Concentration Contour Level

Table 6　Different Standard Deviations Caused by Changing the Ray Centre (XCT, YCT)
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5.2 The Concentration Function Calculation

Concentrations along each ray are determined from the intersection points between concentration contour levels and the ray (see Figure 12(c) and (d)). The least squares method is then used to generate a concentration function. If there are only three or less concentration contour levels, the best fit line becomes a poor approximation. C7 is an example of a patch with only two concentration levels. The concentration functions based on the best fit lines are very poor for this patch. Patches of this kind are ignored in later simulations.

Within the highest concentration contour level, the maximum concentration was restricted to the peak concentrations provided in Tables 1～4 by HR Wallingford. The author does not actually know the nature of concentration distribution inside the maximum contour levels although the peak levels are known from Tables 1～4. Figure 18 shows the concentration fields generated by the SR-Method for the B data set. The 3D surface plots (right column) show the flat tops of the synthesised concentration fields due to the cut-off values and the assumed logarithmic profiles. The limitations in the concentration fields generated from the observed data sets are obvious from the plots. However, the results obtained are sufficient for use by the author as input to the fBm models as described in the following sections.

6. Simulation of the Observed Dye Patches Using an FBM Based Particle Tracking Model

The apparent Hurst exponent values Hη
 found for the observed dye patches and given in Table 5 are in the range 0.302 2～1.232 6. Here η can be co-ordinates x, y; velocity directions: u, v; or radius r. Some values of Hη
 are greater than unity, and these cannot be simulated using the FBMINC model.

Sanderson et al (1990) found that the trajectory of pairs of satellite tracked buoys on the ocean surface had a fractal dimension of about 1.34±0.12 over scales from 10m to 4000m. Later results by Sanderson and Booth (1991) extended these dimension estimates to around 1.36 for a range of scales from 8km to 150km. They noticed that there is a general trend for the relative speed to increase as distance of separation raised to a power of 0.33. The dependence of the relative velocity upon separation scale results in the variance of the patches growing faster than t2
 (i. e. Hη
 ＞1). They also suggested that a modified fractional Brownian motion model can be used for modelling the patch spreading; this model they called accelerated fBm. Accelerated fBm is generated in the same way as fBm, the only difference is that the time needs to be rescaled. The rescaling of time produces trajectories on the x, y plane that still have scaling parameter H (herein still set at H＝0.8). However, the relative speed along the trajectory is no longer stationary, rather it is accelerated. They found that the mean square particle separation [image: alt]
 will grow as
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Figure 18(a)　Concentration Contour Plot and 3D Surface Plot for the First Three B-Patches Using the SR-Method (Compare with Figure 1, Tope Left Plot)
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Figure 18(b)　Concentration Contour Plot and 3D Surface Plot for the Last Two B-Patches Using the SR-Method (Compare with Figure 1, Tope Left Plot)

where VH
 is a constant and B＞0.

An investigation of accelerated fBm for apparent Hurst exponents Hη
 ＞1 was carried out by the author and a computer model produced—the AFBM model—based on the rescaling of the model time, as shown in the next section. Using this model, particle clouds can be simulated with apparent Hurst exponents greater than unity.

6.1 The Accelerated Fractional Brownian Motion (AFBM) Model

If the relative displacement between a pair of drifters is denoted by Xp
 (t) at time t, and the Hurst exponent parameter is H, then after rescaling the time t＇, the relative speed along trajectory will not be stationary, rather it will accelerate. According to Sanderson and Booth (1991), the mean square particle separation [image: alt]
 will grow as t2H＋B
 , e. g.
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where B≥0. If B＝0, it becomes standard fractional Brownian motion.

Previous methods of FBM generation can then be used to obtain accelerated fractional Brownian motion by rescaling time.

Let the rescaled time required in the FBM computer model be t＇＝tγ
 , where γ＞1 for accelerated FBM. According to the original definition of FBM,
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Since
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from (28b) and (30),
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Then
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Hence,
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Thus, within the AFBM computer model, the number of steps (NSTEP), memory (M) and the time step ∆t are all rescaled according to equation (31).

Let the slope of log(ση
 ) versus log t equal Hη
 . Hence, 2H＋B＝2Hη
 ,

So that
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For the AFBM model, the diffusion of a particle cloud will scale with time as
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Taking logarithms of each side:

log(ση
 )＝Hη
 log(t)＋Hη
 log(2Df
 )

Hence, the gradient of a log(σc
 )－log(t) plot is Hη
 and the intercept is

[image: alt]


Hence, Df
 is found from
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The Df
 values in Figures 7～10 are all given by formula (35).

For the AFBM model, the diffusion coefficient Df
 needs to be modified to a new value [image: alt]
 due to the rescaling of time.

The relationship between Df
 and [image: alt]
 is given by
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Because
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Hence
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Using the above, dye patches can now be simulated using the AFBM model. There is now no range restriction for the Hη
 value.

Tables 7 to 10 list input data for the dye patches. The SR-Method was used in calculating the concentration fields and standard deviations of the patches in order to calculate the Hη
 values. For Hη
 ＜1.0, the FBMINC model was used; for Hη
 ≥1.0, the AFBM model was used.

Table 7(a)　Input Table (a) for Data Set B's Simulation
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Table 7(b)　Input Table (b) for Data Set B's Simulation
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Table 8(a)　Input Table (a) for Data Set C's Simulation
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Table 8(b)　Input Table (b) for Data Set C's Simulation (for the First 6 Patches)
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Note: θ is the axes rotation angle from x-direction to u-direction (i. e. θ＝Angle AFA in Figure 14 in radians). θ is the input angle in program rotl. for (see Appendix A).

Table 9(a)　Input Table (a) for Data Set D's Simulation
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Table 9 (b)　Input Table (b) for Data Set D's Simulation
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Table 10(a)　Input Table (a) for Data Set E's Simulation
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Table 10(b)　Input Table (b) for Data Set E's Simulation
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Note: θ is the axes rotation angle from x-direction to u-direction (i. e. θ＝Angle AFA in Figure 14 in radians). θ is the input angle in program rotl. for (see Appendix A).





The following simulations focus only on the u and v velocity directions.

6.2 Simulation Using the FBMINC and AFBM Models

For Hu
 ＜1.0 or Hv
 ＜1.0, the FBMINC model is used for simulation in both the u and v velocity directions. The algorithm is similar to that described in section 2.6.1 (chapter 4).

For Hu
 ≥1.0 or Hv
 ≥1.0, the AFBM model was used in the simulation. The algorithm for the simulation in either u direction or v direction is similar as that of FBMINC's. However, the time needs to be rescaled and some parameters (NSTEP, M, Df
 and ∆t) also need to be rescaled accordingly (see section 6.1). The FTN77 program for the AFBM model is afbm. for and is listed in Appendix 1.

Figures 19 and 20 contain plots of the simulation results for the particle clouds of the four data sets B, C, D, E. Due to the limitation in the computer time the number of particles was 400 in each run. Ten different random seeds were set to produce ten different outputs for the same input data. By adding the ten output sets together, 4000 particle clouds were produced (Only 2000 particles are shown in the plots, because of the memory limitation in the software plotting package). However, 4000 particles were used in later concentration contour area calculations shown in Tables 15(a)～(d)) and Figure 21.
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Figure 19　Simulation Results for a Cloud of 2000 Particles Spreading after Certain Time Interval for Data Set B and C
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Figure 20　Simulation Results for a Cloud of 2000 Particles Spreading after Certain Time Interval for Data Set D and E
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Figure 21　Simulation Results for the Four Data Sets (B, C, D, E) Concentration Contoure Plots (P＝4000)—by the Author

Table 11(a)　Grid Generation for Each B-Patches
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Table 11(b)　Grid Generation for Each C-Patches
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Table 11(c)　Grid Generation for Each D-Patches
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Table 11(d)　Grid Generation for Each E-Patches
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Table 11(e)　Grid Generation for: B-Patches, C-Patches, D-Patches and E-Patches
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Table 12(a)　Mass/m Table 1 for Simulation
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Table 12(b)　Mass/m Table 2 for Simulation
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c(i, j) unit: µg/litre. 1 m3
 ＝1000 litre, 1 µg/litre＝106
 kg/m3
 .

A(i, j)＝dx×dy (m2
 ).

Table 13　Standard Deviations in x, y, u, v Directions and r Component Calculated Using the SR-Method
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θ is the angle from x-direction to the velocity u-direction in radians.

Table 14　Comparison of the Simulation Results with the Observed Data Sets for Standard Deviations in u and v Direction
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Table 15(a)　Comparison for the Area Calculation with Each Contour Level for Data Set B (here Ratio＝Observed/Simulated), P＝4000.
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Table 15(b)　Comparison for the Area Calculation with Each Contour Level for Data Set C (here Ratio＝Observed/Simulated), P＝4000.
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Table 15(c)　Comparison for the Area Calculation with Each Contour Level for Data Set D (here Ratio＝Observed/Simulated), P＝4000.
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Table 15(d)　Comparison for the Area Calculation with Each Contour Level for Data Set E (here Ratio＝Observed/Simulated), P＝4000.
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Notice that there are seven patches in the original observed data for dye patch C (see Figure 1). However, only the first six patches are simulated by the author, because the data supplied for patch C7 was inadequate for the author's simulation purpose. The particle plots are produced using the Stanford Graphics software package.

6.3 Concentration Calculations

The method of concentration calculation is similar to Chapter 4, section 2.8.1, except here a mass per metre depth was used (see Table 12) from
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Notice that in the observed data provided by HR Wallingford, the concentration unit was µg/litre (see Tables 1～4). Using 1 µg/litre＝10-6
 kg/m3
 , (37b) is obtained. In order to produce contour plots in µg/litre, the value in Table 12(a) were recalculated according to equation (37b) and they were used as input data value to the concentration calculations (see Table 12(b)).

The Mass/m calculated in Table 12 is inconsistent through time due to both the contouring applied to the original data sets and the lack of concentration data throughout the depth. However, it is the only source that can be used to calculate Mass/m for these dye patches. Because each patch has different Mass/m and a different patch size, different grid sizes were set to calculate concentration for each patch (see Table 11). The FTN77 program concent. for (Appendix 1) performs the concentration calculation.

6.4 Contour Plots

Figure 21 contains the contour plots for the author's simulation of the four dye patches (B, C, D, E) using the FBMINC and AFBM models. Because some of the simulation results have tendency to over predict the spreading at low concentrations, some patches merge into one another, due to their close proximity. Hence, in Figure 21, they are separated artificially to aid in their viewing.

Comparing between Figure 21 (the author's simulation dye patches) and Figure 1 (the observed dye patches), some obvious differences can be observed. Figure 1 contains the original dye patches with irregular natural shapes due to wind, tides and other factors. Figure 21 contains the author's simulation results which only consider diffusion in the u and v directions. Hence the shapes of all patches are almost elliptical. The author compared her simulation results with observed data sets in two ways: One was to compare their standard deviations (see Table 14) and another was to compare the isoconcentration contour areas (which is in the same format as the comparisons carried out by HR Wallingford between their simulations and the original data sets). As mentioned earlier in Chapter 2 (section 4.6), Okubo (1971) pointed out that the standard deviation (or variance) is one of the most stable parameters to characterise diffusion. Okubo also stated that the concentration in a patch of dye may not be a good measure of diffusion due to the sensitivity of the peak concentration to the decay of the dye, hence causing greater uncertainty. Therefore, Table 14 gives a more effective comparison of the results than Table 15.

Table 13 contains the standard deviations in the x, y, u, v directions and radial r component for the four data sets B, C, D, E using the SR-Method. Table 14 compares the standard deviations in the u and v velocity directions between the observed data sets (calculated using the SR-Method) and the corresponding simulated particle clouds. The ratios for standard deviation between the simulated and observed results, [image: alt]
 are calculated in Table 14. The ratios of [image: alt]
 and [image: alt]
 fell in the range 0.4～1.85 with most reasonably close to unity. This is a good result considering that a single H value was used over the whole time-scale of the diffusing patches.

The concentration area inside each contour level was calculated (Table 15) in order to compare with the ratios obtained from the original HR Wallingford model (see Table 1, columns 4 to 7). The comparison between the original observed data, HR Wallingford's simulated data and the author's simulated data are all listed in this table. The ratio between the observed data and the simulated data is shown in the brackets. It is noticeable that some of the results of the simulation using the author's fBm based models are closer to the observed data, i. e. the ratio is closer to unity, especially for data set B (where HR's results are relatively poor). However, some of author's results are not as good as HR's (especially for data set D and E). Some of the author's simulation results tend to over predict lower concentration levels while some of the simulation results from HR Wallingford tend to under predict the same concentration levels. It is difficult to give a general conclusion for which is better and which is poorer. Within a dye patch, an over predicted lower concentration level will cause its higher concentration level to be under predicted, due to the nature of the decay from a dye patch, i. e. more rapid spreading gives both a larger area of low concentration and a smaller area of high concentration. Hence, the ratios of the area are not very useful in providing an obvious comparison of the spreading between model and reality.

Another reason for the difficulty in comparing the author's results with HR Wallinford's using Table 15 is that the simulation methods used by HR Wallingford and the author's are different. The author's simulations are restricted to 2D surface concentrations, as they are based on the data source provided by Northumbrian Water Ltd. HR Wallingford's simulations use a full 3D model to calculate depth-averaged concentrations. Furthermore, unlike HR's results, which are based on a 2m surface layer, the author's contours are based on concentration per unit depth. Therefore, the difference between HR's simulation and the author's simulation cannot be avoided. However, Table 14 and 15 do show a reasonable close results between the observed data and the author's simulations.

7. Summary

This chapter detailed an attempt to model the behaviour of dye patches in the coastal zone. These were undertaken for Northumbrian Water Ltd and supplied to the author by HR Wallingford.

Three methods for producing cloud concentration fields from the contour data available to the author were developed. The SR-Method proved the best method for the purpose. This method applies a series of concentration functions to a rectangular grid and the concentration associated with each grid box can be calculated. From this concentration field, the standard deviation of concentration for each patch is calculated and using a log(σ)-log(t) plot, the apparent Hurst exponent, Hη
 , is obtained. The author found that the apparent Hurst exponents realised for some real data sets were not restricted to being within the range 0～1. An improved accelerated fractional Brownian motion model, AFBM, was introduced in section 6.1, based on the work of Sanderson and Booth (1991). This can produce superdiffusive behaviour for Hη
 ≥1.0.

Tables 7～10 list all the input data derived using the SR-Method and used in the simulations. Depending on the Hη
 value required, either the AFBM model or the FBMINC model was used in the simulation. Simulations focusing only on the u and v velocity directions were carried out in section 6.2, while the directions of u and v velocity for each patch were determined in section 3.4. The simulated particle clouds were plotted in Figures 19 and 20 and associated concentration contour plots of the four data sets B, C, D, E were plotted in Figure 21.

A comparison between the observed standard deviations and the author's simulations proved to be quite close. The ratios of [image: alt]
 and [image: alt]
 fell in the range 0.4～1.68. This is a good result considering that a single H value was used over the whole time-scale of diffusion patches.

To compare between HR Wallingford PLUME-RW results and those of the author, the area inside each concentration contour was calculated, and the ratios between the observed data and simulated data were then calculated and listed in Table 15 for the four data sets B, C, D and E. It was noticed that the author's simulation results tended to over predict the observed dye patch areas and HR Wallingford's model tended to under predict the observed areas. However, it is encouraging that the author's simulation results were, in general, close to the observed data.





Chapter 6

Conclusions, Discussion and Recommendations

1. Introduction

An attempt has been made in this thesis to develop, implement and test a novel, non-Fickian particle-tracking diffusion model. The model allows for a more flexible approach to the simulation of non-Fickian diffusion in the coastal environment. This was the original aim of this thesis stated in Chapter 1.

2. Achievement of Objectives

The following objectives (given in Chapter 1) were accomplished during the programme of research.

(1) A Literature Review of Diffusion and Dispersion in Fluids

Background literature is reviewed in Chapter 2, which covers the topic of Fickian diffusion, turbulent diffusion and dispersion. The turbulent diffusion and dispersion in open channel and ocean surface flows (including coastal region) was studied and the non-Fickian nature of dispersion occurring in large water bodies (such as the ocean surface) was covered towards the end of Chapter 2.

(2) A Literature Review of Fractal Geometry and Fractal Properties of Fractional Brownian Motion

Fractal geometry was briefly introduced in Chapter 3 and fractional Brownian motion (fBm) was interpreted as a random fractal function. The fractal properties of both fBm traces and trajectories were elucidated in this chapter. The most common and useful methods for determining the value of the Hurst exponent, H, from real data were also introduced at the end of Chapter 3.

(3) The Development of a Traditional Particle Tracking Model

Several early traditional particle tracking models were outlined in the literature review of Chapter 2 and Brownian motion was outlined in Chapter 3. A traditional (Fickian) particle-tracking computer model was developed at the beginning of Chapter 4 where a Brownian motion model was employed for the generation of the diffusing cloud.

(4) The Production of a Method for Synthesising Fractional Brownian Motion

Two computer models, FBM and subsequently FBMINC, were developed for synthesising fractional Brownian motion (Chapter 3). The FBMINC model was shown to produce a more accurate approximation to fBm. The relationships between the number of steps, NSTEP, number of particles, P, and memory, M, within the model were explored. Some properties of the fBm generated by the FBMINC model in one and two dimensions were investigated. Some suggestions for reducing CPU time were also made. The FBMINC model was used in subsequent chapters of the thesis to generate particle diffusion clouds within a non-Fickian particle-tracking diffusion model.

(5) The Integration of fBm into the Particle Tracking Model

This objective was met in Chapter 4. It was achieved by the combination of models for numerical advection and fBm diffusion within a particle tracking model.

A new fBm particle tracking model has been developed for the generation of non-Fickian diffusion by employing a new FBMINC model to predict particle cloud dispersion in a coastal bay. The technique has been illustrated in numerical examples of surface diffusion in the coastal zone, where the Hurst exponent H becomes an important factor in determining future locations and concentrations of the contaminant cloud. Boundary reflections and the selection of both an appropriate time step and diffusion coefficient were considered in detail.

(6) The Simulation of Pollutant Dispersion within a Coastal Bay Test Model

The surface velocity vector field from an idealised open coastal bay model was provided by Glasgow University. Fickian (H＝0.5) and non-Fickian (H＝0.8) particles were tracked within the coastal bay velocity field over time. This was done for different initial locations within the bay. Particle clouds were also released in the bay model and the last steps in every hour were recorded (up to 10 hours, see Figure 19～25). The simulation process was undertaken effectively.

(7) The Comparison of Fickian and non-Fickian Diffusion in the Coastal Bay Model

A comparison of Fickian and non-Fickian diffusion in the coastal bay model was carried out in Chapter 4 (see Figures 18, 21, 24, 27 and 28). It was noticeable that, as expected, non-Fickian particle clouds spread out more than Fickian particle clouds. In physical terms, the noticeable increase of the spreading rate of the cloud for the superdiffusive case resulted in a significant reduction of the peaks in the predicted pollution concentration levels. In fact, increasing the Hurst exponent can lead to an area of the flow field being affected by a contaminant cloud which is not picked up by the regular Brownian motion model used in practice. This has implications for the modelling of actual pollutant spills in the coastal environment. The use of a non-Fickian superdiffusive model (as opposed to a traditional Fickian model) results in a trade off between the area affected by the contaminant and the peak concentration levels of the contaminant.

(8) The Investigation of fBm Shear Dispersion

There was noticeable shear dispersion in the shear zone of the coastal bay model, i. e. between the main flow and bay recirculation zone. An investigation of simple shear dispersion for both Brownian motion and fractional Brownian motion was carried out (see Chapter 4 section 3). An attempt was made to produce a theoretical description of fBm spreading in simple shear flow. The predictions of the standard deviation after simple shear effects for both Fickian and non-Fickian diffusion were given in the latter part of Chapter 4.

(9) The Analysis of Data Sets from Coastal Dispersion Field Studies

Work has been carried out to simulate observed data sets provided by Northumbrian Water Ltd using the fBm model developed by the author. Three methods (the SQ-Method, R-Method and SR-Method) were proposed for calculating the cloud concentration field from the data sets provided. The SR-Method proved the best method among these three (Chapter 5 Section 3.3 and 4). The apparent Hurst exponent in directions x and y; velocity directions u and v; and the radial component, r, was calculated for each patch using these three methods (Chapter 5 Figure 8(a)～11(b)). Concentration contour plots and 3D surface plots for the synthesised concentration fields using the SR-Method were obtained.

(10) The Development of Numerical Techniques to Model the non-Fickian Spreading Observed in the Coastal Data

Plots were made of log(σ) versus log(t) for the synthesised data fields obtained from the analysis of the Northumbrian Water Coastal Dispersion Data. From these plots, values of apparent Hurst exponent and diffusion coefficient for the spreading dye patches were obtained. It was found that the apparent Hurst exponent, Hη
 , can be greater than unity. Hence, the FBMINC model could not be used directly in the simulation of the spreading. An accelerated fractional Brownian motion model AFBM based on Sanderson and Booth's (1991) suggestion was developed and used to model supperdiffusive behaviour with Hη
 ＞1.

The simulation method for the real data sets using either the AFBM or FBMINC model was carried out in Chapter 5 section 6.2. Simulated particle clouds and concentration plots were generated. It was found that the simulated patches (by the author) spread out slightly more than the original observed dye patches whereas a general under-prediction of the spreading was found in HR Wallingford's results (Chapter 5 Table 15). It is encouraging that the author's results are reasonable close to the observed data.

Hence, each of the above objectives were met in the thesis.

3. Discussion

In this thesis, new fBm models and fBm particle tracking diffusion models were introduced and developed in detail. Table 1 lists the main advantages and disadvantages of the fBm particle tracking models developed by the author, when compared to traditional models.

Table 1　The Advantages and Disadvantages of fBm Particle Tracking Models
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A short discussion of the advantages and disadvantages of those models are given below.

The most noticeable advantage of fBm particle tracking models is its flexibility. The Hurst exponent H can control the scale of diffusion clouds exponentially, while traditional particle tracking methods do not have this flexibility. It has been found by many researchers that fBm particle trajectories are good models for those found in reality (see Sanderson and Booth, 1991). A non-Fickian diffusion model can, therefore, produce a more natural diffusion cloud. This was the motivation for developing an fBm particle tracking model. In fact, the fBm particle tracking models do produce more realistic particle clouds compared to traditional particle tracking models. This can be seen in Chapter 4 where the Fickian and non-Fickian particle clouds were compared in the coastal bay models.

Important physical implications of the fBm particle tracking model were found in Chapter 4 after a comparison of both the Fickian and non-Fickian particle tracking models. It was noticed that a supper-diffusive non-Fickian particle cloud (as compared to a comparable Fickian cloud) can result in a reduced peak toxicity level while the affected area will increase accordingly. Therefore it has important implications for the predicted toxicity levels to a physiologically safe level in the environment.

It was shown that a long term Fickian behaviour within an fBm model could be generated by cutting off the memory of the particles used in the model. This technique may be useful in practice especially in rivers or coastal regions when a mixing time is known or in the subsurface when a decorrelation time is known.

There are, however, some disadvantages with the fBm particle tracking models. The memory associated with fBm generation within the FBMINC causes large CPU run times. Although the use of a simpler distribution (Delta, Constant distribution) instead of a Gaussian distribution was suggested, it did not provide a significant improvement in the CPU time required. A more practical way for reducing CPU time is by setting the memory to a relatively small value. It was found that a good approximation to fBm may be obtained for memories as low as only three times the number of steps required.

Another solution for reducing CPU time is using a spectral method for fBm generation (see Reed et al (1995), Yin (1996) and Gripenberg and Norros (1996)). Other researchers have tried various alternative methods for generating fBm (see Mandelbrot (1971), Rambaldi (1994)). However, compared to other fBm generation methods, the FBMINC model is one of the most accurate in synthesising fractional Brownian motion. More importantly, it allows the modeller to stop and later restart the generation of fBm trajectories when required (provided a long enough memory has been used).

The fBm particle tracking method is a new method and further development of the method needs to be carried out in the future in order that the fBm particle tracking method be developed to a point where it becomes a useful tool for the modelling of dispersion in fluids.

4. Recommendations for Future Work

During the course of the investigation many interesting areas of associated research came to light. However, due to the time limitation imposed on the research project, many of these areas could not be adequately covered by the author. The following is a list of topics that the author suggests could lead to further developments of the fBm diffusion model.

(1) Extension of the Techniques to Three-Dimensional non-Fickian Diffusion Models

This could be attempted by incorporating fBm subroutines within HR Wallingford's water quality model. A vertical velocity profile can be added to the fBm particle tracking model according to the formula provided by Wallingford (1996). The vertical diffusivity, also provided, could be investigated.

(2) The Accelerated Fractional Brownian Motion Model

This work has been initiated by the author and detailed in Chapter 5. The accelerated fBm model developed allows for superdiffusive spreading of the contaminant cloud in time with apparent Hurst exponent greater than unity.However, the spatial particle trajectories remain at sub-unity values. This effect occurs in reality (Sanderson and Booth (1991)). The full implications of this are not yet clear and requires further theoretical work.

(3) Extension of the Present Model to Synthesise non-Fickian Diffusion Processes in the Subsurface

This would extend the fBm model to take account of the non-stationary (fractal) spatial variability of the hydraulic conductivities which is often found in subsurface porous material (see LaBolle et al (1996), Kitanidis (1994)). Some initial research has been started in this area by the author and her colleagues (see Addison et al (1998a)).

(4) Modelling the Dispersion of Heavy Particles

The model could be extended to cope with the dispersion of heavy particulate matter within turbulent fluids by introducing additional criteria to govern the marked particles in the model. This could be useful, for example, in the modelling of the transport of the particulate matter in vehicle exhaust gases.

(5) Detailed Analysis of fBm Shear Dispersion

An initial study of fBm shear dispersion has been carried out by the author and detailed in Chapter 4. An investigation of simple shear dispersion for fractional Brownian motion was attempted numerically and compared to some results of Brownian motion shear dispersion given by other researchers (see Foister and Van De Ven (1980); Compte (1997)). The power law scaling of fBm shear dispersion was correctly identified. In addition, a scaling coefficient was found numerically. Further theoretical and numerical research concerning fBm shear dispersion left to future work.

(6) The Introduction of Faster Spectral Method of fBm Generation

Although the fBm model developed by the author (the FBMINC model) is accurate, the CPU time is relatively expensive. Faster Spectral Methods are now available for synthesising fBm (see Reed (1995), Yin (1996) and Gripenberg (1996)). These are investigated by the author's colleagues. However, more work is required to see the successful implementation of these techniques within particle tracking models.

(7) The Use of Drifter Term in the Particle-Tracking Model

According to Kitanidis (1994), a drift term needs to be added to the mean velocity to account for variability in the dispersion coefficient. Hence, a more accurate fBm particle-tracking model incorporating the drift term could be developed in the future.

(8) Long Term Fickian Behaviour Due to Limited Memory

Referrig to Chapter 3, section 2.10, when the memory of the fBm computer model is restricted to be less than total the number of steps, a Fickian behaviour appears for large times in the cloud spreading (Addison et al, 1998a). This is found in reality for diffusion both in the coastal environment and subsurface porous material. Further investigation of this long term Fickian behaviour in a non-Fickian environment is required.

(9) Application of the fBm Particle-Tracking Model in an Open Ocean Surface

The use of the fBm particle tracking model within the coastal environment was investigated in Chapters 4 and 5. Further investigation of larger water bodies, such as the open ocean requires to be carried out. In a larger water body, the diffusion coefficient can reach to a very high value. Dispersion caused by the wind, tides and wave currents also needs to be considered. All these aspects can be considered in future work relating to the fBm model.

The dispersion of contaminants in fluids is a complex problem. Although many uncertainties and problems still exist, the author was pleased to see that each of her objectives were met. In addition, the author feels that the work outlined in this thesis has led to significant insights and motivated other researchers into this important, practical area of research.
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注释


【1】
 　Least Square Method—Best fit line: y＝mx＋C. Where [image: alt]
 [image: alt]
 Error check [image: alt]
 n is the number of experimented points.
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分数布朗运动的简化和应用
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1827年苏格兰植物学家R·布朗用显微镜观察悬浮在水中的花粉时发现，小颗粒的花粉在水中呈现出不规则的运动，后人把这种运动叫作布朗运动（Brownian motion）。布朗运动是一种随机散步现象，它的理论在许多领域中有重要的应用。如今布朗运动在理论上与应用上已与帕松过程（Poisson process）构成了两种最基本的随机过程。

本文首先从简单的随机散步入手，讨论这些随机散步与布朗运动的逼近程度，然后将简化了的布朗运动推广到简化了的分数型布朗运动中去，并介绍分数型布朗运动在流体中的应用。

一、简化了的布朗运动

1．布朗分布

布朗运动B（t）可以表示成连续的随机函数，即

[image: alt]


这里，随机变量W（s）是高斯白噪声。因为高斯白噪音是互不相关的，并且服从高斯分布（也叫正态分布）N（0，1），则布朗运动可表示为［1
 -2
 ］
 ：

[image: alt]


由于高斯白噪音W（i）是相互独立的，W（i）的高斯分布为：

[image: alt]


这里σstep
 是布朗运动每一步的标准差。本文所采用的随机变量x＝R（i）都在［0，1］范围内，且均值为µ＝0.5。若Zn
 为任意n个相同分布的随机变量R（i）的和，根据中心极限定理，有
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其中E为期望值。因此，正态分布N（0，1）的高斯随机变量Zn
 为
［3］
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从而，对任意i，高斯白噪声[image: alt]
 布朗运动则由（2）产生。

这种产生高斯随机数的方法需要选择随机数的个数n，当n不够大时，会产生误差，Box-Muller方法
［4］

 可以避免这个问题，从而达到更精确的结果。

设R（1），R（2）是两个独立的，在（0，1）上的均匀分布的随机变量。假设

[image: alt]


则，T（1）和T（2）是具有标准差等于1的正态分布。这就是Box-Muller方法
 。Press et al.（1992）
［5］

 给出了用Box-Muller方法
 的程序。

图1就是用Box-Muller方法生成的高斯白噪声和一维的布朗分布。
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图1　高斯白噪声（左）和1维的布朗运动（右）

2．简单的随机分布

定义单步随机散步Delta和常数随机散步Constant：
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因为布朗运动是一种随机散步，根据中心极限定理的原理，在一定的时间以后，分布的形式就不重要了，只要第一和第二时刻（first and second moment）是满足某种关系就行
［6］

 。研究发现，Delta和Consant两种分布都满足上面的条件，而且每次用高斯分布计算所需的时间比上Constant分布所需时间是2.0±0.4。因此，有必要用两种简单的随机函数来对布朗运动进行近似模拟。

图2为二维的单步随机散步和布朗运动。常数随机散步和布朗运动随机散步的二维图形相类似，这里只显示布朗运动的二维图。可以明显地看出，单步随机散步具有网格状散步轨迹，而其他两种随机散步没有这种特征。虽然它们看上去不同，但在某一特定的较大时间步以后，三种随机散步并没有明显的区别。也就是简单的随机散步在一段时间以后逐渐趋于布朗运动。为了论证这一点，我们从统计的角度来分析前两种简单的随机散步与布朗分布的接近程度。

[image: alt]


图2　二维的随机散步（左：单步，右：高斯）

如果一次释放大量的粒子，那么粒子的方差将与释放后的时间t成正比：
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这里扩散系数D的单位为m2
 /s。因此，D可以由方差比上时间得到，
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图3是粒子云（P＝100，1000，3000）释放后的方差与时间之比，从图中可以看出，当粒子云充分大以后（一般P≥1000），三种随机散步的方差几乎在同一条直线上（看P＝3000的例子）。这也说明当粒子数充分大时，可以用简单的单步或常数随机散步来近似代替布朗运动。
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图3　三种随机散步的方差与时间步长的比

注：D＝0.5，P是粒子云数。





3．三种随机散步的偏度与峰度的比较

方差是从数据的整个趋势考虑的，如果考虑粒子云的偏度和峰度，可以进一步观察两种简单的随机散步对布朗运动的逼近程度。在正态分布中，偏度等于0，峰度等于3。仔细观察随机散步早期的偏度和峰度图及对不同的粒子云数的偏差平方和的比较（图4、5），可以看出，尽管两种简单的随机散步没有高斯分布精确，但在很短的时间内当粒子数达到一定数目，可以用他们来逼近布朗运动。从图4、5的右图中可以看出，当粒子数大于500时就可以用简单的随机散步逼近，而当粒子数是3000时，偏度的偏差平方和小于0.0005，而峰度的偏差平方和小于0.004，这时的精确度是很高的。
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图4　左：三种随机散步的偏度图（P＝3000）；右：不同粒子云数的比较（D＝0.5）
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图5　左：三种随机散步的峰度图（P＝3000）；右：不同粒子云数的比较（D＝0.5）

二、分数型布朗运动

1．分数型布朗运动介绍

分数型布朗运动（fBm）的生成并不像布朗运动的生成那么简单，因为一个fBm轨迹并不像布朗运动那样每一步在统计上互相独立，而是fBm轨迹上每一点取决于先于那一点的整个的轨迹［7
 -8
 ］
 ，换句话说，fBm有与之相关的长期记忆，Mandelbrot和Van Ness
［9］

 将零均值的随机函数BH
 （t）大概地定义为一个可变均值dBH
 （t），其中过去的增量BH
 （t）由核心[image: alt]
 来确定，即

[image: alt]


其中，Γ（x）是伽玛函数，H是轨迹的Hurst指数
［10］

 。这个定义表明：时刻t点的随机函数值依赖于零均值及单位变量的高斯随机过程B（t）在时刻s＜t前面的所有增量dB（s）。

作者在曼德尔布罗特的初始定义基础上研究出了一个更实际和精确的分数型布朗运动模型［3］，［11
 -13
 ］
 ，这个模型的定义是：

[image: alt]
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这里ti
 ＝∆t·i，其中∆t是单位时间间隔。M是fBm的有限记忆，R（i）是取样于高斯概率离散分布的随机步骤。

fBm粒子分布云的标准偏差遵循以下关系：

[image: alt]


当H＝0.5时，就是布朗运动。（这儿，D是扩散系数）

2．三种分数型随机散步

如果把（9）～（11）中的高斯概率离散分布换成由Delta、Constant或高斯概率的离散分布，由这些公式所生成的模型统称为分数型随机散步。而有前两种分布生成的模型叫简化了的分数型随机散步。

图6是二维空间里的三种分数型随机散步图（左列是分数型Delta随机散步，中列是分数型Constant随机散步，右列是分数型布朗运动）。这里，H＝0.2，0.5，0.8。值得注意的是：当增加Hurst指数时，填满平面的趋势就越来越弱。因为H＝0.5就相当于随机散步，中间左边的图显然显示出Delta分布的网格特性（与图2左类似）。当时间足够大时，基于中心极限定理，离散型的散步效果就散失了，这时，三种分布就有相似的性质。
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图6　三种二维的分数型随机散步（M＝1000，D＝1）

图7是用FBM模型比较了三种分数型随机散步的[image: alt]
 比上时间的示意图。由（12）知，当t＝400，D＝1时，[image: alt]
 从图中可以看出，当粒子数充分大（P＝1000）而且记忆M≥4×P时［3］
 （右图），三种散步的[image: alt]
 几乎在一条直线上。这说明当粒子数充分大时，可以用简单的单步或常数分数型随机散步来近似代替分数型布朗运动。
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图7　三种分数型随机散步的[image: alt]
 随时间变化的示意图（H＝0.8，D＝1400时间步）

3．分数型布朗运动的应用

分数型布朗运动有很多应用。图8是代表污染物的粒子云在一个理想化的沿海港湾随时间扩散的例子。这里理想化的沿海港湾的大小是：2000米宽，4775米长，主流区的网格的大小是50米×100米，在港湾地带（右边的南北方向上的中部），网格要细一些。从北向南的主流的最大速度是0.67米／秒，平均速度是0.4～0.5米／秒。在港湾地带的速度小于主流方向的速度，港湾地带形成一个由主流带来的漩涡流［3］
 。
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图8　粒子云（P＝1000）在（1300，2800）释放，分别经过2、5、10个小时在港湾里的情形

众所周知，沿海或海洋中污染物的扩散主要包含两种运动：对流和扩散。这里忽略了其他的扩散运动。一群代表污染物的不规则粒子在时刻t＝0时从平面内一点释放出去，粒子云就以下面的方式沿网格点作对流。流体中污染物以对流和扩散两种形式同时结合作运动，粒子在i时的位移为此时间段上对流部分加上扩散部分（扩散部分也就是fBm增量）：

[image: alt]


在x及y方向上每一步的扩散位移为∆BHx
 （i）及∆BHy
 （i），也就是由（10），（11）定义的两个独立的fBm的增量。当碰到边界物时，在边界上会产生反射轨迹，整个fBm轨迹的正负号也必须因反射而改变。这样既能产生反射轨迹，又不破坏fBm的连续性，从而记忆不会中断［3］
 。

由（10），（11），（13a，b）所给出的模型叫做分数型布朗运动粒子追踪模型
［14］

 。图8中的粒子云是在（1300，2800）网格点释放的。分数型布朗运动Hurst指数设为H＝0.8。在释放了2小时，5小时和10小时时的粒子云扩散情况被记录了下来。在10小时时，所用的时间步长NSTEP＝3601，用高斯分布的话，取记忆M＝10803（等于3倍的NSTEP）。因为记忆越大，结果越精确，所以如果能用简单化的分数型随机散步来代替分数型布朗运动，可以在同样的情况下加大记忆，或加大粒子数。从图中可以看出，经过4～5个小时以后，一些粒子逐渐地被流水冲到了下游，随着时间的增加，几乎所有剩余的粒子都被困在港湾里了。

三、总结

分数型布朗运动的应用很广。它不仅在水力学中有广泛的应用，而且在金融界（股票市场，投资，风险预测）［15
 -17
 ］
 ，医学界［19
 -21
 ］
 ，国防
［22］

 等
［23］

 都有广泛的应用。

本文主要研究了用简单的随机散步（单步分布，常数分布）来近似代替高斯分布，继而用简化了的分数型随机散步近似代替分数型布朗运动。用方差、偏度、峰度、偏差平方和这些统计性质分析了这些简化了的随机散步和布朗运动之间的近似程度，并且以此扩展到简化了的分数型布朗运动。我们发现，尽管单步分布与常数分布的脉冲不一样，并且二维的单步随机散步以网格的形式出现，而常数随机散步以不规则的平面上的随机散步出现，但与二维布朗运动比较，在某一特定的较大时间步以后，三种随机散步并没有明显的区别。随机散步在一段时间以后（大于1000步以后）逐渐趋于布朗运动。从三种分数型随机散步的[image: alt]
 随时间的变化图可以发现，当粒子数充分大之后（特别当P＝3000时），三种散步的方差几乎在一条直线上。这说明当粒子数充分大时，可以用简单的分数型随机散步来近似代替分数型布朗运动。

有了简化了的分数型布朗运动，可以扩展到分数型粒子追踪模型，用分数型粒子追踪模型可以模拟流体中的非费克（non-Fickian）现象
［24］

 。本文在最后简单地介绍了用分数型粒子追踪模型模拟污染物在沿海港湾的扩散和传播。在工程技术中，有很多二维和三维的扩散问题，本文所介绍的简化了的分数型布朗运动可以应用到这些扩散问题中去。这里，Hurst指数限定在（0，1）之间。然而，在大范围的扩散模型（比如浮标在海洋中的流动轨迹，污染物在海洋或沿海中的传播）中，可以把Hurst指数扩大到大于1的情形中去［14］［25］

 。
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从分形维数到海洋表面漂浮物轨迹的模拟
*




瞿波　保尔·爱迪生　赵敏










分形是具有对称结构的自相似体
［1］

 。科学界使用分形几何的动机是出于他们以此可以来描述混沌动力学系统奇怪吸引子的结构［2
 -3
 ］
 和他们具有描述许多自然现象的能力
［4］

 。通常，自然分形在有限范围内的统计意义上是自相似的。本文首先通过一些来自英国的海洋表面浮标轨迹真实数据分形维数（记盒维数和划分维数
［5］

 ）的计算，求得海洋上漂浮物流动轨迹所遵循的分数型布朗运动的Hurst指数的范围，并介绍了分数型布朗运动粒子追踪模型及其在理想海湾里粒子的扩散轨迹。

一、海洋浮标的流动轨迹

海洋表面传播轨迹具有分形结构特征
［6］

 。就像卫星数据所显示的那样，自然分形的粒子轨迹可能是在一个相当大的空间（8～150km）和相当长的时间（89～216d）内发生的
［7］

 ，并且10～4000m内的数据需要5/24～6d的时间才能产生
［8］

 。自然分形的粒子轨迹可以发生在10s时间和几cm的空间内
［9］

 。确定海洋表面循流的一般方法是通过漂浮着的浮标以不同深度来指示风向的配置
［10］

 。这些不同深度的轨迹显示着拉格朗日粒子轨迹的特征。图1是两个典型的海洋表面浮标的轨迹。该轨迹是1983年5月～1984年8月在东北大西洋上测量得到的。
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图1　海洋表面浮标的轨迹（数据是由苏格兰Oban, NERC Dunstaffnage海洋实验室A. Edward提供的）

图1的轨迹与二维的fBm轨迹很相似，属于持续的fBm轨迹（Hurst指数H＞0.5）。此轨迹的运动状态就像在平面上游走一样。

采用结构型散步技术计算划分维数，可分别得到左图划分维数DD
 ＝1.3654，[image: alt]
 右图划分维数DD
 ＝1.195，[image: alt]


通过上述两个轨迹的计算，可以看出：DD
 介于1.19～1.37之间；H介于0.73～0.84之间。这与Sanderson等人［8］
 所得到的海洋里的粒子轨迹的H范围（0.71～0.86）相符合。

二、分数型布朗运动

布朗运动是连续的随机运动。一维的布朗运动记为B（t），它由一系列白噪声的增量W（t）组成，即

[image: alt]


式中t为时间。布朗运动是自仿射的随机分形，从统计意义上讲，在整个结构上是自相似的。作为一个测量分形时间轨迹上的差值，通常用轨迹的平均绝对值的差量∆B来定义，即∆B（t）＝｜B（t）－B（t＋∆t）｜。如果T是轨迹上连续点的时间间隔，则对于布朗运动来说，
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Mandelbrot等人
［11］

 提出了一种推广了的布朗运动，使得轨迹的刻度指数不是1/2，他们把它命名为分数布朗运动（fBm），记为BH
 （t），∆BH
 （t）与T的比值是

[image: alt]


这里0＜H＜1
［12］

 ，H＝1/2为一般的布朗运动。

分数型布朗运动的生成并不像布朗运动的生成那么简单，因为一个fBm轨迹并不是统计性的独立的步骤，fBm上的每个点和它以前整个历史上的点有联系。换句话说，fBm有一个长期记忆功能。曼德尔布罗特等人［11］
 将零均值的随机函数BH
 （t）定义为
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式中Γ（x）为伽玛函数。fBm的定义说明，时间t时随机函数的值依赖于所有以前的增量dB（s）．

有一种更实际更精确的分数型布朗运动模型
［13］

 ，即
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该模型是在曼德尔布罗特的初始定义基础上发展起来的，是改进的两步fBm的离散模型。这里ti
 ＝∆t·i，其中∆t是单位时间间隔。M是fBm的有限记忆，R（i）是取样于高斯概率离散分布的随机步骤。

一个平面的二维分数布朗运动需要有2个独立的fBm轨迹和相同的原始位置，这2个轨迹则作为fBm平面的2个坐标量。图2描述了这种方法，由2个独立的fBm轨迹（图2（a），这里取H＝0.8）生成并且用于构造x，y坐标平面的二维的fBm（图2（b））。这个二维的fBm轨迹（图2右）与海洋上的浮标流动轨迹相似。
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图2　二维fBm生成图（H＝0.8）

平面上fBm的分形维数Dδ
 可以表示成
［16］



[image: alt]


因此，H＜0.5的fBm有分数维Dδ
 ＝2，即它们能无限地扩充空间。但是，对持续轨迹（0.5＜H＜1）有小于2的分数维（但比1大）。这些轨迹不能填满平面，即它们不像要填满平面，而是更像要在平面上游走。

对布朗运动来说，粒子释放后，其标准偏差σ与时间平方成正比，即
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由式（8）得到的扩散系数D定义为
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传统的随机游走模型的Hurst指数为1/2。而一些研究［8］
 表明，海洋里的粒子轨迹符合Hurst指数的范围是0.71～0.86，这是传统的随机散步技术，也就是常规的布朗运动（H＝0.5）所无法描述的。

把分数型布朗运动用于传播模型，就可以解决传统布朗运动所不能解决的问题。如果粒子在扩散的粒子云中有fBm的行为，则粒子云的标准方差将随时间的H次幂而增加（这里0＜H＜1），因此，定义分形的扩散系数Df
 为
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三、分数型布朗运动粒子追踪模型及其应用

沿海或海洋中的流体漂浮物以对流和扩散两种方式运动着。一个粒子在t＝0时从平面内一点释放出去，就以下面的方式沿网格点做对流运动。粒子在i时的位移为此时间段上对流位移和扩散位移（即fBm增量）的和，即
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在x及y方向上每一步的扩散位移为∆Bx
 （i）及∆By
 （i），即由式（5），（6）定义的两个独立的fBm的增量。

图3是简单的粒子云的扩散图。对流部分用的是简单的常速，扩散部分分别用了H＝0.5和H＝0.8所对应的fBm的增量。σc
 是粒子云的标准差。
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图3　粒子云随时间的发散图

取2000米宽、4775米长的理想化的开放的沿海海湾。南北方向的主流区网格大小为50米×100米。最大流速为0.67米／秒，平均速度为0.4～0.5米／秒。网格在海湾里的网格要密一些，速度也小一些。

在模拟之前，先要选择时间区间∆t。根据Fischer
［15］

 的观点，最大的时间区间应满足
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式中：∆Lx
 ——网格的长度；U（i）——时间步i时的速度。一般区间∆t应不超过[image: alt]
 笔者发现，在这理想化的港湾，时间区间选为10s或20s比较合适［13］
 。

其次，选择扩散系数D。由式（9），（10）知，分形扩散系数Df
 和D的关系为（2Df
 t）H
 ＝（2Dt）1/2，即
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一般，工程上所用的扩散系数是0.01～0.02米2
 秒-1［15］
 。这里设Df
 ＝0.01。边界速度设为0。当碰到边界物时，在边界上会产生反射轨迹，整个fBm轨迹的正负号也必须因反射而改变。这样既能产生反射轨迹，又不破坏fBm的连续性，从而记忆不会中断。

首先，20个粒子在几个不同的地方释放（图4），方程（11），（12）中的平均对流速度U，V就是粒子沿网格的4个顶点对4个速度矢量进行双线性插值所得的结果；然后再用分数型布朗运动计算扩散部分的位移。因为在海湾中模拟，所以可取H＝0.8。3个释放点分别取主流区点A（1250米，4775米），主流区与海湾的交界处点B（1250米，2900米）以及海湾里点C（1400米，2700米）。20个粒子的轨迹将明显地在图中显示出来。值得指出的是，H的值控制着粒子的扩散程度。H越大，扩散得越开。H＝0.5就是传统的粒子追踪。
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图4　20个粒子在海湾中3个不同点释放后11h时的轨迹

（Df
 ＝0.01m2
 s-1
 ，∆t＝20s，记忆M＝20000，H＝0.8）

fBm粒子追踪模型最大的优点是它们的灵活性。Hurst指数可控制扩散云的指数增长范围，而传统的粒子追踪法没有这种灵活性。研究表明，fBm粒子轨迹模型是比较接近现实的。也就是说，一个fBm粒子追踪模型可生成一个更自然的散布云。分数型布朗运动的粒子追踪模型已广泛应用于沿海地区污染物扩散和传播的模拟［16］
 。

四、结论

fBm粒子追踪模型可以模拟粒子随时间移动的轨迹，也可以模拟粒子云所代表的漂浮物（或污染物）在某一时间的分布状况，其模拟结果比传统的模型更接近于实际。
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流体中污染物扩散的分形模拟
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污染扩散是水利研究和环境研究的重要的领域，所以有必要准确地预测流体中污染物的扩散。为了成功地做到这一点，需要一种准确模拟流体扩散的方法。传统的方法通常是用对流扩散方程或粒子追踪
［1］

 ，但这两种方法都不能给出满意的结果。因为传统方法粒子之间距离的方差与时间成正比，而实际上，例如在大海和沿海区域，当空间很大时，很少有符合这种假定的情况
［2］

 。最近研究［3
 -4
 ］
 表明，在很大的活动范围内，已经能用分数布朗运动（fractional Brownian motion，简称fBm）描述海面漂浮物的轨迹特征，因此，可采用fBm来模拟海面污染物扩散，为此，笔者构建了fBm粒子追踪模型。

粒子追踪模型可以用来提供有价值的信息以协助问题的分析或工程的设计，由于对模型的物理过程了解仍然有限，这一模型仍有待进一步改善。迄今为止，大多数粒子追踪模型采用随机布朗运动来描述湍流的扩散，这种模型假设粒子轨迹是间断性连续的，即粒子的运动轨迹遵循一个简单的随机散步，表现出朝随机方向一步一步地移动。然而，观察资料明显地表明，粒子运动是连续的，粒子的拉格朗日记忆对预测下一步移动的方向起着重要的作用
［5］

 。模拟连续的运动，必须要用新兴的分形统计方法。

本文简要介绍了传统的粒子追踪模型，讨论了fBm的生成及其所具有的分形和扩散的特性，并比较传统的粒子追踪模型和fBm粒子追踪模型的结果。

一、传统的随机散步模型

传统的随机散步模型模拟的是大量粒子向空间各个方向随机扩散的过程。这个扩散是和主流的对流联系在一起的，是由主流的速度场决定的。传统模型的随机步骤通常采用高斯概率分布（即布朗运动）来定义。但传统的随机散步技术有一个根本的缺陷，即它只产生费克（Fickian）发散，因此，如果大量的粒子用于粒子追踪模型，则粒子云的方差[image: alt]
 与扩散时间成正比，即
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式中D为扩散系数，它取决于流体的温度，黏度和粒子的大小。因此，在每个空间方向上离散的布朗运动B（ti
 ），可以在离散时间ti
 ＝i∆t中产生（i为整数，∆t为时间间隔），即把高斯分布中一系列的随机步骤W（ti
 ）相加，即
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W（ti
 ）也叫高斯白噪声。

随机粒子移动步骤W（ti
 ）的方差[image: alt]
 为
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因此N步后扩散结果的标准偏差可由式（4）简单地给出：

[image: alt]


式中：N为随机散步的步数；σc
 为N步时的粒子云的标准差；σp
 为单步粒子云的标准差。

二、分数布朗运动模型

和布朗运动一样，fBm也是高斯白噪声相加产生的，其定义为
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式中：BH
 （t）为时间t时的分数布朗运动；B（s）是一个高斯随机过程；H为Hurst指数。式（5）中分数型无穷下限的积分实际上是不实用的，因为为了在时间t时逼近fBm而需要从负无穷开始积分。上述定义的另一个问题是当s趋于-∞时是发散的。要用这个模型有必要定义一个从原点开始的fBm，即在t＝0时，BH
 （t）＝0。这可以用原定义式（5）减去在时间t＝0时的fBm来得到，即
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但仍必须从负无穷开始积分来准确定义fBm，这个问题可以这样解决：用有限的记忆导出一个离散的fBm近似表达式，即在式（6）的基础上定义
［6］

 ：
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在Mandelbrot等人
［7］

 最初对fBm定义的基础上，笔者提出了一个更精确的fBm模型［8
 -9
 ］
 ，这个模型定义为
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式中：BH
 （ti
 ）为在时间ti
 处第i次离散地逼近fBm；∆t为单位时间间隔；M为用于fBm近似值的有限记忆；R（i）为取样于高斯概率离散分布的随机步骤。方程（8）和（9）构成了两步的fBm模型。

不同于布朗运动模型，使用fBm模型，计算量将明显地增大，因为fBm模型中的每一步都要和前面的M步相加，Hurst指数H满足0＜H＜1。当H＝0.5时，式（8）、（9）就简化成式（2）（常规布朗运动）。Hurst指数的取值不同，式（8）、（9）得到的轨迹可能是反持续的（H＜0.5）、间断性连续（H＝0.5）或持续的（H＞0.5）。

图1描述了平面上这3种不同类型的轨迹。下面集中考虑持续的fBm，它产生非费克的类似于在湍流中的超扩散特性。
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图1　二维的分数型布朗运动（M＝1000）

Osboren等人［3-4］
 通过广泛的研究发现，卫星追踪海洋表面漂浮物的轨迹可以由持续的fBm来描述。把全球分成东北大西洋和Kurisho海两大区域分别进行研究，发现Hurst指数总是在0.79±0.07的范围内。此外，Hurst指数和分形维数Dδ
 都可以描述fBm。分形维数可以更自然地描述fBm，即它在所有比例上都具有自相似的特征。分形维数表明了fBm轨迹充满它所在空间能力的大小，它和Hurst指数有关系，即
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平面中的持续布朗运动更趋向于散开而不是充满整个平面（见图1（c））。分形维数满足1＜Dδ
 ＜2，即分形维数比相应的欧几里德空间的维数小。

fBm粒子扩散云的标准差正比于时间的Hurst指数幂，即满足
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Okubo
［10］

 对大量数据的研究发现，在北海扩散系数在0.05～220米2
 ／秒之间；Fisher
［11］

 对实验室水道测试和实际溪流及运河水流的研究发现，扩散系数在0.123～1500米2
 ／秒的范围内，并特别指出，在河流和沿海水域中，扩散系数一般在0.06～0.15米2
 ／秒之间。要定义分形扩散需要扩散系数和比例指数，常规布朗运动中的指数是[image: alt]
 而在分数布朗运动中被更普遍的Hurst指数H取代，0＜H＜1。Hurst指数H的取值是根据粒子云发散的程度σc
 由公式（11）所决定。一般地说，H的取值越小，粒子云发散的程度就越小。注意到H＝0.8的扩散程度远远超过H＝0.5。典型的海洋浮标轨迹的Hurst指数是在0.71～0.86之间［9］
 。

三、沿海表面的扩散模拟

沿海或海洋中污染物的扩散主要包含两种运动：对流和扩散。一般用粒子云来代表一群污染物。假设粒子云在时刻t＝0时从平面内一点释放，粒子云就以对流和扩散两种形式结合起来同时做运动，粒子在i时的位移为此时间段上对流部分加上扩散部分，也就是fBm增量：

[image: alt]


[image: alt]


在x及y方向上每一步的扩散位移为∆Bx
 （i）及∆By
 （i），也就是由公式（8）、（9）定义的两个独立的fBm的增量。当碰到边界物时会产生反射，整个fBm轨迹的正负号也必须因反射而改变。这样就不会破坏fBm的连续性，因而记忆不会由此中断。因此，式（8）、（9）、（12）、（13）就构成fBm粒子追踪模型。

采用一个理想化（也就是人为构造的具有规则地理分布，且具有固定主流速）的沿海海湾，如图2所示。图2（a）是显示海湾的均匀网格（每网格大小为100米×100米），主流从北向南，流速是0.5米／秒。图2（b）是放大后的海湾表面流速图。fBm粒子追踪模型只包括主流对流和由fBm模型形成的湍流，不计潮汐和其他因素引起的扩散。为简单起见，在两个空间方向上，Hurst指数都取0.75。水流从西面的深水区向东面的狭窄海湾流动，从左到右的深度分布是：从主要区域开始的500米宽，其深度均是50米，到靠近东海岸线的地方只有10米深。
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图2　理想海湾的表面网格和流速

表面速度分布可以从一个分层的二维水动力学模型获得。选择（a）在海湾上游的释放，用常规布朗运动；（b）在海湾上游同一地点释放，用Hurst指数是0.75的持续性fBm。设定两个方向的扩散系数D＝0.01m2
 /s，由于分数布朗运动技术的计算强度，在每个测试案例中只释放400个粒子（通常数值模拟中要用到大约10000以上的大量的粒子，但少数粒子也足以说明问题）。粒子从网格中穿过，以平均对流速度对流（平均速度由小格交点处的4个速度矢量的双线性插值得到），按照式（2）或式（8）、（9）中的随机步骤扩散。图3和图4显示了测试的结果。
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图3　传统布朗分布（H＝0.5）的粒子云扩散
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图4　分数布朗运动（H＝0.75）的粒子云扩散

图3和图4是粒子云在时间t＝0时，在网格坐标（850，2500）处开始释放，即在主流区，而不是在海湾环流区。图3中粒子按常规布朗运动扩散（H＝0.5）。观察粒子云的扩散，2小时记录1次，直到扩散12小时为止。可以看出，常规布朗粒子云保持得很密集，因为它们是在海湾环流边界外的主流区流动，大多数粒子都流过海湾环流区，贴着海岸线流到下游去了。一小部分粒子进入环流区，也贴着海岸线。图4中粒子的扩散位置和图3一样，但粒子按分形布朗运动扩散（H＝0.75）。这时粒子云的传播速度有很明显的增加，导致更多的粒子既趋于上游海岸线的低速水流区又向高速主流区运动，从而2小时后与图3相比污染物被稀释了。这在自然界中则意味着污染物浓度的迅速降低。从环境的角度来看，这也意味着对从原来的有毒水平降到了对生理安全的水平。另外，更快的扩散导致更多的粒子进入海湾环流区，它也导致环流区中粒子更密集的分布，因为粒子不像H＝0.5时那样被限制在海岸线边。因此，海湾中污染物的增加不一定导致环流区海岸线处的污染物增加。这又证实了一个重要的事实：Hurst指数的变化可改变一个流动区域受污染物影响的程度，而这种现象是不能靠常规的布朗运动来实现的。

四、结语

用fBm来模拟非费克扩散，新的fBm粒子追踪模型可用来模拟污染物在流体中的传播。而代表污染物的粒子扩散云的标准差和时间的H次方成比例，H是Hurst指数，0＜H＜1。该技术已经在沿海区域表层扩散的例子中得到了说明。在推断污染物的去向和浓度中，Hurst指数起着很大的作用。这也证实了该模型的灵活多变之处。通过改变Hurst指数，可以达到不同程度上的扩散模拟。

fBm粒子追踪模型将对于用数值建模来模拟环境中污染物的扩散提供一个很好的工具，它给任意空间的非线性扩散带来了灵活性和可行性。fBm粒子追踪模型也较容易推广到带有潮汐速度的分量的扩散过程，也可以延伸到三维的自由表面的扩散模型。
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一、分数型布朗运动粒子追踪模型

非费克（non-Fickian）扩散经常会在流体的扩散过程中表现出来，因为流体中速度场具有长距离的相互关联性，也称拉格朗日记忆
［1］

 。传统的粒子追踪技术只能模拟相互无关的随机散步（布朗运动）所产生的费克（Fickian）扩散过程。为了模拟粒子的连续运动，曼德尔布罗特
［2］

 发现分数型布朗运动（fBm）可以模拟连续运动的随机分形。

Qu
［3］

 在曼德尔布罗特的FBM模型
［4］

 的基础上，通过对核的变形改进了原来的模型，发展成FBMINC模型。新的FBMINC模型不仅使分数布朗运动的表达式简单化了，而且，克服了它原来的一些弊病。FBMINC模型的定义为：
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当H＝0.5时，∆BH
 （t）得到离散时间的高斯白噪声，这时就变成了布朗运动。这里，BH
 （t）是分数布朗运动，R（i）是取样于高斯概率离散分布的随机步骤。M为有限记忆，M越大，BH
 （t）就越精确。

众所周知，流体中污染物的扩散主要包含两种运动，对流和扩散。一群代表污染物的不规则粒子在时刻t＝0时从平面内一点释放出去，然后粒子云以下面的方式沿网格点作对流。粒子在i时的位移为时间段上对流部分加上扩散部分（扩散部分也就是fBm增量）：
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在x及y方向上每一步的扩散位移为∆BHx
 （i）及∆BHy
 （i），也就是由（2）定义的两个独立的fBm的增量。这里U，V为x，y方向的速度分量。将边界反射与fBm的连续性一起考虑，在边界上为了产生反射轨迹，整个fBm轨迹的正负号必须因反射而改变。这样既能产生反射轨迹，又不破坏fBm的记忆。

FBMINC模型在沿海污染物的传播领域已有很广泛的应用［5
 -12
 ］
 。当Hurst指数H＝0.5时为布朗运动（费克扩散）；0＜H＜1（H≠0.5）为fBm（非费克扩散）。fBm粒子分布云的标准偏差遵循以下关系（也就是fBm扩散）：
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扩散系数Df
 是常数。注意当H＝1/2时，就是规则的布朗运动（这时把扩散系数记为D）。分形扩散系数Df
 与其相对应的费克中D的关系为如下：
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因此，
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根据一些水利研究者及科学家的分析，在小范围的沿海区域，一般扩散系数Df
 在0.01到0.02米2
 ／秒范围内取值［13
 -14
 ］
 。因此在本文中，取Df
 ＝0.01米2
 ／秒。

二、简单的布朗剪切分散

沿速度梯度方向产生的剪切流和分散对水流传播方向具有很大的影响。Chat和Allen
［15］

 给出了如下定义：剪切分散是由横向剪切的平均流速和横向扩散而产生的平流。

首先考虑在x和y方向上扩散系数都等于D的费克扩散，如果没有剪切流动，在时间以后在两个方向上的方差分别是
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Townsend
［16］

 发现，线性剪切流的浓度分布保留其高斯形式，但方差与中心的分散已彻底改变了。假设速度在y方向是x的函数，即v（x），则剪切流的速度的增加将随x的增加而线性增加，即
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Foister等人
［17］

 通过求解对流扩散方程对时间的概率密度得到粒子云剪切分散的方差：假设，在两个方向的扩散都是费克扩散，两个扩散系数都设为D，在简单的剪切效果下，方差在x和y两个方向将变成
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式中：α是流速v剖面的梯度。

Compte
［18］

 使用了连续时间随机游动的方法，以另一种方式确定了运动的概率。然而，他的计算结果和（11）中的简单的剪切效果是一样的。对于更大的时间段，式（11）可简化为
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要验证这些研究结果，作者设立了一个简单的渠道模式。渠道的大小是2000×5000米，网格间隔为50×100米。在x方向的速度设为零，y方向的速度设为v（x）＝-0.0003x。

预计剪切分散将在沿主流的方向上（即由北到南，与y的方向相反）。在渠道的上方点（1000，5000）释放一团粒子云。为了简洁起见，只在x方向考虑简单的费克扩散，即扩散系数在y方向设置为零。在无剪切分散的前提下，得到[image: alt]
 [image: alt]
 在有剪切分散的前提下，分散为：
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对式（13）两边取对数，得
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对式（14）两边取对数，得
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当α＝0.0003，D＝0.01，lnσx
 和lnσy
 分别为
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用1000个粒子云在（1000，5000）处释放，到1000个时间步时（∆t＝10min）把ln（σx
 ）和ln（σy
 ）对ln（t）的比值计算出来（H＝0.5），见图1。
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图1　简单渠道中的ln（σx
 ）和ln（σy
 ）对ln（t）的比值

注：这里H＝0.5，D＝0.01，∆t＝10，粒子数P＝1000，1000个时间步（NSTEP＝1000）。





图1和表1表明了数值结果和方程（15）到（20）吻合。此计算结果非常接近的理论结果。这里，D＝0.01，∆t＝10。

表1　H＝0.5时的不同的截距值Ax
 和Ay
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三、分数型布朗运动剪切分散

这一节将把上一节的布朗运动的情形推广到分数型布朗运动。假设没有剪切分散，
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则对简单的剪切分散，即只考虑沿主流方向的扩散，我们希望有
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由方程（14），令[image: alt]
 由（6），在y方向的扩散符合
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同样用α＝0.0003和Df
 ＝0.01，由方程（22）得
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这里Ax
 是方程（17）中的ln（σx
 ）轴的截距．对不同的H值（0＜H＜1），相应的截距Ax
 值可以计算出来（见表2）。

表2　从不同的H值所得的不同的截距值Ax
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这里Df
 ＝0.01，∆t＝10，粒子数P＝1000，100个时间步（NSTEP＝100）。情形（1），情形（2）和期待值相比，情形（2）比情形（1）更接近于期待值。然而，数值计算中得到的H的值和截距值Ax
 都稍低于预期的值，其原因目前尚不清楚。

现在考虑在水流方向上的剪切分散。

在ln（σx
 ）和ln（σy
 ）轴上的截距值Ax
 和Ay
 分别由表2和表3给出：

表3　从不同的H值所得的不同的截距值Ay
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这里，H图
 表示从图中得到的Hurst指数。

由（22），
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仍设α＝0.0003，Df
 ＝0.01，则由（25）所得的在ln（σy
 ）轴上的截距为Ay
 ：
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因此，
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C值可以由表3的Ay
 ，对不同的H值得到。

图2是ln（σx
 ）和ln（σy
 ）分别对ln（t）的当H＝0.6的图形。对于不同的H值，用方程（26）、（27）计算出的C值和图中所得的H值和相应的截距值Ay
 ，C值列于表4。
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图2　简单渠道中的ln（σx
 ）和ln（σy
 ）对ln（t）的比值

注：这里H＝0.6，Df
 ＝0.01，∆t＝10，粒子数P＝1000，100个时间步（NSTEP＝100）。





由图所得到的在ln（σy
 ）轴上的截距值Ay
 由表4给出。

表4　由方程和图中得到的H值，截距值Ay
 和系数C的比较
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近似常数系数C可由表4得到。由此可见，（23）是一个很好的假设方程。表4中的情形（b）中的C的平均值是0.2976。因此，一个fBm的剪切分散可由方程（23）和常数C＝0.3决定。通过增加粒子数结果会更加准确。甚至有可能证明，分数型布朗运动的剪切分散的系数常数C实际上就等于1/3。

四、沿海湾回流区的剪切分散

这里将简单地讨论剪切分散发生在沿海湾模型的主流区和回流区之间的情形。假设主流区仍由北向南，0＜x＜1200，0＜y＜5000（y的方向是由南向北，与主流速方向相反）。但当1200＜x＜2000时，是回流区。这时，2000＜y＜2800。图3显示了速度矢量在回流区的循环模式。可以看出，在y方向（南北方向）在x＝1200和x＝1400之间速度有明显的增加（也见图3）。这一地区形成了主流区和回流区（海湾）的剪切带。考虑到海湾的入口处，不仅在y方向增加速度，而且在x方向也增加速度（从右到左）。速度矢量的方向在这一地区也发生变化。速度向量一般由北向南，从回流区向主流区沿x方向增加。因此，剪切分散应该正交与x方向，即沿y方向发展。
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图3　海湾进口地带的速度剖面值V（x）

注：当x从1000到1400时，y的值在2075到2775之间。





图4展示了垂直速度剖面V（x）沿-x方向非线性地减少（从x＝1000到x＝1400），而且和预期的一样，在湾的顶部和底部角落的流速梯度最大（从y＝2775到y＝2075）。在这种情况下，不能指望只有简单剪切，因为跨越整个区域的速度不是线性地变化，并不断地在改变方向，尤其是在上游和下游的角落（见图3）。
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图4　海湾的进口地带及回流区边界的剪切分散图

如果不计y方向的扩散，即只考虑在x方向的扩散，一群粒子云可以生成。沿x方向和y方向的标准差σx
 （t），σy
 （t）可以计算出来。图4记录了从左上角的海湾区释放出费克粒子云后（H＝0.5），每10分钟lnσx
 和lnσy
 对lnt的值，其跨度是1小时。这里x＝1250，y＝2775。其最佳逼近线的梯度就是Hurst指数。
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图5　海湾剪切区的剪切分散测试：log（σx
 ）和log（σy
 ）对log（t）的比值图

注：这里H＝0.5，P＝1000，D＝0.01，∆t＝10，Xp＝1250，Yp＝2775。





表5显示了梯度：[image: alt]
 和[image: alt]
 这里x＝1250，1300和1350（图4中没有显示x＝1300到1350的情形）。沿x＝1250到1350，当Hy
 增加时，Hx
 减少。然而，梯度不是常数。在y方向有一个明显的剪切分散，Hy
 值从1.1728到1.6788。对于这些费克粒子云，剪切分散发生在y方向，平均梯度（Hy
 ）约为1＋H（H＝0.5，则将会产生简单的剪切分散）。

表5　由沿海湾剪切区算出的在x和y方向上的Hurst指数Hx
 ，Hy
 ，H＝0.5
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从表5和图4可以看出：随着Hy
 的增加，Hx
 在整个剪切带逐渐减少。而且由非线性剪切速度剖面所产生的Hy
 的指数可达到1.6788。

图5具有与图4同样的条件。唯一不同的是，一个非费克粒子云（H＝0.8）从同一点（x＝1250，y＝2775）被释放。ln（σx
 （t））和ln（σy
 （t））比上ln（t）再次用每10分钟的间隔记录下来，直至1小时。ln（σx
 ）比上ln（t）的梯度（＝Hx
 ）以及ln（σy
 ）比上ln（t）的梯度（＝Hy
 ）列于表6，这里x＝1250，1300，1350。

表6　由沿海湾剪切区算出的在x和y方向上的Hurst指数Hx
 ，Hy
 ，H＝0.8
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从表6看出，随着Hy
 的增加Hx
 相应地减少，这里x＝1250，1300，1350（图6中没有显示x＝1300到1350的情形）。这就再次证明了剪切分散发生在y方向上，Hy
 的平均坡度约为1＋H（这里H＝0.8）。
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图6　海湾剪切区的剪切分散测试：log（σx
 ）和log（σy
 ）对log（t）的比值图

注：这里H＝0.8，P＝1000，D＝0.01，∆t＝10，Xp＝1250，Yp＝2775。





五、总结

本文简单地介绍了分数布朗运动粒子追踪模型。并用布朗运动和分数布朗运动粒子追踪模型研究了在沿海水域的布朗剪切分散以及fBm剪切分散。从而对fBm剪切分散的正确的幂律大小得到了预则（即等于1＋H）。而缩放系数C的值约为1/3。因此，方程（23）适用于所有不同的H值的fBm剪切分散的情形。从对沿海湾模型中的剪切流的研究中发现，有大量的剪切分散发生在沿海湾入口处（主流区与回流区的交界处，主要集中在主流y方向）。从总的趋势看，随着Hy
 的增加，Hx
 在整个剪切带逐渐减少。Hy
 的平均坡度约为1＋H。我们还注意到由非线性剪切速度剖面所产生的Hy
 的指数可达到1.6788。

自然沿海港湾的剪切分散相当复杂，大面积海洋表面的湍流扩散的Hurst指数可以超过1
［19］

 。关于fBm粒子追踪模型以及加速的fBm粒子追踪模型（AfBm模型）及其在自然沿海水面上的应用可参见［3］，［12］
 。关于fBm的剪切分散的进一步的理论和数值研究包括大大地增大粒子云数，以获得更精确的常数系数C的值；把二维的fBm模型推广到三维，从而模拟自然水域的简单的剪切扩散，乃至复杂的剪切扩散。并把fBm粒子追踪模型从流体的分散推广到大气的分散。
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1. Introduction

The need of accurate prediction of the transport of soil contaminants spread in fluids required some more research on numerical methods. Accurate prediction of the spread of soil contaminants requires method which can mimic the dynamics of the dispersion in the carrying fluids. The traditional diffusion research is Monte-Carlo simulation where diffusion process can be simulated using random walk. In random walk, the mean square of displacement of a cloud of particles is statistically independent in each step and the standard deviation of a diffusing cloud of particles σc
 (t) is proportional to the square root of time [image: alt]
 e. g.

[image: alt]


where D is diffusion coefficient.

It is known that traditional particle tracking methods lead to Fickian diffusion which does not produce the physical reality of the non-Fickian turbulent diffusion often observed in pollutant dispersion processes due to correlation in the flow field (Okubo, 1971; Osborne et al., 1989; Sanderson and Booth, 1991). This property exists over significantly large spatial scales (Lam et al., 1984). This Lagrangian memory effect (Yvergniaux and Chollet, 1989) cannot be taken into account in traditional particle tracking models which use statistically independent steps in the reproduction of the individual particle trajectories. Osborne et al. (1989) and Sanderson and Booth (1991) have found that the trajectories of satellite tracked ocean surface drifters may be described as fractional Brownian motion with non-Fickian scaling properties. Both studies have characterised the fractional Brownian motions of trajectories in terms of the fractal geometric properties.

Fractional Brownian motion has already been used in a wide variety of studies in the physical sciences. The most common application of fBm is to model surfaces or landscapes, such as the ocean floor, coastlines, mountains, clouds (Voss, 1985; Peitgen et al., 1992). In addition, various researchers have attempted to use fBm as a model for a wide variety of physical phenomena.

Molz et al. (1997) studied fBm and fractional Gaussian noise (fGn) in subsurface hydrology; Scheffer and Maciel Filho (2001) verified fBm as a model to describe the complex behavior of a commercial airlift reactor; Fischer and Akay (2002) found improved estimators for fractional Brownian motion via the expectation-maximization algorithm; Zhang et al. (2004) proposed a wavelet-based fBm signal estimation scheme. Recent research suggests that fBm can be used to model the long-range dependence structure of the stock market. Chan and Ng (2009) found arbitrage opportunities do exist in fractional markets; Pérez et al. (2007) used Levy fractional Brownian motion family as a new paradigm in the modeling of turbulent wave-front phase; Zhang et al. (2009b) constructed equity warrants pricing model under fractional Brownian motion; Flandoli et al. (2010) studied on the regularity of stochastic currents, applied fBm to a turbulence model. Bojdecki et al. (2004) study a long-range dependence Gaussian process which they call sub-fBm, because it is intermediate between Brownian motion (Bm) and fBm in the sense that it has properties analogous to those of fBm, but the increments on non-overlapping intervals are more weakly correlated and their covariance decays polynomially at a higher rate. Eftaxias et al. (2008) found evidence of fBm-type asperity model for earthquake generation in candidate pre-seismic electromagnetic emissions.

fBm has been not only used in modeling natural characters, but also used in financial and risk analysis, stocking market, medical images, disease diagnose, even in radar and pollutant dispersion in fluids.

There are many applications about pollutant dispersion or sedimentation modelling in fluids using either the Advection-Diffusion equation model or the traditional particle tracking model (examples like Carlier, 2007, Gu et al., 2007, Kantoush et al., 2008, Zhang et al., 2009). The authors have not found any other researches concerning the use of fBm to predict pollutant dispersion in fluids. The previous work by authors can be found in Addison et al. (1997, 1998). A novel fBm particle tracking model has been developed by the authors that can be used in a wide range of pollutant dispersion applications, such as river, coastal regions and open ocean surface (Qu et al., 2003). This article will focus on the development of a more accurate FBM model-FBMINC model. The simple shear dispersion of fBm is hence discussed and the application of FBMINC model in coastal bay is finally approached.

2. The original fractional Brownian motion model

As we know that a fractional Brownian motion may be generated from the summation of a series of random steps taken from a Gaussian distribution (Mandelbrot and Wallis, 1969). The summation is weighted in order to allow for a long time power law correlation to be included in the resulting motion.

Mandelbrot and Van Ness (1968) introduced the concept of fractional Brownian motion, BH
 (t), as a generalisation of regular Brownian motion by adding an additional parameter, the "Hurst exponent" H(0＜H＜1), replacing Eq. (1) by
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Here, [image: alt]
 is fractional Brownian motions while [image: alt]
 is the random walk (also called the Brownian motion).

It has been observed that the diffusion generated by random walk based models does not reproduce the physical reality. However, fractional Brownian motion (fBm) can produce a wider range of diffusive phenomena. The generation of fBm is not as simple as generating random walk, as an fBm trace does not take statistically independent steps (as random does), but rather each point on a fBm trace depends upon the whole of the history of the fBm previous to that point, there is a long-term memory associated with it (Addison, 1997). Mandelbrot and Van Ness (1968) defined fBm as the random function BH
 (t) with zero mean roughly as a moving average of dBH
 (t), in which past increments of BH
 (t) are weighted by the kernel [image: alt]
 as
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Here Γ(x) is the gamma function, and H is the Hurst exponent of the trace. This definition states that the value of the random function at time t depends on all previous increments dB(s) at time s＜t of a Gaussian random process B(t) with average zero and unit variance.

Mandelbrot and Van Ness (1968) force the function through the origin:
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Defining
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Eq. (4) then can be written as:
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For t＞0, BH
 (t) is defined by
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3. The improved FBMINC model

The authors noticed the shortages of the Mandelbrot fractional Brownian motion:

(1) It does not give a good approximation when memory M is less than number of step NSTEP (M＜NSTEP).

(2) The standard deviation of each step jump σ(BH
 (ti
 )－BH
 (ti－1
 )) always increases with the time step i(Qu, 1999).

An improved FBMINC model was developed which overcame these two shortcomings and gave a better simulation of fractional Brownian motion.

The sequence of increments of BH
 (t), namely the sequence values of ∆BH
 (t)＝BH
 (t)－BH
 (t－1), with t an integer, is called "discrete-time fractional noises". It can be deduced from a Brownian motion B(s) by the formula
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With the "kernel function"
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In Eqs. (7) and (8), replace u with i-j, the discrete version of ∆BH
 (i) is as follow:
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Where i is the number of time step, R is the random walk with Gaussian distribution.

For [image: alt]
 ∆BH
 (t) is reduced to a discrete time Gaussian white noise. Hence,
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Eqs. (9) and (10) form the two step FBMINC model.

To generate a random walk in two dimensions, two independent random walks are used and one for each co-ordinate in time. The same method can be used to generate fBm in 2D. With Hurst exponent H value increase, the space filling property of the particle paths would reduce. Figure 1 shows the fractional Brownian motion in 2D surface and H＝0.2 (subdiffusive), H＝0.5 (Brownian motion), H＝0.8 (super-diffusive). The case of H＝0.8 mimics the ocean drifter trajectories patterns from satellite images (the last figure in Fig. 1). The superdiffusive phenomenon happened more often in reality.
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Figure 1　Fractional Brownian motion in 2D with H＝0.2, 0.5, 0.8, and the last figure is the ocean surface drifter trajectory data supplied by A.

Edwards of the NERC Dunstaffnage Marine Laboratory, Oban, Scotland

Figure 2 is the six fBm traces in 1D generated by both the Mandelbrot FBM model (call FBM model) and the authors FBMINC model. Three H values are: H＝0.2, 0.5, 0.8, and the diffusion coefficient: D＝1. The time interval is ∆t＝1, memory M＝5000. The plot shows that there is no significant difference between the two models, especially for H＝0.2 and H＝0.5. However, due to the larger movement of super-diffusive cloud, the H＝0.8 traces exhibit noticeably divergent behaviour. It is noticeable from Figure 2 that although the FBM and FBMINC models synthesise fBm using different methods, they produce similar fBm traces.
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Figure 2　FBM and FBMINC Model's comparison, where M＝5000, D＝1, ∆t＝1

In the following section, two models are compared from three aspects: the standard deviation of each step, the small memory (when M＜NSTEP) and the effect of the number of particles in the cloud.

(1) Consideration of the standard deviation of each step: σ(BH
 (t)－BH
 (t－1))

Theoretically, σ(BH
 (t)－BH
 (t－1)) should be a constant for all time t. From Fig. 3, it can be noticed that for the FBM model, σ(BH
 (t)－BH
 (t－1)) increases with the number of time steps, although this effect is reduced as the memory used is increased. However, for the FBMINC model, σ(BH
 (t)－BH
 (t－1)) is always constant, regardless of the number of steps and memory used. This is the principal advantage of the FBMINC model.

[image: alt]


Figure 3　Comparison between FBM and FBMINC model: σ(BH
 (t)－BH
 (t－1)) versus time step, where P＝1000, H＝0.8, D＝1

Figure 4 shows the various standard deviations obtained from the increments in FBMINC, σ(BH
 (t)－BH
 (t－1)), for a variety of H values. σ(BH
 (t)－BH
 (t－1)) increases as H value increases. However, for a particular H value, σ(BH
 (t)－BH
 (t－1)) stays constant.
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Figure 4　σ(BH
 (t)－BH
 (t－1)) versus time step for different Hurst exponent value H using FBMINC model

(2) Consideration of M＜NSTEP

Another advantage of the FBMINC model is that it can be used while M＜NSTEP. However, according to its definition, the FBM model is not suitable for this case. We need to redefine the FBM model for the case when M＜NSTEP (Qu, 1999).

Figure 5 contains plots of [image: alt]
 versus time step t, for the FBM and FBMINC models respectively. In addition, Fig. 5 (left) shows an obvious cut-off in the plots for M＜NSTEP of the FBM model. However, Fig. 5 (right) shows that the FBMINC model can produce better results than the FBM model, especially whenM＜NSTEP. In the figures, D is set to unity, hence we expect [image: alt]
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Figure 5　[image: alt]
 versus time step comparison for the FBM and FBMINC models starting with smaller memories. Number of particles is 400, D＝1, H＝0.8

(3) The effect of the number of particles in the cloud

Figures 6 and 7 show that both the FBM and FBMINC models all give good prediction of fBm traces as long as the number of particles and memory used are large enough. For a memory only several times the value of NSTEP, the FBMINC model gives a better prediction than the FBM model.
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Figure 6　The effect of the number of particles in a cloud for both the FBM and FBMINC models. Here H＝0.8, D＝1, NSTEP＝50, M＝400
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Figure 7　The effect of memory for the FBM and FBMINC models. Here H＝0.8, D＝1, NSTEP＝400, P＝400

From comparison tests (1), (2) and (3), we find that the FBMINC model is the better model as it produces more accurate statistics and hence it will be used in syntheses of fBm in soil contaminant spread in fluids.

4. The FBMINC particle tracking method

A new fBm-based method (based on FBMINC model) is employed in simulating the surface diffusion in turbulent. It is well known that the dispersion of pollutant in the fluids mainly involves two movements: advection and turbulent diffusion. Tidal and other diffusion mechanisms are ignored here.

The advective component is subject to the Lagrangian principle. Usually an interpolation scheme in both time and space is employed to generate the velocity vector at off-grid points. For time, a simple linear interpolation can be adopted. The following bilinear interpolation in space was selected, i. e.
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where, A, B, C, D are the four grid points on clockwise direction. Hence, U(xi
 , yi
 ), V(xi
 , yi
 ) can be calculated.

The advective step at each time step i is given by
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The diffusion component employs fractional Brownian motions (the FBMINC model, see Eqs. (9), (10)) developed by the authors:

The standard deviation of a diffusing cloud of fBm particles scales with time since release to the power of H(0＜H＜1):
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The diffusion is caused by the random motions superimposed upon the mean flow advection. Turbulent diffusion is dominant comparing to the molecular diffusion. Therefore, only turbulent diffusion is considered.

The total particle displacement at time step i is the summation of the advective component and the diffusive component (i. e. the increment of fBm) over the time interval:
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The diffusion displacement of each time step in both x and y directions ∆Bx
 (i, j) and ∆By
 (i, j) are two independent fBm increments defined by Eqs. (9) and (10).

(1) Choose a time interval

Before a simulation can be performed, a decision needs to be made on the choice of time step, ∆t, to be used. The maximum time step is required which provides both fast and accurate results. Delay et al. (1996) detail the selection of a time step. They concluded that: in classical particle methods, in order to take into account velocity variations between two adjacent grids, one generally considers that the greatest distance covered during time step ∆t should not exceed [image: alt]
 e. g. if the velocity is U(i) in time step i, and the grid length is ∆Lx
 , then the maximum time step should be
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(2) Choose diffusion coefficient

Often in studies of turbulent diffusion, the diffusion coefficient D is calculated from a Fickian formulation. This leads to the growth of D with time due to the non-Fickian nature of the phenomena. However, fBm diffusion Df
 is used according to Eq. (12) and it is assumed constant.

The relationship between this fractal diffusion coefficient, Df
 , and its Fickian counterpart, D, is found as follows:
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Hence,
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when the "constant" fractal diffusion coefficient Df
 ＝0.01, according to Eq. (15). The special case is when H＝0.5, D＝Df
 ＝0.01.

Okubo's (1971) apparent diffusivity ranged from 0.05 to 220m2
 /s within different regions of the North Sea. Fischer (1973) listed the results of some experiments by some researchers on longitudinal dispersion in laboratory channels, nature streams and canals. The range of the dispersion coefficient is from 0.123 up to 1500m2
 /s. Fischer (1973) pointed that typical cross sections found in real rivers and coastal waters varies from approximately 0.06 to 0.15 m2
 /s. Typically, in engineering practice, values around 0.01-0.02m2
 /s are used (Wallingford, Report Ex 3358, 1996) for modelling diffusion in a small coastal zone. The diffusion coefficient in the ocean can reach a very high value over long distances, which is not the case considered here, i. e. in the coastal zone. In the small size coastal bay model outlined in this paper, the diffusion coefficient was set at Df
 ＝0.01 for all cases, as it was easy for comparison and simulations. Hence, for Fickian simulation, D＝Df
 ＝0.01m2
 /s.

(3) Boundary reflection

The velocities at the boundaries are zero, i. e. U＝V＝0. The particles that hit the boundary is not allowed to stay there, but are reflected back into the flow field. Detailed boundary reflection definitions are listed in (Qu, 1999).

It is an important point to note that because of the memory associated with fBm, the particles cannot be reflected simply. Due to the persistent nature of fBm, the particles, once reflected, will continue to persist towards the boundary. Hence, in order to produce a trace reflection, the sign of the whole fBm trace must be reversed on reflection.

5. Shear dispersion with fBm diffusion

It is known that shear dispersion, caused by the combined action of shear flow and mixing across the velocity gradient, has a strong influence on mass transportation. Shear dispersion arises from an interaction between advection by a transversely sheared mean velocity and transverse diffusion (Chatwin and Allen, 1985). If we consider Fickian diffusion in both x and y directions, with both diffusion coefficients equal to D, with no shearing of the flow, the variance in both directions after time t will scaled according to Eq. (1).

The question is what happens to the variances in both directions as a result of shear dispersion?

Townsend (1951) found that, for a linear shear flow, the concentration distribution retains its Gaussian form but the variance and the centroid of the dispersion is modified radically. Suppose the velocity in the y direction is a function of x, i. e. V(x), the simplest case of a shear flow is that in which the velocity increases linearly with increasing x, i. e.
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There are several articles which explore cloud variances after shear dispersion. For example, Foister and Van De Ven (1980) obtained solutions by solving appropriate Advection Diffusion equations for the time dependent probability density. Suppose, as above, the diffusions in both directions are Fickian with both diffusion coefficients set equal to D. Under shear effects (for the simple shear), the variances in both x and y directions will become
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where α is the gradient of velocity profile V(x)/x (Foister and Van De Ven, 1980).

For large times, Eq. (17) reduces to
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A simple channel model was set up by the authors. The channel size is 2000×5000m and the grid spacing is 50×100m. The x-direction velocity was set to zero and the y-direction velocity was set as V(x)＝-0.0003x. It is expected that shear dispersion will take place along the direction of flow, i. e. vertically downwards. A cloud of particles was released at the top of the channel, at the release point (1000, 5000).

Figure 8 shows the results of the numerical model which released a cloud of 1000 particles from into a channel flow exhibiting the simple shear dispersion in the y-direction. In the Fig. 8, the ln(σ) versus ln(t) best-fit-line plots are extrapolated to the vertical axis to locate the intercept point. The figure shows that the slopes of the plots are very close to the expected theoretical exponent of 0.5 and 1.5 from Eqs. (17) and (19).
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Figure 8　Simulation geometry: Uniform grid and contour plot of bottom surface topography

Now considering fBm diffusion instead of Brownian motion diffusion, the spreading orthogonal to the mean flow direction would be
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Suppose the spreading of the pollutant combines the linear shear dispersion and fBm diffusion, the spreading along the mean velocity direction can be generalized from Eq. (19) as
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that is
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where C is a constant and Df
 is the fractal diffusion coefficient. Here σy
 ∝ t1＋H
 .

Taking natural logarithms of both sides of the Eq. (22),
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still using α＝0.0003 and Df
 ＝0.01, the intercept of the function given by Eq. (23) on the ln(σy
 ) axis is Ay
 :
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then,
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Hence, C can be obtained. Figure 9 shows the results of fBm particle-tracking simulations of particle clouds spreading in shear flow using H＝0.8. From the plot, we can see that orthogonal to the flow σx
 scales as in Eq. (20). The velocity gradient does not have effect on spreading of the cloud in this direction. The standard deviation of the diffusing cloud in longitudinal direction y scales as σy
 ∝ t1＋H
 , as expected by Eq. (22). Table 1 shows the value H from input to FBM model with both value H and Ay
 obtained from the slopes and intercepts of the logarithmic plots of σy
 against t (plots for H＝0.6, 0.7, 0.9 are not shown in this article). Value C is hence obtained from Eq. (25).
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Figure 9　ln(σx
 ) and ln(σy
 ) versus ln (t) for 0.6≤H≤0.9 in the simple channel, here Df
 (＝D)＝0.01, ∆t＝10, P＝1000, 100 steps

Table 1　Intercept Ay
 and value of H and C obtained from plots (Here only show 0.5 and 0.8)
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Shear dispersion in the coastal bay recirculation zone was investigated in Qu (1999). It was noticed that there is noticeable shear dispersion in the shear zone of the coastal bay model, i. e. between the main flow and bay recirculation zone. The nature of the shear dispersion in the bay was quite complex, producing superdiffusion exponents in excess of 1＋H.

6. The application of the FBM model in soil contaminant spread

Sanderson and Booth (1991), Okubo (1971) and Osborne et al. (1989) have pointed that the diffusion in large water body such as coastal wanters or ocean surface exhibits super-diffusive behaviour and the ocean drifter trajectories posses distinctive fractal dimensions over a large range of scales. According to Sanderson and Booth (1991), the ocean surface drifter trajectories are in the range of 0.71-0.86.

A coastal bay study undertaken by the authors and Mr. A. Nisbet of Glasgow University, UK, with both regular random walk model and authors' FBMINC model used to model diffusion process. It is a coastal bay feature with a main flow from North to South and causes the recirculation zone on the right hand side in the middle (See Figure 11 for the vector plot of the surface layer).

Figure 10 shows the model bay geometry. The grid is uniform with cells 100m by 100m (Figure 10a). The main channel has a depth of 50m over the first 500m then shallows to 10m at the eastern coastline (Figure 10b). A constant inflow of 0.5m/s was set at the northern boundary (Figure 11a). The enlarged velocity plot in the recirculation zone is shown in Figure 11b. The velocities at the boundary are zero. The velocities in the bay area are smaller than those of the main flow region. The bay area contains a recirculating flow field driven by the main flow.
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Figure 10　Simulation geometry: Uniform grid and contour plot of bottom topography

[image: alt]


Figure 11　Velocity vector field for surface layer

The diffusion coefficient was set at D＝0.01m2
 /s, time interval ∆t＝10. For the demonstration purpose, only 400 particles were released in each test case. The same particle tracking method was used as described above. The results from both regular Brownian motion (H＝0.5) and fractional Brownian motion (H＝0.75) are illustrated in Figs. 10 and 11.

Figures 12 and 13 contain the spread of a particle cloud released from grid position (1200, 1700) at time t＝0. In Figure 12, the particles in the cloud follow regular Brownian motion paths (H＝0.5). The subsequent spread of the particle cloud can be followed, in 2 hours increments, until 12 hours after release. The entrapment of the particle cloud within the recirculation bay flow can be seen. Figure 13 contains the particle cloud released from the same location as for Figure 12, but this time the particles follow fractional Brownian paths with H＝0.75. There is a noticeable increase in the spreading rate of the cloud. In addition, owing to the increased spreading of the fBm particle cloud, a noticeable part of it has escaped the bay area and is transported downstream. This proves that the variation in the Hurst exponent can lead to an area of flow field being affected by a contaminant cloud which is not picked up by the regular Brownian motion models.
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Figure 12　Release in a smaller size bay—regular Brownian motion
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Figure 13　Release in a smaller size bay—fractional Brownian motion with H＝0.75

From Figure 13 which is the case of non-Fickian (H＝0.75), one can see that the greater spread of the cloud in the bay area leads to a more even concentration distribution within the bay: as the particles are not confined to the shoreline as was the case with H＝0.5. Thus it can be seen from this case that an increase in the spread of the pollutant in the bay region does not necessarily lead to an increase in contamination of the bay shoreline. One can control Hurst exponent value for different coastal bays. For those large area open bay, higher H values could applied. For those small bays, smaller H value could be used. For the case H＝0.5, particles stay in the bay and need much more time to move out of the bay. This is the reason of the water quality is so bad in semi closed bay and closed lake.

Qu et al. (2003) detailed an attempt to model the behaviour of dye patches in the natural coastal zone. These were undertaken by Northumbrian Water Ltd and supplied to the authors by HR Wallingford. It was encouraging that the authors' fBm simulation results were, in general, close to the observed data comparing to HR Wallingford PLUME-RW traditional Fickian model results.

7. Discussion and future work

The fBm particle tracking model used in this article is only restricted for two-dimension cases. It is easy to extend to three-dimensions. However, not like outer region, in near boundary region, the probability density distributions of longitudinal and vertical fluctuation velocities could be deviated from the normal distribution (Tang and Wang, 2009). The further research on dispersion in boundary region is needed in the particle tracking model. For the saltating particles near a channel bed, Wang et al. (2009) have developed a three-dimensional real-time flow visualization technique in order to measure the inter-particle collision behaviours during the saltating process. The fBm particle tracking model could be applied in simulating the continuous saltating trajectories of several particles by adjusting diffusion coefficient and Hurst exponent. The fBm particle tracking model could be extended to cope with the dispersion of heavy particulate matter with turbulent fluids by inducing additional criteria to govern the marked particles in the model. Based on the research by Huang et al. (2007), FBM model could also be applied to the heavy metal pollutant transportation. The fBm shear dispersion can be used to simulate the sedimental movement with different size of grains (Sarker et al., 2007).

Further theoretical and numerical research concerning fBm shear dispersion especially in natural coastal bay is needed to prove the hypothesis made on the scaling of fBm shear dispersion. More investigation of larger water bodies, such as the open ocean requires to be carried out. In a larger water body, the diffusion coefficient can reach to a very high value and Hurst exponent value could exceed 1, an accelerated FBM model could apply to the cases (Qu et al., 2003). Dispersion caused by the wind, tides and wave currents also needs to be considered. All these aspects can be considered in future work relating to the FBM model.

8. Summary and conclusions

Traditional particle tracking methods employ random walk (Brownian motion) to simulate turbulent diffusion. These traditional models generally assume that particle tracks are neutrally persistent where the particle executes a simple random walk without memory. However, the main drawback of these models is that they consist of statistically independent steps and cannot account for the correlation which exists in the flow field (Feder, 1988). A more accurate fBm is developed by the authors which contains "memory effect" owing to trends of correlated lags. An fBm particle tracking model is developed with diffusion part using fractional Brownian motion model (FBMINC). An attempt was made to produce a theoretical description of fBm spreading in simple shear flow. The predictions of the standard deviation after simple shear effects for both Fickian and non-Fickian diffusions were given. The particle clouds represent soil contaminants were released in an idealised coastal bay. The differences of Fickian (H＝0.5) and non-Fickian (H≠0.5, in this case, H＝0.75) are presented. It was noticed that the increase in the spreading rate of the cloud are much more from non-Fickian than Fickian. With increasing spread of the fBm particle cloud, a noticeable part of it has escaped the bay area and is transported downstream. This proves that the variation in the Hurst exponent can lead to an area of flow field being affected by a contaminant cloud which is not picked up by the regular Brownian motion models. The FBMINC particle tracking model can be used in wide areas for simulating particle dispersions, such as soil contaminant, dye spread, and pollutant dispersion, even it has valuable references for the sediment transportations in fluids. The authors wish this novel and practical fBm particle tracking model could lead to significant insights and motivate other researchers into this important, practical area of research.
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加速分数型布朗运动粒子追踪模型在水面污染扩散中的应用
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一、研究背景

近二十几年来，污染物在河流、河口、沿海以及大海领域的扩散已经成为一个重要的环境污染问题，引起越来越多的关注。随着对污染物的扩散进行预测的迫切需要，大量数学模型涌现出来。近几年，人们越来越关注粒子的追踪模型（particle tracking model）。到目前为止，文献中出现的粒子追踪模型大部分是用随机布朗运动来模拟湍流分布的。这些模型表明，粒子运动是连续不规则的，也就是说，粒子是随机分布的。但一些研究表明，湍流中粒子运动是连续的［1
 -3
 ］
 ，其中粒子的拉格朗日记忆对预测粒子的运动方向起着重要的作用。为模拟粒子的连续运动，有必要利用分形统计的知识。曼德尔布罗特（Mandelbrot）
［4］

 则发现分数型布朗运动（fractional Brownian motion）是一种可以模拟连续运动的随机分形函数。

本文通过分析布朗运动、分数型布朗运动以及加速分数型布朗运动（Accelerated Brownian motion），进一步研究了fBm粒子追踪模型及其在沿海水域中的应用。

二、模型介绍

1．布朗运动

布朗运动B（t）可以表示成连续的随机函数，即

[image: alt]


随机变量W（s）是高斯白噪声。根据中心极限定理，随机散步可在一段时间以后逐渐趋于布朗运动［5
 -6
 ］
 ，然而，随机散步技术有一根本的缺点，就是只要每一步在统计上相互独立，那么无论随机散步采取了哪种形式的概率分布，只能产生Fickian扩散。因而，如果在粒子追踪模型中使用大量粒子，那么粒子的标准差将等于释放后时间的平方根：
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式中D为扩散系数，单位为m2
 /s。

但自然环境中的扩散一般是non-Fickian的，因此作者推出了一个non-Fickian扩散的粒子追踪模型。

2．分数型布朗运动

分数型布朗运动（fractional Brownian motion，简称fBm）是由曼德尔布罗特（Mandelbrot）首先提出来的
［7］

 ，它具有自相似性、非平稳性两个重要性质，是许多自然现象和社会现象的内在特性。fBm的生成并不像布朗运功的生成那么简单，因为一个fBm轨迹并不像布朗运动那样每一步在统计上互相独立，而是每一点取决于先于那一点的整个的轨迹，换句话说，fBm有相应的长期记忆，曼德尔布罗特等⑦
 将零均值的随机函数BH
 （t）定义为一个可变均值BH
 （t），其中过去的增量由核心[image: alt]
 来确定，
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式中：Γ（x）是伽玛函数，H是Hurst指数。

式（3）表明：在时刻t的随机函数值取决于零均值及单位变量的高斯随机过程B（t）在时刻s＜t前面的所有增量dB（s）。

作者研究出了一个更实际的分数型布朗运动模型
［6］
 ［9］
 ［11］

 ，这个模型是在曼德尔布罗特的初始定义基础上发展的，定义
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式（4）和式（5）就是作者改进的两步fBm模型。式中ti
 ＝∆t×i，其中∆t为单位时间间隔。M为fBm的有限记忆参数，R（i）为取样于高斯概率离散分布的随机步骤。

Osborn
［1］

 及Sanderson等
［3］

 发现，海面上的卫星记载的浮标轨迹可描述为具有non-Fickian特性的分数型布朗运动。海面上的浮标卫星轨道的Hurst指数H均值约为0.8
［3］

 。当H＝0.5为布朗运动（Fickian）；（2）当H＞0.5为超扩散fBm（non-Fickian，就像海平面上观察到的浮标的轨道）；当H＜0.5为低扩散fBm（退化的non-Fickian）。图1显示了二维平面的布朗运动（H＝0.5）和分数型布朗运动（H＝0.8）（退化的non-Fickian没有表示出来）。
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图1　二维的分数型布朗运动（左：H＝0.5：Fickian；右：H＝0.8：non-Fickian）

fBm粒子分布云的标准偏差遵循以下关系：
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扩散系数Df
 是常数。

fBm扩散系数Df
 与其相对应的Fickian中D的关系为：（2Df
 t）H
 ＝（2Dt）1/2
 因此，

[image: alt]


已有分析表明，在小范围的沿海区域，一般扩散系数D是在0.01到0.02m2
 /s范围内取值
［12］

 。

3．加速分数型布朗运动模型（Accelerated fractional Brownian motion，简称AfBm）

一些科学家发现，在大面积海洋表面通过卫星追踪的浮标显示的湍流轨迹，其相互间的相对速度不再是平稳的，而是加速的
［3］
 ［10］

 。也就是说，（6）式中fBm所遵循的Hurst指数H在（0，1）之间已不再适用。这时就需要考虑加速分数型布朗运动。

若用Xp
 （t）表示一对漂流物在时间t的相对位移，Hurst指数为H，则在重新调节时间t后，沿着轨道的相对速度将不再是平稳，而是加速。Sanderson等
［3］

 指出标准差的平方[image: alt]
 将与t2H＋B
 成正比，即

[image: alt]


其中常数B≥0，若B＝0，就变为标准的分数型布朗运动。

加速分数型布朗运动模型就可以用前面介绍的fBm的模型通过重新调整时间t而得到。

令fBm模型中所需的重测时间t′＝tγ
 ，其中对加速fBm来说，γ＞1，根据fBm的初始定义，
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因为
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由（8）和（10）式得：[image: alt]


因此，
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因而根据AfBm模型，时间步数及记忆参数（M）及时间间隔∆t都可根据式（11）重新设置。

令
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则B＝2×（Hη
 －H）。对AfBm模型来说，粒子云的扩散随时间而变化，
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对两边取对数，因此，ln（ση
 ）／ln（t）的斜率为表面Hurst指数（Apparent Hurst Exponent）Hη
 ，截段为[image: alt]
 因而，
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对AfBm模型来说，扩散系数Df
 需根据调整时间而变化成新的值[image: alt]
 与[image: alt]
 间的关系是
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现在就可以用AfBm模型模拟流体的扩散，并且对Hη
 值就没有范围的限制了。这里，表面Hurst指数Hη
 可以大于1。从而一个加速分数型（AfBm）模型就可以建立了。通过使用这种模型，可用调整了的Hη
 来模拟沿海或更大海域污染物的扩散或传播。

4．fBm粒子追踪模型（fBm Particle Tracking Model）

由于沿海或海洋中污染物的扩散主要包含对流和扩散这两种运动，因此本文忽略了其他的扩散运动。一群代表污染物的不规则粒子在时刻t＝0时从平面内一点释放出去，粒子云就以下面的方式沿网格点作对流。流体中污染物以对流和扩散两种形式同时结合作运动，粒子在i时的位移为此时间段上对流部分加上扩散部分（扩散部分也就是fBm增量）：
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在x及y方向上每一步的扩散位移为∆BHx
 （i）及∆BHy
 （i），也就是由式（4）定义的两个独立的fBm的增量。当碰到边界物时，在边界上会产生反射轨迹，整个fBm轨迹的正负号也必须因反射而改变。这样既能产生反射轨迹，又不破坏fBm的连续性，从而记忆不会中断。

三、来自英国沿海海域的染料物扩散的数据及模拟结果

在1995年和1996年间，诺森比亚海洋研究所在诺森比亚海岸附近进行了一些染料释放，英国在诺森比亚的代表——HR Wallingford水利公司的水质模型，PLUME-RW，被用来测试一些实际的被观察到的染料扩散。这一模型利用了随机散步技术模拟湍流扩散，是一个Fickian粒子追踪模型，在这一模型中，粒子在三维空间中运动，这需要从二维速度场计算出三维速度场，因为所提供的实际数据是二维的速度在平均深度上的有限元的水流模型。它是通过深度的对数流速推测而得的。含关于染料扩散测试及HR模拟结果的信息数据，都以轮廓水平浓度集的形式出现。这两种数据在用新的加速fBm模型进行染料扩散的模拟前就已经进行了分析。

1995年8月及1996年10月，在诺森比亚海岸附近进行了数次的染料释放，在某一特定地点进行一些染料释放时，HR的模型最初是用来模拟一次染料释放，然后将模拟的结果与染料集中观测的数据作比较，调整校准参数再进行一次模拟，不断重复这个过程直到尽可能近似地得到校准目标，紧接着通过用相同参数建立模型来模拟剩下的染料扩散以进行核查，以保证有较好的结果。这里作者只选取其中的两个地方（Seaham和Cambois）的染料块的释放作模拟。图2是实际观察到的数据，图3是HR用Fickian扩散模型模拟出来的数据，图中的两个染料块的集合是B和D，它们分别为：

B：—Seaham长波，中潮；图2（左，观测到的数据），图3（左，HR模拟的结果）

D：—Cambois长波，低潮；图2（右，观测到的数据），图3（右，HR模拟的结果）
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图2　实际观察到的诺森比亚水利公司提供的染料浓度轮廓水平图
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图3　英国HR Wallingford Fickian模型的模拟结果

比较图2、图3可以看出，有些观测到的染料的分布的特性没有在模型中显示出来，这是因为在观测时的实际条件的复杂性，二维模型很难再塑出来。

诺森比亚水利公司得到的数据集是由5个浓度轮廓水平值组成，它们是c＝0.01，0.1，1，10，100μg/L，图3只显示了从c＝0.1到c＝10μg/L的浓度，随着染料块的扩散，最大浓度轮廓水平从100减至10或1μg/L。

基于诺森比亚的水利公司提供的数据，作者对它们的染料轮廓水平做了研究，画出了相应的网格，得到了空间的浓度的算法。计算出沿着4个方向的每一个扩散浓度标准差：σx
 ，σy
 ，σu
 （u方向也是染料块的均值的平流方向）：σv
 （v向量方向：垂直于u方向）。此外，算出σv
 在射线γ方向上的标准差σr
 。

扩散块的表面的Hurst指数值分别按（12）计算。

图4显示了用AfBm模型模拟的两个染料块（B和D）的浓度轮廓水平。图中的虚线表示那一段是在同一个坐标参数里。比较图4（作者模拟的染料块）和图2（观测的染料块）有一些明显的差别。作者采取了两种方式比较原始的观测数据和模拟结果：一是比较他们的标准差（见表1），另一个是比较浓度的轮廓水平面积（表2）。Okubo①
 指出，标准差（或方差）是刻画扩散最稳定的参数之一。他并指出，由于染料块的浓度也许不是测量扩散的最好的方法，因为染料的最高浓度很敏感，因而产生不确定因素。所以，表1比表2更有说服力些。
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图4　作者用fBm粒子追踪模型模拟的结果

表1　u，v方向的标准差的比较
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表2　每个浓度的轮廓水平内部的面积的比较
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这里只列出了染料块B的比较结果。表1比较了观测数集与相应的模拟粒子云在向量u，v方向上的标准差，表中已计算出了模拟和实际数据的两个标准差之比（在0.4～1.85范围内，和1相差不是太大）。考虑到了分散块整个时间范围内使用的是统一的H值，这是一个不错的结果。

为了比较原来的HR的Fickian模型，先计算每一个轮廓水平里的浓度面积。表2列出了原始观测数据，Fickian模型结果及新的non-Fickian模型的结果。可以看到，用作者的AfBm的模型模拟的一些结果更接近于观测数据，也就是比率更接近1。然而，作者的某些结果没有Fickian模型结果好，比如染料块D。作者的某些模拟结果高估了低浓度的水平，而Fickian模型的某些模拟结果低估了相同的浓度水平。至于Fickian或non-Fickian是否更接近于观测结果，则很难给出一个一般的结论。

将作者的结果与Fickian模型的结果作比较不太容易的另一个原因在于应用于Fickian与non-Fickian模型的方法的模拟方法是不同的。因而，两者模拟的结果的差异不可避免。不管怎样，表1和表2确实表明了观测数据与作者的模拟结果还是比较接近的。

四、讨论和总结

fBm粒子追踪模型最引人注目的优点是它们的灵活性。Hurst指数Hη
 可控制扩散云的指数增长范围，而传统的粒子追踪法没有这种灵活性。许多研究人员发现fBm粒子轨迹模型是比较接近现实的。③
 也就是说，一个non-Fickian扩散模型可生成一个更自然的散布云。这正是开发fBm追踪模型的动机。

fBm模型可推广到许多实际应用中去。例如，长范围DNA序列的相互关系可看作是一个静态fBm的例子，⑬
 fBm可用在医学上的图像处理，比如，肝脏的边界，用电脑辅助诊断肝癌。⑭
 Shurtz⑮
 用fBm模型来分析风险。近来很流行的fBm的应用就是股票市场的推测和在金融界的很多应用。⑯⑰
 另外，fBm还可应用在激光雷达目标检测⑱
 和海杂波上。⑲


本文介绍了一种新的fBm粒子追踪模型，这种模型通过运用一种新的AfBm模型来观测沿海水域中粒子云的扩散，从而成功地模拟non-Fickian扩散。Hurst指数H是决定污染块的浓度和未来位置的一个重要因素。通过引入AfBm，可以对Hurst指数大于1的超扩散情形进行模拟。作者通过诺森比亚的水利公司提供的观测数据并经过处理后，用AfBm粒子追踪模型进行模拟，进而作出了染料块的浓度轮廓水平图。可以看出，作者模拟的染料块比初始观测的染料块扩散得更大一些，而传统的Fickian模型则表现相反的趋势（见表2）。同时本文模型的计算结果比较接近于观测数据，效果较好。

AfBm粒子追踪模型是对流和扩散过程的结合。本文的贡献在于能用更广范围的AfBm而不是传统的布朗运动来建立大范围的扩散模型。此外，对于一个测量好的染料块浓度来说（即使不知道速度场），也能估计出它的Hurst指数H。因此，通过AfBm粒子追踪技术可模拟沿海或海面污染物的扩散。如果通过附加另外的一些条件来处理模型中的粒子，AfBm模型则可进一步扩展到更广的范围。比如处理湍流中重微粒物质的扩散，建立车辆废气中微粒的运输等模型。空间的粒子轨道的Hurst指数有时会很大，有时会很小（小于0.5③
 ），其全部含意还有待弄清楚，需要进一步的理论上的研究和实际探索。
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Fractional Brownian Motion (H =0.75)
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Brownian Motion (H =0.5)
Basin type; Uniform solped bay

Release Point: 1200, 1700, 1475 Number of particles at release = 400
Wind; 0 m/s Flow conditions: steady inflow of 0.5 m/s
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Brownian Motion (H=0.5)
Basin type: Uniform solped bay
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¢— —calculate standard deviations in x, y directions and r component
T
sigr1 (0, 0) = 0.0
siga(0, 0) = 0.0
do70j=0,n-1
do 80
sigrl(i+1, ) = sigrlGi. ) +con(i, j) » area* (rcCi, ) * %2)
sigai+1, ) = sigaCi. )+ conCi, j) * area
80 continue
sigrl (0, j+1) = sigrl(m, j)
siga0, j+1) = siga(m, j)

=0, m-1

70 continue

sigr = sqrt(sigrl(m, n—1)/siga(m, n—1))
c !'!1 Standard deviation in radius r component
¢

sigx1(0,0) = 0.0
siga(0,0) = 0.0
do110j = 0.n-1
do120i = 0, m—1
sigxl(i+1, ) = sigxl(i, j) +coni, j) * area * (xcc(i, j) * *2)
120 continue
sigel(0, j+1) = sigxl(m, )
110 continue
sigx = sqrt(sigxl (m. n—1)/siga(m. n—1)) 111 Standard deviation in
x direction
sigy1(0, 0) = 0.0
do130j=0,n-1
do140i = 0, m—1
sigyl(i+1, ) = sigyl(i, )) +con, j) * area* (ycc(i, j) * % 2)
140 continue
sigy1(0, j+1) = sigyl(m, )
130 continue
sigy = sqrt(sigyl (m, n— 1)/siga(m. n~ 1)) 11! Standard deviation in
y direction
c
print = . 'sigr. sigx. sigy=", sigr, sigx. sigy
print * ,'mass="', siga(m, n—1) 11 Mass in this patch
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continue

time(i) = real(i) = dt

varl(i) = varsuml/real(nparticle)
sigl(i) = varl(i) * 0.5
continue
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¢— —output for the concentration and standard deviations
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c

103
210
200

104

open(20, file = 'srbbl.dat") 111 concentration output
do 200§ = 0.n-1
do210i =0, m-1
write(20, 103) xc(i, j). ye(i, ), con(i, j)
format(3f12.4)
continue
continue

open(32, file = 'srsigl. dat")

!11 standard deviations output for x, y directions and r component
write(32.104) sigx. sigy. sigr
format(3f12.4)

stop
end
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do 1201 = 1. nstep
tracesum = 0.0
do 130 p = 1, nparticle
tracesum = tracesum + bh(i, p)
130 continue
avetrace = tracesum/real(nparticle)
varsum = 0.0
do 140 p = 1, nparticle
varsum = varsum+ (bh(i, p) — avetrace) * * 2
140 continue
var(i) = varsum/real(nparticle)
sig(i) = var(i) * ¥0.5
qh() = sig) * * (1/h)
120 continue





OEBPS/Image00390.jpg
Yis1 = Yier —2X (yiy — 2 825) an

'
Xis1= Xin





OEBPS/Image00632.jpg
CHRAXKRARKXXXKAEXRXARKXXXRKXARKKK AKX
¢ — —read in data from data files— —
CHRXFHERHKHEHELENHHEKHRKHHR KKK RKEE AR
print * , 'input grid interval in x direction — dx.'
read * , dx
print . 'input grid interval in y direction ~ dy:'
read * ., dy
print * , 'input number of grid in x direction —

read %, m
print * , 'input 'input number of grid in x direction —

read * ., n

area = dx x dy 111 Area for each grid box
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do 901 = 1, nstep

tracesuml = 0.0

do 100 p = 1. nparticle
tracesuml = tracesuml + bhs(i, p)

100 continue

avetracel = tracesuml/real(nparticle)

varsuml = 0.0

do 110 p = 1, nparticle
varsuml = varsuml + (bhs(i, p) — avetracel) % * 2
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c— —open the output data file from program srbl. for

*

open(17, file = 'srbl.dat', status = 'old")
do10j = 0.n-1 111 log(c) function from srbl. for output data file
do20i =0, m-1
read(17. 101) aout(i. j)» bout(i. j). rout(i. ). geg(i. j)
101 format(4f14.8)
20 continue
10 continue
open(19. file = 'srbeentl.dat)
do30j=0.,n-1 11 grid centres from srbl. for output file
do40i =0, m-1
read(19.102) xe(i. p. yelis . xeelis . yeeGis ). geglis j)
102 format(5f12.4)

40 continue
30 continue

¢~ calculate the concentration from the concentration logari
c— set the peak concentration according to Table 5—1
CXAHRKH KRN P
do50j=0.n-1
do60i =0, m—-1
re(i, ) = sqrt(xee(is ) * * 2+yce(i, j) * x2)
loge(i. ) = aout(i. ) + bout(i, j) * re(i, j)
con(i» j) = 10 % * loge(i. j)
if Ccon(i. j) .ge. 912.0)then  !!! Peak concentration setting from Table 51
con(i, j) = 912
end if
60 continue
50 continue

X %)
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¢~ — calculate standard deviation of fBm increment sigl (i)

33033666060 0663606060600 0660 3

100

110

90

do90i = 1, nstep
tracesuml = 0.0
do 100 p = 1. nparticle
tracesuml = tracesuml + bhs(i. p)
continue
avetracel = tracesuml/real(nparticle)
varsuml = 0.0
do 110 p = 1, nparticle
varsuml = varsuml + (bhs(i, p) —avetracel) ¥ x 2
continue
time(i) = real(i) «dt
varl(i) = varsuml/real(nparticle)
sigl(i) = varl(i) « % 0.5
continue
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¢ = — calculate the velocity in u direction
¢~ following calculation is for patch B1. The way of calculating the velocity direction
¢ — for patch B2. B3. B4 and B5 are different from Bl. (see section 5.3.4).
€ HHH I HHR I KK I I K T I I HIII K IN I I I I I HI K TR KA XN KK
dxct = xct2 - xetl
dyct = yet2 = yetl
afa = atan(dyct/dxct)
print x .'afa = ‘. afa
© A H R HA K IR HH KKK I NI KR HH XK
¢~ — calculate the new co —ordinate in u. v direction with
¢c— — (xctl, yctl) as a new centre
© 3R IR KN KKK KKK KKK X KK N
do40j=0.n-1
do50i=0.m—-1
xee(is ) = xe(, j) —xctl
yee(is ) = ye(i. ) —yetl
uc(i, ) = xce(i, j) * cos(afa) + yee(i. j) * sin(afa)
ve(i.)) = —xeelis j) * sin(afa) +yce(i. j) * cos(afa)
50 continue
A1) continue
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¢~ —calculate standard deviation in velocity u, v direction; usig, vsig
R L
sigu1(0,0) = 0.0
siga(0,0) = 0.0
do60j=0,n-1
do70i =0, m-1
sigul(i+1, ) = sigul(i, j) +con(i, j) * area  (ucCi, ) * % 2)
siga(i+1, ) = siga(i, ) +con(i, j) * area
70 continue
sigul (0, j+1) = sigul(m. j)
siga(0, j+1) = siga(m, )
60 continue
sigu = sqrt(sigul (m, n—1)/siga(m, n—1)) !!! Standard deviation in
u direction

sigv1(0. 00 = 0.0
do80j=0,n-1
do90i =0, m-1
sigvl(i+1, ) = sigvl(i, j) +con(i, j) * area* (vc(i, ) * #2)
90 continue
sigv1(0. j+1) =sigvl(m, })
80 continue
sigy = sqrt(sigvl(m. n—1)/siga(m. n=1)) 11! Standard deviation in v
direction

o

print * ., 'sigu. sigv=". sigu. sigv





OEBPS/Image00394.jpg
iyl
(x|
L





OEBPS/Image00636.jpg
w0 W

This program is to calculate the standard deviations of the cloud in
velocity u, v direction using srbbl. for output data file srbbl. dat.
This is just an example for patch Bl.

implicit none

integer i, j» m, n, dx, dy, area

real con, afa

real x 8 dxct. dyct. sigul. siga. sigvl. sigu. sigv

real # 8 xctl, yetl. Xct2, yct2. uc. ve. XC» yC» XcCs yoo

parameter(xctl = 445467.5. yctl = 547310.5) !!! centriod for patch Bl
parameter(xct2 = 445618.5, yct2 = 547291.5) !1! centroid for patch B2
dimension xc(0:1000, 0:1000), yc(0:1000. 0:1000)

dimension uc(0:1000, 0:1000), ve(0:1000. 0:1000), con(0:1000, 0:1000)
dimension sigul (0: 1000, 0:1000), siga(0: 1000, 0:1000), sigvl (0: 1000,
0:1000)

dimension xcc(0:1000, 0:1000) . yec(0:1000, 0:1000)
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open(9., file = 'fbminc. dat’) ! a cloud of fBm traces using FBMINC
model
do 150 p = 1, np
write(9,102) (i, bh(i, p), i = 1, nstep)
150  continue
c
open(10, file = 'fbmsig. dat") 111 fBm in 1D and (sig(i)) * * (1/h)
write(10,101) (time(i) , bh(i, 1), gh(i), i = 0, nstep. nout)

open(11,file = 'cpuinc. dat") 111 CPU time for fBm generation
write(11.102) (p, end(p) —start, p = 1, nparticle)
101 format (3f12.6)
102 format (I5. f12.6)
stop
end
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¢ — —input date and read in data from srbbl. dat

CXAAAARREA AR EX R AR AR KKK LR AR AARAERKE

102
30
20

print = .'input the grid interval in x, y direcion — dx. dy:'

read * . dx, dy

print * ,'input the number of grid box in both x, y direction: m. n ="'
read # ., m. n

open(19. file = 'srbbl. dat', status = 'old') 11! Open the concentration data file
!'11 from the output file of srbbl. for

do20j=0,n-1
do30i=0,m~-1
read (19, 102) xc(i.j)+ ye(i,j). con(i.j)
format(3f12.4)
continue
continue

area = dx*dy 1! grid area
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function gasdev(idum)
integer idum, iset
real gasdev, fac, gset, rsq, vl, v2, random

save iset, gset
data iset/0/
if (iset .eq. 0) then

else

endif

return
end

vl = 2. % random(idum) — 1.

v2 = 2. * random(idum) — 1.

rsq = V% %2+Vv2% %2

if(rsq .ge. 1. .or. rsq .eq. 0.) goto 1
fac = sqrt( —2. = log(rsq)/rsq)

gset = vl fac

gasdev = v2 % fac

iset = 1

gasdev = gset
iset = 0
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¢ ——— calculate coefficients
CRERKEKERERHERE KRR RHRKR

rx = xsum* % 2—d % x2sum

ry = ysum % % 2—d« y2sum

b = (xsum * ysum — d * xysum) /rx

a = (ysum—bx xsum)/d

ds = (xsum * ysum— d * xysum) /sqrt(rx * ry)

return
end
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btempl = (G—p* *(h—-0.5 -G
bhl = bhl + btempl * r(j+m)
50 continue
bh2 = r(i—-1+m)
bhs(i, p) = (bhl+bh2)/(gamma)
time(i) = real(i) * dt

40 continue
else 11! the following faster loop is used only if h = 0.5
c 11 i.e. reglar brownian motion

do60i = 1, nstep
bhs(i, p) = r(i—1+m)
time(i) = real(i) * dt
60 continue
end if

D #* % (h=0.5)
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‘This program is to (1) calculate the concentration in each grid using the output
data files from previous program: srbl. for. (2) calculate the standard deviation

in x. y directions and the radius r component.
This is only an example for the patch Bl.

implicit none

integer i, j» dx, dy, m, n, area

real con, geg. loge

real * 8 re, sigl, sigyl, sigrl, siga

real 8 aout, bout, rout, sigr, sigx, sigy, Xc. yc, xcc, ycc
dimension con(0:1000, 0:1000) + rc(0:1000, 0:1000)
dimension xc(0:1000, 0:1000) . yc(0:1000, 0:1000)
dimension loge(0:1000, 0:1000), siga(0:1000, 0:1000)
dimension aout(0:1000, 0:1000) . bout(0:1000, 0:1000)
dimension rout(0:1000, 0:1000) , geg(0:1000, 0:1000)
dimension sigr1(0:1000, 0:1000) . sigx1(0:1000. 0:1000)
dimension sigy1(0:1000, 0:1000)

1000, 0:1000), yee(0:1000, 0:1000)

dimension xce(
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bh(0. p) = 0
do 70 i = 1, nstep

do80j=1,1i
bh(j. p) = bh(j—1, p) + bhs(j, p)
80 continue
70  continue
call clock@(end(p))  !!! Stop CPU time recording

print * ,'nstep, memory = ', nstep, m
print % ,'% % %, cputime used = % x %', end(p) — start
20 continue
end if
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¢ ———generate a cloud of fbm in 2D———
CHRHXKIKHHE LKL AR AKHKEAKAKEKE XK AKX AR
sigmap = (2xdxdt) = x h
print * ,'sigma=", sigmap
do 20 p = 1. nparticle
print * , 'particle number ="', p,' out of', nparticle
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c calculate white noises r(k)
e
do 30 k = 0, nstep+m
if (¢ .eq. 1) then
rand = random()
r(k) = sigmap * (2.0 * rand — 1. 0)/abs (2. 0 * rand — 1. 0)
11! Delta
else if (¢ .eq. 2) then
rand = random()

r(k) = 1.732 % sigmap * (2.0 % rand—1.0) !!! Constant
else if (¢ .eq. 3) then
r(k) = gasdev(idum) * sigmap 111 Gaussian

end if
30 continue
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7)| =1+ a1x+a,x* +a;x* +a,x" +ax® (21)
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¢~ — generate fBm; bh(i. p). by adding up fBm increment bhs(i, p)

T

bh0. p) = 0
do70i = 1, nstep
do80j=1,i
bh(j, p) = bh(j~1. p) + bhs(j. p)
80 continue

70 continue
call clock@ (end(p)) !!! Stop CPU recording
print * ,'nstep, memory = ', nstep, m
print * ,'% % %, cputime used = * x = ', end(p) — start
print *,' !
20 continue
end if
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20 continue
bhs(0, p) = 0.0
do 40 i = 1, nstep
ifCh .1t. 0.5 .or. h.gt. 0.5) then !!! fBm
bhl = 0.0
do50j=i-m,i-2
btempl = (i—j * *(h—0.5) —({—j—1) % x (h—0.5)
bhl = bhl+ btempl * r(j+m)
50 continue
bh2 = r(i—1+m)
bhs(i,p) = (bhl+ bh2)/(gamma)
else 11! the following faster loop is used only if h = 0.5
c 11 i.e. reglar brownian motion
bhs(i, p) = r(i—1+m)
end if
40  continue
10 continue
end if
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¢~ — calculate standard deviation of fBm's: sig(i) and sig(i) * * (1/h)
© 3936336 KT 66 K6 X666 060 K6 X6
do120i = 1. nstep
tracesum = 0.0
do130 p = 1. nparticle
tracesum = tracesum+ bh(i, p)
130 continue
avetrace = tracesum/real(nparticle)
varsum = 0.0
do 140 p = 1, nparticle
varsum = varsum+ (bh(i, p) —avetrace) x » 2
140 continue
var(i) = varsum/real(nparticle)
sig( = var(i) x 0.5
gqhb(i) = sig(i) * * (1/¢h+0.5% b))

time(i) = C(real(i) » dt) * % ((2* h)/(2* h+ b)) !!! notice this is
the difference
c 11 between the FBMINC and AFBM model

logghb(i) = log(sig(i))
logt(i) = log(time(i))
120 continue
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70
60
c

do 60 p = 1, nparticle
do 70 i = 0. nstep

bhx(i, p) = bhs(i. p)
bhy(i, p) = bhs(i, p+ nparticle)

continue
continue

do 80 p = 1, nparticle

xt(0. p)
yt(0, p)
signx(p)

1

xp
yp
1.0

111 start from the rel

11 fBm in x direction
11 fBm in y direction
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C *

KRR X KK KR X KK KX KK KX KX XX XXX XXX XXX

c——- generate a cloud of fbm in 2D —-—

C K06 KK KKK KHH KKK HK

30

sigmap = (2xdx*dt) * xh
print * ,'sigma ="', sigmap

call clock@ (start)
do20p =1, npamcle
print x,'p =", p
seed = real(2 = sd * nparticle) + real(p)
I11 reset the random seeds for each particle
call set_seed@ (seed)
do 30 k = 0. nsteptm 11! White noise generation
if (¢ .eq. 1) then
rand = random()
(k) =
else if (¢ .eq. 2) then
rand = random()
r(k) = 1.732 % sigmap * (2.0 % rand —1.0)
else if (¢ .eq. 3) then
r(k) = gasdev(idum) * sigmap
end if
continue

sigmap (2.0 x rand — 1.0) /abs(2.0 * rand ~ 1.0)

* %





OEBPS/Image00885.jpg
gamma function generation ———

sr=k=0ub
gamma = 1+al *s+a2x (5% x2) +a3x (sx x3) +adx (5% x4) +a5% (s% x5)
print # ,'h, gamma = ', h, gamma

sigmap=(2x*d*dt) * *h
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¢~ calculate step fBm jump: bhs(i. p)
C RHARERH R KR HHHHH XK R HHNH KA KKK E XK
bhs(0. p) = 0.0
ifCh .1t. 0.5 .or. h .gt. 0.5) then
do40i = 1. nstep
bhl = 0.0
do50j=i-m,i-2
btempl = (i—}) % % (h=0.5)~ (i—j—1) % * (h—0.5)
bh1 = bhl + btempl  r(j+m)
50 continue
bhz = r(i—=1+m)
bhsCi, p) = (bhl+bh2)/(gamma)
40 continue
else 111 the following faster loop is used only if h=0.5
c 11 i.e. reglar Brownian motion
do60i = 1. nstep
bhs(i, p) = ri—1+m)
60 continue
end if
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— white noises r(k) generation
do 10 p = 1, 2 x nparticle
do20 k = 0, m+nstep
if (¢ .eq. 1) then 11 Delta distribution
rand = random()
r(k) = sigmap* (2.0 % rand—1.0)/abs(2.0 * rand—1.0)
else if (¢ .eq. 2) then  !1! Constant distribution
rand = random()
r(k) = 1.732 # sigmap * (2.0 % rand —1.0)
else if (¢ .eq. 3) then 11 Gaussian distribution
r(k) = gasdev(idum) * sigmap
end if
20 continue
bhs(0, p) = 0.0
do40i = 1. nstep
ifCh .It. 0.5 .or. h.gt. 0.5) then !!! fBm
bhl = 0.0
do50j=i-m,i-2
btempl = (i—j) % * (h=0.5) = (i—j—1) % x (h—0.5)
bhl = bh1+ btempl * r(j+m)
50 continue
bhZ = r(i-1+m)
bhs(i,p) = (bhl+bh2)/(gamma)
else 11! the following faster loop is used only if h = 0.5
c 11 i.e. reglar brownian motion
bhs(i, p) = r(i—1+m)

end if
40 continue
10 continue
end if
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WT(k,p) = o, X Gasdev (25)
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2XR-1
P = o, X T
WT(k,p) = oy, T2XR 1] (23)
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¢ ——-—output accelarated fBm ——-
CREXKR KR KEKKRIHHK KKK KA KKK

open (34, file = 'afbm. dat') 111 Accelerated fBm particle cloud

in nstep
write(34. 101) (bh(nstep. p). p = 1. nparticle)
101 format(f14.4)
stop

end
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signy(p) = 1.0

do 90 i = 0, nstep
call getuv(p, i, Xt, yt, X, y» U, v, uu, vv)
ux(i, p) = uu ! get velocity from the subroutine
uy(i, p) = v
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WT(k, p) =1.732 X 0,, X(2XR-1) (24)
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print * ,'input xp, yp:'
read * , Xp, yp
if (xp .gt. 1275) then
if (yp .It. 2025 .or. yp .gt. 2825) then
print * , 'the data point is invalid. please input again. '
stop
end if
else if (xp .1t. 0 .or. yp .It. 0) then
print * ., 'no negative data point. please input again.'
stop
else if (xp .gt. 2000 .or. yp .gt. 4775) then
print * ,'the data point is out of the range. input again.'
stop
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else

This program is an accelerated fBm generation using the AFBM model.
Different from the FBMINC mode: the time is rescaled and other
coefficients care also rescaled accordingly. Gaussian random number
generation is using

the Box — Muller method, see program fbminc. for

implicit none

integer ¢. i, j,» p» k, ml, m, nstepl. nstep, nparticle, sd

double precision al. a2, a3, a4, a5

parameter(al = —0.5748646, a2 = 0.9512363, a3 = —0.6998588)
parameter(ad = 0.4245549, a5 = —0.1010678)

real gamma, random. rand, r, idum. h, x. dt. dtl, bhl. bh2, bhs, btempl. b
real d1. d. sigmap. time. logt. logghb. end. start. gasdev

real tracesum, avetrace, varsum, var, sig. ghb, bh

real * 8 seed

dimension r(0:200000) , bhs(0:3000, 0:500), time(0:200000) , sig(0:200000)
dimension var(0:200000) , bh(0:3000, 0:500) . ghb(0:200000)

dimension logt(0:200000) , logghb(0:200000) . end(0:200000)

print « ,'enter choices;1—delta, 2~ const, 3— gauss. '
read * , c
if (c .gt. 3) then

print * , 'sorry, please start again.'

stop

print % . 'enter hurst exponant value value h:'
read %, h

print * , 'enter number of step:'

read * . nstepl

print * , 'enter number of particles:'

read « . nparticle

print % , 'enter memory required m1>> = nstep: '
read % , ml

print . 'enter time interval dtl;'

read *, dtl

print * .'enter accelerated exponant value b <C1.'
read *, b

print x .'enter diffusion coefficient d1:'

read * , dl

print * .'enter random seed:'

read * , sd
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open(50, file= "tecvec4. dat', status='old")
do5i=0,57
do15i = 0, 40
read(50, 101) x(), y(j . z, uG, P, vG, P wy qG, s gGs )
15 continue
5 continue
101 format(lx, f8.3, 3x, f8.3, 3x, I, 3x, f6.3, 3x, 6.3, 4x, 5.3, 4x, 5.3,
4x. 5.3)
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¢~ — the followings are rescaled coefficients
CHRHHHEAERERAE KRR HEEEEARAN KRS R SRR

nstep = int(nstepl % * (1+b/(2 % )

dt = dtl* % (1+b/(2%h))

m = int(ml % % (1+b/(2%h)))

d = (2% % (b/2%h)) % (dl % x (1+b/2%h)))

print % ,'nstep, m, d = ', nstep, m, d
CHERKRHENERHRHIERKRKAKERKEKK XK RK L KR

¢ ——— generate gamma function ———

CREXKRKEREARRIEHKAXAKEREARA XA L RS
x=h-0.5
gamma = 1+al*x+a2* (x* *2)tad* (x* *3) +ad* (x* x4) +ab*
(x* %5)

print ¥ ,'h. gamma h. gamma
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print * . 'enter choice:1 = delta, 2 = const, 3 = gauss

read %, ¢
if (¢ .gt. 3) then
print * ,'sorry, please re — enter your choice."
stop
else
amma function generation ———

s=h=-0.5
gamma = 1+alxs+a2x (s* x2) +ad* (s* *3) +ad * (sx x4) +a5x (s x5)

="', h, gamma

print * ,'h, gamma
sigmap=(2*d*dt) * xh
¢ ——— white noises r(k) generation
do 10 p = 1, 2 * nparticle
do 20 k = 0, m+ nstep

if (¢ .eq. 1) then
rand = randomQ)
r(k) = sigmap % (2.0 % rand —1.0)/abs(2.0 * rand - 1.0)

else if (¢ .eq. 2) then 111 Constant distribution
rand = random()

r(k) = 1.732 * sigmap * (2.0 x rand—1.0)
11! Gaussian distribution

111 Delta distribution

else if (¢ .eq. 3) then
r(k) = gasdev(idum) * sigmap

end if
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¢ ———input release point Xp,yp ———
¢———check if the point is in the regoin
€ RHHRH R H A H KK HHHHEKH XK HNE KKK HNE R
print =, 'input xp, yp:'
read # . xp, yp
if (xp .gt. 1275) then
if (yp .It. 2025 .or. yp .gt. 2825) then
print x ., 'the data point is invalid. please input again.'
stop
end if
else if (xp .1t. 0 .or. yp .1t. 0) then
print * ,'no negative data point. please input again. '
stop
else if (xp .gt. 2000 .or. yp .gt. 4775) then
print * ,'the data point is out of the range. input again.'
stop
end if
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¢~ — output———
€ KR KR KK KKK KKK XK
open(33, file = 'sruvbl. dat")
write(33. 103) afa. sigu. sigy
103 format(3f12.4)

stop
end
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end 1if
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s, (1)* = 2Dt (34)
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H=0.5 H=0.6 H=0.7 H=0.8 H=0.9
M =10X NSTEP 1.002 0.969 0.991 1.056 1.158
M =15X NSTEP 0.996 0.967 0.995 1.068 1.185
M =20X NSTEP 0.997 0.966 0.995 1.074 1.203
M =50 NSTEP 1.000 0.963 1.007 1.077 1.232
M =100 X NSTEP 1.025 0.982 1.007 1.097 1.269
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T, = JI:R,I(r)dr (28)





OEBPS/Image00274.jpg
x|~





OEBPS/Image00076.jpg
a2 0t a2 Ut w 12 t—>0) (26)





OEBPS/Image00277.jpg
|-





OEBPS/Image00077.jpg
o, (t)oct (27)
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X,(tcosw + X,(t)sinw. (32)
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(a) Laminar flow in a pipe

(b) Turbulent flow in a pipe
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(X;(t+ h) = X,(t))cosw + (X,(t + h) — X,(t))sinw, (33)
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y = (A-1) *100+25

deltay(D = (yt(i, p) —y(D)/25
else if ((yt(i, p) .ge. 2075) .and. (yt(i, p) .le. 2875)) then

1 = 21+int((ytGi, p) —2025)/50)

y( = (1-21) % 50 + 2025

deltay(D = (yt(i, p) —y(D)/50
else if (yt(i, p) .gt. 2875) then

1 = 38+int((yt(i. p) —2875)/100)

y( = (1-38) » 100+ 2875

deltay(D = (yt(i, p) — y(1))/100
end if
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uu = uCk. D+ (uCk, I+1) —ulk, D) *deltay(D + (u(k+1, D —u(k, D) =
deltax(k)
@ + (k. D—ulk, 1+ +uk+1, 1+ 1) —utk+1, D) * deltax(k) * deltay
[

v = v(k, D+ (v(k, 1+1) —v(k, D) * deltay(D) + (v(k+1, D —v(k, D) *
deltax(k)
@ +(v(ks D= vk, 1+ D +v(k+1, 1+ 1) = v(k+1, D) * deltax(k) * deltay(D

return
end
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130
120
102

open(12, file = 'bayflu. dat')
do 120 p = 1, nparticle
do 130 i = 0, nstep, nout
write(12, 102) xt(i, p), yt(i, p)
continue
continue
format(2f12.6)

stop
end

11 particle traces
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k = mt(xt(1, p)/50)
x(k) = kx50
deltax(k) = (xt(i, p) —x(k))/50
if (yt(i, p) .1t. 2025) then
1 = int(ytGi, p)/100)
y( = 1%100
deltay(D = (yt(i, p) = y(1))/100
else if ((yt(i, p) .ge. 2025) .and. (yt(i, p) .It. 2075)) then
1 = int(ytGi, p)/100) +1
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do10j = 0, 57
do20i =0, 40
read(50,101) x(i), y(j), zh, uli, p, v@, s w, qG, P, gl P
20 continue
10 continue
101 format(lx, 8.3, 3x. 8.3, 3x, I1, 3x. f6.3, 3x. 6.3, 4x, f5.3. 4x, f5.3,
4x. f5.3)
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open(50, file = 'tecvecd.dat', status = 'old")
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Sheh ok bt o n Bk bk b R S ottt Tadial ot it i

input release point xp, yp———
check if the point is in the regoin

R

c

print * . 'input xp, yp:' !!! Release point
read * . Xp. yp
if (xp .gt. 1275) then
if (yp .1t. 2050 .or. yp .gt. 2825) then
print * ,'the data point is invalid. please input again.'
stop
end if
else if (xp .1t. 0 .or. yp .lIt. 0) then
print « ,'no negative data point. please input again.'
stop
else if (xp .gt. 2000 .or. yp .gt. 4775) then
print * ,'the data point is out of the range. input again.'
stop
end if
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CRERERELE

3 36 3 3 3 3 % NN

RRRERNER
c ———advection + diffusion for one step ———
C R F R EH R HE R R IR E RS KRR
xt(i+1, p) = xt(i, p) +ux(i, p) » real(dt) +signx(p) » bhx(i+1, p)
yt(i+1, p) = yt(i, p) +uy(i, p) * real(dt) +signy(p) * bhy(i+1, p)
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signx(p) = - signx(p)
end if
continue
continue
continue
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if (ytGi+1, p) .le. 0) then
goto 85
else if(xt(i, p).1t.1275 .and. xt(i+1, p).gt.1275) then
if(yt(i+1, p).1t.2025 .or. yt(i+1, p).gt.2825) then
xt(i+1, p) = xt(i+1, p) =2 x (xt(i+1, p) —1275)

signx(p) = —signx(p)
yti+1, p) = yG, p)
end if

end if
else if (xt(i, p).gt.1275 .and. yt(i+1, p).gt.2825) then
ytGi+1, p) = yt(i+1, p) -2 * (yt(i+1, p) —2825)
signy(p) = —signy(p)
if (xt(i+1, p) .gt. 2000) then
xt(i+1, p) = xti+1, p) -2 * (xt(i+1, p) —2000)
signx(p) = - signx(p)

end if
else if (xt(i, p).gt.1275 .and. yt(i+1, p).1t.2025) then
yt(i+1, p) = yt(i+1, p) +2% (2025 yt(i+1, p))
signy(p) = —signy(p)
if (xt(i+1, p) .gt. 2000) then
xt(i+1, p) = xti+1, p) =2 (xt(i+1, p) —2000)
signx(p) = - signx(p)
end if
else if (xt(i+1, p).gt.2000 .and. yt(i+1, p).gt.2025
@ .and. yt(i+1, p) .1t. 2825) then
xt(i+1, p) = xt(i+1, p) —2* (xt(i+1, p)—2000)
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open(21, file = 'hourl.dat")
open(22, file = 'hour2.dat")
open(23, file = 'hour3.dat")
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CHEREHRERIEKRXRXRHREXERHNHINIKH KX HHRIRERIXHNH XK KR XXX X

¢ ———output particle cloud files in every one hour increment

L T T T PR T PP

open(21. file = 'hourl.dat")

open(22, file = 'hour2. dat")

open(23, file = 'hour3. dat")

open(24, file = 'hourd. dat")

open(25, file = 'hour5. dat")

open(26, file = 'hour6. dat')

open(27, file = 'hour7. dat")

open(28, file = 'hour8. dat")

open(29, file = 'hour9. dat')

open(30, file = 'hourl0. dat")

open(31, file = 'cpuhl0.dat) 11! CPU time used
write(31, 103) end — start
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C 363636 96 36 36 3 3636 36 36 3 36 36 9636 36 36 66 IE I I 6 I 3 J I H I3 2 MK
¢ ——— advection + diffusion for one step ———
R T ]
xt(i+1) = xt(i) + ux(i) « real(dt) + signx * bhx(i+1)
ytGi+1) = yt( + uy(i) # real(d) + signy * bhy(i+1)
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else if (xt().1t.1275 .and. xt(i+1).gt.1275) then
if(yt(i+1).1e.2025 .or. yt(i+1).ge.2825) then
xt(i+1) = xt(i+1) -2 (xt(i+1) - 1275)
signx = —signx
if (yt(i+1) .1t. 0) then
goto 60
end if
end if
else if(xt(i). gt. 1275 . and. yt(i+1).gt.2825) then
yt(i+1) = yt(i+1) -2 = (yt(i+1) —2825)
signy = — signy
if (xt(i+1) .gt. 2000) then
xt(i+1) = xt(i+1) =2 * (xt(i+1) - 2000)
signx = —signx
end if
else if(xt(i). gt. 1275 .and. yt(i+1).le.2025) then
ytGi+1) = yt(i+1) +2 % (2025 - yt(i+1))
signy = —signy
if (xt(i+1) .gt. 2000) then
xt(i+1) = xt(i+1) =2 * (xt(i+ 1) —2000)
signx = —signx
end if
else if (xt(i+1).gt.2000 .and. yt(i+1).gt.2025 .and. yt(i+1) .It. 2825) then
xt(i+1) = xt(i+1) -2 % (xt(i+1) - 2000)
signx = - signx
end if
50  continue
60  continue
do70t = 1, 10 111 get particle cloud in one hour increment
xn(t, p) = xt(t*360)
yn(t, p) = yt(t*360)
70  continue

40  continue
call clock@ (end)
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open(24, file = 'hour4. dat’)
open(25, file = 'hour5. dat')
open(26, file = 'hour6. dat')
open(27, file = 'hour7.dat")
open(28, file = 'hour8. dat")
open(29, file = 'hour9. dat")
open(30. file = 'hourl0.dat")

open(31, file = 'cpuhl0.dat’) 11! CPU time used

write(31, 103) end — start

do 100 p = 1, nparticle
write(21, 102) xn(1, p), yn(1, p)
continue

do 110 p = 1, nparticle
write(22, 102) xn(2, p), yn(2, p)
continue

do 120 p = 1. nparticle
write(23, 102) xn(3, p), yn(3, p)
continue

do 130 p = 1, nparticle
write(24, 102) xn(4, p), yn(4, p)
continue

do 140 p = 1, nparticle
write(25,102) xn(5, p), yn(5, p)
continue

do 150 p = 1, nparticle
write(26,102) xn(6, p), yn(6, p)
continue

do 160 p = 1. nparticle
write(27, 102) xn(7, p), yn(7, p)
continue

do 170 p=1, nparticle
write(28,102) xn(8,p), yn(8,p)
continue

do 180 p = 1, nparticle
write(29,102) xn(9, p). yn(9. p)
continue

do 190 p = 1, nparticle
write(30,102) xn(10, p),yn(10, p)
continue

11 First hour particle cloud

111 Second hour particle cloud

111 Third hour particle cloud

11! Fourth hour particle cloud

11 Fifth hour particle cloud

111 Sixth hour particle cloud

111 Seventh hour particle cloud

11 Eighth hour particle cloud

111 Ninth hour particle cloud

111 Tenth hour particle cloud
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102 format(2f12.6)
103 format(f12.6)
c

stop

end
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if (yt(i+1) .1t. 0 .or. xt(i+1).1t. 0) then
goto 60
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do 40 p = 1, nparticle

signx = 1.0
signy = 1.0
xt(0) = xp ! Release point
yt(0) = yp

do50 i = 0, nstep—1
call getuv(i, xt, yt, X, y, u, v, uu, w)
get velocity from the subroutine getuv() (see bayflu. for)
ux() = uu
uy(i)

v
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open(41, file = 'bhx1.dat") I get fBm particle traces in x direction
open(51, file = 'bhyl.dat") 111 get fBm particle traces in y direction
do30i = 0, nstep—1
read(41,102) (bhx(i). p = 1, nparticle)
read(51,102) (bhy(i), p = 1, nparticle)
30 continue
call clock(@ (start)
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do 40 p = 1, nparticle

signx = 1.0
signy = 1.0
xt(0) xp ! Release point

yt(0) = yp
do50i = 0, nstep—1
call getuv(i, xt, yt, X, y, u, v, uu, vv)

111 get velocity from the subroutine getuv() (see bayflu. for)
ux(i) = uu
uy(i) v
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Ino, = ~1.956+%ln1 (19)
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r =/ (XC(i, j) - x)? + (YC(i, j) — y)? (6)
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Ax(i) = U(D)At+ AB, (i) (12)





OEBPS/Image00959.jpg
bh(0, p) = 0
do70i = 1, nstep

do80j=1,i
bh(j, p) = bh(j=1. p) + bhs(j. p)
80 continue
70 continue
call clock@(end(p)) !!! Stop CPU recording

print * ,'nstep, memory = ', nstep, m
print % ,'% % %, cputime used = * * = ', end(p) — start
print *,' !
20 continue
end if
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Ay(i) = V()AL + AB, (i) (13)
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d = (2x % (b/(2%xh))) % (dl* * (1+b/(2*h)))

print * ,'nstep, m, d = ', nstep, m, d
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x = h=-0.5
gamma = 1+al*xx+a2x% (x% *2) +a3 % (x* »3) +ad x (x* %4) + a5 x
(x* *5)

print * ,'h, gamma

» h, gamma
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nstep = int(nstepl * * (1+b/(2*h)))
dt = dtl % x (1+b/(2x*h))
nt(ml * * (1+b/(2%h)))
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print * ,'enter choices;1—delta, 2 — const, 3— gauss.'
read %, c
if (¢ .gt. 3) then
print * , 'sorry, please start again.'
stop
else
print % . 'enter hurst exponant value value h:'
read *, h
print * . 'enter number of step:'
read * , nstepl
print * , 'enter number of particles.'
read * , nparticle
print * , 'enter memory required m1>> = nstep: '
read %, ml
print * , 'enter time interval dtl.'
read =, dtl
print * .'enter accelerated exponant value b <1.'
read #, b
print * ,'enter diffusion coefficient d1.'
read *, dl
print * .'enter random seed:'
read * , sd
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¢——~— generate gamma function ——~

T
x=h-0.5
gamma = 1+al *x+a2* (x* *2)tad* (x* *x3) +ad» (x* *4) +ab
(x* %5)

print * .'h. gamma=", h. gamma





OEBPS/Image00716.jpg
0D | =





OEBPS/Image00958.jpg
btempl = (1= * ¥ (h—0.5) - G~j—1 % % (h—0.5)
bhl = bhl+ btempl * r(j+m)
50 continue
bh2 = r(i-1+m)
bhs(i, p) = (bhl+bh2)/(gamma)
40 continue
else 111 the following faster loop is used only if h=0.5

I11i.e. reglar Brownian motion
do60i = 1, nstep
bhs(i, p) = r(i—1+m)
60 continue
end if
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sigmap = (2% d*dt) ¥ xh

print * ,'sigma ="', sigmap
call clock@ (start)
do 20 p = 1, nparticle
print *.'p =", p
seed = real(2  sd * nparticle) + real(p)
111 reset the random seeds for each particle
call set_seed@ (seed)
do 30 k = 0, nstep+m !!! White noise generation
if (¢ .eq. 1) then
rand = randomQ)
r(k) = sigmap ¥ (2.0 » rand—1.0)/abs(2.0 * rand—1.0)
else if (¢ .eq. 2) then
rand = random()
r(k) = 1.732 % sigmap * (2.0 x rand—1.0)
else if (¢ .eq. 3) then
r(k) = gasdev(idum) * sigmap
end if
30 continue
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D; = min[1/H,2] (10)
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bhs(0, p) = 0.0
if(h .1t. 0.5 .or. h.gt. 0.5) then
do40 i = 1, nstep

bhl =

do 50 j
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print * ,'enter choices:1— delta, 2~ const, 3 — gauss. '
read #, ¢
if (c.gt. 3) then
print * , 'sorry, please start again.'
stop
else
print * , 'enter hurst exponant value value h:'
read *, h
print * , 'enter number of step:'
read * , nstepl
print * , 'enter number of particles:'
read * , nparticle
print * , 'enter memory required m1>> = nstep:'
read ¥ , ml
print * , 'enter time interval dtl.'
read * . dtl
print * , 'enter accelerated exponant value b <1’
read * . b
print * ,'enter diffusion coefficient d1:'
read *, dl
print # . 'enter random seed:'
read * . sd
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open (34, file = 'afbm. dat') ! Accelerated fBm particle cloud

in nstep

write(34, 101) (bh(nstep, p), p = 1, nparticle)
101 format(f14.4)

stop

end
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eD" = 2Dbo'* (6)
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Ax; = UCi)At + ABy (i) (3)
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do 1201 = 1. nstep
tracesum = 0.0
do 130 p = 1, nparticle
tracesum = tracesum + bh(i, p)
130 continue
avetrace = tracesum/real(nparticle)
varsum = 0.0
do 140 p = 1, nparticle
varsum = varsum + (bh(i, p) —avetrace) % * 2
140 continue
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var(i) = varsum/real(nparticle)
sig(i) = var(i) * 0.5
qhb(i) = sig(i) * * (1/(h+0.5 % b))
time(i) = (real(i) % dt) * * ((2 % h)/(2 % h+ b)) !!! notice this is
the difference
g 111 between the FBMINC and AFBM model
logghb(i) = log(sig(i))
logt(i) = log(time(i))
120 continue
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¢ — calculate the concentration from the concentration logarithm function
c— set the peak concentration according to Table 5 -1
R
do50j=0.n-1
do60i =0, m-1
reCis ) = sqrt(xeeCi, ) * # 2+ yeeli, ) * %2)
logeGi, ) = aout(i, j) + bout(i, j) # re(i, j)
con(i, ) = 10* * loge(i, )

if Ccon(i, j) .ge. 912.0)then 11! Peak concentration setting from Table 51
con(i, ) = 912
end if
60 continue

50 continue
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Ax; = U(i)At + AB, (i) (11)
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101
20

open(17, file = 'srbl.dat', status = 'old")

do10j=0,n-1 111 log(c) function from srbl. for output data file
do20i=0,m-1
read(17, 101) aout(i, j), bout(i, j), rout(i, j), gegli, j)
format(4f14.8)

continue
continue
open(19, file = 'srbcentl.dat")
do30j=0,n-1 111 grid centres from srbl. for output file

do40i =0, m-1
read(19,102) xc(i, j), ye(i, j)» xcc(, j)s yeel, ), gegl, j)
format(5f12.4)
continue
continue
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do 50 il
do60i =10, m-1
rc(i, ) = sqrt(xec(i, j) * * 2+ ycc(i, ) * *2)
loge(i, ) = aout(i, ) + bout(i, j) * rc(i, j)
con(i, j) = 10 % * loge(i, j)
if (con(i, j) .ge. 912.0)then !!! Peak concentration setting from Table 51
con(i, j) = 912
end if
60 continue
50 continue
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open (17, file = 'srbl.dat’) !!! the coefficients for the best fit line of log(c)
do130j = 0,n-1
do140i =0, m—1
write(17,102) aout(i, j), bout(i. j), routG, j). gegli, )
continue
continue
format(4f14.8)

open (18, file = 'srberl.dat') 1! radius coordinate (cr, geg) for each grid
111 and the concenteation logarithm function loge()
do160j = 0, n—-1
do170i = 0, m—1

do180 k = 1,5
write(18, 103) cr(i, j. k), loge(i, j, k), gegl, )
continue
continue
continue

format(3f12.4)

open(19, file = 'srbeentl. dat") 111 grid centre position
do190j = 0,n-1
do200i = 0,m—1
write(19, 104) xc(i, ), yeli, ), xcel, j)» yeeG, s gegls )
continue
continue
format(5f12.4)
stop
end
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subroutine ming(i. j. il, i2, k., gxg. rxy. gcg. rl. r2)

integer i, j. k, 1

real gminl, gmin2, gdf, absg. gxg. gcg

real * 8 rxy, rl, r2

dimension gdf(0:1000), absg(0:1000), gxg(0:1000)

dimension rxy(0:1000), r1(0:1000), r2(0:1000)

dimension gmin1(0:1000), gmin2(0:1000), geg(0:1000, 0:1000)

gminl(k) = 360.0
gmin2(k) = 360.0
do2201 = il, i2
gdf (D = gxg(D) —gegi, j)
absg(D) = abs(gdf(D)
if(gdf(i, j) .eq. 0) then
if (absg(D) .It. gminl(k)) then
gminl(k) = absg(l)
(k) = rxy(D
r2(k) = rxy(D
endif
endif
else if (gdf (D) .gt. 0) then
if(absg(l) .It. gminl(k)) then
gminl(k) = absg()
ri(k) = rxy(D
endif
else if (gdf(D) .le. 0) then
if(absg(D) .It. gmin2(k)) then
gmin2(k) = absg()
2(k) = rxy(D
endif
end if
220  continue
G
return
end
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call lestsq(iy jo rrl, rr2, rr3, rrd, rr5, a, b, ds)
aout(i, ) = a

bout(i, ) = b
rout(i, j) = ds
120 continue

110 continue
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2dt 2
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x() = G, j)
x(2) = 2@, j)
x(3) = 3G, )
x(@) = G,
x(5) = 153, j)
y( = -2.0
y@ = -1.0
y@3 =0
y@ = 1.0
y) = 2.0

¢ ——— initialize summation variable
xsum = 0.0
ysum = 0.0
xysum = 0.0
x2sum = 0.0
y2sum = 0.0

c

300

calculate the sums

do300k =1,d

xsum = xsum+ x(k)
ysum = ysum + y(k)
xysum = xysum + x(k) * y(k)
x2sum = x2sum + x(k) * *2

y2sum = y2sum+y(k) x * 2

continue
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X = xsum* % 2—d* xZsum

ry = ysum* % 2—d % y2sum

b = (xsum % ysum —d * xysum) /rx

a = (ysum— b xsum)/d

ds = (xsum * ysum —d * xysum) /sqrt(rx  ry)

return
end
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gminl(k) = 360.0
emin2(k) = 360.0
do2201 = il, i2
gdf (D = gxg(D) — gegli. )
absg(l) = abs(gdf())
if(gdf(i, j) .eq. 0) then
ifCabsg(D) . 1t. gminl(k)) then
gminl(k) = absg(D)
(k) = rxy(D
r2(k) = rxy(D
endif
endif
else if (gdf(D .gt. 0) then
if (absg(D . It. gminl(k)) then
gminl(k) = absg(D)
ri(k) = rxy(D

endif
else if (gdf(D .le. 0) then
if(absg(D) .1t. gmin2(k)) then
gmin2(k) = absg(D
20 = rxy(D
endif
end if
220 continue
c
return
end
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subroutine lestsq(i. j. rrl, rr2, rr3, rrd, rr5. a. b, ds)

integer i, j, k, d

real y, ysum, y2sum

real * 8 x, rrl, rr2, rr3, rr4, 115, a, b, ds, xsum, xysum, x2sum, rx, ry
dimension y(0:1000) . x(0:1000)

dimension rr1(0:1000, 0:1000), rr2(0:1000, 0:1000)

dimension rr3(0:1000, 0:1000), rr4(0:1000, 0:1000)

dimension rr5(0:1000, 0:1000)

parameter (d = 5)

x(D = rrlG, P
x(2) = 23,
x(3) = 3G, j)
x(4) = 4G, P
x(5) = 53, )
y = -2.0
y2) = -1.0
y@3 =0
y@ = 1.0
y(& = 2.0
c
¢ ——- initialize summation variable
¢
xsum = 0.0
ysum = 0.0
xysum = 0.0
x2sum = 0.0
y2sum = 0.0
c
¢ ——~ calculate the sums
c
do300k = 1,d
xsum = xsum + x(k)
ysum = ysum+y(k)
xysum = xysum+ x(k) * y(k)
x2sum = x2sum+x(k) * * 2
y2sum = y2sum+y(k) * %2
300 continue
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do701 =0, m—1
sigul(i+1, ) = sigul(, j) +con(i, j) % area * (uc(i, j) * *2)
siga(i+1, j) = siga(i, j) +con(i, j) * area
continue
sigul(0, j+1) = sigul(m, j)
siga(0, j+1) = siga(m, j)
continue
sigu = sqrt (sigul (m, n—1)/siga(m, n—1)) !!! Standard deviation in
u direction

sigv1(0, 0) = 0.0
do80j=0,n-1
do90i=0.m-1
sigvl(i+1, ) = sigvl(i. ) +con(i, j) * area* (ve(is ) * % 2)
continue
sigv1(0, j+1) =sigvl(m, j)
continue
sigv = sqrt(sigvl(m. n—1)/siga(m, n—1)) 111 Standard deviation in v
direction

print * ,'sigu, sigv sigu, sigv
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open(33. fil sruvbl. dat’)
write(33, 103) afa, sigu, sigv
103 format(3f12.4)

stop
end
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open(20, file = 'srbbl.dat") !l concentration output
do200j=0,n-1
do210i =0, m-1
write(20, 103) xc(i, ), ye(is ), con(i, j)

103 format(3f12.4)
210 continue

200 continue

G

open(32, file = 'srsigl. dat')

c 11 standard deviations output for x, y directions and r component
write(32,104) sigx, sigy. sigr

104 format(3f12.4)

stop
end
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print * ,'input the grid interval in x, y direcion — dx, dy:
read * , dx, dy
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sigrl(0, 0) = 0.0
siga(0, 0) = 0.0
do70j=0,n-1
do80i =0, m-1
sigrl(i+1, ) = sigrl(i, ) +con(i, j) * areax (rc(i, j) % *2)
siga(i+1, ) = siga(i, j) +con(i, j) * area
continue
sigr1(0, j+1) = sigrl(m, j)
siga(0, j+1) = siga(m, j)
continue
sigr = sqrt(sigrl(m, n—1)/siga(m, n—1))
111 Standard deviation in radius r component

sigx1(0.0) = 0.0
siga(0,0) = 0.0
do110j =0, n-1
do120i = 0, m-1
sigkl(i+1, j) = sigxl(i, j) +con(i, j) * area* (xce(i, j) * % 2)
continue
sigx1(0, j+1) = sigx1(m, j)
continue
sigx = sqrt(sigxl (m, n—1)/sigaCm, n—1)) !!! Standard deviation in
x direction
sigy1(0, 0) = 0.0
do130j =0, n-1
do140i = 0, m—1
sigyl(i+1, j) = sigyl(i, j) +con(i, j) * area * (ycc(i, j) * *2)
continue
sigyl(0, j+1) = sigyl(m, j)
continue
sigy = sqrt (sigyl (m, n —1)/siga(m, n—1)) !!! Standard deviation in

y direction

c

print * , 'sigr, sigx, sigy=", sigr, sigx, sigy
print * ,'mass=", siga(m, n—1) 111 Mass in this patch
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sigx1(0,0) = 0.0
siga0,0) = 0.0
do110j = 0. n-1
do120i = 0, m—1
sigxl(i+1, ) = sigxl(i, j) +con(i, j) x area * (xcc(i, j) * * 2)
120 continue
sigel (0, j+1) = sigxl(m, )
110 continue
sigx = sqrt(sigxl (m. n—1)/siga(m, n—=1)) 111 Standard deviation in
x direction
sigy1<0, 0) = 0.0
do130j=0,n-1
do140i = 0, m—1
sigyl(i+1, ) = sigylGiy D +coni. §) * areax (yee(i, ) % *2)
140 continue
sigy1(0, j+1) = sigyl(m, j)
130 continue
sigy = sqrtCsigyl (m. n = 1)/siga(m. n—1)) 111 Standard deviation in
y direction
c
print =, 'sigr, sigx. sigy=", sigr, sigx. sigy
print * ,'mass="', siga(m, n—1) 11 Mass in this patch
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B(t) = > W(t) (@)

j=1
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sigul (0,0) = 0.0
siga0,0) = 0. o
do60j =0,
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¢~ — calculate the new co - ordinate in u, v direction with
c— — (xctl, yctl) as a new centre
R T
do40j =0, n-1
do50i =0, m-1

xce(i, P = xc(i, ) —xctl

yee(is ) = yeli, ) —yetl

uc(i, ) = xce(i, j) # cosafa) +yee(i, j) * sin(afa)

ve(i.) = —xce(is j) * sinCafa) + yee(i, ) * cos(afa)
50 continue
40 continue
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102

20

print * . 'input the number of grid box in both x. y direction: m. n =

read * ., m. n

open(19, file = 'srbbl.dat', status = 'old') 11! Open the concentration data file

do20j=0,n-1

111 from the output file of srbbl. for

do30i =0, m-1

read (19,

102) xc(i,j)s ye(i ), con(i.j)

format(3f12.4)

continue
continue

area = dx * dy

111 grid area
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do40j=10,n-1
do50i =0, m—-1
xce(is ) = xc(i, j) —xctl
yee(is ) = yel, j) —yetl
uc(i, j) = xee(i, j) * cos(afa) + yee(i, j) * sin(afa)
ve(ij) = —xee(i, j) *sin(afa) +yce(i, j) * cos(afa)
50 continue
40 continue
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open(15.file = 'concent. dat')
do 110 ngrid = 1, m* n 111 Concentration output file
write(15,103) xc(ngrid) , yc(ngrid) , conc(ngrid)
110 continue
103 format(3f14.4)

stop
end
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*xx
c— — output the concentration for each grid box
D

open(15. file = 'concent. dat')

do 110 ngrid = 1, m*n 111 Concentration output file
write(15,103) xc(ngrid) . yc(ngrid) . conc(ngrid)
110 continue
103 format(3f14.4)
c
stop

end

X RN w

-

*
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¢ — — check boundary condition to see if the particle is in the chosen grid box

if((px
@ (px
@ (py
@ (py

At xr) Land.
.ge. xD) .and.
.1t yo .and.
.ge. yb)) then

111 less than right boundary
111 great than left boundary
111 less than top boundar

111 great than bottom bounday

¢ — — count the number of particles per chosen grid box for time t
ntot(ngrid) = ntot(ngrid) + 1

end if

if (py .eq. 0.0) then

ntot(ngrid) = 0

end if
70 continue
60 continue

50 continue
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do 100 ngrid = 1, m* n
mp = mass/nparticle
conc(ngrid) = (mp * real(ntot(ngrid))) /area(ngrid)
c 111 concentration in each grid
100 continue
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open(16, file = 'datalb. dat', status = 'old")
do10i = 1, dl
read(16, 101) x(i). y(i), c(i)
10 continue
101 format(1lx. I6. 1x. I6. 1x. f6.2)
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101

print * ,'input total number of particles: '
read * , nparticle

print * ,'input mass;'

read * , mass

open (13, file = 'cloud. dat', status = 'old') !!! Open the particle cloud
data file
do 10 p = 1. nparticle
read(13,101) xp(p), yp(p)
continue
format(2f14.4)

print *,'inputm, n =' 11! m, nis the number of grid in x. y direction
read * . m, n

print * ,'input dx, dy ="' !!1 dx, dy is the grid interval in x, y direction
read * , dx, dy

open(14, file = 'gridxy. dat") 111 Pre — generated grid data file
do40j=1,n+1
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ngrid = 0 1 initialise grid number

do50j=1,n
do60i =1, m

il =i 111 bottom left grid point
=
xl = x(iD)
yb = y(jb
i4 = i+1 11! bottom right grid point
=
xr = x(i4)
yb = y(jd)
i2 =i 11 top left grid point
2=jf+1
xl = x(i2)
yt = y(j2)
i3 = i+1 !1! top right grid point
B=j+1
xr = x@i3)

yt = y(j3)





OEBPS/Image00914.jpg
ngrid = ngrid+1
¢~ —compute the centre coordinates of the grid box
xc(ngrid) = xI+ (xr—x1)/2.0
ye(ngrid) = yb+ (yt—yb)/2.0
¢ — — calculate the area(ngrid)
area(ngrid) = dxxdy
c— — initialise the number of particles to see if it is in chosen grid box
do 70 p = 1, nparticle
px = xp(p)
py = yp(p)
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This program is to calculate the concentration for a particle cloud.

implicit none

integer i, j. p, ngrid, nparticle, m, n, i1, i2, i3, i4, j1, j2, j3, j4, ntot
real xl, xr, yb, yt, area, mp, px, py, dx, dy

real * 8 mass, conc, X, Y, XC, YC, XPs yp

dimension xp(0:100000), yp(0:100000)

dimension x(0:100000) , y(0:100000)

dimension xc(0:100000) , yc(0:100000)

dimension ntot(0:300000) . area(0:300000), conc(0:300000)
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do301 =1, m+1
read(14, 102) x(i), y(j)
102 format(2f14.4)
30 continue
A0  continue





OEBPS/Image00928.jpg
100
00

continue
continue

call ming(i. j, 60, 95, 2. gxg. rxy., gcg. minrl, minr2) !!! when
er=10.1

crl(i, j, 2) = minrl(2)

cr2(i, j» 2) = minr2(2)

cri, j, 2) = CerlG, j, 2) +er2G, j, 2))/2

m2(i, ) = cr(, j, 2)

con(i, j, 2) = 0.1

loge(is j, 2) = aloglOCcon(i, j, 2))

call ming(i, j, 96, 121, 3, gxg, rxy, geg. minrl, minr2) !!! when
G=ET1.0

erl(i, j. 3) = minrl(3)

cr2(i, j, 3) = minr2(3)

er(i, j, 3) = (erlQ, j, 3) +er2G, j, 3))/2

33, p = cr(, j, 3)

con(i, j» 3) = 1.0

logeGi, j» 3) = aloglOCcon(i, j, 3))

call ming(i, j, 122, 142, 4, gxg, rxy, geg, minrl, minr2) !!! when
c=10

crl(i, j, 4) = minrl(4)

cr2(i, j ,4) = minr2(4)

crs j» 4 = (erlGs j. O +er2G, j. 4))/2

d(, ) = oG j, 4

con(i, j, 4) = 10.0

loge(Gi, j, 4) = aloglOCcon(i, j, 4))

call ming(i, j, 143, 166, 5. gxg, rxy, geg, minrl, minr2) !!! when
¢=100

crl(i, j, 5) = minrl(5)

cr2@i, j» 5) = minr2(5)

cr(i, j, 5) = (erlG, j, 5) +cr2G, j, 5))/2

5, P = er(s, j, 5)

con(i, j, 5) = 100.0

loge(i, j, 5) = aloglO(con(i, j, 5))
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do110j =0, n—1
do 120 i
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30

do 801 =1, dl
xr() = x(i) —xct
yr(i) = y() —yet
rxy(i) = sqrt(xr(i) * % 2+yr(i) x x2)
if (xr(i) .gt. 0) then
if(yr(i) .gt. 0) then
gxr(i) = atan2(yr(i), xr(i))
else if(yr(i) .le. 0) then

gxr(i) = 2% pi—atan2( - yr(i), xr(i)
end if

end if
if (xr(i) .le. 0) then
if(yr(i) .gt. 0) then
gxr(i) = pi—atan2(yr(i), —xr(i))
else if(yr(i) .le. 0) then
gxr(i) = pi+atan2(—yr(i), —xr@i))
end if
end if

gxg(i) = (gxr(i) » 180)/pi
continue
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do90j=0,n-1
do100i =0, m-1

call ming(i, j. 1, 59, 1, gxg, rxy, geg, minrl, minr2) !!! when
¢ =0.01
crl@. j,» 1) = minrl(1)
cr2@i, j, 1) = minr2(1)
cr(is j,» 1 = CerlG, j» 1 +er2Gs j, 1))/2
rrlG, ) = er(, j, 1D
con(i, j» 1) = 0.01
loge(i. j» 1) = aloglO(con(i, j, 1))
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¢ — —read in data from observed data files for patch B1
© 39X K K666 666 6 3
open(16. file = 'datalb.dat', status = 'old")
do10i = 1,dl
read(16. 101) x(i), y(i), (i)
10 continue
101 format(lx, I6. 1x. I6. 1x, 6.2)
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xmax = x(1)
ymax = y(1)
do20i = 1,59
if (x(i+1) .gt. xmax) then
xmax = x(i+1)
endif
if(y(i+1) .gt. ymax) then
ymax = y(i+1)
endif
20 continue
Xmin = Xmax
ymin = ymax
do30i = 1,59
if (x(i+1) .It. xmin) then
xmin = x(i+1)
end if
if (y(i+1) .It. ymin) then
ymin = y(i+1)
endif
30 continue
print * ,'xmax,xmin="', xmax, xmin
print * ,'vmax,ymin="', ymax. ymin
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do60j=10,n-1
do70i =0, m-1
¢ — — compute the centre coordinates of each grid box
xc(i, ) = real(xmin) + real(i) * dx—dx/2.0
ye(i, ) = real(ymin) + real(j) * dy — dy/2.0
xee(is ) = xc(i, j) —xct 11! Move the centriod to (xct, yct)
yee(i, ) = yeQ, j) —yet
¢ — — calculate the angles for each grid centre
if (xce(i, j) .gt. 0) then
if(yce(i, ) .gt. 0) then
gee(is ) = atan2(yce(, j).xcel, j))
else if(yee(i, j) .le. 0) then
geeliy ) = 2 pi—atan2( - yee(i, ) xeeli, )
end if
end if
if (xce(i, j) .le. 0) then
if(ycc(i, j) .gt. 0) then
gee(i, ) = pi—atan2(yce(i, j), —xeel, )
else if (yce(i, j) .le. 0) then
gee(i, ) = pi+atan2(—yece(, j), —xec(i, )
end if
end if
gegli, ) = geeliy j) »180/pi 11! change the radius to the degree
area(i, ) = dxxdy
70 continue
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60 continue
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40

xma = x(143)
yma = y(143)
do 40 i = 143, 166
if (x(i+1) .gt. xma) then
xma = x(i+1)

endif
if(y(i+1) .gt. yma) then
yma = y(i+1)
endif
continue
= xma
ymi = yma

do 50 i = 143.166
if (xG+1) .1t. xmi) then
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xmi = x(i+1)

end if
if (y(i+1) .1t. ymi) then
ymi=y(i+1)
endif
continue

xet = xmi+ (xma—xmi)/2 11! The centroid in x co— ordinate
yct = ymi+ (yma—ymi)/2 11! The centroid in y co— ordinate
print * ,'xct, yet ="', xct, yct
m = int((xmax -~ xmin)/dx) +1 11! The number of grid in x direction
n = int((ymax—ymin)/dy) +1 11! The number of grid in y direction

print * .'m, n
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OEBPS/Image00571.jpg
Patch Observed/ Area (ratio) Area (ratio) Area (ratio) | Area (ratio)
number Simulated ¢=0.10 2510 c=10 =100
Observed 10 470 5671 3672 1887
Bl Simulated( HR ) | 11 200 (0.93) | 8 800 (0.64) 6 800 (0.54) 3200 €0.59)
Simulated( New) |7 700 (1.36) 7695 (0.74) 6318 (0.58) 2916 (0.65)
Observed 27 255 17 333 7967 0
B2 Simulated( HR ) | 15 200 (1.79) |12 000 (1.44) |8 000 (1.0) 3 600
Simulated( New) | 51 304 (0.53) | 39 204 (0.44) |16 456 (0.48) 0
Observed 105 179 61 304 18 353 0
B3 Simulated( HR ) | 21 600 (4.87) | 15600 (3.93) |10 400 (1.76) 2800
Simulated( New) | 147 456 (0.71) | 104 000 (0.59) | 27 200 (0.67) 0
Observed 265 916 185 159 29 104 0
B4 Simulated( HR ) | 29 600 (8.98) | 20 800 (8.90) |12 000 (2.43) 2000
Simulated( New) | 417 450 (0.64) | 257 125 (0.72) | 3 000 (9.70) 0
Observed 593 523 373 005 0 0
B5 Simulated( HR ) | 49 600 (11.97) | 32 000 (11.66) 14 800 0
Simulated( New) | 972 000 (0.61) | 518 400 (0.72) 0 0
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Patch Observed/ Area (ratio) | Area (ratio) | Area (ratio) | Area (ratio)
number Simulated ¢=0.10 ¢=1.0 c=10 =100
Observed 7293 5 634 3769 1896
C1 Simulated( HR ) |12 000 (0.61) | 10 800 (0.52) |7 200 (0.52) 4000 (0.42)
Simulated( New) | 6 336 ( 1.15) | 6192 (0.91) 4 560 (0.83) 2496 (0.76)
Observed 18 208 12 530 6 053 319
(] Simulated( HR ) |37 600 (0.48) | 28 000 (0.45) |18 000 (0.34) 0
Simulated( New) |40 752 (0.45) | 26 036 (0.48 ) | 8 490 (0.71) 0
Observed 27 550 18 263 6319 0
a3 Simulated( HR ) | 60 000 (0.46) | 43 200 (0.42) |26 400 (0.24) 0
Simulated( New) | 72 500 (0.38 ) | 45 000 (0.41 ) | 7 500 (0.84 ) 0
Observed 57 847 38 476 8 446 0
C4 Simulated( HR ) | 88 400 (0.65) |58 800 (0.65) |32 400 (0.26) 0
Simulated( New) | 124 575 (0.46) | 67 950 (0.57 ) 0 0
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D-Patches Patch D1 Patch D2 Patch D3 Patch D4 Patch D5
o, (Simulated) 22.646 0 39.950 3 53.514 4 66.266 4 83.679 3
7, (Observed) 23.267 4 38.014 0 40.492 5 90.113 6 86.363 3
Ratio(Sim/Obs) 0.97 1.05 1.32 0.74 0.97

o, (Simulated) 9.907 2 44.478 1 58.791 6 64.787 2 77.465 9
7, (Observed) 28.757 9 31.356 5 63.037 2 72.726 4 60.485 1
Ratio(Sim/Obs) 0.4 1.41 0.93 0.89 1.28

E-Patches Patch E1 | Patch E2 | Patch E3 | Patch E4 | Patch E5 | Patch E6
a, (Simulated) 16.4317 | 28.399 6 | 38.568 8 | 52.7231 | 65.5109 | 82.559 9
g, (Observed) 16.116 4 | 36.4328 | 34.6856 | 46.774 3 | 50.606 8 | 99.920 0
Ratio(Sim/Obs) 1.0 0.78 1.1 1.12 1.29 0.83
o, (Simulated) 21.2918 | 28.644 3 | 34.5376 | 43.201 5 | 47.4139 | 55.463 0
a, (Observed) 20.7279 | 27.4650 | 28.768 2 | 30.326 2 | 36.3058 | 59.4017
Ratio(Sim/Obs) 1.02 1.04 1.20 1.42 1.30 0.93
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Patch Observed/ Area (ratio) Area (ratio) Area (ratio) | Area (ratio)
number Simulated ¢=0.10 c=1.0 c=10 =100

Observed 16 935 11 087 6 826 3122
El | Simulated( HR ) |23 200 (0.73) |20 000 (0.55) |10 400 (0.66) |0
Simulated( New) |16 536 (1.02) | 15900 (0.70) |10 494 (0.65) |3 180 (0.98)
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Patch Observed/ Area (ratio) Area (ratio) Area (ratio) | Area (ratio)
number Simulated ¢=0.10 c=1.0 c=10 =100
Observed 37139 22018 12 981 729
E2 | Simulated( HR ) |38 800 (1.00) |23 600 (0.93) |11 200 (1.16) |0
Simulated( New) |44 805 (0.83) |38 110 (0.58) |21 115 (0.61) |1 000 (0.73)
Observed 40 975 23433 9990 0
E3 | Simulated( HR ) |52 000 (0.79) |32 800 (0.71) |12 800 (0.78) 0
Simulated( New) |56 600 (0.72) |41 884 (0.56) |17 546 (0.57) 0
Observed 64 300 40 894 19 679 0
E4 | Simulated( HR ) |71 600 (0.90) |44 000 (0.93) |16 400 (1.20) 0
Simulated( New) |89 856 (0.72) |62 200 (0.66) |27 648 (0.71) 0
Observed 88 876 48 666 19 918 0
E5 | Simulated( HR ) |94 800 (0.94) |55 600 (0.88) |15 600 (1.28) 0
Simulated( New) | 128 876 (0.69) | 77 770 (0.63) |24 442 (0.81) 0
Observed 215 421 81 044 2963 0
E6 | Simulated( HR ) | 115200 (1.87) | 59 600 (1.36) |14 000 (0.21) 0
Simulated( New) | 214 424 (1.00) | 115 544 (0.70) | 22 220 (0.13) 0
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Patch Observed/ Area (ratio) Area (ratio) Area (ratio) | Area (ratio)
number Simulated ¢=0.10 c=1.0 c=10 =100
Observed 142 949 60 633 0 0
C5 | Simulated( HR ) | 134 800 (1.06) | 85 200 (0.71) 36 800 (0) 0
Simulated( New) | 226 812 (0.63) | 107 874 (0.56) 0 0
Observed 203 545 71770 0 0
C6 Simulated( HR ) | 198 400 (1.03) | 121 600 (0.59) 29 200 (0) 0
Simulated( New) | 300 000 (0.68) | 80 000 (0.90) 0 0
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Patch Observed/ Area (ratio) Area (ratio) Area (ratio) | Area (ratio)
number Simulated ¢=0.10 c=1.0 c=10 =100
Observed 16 181 14 062 11 860 7233
D1 Simulated( HR ) |30 800 (0.53) |20 000 (0.70) {10000 (1.19) |0
Simulated( New) |28 386(0.57) |27 018 (0.52) |19 152 (0.62) |8 892 (0.81)
Observed 40 615 32 485 24 801 8673
D2 Simulated( HR ) |38 800 (1.05) |23 600 (1.38) |10 800 (2.30) 0
Simulated( New) | 105 600 (0.38) | 67 200 (0.48) |14 400 (1.72) 0
Observed 48 180 35 344 22 482 157
D3 Simulated( HR ) |44 800 (1.10) |27 600 (1.30) |11 600 (1.90) 0
Simulated( New) | 165 750 (0.29) | 127 500 (0.28) | 63 750 (0.35) 0
Observed 83 936 57 306 32 844 88
D4 Simulated( HR ) |57 200 (1.47) |32 000 (1.79) |13 200 (2.49) 0
Simulated( New) | 192 500 (0.44) | 107 500 (0.53) | 5 000 (6.57) 0
Observed 152 422 110 636 62 838 0
D5 Simulated( HR ) |73 600 (2.07) |43 200 (2.56) |14 800 (4.25) 0
Simulated( New) | 317 858 (0.48) | 222 192 (0.50) | 95 669 (0.66) 0
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sCem) N L=s*N log(s) log(L)
0.4 173 69.2 ~0.397 94 1.84

0.7 102 71.4 -0.154 9 1.8537
1.4 43 60.2 0.146 1.78

2.1 28 58.8 0.322 177

2.8 21 58.8 0.447 1.77

3.5 15 52.5 0.544 1.72

4.9 9.8 48.02 0.69 1.681 4
5.5 7 38.5 0.74 1.585
6 5.5 33 0.778 15185
7 4.7 32.9 0.845 1.517
8 4.1 32.8 0.9 1.5158
9 3.3 29.7 0.954 1.473
10 2.9 29 1 1.462

23.4 1 23.4 1.369 1.369 2






OEBPS/Image00588.jpg
CEERERELEEREFREDEEREREERERERLERRRREPRERTN
¢~~~ Gaussian random number generation ———
CARKAKEREEK AR AKRH AR AR RHEXEARRHERH AR
function gasdev(idum)
integer idum, iset
real gasdev, fac, gset, rsq, vl, v2, random
save iset, gset
data iset/0/
if (iset .eq. 0) then
1 vl = 2. % random(idum) ~ 1.
V2 = 2. % random(idum) — 1.
1sq = vI% x2+v2x %2
if(rsq .ge. 1. .or. rsq.eq. 0.) goto 1
fac = sqrt( —2. * log(rsq) /rsq)
gset = vl x fac

gasdey = v2 x fac

iset = 1
else
gasdev = gset
iset = 0
endif
s
return

end
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This program is to generate fBm using FBM model. Standard deviation
¢ (= sd)andc"# (= gh) are also calculated. The Gaussian random number
is generated by using the Central Limit Theorem method.

implicit none

integer ¢, i, j.» k. p, m, nstep, nparticle, s

real random, rand, r. g, h, dt, gamma, gx, bhl, bhZ, bh, btempl, btemp2
real gh, tracesum, avetrace, varsum, var, sd, d, sigmap, nout, time
real tracesuml, avetracel, varsuml, varl, sdl. start, end

double precision al, a2, a3, a4, a5

parameter(al = —0.5748646, a2 = 0.9512363, a3 = —0.6998588)
parameter(a4 = 0.4245549, ab = —0.1010678)

dimension r(0:30000) . bh(0:2000,0:5000), var(0:30000)

dimension sd(0:30000), qh(0:30000), time(0:30000)

dimension var1(0:30000) , sd1(0:30000) . end(0:30000)

print ., 'enter choices: 1 —delta, 2 const, 3 — gauss. '
read * , ¢
if (c .gt. 3) then

print * .'sorry, please start again.'

stop
else

print * , 'enter Hurst exponent value h:'

read *, h

print * ,'enter number of time steps: '
read * , nstep
print * . 'enter number of particles:'
read * , nparticle
print « , 'enter memory:'
read * .m
print * , 'enter time interval dt:'
read * ,dt
print * , 'enter diffusion coefficient. '
read %, d
print * .'enter output interval nout:'
read * . nout
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Advantages

Disadvantages

. More flexibility in controlling the diffusion

cloud spreading through both a diffusion
coefficient D and Hurst Exponent H

1. CPU time relatively expensive

. Closer to reality (in that non-Fickian

diffusion may be modelled)

2. Number of particles restricted in cach
run due to large memory required

. Can model a diffusion process with short term

non-Fickian behaviour and long term Fickian
behaviour (as use of further are in reality)

3. New method which needs further
rescarch and development before of
becoming a useful tool for the engincer
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c ———calculate the variances, skewness and kurtoises

CRKHKEARRRRXRHEREEAAARRKKKEARARRRRRERRERARRR

40

50

30

do30i = 1, nstep
bsum = 0.0
do 40 k = 1, nparticle
bsum = bsum + b(i. k)
continue
bave = bsum/real(nparticle)

variv = 0.0
skewv = 0.0
kurty = 0.0

do 50 k = 1, nparticle
variv = variv + (b(i, k) — bave) * *2
skewv = skewv + (b(i, k) —bave) x *3
kurtv = kurtv + (b(i, k) —bave) » x4
continue

skewv = skewv/real(nparticle) 111 skewness
kurty = kurtv/real(nparticle) 111 kurtosis
var(i) = variv/real(nparticle) 111 variances

sd(i) = var(i) * x0.5

skew(i) = skewv/(var(i) * *1.5)
kurt(i) = kurtv/(var(i) * *2)
continue

end if
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¢ ————output files————

e

100

101
102

open(2, file = 'brownld.dat) !!! Random walk in 1D
do100 i = 1. nstep

write(2,102) (i. b(i. k). k = 1. nparticle)

continue

open(3. file = 'brown2d.dat') !!! Random Walk in 2D
write(3, 101) (b(nstep, k), b(nstep. k+ nparticle/2) . k = 1, nparticle/2)

open(4, file = 'varfig. dat") 11 Variance
write(4, 102) (i, var(i), i = 0, nstep, nout)

open(5.file = 'skewfig. dat') 111 Skewness
write(5.102) (i, skew(i). i = 0. nstep, nout)

open(6. file = 'kurtfig.dat) 111 Kurtosis
write(6,102) (i. kurt(i). i = 1. nstep. nout)

format(2f12.6)
format(15.1f12.6)
stop
end
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This program considers 1D and 2D random walk generation and their
variances. standard deviation. skewness. kurtosis calculations

implicit none

integer ¢, i, k, nstep, nparticle, nout

real b, random, r. bsum, bave. variv. skewv. kurtv. sd
real var. skew. kurt. gasdev. idum

dimension b(0:1000, 0:1000) . sd(0:300000) . var(0:300000)
dimension skew(0:300000) , kurt(0:300000)

print * ,'enter choice c(1—delta, 2~ const, 3 — gauss):'
read #, ¢
if (c.gt. 3 .or. c.lt. 1) then
print * .'sorry, please start again.'
stop
else
print % , 'please enter number of steps:'
read ¥ . nstep
print * , 'please enter number of particles:"
read # , nparticle
print * , 'please enter output time inerval -nout: "'
read * ., nout
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¢ — — random walk (including Brownian motion (¢=3)) generation
e
do 10 k = 1. nparticle
b0, k) = 0.0
do 20 i = 1, nstep
if (¢ .eq. 1) then 111 Delta distribution
r = random()
b, k) = b(i=1, k) + (2.0%r=1.0)/abs(2.0 % r=1.0)
else if (¢ .eq. 2) then 111 Constant distribution
r = random()
b(i, k) = b(i—1, k) + 1.732% (2.0 xr—1.0)

else if (¢ .eq. 3) then ! Gaussian  distribution
b, k) = b(i—1, k) + gasdev(idum)
end if
20 continue

10  continue
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SR-method x-direction y-direction r-direction u-direction v-direction
H, 0.531 4 0.492 8 0.508 7 0.618 5 0.350 9
H value 0.531 4 0.492 8 0.508 7 0.618 5 0.350 9
D value 0.185 7 0.226 2 0.364 8 0.059 4 3.029 0
B value 0 0 0 0 0
model type FBMINC FBMINC FBMINC FBMINC FBMINC
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XL XR YB pod DX Dy M N
Bl 445 380 445 540 547 240 547 380 20 20 8 7
B2 445 420 445 800 547 140 547 480 40 40 9 9
B3 445 500 446 250 546 500 547 200 70 70 10 10
B4 445 900 446 850 545 500 546 450 90 90 10 10
B5 446 400 447 800 543 200 544 750 140 140 10 11
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SR-method X0 Yo Time since release At | NSTEP 0

5th patch 4466800 | SAL350.01| oy L 012 060 sec | 40 224 | 1.0724
(set) (set)

6th patch SHATHIE0.07 | 15402020 267 min; or 16 020 sec | 50 241 1.072 4
(set) (set)

7th patch | 448 021.5 | 539 561.0 | 356 min; or 21 360 sec 60 201
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SR-method x-direction y-direction r-direction u-direction v-direction
H, 0.487 1 0.442 5 0.469 5 0.536 6 0.387 7
H value 0.487 1 0.442 5 0.469 5 0.536 6 0.387 7
D value 0.372 8 0.543 0 0.885 0 0.146 6 2.266 1
B value 0 0 0 0 0
model type FBMINC FBMINC FBMINC FBMINC FBMINC
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SR-method X0 Y0 Time since release At | NSTEP 0

1st patch | 432 175.0 | 584 350.0 13 min; or 780 sec 13 60 1.4233
2nd patch | 432 147.0 | 584 538.0 36 min; or 2 160 sec 30 2 1.462 8
3rd patch | 432 126.5 | 584 837.5 62 min; or 3 720 sec 30 124 -0.008 5
4th patch | 432 165.0 | 585 259.0 91 min; or 5 460 sec 30 182 —0.658 9
5th patch | 432 384.5 | 586 079.5 | 132 min; or 7 920 sec | 40 198 —0.957 5
6th patch | 432 857.0 | 587 531.0 | 182 min; or 10 920 sec | 50 218 -0.957 5
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SR-method x-direction y-direction r-direction u-direction | v-direction
H, 1.065 4 1.090 4 1.081 6 1.2326 0.683 3
H value 0.8 0.8 0.8 0.8 0.683 3
D value 0.003 6 0.002 8 0.004 4 0.002 3 0.016 1
B value 0.530 8 0.580 8 0.563 2 0.865 2 0
model type AFBM AFBM AFBM AFBM FBMINC
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N
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U
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SR-method X0 YO Time since release At NSTEP 0
1st patch | 432 156.0 | 584 336.5 19 min; or 1 140 sec | 14.25 80 1.490 0
2nd patch | 432 181.5 | 584 028.0 | 105 min; or 6 300 sec 40 159 1.307 9
3rd patch | 432 320.0 | 583 737.5 | 145 min; or 8 700 sec 50 174 1.2425
4th patch | 432 647.0 | 582 950.5 | 218 min; or 13 080 sec 60 218 1.1175
5th patch | 433 036.0 | 582 354.5 | 271 min; or 16 260 sec | 60 271 1.1175
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D-Patches

a-5 secr| i % i “‘ !
1140 28.6241 | 23.4515 | 37.0042 | 23.2674 | 28.7578 | —1.490 0
6300 303040 | 35.3770 | 49.2777 | 38.0140 | 31.3565 | ~1.3079
8700 62.0311 | 42.0175 | 74.9221| 40.4925 | 63.0372 | -1.2425

13 080 944384 | 67.0148 |115.79988 | 90.1136 | 72.7264 | ~1.1175
16 260 78.1193 | 70.8127 | 105.4375 | 86.3633 | 60.4851... | ~1.1175
E-Patches

a-6) secr| K : % 8 0

780 19.8218 | 17.2186 | 26.2562| 16.1164 | 20.7279 | ~1.4233
2160 26.8610 | 36.8804 | 45.6254 | 36.4328 | 27.4650 | -1.4628
3720 30.5350 | 32.9608 | 47.8202 | 34.6856 | 28.7682 | 0.0085
5 460 125046 | 36.0208 | 55.7453 | 46.7743 | 30.3262 | 0.6589
7920 471210 | 40.8857 | 62.4583 | 50.6068 | 36.3058 | 0.9575
10 920 83.6110 | 80.7575 | 116.2436 | 99.9200 | 50.4017 | 0.9575
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B-Patches Patch Bl Patch B2 Patch B3 Patch B4 Patch B5
o, (Simulated) 16.173 5 36.944 2 65.752 6 113.856 7 173.203 9
7, (Observed) 18.423 3 19.903 3 58.921 5 92.427 4 194.235 9
Ratio(Sim/Obs) 0.88 1.85 1.11 1.23 0.89
o, (Simulated) 10.142 7 31.197 7 69.405 5 127.005 3 214.230 1
7, (Observed) 9.100 5 34.869 2 64.301 1 108.907 5 211.307 8
Ratio(Sim/Obs) 1.11 0.90 1.08 1.17 1.01
C-Patches Patch C1 Patch C2 Patch C3 Patch C4 Patch C5
o, (Simulated) 9.887 5 34.733 2 54.227 6 80.786 2 108.587 4
o, (Observed) 11.448 1 20.627 0 43.429 8 80.166 8 195.093 5
Ratio(Sim/Obs) 0.86 1.68 1.25 1.0 0.56
o, (Simulated) 11.421 28.406 2 36.964 5 44.996 4 56.307 3
o, (Observed) 13.8350 21.248 8 29.469 6 52.442 7 88.083 5
Ratio(Sim/Obs) 0.83 1.33 1.25 0.86 0.64
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B-Patches

a-5 (seer| 7 % 8 K ¥ !
1200 18.7686 | 8.3651| 20.5484 | 18.4233| 9.1005 | -0.1252
3120 227274 33.0079| 40.1498| 19.9033| 34.8692 | ~0.5662
5940 39.3128 | 77.8518| 87.2147| 58.9215| 64.3011 | ~0.8470
9720 78.5455 | 119.3076 | 142.8415 | 92.4274 | 108.9075 | —1.0295

15 960 163.363 9 | 235.9806 | 287.0172 | 194.2359 | 211.3078 | -1.0295
C-Patches

A-6) (sec)| i “ ° . !
1140 12.530 8 | 12.4241| 17.3969 | 11.4481| 13.8350 | -1.1343
3660 25.5060 | 15.0477 | 29.6140| 20.6270| 21.2488 | ~1.1671
6360 42.4408 | 30.8771| 52.4814| 43.4298| 29.4696 | -1.1625
8940 771108 | 56.8411| 95.7966 | 80.1668| 52.4427 | ~1.1767

12 060 165.319 1 | 136.1752 | 214.1824 | 195.0835 | 88.4099 | ~1.0724
16 020 182.6917 | 211,444 2| 279.436 8 | 272.4692 | 61.9971 | —1.0724
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XL XR YB YT DX Dy M N
c1 445 820 445 950 543 200 543 320 15 15 8 8
c2 445 850 446 200 542 750 543 150 40 40 8 10
a3 445 900 446 400 542 350 542 850 50 50 10 16
C4 446 150 446 680 541 650 542 380 65 65 8 12
C5 446 350 447 050 540 900 541 800 80 80 8 1
c6 446 700 447 800 539 800 541 200 100 100 11 14
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XL XR YB Yr DX DY M N
D1 432 000 432 300 584 200 584 500 30 30 10 10
D2 431 800 432 500 583 800 584 300 60 60 11 8
D3 432 000 432 600 583 400 584 000 60 60 10 10
D4 432 300 433 000 582 600 583 300 60 60 11 11
D5 432 600 433 500 582 000 582 800 80 80 11 10
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Paiteh Mass/m Mass/m Mass/m Mass/m Mass/m Mass/m
';0 (kg/m) (kg/m) (kg/m) (kg/m) (kg/m) (kg/m)
) Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6
B 1.070 373 0.461 762 0.779 049 0.934 606 2.373 474
C 1.299 874 0.251 715 0.285 459 0.257 749 0.414 085 | 0.237 294
D 2.738 521 0.483 484 2.664 845 0.508 596 3.214 282
E 0.992 855 1.117 446 0.534 226 0.948 521 0.681 684 | 0.784 869
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Pitehi Mass/m Mass/m tg/ Mass/m Mass/m Mass/m Mass/m
No. | fe/litre/m’ | litre/m'P | 1g/litre/m* | rg/litre/m” | pig/litre/m" | g/litre/m’
) Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6
B 1070 373 461 762 779 049 934 606 2373 474
C 1299 874 251 715 285 459 257 749 414 085 237 294
D 2738 521 483 484 2 664 845 508 596 3214 282
E 992 855 1117 446 534 226 948 521 681 684 784 869
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XL XR YB Y7 DX Dy M N
El 432 000 432 300 584 250 584 450 30 30 10 6
E2 431 900 432 300 584 300 584 700 50 50 8 8
E3 431 900 432 300 584 650 585 000 50 50 8 7
EA 431 900 432 400 585 050 585 500 50 50 10 9
E5 432 100 432 700 585 800 586 400 70 70 8 8
E6 432 400 433 300 587 000 588 100 80 80 11 13
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TOT

Grid XL XR YB YT DX Dy M N
B 445 000 448 000 543 000 548 000 100 100 31 56
(¢ 445 600 447 200 540 800 543 600 80 80 21 36
D 431 500 433 600 581 800 584 800 90 90 24 34
E 431 800 433 200 584 000 588 000 100 100 15 41
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AB,(t) = By(t) - By(t - 1) = %Ji K, (t = s5)dB(s). (7)

r(H+)
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CPU(Delta) CPU(Constant) CPU(Gaussian)
FBM model 2512.498 2 2512.722 3 2514.442 2
FBMINC model 2514.339 8 2514.062 5 2516.921 9
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NSTEP = 100, P = 10

M = 100

M = 1000

M = 10 000

CPU

0.9375
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84.015 6
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B=2X(H,-H) (32)
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SR-method X0 Y0 Time since release At NSTEP 0
1st patch | 445 467.5 | 547 310.5 | 20 min; or 1 200 sec 20 60 0.125 2
2nd patch | 445 618.5 | 547 291.5 52 min; or 3 120 sec 40 78 0.566 2
3rd patch | 445 898.5 | 546 848.5 99 min; or 5 940 sec 40 148 0.847 0
4th patch | 446 339.0 | 545920.0 | 162 min; or 9 720 sec 40 243 1.029 5
5th patch | 447 078.0 | 543 950.0 | 266 min; or 15 960 sec | 60 266 1.029 5
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SR-method x-direction y-direction r-direction u-direction v-direction
H, 0.836 8 1.273 1.018 2 0.948 7 1.1843
H value 0.836 8 0.8 1.018 2 0.948 7 0.8
D value 0.009 6 0.002 4 0.007 1 0.006 3 0.002 9
B value 0 0.946 0.436 4 0 0.768 6
model type FBMINC AFBM AFBM FBMINC AFBM
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SR-method X0 YO0 Time since release At NSTEP 0

1st patch | 445 880.5 | 543 256.5 | 19 min; or 1 140 sec 12 95 1.134 3
2nd patch | 446 020.0 | 542 957.5 66 min; or 3 960 sec 30 132 1.167 1
3rd patch | 446 163.5 | 542 588.5 | 106 min; or 6 360 sec 40 159 1.162 5
4th patch | 446 411.0 | 542 023.5 | 149 min; or 8 940 sec 40 179 1.176 7
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H=0.2

Ocean surface drifter trajectory’
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D-Patches H, H, H, H, H,
The SQ-Method 0.484 0 0.434 6 0.466 1 0.507 1 0.410 1
The R-Method 0.432 2 0.444 1 0.438 4 0.428 4 0.427 9
The SR-Method 0.487 1 0.442 5 0.469 5 0.536 6 0.387 7
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= In(0.000 3 V/C) - 3.912 0H (26)
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Inv/C = A, +3.9120H +8.111 7 @7
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H Hyg A,

0.5 0.497 -10.717
0.6 0.593 —11.22¢
0.7 0.685 —-11.58
0.8 0.772 —-11.877
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3 Least square fit line
@ / using the R-Method or the SR-Method
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In(o,) = In(+/Ca) + H(In(2D;)) + (1 + H)Int (25)
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B-Patches H, H, H, H, H,
The SQ-Method 0.820 9 1.177 3 0.977 6 0.8737 1.092 2
The R-Method 1.014 2 1.024 0 1.019 1 0.979 4 0.972 4
The SR-Method 0.836 8 1.2730 1.018 2 0.948 7 1.1843
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C-Patches H, H, H, H, H,
The SO-Method 0.929 7 0.970 3 0.950 4 1.149 2 0.680 1
The R-Method 1.150 3 1.098 1 1.1273 1.058 8 1.107 1
The SR-Method 1.065 4 1.090 4 1.081 6 1.2326 0.683 3
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@ H 0.5 0.6 0.7 0.8 0.9
(a) J(25- 26) 152 C 0.2729| 0.2180| 0.2323| 0.2804 0.427 8
(b) H (5 0.518 0.620 0.713 0.803 0.883
(b) FREEH A, -10.717 |-11.221 |-11.580 |-11.877 |-12.057
(b) HREM C 0.3142| 0.2547| 0.2572| 0.2871| 0.3746
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A, = Hin(2D;) = -3.912H (24)
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0.5 0.497 ~1.956 -1.895 -1.944
0.6 0.593 -2.347 -2.335 -2.32
0.7 0.685 -2.738 -2.663 —2.68
0.8 0.772 -3.13 =2.918 -3.02
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x H, H,
1250 0.5103 1.172 8
1300 0.369 5 1.3330
1350 0.2845 1.678 8
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XCT YCT L gy a
447 320 540 420 100.0 86.0 132.0
447 250 540 450 236.8 327.0 404.0
447 250 540 430 386.8 256.1 463.9
447 290 540 420 116.6 81.0 142.0
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¢ — — count particle numbers in each grid box
© KKK H K KKK KKK KK
ngrid = ngrid+1
¢— —compute the centre coordinates of the grid box
xe(ngrid) = xI+ (xr—xD/2.0
ye(ngrid) = yb+ (yt—yb)/2.0
¢~ — calculate the area(ngrid)
area(ngrid) = dxx dy

¢~ — initialise the number of particles to see if it is in chosen grid box
do 70 p = 1. nparticle
px = xp(p)
Py = yp(p)
¢ — —check boundary condition to see if the particle is in the chosen grid box
if((px .It. xr) .and. 11 less than right boundary
@ (px .ge. xD .and. 111 great than left boundary
@ (py.lt. yt) .and. 111 less than top boundar
@ (py .ge. yb)) then 111 great than bottom bounday
¢~ — count the number of particles per chosen grid box for time t
ntot(ngrid) = ntot(ngrid) + 1
end if

if (py .eq. 0.0) then
ntot(ngrid) = 0

end if
70 continue
60 continue

50 continue
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C s
¢— — calculate the concentration in each grid

C %

HREHKE KX KK
do 100 ngrid = 1, m*n
mp = mass/nparticle
conc(ngrid) = (mp * real(ntot(ngrid) )) /arca(ngrid)
c 11! concentration in each grid
100 continue

KOO X X X K K K K K K K K X K X K K K K X X K K K K XK K K KK X K X

X% % %
¢~ — output the concentration for each grid box

open(15. file = 'concent. dat")
do 110 ngrid = 1. m#*n 11 Concentration output file
write(15,103) xc(ngrid) . ye(ngrid). conc(ngrid)

110 continue
103 format(3f14.4)
c

stop

end
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¢ — —read in velocity data file: tecvecd. dat

© KRR KKK H R KKK KKK

*%

open(50, file = 'tecvecd.dat', status = 'old")
do10j = 0,57
do20i = 0, 40
read(50,101) x(D), y(i, zh, uli, ), v, P, w, qG, P, g,
20 continue
10 continue
101 format(1x, 8.3, 3x, 8.3, 3x, I, 3x, 6.3, 3x. 6.3, 4x, 5.3, 4x, 5.3,
4x, 15.3)
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do 301 = 1. nstep
bsum = 0.0
do 40 k = 1, nparticle
bsum = bsum + b(i, k)

40 continue
bave = bsum/real(nparticle)
variv = 0.0
skewv = 0.0
kurty = 0.0

do 50 k = 1, nparticle
variv = variv + (b(i, k) —bave) % x2
skewv = skewv + (b(i, k) —bave) * 3
kurty = kurtv + (b(i. k) —bave) * *4
50 continue

skewv = skewv/real(nparticle) 111 skewness
kurtv = kurtv/real(nparticle) 111 Kurtosis
var(i) = variv/real(nparticle) 111 variances

sd(i) = var(i) * % 0.5

skew(i) = skewv/(var(i) * *1.5)

kurt(i) = kurtv/(var(i) * x2)
30 continue

end if
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¢———read in fBm increment data files which are pre — generated

open(41, file = 'bhxl.dat") 111 get fBm particle traces in x direction
open(51, file = 'bhyl.dat") 11 get fBm particle traces in y direction
do30i = 0, nstep—1

read(41,102) (bhx(i)., p = 1. nparticle)

read(51,102) (bhy(i), p = 1, nparticle)

30 continue
call clock@ (start)
¢ ———the same as bayflu. for, get particle traces using fbm particle tracking model
¢ *x
do 40 p = 1. nparticle

signx = 1.0

signy = 1.0

xt(0) = xp ! Release point

yt) = yp

do50i = 0, nstep—1
call getuv(i, Xt, yts X, y» U, v, uu, vv)

c——— 111 get velocity from the subroutine getuv() (see bayflu. for)
ux(i) = uu
uy(i) = vv

¢ ——— advection + diffusion for one step —
xt(i+1) = xt(i) + ux(@@) * real(dt) + signx * bhx(i+1)
ytGi+1) = yt(D) + uy(@) * real(dt) + signy * bhy(i+1)
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open(2, file = 'brownld.dat') !!! Random walk in 1D
do 100 i = 1, nstep
write(2,102) (i, b(i, k), k = 1, nparticle)

100 continue
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This program is using the fBm particle tracking model to produce particle
clouds within 10 hours with output in every one hour interval in the bay.
The velocity data file tecvect. dat is from Glasgow university. The fBm is
pre — generated using FBMINC model and directly used as an input data file.
Subroutine getuv() is the same as that in program bayflu. for

implicit none

integer i, j, t, nparticle, p, nstep, zh

real xp, yp, h, dt, u. v, uu, vv. X, y. g, W. g. xn. yn. end, start
real Xt. yt. ux. uy. bhx. bhy. d. signx. signy
dimension x(0:30000) . y(0:30000)

dimension u(0:500, 0:500) . v(0:500. 0:500)
dimension q(0:500, 0:500), g(0:500, 0:500)
dimension xt(0:30000), yt(0:30000)

dimension ux(0:30000) . uy(0:30000)

dimension bhx(0:30000) , bhy(0:30000)
dimension xn(0:10, 0:10000), yn(0:10, 0:10000)
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do 10 k = 1. nparticle

b0, k) = 0.0
do201i = 1, nstep
if (¢ .eq. 1) then 111 Delta distribution

r = random()
(i, k) = bG—-1, k) + (2.0%xr—1.0)/abs(2.0%r—1.0)
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c———input data nstep.dt
© 3 KK KK KK KK KKK KK KK KRN
print # . 'enter the Hurst exponent value h:'
read * . h
print x . 'enter number of particles: '
read * . nparticle
print * . 'enter number of steps:'
read x . nstep
print . 'enter diffusion coefficient d:'
read » . d
print * . 'enter time interval dt.'
read » . dt

C 9 KX KK KKK KK

c———input release point Xp. yp———

c———check if the point is in the regoin

© % KKK I K KKK FH K HH KK KKK
print x . 'input xp. yp:' !!! Release point

read * . xXp. yp
if (xp .gt. 1275) then
if Cyp .1t. 2050 .or. yp .gt. 2825) then
print * .'the data point is invalid. please input again. '
stop
end if
else if (xp .1t. 0 .or. yp .It. 0) then

print * .'no negative data point. please input again.'
stop
else if (xp . gt. 2000 .or. yp .gt. 4775) then
print * . 'the data point is out of the range. input again.’
stop
end if
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else if (¢ .eq. 2) then 111 Constant distribution
r = random()
b, k) = b(i-1, k) + 1.732% (2.0%xr—-1.0)

else if (¢ .eq. 3) then 11 Gaussian distribution
b, k) = b(i—1, k) + gasdev(idum)
end if
20 continue

10  continue
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This program is to calculate the concentration for a particle cloud.

implicit none

integer i, j. p, ngrid, nparticle, m, n, i1, i2, i3, i4, jl, j2, j3, j4, ntot
real xl, xr, yb, yt, area, mp, px, py, dx, dy

real ¥ 8 mass, conc, X, Y. XC, YCs XpPs YP

dimension xp(0:100000) . yp(0:100000)

dimension x(0:100000) , y(0:100000)

dimension xc(0:100000) , yc(0:100000)

dimension ntot(0:300000) , area(0:300000), conc(0:300000)

R

¢ — —read in data from data files— —

C R R AR F R HHEFEHHEHEH AR HEHE
print * .'input total number of particles:'
read * , nparticle
print * ,'input mass:'
read * , mass

open (13, file = 'cloud. dat', status = 'old') !!! Open the particle cloud
data file
do 10 p = 1. nparticle
read(13.101) xp(p). yp(p)
10 continue
101 format(2f14.4)

print % .'input m. n =' 111 m, n is the number of grid in x. y direction
read * , m, n

print % ,'input dx, dy =" 111 dx, dy is the grid interval in x, y direction
read * , dx, dy

open(14, file = 'gridxy. dat") 111 Pre— generated grid data file
do40j=1,n+1
do30i=1, m+1
read(14, 102) x(), y(j)
102 format(2f14.4)
30 continue
40  continue
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bh(0, p) = 0.0
do 40 i = 1, nstep

ifCh .1t. 0.5 .or. h.gt. 0.5) then 111 fBm
bhl = 0.0
if (i .1t. m) then ! then following code will in general be used-

I11 see exceptions below in else statements
do50j =i-m, -1
btempl = (i—j) % * (h—=0.5)—(—j) * * (h—0.5)
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¢~ ~ count the number of particles within each grid box for a given time t
T e
ngrid = 0 111 initialise grid number
do50j=1.n
do60i =1, m
il 111 bottom left grid point
=3
xl = x(il)
yb = y(jb)
i4 = i+1 11! bottom right grid point
=
xr = x(id)
yb = y(jt)

i2

111 top left grid point

2 =j+1
xl = x(i2)
yt = y(G2)
i3 = i+1 !!! top right grid point
3 =j+1
xr = x(i3)
yt = y(j3)
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¢ ———generate a cloud of fBm in 2D———
C KKK R KK XK R K HHH XK KKK XK HH K
sigmap = (2xdx*dt) * xh
print * ,'sigma = ', sigmap
do 20 p = 1, nparticle

print * . 'particle number ="', p, '

out of'

. nparticle
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c—check if out of region, reflect to the region and change the bhx and bhy sign
C© HRHRH KKK I Y HHI IR KKK I HF KK I KR H KKK HRHIHF KKK
if (ytGi+1) .1t. 0 .or. xt(i+1).1t. 0) then
goto 60
else if (xt(i).1t.1275 .and. xt(i+1).gt.1275) then
if(yt(i+1).1e. 2025 .or. yt(i+1).ge.2825) then
xt(G+1) = xt(+1) -2 * (xt(i+1) —1275)

signx = — signx
if (yt(i+1) .1t. 0) then
goto 60
end if
end if

else if(xt(i). gt. 1275 .and. yt(i+1).gt.2825) then
Y+ = ytG+1) — 2% (yt(i+1) —2825)
signy = - signy
if (xt(i+1) .gt. 2000) then
xt(i+1) = xt(i+1) -2 * (xt(i+1) —2000)
signx = - signx
end if
else if (xt(i). gt. 1275 . and. yt(i+1).le.2025) then
YHA+1) = yt(i+1) +2 % (2025 - yt(i+1))
signy = - signy
if (xt(i+1) .gt. 2000) then
xt(i+1) = xt(i+1) -2 x (xt(i+1) —2000)
signx = —signx
end if
else if (xt(i+1).gt.2000 .and. yt(i+1).gt.2025 .and. yt(i+1) .It. 2825) then
xt(i+1) = xt(i+1) =2 * (xt(i+1) - 2000)
signx = - signx
end if
50 continue
60  continue
do70t = 1, 10 11 get particle cloud in one hour increment
xn(t, p) = xt(t*360)
yn(t, p) = yt(t*360)
70 continue
40 continue
call clock@ (end)
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function gasdev(idum)

integer idum, iset

real gasdev, fac, gset, rsq, vl, v2, random

save iset, gset

data iset/0/

if (iset .eq. 0) then
vl = 2. % random(idum)
v2 = 2. » random(idum) —
rsq = vl* x2+v2% %2
if(rsq .ge. 1. .or. rsq .eq. 0.) goto 1
fac = sqrt( —2. = log(rsq)/rsq)
gset = vl = fac
gasdev = v2 x fac

iset = 1
else
gasdev = gset
iset = 0
endif
return

end
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¢ ———output particle cloud files in every one hour increment ———

R L P T T T T T

120

130

140

150

160

170

180

open(21. file = 'hourl.dat")
open(22, file = 'hour2. dat")
open(23, file = 'hour3. dat")
open(24, file = 'hourd. dat")
open(25, file = 'hour5. dat")
open(26, file = 'hour6. dat')
open(27, file = 'hour7. dat")
open(28, file = 'hour8. dat")
open(29, file = 'hour9. dat')
open(30, file = 'hourl0. dat")

open(31, file = 'cpuh10.dat') !!! CPU time used

write(31, 103) end - start

do 100 p = 1. nparticle
write(21. 102) xn(1. p). yn(1, p)
continue

do 110 p = 1. nparticle
write(22, 102) xn(2. p). yn(2, p)
continue

do 120 p = 1. nparticle
write(23. 102) xn(3. p). yn(3, p)
continue

do 130 p = 1. nparticle
write(24, 102) xn(4, p). yn(4, p)
continue

do 140 p = 1. nparticle
write(25,102) xn(5, p), yn(5. p)
continue

do 150 p = 1. nparticle
write(26,102) xn(6. p), yn(6. p)
continue

do 160 p = 1, nparticle
write(27. 102) xn(7, p). yn(7, p)
continue

do 170 p=1. nparticle
write(28,102) xn(8.p). yn(8.p)
continue

do 180 p = 1. nparticle
write(29.102) xn(9. p). yn(9. p)
continue

do 190 p = 1. nparticle
write(30,102) xn(10. p),yn(10, p)
continue

format(2f12.6)
format(f12.6)

stop
end

11 First hour particle cloud

11 Second hour particle cloud

11 Third hour particle cloud

111 Fourth hour particle cloud

111 Fifth hour particle cloud

111 Sixth hour particle cloud

111 Seventh hour particle cloud

11 Eighth hour particle cloud

111 Ninth hour particle cloud

111 Tenth hour particle cloud
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do 30 k=0, nstep+ m
if (c .eq. 1) then 11 Delta distribution

rand = random()
(k) = sigmap * (2.0 % rand —1.0)/abs(2.0 % rand - 1.0)
else if (¢ .eq. 2) then 111 Constant distribution
rand = random()
r(k) = 1.732  sigmap * (2.0 # rand—1.0)
else if (¢ .eq. 3) then 11! Gaussian distribution
call gauss(g)
r(k) = g * sigmap
end if
30 continue
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c¢— — subroutine 2 — — using the least square method
c— — to find the best fit line among these interception points in each radial line
S HH R AR K FH AR HAH IR H AR HH SR EHE R SRR HFHE R

subroutine lestsq(i. j. rrl. 12, rr3, rrd, 115, a, b, ds)

c
integer i, j» k. d
real y, ysum, yZsum
real * 8 x. rrl, rr2, rr3. rrd, 115, a. b, ds. xsum. xysum, x2sum. rx. ry
dimension y(0:1000), x(0:1000)
dimension rr1(0:1000, 0:1000), rr2(0:1000, 0:1000)
dimension rr3(0:1000, 0:1000), rr4(0:1000, 0:1000)
dimension rr5(0:1000. 0:1000)
parameter (d = 5)
c
x) = md,
x(2) = 23, j)
X(3) = 3G, D
x(4) = rrdG, )
x(5) = rr5(i. j)
Yy = -2.0
y@ = -1.0
¥3) =0
¥4 = 1.0
y5) = 2.0
¢ ——- initialize summation variable
xsum = 0.0
ysum = 0.0
xysum = 0.0
x2sum = 0.0
y2sum = 0.0
c calculate the sums

do300k =1.d
xsum = xsum+ x(k)
ysum = ysum + y(k)
xysum = xysum + x(k) % y(k)
x2sum = x2sum +x(k) * *2
y2sum = y2sum+y(k) x %2
300 continue
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¢~ — calculate the grid centre coordinates in x, y directions and the angles
e
do60j=0,n-1
do70i =0, m-1
¢~ — compute the centre coordinates of cach grid box
xe(i, ) = real(xmin) +real(i) * dx—dx/2.0
ye(i, ) = real(ymin) +real(j) * dy—dy/2.0
xee(is ) = xe(i, P —xct 111 Move the centriod to (xct, yct)
yee(is ) = ye(iy ) —yet
¢ — — calculate the angles for each grid centre
if (xce(is ) .gt. 0) then
ifCyce(i, j) .gt. 0) then
gee(i, ) = atan2(ycc(i, j),xcelis )
else if(yec(i, ) .le. 0) then
geelis ) = 2 pi—atan2( - yee(is j)ixcelis )
end if
end if
if (xce(i j) .le. 0) then
ifCyce(i, j) .gt. 0) then
gee(i, ) = pi—atan2(yce(i, j), —xcelis )
else if(yce(i, j) .le. 0) then
geeis ) = pi+atan2(— yee(i, s — xec(is )
end if
end if
geglis ) = gee(i, ) #180/pi 11! change the radius to the degree
arca(i. ) = dxxdy
70 continue
60 continue
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¢ ———gaussian random number generation using the Central Limit Theorem

T T

10

subroutine gauss(g)
integer k. m
real randinc, g. random
m = 131
randinc = 0.0
do10k =1, m
randinc = randinc +random()
continue
g = (3.4641 = (randinc — real(m)/2.0))/sqrt(real(m))

return
end
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¢— — transform X,y coordinates to radius coordinates: rx(i) and gx(i)
CHRKEKERERH AR EEHRHERE R RHERE R RHEEEEHE AR AKX RH R KA RHR
do80i =1, dl
xr(i) = x(i) = xct
yr() = y(i) —yet
rxy(i) = sqre(xr(i) * *2+yr(i) * *2)
if (xr(i) .gt. 0) then
if(yr(i) .gt. 0) then
gxr(i) = atan2(yr(i). xr(i))
else if (yr(i) .le. 0) then
gxr(i) = 2+ pi—atan2( —yr(i), xr(i))
end if
end if
if (xr(i) .le. 0) then
if(yr(i) .gt. 0) then
gxr(i) = pi—atan2(yr(i), - xr(i))
else if (yr(i) .le. 0) then
gxr(i) = pi+atan2(—yr(i), —xr(i)
end if
end if
axe() = (gxr(i) » 180) /pi
30 continue
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print x ,'enter choices: 1~ delta, 2~ const, 3 — gau:

read #, ¢
if (¢ .gt. 3) then
print x ,'sorry, please start again. '
stop
else
print # ,'enter Hurst exponent value h;'
read *, h
print * ,'enter nsteps<< = 2000 "
read * . nstep
print « ,'enter nparticle<Z =5000;'
read * , nparticle
print  ,'enter memory m>> = nstep: '
read * , m
print . 'enter interval dt;'

read » , dt
print # ,'enter diffusion coefficient d."
read *, d

print * ,'enter output interval nout:'

read * , nout

print # . 'enter number of particles for output;'
read *, np
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¢ — —read in data from observed data files for patch BL
€ 903X KKK X XK H IR KK XK
open(16, file = 'datalb.dat'. status = 'old")
do10i = 1,dl
read(16. 101) x(i), y(i), c(i)
10 continue
101 format(1x. I6. 1x, 16, 1x, f6.2)

L T e e T
c¢— — calculate xmax, xmin, ymax. ymin in order to decide the edge of grid.
¢~ — here choose concentration level is ¢ = 0.01
C R F KK HH KK RH KR T H KRR H R KRHRH R KKK H K
xmax = x(1)
ymax = y(1)
do20i = 1,59
if (x(i+1) .gt. xmax) then
xmax = x(i+1)
endif
if(y(i+1) .gt. ymax) then
ymax = y(i+1)
endif
20 continue
xmin = xmax
ymin = ymax
do30i=1,59
if (x(i+1) .1t. xmin) then
xmin = x(i+1)
end if
if (y(i+1) .1t. ymin) then
ymin = y(i+1)
endif
30 continue

print * ,'xmax.xmin=", xmax. xmin

print * ,'ymax.ymin ymax, ymin
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avetrace = tracesum/real(nparticle)
avetracel = tracesuml/real(nparticle)
varsum = 0.0
varsuml = 0.0
do 110 k = 1, nparticle
varsum = varsum + (bh(i, k) —avetrace) * * 2
varsuml = varsuml + (bh(i, k) —bh(i—1, k) —avetracel) * * 2
110 continue
var(i) = varsum/real(nparticle)
varl(i) = varsuml/real(nparticle)
sd(i) = var() % 0.5
sd1(i) = varl(i) * % 0.5
gh() = sd(i) * * (1/h)
90 continue
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c— — get centroid point from the biggest concentration level: ¢ = 100
R L
x(143)
yma = y(143)
do 40 i = 143. 166

if (x(i+1) .gt. xma) then

xma = x(i+1)

xma

endif
if(y(i+1) .gt. yma) then
yma = y(i+1)
endif
40 continue
xmi = xma
ymi = yma
c
do 50 i = 143,166
if (x(i+1) .1t. xmi) then
xmi = x(i+1)
end if
if (y(i+1) .It. ymi) then
ymi=y(@i+1)
endif
50 continue
xet = xmi+ (xma—xmi)/2 11! The centroid in x co— ordinate
yet = ymi+ (yma—ymi)/2 !!! The centroid in y co— ordinate
print * ,'xct, yct =', xct, yct
m = int((xmax—xmin)/dx) +1 11! The number of grid in x direction

n = int((ymax—ymin)/dy) +1 !1] The number of grid in y direction

print ¥ ,'m, n =', m, n





OEBPS/Image00864.jpg
10

subroutine gauss(g)

integer k., m

real randinc, g. random

m = 131

randinc = 0.0

do 10 k
randinc = randinc + random()

1. m

continue
g = (3.4641 » (randinc — real(m)/2.0)) /sqrt(real(m))

return
end
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140
130
102

180

160
103

200

104

open (17, file = 'srbl.dat") 11! the coefficients for the best fit line of log(c)
do130j = 0, n-1
do140i = 0, m—1
write(17.102) aout(i. j). bout(i. j). routGi. ). gegli. j)
continue
continue
format(414.8)

open (18, file = 'stberl.dat) 11! radius coordinate (cr. geg) for cach grid
!'11 and the concenteation logarithm function loge()

do160j =0, n-1
do170i = 0, m—1
do180k = 1.5
write(18, 103) cr(i, j, k), logeGi, j, k), geg(i, j)
continue
continue
continue
format(3f12.4)

open(19. file = 'srbeentl.dat) 111 grid centre position
do190j = 0, n-1
do200i = 0,m—1
write(19, 104) xc(i, j), ye(i, j), xeeCis ), yeeli, j), gegG, j)
continue
continue
format(5f12.4)
stop
end
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bhs(0, p) = 0.0
ifCh .1t. 0.5 .or. h.gt. 0.5) then
do40i = 1, nstep
bhl = 0.0
do 50 i

-m.i-2
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¢— —subroutine part

¢~ —subroutine ming() is to find the smallest angles beside each radial line
L L s

subroutine ming(i. j. il. i2. k. gxg. rxy. geg. rl. 12)

integer i, j, k. 1

real gminl, gmin2, gdf, absg, gxg. gcg

real # 8 rxy, r1, r2

dimension gdf(0:1000), absg(0:1000), gxg(0:1000)

dimension rxy(0:1000), r1¢0:1000), r2(0:1000)

dimension gmin1(0:1000), gmin2(0:1000), geg(0:1000, 0:1000)

gminl(k) = 360.0
gmin2(k) = 360.0
do2201 = il, i2
edf(D = gxg(D — gegCi
absg(l) = abs(gdf(D)
if(gdf(i, ) .eq. 0) then
ifabsg(D) .1t. gminl(k)) then
gminl(k) = absg()
k) = rxy(D
12(k) = rxy(D

endif
endif
else if(gdf(D) .gt. 0) then
if (absg(D . It. gminl(k)) then
gminl(k) = absg(l)
k) = rxy(D
endif
else if (gdf(D .le. 0) then
if(absg(D) .1t. gmin2(k)) then
gmin2(k) = absg(l)
12(k) = rxy(D
endif
end if
220 continue
c
return
end
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c¢— —now the ray centre becomes (0, 0)

¢~ — using subroutine ming() to find the two closest angles beside each radial line

c¢— — for each grid centre and their radius are crl and cr2, average them to

c— —get the radius cr(i, j, k) in radial line with knew concentration value.

RN KA I HH I I I KR I HN I IHH NN KX
do90j=0.n-1
do100i =0, m-1

100
90

call ming(i, j. 1. 59, 1, gxg. rxy. geg, minrl, minr2) 11! when
e= 0,01

i. j» 1) = minrl(1)

» 1) = minr2(1)

D = (erl(a jo D +er2G, j. 1))/2

rlC, ) = erC. j. D

con(i, j, 1 = 0.01

loge(isy j. 1) = alogl0(con(i, j, 1))

1

call ming(i. j. 60, 95. 2, gxg. rxy. geg. minrl. minr2) 111 when
c=01

crl(i, j, 2) minrl(2)

er2Giy i 2) = minr2(2)

er(is o 2 = (erlGiy jo 2) +er2Gy |, 2)/2

r2Gi, ) = er(i j, 2)

con(i. j. 2) = 0.1

logeGi j» 2) = alogl0(conCis j. 2))

call ming(i, j, 96, 121, 3, gxg. rxy. geg, minrl, minr2) !!! when
¢=1.0

crl@. j, 3) = minrl(3)

cr2(is j. 3) = minr2(3)

cr(i, §» 3) = (erlGs j» 3) +er2G, . 3))/2

m3G. ) = erdi, j. 3

con(i, j» 3) = 1.0

logeGiy j» 3) = alogl0(con(i, j» 3))

call ming(i, j. 122, 142, 4, gxg. rxy. geg. minrl. min2) 111 when
c=10

crl(i, j. 4) = minrl(4)

cr2(i. j +4) = minr2(4)

cr(is jo 4) = (erlGy jo ) +er2G, j, 4)/2

4G, ) = er, j. 4

con(i, j. 4) = 10.0

logeGis j,» 4) = aloglO(con(i, j, 4))

call ming(i, j. 143, 166. 5. gxg. rxy. geg. minrl. mini2) 111 when
¢=100

crl(i, j. 5 = minrl(5)

cr2(i, j. 5) = minr2(5)

cr(i, j» 5) = (erl(, j, 5) +cr2(, j, 5))/2

115G ) = ey o 5)

con(i, j» 5) = 100.0

loge(is j. 5) = aloglO(con(i, j, 5))

continue

continue
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x = h=0.5
gamma = 1+al % x+a2x% (x* %2) +a3» (x* x3) +ad » (x* *4) +ab* (x* *5)

print *,'h, gamma = ', h, gamma

call set_seed@(1234)
call clock(@ (start) 111 Start CPU time recording
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¢~ —for those radius cr(k) . k is the concentration level
¢~ ~ use subroutine lestsq() to get the best fit line function for loge
CRARARRERHEREEEH RS ARXKEXEAKEEENERE AN EAAN AR
40110 = 0. n-1
d0120i = 0, m-1
call lestsqGi . rrl, 112, 113, rrd, 115, a, b, ds)
aout(i. j) = a

bout(i, ) = b
rout(i, ) = ds
120 continue

110 continue
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30

do 30 k = 0, nstep+m

if (¢ .eq. 1) then
rand = random()
r(k) = sigmap * (2.0 % rand — 1. 0)/abs (2. 0 * rand — 1. 0)
{11 Delta

else if (¢ .eq. 2) then
rand = random()
r(k) = 1.732 x sigmap * (2.0 % rand—1.0) 11! Constant

clse if (¢ .eq. 3) then
r(k) = gasdev(idum) % sigmap  !!! Gaussian

end if

continue
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bhl = bhl + btempl * r(j+ m)
continue
bh2 = 0.0
do60j=0,i-1
btemp2 = (i—j * % (h—0.5)
bh2 = bh2+ btemp2 * r(j+m)
continue
else 11! the following loop will be used only if the
! memory, m., is less than the number of steps nstep
bh2 = 0.0
do70j=0,i-1
btemp2 = (i—j) * % (h—0.5)
bh2 = bh2 + btemp2 * r(j+m)
continue
end if
bh(i, p) = (bhl+bh2)/(gamma)
time(i) = real(i) * dt
else 1! the following faster loop is used only if h=0.5
11 i.e. reglar Brownian motion
bh(i, p) = bh(i, p) + r(i—1+m)
time(i) = real(i) * dt
end if
continue
call clock@ (end(p)) 111 Stop CPU time recording
print * ,'nstep, memory =',nstep, m
print * ,'% % % cputime used = * * %', end(p) — start
print % ,' '
continue
end if
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This program is using the SR — Method to calculate the concentration function
for each radial line of the grid centre. This is just an example for patch Bl.

implicit none

integer i, j, dl, dx, dy. k. m, n

real ¢, con, pi. loge, gxr, gxg. gec, geg

integer x4 X, y

real x 8 a. b, ds. aout. bout, rout

real ¥ 8 xr, yr, xct. yct, minrl, minr2, crl, cr2, cr, area
real * 8 Xmax. Xmin, ymax. ymin, rxy. Xma. xmi, yma. ymi
real x 8 115, rrl, 112, 113, rrd, xc. yc. xce. yee

parameter(pi = 3.1416)

dimension x(0:1000) . y(0:1000). ¢(0:1000)

dimension con(0:1000, 0:1000, 0:5), rxy(0:1000) . area(0:1000, 0:1000)
dimension xc(0:1000, 0:1000) . yc(0:1000, 0:1000)

dimension xcc(0:1000, 0:1000), ycc(0:1000, 0:1000)
dimension gec(0:1000. 0:1000) . gxg(0:1000) . gxr(0:1000)
dimension xr(0:1000). yr(0:1000). geg(0:1000, 0:1000)
dimension ¢r(0:1000, 0:1000, 0:5), loge(0:1000, 0:1000, 0:5)
dimension ¢r1(0:1000, 0:1000, 0:5), ¢r2(0:1000, 0:1000, 0:5)
dimension rr1(0:1000, 0:1000), rr2(0:1000. 0:1000)
dimension rr3(0:1000. 0:1000) . rr4(0:1000. 0:1000)
dimension rr5(0:1000, 0:1000) » minr1(0:1000), minr2(0:1000)
dimension aout(0:1000. 0:1000) . bout(0:1000. 0:1000. rout(0:1000. 0:1000)
parameter(dl = 167)

print « ,'enter grid interval in x direction: dx'
read * , dx
print * ,'enter grid intervel in y direction: dy'
read * . dy
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do 901 = 1. nstep

tracesum = 0.0

tracesuml = 0.0
do 100 p = 1. nparticle

tracesum = tracesum + bh(i, p)

tracesuml = tracesuml + bh(i, p) =bh(i-1, p)
continue
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c——— white noises r(k) calculation
6636 A H AR KRR K X

do 30 k=0, nstep+m
if (¢ .eq. 1) then 11 Delta distribution

rand = random()
r(k) = sigmap % (2.0 % rand — 1.0) /abs(2.0 * rand - 1.0)
else if (¢ .eq. 2) then 11 Constant distribution
rand = random()
r(k) = 1.732 # sigmap % (2.0 % rand - 1.0)
else if (c .eq. 3) then !'11 Gaussian distribution
call gauss(g)
r(k) = g * sigmap
end if
20 continue
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c— — calculate standard deviation of fBm: sig(i) and sig(i) * * (1/h) = gh
CAXEXKAIEREER AR RR AR RKEREAK R IR AR AR AKX AR EKERK R R
do 120 i = 1, nstep
tracesum = 0.0
do 130 p = 1. nparticle
tracesum = tracesum + bh(i, p)
130 continue
avetrace = tracesum/real(nparticle)
varsum = 0.0
do 140 p = 1. nparticle
varsum = varsum+ (bh(i, p) - avetrace) * * 2
140 continue
var(i) = varsum/real(nparticle)
sig) = var(i) * 0.5
gh(D) = sig(i) * * (1/h)
120 continue
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¢ ———output files———

KRR R F KKK KKK
open(9. file = 'fbminc. dat") 111 a cloud of fBm traces using FBMINC
model

do 150 p = 1. np
write(9,102) (i, bh(i. p). i = 1. nstep)
150 continue
c
open(10, file = 'fbmsig. dat') 111 fBm in 1D and (sig(i)) * * (1/h)
write(10,101) (time(i)» bh(i, 1), gh(i), i = 0, nstep. nout)

open(11,file = 'cpuinc. dat') 111 CPU time for fBm generation
write(11,102) (p, end(p) — start, p = 1, nparticle)
101 format (3f12.6)
102 format (I5, f12.6)
stop
end
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¢ ———calculate fbm step increment bhs (i. p)
C ¥R KKK HHHHHHHEHHHRHHAHHEARHEHHH AR ARK AR

bhs(0, p) = 0.0
ifCh .1t. 0.5 .or. h .gt. 0.5) then
dod0i = 1, nstep
bhl = 0.0

do50j=i-m,i-2

btempl = (i~ j) % * (h=0.5) = (i=j—1) % * (h~0.5)
bhl = bhl + btempl  r(j+m)

50 continue
bh2 = rGi-1+m)
bhs(i, p) = (bhl+ bh2)/(gamma)

time(i) = real(i) * dt

40 continue
111 the following faster loop is used only if h = 0.5

else
! i.e. reglar brownian motion

c
do60i = 1, nstep
bhs(i, p) = ri—1+m)
time(i) = real(i) # dt
60 continue

end if
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c— — generate bh(i, p) by adding up bhs(j, p), j =1, i.
© KKK H KA H KKK KKK I KKK KKK AH K
bh(0, p) = 0
do 70 i = 1. nstep
do80j=1,i
bh(j. p) = bh(j~1. p) +bhs(j. p)
80 continue

70 continue
call clock@(end(p))  !!! Stop CPU time recording

print ., 'nstep, memory + nstep, m
print % .'% % %, cputime used = * * x ', end(p) — start

20 continue
end if

O L L L e

c— — calculate standard deviation of fBm increment sigl (i)
3R HIE KRR KR XK R 3
do90i = 1. nstep
tracesuml = 0.0
do 100 p = 1. nparticle
tracesuml = tracesuml + bhs(i. p)
100 continue
avetracel = tracesuml/real(nparticle)
varsuml = 0.0
do 110 p = 1, nparticle
varsuml = varsuml + (bhs(i, p) —avetracel) * x 2
110 continue
time(i) = real(i) = dt
varl(i) = varsuml/real(nparticle)
sigl() = varl(i) * 0.5
90 continue
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¢~ generate gamma function ———
€ RRHREXKHHLEEEKE XK XKL HEXH XK EHEEKEEEEE R
§ ® i=0.5
gamma = 1+al *s+a2x (s* x2) +ad* (s*x % 3) +ad» (s* x4) +a5x* (s* *5)
print % ,'h, gamma = ', h, gamma
call set_seed@(1234) !!! Call random seeds
call clock@ (start) 11! Start CPU time recording
CHHHHRHEHHEHEREHHHHRHRHHHREHAKHE R LK
¢ ———generate a cloud of fBm in 2D—-—

© R KKK KRR RK R KR KK
sigmap = (2x*dxdt) * xh
print * ,'sigma = ', sigmap
do 20 p = 1, nparticle

print * . 'particle number ="', p. ' out of', nparticle
€ R KN I IR HI KKK KKK KX KK KRN

¢——— white noises r(k) calculation
T T T
do 30 k=0, nstep+m
if (¢ .eq. 1) then 11 Delta distribution
rand = random()
r(k) = sigmap % (2.0 % rand — 1.0) /abs(2.0 ¥ rand ~ 1.0)
else if (¢ .eq. 2) then !1! Constant distribution
rand = random()
r(k) = 1.732 « sigmap * (2.0 % rand—1.0)
else if (c .eq. 3) then !'11 Gaussian distribution
call gauss(g)
r(k) = g * sigmap
end if
30 continue
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¢———1fBm generation using the FBM model
CHERRRRHEERHEERHERRKERREERRERRH LRI KR
bh(0, p) = 0.0
do40i = 1, nstep
Y if(h .1t. 0.5 .or. h .gt. 0.5) then 11! fBm
bhl = 0.0

if (i .1t. m) then 11! then following code will in general be used-
11 see exceptions below in else statements
do50j=i-m, -1
btempl = (i—j) x x (h=0.5) = (—}) * x (h—0.5)

bhl = bhl +btempl # r(j+ m)
50 continue
bh2 = 0.0
do60j=0,i-1
btemp2 = (i—j) % % (h—0.5)
bh2 = bh2 + btemp2 * r(j+m)

60 continue
else 1! the following loop will be used only if the
1! memory, m. is less than the number of steps nstep
bh2 = 0.0
do70j=0,i-1
btemp2 = (i—j) * * (h=0.5)
bh2 = bh2 + btemp2 * r(j+m)
70 continue

end if
bh(is p) = (bh1+bh2)/(gamma)
time(i) = real(i) = dt
else 111 the following faster loop is used only if h=0.5
11 i.e. reglar Brownian motion
bh(i, p) = bh(i, p) + rGi—1+m)
time(i) = real(i) = dt
end if
40 continue
call clock@ (end(p)) 111 Stop CPU time recording
print * ,'nstep, memory ='.nstep. m
print % ,'* % » cputime used = * % * ', end(p) - start
print *,' '
20 continue
end if
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This program is to generate fBm using FBMINC model. Standard deviation
o(= sd) and o!/# (= gh) are also calculated. The Gaussian random number is
generated by using the Box — Miller method.

implicit none

integer ¢, i, j, p, k, m, nstep, nparticle, np

double precision al, a2, a3, a4, a5

parameter(al = —0.5748646, a2 = 0.9512363. a3 = —0.6998588)
parameter(ad = 0.4245549, a5 = —0.1010678)

real gamma, random, rand, r, idum, h, x, dt, bhl, bh2, bhs, btempl
real d, sigmap. nout, time, tracesuml, avetracel, varsuml, varl, sigl
real tracesum, avetrace, varsum, var, sig, gh, bh, end, start, gasdev
dimension r(0:300000) , bhs(0:2000, 0:5000), sigl(0:100000)
dimension time(0:300000) . var1(0:300000), sig(0:300000), end(0:300000)
dimension var(0:300000) , bh(0:2000. 0:5000) . qh(0:300000)

print . enter choices; 1 — delta, 2 const, 3 — gauss. '
read #, ¢
if (¢ .gt. 3) then
print » ,'sorry, please start again. '
stop
else
print # . 'enter Hurst exponent value h:'
read *, h
print * ,'enter nsteps<< =2000."
read * . nstep
print « ,'enter nparticle<Z =5000;'
read # . nparticle
print % ,'enter memory m>> = nstep: "'
read * . m
print * , 'enter interval dt:'
read * , dt
print # . 'enter diffusion coefficient d.'
read * . d
print * ,'enter output interval nout:'
read * , nout
print # . 'enter number of particles for output;'
read # , np
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generate gamma function ———

R

x = h-0.5

gamma = 1+al * x+a2% (x* *2) +ad* (x* *3) +ad » (x* x4) +ad* (x* *5)
print » .'h. gamma = '. h. gamma

call set_seed(@ (1234)
call clock(@ (start) 111 Start CPU time recording
© 3 HH3 3K IR KKK FH I KKK R KK
c———generate a cloud of fbm in 2D———
© 3 KKK I K IR H KA KK HH I KKK R KKK
sigmap = (2xd»dv) x x h
print * . 'sigma="'. sigmap
do 20 p = 1. nparticle
print * . 'particle number ='. p.' out of'. nparticle
© 3 KKK IR K HH KKK HH KKK KK KKK
¢ ——~ calculate white noises (k)
© 3 IR H I K I KKK KKK KKK KKK
do 30 k = 0. nstep+m
if (¢ .eq. 1) then
rand = random()
r(k) = sigmap % (2.0 % rand = 1. 0)/abs (2. 0 % rand = 1. 0)
111 Delta
else if (¢ .eq. 2) then
rand = random()
r(k) = 1.732 % sigmap * (2.0 *rand—1.0) !!! Constant
clse if (¢ .eq. 3) then
r(k) = dev(idum) * sigmap 111 Gaussian

end if
30 continue
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¢~ — calculate variance. standard deviation: sd. (sd) * % (1/h) and
¢ — — standard deviation of increment of fBm: sdl = sd(bh(i,p) —bh(i—1,p))
R
do90i = 1. nstep
tracesum = 0.0
tracesuml = 0.0
do 100 p = 1. nparticle
tracesum = tracesum + bh(i. p)
tracesuml = tracesuml + bh(i. p) —bh(i—1. p)
100 continue
avetrace = tracesum/real(nparticle)
avetracel = tracesuml/real(nparticle)
varsum = 0.0
varsuml = 0.0
do 110 k = 1, nparticle
varsum = varsum + (bh(i, k) —avetrace) * %2
varsuml = varsuml + (bh(i, k) —bh(i—1, k) — avetracel) * x 2
110 continue
var(i) = varsum/real(nparticle)
varl(i) = varsuml/real(nparticle)
sd(i) = var(i) * % 0.5
sd1(i) = varl(i) * % 0.5
qh(i) = sd(i) % * (1/h)
a0 continue
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open(7. file = 'fbm.dat") P EBm in 1D (sd) # % (1/h) and sdl
write(7.101) (time(i)« bh(i.1). gh(i). sd1(i). i = 0. nstep. nout)
open(8. file = 'cpufbm. dat') 111 CPU time for fBm generation
write(8.102) (p. end(p) = start. p = 1. nparticle)

format (4f12.6)

format (15. 12.6)

stop

end

subroutine gauss(g)

integer k. m

real randine.
m = 131

randinc = 0.0
dol0k = 1. m

random

randinc = randinc + random()
continue

g = (3.4641 = (randinc— real(m) /2. 0)) /sqrt(real(m))

return
end
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c— — using the bilinear intepolation
CHREHHRHHEERHEERHEXRKEARKEARH A
w = ulk, D+ Cuk, 1+1) —uck, D) * deltay(D + (uCk +1, D —u(k, D) *
deltax(k)
@ +(uCk , D—udk, 1+ +uk+1, 1+1) —uCk+1, D) * deltax(k) * deltay
M

vv = v(k, D+ (v(k, 1+1) = v(k, D) = deltay(D + (v(k+1, D) = v(k, D) *
deltax(k)
@ +(v(ks D= vk, 1+ D +v(k+1, 1+ 1) = v(k+1, D) * deltax(k) * deltay(D)

return
end
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open(12. file = 'bayflu. dat")
do 120 p = 1. nparticle
do 130 i = 0. nstep. nout
write(12, 102) xtG. p)+ yt(s p)

130 continue
120 continue
102 format(2f12.6)
c
stop

end

11 particle traces
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¢ ——-subroutine part ———

c ——— get velocity for each step jump using the bilinear interpolation — —
T TT T e

subroutine getuv(p, i, xt, yt, X, y, u, v, uu, vv)

integer i, p. k. |

real X, y, xt, yt, uu, vv, deltax, deltay, u, v
dimension x(0:300000) , y(0:300000)
dimension xt(0:5000, 0:50), yt(0:5000, 0:50)
dimension u(0:500, 0:500), v(0:500, 0:500)
dimension deltax(0:300000) , deltay(0:300000)

k = int(xt(i, p)/50)
x(k) = kx50
deltax(k) = (xt(i, p) = x(k))/50
if (yt(i. p) .1t. 2025) then
1 = int(yt(i, p)/100)
y(b = 1%100
deltay(D = (yt(i. p) —y(D)/100
else if ((yt(i, p) .ge. 2025) .and. (yt(i, p) .It. 2075)) then
1 = int(yt(i, p)/100) +1
y() = (1-1) *100+25
deltay(D) = (yt(i, p) ~ y(1)/25
else if ((yt(i, p) .ge. 2075) .and. (yt(i, p) .le. 2875)) then
I = 21+ int((yt(i, p) —2025)/50)
y(b = A-21) *50+2025
deltay(D) = (yt(i, p) — y(1))/50
else if (yt(i, p) .gt. 2875) then
1 = 38+ int((yt(i, p) —2875)/100)
y( = (1-38) %100 +2875
deltay(D) = (yt(i, p) — y(1))/100
end if
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This program is to produce particle flow traces using the fBm particle tracking
model. The velocity data file tecvecd. dat provided by Glasgow university.

implicit none

integer c. i, j, z, nstep, K, nparticle, m, p, nout

real xp, yp, h, dt, u, v, uu, v, X, ¥, . W, g

real xt. yt. ux, uy. bhx. bhy. d. r, random. gamma. rand. idum
real sigmap. btempl, bhl, bh2. bhs. s. gasdev. signx. signy
double precision al. a2, a3, a4, a5

parameter(al = —0.5748646, a2 = 0.9512363, a3 = —0.6998588)
parameter(ad = 0.4245549, a5 = —0.1010678)

dimension x(0:300000) . y(0:300000) . r(0:300000)

dimension u(0:500, 0:500), v(0:500. 0:500)

dimension q(0:500, 0:500). g(0:500, 0:500)

dimension xt(0:5000, 0:50), yt(0:5000, 0:50)

dimension ux(0:5000, 0:50), uy(0:5000, 0:50)

dimension bhx(0:5000, 0:50), bhy(0:5000, 0:50)

dimension bhs(0:5000, 0:50), signx(0:300000), signy(0:300000)
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¢ ——-input data
CHRHXKHKHHE LKL HKXKAKEREXKEKNE XK XK

print * ,'enter Hurst exponent value h;'

read %, h

print * ,'enter number of time steps <<= 5000 "

read * . nstep

print * ,'enter number of particles <<= 50.'

read * , nparticle

print . 'enter memory m>> = nstep. "

read %, m
print = ,'enter diffusion coefficient d.'
read #, d

print * ,'enter time interval dt."
read * , dt
print * ,'enter output interval nout: '

read * , nout
CXEXRRKEXLAER R XXX AK XA XK AAR AL RS

¢ ———input release point Xp.yp———
¢ ———check if the point is in the regoin

© 3333 KK KK KN H KKK F

print = ,'input xp. yp:'
read * . xp, yp
if (xp .gt. 1275) then
if (yp .It. 2025 .or. yp .gt. 2825) then
print # . 'the data point is invalid. please input again.'
stop
end if
else if (xp .1It. 0 .or. yp .1t. 0) then
print * ,'no negative data point. please input again. '
stop
else if (xp .gt. 2000 .or. yp .gt. 4775) then
print * ,'the data point is out of the range. input again.'
stop
end if
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¢ ———Gaussian random number generation using the Box — Muller method ———

D

function gasdev(idum)
integer idum. iset

real gasdev, fac. gset. rsq, v1, v2, random
save iset, gset

data iset/0/

if (iset .eq. 0) then

1
else
endif
c
return

end

vl = 2. * random(idum) — 1.

v2 * random(idum) — 1.

rsq = vlx x2+v2x% x2

if(rsq .ge. 1. .or. rsq .eq. 0.) goto 1
fac = sqrt( — 2. * log(rsq) /rsq)

gset = vl fac

sasdev = v2  fac
iset = 1

gasdev = gset
iset = 0
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¢ ———advection + diffusion
¢ ———for xp,yp, using subroutine getuv() to get uu,vv which is x and y directions
¢ ———velocity ux (1), uy (1), then get new position xc (1), yc (1) which is

advection part

¢ ———use fbm incement bhs to get diffusion displacement bhx(1, p). bhy(1. p),

¢ ———new position will be summation of advection and diffusion

¢ ———check if they are still in the region, if not, using reflection routine to
do reflection

¢ ———increment i from 1 to nstep, p from 1 to nparticle

(€ SRS A HHH IR HH KK

70
60

do 60 p = 1, nparticle
do 70 i = 0. nstep

bhx(i. p) = bhs(i, p) 111 fBm in x direction
bhy(i, p) = bhs(i, p+ nparticle) 1! fBm in y direction
continue
continue

do 80 p = 1, nparticle

xt(0, p) = xp 111 start from the release point
yt(0. p) = yp
signx(p) = 1.0
signy(p) = 1.0

do 90 i = 0, nstep
call getuv(ps i Xty Yts Xy ys Uy Vs Ul W)
ux(i, p) = uu !l get velocity from the subroutine
uy(, p) = w
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c ———advection + diffusion for one step ———
C R R H R EE R EHE R HEH LR KR E
xt(i+1, p) = xt(i, p) +ux(i, p)  real(dt) + signx(p) * bhx(i+1, p)
ytGi+1, p) = ytGi, p) +uy(, p)  real(dt) +signy(p) » bhy(i+1, p)
T
¢ ——— check if out of region, reflect the point to the region and change
¢ ——— the bhx and bhy sign
CHAXERERKLRERHERERKAKEREAK AL R XKL R LA RHA KA RHAR AR R LXK
if (yt(i+1, p) .le. 0) then
goto 85
else if(xt(i. p).1t.1275 .and. xt(i+1, p).gt.1275) then
if(ytGi+1. p).1t.2025 .or. yt(i+1. p).gt.2825) then
xt(i+1, p) = xt(i+1, p) —2* (xt(i+1, p) ~ 1275)
signx(p) = —signx(p)
yti+1, p = yG, p
end if
end if
else if(xt(i. p).gt. 1275 .and. yt(i+1, p).gt.2825) then
yi(i+1, p) = ytGi+1, p) =2 % (yt(i+1, p) —2825)
signy(p) = —signy(p)
if (xt(i+1, p) .gt. 2000) then
xtGi+1. p) = xt(i+1. p) —2x (xt(i+1, p) - 2000)
signx(p) = — signx(p)
end if
else if (xt(i, p).gt.1275 .and. yt(i+1, p).1t.2025) then
YiG+1, p) = yt(i+1. p)+2 % (2025- yt(i+1, p))
signy(p) = —signy(p)
if (xt(i+1, p) . gt. 2000) then
xt(i+1, p) = xt(i+1, p) =2 (xt(i+1, p) —2000)

signx(p) = — signx(p)
end if
else if (xt(i+1, p).gt.2000 .and. yt(i+1, p).gt.2025
@ .and. yt(i+1, p) .1t. 2825) then
xt(i+1, p) = xt(i+1, p) —2* (xt(i+1, p) —2000)
signx(p) = — signx(p)
end if
90 continue
85 continue

30 continue
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¢ — —read in data from file — —
CARERKRHKIEXHEAEEKARERKRKARE XK
open(50, file="tecvecd. dat', status="'old")
do5j = 0,57
do15i = 0, 40
read(50, 101) x(D . y()),y z, ulis P vGy Dy wy qCs Py gl )
15 continue
5 continue
101 format(1x, £8.3, 3x. 8.3, 3x, I1, 3x, 6.3, 3x, 6.3, 4x, f5.3, 4x, f5.3.
4x, f5.3)
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Yokt M5/ TR CELAED [EEAC:41) LD
Bl ¢=0.10 c=1.0 c=10
pURLEIE) 10 470 5671 3672
Bl HR Hi1f 11 200 (0.93) 8800 (0.64) | 6800 (0.54)
A 7700 (1.36) 7695 (0.74) 6318 (0.58)
pURLESIE) 27 255 17 333 7967
B2 HR #3111 15200 (1.79) | 12000 (1.44) | 8000 (1.0)
I 51 304 (0.53) 39 204 (0.44) | 16 456 (0.48)
AE 105 179 61304 18 353
B3 HR B 21600 (4.87) | 15600 (3.93) | 10400 (1.76)
Rig S0t 147 456 (0.71) | 104 000 (0.59) | 27 200 (0.67)
pUAESIIES) 265 916 185 159 29104
B4 HR il 29600 (8.98) | 20800 (8.90) | 12000 (2.43)
e B 417 450 (0.64) | 257 125 (0.72) | 3000 (9.70)
pUAESIIES) 593 523 373 005 0
B5 HR HEDI g 49,600 (11.97) | 32000 (11.66) 14 800
B 972 000 (0.61) | 518 400 (0.72) 0
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¢ ——— diffusion part calculation, here using the FBMINC model
¢ ——— calculate bh(i) —bh(i—1) = bhs(i) for each time step and particle

e

print * ,'enter choice:1 = delta, 2

= const, 3 = gauss.'
read # . ¢
if (c.gt. 3) then

print * ' sorry, please re — enter your choice.'

stop
else
¢ ——— gamma function generation ———
s = h-0.5
gamma = 1+alxs+a2x (s* x2) +a3x (s* x3) +ad » (s* x4) +abx (sx *5)
print # .'h, gamma = ', h, gamma
c
sigmap= (2% dxdt) » xh
¢ ——— white noises r(k) generation
do 10 p = 1, 2 x nparticle
do 20 k = 0, m+ nstep
if (¢ .eq. 1) then !11 Delta distribution
rand = random()
r(k) = sigmap * (2.0 * rand—1.0)/abs(2.0 » rand—1.0)
else if (¢ .eq. 2) then  !!! Constant distribution
rand = random()
r(k) = 1.732 # sigmap * (2.0 % rand = 1.0)
else if (¢ .eq. 3) then 1! Gaussian distribution
r(k) = gasdev(idum) * sigmap
end if
20 continue
bhs(0, p) = 0.0

do40i = 1. nstep
ifCh .It. 0.5 .or. h.gt. 0.5) then !!! fBm
bhl = 0.0
do50j=i-m.i-2
btempl = (i—j) * * (h=0.5) —(i—j—1) * x (h—0.5)
bhl = bhl+ btempl * r(j+m)
50 continue
bh2 = r(i-1+m)
bhs(i,p) = (bhl+bh2)/(gamma)
else 11! the following faster loop is used only if h = 0.5
c 11 i.e. reglar brownian motion
bhs(i, p) = r(i—1+m)
end if
40 continue
10 continue
end if
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